

Programming Microsoft
ASP.NET MVC, Third
Edition

Dino Esposito

www.SoftGozar.com

Published with the authorization of Microsoft Corporation by:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2014 Leonardo Esposito
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-8094-4

1 2 3 4 5 6 7 8 9 LSI 9 8 7 6 5 4

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the author, O’Reilly Media, Inc., Microsoft Corporation, nor
its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly or
indirectly by this book.

Acquisitions and Developmental Editors: Russell Jones and Rachel Roumeliotis

Production Editor: Kristen Brown

Editorial Production: Dianne Russell, Octal Publishing, Inc.

Technical Reviewer: John Mueller

Copyeditor: Bob Russell, Octal Publishing, Inc.

Indexer: BIM Indexing Services

Cover Design: Twist Creative • Seattle and Joel Panchot

Cover Composition: Ellie Volckhausen

Illustrator: Rebecca Demarest

www.SoftGozar.com

http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

To Silvia, Francesco, Michela, and my back for sustaining me.
—Dino

www.SoftGozar.com

Contents at a glance

Introduction xiii

PART I ASP.NET MVC FUNDAMENTALS

ChAPTEr 1 ASP.NET MVC controllers 3

ChAPTEr 2 ASP.NET MVC views 33

ChAPTEr 3 The model-binding architecture 75

ChAPTEr 4 Input forms 103

PART II ASP.NET MVC SOFTWARE DESIGN

ChAPTEr 5 Aspects of ASP.NET MVC applications 151

ChAPTEr 6 Securing your application 189

ChAPTEr 7 Design considerations for ASP.NET MVC controllers 225

ChAPTEr 8 Customizing ASP.NET MVC controllers 255

ChAPTEr 9 Testing and testability in ASP.NET MVC 301

ChAPTEr 10 An executive guide to Web API 337

PART III MOBILE CLIENTS

ChAPTEr 11 Effective JavaScript 367

ChAPTEr 12 Making websites mobile-friendly 399

ChAPTEr 13 Building sites for multiple devices 439

Index 469

www.SoftGozar.com

 vii

Contents

Introduction . .. xiii

PART I ASP.NET MVC FUNDAMENTALS

Chapter 1 ASP.NET MVC controllers 3
Routing incoming requests4

Simulating the ASP.NET MVC runtime 4

The URL routing HTTP module . .. 7

Application routes . ..9

The controller class15

Aspects of a controller . ..16

Writing controller classes . ..17

Processing input data22

Producing action results . ..25

Summary. .30

Chapter 2 ASP.NET MVC views 33
The structure and behavior of a view engine 34

The mechanics of a view engine . ..34

Definition of the view template39

HTML helpers . ..42

Basic helpers43

Templated helpers48

Custom helpers . ..51

The Razor view engine . ..54

Inside the view engine54

Designing a sample view . ..59

Coding the view 65

Modeling the view . ..65

Advanced features70

Summary. .73

www.SoftGozar.com

viii Contents

Chapter 3 The model-binding architecture 75
The input model . 76

Evolving from the Web Forms input processing 76

Input processing in ASP.NET MVC. .78

Model binding .79

Model-binding infrastructure .79

The default model binder .80

Customizable aspects of the default binder .91

Advanced model binding .93

Custom type binders .93

A sample DateTime model binder .96

Summary. .101

Chapter 4 Input forms 103
General patterns of data entry .104

A classic Select-Edit-Post scenario .104

Applying the Post-Redirect-Get pattern .112

Automating the writing of input forms .117

Predefined display and editor templates .117

Custom templates for model data types .125

Input validation .130

Using data annotations .130

Advanced data annotations .135

Self-validation .142

Summary. .146

PART II ASP.NET MVC SOFTWARE DESIGN

Chapter 5 Aspects of ASP.NET MVC applications 151
ASP.NET intrinsic objects .151

HTTP response and SEO .152

Managing the session state .155

Caching data .157

 ix

Error handling163

Handling program exceptions . ..163

Global error handling . ..169

Dealing with missing content172

Localization . ..175

Using localizable resources 175

Dealing with localizable applications182

Summary. .187

Chapter 6 Securing your application 189
Security in ASP.NET MVC189

Authentication and authorization190

Separating authentication from authorization192

Implementing a membership system . ..195

Defining a membership controller196

The Remember-Me feature and Ajax204

External authentication services207

The OpenID protocol . ..208

Authenticating via social networks215

Summary. .223

Chapter 7 Design considerations for ASP.NET MVC controllers 225
Shaping up your controller . ..226

Choosing the right stereotype . ..226

Fat-free controllers230

Connecting the presentation and back end. .237

The Layered Architecture pattern . ..237

Injecting data and services in layers244

Gaining control of the controller factory . ..250

Summary. .253

www.SoftGozar.com

x Contents

Chapter 8 Customizing ASP.NET MVC controllers 255
The extensibility model of ASP.NET MVC .255

The provider-based model .256

The Service Locator pattern .259

Adding aspects to controllers .263

Action filters .263

Gallery of action filters .267

Special filters .274

Building a dynamic loader filter .279

Action result types .285

Built-in action result types .285

Custom result types .290

Summary. .299

Chapter 9 Testing and testability in ASP.NET MVC 301
Testability and design. .302

DfT .302

Loosen up your design .304

The basics of unit testing .308

Working with a test harness .309

Aspects of testing .313

Testing your ASP.NET MVC code .319

Which part of your code should you test? .319

Unit testing ASP.NET MVC code .322

Dealing with dependencies .326

Mocking the HTTP context .328

Summary. .335

Chapter 10 An executive guide to Web API 337
The whys and wherefores of Web API .337

The need for a unified HTTP API .338

MVC controllers vs. Web API .339

Contents xi

Putting Web API to work341

Designing a RESTful interface . ..342

Expected method behavior346

Using the Web API348

Designing an RPC-oriented Interface352

Security considerations . ..355

Negotiating the response format. .359

The ASP.NET MVC approach359

How content negotiation works in Web API360

Summary. .363

PART III MOBILE CLIENTS

Chapter 11 Effective JavaScript 367
Revisiting the JavaScript language368

Language basics368

Object-orientation in JavaScript . ..373

jQuery’s executive summary . ..377

DOM queries and wrapped sets . ..377

Selectors 379

Events . ..384

Aspects of JavaScript programming . ..387

Unobtrusive code387

Reusable packages and dependencies . ..388

Script and resource loading391

Bundling and minification 394

Summary. .397

Chapter 12 Making websites mobile-friendly 399
Technologies for enabling mobile on sites399

HTML5 for the busy developer . ..400

RWD . ..407

jQuery Mobile’s executive summary413

Twitter Bootstrap at a glance423

www.SoftGozar.com

xii Contents

Adding mobile capabilities to an existing site .430

Routing users to the correct site .431

From mobile to devices .436

Summary. .437

Chapter 13 Building sites for multiple devices 439
Understanding display modes in ASP.NET MVC .440

Separated mobile and desktop views .440

Rules for selecting the display mode .442

Adding custom display modes. .443

Introducing the WURFL database .446

Structure of the repository .447

Essential WURFL capabilities .451

Using WURFL with ASP.NET MVC display modes .454

Configuring the WURFL framework .454

Detecting device capabilities .456

Using WURFL-based display modes .459

The WURFL cloud API .464

Why you should consider server-side solutions .466

Summary. .467

Index 469

About the author 495

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

 xiii

Introduction

Get your facts first, and then you can distort them as much as you
please.

—Mark Twain

ASP.NET was devised in the late 1990s at a time when many companies in various
industry sectors were rapidly discovering the Internet. The primary goal of ASP.NET

was to make it possible for developers to build applications quickly and effectively with-
out having to deal with low-level details such as HTTP, HTML, and JavaScript intricacies.
That was exactly what the community loudly demanded at that time. ASP.NET is what
Microsoft delivered to address this request, exceeding expectations by a large extent.

Today, more than ten years later, ASP.NET is showing signs of age, and many started
even questioning the real necessity of having a web framework at all. It’s an amazing
time, and several options exist. There are Web Forms and ASP.NET MVC applications,
and then there are more JavaScript-intensive client applications (single-page applica-
tions) that just use a server-side back end for delivering the basic layout of the few
pages they actually expose and for ad hoc services such as bundling.

Curiously, with the Web Forms paradigm, you can still write functional applications
even though ASP.NET MVC addresses more closely the present needs of developers.
The most common scenario of Web Forms is applications for which you focus on
presenting data and use some third-party high-quality suite of controls for that. ASP.NET
MVC is for everything else, including the scaffolding of client-side single-page applications.

The way web applications are changing proves that ASP.NET MVC probably failed to
replace ASP.NET Web Forms in the heart of many developers, but it was the right choice
and qualifies to be the ideal web platform for any application that needs a back end of
some substance; in particular (as I see things), web applications that aim at being multi-
device functional. And yes, that likely means all web applications in less than two years.

Switching to ASP.NET MVC is more than ever the natural follow-up for ASP.NET
developers.

www.SoftGozar.com

xiv Introduction

Who should read this book

Over the years, quite a few people have read quite a few books and articles of mine.
These readers are already aware that I’m not good at writing step-by-step, reference-
style books, in the similar manner that I'm unable to teach the same class twice, running
topics in the same order and showing the same examples.

This book is not for absolute beginners; but I do feel it is a book for all the oth-
ers, including those who are still fairly new to ASP.NET MVC. The higher your level of
competency and expertise, the less you can expect to find here that adds value in your
particular case. However, this book benefits from a few years of real-world practice; so
I’m sure it has a lot of solutions that might also appeal to the experts, particularly with
respect to mobile devices.

If you use ASP.NET MVC, I’m confident that you’ll find something in this book that
makes it worthwhile.

Assumptions
This book expects that you have at least a minimal understanding of ASP.NET development.

Who should not read this book

If you’re looking for a step-by-step guide to ASP.NET MVC, this is not the ideal book
for you.

Organization of this book

This book is divided into three sections. Part I, “ASP.NET MVC fundamentals,” provides a
quick overview of the foundation of ASP.NET and its core components. Part II, “ASP.NET
MVC software design,” focuses on common aspects of web applications and specific
design patterns and best practices. Finally, Part III, “Mobile clients,” is about JavaScript
and mobile interfaces.

Introduction xv

System requirements

You preferably have the following software installed in order to run the examples pre-
sented in this book:

■■ One of the following operating systems: Windows 8/8.1, Windows 7, Windows
Vista with Service Pack 2 (except Starter Edition), Windows XP with Service Pack
3 (except Starter Edition), Windows Server 2008 with Service Pack 2, Windows
Server 2003 with Service Pack 2, or Windows Server 2003 R2

■■ Microsoft Visual Studio 2013, any edition (multiple downloads might be re-
quired if you’re using Express Edition products)

■■ Microsoft SQL Server 2012 Express Edition or higher, with SQL Server Manage-
ment Studio 2012 Express or higher (included with Visual Studio; Express Edi-
tions require a separate download)

Depending on your Windows configuration, you might require Local Administrator
rights to install or configure Visual Studio 2013 and SQL Server 2012 products.

Code samples

Most of the chapters in this book include exercises with which you can interactively try
out new material learned in the main text. You can download all sample projects, in
both their pre-exercise and post-exercise formats, from the following page:

http://aka.ms/programASP-NET_MVC/files

Follow the instructions to download the asp-net-mvc-examples.zip file.

Installing the code samples
Perform the following steps to install the code samples on your computer so that you
can use them with the exercises in this book.

1. Unzip the asp-net-mvc-examples.zip file that you downloaded from the book’s
website (name a specific directory along with directions to create it, if necessary).

2. If prompted, review the displayed end-user license agreement. If you accept the
terms, select the Accept option, and then click Next.

www.SoftGozar.com

http://aka.ms/programASP-NET_MVC/files

Note If the license agreement doesn’t appear, you can access it from the
same webpage from which you downloaded the asp-net-mvc-examples.zip file.

Using the code samples
The folder created by the Setup.exe program contains one subfolder for each chapter.
In turn, each chapter might contain additional subfolders. All examples are organized in
a single Visual Studio 2013 solution. You open the solution file in Visual Studio 2013 and
navigate through the examples.

Errata & book support

We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site:

http://aka.ms/programASP-NET_MVC/errata

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
aforementioned addresses.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

http://aka.ms/programASP-NET_MVC/errata
mailto:mspinput@microsoft.com
mailto:mspinput@microsoft.com
http://aka.ms/tellpress

 Introduction xvii

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://twitter.com/MicrosoftPress

 1

PART I

ASP.NET MVC
fundamentals

CHAPTER 1 ASP.NET MVC controllers . 3

CHAPTER 2 ASP.NET MVC views. .33

CHAPTER 3 The model-binding architecture75

CHAPTER 4 Input forms .103

 3

C H A P T E R 1

ASP.NET MVC controllers

They always say time changes things, but you actually have to change them yourself.

—Andy Warhol

I think ASP.NET Web Forms started getting old the day that Ajax conquered the masses. As some have
said, Ajax has been the poisonous arrow shot in the heel of ASP.NET—another Achilles. Ajax made

getting more and more control over HTML and client-side code a true necessity. Over time, this led to
different architectures and made ASP.NET Web Forms a little less up to the task with each passing day.

Applied to the existing ASP.NET runtime, the MVC pattern produced a new framework—ASP.NET
MVC—that aligns web development to the needs of developers today.

In ASP.NET MVC, each request results in the execution of an action—ultimately, a method on a
specific class. The results of executing the action are passed down to the view subsystem along with a
view template. The results and template are then used to build the final response for the browser. Us-
ers don’t point the browser to a page, they just place a request. Doesn’t that sound like a big change?

Unlike Web Forms, ASP.NET MVC is made of various layers of code connected together but not
intertwined and not forming a single monolithic block. For this reason, it’s easy to replace any of
these layers with custom components that enhance the maintainability as well as the testability of the
solution. With ASP.NET MVC, you gain total control over the markup and can apply styles and inject
script code at will using the JavaScript frameworks that you like most.

Based on the same run-time environment as Web Forms, ASP.NET MVC pushes a web-adapted
implementation of the classic Model-View-Controller pattern and makes developing web applications
a significantly different experience. In this chapter, you’ll discover the role and structure of the con-
troller—the foundation of ASP.NET MVC applications—and how requests are routed to controllers.

Although you might decide to keep using Web Forms, for today’s web development, ASP.NET MVC
is a much better choice. You don’t need to invest a huge amount of time, but you need to understand
exactly what’s going on and the philosophy behind MVC. If you do that, any investment you make will
pay you back sooner than you expect.

4 PArT I ASP.NET MVC fundamentals

Note This book is based on ASP.NET MVC 5. This version of ASP.NET MVC is backward
compatible with the previous versions. This means that you can install both versions side
by side on the same computer and play with the new version without affecting any existing
MVC code that you might have already.

Routing incoming requests

Originally, the entire ASP.NET platform was developed around the idea of serving requests for physi-
cal pages. It turns out that most URLs used within an ASP.NET application are made of two parts: the
path to the physical webpage that contains the logic, and some data stuffed in the query string to
provide parameters. This approach has worked for a few years, and it still works today. The ASP.NET
run-time environment, however, doesn’t limit you to just calling into resources identified by a specific
location and file. By writing an ad hoc HTTP handler and binding it to a URL, you can use ASP.NET to
execute code in response to a request regardless of the dependencies on physical files. This is just one
of the aspects that most distinguishes ASP.NET MVC from ASP.NET Web Forms. Let’s briefly see how
to simulate the ASP.NET MVC behavior with an HTTP handler.

Note In software, the term URI (which stands for Uniform Resource Identifier) is used to
refer to a resource by location or a name. When the URI identifies the resource by location,
it’s called a URL, or Uniform Resource Locator. When the URI identifies a resource by name,
it becomes a URN, or Uniform Resource Name. In this regard, ASP.NET MVC is designed
to deal with more generic URIs, whereas ASP.NET Web Forms was designed to deal with
location-aware physical resources.

Simulating the ASP.NET MVC runtime
Let’s build a simple ASP.NET Web Forms application and use HTTP handlers to figure out the internal
mechanics of ASP.NET MVC applications. You can start from the basic ASP.NET Web Forms application
you get from your Microsoft Visual Studio project manager.

Defining the syntax of recognized URLs
In a world in which requested URLs don’t necessarily match up with physical files on the web server, the
first step to take is listing which URLs are meaningful for the application. To avoid being too specific,
let’s assume that you support only a few fixed URLs, each mapped to an HTTP handler component. The
following code snippet shows the changes required to be made to the default web.config file:

 CHAPTER 1 ASP.NET MVC controllers 5

<httpHandlers>
 <add verb="*"
 path="home/test/*"
 type="MvcEmule.Components.MvcEmuleHandler" />
</httpHandlers>

Whenever the application receives a request that matches the specified URL, it will pass it on to the
specified handler.

Defining the behavior of the HTTP handler
In ASP.NET, an HTTP handler is a component that implements the IHttpHandler interface. The inter-
face is simple and consists of two members, as shown here:

public class MvcEmuleHandler : IHttpHandler
{
 public void ProcessRequest(HttpContext context)
 {
 // Logic goes here
 ...
 }

 public Boolean IsReusable
 {
 get { return false; }
 }
}

Most of the time, an HTTP handler has a hardcoded behavior influenced only by some input data
passed via the query string. However, nothing prevents us from using the handler as an abstract
factory for adding one more level of indirection. The handler, in fact, can use information from the
request to determine an external component to call to actually serve the request. In this way, a single
HTTP handler can serve a variety of requests and just dispatch the call among a few more specialized
components.

The HTTP handler could parse out the URL in tokens and use that information to identify the class
and the method to invoke. Here’s an example of how it could work:

public void ProcessRequest(HttpContext context)
{
 // Parse out the URL and extract controller, action, and parameter
 var segments = context.Request.Url.Segments;
 var controller = segments[1].TrimEnd(‘/’);
 var action = segments[2].TrimEnd(‘/’);
 var param1 = segments[3].TrimEnd(‘/’);

 // Complete controller class name with suffix and (default) namespace
 var fullName = String.Format("{0}.{1}Controller",
 this.GetType().Namespace, controller);
 var controllerType = Type.GetType(fullName, true, true);

6 PArT I ASP.NET MVC fundamentals

 // Get an instance of the controller
 var instance = Activator.CreateInstance(controllerType);

 // Invoke the action method on the controller instance
 var methodInfo = controllerType.GetMethod(action,
 BindingFlags.Instance |
 BindingFlags.IgnoreCase |
 BindingFlags.Public);
 var result = String.Empty;
 if (methodInfo.GetParameters().Length == 0)
 {
 result = methodInfo.Invoke(instance, null) as String;
 }
 else
 {
 result = methodInfo.Invoke(instance, new Object[] { param1 }) as String;
 }

 // Write out results
 context.Response.Write(result);
}

The preceding code assumes that the first token in the URL after the server name contains the key
information to identify the specialized component that will serve the request. The second token refers
to the name of the method to call on this component. Finally, the third token indicates a parameter to
pass.

Invoking the hTTP handler
Given a URL such as home/test/*, it turns out that home identifies the class, test identifies the
methods, and whatever trails is the parameter. The name of the class is further worked out and
extended to include a namespace and a suffix. According to the example, the final class name is
MvcEmule.Components.HomeController. This class is expected to be available to the application. The
class is also expected to expose a method named Test, as shown here:

namespace MvcEmule.Components
{
 public class HomeController
 {
 public String Test(Object param1)
 {
 var message = "<html><h1>Got it! You passed ‘{0}’</h1></html>";
 return String.Format(message, param1);
 }
 }
}

Figure 1-1 shows the effect of invoking a page-agnostic URL in an ASP.NET Web Forms application.

 CHAPTER 1 ASP.NET MVC controllers 7

FIGURE 1-1 Processing page-agnostic URLs in ASP.NET Web Forms.

This simple example demonstrates the basic mechanics used by ASP.NET MVC. The specialized
component that serves a request is the controller. The controller is a class with just methods and no
state. A unique system-level HTTP handler takes care of dispatching incoming requests to a specific
controller class so that the instance of the class executes a given action method and produces a
response.

What about the scheme of URLs? In this example, you just use a hardcoded URL. In ASP.NET MVC,
you have a very flexible syntax that you can use to express those URLs that the application recognizes.
In addition, a new system component in the run-time pipeline intercepts requests, processes the URL,
and triggers the ASP.NET MVC HTTP handler. This component is the URL Routing HTTP module.

The URL routing HTTP module
The URL routing HTTP module processes incoming requests by looking at the URLs and dispatching
them to the most appropriate executor. The URL routing HTTP module supersedes the URL rewriting
feature of older versions of ASP.NET. At its core, URL rewriting consists of hooking up a request, pars-
ing the original URL, and instructing the HTTP run-time environment to serve a “possibly related but
different” URL.

Superseding URL rewriting
URL rewriting comes into play if you need to make tradeoffs between needing human-readable and
search engine optimization (SEO)-friendly URLs and needing to programmatically deal with tons of
URLs. For example, consider the following URL:

http://northwind.com/news.aspx?id=1234

The news.aspx page incorporates any logic required to retrieve, format, and display any given
news. The ID for the specific news to retrieve is provided via a parameter on the query string. As a
developer, implementing the page couldn’t be easier; you get the query string parameter, run the
query, and create the HTML. As a user or for a search engine, by simply looking at the URL you can’t
really understand the intent of the page, and you aren’t likely to remember the address easily enough
to pass it around.

8 PArT I ASP.NET MVC fundamentals

URL rewriting helps you in two ways. First, it makes it possible for developers to use a generic
front-end page, such as news.aspx, to display related content. Second, it also makes it possible for
users to request friendly URLs that will be programmatically mapped to less intuitive but easier-to-
manage URLs. In a nutshell, URL rewriting exists to decouple the requested URL from the physical
webpage that serves the requests.

In the latest version of ASP.NET 4 Web Forms, you can use URL routing to match incoming URLs to
other URLs without incurring the costs of HTTP 302 redirects. Conversely, in ASP.NET MVC, URL rout-
ing serves the purpose of mapping incoming URLs to a controller class and an action method.

Note Originally developed as an ASP.NET MVC component, the URL routing module is now
a native part of the ASP.NET platform and, as mentioned, offers its services to both ASP.NET
MVC and ASP.NET Web Forms applications, though through a slightly different API.

routing the requests
What happens exactly when a request knocks at the Internet Information Services (IIS) gate? Fig-
ure 1-2 gives you an overall picture of the various steps involved and how things work differently in
ASP.NET MVC and ASP.NET Web Forms applications.

The URL routing module intercepts any requests for the application that could not be served
otherwise by IIS. If the URL refers to a physical file (for example, an ASPX file), the routing module
ignores the request, unless it’s otherwise configured. The request then falls down to the classic ASP.
NET machinery to be processed as usual, in terms of a page handler.

Otherwise, the URL routing module attempts to match the URL of the request to any of the
application-defined routes. If a match is found, the request goes into the ASP.NET MVC space to be
processed in terms of a call to a controller class. If no match is found, the request will be served by the
standard ASP.NET runtime in the best possible way and likely results in an HTTP 404 error.

In the end, only requests that match predefined URL patterns (also known as routes) are allowed
to enjoy the ASP.NET MVC runtime. All such requests are routed to a common HTTP handler that in-
stantiates a controller class and invokes a defined method on it. Next, the controller method, in turn,
selects a view component to generate the actual response.

 CHAPTER 1 ASP.NET MVC controllers 9

FIGURE 1-2 The role of the routing module in ASP.NET MVC.

The internal structure of the URL routing module
In terms of implementation, I should note that the URL routing engine is an HTTP module that wires
up the PostResolveRequestCache event. The event fires right after checking that no response for the
request is available in the ASP.NET cache.

The HTTP module matches the requested URL to one of the user-defined URL routes and sets the
HTTP context to using the ASP.NET MVC standard HTTP handler to serve the request. As a developer,
you’re not likely to deal with the URL routing module directly. The module is provided by the system
and you don’t need to perform any specific form of configuration. Instead, you are responsible
for providing the routes that your application supports and that the routing module will actually
consume.

Application routes
By design, an ASP.NET MVC application is not forced to depend on physical pages. In ASP.NET MVC,
users place requests for acting on resources. The framework, however, doesn’t mandate the syntax for
describing resources and actions. I’m aware that the expression “acting on resources” will likely make
you think of Representational State Transfer (REST). And, of course, you will not be too far off the
mark in thinking so.

10 PArT I ASP.NET MVC fundamentals

Although you can definitely use a pure REST approach within an ASP.NET MVC application, I
would rather say that ASP.NET MVC is loosely REST-oriented in that it does acknowledge concepts
such as resource and action, but it leaves you free to use your own syntax to express and implement
resources and actions. As an example, in a pure REST solution you would use HTTP verbs to express
actions—GET, POST, PUT, and DELETE—and the URL to identify the resource. Implementing a pure
REST solution in ASP.NET MVC is possible but requires some extra work on your part.

The default behavior in ASP.NET MVC is using custom URLs where you make yourself responsible
for the syntax through which actions and resources are specified. This syntax is expressed through a
collection of URL patterns, also known as routes.

URL patterns and routes
A route is a pattern-matching string that represents the absolute path of a URL—namely, the URL
string without protocol, server, and port information. A route might be a constant string, but it will
more likely contain a few placeholders. Here’s a sample route:

/home/test

The route is a constant string and is matched only by URLs whose absolute path is /home/test.
Most of the time, however, you deal with parametric routes that incorporate one or more placehold-
ers. Here are a couple of examples:

/{resource}/{action}
/Customer/{action}

Both routes are matched by any URLs that contain exactly two segments. The latter, though,
requires that the first segment equals the string “Customer”. The former, instead, doesn’t pose specific
constraints on the content of the segments.

Often referred to as a URL parameter, a placeholder is a name enclosed in curly brackets { }. You
can have multiple placeholders in a route as long as they are separated by a constant or delimiter.
The forward slash (/) character acts as a delimiter between the various parts of the route. The name
of the placeholder (for example, action) is the key that your code will use to programmatically retrieve
the content of the corresponding segment from the actual URL.

Here’s the default route for an ASP.NET MVC application:

{controller}/{action}/{id}

In this case, the sample route contains three placeholders separated by the delimiter. A URL that
matches the preceding route is the following:

/Customers/Edit/ALFKI

You can add as many routes as you want with as many placeholders as appropriate. You can even
remove the default route.

 CHAPTER 1 ASP.NET MVC controllers 11

Defining application routes
Routes for an application are usually registered in the global.asax file, and they are processed at the
application startup. Let’s have a look at the section of the global.asax file that deals with routes:

public class MvcApplication : HttpApplication
{
 protected void Application_Start()
 {
 RouteConfig.RegisterRoutes(RouteTable.Routes);

 // Other code
 ...
 }
}

RegisterRoutes is a method on the RouteConfig class defined in a separate folder, usually named
App_:Start. (You can rename the folder at will, though.) Here’s the implementation of the class:

public class RouteConfig
{
 public static void RegisterRoutes(RouteCollection routes)
 {
 // Other code
 ...

 // Listing routes
 routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",
 new {
 controller = "Home",
 action = "Index",
 id = UrlParameter.Optional
 });
 }
}

As you can see, the Application_Start event handler calls into a public static method named Regis-
terRoutes that lists all routes. Note that the name of the RegisterRoutes method as well as the proto-
type is arbitrary and you can change it if there’s a valid reason.

Supported routes must be added to a static collection of Route objects managed by ASP.NET
MVC. This collection is RouteTable.Routes. You typically use the handy MapRoute method to populate
the collection. The MapRoute method offers a variety of overloads and works well most of the time.
However, it doesn’t let you configure every possible aspect of a route object. If there’s something
you need to set on a route that MapRoute doesn’t support, you might want to resort to the following
code:

// Create a new route and add it to the system collection
var route = new Route(...);
RouteTable.Routes.Add("NameOfTheRoute", route);

12 PArT I ASP.NET MVC fundamentals

A route is characterized by a few attributes, such as name, URL pattern, default values, constraints,
data tokens, and a route handler. The attributes you set most often are name, URL pattern, and de-
fault values. Let’s expand on the code you get for the default route:

routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",
 new {
 controller = "Home",
 action = "Index",
 id = UrlParameter.Optional
 });

The first parameter is the name of the route; each route should have a unique name. The second
parameter is the URL pattern. The third parameter is an object that specifies default values for the
URL parameters.

Note that a URL can match the pattern even in an incomplete form. Let’s consider the root URL—
http://yourserver.com. At first sight, such a URL wouldn’t match the route. However, if a default value
is specified for a URL parameter, the segment is considered optional. As a result, for the preceding
example, when you request the root URL, the request is resolved by invoking the method Index on
the Home controller.

Processing routes
The ASP.NET URL routing module employs a number of rules when trying to match an incoming re-
quested URL to a defined route. The most important rule is that routes must be checked in the order
in which they were registered in global.asax.

To ensure that routes are processed in the correct order, you must list them from the most specific
to the least specific. In any case, keep in mind that the search for a matching route always ends at
the first match. This means that just adding a new route at the bottom of the list might not work and
might also cause you a bit of trouble. In addition, be aware that placing a catch-all pattern at the top
of the list will make any other patterns, no matter how specific, pass unnoticed.

Beyond order of appearance, other factors affect the process of matching URLs to routes. As men-
tioned, one is the set of default values that you might have provided for a route. Default values are
simply values that are automatically assigned to defined placeholders in case the URL doesn’t provide
specific values. Consider the following two routes:

{Orders}/{Year}/{Month}
{Orders}/{Year}

If in the first route you assign default values for both {Year} and {Month}, the second route will
never be evaluated because, thanks to the default values, the first route is always a match regardless
of whether the URL specifies a year and a month.

 CHAPTER 1 ASP.NET MVC controllers 13

A trailing forward slash (/) is also a pitfall. The routes {Orders}/{Year} and {Orders}/{Year}/ are two
very different things. One won’t match to the other, even though logically, at least from a user’s per-
spective, you’d expect them to.

Another factor that influences the URL-to-route match is the list of constraints that you optionally
define for a route. A route constraint is an additional condition that a given URL parameter must fulfill
to make the URL match the route. The URL not only should be compatible with the URL pattern, it
also needs to contain compatible data. A constraint can be defined in various ways, including through
a regular expression. Here’s a sample route with constraints:

routes.MapRoute(
 "ProductInfo",
 "{controller}/{productId}/{locale}",
 new { controller = "Product", action = "Index", locale="en-us" },
 new { productId = @"\d{8}",
 locale = ""[a-z]{2}-[a-z]{2}" });

In particular, the route requires that the productId placeholder must be a numeric sequence of
exactly eight digits, whereas the local placeholder must be a pair of two-letter strings separated by a
dash. Constraints don’t ensure that all invalid product IDs and locale codes are stopped at the gate,
but at least they cut off a good deal of work.

route handler
The route defines a bare-minimum set of rules, according to which the routing module decides
whether the incoming request URL is acceptable to the application. The component that ultimately
decides how to remap the requested URL is another one entirely. Precisely, it is the route handler. The
route handler is the object that processes any requests that match a given route. Its sole purpose in
life is returning the HTTP handler that will actually serve any matching request.

Technically speaking, a route handler is a class that implements the IRouteHandler interface. The
interface is defined as shown here:

public interface IRouteHandler
{
 IHttpHandler GetHttpHandler(RequestContext requestContext);
}

Defined in the System.Web.Routing namespace, the RequestContext class encapsulates the HTTP
context of the request plus any route-specific information available, such as the Route object itself,
URL parameters, and constraints. This data is grouped into a RouteData object. Here’s the signature of
the RequestContext class:

public class RequestContext
{
 public RequestContext(HttpContextBase httpContext, RouteData routeData);

 // Properties
 public HttpContextBase HttpContext { get; set; }
 public RouteData RouteData { get; set; }
}

14 PArT I ASP.NET MVC fundamentals

The ASP.NET MVC framework doesn’t offer many built-in route handlers, and this is probably a
sign that the need to use a custom route handler is not that common. Yet, the extensibility point ex-
ists and, in case of need, you can take advantage of it. I’ll return to custom route handlers and provide
an example later in the chapter.

Handling requests for physical files
Another configurable aspect of the routing system that contributes to a successful URL-to-route
matching is whether the routing system has to handle requests that match a physical file.

By default, the ASP.NET routing system ignores requests whose URL can be mapped to a file that
physically exists on the server. Note that if the server file exists, the routing system ignores the re-
quest even if the request matches a route.

If you need to, you can force the routing system to handle all requests by setting the Route
ExistingFiles property of the RouteCollection object to true, as shown here:

// In global.asax.cs
public static void RegisterRoutes(RouteCollection routes)
{
 routes.RouteExistingFiles = true;
 ...
}

Note that having all requests handled via routing can create some issues in an ASP.NET MVC appli-
cation. For example, if you add the preceding code to the global.asax.cs file of a sample ASP.NET MVC
application and run it, you’ll immediately face an HTTP 404 error when accessing default.aspx.

Preventing routing for defined URLs
The ASP.NET URL routing module doesn’t limit you to maintaining a list of acceptable URL patterns;
you can also keep certain URLs off the routing mechanism. You can prevent the routing system from
handling certain URLs in two steps. First, you define a pattern for those URLs and save it to a route.
Second, you link that route to a special route handler—the StopRoutingHandler class. All it does is
throw a NotSupported exception when its GetHttpHandler method is invoked.

For example, the following code instructs the routing system to ignore any .axd requests:

// In global.asax.cs
public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
 ...
}

All that IgnoreRoute does is associate a StopRoutingHandler route handler to the route built around
the specified URL pattern.

 CHAPTER 1 ASP.NET MVC controllers 15

Finally, a little explanation is required for the {*pathInfo} placeholder in the URL. The token
pathInfo simply represents a placeholder for any content following the .axd URL. The asterisk (*),
though, indicates that the last parameter should match the rest of the URL. In other words, anything
that follows the .axd extension goes into the pathInfo parameter. Such parameters are referred to as
catch-all parameters.

Attribute routing
A popular NuGet package included in ASP.NET MVC 5 is AttributeRouting. (See http://
attributerouting.net.) Attribute routing is all about defining routes directly on controller actions by
using attributes. As previously demonstrated, classic routing is based on the conventions established
in global.asax, at the startup of the application.

Any time a request comes in, the URL is matched against the template of registered routes. If a
match is found, the appropriate controller and action method to serve the request are determined.
If not, the request is denied and the result is usually a 404 message. Now, in large applications, or
even in medium-sized applications with a strong REST flavor, the number of routes can be quite large
and could easily be in the order of hundreds. You might quickly find that classic routing becomes
a bit overwhelming to handle. For this reason, the AttributeRouting project was started and is now
integrated in ASP.NET MVC 5 and even in Web API, as is discussed in Chapter 10, “An executive guide
to Web API.”

[HttpGet("orders/{orderId}/show")]
public ActionResult GetOrderById(int orderId)
{
 ...
}

The code sets the method GetOrderById to be available over a HTTP GET call only if the URL
template matches the specified pattern. The route parameter—the orderId token—must match one of
the parameters defined in the method’s signature. There are a few more attributes available (for each
HTTP verb), but the gist of attribute routes is all here. For more information (for example, configura-
tion), you can refer to http://attributerouting.net because the integration for ASP.NET MVC is a direct
emanation of the existing NuGet package.

The controller class

In spite of the explicit reference to the Model-View-Controller pattern in the name, the ASP.NET MVC
architecture is essentially centered on one pillar—the controller. The controller governs the process-
ing of a request and orchestrates the back end of the system (for example, business layer, services,
data access layer) to grab raw data for the response. Next, the controller wraps up raw data computed
for the request into a valid response for the caller. When the response is a markup view, the controller
relies on the view engine module to combine data and view templates and produce HTML.

http://attributerouting.net
http://attributerouting.net
http://attributerouting.net

16 PArT I ASP.NET MVC fundamentals

Aspects of a controller
Any request that passes the URL routing filter is mapped to a controller class and served by executing
a given method on the class. Therefore, the controller class is the place where developers write the
actual code required to serve a request. Let’s briefly explore some characterizing aspects of controllers.

Granularity of controllers
An ASP.NET MVC application usually comprises of a variety of controller classes. How many control-
lers should you have? The actual number is up to you and depends only on how you want to organize
your application’s actions. In fact, you could arrange an application around a single controller class
that contains methods for any possible requests.

A common practice consists of having a controller class for each significant functionality your
application implements. For example, you can have a CustomerController class that takes care of
requests related to querying, deleting, updating, and inserting customers. Likewise, you can create
a ProductController class for dealing with products, and so forth. Most of the time, these objects are
directly related to items in the application’s main menu.

In general, you can say that the granularity of the controller is a function of the granularity of the
user interface. Plan to have a controller for each significant source of requests you have in the user
interface.

Stateless components
A new instance of the selected controller class is instantiated for each request. Any state you might
add to the class is bound to the same lifetime of the request. The controller class then must be able to
retrieve any data it needs to work from the HTTP request stream and the HTTP context.

Further layering is up to you
Often, ASP.NET MVC and controller classes are presented as a magic wand that you wave to write lay-
ered code that is cleaner and easier to read and maintain. The stateless nature of the controller class
helps a lot in this regard, but it is not enough.

In ASP.NET MVC, the controller is isolated from both the user interface that triggered the request
and the engine that produces the view for the browser. The controller sits in between the view and
the back end of the system. Although this sort of isolation from the view is welcome and fixes a weak
point of ASP.NET Web Forms, it alone doesn’t ensure that your code will be respectful of the vener-
able principle of Separation of Concerns (SoC).

The system gets you a minimal level of separation from the view—everything else is up to you.
Keep in mind that nothing, not even in ASP.NET MVC, prevents you from using direct ADO.NET calls
and plain Transact-SQL (T-SQL) statements directly in the controller class. The controller class is not
the back end of the system, and it is not the business layer. Instead, it should be considered as the
MVC counterpart of the code-behind class of Web Forms. As such, it definitely belongs to the presen-
tation layer, not the business layer.

 CHAPTER 1 ASP.NET MVC controllers 17

highly testable
The inherent statelessness of the controller and its neat separation from the view make the controller
class potentially easy to test. However, the real testability of the controller class should be measured
against its effective layering. Let’s have a look at Figure 1-3.

FIGURE 1-3 Controllers and views in ASP.NET MVC.

Although you can feed the controller class any fixed input you like and its output can be asserted
without major issues, nothing can be said about the internal structure of action methods. The more
the implementation of these methods is tightly bound to external resources (for example, databases,
services, components), the less likely it is that testing a controller will be quick and easy.

Writing controller classes
The writing of a controller class can be summarized in two simple steps: creating a class that inher-
its (either directly or indirectly) from Controller, and adding a bunch of public methods. However, a
couple of important details must be clarified: how the system gets to know the controller class to
instantiate, and how it figures out the method to invoke.

From routing to controllers
Regardless of how you define your URL patterns, any request must always be resolved in terms of a
controller name and an action name. This is one of the pillars of ASP.NET MVC. The controller name is
automatically read from the URL if the URL includes a {controller} placeholder. The same happens for
action names if the URL contains an {action} placeholder.

Having completely custom URLs devoid of such placeholders is still acceptable, though. In this
case, however, it is your responsibility to indicate the controller and action through default values, as
shown here:

routes.MapRoute(
 "SampleRoute",
 "about",
 new { controller = "Home", action = "About"}
);

18 PArT I ASP.NET MVC fundamentals

If controller and action names can’t be resolved in a static way, you might want to write a custom
route handler, explore the details of the request, and figure out controller and action names. Then,
you just store them in the RouteData collection, as shown here:

public class AboutRouteHandler : IRouteHandler
{
 public IHttpHandler GetHttpHandler(RequestContext requestContext)
 {
 if (requestContext.HttpContext.Request.Url.AbsolutePath == "/about")
 {
 requestContext.RouteData.Values["controller"] = "home";
 requestContext.RouteData.Values["action"] = "about";
 }
 return new MvcHandler(requestContext);
 }
}

For a route that requires a custom handler, the registration process is a bit different from what you
saw earlier. Here’s the code you need to have in RegisterRoutes:

public static void RegisterRoutes(RouteCollection routes)
{
 var aboutRoute = new Route("about", new AboutRouteHandler());
 routes.Add("SampleAboutRoute", aboutRoute);
 ...
}

Be sure to note that the controller name you obtain from the routing module doesn’t match
exactly the actual name of class that will be invoked. By default, the controller class is named after
the controller name with a Controller suffix added. In the previous example, if home is the controller
name, the class name is assumed to be HomeController. Note that conventions apply not just to
the class name but also to the namespace. In particular, the class is expected to be scoped in the
Controllers namespace under the default project namespace.

Note When you add a route based on a custom route handler that sets controller and
action names programmatically, you might run into trouble with the links generated by
the Html.ActionLink helper. You commonly use this helper to create route-based links for
menus and other visual elements of the user interface. If you add a route with a custom
handler, you might be surprised to see that the links you get from the helper are unexpect-
edly based on this route. To solve the issue, either you change ActionLink with RouteLink
and expressly indicate which route you want the URL to be created after, or you specify in
the custom route that controller and action are optional parameters.

 CHAPTER 1 ASP.NET MVC controllers 19

From routing to actions
When the ASP.NET MVC run-time environment has a valid instance of the selected controller class,
it yields to the action invoker component for the actual execution of the request. The action invoker
gets the action name and attempts to match it to a public method on the controller class.

The action parameter indicates the name of the action to perform. Most of the time, the control-
ler class just has a method with the same name. If this is the case, the invoker will execute it. Note,
though, that you can associate an action name attribute to any public method, thus decoupling the
method name from the action name. Here’s an example:

public class HomeController : Controller
{
 // Implicit action name: Index
 public ActionResult Index()
 {
 ...
 }

 [NonAction]
 public ActionResult About()
 {
 ...
 }

 [ActionName("About")]
 public ActionResult LoveGermanShepherds()
 {
 ...
 }
}

The method Index is not decorated with attributes, so it is implicitly bound to an action with the
same name. The third public method has a very fancy name, but it is explicitly bound to the action
About via the ActionName attribute. Finally, note that to prevent a public controller method from
being implicitly bound to an action name, you use the NonAction attribute. Therefore, given the pre-
vious code snippet when the user requests the about action, the method LoveGermanShepherds runs
regardless of the HTTP verb used to place the request.

Actions and hTTP verbs
ASP.NET MVC is flexible enough to let you bind a method to an action for a specific HTTP verb. To
associate a controller method with an HTTP verb, you either use the parametric AcceptVerbs attribute
or direct attributes such as HttpGet, HttpPost, and HttpPut. Using the AcceptVerbs attribute, you can
specify which HTTP verb is required to execute a given method. Let’s consider the following example:

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Edit(Customer customer)
{
 ...
}

20 PArT I ASP.NET MVC fundamentals

Given that code, it turns out that the Edit method can’t be invoked by using a GET. Note also that
you are not allowed to have multiple AcceptVerbs attributes on a single method. Your code won’t
compile if you add multiple AcceptVerbs attributes (or analogous direct HTTP verb attributes) to an
action method.

The AcceptVerbs attribute takes any value from the HttpVerbs enum type:

public enum HttpVerbs
{
 Get = 1,
 Post = 2,
 Put = 4,
 Delete = 8,
 Head = 0x10
}

The HttpVerbs enum is decorated with the Flags attribute, so you can combine together multiple
values from the enumeration by using the bitwise OR (|) operator and still obtain another HttpVerbs
value.

[AcceptVerbs(HttpVerbs.Post|HttpVerbs.Put)]
public ActionResult Edit(Customer customer)
{
 ...
}

You perform an HTTP GET command when you follow a link or type the URL into the address bar.
You perform an HTTP POST when you submit the content of an HTML form. You can perform any
other HTTP command only via AJAX, or perhaps from a Windows client that sends requests to the
ASP.NET MVC application.

The ability to assign a specific verb to a given action method naturally leads to duplicate method
names. Two methods with the same name are acceptable in a controller class as long as they accept
distinct HTTP verbs. Otherwise, an exception will be thrown because ASP.NET MVC doesn’t know how
to resolve the ambiguity.

Note You can also use multiple individual attributes, one for each HTTP verb. Examples are
HttpGet and HttpPost.

Action methods
Let’s have a look at a sample controller class with a couple of simple but functional action methods:

public class HomeController : Controller
{
 public ActionResult Index()
 {
 // Process input data
 ...

 CHAPTER 1 ASP.NET MVC controllers 21

 // Perform expected task
 ...

 // Generate the result of the action
 return View();
 }

 public ActionResult About()
 {
 // Process input data
 ...

 // Perform expected task
 ...

 // Generate the result of the action
 return View();
 }
}

An action method grabs available input data by using any standard HTTP channels. Next, it ar-
ranges for some action and possibly involves the middle tier of the application. We can summarize
the template of an action method as follows:

■■ Process input data An action method gets input arguments from a couple of sources: route
values and collections exposed by the Request object. ASP.NET MVC doesn’t mandate a par-
ticular signature for action methods. However, for testability reasons, it’s highly recommended
that any input parameter is received through the signature. If you can, avoid methods that
retrieve input data programmatically from Request or other sources. As you’ll see later in this
chapter, and even more thoroughly in Chapter 3, “The model-binding architecture,” an entire
subsystem exists—the model binding layer—to map HTTP parameters to action method
arguments.

■■ Perform the task The action method does its job based on input arguments and attempts
to obtain expected results. In doing so, the method likely needs to interact with the middle
tier. As is discussed further in Chapter 7, “Design considerations for ASP.NET MVC control-
lers,” it is recommended that any interaction takes places through ad hoc dedicated services.
At the end of the task, any (computed or referenced) values that should be incorporated in
the response are packaged as appropriate. If the method returns JavaScript Object Notation
(JSON), data is composed into a JSON-serializable object. If the method returns HTML, data
is packaged into a container object and sent to the view engine. The container object is often
referred to as the view-model and can be a plain dictionary of name/value pairs or a view-
specific, strongly typed class.

■■ Generate the results In ASP.NET MVC, a controller’s method is not responsible for pro-
ducing the response itself. However, it is responsible for triggering the process that will use
a distinct object (often, a view object) to render content to the output stream. The method
identifies the type of response (file, plain data, HTML, JavaScript, or JSON) and sets up an
ActionResult object, as appropriate.

22 PArT I ASP.NET MVC fundamentals

A controller’s method is expected to return an ActionResult object or any object that inherits from
the ActionResult class. Often, though, a controller’s method doesn’t directly instantiate an Action
Result object. Instead, it uses an action helper—that is, an object that internally instantiates and
returns an ActionResult object. The method View in the preceding example provides an excellent
illustration of an action helper. Another great example of such a helper method is Json, which is used
when the method needs to return a JSON string. I’ll return to this point in just a moment.

Processing input data
Controller action methods can access any input data posted by using the HTTP request. Input data
can be retrieved from a variety of sources, including form data, query strings, cookies, route values,
and posted files.

The signature of a controller action method is free. If you define parameter-less methods, you make
yourself responsible for programmatically retrieving any input data your code requires. If you add pa-
rameters to the method’s signature, ASP.NET MVC will offer automatic parameter resolution. In particular,
ASP.NET MVC will attempt to match the names of formal parameters to named members in a request-
scoped dictionary that joins together values from the query string, route, posting form, and more.

In this chapter, I discuss how to manually retrieve input data from within a controller action
method. Chapter 3 discusses automatic parameter resolution—the most common choice in ASP.NET
MVC applications.

Getting input data from the Request object
When writing the body of an action method, you can certainly access any input data that comes
through the familiar Request object and its child collections, such as Form, Cookies, ServerVariables,
and QueryString. As you’ll see later in the book, when it comes to input parameters of a controller
method, ASP.NET MVC offers quite compelling facilities (for example, model binders) that you might
want to use to keep your code cleaner, more compact, and easier to test. Having said that, though,
nothing at all prevents you from writing old-style Request-based code, as shown here:

public ActionResult Echo()
{
 // Capture data in a manual way
 var data = Request.Params["today"] ?? String.Empty;
 ...
}

In ASP.NET, the Request.Params dictionary results from the combination of four distinct dictionar-
ies: QueryString, Form, Cookies, and ServerVariables. You can also use the Item indexer property of
the Request object, which provides the same capabilities and searches dictionaries for a matching
entry in the following order: QueryString, Form, Cookies, and ServerVariables. The following code is
fully equivalent to that just shown:

 CHAPTER 1 ASP.NET MVC controllers 23

public ActionResult Echo()
{
 // Capture data in a manual way
 var data = Request["today"] ?? String.Empty;
 ...
}

Observe that the search for a matching entry is case insensitive.

Getting input data from the route
In ASP.NET MVC, you often provide input parameters through the URL. These values are captured
by the routing module and made available to the application. Route values are not exposed to ap-
plications through the Request object. You have to use a slightly different approach to retrieve them
programmatically, as demonstrated here:

public ActionResult Echo()
{
 // Capture data in a manual way
 var data = RouteData.Values["data"] ?? String.Empty;
 ...
}

Route data is exposed through the RouteData property of the Controller class. Also, in this case,
the search for a matching entry is conducted in a case-insensitive manner.

The RouteData.Values dictionary is a String/Object dictionary. The dictionary contains only strings
most of the time. However, if you populate this dictionary programmatically (for example, via a
custom route handler), it can contain other types of values. In this case, you’re responsible for any
necessary type cast.

Getting input data from multiple sources
Of course, you can mix RouteData and Request calls in the same controller method. As an example,
let’s consider the following route:

routes.MapRoute(
 "EchoRoute",
 "echo/{data}",
 new { controller = "Home", action = "Echo", data = UrlParameter.Optional }
);

The following is a valid URL: http://yourserver/echo/Sunday. The code shown next will easily grab
the value of the data parameter (Sunday). Here’s a possible implementation of the Echo method in the
HomeController class:

public ActionResult Echo()
{
 // Capture data in a manual way
 var data = RouteData.Values["data"];
 ...
}

24 PArT I ASP.NET MVC fundamentals

What if you call the following URL, instead?

http://yourserver/echo?today=3/27/2011

The URL still matches the route pattern, but it doesn’t provide a value for the data parameter. Still,
the URL adds some input value in the query string for the controller action to consider. Here’s the
modified version of the Echo method that supports both scenarios:

public ActionResult Echo()
{
 // Capture data in a manual way
 var data = RouteData.Values["data"] ??
 (Request.Params["today"] ?? String.Empty);
 ...
}

The question is, “Should I plan to have a distinct branch of code for each possible input channel,
such as form data, query string, routes, cookies, and so forth?” Enter the ValueProvider dictionary.

The ValueProvider dictionary
In the Controller class, the ValueProvider property just provides a single container for input data col-
lected from a variety of sources. By default, the ValueProvider dictionary is fed by input values from
the following sources (in the specified order):

1. Child action values Input values are provided by child action method calls. A child action is a
call to a controller method that originates from the view. A child action call takes place when the
view calls back the controller to get additional data or to demand the execution of some special
task that might affect the output being rendered. I discuss child actions in Chapter 2, “ASP.NET
MVC views.”

2. Form data Input values are provided by the content of the input fields in a posting HTML
form. The content is the same as you would get through Request.Form.

3. Route data Input values are provided by the content associated with parameters defined in
the currently selected route.

4. Query string Input values are provided by the content of parameters specified in the query
string of the current URL.

5. Posted files Input values are represented by the file or files posted via HTTP in the context
of the current request.

The ValueProvider dictionary offers a custom programming interface centered on the GetValue
method. Here’s an example:

var result = ValueProvider.GetValue("data");

Be aware that GetValue doesn’t return a String or an Object type. Instead, it returns an instance of
the ValueProviderResult type. The type has two properties to actually read the real parameter value:

 CHAPTER 1 ASP.NET MVC controllers 25

RawValue and AttemptedValue. The former is of type Object and contains the raw value as provided by
the source. The AttemptedValue property, on the other hand, is a string and represents the result of an
attempted type cast to String. Here’s how to implement the Echo method by using ValueProvider:

public ActionResult Echo()
{
 var data = ValueProvider.GetValue("data").AttemptedValue ??
 (ValueProvider.GetValue("today").AttemptedValue ?? String.Empty);
 ...
}

ValueProvider is a bit more demanding than Request and RouteData when it comes to parameter
names. If you mistype the case of a parameter, you’ll get a null object back from GetValue. This leads
to an exception if you then just read the value without checking the result object for nullness.

Finally, note that by default you won’t get access to cookies through the ValueProvider dictionary.
However, the list of value providers can be extended programmatically by defining a class that imple-
ments the IValueProvider interface.

Note The value-provider mechanism can be useful to retrieve some request data which
is packed into a comfortable collection of values. Default value providers save you from
the burden of looking into the QueryString or Form collection. What if you need to read
data from a cookie or a request header? You can go the usual way and read the Headers or
Cookies collection of the Request object and write the code that extracts individual values.
However, if your application is extensively based on request headers or cookies, you might
want to consider writing a custom value provider. It is not hard to find working examples of
both from the community. You can find a good example of a value provider that exposes
request headers at http://blog.donnfelker.com/2011/02/16/asp-net-mvc-building-web-apis-
with-headervalueprovider.

Producing action results
An action method can produce a variety of results. For example, an action method can just act as a
web service and return a plain string or a JSON string in response to a request. Likewise, an action
method can determine that there’s no content to return or that a redirect to another URL is required.
In these two cases, the browser will just get an HTTP response with no significant body of content.
This is to say that one thing is producing the raw result of the action (for example, collecting values
from the middle tier); it is quite another case to process that raw result to generate the actual HTTP
response for the browser. The ActionResult class just represents the ASP.NET MVC infrastructure for
implementing this programming aspect.

http://blog.donnfelker.com/2011/02/16/asp-net-mvc-building-web-apis-with-headervalueprovider
http://blog.donnfelker.com/2011/02/16/asp-net-mvc-building-web-apis-with-headervalueprovider

26 PArT I ASP.NET MVC fundamentals

Inside the ActionResult class
An action method typically returns an object of type ActionResult. The type ActionResult is not a data
container, though. More precisely, it is an abstract class that offers a common programming inter-
face to execute some further operations on behalf of the action method. Here’s the definition of the
ActionResult class:

public abstract class ActionResult
{
 protected ActionResult()
 {
 }

 public abstract void ExecuteResult(ControllerContext context);
}

By overriding the ExecuteResult method, a derived class gains access to any data produced by the
execution of the action method and triggers some subsequent action. Generally, this subsequent ac-
tion is related to the generation of some response for the browser.

Predefined action result types
Because ActionResult is an abstract type, every action method is actually required to return an in-
stance of a more specific type. Table 1-1 lists all predefined action result types.

TABLE 1-1 Predefined ActionResult types in ASP.NET MVC

Type Description

ContentResult Sends raw content (not necessarily HTML) to the browser. The
ExecuteResult method of this class serializes any content it
receives.

EmptyResult Sends no content to the browser. The ExecuteResult method
of this class does nothing.

FileContentResult Sends the content of a file to the browser. The content of the
file is expressed as a byte array. The ExecuteResult method
simply writes the array of bytes to the output stream.

FilePathResult Sends the content of a file to the browser. The file is identified
via its path and content type. The ExecuteResult method calls
the TransmitFile method on HttpResponse.

FileStreamResult Sends the content of a file to the browser. The content of the
file is represented through a Stream object. The ExecuteResult
method copies from the provided file stream to the output
stream.

HttpNotFoundResult Sends an HTTP 404 response code to the browser. The HTTP
status code identifies a request that failed because the re-
quested resource was not found.

HttpUnauthorizedResult Sends an HTTP 401 response code to the browser. The HTTP
status code identifies an unauthorized request.

JavaScriptResult Sends JavaScript text to the browser. The ExecuteResult
method of this class writes out the script and sets the content
type accordingly.

 CHAPTER 1 ASP.NET MVC controllers 27

Type Description

JsonResult Sends a JSON string to the browser. The ExecuteResult meth-
od of this class sets the content type to the application or
JSON and invokes the JavaScriptSerializer class to serialize any
provided managed object to JSON.

PartialViewResult Sends HTML content to the browser that represents a frag-
ment of the whole page view. A partial view in ASP.NET MVC
is a concept very close to a user control in Web Forms.

RedirectResult Sends an HTTP 302 response code to the browser to redirect
the browser to the specified URL. The ExecuteResult method
of this class just invokes Response.Redirect.

RedirectToRouteResult Like RedirectResult, it sends an HTTP 302 code to the browser
and the new URL to which to navigate. The difference is in
the logic and input data employed to determine the target
URL. In this case, the URL is built based on action/controller
pairs or route names.

ViewResult Sends HTML content to the browser that represents a full
page view.

Note that FileContentResult, FilePathResult, and FileStreamResult derive from the same base class:
FileResult. You use any of these action result objects if you want to reply to a request with the down-
load of some file content or even some plain binary content expressed as a byte array. PartialView
Result and ViewResult inherit from ViewResultBase and return HTML content. Finally, HttpUnauthorized
Result and HttpNotFoundResult represent two common responses for unauthorized access and miss-
ing resources. Both derive from a further extensible class HttpStatusCodeResult.

The mechanics of executing action results
To better comprehend the mechanics of action result classes, let’s dissect one of the predefined
classes. I’ve chosen the JavaScriptResult class, which provides some meaningful behavior without
being too complex. The JavaScriptResult class represents the action of returning some script to the
browser. Here’s a possible action method that serves up JavaScript code:

public JavaScriptResult GetScript()
{
 var script = "alert(‘Hello’)";
 return JavaScript(script);
}

In the example, JavaScript is a helper method in the Controller class that acts as a factory for the
JavaScriptResult object. The implementation looks like this:

protected JavaScriptResult JavaScript(string script)
{
 return new JavaScriptResult() { Script = script };
}

28 PArT I ASP.NET MVC fundamentals

The JavaScriptResult class supplies a public property—the Script property—that contains the script
code to write to the output stream. Here’s its implementation:

public class JavaScriptResult : ActionResult
{
 public String Script { get; set; }

 public override void ExecuteResult(ControllerContext context)
 {
 if (context == null)
 throw new ArgumentNullException("context");

 // Prepare the response
 HttpResponseBase response = context.HttpContext.Response;
 response.ContentType = "application/x-javascript";
 if (Script != null)
 response.Write(Script);
 }
}

As you can see, the ultimate purpose of the ActionResult class is to prepare the HttpResponse ob-
ject to return to the browser. This entails setting content type, expiration policies, and headers, as well
as content.

Returning HTML markup
Most of the time, requests are served by sending back HTML markup. Composing the HTML for the
browser is the core of a web framework. In ASP.NET Web Forms, the task of composing HTML is done
through the page. Developers create ASPX pages as a mix of a view template and a code-behind
class. Both the action to grab results and the production of the actual response are blurred in a single
run-time environment. In ASP.NET MVC, the production of the results is the responsibility of the
action method; managing for the response to be composed and served is the responsibility of the
framework. Finally, composing the HTML markup is the responsibility of yet another system compo-
nent—the view engine.

I discuss view engines in Chapter 2, but for now it suffices to say that a view engine knows how to
retrieve a view template for a given action and how to process that to a plain HTML stream that mixes
template information and raw data. The view engine dictates the syntax of the view template (ASPX,
Razor, and Spark to name a few); the developer dictates the format of the raw data to be merged into
the view. Let’s consider a sample action method returning HTML:

public ActionResult Index()
{
 return View(); // same as View("index");
}

The View method is a helper method responsible for creating a ViewResult object. The ViewResult
object needs to know about the view template, an optional master view, and the raw data to be

 CHAPTER 1 ASP.NET MVC controllers 29

incorporated into the final HTML. The fact that in the code snippet View has no parameters doesn’t
mean no data is actually passed on. Here’s one of the signatures of the method:

protected ViewResult View(String viewName, String masterName, Object model)

By convention, the view template is a file named after the action name (Index in this case) and lo-
cated in a specific folder. The exact location depends on the implementation of the currently selected
view engine. By default, view templates are expected to be located in the Views folder in a directory
that matches the name of the controller—for example, Views/Home. Be aware that you must maintain
this directory structure when you deploy the site.

The extension of the view template file also depends on the implementation of the view engine.
For the two predefined view engines you get with ASP.NET MVC, the extensions are .aspx if you opt
for the ASPX view engine and .cshtml (or .vbhtml) if you opt for the Razor view engine. (I provide
more details about this in Chapter 2.)

returning JSON content
ASP.NET MVC lends itself very well to implementing simple web services to be called back from
jQuery snippets in an Ajax context. All you need to do is set one or more action methods to return
JSON strings instead of HTML. Here’s an example:

public JsonResult GetCustomers()
{
 // Grab some data to return
 var customers = _customerRepository.GetAll();

 // Serialize to JSON and return
 return Json(customers);
}

The Json helper method gets a plain .NET object and serializes it to a string by using the built-in
JavaScriptSerializer class.

Note What if your controller action method doesn’t return ActionResult? First and
foremost, no exceptions are raised. Quite simply, ASP.NET MVC encapsulates any
return value from the action method (numbers, strings, or custom objects) into a
ContentResult object. The execution of a ContentResult object causes the plain serial-
ization of the value to the browser. For example, an action that returns an integer or a
string will get you a browser page that displays data as-is. On the other hand, returning
a custom object displays any string resulting from the implementation of the object’s
ToString method. If the method returns an HTML string, any markup will not be auto-
matically encoded and the browser will likely not properly parse it. Finally, a void return
value is actually mapped to an EmptyResult object whose execution causes a no-op.

30 PArT I ASP.NET MVC fundamentals

Asynchronous operations within a controller
The primary purpose of a controller is to serve the needs of the user interface. Any server-side
functions you need to implement should be mapped to a controller method and triggered
from the user interface. After performing its own task, a controller’s method selects the next
view, packs some data, and instructs it to render.

This is the essence of the controller’s behavior. However, other characteristics are often
required in a controller, especially when controllers are employed in large and complex ap-
plications with particular needs, such as long-running requests. In earlier versions of ASP.NET
MVC, you had to follow a specific pattern to give controller methods an asynchronous be-
havior. Starting with the .NET Framework 4.5, you can take advantage of the new async/await
language facilities and the underlying .NET machinery. Here’s the way in which you write a
controller class with one or more asynchronous methods:

public class HomeController : AsyncController
{
 public async Task<ActionResult> Rss()
 {

 // Run the potentially lengthy operation
 var client = new HttpClient();
 var rss = await client.GetStringAsync(someRssUrl);

 // Parse RSS and build the view model
 var model = new HomeIndexModel();
 model.News = ParseRssInternal(rss);
 return model;
 }
}

The code looks as if it were written to be synchronous—you don’t care about callbacks. In the end,
though, it is highly readable and runs asynchronously thanks to the syntactic sugar added by the C#
compiler when you use async/await keywords.

Summary

Controllers are the heart of an ASP.NET MVC application. Controllers mediate between the user
requests and the capabilities of the server system. Controllers are linked to user-interface actions
and are in touch with the middle tier. Controllers order the rendering of the page but don’t run any
rendering tasks themselves. This is a key difference from ASP.NET Web Forms. In a controller, the
processing of the request is neatly separated from the display. In Web Forms, on the other hand,
the page-processing phase incorporates both the execution of some tasks and the rendering of the
response.

 CHAPTER 1 ASP.NET MVC controllers 31

Although based on a different syntax, controller methods are not much different from the post-
back event handlers you have in ASP.NET Web Forms. In this regard, a controller class plays the same
role of a code-behind class in Web Forms. The controller as well as a Web Forms code-behind class
belongs to the presentation layer. For this reason, you should pay a lot of attention to how you code
the behavior of the various action methods. Keep in mind that in ASP.NET MVC, any layering in the
building of the solution is also up to you.

In this chapter, I skipped over all the details about how you add behavior to a controller method.
I focused on an overview of what comes before and what comes after. In Chapter 2, I delve deeper
into what comes after; therefore, the focus will be on views, view engines, and the generation of the
markup. Then, in Chapter 3, I discuss model binding and what happens before the behavior of an
action method comes into play. And in Chapter 7, I come back to this topic with some design consid-
erations on how to structure methods in a controller class.

This has been just the first pass on controllers. A lot more must be said and learned.

 33

C H A P T E R 2

ASP.NET MVC views

Design is not just what it looks like and feels like. Design is how it works.
—Steve Jobs

In ASP.NET MVC, any request is resolved in terms of an action being executed on some controller.
Even for a newcomer, this point is relatively easy to understand and figure out. But, there’s another

aspect of the request that the newcomer often has difficulty grasping—the generation of the HTML
for the browser.

In ASP.NET Web Forms, you don’t even think of an action—you think of a page, and a page incor-
porates both logic and view. In classic ASP.NET, you start with, say, a register.aspx page that the user
reaches following a link. The page unfolds its user interface, which ends with a submit button. The
button originates a POST to the same page that takes care of posted data, modifies the state of the
application as appropriate, and prepares the expected thank-you screen. The entire process is rooted
in the page resource.

However, in ASP.NET MVC, you set up a Register action on some controller class. When the action
is invoked over a GET command, it results in the display of the user interface for the data entry. When
invoked over a POST, the action performs the desired server-side tasks and then manages to serve
back the thank-you screen. The entire workflow is similar to what you have in a nonweb scenario.

In ASP.NET MVC, you just deal with two main flavors of components. One is the controller, which
is in charge of executing the request and producing raw results in return for raw input. The other is
the view engine, which is in charge of generating any expected HTML response based on the results
calculated by the controller. In this chapter, I’ll first briefly discuss the internal architecture of the view
engine and then move to more practical considerations on how you feed an engine with view tem-
plates and data.

Note As is demonstrated in Chapter 1, “ASP.NET MVC controllers,” a controller action
doesn’t necessarily produce some HTML. You can look upon an ASP.NET MVC application
as a collection of components with the ability to serve various responses, including HTML,
JavaScript, JavaScript Object Notation (JSON), and plain text. In this chapter, I’ll restrict the
discussion to considering the subsystem responsible for the production of HTML. Later in
the book, I discuss other types of responses in more detail.

34 PArT I ASP.NET MVC fundamentals

The structure and behavior of a view engine

The view engine is the component that physically builds the HTML output for the browser. The view
engine engages for each request that returns HTML, and it prepares its output by mixing together a
template for the view and any data the controller passes in. The template is expressed in an engine-
specific markup language; the data is passed packaged in dictionaries or in strongly typed objects.
Figure 2-1 shows the overall picture of how a view engine and controller work together.

FIGURE 2-1 Controllers and view engines.

The mechanics of a view engine
In ASP.NET MVC, a view engine is merely a class that implements a fixed interface—the IViewEngine
interface. Each application can have one or more view engines. In ASP.NET MVC 5, each application
comes by default with two view engines. Let’s find out more.

Detecting registered view engines
Until ASP.NET MVC 4, when you first created an ASP.NET MVC application, the Microsoft Visual Studio
project wizard asked you to pick your favorite view engine—whether ASPX or Razor. Figure 2-2 shows
the specific dialog box as it appears when ASP.NET MVC 5 is installed in Visual Studio 2013.

 CHAPTER 2 ASP.NET MVC views 35

FIGURE 2-2 Choosing your favorite view engine.

As you can see, there’s no choice between ASPX and Razor, and all view files are automatically
created by using the Razor markup language. In spite of appearances, the choice you make here has a
limited impact on the application. Your choice, in fact, influences only the content of the project files
the wizard will create for you. By default, any ASP.NET MVC 5 application will always load two view
engines: Razor and ASPX.

The ViewEngines class is the system repository that tracks the currently installed engines. The class
is simple and exposes only a static collection member named Engines. The static member is initialized
with the two default engines. Here’s an excerpt from the class:

public static class ViewEngines
{
 private static readonly ViewEngineCollection _engines =
 new ViewEngineCollection {
 new WebFormViewEngine(),
 new RazorViewEngine()
 };

 public static ViewEngineCollection Engines
 {
 get { return _engines; }
 }
 ...
}

36 PArT I ASP.NET MVC fundamentals

In case you’re interested in using ViewEngines.Engines to detect the installed engines program-
matically, here’s how to do it:

private static IList<String> GetRegisteredViewEngines()
{
 return ViewEngines
 .Engines
 .Select(engine => engine.ToString())
 .ToList();
}

The most likely scenario in which you might encounter ViewEngines.Engines is when you need to
add a new view engine or unload an existing one. You do this in the application startup, more pre-
cisely, in the Application_Start event in global.asax.

Anatomy of a view engine
A view engine is a class that implements the IViewEngine interface. The contract of the interface says
it’s all about the services the engine is expected to provide: the engine is responsible for retrieving a
(partial) view object on behalf of the ASP.NET MVC infrastructure. A view object represents the con-
tainer for any information that is needed to build a real HTML response in ASP.NET MVC. Here are the
interface members:

public interface IViewEngine
{
 ViewEngineResult FindPartialView(
 ControllerContext controllerContext,
 String partialViewName,
 Boolean useCache);
 ViewEngineResult FindView(
 ControllerContext controllerContext,
 String viewName,
 String masterName,
 Boolean useCache);
 void ReleaseView(
 ControllerContext controllerContext,
 IView view);
}

Table 2-1 describes the behavior of the methods in the IViewEngine interface.

TABLE 2-1 Methods of the IViewEngine interface

Method Description

FindPartialView Creates and returns a view object that represents a frag-
ment of HTML

FindView Creates and returns a view object that represents an
HTML page

ReleaseView Releases the specified view object

 CHAPTER 2 ASP.NET MVC views 37

Both FindPartialView and FindView return a ViewEngineResult object, which represents the results
of locating a template for the view around the server directory tree and instantiating it. Here’s the
class signature:

public class ViewEngineResult
{
 ...

 // Members
 public IEnumerable<String> SearchedLocations { get; private set; }
 public IView View { get; private set; }
 public IViewEngine ViewEngine { get; private set; }
}

The ViewEngineResult type just aggregates three elements: the view object, the view engine object
used to create it, and the list of locations searched to find the template of the view. The content of
the SearchedLocations property depends on the structure and behavior of the selected view engine. The
ReleaseView method is intended to dispose of any references that the view object has in use.

Who calls the view engine?
Although Figure 2-1 seems to show direct contact between controllers and view engines, the two
components never communicate directly. Instead, the activity of both controllers and view engines is
coordinated by an external manager object: the action invoker. The action invoker is triggered directly
by the HTTP handler in charge of the request. The action invoker does two key things. First, it ex-
ecutes the controller’s method and saves the action result. Next, it processes the action result. Figure
2-3 presents a sequence diagram.

FIGURE 2-3 A sequence diagram that illustrates the request-servicing process.

38 PArT I ASP.NET MVC fundamentals

Let’s consider the typical code of a controller method as you saw it in Chapter 1.

public ActionResult Index()
{
 // Some significant code here
 ...

 // Order rendering of the next view
 return View();
}

The View method on the controller class packs a few pieces of data together in a single container:
the ViewResult class. Information includes the name of the view template that the controller has
selected as the next view to show to the user. An optional piece of data that goes into ViewResult is
the name of the master view. Finally, the ViewResult container also incorporates the calculated data
that will be displayed in the view. When the View method gets no parameters, as in the code snippet
shown earlier, default values are provided. An instance of ViewResult object is delivered back to the
action invoker.

Next, the action invoker invokes the ExecuteResult method on the ViewResult object. The method
goes through the list of registered view engines to find one that can match the specified view and
master view names. If no such view engine is found, an exception is thrown. Otherwise, the selected
view engine is asked to create a view object based on the information provided.

Subsequently, the ViewResult object orders the view to render its content out to the provided
stream—the actual response stream. Finally, the ViewResult object instructs the view engine to release
the view.

The view object
The view object is an instance of a class that implements the IView interface. The only purpose of a view
object is for writing some HTML response to a text writer. Each view is identified by name. The name of
the view is also associated with some physical file that defines the HTML layout to render. Resolving the
association between the view name and actual HTML layout is the responsibility of the view engine.

The name of the view is one of the parameters that the View method on the controller action is
supposed to provide. If no such parameter is explicitly defined by the programmer, the system as-
sumes by convention that the name of the view is the same as the action name. (As is demonstrated
in Chapter 1, the action name doesn’t necessarily match the method name.)

The IView interface is shown here:

public interface IView
{
 void Render(ViewContext viewContext, TextWriter writer);
}

Under the hood, a view object is a wrapper around an object that describes a visual layout devoid
of data. Rendering the view means populating the layout with data and rendering it as HTML to some
stream. Of the two default view engines in ASP.NET MVC, one—the ASPX view engine—just uses a

 CHAPTER 2 ASP.NET MVC views 39

derivative of the ASP.NET Page class to represent the visual layout. The other view engine—the Razor
engine—is based on a different class designed around the same core idea. The Razor engine uses the
WebMatrix counterpart of an ASP.NET Page class.

Definition of the view template
In ASP.NET MVC, everything being displayed to the user results from a view and is described in terms
of a template file. The graphical layout is then transformed into HTML and styled via one or more
cascading style sheet (CSS) files. The way in which the template file is written, however, depends on
the view engine. Each view engine has its own markup language to define the template, and its own
set of rules to resolve a view name into a template file.

resolving the template
At the end of its job, the controller figures out the name of the next view to render to the user.
However, the name of the view must be translated into some good HTML markup. This takes a couple
more steps. First, the system needs to identify which view engine (if any) can successfully process the
request for the view. Second, the view name must be matched to an HTML layout and a view object
must be successfully created from there.

Starting from the point that the name of the view is known, the ViewResult object (shown earlier
in Figure 2-3) queries through all the installed view engines in the order in which they appear in the
ViewEngines.Engines collection. Each view engine is asked whether it is capable of rendering a view
with the given name.

By convention, each ASP.NET MVC view engine uses its own algorithm to translate the view name
into a resource name that references the final HTML markup. For the two predefined view engines,
the search algorithm attempts to match the view name to a physical file in one of a few fixed disk
locations.

A custom view engine, however, can release both constraints and employ a different set of conven-
tions. For example, it can load the view layout from, for example, a database, or it can use a custom-
ized set of folders.

Default conventions and folders
Both the ASPX and Razor view engines use the same core conventions to resolve view names. Both
match view names to file names, and both expect to find those files in the same set of predefined
folders. The only difference between ASPX and Razor is the extension of the files that contain the
view layout.

Unless you install a custom view engine, an ASP.NET MVC application finds its view templates in
the Views folder. Figure 2-4 demonstrates that the Views folder has a number of subfolders, each
named after an existing controller name. Finally, the controller folder contains physical files whose
name is expected to match the view name and whose extension must be .aspx for the ASPX view
engine and .cshtml for the Razor view engine. (If you’re writing your ASP.NET MVC application in
Microsoft Visual Basic, the extension will be .vbhtml.)

40 PArT I ASP.NET MVC fundamentals

FIGURE 2-4 Locating view templates in an ASP.NET MVC application.

Although Figure 2-4 lists only .cshtml Razor view files, you are welcome to mix and match template
files written according to different syntaxes.

Important Having view templates written using different markup languages certainly
doesn’t increase the consistency of your source code, but it can be a viable solution for
cases in which you have different skills within a team or when you need to incorporate
some legacy code. Also, consider that when you have view templates for different engines,
resolving the names can produce some surprises. View engines are called to claim the view
in the order in which they are registered and, by default, the ASPX engine takes precedence
over the Razor engine. To modify the order, you should clear the Engines collection during
application startup and add engines again, in the order you prefer.

In general, ASP.NET MVC requires that you place each view template in the folder of the control-
ler that uses it. When multiple controllers are expected to invoke the same view (or partial view), you
should move the template file to the Shared folder.

 CHAPTER 2 ASP.NET MVC views 41

Finally, note that the same hierarchy of directories that exists at the project level in the Views
folder must be replicated on the production server. However, folders such as Controllers, App_Start,
and ViewModels are plain namespace containers used to better organize the source files, and they
can be ignored in production.

The template for the view
As mentioned, a view is nothing more than a template for the resulting HTML content. The following
is valid content for a view template file to find in some Views subfolder. The view template targets the
ASPX view engine.

<%@ Page Language="C#"
 MasterPageFile="~/Views/Shared/Site.Master"
 Inherits="System.Web.Mvc.ViewPage" %>

<asp:Content ID="aboutTitle" ContentPlaceHolderID="TitleContent" runat="server">
 About the book
</asp:Content>

<asp:Content ID="aboutContent" ContentPlaceHolderID="MainContent" runat="server">
 <h2><%: ViewBag.Message %></h2>
 <p>
 Put content here.
 </p>
</asp:Content>

Without beating around the bush, this looks nearly the same as an old, faithful ASP.NET Web
Forms page. So, what’s the point of ASP.NET MVC?

Admittedly, the syntax you see here is the same as in an ASP.NET Web Forms page; the role of this
file, however, is radically different. In ASP.NET MVC, about.aspx is not a public resource you can re-
quest by following a link or typing it in the address bar of the browser. Rather, it's an internal resource
file used to provide the template for a view. In particular, the about.aspx template is picked up only
when the user makes a request that the system maps to a controller method which, in turn, selects
the About view for display, as shown here:

public ActionResult About()
{
 ViewBag.Message = "Thank you for choosing this book!";

 // By default, the view name is the same as the action name.
 return View();
}

Another huge difference is the data you display through the template. In Web Forms, each page is
made of server controls and, as a developer, you set properties on server controls to display any data.
In ASP.NET MVC, you group the data that you want to pass to the view in a container object and pass
the container object as an argument in the controller’s call that selects the view.

42 PArT I ASP.NET MVC fundamentals

ASP.NET MVC makes it possible for you to pass a container object directly in the call to the View
method. In any case, two predefined dictionaries are available for the controller method to stuff data.
They are the ViewData and ViewBag dictionaries.

A key point to remember is that ideally the view object doesn’t need to retrieve data on its own;
the only data it must deal with is the data it receives from the controller.

Important The purpose of the view template is to produce HTML, but the source of the
template doesn’t need be HTML. The language used to write the template depends on the
view engine. It can be nearly the same ASPX markup that you might know from ASP.NET
Web Forms if you opt for the ASPX view engine; it will be something significantly different if
you choose the Razor engine or another engine.

The master view
Just like in ASP.NET Web Forms, you need to decide whether you want to write the view template
entirely from scratch or inherit some common markup from a master view. If you choose the latter
option, you define the master template with respect to the syntax and constraints set by the view
engine.

Specifying the master view is easy. You can use the conventions supported by the view engine, or
you can just pass the name of the master view as an argument to the View method when you select
the next view from the controller. Note that the master template might follow different conventions
than plain views. For example, the ASPX view engine requires you to name it with a .master exten-
sion and place it in the Shared folder. The Razor view engine, instead, adds a .cshtml extension and
requires you to specify the path in a special viewstart.cshtml file in the root of the Views folder.

I’ll have more to say about the two default view engines in just a moment.

HTML helpers

Admittedly, the ASPX view engine is quite similar to ASP.NET Web Forms but doesn’t support server
controls in the same manner. This is not because of a partial implementation; there is a deeper expla-
nation. Server controls are, in effect, too tightly coupled to the life cycle of a Web Forms page to be
easily reworked in a request-processing model that breaks up action into neatly distinct phases, such
as getting input data, processing the request, and selecting the next view.

On the other hand, server controls served a very important purpose in ASP.NET—favoring HTML-
level code reuse. Even though ASP.NET MVC makes a point of letting developers gain control over
every single HTML tag, a good deal of HTML can’t be hard-coded in the view. It needs be built
programmatically, based on dynamically discovered data. What’s a technology equivalent to server
controls in ASP.NET MVC? Enter HTML helpers.

 CHAPTER 2 ASP.NET MVC views 43

Note HTML helpers certainly are not the same as server controls, but they are the closest
you can get to HTML-level code reuse with a view engine. An HTML helper method has no
view state, no postbacks, and no page life cycle and events. HTML helpers are simple HTML
factories. Technically speaking, an HTML helper is an extension method defined on a sys-
tem class—the HtmlHelper class—that outputs an HTML string based on the provided input
data. In fact, internally an HTML helper simply accumulates text into a StringBuilder object.

Basic helpers
The ASP.NET MVC framework supplies a few HTML helpers out of the box, including CheckBox,
ActionLink, and RenderPartial. The stock set of HTML helpers is presented in Table 2-2.

TABLE 2-2 The stock set of HTML helper methods

Method Type Description

BeginForm, BeginRouteForm Form Returns an internal object that represents an HTML form
that the system uses to render the <form> tag

EndForm Form A void method, closes the pending </form> tag

CheckBox, CheckBoxFor Input Returns the HTML string for a check box input element

Hidden, HiddenFor Input Returns the HTML string for a hidden input element

Password, PasswordFor Input Returns the HTML string for a password input element

RadioButton, RadioButtonFor Input Returns the HTML string for a radio button input element

TextBox, TextBoxFor Input Returns the HTML string for a text input element

Label, LabelFor Label Returns the HTML string for an HTML label element

ActionLink, RouteLink Link Returns the HTML string for an HTML link

DropDownList, DropDownListFor List Returns the HTML string for a drop-down list

ListBox, ListBoxFor List Returns the HTML string for a list box

TextArea, TextAreaFor TextArea Returns the HTML string for a text area

Partial Partial Returns the HTML string incorporated in the specified user
control

RenderPartial Partial Writes the HTML string incorporated in the specified user
control to the output stream

ValidationMessage,
ValidationMessageFor

Validation Returns the HTML string for a validation message

ValidationSummary Validation Returns the HTML string for a validation summary
message

As an example, let’s see how to use an HTML helper to create a text box with programmatically
determined text. You place the call in a code block if you’re using the ASPX view engine:

<%: Html.TextBox("TextBox1", ViewBag.DefaultText) %>

44 PArT I ASP.NET MVC fundamentals

Or, you prefix the call with the @ symbol if you’re using Razor. (I’ll say more about Razor in a mo-
ment and throughout the rest of the book.)

@Html.TextBox("TextBox1", ViewBag.DefaultText)

Note The Html in the code snippets refers to a built-in property of the base classes used
by both view engines to refer to a rendered view. The class is ViewPage for the ASPX view
engine and WebPage for the Razor view engine. In both cases, the property Html is an in-
stance of HtmlHelper.

Each HTML helper has a bunch of overloads to let you specify attribute values and other relevant
information. For example, here’s how to style the text box by using the class attribute:

<%: Html.TextBox("TextBox1",
 ViewBag.DefaultText,
 new Dictionary<String, Object>{{"class", "coolTextBox"}}) %>

In Table 2-2, you see a lot of xxxFor helpers. In what way are they different from other helpers? An
xxxFor helper differs from the base version because it accepts only a lambda expression, such as the
one shown here:

<%: Html.TextBoxFor(model => model.FirstName,
 new Dictionary<String, Object>{{"class", "coolTextBox"}}) %>

For a text box, the lambda expression indicates the text to display in the input field. The xxxFor
variation is especially useful when the data to populate the view is grouped in a model object. In this
case, your view results are clearer to read and strongly typed.

Let’s see a few other examples of basic HTML helpers.

Rendering HTML forms
The unpleasant work of rendering a form in ASP.NET MVC occurs when you have to specify the target
URL. The BeginForm and BeginRouteForm helpers can do the ugliest work for you. The following code
snippet shows how to write a simple input form that presents user and password text boxes:

<% using (Html.BeginForm()) { %>
 <div>
 <fieldset>
 <legend>Account Information</legend>
 <p>
 <label for="userName">User name:</label>
 <%= Html.TextBox("userName") %>
 <%= Html.ValidationMessage("userName") %>
 </p>
 <p>
 <label for="password">Password:</label>
 <%= Html.Password("password") %>
 <%= Html.ValidationMessage("password") %>
 </p>

 CHAPTER 2 ASP.NET MVC views 45

 ...
 <p>
 <input type="submit" value="Change Password" />
 </p>
 </fieldset>
 </div>
<% } %>

The BeginForm helper takes care of the opening <form> tag. The BeginForm method, however,
doesn’t directly emit any markup. It’s limited to creating an instance of the MvcForm class, which is
then added to the control tree for the page and rendered later.

By default, BeginForm renders a form that posts back to the same URL and, subsequently, to the
same controller action. Using other overloads on the BeginForm method, you can specify the target
controller’s name and action, any route values for the action, HTML attributes, and even whether you
want the form to perform a GET or a POST. BeginRouteForm behaves like BeginForm except that it can
generate a URL starting from an arbitrary set of route parameters. In other words, BeginRouteForm is
not limited to the default route based on the controller name and action.

I believe that discussing HTML forms is the best scenario to showcase the added value of Razor
over ASPX. Here’s how you would rewrite the previous form with Razor syntax:

@using (Html.BeginForm())
{
 <div>
 <fieldset>
 <legend>Account Information</legend>
 <p>
 <label for="userName">User name:</label>
 @Html.TextBox("userName")
 @Html.ValidationMessage("userName")
 </p>
 <p>
 <label for="password">Password:</label>
 @Html.Password("password")
 @Html.ValidationMessage("password")
 </p>
 ...
 <p>
 <input type="submit" value="Change Password" />
 </p>
 </fieldset>
 </div>
}

In the rest of the book, I’ll always be using Razor for views.

46 PArT I ASP.NET MVC fundamentals

Note In HTML, when you use the form tag, you can't use anything other than the GET and
POST verbs to submit some content. In ASP.NET MVC, a native method on the HtmlHelper
class—HttpMethodOverride—comes to the rescue. The method emits a hidden field whose
name is hard-coded to X-HTTP-Method-Override and whose value is PUT, DELETE, or HEAD.
The content of the hidden field overrides the method set for the form, thus making it pos-
sible for you to invoke a REST API also from within the browser. You can also specify the
override value in an HTTP header with the same X-HTTP-Method-Override name or in a
query string value as a name/value pair. The override is valid only for POST requests.

rendering input elements
All HTML elements that you can use within a form have an HTML helper to speed up development.
Again, there’s really no difference from a functional perspective between using helpers and using
plain HTML. Here’s an example of a check box element, initially set to true, but disabled:

@Html.CheckBox("ProductDiscontinued",
 true,
 new Dictionary<String, Object>() {{"disabled", "disabled"}}))

You also have facilities to associate a validation message with an input field. You use the
Html.ValidationMessage helper to display a validation message if the specified field contains an error.
The message can be indicated explicitly through an additional parameter in the helper. All validation
messages are then aggregated and displayed via the Html.ValidationSummary helper.

You can find an expanded discussion of input forms and validation in Chapter 4, “Input forms.”

Action links
As previously mentioned, creating URLs programmatically is a boring and error-prone task in ASP.NET
MVC. For this reason, helpers are more than welcome, especially in this context. In fact, the ActionLink
helper is one of the most frequently used in ASP.NET MVC views. Here’s an example:

@Html.ActionLink("Home", "Index", "Home")

Typically, an action link requires the link text, the action name, and optionally the controller name.
The HTML that results from the example is the following:

Home

In addition, you can specify route values, HTML attributes for the anchor tag, and even a protocol
(for example, HTTPS), host, and fragment.

The RouteLink helper works in much the same way, except that it doesn’t require you to specify
an action. With RouteLink, you can use any registered route name to determine the pattern for the
resulting URL.

 CHAPTER 2 ASP.NET MVC views 47

The text emitted by ActionLink is automatically encoded. This means you can’t use any HTML tag
in the link text that the browser will be led to consider as HTML. In particular, you can’t use ActionLink
for image buttons and image links. However, to generate a link based on controller and action data,
you can use the UrlHelper class.

An instance of the UrlHelper class is associated with the Url property on the ViewPage type. The
code here shows the Url object in action:

The UrlHelper class has a couple of methods that behave nearly similar to ActionLink and Route
Link. Their names are Action and RouteUrl.

Note ASP.NET MVC routing is not aware of subdomains; it always assumes that you’re in
the application path. This means that if you want to use subdomains within a single applica-
tion instead of virtual paths (for example, dino.blogs.com instead of www.blogs.com/dino),
the extra work of figuring out which subapplication you’re in is entirely up to you. You can
address this in a number of ways. A simple approach consists in creating a custom route
handler that would look at the host passed in the URL and decide which controller to set
up. This solution, however, is limited to fixing incoming requests. It might not be enough
for all of the helpers you have around to generate links to resources and actions. A more
complete solution is creating a Route class that is aware of subdomains. You can find a
good example at http://blog.maartenballiauw.be/post/2009/05/20/ASPNET-MVC-Domain-
Routing.aspx.

Partial views
You use either the Partial or RenderPartial helper method to insert a partial view. Both methods take
the name of the partial view as an argument. The only difference between the two is that Partial re-
turns a string, whereas RenderPartial writes to the output stream and returns void. Because of this, the
usage is slightly different, as demonstrated here:

@Html.Partial("login")
@Html.RenderPartial("login")

In ASP.NET MVC, a partial view is analogous to a user control in Web Forms. The typical loca-
tion for a partial view is the Shared folder in Views. However, you can also store a partial view in the
controller-specific folder. A partial view is contained in a view, but it will be treated as an entirely in-
dependent entity. In fact, it is legitimate to have a view written for one view engine and a child partial
view that requires another view engine.

http://blog.maartenballiauw.be/post/2009/05/20/ASPNET-MVC-Domain-Routing.aspx
http://blog.maartenballiauw.be/post/2009/05/20/ASPNET-MVC-Domain-Routing.aspx

48 PArT I ASP.NET MVC fundamentals

The HtmlHelper class
The HtmlHelper class owes most of its popularity to its numerous extension methods, but it also has a
number of useful native methods. Some of them are listed in Table 2-3.

TABLE 2-3 The most popular native methods on HtmlHelper

Method Description

AntiForgeryToken Returns the HTML string for a hidden input field stored with the anti-
forgery token (see Chapter 4 for more details)

AttributeEncode Encodes the value of the specified attribute using the rules of HTML
encoding

EnableUnobtrusiveJavaScript Sets the internal flag that enables helpers to generate JavaScript code
in an unobtrusive way

EnableClientValidation Sets the internal flag that enables helpers to generate code for client-
side validation

Encode Encodes the specified value using the rules of HTML encoding

HttpMethodOverride Returns the HTML string for a hidden input field used to override the
effective HTTP verb to indicate that a PUT or DELETE operation was
requested

Raw Returns the raw HTML string without encoding

In addition, the HtmlHelper class provides a number of public methods that are of little use from
within a view but offer great support to developers writing custom HTML helper methods. A good
example is GenerateRouteLink, which returns an anchor tag containing the virtual path for the speci-
fied route values.

Templated helpers
Writing HTML templates over and over again leads to repetitive, boring, and therefore error-prone
code. Templated helpers help because they are created to take an instance of a C# class, read proper-
ties, and decide how to best render those values. By decorating the view-model objects with special
attributes, you provide the helper further guidance regarding user-interface hints and validation.

With templated helpers, you are not losing control over the user interface; more simply, attributes
in the model establish a number of conventions and save you from a number of repetitive tasks.

Flavors of a templated helper
In ASP.NET MVC, you have two essential templated helpers: Editor and Display. They work together to
make the code for labeling, displaying, and editing data objects easy to write and maintain. The opti-
mal scenario for using these helpers is that you are writing your lists or input forms around annotated
objects. However, templated helpers can work with both scalar values and composite objects.

 CHAPTER 2 ASP.NET MVC views 49

Templated helpers actually come with three overloads. Using the Display helper as an example,
you have the following more specific helpers: Display, DisplayFor, and DisplayForModel. There’s no
functional difference between Display, DisplayFor, and DisplayForModel. They differ only in terms of
the input parameters they can manage.

The Display helpers
The Display helper accepts a string indicating the name of the property in the ViewData dictionary, or
on the view-model object, to be processed:

@Html.Display("FirstName")

The DisplayFor helper accepts a lambda expression and requires that a view-model object be
passed to the view:

@Html.DisplayFor(model => model.FirstName)

Finally, DisplayForModel is a shortcut for DisplayFor getting the expression model => model:

@Html.DisplayForModel()

All flavors of templated helpers have the special ability to process metadata (if any) and adjust
their rendering accordingly; for example, showing labels and adding validation. You can customize
the display and editing capabilities by using templates, as will be discussed in a moment. The ability
of using custom templates applies to all flavors of a templated helper.

Important ViewBag is a property defined on the ControllerBase class defined to be of type
dynamic. In .NET, the type dynamic indicates the site for dynamically interpreted code.
In other words, whenever the compiler meets a reference to a dynamic object, it emits a
chunk of code that checks at run time whether the code can be resolved and executed.
Functionally speaking, this is similar to what happens with JavaScript objects.

Lambda expressions don’t support dynamic members and therefore can’t be used with
data passed into the ViewBag dictionary. Also note that to successfully use ViewBag content
in HTML helpers, you must cast the expression to a valid type.

The Editor helpers
The purpose of the Editor helper is to let you edit the specified value or object. The editor recog-
nizes the type of the value it gets and picks up a made-to-measure template for editing. Predefined
templates exist for object, string, Boolean, and multiline text, whereas numbers, dates, and GUIDs fall
back to the string editor. The Editor helper works great with complex types. It generically iterates over
each public property and builds up a label and an editor for the child value. Here’s how to display in
an editor the value of the FirstName property on some object being passed to the view:

@Html.EditorFor(person => person.FirstName)

50 PArT I ASP.NET MVC fundamentals

You can customize the editor (and the visualizer) by creating a few partial views in the EditorTemplates
folder of the view. It can be in a controller-specific subfolder or in the Views\Shared folder, as well.
The partial view is expressed as an .ascx template for the ASPX view engine and as a .cshtml template
if you’re using the Razor view engine. You can provide a custom template for each type that you
expect to support. For example, in Figure 2-5 you see a datetime.cshtml template that will be used
to modify the way dates are rendered in both editing and display. Likewise, you can provide a partial
view for each type of property in the view-model object.

FIGURE 2-5 Custom templates for editors and visualizers.

If the name of the partial view matches the type name, the custom template is automatically
picked up by the system.

You can also point the editor to your template by name and give the template the name you like.
Here’s an example that uses the date.ascx view to edit a DateTime property:

@Html.EditorFor(person => person.Birthdate, "date")

In the same ASP.NET MVC application, you can have views requiring different view engines. Note
that ASP.NET MVC resolves each view and partial view independently. This means that if you’re
processing, for example, the about view, you end up with the Razor engine (as shown in Figure 2-5).
However, if the about view requires an editor for dates and you have a matching .aspx template, it will
be picked up anyway with no need for you to provide an analogous .cshtml template.

 CHAPTER 2 ASP.NET MVC views 51

Finally, the Editor helper can recognize data annotation attributes on view-model objects and use
that information to add special validation features, such as ensuring that a given value falls in the
specified range or is not left empty.

Note When you use DisplayForModel and EditorForModel, the system uses reflection to
find all the properties on the specified object and then generates a label and visualizer or
editor for each of those properties. The overall template of the resulting view is a vertical
sequence of labels and visualizers/editors. Each emitted piece of HTML is bound to a CSS
class and can be easily styled as you prefer. Furthermore, if you’d like to change the tem-
plate of the view, you need to provide an object.aspx (or object.cshtml) template and use
reflection, as well. I return to this topic with an example in Chapter 4.

Custom helpers
The native set of HTML helper methods is definitely a great benefit, but it’s probably insufficient for
many real-world applications. Native helpers, in fact, cover only the markup of basic HTML elements.
In this regard, HTML helpers are significantly different from server controls because they completely
lack abstraction over HTML. Extending the set of HTML helpers is easy, however. All that is required is
an extension method for the HtmlHelper class or for the AjaxHelper class if you’re interested in creat-
ing an HTML factory that does some Ajax work.

The structure of an HTML helper
An HTML helper is a plain method that is not tied to any forced prototype. You typically design the
signature of an HTML helper method to make it receive just the data it needs. Having several over-
loads or optional parameters is common, too.

Internally, the helper processes input data and starts building the output HTML by accumulating
text in a buffer. This is the most flexible approach, but it is also quite hard to manage when the logic
to apply becomes complex. An alternate approach consists of generating the HTML by using the
TagBuilder class, which offers an HTML-oriented, string-builder facility. The TagBuilder class generates
for you the text for HTML tags, thus allowing you to build chunks of HTML by concatenating tags
instead of plain strings.

An HTML helper is expected to return an encoded HTML string.

MvcHtmlString is better than just a string
What if you use the compact syntax on a piece of markup that is already encoded? Without counter-
measures, the text inevitably will be double-encoded. For this reason, it is becoming a best practice
to write HTML helpers that return an MvcHtmlString wrapper object instead of a plain string. In fact,

52 PArT I ASP.NET MVC fundamentals

all native HTML helpers have been refactored to return MvcHtmlString. The change is no big deal for
developers. You can easily obtain an MvcHtmlString object from a string through the following code:

var html = GenerateHtmlAsString();
return MvcHtmlString.Create(html);

The MvcHtmlString type is a smart wrapper for a string that has HTML content, and it exposes the
IHtmlString interface.

What’s the purpose of IHtmlString? In ASP.NET an attempt to HTML-encode an object that imple-
ments IHtmlString results in a no-operation.

A sample HTML helper
Suppose that your view receives some text that can be optionally empty. You don’t want to render
the empty string; you’d rather display some default text such as N/A. How do you do that? You can
brilliantly resolve everything with an if statement. However, nesting an if statement in ASPX markup
doesn’t particularly help to make your code clean; doing the same in Razor is only a little better.

An ad hoc helper can smooth things out because it encapsulates the if statement and preserves
the required logic while delivering more compact and readable code. The following code demon-
strates an HTML helper that replaces a given string with some default text if it’s null or empty:

public static class OptionalTextHelpers
{
 public static MvcHtmlString OptionalText(this HtmlHelper helper,
 String text,
 String format="{0}",
 String alternateText="",
 String alternateFormat="{0}")
 {
 var actualText = text;
 var actualFormat = format;

 if (String.IsNullOrEmpty(actualText))
 {
 actualText = alternateText;
 actualFormat = alternateFormat;
 }

 return MvcHtmlString.Create(String.Format(actualFormat, actualText));
 }
}

The helper has up to four parameters, three of which are optional parameters. It takes the original
text and its null replacement, plus a format string to embellish the text in both cases.

 CHAPTER 2 ASP.NET MVC views 53

A sample Ajax helper
An Ajax helper differs from an HTML helper only because it is invoked in the context of an Ajax
operation. For example, let’s suppose that you want to use an image as a button. Clicking the image
should automatically trigger an Ajax call to some application URL.

How is this different from just attaching a bit of JavaScript to the click event of the image and
then using jQuery to carry the call? If you know the URL to pass to jQuery, you don’t need this helper.
If, however, you find it better to express the URL as a controller/action pair, you need this helper to
generate a link that takes the user to wherever the pair controller/action pair points, as shown in the
following:

 public static class AjaxHelpers
 {
 public static String ImgActionLink(this AjaxHelper ajaxHelper,
 String imageUrl,
 String imgAltText,
 String imgStyle,
 String actionName,
 String controllerName,
 Object routeValues,
 AjaxOptions ajaxOptions,
 Object htmlAttributes)
 {
 const String tag = "[xxx]"; // arbitrary string
 var markup = ajaxHelper.ActionLink(
 tag, actionName, controllerName, routeValues, ajaxOptions,
 htmlAttributes).ToString();

 // Replace text with IMG markup
 var urlHelper = new UrlHelper(ajaxHelper.ViewContext.RequestContext);
 var img = String.Format(
 "",
 urlHelper.Content(imageUrl),
 imgAltText,
 imgStyle);
 var modifiedMarkup = markup.Replace(tag, img);
 return modifiedMarkup;
 }
 }

The helper first invokes the default ActionLink helper to get the URL as if it were to be a text-based
hyperlink. In the first step, the hyperlink text is set to a known string acting as a placeholder. Next,
when everything is ready to go, the helper strips off the placeholder string and replaces that with the
URL of the image.

Why can’t you just provide the tag as the text of the original action link? Being a good
citizen, ActionLink HTML-encodes everything, so you won’t see any images, just the text of the URL.

54 PArT I ASP.NET MVC fundamentals

The Razor view engine

The Web Forms view engine employs a syntax that on one hand is familiar to nearly all ASP.NET
developers. On the other hand, the ASPX markup was devised as a way to support server controls,
and it has severe limitations when used mostly with code blocks. Clearly, the major issue is lack of
readability.

Introduced with ASP.NET MVC 3, the Razor view engine comes to the rescue, providing an alter-
nate markup language to define the structure of view templates.

Inside the view engine
According to Razor, a view template is an HTML page with a few placeholders and code snippets.
Overall, the readability of the view template is greatly improved, and by combining Razor code snip-
pets with HTML helpers, you can arrange views to make them easier to read and maintain.

Search locations
The Razor view engine supports a bunch of interesting properties that are related to the locations of
the view templates. Table 2-4 describes these properties.

TABLE 2-4 Properties to express desired location formats for view templates

Property Description

AreaMasterLocationFormats Locations where master views are searched in the case of
area-based applications

AreaPartialViewLocationFormats Locations where partial views are searched in the case of
area-based applications

AreaViewLocationFormats Locations where views are searched in the case of area-
based applications

MasterLocationFormats Locations where master views are searched

PartialViewLocationFormats Locations where partial views are searched

ViewLocationFormats Locations where views are searched

FileExtensions List of extensions supported for views, partial views, and
master views

Each property is implemented as an array of strings. Table 2-5 shows the default values for the
properties.

 CHAPTER 2 ASP.NET MVC views 55

TABLE 2-5 Default location formats

Property Default location format

AreaMasterLocationFormats ~/Areas/{2}/Views/{1}/{0}.cshtml
~/Areas/{2}/Views/Shared/{0}.cshtml
~/Areas/{2}/Views/{1}/{0}.vbhtml
~/Areas/{2}/Views/Shared/{0}.vbhtml

AreaPartialViewLocationFormats ~/Areas/{2}/Views/{1}/{0}.cshtml
~/Areas/{2}/Views/{1}/{0}.vbhtml
~/Areas/{2}/Views/Shared/{0}.cshtml
~/Areas/{2}/Views/Shared/{0}.vbhtml

AreaViewLocationFormats ~/Areas/{2}/Views/{1}/{0}.cshtml
~/Areas/{2}/Views/{1}/{0}.vbhtml
~/Areas/{2}/Views/Shared/{0}.cshtml
~/Areas/{2}/Views/Shared/{0}.vbhtml

MasterLocationFormats ~/Views/{1}/{0}.cshtml
~/Views/Shared/{0}.cshtml
~/Views/{1}/{0}.vbhtml
~/Views/Shared/{0}.vbhtml

PartialViewLocationFormats ~/Views/{1}/{0}.cshtml
~/Views/{1}/{0}.vbhtml
~/Views/Shared/{0}.cshtml
~/Views/Shared/{0}.vbhtml

ViewLocationFormats ~/Views/{1}/{0}.cshtml
~/Views/{1}/{0}.vbhtml
~/Views/Shared/{0}.cshtml
~/Views/Shared/{0}.vbhtml

FileExtensions .cshtml, .vbhtml

Pretty much everything works in the same way with the Web Forms engine. As far as the view is
concerned, the only variation is the different file extension and, of course, the different syntax. Let’s
get familiar with it, then.

Code nuggets
A Razor view template is essentially an HTML page with a few code snippets, also known as code nug-
gets. Code nuggets are similar to ASP.NET code blocks, but they feature a simpler and terser syntax.
You denote the start of a Razor code block by using the @ character. More important, you don’t need
to close those blocks explicitly. The Razor parser uses Visual Basic or C# parsing logic to figure out
where a line of code finishes. Here’s an example:

<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" />
 <script src="@Url.Content("~/Scripts/jquery.js")" type="text/javascript"></script>
</head>
...
</html>

56 PArT I ASP.NET MVC fundamentals

You can mix any Razor code nugget with plain markup even when the code nugget contains con-
trol flow statements such as an if/else or for/foreach statement. The following code rewrites the page
rendered in Figure 2-7 using code nuggets:

<body>
 <h2>@ViewBag.Header</h2>
 <hr />

 <table>
 <thead>
 <th>City</th>
 <th>Country</th>
 <th>Been there?</th>
 </thead>
 @foreach (var city in Model) {
 <tr>
 <td><%: city.Name %></td>
 <td><%: city.Country %></td>
 <td><%: city.Visited ?"Yes" :"No"%></td>
 </tr>
 }
 </table>
</body>

Note that the closing brace (}), which is placed in the middle of the source, is correctly recognized
and interpreted by the parser.

Generally, you can use any C# (or Visual Basic) instructions in a Razor template as long as they are
prefixed by @. Here’s an example of how you import a namespace and create a form block:

@using YourApp.Extensions;
...
<body>
 @using (Html.BeginForm()) {
 <fieldset>
 <div class="editor-field">
 @Html.TextBox("TextBox1")
 </div>
 </fieldset>
 }
</body>

In the end, a Razor template is a plain HTML markup file intertwined with @ expressions that wrap
executable statements and HTML helpers. However, a few shortcuts exist.

 CHAPTER 2 ASP.NET MVC views 57

Special expressions of code nuggets
You can insert a full segment of code made of multiple lines anywhere by wrapping it within an
@{ code } block like the one shown here:

@{
 var user = "Dino";
}
...
<p>@user</p>

You can retrieve any variable you create and use it later as if the code belonged to a single block.
The content of an @{...} block can mix code and markup. It is essential, however, that the parser can
figure out exactly where code ends and markup begins, and vice versa. Look at the following nugget:

@{
 var number = GetRandomNumber();
 if(number.IsEven())
 <p>Number is even</p>
 else
 <text>Number is odd</text>
}

If the markup content you’re emitting is wrapped up by HTML tags, the parser will properly recog-
nize it as markup. If it’s plain text (for example, just a text string), you must wrap it in a Razor-specific
<text> for the parser to handle it correctly.

A single statement that results from an expression can be combined in the same expression by us-
ing parentheses:

<p> @("Welcome, " + user) </p>

Parentheses also work when you intend to place a function call:

<p> @(YourMethod(1,2,3)) </p>

Any content being processed by Razor is automatically encoded, so you don’t need to take care
of that. If your code returns HTML markup that you want to emit as-is without being automatically
encoded, you should resort to using the Html.Raw helper method presented here:

@Html.Raw(Strings.HtmlMessage)

Finally, when inside multiline code nuggets @{ ... }, you use the C# or Visual Basic language syntax
to place comments. You can comment out an entire block of Razor code by using the @* ... *@ syn-
tax, as shown here:

@*
<div> Some Razor markup </div>
*@

The Visual Studio toolbar buttons for commenting blocks in and out support the Razor syntax
nicely.

58 PArT I ASP.NET MVC fundamentals

Note Most of the time, the Razor parser is smart enough to determine from the context
the reason why you’re using the @ symbol, whether it’s to denote a code nugget or per-
haps a literal email address. If you hit a corner case that the parser can’t successfully solve,
using @@ makes it clear that you want the symbol @ to be taken literally and not as the
start of a code nugget.

Conditional nuggets
Razor also supports conditional attributes that should be emitted only if the Razor expression is true
or not null. Let’s consider the following markup:

<div class="@yourCss">
 ...
</div>

The variable yourCss might be empty or null; in this case you ideally don’t want the class attribute
to be emitted. Up until ASP.NET MVC 4, you were forced to write some conditional logic yourself.
Now, the conditional logic is built in to the Razor engine.

Be aware that the same happens if the Razor expression is Boolean: If it returns false or is null, the
attribute is not emitted.

The razor view object
When the Razor view engine is used, the resulting view object is an instance of the WebViewPage
class defined in the System.Web.Mvc assembly. This class incorporates the logic to parse markup and
render HTML. Public properties on this class are available to any code nuggets you might write in
actual templates.

Table 2-6 provides a quick list of a few properties in which you might be interested.

TABLE 2-6 Commonly used properties and methods of a Razor view object

Property Description

Ajax Gets an instance of the AjaxHelper class used to reference Ajax HTML helpers
around the template.

Culture Gets and sets the ID of the culture associated with the current request. This setting
influences culture-dependent aspects of a page, such as date, number, and cur-
rency formatting. The culture is expressed in xx-yy format, where xx indicates the
language and yy the culture.

Href Converts paths that you create in server code (which can include the ~ operator) to
paths that the browser understands.

Html Gets an instance of the HtmlHelper class used to reference HTML helpers in the
template.

Context Gets the central repository to gain access to various ASP.NET intrinsic objects:
Request, Response, Server, User, and the like.

IsAjax Returns true if the current request was initiated by the browser’s Ajax object.

 CHAPTER 2 ASP.NET MVC views 59

Property Description

IsPost Returns true if the current request was placed through an HTTP POST verb.

Layout Gets and sets the path to the file containing the master view template.

Model Gets a reference to the view model object (if any) containing data for the view. This
property is of type dynamic.

UICulture Gets and sets the ID of the user-interface culture associated with the current re-
quest. This setting determines which resources are loaded in multilingual applica-
tions. The culture is expressed in xx-yy format, where xx indicates the language and
yy the culture.

ViewBag Gets a reference to the ViewBag dictionary that might contain data the controller
needs to pass to the view object.

ViewData Gets a reference to the ViewData dictionary that might contain data the controller
needs to pass to the view object.

Not all of these properties are effectively defined directly on the WebViewPage class. Many of
them are actually defined on parent classes.

Designing a sample view
To create a Razor view of some reasonable complexity, you need to understand how to pass data to
the view and how to define a master view.

Defining the model for the view
As previously mentioned, the controller can pass data down to the view in various ways. It can use
global dictionaries such as ViewBag or ViewData. Better yet, the controller can use a strongly typed
object tailor-made for the specific view. I’ll discuss the pros and cons of the various approaches in a
moment.

To use ViewBag or ViewData from within a code nugget, you don’t need to take any special mea-
sures. You just write @ expressions that read or write into the dictionaries. To use a strongly typed
view model, instead, you need to declare the actual type at the top of the template file, as shown
here:

@model IList<GridDemo.Models.City>

The syntax you use to express the type is the same as the language you use throughout the tem-
plate to write code nuggets. Next, you access properties in the view model object by using the Model
property, as listed in Table 2-6. Here’s an example:

@model IList<GridDemo.Models.City>

@{
 ViewBag.Title = ViewBag.Header;
}

<h2>@ViewBag.Header</h2>
<hr />

60 PArT I ASP.NET MVC fundamentals

<table>
 <thead> ... </thead>
@foreach (var city in Model)
{
 <tr> ... </tr>
}
</table>

Of course, if Model references an object with child properties, you use Model.Xxx to reference each
of them.

Note In a Visual Basic–based Razor view, you define a view model object by using a differ-
ent syntax. Instead of using the keyword @model, you go with the @ModelType keyword.

Defining a master view
In Razor, layout pages play the same role as master pages in Web Forms. A layout page is a standard
Razor template that the view engine renders around any view you define, thus giving a uniform look
and feel to sections of the site.

Each view can define its own layout page by simply setting the Layout property. The layout can be
set to a hardcoded file or to any path that result from evaluating run-time conditions:

@{
 if (Request.Browser.IsMobileDevice) {
 Layout = "mobile.cshtml";
 }
}

You don’t need to incorporate the code that determines the layout in each view file. With Razor,
you can define a special file in the Views folder, which is processed before each view is built and
rendered. This file, called _ViewStart.cshtml, is the ideal container of any view-related startup code,
including the code that determines the layout to use. Here’s a common implementation for the
_ViewStart.cshtml file:

@{
 Layout = "~/Views/Shared/_Layout.cshtml";
}

According to the preceding code snippet, the file _Layout.cshtml defines the overall structure of
each view in the site. (This is just the Razor counterpart to a master page.)

A layout page contains the usual mix of HTML and code nuggets and derives from WebViewPage.
As such, it can access any properties on WebViewPage, including ViewBag and ViewData. The layout
template must contain at least one placeholder for injecting the code of a specific view. The place-
holder is expressed through a call to the RenderBody method (defined on WebViewPage), as demon-
strated in the next example:

 CHAPTER 2 ASP.NET MVC views 61

<html>
<head>
 <title>@ViewBag.Title</title>
 <link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" />
 <script src="@Url.Content("~/Scripts/jquery-1.9.1.min.js")" type="text/javascript"></script>
</head>
<body>
 <div class="page">
 @RenderBody()
 </div>
</body>
</html>

Executing RenderBody causes any code in the actual view to flow into the layout template. The
code within the actual view template is processed before the merging of the view and layout. This
means that you can write view code that programmatically sets values in ViewBag which the layout
can retrieve and consume. The typical example is the title of the page. Another good example is
<meta> tags.

Important In a view, it is recommended that you reference resources such as images,
scripts, and stylesheets by using the tilde operator to refer to the root of the website. In
earlier versions of ASP.NET MVC, you had to resort to the Url.Content method to ensure
that the tilde was properly expanded in a URL. Starting with ASP.NET MVC 4, tilde is ex-
panded automatically by the Razor engine, and using Url.Content is still supported but no
longer necessary.

Defining sections
The RenderBody method defines a single point of injection within the layout. Although this is a com-
mon scenario, you might need to inject content into more than one location. In the layout template,
you define an injection point by placing a call to RenderSection at the locations where you want those
sections to appear:

<body>
 <div class="page">
 @RenderBody()
 </div>
 <div id="footer">
 @RenderSection("footer")
 </div>
</body>

Each section is identified by name and can be marked as optional. To declare a section optional,
you do as follows:

<div id="footer">
 @RenderSection("footer", false)
</div>

62 PArT I ASP.NET MVC fundamentals

The RenderSection method accepts an optional Boolean argument that denotes whether the sec-
tion is required. The following code is functionally equivalent to the preceding code, but it’s much
better from a readability standpoint:

<div id="footer">
 @RenderSection("footer", required:false)
</div>

Observe that required is not a keyword; more simply, it is the name of the formal parameter de-
fined on the RenderSection method. (Its name shows up nicely thanks to IntelliSense.)

If the view template doesn’t include a required section, you get a run-time exception. Here’s how
to define content for a section in a view template:

@section footer {
 <p>Written by Dino Esposito</p>
}

You can define the content for a section anywhere in a Razor view template.

You can also use the RenderPage method if you need to send an entire view straight to the output
stream. The RenderPage method takes the URL of the view to render. The overall behavior is nearly
identical to the RenderPartial extension method that you might have used plenty of times in ASPX
views.

Default content for sections
Master pages in the Web Forms view engine make it possible for you to specify some default con-
tent for a placeholder to use in case the actual page doesn’t fill it in. This same feature is not natively
supported in Razor, but you can arrange some quick workarounds. In particular, the WebViewPage
class provides a handy IsSectionDefined method that you can use in a Razor template to determine
whether a given section has been specified. Here’s some code that you can use in a layout page to
indicate default content for an optional section:

@* This code belongs to a layout page *@
<div id="footer">
 @if(IsSectionDefined("Copyright"))
 {
 @RenderSection("copyright")
 }
 else
 {
 <hr />Rights reserved for a better use.
 }
</div>

Keep in mind that section names are case insensitive.

 CHAPTER 2 ASP.NET MVC views 63

Nested layouts
You can nest Razor layouts to any level you want. Suppose that you want to transform the About view
created by the standard ASP.NET MVC application into something more sophisticated. The About
view is based on the general site layout—the _Layout.cshtml file. Suppose further that you want it to
accept contact information from an external view template. Here’s the structure you expect:

@{
 ViewBag.Title = "About Us";
}
<h2>About</h2>
<p>
 @RenderBody()
</p>

You can’t request a layout template—that is, any Razor template that calls RenderBody—directly;
you get an exception if you try to do that. This means that you should rename the about.cshtml file,
modified as shown in the preceding code, to something like aboutLayout.cshtml. In addition, you
must explicitly mention the parent layout on which it is based:

@{
 Layout = "~/Views/Shared/_Layout.cshtml";
 ViewBag.Title = "About Us";
}
<h2>About</h2>
<p>
 @RenderBody()
</p>

Finally, you create the actual about.cshtml view, which is the view directly requested by the
application:

@{
 Layout = "~/Views/Home/AboutLayout.cshtml";
}
<fieldset>
 <legend>Contact</legend>
 <p>Follow me on Twitter: @@despos</p>
</fieldset>

Declarative HTML helpers
As you saw earlier in the chapter, HTML helpers are a powerful tool to build reusable and parametric
pieces of HTML. Written as extension methods for the HtmlHelper (or AjaxHelper) class, you can easily
reference helpers in a Razor template without requiring even a single code change. This rule applies,
for example, to all built-in HTML helpers, such as those used to emit a form or an action link.

The downside of writing HTML helpers as extension methods is the limited flexibility they offer for
expressing the graphical layout. For example, to build an HTML table, you need to compose markup
into a string builder. You can do it, but it's not really effective. In Razor, you have an alternate ap-
proach: declarative helpers.

64 PArT I ASP.NET MVC fundamentals

You start by creating a .cshtml file in the App_Code folder of the project. The project wizard
doesn’t create this folder automatically, so you need to do it yourself. (Curiously, the folder is not even
listed as an ASP.NET folder.) The name you choose for the .cshtml file is important because you’ll be
using it when making calls to the helpers. Think of this file as one of your helper repositories. A classic
name for this file is something like MyHelpers.cshtml. Here’s some content:

@using RazorEngine.Models;

@helper CityGrid(IList<City> cities)
{
 <table>
 <thead> ... </thead>
 @foreach (var city in cities)
 {
 <tr>
 <td>@city.Name</td>
 <td>@city.Country</td>
 <td>@(city.Visited ? "Yes" : "No")</td>
 </tr>
 }
 </table>
}

@helper ShowHeader()
{
 <h2>I'm a Razor declarative helper!</h2>
}

The @helper keyword begins the HTML declaration. The keyword is followed by the signature
and implementation of the method. The body of the helper is just an embedded fragment of a Razor
template. You can have multiple helpers in a single file. (Keep in mind that the helper repository won’t
be detected if it’s placed outside the App_Code folder.)

To invoke a declarative Razor helper, you do as follows:

@using RazorEngine.Models;
@model IList<City>

@MyHelpers.ShowHeader()
<p>
 @MyHelpers.CityGrid(Model)
</p>

The name of the helper is composed of two parts: the repository name and the helper name.

 CHAPTER 2 ASP.NET MVC views 65

Coding the view

In this final section of the chapter, I’ll delve into a couple of important points that affect views and
controllers: how to effectively pass data to a view, and how to add more flexibility to the view-
rendering processing.

Modeling the view
Using Razor (or the ASPX engine), you define the graphical layout of a view. Sometimes, the view is
just made of static content. More often, though, the view must incorporate real data resulting from
some operation against the middle tier of the system or loaded from the application cache or session
state. How would you make this data available to the view?

The golden rule of ASP.NET MVC design claims that the view receives but doesn’t compute any
data it has to display. You can pass data in three nonexclusive ways: via the ViewData dictionary, the
ViewBag dictionary, and a tailor-made container object, often referred to as the view model object.

The ViewData dictionary
Exposed directly by the Controller class, the ViewData property is a name-value dictionary object. Its
programming model is analogous to using Session or other ASP.NET intrinsic objects:

public ActionResult Index()
{
 ViewData["PageTitle"] = "Programming ASP.NET MVC";
 return View();
}

Any data you store in a dictionary is treated as an object and requires casting, boxing, or both
for it to be worked on in the view. You can create as many entries as you like in the dictionary. The
lifetime of the dictionary is the same as the request.

The ViewData dictionary is packed into the view context—an internal structure through which
the ASP.NET MVC infrastructure moves data from the controller level to the view level—and made
available to the view engine. The view objects—ViewPage for the ASPX engine and WebViewPage for
Razor—expose the ViewData dictionary to any code in the view templates. Here’s how you retrieve
ViewData content from a view template:

<head>
 <title> @ViewData["PageTitle"] </title>
</head>

Keep in mind that you are not limited to storing strings in the ViewData dictionary.

66 PArT I ASP.NET MVC fundamentals

Overall, the ViewData dictionary is straightforward to use and extremely flexible. In fact, it allows
you to pass a new piece of data to the view by simply creating a new entry. At the same time, the
name-based model forces you to use a lot of magic strings (plain-text strings such as PageTitle in
the preceding example) and, more important, to match them between the controller and view code.
By using constants, you can reduce some of the inherent brittleness of magic strings, but you still
have no defense against the possibility of picking up the wrong name. If you happen to reference
the wrong dictionary entry, you’ll find out only at run time. The ViewData dictionary is well suited for
simple solutions and applications with a relatively short lifetime. As the number of dictionary entries
and the number of views grow, maintenance becomes an issue, and you should move away from
ViewData when looking for other options.

The ViewBag dictionary
Also defined on the Controller class, the ViewBag property offers an even more flexible facility to pass
data to the view. The property is defined as a dynamic type, as illustrated here:

public dynamic ViewBag { get; }

When a .NET compiler encounters a dynamic type, it emits a special chunk of code instead of sim-
ply evaluating the expression. Such a special chunk of code passes the expression to the Dynamic Lan-
guage Runtime (DLR) for a run-time evaluation. In other words, any expression based on the dynamic
type is compiled to be interpreted at run time. Any member set or read out of ViewBag is always
accepted by compilers but not actually evaluated until execution. Here’s an example that compares
the usage of ViewData and ViewBag:

public ActionResult Index()
{
 // Using ViewData
 ViewData["PageTitle"] = "Programming ASP.NET MVC";

 // Using ViewBag
 ViewBag.PageTitle = "Programming ASP.NET MVC";

 return View();
}

The compiler doesn’t care whether a property named PageTitle really exists on ViewBag. All it does
is pack a call to the DLR interpreter, where it asks the DLR to try to assign a given string to a certain
PageTitle property. Similarly, when PageTitle is read out of ViewBag, the compiler instructs the DLR to
check whether such a property exists. If it doesn’t exist, the compiler throws an exception. Here’s how
you consume content from ViewBag in a Razor view:

<head>
 <title> @ViewBag.PageTitle </title>
</head>

From a developer’s perspective, which is better, ViewBag or ViewData?

 CHAPTER 2 ASP.NET MVC views 67

The ViewBag syntax is terser than the ViewData syntax, but as I see things, that’s the entire differ-
ence. Just as with ViewData, you won’t have compile-time checking on properties. The dependency of
the dynamic type on the DLR doesn’t save you run-time exceptions if you mistype a property name.
In the end, it’s purely a matter of preference. Also, for what it matters, ViewBag requires at least ASP.
NET MVC 3 and .NET 4, whereas ViewData works with any version of ASP.NET MVC and with .NET 2.0.

Note Because the dynamic type is resolved at run time, Visual Studio IntelliSense can’t
indicate anything about its properties. IntelliSense treats a dynamic type like a plain Object
type. Some tools—most noticeably JetBrains ReSharper—are a bit smarter. ReSharper
tracks all the properties encountered along the way in the scope where the dynamic
variable is used. For any properties used, an entry is added to the IntelliSense menu of
members.

Strongly typed view models
When you have dozens of distinct values to pass to a view, the same flexibility that makes it possible
for you to quickly add a new entry or rename an existing one becomes your worst enemy. You are left
on your own to track item names and values; you get no help from IntelliSense and compilers.

The only proven way to deal with complexity in software is through appropriate design. So, defin-
ing an object model for each view helps you to track what that view really needs. I suggest that you
define a view-model class for each view you add to the application:

public ActionResult Index()
{
 ...
 // Pack data for the view using a view-specific container object.
 var model = new YourViewModel();

 // Populate the model.
 ...

 // Trigger the view.
 return View(model);
}

Having a view-model class for each view also creates the problem of choosing an appropriate class
name. You could use a combination of controller and view names. For example, the view-model
object for a view named Index invoked from the Home controller might be named HomeIndexView-
Model. Even better, you can create a subfolder named Home in the Models folder and host there an
IndexViewModel class. In my applications, I often also rename Models to ViewModels. (This particular
approach is just a suggestion, though; you should just feel free to choose meaningful names.)

How would you shape up a view-model class?

68 PArT I ASP.NET MVC fundamentals

First and foremost, a view-model object is a plain data-transfer object with only data and (nearly)
no behavior. Ideally, properties on a view-model object expose data exactly in the format the view
expects it to be. For example, if the view is expected to display only the date and status of pending
orders, you might not want to pass a plain collection of full-blown Order objects because they result
from the middle tier. The following view-model class is a better choice for modeling data for the view.
It helps keep the presentation layer and middle tier decoupled.

public class LatestOrderViewModel
{
 public DateTime OrderDate { get; set; }
 public String Status { get; set; }
}

The ASP.NET MVC infrastructure guarantees that ViewData and ViewBag collections are always
made available to the view object without any developer intervention. The same is not true for cus-
tom view-model objects.

When you use a view model object, you must declare the view model type in the view template so
that the actual view object can be created of type ViewPage<T> in the ASPX view engine and of type
WebViewPage<T> if Razor is used. Here’s what you need to have in an .aspx template if you use the
ASPX Web Forms view engine:

<%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
 Inherits="System.Web.Mvc.ViewPage<LatestOrderViewModel>" %>

In the preceding code snippet, the type assigned to the Inherits attribute is not fully qualified. This
means that you probably need to add an @Import directive to specify the namespace to import to
locate the view-model type. If the view engine is Razor, here’s what you need:

@model LatestOrderViewModel

To retrieve the view-model object in the view template, you use the Model property defined on
both WebViewPage and ViewPage. Here’s a Razor example:

<h2>
 Latest order placed
 @Model.OrderDate.ToString("dddd, dd MMM yyyy")

 Status is: @Model.Status
</h2>

In this example, the format of the date is established in the view. It is also acceptable that the
controller prepares the date as a string and passes it down to the view, ready for display. There’s
not a clear guideline on where this code belongs; it falls into a sort of gray area. My preference is to
keep the view as simple as possible. If the format is fixed and not dependent on run-time conditions,
it is acceptable for you to pass DateTime and let the view figure out the rest. When a bit of logic is
required to format the date, in general I prefer to move it up to the controller.

 CHAPTER 2 ASP.NET MVC views 69

Although each view should have its own model object, limiting the number of classes you deal
with is always a good idea. To reuse model classes in multiple views, you typically build a hierarchy of
classes. Here’s an example of a view-model base class:

public class ViewModelBase
{
 public String Title { get; set; }
 public String Header { get; set; }
}
public class LatestOrderViewModel : ViewModelBase
{
 ...
}

Finally, it is always a good approach to devise the structure of the view model class around the
view rather than around the data. In other words, I always prefer to have a view-model class designed
as a container.

Suppose that you need to pass a list of orders to the view. The first option that springs to mind is
using the following view-model class (in a Razor template):

@model IList<PendingOrder>

Functionally speaking, the approach is sound. But is it extensible? In my experience, you always
end up stuffing a variety of heterogeneous data in a view. This might be required because of refactor-
ing efforts, as well as new requirements that pop up. A more maintainable approach (one that will let
you refactor without changing controller/view interfaces) is the following:

@model YourViewModel

In this case, YourViewModel is defined as shown here:

public class YourViewModel
{
 public IList<PendingOrder> PendingOrders {get; set;}
}

A view-model class ultimately models the view, not the data.

Important I’m not sure if I stated it clearly enough, so let me rephrase it. Strongly typed
view models are the only safe and sound solution for any ASP.NET MVC application of at
least moderate complexity and duration. I do believe that using view models is a state of
mind more than a way to fight complexity. However, if you can make it work with a couple
of ViewData or ViewBag entries per view, and you’ll be throwing the site away after a few
months (for example, a site you set up for a specific event), by all means ignore view models.

70 PArT I ASP.NET MVC fundamentals

Packaging the view-model classes
Where should you define the view-model classes? This mostly depends on the size of the project. In a
large project with a good deal of reusability and an expected long lifetime, you probably should cre-
ate a separate class library with all view-model classes you use.

In smaller projects, you might want to isolate all the classes in a specific folder. This can be the
Models folder that the default Visual Studio project templates create for you. Personally, I tend
to rename Models to ViewModels and group classes in controller-specific subfolders, as shown in
Figure 2-6.

FIGURE 2-6 A suggested structure for the ViewModels folder.

Advanced features
ASP.NET MVC is built around the Convention-over-Configuration pattern. As is typical of frameworks,
the pattern saves developers a lot of programming details as long as they adhere to a number of
fixed rules and conventions. This is particularly evident with views.

The view engine works by retrieving and processing view templates. How does it know about
templates? In general, it can happen in either of two ways: you register known views with the engine
(configuration), or you place views in specific locations so that the engine can retrieve them (conven-
tion). What if you want to organize your views according to a different set of conventions? Quite
simply, you need your own view engine.

 CHAPTER 2 ASP.NET MVC views 71

Note The need for a custom view engine is more frequent than one might think at first.
You might create a custom view engine for two main reasons: you want to express views in
a new markup language, or you want to apply a set of personalized conventions. I’m not
saying that every application should use a custom markup language, but most applications
might benefit from views organized in a custom way.

Custom view engines
Most applications of mine employ their own view engine that just organize views in a slightly different
way or need an extra layer of code to resolve view names to actual markup files. If you have reasons
for using a different directory schema for some of your views, all you need to do is derive a simple
class, as shown here:

public class MyViewEngine : RazorViewEngine
{
 public MyViewEngine()
 {
 this.MasterLocationFormats = base.MasterLocationFormats;
 this.ViewLocationFormats = new string[]
 {
 "~/Views/{1}/{0}.cshtml"
 };

 // Customize the location for partial views
 this.PartialViewLocationFormats = new string[]
 {
 "~/PartialViews/{1}/{0}.cshtml ",
 "~/PartialViews/{1}/{0}.vbhtml"
 };
 }
}

To use this class in lieu of the default view engine, you enter the following in global.asax:

protected void Application_Start()
{
 ...

 // Removes the default engines and adds the new one.
 ViewEngines.Engines.Clear();
 ViewEngines.Engines.Add(new MyViewEngine());
}

After you do this, your application will fail if any of the partial views is located outside a Partial
Views subfolder.

72 PArT I ASP.NET MVC fundamentals

Note While setting custom locations is a good reason for considering custom view en-
gines, you should keep in mind that if all you need to do is set location format properties
on one of the default engines, you might not need to create a custom view engine at all.
It might suffice that you retrieve the current instance in Application_Start and set location
format properties directly.

Important If you have a custom view engine that supports custom folders (for example, a
PartialViews folder for grouping partial views) it is essential that you add a web.config file
to it. You can copy the same web.config file you find in the Views folder by default. That file
contains critical information for the ASP.NET MVC runtime to locate view classes correctly.

render actions
Complex views result from the composition of a variety of child views. When a controller method trig-
gers the rendering of a view, it must provide all data the view needs for the main structure and all of
the parts. Sometimes, this requires the controller to know a lot of details about parts of the applica-
tion with which the class itself is not directly involved. Want an example?

Suppose that you have a menu to render in many of your views. Whatever action you take in rela-
tion to your application, the menu must be rendered. Rendering the menu, therefore, is an action not
directly related to the current ongoing request. How would you handle that? Render actions are a
possible answer.

A render action is a controller method that is specifically designed to be called from within a view.
A render action is therefore a regular method on the controller class that you invoke from the view by
using one of the following HTML helpers: Action or RenderAction.

@Html.Action("action")

Action and RenderAction behave mostly in the same way; the only difference is that Action returns
the markup as a string, whereas RenderAction writes directly to the output stream. Both methods
support a variety of overloads through which you can specify multiple parameters, including route
values, HTML attributes, and, of course, the controller’s name. You define a render action as a regular
method on a controller class and define it to be the renderer of some view-related action:

public ActionResult Menu()
{
 var options = new MenuOptionsViewModel();
 options.Items.Add(new MenuOption {Url="...", Image="..."});
 options.Items.Add(new MenuOption {Url="...", Image="..."});
 return PartialView(options);
}

 CHAPTER 2 ASP.NET MVC views 73

The content of the menu’s partial view is not relevant here; all it does is get the model object and
render an appropriate piece of markup. Let’s see the view source code for one of the pages you might
have in the application:

<div>
 ...
 @Html.RenderAction("Menu")
 ...
</div>

The RenderAction helper method calls the Menu method on the specified controller (or on the con-
troller that ordered the current view to be rendered) and directs any response to the output stream.
In this way, the view incorporates some logic and calls back the controller. At the same time, your
controller doesn’t need to worry about passing the view information that is not strictly relevant to the
current request it is handling.

Child actions
The execution of a render action is not simply a call made to a method via reflection. A lot more
happens under the hood. In particular, a render action is a child request that originates within the
boundaries of the main user request. The RenderAction method builds a new request context that
contains the same HTTP context of the parent request and a different set of route values. This child
request is forwarded to a specific HTTP handler—the ChildActionMvcHandler class—and is executed
as if it came from the browser. The overall operation is similar to what happens when you call Server.
Execute in general ASP.NET programming. There’s no redirect and no roundtrip, but the child request
goes through the usual pipeline of a regular ASP.NET MVC request and honors any action filters that
it might encounter with just a few exceptions. The most illustrious examples of filters that won’t work
across child actions are AuthorizeRequest and OutputCache. (I’ll say more about action filters later in
the book.)

By default, any action method can be invoked from a URL and via a render action. However, any
action methods marked with the ChildActionOnly attribute won’t be available to public callers, and
their usage is limited to rendering actions and child requests.

Summary

ASP.NET MVC doesn’t match URLs to disk files; instead, it parses the URL to figure out the next re-
quested action to take. Each action terminates with an action result. The most common type of action
result is the view result, which consists of a chunk of HTML markup.

Generated by the controller method, a view result is made of a template and model. The view
engine takes care of parsing the view template and filling it in with model data. ASP.NET MVC comes
with two default view engines supporting different markup languages for expressing the template
and different disk locations to discover templates. Today, Razor is the most commonly used view en-
gine, and it superseded the old-fashioned ASPX syntax that reminds too much of classic ASP.NET but
doesn’t allow (reasonably) the use of server controls.

74 PArT I ASP.NET MVC fundamentals

In this chapter, we first examined what it takes to process a view and then focused on development
aspects, including using HTML helpers and templated helpers for the two default engines, ASPX and
Razor. We also discussed best practices for modeling data and contrasted dictionaries with strongly
typed view models.

I suggest that you take a look at the BasicApp examples that are in the companion source code to
better understand what’s been discussed in this chapter. In ASP.NET MVC 5, the default app built by
the Visual Studio wizard is based on Twitter Bootstrap and offers a graphical template that is respon-
sive to different screen sizes.

 75

C H A P T E R 3

The model-binding architecture

It does not matter how slowly you go, so long as you do not stop.
—Confucius

By default, the Microsoft Visual Studio standard project template for ASP.NET MVC applications
includes a Models folder. If you look around for some guidance on how to use it and informa-

tion about its intended role, you'll quickly reach the conclusion that the Models folder exists to store
model classes. Fine, but which model is it for? Or, more precisely, what’s the definition of a “model”?

I like to say that “model” is the most misunderstood idea in the history of software. As a concept,
it needs to be expanded a bit to make sense in modern software. When the Model-View-Controller
(MVC) pattern was introduced, software engineering was in its infancy, and applications were much
simpler than today. Nobody really felt the need to break up the concept of model into smaller pieces.
Such smaller pieces, however, existed.

In general, I find at least two distinct models: the domain model and the view model. The former
describes the data you work with in the middle tier and is expected to provide a faithful representa-
tion of the entities and relationships that populate the business domain. These entities are typically
persisted by the data-access layer and consumed by services that implement business processes. This
domain model pushes a vision of data that is, in general, distinct and likely different from the vision
of data you find in the presentation layer. The view model just describes the data that is being worked
on in the presentation layer. A good example might be the canonical Order entity. There might be
use-cases in which the application needs to present a collection of orders to users but not all prop-
erties are required. For example, you might need ID, date, and total, and likely a distinct container
class—a data-transfer object (DTO).

Having said that, I agree with anyone who points out that not every application needs a neat sepa-
ration between the object models used in the presentation and business layers. You might decide that
for your own purposes the two models nearly coincide, but you should always recognize the existence
of two distinct models that operate in two distinct layers.

This chapter introduces a third type of model that, although hidden for years in the folds of the
ASP.NET Web Forms runtime, stands on its own in ASP.NET MVC: the input model. The input model
refers to the model through which posted data is exposed to controllers and subsequently received
by the application. The input model defines the DTOs the application uses to receive data from input
forms.

76 PArT I ASP.NET MVC fundamentals

Note Yet another flavor of model not mentioned here is the data model or the (mostly re-
lational) model used to persist data.

The input model

Chapter 1, “ASP.NET MVC controllers,” discusses request routing and the overall structure of controller
methods. Chapter 2, “ASP.NET MVC views,” explores views as the primary result of action processing.
However, neither chapter thoroughly discusses how in ASP.NET MVC a controller method gets input
data.

In ASP.NET Web Forms, we had server controls, view state, and the overall page life cycle working
in the background to serve input data that was ready to use. With ASP.NET Web Forms, developers
had no need to worry about an input model. Server controls in ASP.NET Web Forms provided a faith-
ful server-side representation of the client user interface. Developers just needed to write C# code to
read from input controls.

ASP.NET MVC makes a point of having controllers receive input data, not retrieve it. To pass input
data to a controller, you need to package data in some way. This is precisely where the input model
comes into play.

To better understand the importance and power of the new ASP.NET MVC input model, let’s start
from where ASP.NET Web Forms left us.

Evolving from the Web Forms input processing
An ASP.NET Web Forms application is based on pages, and each server page is based on server con-
trols. The page has its own life cycle that spans from processing the raw request data to arranging the
final response for the browser. The page life cycle is fed by raw request data such as HTTP headers,
cookies, the URL, and the body, and it produces a raw HTTP response containing headers, cookies,
the content type, and the body.

Inside the page life cycle, there are a few steps in which HTTP raw data is massaged into more eas-
ily programmable containers—server controls. In ASP.NET Web Forms, these “programmable contain-
ers” are never perceived as being part of an input object model. In ASP.NET Web Forms, the input
model is just based on server controls and the view state.

role of server controls
Suppose that you have a webpage with a couple of TextBox controls to capture a user name and
password. When the user posts the content of the form, there is likely a piece of code to process the
request similar to what is shown in the following code:

 CHAPTER 3 The model-binding architecture 77

public void Button1_Click(Object sender, EventArgs e)
{
 // You're about to perform requested action using input data.
 CheckUserCredentials(TextBox1.Text, TextBox2.Text);
 ...
}

The overall idea behind the architecture of ASP.NET Web Forms is to keep the developer away
from raw data. Any incoming request data is mapped to properties on server controls. When this is
not possible, data is left parked in general-purpose containers such as QueryString or Form.

What would you expect from a method such as the Button1_Click just shown? That method is the
Web Forms counterpart of a controller action. Here’s how to refactor the previous code to use an
explicit input model:

public void Button1_Click(Object sender, EventArgs e)
{
 // You're actually filling in the input model of the page.
 var model = new UserCredentialsInputModel();
 model.UserName = TextBox1.Text;
 model.Password = TextBox2.Text;

 // You're about to perform the requested action using input data.
 CheckUserCredentials(model);
 ...
}

The ASP.NET runtime environment breaks up raw HTTP request data into control properties, thus
offering a control-centric approach to request processing.

role of the view state
Speaking in terms of a programming paradigm, a key distinguishing characteristic between ASP.NET
Web Forms and ASP.NET MVC is the view state. In Web Forms, the view state helps server controls to
always be up to date. Because of the view state, as a developer you don’t need to care about seg-
ments of the user interface that you don’t touch in a postback. Suppose that you display a list of
choices into which the user can drill down. When the request for details is made, in Web Forms all you
need to do is display the details. The raw HTTP request, however, posted the list of choices as well as
key information to find. The view state makes it unnecessary for you to deal with the list of choices.

The view state and server control build a thick abstraction layer on top of classic HTTP mechanics,
and they make you think in terms of page sequences rather than successive requests. This is neither
wrong nor right; it is just the paradigm behind Web Forms. In Web Forms, there’s no need for clearly
defining an input model. If you do that, it’s only because you want to keep your code cleaner and
more readable.

78 PArT I ASP.NET MVC fundamentals

Input processing in ASP.NET MVC
Chapter 1, explains that a controller method can access input data through Request collections—such
as QueryString, Headers, or Form—or value providers. Although it’s functional, this approach is not
ideal from a readability and maintenance perspective. You need an ad hoc model that exposes data
to controllers.

The role of model binders
ASP.NET MVC provides an automatic binding layer that uses a built-in set of rules for mapping raw
request data from any value providers to properties of input model classes. As a developer, you are
largely responsible for the design of input model classes. The logic of the binding layer can be cus-
tomized to a large extent, thus adding unprecedented heights of flexibility, as far as the processing of
input data is concerned.

Flavors of a model
The ASP.NET MVC default project template offers just one Models folder, thus implicitly pushing the
idea that “model” is just one thing: the model of the data the application is supposed to use. Gener-
ally speaking, this is a rather simplistic view, though it’s effective in very simple sites.

If you look deeper into things, you can recognize three different types of “models” in ASP.NET
MVC, as illustrated in Figure 3-1.

FIGURE 3-1 Types of models potentially involved in an ASP.NET MVC application.

The input model provides the representation of the data being posted to the controller. The view
model provides the representation of the data being worked on in the view. Finally, the domain
model is the representation of the domain-specific entities operating in the middle tier.

Note that the three models are not neatly separated, which Figure 3-1 shows to some extent. You
might find overlap between the models. This means that classes in the domain model might be used
in the view, and classes posted from the client might be used in the view. The final structure and dia-
gram of classes is up to you.

 CHAPTER 3 The model-binding architecture 79

Model binding

Model binding is the process of binding values posted over an HTTP request to the parameters used
by the controller’s methods. Let’s find out more about the underlying infrastructure, mechanics, and
components involved.

Model-binding infrastructure
The model-binding logic is encapsulated in a specific model-binder class. The binder works under the
control of the action invoker and helps to figure out the parameters to pass to the selected controller
method.

Analyzing the method’s signature
Chapter 1 points out that each and every request passed to ASP.NET MVC is resolved in terms of a
controller name and an action name. Armed with these two pieces of data, the action invoker—a
native component of the ASP.NET MVC runtime shell—kicks in to actually serve the request. First, the
invoker expands the controller name to a class name and resolves the action name to a method name
on the controller class. If something goes wrong, an exception is thrown.

Next, the invoker attempts to collect all values required to make the method call. In doing so,
it looks at the method’s signature and attempts to find an input value for each parameter in the
signature.

Getting the binder for the type
The action invoker knows the formal name and declared type of each parameter. (This information
is obtained via reflection.) The action invoker also has access to the request context and to any data
uploaded with the HTTP request—the query string, the form data, route parameters, cookies, head-
ers, files, and so forth.

For each parameter, the invoker obtains a model-binder object. The model binder is a component
that knows how to find values of a given type from the request context. The model binder applies its
own algorithm, which includes the parameter name, parameter type, and request context available,
and returns a value of the specified type. The details of the algorithm belong to the implementation
of the model binder being used for the type.

ASP.NET MVC uses a built-in binder object that corresponds to the DefaultModelBinder class. The
model binder is a class that implements the IModelBinder interface.

public interface IModelBinder
{
 Object BindModel(ControllerContext controllerContext, ModelBindingContext bindingContext);
}

Let’s first explore the capabilities of the default binder and then see what it takes to write custom
binders for specific types later.

80 PArT I ASP.NET MVC fundamentals

The default model binder
The default model binder uses convention-based logic to match the names of posted values to
parameter names in the controller’s method. The DefaultModelBinder class knows how to deal with
primitive and complex types as well as collections and dictionaries. In light of this, the default binder
works just fine most of the time.

Note If the default binder supports primitive and complex types and the collections
thereof, will you ever feel the need to use something other than the default binder? You
will hardly ever feel the need to replace the default binder with another general-purpose
binder. However, the default binder can’t apply your custom logic to massage request data
into the properties of a given type. As you’ll see later, a custom binder is helpful when the
values being posted with the request don’t exactly match the properties of the type you
want the controller to use. In this case, a custom binder makes sense and helps keep the
controller’s code lean and mean.

Binding primitive types
Admittedly, it sounds a bit magical at first, but there’s no actual wizardry behind model binding. The
key fact about model binding is that it lets you focus exclusively on the data you want the controller
method to receive. You completely ignore the details of how you retrieve that data, whether it comes
from the query string or the route.

Suppose that you need a controller method to repeat a particular string a given number of times.
Here’s what you do:

public class BindingController : Controller
{
 public ActionResult Repeat(String text, Int32 number)
 {
 var model = new RepeatViewModel {Number = number, Text = text};
 return View(model);
 }
}

Designed in this way, the controller is highly testable and completely decoupled from the ASP.NET
runtime environment. There’s no need for you to access the Request object or the Cookies collection
directly.

Where do the values for text and number come from? And, which component is actually reading
them into text and number parameters?

The actual values are read from the request context, and the default model-binder object does the
trick. In particular, the default binder attempts to match formal parameter names (text and number in
the example) to named values posted with the request. In other words, if the request carries a form
field, a query-string field, or a route parameter named text, the carried value is automatically bound

 CHAPTER 3 The model-binding architecture 81

to the text parameter. The mapping occurs successfully as long as the parameter type and actual
value are compatible. If a conversion cannot be performed, an argument exception is thrown. The
next URL works just fine:

http://server/binding/repeat?text=Dino&number=2

Conversely, the following URL causes an exception:

http://server/binding/repeat?text=Dino&number=true

The query-string field text contains Dino, and the mapping to the String parameter text on the
method Repeat takes place successfully. The query-string field number, on the other hand, contains
true, which can’t be successfully mapped to an Int32 parameter. The model binder returns a parame-
ters dictionary in which the entry for number contains null. Because the parameter type is Int32—that
is, a non-nullable type—the invoker throws an argument exception.

Dealing with optional values
An argument exception that occurs because invalid values are being passed is not detected at the
controller level. The exception is fired before the execution flow reaches the controller. This means
that you won’t be able to catch it with try/catch blocks.

If the default model binder can’t find a posted value that matches a required method parameter,
it places a null value in the parameter dictionary returned to the action invoker. Again, if a value of
null is not acceptable for the parameter type, an argument exception is thrown before the controller
method is even called.

What if a method parameter must be considered optional?

A possible approach entails changing the parameter type to a nullable type, as shown here:

public ActionResult Repeat(String text, Nullable<Int32> number)
{
 var model = new RepeatViewModel {Number = number.GetValueOrDefault(), Text = text};
 return View(model);
}

Another approach consists of using a default value for the parameter:

public ActionResult Repeat(String text, Int32 number=4)
{
 var model = new RepeatViewModel {Number = number, Text = text};
 return View(model);
}

Any decisions about the controller method’s signature are up to you. In general, you might want
to use types that are very close to the real data being uploaded with the request. Using parameters
of type Object, for example, will save you from argument exceptions, but it will make it hard to write
clean code to process the input data.

82 PArT I ASP.NET MVC fundamentals

The default binder can map all primitive types, such as String, integers, Double, Decimal, Boolean,
DateTime, and related collections. To express a Boolean type in a URL, you resort to the true or false
strings. These strings are parsed using .NET native Boolean parsing functions, which recognize true
and false strings in a case-insensitive manner. If you use strings such as yes/no to mean a Boolean, the
default binder won’t understand your intentions and places a null value in the parameter dictionary,
which might cause an argument exception.

Value providers and precedence
The default model binder uses all the registered value providers to find a match between posted val-
ues and method parameters. By default, value providers cover the collections listed in Table 3-1.

TABLE 3-1 Request collections for which a default value provider exists

Collection Description

Form Contains values posted from an HTML form, if any

RouteData Contains values excerpted from the URL route

QueryString Contains values specified as the URL’s query string

Files A value is the entire content of an uploaded file, if any

Table 3-1 lists request collections being considered in the exact order in which they are processed
by the default binder. Suppose that you have the following route:

routes.MapRoute(
 "Test",
 "{controller}/{action}/test/{number}",
 new { controller = "Binding", action = "RepeatWithPrecedence", number = 5 }
);

As you can see, the route has a parameter named number. Now, consider this URL:

/Binding/RepeatWithPrecedence/test/10?text=Dino&number=2

The request uploads two values that are good candidates to set the value of the number param-
eter in the RepeatWithPrecedence method. The first value is 10 and is the value of a route parameter
named number. The second value is 2 and is the value of the QueryString element named number. The
method itself provides a default value for the number parameter:

public ActionResult RepeatWithPrecedence(String text, Int32 number=20)
{
 ...
}

Which value is actually picked up? As Table 3-1 suggests, the value that is actually passed to the
method is 10, which is the value read from the route data collection.

 CHAPTER 3 The model-binding architecture 83

Binding complex types
There’s no limitation regarding the number of parameters you can list on a method’s signature. How-
ever, a container class is often better than a long list of individual parameters. For the default model
binder, the result is nearly the same whether you list a sequence of parameters or just one parameter
of a complex type. Both scenarios are fully supported. Here’s an example:

public class ComplexController : Controller
{
 public ActionResult Repeat(RepeatText inputModel)
 {
 var model = new RepeatViewModel
 {
 Title = "Repeating text",
 Text = inputModel.Text,
 Number = inputModel.Number
 };
 return View(model);
 }
}

The controller method receives an object of type RepeatText. The class is a plain data-transfer
object, defined as follows:

public class RepeatText
{
 public String Text { get; set; }
 public Int32 Number { get; set; }
}

As you can see, the class just contains members for the same values you passed as individual
parameters in the previous example. The model binder works with this complex type as well as it did
with single values.

For each public property in the declared type—RepeatText in this case—the model binder looks
for posted values whose key names match the property name. The match is case insensitive. Here’s a
sample URL that works with the RepeatText parameter type:

http://server/Complex/Repeat?text=ASP.NET%20MVC&number=5

Figure 3-2 shows the output that the URL might generate.

84 PArT I ASP.NET MVC fundamentals

FIGURE 3-2 Repeating text with values extracted from a complex type.

Binding collections
What if the argument that a controller method expects is a collection? For example, can you bind the
content of a posted form to an IList<T> parameter? The DefaultModelBinder class makes it possible,
but doing so requires a bit of contrivance of your own. Have a look at Figure 3-3.

FIGURE 3-3 The page will post an array of strings.

When the user clicks the Send button, the form submits its content. Specifically, it sends out the
content of the various text boxes. If the text boxes have different IDs, the posted content takes the
following form:

TextBox1=admin@contoso.com&TextBox2=&TextBox3=&TextBox4=&TextBox5=

 CHAPTER 3 The model-binding architecture 85

In classic ASP.NET, this is the only possible way of working because you can’t just assign the same
ID to multiple controls. However, if you manage the HTML yourself, nothing prevents you from
assigning the five text boxes in the figure the same ID. The HTML DOM, in fact, fully supports this
scenario (though it is not recommended). Therefore, the following markup is entirely legal in ASP.NET
MVC and produces HTML that works on all browsers:

@using (Html.BeginForm())
{
 <h2>List your email address(es)</h2>
 foreach(var email in Model.Emails)
 {
 <input type="text" name="email" value="@email" />

 }
 <input type="submit" value="Send" />
}

What’s the expected signature of a controller method that has to process the email addresses
typed in the form? Here it is:

public ActionResult Emails(IList<String> email)
{
 ...
}

Figure 3-4 shows that an array of strings is correctly passed to the method, thanks to the default
binder class.

FIGURE 3-4 An array of strings has been posted.

As is dicussed in greater detail in Chapter 4, “Input forms,” when you work with HTML forms, you
likely need to have a pair of methods: one to handle the display of the view (the verb GET), and one to
handle the scenario in which data is posted to the view. The HttpPost and HttpGet attributes make it
possible for you to mark which scenario a given method is handling for the same action name. Here’s
the full implementation of the example, which uses two distinct methods to handle GET and POST
scenarios:

[ActionName("Emails")]
[HttpGet]
public ActionResult EmailForGet(IList<String> emails)

86 PArT I ASP.NET MVC fundamentals

{
 // Input parameters
 var defaultEmails = new[] { "admin@contoso.com", "", "", "", "" };
 if (emails == null)
 emails = defaultEmails;
 if (emails.Count == 0)
 emails = defaultEmails;
 var model = new EmailsViewModel {Emails = emails};
 return View(model);
}

[ActionName("Emails")]
[HttpPost]
public ActionResult EmailForPost(IList<String> email)
{
 var defaultEmails = new[] { "admin@contoso.com", "", "", "", "" };
 var model = new EmailsViewModel { Emails = defaultEmails, RegisteredEmails = email };
 return View(model);
}

Here’s the full Razor markup for the view you see rendered in Figure 3-5:

@model BindingFun.ViewModels.Complex.EmailsViewModel

<h2>List your email address(es)</h2>
@using (Html.BeginForm())
{
 foreach(var email in Model.Emails)
 {
 <input type="text" name="email" value="@email" />

 }
 <input type="submit" value="Send" />
}

<hr />
<h2>Emails submitted</h2>

@foreach (var email in Model.RegisteredEmails)
{
 if (String.IsNullOrWhiteSpace(email))
 {
 continue;
 }
 @email
}

 CHAPTER 3 The model-binding architecture 87

FIGURE 3-5 The page rendered after a POST.

In the end, to ensure that a collection of values is passed to a controller method, you need to en-
sure that elements with the same ID are emitted to the response stream. The ID, then, must match to
the controller method’s signature according to the normal rules of the binder.

In case of collections, the required match between names forces you to violate basic naming
conventions. In the view, you have input fields and would like to call them, for instance, email using
the singular. When you name the parameter in the controller, because you’re getting a collection,
you would like to name it, for instance, emails. Instead, you’re forced to use either email or emails all
the way through. The workaround comes in a moment when we move on to consider customizable
aspects of model binders.

Binding collections of complex types
The default binder can also handle situations in which the collection contains complex types, even
nested, as demonstrated here:

[ActionName("Countries")]
[HttpPost]
public ActionResult CountriesForPost(IList<Country> country)
{
 ...
}

88 PArT I ASP.NET MVC fundamentals

As an example, consider the following definition for type Country:

public class Country
{
 public Country()
 {
 Details = new CountryInfo();
 }
 public String Name { get; set; }
 public CountryInfo Details { get; set; }
}
public class CountryInfo
{
 public String Capital { get; set; }
 public String Continent { get; set; }
}

For model binding to occur successfully, all you really need to do is use a progressive index on the
IDs in the markup. The resulting pattern is prefix[index].Property, where prefix matches the name of
the formal parameter in the controller method’s signature:

@using (Html.BeginForm())
{
 <h2>Select your favorite countries</h2>
 var index = 0;
 foreach (var country in Model.CountryList)
 {
 <fieldset>
 <div>
 Name

 <input type="text"
 name="countries[@index].Name"
 value="@country.Name" />

 Capital

 <input type="text"
 name="country[@index].Details.Capital"
 value="@country.Details.Capital" />

 Continent

 @{
 var id = String.Format("country[{0}].Details.Continent", index++);
 }
 @Html.TextBox(id, country.Details.Continent)

 </div>
 </fieldset>
 }
 <input type="submit" value="Send" />
}

 CHAPTER 3 The model-binding architecture 89

The index is numeric, 0-based, and progressive. In this example, I’m building user interface blocks
for each specified default country. If you have a fixed number of user interface blocks to render, you
can use static indexes.

<input type="text"
 name="country[0].Name"
 value="@country.Name" />

<input type="text"
 name="country[1].Name"
 value="@country.Name" />

Be aware that holes in the series (for example, 0 and then 2) stop the parsing, and all you get back
is the sequence of data types from 0 to the hole.

The posting of data works fine, as well. The POST method on the controller class will just receive
the same hierarchy of data, as Figure 3-6 shows.

FIGURE 3-6 Complex and nested types posted to the method.

Rest assured that if you’re having trouble mapping posted values to your expected hierarchy of
types, it might be wise to consider a custom model binder.

Binding content from uploaded files
Table 3-1 indicates that uploaded files can also be subject to model binding. The default binder
does the binding by matching the name of the input file element used to upload with the name of a
parameter. The parameter (or the property on a parameter type), however, must be declared of type
HttpPostedFileBase:

public class UserData
{
 public String Name { get; set; }
 public String Email { get; set; }
 public HttpPostedFileBase Picture { get; set; }
}

90 PArT I ASP.NET MVC fundamentals

The following code shows a possible implementation of a controller action that saves the uploaded
file somewhere on the server computer:

public ActionResult Add(UserData inputModel)
{
 var destinationFolder = Server.MapPath("/Users");
 var postedFile = inputModel.Picture;
 if (postedFile.ContentLength > 0)
 {
 var fileName = Path.GetFileName(postedFile.FileName);
 var path = Path.Combine(destinationFolder, fileName);
 postedFile.SaveAs(path);
 }

 return View();
}

By default, any ASP.NET request can’t be longer than 4 MB. This amount should include any up-
loads, headers, body, and whatever is being transmitted. You can configure the value at various levels.
You do that through the maxRequestLength entry in the httpRuntime section of the web.config file:

<system.web>
 <httpRuntime maxRequestLength="6000" />
</system.web>

Obviously, the larger a request is, the more room you potentially leave for hackers to prepare at-
tacks on your site. Also keep in mind that in a hosting scenario your application-level settings might
be ignored if the host has set a different limit at the domain level and locked down the maxRequest-
Length property at lower levels.

What about multiple file uploads? As long as the overall size of all uploads is compatible with the
current maximum length of a request, you can upload multiple files within a single request. However,
consider that web browsers just don’t know how to upload multiple files. All a web browser can do is
upload a single file, and only if you reference it through an input element of type file. To upload mul-
tiple files, you can resort to some client-side ad hoc component or place multiple <input> elements
in the form. If you use multiple <input> elements that are properly named, a class like the one shown
here will bind them all:

public class UserData
{
 public String Name { get; set; }
 public String Email { get; set; }
 public HttpPostedFileBase Picture { get; set; }
 public IList<HttpPostedFileBase> AlternatePictures { get; set; }
}

The class represents the data posted for a new user with a default picture and a list of alternate
pictures. Here is the markup for the alternate pictures:

<input type="file" id="AlternatePictures[0]" name="AlternatePictures[0]" />
<input type="file" id="AlternatePictures[1]" name="AlternatePictures[1]" />

 CHAPTER 3 The model-binding architecture 91

ASP.NET application account
Creating files on the web server is not usually an operation that can be accomplished relying
on the default permission set. Any ASP.NET application runs under the account of the worker
process serving the application pool to which the application belongs. Under normal circum-
stances, this account is NETWORK SERVICE, and it isn’t granted the permission to create new
files. This means that to save files, you must change the account behind the ASP.NET applica-
tion or elevate the privileges of the default account.

For years, the identity of the application pool has been a fixed identity—the aforemen-
tioned NETWORK SERVICE account, which is a relatively low-privileged, built-in identity in
Microsoft Windows. Originally welcomed as an excellent security measure, in the end the prac-
tice of using a single account for a potentially high number of concurrently running services
created more problems than it helped to solve.

In a nutshell, services running under the same account could tamper with one another. For
this reason, in Microsoft Internet Information Services 7.5, by default, worker processes run
under unique identities that are automatically and transparently created for each newly created
application pool. The underlying technology is known as Virtual Accounts and is currently sup-
ported by Windows Server 2008 R2 and Windows 7 and newer versions. For more information,
have a look at http://technet.microsoft.com/library/dd548356.aspx.

Customizable aspects of the default binder
Automatic binding stems from a convention-over-configuration approach. Conventions, though,
sometimes harbor bad surprises. If for some reason you lose control over the posted data (for ex-
ample, in the case of data that has been tampered with), it can result in undesired binding; any posted
key/value pair will, in fact, be bound. For this reason, you might want to consider using the Bind at-
tribute to customize some aspects of the binding process.

The Bind attribute
The Bind attribute comes with three properties, which are described in Table 3-2.

TABLE 3-2 Properties for the BindAttribute class

Property Description

Prefix String property. It indicates the prefix that must be found in the name of the posted value
for the binder to resolve it. The default value is the empty string.

Exclude Gets or sets a comma-delimited list of property names for which binding is not allowed.

Include Gets or sets a comma-delimited list of property names for which binding is permitted.

You apply the Bind attribute to parameters on a method signature.

http://technet.microsoft.com/library/dd548356.aspx

92 PArT I ASP.NET MVC fundamentals

Creating whitelists of properties
As mentioned, automatic model binding is potentially dangerous when you have complex types.
In such cases, in fact, the default binder attempts to populate all public properties on the complex
types for which it finds a match in the posted values. This might end up filling the server type with
unexpected data, especially in the case of request tampering. To avoid that, you can use the Include
property on the Bind attribute to create a whitelist of acceptable properties, such as shown here:

public ActionResult RepeatOnlyText([Bind(Include = "text")]RepeatText inputModel)
{
 ...
}

The binding on the RepeatText type will be limited to the listed properties (in the example, only
Text). Any other property is not bound and takes whatever default value the implementation of
RepeatText assigned to it. Multiple properties are separated by a comma.

Creating blacklists of properties
The Exclude attribute employs the opposite logic: It lists properties that must be excluded from bind-
ing. All properties except those explicitly listed will be bound:

public ActionResult RepeatOnlyText([Bind(Exclude = "number")]RepeatText inputModel)
{
 ...
}

You can use Include and Exclude in the same attribute if doing so makes it possible for you to
better define the set of properties to bind. For instance, if both attributes refer to the same property,
Exclude will win.

Aliasing parameters by using a prefix
The default model binder forces you to give your request parameters (for example, form and query
string fields) given names that match formal parameters on target action methods. Using the Prefix
attribute, you can change this convention. By setting the Prefix attribute, you instruct the model bind-
er to match request parameters against the prefix rather than against the formal parameter name. All
in all, alias would have been a much better name for this attribute. Consider the following example:

[HttpPost]
[ActionName("Emails")]
public ActionResult EmailForPost([Bind(Prefix = "email")]IList<String> emails)
{
 ...
}

For the emails parameter to be successfully filled, you need to have posted fields whose name is
email, not emails. The Prefix attribute makes particular sense on POST methods and fixes the afore-
mentioned issue with naming conventions and collections of parameters.

 CHAPTER 3 The model-binding architecture 93

Finally, note that if a prefix is specified, it becomes mandatory; subsequently, fields whose names
are not prefixed are not bound.

Note Yes, the name chosen for the attribute—Prefix—is not really explanatory of the sce-
narios it addresses. Everybody agrees that Alias would have been a much better name. But,
now it’s too late to change it!

Advanced model binding

So far, we’ve examined the behavior of the default model binder. The default binder does excellent
work, but it is a general-purpose tool designed to work with most possible types in a way that is not
specific to any of them. The Bind attribute gives you some more control over the binding process,
but there are some reasonable limitations to its abilities. If you want to achieve total control over the
binding process, all you do is create a custom binder for a specific type.

Custom type binders
There’s just one primary reason you should be willing to create a custom binder: The default binder is
limited to taking into account only a one-to-one correspondence between posted values and proper-
ties on the model.

Sometimes, though, the target model has a different granularity than the one expressed by form
fields. The canonical example is when you employ multiple input fields to let users enter content for
a single property; for example, distinct input fields for day, month, and year that then map to a single
DateTime value.

Customizing the default binder
To create a custom binder from scratch, you implement the IModelBinder interface. Implementing the
interface is recommended if you need total control over the binding process. For example, if all you
need to do is to keep the default behavior and simply force the binder to use a non-default construc-
tor for a given type, inheriting from DefaultModelBinder is the best approach. Here’s the schema to
follow:

public RepeatTextModelBinder : DefaultModelBinder
{
 protected override object CreateModel(
 ControllerContext controllerContext,
 ModelBindingContext bindingContext,
 Type modelType)
 {
 ...
 return new RepeatText(...);
 }
}

94 PArT I ASP.NET MVC fundamentals

Another common scenario for simply overriding the default binder is when all you want is the abil-
ity to validate against a specific type. In this case, you override OnModelUpdated and insert your own
validation logic, as shown here:

protected override void OnModelUpdated(ControllerContext controllerContext,
 ModelBindingContext bindingContext)
{
 var obj = bindingContext.Model as RepeatText;
 if (obj == null)
 return;

 // Apply validation logic here for the whole model
 if (String.IsNullOrEmpty(obj.Text))
 {
 bindingContext.ModelState.AddModelError("Text", ...);
 }
 ...
}

You override OnModelUpdated if you prefer to keep in a single place all validations for any proper-
ties. You resort to OnPropertyValidating if you prefer to validate properties individually.

Important When binding occurs on a complex type, the default binder simply copies
matching values into properties. You can’t do much to refuse some values if they put the
instance of the complex type in an invalid state.

A custom binder could integrate some logic to check the values being assigned to proper-
ties and signal an error to the controller method or degrade gracefully by replacing the
invalid value with a default one.

Although it’s possible to use this approach, it’s not commonly employed because there are
more powerful options in ASP.NET MVC that you can use to deal with data validation across
an input form. And that is exactly the topic I address in Chapter 4.

Implementing a model binder from scratch
The IModelBinder interface is defined as follows:

public interface IModelBinder
{
 Object BindModel(ControllerContext controllerContext,
 ModelBindingContext bindingContext);
}

Following is the skeleton of a custom binder that directly implements the IModelBinder interface.
The model binder is written for a specific type—in this case, MyComplexType:

 CHAPTER 3 The model-binding architecture 95

public class MyComplexTypeModelBinder : IModelBinder
{
 public Object BindModel(ControllerContext controllerContext,
 ModelBindingContext bindingContext)
 {
 if (bindingContext == null)
 throw new ArgumentNullException("bindingContext");

 // Create the model instance (using the ctor you like best)
 var obj = new MyComplexType();

 // Set properties reading values from registered value providers
 obj.SomeProperty = FromPostedData<string>(bindingContext, "SomeProperty");
 ...
 return obj;
}

// Helper routine
private T FromPostedData<T>(ModelBindingContext context, String key)
{
 // Get the value from any of the input collections
 ValueProviderResult result;
 context.ValueProvider.TryGetValue(key, out result);

 // Set the state of the model property resulting from value
 context.ModelState.SetModelValue(key, result);

 // Return the value converted (if possible) to the target type
 return (T) result.ConvertTo(typeof(T));
}

The structure of BindModel is straightforward. You first create a new instance of the type of inter-
est. In doing so, you can use the constructor (or factory) you like best and perform any sort of custom
initialization that is required by the context. Next, you simply populate properties of the freshly cre-
ated instance with values read or inferred from posted data. In the preceding code snippet, I assume
that you simply replicate the behavior of the default provider and read values from registered value
providers based on a property name match. Obviously, this is just the place where you might want to
add your own logic to interpret and massage what’s being posted by the request.

Keep in mind that when writing a model binder, you are in no way restricted to getting informa-
tion for the model only from the posted data, which represents only the most common scenario. You
can grab information from anywhere (for example, from the ASP.NET cache and session state), parse
it, and store it in the model.

Note ASP.NET MVC comes with two built-in binders beyond the default one. These
additional binders are automatically selected for use when posted data is a Base64
stream (ByteArrayModelBinder type) and when the content of a file is being uploaded
(HttpPostedFileBaseModelBinder type).

96 PArT I ASP.NET MVC fundamentals

registering a custom binder
You can associate a model binder with its target type globally or locally. In the former case, any oc-
currence of model binding for the type will be resolved through the registered custom binder. In the
latter case, you apply the binding to just one occurrence of one parameter in a controller method.

Global association takes place in the global.asax file as follows:

void Application_Start()
{
 ...
 ModelBinders.Binders[typeof(MyComplexTypeModelBinder)] =
 new MyCustomTypeModelBinder();
}

Local association requires the following syntax:

public ActionResult RepeatText(
 [ModelBinder(typeof(MyComplexTypeModelBinder))] MyComplexType info)
{
 ...
}

Local binders always take precedence over globally defined binders.

As you can glean clearly from the preceding code within Application_Start, you can have multiple
binders registered. You can also override the default binder, if required:

ModelBinders.Binders.DefaultBinder = new MyNewDefaultBinder();

However, modifying the default binder can have a considerable impact on the behavior of the ap-
plication and should therefore be a very thoughtful choice.

A sample DateTime model binder
With input forms, it is quite common to have users enter a date. You can sometimes use a jQuery user
interface to let users pick dates from a graphical calendar. If you use HTML5 markup on recent brows-
ers, the calendar is automatically provided. The selection is translated to a string and saved to a text
box. When the form posts back, the date string is uploaded and the default binder attempts to parse
it to a DateTime object.

In other situations, you might decide to split the date into three distinct text boxes, one each for
day, month, and year. These pieces are uploaded as distinct values in the request. The result is that the
default binder can manage them only separately; the burden of creating a valid DateTime object out
of day, month, and year values is up to the controller. With a custom default binder, you can take this
code out of the controller and still enjoy the pleasure of having the following signature for a control-
ler method:

public ActionResult MakeReservation(DateTime theDate)

Let’s see how to arrange a more realistic example of a model binder.

 CHAPTER 3 The model-binding architecture 97

The displayed data
The sample view we consider next shows three text boxes for the items that make up a date as well
as a submit button. You enter a date, and the system calculates how many days have elapsed since or
how many days you have to wait for the specified day to arrive. Here’s the Razor markup:

@model DateEditorResponseViewModel
@section title{
 @Model.Title
}

@using (Html.BeginForm())
{
<fieldset>
 <legend>Date Editor</legend>
 <div>
 <table><tr>
 <td>@DateHelpers.InputDate("theDate", Model.DefaultDate)</td>
 <td><input type="submit" value="Find out more" /></td>
 </tr></table>
 </div>
</fieldset>
}
<hr />
@DateHelpers.Distance(Model.TimeToToday)

As you can see, I’m using a couple of custom helpers to better encapsulate the rendering of some
view code. Here’s how you render the date elements:

@helper InputDate(String name, DateTime? theDate)
{
 String day="", month="", year="";
 if(theDate.HasValue)
 {
 day = theDate.Value.Day.ToString();
 month = theDate.Value.Month.ToString();
 year = theDate.Value.Year.ToString();
 }
 <table cellpadding="0">
 <thead>
 <th>DD</th>
 <th>MM</th>
 <th>YYYY</th>
 </thead>
 <tr>
 <td><input type="number" name="@(name + ".day")"
 value="@day" style="width:30px" /></td>
 <td><input type="number" name="@(name + ".month")"
 value="@month" style="width:30px"></td>
 <td><input type="number" name="@(name + ".year")"
 value="@year" style="width:40px" /></td>
 </tr>
 </table>
}

98 PArT I ASP.NET MVC fundamentals

Figure 3-7 shows the output.

FIGURE 3-7 A sample view that splits date input text into day-month-year elements.

The controller methods
The view in Figure 3-7 is served and processed by the following controller methods:

public class DateController : Controller
{
 [HttpGet]
 [ActionName("Editor")]
 public ActionResult EditorForGet()
 {
 var model = new EditorViewModel();
 return View(model);
 }

 [HttpPost]
 [ActionName("Editor")]
 public ActionResult EditorForPost(DateTime theDate)
 {
 var model = new EditorViewModel();
 if (theDate != default(DateTime))
 {
 model.DefaultDate = theDate;
 model.TimeToToday = DateTime.Today.Subtract(theDate);
 }
 return View(model);
 }
}

After the date is posted back, the controller action calculates the difference with the current day
and stores the results back in the view model by using a TimeSpan object. Here’s the view model
object:

 CHAPTER 3 The model-binding architecture 99

public class EditorViewModel : ViewModelBase
{
 public EditorViewModel()
 {
 DefaultDate = null;
 TimeToToday = null;
 }
 public DateTime? DefaultDate { get; set; }
 public TimeSpan? TimeToToday { get; set; }
}

What remains to be examined is the code that performs the trick of transforming three distinct
values uploaded independently into one DateTime object.

Creating the DateTime binder
The structure of the DateTimeModelBinder object is not much different from the skeleton I described
earlier. It is just tailor-made for the DateTime type.

public class DateModelBinder : IModelBinder
{
 public Object BindModel(ControllerContext controllerContext, ModelBindingContext
bindingContext)
 {
 if (bindingContext == null)
 {
 throw new ArgumentNullException("bindingContext");
 }

 // This will return a DateTime object
 var theDate = default(DateTime);

 // Try to read from posted data. xxx.Day|xxx.Month|xxx.Year is assumed.
 var day = FromPostedData<int>(bindingContext, "Day");
 var month = FromPostedData<int>(bindingContext, "Month");
 var year = FromPostedData<int>(bindingContext, "Year");

 return CreateDateOrDefault(year, month, day, theDate);
 }

 // Helper routines
 private static T FromPostedData<T>(ModelBindingContext context, String id)
 {
 if (String.IsNullOrEmpty(id))
 return default(T);

 // Get the value from any of the input collections
 var key = String.Format("{0}.{1}", context.ModelName, id);
 var result = context.ValueProvider.GetValue(key);
 if (result == null && context.FallbackToEmptyPrefix)

100 PArT I ASP.NET MVC fundamentals

 {
 // Try without prefix
 result = context.ValueProvider.GetValue(id);
 if (result == null)
 return default(T);
 }

 // Set the state of the model property resulting from value
 context.ModelState.SetModelValue(id, result);

 // Return the value converted (if possible) to the target type
 T valueToReturn = default(T);
 try
 {
 valueToReturn = (T)result.ConvertTo(typeof(T));
 }
 catch
 {
 }

 return valueToReturn;
 }

 private DateTime CreateDateOrDefault(Int32 year, Int32 month, Int32 day,
 DateTime? defaultDate)
 {
 var theDate = defaultDate ?? default(DateTime);
 try
 {
 theDate = new DateTime(year, month, day);
 }
 catch (ArgumentOutOfRangeException e)
 {
 }

 return theDate;
 }
}

The binder makes some assumptions about the naming convention of the three input elements.
In particular, it requires that those elements be named day, month, and year, possibly prefixed by the
model name. It is the support for the prefix that makes it possible to have multiple date input boxes in
the same view without conflicts.

With this custom binder available, all you need to do is register it either globally or locally. Here’s
how to make it work with just a specific controller method:

[HttpPost]
[ActionName("Editor")]
public ActionResult EditorForPost([ModelBinder(typeof(DateModelBinder))] DateTime theDate)
{

}

Figure 3-8 shows the final page in action.

 CHAPTER 3 The model-binding architecture 101

FIGURE 3-8 Working with dates using a custom type binder.

Summary

In ASP.NET MVC as well as in ASP.NET Web Forms, posted data arrives within an HTTP packet and is
mapped to various collections on the Request object. To offer a nice service to developers, ASP.NET
then attempts to expose that content in a more usable way.

In ASP.NET Web Forms, the content is parsed and passed on to server controls; in ASP.NET MVC,
on the other hand, it is bound to parameters of the selected controller’s method. The process of
binding posted values to parameters is known as model binding and occurs through a registered
model-binder class. Model binders provide you with complete control over the deserialization of
form-posted values into simple and complex types.

In functional terms, the use of the default binder is transparent to developers—no action is
required on your end—and it keeps the controller code clean. By using model binders, including cus-
tom binders, you also keep your controller’s code free of dependencies on ASP.NET intrinsic objects
and thus make it cleaner and more testable.

The use of model binders is strictly related to posting and input forms. In Chapter 4, I discuss
aspects of input forms, input modeling, and data validation.

 103

C H A P T E R 4

Input forms

Whatever you can do or dream, begin it.

—Wolfgang Goethe

Classic ASP.NET bases its programming model on the assumption that state is maintained across
postbacks. This is not true at all at the HTTP-protocol level, but it is brilliantly simulated by using

the page view-state feature and a bit of work in the Web Forms page life cycle. The view state, which
is so often kicked around as a bad thing, is a great contribution to establishing a stateful program-
ming model in ASP.NET, and that programming model was one of the keys to ASP.NET’s success
and rapid adoption. Data entry is a scenario in which server controls really shine and in which their
postback and view-state overhead save you from doing a lot of work. Server controls also give you a
powerful infrastructure for input validation.

If you’ve grown up with Web Forms and its server controls, you might be shocked when you’re
transported into the ASP.NET MVC model. In ASP.NET MVC, you have the same functional capabilities
as in Web Forms, but they’re delivered through a different set of tools. The ASP.NET MVC framework
uses a different pattern, one that is not page based and relies on a much thinner abstraction layer
than Web Forms. As a result, you don’t have rich native components such as server controls to quickly
arrange a nice user interface in which elements can retain their content across postbacks. This fact
seems to cause a loss of productivity, at least for certain types of applications, such as those heavily
based on data entry.

Is this really true, though?

For sure, in ASP.NET MVC you write code that is conceptually and physically closer to the metal;
therefore, it takes more lines, but it gives you a lot more control over the generated HTML and actual
behavior of the run-time environment. You don’t have to write everything from scratch, however. You
have HTML helpers to automatically create (quite) simple but functional viewers and editors for any
primitive or complex type. You have data annotations to declaratively set your expectations about
the content of a field and its display behavior. You have model binders to serialize posted values into
more comfortable objects for server-side processing. And, you have tools for both server and client
validation.

104 PArT I ASP.NET MVC fundamentals

This chapter aims to show you how to grab input data through forms in ASP.NET MVC and then
validate and process it against a persistence layer.

Note Growing attention is being garnered these days by Ajax-based solutions for input
forms. For example, it’s becoming common to display a modal dialog box to the user in
which to enter input data. Displaying a modal dialog box is as easy as creating a separate
<div> and have client frameworks such as Twitter Bootstrap or jQuery UI to manage the
presentation. As far as posting data is concerned, however, using a plain FORM post and
full or partial page refresh under the control of the ASP.NET MVC API being discussed in
this chapter is still a common and widely used option. The other option that would make
the content of this chapter less interesting is managing the HTTP POST yourself by using
plain JavaScript code.

General patterns of data entry

Input forms revolve around two main patterns: Edit-and-Post and Select-Edit-Post. The former dis-
plays an HTML form and expects users to fill the fields and post data when they’re done. The latter
pattern just extends the former by adding an extra preliminary step. The users select an item of data,
place it into edit mode, play with the content, and then save changes back to the storage layer.

I’m not explicitly covering the Edit-and-Post pattern because it is merely a simpler version of the
Select-Edit-Post pattern. The sections “Editing data” and “Saving data” later in the chapter, which pro-
vide a description of the Select-Edit-Post pattern, also provide one of the Edit-and-Post pattern. Let’s
proceed with an example.

A classic Select-Edit-Post scenario
I’ll illustrate the Select-Edit-Post pattern through an example that starts by letting users pick a cus-
tomer from a drop-down list. Next, the record that contains information about the selected customer
is rendered into an edit form, where you can enter updates and eventually validate and save them.

In this example, the domain model consists of an Entity Framework model inferred from the ca-
nonical Northwind database. Figure 4-1 shows the initial user interface of the sample application.

 CHAPTER 4 Input forms 105

FIGURE 4-1 The initial screen of the sample application, where users begin by making a selection.

Note Examples discussed in this chapter don’t actually use any database linked or embed-
ded in some way in the project. All examples end up placing simple query calls to a web
service, available at my personal site http://www.expoware.org. You can find the details of
this in the file northwind.cs in the BookSamples.Components library project.

Presenting data and handling the selection
The listing that follows shows the controller action that is used to populate the drop-down list to of-
fer the initial screen to the user. Observe that I’m designing controllers according to the Coordinator
stereotype defined in the Responsibility Driven Design (RDD) methodology. (I talk more about RDD
and MVC controllers as coordinators in Chapter 7, “Design considerations for ASP.NET MVC control-
lers.” For now, suffice it to say that a coordinator is a component that reacts to events and delegates
any further action to an external component.) A coordinator is limited to passing input and captur-
ing output. Having controllers implemented as coordinators in ASP.NET MVC is beneficial because it
decouples the layer that receives requests from the layer (or layers) that processes requests. For the
sake of simplicity, at this time the code doesn’t make use of dependency injection. The next obvi-
ous step would be injecting the instance of the coordinator class—HomeService—via Inversion of
Control (IoC).

public class HomeController : Controller
{
 private readonly HomeService _service = new HomeService();
 public ActionResult Index()
 {
 var model = _service.GetModelForIndex();
 return View(model);
 }
}

http://www.expoware.org

106 PArT I ASP.NET MVC fundamentals

The method Index obtains a view-model object that contains the list of customers to display.

public class IndexViewModel : ViewModelBase
{
 public IndexViewModel()
 {
 Customers = new List<SimpleCustomer>();
 }
 public IEnumerable<SimpleCustomer> Customers { get; set; }
}

Here’s the implementation of the GetModelForIndex method in the coordinator component:

public class HomeService
{
 public IndexViewModel GetModelForIndex()
 {
 var model = new IndexViewModel {Customers = NorthwindCustomers.GetAll()};
 return model;
 }
}

The view that produces the interface in Figure 4-1 is shown here:

@model Sep.ViewModels.Home.IndexViewModel

<div class="floating">
 <p class="legend">Customers</p>
 @using(Html.BeginForm("edit", "home"))
 {
 @Html.DropDownList("customerList", new SelectList(Model.Customers, "Id", "Company"))
 <input type="submit" name="btnEdit" value="Edit" />
 }
</div>

After the user has selected a customer from the list (by clicking a submit button), he submits a
POST request for an Edit action on the HomeController class.

Editing data
The request for the Edit action moves the application into edit mode, and an editor for the selected
customer is displayed. As you can see in Figure 4-2, you should also expect the successive view to
retain the current drop-down list status. The following code shows a possible implementation for the
Edit method on the Home controller:

public ActionResult Edit([Bind(Prefix = "customerList")] String customerId)
{
 var model = _service.GetModelForEdit(customerId);
 return View(model);
}

 CHAPTER 4 Input forms 107

Chapter 3, “The model-binding architecture,” points out that the Bind attribute instructs the de-
fault model binder to assign the value of the posted field named customerList to the specified param-
eter. In this case, the GetModelForEdit method retrieves information about the specified customer and
passes that to the view engine so that an input form can be arranged and displayed to the user:

public EditViewModel GetModelForEdit(String id)
{
 var model = new EditViewModel
 {
 Title = "Edit customer",
 Customer = NorthwindCustomers.Get(id),
 Customers = NorthwindCustomers.GetAll()
 };
 return model;
}

Why does the GetModelForEdit method also need to retrieve the list of customers?

This is a direct consequence of not having the view state around. Every aspect of the view must be
recreated and repopulated each time. This is a key part of the HTTP contract and relates to the inher-
ent HTTP stateless-ness. In ASP.NET Web Forms, most of the refilling work is done automatically by
the abstraction layer of the framework through information stored in the view state. In ASP.NET MVC,
it’s just up to you.

In the preceding code snippet, I just place another call to the service layer; a more serious appli-
cation would probably cache data and reload from there. The caching layer, however, could also be
incorporated in the repository itself.

Here’s the code for the view:

@model Sep.ViewModels.Home.EditViewModel

<div class="container">
 <div class="floating">
 <p class="legend">Customers</p>
 @using(Html.BeginForm("edit", "home"))
 {
 @Html.DropDownList("customerList",
 new SelectList(Model.Customers, "Id", "Company", Model.Customer.Id))
 <input type="submit" name="btnEdit" value="Edit" />
 }
 </div>
 <div class="floating-spacer">
 @Html.Partial("uc_customerEditor", Model.Customer)
 </div>
</div>

108 PArT I ASP.NET MVC fundamentals

The structure of the view is nearly the same as in Figure 4-1, the only difference being the table-
based editor on the right of the view. The editor (uc_customerEditor.cshtml) is created through the
Partial HTML helper. If you look into the list of native HTML helpers, you find two apparently similar
helpers: Partial and RenderPartial. What’s the difference? As is hinted in Chapter 2, “ASP.NET MVC
views,” Partial just returns a string, whereas RenderPartial performs the action of rendering a string.
If the goal is only that of creating a view, they are nearly identical but still require a slightly different
programming syntax. To call RenderPartial, you need the following in Razor:

@{ Html.RenderPartial(view) }

Figure 4-2 shows the editor in action.

FIGURE 4-2 Users can make changes to the selected customer.

Saving data
After the input form is displayed, the user enters any data she reckons to be valid and then presses
the button that posts the content of the form to the server. Here’s the markup for a typical form that
posts changes. (The markup is the content of the uc_customerEditor.cshtml file.)

@model BookSamples.Components.Data.SimpleCustomer

<div class="container">
@using(Html.BeginForm("update", "customer", new { customerId = Model.Id }))
{
 <table id="__tableCustomerEditAscx" rules="rows" frame="hsides">
 <tr>
 <td width="100px">ID</td>
 <td width="350px">@Model.Id</td>
 </tr>

 CHAPTER 4 Input forms 109

 <tr>
 <td>Company</td>
 <td>@Model.Company</td>
 </tr>
 <tr>
 <td>Contact</td>
 <td>@Html.DisplayTextFor(c => c.Contact)</td>
 </tr>
 ...
 <tr>
 <td>Country</td>
 <td>@Html.TextBoxFor(c => c.Country,
 new Dictionary<String, Object>() { { "class", "textBox" } })

 @Html.ValidationMessage(“country”)
 </td>
 </tr>
 </table>

 <input id=”btnSave” type=”submit” value=”Save” />
}
</div>

Typically, you group any editable field (for example, a text box) with a ValidationMessage helper.
The validation helper displays any message that originates as a result of invalid values being entered
in the field. Furthermore, you ensure that the resulting URL includes a key value that uniquely identi-
fies the record to be updated. Here’s an example:

Html.BeginForm(“update”, “home”, new { customerId = Model.CustomerID })

Internally, BeginForm matches the data it has received to the parameters of registered URL routes
in an attempt to create the proper URL to post the form. The preceding code generates the following
URL:

http://yourserver/customer/update?customerId=alfki

Thanks to the default model binder, the method Update receives the fields of the input form as
members of the SimpleCustomer class:

public ActionResult Update(SimpleCustomer customer)
{
 var modelState = ViewData.ModelState
 var model = _service.TryUpdateCustomer(modelState, customer);
 return View(“edit”, model);
}

The method needs to do a couple of things: update the data layer, and display the edit view so that
the user can continue making changes. Except perhaps for some unrealistically simple scenarios, the
update operation requires validation. If validation of the data being stored is unsuccessful, detected
errors must be reported to the end user through the user interface.

110 PArT I ASP.NET MVC fundamentals

The ASP.NET MVC infrastructure offers built-in support for displaying error messages that result
from validation. The ModelState dictionary—a part of the Controller class—is where methods add
notifications of an error. Errors in the ModelState dictionary are then displayed through the Validation
Message helper, as illustrated here:

public EditCustomerViewModel TryUpdateCustomer(ModelStateDictionary modelState, Customer
customer)
{
 if (Validate(modelState, customer))
 Update(customer);

 return EditCustomer(customer.CustomerID);
}

private static Boolean Validate(ModelStateDictionary modelState, Customer customer)
{
 var result = true;

 // Any sort of specific validation you need ...
 if (!CountryIsValid(customer.Country)))
 {
 // For each detected error, add a message and set a new display value
 modelState.AddModelError(“Country”, “Invalid country.”);
 result = false;
 }

 return result;
}

private static void Update(Customer customer)
{
 NorthwindCustomers.Update(customer);
}

As the name suggests, the ModelState dictionary is the key/value repository for any messages that
relate to the state of the model behind the view. The value is the error message; the key is the unique
name used to identify the entry (such as the string “Country” in the preceding example). The key of a
model state entry will match the string parameter of the Html.ValidationMessage helper. Figure 4-3
shows the system’s reaction when the user attempts to enter an invalid value.

 CHAPTER 4 Input forms 111

FIGURE 4-3 Handling invalid input.

During the validation process, every time you detect an error in the posted data, you add a new
entry to the ModelState dictionary, as demonstrated here:

modelState.AddModelError(“Country”, “Invalid country.”);

It is your responsibility to provide localized error messages.

Observe that the model binder always sets parameters to null if a corresponding match can-
not be found through the various value providers (for example, the form, route parameters, or the
query string). In particular, this means that string parameters or string members can be set to null.
You should always check against nullness before you attempt to consume a value that came through
model binding. The following code shows a possible way to deal with this condition when strings are
involved:

// In the examples for this chapter, validation is really coding in this way. In the end,
// validation is a plain logical expression suggested by business. While this condition
// is not much realistic, it still makes perfectly sense in a demo. Anyway, note that in light
// of this code any "valid" country name you enter is denied except "USA".
if (String.IsNullOrEmpty(customer.Country) || !customer.Country.Equals("USA"))
{
 ...
}

With respect to the earlier code, you would place the test against nullness in the CountryIsValid
method.

112 PArT I ASP.NET MVC fundamentals

Applying the Post-redirect-Get pattern
The previous approach to input forms is functional, but it’s not free of issues. First, the URL in the
address bar might not reflect the data being displayed by the page. Second, repeating the last ac-
tion (Refresh or an F5 keystroke) might not simply prompt the user with the annoying confirmation
message shown in Figure 4-4. As the user goes ahead, she can easily get a run-time exception if the
repeated operation is not implemented as idempotent (that is, if it doesn’t always produce the same
result regardless of how many consecutive times it is called).

FIGURE 4-4 The confirmation message that browsers display when reposting a form.

However, these aspects of ASP.NET applications are not specific to ASP.NET MVC. They exist in ASP.
NET Web Forms, too, but this is not a good reason to avoid using a better implementation.

The lack of synchronization between the URL in the browser’s address bar and the content
displayed might not be a problem in most cases. Your users might not even notice that. In fact, the
confirmation dialog box that prompts the user when she refreshes the current page is an old (and not
really pleasant) acquaintance of ASP.NET developers and the users of their applications. Let’s see how
the Post-Redirect-Get (PRG) pattern can help fix both aspects.

Keeping the URL and content synchronized
In the previous example, the URL shown in the address bar after the user has selected, for instance,
user ALFKI is the following:

// Action EDIT on CUSTOMER controller
http://yourserver/customer/edit

If the user repeats the last action (for example, by pressing F5), he gets the dialog box shown in
Figure 4-4 and then the view updates as expected. Wouldn’t it be preferable for the URL to reflect the
selected customer and have the page be refreshed without side effects?

 CHAPTER 4 Input forms 113

The side effect represented by the dialog box in Figure 4-4 has a well-known origin. When F5 is
pressed, the browser just blindly reiterates the last HTTP request. And, the selection of a customer
from a drop-down list (shown in Figure 4-1) is an HTTP POST request for the action Edit on the
Customer controller.

The PRG pattern recommends that each POST request, after having been processed, terminates
with a redirect to a resource accessed via GET. If you do so, the URL stays nicely synchronized with the
customer displayed, and your users forget the annoying dialog box that you saw in Figure 4-4.

Splitting POST and GET actions
The first step on the way to applying PRG to ASP.NET MVC applications is neatly separating POST ac-
tions from GET actions. Here’s how to rewrite the Edit action:

[HttpPost]
[ActionName("edit")]
public ActionResult EditViaPost([Bind(Prefix = "customerList")] String customerId)
{
 // POST, now REDIRECT via GET to Edit
 return RedirectToAction("edit", new {id = customerId});
}

[HttpGet]
[ActionName("edit")]
public ActionResult EditViaGet(String id)
{
 var model = _service.GetModelForEdit(id);
 return View("edit", model);
}

Every time the user posts the Edit method to select a given customer, all that happens is a redirect
(HTTP 302) to the same action via GET. The GET method for the action Edit receives the ID of the
customer to edit and does its job as usual.

The beautiful effect is that you can change the selection in either of two ways: by typing the URL
in the address bar (as a command) or just by clicking the drop-down list. Moreover, when the user
interface is updated, the last action tracked by the browser is a GET—and you can repeat the GET as
many times as you like without incurring any boring warnings or annoying exceptions.

Updating only via POST
Take a look back at Figure 4-3, which represents the next page after an update. In particular, the fig-
ure shows a failed update, but that is not relevant here. What’s relevant instead is the URL.

http://yourserver/customer/update?customerId=ALFKI

This is the URL that will be repeated by pressing F5. I can hardly believe that any regular user will
ever attempt to manually edit this URL and try to push updates to another customer. But, as unlikely
as that is, it’s definitely a possibility.

114 PArT I ASP.NET MVC fundamentals

The URL of an update operation should never be visible to users. The user performs the update,
but the operation remains hidden between two displays of the same page. This is exactly what you
get with the PRG pattern. Here’s how to rewrite the Update action:

[HttpPost]
public ActionResult Update(SimpleCustomer customer)
{
 var modelState = ViewData.ModelState;
 _service.TryUpdateCustomer(modelState, TempData, customer);
 return RedirectToAction("edit", new { id = customer.Id });
}

As you can see, you need only the HttpPost leg. A user orders the update from a page created via
a GET that displays the customer being edited. The update takes place, and the next view is obtained
by redirecting again to the Edit action for the same customer. It’s simple, clean, and effective.

Saving temporary data across redirects
There’s one final issue to take into account. The PRG pattern makes the overall code look cleaner
but requires two requests to update the view. This might or might not be a problem with regard to
performance—I don’t think it is. Anyway, this is primarily a functional problem: if the update fails, how
do you pass feedback to the view? In fact, the view is being rendered in the GET action subsequent to
the redirect; it’s quite another blank request.

Overall, the best option you have is saving feedback messages to the Session object. ASP.NET
MVC provides a slightly better option that still uses session state, but which does so through a smart
wrapper—the TempData dictionary. Here’s how to modify the code that validates before updating:

private static Boolean Validate(ModelStateDictionary modelState,
 TempDataDictionary tempData,
 SimpleCustomer customer)
{
 var result = true;

 if (String.IsNullOrEmpty(customer.Country) || !customer.Country.Equals("USA"))
 {
 modelState.AddModelError("Country", "Invalid country.");

 // Save model-state to TempData
 tempData["ModelState"] = modelState;
 result = false;
 }

 return result;
}

www.SoftGozar.com

 CHAPTER 4 Input forms 115

You first add feedback messages to the ModelState dictionary as usual. Then, you save a reference
to the ModelState in the TempData dictionary. The TempData dictionary stores any data you provide
in the session state for as long as two requests. After the second request past the storage has been
processed, the container clears the entry.

You do the same for any other message or data that you need to pass to the view object. For
example, Figure 4-5 depicts the message that is added by the following code if the update operation
completes successfully:

private Boolean Update(TempDataDictionary tempData, SimpleCustomer customer)
{
 // Perform physical update
 var result = _repository.Update(customer);

 // Add a message for the user
 var msg = result
 ? "Successfully updated."
 : "Update failed. Check your input data!";
 tempData["OutputMessage"] = msg;
 return result;
}

FIGURE 4-5 A post-update message.

You still might want to give some clear feedback to users about what has happened before redis-
playing the same edit form for them to keep on working. If your update operation takes the user to a
completely different page, you might not need the previous trick.

116 PArT I ASP.NET MVC fundamentals

Saving data to the TempData dictionary is only half the effort. You also need to add code that re-
trieves the dictionary from the session state and merges that with the current model state. This logic
belongs to the code that actually renders the view.

[HttpGet]
[ActionName("edit")]
public ActionResult EditViaGet(String id)
{
 // Merge current ModelState with any being recovered from TempData
 LoadStateFromTempData();

 ...
}
private void LoadStateFromTempData()
{
 var modelState = TempData["ModelState"] as ModelStateDictionary;
 if (modelState != null)
 ModelState.Merge(modelState);
}

With these few changes, you can arrange input forms that are clean to write and read and that
work effectively. The only wrinkle in an input form built in accordance with the PRG pattern is that
you need a second request the redirect for each operation. Furthermore, you still need to pack the
view model with any data required to render the view, including data calculated by the ongoing op-
eration and any other data around the page, such as menus, breadcrumbs, and lists.

To go beyond this level, however, you need to embrace the Ajax approach.

Beyond classic browser-led content form submission
Classic form submission for the most part takes place over a full page refresh and in some
cases over two HTTP requests, as in the PRG pattern. Is there a way to implement input forms
without a full page refresh?

There are a few ways, but all of them have quirks and therefore are subject to personal pref-
erences. In general, I use two possible approaches for building my own forms: plain-old form
posts over PRG, and modal input forms via Ajax. ASP.NET MVC does have some native support
for Ajax-driven posts through the Ajax.BeginForm HTML helper. In addition, you can manually
build modal input forms by using technologies such as Twitter Bootstrap for the user interface
(and modal pop-up infrastructure), jQuery Validate for client-side checks, and XmlHttpRequest
(XHR) for posting.

You can find a good startup example of a modal input forms in the context of an ASP.NET
MVC application in this post from my blog at http://software2cents.wordpress.com/2013/06/07/
modal-input-forms-with-bootstrap/. The post illustrates the use of Twitter Bootstrap—the CSS
library you find integrated in ASP.NET MVC 5.

http://software2cents.wordpress.com/2013/06/07/modal-input-forms-with-bootstrap/
http://software2cents.wordpress.com/2013/06/07/modal-input-forms-with-bootstrap/

 CHAPTER 4 Input forms 117

Automating the writing of input forms

Input forms play a central part in the organization of views. Often input forms contain images, require
the specific placement of fields, and are enriched with client-side goodies. In all of these cases, you
probably need to write the template of the input form from scratch.

Generally speaking, however, there are a number of other situations in which you can automate
the building of the input form. This is often the case, for example, when you write the back office of
a website. A back-office system typically consists of a bunch of forms for editing records; however, as
a developer, you don’t care much about the graphics. You focus on effectiveness rather than style.
In a nutshell, a back-office system is the perfect case for which you don’t mind using an automatic
generator of form input templates.

Predefined display and editor templates
Chapter 2 presents templated HTML helpers such as DisplayXxx and EditorXxx. These helpers can take
an object (even the entire model passed to the view) and build a read-only or editable form. You use
the following expression to specify the object to display or edit:

Html.DisplayFor(model => model.Customer)
Html.EditorFor(model => model.Customer)

The model argument is always the model being passed to the view. You can use your own lambda
expression to select a subset of the entire model. To select the entire model (say, for editing), you can
choose either of the following functionally equivalent expressions:

Html.EditorFor(model => model)
Html.EditorForModel()

Attributes placed on public members of the model class provide guidance on how to display indi-
vidual values. Let’s find out how it works in practice.

Annotating data members for display
In ASP.NET MVC, templated helpers use metadata associated with class members to decide how to
display or edit your data. Metadata is read through a metadata provider object; the default metadata
provider grabs information from data annotations attributes. The most commonly used attributes are
listed in Table 4-1.

118 PArT I ASP.NET MVC fundamentals

TABLE 4-1 Some annotations that affect the rendering of data

Attribute Description

DataType Indicates the presumed data type you’ll be editing through the member. It accepts values
from the DataType enumeration. Supported data types include Decimal, Date, DateTime,
EmailAddress, Password, Url, PhoneNumber, and MultilineText.

DisplayFormat Use this to indicate a format through which to display (and/or edit) the value. For example,
you might use this annotation to indicate an alternate representation for null or empty
values. In this case, you use the NullDisplayText property.

DisplayName Indicates the text to use for the label that presents the value.

HiddenInput Indicates whether a hidden input field should be displayed instead of a visible one.

UIHint Indicates the name of the custom HTML template to use when displaying or editing the
value.

Annotations are spread across a variety of namespaces, including System.ComponentModel and
System.ComponentModel.DataAnnotations. If you explore these (and other) namespaces, you can find
even more attributes, but some of them don’t seem to work with ASP.NET MVC, at least not in the
way that you would expect.

Data annotations are attributes, and attributes don’t typically contain code. They just represent
meta-information for other modules to consume. By using data annotations, you decorate your
model objects with metadata. This isn’t really expected to produce any visible effect: It all depends on
how other components consume metadata.

In ASP.NET MVC, default display and editor helpers simply consume only a few of the possible
annotations. However, metadata information is there, and if you override default templates, you have
available a lot more meta-information to consume at your leisure. The ReadOnly attribute is a good
example of an annotation that default templates ignore but that ASP.NET MVC regularly understands
and exposes to helpers.

Note Data annotations include descriptive attributes that instruct listeners how to display
or edit data as well as validation attributes that instruct listeners how to validate the con-
tent of a model class. I’ll discuss validation attributes later.

The following code shows a view-model class decorated with annotations:

public class CustomerViewModel : ViewModelBase
{
 [DisplayName("Company ID")]
 [ReadOnly(true)] // This will be blissfully ignored by default templates!
 public Int32 Id { get; set; }

 [DisplayName("Is a Company (or individual)?")]
 public Boolean IsCompany { get; set; }

 [DisplayFormat(NullDisplayText = "(empty)")]
 public String Name { get; set; }

 CHAPTER 4 Input forms 119

 [DataType(DataType.MultilineText)]
 public String Notes { get; set; }

 [DataType(DataType.Url)]
 public String Website { get; set; }

 [DisplayName("Does this customer pay regularly?")]
 public Boolean? IsReliable { get; set; }
}

Note that you don’t need data annotations if you are not using DisplayForModel or EditorForModel
to generate input forms automatically. Like any other metadata, annotations are transparent to any
code that is not specifically designed to consume them.

Figure 4-6 shows the input form that EditorForModel creates for the previous model object.

FIGURE 4-6 An autogenerated input form.

Meta-information instructs the Editor/Display helpers how to edit and display values. This results in
ad hoc HTML templates being used, such as a TextArea element for multiline types and check boxes
for Boolean values. For nullable Boolean values, helpers also automatically display a tri-state drop-
down list. Not all data types show up in edit mode or display mode. For example, the EmailAddress
and Url data types are reflected only in display mode.

120 PArT I ASP.NET MVC fundamentals

To be precise, the form displayed in the figure also passed through a slight set of graphical chang-
es due to the application of a style sheet. The Editor/Display helpers automatically read style informa-
tion from a few cascading style sheet (CSS) classes with a conventional name, as shown here:

.display-label, .editor-label {
 margin: 1em 0 0 0;
 font-weight: bold;
}
.display-field, .editor-field {
 margin: 0.5em 0 0 0;
}
.text-box {
 width: 30em;
 background: yellow;
}
.text-box.multi-line {
 height: 6.5em;
}
.tri-state {
 width: 6em;
}

In particular, classes named display-label and editor-label refer to labels around input values. You
can insert these styles either inline in views or inherit them from a globally shared CSS file.

Default templates for data types
Display/Editor helpers work by mapping the data type of each member to render to a predefined
display or edit template. Next, for each of the template names, the system asks the view engines to
return a proper partial view. Predefined display templates exist for the following data types: Boolean,
Decimal, EmailAddress, HiddenInput, Html, Object, String, Text, and Url. Data types are resolved
through the DataType annotation or the actual type of the value. If no match can be found, the de-
fault template is used, which consists of plain text for display and a text box for editing. Let’s see what
a template looks like. The following listing shows a sample implementation of the Razor template for
displaying the Url data type:

@inherits System.Web.Mvc.WebViewPage<String>

 @ViewData.TemplateInfo.FormattedModelValue

The Url data type is rendered through a hyperlink in which the Model object references the data
being displayed—most likely, a string representing a website. As you can see, the real value is used to
set the URL but not the text of the hyperlink. The FormattedModelValue property on the TemplateInfo
object is either the original raw model value or a properly formatted string, if a format string is speci-
fied through annotations.

 CHAPTER 4 Input forms 121

Note The TemplateInfo property is defined on the ViewData object, but it is always null,
except when you’re inside of a template.

The Url template is a fairly simple one. The template for Boolean values is a more interesting ex-
ample to consider:

@model bool?

@if (Model == null)
{
 <text>Not Set</text>
}
else
{
 if (Model.Value)
 {
 <text>True</text>
 }
 else
 {
 <text>False</text>
 }
}

The example contains a mix of logic and markup as the template applies to Boolean and
Nullable<Boolean> values.

Editor templates are not that different from display templates, at least in terms of structure;
however, the code might be a bit more complex. ASP.NET MVC provides a few predefined editors for
Boolean, Decimal, HiddenInput, Object, String, Password, and MultilineText. Here’s a sample editor for a
password:

@Html.Password("",
 ViewData.TemplateInfo.FormattedModelValue,
 new { @class = "text-box single-line password" })

As you can see, conventions regarding styles descend from the implementation of default tem-
plates. By changing the default template for a given data type, you can choose to style it according to
different rules.

Object.cshtml is the template used to recursively loop through the public members of a type. It
builds an entire form by using type-specific editors. The default implementation of Object.cshtml
vertically stacks labels and editors. Although it’s valuable for quick prototyping, it is not usually
something you want to seriously consider for a realistic application. Let’s move ahead and see how to
customize editor templates.

122 PArT I ASP.NET MVC fundamentals

Custom templates for data types
Display/editor helpers are customizable to a great extent. Any custom template consists of a custom
view located in the Views\[controller]\DisplayTemplates folder for display helpers and in the Views\
[controller]\EditorTemplates folder for editor helpers. If you want templates shared by all controllers,
you place them in Views\Shared. If the name of the view matches the data type, the view becomes
the new default template for that data type. If it doesn’t, the view won’t be used until it’s explicitly
called through the UIHint annotation, as shown here:

public CustomerViewModel
{
 ...
 [UIHint("CustomerViewModel_Url")]
 public String Url {get; set;}
}

The Url property is now displayed or edited by using the CustomerViewModel_Url template. Prop-
erties whose data type is Url will continue to be served by the default template, instead.

Let’s see how to create a custom display and editor template for a type that doesn’t even have
predefined templates—the DateTime type. Here’s the content for a Razor display template:

@model DateTime
@Model.ToString("ddd, dd MMM yyyy")

In this example, you just display the date in a fixed format (but one controlled by you) that includes
day of the week, name of the month, and year. Here’s a sample editor template for a date:

@model DateTime
<div>
<table>
<tr>
 <td>@Html.Label("Day")</td>
 <td>@Html.TextBox("Day", Model.Day)</td>
</tr>
<tr>
 <td>@Html.Label("Month")</td>
 <td>@Html.TextBox("Month", Model.Month)</td>
</tr>
<tr>
 <td>@Html.Label("Year")%></td>
 <td>@Html.TextBox("Year", Model.Year)</td>
</tr>
</table>
</div>

You can style elements in the template by using any class names you like; as long as those classes
are defined in some style sheets in the application, they will be automatically used. Observe that
IDs you set in your templates are always automatically prefixed in the emitted markup by the name of
the member. For example, if the preceding date template is applied to a property named BirthDate,
the actual IDs emitted will be BirthDate_Day, BirthDate_Month, and BirthDate_Year.

www.SoftGozar.com

 CHAPTER 4 Input forms 123

Note It’s probably not a very realistic scenario, but if you happen to have two editors for
the same model in the same page, well, in this case you’re going to have ID conflicts that
the model binder might not be able to resolve without a bit of effort on your own. If you
are in this position, you might want to consider the tricks we discussed in Chapter 3 for
binding a collection of custom types to a controller method.

How do you name these templates? If the UIHint attribute is specified, its value determines the
template name. If it’s not specified, the DataType attribute takes precedence over the actual type
name of the member. Given the following class definition, the expected template name is date. If
none of the view engines can provide such a view, the default template is used, instead. Figure 4-7
shows the table-based date editor defined earlier.

FIGURE 4-7 A custom template for editing dates.

read-only members
If you decorate a member of the view model with the ReadOnly attribute, you probably expect it not
to be editable in the editor. You probably expect that the display template is used within the editor
for the model. You’ll be surprised to see that this is not the case. The ReadOnly attribute is properly
recognized by the metadata provider, and related information is stored in the metadata available for
the model. For some reason, though, this is not transformed into a template hint.

124 PArT I ASP.NET MVC fundamentals

As weird as it might sound, you have data annotations to indicate a given member is read-only,
but this is not reflected by default templates. There are a few workarounds to this problem. First and
foremost, you can use the UIHint annotation to specify a read-only template like the one shown here,
named readonly.cshtml:

@Model

You need to place the readonly.cshtml template in the editor folder.

Although it’s effective, this solution bypasses the use of the ReadOnly attribute. Not that this is a
big problem, but you might wonder if there’s a way to solve the issue by forcing the metadata pro-
vider to process the ReadOnly attribute differently. You need a different metadata provider, such as
the one shown here:

public class ExtendedAnnotationsMetadataProvider : DataAnnotationsModelMetadataProvider
{
 protected override ModelMetadata CreateMetadata(IEnumerable<Attribute> attributes,
 Type containerType,
 Func<Object> modelAccessor,
 Type modelType,
 String propertyName)
 {
 var metadata = base.CreateMetadata(
 attributes,
 containerType,
 modelAccessor,
 modelType,
 propertyName);

 if (metadata.IsReadOnly)
 metadata.TemplateHint = "readonly"; // Template name is arbitrary
 return metadata;
 }
}

You create a new class that inherits the DataAnnotationsModelMetadataProvider class and over-
rides the CreateMetadata method. The override is simple—you call the base method and then check
what the IsReadOnly property returns. If the member is declared read-only, you can programmatically
set the TemplateHint property to your custom read-only template. (It is then your responsibility to
ensure that such a template is available in the Views folder.)

You must register a custom metadata provider with the system. You can do that in either of two
ways. You can just store an instance of the new provider in the Current property of the Model
MetadataProviders class, as shown next (this needs be done in Application_Start in global.asax):

ModelMetadataProviders.Current = new ExtendedAnnotationsMetadataProvider();

In ASP.NET MVC, you have another equally effective option: using dependency resolvers. I discuss
the topic of dependency resolvers in Chapter 7. For now, it suffices to say that all internal compo-
nents of ASP.NET MVC that were pluggable in earlier versions, and a bunch of new ones, are in ASP.
NET MVC and are discovered by the system by using a centralized service (the dependency resolver)

CHAPTER 4 Input forms 125

that acts like a service locator. A service locator is a general-purpose component that gets a type
(for example, an interface) and returns another (for example, a concrete type that implements that
interface).

In ASP.NET MVC, the ModelMetadataProvider type is discoverable through the dependency re-
solver. So, all you have to do is register your custom provider with a made-to-measure dependency
resolver. A dependency resolver is a type that knows how to get an object of a requested type. A
simple dependency resolver tailor-made for this scenario is shown in the code that follows:

public class SampleDependencyResolver : IDependencyResolver
{
 public object GetService(Type serviceType)
 {
 try
 {
 return serviceType == typeof(ModelMetadataProvider)
 ? new ExtendedAnnotationsMetadataProvider()
 : Activator.CreateInstance(serviceType);
 }
 catch
 {
 return null;
 }
 }

 public IEnumerable<object> GetServices(Type serviceType)
 {
 return Enumerable.Empty<Object>();
 }
}

You register the resolver in global.asax like so:

DependencyResolver.SetResolver(new SampleDependencyResolver());

Be aware that ASP.NET MVC attempts to find a valid implementation of ModelMetadataProvider,
first by looking into registered resolvers and then by looking into the ModelMetadataProviders.
Current property. Double registration for the ModelMetadataProvider type is not allowed, and an
exception will be thrown if that occurs.

Note Another approach to support read-only properties in editors consists of modifying
the default template used. I’ll discuss this in a moment.

Custom templates for model data types
So far, we’ve exposed a lot of details about display and editor templates that work on primitive types
of values. The internal architecture of helpers such as EditorForModel and DisplayForModel, however,
provides for some inherent ability to reflect through the public interface of the model type and build
a hierarchical view. This behavior is hardcoded, but it’s too simple to be useful in real-world scenarios.

www.SoftGozar.com

126 PArT I ASP.NET MVC fundamentals

In this section, I’ll show you how to rewrite the display and editor template for a generic type to make
it look tabular. In other words, instead of getting a vertically stacked panel of label and value <div>s,
you get a two-column table with labels on the left and values on the right. The template to overwrite
is named object.

Tabular templates
Writing a table-based layout is a relatively simple exercise that consists of looping over the properties
of the model object. Here is the Razor code:

@inherits System.Web.Mvc.WebViewPage
@if (Model == null)
 @ViewData.ModelMetadata.NullDisplayText
else
{
 <table cellpadding="0" cellspacing="0" class="display-table">
 @foreach (var prop in ViewData
 .ModelMetadata
 .Properties
 .Where(pm => pm.ShowForDisplay && !ViewData.TemplateInfo.Visited(pm)))
 {
 <tr>
 <td>
 <div class="display-label">
 @prop.GetDisplayName()
 </div>
 </td>
 <td>
 <div class="display-field">
 @Html.Display(prop.PropertyName)
 </div>
 </td>
 </tr>
 }
 </table>
}

If the model is null, you just emit the default null text for the model class. If it’s not, you proceed
to looping all the properties and creating a table row for each property that has not been previously
visited and that is set up for display. For each property, you then recursively call the Display HTML
helper. You can style every little piece of markup at will. In this example, I’m introducing a new table-
level style called display-table. Figure 4-8 shows the results.

www.SoftGozar.com

 CHAPTER 4 Input forms 127

FIGURE 4-8 A tabular default display template.

The editor template is a bit more sophisticated because it takes care of validation errors and
required fields. The template has an extra column to indicate which fields are required (based on
the Required annotation), and each editor is topped with a label for validation messages. Here is the
source code:

@inherits System.Web.Mvc.WebViewPage
@if (Model == null)
 @ViewData.ModelMetadata.NullDisplayText
else {
 <table cellpadding="0" cellspacing="0" class="editor-table">
 @foreach (var prop in ViewData
 .ModelMetadata
 .Properties
 .Where(pm => pm.ShowForDisplay && !ViewData.TemplateInfo.Visited(pm)))
 {
 <tr>
 <td>
 <div class="editor-label">
 @prop.GetDisplayName()
 </div>
 </td>
 <td width="10px"> @(prop.IsRequired ? "*" : "") </td>
 <td>
 <div class="editor-field">
 @if(prop.IsReadOnly)
 {
 @Html.Display(prop.PropertyName)
 }

128 PArT I ASP.NET MVC fundamentals

 else
 {
 @Html.Editor(prop.PropertyName)
 @Html.ValidationMessage(prop.PropertyName, "*")
 }
 </div>
 </td>
 </tr>
 }
 </table>
}

Figure 4-9 shows the editor in action.

FIGURE 4-9 A tabular default editor template.

Dealing with nested models
One final point to cover is the expected behavior of the templates when the model type has nested
models. The code shown so far recursively digs out properties of nested models and renders them as
usual. Imagine that you have the following model:

public class CustomerViewModel
{
 ...
 public ContactInfo Contact {get; set;}
}

public class ContactInfo
{
 public String FullName {get; set;}
 public String PhoneNumber {get; set;}
 public String Email {get; set;}
}

Figure 4-10 shows the results.

www.SoftGozar.com

 CHAPTER 4 Input forms 129

FIGURE 4-10 Nested models.

As a developer, you can control this behavior to some extent. By adding an extra if branch to the
code of the template, you can limit the nesting level to what you like (1 in this example).

@if (Model == null)
 @ViewData.ModelMetadata.NullDisplayText
else
if (ViewData.TemplateInfo.TemplateDepth > 1)
{
 @ViewData.ModelMetadata.SimpleDisplayText
}
else
{ ... }

The property TemplateDepth measures the allowed nesting level. With this code enabled, if the
nesting level is higher than 1, you resort to a simplified representation of the child model. You can
control this representation by overriding ToString on the child model type.

public class ContactInfo
{
 ...
 public override string ToString()
 {
 return "[ContactInfo description here]";
 }
}

Alternatively, you can select one column and use that for rendering. You select the column by us-
ing the DisplayColumn attribute on the child model type.

[DisplayColumn("FullName")]
public class ContactInfo
{
 ...
}

130 PArT I ASP.NET MVC fundamentals

The attribute DisplayColumn takes precedence over the override of ToString.

Note As you’ve seen, the HiddenInput attribute gives you a chance to hide a given member
from view while uploading its content through a hidden field. If you just want the helpers
to ignore a given member, you can use the ScaffoldColumn attribute and pass it a value of
false.

Input validation

Programming books are full of statements such as “Input is evil,” and of course, a chapter mostly
dedicated to input forms can’t leave out a section on input validation. If you want to discuss it in
terms of what’s really a necessity, you should focus on server-side validation and think about the best
technology available that facilitates validation in the most effective way for your application and busi-
ness domain.

However, having said that, there’s really no reason for skipping a client-side validation step that
would simply prevent patently invalid data from making it to the server, consuming valuable CPU
cycles. So, you’re likely interested in both client-side and server-side validation. But, even in moder-
ately complex web applications, validation applies at least at two levels: to validate the input received
from the browser, and to validate the data the back end of your system is going to store.

These two levels might sometimes be just one, but this is not what typically happens in the real
world and outside of books and tutorials about some cool pieces of technology. Unless your domain
model is essentially aligned one-to-one with the storage and the user interface is mostly Create/
Read/Update/Delete (CRUD), you have to consider (and make plans for) two levels of validation: pre-
sentation and business.

In the rest of this chapter, I’ll review a bunch of other data annotations attributes that are well
integrated with the ASP.NET MVC plumbing.

Using data annotations
As mentioned, data annotations are a set of attributes which you can use to annotate public proper-
ties of any .NET class in a way that any interested client code can read and consume. Attributes fall
into two main categories: display and validation. We’ve just discussed the role that display attributes
play with metadata providers in ASP.NET MVC. But, before we dig out validation attributes, let’s learn
a bit more about data validation in ASP.NET MVC.

www.SoftGozar.com

 CHAPTER 4 Input forms 131

Validation provider infrastructure
Chapter 3 explains how controllers receive their input data through the model-binding subsystem.
The model binder maps request data to model classes and, in doing so, it validates input values
against validation attributes set on the model class.

Validation occurs through a provider. The default validation provider is based on data annotations.
The default validation provider is the DataAnnotationsModelValidatorProvider class. Let’s see which
attributes you can use that the default validation provider understands.

Table 4-2 lists the most commonly used data annotation attributes that express a condition to
verify on a model class.

TABLE 4-2 Data annotation attributes for validation

Attribute Description

Compare Checks whether two specified properties in the model have the same value.

CustomValidation Checks the value against the specified custom function.

EnumDataType Checks whether the value can be matched to any of the values in the specified
enumerated type.

Range Checks whether the value falls in the specified range. It defaults to numbers,
but you can configure it to consider a range of dates, too.

RegularExpression Checks whether the value matches the specified expression.

Remote Makes an Ajax call to the server and checks whether the value is acceptable.

Required Checks whether a non-null value is assigned to the property. You can configure
it to fail if an empty string is assigned.

StringLength Checks whether the string is longer than the specified value.

All of these attributes derive from the same base class: ValidationAttribute. As you’ll see in a moment,
you can also use this base class to create your own custom validation attributes.

You use these attributes to decorate members of classes being used in input forms. For the entire
mechanism to work, you need to have controller methods that receive data in complex data types, as
shown here for the Memo controller:

public ActionResult Edit()
{
 var memo = new Memo();
 return View(memo);
}

[HttpPost]
public ActionResult Edit(Memo memo)
{
 // ModelState dictionary contains error messages
 // for any invalid value detected according to the annotations
 // you might have in the Memo model class.

 return View(memo);
}

132 PArT I ASP.NET MVC fundamentals

The model-binder object edits the ModelState dictionary while binding posted values to the
Memo model class. For any invalid posted value being mapped to an instance of the Memo class, the
binder automatically creates an entry in the ModelState dictionary. Whether the posted value is valid
depends on the outcome returned by the currently registered validation provider. The default valida-
tion provider bases its response on the annotations you might have set on the Memo model class.
Finally, if the next view makes use of ValidationMessage helpers, error messages show up automatically.
This is exactly the case if you use EditorForModel to create the input form.

Decorating a model class
The following listing shows a sample class—the aforementioned MemoDocument class—that makes
extensive use of data annotations for validation purposes:

public class MemoDocument : ViewModelBase
{
 public MemoDocument()
 {
 Created = DateTime.Now;
 Category = Categories.Work;
 }

 [Required]
 [StringLength(100)]
 public String Text { get; set; }

 [Required]
 [Range(1, 5]
 public Int32 Priority { get; set; }

 [Required]
 public DateTime Created { get; set; }

 [EnumDataType(typeof(Categories))]
 [Required]
 public Categories Category { get; set; }

 [StringLength(50, MinimumLength=4)]
 [RegularExpression(@"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b")]
 public String RelatedEmail { get; set; }
}

public enum Categories
{
 Work,
 Personal,
 Social
}

Given the class, you should expect to receive error messages if the Text property is longer than
100 characters or if it is left empty. Likewise, the Priority members must be an integer between 1 and
5 (extremes included) and the Created date cannot be omitted. The RelatedEmail member can be
empty; however, if given any text, the text must be between 4 and 50 characters long and matching

www.SoftGozar.com

 CHAPTER 4 Input forms 133

the regular expression. Finally, the Category member must contain a string that evaluates to one of
the constants in the Categories enumerated type. Figure 4-11 shows the validation of a sample memo.

FIGURE 4-11 Validation messages.

Dealing with enumerated types
You might wonder why the Category field is being edited as a plain string. It would be smarter if a
drop-down list could be provided. That won’t just happen for free. The EnumDataType is recognized
by the validation provider, which ensures that the value belongs to the enumeration; it is ignored
by editors. If you want a drop-down list with enumerated values, you need to write a String.cshtml
custom template and place it in an EditorTemplates folder. Because enumerated types are paired to
strings, you overwrite String.cshtml (or .aspx) to change the way in which an enumeration is edited.
In the code, you determine the markup based on the actual type of the Model property. Here’s the
simple code you need:

@model Object
@if (Model is Enum)
{
 <div class="editor-field">
 @Html.DropDownList("", new SelectList(Enum.GetValues(Model.GetType())))
 @Html.ValidationMessage("")
 </div>
}
else
{
 @Html.TextBox("", ViewData.TemplateInfo.FormattedModelValue,
 new { @class = "text-box single-line" })
}

134 PArT I ASP.NET MVC fundamentals

Figure 4-12 shows the same form when the just-created editor template is used.

FIGURE 4-12 Mixing validation and display data annotations.

Controlling error messages
In Figure 4-12, you see some messages that attempt to explain what went wrong. You have total con-
trol over those messages. Each attribute has an ErrorMessage property for you to set the text. Note,
though, that attribute properties can accept only constant strings.

[Required(ErrorMessage = "A description is required.")]
public String Text { get; set; }

You might not like the idea of having plain strings interspersed with class definition. A way to
decouple the class definition from error messages is by using resources. Using resources makes it pos-
sible for you to make offline changes to the text without touching classes. It also facilitates localiza-
tion, but it still doesn’t give you programmatic control over the text being displayed. For program-
matic control, the only option you have is editing the ModelState dictionary in the controller method,
as shown here:

[HttpPost]
public ActionResult Edit(MemoDocument memo)
{
 if (!ModelState.IsValid)
 {
 var newModelState = new ModelStateDictionary();

 CHAPTER 4 Input forms 135

 // Create a new model-state dictionary with values you want to overwrite
 newModelState.AddModelError("Text", "...");
 newModelState.AddModelError("Priority", "...");
 ...

 // Merge your changes with the existing ModelState
 ModelState.Merge(newModelState);
 }
 return View(memo);
}

Basically, you create a new model-state dictionary and then merge it with one calculated dur-
ing the model-binding stage. When you merge the dictionaries, the values in the new dictionary are
copied into the ModelState dictionary, overwriting any existing value.

If having constant messages works for you and all you need to do is avoid magic strings in soft-
ware, you can use a resource file which, incidentally, also sets the stage for easy localization. Each
validation attribute accepts an error message expressed as a resource index:

[Required(ErrorMessageResourceName="MustSetPriority",
 ErrorMessageResourceType = typeof(Strings))]
[Range(1, 5, ErrorMessageResourceName="InvalidPriority",
 ErrorMessageResourceType=typeof(Strings))]
public Int32 Priority { get; set; }

You indicate the resource through a pair of arguments: the resource container data type, and the
name of the resource. The former is expressed through the ErrorMessageResourceType property; the
latter is expressed by ErrorMessageResourceName. When you add a resource file to an ASP.NET MVC
project, the Microsoft Visual Studio designer creates a container type that exposes strings as public
members. This is the type to assign to the ErrorMessageResourceType property. By default, the name
of this auto-generated type matches the name of the resource (.resx) file.

Advanced data annotations
The beauty of data annotations is that after you have defined attributes for a model type, you’re
pretty much done. Most of what follows happens automatically, thanks to the deep understanding
of data annotations that the ASP.NET MVC infrastructure has. However, in this imperfect world, none
of the things you really need are completely free. So it is for data annotations, which cover a lot of
relatively simple situations very well, but leave some extra work for you to do on your own in many
realistic applications. Let’s explore a few more advanced features that you can build on top of data
annotations.

Cross-property validation
The data annotations we’ve considered so far are attributes you use to validate the content of a single
field. This is definitely useful, but it doesn’t help that much in a real-world scenario in which you likely
need to validate the content of a property in light of the value stored in another. Cross-property vali-
dation requires a bit of context-specific code. The problem is this: how and where do you write it?

136 PArT I ASP.NET MVC fundamentals

The solution that springs to mind is probably not too far from the following outline:

public ActionResult Edit(MemoDocument memo)
{
 if (ModelState.IsValid)
 {
 // If here, then properties have been individually validated.
 // Proceed with cross-property validation, and merge model-state dictionary
 // to reflect feedback to the UI.
 ...
 }
}

If the model state you receive from the binder is valid, all of the decorated properties passed the
validation stage. So, taken individually, each property is OK. You proceed with context-specific, cross-
property validation, add errors to a new state dictionary, and merge it to the existing ModelState.

You might be pleased to know that the CustomValidation attribute serves exactly this purpose and,
overall, you can consider it a shortcut for the approach I just suggested. Consider the following code:

[Required]
[EnumDataType(typeof(Categories))]
[CustomValidation(typeof(MemoDocument), "ValidateCategoryAndPriority")]
public Categories Category { get; set; }

The CustomValidation attribute takes two parameters: a type and a method name. The type can
also be the same model you’re decorating. The method must be public and static with any of the fol-
lowing signatures:

public static ValidationResult MethodName(Categories category)
public static ValidationResult MethodName(Categories category, ValidationContext context)

Using the first overload is the same as defining custom validation logic for an individual value. It
is sort of equivalent to creating a custom data annotations attribute—it’s quicker to write but more
rigid as far as the signature is concerned. Much more interesting is the second overload. In fact,
through the ValidationContext parameter, you can get a reference to the model object and check as
many properties as you like.

public static ValidationResult ValidateCategoryAndPriority(
 Categories category, ValidationContext context)
{
 // Grab the model instance
 var memo = context.ObjectInstance as MemoDocument;
 if (memo == null)
 throw new NullReferenceException();

 // Cross-property validation
 if (memo.Category == Categories.Personal && memo.Priority > 3)
 return new ValidationResult("Category and priority are not consistent.");
 return ValidationResult.Success;
}

CHAPTER 4 Input forms 137

You can attach the CustomValidation attribute to an individual property as well as to the class.
In the preceding example, the attribute is attached to Category, but it ensures that if the value is
Personal, the property Priority must be set to a value not higher than 3. If the validation fails, the en-
try in the model-state dictionary uses Category as the key. If you attach CustomValidation to the class,
be aware that the validation is performed only if everything went fine for all individual properties.
This is exactly the declarative counterpart of the pattern outlined earlier:

[CustomValidation(typeof(MemoDocument), "ValidateMemo")]
public class MemoDocument
{
 ...
}

Here’s the signature of the method if the CustomValidation attribute is attached to the class:

public static ValidationResult ValidateMemo(MemoDocument memo)
{
 ...
}

When you use CustomValidation at the class level, you have the problem of capturing error mes-
sages, because error messages are usually associated with properties. You can easily solve the issue
by using the helper Html.ValidationSummary, which brings up all error messages regardless of the
originating properties. I’ll return to the topic of class-level validation later in the chapter.

Finally, the Compare attribute is available to serve far more quickly a specific cross-property
scenario; for example, when you need to ensure that the value of a property matches the value of
another. The canonical example is retyping a new password:

[Required]
[DataType(DataType.Password)]
public String NewPassword {get; set;}

[Required]
[DataType(DataType.Password)]
[Compare("NewPassword"])
public String RetypePassword {get; set;}

The comparison is made by using the Equals method as implemented on the specific type.

Creating custom validation attributes
The CustomValidation attribute forces you to validate the value stored in the property without the
possibility of adding any extra parameters. The problem here is not so much gaining access to other
properties on the model object—which you can do through ValidationContext—but enriching the
signature of the attribute that defines additional attribute-level parameters. For example, suppose

www.SoftGozar.com

138 PArT I ASP.NET MVC fundamentals

that you want to validate a number to ensure that it is an even number. Optionally, however, you want
to turn on the attribute to check whether the number is also a multiple of 4. You want an attribute
such as the one shown here:

[EvenNumber(MultipleOf4=true)]
public Int32 MagicNumber {get; set;}

There’s no way to pass an optional Boolean value in the signature recognized by CustomValidation.
In the end, the difference between the CustomValidation attribute and a custom validation attribute
is that the latter is designed to be (easily) reusable. Here's how to write a custom data annotation
attribute:

[AttributeUsage(AttributeTargets.Property)]
public class EvenNumberAttribute : ValidationAttribute
{
 // Whether the number has to be checked also for being a multiple of 4
 public Boolean MultipleOf4 { get; set; }

 public override Boolean IsValid(Object value)
 {
 if (value == null)
 return false;

 var x = -1;
 try
 {
 x = (Int32) value;
 }
 catch
 {
 return false;
 }

 if (x % 2 > 0)
 return false;
 if (!MultipleOf4)
 return true;

 // Is multiple of 4?
 return (x % 4 == 0);
 }
}

You create a class that inherits from ValidationAttribute and override the method IsValid. If you
need extra parameters such as MultipleOf4, you just define public properties.

In ASP.NET MVC, you can create custom attributes that perform cross-property validation. All you
do is override a slightly different overload of the IsValid method:

protected override ValidationResult IsValid(Object value, ValidationContext context)

Using the properties on the ValidationContext object, you can gain access to the entire model
object and perform a full validation.

CHAPTER 4 Input forms 139

Enabling client-side validation
All of the examples considered work across a postback or through an Ajax form. To use them
with Ajax, you need to make just a small change to the view that displays the editor so that it uses
Ajax.BeginForm instead of Html.BeginForm. In addition, the controller method should return a partial
view instead of a full view, as shown here:

[HttpPost]
public ActionResult Edit(MemoDocument memo)
{
 if (Request.IsAjaxRequest())
 return PartialView("edit_ajax", memo);
 return View(memo);
}

Here’s how to convert the original view to an edit_ajax partial view:

@model DataAnnotations.ViewModels.Memo.MemoDocument
@{
 Layout = ""; // Drop the master page
}

@using (Ajax.BeginForm("edit", "memo",
 new AjaxOptions() { UpdateTargetId="memoEditor" }))
{
 <div id="memoEditor">
 <fieldset>
 <legend>Memo</legend>
 @Html.EditorForModel()
 <p>
 <input type="submit" value="Create" />
 </p>
 </fieldset>
 </div>
}

In this way, your form is validated on the server but doesn’t refresh the full page. However, at least
for a few basic annotations, it can be helpful in turning on client-side validation so that if the data is
patently invalid (for example, a required field is empty), no HTTP request is ever started.

To turn on client-side validation, you need to perform a couple of easy steps. First, ensure that
your web.config file contains the following:

<appSettings>
 <add key="ClientValidationEnabled" value="true" />
 <add key="UnobtrusiveJavaScriptEnabled" value="true" />
</appSettings>

Observe that both settings are set by default. In addition, you need to link a couple of JavaScript
files: jquery.validate.js (the jQuery validation plugin) and jquery.validate.unobtrusive.js, or their minified
versions. The simplest way to find and add these files is via NuGet. Needless to say, you need to link
the jQuery library on top of everything.

www.SoftGozar.com

140 PArT I ASP.NET MVC fundamentals

Important When you turn on client-side validation, all built-in data annotation attributes
gain a client-side behavior and, to the extent that it is possible, perform their validation in
JavaScript within the browser. If the validation fails, no request is made to the web server.
However, custom validation attributes such as EvenNumber don’t automatically work in this
way. To add client-side validation for custom attributes also, you need to implement an ad-
ditional interface, IClientValidatable, which I’ll cover in a moment.

Culture-based, client-side validation
When it comes to data-type validation, you likely have the additional problem of globalization. For
example, consider the following:

public Decimal Price {get; set;}

The editor correctly handles the type and displays a default format of “0.00”. However, if you enter
“0,8” where the decimal separator is the comma, your input is rejected and the form won’t post. As
you can see, it is a problem of setting the correct culture on the client-side validation. The jQuery
Validation plugin defaults to the United States culture on the client; on the server-side, instead, it de-
pends on the value of the Culture property on the thread. (See Chapter 5, “Aspects of ASP.NET MVC
applications,” for more details on localization and globalization.)

To support a specific culture on the client, you must first link the official jQuery globalization
plugin as well as the script file for the specific culture in which you’re interested. Both files must be
included after regular validation scripts. In addition, you must instruct the globalization plugin as to
which culture you intend to use. Finally, the validator plugin must be informed that it needs to use
globalization information when parsing a number.

<script type="text/javascript">
 $.validator.methods.number = function (value, element) {
 if (Globalization.parseFloat(value)) {
 return true;
 }
 return false;
 }
 $(document).ready(function () {
 $.culture = jQuery.cultures['it-IT'];
 $.preferCulture($.culture.name);
 Globalization.preferCulture($.culture.name);
 });
</script>

With this code in place, you can enter decimals using the culture-specific settings. Taking this ap-
proach further, you can customize on a culture basis most of the client-side validation work.

 CHAPTER 4 Input forms 141

Validating properties remotely
Validation might happen on the client, but you should see it as a way to save a few HTTP-heavy re-
quests for pages. To be on the safe side, you should always validate any data on the server. However,
to give users a nicer experience, you might want to perform a server-side validation without leaving
the browser. The typical example is when users are registering to some service and enter a nickname.
That name must be unique, and uniqueness can be verified only on the server. Wouldn’t it be cool if
you could inform the user in real time whether the nickname is already taken? In this way, she could
change it and avoid annoying surprises when finally posting the registration request.

Data annotations offer an attribute that helps code this feature: the Remote attribute. Attached
to a property, the attribute invokes a method on some controller and expects a Boolean response.
The controller method receives the value to validate plus an additional list of related fields. Here’s an
example:

[Remote("CheckCustomer", "Memo",
 AdditionalFields="Country",
 ErrorMessage="Not an existing customer")]
public String RelatedCustomer { get; set; }

When validating RelatedCustomer on the client, the code silently places a jQuery call to the
method CheckCustomer on the Memo controller. If the response is negative, the specified error mes-
sage is displayed.

public ActionResult CheckCustomer(String relatedCustomer)
{
 if (CustomerRepository.Exists(relatedCustomer))
 return Json(true, JsonRequestBehavior.AllowGet);
 return Json(false, JsonRequestBehavior.AllowGet);
}

The controller must return true/false wrapped up in a JSON payload. If additional fields have been
specified, they are added to the query string of the URL and are subject to the classic model-binding
rules of ASP.NET MVC. Multiple fields are separated by a comma. Here’s a sample URL:

http://yourserver/memo/checkcustomer?relatedCustomer=dino&Country=...

The Ajax call is placed every time the input field loses the focus after having been modified. The
property decorated with the Remote attribute honors the client-side validation contract and doesn’t
allow the form to post back until a valid value is entered.

142 PArT I ASP.NET MVC fundamentals

Important Data annotations can be specified only statically at compile time. Currently,
there’s no way to read attributes from an external data source and bind them to model
properties on the fly. To turn this feature on, you probably need to consider replacing the
default validation provider with a custom one that reads metadata for validation from a dif-
ferent source.

I’ve found this to be a real issue more in business-layer validation than in presentation. In
business-layer validation, you likely need to inject business rules as requirements change,
and more flexibility is therefore welcome. In business-layer validation, I often use the
Enterprise Library Validation Application Block, which can read validation attributes from
the configuration file. (I’ll return to the Enterprise Library in a moment.)

Self-validation
Data annotations attempt to automate the validation process around data being posted from forms.
Most of the time, you use only stock attributes and get error messages for free. In other cases, you
create your own attributes at a bit higher development cost, but still what you do is create compo-
nents that fit nicely in an existing infrastructure. In addition, data annotations are designed to work
mostly at the property level. In ASP.NET MVC, you can always access the entire model via the valida-
tion context; however, ultimately, when the validation is complex, many developers prefer to opt for a
handcrafted validation layer.

In other words, you stop fragmenting validation in myriad combinations of data annotations and
move everything into a single place—a method that you call on the server from within the controller:

public ActionResult Edit(MemoDocument memo)
{
 if (!Validate(memo))
 ModelState.AddModelError(...);
 ...
}

The MemoDocument class might or might not have property annotations. As I see things, if you
opt for self-validation, for reasons of clarity you should just stop using data annotations. In any case,
self-validation doesn’t prevent you from using data annotations, as well.

The IValidatableObject interface
When it comes to building a layer of self-validation, you can unleash your creativity and choose the
application model that best suits you. ASP.NET MVC attempts to suggest an approach. Basically, ASP.
NET MVC guarantees that any model class that implements the IValidatableObject interface is auto-
matically validated, with no need for the developer to call out validation explicitly. The interface is
shown here:

 CHAPTER 4 Input forms 143

public interface IValidatableObject
{
 IEnumerable<ValidationResult> Validate(ValidationContext validationContext);
}

If the interface is detected, the Validate method is invoked by the validation provider during the
model-binding step. The parameter of type ValidationContext makes available the entire model for
any sort of cross-property validation.

Important If the model is also decorated with data annotations, the Validate method is not
invoked if some of the properties are not in a valid state. (To avoid pitfalls, I suggest that
you drop annotations entirely if you opt for IValidatableObject.)

Using IValidatableObject is functionally equivalent to using the CustomValidation attribute at the
class level. The only difference is that with IValidatableObject you can implement a validation layer
with a single method, using your own architecture and remaining independent of data annotations.

Benefits of centralized validation
When you have really complex validation logic in which cross-property validation is predominant,
mixing per-property validation and class-level validation might result in an unpleasant experience for
the end user. As mentioned, class-level validation won’t fire until properties are individually validated.
This means that users initially see a few error messages related to properties and are led to think that
they are safe as soon as these errors are fixed. Instead, they might get an entirely new group of errors
because of cross-property validation. Users won’t have any clue about these other possible errors
until they show up. To avoid this, if class-level validation is predominant, just focus on that and drop
per-property validation.

To implement class-level validation, choosing between IValidatableObject or CustomValidation at
the class level is entirely your call. For years, I used my own interface, which looked nearly identical to
today’s IValidatableObject.

The IClientValidatable interface
Custom validation attributes won’t produce any visible effect when client-side validation is active. In
other words, a custom attribute is not able per se to run any client-side code to attempt to validate
values in the browser. It doesn’t mean, however, that you can’t add this ability. It just takes more code.
Here’s how to extend a custom attribute to turn it on for the client:

[AttributeUsage(AttributeTargets.Property)]
public class ClientEvenNumberAttribute : ValidationAttribute, IClientValidatable
{
 ...

 // IClientValidatable interface members
 public IEnumerable<ModelClientValidationRule> GetClientValidationRules(
 ModelMetadata metadata, ControllerContext context)

144 PArT I ASP.NET MVC fundamentals

 {
 var errorMessage = ErrorMessage;
 if (String.IsNullOrEmpty(errorMessage))
 errorMessage = (MultipleOf4 ? MultipleOf4ErrorMessage : EvenErrorMessage);

 var rule = new ModelClientValidationRule
 {
 ValidationType = "iseven",
 ErrorMessage = errorMessage
 };
 rule.ValidationParameters.Add("multipleof4", MultipleOf4);
 yield return rule;
 }
}

You simply make it implement a new interface: the IClientValidatable interface. The method returns
a collection of validation rules. Each rule is characterized by an error message, a JavaScript function
name used for validation, and a collection of parameters for the JavaScript code. Names of param-
eters and functions should be lowercase.

Next, you need to write some JavaScript code that performs the validation on the client. Prefer-
ably, you should do so by using jQuery and the jQuery validation plugin. Here’s the JavaScript you
need to turn on the previous EvenNumber attribute to work on the client, too:

$.validator.addMethod('iseven', function (value, element, params) {
 var mustBeMultipleOf4 = params.multipleof4;
 if (mustBeMultipleOf4)
 return (value % 4 === 0);
 return (value % 2 === 0);
});

$.validator.unobtrusive.adapters.add('iseven', ['multipleof4', 'more_parameters'],
 function (options) {
 options.rules['iseven'] = options.params;
 options.messages['iseven'] = options.message;
 });

The addMethod function registers the validation callback for the iseven rule. The validation callback
receives the value to validate and all parameters previously added to the rule in the implementation
of IClientValidatable.

In addition, you need to specify adapters to generate JavaScript-free markup for the valida-
tion scenario. To add an adapter, you indicate the name of the function, its parameters, and error
message.

You don’t need anything else; if it doesn’t work, first check that all required scripts are available
and then check function and parameter names in JavaScript code and in the C# implementation of
IClientValidatable. Be aware that you won’t be receiving any JavaScript error if something goes wrong.

 CHAPTER 4 Input forms 145

Dynamic server-side validation
Validation is about conditional code, so in the end, it is a matter of combining together a few if
statements and returning Booleans. Writing a validation layer with plain code and without any ad
hoc framework or technology might work in practice, but it might not be a great idea in design. Your
resulting code would be hardly readable and hard to evolve even though some recently released
fluent-code libraries are making it easier.

Subject to real business rules, validation is a highly volatile matter, and your implementation
must necessarily account for that. In the end, it is not simply about writing code that validates, but
code that is open to validating the same data against different rules. Data annotations are a possible
choice; another valid choice is the Validation Application Block (VAB) in Microsoft’s Enterprise Library.

Data annotations and VAB have a lot in common. Both frameworks are attribute-based and you
can extend both frameworks with custom classes representing custom rules. In both cases, you can
define cross-property validation. Finally, both frameworks have a validator API that evaluates an
instance and returns the list of errors. So, where’s the difference?

Data annotations are part of the .NET Framework and don’t need any separate download. Enter-
prise Library is a separate NuGet package. It might not be a big deal in a large project, but it is still an
issue because it might require additional approval in some corporate scenarios.

In my opinion, VAB is superior to data annotations in one aspect: It can be fully configured via XML
rulesets. An XML ruleset is an entry in the configuration file in which you describe the validation you
want. Needless to say, you can change things declaratively without even touching your code. Here’s a
sample ruleset:

<validation>
 <type assemblyName="..." name="Samples.DomainModel.Customer">
 <ruleset name="IsValidForRegistration">
 <properties>
 <property name="CompanyName">
 <validator type="NotNullValidator" />
 <validator lowerBound="6" lowerBoundType="Ignore"
 upperBound="40" upperBoundType="Inclusive"
 messageTemplate="Company name cannot be longer ..."
 type="StringLengthValidator" />
 </property>
 <property name="Id">
 <validator type="NotNullValidator" />
 </property>
 <property name="PhoneNumber">
 <validator negated="false"
 type="NotNullValidator" />
 <validator lowerBound="0" lowerBoundType="Ignore"
 upperBound="24" upperBoundType="Inclusive"
 negated="false"
 type="StringLengthValidator" />
 </property>

146 PArT I ASP.NET MVC fundamentals

 ...
 </properties>
 </ruleset>
 </type>
</validation>

A ruleset lists the attributes that you want to apply to a given property on a given type. In code,
you validate a ruleset as follows:

public virtual ValidationResults ValidateForRegistration()
{
 var validator = ValidationFactory
 .CreateValidator<Customer>("IsValidForRegistration");
 var results = validator.Validate(this);
 return results;
}

The method above applies the validators listed in the IsValidForRegistration ruleset to the specified
instance of the class. (The ValidateForRegistration method is expected to be a method on an entity
class of yours.)

Note There are two approaches to validation: sometimes, you want to yell out if invalid
data is passed; sometimes, you want to collect errors and report that to other layers of
code. In .NET, Code Contracts is another technology that you probably want to take into
account for validation. Unlike annotations and VAB, however, Code Contracts just check
conditions and then throw at first failure. You need to use a centralized error handler to
recover from exceptions and degrade gracefully. In general, I would recommend using
Code Contracts in a domain entity only to catch potentially severe errors that can lead to
inconsistent states. For example, it makes sense to use Code Contracts in a factory method.
In this case, if the method is passed patently invalid data, you want it to throw an exception.
Whether you use Code Contracts also in the setter methods of properties is your call. I pre-
fer to take a softer route and validate via attributes.

Summary

Input forms are common in any web application, and ASP.NET MVC applications are no exception.
For a while, there was a sentiment in the industry that ASP.NET MVC was not well suited to support
data-driven applications because they required a lot of data entry and validation. Ultimately, ASP.NET
MVC measures up nicely to the task. It does use a different set of tools than Web Forms, but it is still
effective and to the point.

 CHAPTER 4 Input forms 147

ASP.NET MVC offers templated helpers for autogenerated, repetitive forms and server-side and
client-side forms of input validation. Input validation can be largely streamlined if you build your
user interface around view-model objects annotated with display and validation attributes. These
attributes—known as data annotations—are recognized by the ASP.NET MVC infrastructure (model
metadata and validation providers), and they’re processed to produce templated helpers and feed-
back messages for the user.

With this chapter, we’ve nearly covered all the fundamentals of ASP.NET MVC programming.
Chapter 5 covers what remains to be dealt with, including localization, security, and integration with
intrinsic objects, primarily Session and Cache.

 149

PART II

ASP.NET MVC
software design

CHAPTER 5 Aspects of ASP.NET MVC applications151

CHAPTER 6 Securing your application. .189

CHAPTER 7 Design considerations for ASP.NET
 MVC controllers .225

CHAPTER 8 Customizing ASP.NET MVC controllers255

CHAPTER 9 Testing and testability in ASP.NET MVC.301

CHAPTER 10 An executive guide to Web API.337

 151

C H A P T E R 5

Aspects of ASP.NET MVC
applications

A multitude of rulers is not a good thing. Let there be one ruler, one king.
—Homer

There’s a lot more to a web application than just a request/response sequence. If it were as simple
as that, with a well-done set of ASP.NET MVC controllers, you would be all set. Unfortunately,

things are a bit more complex. An effective ASP.NET MVC application results from the insightful
consideration and implementation of various aspects, including Search Engine Optimization (SEO),
state management, error handling, and localization, just to name a few (and fairly important aspects,
at that).

This chapter is a collection of distinct and, to some extent, self-contained topics, each touching on
an aspect that many ASP.NET MVC applications out there already have or are considering to have.

Note Not every web application needs to manage session or global state. Likewise, not
every application is written for an international audience or makes a point of being highly
ranked by search engines. Having said that, though, there’s no application I can think of
that needs none of these aspects.

ASP.NET intrinsic objects

ASP.NET MVC works and thrives on top of the classic ASP.NET infrastructure. To a good extent, you
can consider ASP.NET MVC as a specialization of the classic ASP.NET runtime environment that just
supports a different application and programming model. ASP.NET MVC applications have full ac-
cess to any built-in components that populate the ecosystem of ASP.NET, including Cache, Session,
Response, and the authentication and error-handling layer.

Nothing is different in ASP.NET MVC in the way in which you can access these components. But
what about the way you should use these components from within ASP.NET MVC? Describing that is
precisely the purpose of this chapter.

152 PArT II ASP.NET MVC software design

Note In ASP.NET—and in this book—the expression “intrinsic objects,” or just “intrin-
sics,” is frequently used to indicate the entire set of fundamental objects wrapped up by
HttpContext. The list includes HttpRequest, HttpResponse, HttpSessionState, Cache, and the
objects that identify the logged-on user.

hTTP response and SEO
Let’s start our analysis of ASP.NET intrinsic objects with the HttpResponse object. This object is used
to describe the HTTP response being sent back to the browser at the end of request processing. The
public interface of the HttpResponse object makes it possible for you to set cookies and content type,
append headers, and pass instructions to the browser regarding the caching of the response data. In
addition, the HttpResponse object facilitates redirecting to other URLs.

To customize any aspects of the response stream, you write a custom action result object and
make a controller method return an instance of your type instead of ViewResult or any other pre-
defined typed deriving from ActionResult. Chapter 8, “Customizing ASP.NET MVC controllers,” dis-
cusses this in detail.

SEO is an extremely valid reason to pay more attention to the features of the ASP.NET HttpResponse
object. Permanent redirection is the first practical programming aspect to take into account.

Permanent redirection
In ASP.NET, when you invoke Response.Redirect, you return to the browser an HTTP 302 code indicat-
ing that the requested content is now available from another specified location. Based on that, the
browser makes a second request to the specified address and gets any content. However, a search
engine that visits your page takes the HTTP 302 code literally. The actual meaning of the HTTP 302
status code is that the requested page has been temporarily moved to a new address. As a result,
search engines don’t update their internal tables, and when someone later clicks to see your page, the
engine returns the original address. Consequently, the browser receives an HTTP 302 code and needs
to make a second request to finally display the desired page.

Note To view a good resource for learning more about HTTP return codes and how they
work, go to http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

If the redirection is used to convey requests to a given URL, permanent redirection is a better op-
tion because it represents a juicier piece of information for a search engine. To set up a permanent
redirection, you return the HTTP 301 response code. This code informs search agents that the location
has been permanently moved. Search engines know how to process an HTTP 301 code and use that
information to update the page URL reference. The next time they display search results that involve
the page, the linked URL is the new one. In this way, users can get to the page quickly and a second
roundtrip is avoided. The following code shows what’s required to arrange a permanent redirection
programmatically:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

 CHAPTER 5 Aspects of ASP.NET MVC applications 153

void PermanentRedirect(String url, Boolean endRequest)
{
 Response.Clear();
 Response.StatusCode = 301;
 Response.AddHeader("Location", url);
 ...

 // Optionally end the request
 if (endRequest)
 Response.End();
}

Starting with ASP.NET 4, the HttpResponse class features a new method for such a thing. It is
named RedirectPermanent. You use the method in the same way you used the classic Response.
Redirect, except that this time the caller receives an HTTP 301 status code. For the browser, it makes
no big difference, but it is a key difference for search engines.

In ASP.NET MVC, things are much easier because a new Boolean member named Permanent has
been added to the RedirectResult type. The entire thing is wrapped by the RedirectPermanent method
on the Controller class that you’ll likely use.

public ActionResult Index()
{
 ...
 return RedirectPermanent(url);
}

As mentioned, you can read more on the topic of advanced customization of action results in
Chapter 8.

Devising routes and URLs
A huge difference between ASP.NET Web Forms and ASP.NET MVC is that in the latter, URLs look
more like commands you send to the web application than server paths to pages and resources.
Because the routing mechanism is under your total control as a developer, you are responsible for
devising URLs for your application properly.

If you have SEO in mind, devising URLs properly mostly means guaranteeing URL uniqueness. One
of the primary purposes of a search engine is determining how relevant the content to which a given
URL points actually is. Of course, a given piece of information is much more relevant if you can find
it only in one place and through a unique URL. Sometimes, however, even if the content is unique,
it can be reached through multiple, subtly different URLs. In this case, you run the risk of getting a
lower ranking from search engines and, worse yet, have references to that portion of your site lost in
the last result pages and hardly noticed by potential visitors. The problem here does not have much
to do with storage and page content, but with the shape and format of URLs. Even though the World
Wide Web Consortium (W3C) suggests that you consider using case-sensitive URLs, from an SEO per-
spective, using single-case (and lowercase) URLs are a better choice. If you can keep all of your URLs
lowercase, that adds consistency to the site while reducing duplicate URLs.

154 PArT II ASP.NET MVC software design

Note Unlike Unix systems, ASP.NET and Internet Information Services (IIS) make no distinc-
tion about the case when a URL is requested. Probably because of the W3C standpoint and
Unix practices, search engines apply a case-sensitive policy to URLs. Recently, most search
engines (and primarily Google) added forms of mitigation, ultimately trying to join ranks
for URLs that only differ for the case. At any rate, if the site exposes endpoints spelled dif-
ferently, the final rank is hardly just the sum of all distinct ranks. So, the bottom line is that
by not paying attention to have single-case in URLs your SEO rank is penalized.

What about inbound links?

Well, there’s not much you can do to avoid having external sites link to pages in your site using
the case they prefer. Most likely, they will just copy your URLs, thus repeating the same case you have
chosen. If this is not the case, you can always force a permanent redirect via an HTTP module that
intercepts the BeginRequest event. Forcing all inbound links to use the same case saves you from split-
ting traffic across multiple URLs instead of concentrating all of it on a single URL with a higher rank.
(We can call this strategy “Unite and Conquer” as opposed to the “Divide and Conquer” strategy that
is so popular in other software scenarios.)

To address this problem, the canonical URL format also has been defined. The canonical URL de-
scribes your idea of a URL in the form of a preferred URL scheme. All you do is add a <link> tag to the
<head> section, as shown here:

<link rel="canonical" href="http://myserver.com/" />

If your site has a significant amount of content that can be accessed through multiple URLs, the
canonical URL gives more information to search engines so that they can treat similar URLs as a single
one and come to a more appropriate ranking of the content of the resource. A possible effect of
the canonical URL feature (which has zero cost on your side) is that it can clear up the controversy
regarding having or not having the trailing slash. With a canonical URL that defaults to either choice,
it makes no difference to a search engine which one is actually linked.

The trailing slash
There are some SEO concerns related to the trailing slash. In particular, a search engine incorporates
a filter that detects and penalizes duplicate content in search results. Duplicate content is any page
(that is, any distinct URL) in the search results that is regarded as serving the same content as others.
From the perspective of the search engine, a URL with a trailing slash and the same URL without the
trailing slash are just two URLs serving the same content.

To serve the most relevant content possible to the user, a search engine tries to rank lower the
pages that seem nearly the same as others. But, this process can accidentally reduce the rank of good
pages.

What about ASP.NET MVC and the routing system? Should you force a trailing slash?

 CHAPTER 5 Aspects of ASP.NET MVC applications 155

Ultimately, an ASP.NET MVC application is entirely responsible for its URLs and subsequently for
what a search engine will request. In a new application, it’s ultimately up to you because your routes
determine how the request is processed. Helpers that are used to generate URLs in the markup tend
to avoid trailing slashes, so let’s say that not having trailing slashes is a more common solution in ASP.
NET MVC. However, keep in mind that the other approach is equally valid. In ASP.NET MVC, it’s up to
you to resolve (or not resolve) URLs with and without the trailing slash in the same way. You ultimately
decide about your page rank. Whether you use or don’t use the trailing slash is not as important as
being consistent with whatever choice you make.

If you’re porting an existing site to ASP.NET MVC, you might have many legacy URLs to maintain.
You can install a custom route handler and permanently redirect (HTTP 301) from legacy URLs to new
URLs. This approach works, but in practice it might take weeks for the search engine to physically up-
date the internal tables of links to reflect all of your permanent redirects. In the meantime, you might
lose quite a bit of income.

The search engine always likes to deal with the existing URLs. In this case, you might want to install
a rewrite module in Microsoft IIS to map an ASP.NET MVC URL to a legacy URL.

Note Speaking of SEO, there’s another point to make, even though it is not strictly related
to pages or controller actions: subdomains. In general, there are many reasons to consider
subdomains in the setup of a website. Common reasons to split a domain into subdomains
are to distinguish the site by language, product, or feature while making administration
easier. Unfortunately, search engines treat subdomains (including naked domains such as
myserver.com) as separate sites.

Managing the session state
All real-world applications of any shape and form need to maintain their own state to serve users’
requests. Web applications are no exception. However, unlike other types of applications, web
applications need special system-level tools to achieve the result. The reason for this peculiarity lies
in the stateless nature of the underlying protocol upon which web applications still rely. As long as
HTTP remains the transportation protocol for the web, all applications will run into the same trouble:
figuring out the most effective way to persist state information.

In ASP.NET, the HttpSessionState class provides a dictionary-based model of storing and retrieving
session-state values. The class doesn’t expose its contents to all users operating on the application at
a given time. Only the requests that originate in the context of the same session—that is, generated
across multiple page requests made by the same browser instance—can access the session state. The
session state can be stored and published in a variety of ways, including in a web farm or web garden
scenario. By default, though, the session state is held within the ASP.NET worker process.

156 PArT II ASP.NET MVC software design

Using the Session object
As an ASP.NET MVC developer, you have no technical limitations on your way to the intrinsic Session
object. You have just the same issues and benefits as a developer of an ASP.NET Web Forms applica-
tion. The ASP.NET MVC infrastructure uses the session state internally, and you can do so also in your
code. In particular, the ASP.NET MVC infrastructure uses the session state to persist the content of the
TempData dictionary, as is illustrated in Chapter 4, “Input forms.”

So, if you feel the need to store data across sessions, you store it and then read it back through the
familiar Session object, as demonstrated here:

public ActionResult Config()
{
 Session[StateEntries.PreferredTextColor] = "Green";
 ...
}

As you can see, nothing is different from classic ASP.NET programming. Just keep in mind that the
session dictionary is a name/value collection, so it requires plain strings to identify entries. Using con-
stants in code is a good technique to prevent nasty errors. When you read from session state, casting
and null-checking are unavoidable, as shown in the following:

var preferredTextColor = "";
var data = Session[StateEntries.PreferredTextColor];
if (data ! null)
 preferredTextColor = (String) data;

Any data stored in the session state is returned as an Object.

Never outside the controller
The most important aspect that relates to accessing the session state in ASP.NET MVC is that you
should be using it only from within the controller. Generally speaking, data stored in the session state
can be consumed in either of two ways. It can be used to drive some back-end calculation on input
data, or it can be passed as is to the view.

In the latter case, ensure that you copy individual values to proper members on the view model
class or to whatever predefined view data structures you use (ViewData or ViewBag). Technically
speaking, you could access the session state (and other intrinsic objects) also from within a Razor or
ASPX view. Although any code like this works, you should avoid doing this so that you can preserve a
strong Separation of Concerns (SoC) between controllers and views. The golden rule is that the view
receives from the outside world whatever data it needs to incorporate.

Note The aforementioned golden rule holds also for render actions, which are special con-
troller methods you invoke directly from the view. Render actions add a bit of logic to your
views but don’t break the separation between controllers and views—the view continues to
have its only contact in the controller.

 CHAPTER 5 Aspects of ASP.NET MVC applications 157

Caching data
Caching indicates the application’s ability to save frequently used data to an intermediate storage
medium. In a typical web scenario, the canonical intermediate storage medium is the web server’s
memory. However, you can design caching around the requirements and characteristics of each ap-
plication, thus using as many layers of caching as needed to reach your performance goals.

In ASP.NET, built-in caching capabilities come through the Cache object. The Cache object is
created on a per-AppDomain basis, and it remains valid while that AppDomain is up and running.
The object is unique in its capability to automatically scavenge the memory and get rid of unused
items. You can prioritize and associate cached items with various types of dependencies, such as disk
files, other cached items, and database tables. When any of these items change, the cached item is
automatically invalidated and removed. Aside from that, the Cache object provides the same familiar,
dictionary-based programming interface as Session. Unlike Session, however, the Cache object does
not store data on a per-user basis.

The bright side and dark side of the native Cache object
Using the Cache object in ASP.NET MVC is just the same as in ASP.NET Web Forms. You should be
accessing the Cache object preferably from a controller class or from infrastructure classes such as
global.asax, as shown here:

protected void Application_Start()
{
 var data = LoadFromSomeRepository();
 Cache[CacheEntries.CustomerRecords] = data;
 ...
}

To read from cache, you use the same pattern you just saw for session state, check for nullness,
and cast to a known valid type, as demonstrated in the following:

var customerRecords = new CustomerRecords();
var data = Cache[CacheEntries.CustomerRecords];
if (data ! null)
 customerRecords = (CustomerRecords) data;

If cached data needs to be displayed in the view, you just add that data to the view-model class for
the specific view. Alternatively, you define render actions on the controller class.

So far, so good. What’s the dark side of caching in ASP.NET MVC?

As mentioned, the Cache object is limited to the current AppDomain and subsequently to the cur-
rent process. This design was fairly good a decade ago, but it shows more and more limitations today.
If you’re looking for a global repository object that, similar to Session, works across a web farm or
web garden architecture, the native Cache object is not for you. You must resort to Windows Server
AppFabric Caching services or to some commercial frameworks (such as ScaleOut or NCache) or
open-source frameworks (such as Memcached).

158 PArT II ASP.NET MVC software design

However, the issue is that the implementation of the Cache object is not based on the same popu-
lar provider model as session state. This means that you can’t replace the cache data holder if you
need to scale it up, not even for testing your controllers.

Injecting a caching service
The currently recommended approach for caching in ASP.NET MVC consists of injecting caching
capabilities into the application. You define a contract for an abstract caching service and make your
controllers work against this contract. Injection can happen the way you like, either through your
favorite Inversion-of-Control (IoC) framework or via an ad hoc controller constructor. The latter is jok-
ingly called “the poor-man’s dependency injection approach.”

The following code shows a minimal but functional example of how to abstract the caching layer:

public interface ICacheService
{
 Object Get(String key);
 void Set(String key, Object data);
 Object this[String key] { get; set; }
 ...
}

You are responsible for making this interface as rich and sophisticated as you need. For example,
you might want to add members to support dependencies, expiration, and priorities. Just keep in
mind that you are not writing the caching layer for the entire ASP.NET subsystem; you're simply writ-
ing a segment of your application. In this respect, the YAGNI principle (You Aren’t Gonna Need It)
holds true as never before.

Any controller class that needs caching will accept an ICacheService object through the construc-
tor, as shown here:

private ICacheService _cacheService;
public HomeController(ICacheService cacheService)
{
 _cacheService = cacheService;
}

The next step consists of defining a few concrete implementations of the ICacheService interface.
The concrete type simply uses a particular cache technology to store and retrieve data. Here’s the
skeleton of a class that implements the interface by using the native ASP.NET Cache object:

public class AspNetCacheService : ICacheService
{
 private readonly Cache _aspnetCache;
 public AspNetCacheService()
 {
 if (HttpContext.Current != null)
 _aspnetCache = HttpContext.Current.Cache;
 }

 CHAPTER 5 Aspects of ASP.NET MVC applications 159

 public Object Get(String key)
 {
 return _aspnetCache[key];
 }

 public void Set(String key, Object data)
 {
 _aspnetCache[key] = data;
 }

 public object this[String name]
 {
 get { return _aspnetCache[name]; }
 set { _aspnetCache[name] = value; }
 }
 ...
}

Finally, let’s complete the controller’s code that uses this caching service so that the service can be
properly injected:

public class HomeController
{
 private readonly ICacheService _cacheService;
 public HomeController() : this(new AspNetCacheService())
 {
 }
 public HomeController(ICacheService cacheService)
 {
 _cacheService = cacheService;
 }
 ...
}

In this way, your controller classes that need caching are not tightly bound to a specific implemen-
tation of a cache object and are, at a minimum, easier to test.

A better way of injecting a caching service
Injecting a cache service into a controller instance requires that a new cache service must be cre-
ated for each request. Because the caching service is a plain wrapper around an existing and external
cache data holder (for example, the ASP.NET Cache object or Windows Server AppFabric Caching Ser-
vices), this is not going to have a great impact on the performance of the request. In fact, the cache
data holder is initialized only once at application startup.

160 PArT II ASP.NET MVC software design

Can you manage things to save your application a few CPU cycles per request and expose a global
cache object that is in turn based on a replaceable provider? You bet. Try adding the following code
to global.asax:

public class MvcApplication : HttpApplication
{
 ...

 // Internal reference to the cache wrapper object
 private static ICacheService _internalCacheObject;

 // Public method used to inject a new caching service into the application.
 // This method is required to ensure full testability.
 public void RegisterCacheService(ICacheService cacheService)
 {
 _internalCacheObject = cacheService;
 }

 // Use this property to access the underlying cache object from within
 // controller methods. Use this instead of native Cache object.
 public static ICacheService CacheService
 {
 get { return _internalCacheObject; }
 }

 protected void Application_Start()
 {
 ...

 // Inject a global caching service
 RegisterCacheService(new AspNetCacheService());

 // Store some sample app-wide data
 CacheService["StartTime"] = DateTime.Now;
 }
}

In this way, you have no need to inject the actual caching service in the selected controller for each
request. The caching service is initialized and injected once at application startup. Controllers use a
public static method on the application object (as defined in global.asax) to access the cache.

var data = MvcApplication.CacheService[...]

The public method RegisterCacheService preserves testability. In any unit test for which you want
to test a cache-aware controller, you place the following call in the preliminary phase of the unit test:

MvcApplication.RegisterCacheService(new FakeCacheService());

Next, you proceed calling the controller method which will transparently use the fake cache
service.

 CHAPTER 5 Aspects of ASP.NET MVC applications 161

Distributed caching
Easier testing is not the only benefit you gain by using a public contract for your cache-related tasks:
By keeping your controllers aware of a cache interface—not a cache implementation—you keep them
able to work with any object that provides caching services through the specified interface. In other
words, you can replace the aforementioned AspNetCacheService class with another similar-looking
class that relies on a different caching infrastructure.

For example, you can transparently plug in a cache service based on a distributed framework, such
as Windows Server AppFabric Caching Services or another open-source or commercial framework.
Nearly all of these frameworks expose a public API that is analogous to the basic ASP.NET Cache
object, so there’s not really much work that you need to do to set it up beyond configuration.

Nicely enough, if you’re just not interested in distributed caching, you can still replace the ASP.
NET native Cache object with the newest MemoryCache object introduced in the .NET Framework 4
for the precise purpose of giving caching capabilities to any .NET applications. For this reason, the
class is defined outside the ASP.NET realm in a brand new assembly named System.Runtime.Caching.
The MemoryCache object works like the ASP.NET Cache except that it throws an exception if you try
to store null values. The MemoryCache class inherits from a base class, ObjectCache. By deriving your
own cache object, you can take control of the internal storage and management of cached data. This
is not a recommended approach for everybody, but it’s definitely possible. Keep in mind, however,
that ObjectCache and derived types are not designed to provide the behavior of a distributed cache.
If you intend to create your own distributed cache, the hard work of maintaining multiple caches in
synchronization is entirely up to you.

Caching the method response
The classic mechanism of ASP.NET output caching survived in ASP.NET MVC, too. It takes the form
of the OutputCache attribute that you can attach to a controller method or to the controller class to
affect all action methods.

[OutputCache(Duration=10, VaryByParam="None")]
public ActionResult Index()
{
 ...
}

The Duration parameter indicates how long (in seconds) the method’s response should stay cached
in memory. On the other hand, the VaryByParam attribute, indicates how many distinct versions of
the response you should cache, one for each distinct value of the specified property. If you use None,
you’re informing the system that you don’t want multiple versions of the same method’s response.

Table 5-1 lists the properties supported by the attribute. They are a subset of the attributes of the
@OutputCache directive of ASP.NET. Missing attributes are those limited to ASP.NET user controls.

162 PArT II ASP.NET MVC software design

TABLE 5-1 Properties of the OutputCache attribute

Attribute Description

CacheProfile Associates a response with a group of output-caching settings specified in the web.config
file.

Duration The amount of time (in seconds) for which the response is cached.

Location Specifies the location (browser, proxy, or server) to store the response of the method
call. The attribute takes its value from the OutputCacheLocation enumeration.

NoStore Indicates whether to send a Cache-Control:no-store header to prevent browser-side
storage of the response.

SqlDependency Indicates a dependency on the specified table on a given Microsoft SQL Server database.
Whenever the contents of the table changes, the response is removed from the cache.

VaryByContentEncoding Content encoding by which you intend to differentiate cached responses.

VaryByCustom A semicolon-separated list of strings with which you can maintain distinct cached copies
of the response based on the browser type or user-defined strings.

VaryByHeader A semicolon-separated list of HTTP headers.

VaryByParam A semicolon-separated list of strings representing query string values sent with GET
method attributes, or parameters sent by using the POST method.

These properties communicate the same output-caching infrastructure of the ASP.NET runtime
and work exactly the same in ASP.NET Web Forms.

Note It should be pretty obvious, but let’s state it clearly. Methods for which you set the
OutputCache attribute are not executed for requests that hit the server when a valid cached
response is available.

Partial output caching
Partial caching is not limited to the entire response of the method. You can also attach the Output
Cache attribute to child actions. A child action is a method on the controller that the view can call
back by using the Html.RenderAction helper. The RenderAction helper can invoke any method on the
controller; however, some methods can be marked as exclusive child actions. You do this using the
ChildActionOnly attribute, as demonstrated here:

[ChildActionOnly]
public ActionResult RenderSiteMap()
{
 ...
}

Such a method is clearly designed to render a small section of the view. It is logically equivalent to
a user control in ASP.NET Web Forms. By decorating this method with the OutputCache attribute, you
can cache the response for the specified duration.

 CHAPTER 5 Aspects of ASP.NET MVC applications 163

Error handling

Because ASP.NET MVC works on top of the classic ASP.NET runtime environment, you can’t expect to
find a radically different infrastructure to handle run-time errors. This means that you can still opt for
the classic ASP.NET strategy of mapping any 400 or 500 HTTP status codes to a specific URL that pro-
vides error information. Switching programmatically to a different page in cases of error requires an
HTTP redirect. You control the mapping through the <customErrors> section of the web.config file.

As I see things, although functional, this approach is less than ideal in ASP.NET MVC, given that
you can easily switch to an error interface by simply changing the name of the view template invoked
by the controller.

Let’s see what ASP.NET MVC has to offer when it comes to error handling. Overall, error handling
in ASP.NET MVC spans two main areas: the handling of program exceptions, and route exceptions.
The former is concerned with catching errors in controllers and views; the latter is more about redi-
rection and HTTP errors.

handling program exceptions
Most of the code you write in ASP.NET MVC applications resides in controller classes. In a control-
ler class, you can deal with possible exceptions in a number of equivalent ways: handling exceptions
directly via try/catch blocks, overriding the OnException method, and using the HandleError attribute.

handling exceptions directly
In the first place, you can use local try/catch blocks to protect yourself against a possible exception in
a specific section of the code. This is the approach that gives you maximum flexibility, but it does so
at the cost of adding some noise to the code. I’m not one to question the importance of exception
handling—which, by the way, is the official .NET approach to error handling—however, the presence
of try/catch blocks makes reading code a bit harder. For this reason, I always welcome any alternative
solution that aims to centralize exception-handling code to the extent it is legitimately possible.

To execute a piece of code with the certainty that any (or just some) exceptions it might raise will
be caught, you use the following code:

try
{
 // Your regular code here
 ...
}
catch
{
 // Your recovery code for all exceptions
 ...
}

164 PArT II ASP.NET MVC software design

The preceding snippet catches any exceptions originated by the code in the try block. Because
of its extreme generality, it doesn’t put you in the position of implementing an effective recovery
strategy. The sample code snippet can have a number of variations and extensions. For example, you
can list multiple catch blocks, one per each significant exception. You can also add a finally block,
which will finalize the operation and run regardless of whether the execution flow went through the
try block or the catch block:

try
{
 // Your regular code here
 ...
}
catch(NullReferenceException nullReferenceException)
{
 // Your recovery code for the null reference exception
 ...
}
catch(ArgumentException argumentException)
{
 // Your recovery code for the argument exception
 ...
}
finally
{
 // Finalize here, but DON'T throw exceptions from here
 ...
}

Exceptions are listed from the most specific to the least specific. From a catch block, you are also
allowed to consume the exception so that other top-level modules will never know about it. Alterna-
tively, you can handle the situation gracefully and recover. Finally, you can do some work and then
rethrow the same exception or arrange a new one with some extra or modified information in it.

When it comes to writing direct code for handling exceptions, you might want to keep a few
guidelines in mind. First, the catch block is fairly expensive if your code gets into it. Therefore, you
should use it judiciously—use it only when it’s really needed and without overcatching.

Note For a long time, Microsoft said you should derive your exception classes from System.
ApplicationException. More recently, there’s been a complete turnaround on this point:
the new directive indicates the opposite. You should ignore ApplicationException and de-
rive your exception classes from Exception or other, more specific, built-in classes. And,
don’t forget to make your exception classes serializable. For more background, refer to
the following thread (and contained links) on StackOverflow at http://stackoverflow.com/
questions/5685923/what-is-applicationexception-for-in-net.

http://stackoverflow.com/questions/5685923/what-is-applicationexception-for-in-net
http://stackoverflow.com/questions/5685923/what-is-applicationexception-for-in-net

 CHAPTER 5 Aspects of ASP.NET MVC applications 165

Furthermore, you should never throw an exception as an instance of the root System.Exception
class. It is strictly recommended that you try to use built-in exception types such as InvalidOperation
Exception, NullReferenceException, and ArgumentNullException whenever these types apply. You
should resist the temptation of having your own exceptions all the way through, although for pro-
gram errors you should consider defining your own exceptions. In general, you should be very specific
with exceptions. ArgumentNullException is more specific than ArgumentException. An exception
comes with a message, and the message must be targeted to developers and, ideally, localized.

Note Another key guideline from Microsoft about exception handling is to use built-in
types for general errors (for example, null reference, invalid argument, I/O or network ex-
ceptions) and create application-specific types for exceptions that are specific to the appli-
cation you’re creating.

Overriding the OnException method
As discussed in Chapter 1, “ASP.NET MVC controllers,” the execution of each controller method is
governed by a special system component known as the action invoker. An interesting aspect of the
default action invoker is that it always executes controller methods within a try/catch block. Here’s
some pseudocode that illustrates the behavior of the default action invoker:

try
{
 // Try to invoke the action method
 ...
}
catch(ThreadAbortException)
{
 throw;
}
catch(Exception exception)
{
 // Prepare the context for the current action
 var filterContext = PrepareActionExecutedContext(..., exception);

 // Go through the list of registered action filters, and give them a chance to recover
 ...

 // Re-throw if not completely handled
 if (!filterContext.ExceptionHandled)
 {
 throw;
 }
}

166 PArT II ASP.NET MVC software design

If an exception is thrown at some point during the method’s execution or during the rendering of
the view, the control passes to the code in the catch block, as long as the exception is not a Thread
AbortException. Handling the exception entails looping through the list of registered action filters and
giving each its own chance to fix things. At the end of the loop, if the exception has not been marked
as handled, the caught exception is thrown again.

An action filter is a piece of code that can be registered to handle a few events fired during the
execution of an action method. One of these system events is fired when the invoker intercepts an ex-
ception. (I cover action filters in detail in Chapter 8.) To have your own code added to the list of filters,
the simplest thing you can do is override the OnException method on the controller class, as shown in
the following:

protected override void OnException(ExceptionContext filterContext)
{
 ...
}

Defined in any of your controller classes (or in a base class of yours), this method is always invoked
when an unhandled exception occurs in the course of the action method.

Note No exception will be caught by OnException that originates outside the realm of the
controller, such as null references resulting from a failure in the model-binding layer or a
not-found exception resulting from an invalid route. I’ll tackle this aspect in a more specific
way later in the chapter.

Overall, there’s just one reason for you to override OnException in a controller class: you want to
control the behavior of the system and degrade gracefully in the case of an exception. This means
that the code in OnException is given the power of controlling the entire response for the request that
just failed. The method receives a parameter of type ExceptionContext. This type comes with a Result
property of type ActionResult. As you can guess, the property refers to the next view or action result.
If the code in OnException omits setting any result, the user won’t see any error screen (neither the
system’s nor that of the application); the user will see just a blank screen. Here’s the typical way to
implement OnException:

protected override void OnException(ExceptionContext filterContext)
{
 // Let other exceptions just go unhandled
 if (filterContext.Exception is InvalidOperationException)
 {
 // Default view is "error"
 filterContext.SwitchToErrorView();
 }
}

The SwitchToErrorView method is an extension method for the ExceptionContext class coded as
shown here:

 CHAPTER 5 Aspects of ASP.NET MVC applications 167

public static void SwitchToErrorView(this ExceptionContext context,
 String view = "error", String master = "")
{
 var controllerName = context.RouteData.Values["controller"] as String;
 var actionName = context.RouteData.Values["action"] as String;
 var model = new HandleErrorInfo(context.Exception, controllerName, actionName);
 var result = new ViewResult
 {
 ViewName = view,
 MasterName = master,
 ViewData = new ViewDataDictionary<HandleErrorInfo>(model),
 TempData = context.Controller.TempData
 };
 context.Result = result;

 // Configure the response object
 context.ExceptionHandled = true;
 context.HttpContext.Response.Clear();
 context.HttpContext.Response.StatusCode = 500;
 context.HttpContext.Response.TrySkipIisCustomErrors = true;
}

Altogether, this code provides an effective framework-level try/catch block that is not limited to
catching the exception but switches to an error view. In the code just shown, the default error view is
error, but you can change it at will as well as its layout.

Using the HandleError attribute
As an alternative to overriding the OnException method, you can decorate the class (or just individual
methods) with the HandleError attribute or any custom class that derives from it.

[HandleError]
public class HomeController
{
 ...
}

Note that HandleError is a bit more than a simple attribute; it is an action filter. As such, it con-
tains executable code and is not limited to providing meta-information to some other modules. In
particular, HandleError implements the IExceptionFilter interface, as illustrated here:

public interface IExceptionFilter
{
 void OnException(ExceptionContext filterContext);
}

The interface is the same one that all controllers implement. However, on the base Controller class,
OnException has just an empty body.

168 PArT II ASP.NET MVC software design

Internally, HandleError implements the OnException method by using a piece of code very similar
to SwitchToErrorView. The only difference is in the conditions under which the change of view is oper-
ated. The HandleError attribute traps the specified exceptions only if they haven’t been previously
fully handled and are not resulting from child actions. To control the exceptions you want to handle,
you do as follows:

[HandleError(ExceptionType=typeof(NullReferenceException), View="SyntaxError")]

Each method can have multiple occurrences of the attribute, one for each exception in which
you’re interested. The View and Master properties indicate the view to display after the exception. By
default, HandleError switches to a view named error. (Such a view is purposely created by the Micro-
soft Visual Studio ASP.NET MVC standard template.)

Important For HandleError to produce any visible results in debug mode, you need to turn
on custom errors at the application level, as shown here:

<customErrors mode="On">
</customErrors>

If you leave on the default settings for the <customErrors> section of the configuration file,
only remote users will get the selected error page. Local users (for example, developers do-
ing some debugging) will receive the classic error page with detailed information about the
stack trace as produced by the normal ASP.NET exception handler.

Tip Even when everything is fully configured to display a custom error page, it can hap-
pen that Internet Explorer shows a built-in error page. This is due to a little known feature
of Internet Explorer that has existed since 2006. In practice, if Internet Explorer detects that
your error page has a body less than 512 bytes, it simply prefers to display a built-in page
because—or so it believes—that this is likely nicer to see for the user! This isn’t a big deal
for realistic sites and pages, but during initial phases of development, it can easily be a
source of headaches.

Just like any other action filter in ASP.NET MVC, you can automatically apply the HandleError attri-
bute to any method of any controller class by registering it as a global filter. Incidentally, this is exactly
what happens within the code generated by the Visual Studio tooling for ASP.NET MVC. Here’s an
excerpt from Application_Start in global.asax:

public class MvcApplication : System.Web.HttpApplication
{
 protected void Application_Start()
 {
 RegisterGlobalFilters(GlobalFilters.Filters);
 ...
 }

 CHAPTER 5 Aspects of ASP.NET MVC applications 169

 public static void RegisterGlobalFilters(GlobalFilterCollection filters)
 {
 filters.Add(new HandleErrorAttribute());
 }
}

A global filter is an action filter that the default action invoker automatically adds to the list of
filters before it invokes any action method. I have more to say on global action filters in Chapter 8.

Global error handling
For the most part, OnException and the HandleError attribute provide controller-level control over
error handling. This means that each controller which requires error handling must host some
exception-handling code. More important than this, however, is that dealing with errors at the con-
troller level doesn’t ensure that you intercept all possible exceptions that might be raised around your
application.

You can create a global error handler at the application level that catches all unhandled exceptions
and routes them to the specified error view.

Global error handling from global.asax
Since the very first version of the ASP.NET runtime, the HttpApplication object—the object behind
global.asax—has featured an Error event. The event is raised whenever an unhandled exception
reaches the outermost shell of code in the application. Here’s how to write such a handler:

void Application_Error(Object sender, EventArgs e)
{
 ...
}

You could do something useful in this event handler, such as sending an email to the site ad-
ministrator or writing to the Microsoft Windows event log to report that the page failed to execute
properly. Here’s an example:

void Application_Error(Object sender, EventArgs e)
{
 var exception = Server.GetLastError();
 if (exception == null)
 return;

 var mail = new MailMessage { From = new MailAddress("automated@contoso.com") };
 mail.To.Add(new MailAddress("administrator@contoso.com"));
 mail.Subject = "Site Error at " + DateTime.Now;
 mail.Body = "Error Description: " + exception.Message;
 var server = new SmtpClient { Host = "your.smtp.server" };
 server.Send(mail);

170 PArT II ASP.NET MVC software design

 // Clear the error
 Server.ClearError();

 // Redirect to a landing page
 Response.Redirect("home/landing");
}

With the preceding code, the administrator will receive an email message (as shown in Figure 5-1),
but the user will still receive a system error page. If you want to avoid that, after you manage the
error you can redirect the user to a landing page. Finally, be aware that if the SMTP server requires
authentication, you need to provide your credentials through the Credentials property of the
SmtpClient class.

FIGURE 5-1 An email message to the site administrator.

Global error handling using an hTTP module
In ASP.NET, there’s just one way to capture any fatal exceptions: writing a handler for the Http
Application object Error event. However, you can do this in two ways. You can write code directly in
the application’s global.asax file, or you can plug a made-to-measure HTTP module to the web.config
file. The HTTP module registers its own handler for the Error application event. The two solutions are
functionally equivalent, but the one based on the HTTP module can be turned on and off and modi-
fied without recompiling the application. It is, in a way, less obtrusive.

When you consider a global error handler, you have a couple of ideas in mind: alerting the ad-
ministrator about an exception, and logging the exception. Especially for the second task, an HTTP
module seems like an easier-to-manage solution than having code in global.asax.

A tool that is very popular among ASP.NET developers is Error Logging Modules And Handlers
(ELMAH). ELMAH is essentially made of an HTTP module that, once configured, intercepts the Error
event at the application level and logs it according to the configuration of a number of back-end
repositories. ELMAH comes out of an open-source project (http://code.google.com/p/elmah) and has

http://code.google.com/p/elmah

 CHAPTER 5 Aspects of ASP.NET MVC applications 171

a number of extensions, mostly in the area of repositories. ELMAH offers some nice facilities such as
a webpage on which you can view all recorded exceptions and look more closely into each of them.
Architecturally speaking, any error-reporting system specifically designed for ASP.NET can’t be much
different from ELMAH.

Intercepting model-binding exceptions
A centralized error handler is also good at catching exceptions that originate outside the control-
ler, such as exceptions caused by incorrect parameters. If you declare a controller method with one,
for instance, integer argument and the current binder can’t match any posted value to it, you get an
exception. Technically, the exception is not raised by the model binder itself; it is raised by an internal
component of the action invoker while preparing the method call. If this component doesn’t find a
value for a non-optional method parameter, it just throws an exception.

This exception is not fired from within the controller code, but it still falls under the control of the
overall try/catch block in the action invoker. Why doesn’t a global (or local) HandleError do the trick
of trapping the exception? It does, but only if you turn on the custom error flag in the web.config file.
With the custom error flag turned off, your only chance to intercept a model-binding error is through
the centralized error handler in global.asax. Figure 5-2 shows the page served gracefully to the user
and the email message sent to the administrator.

FIGURE 5-2 A model-binder exception trapped by the Application_Error handler.

handling route exceptions
In addition to any detected program errors, your application might be throwing exceptions because
the URL of the incoming request doesn’t match any of the mapped routes—either because of an
invalid URL pattern (an invalid action or controller name) or a violated constraint. In this case, your
users receive an HTTP 404 error. Letting users receive the default 404 ASP.NET page is something you
might want to avoid for a number of reasons, primarily to be friendlier to end users.

172 PArT II ASP.NET MVC software design

The typical solution enforced by the ASP.NET framework consists of defining custom pages (or
routes in ASP.NET MVC) for common HTTP codes such as 404 and 403. Whenever the user types or
follows an invalid URL, she is redirected to another page where some useful information (hopefully) is
provided. Here’s how to register ad hoc routes in ASP.NET MVC:

<customErrors mode="On">
 <error statusCode="404" redirect="/error/show" />
 ...
</customErrors>

This trick works just fine, and there’s no reason to question it from a purely functional perspective.
So, where’s the problem, then?

The first problem is with security. By mapping HTTP errors to individualized views, hackers can
distinguish between the different types of errors that can occur within an application and use this
information for planning further attacks. Thus, you explicitly set the defaultRedirect attribute of the
<customErrors> section to a given and fixed URL and ensure that no per-status codes are set.

A second issue with per-status code views has to do with SEO. Imagine a search engine request-
ing a URL that doesn’t exist in an application that implements custom error routing. The application
first issues an HTTP 302 code and informs the caller that the resource has been temporarily moved to
another location. At this point, the caller makes another attempt and finally lands on the error page.
This approach is great for humans, who ultimately get a pretty message; it is less than optimal from
an SEO perspective because it leads search engines to conclude that the content is not missing at all,
it’s just harder than usual to retrieve. And, an error page is cataloged as regular content and related
to similar content.

On the other hand, route exceptions are a special type of error and deserve a special strategy dis-
tinct from program errors. Ultimately, route exceptions refer to some missing content.

Dealing with missing content
The routing subsystem is the front end of your application and the door at which request URLs knock
to get some content. In ASP.NET MVC, it is easy to treat requests for missing content in the same way
as valid requests. No redirection and additional configuration are required if you create a dedicated
controller that catches all requests that would go unhandled.

Catch-all route
A common practice to handle this situation consists of completing the route collection in global.asax
with a catch-all route that traps any URLs sent to your application that haven’t been captured by any
of the existing routes.

public static void RegisterRoutes(RouteCollection routes)
{
 // Main routes
 ...

 CHAPTER 5 Aspects of ASP.NET MVC applications 173

 // Catch-all route
 routes.MapRoute(
 "Catchall",
 "{*anything}",
 new { controller = "Error", action = "Missing" }
);
}

Obviously, the catch-all rule needs to go at the very bottom of the routes list. This is necessary
because routes are evaluated from top to bottom, and parsing stops at the first match found. The
catch-all route maps the request to your application-specific Error controller. (You don’t have an Error
controller out of the box in ASP.NET MVC, but it is highly recommended that you create one on your
own.) The Error controller, in turn, looks at content and headers and then decides which HTTP code to
return. Here’s an example of such an Error controller:

public class ErrorController : Controller
{
 public ActionResult Missing()
 {
 HttpContext.Response.StatusCode = 404;
 HttpContext.Response.TrySkipIisCustomErrors = true;

 // Log the error (if necessary)
 ...

 // Pass some optional information to the view
 var model = ErrorViewModel();
 model.Message = ...;
 ...

 // Render the view
 return View(model);
 }
}

The ErrorViewModel class in the example is any view-model class that you intend to use to pass
data to the underlying view in a strongly typed manner. Using the ViewData dictionary is fine, as well,
and overall it’s an acceptable compromise in this specific and relatively simple context.

By using an error controller, you can improve the friendliness of the application and optimize it for
search engines. In fact, you actually serve a pretty user interface to users while returning a direct (that
is, not redirected) error code to any callers.

Note A catch-all route is simply a route selected for a URL that didn’t match any other
routes. Many routes, however, are matched by the standard route, which overall is quite a
generic catch-almost-all route. In other words, a URL such as /foo matches the default route
and never reaches the catch-all route. Then, if it’s missing a Foo controller, it results in a 404
error. To intercept 404 errors that occur because of an invalid controller name, you should
override the controller factory. (Chapter 7 discusses this in more detail.)

174 PArT II ASP.NET MVC software design

Skipping IIS error-handling policies
In the preceding code snippet, the Missing method on the ErrorController class at some point sets to
true the TrySkipIisCustomErrors property on the Response object. It is a property introduced with ASP.
NET 3.5 that specifically addresses a feature of the IIS 7 integrated pipeline.

When an ASP.NET application (either Web Forms or ASP.NET MVC) runs under IIS 7 within an inte-
grated pipeline, some of the ASP.NET configuration settings will be merged with the settings defined
at the IIS level, as demonstrated in Figure 5-3.

FIGURE 5-3 Defining custom error pages at the IIS level.

In particular, if error pages are defined in IIS for common HTTP status codes, in the default case
these pages will take precedence over the ASP.NET-generated content. As a result, your application
might trap an HTTP 404 error and serve a nice-looking ad hoc page to the user. Like it or not, your
page never makes it to the end user because it is replaced by another page that might be set at the
IIS level.

To ensure that the IIS error handling is always bypassed, you set the TrySkipIisCustomErrors prop-
erty to true. The property is useful only for applications that run under IIS 7 in integrated pipeline
mode. In integrated pipeline mode, the default value of the property is false. The implementation of
the HandleError exception filter, for example, takes this aspect into careful consideration and sets the
property to true.

 CHAPTER 5 Aspects of ASP.NET MVC applications 175

Localization

The entire theme of localization is nothing new in the .NET Framework, and ASP.NET is no exception.
You have had tools to write culture-specific pages since the very first version of ASP.NET. The beauty
is that nothing has changed, so adding localization capabilities to ASP.NET MVC applications is neither
more difficult nor different than in classic ASP.NET.

Considering localization from the perspective of an entire application with a not-so-short expecta-
tion of life, there are three aspects of it that need to be addressed: how to make (all) resources localiz-
able, how to add support for a new culture, and how to use (or whether to use) databases as a storage
place for localized information.

Using localizable resources
Resources are just user interface items that you might want to adapt to a specific culture. Resources
span the entire application and are not limited to text to translate. I recommend forgetting about
old-fashioned ASP.NET Web Forms practices and outlining your own resource management strategy
specific to modern web applications. Such a strategy is based on two pillars: the organization of RESX
resource files, and the granularity of the content.

What’s the role of the RESX file?

A RESX file is ultimately an XML file that is compiled on the fly by the Visual Studio designer. As a
developer, you have some control over the namespace and the access modifier of the class members.
In other words, when you add a resource to the project, you can choose whether to make all of the
properties public or internal (the default) and decide which namespace will group them. A public
modifier is necessary if you’re compiling resources in their own assembly.

Localizable text
Localizable text is the only type of resource that can still comfortably sit in a classic RESX file. From
what I have learned on the battlefield, having a single global file to hold all localizable resources turns
into a not-so-pleasant experience even for a moderately complex application.

One issue is the size of the file, which grows significantly; another issue, which is even more pain-
ful, is the possible concurrent editing that multiple developers might be doing on the same file with
the subsequent need for a continuous merge. However, I encourage you not to overlook the naming
issue. When you have hundreds of strings that cover the entire application scope, how do you name
them? Many strings look the same or differ only in subtle points. Many strings are not entire strings
with some sensible meaning; they often are bits and pieces of some text to be completed with dy-
namically generated content. Trust me: naming a few of them in the restricted context of only some
pages is doable; handling hundreds of them for the entire application is really painful.

Overall, the best approach seems to be having multiple resource files. Ideally, you might want to
consider one RESX per view. This is not necessarily leading to a proliferation of files: for a minimally
complex view, an individual RESX files makes the process of localization far easier and manageable.

176 PArT II ASP.NET MVC software design

As for grouping of files, I’d recommend having a subfolder named after the controller that invokes
the view. In more concrete terms, this means creating a Resources folder in your project that contains
multiple RESX files distributed in a bunch of subfolders organized according to some criteria. It could
be per logical functional area or, probably better, on a per-controller basis. A Shared subfolder might
be good to gather resource files with content referenced from multiple views. Figure 5-4 shows a
Resources folder that groups multiple files.

FIGURE 5-4 A custom Resources folder.

Any string you place in such RESX files is global and can be referenced from any view and control-
ler class. Here’s what you need in Razor:

@using MultiLanguage.Resources.Text;
...
<p>@Strings.OurServices</p

The preceding expression guarantees that either the language-neutral value or the localized value
is retrieved and displayed. The resource manager will pick up the right assembly resource for the cur-
rent culture.

All RESX files that use the default language are compiled to the same assembly as the application.
This is the case for files whose name doesn’t include a culture reference, such as errors.resx, strings.
resx, menus.resx, and so forth. Culture-specific resources are compiled in separate assemblies, one
per culture. You localize text to a culture by adding a new RESX file, named according to the pattern
shown here:

filename.XX.resx

Here, the XX stands for the two-letter name of the culture; for example, it, fr, en, es, de, and so
on. Those localized files are copies of the original (culture-neutral) file and just translate text into the
language.

 CHAPTER 5 Aspects of ASP.NET MVC applications 177

Tip I also suggest that you consider keeping even default resources in their own assembly.
All you need to do is create a new class library project, drop the Resources folder in it (in-
cluding localized versions), and reference the library from the main application.

In ASP.NET MVC, another effective way of organizing files within a project is to group all resources
in the default Content folder. In my current project, I have Scripts, Styles, Images, and Text subfolders
within Content. The Text subfolder contains RESX files, and RESX files are limited to strings.

Localizable files
In ASP.NET MVC, it is common to use the Url.Content method to reference content files such as im-
ages or style sheets. The major benefit of this method is that it transparently converts a relative path
to an absolute path. More specific, the method understands the tilde (~) operator. When used in a
URL, the tilde operator indicates the root path regardless of what it is and regardless of whether your
application is deployed as a root application or a subapplication. For this reason, I always recommend
you reference external files through Url.Content.

Wouldn’t it be great if this method could handle localization, too? You request the path for, say,
welcome.jpg and you get back welcome.it.jpg if the current culture is IT (the country, not the depart-
ment…). The method itself can’t be altered; but, as is illustrated here, writing an extension method
that extends the Url.Content syntax is easy:

public static class UrlExtensions
{
 public static String Content(this UrlHelper helper,
 String contentPath, Boolean localizable=false)
 {
 var url = contentPath;
 if (localizable)
 url = GetLocalizedUrl(helper, url);
 return helper.Content(url);
 }

 public static String GetLocalizedUrl(UrlHelper helper, String resourceUrl)
 {
 var cultureExt = String.Format("{0}{1}",
 Thread.CurrentThread.CurrentUICulture.TwoLetterISOLanguageName,
 Path.GetExtension(resourceUrl));
 var url = Path.ChangeExtension(resourceUrl, cultureExt);

 // Check if localized URL exists, and return file.XX.jpg (or whatever)
 return VirtualFileExists(helper, url) ? url : resourceUrl;
 }

 public static Boolean VirtualFileExists(UrlHelper helper, String url)
 {
 var fullVirtualPath = helper.Content(url);
 var physicalPath = helper.RequestContext.HttpContext.Server.MapPath(fullVirtualPath);
 return File.Exists(physicalPath);
 }
}

178 PArT II ASP.NET MVC software design

Basically, the new Content method is a thin wrapper around Url.Content. The method checks
whether a localized resource exists. If one does exist, the method returns the localized URL; otherwise,
it returns the original URL. Here’s an example of how to use the method:

@using BookSamples.Components.Localization;
...
<link href="@Url.Content("~/content/site.css", localizable:true)" rel="stylesheet" type="text/
css" />

Keep in mind that the type of the resource you reference (image, style sheet, or script) is not rel-
evant; the Content method just processes URLs and changes the extension if conditions apply.

Referencing embedded files
When you embed a file (a script, CSS, or image) in the resource section of an assembly, you need to
do some extra work to retrieve it. On the up side, however, you don’t need to deploy the files sepa-
rately; deploying the assembly is all you need to do.

There are two ways of embedding a resource in an assembly. You can add the resource file to
a RESX file. You open up the RESX file, and use the interface of the designer to pick up an existing
image or create a new one. The image is stored as a bitmap object in the resources of the assembly.
You can retrieve this information by using the ResourceManager class or the GetGlobalResourceObject
method on the HttpContext class. (The latter only works if the RESX files is placed in the old-fashioned
App_GlobalResources folder.) In both cases, you can’t transform the content in the assembly into a
URL that you can attach to an HTML tag. One possibility is to create an ad hoc controller method like
the one shown here:

public Object Image(String name)
{
 var bits = (Bitmap) HttpContext.GetGlobalResourceObject("AllResources", name);
 Response.ContentType = "image/jpeg";
 bits.Save(Response.OutputStream, ImageFormat.Jpeg);
 return bits;
}

The tag looks like this:

A better approach consists of adding the resource to the assembly as an individual embedded re-
source. Figure 5-5 shows how to do it with a JPEG image. You add the image to your project and then
change the build action to Embedded Resource.

 CHAPTER 5 Aspects of ASP.NET MVC applications 179

FIGURE 5-5 Adding an image as an embedded resource.

Next, and more important, you decorate your assembly as one that contains embedded resources.
In the Properties project folder, in the AssemblyInfo file, add the following:

[assembly: WebResource("EmbRes.Content.Images.GermanShep.jpg", "image/jpg")]

The path is just the fully qualified name of the resource. To retrieve the resource, here’s all you
need to do in Razor:

@{
 var p = new Page();
 var url = p.ClientScript.GetWebResourceUrl(typeof(MvcApplication),
 "EmbRes.Content.GermanShep.jpg");
}
...

Another tricky point to consider is the first argument of GetWebResourceUrl. Setting it to the ap-
plication’s type works just fine. Figure 5-6 shows the image displayed.

180 PArT II ASP.NET MVC software design

FIGURE 5-6 Displaying an image from embedded resources.

Localizable views
Views are another part of the application that might need to be adapted to the current locale. In ASP.
NET MVC, you call out the view from within an action method. In addition, each view invoked from
the controller can include partial views that might need to be localized, as well. This means that you
need to add localization capabilities at two levels, using the action method and the extension meth-
ods commonly used to link partial views.

The best way to add localization logic to action methods is through an action filter. In the end, all
you need to do is determine the name of the view algorithmically and call it. An action filter keeps the
code clean and moves localization logic elsewhere, where it can be managed separately. You can read
more about this particular action filter in Chapter 8. For now, let’s focus on HTML extensions to invoke
localized partial views.

In ASP.NET MVC, you use Html.RenderPartial when you just want to render a view; you use
Html.Partial when you want to get back the HTML markup and write it yourself to the stream. Adding
localization logic here is nearly the same process as we used earlier for resource files. Here’s a new
HTML extension method that extends Partial:

 CHAPTER 5 Aspects of ASP.NET MVC applications 181

public static class PartialExtensions
{
 public static MvcHtmlString Partial(this HtmlHelper htmlHelper,
 String partialViewName, Object model, ViewDataDictionary viewData,
 Boolean localizable = false)
 {
 // Attempt to get a localized view name
 var viewName = partialViewName;
 if (localizable)
 viewName = GetLocalizedViewName(htmlHelper, viewName);

 // Call the system Partial method
 return System.Web.Mvc.Html.PartialExtensions.Partial(htmlHelper, viewName, model,
 viewData);
 }

 public static MvcHtmlString Partial(this HtmlHelper htmlHelper, String partialViewName,
 Boolean localizable=false)
 {
 // Attempt to get a localized view name
 var viewName = partialViewName;
 if (localizable)
 viewName = GetLocalizedViewName(htmlHelper, viewName);

 // Call the system Partial method
 return htmlHelper.Partial(viewName, null, htmlHelper.ViewData);
 }

 public static String GetLocalizedViewName(HtmlHelper htmlHelper, String partialViewName)
 {
 var urlHelper = new UrlHelper(htmlHelper.ViewContext.RequestContext);
 return UrlExtensions.GetLocalizedUrl(urlHelper, partialViewName);
 }
}

The structure of the code is quite intuitive. The new method checks whether a localized view exists
according to the established convention. If one does exist, the method proceeds and calls the original
Partial method with the localized name; otherwise, everything proceeds as usual. The extra step can
be controlled through the localizable Boolean parameter:

@using BookSamples.Components.Localization;
...
@Html.Partial("_aboutdetails", localizable:true)

The code for RenderPartial is nearly identical, and you can find it in the source code download.

182 PArT II ASP.NET MVC software design

Dealing with localizable applications
So far, you’ve seen what you can do to deal with individual resources that must be localized. How-
ever, localizing an application requires more than just localizing a collection of single resources. In
particular, you should have a clear idea of what you intend to accomplish by localizing an application.
Do you want your application to support multiple languages but to configure each language at setup
time? Or, do you want the user to be able to switch between a few predefined languages? Or, finally,
is an auto-adapting application what you want to have? Let’s examine the three scenarios.

Auto-adapting applications
An auto-adapting application is an application that in some way decides the culture to use based on
user-provided information. Such an application supports a number of predefined cultures, and it falls
back to the neutral culture when the detected locale doesn’t match any of the supported cultures.
The neutral culture is just the native default language of the application. Neutral resources are those
that don’t have any culture ID in the name.

The most characteristic aspect of an auto-adapting application is how the application determines
the culture to use. This is commonly done in a couple of ways. The most common approach entails
having the application read the list of accepted languages that the browser sends with each request.
Another approach is based on geolocalization, where the server-side part of the application in some
way gets the current location of the user (the IP address or just the client-side geolocalization) and
chooses the culture accordingly. The first approach is gently offered by the ASP.NET runtime; the
second approach requires some extra work on your part and likely uses some extra framework. Let’s
examine the first approach.

In ASP.NET, you use the Culture and UICulture properties to get and set the current culture. You
do that on a per-request basis—for example, from within the constructor of each controller class or
in the constructor of some base controller class. The property Culture governs all application-wide
settings, such as dates, currency, and numbers. The property UICulture governs the language being
used to load resources. These string properties are publicly available from the view classes in both the
ASPX and Razor view engines.

Be aware that the two properties default to the empty string, which means that the default culture
is the culture set on the web server. If culture properties are set to auto, the first preferred language
sent by the browser through the Accept-Languages request header is picked up. To make your views
automatically localized (if resources for that culture are available), you must add the following line to
the web.config file:

<system.web>
 ...
 <globalization culture="auto" uiCulture="auto" />
</system.web>

 CHAPTER 5 Aspects of ASP.NET MVC applications 183

That’s all you need to do (in addition to using localized resources) to get an auto-adapting local-
ized application up and running.

Multilingual applications
Another possible scenario is when you have a multilingual application that is deployed with multiple
localized assemblies but is configured to use only one set of resources. Also, in this case you don’t
need to write ad hoc code anywhere; all you need to do is write the correct information in the global-
ization section of the web.config file:

<system.web>
 ...
 <globalization culture="it" uiCulture="it" />
</system.web>

In addition, of course, you need to have culture-specific resources available so that they can be
invoked automatically by the ASP.NET framework.

Changing culture programmatically
Most of the time, though, what you really want is the ability to set the culture programmatically and
the ability to change it on the fly as the user switches to a different culture by clicking an icon or using
a culture-specific URL.

To change the culture programmatically as you go, you need to satisfy two key requirements. First,
define the policies you’ll be using to retrieve the culture to set. The policy can be a value you read
from some database table or perhaps from the ASP.NET cache. It can also be a value you retrieve
from the URL. Finally, it can even be a parameter you get via geolocation—that is, by looking at the
IP address by which the user is connecting. In any case, at some point you know the magic string that
identifies the culture to set. How do you apply that?

The following code shows what you need to instruct the ASP.NET runtime about the culture to use:

var culture = "..."; // i.e., it-IT
var cultureInfo = CultureInfo.CreateSpecificCulture(culture);
Thread.CurrentThread.CurrentCulture = cultureInfo;
Thread.CurrentThread.CurrentUICulture = cultureInfo;

You pick up the ASP.NET current thread and set the CurrentCulture and CurrentUICulture proper-
ties. Note that the two culture properties might or might not have the same value. For example, you
can switch the language of text and messages according to the browser’s configuration while leaving
globalization settings (such as dates and currency) constant.

The culture must be set for each request because each request runs on its own thread. In ASP.NET
MVC, you can achieve this in a number of ways. For example, you can embed the preceding code in a
base controller class. This forces you to derive any controllers from a given base class. If you find this

184 PArT II ASP.NET MVC software design

unacceptable, or you just prefer to take another route, you can go for a custom action invoker or a
global action filter. (Chapter 8 looks at invokers and action filters in more detail.) In both cases, you
write the code once and attach it to all controllers in a single step. The following is what it takes to use
a global filter for localization:

[AttributeUsage(AttributeTargets.Class|AttributeTargets.Method, AllowMultiple=false,
Inherited=true)]
public class CultureAttribute : ActionFilterAttribute
{
 private const String CookieLangEntry = "lang";

 public String Name { get; set; }
 public static String CookieName
 {
 get { return "_LangPref"; }
 }

 public override void OnActionExecuting(ActionExecutingContext filterContext)
 {
 var culture = Name;
 if (String.IsNullOrEmpty(culture))
 culture = GetSavedCultureOrDefault(filterContext.RequestContext.HttpContext.
 Request);

 // Set culture on current thread
 SetCultureOnThread(culture);

 // Proceed as usual
 base.OnActionExecuting(filterContext);
 }

 public static void SavePreferredCulture(HttpResponseBase response, String language,
 Int32 expireDays=1)
 {
 var cookie = new HttpCookie(CookieName) { Expires = DateTime.Now.AddDays(expireDays) };
 cookie.Values[CookieLangEntry] = language;
 response.Cookies.Add(cookie);
 }

 public static String GetSavedCultureOrDefault(HttpRequestBase httpRequestBase)
 {
 var culture = "";
 var cookie = httpRequestBase.Cookies[CookieName];
 if (cookie != null)
 culture = cookie.Values[CookieLangEntry];
 return culture;
 }

 private static void SetCultureOnThread(String language)
 {
 var cultureInfo = CultureInfo.CreateSpecificCulture(language);
 Thread.CurrentThread.CurrentCulture = cultureInfo;
 Thread.CurrentThread.CurrentUICulture = cultureInfo;
 }
}

 CHAPTER 5 Aspects of ASP.NET MVC applications 185

The CultureAttribute class offers public static methods to read and write a specific culture string
to a custom cookie. The filter overwrites the OnActionExecuting method, meaning that it might kick
in before any controller method runs. For this to happen, though, the filter must be registered as a
global filter. In the implementation of OnActionExecuting, the filter reads the user’s preferred culture
that was previously stored to a cookie and sets it to the current request thread.

The following code shows how to register the filter as a global filter that applies to all controller
methods within the application:

public class MvcApplication : HttpApplication
{
 public static void RegisterGlobalFilters(GlobalFilterCollection filters)
 {
 filters.Add(new HandleErrorAttribute());
 filters.Add(new CultureAttribute());
 }
 ...
}

With this infrastructure in place, you can add links to your pages (typically, the master page) to
switch languages on the fly:

@Html.ActionLink(Menu.Lang_IT, "Set", "Language", new { lang = "it" }, null)
@Html.ActionLink(Menu.Lang_EN, "Set", "Language", new { lang = "en" }, null)

To follow the actions just shown, you need an action method. I prefer to isolate this code to a spe-
cific controller, such as the LanguageController class shown here:

public class LanguageController : Controller
{
 public void Set(String lang)
 {
 // Set culture to use next
 CultureAttribute.SavePreferredCulture(HttpContext.Response, lang);

 // Return to the calling URL (or go to the site's home page)
 HttpContext.Response.Redirect(HttpContext.Request.UrlReferrer.AbsolutePath);
 }
}

The action method simply stores the newly selected language in the store you selected—a custom
cookie in the example—and redirects. Figure 5-9 shows a sample page whose content can be dis-
played in multiple languages.

186 PArT II ASP.NET MVC software design

FIGURE 5-7 An application in which users can switch languages on the fly.

You can apply this approach regardless of the technique you use to determine the desired lan-
guage, whether by choice, IP address, or geolocation.

Note More and more websites check the location from which a user is connected and sug-
gest a language and a culture. This feature requires an API that looks up the IP address and
maps that to a country and then a culture.

Storing localized resources in a database
While discussing localization, it seems inevitable that you have to talk about databases as a
possible store for localized data. Is this an option? You bet. However, there are some pros and
cons to consider.

In the first place, using a database adds latency even though you don’t make a database call
for each segment of a view to be localized. Instead, most likely you’ll read a bunch of records
and probably cache them for a long time. The performance hit represented by using the data-
base in this way is therefore less devastating than one might think at first.

Storing localization data within a database requires a custom localization layer, whereas go-
ing through the classic XML-based approach of resource files doesn’t lead you to writing much
extra code and offers you excellent support from the Visual Studio designers.

When the number of views becomes significant (for example, in the hundreds), the num-
ber of resource items will be at least in the thousands. At this point, managing them can be
problematic. You can have too many assemblies loaded in the AppDomain consuming run-time
memory, and that will have an impact on the overall performance of the site. Hence, a data-
base is probably the best way to go for a large share of localizable content.

 CHAPTER 5 Aspects of ASP.NET MVC applications 187

Data stored within a relational database is easier to manage, query, and cache, and the size
is not an issue. In addition, with a database and a custom localization layer, you gain more
flexibility in the overall retrieval process of local resources. In fact, you can ask the layer for a
group of strings—or, better yet, for raw data—to then be formatted for the needs of the UI.
In other words, a custom localization layer decouples you from maintaining a direct binding
between a resource item and specific pieces of the user interface.

Getting localized data from a service
Yet another option made popular by mobile applications is getting data from a localization service.
The service can be owned by the same team that arranged the site or it can even be some third-party
service. More important, this approach makes it possible for you to add new languages with a minimal
effort but also improve the quality of translated text over time and without redeploying anything new.

Note The external service–based approach and the approach that uses a local database
can be encapsulated in an ASP.NET resource provider—a class using the IResourceProvider
interface.

Summary

An application built with ASP.NET MVC is primarily a web application. Modern web applications have
more numerous requirements than only a few years ago. For example, a web application today must
be SEO-friendly and very likely must support full localization to be able to drive the user’s actions
by employing the user’s specific language and culture. Finally, serving a notorious yellow-screen-of-
death (namely, one of those default error pages of ASP.NET) is hardly acceptable; it still happens, but
it is really a bad statement about the site. (An unhandled error has always been a bad thing, but the
level of forgiveness that users were willing to give only a few years ago is definitely a thing of the past.)

For all these reasons, the infrastructure of any web application (and, in this context, the infrastruc-
ture of ASP.NET MVC applications) needs to be stronger and richer. In particular, you need to pay
more attention to the URLs you recognize and design both for SEO and error handling. You need to
design views and controllers to check the current locale and adjust graphics and messages automati-
cally. You also need to detect the culture and let users switch among the languages that you support.

This chapter offered a detailed overview of how to proceed. In Chapter 6, “Securing your applica-
tion,” we discuss safeguarding an ASP.NET MVC application.

 189

C H A P T E R 6

Securing your application

It does not matter how slowly you go, so long as you do not stop.
—Confucius

Security means a variety of things to users and developers. In a web context, security is related
to preventing injection of malicious code in the running application. Likewise, security relates to

actions aimed at preventing disclosure of private data. Finally, security relates to building applications
(and sections of an application) that only authenticated and authorized users can access.

The aspect of security that application developers deal with more frequently is certainly the au-
thentication and authorization of users. Recently, more and more websites started implementing
authentication also via popular social providers. Although not ideal for just any applications, and even
though it is sometimes ineffective if used as the sole form of membership, social authentication is
going to be more and more popular. As you’ll see later in the chapter, ASP.NET MVC provides facilities
for integrating authentication and authorization via social-oriented apps in websites.

Security in ASP.NET MVC

ASP.NET provides a range of authentication and authorization mechanisms implemented in con-
junction with Internet Information Services (IIS), the Microsoft .NET Framework, and the underlying
security services of the operating system. If IIS and the ASP.NET application are working in integrated
mode—the most common scenario these days with IIS 7 and newer versions—the request goes
through a single pipeline that includes an authentication step and an optional authorization step. If
IIS and ASP.NET are running their own process, some requests might be authenticated or authorized
at the gate by IIS, whereas others (for example, requests for ASPX pages) are handed over to ASP.NET
along with the IIS security token of the authenticated, or anonymous, user.

Originally, ASP.NET supported three types of authentication methods: Windows, Passport, and
Forms. A fourth possibility is None, meaning that ASP.NET does not even attempt to perform its own
authentication and completely relies on the authentication already carried out by IIS. In this case,
anonymous users can connect, and resources are accessed by using the default ASP.NET account.
Although Passport authentication is now obsolete and no longer used, some of its inspiring principles
and purposes are revived and better served by emerging security standards such as OAuth and
OpenID—protocols behind social network authentication.

190 PArT II ASP.NET MVC software design

Authentication and authorization
Windows authentication is seldom practical for real-world Internet applications. Windows authen-
tication is based on Microsoft Windows accounts and NTFS ACL tokens and, as such, assumes that
clients are connecting from devices running Windows. Although this is useful and effective in intranet
scenarios and possibly in some extranet scenarios, Windows authentication is simply unrealistic in
more common situations because web-application users are required to have Windows accounts in
the application’s domain.

Forms authentication is the most commonly used way to collect and validate user credentials; for
example, against a database of user accounts.

Configuring authentication in ASP.NET MVC
In ASP.NET MVC as well as in Web Forms, you choose the authentication mechanism by using the
<authentication> section in the root web.config file. Child subdirectories inherit the authentication
mode chosen for the application. By default, ASP.NET MVC applications are configured to use Forms
authentication. The following code snippet shows an excerpt from the auto-generated web.config file
in ASP.NET MVC (I just edited the logon URL):

<authentication mode="Forms">
 <forms loginUrl="~/Auth/LogOn" timeout="2880" />
</authentication>

Configured in this way, the application redirects the user to the specified logon URL every time the
user attempts to access a URL reserved to authenticated users. But, how would you mark an ASP.NET
MVC URL (for example, a controller method) to require authentication?

restricting access to action methods
You use the Authorize attribute when you want to restrict access to an action method and ensure that
only authenticated users can execute it. Here’s an example:

[Authorize]
public ActionResult Index()
{
 ...
}

If you add the Authorize attribute to the controller class, any action methods on the controller will
be subject to authentication.

 CHAPTER 6 Securing your application 191

[Authorize]
public class HomeController
{
 public ActionResult Index()
 {
 ...
 }

 ...
}

The Authorize attribute is inheritable. This means that you can add it to a base controller class
of yours and ensure that any methods of any derived controllers are subject to authentication. You
should never use the Authorize attribute as a global filter. In fact, the following code would restrict
access to any resource, including the logon page:

public class MvcApplication : System.Web.HttpApplication
{
 public static void RegisterGlobalFilters(GlobalFilterCollection filters)
 {
 // Don't do this!
 filters.Add(new AuthorizeAttribute());
 ...
 }
}

Allowing anonymous callers
ASP.NET MVC supplies another security-related attribute: the AllowAnonymous attribute. When ap-
plied to a method, it instructs the ASP.MVC runtime to let it pass if the caller is not authenticated. The
scenario when the AllowAnonymous method comes in handy is when you apply Authorize at the class
level and then need to enable free access to some methods, logon methods in particular.

handling authorization for action methods
The Authorize attribute is not limited to authentication; it also supports a basic form of authorization.
Any methods marked with the attribute can be executed only by an authenticated user. In addition,
you can restrict access to a specific set of authenticated users with a given role. You achieve this by
adding a couple of named parameters to the attribute, as shown here:

[Authorize(Roles="admin", Users="DinoE, FrancescoE")]
public ActionResult Index()
{
 ...
}

If a user is not authenticated or doesn’t have the required user name and role, the attribute pre-
vents access to the method and the user is redirected to the logon URL. In the example just shown,
only users DinoE or FrancescoE can have access to the method (if they are in the role of Admin). Note
that Roles and Users, if specified, are combined in a logical AND operation.

192 PArT II ASP.NET MVC software design

Authorization and output caching
What if a method that requires authentication and/or authorization is also configured to support out-
put caching? Output caching—specifically, the OutputCache attribute—instructs ASP.NET MVC to not
really process the request every time but return any cached response that was previously calculated
and that is still valid (that is, not expired). With output caching turned on, it can happen that a user
requests a protected URL already in the cache. What should be the behavior?

ASP.NET MVC ensures that the Authorize attribute takes precedence over output caching. In par-
ticular, the output caching layer returns any cached response for a method subject to Authorize only if
the user is authenticated and authorized.

hiding critical user interface elements
You might also want to prevent users from accessing restricted resources by simply disabling or hid-
ing action links and buttons that might trigger restricted action methods. By checking the authentica-
tion state of the current user and any assigned role, you can just turn off the visibility flag of critical
input elements if users don’t have appropriate privileges.

I like this approach, but I would never implement it as the only solution to handle roles and per-
missions. In the end, hiding user interface (UI) elements (which is more effective and simpler than
disabling them) is fine as long as you still restrict access to action methods also by using program-
matic checks.

Separating authentication from authorization
Until the advent of ASP.NET MVC 5, the Authorize attribute was the only security-related action filter
supported by ASP.NET MVC. It can handle authentication and authorization, but it sometimes misses
some details.

To make execution of the method possible, the Authorize attribute requires first and foremost that
the user be authenticated. Next, if Users, Roles, or both are specified, it checks whether the user is also
authorized (by name and role) to access the method. The effect of this is that the attribute doesn’t
ultimately distinguish between users who are not logged on and and those who are but who do not
have the rights to invoke a given action method. In both cases, in fact, the attempt to call the action
method redirects the user to the logon page.

In ASP.NET MVC 5, authentication filters have been added to give you a chance to intervene and
take control of the workflow when authentication fails. However, before digging out authentication
filters, let’s first have a look at how you can improve the Authorize attribute to distinguish between
anonymous users and unauthorized users.

 CHAPTER 6 Securing your application 193

Anonymous or not authorized?
Let’s create an enhanced attribute class that extends the built-in Authorize attribute, as shown here:

public class AuthorizedOnlyAttribute : AuthorizeAttribute
{
 public AuthorizedOnlyAttribute()
 {
 View = "error";
 Master = String.Empty;
 }

 public String View { get; set; }
 public String Master { get; set; }

 public override void OnAuthorization(AuthorizationContext filterContext)
 {
 base.OnAuthorization(filterContext);
 CheckIfUserIsAuthenticated(filterContext);
 }

 private void CheckIfUserIsAuthenticated(AuthorizationContext filterContext)
 {
 // If Result is null, we're OK: the user is authenticated and authorized.
 if (filterContext.Result == null)
 return;

 // If here, you're getting an HTTP 401 status code
 if (filterContext.HttpContext.User.Identity.IsAuthenticated)
 {
 if (String.IsNullOrEmpty(View))
 return;
 var result = new ViewResult {ViewName = View, MasterName = Master};
 filterContext.Result = result;
 }
 }
}

In the new class, you override the OnAuthorization method and run some extra code to check
whether you’re getting an HTTP 401 message. If this is the case, you then check whether the current
user is authenticated and redirect to your own error page (if any). You have View and Master proper-
ties to configure the target error view with instructions for the user.

The net effect is that if you’re getting an HTTP 401 error because the user is not logged on, you’ll
go to the logon page. Otherwise, if the request failed because of authorization permissions, the user
receives a friendly error page. Using the new attribute couldn’t be easier, as is demonstrated here:

[AuthorizedOnly(Roles="admin", Users="DinoE")]
public ActionResult Index()
{
 ...
}

In terms of effectiveness, the presented solution just works, but from a design perspective, it’s
probably less than ideal.

194 PArT II ASP.NET MVC software design

Authentication filters
In ASP.NET MVC 5, an authentication filter is any class that implements the IAuthenticationFilter inter-
face, such as shown here:

public interface IAuthenticationFilter
{
 void OnAuthentication(AuthenticationContext filterContext);
 void OnAuthenticationChallenge(AuthenticationChallengeContext filterContext);
}

The only class in the framework that natively implements the interface is the Controller class. Inter-
nally, authentication filters are the very first set of filters that are invoked on an incoming request. The
method OnAuthentication takes care of the actual authentication logic and decides whether authen-
tication should really take place. You perform here any action that is preliminary to the challenge
through which the user enters credentials or additional information. The OnAuthenticationChallenge
method is where you redirect the user to a logon page or any additional page after authentication
has occurred. A common scenario is redirecting the user to a page where she can enter an email ad-
dress following, for example, an OAuth authentication via Facebook, LinkedIn, or Twitter.

It is important to notice that you don’t need to write authentication filters in order to direct users
to a logon page; authentication filters don’t change the way you write security in your applications.
Authentication filters might only come in handy if you need to customize the default processing of
authentication and authorization. For example, you can create an authentication filter to decide on
the fly whether the request needs be authenticated based on run-time conditions such as parameters
in the URL.

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method, Inherited = true)]
public class OptionalAuthenticationAttribute : FilterAttribute, IAuthenticationFilter
{
 public void OnAuthentication(AuthenticationContext filterContext)
 {
 var page = filterContext.ActionDescriptor.ActionName;
 if (CheckYourRuntimeCondition())
 {
 filterContext.Result = new HttpUnauthorizedResult();
 return;
 }
 else
 {
 }
 }

 public void OnAuthenticationChallenge(AuthenticationChallengeContext filterContext)
 {
 }
}

Instead, you can use the OnAuthenticationChallenge to redirect the user to another page where
she can provide additional data or pass another level of security check.

 CHAPTER 6 Securing your application 195

A quick look at Windows authentication
Although Forms authentication is by far the most common authentication mechanism for ASP.
NET applications, there are some scenarios in which you want to opt for Windows authentica-
tion. Typically, you use the Windows authentication method in intranet scenarios when the
users of your application also have Windows accounts that can be authenticated by the web
server.

When using Windows authentication, ASP.NET works in conjunction with IIS. The real
authentication is performed by IIS, which uses one of its two authentication methods: Basic
or Integrated Windows. After IIS has authenticated the user, it passes the security token on to
ASP.NET. When configured to operate in Windows authentication mode, ASP.NET does not
perform any further authentication steps and just uses the IIS token to authorize access to the
resources.

For example, let’s assume that you configured the web server to work with the Integrated
Windows authentication mode and that you turned off anonymous access. What happens
when a user connects to the ASP.NET application? If the account of the local user doesn’t
match any accounts on the web server or in the trusted domain, IIS displays a dialog box asking
the user to enter valid credentials. Next, if credentials are determined to be valid, IIS generates
a security token and hands it over to ASP.NET.

Implementing a membership system

To authenticate a user, you need some sort of a membership system that supplies methods to man-
age the account of any users. Building a membership system means writing the software and the UI
to create a new user and update or delete existing users. It also means writing the software for editing
any information associated with a user, such as the user’s email address, password, and roles.

How do you create a user? Typically, you add a new record to some data store. Each data store
can have its own set of properties, but core tasks are common and to a large extent abstracted by
the ASP.NET native membership API. In ASP.NET MVC, you build a membership system integrating
the ASP.NET membership API with one or two specific account controllers. A bunch of views and view
model classes complete the infrastructure.

Note The Microsoft Visual Studio tooling for ASP.NET MVC generates a sample application
with full support for authentication and authorization. Although it’s fully functional, the
sample code you get is not exactly a paragon of software virtue. In any of my own signifi-
cant applications, I just wipe out all the autogenerated files and start from scratch, taking
the approach described next.

196 PArT II ASP.NET MVC software design

Defining a membership controller
At a minimum, you need to have a controller that knows how to log users on and off. The following
sample AuthController class shows a possible way of getting one. The following code reworks the
sample AccountController class created by the Visual Studio tooling for ASP.NET MVC:

public class AuthController : Controller
{
 [HttpGet]
 public ActionResult Logon()
 {
 // Just displays the login view
 return View();
 }

 [HttpPost]
 public ActionResult Logon(LogonViewModel model, String returnUrl)
 {
 // Gets posted credentials and proceeds with
 // actual validation
 ...
 }

 public ActionResult Logoff(String defaultAction="Index", String defaultController="Home")
 {
 // Logs out and redirects to the home page
 FormsAuthentication.SignOut();
 return RedirectToAction(defaultAction, defaultController);
 }
}

The Logon method must be split in two: one overload to simply display the logon view, and one to
handle posted credentials and proceed with the actual validation. The Logoff method signs out of the
application and redirects to the specified page—typically, the application’s home page. To sign out,
you use the native forms authentication services of ASP.NET. To top it off, you can also consider add-
ing the following overload for Logoff:

public ActionResult Logoff (String defaultRoute)
{
 FormsAuthentication.SignOut();
 return RedirectToRoute(defaultRoute);
}

The method accepts a route name instead of a controller/action pair to identify the return URL.

Validating user credentials
Figure 6-1 shows a canonical UI for a logon view. It contains two text boxes: one for the user name
and password, and a check box in case the user wants to be remembered on the site.

 CHAPTER 6 Securing your application 197

FIGURE 6-1 A canonical logon view.

Here’s a possible implementation for the controller method that handles data posted from this
form:

[HttpPost]
public ActionResult LogOn(LogonViewModel model, String returnUrl,
 String defaultAction="Index", String defaultController="Home")
{
 var isValidReturnUrl = IsValidReturnUrl(returnUrl);
 if (!ModelState.IsValid)
 {
 ModelState.AddModelError("", "The user name or password provided is incorrect.");
 return View(model);
 }

 // Validate and proceed
 if (Membership.ValidateUser(model.UserName, model.Password))
 {
 FormsAuthentication.SetAuthCookie(model.UserName, model.RememberMe);
 if (isValidReturnUrl)
 {
 return Redirect(returnUrl);
 }

198 PArT II ASP.NET MVC software design

 else
 {
 return RedirectToAction(defaultAction, defaultController);
 }
 }

 // If we got this far, something failed; redisplay form.
 return View(model);
}

Chapter 4, “Input forms,” demonstrates that input data can be collected in a handy data structure
and processed on the server. That’s just what you do with the LogonViewModel class. The returnUrl
parameter is only set if an original request was redirected to a logon view because the user needed to
be authenticated first. In this case, the redirect response contains the new URL in the location header
and the URL includes a returnUrl query string parameter.

Validation occurs through the ASP.NET membership API. If validation is successful, a valid authenti-
cation cookie is created via the FormsAuthentication class. Next, the user is redirected to the originally
requested page or to the home page.

Integrating with the membership API
Centered on the Membership static class, the ASP.NET membership API shields you from the details
of how the credentials and other user information are retrieved and compared. The Membership class
doesn’t directly contain any logic for any of the methods it exposes. The actual logic is supplied by a
provider component.

You select the membership in the configuration file. ASP.NET comes with a couple of predefined
providers that target MDF files in Microsoft SQL Server Express and Active Directory. However, it is
not unusual that you end up creating your own membership provider so that you can reuse any exist-
ing store of users’ data and are in total control over the structure of the data store.

Defining a custom membership provider is not difficult at all. All you do is derive a new class from
MembershipProvider and override all abstract methods. At a minimum, you override a few methods
such as ValidateUser, GetUser, CreateUser, and ChangePassword.

public class PoorManMembershipProvider : MembershipProvider
{
 public override bool ValidateUser(String username, String password)
 {
 ...
 }

 public override MembershipUser GetUser(String username, Boolean userIsOnline)
 {
 ...
 }

 CHAPTER 6 Securing your application 199

 public override MembershipUser CreateUser(String username, String password,
 String email, String passwordQuestion, String passwordAnswer,
 Boolean isApproved, Object providerUserKey,
 out MembershipCreateStatus status)
 {
 ...
 }

 public override Boolean ChangePassword(String username, String oldPassword, String
 newPassword)
 {
 ...
 }

 // Remainder of the MembershipProvider interface
 ...
}

In particular, in the implementation of ValidateUser, you pick up the user name and password and
check them against your database. As a security measure, it is recommended that you store your
passwords in a hashed format. Here’s a quick demo of how to check a typed password against a
stored hashed password:

public override bool ValidateUser(String username, String password)
{
 // Validate user name
 ...

 // Runs a query against the data store to retrieve the
 // password for the specified user. We're assuming that the
 // retrieved password is hashed.
 var storedPassword = GetStoredPasswordForUser(username);

 // No user found
 if (storedPassword == null)
 return false;

 // Hash the provided password and see if that matches the stored password
 var hashedPassword = Utils.HashPassword(password);
 return hashedPassword == storedPassword;
}

The default membership API has been criticized for being cumbersome and in clear violation of
the Interface Segregation Principle—the “I” principle in the popular SOLID acronym (which stands
for Single responsibility, Open-closed, Liskov substitution, Interface segregation and Dependency
inversion principle). The membership API attempts to cover a reasonable number of situations and
is probably too complex and unnecessarily rich for the most common scenarios these days. Creating
a custom membership provider helps, but it doesn’t solve the issue entirely because it only builds a
simpler façade.

200 PArT II ASP.NET MVC software design

Using the SimpleMembership API
If you don’t want to create your own membership layer completely from scratch, another middle-way
option that you can try is represented by the SimpleMembership API, as originally available in ASP.NET
Web Pages.

The SimpleMembership API is just a wrapper on top of the ASP.NET membership API and data
stores. With it, you can work with any data store you have, and it requires only that you indicate which
columns operate as the user name and user ID. The WebSecurity class offers a simplified API with
which to do your membership chores, where the major difference with the classic membership API is
a radically shorter list of parameters for any methods and greater freedom with regard to the schema
of the storage. Here’s how you create a new user:

WebSecurity.CreateUserAndAccount(username, password,
 new{ FirstName = fname, LastName = lname, Email = email });

As a result, until ASP.NET MVC 4, you had two parallel routes for membership implementation:
classic membership API centered on the MembershipProvider class, and simple membership API
centered on the ExtendedMembershipProvider class. The two APIs are incompatible. In ASP.NET MVC 5,
there’s an effort to unify the membership experience. This comes at the cost of adding yet another
API—ASP.NET Identity. I’ll get to ASP.NET Identity in a moment.

Integrating with the role API
Roles in ASP.NET simplify the implementation of applications that require authorization. A role is just
a logical attribute assigned to a user. An ASP.NET role is a plain string that refers to the logical role
the user plays in the context of the application. In terms of configuration, each user can be assigned
one or more roles. ASP.NET looks up the roles for the current user and binds that information to the
User object. ASP.NET uses a role provider component to manage role information for a given user.

The role provider is a class that inherits the RoleProvider class. The schema of a role provider is not
much different from that of a membership provider and shares the same complexity issues, as well. To
keep things simpler or to wrap existing data storage, you might want to create a custom role provider
or switch to the simple role API that is the role counterpart of the simple membership API.

The code snippet that follows shows how to programmatically correlate roles and users. You use
the Roles class, which works on top of the concrete role provider.

// Create Admin role
Roles.CreateRole("Admin");
Roles.AddUsersToRole("DinoE", "Admin");

// Create Guest role
Roles.CreateRole("Guest");
var guests = new String[2];
guests[0] = "Joe";
guests[1] = "Godzilla";
Roles.AddUsersToRole(guests, "Guest")

 CHAPTER 6 Securing your application 201

At run time, information about the logged-on user is available through the HTTP context User
object. The following code demonstrates how to determine whether the current user is in a certain
role and subsequently enable specific functions:

if (User.IsInRole("Admin"))
{
 // Enable functions specific to the role
 ...
}

ASP.NET identity
The purpose of authentication is getting the identity associated with the current user. The identity is
retrieved matching provided credentials to records stored in a database. Subsequently, an identity
system is based on two primary blocks: the user authentication manager and the store manager.

The new ASP.NET Identity system is the offspring of the “One ASP.NET” approach to web develop-
ment that Visual Studio 2013 heralds, and is slated to become the preferred way to handle user
authentication in all ASP.NET applications, whether based on Web Forms or MVC. The main purpose
of ASP.NET Identity—the standard way of authenticating users in Visual Studio 2013 and ASP.NET
MVC 5—is to unify the approach to authentication by factoring out the entire system in two key com-
ponents and using dependency injection to keep the entire system easily testable.

In the ASP.NET Identity framework, the authentication manager takes the form of the
UserManager<TUser> class. This class basically provides a façade for signing users in and out. The
UserManager class is declared as follows:

public class UserManager<TUser> : IDisposable where TUser : IUser
{
 :
}

The type TUser refers to the current description of the user to be managed. The IUser interface
contains a very minimal definition of the user, limited to ID and name. The ASP.NET Identity API
defines the IdentityUser type that implements the IUser interface and adds a few extra properties.

public class IdentityUser : IUser
{
 public string Id { get; }
 public string UserName { get; set; }
 public string PasswordHash { get; set; }
 public string SecurityStamp { get; set; }
 public ICollection<IdentityUserRole> Roles { get; private set; }
 public ICollection<IdentityUserClaim> Claims { get; private set; }
 public ICollection<IdentityUserLogin> Logins { get; private set; }
}

202 PArT II ASP.NET MVC software design

The sample ASP.NET MVC 5 application you get out of the Visual Studio 2013 wizard also features
the ApplicationUser class that just inherits from IdentityUser but makes things ready for further exten-
sion. You can easily add extra profile data for the user your application is going to handle by adding
more properties to the following class:

public class ApplicationUser : IdentityUser
{
}

The central class for user storage is UserStore<TUser>. The TUser type must be IdentityUser or a
further inherited class such as ApplicationUser. The user store class implements the IUserStore inter-
face which summarizes the actions allowed on the user store.

public interface IUserStore<TUser> : IDisposable where TUser : IUser
{
 Task CreateAsync(TUser user);
 Task DeleteAsync(TUser user);
 Task<TUser> FindByIdAsync(string userId);
 Task<TUser> FindByNameAsync(string userName);
 Task UpdateAsync(TUser user);
}

As you can see, the user store interface looks a lot like a canonical repository interface like those
you might build around a data access layer. The UserManager<TUser> and UserStore<TUser> classes
live in different namespaces and assemblies. In particular, UserManager lives in Microsoft.AspNet.
Identity.Core, whereas UserStore is defined in Microsoft.AspNet.Identity.EntityFramework and has some
dependency on the actual storage technology.

The entire infrastructure is glued together in the account controller class. Here’s the skeleton of an
ASP.NET MVC account controller class that is fully based on the ASP.NET Identity API:

public class AccountController : Controller
{
 public UserManager<ApplicationUser> UserManager { get; set; }
 public AccountController(UserManager<ApplicationUser> manager)
 {
 UserManager = manager;
 }
 public AccountController() : this(
 new UserManager<ApplicationUser>(new UserStore<ApplicationUser>(new
ApplicationDbContext())))
 {
 }
 ...
}

The controller holds a reference to the authentication identity manager. An instance of the authen-
tication identity manager is injected in the controller.

The identity store is injected in the identity manager where it is used to verify credentials. The
identity store needs to know about the actual data source though. User data is managed through

 CHAPTER 6 Securing your application 203

Entity Framework Code First. This means that you don’t strictly need to create a physical database to
store your users’ credentials; instead, you can define an ApplicationUser class and have the underlying
framework create the most appropriate database to store such records. The link between user store
and data store is established in the ApplicationDbContext class that the wizard creates for you.

public class ApplicationDbContext : IdentityDbContext<ApplicationUser>
{
 public ApplicationDbContext() : base("DefaultConnection")
 {
 }
}

The base IdentityDbContext class inherits from DbContext and is dependent on Entity Framework.
Right from the constructor, you see that the class refers to an entry in the web.config file where the
actual connection string is read.

The use of Entity Framework Code First is a great move here because it makes the structure of the
database a secondary point. You still need one, but you can have the code to create one based on
classes. In addition, you can use Entity Framework Code First Migration tools to modify a previously
created database as you make changes to the class behind it. (See http://msdn.microsoft.com/data/
jj591621.aspx)

Authenticating users by using ASP.NET Identity
ASP.NET Identity is also based on the newest Open Web Interface for .NET (OWIN) authentication
middleware. This means that the typical steps of authentication (cookies check and creation) can be
carried out through the abstract OWIN interfaces and not directly in ASP.NET/IIS interfaces. Support
for OWIN requires that the account controller has another handy property, such as the following:

private IAuthenticationManager AuthenticationManager
{
 get {
 return HttpContext.GetOwinContext().Authentication;
 }
}

The IAuthenticationManager interface is defined in the Microsoft.Owin.Security namespace. This
property is crucial because it needs to be injected in any operation that involves authentication-
related steps. Let’s have a look at a typical logon method.

private async Task SignInAsync(ApplicationUser user, bool isPersistent)
{
 AuthenticationManager.SignOut(DefaultAuthenticationTypes.ExternalCookie);
 var identity = await UserManager.CreateIdentityAsync(user,
 DefaultAuthenticationTypes.ApplicationCookie);
 AuthenticationManager.SignIn(
 new AuthenticationProperties() { IsPersistent = isPersistent }, identity);
}

http://msdn.microsoft.com/data/jj591621.aspx
http://msdn.microsoft.com/data/jj591621.aspx

204 PArT II ASP.NET MVC software design

For registering a new user, you need the following code:

var user = new ApplicationUser() { UserName = model.UserName };
var result = await UserManager.CreateAsync(user, model.Password);
if (result.Succeeded)
{
 await SignInAsync(user, isPersistent: false);
 return RedirectToAction("Index", "Home");
}

All in all, ASP.NET Identity provides a unified API for most of the tasks related to authentication.
Personally, I like the expressiveness of the API and the attempt to fuse together different forms of
authentication—built-in and OAuth-based, for example. Another great plus is the integration with
OWIN which makes it kind of independent from a specific runtime such IIS/ASP.NET. Whether you use
it in the current project or not, you should definitely look at ASP.NET Identity.

The remember-Me feature and Ajax
Today, nearly any logon view features a check box labeled “Remember me” or “Keep me logged on,”
as Facebook does. Selecting the box usually results in an authentication cookie that lasts longer; how
much longer depends on the code behind the page. The flag just indicates the user’s preference of
getting a more persistent cookie that keeps him connected to the site for a longer time without hav-
ing to retype credentials.

If the cookie expires, on the next access the user will be automatically redirected to the logon page
and politely asked to re-enter his user name and password. This pattern is not new, and every devel-
oper is used to it. However, it might give you a few problems in an Ajax scenario.

reproducing the problem
Imagine that a user clicks somewhere and places an Ajax call to the server. Imagine also that the au-
thentication cookie has expired. Subsequently, the server returns an HTTP 302 status code, which re-
directs the user to the logon page. This is just what one would expect, isn’t it? What’s the issue, then?

In an Ajax scenario, it’s the XMLHttpRequest object, not the browser, that handles the request.
XMLHttpRequest correctly handles the redirect and goes to the logon page. Unfortunately, the
original issuer of the Ajax call will get back the markup of the logon page instead of the data it was
expecting. As a result, the logon page will likely be inserted in any DOM location where the original
response was expected, as illustrated in Figure 6-2.

 CHAPTER 6 Securing your application 205

FIGURE 6-2 An Ajax request to a restricted URL injects the logon view.

Solving the problem
To work around the issue, you must intercept the request during the authorization stage and verify
that it is an Ajax request. If it is and if the request is being rejected, you hook up the status code and
change it to 401. The client-side script you have then takes that into account and displays the proper
HTML, as demonstrated here:

<script type="text/javascript">
 function failed(xhr, textStatus, errorThrown) {
 if (textStatus == "error") {
 if (xhr.status === 401) {
 $("#divOutput").html("You must be logged in.");
 }
 }
 }
</script>

206 PArT II ASP.NET MVC software design

The failed JavaScript function is the callback used by the Ajax infrastructure (as discussed in Chap-
ter 4) when a form post or a link request fails. Here’s the code for the form in Figure 6-2:

@using (Ajax.BeginForm("Now", "Home",
 new AjaxOptions { UpdateTargetId = "divOutput", OnFailure="failed" }))
{
 <input type="submit" value="What time is it?" />
}
<hr />
<div id="divOutput">
</div>

The real work is done by a slightly revised version of the Authorize attribute. All in all, you can just
extend the AuthorizedOnly attribute, as shown next, and use it in any case in which restricted access
to a method is necessary. Replace the previous implementation of the internal method CheckIfUserIs
Authenticated with this one:

private void CheckIfUserIsAuthenticated(AuthorizationContext filterContext)
{
 // If Result is null, we're OK
 if (filterContext.Result == null)
 return;

 // Is this an Ajax request?
 if (filterContext.HttpContext.Request.IsAjaxRequest())
 {
 // For an Ajax request, just end the request
 filterContext.HttpContext.Response.StatusCode = 401;
 filterContext.HttpContext.Response.End();
 }

 // If here, you're getting an HTTP 401 status code
 if (filterContext.HttpContext.User.Identity.IsAuthenticated)
 {
 var result = new ViewResult {ViewName = View, MasterName = Master};
 filterContext.Result = result;
 }
}

With this final update, the AuthorizedOnly attribute has now become the definitive replacement
for the system’s Authorize attribute. Here’s a sample restricted controller method that can be invoked
both via Ajax and regular posts. Figure 6-3 shows the desired effect.

[AuthorizedOnly]
public ActionResult Now()
{
 ViewBag.Now = DateTime.Now.ToString("hh:mm:ss");
 if (Request.IsAjaxRequest())
 return PartialView("aNow");
 return View();
}

 CHAPTER 6 Securing your application 207

FIGURE 6-3 No logon view shows up in case of Ajax requests.

Note The Remember-Me problem manifests only if you are using Ajax.BeginForm (or
partial rendering). If you are making direct calls to an HTTP endpoint and are updating
the user interface according to the response you get, everything is under your control.
Moreover, if you’re calling an endpoint that returns JavaScript Object Notation (JSON)
instead of HTML, you have more chances to understand the response and process it
accordingly.

External authentication services

Implementing your own authentication layer in a site is definitely an option. These days, however, it is
becoming just one option, and it’s probably not even the most compelling one for users. By imple-
menting your own authentication layer, you make yourself responsible for storing passwords safely
and charge your team with the extra work required to fully manage an account. From the perspective
of users, any new sites they’re interested in might add a new user name/password pair to the list. For
a user, a forgotten password is really frustrating.

208 PArT II ASP.NET MVC software design

Years ago, the Microsoft Passport initiative was an early attempt to make users’ lives easier when
they moved across a few related sites. With Passport, users just needed to do a single logon and, if
they were successfully authenticated, they could freely navigate through all the associated sites.

The Passport initiative, and its related API, is now officially considered obsolete because it was su-
perseded by OpenID (http://openid.net). For websites that depend on lots of traffic and a large audi-
ence, the OpenID authentication is an interesting feature to have on board that can really help attract
and retain more and more visitors to the site.

The OpenID protocol
The main purpose of OpenID is to make access to a website easier, quicker, and especially, not annoy-
ing for end users. The visitors of any sites that support OpenID can sign in using an existing iden-
tity token that has been issued by another site. An OpenID-enabled website authenticates its users
against an existing (external) identity provider and doesn’t need to store passwords and implement a
membership layer.

Although offering the standard, site-specific membership solution remains an option, many sites
today also make it possible for visitors to use an OpenID they received from some provider for au-
thenticating. One form or authentication doesn’t exclude the other.

Figure 6-4 provides an overall view of the authentication logic employed by a site that supports
OpenID. When the user clicks to sign in with one of the supported OpenIDs, the site connects to the
specified provider and gets an access token about the user. The user might be requested to type in
credentials for the OpenID provider site. A user who is already logged on with the provider is auto-
matically logged on also with the site of interest. In this case, the few redirects taking place under the
hood never show intermediate pages and the transition is as smooth as within two distinct pages of
the same application.

FIGURE 6-4 Authenticating via OpenID.

Your site doesn’t have to be an OpenID identity provider, but it can easily become a consumer of
identity tokens supplied by a few of the OpenID providers available today. Yahoo!, Flickr, and Google
are popular OpenID providers. Overall, OpenID is not different from the original Windows Live ID,
except that it relies on a number of service providers and doesn’t force people to get yet another
account from a specific provider. By supporting OpenID, you make it possible for your users to log on
to your site by using whatever credentials they already have. Users can essentially choose from where
they log on.

http://openid.net

 CHAPTER 6 Securing your application 209

Identifying users through an OpenID provider
There are quite a few libraries that help integrate OpenID into websites. A very popular one for .NET
developers is DotNetOpenAuth (DNOA), available from http://www.dotnetopenauth.net. Figure 6-5
shows a sample application using the DNOA library to perform authentication against any valid
OpenID URL that the user can provide.

FIGURE 6-5 A sample application for connecting to any OpenID provider you might know of.

As a developer, the first piece of information you should grab is the OpenID URL of the service (or
services) that you intend to support. This information might be the same for each user or it can differ
for each user. For example, Google and Yahoo! always use the same URL regardless of the user. Here
are the URLs for Google and Yahoo!, respectively:

■■ https://www.google.com/accounts/o8/id

■■ http://yahoo.com

The provider in this case will figure out from the details of the request (for example, a cookie) the
account name of the user to authenticate. If no details can be gleaned, or the user is not currently logged
on to the service, the service displays a logon page to collect credentials and redirects back if all is fine
(possibly with a cookie for further access). Other providers such as myOpenID (http://www.myopenid.com)
require a different URL for each user. User-specific URLs are of the form http://name.myopenid.com. The
service recognizes the account name from the URL and then proceeds as shown earlier.

http://www.dotnetopenauth.net
https://www.google.com/accounts/o8/id
http://yahoo.com
http://www.myopenid.com

210 PArT II ASP.NET MVC software design

As a developer, if you intend to support an OpenID provider that uses a fixed URL, you can avoid
the text box shown in Figure 6-5 and replace it with a link or a button. In general, you might want to
reduce typing on the user’s part to a minimum. For example, for myOpenID, all you really need is the
first part of the URL. Here’s the HTML for the small form shown in Figure 6-5:

@using (Html.BeginForm("authenticate", "auth", new { returnUrl = Request.
QueryString["ReturnUrl"] }))
{
 <label for="openid_identifier">OpenID URL: </label>
 <input id="openid_identifier" name="openid_identifier" size="40" />

 @Html.ValidationMessage("openid_identifier")

 <input type="submit" value="Sign in" />
}

The sign-in button posts to a method such as the one shown here:

public ActionResult Authenticate(String returnUrl, [Bind(Prefix="openid_identifier")]String url)
{
 // First step: issuing the request and returning here
 var response = RelyingParty.GetResponse();
 if (response == null)
 {
 if (!RelyingParty.IsValid(url))
 return View("Logon");

 try
 {
 return RelyingParty.CreateRequest(url).RedirectingResponse.AsActionResult();
 }
 catch (ProtocolException ex)
 {
 ModelState.AddModelError("openid_identifier", ex.Message);
 return View("LogOn");
 }
 }

 // Second step: redirected here by the provider
 switch (response.Status)
 {
 case AuthenticationStatus.Authenticated:
 FormsAuthentication.SetAuthCookie(response.ClaimedIdentifier, true);
 return Redirect(returnUrl);

 case AuthenticationStatus.Canceled:
 return View("Logon");

 case AuthenticationStatus.Failed:
 return View("Logon");
 }
 return new EmptyResult();
}

 CHAPTER 6 Securing your application 211

In the preceding code, the method belongs to a controller class that has a RelyingParty property
defined as follows:

protected static OpenIdRelyingParty RelyingParty = new OpenIdRelyingParty();

The controller of the example is derived from a base class that just provides the RelyingParty property.

The type OpenIdRelyingParty is defined in the DNOA library. The authentication develops in two
phases within the same controller method. The method CreateRequest prepares the proper HTTP
request and associates it with the specified OpenID URL. The provider receives instructions to redirect
back to the same URL and the same controller method. The second time, though, the response is not
null, and you can create a regular ASP.NET authentication cookie for which the user name is the name
of account as returned by the OpenID provider.

Note that you have no control over this aspect—the provider decides what to return as the friendly
name of the authenticated user. For example, for security reasons, Google doesn’t return any signifi-
cant friendly name; the FriendlyIdentifierForDisplay property is set to the generic OpenID URL. When
you use myOpenID, it sets the FriendlyIdentifierForDisplay of the response to the URL, simply remov-
ing the scheme information and any trailing slash. To finalize the integration with the ASP.NET au-
thentication infrastructure, you need to create a regular authentication cookie so that the user name
can be displayed in the logon area. Figure 6-6 shows the authentication step through the myOpenID
provider.

FIGURE 6-6 The authentication phase via myOpenID.

212 PArT II ASP.NET MVC software design

Figure 6-7 shows the page that is displayed after the user has been successfully authenticated by
myOpenID and returns to the originally requesting site.

FIGURE 6-7 User authenticated via myOpenID.

The user name depends on the first parameter you pass when you create the cookie. (The second
argument is whether you want a persistent cookie to keep the user logged on.)

FormsAuthentication.SetAuthCookie(response.ClaimedIdentifier, true);

The name you use here is up to you. If you still maintain a list of application-specific nicknames,
you can map the claimed identifier to the nickname and display the nickname. Or, you can simply up-
date the UI to notify the user of the successful sign-in without displaying any user name. Yet another
option is to create a slightly customized authentication cookie where you use the UserData property
of the authentication ticket (the actual content of the cookie) to persistently store the friendly name
to display. The benefit of this approach is that you save both the claimed identifier and your own
adapted friendly name. Here’s an extension method that creates a custom authentication cookie:

 CHAPTER 6 Securing your application 213

public delegate String UserNameAdapterDelegate(String userName);
public static HttpCookie CreateAuthCookie(this IAuthenticationResponse response,
 Boolean persistent = true,
 UserNameAdapterDelegate fnAdapter = null)
{
 var userName = response.ClaimedIdentifier;
 var userDisplayName = response.FriendlyIdentifierForDisplay;
 if (fnAdapter != null)
 userDisplayName = fnAdapter(userDisplayName);

 return CreateAuthCookie(userName, userDisplayName, persistent);
}

private static HttpCookie CreateAuthCookie(String username,
 String userDisplayName,
 Boolean persistent)
{
 // Let ASP.NET create a regular authentication cookie
 var cookie = FormsAuthentication.GetAuthCookie(username, persistent);

 // Modify the cookie to add friendly name
 var ticket = FormsAuthentication.Decrypt(cookie.Value);
 var newTicket = new FormsAuthenticationTicket(ticket.Version,
 ticket.Name, ticket.IssueDate, ticket.Expiration, ticket.IsPersistent,
userDisplayName);
 cookie.Value = FormsAuthentication.Encrypt(newTicket);

 // This modified cookie MUST be re-added to the Response.Cookies collection
 return cookie;
}

Here’s a slightly modified version of the Authenticated method in the controller that takes this
extension method into account:

switch (response.Status)
{
 case AuthenticationStatus.Authenticated:
 var cookie = response.CreateAuthCookie(true, StopAtFirstToken);
 Response.Cookies.Add(cookie);
 if (isValidReturnUrl)
 return Redirect(returnUrl);
 return RedirectToAction("Index", "Home");
 ...
}

The delegate UserNameAdapterDelegate indicates the template of a function that you can inject to
determine the friendly name to be displayed.

public String StopAtFirstToken(String name)
{
 var tokens = name.Split('.');
 return tokens[0];
}

214 PArT II ASP.NET MVC software design

Finally, you need to edit the logon view to display the content of the UserData field in the cookie
instead of the canonical user name.

@if(Request.IsAuthenticated) {
 <text>Welcome @(((FormsIdentity)User.Identity).Ticket.UserData)!
 [@Html.ActionLink("Log Off", "LogOff", "Auth")]</text>
}

Figure 6-8 shows the result.

FIGURE 6-8 The user is logged on, and a custom nickname is shown.

Note When you need to add more data to the authentication cookie, the UserData prop-
erty of the internal ticket structure is the first option to consider. The UserData property
exists exactly for this purpose. However, you can always create an additional and entirely
custom cookie or just add values to the authentication cookie. The name of the authentica-
tion cookie results from the value of the property FormsAuthentication.FormsCookieName.

OpenID vs. OAuth
OpenID is a single–sign-on scheme and, as such, it just aims to uniquely identify users in the simplest
possible way. OpenID is not related to granting users access to resources managed by the service
provider. Or, put another way, the only resources that an OpenID provider manages are the identities
of registered users.

The advent of social networks such as Facebook, Twitter, and LinkedIn put the classic single–sign-
on problem under a different light. Not only do users want to use a single (popular) identity to log on

 CHAPTER 6 Securing your application 215

to multiple sites without registering every time, but they also want to be granted some permissions
to a site to access information and resources they have on the site, such as posts, tweets, followers,
friends, contacts, and so forth.

OAuth (http://oauth.net) is another single–sign-on scheme with additional capabilities as compared
to OpenID. A website that acts as an OAuth provider operates as an identity provider, and when
the user logs on, the OAuth provider specifies permissions on resources. A website that offers OAuth
authentication just acts as the client of a provider using the specific OAuth protocol. Such a website au-
thenticates users and gains an access token it can further use to access resources (for example, merge
tweets or contacts with its own user interface). Finally, from the user’s perspective, OAuth grants a
website (or desktop application) user’s controlled access to one account without giving away logon
details.

Popular OAuth providers are Twitter and Facebook.

Note Overall, I don’t think that as a website developer you need to make a choice between
using OpenID or OAuth for authentication. You decide which external provider you want to
authenticate against (for example, Twitter) and then go with the API it requires, whether it’s
OpenID, OAuth, or a proprietary API. If you’re developing a website and want to allow your
users to share their account (and related information) with other sites, you make a decision
between OpenID, OAuth, or a proprietary protocol. In this case, I recommend you consider
OAuth as the first option.

Important Authentication via social networks is a required feature today by all those web-
sites that are expected to have a consumer target. Authentication via social networks is
appreciated by users because it saves them the burden of creating yet another account and
remembering yet another pair of credentials. At the same time, though, social networks
might hide pieces of information about the user that are essential for developers of web-
sites. If you request users to log on, it’s likely that you want to capture their email address.
This might not be easy to achieve via social networks. For this reason, it is becoming com-
mon that consumer-oriented websites first give you the option to authenticate via Twitter
or Facebook and then ask you to finalize the logon or registration step by entering an email
address as well as some other personal information.

Authenticating via social networks
Let’s see what it takes to authenticate users via Twitter and Facebook. In the next example, we’ll use
the same DNOA library to encapsulate the details of the protocols. I’ll limit the code to authentication
(OpenID and OAuth overlap somewhat in the examples of this chapter) but will call out the points
where OAuth extends the OpenID scheme.

http://oauth.net

216 PArT II ASP.NET MVC software design

registering your application with Twitter
Dealing with an OAuth provider requires some preliminary steps. First and foremost, you must reg-
ister your application with the social network and get two strings: the consumer key and consumer
secret. You’ll be embedding these strings in any further programmatic request to the provider.

The process is nearly identical for Facebook and Twitter. I’ll discuss Twitter here. The entire process
begins at http://dev.twitter.com. Figure 6-9 shows the configuration page for an existing application.

FIGURE 6-9 Registering an application with Twitter.

In particular, you set the application type and the default permission you require on the user’s
resources. The Callback URL field deserves some attention. The URL is where Twitter returns after
successfully authenticating a user. You don’t likely want this URL to be constant. However, Twitter
requires that you don’t leave the field blank if your application is a web application. If you leave the
field blank because you intend to specify the callback URL on a per-call basis, Twitter overwrites the
application type settings, forcing it to a desktop application. The net effect is that any attempts to
authenticate any users return unauthorized. Assigning any URL, including one that results in a 404
message (as shown in the example), will work.

http://dev.twitter.com

 CHAPTER 6 Securing your application 217

Enabling social authentication in ASP.NET MVC
Until ASP.NET MVC 4, you had to code your way to Twitter and Facebook for authentication. The
DNOA library does help a lot, but all it offers it a low-level programming interface that is very
close to the very metal of the OAuth protocol. In ASP.NET MVC, you find available a new class—the
OAuthWebSecurity class—that offers full support for OAuth authentication. In particular, the class
offers a few handy methods ready to plug in most popular social networks that support OAuth.

Authentication methods take the form of RegisterXxxClient. Available methods exist for Twitter,
Facebook, Google, LinkedIn, Yahoo, and Microsoft.

If you start your ASP.NET MVC project from the standard template, you find the following code
invoked from global.asax:

OAuthWebSecurity.RegisterTwitterClient(
 consumerKey: "...",
 consumerSecret: "...");

OAuthWebSecurity.RegisterFacebookClient(
 appId: "...",
 appSecret: "...");

To be precise, this code is commented out and must be completed with actual keys and secrets for
the social application in the background. Even if you don’t use any of the standard project templates,
however, a look at the source code for social authentication in the default template is recommended.

By simply having the preceding two lines of code, you get the the results shown in Figure 6-10 out
of the predefined ASP.NET MVC template.

FIGURE 6-10 A sample logon page with a dual interface.

218 PArT II ASP.NET MVC software design

If the user types a user name and password and clicks Log In, everything takes place as usual and
the burden of validation and credentials storage is on you. Otherwise, the user will be redirected to
either Twitter or Facebook to be authenticated. If authentication is successful she will be redirected
back.

The entire process is coded using the DNOA library; ASP.NET MVC, though, offers some wrapper
classes that streamline coding and, more important, provide scaffolding for grabbing user informa-
tion via social networks and then saving data to the local membership system.

Important I don’t know how many developers actually start building their ASP.NET MVC
applications from the Visual Studio standard templates. However, as far as social authen-
tication is concerned, the patterns implemented in the standard template are definitely
worth a look.

Starting the authentication process
When the user clicks the Twitter (or Facebook) button, the site ends up invoking the ExternalLogin
method on the Account controller. Here’s the code involved:

public ActionResult ExternalLogin(String provider, String returnUrl)
{
 return new ExternalLoginResult(provider,
 Url.Action("ExternalLoginCallback",
 new { ReturnUrl = returnUrl }));
}

The ExternalLoginResult class is a wrapper for the following code that really does the job of con-
tacting the authentication gateway:

OAuthWebSecurity.RequestAuthentication(Provider, ReturnUrl);

The ExternalLoginResult class is a helper class that is also found in the AccountController.cs file. You
should note that in the project template code the name of the provider is resolved by looking at the
name attribute of the button.

<button type="submit"
 name="provider"
 value="@p.AuthenticationClient.ProviderName"
 title="Log in using your @p.DisplayName account">
 @p.DisplayName
</button>

At the end of the day, the RequestAuthentication method receives the name of the authentication
provider (Twitter, Facebook, or any of the other supported providers) and the URL to return. You can
also provide this information through a direct call right from a logon controller method.

When the request arrives at the Twitter site, the user is redirected to the authorization page shown
in Figure 6-11.

 CHAPTER 6 Securing your application 219

FIGURE 6-11 The user authenticates on Twitter and authorizes the requesting application to access account
information.

If the user (me, in this case) is already logged on to Twitter, he’s simply asked to authorize the
requesting application. Otherwise, he first needs to sign in with Twitter and then authorize. Next,
Twitter redirects back to the specified URL.

Dealing with the Twitter response
If the user enters credentials that Twitter (or the social network of choice) recognizes as valid, the
Twitter site redirects back to the provided return URL. The next method with which you regain control
past the authentication is ExternalLoginCallback.

What you know at this point is only that the user who’s trying to access your application has been
successfully recognized as a Twitter user. You don’t know anything about her; not even the user name.
I can hardly think of an application that needs authenticated users and can blissfully ignore user name or
email address. Back from the authentication step, the application only receives a code but has not
been authorized yet to access the Twitter API programmatically. For this to happen, the code received
at this stage must be exchanged for an access token (usually time-limited to prevent misuse). This is the
purpose of the call to the VerifyAuthentication method you find in the body of ExternalLoginCallback.

The AuthenticationResult object you get back from VerifyAuthentication brings back some infor-
mation about the user. The actual information you get might be slightly different depending on the
provider; however, it usually contains at least the user name.

220 PArT II ASP.NET MVC software design

From authentication to membership
Authenticating a user is only the first step; next, you need to track the user by name within the site.
In a classic ASP.NET membership system, you first display a logon form, validate credentials, and then
create an authentication cookie stuffed with user name and optionally other key information. Twitter
and Facebook save you the burden of arranging a logon form and validating the credentials plus the
nontrivial burden of storing and managing accounts with sensitive information such as passwords.

The bottom line, though, is that nearly any application that needs authenticated users also needs
a membership system within which each regular user is tracked by name. Building such a system is
still a task you must accomplish on your own. As mentioned, the ASP.NET MVC basic template comes
to the rescue by offering an extra step during which the user is automatically given a chance to enter
her display name which is then saved to a local membership table. This is required only the first time a
user logs on to a given site. In other words, the form shown in Figure 6-12 serves the purpose of join-
ing registration and first logon.

FIGURE 6-12 Completing the logon process with the registration to the site

The name entered at this stage is used to create the ASP.NET authentication cookie which defi-
nitely closes the circle: you used Twitter to check credentials, asked the user to enter her display name,
and created a regular authentication cookie. From now on, everything works as usual in ASP.NET for
sites subject to authentication.

Important Whether you decide to merge logon and registration, it is necessary that you
nonetheless manage to create a classic ASP.NET authentication cookie using the user name
returned by the OAuth provider (if any).

 CHAPTER 6 Securing your application 221

The sample application, which is heavily based on the default ASP.NET MVC project template,
saves user data to an MDF local database created under the App_Data folder. The table is managed
by using the simple membership API inherited from the Web Pages framework.

The following code shows how the sample project template retrieves the user display name pre-
sented in Figure 6-12.

var loginData = OAuthWebSecurity.SerializeProviderUserId(
 result.Provider, result.ProviderUserId);
var name = OAuthWebSecurity
 .GetOAuthClientData(result.Provider)
 .DisplayName;
return View("ExternalLoginConfirmation",
 new RegisterExternalLoginModel {
 UserName = result.UserName,
 ExternalLoginData = loginData
 });

The call to GetOAuthClientData is where you access any information that the Twitter provider
shares about the logged user. Next, the view ExternalLogicConfirmation provides the actual markup of
Figure 6-12. When the user clicks to register, another call back to the account controller is made, pre-
cisely to the method ExternalLoginConfirmation. In the body of this method, two key things happen,
which are summarized by the following code:

OAuthWebSecurity.CreateOrUpdateAccount(
 provider, providerUserId, model.UserName);
OAuthWebSecurity.Login(
 provider, providerUserId, createPersistentCookie: false);

The first line sets up the new record in the membership local database for the application. The
second line actually creates the authentication cookie. The default template provides for a bunch a
database tables such as UserProfiles and webPages_OAuthMembership. The latter table stores the
record with the name of the provider (for example, Twitter), the provider unique ID for the user, and
a pointer to an internal ID that uniquely identifies the user in the UserProfiles table with the display
name the user himself has chosen on the page in Figure 6-12.

Important To test the Twitter authentication, you need a real consumer key/consumer
secret pair, but you don’t strictly need to test it from a public web server. You can do every-
thing comfortably from your Visual Studio environment and use localhost:port as the root
of the callback URL.

Beyond authentication
Although most websites just use social networks to authenticate users, as described in the preceding
sections, there’s a lot more that they can do. After the user’s credentials are verified, nearly any ex-
ternal providers (and surely Twitter and Facebook) return an alphanumeric string known as the access
token.

222 PArT II ASP.NET MVC software design

The access token is an important piece of information because it authorizes the website to operate
on the social network on behalf of the user and within the range of permissions required and granted
by the user, as depicted in Figure 6-9. In a nutshell, grabbing and storing the access token is not
important if you only want to authenticate a user, but it becomes essential when you want to provide
more functionality, such as post on behalf of the user or just retrieve more personal information.

Note An access token might not last forever. For example, Facebook tokens tend to expire
quickly; Twitter tokens last a lot longer. You decide how to deal with access tokens case by
case, but in general a good strategy is saving the access token every time the user logs on.
You can save it to the session state or, better yet, to a database.

How would you retrieve the access token?

The access token is available within the ExternalLoginCallback method; that is, the first entry point
in your code after successful authentication. Specifically, you find it stored in the ExtraData property
of the AuthenticationResult object.

if (result.ExtraData.Keys.Contains("accesstoken"))
{
 // Save the access token for later use: result.ExtraData["accesstoken"]
 ...
}

For example, you can use the access token to retrieve more information about a user. Keep in mind
that functions that go beyond the simple authentication require an ad hoc software development kit
(SDK) for a particular social network. To interact with Twitter, you might want to use TweetSharp. For
Facebook, instead, the best option is the Facebook Client SDK for C#. Both libraries are easily acces-
sible via NuGet. Here’s a code snippet to grab extra information for a Facebook user:

var client = new FacebookClient(accesstoken);
dynamic user = client.Get("/me", new { fields = "first_name,last_name,email" });

With a similar syntax, you can access the timeline of the current user. For more information, you
might want to refer to the developer pages on the site of the social network of choice.

 CHAPTER 6 Securing your application 223

Summary

Security is always perceived as a hot topic for web applications. Therefore, nearly any class or book
on a web technology is expected to host a section on how to write secure applications. Assuming
that one knows the basics of security and Forms authentication for classic ASP.NET (for example, Web
Forms), there’s not much else left to cover that is specific to ASP.NET MVC.

The run-time pipeline is the same as in Web Forms, and trust levels and process identities are
established in exactly the same manner. Also, Forms authentication works in the same way through an
HTTP module and a highly configurable cookie. You can find an in-depth discussion of these topics in
Chapter 19 of my latest ASP.NET book Programming ASP.NET 4 (Microsoft Press, 2011).

Specific to ASP.NET MVC is the way in which one restricts access to action methods and controls
authorization. I covered this in the first half of the chapter. The second half touched on features that
more and more applications are incorporating these days—authenticating users through external
services. You can do this via a couple of single–sign-on schemes and underlying protocols: OpenID
and OAuth. Whereas OpenID is essentially for uniquely identifying users, OAuth can do that and
more. OAuth can get permissions from the user about resources held by the service provider that the
application can use. This chapter presented an OAuth sample application that authenticates users by
using the popular Twitter social network, thus gaining for itself the permission to read the tweets and
connect to followers of logged-on users.

 225

C H A P T E R 7

Design considerations for ASP.NET
MVC controllers

Part of the inhumanity of the computer is that, once it is competently programmed
and working smoothly, it is completely honest.

—Isaac Asimov

The controller is the central element of any operation you perform in ASP.NET MVC. The control-
ler is responsible for getting posted data, executing the related action, and then preparing and

requesting the view. More often than not, these apparently simple steps generate a lot of code.
Worse yet, similar code ends up being used in similar methods, and similar helper classes sprout up
from nowhere.

ASP.NET MVC comes with the promise that it makes it easier for you to write cleaner and more
testable code. For sure, ASP.NET MVC is based on some infrastructure that makes this possible and
easier than in Web Forms. However, a lot is left to you, the developer, and to your programming disci-
pline and design vision.

Architecturally speaking, the controller is just the same as the code-behind class in Web Forms.
It is part of the presentation layer, and in some way it exists to forward requests to the back end of
the application. Without development discipline, the controller can easily grow as messy and inextri-
cable as an old-fashioned code-behind class. So, it isn’t just choosing ASP.NET MVC that determines
whether you’re safe with regard to code cleanness and quality.

In this chapter, we explore an approach to ASP.NET MVC design that simplifies the steps you need
to mechanize the implementation of the controller classes. The idea is to make the controller an ex-
tremely lean and mean class that delegates responsibility rather than orchestrating tasks. This design
has an impact on other layers of the application and also on some portions of the ASP.NET MVC
infrastructure.

226 PArT II ASP.NET MVC software design

Shaping up your controller

Microsoft Visual Studio makes it easy to create your own controller class. To do so, you simply
right-click the project folder in the current ASP.NET MVC project and add a new controller class. In a
controller class, you’ll have one method per each user action that falls under the responsibility of the
controller. How do you code an action method?

Note Visual Studio tooling for ASP.NET MVC is no longer limited to letting you add a con-
troller class exclusively in the Controllers folder. You can place a controller class anywhere,
and right-clicking any folder displays the command to create a new empty controller class.

An action method should collect input data and use it to prepare one or multiple calls to some
endpoint exposed by the middle tier of the application. Next, it receives output and ensures that
output is in the format that the view needs to receive. Finally, the action method calls out the view
engine to render a specific template.

Well, all this work might add up to several lines of code, making even a controller class with just
a few methods quite a messy class. The first point—getting input data—is mostly solved for you by
the model-binder class. Invoking the view is just one call to a method that triggers the processing
of the action result. The core of the action method is in the code that performs the task and prepares
data for the view.

Choosing the right stereotype
Generally speaking, an action method has two possible roles: it can be that of a controller, or it can
be a coordinator. Where do words like “controller” and “coordinator” come from? Obviously, in this
context the word “controller” has nothing to do with an ASP.NET MVC controller class.

These words refer to object stereotypes, a concept that comes from a methodology known as
Responsibility-Driven Design (RDD). Normally, RDD applies to the design of an object model in the
context of a system, but some of its concepts also apply neatly to the relatively simpler problem of
modeling the behavior of an action method.

Note For more information about RDD, check out Object Design: Roles, Responsibilities, and
Collaborations by Rebecca Wirfs-Brock and Alan McKean (Addison-Wesley, 2002).

rDD at a glance
The essence of RDD consists of breaking down a system feature into a number of actions that the sys-
tem must perform. Next, each of these actions is mapped to an object in the system being designed.
Executing the action becomes a specific responsibility of the object. The role of the object depends
on the responsibilities it assumes. Table 7-1 describes the key concepts of RDD and defines some of
the terms associated with its use.

 CHAPTER 7 Design considerations for ASP.NET MVC controllers 227

TABLE 7-1 Standard RDD concepts and terms

Concept Description

Application Refers to a collection of interconnected and interacting objects.

Collaboration Refers to an established relation between two objects that work together to provide
some meaningful behavior. The terms of collaboration are defined through an explicit
contract.

Object Refers to a software component that implements one or multiple roles.

Role Refers to the nature of a software component that takes on a collection of (related)
responsibilities.

Responsibility Refers to the expected behavior of an object. Stereotypes are used to classify
responsibilities.

Table 7-2 summarizes the main classes of responsibility for an object. These are referred to as
object role stereotypes.

TABLE 7-2 Standard RDD stereotypes

Stereotype Description

Controller Orchestrates the behavior of other objects, and decides what other objects should do.

Coordinator Solicited by events, it delegates work to other objects.

Information holder Holds (or knows how to get) information and provides information.

Interfacer Represents a façade to implement communication between objects.

Service provider Performs a particular action upon request.

Structurer Manages relations between objects.

In RDD, every software component has a role to play in a specific scenario. When using RDD, you
employ stereotypes to assign each object its own role. Let’s see how you can apply RDD stereotypes
to an action method.

Breaking down the execution of a request
I’ve described some common steps that all action methods should implement. We can break down
the responsibility of an action method as follows:

■■ Getting input data sent with the request

■■ Performing the task associated with the request

■■ Preparing the view model for the response

■■ Invoking the next view

You can use both the Controller and Coordinator RDD stereotypes to implement an action
method—but they won’t produce the same effects.

228 PArT II ASP.NET MVC software design

Acting as a “Controller”
Let’s consider an action method in the apparently simple place-an-order use-case. In the real-world,
placing an order is never a simple matter of adding a record to some Orders table, as you too often
see happen in entry-level tutorials.

Place-an-order is an action that usually involves several steps and objects. For example, it might
require querying the database to find out about the availability of the ordered goods. It might also
require a separate order to be placed to a provider to refill the inventory, and typically requires
checking the credit status of the customer and synchronizing with the bank of the customer and the
shipping company. Finally, it also involves doing some updates on some database tables. After the or-
der has been successfully placed, the system should display back to the user the ID, maybe an invoice
to print, and possibly an estimated date of delivery.

The following pseudo-code gives you an idea of the concrete steps you need to take:

[HttpPost]
public ActionResult PlaceOrder(OrderInfo order)
{
 // Input data already mapped thanks to the model binder

 // Step 1-Check goods availability
 ...
 // Step 2-Check credit status of the customer
 ...
 // Step 3-Sync up with the shipping company
 ...
 // Step 4-Update databases
 ...
 // Step 5-Notify the customer
 ...

 // Prepare the view model
 var model = PlaceOrderViewModel { ... };
 ...

 // Invoke next view
 return View(model);
}

At a minimum, having all these steps coded in the controller means that you end up with calls
made to the data access layer from the presentation. For simple Create, Read, Update, Delete (CRUD)
applications, this is acceptable, but it’s not acceptable for more complex applications.

Even when each of the steps outlined resolves in one or two lines of code, you have quite a long
and soon unmanageable method. The RDD Controller stereotype applied to ASP.NET MVC controller
classes suggests that you should use the previous layout of the code. This is not ideal even for moder-
ately complex applications.

 CHAPTER 7 Design considerations for ASP.NET MVC controllers 229

Important The business workflow behind the implementation of a use-case touches on
multiple components possibly belonging to various layers or tiers in the system architec-
ture. Some of the steps might be accomplished by a domain service (for example, prepare
an invoice); other steps might be implemented by external services (for example, getting
delivery information from the interconnected system of a partner shipping company); some
more steps might simply be a database call (getting the order ID). All these calls should be
seen as steps of a single workflow triggered by the presentation layer.

Acting as a “Coordinator”
The RDD Coordinator stereotype suggests that you group all of the steps that form the implementa-
tion of the action within a single worker object. From within the action method, you place a single call
to the worker and use its output to feed the view-model object. Here’s the layout:

[HttpPost]
public ActionResult PlaceOrder(OrderInfo order)
{
 // Input data already mapped thanks to the model binder

 // Perform the task invoking a worker service
 var service = new OrderService();
 var response = service.PerformSomeTask();

 // Prepare the view model
 var model = PlaceOrderViewModel(response);
 ...

 // Invoke next view
 return View(model);
}

The overall structure of the ASP.NET MVC controller method is much simpler now. Solicited by an
incoming HTTP request, the action method relays most of the job to another component that coordi-
nates all further steps. I call these components worker services, or just application services.

Important Worker services or application services belong to the application layer of the
system. The application layer is where you have the application logic implemented that
results from use-cases. This layer is not reusable, because it is specific to the application
(and front end). Reusability should be pushed one layer down in the domain layer. The idea
is that core functions are reusable (the domain), but presentation workflows are specific to
the application. Here’s a simple example to illustrate the point: In a desktop front end, you
might have a single form to capture all data, whereas in a mobile front end you might need
to go through multiple forms, each of which might require some interaction with the back
end. Core functions (for example, placing an order or just synchronizing with the shipping
company) remain reusable; workflows need to be adjusted.

230 PArT II ASP.NET MVC software design

Fat-free controllers
ASP.NET MVC is a framework that is designed to be testable and promotes important principles such
as Separation of Concerns (SoC) and Dependency Injection (DI). ASP.NET MVC informs you that an
application is separated in a part known as the controller and a part referred to as the view (not to
mention the model discussed here). Being forced to create a controller class doesn’t mean that you’ll
automatically achieve the right level of SoC, and it certainly doesn’t mean that you’re writing testable
code. As mentioned in Chapter 1, “ASP.NET MVC controllers,” ASP.NET MVC gets you off to a good
start, but any further (required) layering is up to you.

What I haven’t probably stated clearly enough is that if you don’t pay close attention, you end
up with a fat and messy controller class, which certainly isn’t any better than a messy (and justifiably
despised) code-behind class. So, you should aim to create controller classes as lean and mean collec-
tions of endpoints and remove any fat from them.

Note According to my standards, I wasn’t precise earlier when I called DI a principle. More
specifically, DI is just the most popular pattern used to implement the Dependency Inversion
Principle, according to which the surface of contact between dependent classes should
always be an interface instead of an implementation. Much less known (and understood)
than DI in the wild, the Dependency Inversion Principle is the “D” in the popular SOLID
acronym (Single responsibility, Open-closed, Liskov substitution, Interface segregation and
Dependency inversion principle) that summarizes the five key design principles for writing
clean, high-quality code.

Short is always better
If you have a method that is about 100 logical lines long, that code probably includes 10 to 15 lines of
comments. Generally, 10 percent is considered to be a fair ratio of code to comments; I’d even go as
high as a comment for every three logical lines if you want to ensure that you explain clearly the whys
and wherefores of what you’re doing and really want to help whomever deals with that piece of code
after you.

However, regardless of what you decide the ideal ratio is, my point is that a method that’s 100 lines
long makes little sense, anyway. You can probably break it into three or four smaller methods and get
rid of some comments, too.

I don’t call myself an expert in software metrics, but I usually try to keep my methods below
30 lines—which more or less matches the real estate available in the Visual Studio editor on a typical
laptop. How can you manage to keep the code of action methods as short as possible? Surprisingly
enough, applying the RDD Coordinator stereotype is what you must do, but even that’s not always
sufficient.

 CHAPTER 7 Design considerations for ASP.NET MVC controllers 231

Note A quick rule-of-thumb pattern I follow to break down code and improve readability
is simply getting suspicious about every method that requires scrolling in a Visual Studio
window that uses a font of regular size.

Action methods coded as view-model builders
A method designed to be a coordinator invokes a method on a worker object, has some work done,
and gets some data back. This data should simply be packed into a dictionary or a strongly typed
class and then passed down to the view engine.

The worker class, though, is attempting to bridge the gap between the data model you have on
the middle tier—the domain model—and the data model you have in the presentation layer—the
view model, or the data being worked on in the view. (By the way, “the data being worked on in the
view” is the wording originally used in the MVC paper to define the role of the model.)

If the business objects you invoke on your middle tier return collections or aggregates of domain
objects, you probably need to massage this data into view-model objects that faithfully represent
the contracted user interface. If you move this work into the controller class, you’re back to square
one. The lines of code you cut off by using worker services and the RDD Coordinator stereotype are
replaced by just as many lines for building a view model.

To support your efforts in getting fat-free controllers, I recommend a strategy based on the fol-
lowing points:

■■ Relay any action to a controller-specific worker service class (part of the application layer and
not expected to be reusable).

■■ Make methods of the worker service class accept data as it comes from the model binder.

■■ Make methods of the worker service class return data expressed as view-model objects that
are ready to be passed down to the view engine.

■■ Grab exceptions via attributes.

■■ Use .NET Code Contracts for checking preconditions and, where applicable, ensure postconditions.

■■ For anything else that requires additional logic, consider using custom action filters.

Let’s see how I envision a worker service class.

Worker services
A worker service is a helper class that goes hand in hand with the controller. You might reasonably ex-
pect to have a distinct worker service class for each controller. On the other hand, the worker service
is just an extension of a controller and results from the logical split of the controller behavior pushed
by the RDD Coordinator role.

232 PArT II ASP.NET MVC software design

I’m using the word service here to indicate that this class provides a service to callers; it has nothing
to do with any technology you might know for implementing services such as Windows Communica-
tion Foundation (WCF). At the same time, if you decide to scale out the application layer over multiple
computers, WCF is an excellent technology to turn logical worker services into actual WCF services.

Figure 7-1 shows an architectural perspective of worker services in ASP.NET MVC.

FIGURE 7-1 Worker services and controllers.

A worker service is just a matter of design, and design is design, regardless of its complexity. So,
you don’t have to wait for a giant project to experiment with these features. Let’s go through a simple
example that shows the power of the worker service approach. Admittedly, it might sound like a lot
of work to do for a simple demonstration, but in the end, it costs you just an extra interface—and it
scales exceptionally well with the complexity of the domain.

Implementing a worker service
You can start by creating a Services folder in your ASP.NET MVC project. Which folders you create
within it is entirely your responsibility. I usually go with one folder for each controller plus an extra
folder for interfaces. Figure 7-2 shows a glimpse of a project that uses this approach.

 CHAPTER 7 Design considerations for ASP.NET MVC controllers 233

FIGURE 7-2 Worker services in an ASP.NET MVC project.

If you prefer, you can move the Services section to a separate assembly—it’s your call. As men-
tioned, you create one worker service for each controller. For the Home controller, you can create the
IHomeService interface and the HomeService class, as illustrated in the following:

public interface IHomeService
{
 IndexViewModel GetIndexViewModel();
}
public class HomeService : IHomeService
{
 private IHomeService _homeService;
 public IndexViewModel GetHomeViewModel()
 {
 ...
 }
 ...
}

In the sample application we’re considering, the home page picks up a list of featured dates and
renders the time span in days between those days and the current day. On the middle tier, you have
a repository that returns information about featured dates such as the date, whether it is absolute

234 PArT II ASP.NET MVC software design

or relative (for example, February 8, regardless of the year), and a description for the date. Here’s an
example for a featured date object for a domain model:

namespace FatFree.Backend.Model
{
 public class MementoDate
 {
 public DateTime Date { get; set; }
 public String Description { get; set; }
 public Boolean IsRelative { get; set; }
 }
}

The repository will likely fill up a collection of these objects when querying some database. At any
rate, the worker service gets a collection of MementoDate objects and processes them up to the point
of obtaining a collection of FeaturedDate objects—a type that belongs to another object model, the
view model.

namespace FatFree.ViewModels.Shared
{
 public class FeaturedDate
 {
 public DateTime Date { get; set; }
 public Int32 DaysToGo { get; set; }
 public String Description { get; set; }
 }
}

There are two operations that need be done: First, any relative date must be transformed into
an absolute date, and second, the time span between the given date and the current day must be
calculated. For example, suppose that you want to calculate the distance to the next occurrence of
February 8. The target date is different if you’re computing January 2 or March 5. Here’s a portion of
the code in the worker service:

private IDateRepository _repository;
...
public HomeViewModel GetHomeViewModel()
{
 // Get featured dates from the middle tier
 var dates = _repository.GetFeaturedDates();

 // Adjust featured dates for the view
 // For example, calculate distance from now to specified dates
 var featuredDates = new List<FeaturedDate>();
 foreach(var mementoDate in dates)
 {
 var fd = new FeaturedDate
 {
 Description = mementoDate.Description,
 Date = mementoDate.IsRelative
 ? DateTime.Now.Next(mementoDate.Date.Month,
 mementoDate.Date.Day)
 : mementoDate.Date
 };

 CHAPTER 7 Design considerations for ASP.NET MVC controllers 235

 fd.DaysToGo = (Int32)(DateTime.Now - fd.Date).TotalDays;
 featuredDates.Add(fd);
 }

 // Package data into the view model as the view engine expects
 var model = new HomeViewModel
 {
 Title = "Memento (BETA)",
 MessageFormat = "Today is {0}",
 Today = DateTime.Now.ToString("dddd, dd MMMM yyyy"),
 FeaturedDates = featuredDates
 };
 return model;
}

What about the controller? Here is the code you need:

public ActionResult Index()
{
 var model = _homeService.GetHomeViewModel();
 return View(model);
}

Figure 7-3 shows the sample page in action.

FIGURE 7-3 Worker services processing dates.

As you can see, there’s no magic behind worker services. As the name suggests, they are worker
classes that just break up the code that would logically belong to the processor of the request—the
ASP.NET MVC controller.

236 PArT II ASP.NET MVC software design

Do we really need controllers?
The code of each controller method will hardly be as simple as what I’ve shown here, which was
just one logical line. In real-world scenarios, you might need to pass some input data to the worker
service; perhaps you might use an if statement to quickly rule out some cases, or even further edit the
view-model object. This latter scenario might occur when you attempt to gain some reusability and
get one worker service method to serve the needs of two or more controllers’ action methods.

To flesh out the code in action methods, use exception handling, null checks, and preconditions. In
the end, to keep action methods lean and mean, you need to push the RDD Coordinator role to the
limit and move any processing logic out of the controller.

Does this mean that you don’t need controllers anymore? Each HTTP request maps to an action
method, but you need some plumbing to make the connection. In ASP.NET MVC, the controller is
just part of the infrastructure, it shouldn’t contain much of your code and, big surprise, there should
be no need to test it. If you consider controllers to be part of the infrastructure, you take their basic
behavior for granted; you need to test your worker services, instead. (This point is also touched upon
in Chapter 9, “Testing and testability in ASP.NET MVC,” which is entirely dedicated to testing ASP.NET
MVC applications.)

The ideal action method code
Let’s top off this discussion by analyzing an ideal fragment of code you should find in your action
methods. It uses attributes to handle exceptions and Code Contracts to determine preconditions.

[HandleError(...)]
public class DateController : Controller
{
 private readonly IDateService _workerService;
 public DateController() : this(new DateService())
 {
 }
 public DateController(IDateService service)
 {
 _workerService = service;
 }

 [MementoInvalidDateException]
 [MementoDateExistsException]
 [HttpPost]
 public ActionResult Add(DateTime date, String description)
 {
 Contract.Requires<ArgumentException>(date > DateTime.MinValue);
 Contract.Requires<ArgumentException>(!String.IsNullOrEmpty(description);

 var model = _workerService.AddNewDate(date, description);
 return View(model);
 }
}

 CHAPTER 7 Design considerations for ASP.NET MVC controllers 237

In this example, custom exception attributes are used to catch specific exceptions that might be
raised by the worker service. In this case, you don’t need to spoil your code with if statements and null
checks. (I have nothing against using if statements, but if I can save myself and my peers a few lines of
code and still keep code highly readable, well, by all means I do that.)

Important As an attentive reader, you might have noticed that I completely ignored an
important point: how to get a hold of an instance of the worker service. And, how does the
worker service, in turn, get a hold of an instance of the repository? Techniques and tools
to inject dependencies in your code is exactly the next topic. (Chapter 8, “Customizing ASP.
NET MVC controllers,” covers more about injection points and related techniques in the en-
tire ASP.NET MVC framework.)

Connecting the presentation and back end

Assuming that we’ve agreed that you don’t want to orchestrate the entire flow of logic for a given
request within the context of a controller’s action method, the next problem to address is where and
how you cross the invisible border between the presentation layer and the back end of the applica-
tion. In Figure 7-1, a subtly dashed line separates worker service blocks from the application layer—the
topmost layer in an application back end.

Implementing action methods as RDD coordinators forces you to relay requests to other layers,
but at some point you need to cross the border and invoke enterprise services, databases, business
components, calculators, and whatever else you might have. So, choosing the coordinator route does
have an impact on how you organize the downward layers and tiers of your application.

Note Terms such as layer and tier are often used interchangeably, and sometimes with rea-
son. Generally, though, a layer and a tier are neatly distinct entities. A layer refers to a logi-
cal separation, such as introducing a different assembly in the same process space. A tier
refers to something physical, such as a software module that, although reachable, resides in
a different process space and perhaps is hosted on a different hardware/software platform.
To call a tier, you need data serialization, contracts, and, likely, a service technology such as
WCF in the .NET space.

The Layered Architecture pattern
Everybody agrees that a multilayer system has a number of benefits in terms of maintainability, ease
of implementation, extensibility, scalability, and testability. Most of the time, you arrange a three-level
architecture with some flavors of service orientation just to make each layer ready for a possible move

238 PArT II ASP.NET MVC software design

to a different physical tier. There are various reasons to move a layer onto its own tier: a quest for
increased scalability, the need for stricter security measures, and also increased reliability in case the
layers become decoupled because of computer failure.

In a three-level scenario, you typically have a presentation segment where you first take care of
processing any user input and then arrange responses; a business logic segment that includes all the
functional algorithms and calculations that make the system work and interact with other compo-
nents; and the data access segment where you find all the logic required to read and write from
storage.

Although this layout is still rock-solid in general terms, it probably needs to be refreshed in light of
technologies available and findings and progress made in the industry with patterns and solutions.

Beyond classic layers
Terms like presentation, business, and data access mean everything and nothing today and are be-
coming quite blurred indeed. How do you really design and implement them? Too many variables
apply, and too many choices, patterns, and practices can be adopted. The Layered Architecture pat-
tern described next attempts to expand each of these segments into something more specific and
provides guidance on how to do things.

In modern software architecture you find layers like presentation, application, domain and
infrastructure. Figure 7-4 provides an overall view of a layered architecture. Mapping to classic
Presentation+Business+Data layers is relatively simple. The classic Business layer usually expands to
take a bit of everything: a bit of presentation, a bit of infrastructure, and the entire domain. The data
layer is in the infrastructure. This is just to restate that layered architecture is nothing really new; it’s
just a more modern and pragmatic way of applying some old but still rock-solid theory.

FIGURE 7-4 An example of layered architecture.

We can summarize a layered architecture as follows:

The presentation layer intercepts a request and relays it to the application layer. The application
layer (also referenced as the service layer) is the segment of the application that implements use-
cases. In this regard, it is specific to each application and not reusable. The application layer exposes
endpoints to the presentation layer and decouples it from the rest of the system. The application layer
orchestrates domain services as well as external services and business-specific enterprise components
that you might have. Finally, the infrastructure layer encapsulates data access.

 CHAPTER 7 Design considerations for ASP.NET MVC controllers 239

Observe that storage is not necessarily a relational database. These days, it can be a document data-
base (NoSQL), a cloud data store, or perhaps an enterprise Customer Relationship Management (CRM)
system. It varies to the point that “data access” is probably no longer the best term to describe it.

The (idiomatic) presentation layer
The key lesson that software architects have learned in the past decade is that no application can be
built successfully without deeply involving the customer. Already mentioned as one of the key points
in the Agile manifesto back in 2001, the collaboration between customers and development team,
in reality, is often left to the good will of the involved parties. More often than not, collaboration
remains just a good intention that’s never entirely pursued.

Today, software is used to guide users to do their everyday job in the best and simplest possible
way. The software must morph into what users expect, not the other way around—as was the case for
too many years. I have quite a few memories of discussions I had with customers some 25 years ago
in which I felt no shame in saying, “No, this feature is impossible to program the way you suggest; the
language we’re using doesn’t support this.” Such an answer is hard to imagine today.

Regardless of the technology you employ to build the client side of an application, the presenta-
tion layer is the part of the code that collects input from the user and triggers the expected behavior.
If the application is distributed, the presentation layer is the segment of code responsible for prepar-
ing and executing the remote call and for arranging the new user interface after results are back.
The important aspect is that the presentation logic invokes methods designed according to the user
interface (UI) needs. These methods receive and return data formatted for the UI. The rule these days
is that the UI receives exactly what it needs, in the form and shape that it likes it. This approach makes
you a winner regardless of the various flavors of UI technologies that you might encounter—Microsoft
Windows, browser, HTML5, mobile, Microsoft Silverlight, and so forth.

When it comes to implementation, the presentation layer is necessarily idiomatic in the sense that its
actual code depends on the framework you’re using. Although the overall idea remains the same, the
presentation layer is based on code-behind pages in Web Forms, controllers (plus, optionally, worker
services) in ASP.NET MVC, model-view-viewmodel (MVVM) classes in Silverlight and WPF, and so forth.
For example, if you’re having an entirely client-side single-page application (SPA), you might want to use
some JavaScript frameworks that let you code by using either MVC or MVVM patterns, as well.

As far as ASP.NET MVC is concerned, applying the Layered Architecture pattern means delegating
the production of a response for a request to a worker service which, in turn, will contact the back
end to get a response. The response comes filled with data in the format required by the presentation
layer.

240 PArT II ASP.NET MVC software design

(Device-driven) User Experience First
It is becoming more important every day that you start any design effort from the presenta-
tion. I like to call this approach User Experience First (UXF) and like to merge this concept with
the idea that any possible device should have its own tailor-made presentation layer. I expound
on this point in Chapter 13, “ Building sites for multiple devices.”

UXF means that you start the design of the system from the UI and from the screens and
workflows with which the users will actually interact. As the software is an essential tool for
everyday tasks, the primary form of optimization you should consider—even before the data-
base—is removing bottlenecks in the user-level workflows.

After the screens are defined (in the past, they were just UML use-case diagrams defining
interactions between actors and system) you know what data must be loaded and what data is
entered in the architecture. These are the firm points of a modern architecture.

The application layer
The application layer contains the implementation of use-cases, and you can view it as the aggrega-
tion of components that work as orchestrators. The term orchestration here refers to the implementa-
tion of any algorithm that serves a given use-case. For the place-an-order use-case, the orchestrator
is the method that arranges the expected flow of data and coordinates domain services (for example,
checking the credit status and refilling the inventory), external services (for example, sychronizing
with the shipping company), business components (calculating prices), and storage (updating internal
databases).

In relatively simple cases, or where you just don’t have specific scalability requirements, the con-
troller’s worker service might coincide with the application layer. When it comes to this, keep in mind
a popular Service-Oriented Architecture (SOA) warning: be chunky, not chatty. (See Figure 7-5.)

FIGURE 7-5 Chunky vs. chatty orchestration in ASP.NET MVC.

 CHAPTER 7 Design considerations for ASP.NET MVC controllers 241

If services you orchestrate reside (for the most part) in the same process space as the worker ser-
vice, you probably don’t need to introduce yet another layer. In this case, orchestration coincides with
worker services. You might want to compile worker services as a distinct assembly and upgrade their
logical rank from a plain helper class to a constituent architectural block.

If services to orchestrate are remote or capable of being remote, you might want to introduce
an extra orchestration layer in the same space as the services to orchestrate. In this case, you go
from the worker service directly to this additional layer with a single call that wires all the data re-
quired for the various steps to take. Orchestrating from another tier—the presentation layer—would
cost you a lot in terms of distributed computing, serialization, and network latency. This is the chatty
antipattern of SOA design.

The domain layer
Although it hasn’t been officially declared obsolete, the DataSet is a thing of the past for most devel-
opers. Not that there’s something wrong with the DataSet design, it’s just that a decade in software
is really a long time. The pace of technology is such that a compelling solution devised 10 years ago
can hardly have the same effectiveness in the next decade. Today, Entity Framework—not to mention
NHibernate and other commercial solutions—makes it really quick to create a basic domain model
around which to design your application. You can use Entity Framework and its Visual Studio tools to
create entities and relationships and make these appear to be the actual database to the application’s
eyes. You don’t need be a Domain-Driven Design (DDD) master to keep database details distinct from
the objects you use to implement business operations.

A lot of developers today find it easy and effective to create an entity model and persist it with an
Object/Relational Mapper (O/RM) tool such as Entity Framework or NHibernate.

This leads you to having an assembly with plain-old CLR (POCO) classes padded with data and
behavior. This object model represents the model of data you have in the back end of the application.
You have classes such as Customer with descriptive properties logically equivalent to some database
columns: Name, Address, Website, Email, Contact, Orders. In addition, the Customer class will likely
have a bunch of methods that validate the state of the object and implement object-specific opera-
tions on the property values associated with the instance. For example, you might have a method
that calculates the total of Orders associated with the customer. Or, perhaps, for an Invoice class with
properties like Date and PaymentMode, you can have a method that returns the estimated date of
payment. In this object model, classes know nothing about persistence and things like connection
strings.

242 PArT II ASP.NET MVC software design

Note Object model, domain model, and entity model are all similar terms often used inter-
changeably. However, each term has its own specific meaning. Sometimes, you don’t need
to go into the level of detail that requires using the precise meaning, so using them inter-
changeably is just fine. This casual usage, however, doesn’t cancel the real meaning that
each term holds. An object model is a plain, generic collection of objects. A domain model
is special type of object model for which each class is POCO, aggregate roots are identified,
factories are used over constructors, and value types tend to replace primitive types most
of the time. Finally, an entity model is mostly an Entity Framework term that indicates a col-
lection of (mostly anemic) classes, which might or might not be POCO. An anemic class has
data but nearly no behavior.

What about more business-oriented behaviors, such as checking the credit status of a customer or
perhaps verifying that a customer has placed enough orders to qualify for an elevated level of service
or rewards? And, more generally, what about functionalities that produce or manipulate aggregated
data that span multiple entities and require database access? These are special forms of orchestration
limited to domain entities and their persistence. You implement them through another collection of
classes called domain services. You likely have a domain service component for each significant entity
or, to use DDD terminology, for each aggregate root. The domain model and domain services form
the domain layer.

Exposing entities of the domain
What’s the visibility of the classes in the domain layer? Should they emerge in the presentation layer,
or are they destined to live and thrive in the folds of the back-end system? The world would be a
better place if one could use domain objects everywhere. If your particular scenario makes it possible
to move data around by using just one object model—the domain model—by all means call yourself
lucky and go ahead. The fact is, however, that this is almost never an option except for conference
demos and tutorials.

The presentation is built around use-cases, and each use-case might have a different definition of an
entity. The order might have a different representation in use-cases, such as “The user places an order”
and “The user reviews pending orders.” Sometimes, it is affordable to use the same domain-based
representation of the Order entity because the various use-cases need only a subset of the original
Order. More often than not, though, each use-case needs objects that select some information from the
original Order and some from other entities such as Products. In the domain model, you just don’t have
such aggregates. Hence, a view-focused object model must be created, and data must be transferred to
and from it.

The view-focused object model is based on data-transfer objects (DTOs). A DTO is a plain con-
tainer class (only data, no behavior) that is used to pass data around layers, tiers, and even within the
same layer. With DTOs, you can definitely work any place with the data you need. But, the devil is in
the details. A DTO-based solution is expensive and painful to code, period.

 CHAPTER 7 Design considerations for ASP.NET MVC controllers 243

To deal with the extra complexity of DTOs, you can take advantage of tools such as AutoMapper
(http://automapper.codeplex.com), which saves you from writing repetitive (and boring) code, or you
can use T4 templates for saving some common code and just write the custom parts yourself.

The infrastructure layer
How would you get a reference to a domain object? In general, a domain object can be transient or
persistent. It is said to be transient if a new instance is created in memory and populated with run-
time data. It is said to be persistent if the instance contains data read from storage. You typically deal
with transient entities when you’re about to insert a new order; you deal with persistent entities when
you fetch an order from storage for display or processing reasons.

The infrastructure layer is mostly the database layer, renamed to lower focus and emphasis on
data and models. In modern systems, you still need persistence but that doesn’t necessarily come
out of relational models and is anyway limited to mere storage of raw data with everything else (for
example, constraints, validation, actions) taking place at a higher layer of the system.

So, the infrastructure layer deals with persistence and consists of repository classes—one per
significant entity (or, if you prefer, aggregate root). The repository class uses a given storage API to
implement persistence. Repositories are classes whose implementation logically belongs to the data
access layer. The repository class collects multiple methods that serve the data access needs of that
entity. In a repository, you typically find methods to fetch, add, delete, and update data.

The repository exposes an interface to the application layer and uses a storage API internally. Thus,
you can have a repository that uses Entity Framework and a POCO model or one that uses NHiber-
nate. You can have a repository that persists the domain through a plain ADO.NET layer. You can also
make the repository point to some cloud storage, Dynamics CRM, or a NoSQL service. Created on a
per-entity basis (precisely, major entities only), the repository is the gateway to the actual persistence
layer.

Using repositories is important also for another reason—making your business services testable by
mocking the persistence layer.

What’s the typical structure of a repository class? There are two main schools of thought. Some
prefer to have a generic repository that provides basic CRUD methods for each entity, such as that
shown here:

public abstract class Repository<T> where T : IAggregateRoot
{
 internal YourContext ActiveContext { get; set; }
 public Repository()
 {
 ActiveContext = new YourContext();
 }
 public void Add(T item)
 {
 this.AddObject(item);
 this.ActiveContext.SaveChanges();
 }

http://automapper.codeplex.com

244 PArT II ASP.NET MVC software design

 public bool Remove(T item)
 {
 try {
 this.DeleteObject(item);
 this.ActiveContext.SaveChanges();
 return true;
 } catch {
 return false;
 }
 }
 public void Update(T item)
 {
 this.ActiveContext.SaveChanges();
 }
 :
}

As far as queries are concerned, here’s a list of methods you might have in a generic repository
class:

T[] GetAll<T>();
T[] GetAll<T>(Expression<Func<T, bool>> filter);
T GetSingle<T>(Expression<Func<T, bool>> filter);

You pass the details of the query to be executed as a function via either GetAll or GetSingle.

Others prefer to just have a regular class with as many methods as required by the logic to be
implemented. In this case, you end up with a class that is tailor-made to the entity. You can easily
treat special cases for deletions and insertions appropriately and have a specific get method to call for
each necessary query. In the end, the choice is up to you because none of these approaches is clearly
better than the other. Personally, I like to have specific (nongeneric) repositories.

Note Speaking of repositories, there is another point I should mention. It is related to the
lifetime of the context object if you use an O/RM to persist data. In the previous listing, you
see an ActiveContext property instantiated by the constructor. In this way, the context lives
as long as the instance is live. Multiple calls you make to the same instance will have access
to the same identity map and can track changes. An alternative is to use locally scoped in-
stances that are dismissed at the end of each repository operation.

Injecting data and services in layers
The primary reason for using layers (and tiers) is SoC. As an architect, you determine which layer talks
to which layer, and you have testing, code inspection, and perhaps check-in policies enforce these
rules. However, even when two layers are expected to collaborate, you don’t want them to be tightly
coupled. In this regard, the Dependency Inversion Principle (recall from earlier in the chapter that
this is the “D” in the SOLID acronym) helps a lot. I’d even say that the Dependency Inversion Principle
is much more important than the Dependency Injection pattern, which seems to be on everybody’s
mind these days.

 CHAPTER 7 Design considerations for ASP.NET MVC controllers 245

The Dependency Inversion Principle
Defined, the Dependency Inversion Principle (DIP) states that high-level classes should not depend
on lower-level classes. Instead, high-level classes should always depend on abstractions of their
required lower-level classes. In a way, this principle is a specialization of one of the pillars of object-
oriented design; program to an interface, not to an implementation.

DIP is the formalization of a top-down approach to defining the behavior of any significant class
method. In using this top-down approach, you focus on the work flow that happens at the method
level rather than focusing on the implementation of its particular dependencies. At some point,
though, lower-level classes should be linked to the mainstream code. DIP suggests that this should
happen via injection.

In a way, DIP indicates an inversion of the control flow whenever a dependency is encountered—
the main flow doesn’t care about details of the dependency as long as it has access to an abstraction
of it. The dependency is then injected in some way when necessary. Figure 7-6 shows a personalized
version of the classic diagram for the canonical example of DIP as originally presented by Robert
Martin in the paper that you can find at http://www.objectmentor.com/resources/articles/dip.pdf.

FIGURE 7-6 The DIP diagram.

The paper describes a sample Copy function that reads from a source and writes to a target
stream. The Copy function ideally doesn’t care about the details of the reader and writer compo-
nents. It should care only about the interface of the reader and writer. The reader and writer are then
injected or resolved in some way around the implementation of the Copy function. How this point is
approached depends on the actual pattern you intend to use.

To address DIP, you commonly use either of two patterns: the Service Locator pattern or the
Dependency Injection pattern.

The Service Locator pattern
The Service Locator pattern defines a component that knows how to retrieve the services that an ap-
plication might need. The caller has no need to specify the concrete type; the caller normally indicates
an interface, a base type, or even a nickname of the service in the form of a string or a numeric code.

http://www.objectmentor.com/resources/articles/dip.pdf

246 PArT II ASP.NET MVC software design

The Service Locator pattern hides the complexity of component lookup, handles the caching or
pooling of instances and, in general, offers a common façade for component lookup and creation.
Here’s the typical implementation of a service locator:

public class ServiceLocator
{
 private static const String SERVICE_QUOTEPROVIDER = "quoteprovider";

 // You might also want to have a generic method GetService<T>()...
 public static Object GetService(Type t)
 {
 if (t == typeof(IQuoteProvider))
 {
 return new SomeQuoteProvider();
 }
 ...
 }

 public static Object GetService(String serviceName)
 {
 switch(serviceName)
 {
 case SERVICE_QUOTEPROVIDER:
 return new SomeQuoteProvider();
 ...
 }
 }
}

As you can see, the locator is merely a wrapper around a Factory object that knows how to get
an instance of a given (or indirectly referenced) type. Let’s have a look now at the code that calls the
locator. The following code illustrates a class that first gets quotes for the specified list of symbols and
then renders values out to an HTML string:

public class FinanceInfoService
{
 public String GetQuotesAsHtml(String symbols)
 {
 // Get dependencies
 var renderer = ServiceLocator.GetService("quoterenderer");
 var provider = ServiceLocator.GetService("quoteprovider");

 // Use dependencies
 var stocks = provider.FindQuoteInfo(symbols);
 var html = renderer.RenderQuoteInfo(stocks);

 return html;
 }
}

 CHAPTER 7 Design considerations for ASP.NET MVC controllers 247

The locator code lives within the method that manages the abstraction, and the factory is part
of the deal. By simply looking at the signature of the FinanceInfoService class, you can’t say whether
it has dependencies on external components. You must inspect the code of the GetQuotesAsHtml
method to find it out.

The main Service Locator focus is to achieve the lowest possible amount of coupling between
components. The locator represents a centralized console that an application uses to obtain all the
external dependencies it needs. In doing so, the Service Locator pattern also produces the pleasant
side effect of making your code more flexible and extensible.

Using the Service Locator pattern is not a bad thing from a purely functional perspective. However,
in more practical terms, a better option exists: the Dependency Injection pattern.

The Dependency Injection pattern
The biggest difference between Service Locator and Dependency Injection is that with dependency
injection, the factory code lives outside of the class being worked on. The pattern suggests that you
design the class in such a way that it receives all of its dependencies from the outside. Here’s how to
rewrite the FinanceInfoService class for making use of Dependency Injection pattern:

public class FinanceInfoService
{
 private IQuoteProvider _provider;
 private IRenderer _renderer;

 public FinanceInfoService(IQuoteProvider provider, IRenderer renderer)
 {
 _provider = provider;
 _renderer = renderer;
 }

 public string GetQuotesAsHtml(string symbols)
 {
 var stocks = _provider.FindQuoteInfo(symbols);
 string html = _renderer.RenderQuoteInfo(stocks);
 return html;
 }
}

When it comes to using Dependency Injection in classes, a critical decision that the developer must
make is about how and where to allow for code injection. There are three ways to inject dependen-
cies into a class: using the constructor, a settable property, or the parameters of a method. All three
techniques are valid, and the choice is ultimately up to you. In general terms, the consensus is to use
constructors for necessary dependencies, and setters for optional dependencies. However, some
considerations apply.

248 PArT II ASP.NET MVC software design

What if you have many dependencies? In this case, your constructor would look dangerously
messy. Even though a long list of parameters in the constructor is often the sign of some design
issues, this isn’t a hard-and-fast rule. You might encounter situations in which you have complex
constructors with many parameters. In this case, grouping dependencies in a compound object is a
solution. In a nutshell, your goal should be to reveal dependencies and intentions right at construc-
tion time. You can do this in two ways: via a set of classic constructors you manage to keep as simple
as possible, or via factories.

Factories are the preferred approach in the DDD methodology. Using a factory, you can express
more clearly the context in which you need an instance of the type. You can also deal with dependen-
cies inside the factory code and ensure that you return valid objects from the beginning. In addi-
tion, your classes end up having only the default constructor (probably implemented as a protected
member).

Using constructors also hinders inheritance because derived classes might have the need to
receive dependencies, as well. When you add a new dependency, this design scheme might require
more refactoring work.

When the dependency is optional, however, there’s no strict need to make it show up at the con-
structor level. In this case, using a setter property is fine and probably the recommended approach
because it helps keep the constructor (or factory code) leaner and cleaner.

In summary, there are good reasons for using the constructor and good reasons for going with
setter properties. As with many other architectural questions, the right answer is, “It depends.” It also
depends on your personal taste.

Using tools for Inversion of Control
DI takes any code that relates to the setup of dependencies out of the class. When dependencies
are nested, this code might be quite a few lines long; furthermore, for the most part it is boilerplate
code. For this reason, developers have created ad hoc frameworks known as Inversion of Control (IoC)
frameworks. An IoC container is a framework specifically created to support DI. You can consider it a
productivity tool for implementing DI quickly and effectively. From the perspective of an application,
a container is a rich factory that provides access to external objects to be retrieved and consumed
later.

All IoC frameworks are built around a container object that, when bound to some configuration
information, resolves dependencies. The caller code instantiates the container and passes the desired
interface as an argument. In response, the IoC framework returns a concrete object that implements
that interface. An IoC container holds a dictionary of type mappings where typically an abstract type
(for example, an interface) is mapped to a concrete type or an instance of a given concrete type.
Table 7-3 lists some of the most popular IoC frameworks available today.

 CHAPTER 7 Design considerations for ASP.NET MVC controllers 249

TABLE 7-3 Popular IoC frameworks

Framework URL

Autofac http://code.google.com/p/autofac

Castle Windsor http://www.castleproject.org/container/index.html

Ninject http://www.ninject.org

Spring.NET http://www.springframework.net

StructureMap http://structuremap.net/structuremap/index.html

Unity http://unity.codeplex.com

After it is configured, an IoC container gives you the ability to resolve the entire chain of depen-
dencies between your types with a single call. In addition, you save yourself all the intricacies of
inner dependencies. For example, if you have some ISomeService parameter in a class constructor or
property, you can be sure you’ll get it at run time as long as you instruct the IoC container to resolve
it. The beauty of this approach is that if the constructor of the concrete type mapped to ISomeService
has its own dependencies, these are resolved, as well, and automatically.

Take this further and you see the point: with an IoC container, you stop caring about the cloud of
dependencies. Furthermore, all you do is design the graph of dependencies using the syntax sup-
ported by the IoC of choice. Everything else happens free of charge.

IoC containers differ in terms of the syntax they support (for example, lambda expressions), the
configuration policies used (for example, the external XML scheme), plus additional features that are
available. Two features are gaining a lot of importance today: aspect-orientation capabilities (specifi-
cally, interception) and specialized modules that facilitate integration with WCF services.

Note With regard to Unity (Microsoft’s IoC library) you can find coverage of advanced fea-
tures, including interception, in my Cutting Edge column in MSDN Magazine; specifically, in
the January/February 2011 issues. You can find an excellent article that can help you to un-
derstand how to use Unity to inject dependencies during the initialization of a WCF service
at http://blogs.microsoft.co.il/blogs/gadib/archive/2010/11/30/wcf-and-unity-2-0.aspx.

The poor-man’s DI
Today, many tend to confuse the Dependency Injection pattern with using an IoC framework. Us-
ing an IoC framework is a matter of productivity; as such, it often requires a minimum critical mass
of complexity to become really effective. In simpler cases, you can opt for what many like to call the
poor-man’s DI. You can find an example of this technique in the source code of the FatFree example
you saw back in Figure 7-3.

http://code.google.com/p/autofac
http://www.castleproject.org/container/index.html
http://www.ninject.org
http://www.springframework.net
http://structuremap.net/structuremap/index.html
http://unity.codeplex.com
http://blogs.microsoft.co.il/blogs/gadib/archive/2010/11/30/wcf-and-unity-2-0.aspx

250 PArT II ASP.NET MVC software design

How would you inject a worker service in a controller class and a repository in a worker ser-
vice? The most obvious way is by letting controllers and services create a fresh new instance of the
dependent object. This route, however, creates a tight dependency between objects that hinders
extensibility and testability. Here’s a better approach:

public class HomeController : Controller
{
 private readonly IHomeService _workerService;
 public HomeController() : this(new HomeService())
 {
 }
 public HomeController(IHomeService service)
 {
 _workerService = service;
 }
 ...
}

When the default constructor is used to instantiate a controller, the worker service member points
to a freshly created instance of a default worker service class. A second constructor is available to
manually inject any instance you like, at least for testability reasons. Likewise, you do the same for
injecting the repository dependency into the worker service.

However, ASP.NET MVC always uses the default constructor for each controller class, unless you
gain control of the controller factory.

Note ASP.NET MVC is designed with several extensibility points, but generally it lacks a
comprehensive support for DI. A service locator is probably the most effective way of mak-
ing an existing framework more loosely coupled by the addition of new extensibility points
because it is the least intrusive solution. A service locator acts as a black box that you install
in a specific point and let it figure out what contract is required and how to get it. ASP.NET
MVC has its own model of service locator, called dependency resolvers, and I cover them in
Chapter 8.

Gaining control of the controller factory
In ASP.NET MVC, the instantiation of the controller class is a topical moment. The ASP.NET MVC in-
frastructure includes a factory that uses the default constructor of the selected controller class. What
if you have parameterized constructors on your controller class and need to pass in some data? This
scenario is not supported out of the box, but the extremely extensible design of ASP.NET MVC offers
a hook for you to replace the default controller factory with your own.

A common way to replace the default controller factory is to integrate an IoC container in it so that
any parameter can be resolved brilliantly by looking at the table of registered types. The following
sections explain how to do it.

 CHAPTER 7 Design considerations for ASP.NET MVC controllers 251

registering a custom controller factory
It all starts in Application_Start, where you register your own controller factory. A controller factory is
a class that implements the IControllerFactory interface. To register the factory, you create a proper
configuration class in accordance with the new pattern pushed by ASP.NET MVC. (Other approaches
are fine, as well, though.)

protected void Application_Start()
{
 // Register a custom controller factory
 ControllerConfig.RegisterFactory(ControllerBuilder.Current);
 ...
}

The ControllerConfig class is a simple class with a static method, as shown in the following:

public static void RegisterFactory(ControllerBuilder builder)
{
 var factory = new UnityControllerFactory();
 builder.SetControllerFactory(factory);
}

Let’s see a controller factory from the inside.

Building a custom controller factory
A typical controller factory class inherits from DefaultControllerFactory and overrides a few methods,
as detailed in Table 7-4.

TABLE 7-4 Popular IoC frameworks

Overridable methods Description

CreateController Governs the creation of a controller instance. It takes the name of the controller
(for example, home) and returns a controller instance. The default implementation
first invokes GetControllerType to map the controller name to a type and then calls
GetControllerInstance to actually create an instance.

GetControllerInstance Gets a controller type and the request context, and returns a newly created instance
of the controller.

GetControllerSessionBehavior Gets the session state behavior for the controller type.
Note: You override this method if you want to control programmatically how the
session state behavior is determined. By default, it is controlled by the SessionState
attribute.

GetControllerType Gets the controller name and the request context and returns the expected type of
the controller.
Note: You override this method if you don’t like the convention that the controller
type is always given by a name followed by “Controller”.

ReleaseController Performs any cleanup task for when the controller instance is dismissed.

252 PArT II ASP.NET MVC software design

Note that the CreateController and ReleaseController methods are public; all of the other methods
are protected. Creating your own factory also makes it possible for you to perform any sort of custom
work on freshly created instances of controllers. For example, you might want to centralize the initial-
ization of some custom properties (if you’re deriving your controllers from a base class). More likely,
you might want to use this hook to give a controller instance a handmade action invoker. (I discuss
action invokers in Chapter 8.)

A Unity-based controller factory
When you introduce a custom factory based on Unity, at a minimum you want to override GetController
Instance to use the Unity infrastructure to resolve the controller type, as demonstrated here:

public class UnityControllerFactory : DefaultControllerFactory
{
 public static IUnityContainer Container { get; private set; }

 public UnityControllerFactory()
 {
 Container = new UnityContainer();
 Container.LoadConfiguration();
 }

 protected override IController GetControllerInstance(
 RequestContext requestContext, Type controllerType)
 {
 if (controllerType == null)
 return null;
 return Container.Resolve(controllerType) as IController;
 }
}

Using the Unity engine guarantees that further dependencies rooted in the controller type are
identified and resolved. With reference to the FatFree example, this is just what happens with worker
service and date repository dependencies.

The code just shown looks pretty generic—which is the reason why IoC tools ultimately became so
successful. IoC tools enhance productivity because they save you a lot of boilerplate code. Where are
the details?

Just like any other IoC framework, Unity needs some configuration data. You can place this data in
the web.config file or use the Unity API to add it programmatically. In the end, this configuration data
consists of specifying which interface type maps to which concrete type and where these types can
be found. Here’s a modified web.config file that contains a Unity section:

 CHAPTER 7 Design considerations for ASP.NET MVC controllers 253

<configuration>
 <configSections>
 <section name="unity" type="Microsoft.Practices.Unity.Configuration.
 UnityConfigurationSection,
 Microsoft.Practices.Unity.Configuration, ..." />
 </configSections>

 ...
 <unity xmlns="http://schemas.microsoft.com/practices/2010/unity">
 <assembly name="FatFreeIoC" />
 <namespace name="FatFreeIoC.Backend.DAL" />
 <namespace name="FatFreeIoC.Services.Abstractions" />
 <namespace name="FatFreeIoC.Services.Home" />
 <container>
 <register type="IHomeService" mapTo="HomeService">
 </register>
 <register type="IDateRepository" mapTo="DateRepository">
 </register>
 </container>
 </unity>
</configuration>

The namespace entry registers a namespace that Unity uses to qualify types. The assembly entry
lists assemblies to be considered to resolve types. Under the container group, you register types. The
register node can contain a bunch of child nodes to provide additional information for injection and
interception. (These aspects are not relevant in this book. For more information, refer to the official
Unity documentation online at http://msdn.microsoft.com/en-us/library/ff663144.aspx.)

Summary

In this chapter, I tried to call each entity involved in a typical ASP.NET MVC application with its own
name and role. I wouldn’t be surprised if, at first glance, you’re tempted to dismiss the material and be
a bit annoyed by what seems to be unnecessary complexity. Why on earth should you create a worker
service that is apparently just a cool way to waste CPU cycles?

If the complexity of your application compares to that of many tutorials available out there (for
example, Music Store), I say good for you. You should go ahead and call the Entity Framework data
context right from action methods and forget about layers and layered architecture. You can bliss-
fully and happily design quite a few applications in this way. The idea of ignoring entry-level tutorials
couldn’t be more foreign to me. They do a great job of getting you started and demonstrating things
concretely.

However, it should be clear that it is only the first step. Many common practices just don’t scale
well with increased complexity of the model and domain. In this chapter, I summarized a few practices
that take your ASP.NET MVC application up to the next level of complexity. A key good practice is

http://msdn.microsoft.com/en-us/library/ff663144.aspx

254 PArT II ASP.NET MVC software design

keeping the controller class lean and mean by moving most of the logic out to worker services. An-
other good practice is keeping the view as humble and passive as possible by moving code to HTML
helpers and controllers, preferably through strongly typed view models, but render actions also are
acceptable. Yet another practice is layering the back end of the application to distinguish between
domain model, domain services, and repositories. Repositories should be the only way to access data,
and services should invoke them whenever possible, thus shielding controllers from them.

So, are simpler tutorials the wrong way to demonstrate these things? No, as long as you consider
the code in them as a special case of more general patterns discussed in this chapter (and in the rest
of the book, to a good extent).

For simple applications, ASP.NET MVC is an easy framework to use; for complex applications, it
might get tricky. But, if you manage it well, your resulting code will definitely be high-quality code—
much more so than in Web Forms, assuming a similar level of effort and skills.

 255

C H A P T E R 8

Customizing ASP.NET MVC
controllers

We need men who can dream of things that never were.
—John F. Kennedy

The entire ASP.NET MVC stack is full of extensibility points. An extensibility point is a place in the
code at which the actual behavior that takes place can be read from an external and replace-

able provider. In the previous chapters, you saw a few examples of extensibility points. You saw, for
example, how to replace the controller factory—that is, the component that returns fresh instances of
controller classes for each incoming request. (See Chapter 7, “Design considerations for ASP.NET MVC
controllers.”) Chapter 4, “Input forms,” discusses how to replace a model metadata provider—that is,
the component that reads meta-information about classes to be used in HTML forms.

In a programming framework such as ASP.NET MVC, the benefits of an extensible design will ripple
across any applications built on top of it. In this chapter, my goal is to help you discover the points of
extensibility you find in ASP.NET MVC and to illustrate them with a few examples. I’ll start with a brief
discussion of the extensibility model in ASP.NET MVC and then proceed with a thorough examination
of aspects of controllers that you can customize at your leisure and that will result in lean and mean
controllers as well as improved maintainability and readability.

The extensibility model of ASP.NET MVC

An extensibility point is tightly coupled with an extensibility model. This is the programming model
according to which a developer can unplug the existing implementation of a component and create
his own. In ASP.NET MVC, you have two functionally equivalent extensibility models that differ in the
API they require you to use. One is based on providers you register explicitly using a fluent syntax.
The other is based on the classic Service Locator pattern and is introduced to let developers benefit
more and more from Inversion-of-Control (IoC) frameworks.

These two models cover the replacement of internal components, such as view engines, action
invokers, metadata providers, and factories. Another segment of the ASP.NET MVC extensibility
model is based on special attributes—named action filters—that you use to inject custom (and even
optional) code in the execution flow of controller methods. Let’s tackle the replacement of internal
components first.

256 PArT II ASP.NET MVC software design

The provider-based model
Replaceable internal components of the ASP.NET MVC stack exist for very specific situations. You
don’t want to take advantage of them in just any application you write. Suppose that these extensibil-
ity points are there only in case they’re needed. If at some point you decide to replace them, be aware
that you’re interacting with the internal machinery of ASP.NET MVC. Your components, therefore, are
the first suspect in the case of performance or functional issues.

Gallery of extensibility points
Table 8-1 provides a quick list of extensibility points.

TABLE 8-1 Replaceable components

Provider Interface or base class Description

Action invoker DefaultActionInvoker Governs the execution of action methods and the gen-
eration of the browser response. It interacts with filters
and view engines. (I’ll say more about this later.)

Controller factory DefaultControllerFactory Serves as the factory for controller instances. It can be
used to set a custom action invoker for the freshly cre-
ated controller instance.

Dictionary values IValueProvider Reads values to be added to the dictionary of input
values for a request. Built-in value providers read from
query strings, forms, input files, and routes. Custom
providers might read from cookies or HTTP headers.

Model binder IModelBinder Defines a binder type that transforms raw values in some
value provider dictionaries into a specific complex type.

Model binder provider IModelBinderProvider Defines a model binder factory that dynamically selects
the right model binder to use for a given type.

Model metadata ModelMetadataProvider Retrieves meta-information about members of a class,
and associates that information with any instance of that
type. The default provider reads meta-information from
DataAnnotations attributes.

Model validator ModelValidatorProvider The description is the same as for the preceding model
metadata item, except that it focuses on validation as-
pects. The default provider reads meta-information from
validation DataAnnotations attributes.

TempData ITempDataProvider Serves as the storage of any data being placed in the
TempData collection. The default provider uses session
state.

View engine IViewEngine Serves as a component capable of interpreting a view
template and producing HTML markup for the browser.
Default view engines can translate ASPX and Razor
markup to HTML.

As you can see, these are not the components you use every day. However, I’ve customized most
of them at least once in my years of programming, but usually I haven’t customized more than one or
two components at a time.

 CHAPTER 8 Customizing ASP.NET MVC controllers 257

A realistic scenario: alternate TempData storage
The TempData dictionary is used to store data that logically belongs to the current request but must
survive across a redirect. Chapter 4 demonstrates using TempData in the context of the Post-Redirect-
Get (PRG) pattern for input forms. According to the PRG pattern, you should terminate a POST re-
quest with a GET redirect to the view that displays results. The entire state of the request (for example,
validation messages) might be lost across the redirect. The TempData dictionary provides a temporary
store for any data (mostly ModelState) you need.

By default, the TempData dictionary saves its content to the session state. The key difference
between using Session directly or through TempData is that any data stored in TempData is automati-
cally cleared up after the successive request terminates. In other words, data stays in memory for just
two requests: the current request and the next redirect. TempData, in the end, puts much less pres-
sure on memory.

What if your application is not allowed to use session state?

Either you work out an entirely different solution based on the query string or you just provide
different storage for TempData content. What would be different storage? It can be a cookie (if the
overall size of your data matches the limitations on cookie size), or it can be a (distributed) cache. If
you choose the latter, storing the data on a per-user basis is entirely your responsibility. Here’s what a
custom TempData provider looks like:

public class CookieTempDataProvider : ITempDataProvider
{
 protected override IDictionary<String, Object> LoadTempData(ControllerContext
controllerContext)
 { ... }
 protected override void SaveTempData(ControllerContext controllerContext,
 IDictionary<String, Object> values)
 { ... }
}

You can find a working example of this class (as well as many other replacements for the compo-
nents listed in Table 8-1) by simply checking StackOverflow questions, which you can access at http://
www.stackoverflow.com. Here’s one in particular that I like: http://brockallen.com/2012/06/11/cookie-
based-tempdata-provider.

Using custom components in your applications
For a long time, there was no standard way to register custom components. Each component listed in
Table 8-1 required its own API to be integrated into a user application. As you’ll see in a moment, you
have now an additional model based on dependency resolvers that is for the most part parallel to the
custom model supported in earlier version of ASP.NET MVC.

Table 8-2 describes how to register the special replaceable components listed in Table 8-1.

http://www.stackoverflow.com
http://www.stackoverflow.com
http://brockallen.com/2012/06/11/cookie-based-tempdata-provider
http://brockallen.com/2012/06/11/cookie-based-tempdata-provider

258 PArT II ASP.NET MVC software design

TABLE 8-2 Registering replaceable components

Provider Description

Action invoker // In the constructor of a controller class
this.ActionInvoker = new YourActionInvoker();

Controller factory // In global.asax, Application_Start
var factory = new YourControllerFactory();
ControllerBuilder.Current.SetControllerFactory(factory);

Dictionary values // In global.asax, Application_Start
var providerFactory = new YourValueProviderFactory();
ValueProviderFactories.Factories.Add(providerFactory);

Model binder // In global.asax, Application_Start
ModelBinders.Binders.Add(typeof(YourType), new YourTypeBinder());

Model binder provider // In global.asax, Application_Start
var provider = new YourModelBinderProvider();
ModelBinderProviders.BinderProviders.Add(provider);

Model metadata // In global.asax, Application_Start ModelMetadataProviders.Current = new
YourModelMetadataProvider();

Model validator // In global.asax, Application_Start
var validator = new YourModelValidatorProvider();
ModelValidatorProviders.Providers.Add(validator);

TempData // In the constructor of a controller class this.TempDataProvider = new
YourTempDataProvider();

View engine // In global.asax, Application_Start
ViewEngines.Engines.Clear();
ViewEngines.Engines.Add(new YourViewEngine());

I want to take a few more moments to discuss value providers. As the code snippets in Table 8-2
show, you don’t manage a collection of value providers, you manage a collection of value provider
factories. This means that for each custom value provider you intend to add, you should write two
distinct classes: the value provider and its factory. However, only the factory class should be registered
with the system at startup. The value provider factory is a thin wrapper, as shown here:

public class HttpCookieValueProviderFactory : ValueProviderFactory
{
 public override IValueProvider GetValueProvider(ControllerContext controllerContext)
 {
 return new HttpCookieValueProvider(controllerContext);
 }
}

The class represents a factory for a custom value provider; also in this case, there are quite a few
implementations that have been contributed by the community of developers. You can find some on
StackOverflow.

 CHAPTER 8 Customizing ASP.NET MVC controllers 259

The Service Locator pattern
Service Locator is a popular pattern used in the design of loosely coupled systems. The core of the
pattern is a globally accessible factory class responsible for serving instances of classes that imple-
ment a given contract. The basic interaction taking place between a service locator and its clients can
be summarized as a conversation that starts like this: I need an object that behaves like this type; do
you know about some concrete type that you can instantiate for me? The service locator then replies
by returning such an instance or null.

The term “Service Locator” (and variations such as “Service Location”) is often used to indicate a
scenario in which a class gets external dependencies, thus remaining open for extension but closed
for modifications. What’s the difference, really, between the Service Locator (or Location) pattern and
Dependency Injection?

Service Locator vs. Dependency Injection
Functionally speaking, the Service Locator (SL) pattern is nearly identical to Dependency Injection
(DI), and both are concrete implementations of the Dependency Inversion Principle—the “D” in the
popular SOLID acronym (which in its entirety stands for Single responsibility, Open-closed, Liskov
substitution, Interface segregation and Dependency inversion principle). SL is historically the first
pattern that was widely employed in the building of loosely coupled, testable systems. Later on, DI
was introduced as a slightly better way of doing the same things. The difference between SL and DI
is more or less blurred, depending on the level of abstraction from which you’re looking at them. For
sure, there’s a difference at the source-code level. With SL, a class queries an external component
for getting its dependencies. With DI, a class is given its dependencies through the constructor (or
public properties).

Here’s what a class that uses SL looks like:

public class FinanceInfoService
{
 private IFinder _finder;
 private IRenderer _renderer;

 public FinanceInfoService()
 {
 _finder = ServiceLocator.GetService<IFinder>();
 _renderer = ServiceLocator.GetService<IRenderer>();
 }

 public String GetQuotesAsHtml(String symbols)
 {
 var stocks = _finder.FindQuoteInfo(symbols);
 return _renderer.RenderQuoteInfo(stocks);
 }
}

260 PArT II ASP.NET MVC software design

The same class refactored to use DI looks like this:

public class FinanceInfoService
{
 private IFinder _finder;
 private IRenderer _renderer;

 public FinanceInfoService(IFinder f, IRenderer r)
 {
 _finder = f;
 _renderer = r;
 }

 public string GetQuotesAsHtml(string symbols)
 {
 var stocks = _finder.FindQuoteInfo(symbols);
 return _renderer.RenderQuoteInfo(stocks);
 }
}

The difference is all in the constructor and in how dependencies are retrieved. Which approach
should you use?

For new systems built from scratch, DI is preferable; it keeps your code cleaner and makes it easier
to read and test. With DI, dependencies are explicit in the class signature. The surrounding frame-
work, however, is entirely responsible for preparing dependencies and injecting them. For existing
systems, SL is far easier to plug in because it only requires you to encapsulate calls in a sort of black
box that expose an interface.

SL in ASP.NET MVC
ASP.NET MVC is designed with several extensibility points but lacks comprehensive support for DI.
The various APIs listed in Table 8-2 prove this statement beyond any reasonable doubt. To make an
existing framework more loosely coupled through the addition of new extensibility points, a service
locator is probably the most effective because it’s the least intrusive solution. A service locator acts as
a black box that you install in a specific point and then let it figure out what contract is required and
how to get it.

Parallel to the APIs listed in Table 8-2, ASP.NET MVC offers you the ability to register your own
service locator that the framework will use any time it needs to resolve a dependency. The service
locator is optional, and using it or sticking with the APIs listed in Table 8-2 is equivalent in terms of
functionality.

When resolving a dependency, ASP.NET MVC always uses the internal service locator first. The
actual behavior changes slightly if the dependency can be registered singly or multiple times. From a
developer’s perspective, however, all that matters is that if a custom component is registered in two
ways (using the service locator or any of the APIs in Table 8-2), the service locator is given precedence.

 CHAPTER 8 Customizing ASP.NET MVC controllers 261

Note A singly registered component is a component that must be unique to the applica-
tion. An example is the controller factory—you can’t have two factories in the same ap-
plication. Examples of components registered multiple times are the view engine and the
model validator providers. In both cases, you can have multiple instances registered and
exposed to the rest of the system.

Defining your dependency resolver
The implementation of the ASP.NET MVC service locator consists of a thin wrapper around a user-
defined object known as the dependency resolver. A dependency resolver—which is unique to each
application—is an object that implements the following interface:

public interface IDependencyResolver
{
 Object GetService(Type serviceType);
 IEnumerable<Object> GetServices(Type serviceType);
}

The logic you put in the resolver is entirely up to you. It can be as simple as a switch statement that
checks the type and returns a newly created instance of a fixed type. It can be made more sophisti-
cated by reading information from a configuration file and using reflection to create instances. Finally,
it can be based on Unity or any other IoC framework. Here’s a simple yet functional resolver:

public class SampleDependencyResolver : IDependencyResolver
{
 public object GetService(Type serviceType)
 {
 if (serviceType == typeof(ISomeClass))
 return new SomeClass();
 ...
 }

 public IEnumerable<object> GetServices(Type serviceType)
 {
 return Enumerable.Empty<Object>();
 }
}

The code shown next is an example of a resolver that uses Unity (and its configuration section) to
resolve dependencies:

public class UnityDependencyResolver : IDependencyResolver
{
 private readonly IUnityContainer _container;

262 PArT II ASP.NET MVC software design

 public UnityDependencyResolver() : this(new UnityContainer().LoadConfiguration())
 {
 }
 public UnityDependencyResolver(IUnityContainer container)
 {
 _container = container;
 }

 public Object GetService(Type serviceType)
 {
 return _container.Resolve(serviceType);
 }

 public IEnumerable<Object> GetServices(Type serviceType)
 {
 return _container.ResolveAll(serviceType);
 }
}

You register your own resolver with the ASP.NET MVC framework through the SetResolver method
of the DependencyResolver class, as shown here:

protected void Application_Start()
{
 // Prepare and configure the IoC container
 var container = new UnityContainer();
 ...

 // Create and register the resolver
 var resolver = new UnityDependencyResolver(container);
 DependencyResolver.SetResolver(resolver);
}

If you use an IoC framework from within the resolver, you need to figure out the best way to pro-
vide it with the list of registered types. If you prefer to pass this information via fluent code, you need
to fully configure the IoC container object before you create the resolver. If you intend to configure
the IoC by using the web.config file, you can use the default constructor of the resolver—as far as
Unity is concerned—which includes a call to load configuration data. However, be aware that you
might need to change this code if you target a different IoC framework.

Important The dependency resolver is an internal tool that developers can optionally
use to create their own customized components in lieu of system components. The power
of dependency resolvers is limited by the use that ASP.NET MVC makes of them. In other
words, if ASP.NET MVC doesn’t invoke the resolver before creating, for instance, the con-
troller cache, there’s not much you can do to replace the built-in cache with your own.

 CHAPTER 8 Customizing ASP.NET MVC controllers 263

Adding aspects to controllers

An entirely different form of customization you find in ASP.NET MVC is based on attributes that you
can attach to controller classes and methods. These attributes are generally known as action filters. An
action filter is a piece of code that runs around the execution of an action method and can be used to
modify and extend the behavior hardcoded in the method itself.

Action filters
An action filter is fully represented by the following interface:

public interface IActionFilter
{
 void OnActionExecuting(ActionExecutingContext filterContext);
 void OnActionExecuted(ActionExecutedContext filterContext);
}

As you can see, it offers a hook for you to run code before and after the execution of the action.
From within the filter, you have access to the request and controller context and can read and modify
parameters.

Embedded and external filters
Each user-defined controller inherits from the class Controller. This class implements IActionFilter
and exposes OnActionExecuting and OnActionExecuted methods as protected members that can be
overridden. This means that each controller class gives you the chance to decide what to do before,
after, or both before and after a given method is invoked. Let’s see some code that adds an ad hoc
response header any time the method Index is invoked.

protected DateTime StartTime;
protected override void OnActionExecuting(ActionExecutingContext filterContext)
{
 var action = filterContext.ActionDescriptor.ActionName;
 if (String.Equals(action, "index", StringComparison.CurrentCultureIgnoreCase))
 {
 StartTime = DateTime.Now;
 }

 base.OnActionExecuting(filterContext);
}

264 PArT II ASP.NET MVC software design

protected override void OnActionExecuted(ActionExecutedContext filterContext)
{
 var action = filterContext.ActionDescriptor.ActionName;
 if (String.Equals(action, "index", StringComparison.CurrentCultureIgnoreCase))
 {
 var timeSpan = DateTime.Now - StartTime;
 filterContext.RequestContext.HttpContext.Response.AddHeader(
 "despos-mvc4", timeSpan.Milliseconds.ToString());
 }

 base.OnActionExecuted(filterContext);
}

Figure 8-1 demonstrates that the method counts how many milliseconds it takes to execute and
writes that number to a new response header.

FIGURE 8-1 A custom response header added for the Index method.

If you override these methods in a controller class, you end up having a single repository of
before/after code for all controller methods. This approach works as long as you want to perform the
same operations for each method. If you need to distinguish operations on a per-method basis, using
action filters as attributes is probably a better trick to try.

Implemented as an attribute, an action filter provides a declarative means to attach some behavior
to a controller’s action method. By writing an action filter, you can hook up the execution pipeline
of an action method and adapt it to your needs. In this way, you also take out of the controller class

 CHAPTER 8 Customizing ASP.NET MVC controllers 265

any logic that doesn‘t strictly belong to the controller. In doing so, you make this particular behavior
reusable and, more important, optional. Action filters are ideal for implementing solutions to cross-
cutting concerns that affect the life of your controllers.

Classification of action filters
Action filters are classified in different types according to the tasks they actually accomplish. An ac-
tion filter is characterized by an interface; you have a different interface for each type of filter. Special
action filters are exception filters, authorization filters, and result filters. Table 8-3 lists the types of
action filters in ASP.NET MVC.

TABLE 8-3 Types of action filters in ASP.NET MVC

Filter interfaces Description

IActionFilter Defines two methods, one that executes before and one that executes after the controller
action

IAuthenticationFilter Defines a method that executes early in the action pipeline, giving you a chance to cus-
tomize the process of authentication and also to use different authentication strategies
on different action methods and controllers

IAuthorizationFilter Defines a method that executes after authentication, giving you a chance to verify whether
the user is authorized to perform the action

IExceptionFilter Defines a method that runs whenever an exception is thrown during the execution of the
controller action

IResultFilter Defines two methods, one that executes before and one that executes after the process-
ing of the action result

The implementation of all the interfaces in Table 8-3 results in a few additional methods on the
Controller class. Table 8-4 lists them and comments on them all.

TABLE 8-4 Filter methods in the Controller class

Method Description

OnActionExecuting Invoked just before an action method is executed

OnActionExecuted Invoked right after the execution of an action method is completed

OnAuthentication Invoked when authentication of an action method occurs

OnAuthorization Invoked when authorizing the execution of an action method

OnException Invoked when an exception occurs in an action method

OnResultExecuting Invoked just before an action result is executed

OnResultExecuted Invoked right after the execution of an action result is completed

All these methods are protected and virtual, and they can therefore be overridden in your control-
ler classes to achieve more specialized behavior.

Let’s take a closer look at some predefined action filters.

266 PArT II ASP.NET MVC software design

Built-in action filters
ASP.NET MVC comes with a few predefined filters, some of which are discussed in earlier chapters:
HandleError, Authorize, and OutputCache are just a few of them. Table 8-5 lists the built-in filters
available in ASP.NET MVC.

TABLE 8-5 Predefined filters in ASP.NET MVC

Filter Description

AsyncTimeout Marks an action method as one that will execute asynchronously and terminate in the
specified number of milliseconds. A companion attribute also exists for asynchronous
methods that do not set a timeout. This companion attribute is NoAsyncTimeout.

Authorize Marks an action method as one that can be accessed only by specified users, roles, or
both.

ChildActionOnly Marks an action method as one that can be executed only as a child action during a
render-action operation.

HandleError Marks an action method as one that requires automatic handling of any exceptions
thrown during its execution.

OutputCache Marks an action method as one whose output needs to be cached.

RequireHttps Marks an action method as one that requires a secure request. If the method is invoked
over HTTP, the attribute forces a redirect to the same URL but over an HTTPS connection,
if that’s ever possible.

ValidateAntiForgeryToken Marks an action method as one that requires validation against the antiforgery token in
the page for each POST request.

ValidateInput Marks an action method as one whose posted input data might (or might not) need
validation.

Each controller method can be decorated with multiple filters. The order in which filters are pro-
cessed is therefore important. All the attributes listed in Table 8-5 derive from the base class Filter
Attribute, which defines a base property, Order. The Order property indicates the order in which mul-
tiple attributes will be applied. By default, the Order property is assigned a value of –1, which means
that the order is unspecified. However, any filter with an unspecified order is always executed before
a filter with a fixed order. Finally, note that if you explicitly set the same order on two or more action
filters on a method, an exception will be thrown.

Global filters
You can apply filters to individual methods or to the entire controller class. If you apply filters to the
controller class, they will have an effect on all action methods exposed by the controller. By contrast,
global filters are those that, when registered at application startup, are automatically applied to any
action of any controller class.

By default, the HandleError filter is globally registered in global.asax, meaning that it provides
some exception-handling capabilities to any action methods. Global filters are plain action filters that
are just registered in a different way, as demonstrated here:

GlobalFilters.Filters.Add(new HandleError());

 CHAPTER 8 Customizing ASP.NET MVC controllers 267

The GlobalFilters collection is checked by the current action invoker before each action is invoked,
and all found filters are added to the list of filters enabled to preprocess and post-process the action.
I’ll return to action invokers and the list of filters for each action later in the chapter.

Gallery of action filters
Overall, action filters form an embedded aspect-oriented framework within ASP.NET MVC. ASP.NET
MVC provides many predefined filters but also makes it possible to write your own. When it comes
to writing an action filter, you typically inherit from FilterAttribute and then implement one or more
of the interfaces defined in Table 8-3. Most of the time, however, you take a shorter route—deriving
from ActionFilterAttribute. The ActionFilterAttribute class is another, richer, base class for creating your
custom action filters. It inherits from FilterAttribute and provides a default implementation for all the
interfaces listed in Table 8-3. Let’s find out what it takes to write a few sample action filters.

Note Action filters are custom components that encapsulate a specific behavior. You
write an action filter whenever you want to isolate this behavior and replicate it with ease.
Reusability of the behavior is one of the factors for deciding whether to write action filters,
but it’s not the only one. Action filters also serve the purpose of keeping the controller’s
code lean and mean. As a general rule, whenever your controller’s method code is pad-
ded with branches and conditional statements, stop and consider whether some of those
branches (or repetitive code) can be moved to an action filter. The readability of the code
will be largely improved.

Adding a response header
The classic scenario for having a custom action filter is to encapsulate any repetitive behavior you
want to apply to many (but not necessarily all) action methods. A canonical example is adding a
custom header to a method response. Earlier in the chapter, you saw how to achieve this by using the
native implementation of IActionFilter in the controller class. The following code shows how to move
that code out of the controller to a distinct class:

public class AddHeaderAttribute : ActionFilterAttribute
{
 public String Name { get; set; }
 public String Value { get; set; }

 public override void OnActionExecuted(ActionExecutedContext filterContext)
 {
 if (!String.IsNullOrEmpty(Name) && !String.IsNullOrEmpty(Value))
 filterContext.RequestContext.HttpContext.Response.AddHeader(Name, Value);
 return;
 }
}

268 PArT II ASP.NET MVC software design

You now have an easily managed piece of code. You can attach it to any number of controller ac-
tions, to all actions of a controller, and even globally to all controllers. All you need to do is to add an
attribute, as shown here:

[AddHeader(Name="Action", Value="About")]
public ActionResult About()
{ ... }

You might argue that this example is not completely equivalent to the previous one, in which
we calculated the time elapsed between the start and the completion of the action. Indeed, the
AddHeader filter just adds a fixed header. You can derive a new class—for example, ReportDuration—
and apply all the logic you need there:

public class ReportDurationAttribute : AddHeaderAttribute
{
 protected DateTime StartTime;

 public override void OnActionExecuting(ActionExecutingContext filterContext)
 {
 StartTime = DateTime.Now;
 base.OnActionExecuting(filterContext);
 }

 public override void OnActionExecuted(ActionExecutedContext filterContext)
 {
 var timeSpan = DateTime.Now - StartTime;
 Value = timeSpan.Milliseconds.ToString();
 base.OnActionExecuted(filterContext)
 }
}

Let’s see a slightly more sophisticated example. In this one, we will compress the method response,
which is a useful feature, especially when large HTML or binary chunks are returned.

Compressing the response
These days, HTTP compression is a feature that nearly every website can afford because the number
of browsers that have trouble with that is approaching zero. (Any browser released in the past 10
years recognizes the most popular compression schemes.)

In ASP.NET Web Forms, compression is commonly achieved through HTTP modules that intercept
any request and compress the response. You can also turn on compression at the Internet Information
Services (IIS) level. Both options work well in ASP.NET MVC, so the decision is up to you. You typically
make your decision based on the parameters you need to control, including the MIME type of the
resource to compress, level of compression, files to compress, and so forth.

ASP.NET MVC makes it particularly easy to implement a third option: an action-specific filter that
sets things up for compression. In this way, you can control a specific URL without the need to write
an HTTP module. Let’s go through another example of an action filter that adds compression to the
response stream for a particular method.

 CHAPTER 8 Customizing ASP.NET MVC controllers 269

In general, HTTP compression is controlled by two parameters: the Accept-Encoding header sent
by the browser with each request, and the Content-Encoding header sent by the web server with each
response. The Accept-Encoding header indicates that the browser is able to handle only the speci-
fied encodings—typically, gzip and deflate. The Content-Encoding header indicates the compression
format of the response. Note that the Accept-Encoding header is just a request header sent by the
browser; in no way should the server feel obliged to return compressed content.

When it comes to writing a compression filter, the hardest part is gaining a full understanding of
what the browser is requesting. Here’s some code that works:

public class CompressAttribute : ActionFilterAttribute
{
 public override void OnActionExecuting(ActionExecutingContext filterContext)
 {
 // Analyze the list of acceptable encodings
 var preferredEncoding = GetPreferredEncoding(filterContext.HttpContext.Request);

 // Compress the response accordingly
 var response = filterContext.HttpContext.Response;
 response.AppendHeader("Content-encoding", preferredEncoding.ToString());

 if (preferredEncoding == CompressionScheme.Gzip)
 response.Filter = new GZipStream(response.Filter, CompressionMode.Compress);
 if (preferredEncoding == CompressionScheme.Deflate)
 response.Filter = new DeflateStream(response.Filter, CompressionMode.Compress);

 return;
 }

 private CompressionScheme GetPreferredEncoding(HttpRequestBase request)
 {
 var acceptableEncoding = request.Headers["Accept-Encoding"].ToLower();

 if (acceptableEncoding.Contains("gzip"))
 return CompressionScheme.Gzip;
 if (acceptableEncoding.Contains("deflate"))
 return CompressionScheme.Deflate;

 return CompressionScheme.Identity;
 }

 enum CompressionScheme
 {
 Gzip = 0,
 Deflate = 1,
 Identity = 2
 }
}

270 PArT II ASP.NET MVC software design

You apply the Compress attribute to the method as follows:

[Compress]
public ActionResult Index()
{ ... }

Figure 8-2 demonstrates that the Content-Encoding response header is set correctly and the re-
sponse is understood and decompressed within the browser.

FIGURE 8-2 An inspection to the underlying HTTP traffic shows a custom header with the description of the
encoding that was used.

Almost any browser sets the Accept-Encoding header to the string “gzip, deflate”, which is not
the only possibility. As you can read in RFC 2616 (available at http://www.w3.org/Protocols/rfc2616/
rfc2616-sec14.html), an Accept header field supports the q parameter as a way to assign a priority to
an acceptable value. The following strings are acceptable values for an encoding:

gzip, deflate
gzip;q=.7,deflate
gzip;q=.5,deflate;q=.5,identity

Even though gzip appears in all strings, only in the first one is it the preferred choice. If a value is
not specified, the q parameter is set to 1; this assigns to deflate in the second string and to identity
in the third string a higher rank than gzip. So, simply checking whether gzip appears in the encoding
string still sends back something the browser can accept, but it doesn’t take the browser’s preference
into full account. To write a Compress attribute that takes into account the priority (if any) expressed
through the q parameter, you need to refine the GetPreferredEncoding method, as shown here:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

 CHAPTER 8 Customizing ASP.NET MVC controllers 271

private CompressionScheme GetPreferredEncoding(HttpRequestBase request)
{
 var acceptableEncoding = request.Headers["Accept-Encoding"].ToLower();
 acceptableEncoding = SortEncodings(acceptableEncoding);

 if (acceptableEncoding.Contains("gzip"))
 return CompressionScheme.Gzip;
 if (acceptableEncoding.Contains("deflate"))
 return CompressionScheme.Deflate;

 return CompressionScheme.Identity;
}

The SortEncodings method will parse the header string and extract the segment of it that corre-
sponds to the choice with the highest priority.

View Selector
Chapter 5, “Aspects of ASP.NET MVC applications,” discusses the CultureAttribute filter, which you use
to force a specific culture for a given action method, thus obtaining the effect of enabling localiza-
tion for that request. The CultureAttribute filter works great if it’s installed as a global filter. I won’t be
discussing the use of an action filter to implement localization any further. My next filter, however, still
belongs to the class of filters that can select a different view for a given action. Suppose that you want
to switch to a different view template following the capabilities of the requesting browser.

Note Although the following example is still useful from the perspective of understanding
the scope of action filters in ASP.NET MVC, the specific feature demonstrated can be imple-
mented in a more effective and compact way in the newest ASP.NET MVC by using a new
feature called display modes. I’ll cover display modes in detail in Chapter 13, “Building sites
for multiple devices.”

Creating a multiserving application is not easy and, more important, is always a project-specific
solution. What I’m going to do is illustrate the role that filters can play in helping you arrange a
multiserving solution. To clarify, a multiserving application is one that can serve the same request in
different ways depending on the requesting browser.

Until a few years ago, a classic example of multiserving was having pages for rich browsers and
having pages for less-rich desktop browsers. Today, Ajax and JavaScript libraries have significantly
mitigated the impact of this problem because JavaScript libraries (for example, jQuery) can now hide
most of the differences to the developer. However, an emerging dichotomy is between desktop and
mobile browsers. The boundaries of the two categories are not as clear as it might seem. In the end,
defining boundaries is up to you. Defining boundaries means deciding how to treat smartphones and
tablets as well as deciding what to do with less powerful browsers embedded in mobile devices and
cell phones. For the purpose of this chapter, however, I’ll assume that you know exactly where your
boundaries are. So, I’ll proceed with an action filter that knows how to switch views based on the user
agent string and your rules.

272 PArT II ASP.NET MVC software design

The idea is to write a filter that kicks in just after the action executed and before the action invoker
begins processing the results. According to the classification introduced with Table 8-3, this techni-
cally is a result filter. Let’s have a look at the source code in the following example:

public class BrowserSpecificAttribute : ActionFilterAttribute
{
 public override void OnResultExecuting(ResultExecutingContext filterContext)
 {
 ...
 }
}

The filter inherits from ActionFilterAttribute and overrides the method OnResultExecuting. The
method is invoked after the execution of the action method but before the result of the action is
processed to generate the response for the browser.

public override void OnResultExecuting(ResultExecutingContext filterContext)
{
 var viewResult = filterContext.Result as ViewResult;
 if (viewResult == null)
 return;

 // Figure out the view name
 var context = filterContext.Controller.ControllerContext;
 var viewName = viewResult.ViewName;
 if (String.IsNullOrEmpty(viewName))
 viewName = context.RouteData.GetRequiredString("action");
 if (String.IsNullOrEmpty(viewName))
 return;

 // Resolve the view selector
 var viewSelector = DependencyResolver.Current.GetService(typeof (IViewSelector))
 as IViewSelector;
 if (viewSelector == null)
 viewSelector = new DefaultViewSelector();

 // Figure out the browser name
 var isMobileDevice = context.HttpContext.Request.Browser.IsMobileDevice;
 var browserName = (isMobileDevice ?"mobile" :context.HttpContext.Request.Browser.Browser);

 // Get the name of the browser-specific view to use
 var newViewName = viewSelector.GetViewName(viewName, browserName);
 if (String.IsNullOrEmpty(newViewName))
 return;

 // Is there such a view?
 var result = System.Web.Mvc.ViewEngines.Engines.FindView(context, newViewName,
 viewResult.MasterName);
 if (result.View != null)
 viewResult.ViewName = newViewName;
}

 CHAPTER 8 Customizing ASP.NET MVC controllers 273

The algorithm employed is simple. Using the ControllerContext object, the filter retrieves the
Request object from the request context; from there, it ascertains the capabilities of the current
browser. The browser name is used as a discriminator to decide about the next view to select.

An object of type IViewSelector resolves the name of the view given the browser name. A default
implementation of the view selector is shown here:

public class DefaultViewSelector : IViewSelector
{
 public String GetViewName(String viewName, String browserName)
 {
 return String.Format("{0}_{1}", viewName, browserName);
 }

 public String GetMasterName(String masterName, String browserName)
 {
 return String.Format("{0}_{1}", masterName, browserName);
 }
}

The code assumes that given a view named Index, an Internet Explorer–specific version of the view
is named Index_IE, a version for Firefox is named Index_Firefox, and so forth. After the filter has de-
termined the name of the candidate view to show, it also checks with the current view engine to see
whether such a view is supported. If so, the ViewName property of the ViewResult to render is set to
the browser-specific view. If no browser-specific view is found, you need to do nothing else because
the generic view invoked by the action method remains in place, as depicted in Figure 8-3.

FIGURE 8-3 A view optimized for Chrome.

If the requesting browser turns out to be a mobile device, a view named xxx_mobile is selected.

274 PArT II ASP.NET MVC software design

Using the attribute couldn’t be easier. All you need to do is decorate the controller method with it,
as shown here:

[BrowserSpecific]
public virtual ActionResult Index()
{ ... }

An action filter like this saves you from having to add a bunch of if statements to each controller
method to return a different ViewResult object for each supported browser:

public virtual ActionResult Index()
{
 if(GetCurrentBrowser() == "IE")
 return View("Index_IE");
 ...
}

You might still regard this code as necessary in some corner cases that you encounter, but an
action filter gives you a great chance to take it from the controller class, thus simplifying the entire
design.

Note From this example, you can see quite clearly why and how ASP.NET MVC is different
from Web Forms. Switching views is definitely possible in Web Forms also, but it requires
a bit of hacking—switching the master page, loading user controls programmatically, and
changing templates programmatically. This is an aspect of programming that was not
given a high priority when Web Forms was designed because it addresses an issue to which
people were not really sensitive. Today is different, and ASP.NET MVC makes it simpler to
address issues that are now relevant to developers.

Special filters
The action filters considered thus far are components aimed at intercepting a few stages of the execu-
tion of action methods. What if you want to add some code to help decide whether a given method
is fit to serve a given action? For this type of customization, another category of filters is required:
action selectors.

Action selectors come in two distinct flavors: action name selectors and action method selectors.
Name selectors decide whether the method they decorate can be used to serve a given action name.
Method selectors decide whether a method with a matching name can be used to serve a given ac-
tion. Method selectors typically give their response based on other run-time conditions.

 CHAPTER 8 Customizing ASP.NET MVC controllers 275

Action name selectors
The base class for action name selectors is ActionNameSelectorAttribute. The class has a simple struc-
ture, as the code here demonstrates:

public abstract class ActionNameSelectorAttribute : Attribute
{
 public abstract Boolean IsValidName(ControllerContext controllerContext,
 String actionName, MethodInfo methodInfo);
}

The purpose of the selector is simple: checking whether the specified action name is a valid action
name for the method.

In ASP.NET MVC, there’s just one action name selector: the ActionName attribute that you can use
to alias a controller method. Here’s an example:

[ActionName("Edit")]
public ActionResult EditViaPost(String customerId)
{
 ...
}

The implementation of the ActionName attribute is trivial, as the following code demonstrates:

public sealed class ActionNameAttribute : ActionNameSelectorAttribute
{
 public ActionNameAttribute(String name)
 {
 if (String.IsNullOrEmpty(name))
 throw new ArgumentException();
 Name = name;
 }

 public override Boolean IsValidName(ControllerContext controllerContext,
 String actionName, MethodInfo methodInfo)
 {
 // Check that the action name matches the specified name
 return String.Equals(actionName, Name, StringComparison.OrdinalIgnoreCase);
 }

 public String Name { get; set; }
}

The overall effect of the attribute is that it logically renames the controller method to which it’s ap-
plied. For example, in the previous example the method is named EditViaPost, but it won’t be invoked
unless the action name that results from the routing process is Edit.

276 PArT II ASP.NET MVC software design

Action method selectors
Action method selectors are a more powerful and interesting tool for developers. During the pre-
liminary stage in which the system is looking for a controller method that can serve the request, a
method selector just indicates whether a given method is valid. Obviously, such a selector determines
its response based on certain run-time conditions. Here’s the definition of the base class:

public abstract class ActionMethodSelectorAttribute : Attribute
{
 public abstract Boolean IsValidForRequest(
 ControllerContext controllerContext, MethodInfo methodInfo);
}

In ASP.NET MVC, quite a few predefined method selectors exist. They are AcceptVerbs, NonAction,
plus several HTTP-specific selectors introduced to simplify coding (HttpDelete, HttpGet, HttpPost, and
HttpPut). Let’s have a look at some of them.

The NonAction attribute just prevents the decorated method from processing the current action.
Here’s how it’s implemented:

public override Boolean IsValidForRequest(
 ControllerContext controllerContext, MethodInfo methodInfo)
{
 return false;
}

The AcceptVerbs attribute receives the list of supported HTTP verbs as an argument and checks the
current verb against the list. Here are some details:

public override Boolean IsValidForRequest(
 ControllerContext controllerContext, MethodInfo methodInfo)
{
 if (controllerContext == null)
 throw new ArgumentNullException("controllerContext");

 // Get the (overridden) HTTP method
 var method = controllerContext.HttpContext.Request.GetHttpMethodOverride();

 // Verbs is an internal member of the AcceptVerbsAttribute class
 return Verbs.Contains<String>(method, StringComparer.OrdinalIgnoreCase);
}

Note the use of the GetHttpMethodOverride method to retrieve the actual verb intended by the
client. The method reads the value in a header field or parameter named X-HTTP-Method-Override.
(Go to http://code.google.com/apis/gdata/docs/2.0/basics.html#UpdatingEntry for more information
about X-HTTP-Method-Override.) This is a common protocol for letting browsers place any HTTP
verbs even if the physical request is either GET or POST. The method is not defined natively on the
HttpRequest object, but it was added in ASP.NET MVC as an extension method on HttpRequestBase.

http://code.google.com/apis/gdata/docs/2.0/basics.html#UpdatingEntry

 CHAPTER 8 Customizing ASP.NET MVC controllers 277

The other selectors are simply implemented in terms of AcceptVerbs, as shown here for HttpPost:

public sealed class HttpPostAttribute : ActionMethodSelectorAttribute
{
 private static readonly AcceptVerbsAttribute _innerAttribute;

 public override bool IsValidForRequest(
 ControllerContext controllerContext, MethodInfo methodInfo)
 {
 return _innerAttribute.IsValidForRequest(controllerContext, methodInfo);
 }
}

Let’s see how to write a custom method selector.

restricting a method to Ajax calls only
All you need is a class that inherits from ActionMethodSelectorAttribute and overrides the IsValid
ForRequest method:

public class AjaxOnlyAttribute : ActionMethodSelectorAttribute
{
 public override Boolean IsValidForRequest(
 ControllerContext controllerContext, MethodInfo methodInfo)
 {
 return controllerContext.HttpContext.Request.IsAjaxRequest();
 }
}

Any method marked with this attribute is only enabled to serve calls placed via the browser’s
XMLHttpRequest object.

[AjaxOnly]
public ActionResult Details(Int32 customerId)
{
 var model = ...;
 return PartialView(model);
}

If you try to invoke a URL that, according to routes, should be mapped to an Ajax-only method,
you’ll get a not-found exception.

restricting a method to a given submit button
In Web Forms, every page has a single HTML form, and nearly every form contains multiple submit
buttons. However, each button has its own click handler that determines the action to take in case of
a click. In ASP.NET MVC, instead, you can have as many HTML forms as you want, with each posting
to a different and fixed URL. How can you determine which button was clicked in an HTML form with
two or more submit buttons?

278 PArT II ASP.NET MVC software design

At the HTML level, the posting form uploads the content of input fields plus a name/value pair
inherent to the clicked button. The name token refers to the name attribute of the button; the value
token refers to the value attribute of the button. Unfortunately, the value attribute of the button is
the caption. You can’t reliably figure out which button was clicked by examining the caption. At a
minimum, it’s subject to localization, or it can be missing altogether if an image button is used.

The simplest way to solve the problem in ASP.NET MVC is to add a bit of JavaScript to the form so
that when each button is clicked, it changes the action attribute of the form to reflect its name. Here’s
a brief example of an HTML form with a couple of input fields and two submit buttons, which update
or delete some content:

<form name="myForm" id="myForm" method="post">
 <input type="text" />
 <input type="text" />
 <hr />
 <input type="submit" value="Update" name="updateAction"
 onclick="setAction('update')" />
 <input type="submit" value="Delete" name="deleteAction"
 onclick="setAction('delete')" />
</form>

The JavaScript function named setAction does the following:

<script type="text/javascript">
 function setAction(action) {
 document.getElementById("myForm").action = action;
 }
</script>

This trick works, but annoyingly, you must repeat this code for each form you write in each ASP.NET
MVC application. An ad hoc method selector (and the built-in ActionName attribute) can do the job
better:

public class OnlyIfPostedFromButtonAttribute : ActionMethodSelectorAttribute
{
 public String SubmitButton { get; set; }
 public override Boolean IsValidForRequest(ControllerContext controllerContext,
 MethodInfo methodInfo)
 {
 // Check if this request is coming through the specified submit button
 var o = controllerContext.HttpContext.Request[SubmitButton];
 return o != null;
 }
}

The selector exposes a public property through which you indicate the name of the button
with which the method is associated. When evaluated, the selector simply looks for the name of its
companion button in the form data collection being posted. By the design of HTML, a match can be
found only if the form was posted by clicking that button. Let’s see how you use this selector in the
following controller code:

 CHAPTER 8 Customizing ASP.NET MVC controllers 279

[HttpPost]
[ActionName("Demo")]
[OnlyIfPostedFromButton(SubmitButton = "updateAction")]
public ActionResult Demo_Update()
{
 ViewData["ActionName"] = "Update";
 return View("demo");
}

The code reads like this: the invoker can select this method (Demo_Update) only if the request is a
POST, the action name is demo, and the form was posted by using the submit button with the name
of updateAction.

Building a dynamic loader filter
Action filters are definitely a powerful mechanism for developers to use to decide exactly how a
given action method executes. From what you’ve seen so far, however, action filters are also a static
mechanism that requires a new compile and deploy step to be modified. Let’s explore an approach to
loading filters dynamically from an external source.

Interception points for filters
Filters are resolved for each action method within the action invoker. There are two main points of
interception: the GetFilters and InvokeActionMethodWithFilters methods. Both methods are marked as
protected and virtual. The signatures of both methods are shown here:

protected virtual ActionExecutedContext InvokeActionMethodWithFilters(
 ControllerContext controllerContext,
 IList<IActionFilter> filters,
 ActionDescriptor actionDescriptor,
 IDictionary<string, object> parameters);

protected virtual FilterInfo GetFilters(
 ControllerContext controllerContext,
 ActionDescriptor actionDescriptor)

The GetFilters method is invoked earlier and is expected to return the list of all filters for a given
action. After invoking the base method of GetFilters in your custom invoker, you have available the
full list of filters for each category (a list including exception, result, authorization, and action filters).
Note that the FilterInfo class—a public class in System.Web.Mvc—offers specific collections of filters
for each category:

public class FilterInfo
{
 // Private members
 ...

 public IList<IActionFilter> ActionFilters { get; }
 public IList<IAuthorizationFilter> AuthorizationFilters { get; }
 public IList<IExceptionFilter> ExceptionFilters { get; }
 public IList<IResultFilter> ResultFilters { get; }
}

280 PArT II ASP.NET MVC software design

The InvokeActionMethodWithFilters method is invoked during the process related to the perfor-
mance of the action method. In this case, the method receives only the list of action filters (those
filters that are to execute before or after the code for the method).

To build a mechanism that makes it possible for developers to change filters that apply to a
method on the fly, our interest focuses on the InvokeActionMethodWithFilters method.

Adding an action filter by using fluent code
By overriding the InvokeActionMethodWithFilters method in a custom action invoker class, you can
use fluent code to configure controllers and controller methods with action filters. The following code
shows how to add the Compress attribute on the fly to the Index method of the Home controller:

protected override ActionExecutedContext InvokeActionMethodWithFilters(
 ControllerContext controllerContext,
 IList<IActionFilter> filters,
 ActionDescriptor actionDescriptor,
 IDictionary<string, object> parameters)
{
 // Add the Compress action filter to the Index method of the Home controller
 if (actionDescriptor.ControllerDescriptor.ControllerName == "Home" &&
 actionDescriptor.ActionName == "Index")
 {
 // Configure the filter and add to the list
 var compressFilter = new CompressAttribute();
 filters.Add(compressFilter);
 }

 // Go with the usual behavior and execute the action
 return base.InvokeActionMethodWithFilters(
 controllerContext, filters, actionDescriptor, parameters);
}

You can refine this code in a number of aspects. For example, you can support areas and check the
controller type rather than the name. In addition, you can read the filters to add from a configura-
tion file and also use an IoC container to resolve them all. More in general, this approach gives you a
chance to dynamically configure the filters, and it also lets you keep attributes out of the controller
code.

Customizing the action invoker
Let’s generalize the idea a tiny bit. Suppose that you create a custom action invoker and override its
InvokeActionMethodWithFilters method as shown here:

protected override ActionExecutedContext InvokeActionMethodWithFilters(
 ControllerContext controllerContext,
 IList<IActionFilter> filters,
 ActionDescriptor actionDescriptor,
 IDictionary<String, Object> parameters)

 CHAPTER 8 Customizing ASP.NET MVC controllers 281

{
 // Load (dynamic-loading) filters for this action
 var methodFilters = LoadFiltersForAction(actionDescriptor);
 if (methodFilters.Count == 0)
 return base.InvokeActionMethodWithFilters(controllerContext,
 filters, actionDescriptor, parameters);

 // Apply filter(s)
 foreach (var filter in methodFilters)
 {
 var filterInstance = GetFilterInstance(filter);
 if (filterInstance == null)
 continue;

 // Initialize filter (if params are specified)
 InitializeFilter(filter, filterInstance);

 // Add the filter
 filters.Add(filterInstance);
 }

 // Exit
 return base.InvokeActionMethodWithFilters(controllerContext,
 filters, actionDescriptor, parameters);
}

The code contains a number of placeholder methods that essentially read about dynamically
defined filters as they might be found in the web.config file. The provided action descriptor is used to
figure out information about the current action. Action details are used to read about defined filters.
Finally, filters are instantiated and initialized via reflection and added to the filters collection for the
overridden method. You’re responsible for the structure of the web.config section. A nice-looking sec-
tion might be the following:

<dynamicFilters>
 <action name="Home.Test">
 <filter type="MvcGallery3.Extensions.Filters.CompressAttribute, MvcGallery3.Extensions" />
 <filter type="MvcGallery3.Extensions.Filters.AddHeaderAttribute, MvcGallery3.Extensions">
 <param Name="Name" Value="X-MvcAspectFX" />
 <param Name="Value" Value="3222" />
 </filter>
 </action>
</dynamicFilters>

You can find an implementation of this dynamic-loading filter framework in the companion source
code of the book.

282 PArT II ASP.NET MVC software design

registering the custom invoker
Each controller has its own action invoker exposed through a public property. You can replace the
action invoker in the constructor of each controller. If you intend to apply the custom invoker to just
any controller instance, you can consider moving the code to the controller factory. I usually employ
a custom controller base class, defined as shown in the following example, and derive from there any
controller that requires dynamic loading of filters:

public class AxpectController : Controller
{
 public AxpectController()
 {
 ActionInvoker = new AxpectActionInvoker();
 }
}

public class HomeController : AxpectController
{
 // Attributes for this method come from global filters defined in global.asax
 // and dynamic-loading filters defined in web.config.
 public ActionResult Index()
 {
 return View();
 }
}

Using a custom base class for controllers is not a programming technique that all developers like.
There might be several reasons for this, including personal preferences, but in general it’s because
single-inheritance languages (for example, Microsoft C# and Microsoft Visual Basic .NET) offer just
one spot for inheritance, and it’s always smart to reserve it for later use.

If you don’t like using a base controller class to enable the dynamic loading of filters, you can build
an alternative on top of filter providers.

Enabling dynamic loading via a filter provider
The OnActionExecuting method is the right place to execute some custom code defined in a previ-
ously registered action filter before the action method runs. On the other hand, it’s too late at this
point to add a new filter to execute some custom code. In addition to using a custom action invoker,
filter providers are a system-defined hook for you to dynamically register filters based on run-time
conditions.

A filter provider is a class that implements the following interface:

public interface IFilterProvider
{
 IEnumerable<Filter> GetFilters(
 ControllerContext controllerContext, ActionDescriptor actionDescriptor);
}

 CHAPTER 8 Customizing ASP.NET MVC controllers 283

The GetFilters method is invoked by the action invoker to load filters dynamically for a given ac-
tion. A custom filter provider is therefore exactly the tool that removes the need to explicitly tweak
the action invoker and controller class. You register your own filter provider in global.asax, as shown
here:

protected void Application_Start()
{
 ...
 RegisterFilterProviders(FilterProviders.Providers);
}
public static void RegisterFilterProviders(FilterProviderCollection providers)
{
 providers.Add(new DynamicLoadingFilterProvider());
}

That’s all the code you need to have in place as far as configuration is concerned. Next, you add
information to the configuration file (as was done in the preceding code sample) and run the applica-
tion. Here’s the code for the filter provider:

public class DynamicLoadingFilterProvider : IFilterProvider
{
 public IEnumerable<Filter> GetFilters(
 ControllerContext controllerContext, ActionDescriptor actionDescriptor)
 {
 // The method reads from web.config and returns a collection of Filter objects
 return LoadFiltersFromConfiguration(actionDescriptor);
 }
}

public static IList<Filter> LoadFiltersFromConfiguration(ActionDescriptor actionDescriptor)
{
 var methodFilters = LoadFiltersForAction(actionDescriptor);

 var filters = new List<Filter>();
 foreach (var filterName in methodFilters)
 {
 // Instantiate and initialize the filter (if params are specified)
 var filterInstance = GetFilterInstance(filterName);
 if (filterInstance == null)
 continue;
 InitializeFilter(filterName, filterInstance);

 // Add to the list to return
 var filter = new Filter(filterInstance, FilterScope.Action, -1);
 filters.Add(filter);
 }

 return filters;
}

284 PArT II ASP.NET MVC software design

A filter provider manages filters through a wrapper class—the Filter class. The class wraps up the
actual action filter instance plus a value for the order (–1 in the example) and the filter scope. The
scope is defined in the FilterScope enumeration type. The type is a system type, defined as follows:

public enum FilterScope
{
 First = 0, // First to run
 Global = 10, // Applies to all controllers/actions
 Controller = 20, // Applies at controller level
 Action = 30, // Applies at action level
 Last = 100 // Last to run
}

With the filter provider in place, the following code, plus the web.config content shown earlier,
produces the output shown in Figure 8-4 when the method Test is invoked:

// Dynamically bound to action filters via web.config
// (Adding a custom header.)
public ActionResult Test()
{
 return View();
}

FIGURE 8-4 The response for the request as modified by dynamically added filters.

In this example, we registered the filter provider by using code in global.asax. Alternatively, you
can register a filter provider by using your own dependency resolver.

 CHAPTER 8 Customizing ASP.NET MVC controllers 285

Action result types

In most of the examples you’ve seen thus far in the book, a controller method always returns an
ActionResult object. This is just the base class that ASP.NET MVC provides to represent the result of an
action. Depending on the method used to return the action result (for example, methods View, Par-
tialView, and so on) the actual type takes a different form. For example, when a method returns HTML
markup, the actual action result type is ViewResult.

Action result types are also an aspect of ASP.NET MVC that you can customize to a large extent.
So, let’s move to the next stage and consider the tools you have at your disposal to customize the
action result.

Built-in action result types
The response for the browser is generated and written to the output stream when the ActionResult
object, as returned by the controller action method, is further processed by the action invoker. In other
words, the ActionResult type, as well as any type directly derived from it, does not represent the real
response being sent to the browser. It’s merely a wrapper class that contains response-specific data (for
example, headers, cookies, status code, and content type, plus any data that can be used to generate
the response), and it knows how to process this data to generate the actual response for the browser.

The ActionResult object is defined as follows:

public abstract class ActionResult
{
 protected ActionResult()
 {
 }

 public abstract void ExecuteResult(ControllerContext context);
}

ExecuteResult is the method that provides the logic to render results to the browser. To understand
the mechanics of an action result object, it’s useful to look at a couple of action result classes that are
built in to ASP.NET MVC.

returning a custom status code
One of the simplest action result classes is the HttpStatusCodeResult class. The class represents an ac-
tion response that sets a specific HTTP status code and description:

public class HttpStatusCodeResult : ActionResult
{
 public HttpStatusCodeResult(Int32 statusCode) : this(statusCode, null)
 {
 }

286 PArT II ASP.NET MVC software design

 public HttpStatusCodeResult(Int32 statusCode, String statusDescription)
 {
 StatusCode = statusCode;
 StatusDescription = statusDescription;
 }
 public override void ExecuteResult(ControllerContext context)
 {
 if (context == null)
 throw new ArgumentNullException("context");

 // Prepare the response for the browser
 context.HttpContext.Response.StatusCode = StatusCode;
 if (StatusDescription != null)
 context.HttpContext.Response.StatusDescription = StatusDescription;
 }
}

As you can see, all it does is set the status code and description of the response. Here is how you
use this class to return an HTTP 403 code (Forbidden), as illustrated in Figure 8-5, meaning that the
server understood the request but has good reasons to refuse to fulfill it:

public ActionResult Forbidden()
{
 return new HttpStatusCodeResult(403);
}

FIGURE 8-5 The web server refuses to fulfill a request.

When you need to return the same status code from several places in your application, it might
be a better idea to encapsulate the status code in a custom action result class. It won’t really change
things that much, but it definitely increases readability. ASP.NET MVC follows this pattern for the 401
code (unauthorized) and offers you the HttpUnauthorizedResult class, which is used, among other
things, by the Authorize action filter. Here’s another example for the similarly popular 404 code:

 CHAPTER 8 Customizing ASP.NET MVC controllers 287

public class HttpNotFoundResult : HttpStatusCodeResult
{
 public HttpNotFoundResult() : this(null)
 {}
 public HttpNotFoundResult(String statusDescription) : base(404, statusDescription)
 {}
}

Even in their overall simplicity, these classes don’t fail to show the core scaffolding of action result
classes.

returning JavaScript code
A slightly more sophisticated example is the JavaScriptResult class. This class supplies a public property—
the Script property—that contains the script code (as a string) to write to the output stream, as shown
in the following:

public class JavaScriptResult : ActionResult
{
 public String Script { get; set; }

 public override void ExecuteResult(ControllerContext context)
 {
 if (context == null)
 throw new ArgumentNullException("context");

 // Prepare the response
 var response = context.HttpContext.Response;
 response.ContentType = "application/x-javascript";
 if (Script != null)
 response.Write(Script);
 }
}

You use the JavaScriptResult class from the action method as shown here:

public ActionResult Javascript()
{
 var script = "function helloWorld() {alert('hello, world!');}";
 var result = new JavaScriptResult {Script = script};
 return result;
}

For some predefined action results, ASP.NET MVC provides helper methods that hide the creation
of the action result object. You can rewrite the previous code in a more compact way, as shown here:

public ActionResult Javascript()
{
 var script = "function helloWorld() {alert('hello, world!');}";
 return JavaScript(script);
}

288 PArT II ASP.NET MVC software design

When the user invokes an action that returns JavaScript, the classic download panel is displayed, as
illustrated in Figure 8-6.

FIGURE 8-6 Script code returned by a JavaScript action result.

It turns out that the right place for action methods returning JavaScript is the <script> tag.

<script type="text/javascript" src="/home/javascript"></script>

After you place a line like the one just shown in the HTML, you can then programmatically invoke
any script function being downloaded.

returning JavaScript Object Notation data
To return JavaScript Object Notation (JSON) data from within an ASP.NET MVC controller class, all you
need is an action method that returns a JsonResult object. The JsonResult class gets any .NET object
and attempts to serialize it to JSON by using the JavaScriptSerializer system class. Here’s a possible
definition for an action method that serves JSON data:

public JsonResult GetCountries(String area)
{
 // Grab some data to serialize and return
 var countries = CountryRepository.GetAll(area);
 return Json(countries);
}

 CHAPTER 8 Customizing ASP.NET MVC controllers 289

Defined on the Controller class, the Json method internally creates a JsonResult object. The purpose
of the JsonResult object is to serialize the specified .NET object—in this example, a list of countries—
to the JSON format. The Json method has a few overloads through which you can specify the desired
content type string (with the default being application/json) and request behavior. The request behav-
ior consists of allowing or denying JSON content over an HTTP GET request.

By default, ASP.NET MVC doesn’t deliver JSON content through an HTTP GET request. This means
that the previous code will fail if it’s invoked in the context of a GET, which is the most obvious way
to make a JSON call. If you consider your method to be secure and not at risk of potentially revealing
sensitive data, you modify the code, as shown in the following:

public JsonResult GetCountries()
{
 // Grab some data to serialize and return
 var countries = CountryRepository.GetAll();
 return Json(countries, JsonRequestBehavior.AllowGet);
}

Just like script, JSON data returned from an action method will be downloaded if the method
is invoked interactively via the browser. If embedded in a <script> tag or invoked via Ajax, content
is made available as raw data. The script that follows shows an Ajax call that downloads JSON data
through an ASP.NET MVC controller. The downloaded data is then used to populate a drop-down list
named listOfCountries.

function downloadCountries(area) {
 $("#listOfCountries").empty();

 $.getJSON("/home/getcountries", { area: "EMEA" },
 function (data) { _displayCountries(data); });
}

function _displayCountries(data) {
 // Get the reference to the drop-down list
 var listbox = $("#listOfCountries")[0];

 // Fill the list
 for (var i = 0; i < data.length; i++) {
 var country = data[i];
 var option = new Option(country.Name, country.Code);
 listbox.add(option);
 };
}

The HTML in the view looks like Figure 8-7.

290 PArT II ASP.NET MVC software design

FIGURE 8-7 A drop-down list populated with Ajax-retrieved JSON data.

returning primitive types
Strictly speaking, a controller action method is not forced to return an ActionResult object. You can,
for example, make it return a string or an integer and use String and Int32 as declared return types
in the method’s signature. However, be aware that whatever type you return will be wrapped up in a
ContentResult object by the ASP.NET MVC framework.

Conversely, if the method is void, the action result will be an EmptyResult object. By using action
filters, you can modify the result object, and its parameters, at will. So in the end, you can still have
a controller method declared to return nothing but tailor that to return a value with an action filter
attached that programmatically returns a given result object.

Custom result types
Ultimately, the action result object is a way to encapsulate all the tasks you need to accomplish in
particular situations, such as when a requested resource is missing or redirected or when some special
response must be served to the browser. Let’s examine a couple of interesting scenarios for having
custom action result objects.

returning JSONP Strings
As you might know, browsers don’t usually allow pages to place Ajax calls to sites from a different
domain. This rule is relatively recent and has been added to reduce to nearly zero the surface attack
area for malicious users. The net effect of such restrictions is that you’re prevented from making Ajax

 CHAPTER 8 Customizing ASP.NET MVC controllers 291

calls to a website (hosted on a different domain than the requesting page) to download JSON data.
More interesting, this restriction is unilaterally applied by browsers and ignores whether the remote
site can serve data.

That’s much ado for Ajax calls and JSON data, but we still have no control over images and script
files, which can be blissfully downloaded from any site that’s reachable. It’s precisely this feature of
browsers that can be exploited to safely download JSON data via Ajax from sites that explicitly allow
for it. This is what the JSONP (JSON with Padding) protocol is all about.

JSONP is a convention that some sites use to expose their JSON content in a way that makes
it easier for callers to consume data via script even from an external domain. The trick consists of
returning the JSON content wrapped up in a script function call. In other words, the site would return
the following string instead of a string that contains plain JSON data:

yourFunction("{...}"); // instead of plain {...} JSON data

After the site URL is invoked from within a <script> tag, the browser receives what looks like a
plain function call with a fixed input string. At this point, whether the input is text or JSON text is ir-
relevant to the browser.

A website that supports JSONP exposes a public way for callers to indicate the name of the wrap-
per JavaScript function to be used when returning JSON data. Needless to say, the JavaScript func-
tion must be local to the requesting site and is expected to contain the logic that processes JSON
data. Let’s see how to add JSONP capabilities to an ASP.NET MVC controller. Consider the following
example:

public ActionResult GetCountriesJsonp(String area)
{
 var result = new JsonpResult
 {
 JsonRequestBehavior = JsonRequestBehavior.AllowGet,
 Data = GetCountries(area)
 };
 return result;
}

The JsonpResult class extends the native JsonResult and wraps up the JSON string being returned
into a call to the specified JavaScript function.

public class JsonpResult : JsonResult
{
 // The callback name here is the parameter name to be added to the URL to specify the
 // name of the JavaScript function padding the JSON response. This name is arbitrary and
 // is part of your site's SDK.
 private const String JsonpCallbackName = "callback";

 public override void ExecuteResult(ControllerContext context)
 {
 if (context == null)
 throw new ArgumentNullException("context");

292 PArT II ASP.NET MVC software design

 if ((JsonRequestBehavior == JsonRequestBehavior.DenyGet) &&
 String.Equals(context.HttpContext.Request.HttpMethod, "GET"))
 throw new InvalidOperationException();

 var response = context.HttpContext.Response;
 if (!String.IsNullOrEmpty(ContentType))
 response.ContentType = ContentType;
 else
 response.ContentType = "application/json";
 if (ContentEncoding != null)
 response.ContentEncoding = this.ContentEncoding;

 if (Data != null)
 {
 String buffer;
 var request = context.HttpContext.Request;
 var serializer = new JavaScriptSerializer();
 if (request[JsonpCallbackName] != null)
 buffer = String.Format("{0}({1})", request[JsonpCallbackName],
 serializer.Serialize(Data));
 else
 buffer = serializer.Serialize(Data);

 response.Write(buffer);
 }
 }
}

The class is nearly the same as JsonResult except for a small change in the ExecuteResult method.
Before serializing to JavaScript, the code checks whether the conventional JSONP parameter has been
passed with the request and fixes the JSON string accordingly. Figure 8-8 shows the response body
for the following URL:

/home/getcountriesjsonp?callback=_cacheForLater&area=asia

FIGURE 8-8 A JSONP response viewed through the Internet Explorer developer toolbar.

 CHAPTER 8 Customizing ASP.NET MVC controllers 293

To place JSONP calls, you can follow a couple of routes. You can, for example, just manually ar-
range a <script> tag to make JSON data globally available to the page:

<script type="text/javascript"
 src="/home/getcountriesjsonp?callback=_cacheForLater&area=asia"></script>

Alternatively, you can place an Ajax call via jQuery or plain JavaScript. In particular, the jQuery
library offers specific support through the getJSON function. When the URL you pass to getJSON
contains an xxx=? segment, jQuery interprets it as a JSONP call and processes it in a special way. More
precisely, jQuery creates a <script> tag on the fly and downloads the response through it. The name
of the padding function is generated dynamically by jQuery and made to point to the getJSON call-
back code you provide. Here’s an example:

$.getJSON("/home/getcountriesjsonp?callback=?", { area: "NA" },
 function (data) { _displayCountries(data); });

The name callback in the URL must match the public JSONP name as defined by the site you’re
calling. I’m using callback in the example because that’s the name recognized by the previously pre-
sented implementation of JsonpResult.

returning syndication feed
If you search the web for a nontrivial example of an action result, you’ll likely find a syndication action
result object at the top of the list. Let’s briefly go through this popular example.

The class SyndicationResult supports both RSS 2.0 and ATOM 1.0, and it offers a handy property
for you to choose one or the other programmatically. By default, the class produces an RSS 2.0 feed.
To compile this example, you need to reference the System.ServiceModel assembly and import the
System.ServiceModel.Syndication namespace:

public class SyndicationResult : ActionResult
{
 public SyndicationFeed Feed { get; set; }
 public FeedType Type { get; set; }

 public SyndicationResult()
 {
 Type = FeedType.Rss;
 }
 public SyndicationResult(
 string title, string description, Uri uri, IEnumerable<SyndicationItem> items)
 {
 Type = FeedType.Rss;
 Feed = new SyndicationFeed(title, description, uri, items);
 }
 public SyndicationResult(SyndicationFeed feed)
 {
 Type = FeedType.Rss;
 Feed = feed;
 }

294 PArT II ASP.NET MVC software design

 public override void ExecuteResult(ControllerContext context)
 {
 // Set the content type
 context.HttpContext.Response.ContentType = GetContentType();

 // Create the feed, and write it to the output stream
 var feedFormatter = GetFeedFormatter();
 var writer = XmlWriter.Create(context.HttpContext.Response.Output);
 if (writer == null)
 return;
 feedFormatter.WriteTo(writer);
 writer.Close();
 }

 private String GetContentType()
 {
 if(Type == FeedType.Atom)
 return "application/atom+xml";
 return "application/rss+xml";
 }

 private SyndicationFeedFormatter GetFeedFormatter()
 {
 if (Type == FeedType.Atom)
 return new Atom10FeedFormatter(Feed);
 return new Rss20FeedFormatter(Feed);
 }
}

public enum FeedType
{
 Rss = 0,
 Atom = 1
}

The class gets a syndication feed and serializes it to the client by using either the RSS 2.0 or ATOM
1.0 format. Creating a consumable feed is another story, but it’s also a concern that relates to the con-
troller rather than to the infrastructure. Here’s how to write a controller method that returns a feed:

public SyndicationResult Feed()
{
 var items = new List<SyndicationItem>();
 items.Add(new SyndicationItem(
 "Controller descriptors",
 "This post shows how to customize controller descriptors",
 null));
 items.Add(new SyndicationItem(
 "Action filters",
 "Using a fluent API to define action filters",
 null));
 items.Add(new SyndicationItem(
 "Custom action results",
 "Create a custom action result for syndication data",
 null));

 CHAPTER 8 Customizing ASP.NET MVC controllers 295

 var result = new SyndicationResult(
 "Programming ASP.NET MVC",
 "Dino's latest book",
 Request.Url,
 items);

 result.Type = FeedType.Atom;
 return result;
}

You create a list of SyndicationItem objects and provide a title, some content, and an alternate link
(null in the code snippet) for each. You typically retrieve these items from some repository you might
have in your application. Finally, you pass items to the SyndicationResult object along with a title and
description for the feed to be created and serialized. Figure 8-9 shows an ATOM feed in Internet
Explorer.

FIGURE 8-9 An ATOM feed displayed in Internet Explorer.

Dealing with binary content
A common developer need is returning binary data from a request. Many different types of data fall
under the umbrella of binary data, such as the pixels of an image, the content of a PDF file, or even a
Microsoft Silverlight package.

296 PArT II ASP.NET MVC software design

You don’t really need an ad hoc action result object to deal with binary data. Among the built-
in action result objects, you can certainly find one that helps you when working with binary data. If
the content you want to transfer is stored within a disk file, you can use the FilePathResult object.
If the content is available through a stream, you use FileStreamResult and opt for FileContentResult if
you have it available as a byte array.

All of these objects derive from FileResult and differ from one another only in how they write out
data to the response stream. Let’s review how ExecuteResult works within FileResult.

public override void ExecuteResult(ControllerContext context)
{
 if (context == null)
 throw new ArgumentNullException("context");

 var response = context.HttpContext.Response;
 response.ContentType = this.ContentType;
 if (!String.IsNullOrEmpty(this.FileDownloadName))
 {
 var headerValue = ContentDispositionUtil.GetHeaderValue(FileDownloadName);
 context.HttpContext.Response.AddHeader("Content-Disposition", headerValue);
 }

 // Write content to the output stream
 WriteFile(response);
}

The class has a public property named ContentType through which you communicate the MIME
type of the response and which does all of its work via an abstract method, WriteFile, that derived
classes must override.

The base class FileResult also supports the Save As dialog box within the client browser through
the Content-Disposition header. The property FileDownloadName specifies the default name the file
will be given in the browser’s Save As dialog box. The Content-Disposition header has the following
format, where XXX stands for the value of the FileDownloadName property:

Content-Disposition: attachment; filename=XXX

Note that the file name should be in the US-ASCII character set and no directory path information
is allowed. Finally, the MIME type must be unknown to the browser; otherwise, the registered handler
will be used to process the content.

The delta between the base class FileResult and derived classes is mostly related to the implemen-
tation of the WriteFile method. In particular, FileContentResult writes an array of bytes straight to the
output stream, as shown here:

// FileContents is a property on FileContentResult that points to the bytes
protected override void WriteFile(HttpResponseBase response)
{
 response.OutputStream.Write(FileContents, 0, FileContents.Length);
}

 CHAPTER 8 Customizing ASP.NET MVC controllers 297

FileStreamResult offers a different implementation. It has a FileStream property that provides the
data to read, and the code in WriteFile reads and writes in a buffered way.

protected override void WriteFile(HttpResponseBase response)
{
 Stream outputStream = response.OutputStream;
 using (FileStream)
 {
 byte[] buffer = new byte[0x1000];
 while (true)
 {
 var count = FileStream.Read(buffer, 0, 0x1000);
 if (count == 0)
 return;
 outputStream.Write(buffer, 0, count);
 }
 }
}

Finally, FilePathResult copies an existing file to the output stream. The implementation of WriteFile
is quite minimal in this case.

// FileName is the name of the file to read and transmit
protected override void WriteFile(HttpResponseBase response)
{
 response.TransmitFile(FileName);
}

With these classes available, you can deal with any sort of binary data you need to serve program-
matically from a URL. The following code shows how to serve an image:

public ActionResult Img()
{
 const String file = "stones.jpg";
 return File(Server.MapPath(String.Format("~/content/images/{0}", file)), "image/jpeg");
}

Returning PDF files
As a final example, let’s see what it takes to return some PDF data. To be honest, when it comes to
this, the biggest problem to solve is how you get the PDF content. If your PDF content is a static re-
source such as a server file, all you need to do is use FilePathResult. Better yet, you can use the ad hoc
File method, as shown here:

public ActionResult About()
{
 ...
 return File(fileName, "application/pdf");
}

298 PArT II ASP.NET MVC software design

To create PDF content on the fly, you can use a bunch of libraries, such as iTextSharp
(http://sourceforge.net/projects/itextsharp). Some commercial products and various open-source
projects also can create PDF content from HTML content. This option is particularly interesting for
an ASP.NET MVC application because you can grab a partial view and turn it into downloadable PDF
content.

More commonly, you need to create and return PDF documents arranged from a template. There
are two main routes that you can consider: using Office automation and creating PDFs from Microsoft
Word or Microsoft Excel documents, or using Reporting Services. Of the two, using Microsoft Office is
perhaps easier to arrange; the other is more reliable and free of hidden costs and subtle issues. By the
way, Microsoft itself discourages using Office automation in server applications. (See http://support.
microsoft.com/?id=257757.) I’ve used it in a couple of applications without encountering any signifi-
cant trouble. But, my experience could be the exception rather than the rule.

The companion code for this book provides a sample ASP.NET MVC project that serves a PDF file
when you invoke a given action method. The code uses Office automation to create new Word docu-
ments from a DOTX template. The template includes a few bookmarks that are replaced program-
matically with user-defined values. Figure 8-10 shows the sample PDF document created by previous
code.

FIGURE 8-10 The sample application creating a PDF document on the fly.

http://sourceforge.net/projects/itextsharp
http://support.microsoft.com/?id=257757
http://support.microsoft.com/?id=257757

 CHAPTER 8 Customizing ASP.NET MVC controllers 299

Note The sample PDF application works by creating a local file on the web server disk. As
long as you test the application by using the Microsoft Visual Studio environment (and the
embedded Visual Studio web server), all goes well. When you start testing it under a real
IIS web server, saving the file locally might raise a few problems because of default secu-
rity permissions. The ASP.NET default account doesn’t have write permission on the folder
where the file is created. You have to fix this by raising the writing permissions for the ASP.
NET account in the folder where you intend to create temporary or persistent PDF files.

Summary

You might or might not like ASP.NET MVC, but you can’t honestly deny that it’s a highly customiz-
able and extensible framework. In ASP.NET MVC, you can take full control over the execution of each
action and intervene before the request has been processed, after it has been processed, or both.
Likewise, you can gain control over nearly all aspects of the process that emits the response for the
client browser.

Even though you can customize nearly every aspect of ASP.NET MVC, you don’t want to rewrite
all of them all the time. The aspects of customization that were discussed in this chapter are those
that I see as being more frequently customized and, more important, those that deliver the greatest
benefits if they’re properly customized.

 301

C H A P T E R 9

Testing and testability in ASP.NET
MVC

In preparing for battle I have always found that plans are useless, but planning is
indispensable.

—Dwight D. Eisenhower

In the early days of .NET, the average complexity of applications wasn’t quite high and the Microsoft
Visual Studio debugging tools were powerful enough for the purpose. Rapid Application Develop-

ment (RAD) was the paradigm of choice for most; subsequently, few developers really cared about
writing test programs.

The success of .NET as a platform resulted in many companies across the full spectrum of the
industry needing to acquire new line-of-business applications. In doing so, they dumped an incred-
ible amount of complexity and business rules on the various development teams. Being productive
became harder and harder with the sole support of the RAD paradigm. It was ultimately a complete
change of priorities. In addition to having to be concerned with time to market, developers had to
pay much more attention to maintainability and extensibility. Of course, maintainability brought with
it the need to write readable code that could deal with a growing requirement churn.

The ability to test software, and in particular to test software automatically, is an aspect of ex-
traordinary importance because automated tests give you a mechanical way to figure out quickly and
reliably whether certain features that worked at some point still work after you make some required
changes. In addition, tests make it possible for you to calculate metrics and take the pulse of a project,
as well. In the end, the big change that has come about is that we can no longer spend money on
software projects that do not complete successfully. Testing is an important part of the change.

Productivity is still important, but focusing on productivity alone costs too much because it can
lead to low-quality code that is difficult and expensive to maintain. And, if it’s hard to maintain,
where’s the benefit?

The necessity of testing software in an automated way—we could call it the necessity of apply-
ing the RAD paradigm to tests—raised another key point: the need to have software that is easy to
test. In this chapter, I first try to nail down the technical characteristics that a piece of software needs
to have to be testable. Next, I briefly introduce the basics of unit testing—fixtures, assertions, test
doubles, and code coverage—and finish up with some ASP.NET MVC–specific examples of unit tests.

302 PArT II ASP.NET MVC software design

Note For quite a long time, many .NET developers considered terms like “testing” and
“debugging” to be nearly synonyms. The action of debugging is related to catching and
fixing bugs and anomalies in an application. Debugging is carried out by a developer and
is mostly an interactive, multistep process. The action of testing is related to ensuring that
certain parts of your code behave as expected. Testing is carried out by ad hoc programs
and is essentially an unattended task that you can automate and integrate in the build pro-
cess. The two processes are orthogonal, and one doesn’t certainly exclude the other. A test
can be an effective way to try to reproduce a bug; on the other hand, tests are a great way
to try to prevent bugs.

Testability and design

In the context of software architecture, a broadly accepted definition for testability is “the ease of
performing testing.” Testing, of course, is the process of checking software to ensure that it behaves
as expected, contains no errors, and satisfies its requirements.

Testing software is conceptually simple: just force the program to work on correct, incorrect,
missing, or incomplete data, and verify whether the results are in line with any set expectations. How
would you force the program to work on your input data? How would you measure the correctness of
results? In cases of failure, how would you track the specific module that failed?

These questions are the foundation of a paradigm known as Design for Testability (DfT). Any soft-
ware built in full respect of DfT principles is inherently testable and, as a very pleasant side effect, it is
also easy to read, understand, and subsequently maintain.

Important As I see things, testability is much more important than testing. Testability is
an attribute of software that represents a (great) statement about its quality. Testing is a
process aimed at verifying whether the code meets expectations. Applying testability (for
example, making your code easily testable) is like learning to fish; writing unit tests is like
eating a fish.

DfT
DfT was developed as a general concept a few decades ago in a non-software-related field. In fact,
the goal of DfT was to improve the process of building low-level circuits within boards and chips.

DfT pioneers employed a number of design techniques and practices with the purpose of enabling
effective testing in an automated manner. What pioneers called “automated testing equipment” was
nothing more than a collection of ad hoc software programs written to test some well-known func-
tions of a board and report results for diagnostic purposes.

 CHAPTER 9 Testing and testability in ASP.NET MVC 303

DfT was adapted to software engineering and applied to test units of code through tailor-made
programs. Ultimately, writing unit tests is like writing software. When you write regular code, you
call classes and functions, but you focus more on the overall behavior of the program and the actual
implementation of use-cases. Conversely, when you write unit tests, you need to focus on the input
and output of individual methods and classes, which is a different level of granularity.

DfT defines three attributes that any unit of software must have to be easily testable: control, vis-
ibility, and simplicity. You’ll be surprised to see that these attributes address exactly the questions I
outlined earlier when discussing the foundation of DfT.

The attribute of control
The attribute of control refers to the degree to which the code makes it possible for testers to apply
fixed input data to the software under test. Any piece of software should be written in a way that
makes it clear what parameters are required and what return values are generated. In addition, any
piece of software should abstract its dependencies—both parameters and low-level modules—and
provide a way for external callers to inject them at will.

The canonical example of the control attribute applied to software is a method that requires a
parameter instead of using its knowledge of the system to figure out the parameter’s value from
another publicly accessible component. In DfT, control is all about defining a virtual contract for a
software component that includes preconditions. The easier you can configure preconditions, the
easier you can write effective tests.

The attribute of visibility
The attribute of visibility is defined as the ability to observe the current state of the software under
test and any output it can produce. After you’ve implemented the ability to impose ad hoc input
values on a method, the next step is being able to verify whether the method behaved as expected.
Visibility is all about this aspect—postconditions to be verified past the execution of a method.

The main assumption related to visibility is that if testers have a way to programmatically observe
a given behavior, they can easily test it against expected or incorrect values. Postconditions are a way
to formalize the expected behavior of a software module.

The attribute of simplicity
Simplicity is always a positive attribute for any system and in every context. Testing is clearly no
exception. Simple and extremely cohesive components are preferable for testing because the less you
have to test, the more reliably and quickly you can do that.

In the end, DfT is a driving factor when writing the source code, preferably right from the begin-
ning of the project, so that attributes such as visibility, control, and simplicity are maximized. When
design for testability is successfully applied, writing unit tests is highly effective and easier overall. In
addition, your code maximizes maintainability and is easier to read overall.

304 PArT II ASP.NET MVC software design

Note Many would agree that maintainability is the aspect of software to focus upon be-
cause of the long-term benefits it can deliver. However, readability is strictly related to and,
to a good extent, also part of any maintainability effort. Readability is related to writing
code that is easy to read and subsequently easy to understand as well as safer to update
and evolve. Readability passes through companywide naming and coding conventions and,
better yet, implements ways to effectively convey these conventions to the development
teams. In this regard, custom policies in Visual Studio Team Foundation Server are a great
help.

Loosen up your design
Testable software is inherently better software from a design perspective. When you apply con-
trol, visibility, and simplicity to the software development process, you end up with relatively small
building blocks that interact only via contracted interfaces. Testable software is software written for
someone else to use it programmatically. The typical programmatic user of testable software is the
test harness—the program used to run unit tests. In any case, we are talking about software that uses
other software. Therefore, low coupling is the universal principle to apply systematically, and interface-
based programming is the best practice to follow for creating software that’s easier to test.

Interface-based programming
Tight coupling makes software development much simpler and faster. Tight coupling results from an
obvious point: if you need to use a component, just get an instance of it. This leads to code such as
that in the following listing:

public class MyComponent
{
 private DefaultLogger _logger;
 public MyComponent()
 {
 _logger = new DefaultLogger();
 }
 public bool PerformTask()
 {
 // Some work here
 bool success = true;
 <...>

 // Log activity
 _logger.Log(...);

 // Return success or failure
 return success;
 }
}

 CHAPTER 9 Testing and testability in ASP.NET MVC 305

The MyComponent class is strictly dependent on DefaultLogger. You can’t reuse the MyComponent
class in an environment in which DefaultLogger isn’t available. Moreover, you can’t reuse MyComponent
in a run-time environment that prevents DefaultLogger from working properly. This is an example
of where tight coupling between classes can take you. From a testing perspective, you can’t test the
MyComponent class without reproducing a run-time environment that is perfectly compatible with
the production environment. For example, if DefaultLogger logs to Microsoft Internet Information
Services (IIS), your test environment must have IIS properly configured and working.

The beauty of unit testing, on the other hand, is that you run your tests quickly and punctually,
focusing on the behavior of a small piece of software and ignoring or controlling dependencies. This
is clearly impossible when you program your classes to use a concrete implementation of a depen-
dency. Here’s how to rewrite the MyComponent class so that it depends on an interface, thus resulting
in more maintainable and testable code:

public class MyComponent
{
 private ILogger _logger;
 public MyComponent()
 {
 _logger = new DefaultLogger();
 }
 public MyComponent(ILogger logger)
 {
 _logger = logger;
 }
 public bool PerformTask()
 {
 // Some work here
 bool success = true;
 ...

 // Log activity
 _logger.Log(...);

 // Return success or failure
 return success;
 }
}

The class MyComponent is now dependent on the ILogger interface that abstracts the dependency
on the logging module. The MyComponent class now knows how to deal with any objects that imple-
ment the ILogger interface, including any objects you might inject programmatically.

306 PArT II ASP.NET MVC software design

The solution just shown is acceptable from a testing perspective, even though it is far from perfect.
In the preceding implementation, the class is still dependent on DefaultLogger, and you can’t re-
ally reuse it without having available the assembly where DefaultLogger is defined. However, at a
minimum you can use it to test the behavior of the class in isolation, bypassing the default logger, as
shown here:

// Arrange the call
var fakeLogger = new FakeLogger();
var component = new MyComponent(fakeLogger);

// Perform the call and check against expectations
Assert(component.PerformTask());

Instructing your classes to work against interfaces rather than implementations is one of five pillars
of modern software development. The five principles of development are often summarized by using
the acronym SOLID, which is formed from the initials of the five principles:

■■ Single Responsibility Principle

■■ Open/Closed Principle

■■ Liskov’s Substitution Principle

■■ Interface Segregation Principle

■■ Dependency Inversion Principle

For more information on these principles, check out Microsoft .NET: Architecting Applications for
the Enterprise, coauthored by myself and Andrea Saltarello (Microsoft Press, 2008).

In modern software, the idea of writing code against interfaces rather than implementations
is widely accepted and applied, but it is also often shadowed by another, more specific, concept:
dependency injection.

We could say that the entire concept of interface-based programming is hardcoded in the De-
pendency Inversion Principle (DIP) and that dependency injection is a popular design pattern used to
apply the principle. Chapter 7, “Design considerations for ASP.NET MVC controllers,” discusses DIP and
related patterns such as Dependency Injection and Service Locator.

relativity of software testability
Is design for testability important because it leads to software that is easy to test? Or rather, is it so
important because it leads to inherently better-designed software? I definitely favor the second op-
tion (even though a strong argument can be made for the first option, too).

You probably won’t go to a customer and use the argument of testability to sell a product of yours.
You would likely focus on other characteristics, such as the features, overall quality, user-friendliness,
and ease of use. Testability is important mostly to developers, because it is an excellent barometer
of the quality of design and coding. From the customer’s perspective, there might be no difference
between “testable code that works” and “untestable code that works.”

 CHAPTER 9 Testing and testability in ASP.NET MVC 307

On the other hand, a piece of software that is easy to test is necessarily loosely coupled, provides
a great Separation of Concerns (SoC) between core parts, and is easy to maintain because it can have
a battery of tests to promptly catch any regression. In addition, it is inherently simpler in its structure
and typically lends itself well to future extensions.

In the end, pursuing testability is a great excuse to have well-designed software. Additionally, after
you get it, you can also easily test it!

Note I just said that from the customer’s perspective there might be no difference be-
tween “testable code that works” and “untestable code that works.” Well, whether there is a
difference really depends on the customer. If the customer engaged you on a long-term
project, she might be very interested in the maintainability of the code. In situations like
this, whether the code is testable or untestable might make a huge difference. But again,
it’s more a design point than a testability point.

Testability and coupling
There’s a strict relationship between coupling and testability. A class that can’t be easily instantiated in
a test has some serious coupling problems. This doesn’t mean that you can’t test it automatically, but
you’ll probably have to configure some database or external connection also in a test environment,
which will definitely produce slower tests and higher maintenance costs.

To be effective, a test must be quick and execute in memory. A project that has good test cover-
age will likely have a few simple tests per class, which likely amount to a few thousand test calls. It is a
manageable problem if each test is quick enough and has no latency caused by synchronization and
connections. It is a serious issue otherwise.

If the problem of coupling between components is not properly addressed in the design, you
end up testing components that interact with others, producing something that looks more like an
integration test than a unit test. Integration tests are still necessary, but they ideally should run on
individual units of code (for example, classes) that already have been thoroughly tested in isolation.
Integration tests are not run as often as unit tests because of their slow speed and higher setup costs.

In addition, if you end up using integration tests to test a class and a failure occurs, how easily can
you identify the problem? Was it in the class you intended to test or was it the result of a problem
in some of the dependencies? Finding the right problem becomes significantly more expensive and
time consuming. Even when you’ve found it, fixing it can have an impact on components in the upper
layers.

By keeping coupling under control at the design level (for example, by systematically applying
dependency injection), you enforce testability. Conversely, by pursuing testability, you keep coupling
under control and end up with a better design for your software.

308 PArT II ASP.NET MVC software design

Testability and object orientation
A largely debated point is whether it is acceptable to sacrifice (and if it is, to what degree) some
design principles (specifically, object-oriented principles) to testability. As mentioned, testability is a
driver for better design, but you can have a great design without unit tests and also have great soft-
ware that is almost impossible to test automatically.

The point here is slightly different. If you pursue good object-oriented design, you probably have
a policy that limits the use of virtual members and inheritable classes to situations in which it is only
strictly necessary. However, nonvirtual methods and sealed classes can be hard to test because most
test environments need to mock up classes and override members. Furthermore, why should you
have an additional constructor that you won’t use other than for testing? What should you do?

It is clearly mostly a matter of considering the tradeoffs.

However, consider that commercial tools exist that let you mock and test classes regardless of their
design, including sealed classes and nonvirtual methods. An excellent example is Typemock (http://
www.typemock.com). For quite some time, Microsoft had a framework called Moles included in the
Visual Studio 2010 Power Tools (http://tinyurl.com/b4zuqj). Moles is no longer supported in Visual
Studio 2013 and has been replaced by a new framework called Fakes (http://bit.ly/zenveW).

Before we come to the grips with testing in ASP.NET MVC, let’s briefly review the basics of unit
testing. If you’re already familiar with concepts such as fakes, mocks, and testing in isolation, feel free
to jump directly to the section “Testing your ASP.NET MVC code.”

The basics of unit testing

Unit testing verifies that individual units of code are working properly according to their expected
behavior. A unit is the smallest part of an application that you can test—typically, a method on a class.

Unit testing consists of writing and running a small program (referred to as the aforementioned
test harness) that instantiates test classes and invokes test methods in an automatic way. A test class
is a container of test methods, whereas a test method is simply a helper method that invokes the
method to test by using a specific set of input values. In the end, running a battery of tests is much
like compiling (see Figure 9-1). You click a button in the programming environment of choice (for ex-
ample, Visual Studio), you run the test harness, and then, at the end of it, you know what went wrong,
if anything.

http://www.typemock.com
http://www.typemock.com
http://tinyurl.com/b4zuqj
http://bit.ly/zenveW

 CHAPTER 9 Testing and testability in ASP.NET MVC 309

FIGURE 9-1 Running a test project in Visual Studio.

Working with a test harness
In its simplest form, a test harness is a manually written program that reads test-case input values and
the corresponding expected results from some external files. Then, the test harness calls methods by
using input values and compares the results with the expected values. Obviously, writing such a test
harness entirely from scratch is, at a minimum, time consuming and error prone. More important, it is
restrictive in terms of the testing capabilities of which you can take advantage.

The most effective and common way to conduct unit testing entails using an automated test
framework. An automated test framework is a developer tool that normally includes a run-time en-
gine and a framework of classes for simplifying the creation of test programs.

Choosing a test environment
Popular testing tools are MSTest, NUnit, and its successor, xUnit.net. MSTest is the testing tool incor-
porated into all versions of Visual Studio. Figure 9-1 shows the user interface of MSTest within Visual
Studio.

NUnit (which you can find at http://www.nunit.org) is an open-source product that has been
around for quite a few years. NUnit is designed to be a stand-alone tool and doesn’t natively inte-
grate with Visual Studio, which can be either good or bad news depending on your perspective of
things and your needs and expectations. However, an integration package exists in the Visual Studio
Gallery to use NUnit within Visual Studio.

xUnit.net (which you can read more about at http://xunit.codeplex.com) is the latest framework for
unit testing .NET projects. As Figure 9-2 illustrates, it comes with an installer with which you can add it
as a new test framework in the default wizard that creates a new ASP.NET MVC application.

http://www.nunit.org
http://xunit.codeplex.com

310 PArT II ASP.NET MVC software design

FIGURE 9-2 Picking your favorite test framework.

At the end of the day, picking a testing framework is really a matter of preference. Regardless of
which one you choose, you are hardly objectively losing anything really important. The testing mat-
ters much more than the framework you use. In my opinion, no significant technical differences exist
between MSTest and NUnit. What about xUnit.net, then? As mentioned, xUnit.net is the latest one,
and it has been created by the author of NUnit, James Newkirk. For these reasons, xUnit.net is likely
to incorporate in its features years of experience and feedback, and you might find it closer to being
your ideal tool.

Overall, just because test frameworks are nearly the same functionally speaking doesn’t mean you
can’t make an argument for preferring one over another. However, whatever the argument is, it would
likely be more of a personal preference than an argument regarding the capabilities of the tools
themselves. I’ll use MSTest in this book, but I’ll briefly point out differences, especially with regard to
xUnit.net.

Test fixtures
You start by grouping related tests in a test fixture. Test fixtures are just test-specific classes where
methods typically represent tests to run. In a test fixture, you might also have code that executes at
the start and end of the test run. Here’s the skeleton of a test fixture with MSTest:

using Microsoft.VisualStudio.TestTools.UnitTesting;
...

[TestClass]
public class CustomerTestCase
{
 private Customer customer;

 [TestInitialize]
 public void SetUp()
 {
 customer = new Customer();
 }

 [TestCleanup]
 public void TearDown()
 {
 customer = null;
 }

 CHAPTER 9 Testing and testability in ASP.NET MVC 311

 // Your tests go here
 [TestMethod]
 public void ShouldComplainInCaseOfInvalidId()
 {
 ...
 }
 ...
}

Test fixtures are grouped in an ad hoc Visual Studio project. When you create a new ASP.NET MVC
project, Visual Studio offers to create a test project for you.

You transform a plain .NET class into a test fixture by simply adding the TestClass attribute. You
turn a method of this class into a test method by using the TestMethod attribute, instead. Attributes
such as TestInitialize and TestCleanup have a special meaning and indicate code that runs before and
after, respectively, each test in that class. By using attributes such as ClassInitialize and ClassCleanup,
you can define, instead, code that runs only once before and after all tests you have in a class.

Note Some differences exist between xUnit.net and the others regarding test classes (or
fixtures). In xUnit.net, you don’t need to decorate a test class with a special attribute. The
framework will look for all test methods in all public classes available. As far as initialization
and cleanup is concerned, xUnit.net requires you to use the class constructor and Dispose
method for any per-test operations. You implement IUseFixture in your test class for one-
off, class-level initialization and teardown.

Arrange, act, assert
The typical layout of a test method is summarized by the triple “A” acronym that stands for arrange,
act, assert. You start arranging the execution context in which you’ll test the class by initializing the
state of the class and providing any necessary dependencies.

Next, you put in the code that acts on the class under test and performs any required work. Finally,
you deal with results and verify that the received output is correct. You do this by verifying assertions
based on your expectations.

You write your assertions by using the ad hoc assertion API provided by the test harness. At a mini-
mum, with the test framework, you can check whether the result equals an expected value.

[TestMethod]
public void AssignPropertyId()
{
 // Define the input data for the test
 var customer = new Customer();
 string id = "IDS";
 string expected = id;

312 PArT II ASP.NET MVC software design

 // Execute the action to test.
 customer.ID = id;

 // Test the results
 Assert.AreEqual(expected, customer.ID);
}

A test doesn’t necessarily have to check whether results are correct. A valid test is also the test
aimed at verifying whether under certain conditions a method throws an exception. Here’s an ex-
ample where the setter of the ID property in the Customer class is expected to raise an Argument
Exception if the empty string is assigned:

[TestMethod]
[ExpectedException(typeof(ArgumentException))]
public void AssignPropertyId()
{
 // Define the input data for the test
 var customer = new Customer();
 var id = String.Empty;

 // Execute the action to test.
 customer.ID = id;

}

When writing tests, you can decide to temporarily ignore one because you know it doesn’t work,
but you have no time to fix it at present. You use the Ignore attribute for this, as shown here:

[Ignore]
[TestMethod]
public void AssignPropertyId()
{

}

Likewise, you can decide to mark the test as temporarily inconclusive because you are currently
unable to determine under which conditions the test will succeed or fail.

[TestMethod]
public void AssignPropertyId()
{
 ...
 Assert.Inconclusive("Unable to determine success or failure");
}

You might think that ignoring a test or marking it as inconclusive is an unnecessary task because
you can more simply comment out tests that for some reason just don’t work. This is certainly true,
but experience teaches us that testing is a delicate task that is always on the borderline between
normal priority and low priority. In addition, it is so easy to forget about a test after it has been com-
mented out. It’s not by chance that all test frameworks offer a programmatic way to ignore tests while
keeping the code active in the project. Test-harness authors know project schedules and budgets are

 CHAPTER 9 Testing and testability in ASP.NET MVC 313

always tight, but they also know that maintaining tests in an executable state is important. Whenever
you run the tests, you’ll be reminded that some tests were ignored or inconclusive. Overall, this is
preferable to just commenting out (and forgetting) tests.

Note xUnit.net replaces the ExpectedException attribute with a new method on Assert, the
Assert.Throws method. Ignore is replaced by the Skip parameter on the Fact attribute—
the equivalent for the TestMethod attribute. Finally, Assert.Inconclusive is not supported
in xUnit.net. For more details about differences between xUnit.net and other frameworks,
have a look at http://xunit.codeplex.com/wikipage?title=Comparisons&referringTitle=Home.

Data-driven tests
When you arrange a test for a class method, you might sometimes need to try it with a range of pos-
sible values, including correct and incorrect values and values that represent edge conditions. In this
case, a data-driven test is a great help.

MSTest supports two possible data sources: a Microsoft Office Excel .csv file, or any valid ADO.
NET data source. The test must be bound to the data source by using the DataSource attribute, and
an instance of the test will be run for each value in the data source. The data source will contain input
values and expected values.

var id = TestContext.DataRow["ID"].ToString();
var expected = TestContext.DataRow["Result"].ToString();
...
Assert.AreEqual(id, expected);

You use the TestContext variable to read input values. In MSTest, the TestContext variable is auto-
matically defined when you add a new unit test:

private TestContext testContextInstance;
public TestContext TestContext
{
 get { return testContextInstance; }
 set { testContextInstance = value; }
}

Among other things, the DataSource attribute also lets you specify whether test input values are to
be processed randomly or sequentially.

Aspects of testing
Writing unit tests is still a form of programming and has the same need for good practices and tech-
niques as software programming aimed at production code. Writing unit tests, however, has its own
set of patterns and characteristics of which you might want to be aware.

http://xunit.codeplex.com/wikipage?title=Comparisons&referringTitle=Home

314 PArT II ASP.NET MVC software design

Very limited scope
When introducing DfT at the beginning of the chapter, I was careful to make the following point:
simplicity is a fundamental aspect of software that is key in enabling testability. When applied to unit
testing, simplicity is related to giving a very limited scope to the code under test.

A limited scope makes the test self-explanatory and reveals its purpose clearly. This is beneficial for
at least two reasons. First, any developers looking into it, including the same author a few weeks later,
can quickly and unambiguously understand the expected behavior of the method under test.

Second, a test that fails poses the additional problem of you needing to figure out why it failed in
order to fix the class under test. The simpler the test method is, the simpler it will be to isolate prob-
lems within the class being tested. Furthermore, the more layered the class under test is, the easier it
will be to apply changes without the risk of breaking the code somewhere else. Finally, writing tests
with a very limited scope is significantly easier for classes that control their dependencies on other
components.

Unit testing is like a circle: Making it virtuous or vicious is up to you, and it mostly depends on the
quality of your design.

Testing in isolation
An aspect of unit tests that is tightly related to having a limited scope is testing in isolation. When you
test a method, you want to focus only on the code within that method. All that you want to know is
whether that code provides the expected results in the tested scenarios. To get this, you need to get
rid of all dependencies the method might have.

For example, if the method invokes another class, you assume that the invoked class will always
return correct results. In this way, you eliminate at the root the risk that the method fails under test
because a failure occurred down the call stack. If you test method A and it fails, the reason has to be
found exclusively in the source code of method A and not in any of its dependencies.

It is highly recommended that you isolate the class being tested from its dependencies. Be aware,
though, that this can happen only if the class is designed in a loosely coupled manner. In an object-
oriented scenario, class A depends on class B when any of the following conditions are verified:

■■ Class A derives from class B.

■■ Class A includes a member of class B.

■■ One of the methods of class A invokes a method of class B.

■■ One of the methods of class A receives or returns a parameter of class B.

■■ Class A depends on a class that in turn depends on class B.

How can you neutralize dependencies when testing a method? You use test doubles.

 CHAPTER 9 Testing and testability in ASP.NET MVC 315

Fakes and mocks
A test double is an object that you use in lieu of another. A test double is an object that pretends to
be the real one expected in a given scenario. A class written to consume an object that implements
the ILogger interface can accept a real logger object that logs to IIS or some database table. At the
same time, it also can accept an object that pretends to be a logger but just does nothing. There are
two main types of test doubles: fakes and mocks.

The simplest option is to use fake objects. A fake object is a relatively simple clone of an object
that offers the same interface as the original object but returns hardcoded or programmatically de-
termined values. Here’s a sample fake object for the ILogger type:

public class FakeLogger : ILogger
{
 public void Log(String message)
 {
 return;
 }
}

As you can see, the behavior of a fake object is hardcoded; the fake object has no state and no
significant behavior. From the fake object’s perspective, it makes no difference how many times you
invoke a fake method and when in the flow the call occurs. You use fakes when you just want to
ignore a dependency.

A more sophisticated option is using mock objects. A mock object does all that a fake does, plus
something more. In a way, a mock is an object with its own personality that mimics the behavior and
interface of another object.

What more does a mock provide to testers? Essentially, a mock accommodates verification of the
context of the method call. With a mock, you can verify that a method call happens with the right
preconditions and in the correct order with respect to other methods in the class.

Writing a fake manually is not usually a big issue; for the most part, all the logic you need is simple
and doesn’t need to change frequently. When you use fakes, you’re mostly interested in the state
that a fake object might represent; you are not interested in interacting with it. Conversely, you use a
mock when you need to interact with dependent objects during tests. For example, you might want
to know whether the mock has been invoked, and you might decide within the test what the mock
object must return for a given method.

Writing mocks manually is certainly a possibility, but it is rarely an option you want to consider.
For the level of flexibility you expect from a mock, you need an ad hoc mocking framework. Table 9-1
lists a few popular mocking frameworks.

316 PArT II ASP.NET MVC software design

TABLE 9-1 Some popular mocking frameworks

Product URL

Moq http://code.google.com/p/moq

NMock2 http://sourceforge.net/projects/nmock2

Typemock http://www.typemock.com

Rhino Mocks http://hibernatingrhinos.com/open-source/rhino-mocks

Note that no mocking framework is currently incorporated in Visual Studio and earlier versions.

With the notable exception of Typemock, all frameworks in the table are open-source software.
Typemock is a commercial product with unique capabilities that basically don’t require you to (re)
design your code for testability. With Typemock, you can test code that was previously considered
untestable, such as static methods, non-virtual methods, and sealed classes.

Here’s a quick example of how to use a mocking framework such as Moq:

[TestMethod]
public void Test_If_Method_Works()
{
 // Arrange
 var logger = new Mock<ILogger>();
 logger.Setup(l => l.Log(It.IsAny<String>()))
 var controller = new HomeController(logger);

 // Act
 ...

 // Assert
 ...
}

The class under test (the HomeController class) has a dependency on an object that implements
the ILogger interface:

public interface ILogger
{
 void Log(String msg);
}

The mock repository supplies a dynamically created object that mocks up the interface for what
the test is going to use. The mock object implements the method Log in such a way that it does
nothing for whatever string argument it receives. You are not really testing the logger here; you are
focusing on the controller class and providing a quick and functional mock for the logger component
that the controller uses internally.

There’s no need for you to create an entire fake class; you just specify the code you need a given
method to run when invoked. That’s the power of mocks compared to fakes.

http://code.google.com/p/moq
http://sourceforge.net/projects/nmock2
http://www.typemock.com
http://hibernatingrhinos.com/open-source/rhino-mocks

 CHAPTER 9 Testing and testability in ASP.NET MVC 317

Number of assertions per test
How many assertions should you have per test? Should you force yourself to have just one assertion
per test in full homage to the principle of narrowly scoped tests? This is a controversial point.

Many people in the industry seem to think so. Arguments used in support of this opinion are good
ones, indeed. One assertion per test leads you to write more focused tests and keep your scope lim-
ited. One assertion per test makes it obvious what each test is testing.

The need for multiple assertions often hides the fact that you are testing many features within a
single test. This is clearly a thing to avoid. If you can choose only one rule to follow, one assertion per
test is probably the best. If you’re testing the state of an object after a given operation, you probably
need to check multiple values and need multiple assertions. You can certainly find a way to express
this through a bunch of tests, each with a single assertion. In my opinion, though, that would be a lot
of refactoring for little gain.

I don’t mind having multiple assertions per test as long as the code in the test is testing just one
very specific behavior. Most frameworks stop at the first failed assertion, so you theoretically risk that
other assertions in the same test will fail on the next run. If you hold to the principle that you test just
one behavior and use multiple assertions to verify multiple aspects of the class related to that behav-
ior, all assertions are related, and if the first one fails, the chances are great that by fixing it you won’t
get more failures in that test.

Testing inner members
In some situations, a protected method or property needs to be accessed within a test. In general, a
class member doesn’t have to be public to deserve some tests. However, testing a nonpublic member
poses additional issues.

A common approach to testing a nonpublic member consists of creating a new class that extends
the class under test. The derived class then adds a public method that calls the protected method.
This class is added only to the test project, without spoiling the class design.

As mentioned earlier, in the .NET Framework an even better approach consists of adding a partial
class to the class under test. For this to happen, though, the original class needs to be marked as par-
tial itself. However, in terms of design, this is not a big deal.

In .NET, you can also easily make internal members of a class visible to another assembly (for ex-
ample, the test assembly) by using the InternalsVisibleTo attribute, as demonstrated here:

[assembly: InternalsVisibleTo("MyTests")]

You can add the preceding line to the assemblyinfo.cs file of the project that contains the class
with internal members to make available. Note that you can use the attribute multiple times so that
you make visible internal members of classes to multiple external executables.

318 PArT II ASP.NET MVC software design

As I see things, using this attribute is a little more obtrusive than using partial classes. In fact, to
take advantage of the attribute, you must mark as internal any members you want to recall from
tests. Internal members are still not publicly available, but the level of visibility they have is higher
than private or protected. In other words, you should use internal and InternalsToVisible sparingly and
only where a specific need justifies its use.

Finally, MSTest also has a nice programming feature—the PrivateObject class—that offers to call
nonpublic members via reflection.

var resourceId = "WelcomeMessage";
var resourceFile = "MyRes.it.resx";
var expected = "...";
var po = new PrivateObject(controller);
var text = po.Invoke("GetLocalizedText", new object[] { resourceId, resourceFile });
Assert.AreEqual(text, expected);

You wrap the object that contains the hidden member in a new instance of the PrivateObject
class. Next, you call the Invoke method to indirectly invoke the method with an array of objects as its
parameter list. The Invoke method returns an object that represents the return value of the private
member.

Code coverage
The primary purpose of unit and integration tests is to make the development team confident about
the quality of the software they’re producing. Basically, unit testing informs the team whether they
are doing well and are on the right track. But, how reliable are the results of unit tests?

Any measure of reliability you want to consider also depends to some extent on the number of
unit tests and the percentage of code covered by tests. On the other hand, no realistic correlation has
ever been proved to exist between code coverage and the quality of the software.

Typically, unit tests cover only a subset of the code base, but no common agreement has ever been
reached on what a “good” percentage of code coverage is. Some say 80 percent is good; some do not
even bother quoting a figure. For sure, forms of full code coverage are actually impractical to achieve,
if ever possible.

All versions of Visual Studio have code-coverage tools.

In addition, code coverage is a rather generic term that can refer to quite a few different calcula-
tion criteria, such as function, statement, decision, and path coverage. Function coverage measures
whether each function in the program has been executed in some tests. Statement coverage looks
more granularly at individual lines of the source code. Decision coverage measures the branches (such
as an if statement) evaluated, whereas path coverage checks whether every possible route through a
given part of the code has been executed.

Each criterion provides a viewpoint into the code, but what you get back are only numbers to be
interpreted. So, it might seem that testing all the lines of code (that is, getting 100 percent statement
coverage) is a great thing; however, a higher value for path coverage is probably more desirable. Code

 CHAPTER 9 Testing and testability in ASP.NET MVC 319

coverage is certainly useful because it helps you to identify which code hasn’t been touched by tests.
However, code coverage doesn’t indicate to you much about how well tests have exercised the code.
Would you like a nice example?

Imagine a method that processes an integer. You can have 100 percent statement coverage for it,
but if you lack a test in which the method receives an out-of-range, invalid value, you might get an
exception at run time in spite of all the successful tests you have run.

In the end, code coverage is a number subject to specific measurement. Relevance of tests is what
really matters. Blindly increasing the code coverage or, worse yet, requiring that developers reach a
given threshold of coverage is no guarantee of anything. It is probably still much better than having
no tests, but it says nothing about the relevance and effectiveness of tests. Focusing on expected be-
havior and expected input is the most reasonable way to approach testing. A well-tested application
is an application that has a high coverage of relevant scenarios.

Note The Microsoft Pex add-in for Visual Studio aims to understand the logic of your code
and suggests relevant tests that you need to have. Internally, Pex employs static analysis
techniques to build knowledge about the behavior of your application. You can download
Pex from http://tinyurl.com/b4zuqj.

Testing your ASP.NET MVC code

Testability is often presented as an inalienable feature that makes ASP.NET MVC the first option to
consider when it comes to web development for the Microsoft platform. For sure, ASP.NET MVC helps
developers write more solid and well-designed software with due SoC between view and behavior.
The ASP.NET MVC runtime also offers an API that abstracts away any dependencies your code can
have on ASP.NET intrinsic objects. This change marks a huge difference from Web Forms as far as
testing is concerned. The bottom line is that ASP.NET MVC is definitely a framework that facilitates
unit testing.

Which part of your code should you test?
As mentioned, ASP.NET MVC provides neat separation between the pillars of an application—
controllers, views, and models. In addition, it loosens the dependencies of your code on intrinsic
components of the ASP.NET runtime such as Request, Response, and Session. The template project also
serves a global.asax file where all the initialization work is written in a test-oriented way; these are the
little details that help.

ASP.NET MVC does its best to enable and support testing. ASP.NET MVC, however, doesn’t write
your tests and knows nothing about the real structure of your application and the layers of which it
is made. You should aim to write tests that are relevant; you should not simply aim for getting a high
score in code coverage.

http://tinyurl.com/b4zuqj

320 PArT II ASP.NET MVC software design

How do I find relevant code to test?
The location of the relevant code to test mostly depends on the layers you have in the code. In light
of what is discussed in Chapter 7, I say, “Do not put it in the controller.” Too many examples emphasiz-
ing the support for unit testing that ASP.NET MVC offers are limited to testing the controller. Consider
the following code:

[TestClass]
public class HomeControllerTest
{
 [TestMethod]
 public void Index()
 {
 var controller = new HomeController();
 var result = controller.Index() as ViewResult;
 Assert.AreEqual("Welcome to ASP.NET MVC!", result.ViewBag.Message);
 }
}

The test creates a new instance of the controller class and invokes the Index method. The method
returns a ViewResult object. The assertion then checks whether the Message property in the View
Result instance equals a given string. Let’s review the controller’s code here:

public ActionResult Index()
{
 ViewBag.Message = "Welcome to ASP.NET MVC!";
 return View();
}

The relevant part of this code is the assignment. To keep the controller lean and mean, you should
consider moving this code to a worker service as discussed in Chapter 7. Here’s how to rewrite the
method to isolate the core logic:

public ActionResult Index()
{
 _service.GetIndexViewModel(ViewBag);
 return View();
}

At this point, you no longer need to test the controller. You might want to test the service class.
There might be situations in which the body of the controller method is a bit fleshier; however, it will
be mostly glue code made of conditional statements and trivial assignments—nothing you really
need to test.

You can apply the same reasoning to the worker service, leading you to write tests for just highly
specialized components with extremely clear and limited assertions.

 CHAPTER 9 Testing and testability in ASP.NET MVC 321

Note When writing a unit test, you should know a lot of details about the internals of the
unit you’re testing. Unit testing is, in fact, a form of white-box testing, as opposed to black-
box testing in which the tester needs no knowledge of the internals and limits testing to
entering given input values and expecting given output values.

The domain layer
Chapter 7 defines the context of the domain layer, which refers to the invariant objects of your ap-
plication’s business context—the data and behavior. If you’re designing an e-commerce application,
your domain is made of entities like invoice, customer, order, shipper, and offer. Each of these entities
has properties and methods. For example, an invoice will have properties such as Number, Date,
Payment, and Items and methods such as GetEstimatedDayOfPayment, GetTotal, and CalculateTaxes.
For some of these entities (for example, aggregate roots), you might also need special services that
perform ad hoc operations in a cross-entity manner. For example, you might want to have a method
that gets a customer and figures out if she has placed enough orders to qualify as a gold-level
customer.

This is a portion of the code you absolutely want to test thoroughly; namely, you want to be sure
it’s extensively covered by relevant unit tests. Because this is the core of your application, you want to
ensure that you encounter all corner cases properly and that inconsistent values/states are properly
detected. Finally, you want to be sure that a proper battery of tests can alert you to any regression
being introduced in later stages of development. If you can cover with tests just one segment of the
application, I recommend that segment be the domain layer, if you have one.

The orchestration layer
Depending on how many layers and tiers you really implement, the orchestration layer (which is
discussed in Chapter 7) either can be fully identified with the worker services of an ASP.NET MVC
controller or can form a layer of its own.

The need to test this layer thoroughly depends on the amount of logic you have in it. In a Create,
Read, Update, and Delete (CRUD) system, this layer is mostly thin enough to just test samples of it.
However, if the presentation layer offers a significantly different representation of the data than the
storage maintains, the orchestration layer is responsible for arranging data in a particular format for
the view. In this case, the layer becomes a more critical part of your application and deserves more
attention.

If you reduce the controller to be a mere pass-through layer—one that gets view models from the
orchestration layer and passes it to the ASP.NET MVC infrastructure—you have no need to test it. Or,
better yet, you have other portions of the application that you might focus on first.

322 PArT II ASP.NET MVC software design

The data access layer
What service is providing your data access layer? Is it simply running SQL statements for you? If that is
the case, after you determine that the code works at development time (for example, your SQL state-
ments are correct), you’re all set.

If the data access layer sums up additional capabilities and incorporates some logic that adapts
data into different data structures than storage, you might want to consider some tests. But, in this
case, why not separate the CRUD wheat from the adapter chaff and test the adapters only?

Important Unit testing is not really a matter of numbers; it is a matter of quality of num-
bers. Not only do you need tests, but you need tests that cover relevant aspects of your
code. You won’t sell an application because of unit tests; you sell an application if the appli-
cation passes the acceptance tests. And, acceptance tests indicate what behavior is relevant
for the end user. Finding what behavior is relevant for the units of code your application is
made of is exactly the effort one expects from a great developer.

Unit testing ASP.NET MVC code
Beyond the theory of unit testing—some would even call it the art of unit testing—there are some
concrete and pragmatic aspects that you need to handle. Specifically, there a few practices and tech-
niques you want to understand in order to write unit tests for ASP.NET MVC applications.

Writing a unit test is equivalent to calling a method simulating the particular context in which
you’re interested. A unit test is just software—a method in a class—and with it, like software, you can
use most of the tricks and techniques you normally use in a regular code class. In this chapter, I’m just
discussing what’s relevant to know and not every aspect of writing a unit test for ASP.NET MVC.

Note If you’re interested in the art of unit testing, be sure you get a copy of The Art of Unit
Testing by Roy Osherove (Manning Publications, 2009), which you can find at http://www.
manning.com/osherove.

Testing whether the returned view is correct
There might be situations in which the controller decides on the fly about the view to render. This
happens when the view to render is based on some conditions known only at run time. An example
is a controller method that must switch view templates based on the locale, user account, day of the
week, or anything else your users might ask you.

In a test, you can catch the view being rendered by using the ViewName property of the Action
Result object, as presented here:

http://www.manning.com/osherove
http://www.manning.com/osherove

 CHAPTER 9 Testing and testability in ASP.NET MVC 323

[TestMethod]
public void Should_Render_Italian_View()
{
 // Simulate ad hoc runtime conditions here
 ...

 // Parameters
 var productId = 42;
 var expectedViewName = "index_it";

 // Go
 var controller = new ProductController();
 var result = controller.Find(productId) as ViewResult;
 if (result == null)
 Assert.Fail("Invalid result");
 Assert.AreEqual(result.ViewName, expectedViewName);
}

The assumption is that the ProductController class returns localized views for the selected product.
In this case, a good example of the run-time conditions to simulate for the sake of the test is setting
the current locale to it.

By checking the public properties of the specific ActionResult object returned by the controller
method, you can also perform ad hoc checks when a particular response is generated, such as Java-
Script Object Notation (JSON), JavaScript, binaries, files, and so forth.

Testing localization
Sometimes, you’ll find it useful to have some tests that quickly check whether certain parts of the user
interface are going to receive proper localized resources when a given language is selected. Here’s
how to proceed with a unit test:

[TestMethod]
public void Test_If_Localizated_Strings_Are_Used()
{
 // Simulate ad hoc runtime conditions here
 const String culture = "it-IT";
 var cultureInfo = CultureInfo.CreateSpecificCulture(culture);
 Thread.CurrentThread.CurrentCulture = cultureInfo;
 Thread.CurrentThread.CurrentUICulture = cultureInfo;

 // Ensure resources are being returned in the correct language
 var showMeMoreDetails = MyText.Product.ShowMeDetails;

 // Assert
 Assert.AreEqual(showMeMoreDetails, "Maggiori informazioni");
}

In the unit test, you first set the culture on the current thread and then you attempt to retrieve the
value for the resource and assert against expected values.

324 PArT II ASP.NET MVC software design

You can use this technique to test nearly everything that’s related to localization, including local-
ized views and resources. Here’s a unit test written for the UrlHelper extension method, which is
discussed in Chapter 5, “Aspects of ASP.NET MVC applications”:

[TestMethod]
public void Test_If_Url_Extensions_Work()
{
 // Data
 var url = "sample.css";
 var expectedUrl = "sample.it.css";

 // Set culture to IT
 const String culture = "it-IT";
 var cultureInfo = CultureInfo.CreateSpecificCulture(culture);
 Thread.CurrentThread.CurrentCulture = cultureInfo;
 Thread.CurrentThread.CurrentUICulture = cultureInfo;

 // Act & Assert
 var localizedUrl = UrlExtensions.GetLocalizedUrl(url);
 Assert.AreEqual(localizedUrl, expectedUrl);
}

This quick demo hides a very interesting story. Chapter 5 shows code that defines the
GetLocalizedUrl extension method, as shown here:

public static String GetLocalizedUrl(UrlHelper helper, String resourceUrl)

To test this method, you need to provide an instance of the UrlHelper class. Unfortunately, the
constructor of the UrlHelper class is coupled with the ASP.NET MVC infrastructure.

public UrlHelper(RequestContext context)

How can you get a valid RequestContext in a testing environment? You need to mock up the HTTP
context. It’s definitely a doable thing, as you’ll see in a moment, but it requires too much work in this
scenario. A simple refactoring will help you focus on what’s really relevant to test.

What you want ultimately is to check the ability of the code to return sample.it.css instead of
sample.css when the culture is Italian. You don’t need to test whether the resource really exists on the
web server. So, you don’t strictly need the request context. Let’s rewrite the GetLocalizedUrl method,
as shown here:

public static String GetLocalizedUrl(UrlHelper helper, String resourceUrl)
{
 var url = GetLocalizedUrl(resourceUrl);
 return VirtualFileExists(helper, url) ? url : resourceUrl;
}

 CHAPTER 9 Testing and testability in ASP.NET MVC 325

public static String GetLocalizedUrl(String resourceUrl)
{
 var cultureExt = String.Format("{0}{1}",
 Thread.CurrentThread.CurrentUICulture.TwoLetterISOLanguageName,
 Path.GetExtension(resourceUrl));
 return Path.ChangeExtension(resourceUrl, cultureExt);
}

The effect is the same, but the test is quicker and more focused.

Testing redirections
A controller action might also redirect to another URL or route. Testing a redirection, however, is no
harder than testing a context-specific view. A controller method that redirects will return a Redirect
Result object if it redirects to a specific URL; however, it will return a RedirectToRouteResult object if it
redirects to a named route.

The RedirectResult class has a familiar Url property that you can check to verify whether the action
completed successfully. The RedirectToRouteResult class has properties such as RouteName and Route
Values that you can check to ensure that the redirection worked correctly.

Testing routes
Especially if you make extensive use of custom routes, you might want to test them carefully. In par-
ticular, you’re interested in checking whether a given URL is matched to the right route and if route
data is extracted properly.

To test routes, you must reproduce the global.asax environment and begin by invoking the
RegisterRoutes method. The RegisterRoutes method populates the collection with available routes,
as shown in the following:

[TestMethod]
public void Test_If_Product_Routes_Work()
{
 // Arrange
 var routes = new RouteCollection();
 MvcApplication.RegisterRoutes(routes);
 RouteData routeData = null;
 // Act & Assert whether the right route was found
 var expectedRoute = "{controller}/{action}/{id}";
 routeData = GetRouteDataForUrl("~/product/id/123", routes);
 Assert.AreEqual(((Route) routeData.Route).Url, expectedRoute);
}

326 PArT II ASP.NET MVC software design

The GetRouteDataForUrl method in the test is a local helper, defined as follows:

private static RouteData GetRouteDataForUrl(String url, RouteCollection routes)
{
 var httpContextMock = new Mock<HttpContextBase>();
 httpContextMock.Setup(c => c.Request.AppRelativeCurrentExecutionFilePath).Returns(url);
 var routeData = routes.GetRouteData(httpContextMock);
 Assert.IsNotNull(routeData, "Should have found the route");
 return routeData;
}

The method is expected to invoke GetRouteData to retrieve information about the requested
route. Unfortunately, GetRouteData needs a reference to HttpContextBase, where it places all inquiries
about the request. In particular, GetRouteData needs to invoke AppRelativeCurrentExecutionFilePath
to know about the virtual path to process. By mocking HttpContextBase to provide an ad hoc URL,
you completely decouple the route from the run-time environment and can proceed with assertions.

The sample code shown earlier uses the Moq framework to create test doubles. Let’s find out more
about mocking and how to use mocks to neutralize or replace dependencies.

Dealing with dependencies
As far as testing is concerned, you could say that there are two main types of dependencies: those
you want to ignore, and those with which you want to interact but in a controlled manner. In both
cases, you need to provide a test-double object—namely, an object that behaves like the expected
one while providing an expected behavior. If the classes under test support dependency injection (DI),
providing a test double is a piece of cake.

Regardless of the names being used to indicate test doubles (fakes, mocks, stubs), the raw truth
is that you need an object that implements a given contract. So, how do you write this test-double
object?

About mock and fake objects
A test double is a class you write and add to the test project. This class implements a given interface
or inherits from a given base class. After you have the instance, you inject it inside the object under
test by using the public interface of the object being tested. (Clearly, I’m assuming the object under
test was designed with testability in mind.)

You might need a different test-double class for each test you write. These classes look nearly
the same and differ perhaps in terms of the value they return. Should you really write and maintain
hundreds of similar looking classes? You shouldn’t, and that’s why mocking frameworks exist. A mock-
ing framework provides infrastructure for you to quickly create classes that implement a contract.
Additionally, a mocking framework provides some facilities with which you can configure the interac-
tion with the methods of this dynamically created class. In particular, you can instruct the mock to get
you an instance of a class that exposes the ISomething contract and returns 1 when the ExecuteTask
method is invoked with a given argument.

 CHAPTER 9 Testing and testability in ASP.NET MVC 327

You probably need to write your own class when in the implementation of one or more methods
you need to maintain some state or just execute some custom logic. In the context of this book, I call
fakes the classes you specifically write in the test project to neutralize dependencies. I call mocks the
classes that you create—for the same purpose—using a mocking framework.

Do you still think that a relevant difference exists between fakes and mocks? If any exists, it’s
purely about the label you want to attach to each.

Testing code that performs data access
The canonical example of DI in testing is when you have a worker service class (in simple scenarios,
it can even be the controller class) that needs to perform data access operations. Chapter 7 defines a
worker service class name HomeService that gets a list of dates from a repository. The service class is
required to do some extra work on the list of dates before packing them into a view model for dis-
play. In particular, the worker service calculates the time span between the current day and the speci-
fied date. The repository will likely run a query against some database to return dates. Here’s how to
inject a fake dependency in the service class so that you can test the service class without dealing with
queries and connection strings:

[TestClass]
public class DateRepositoryTests
{
 [TestMethod]
 public void Test_If_Dates_Are_Processed()
 {
 var inputDate = new DateTime(2013, 2, 8);
 var fakeRepository = new FakeDateRepository();
 var service = new HomeServices(fakeRepository);
 var model = service.GetHomeViewModel();

 var expectedResult = (Int32) (DateTime.Now - inputDate).TotalDays;
 Assert.AreEqual(model.FeaturedDates[0].DaysToGo, expectedResult);
 }
}

The FakeDateRepository class will look like this:

public class FakeDateRepository : IDateRepository
{
 public override IList<MementoDate> GetFeaturedDates()
 {
 return List<MementoDate>
 {
 new MementoDate {Date = new DateTime(...)}
 });
 }
}

328 PArT II ASP.NET MVC software design

You need a new FakeDateRepository class for each test you plan to write. For example, suppose
that you want to test the behavior of the service both when the date falls before and after the current
date. You need two tests and two slightly different versions of FakeDateRepository, the only difference
being in the returned date. The following demonstrates how a mocking framework can help:

[TestClass]
public class DateRepositoryTests
{
 [TestMethod]
 public void Test_If_Dates_Are_Processed()
 {
 var inputDate = new DateTime(2012, 2, 8);
 var fakeRepository = new Mock<IDateRepository>();
 fakeRepository.Setup(d => d.GetFeaturedDates()).Returns(new List<MementoDate>
 {
 new MementoDate {Date = inputDate}
 });

 var service = new HomeServices(fakeRepository.Object);
 var model = service.GetHomeViewModel();

 var expectedResult = (Int32) (DateTime.Now - inputDate).TotalDays;
 Assert.AreEqual(model.FeaturedDates[0].DaysToGo, expectedResult);
 }
}

The fake repository is created by using Moq and is injected in the HomeService class via the con-
structor. The Mock<IDateRepository> object is a dynamically created class (Moq uses Castle Dynamic
Proxy internally to dynamically generate code) that implements the IDateRepository interface and
returns the input date whenever the GetFeaturedDates method is invoked. To write a test against
another input, you simply duplicate the test method without explicitly dealing with source classes.

Mocking the hTTP context
I’m not really happy when I have to mock the HTTP context to write some ASP.NET MVC unit tests.
Sometimes, you really need it; however, more often than you might think, a bit of refactoring on your
code makes mocking the HTTP context unnecessary.

When it comes to unit testing, there’s a mistake (or at least I call it this) that I see too often. Some
developers seem unable to look beyond the controller level. These developers put large chunks of
logic in the controller. They make little use of specific, highly specialized classes. These developers
seem to think that beyond the controller, you can have only a Microsoft SQL Server database or an
Entity Framework model. Just having a layer of repositories around LINQ-to-Entities queries is already
a cutting-edge solution. Chapter 7 attempts to illustrate a different pattern for plain code.

If the granularity of controller methods is fairly coarse, you inevitably need to mock a long list of
objects to run your tests. A controller method that deals directly with query strings and session state
needs to have a valid HTTP context arranged for a test to run. This is extra work for you. Also, refac-
toring the controller method to add encapsulation and wrappers is extra work for you, but it’s work of
a different type.

 CHAPTER 9 Testing and testability in ASP.NET MVC 329

You see immediately the benefits of a cleaner design: For one, testing is much easier. Efforts
expended to make tests work result in more wasted time, instead. When the test finally runs, you feel
more relieved than satisfied. Mocking the HTTP context is a constant requirement if you end up with
coarse-grained controller methods. It’s not just the ASP.NET MVC framework, it’s also you.

Having said that, however, sometimes you really need to mock the HTTP context. Let’s see how to
do it.

Mocking the HttpContext object
The HttpContext object inherits from HttpContextBase, so all you need to do is create a mock for it.
The HttpContext object is a plain aggregator of object references; it hardly needs to contain extra
code. So, a mock is just fine most of the time. Here’s how to build a fake HTTP context by using Moq:

public void BuildHttpContextForController(Controller controller)
{
 var contextBase = new Mock<HttpContextBase>();
 var request = new Mock<HttpRequestBase>();
 var response = new Mock<HttpResponseBase>();
 var server = new Mock<HttpServerUtilityBase>();
 ...

 contextBase.Setup(c => c.Request).Returns(request);
 contextBase.Setup(c => c.Response).Returns(response);
 contextBase.Setup(c => c.Server).Returns(server);

 // Pass the fake context down to the controller instance
 var context = new ControllerContext(
 new RequestContext(contextBase.Object, new RouteData()), controller);
 controller.ControllerContext = context;
 return;
}

This is only the first level of mocking for ASP.NET intrinsic objects. For example, whenever the ap-
plication queries for Request in a unit test, it gets the mocked object. The mocked object, however, is
a dummy object and needs its own setup. Let’s see a couple of examples.

Mocking the Request object
You probably want to extend the mocked Request object with expectations regarding some specific
members. For example, here’s how to simulate a GET or POST request in a test:

var method = "get";
contextBase.Setup(c => Request.HttpMethod).Return(method);

Earlier in the chapter, while discussing the testing of routes, we also ran into similar code:

var url = ...;
contextBase.Expect(c => Request.AppRelativeCurrentExecutionFilePath).Return(url);

330 PArT II ASP.NET MVC software design

You probably don’t want to use the Request.Form object to read about posted data from within a
controller, because you might find model binders to be more effective. However, if you have a legacy
call to Request.Form[“MyParam”] in one of your controller’s methods, how would you test it?

// Prepare the fake Form collection
var formCollection = new NameValueCollection();
formCollection["MyParam"] = ...;

// Fake the HTTP context and bind Request.Form to the fake collection
var contextBase = new Mock<HttpContextBase>();
contextBase.Setup(c => c.Request.Form).Returns(formCollection);

// Assert
...

In this way, every time your code reads anything through Request.Form, it actually ends up reading
from the name/value collection provided for testing purposes.

Mocking the Response object
Let’s see a few examples that touch on the Response object. For example, you might want to mock up
Response.Write calls by forcing a fake HttpResponse object to write to a text writer object, as illus-
trated here:

var writer = new StringWriter();
var contextBase = new Mock<HttpContextBase>();
contextBase.Setup(c => c.Response).Return(new FakeResponse(writer));

In this case, the FakeResponse class is used as shown here:

public class FakeResponse : HttpResponseBase
{
 private readonly TextWriter _writer;
 public FakeResponse(TextWriter writer)
 {
 _writer = writer;
 }

 public override void Write(string msg)
 {
 _writer.Write(msg);
 }
}

With this code, you can test a controller method that has calls to Response.Write, such as the one
shown here:

public ActionResult Output()
{
 HttpContext.Response.Write("Hello");
 return View();
}

 CHAPTER 9 Testing and testability in ASP.NET MVC 331

Here’s the test:

[TestMethod]
public void Should_Response_Write()
{
 // Arrange
 var writer = new StringWriter();
 var contextBase = new Mock<HttpContextBase>();
 contextBase.Setup(c => c.Response).Returns(new FakeResponse(writer));
 var controller = new HomeController();
 controller.ControllerContext = new ControllerContext(
 contextBase.Object, new RouteData(), controller);

 // Act
 var result = controller.Output() as ViewResult;
 if (result == null)
 Assert.Fail("Result is null");

 // Assert
 Assert.AreEqual("Hello", writer.ToString());
}

Similarly, you can configure a dynamically generated mock if you need to make certain properties
or methods just return a specific value. Here are a couple of examples:

var contextBase = new Mock<HttpContextBase>();

// Mock up the Output property
contextBase.Setup(c => Response.Output).Returns(new StringWriter());

// Mock up the Content type of the response
contextBase.Setup(c => Response.ContentType).Returns("application/json");

For cookies, on the other hand, you might want to mock the Cookies collection on both Request
and Response to return a new instance of the HttpCookieCollection class, which will act as your cookie
container for the scope of the unit test. I’ll show more details related to mocking the Response object
later in the chapter while discussing how to test controller methods with action filters.

Mocking the Session object
A mock is easier to use, but sometimes you need to assign a behavior to the various methods of the
mocked object. This is easy to do when the behavior is as simple as returning a given value. To ef-
fectively test whether the method correctly updates the session state, though, you need to provide
an in-memory object that simulates the behavior of the original object and has the ability to store
information, which is not exactly an easy task to mock. However, using a fake session class makes it
straightforward. Here’s a minimal yet effective fake for the session state:

public class FakeSession : HttpSessionStateBase
{
 private readonly Dictionary<String, Object> _sessionItems =
 new Dictionary<String, Object>();

332 PArT II ASP.NET MVC software design

 public override void Add(String name, Object value)
 {
 _sessionItems.Add(name, value);
 }

 public override Object this[String name]
 {
 get { return _sessionItems.ContainsKey(name) ? _sessionItems[name] : null; }
 set { _sessionItems[name] = value; }
 }
}

And here’s how to arrange a test:

[TestMethod]
public void Should_Write_To_Session_State()
{
 // Arrange
 var contextBase = new Mock<HttpContextBase>();
 contextBase.Setup(c => c.Session).Returns(new FakeSession());
 var controller = new HomeController();
 controller.ControllerContext = new ControllerContext(
 contextBase.Object, new RouteData(), controller);

 // Act
 var expectedResult = "green";
 controller.SetColor(); // Runs Session["PreferredColor"] = "green";

 // Assert
 var result = controller.HttpContext.Session["PreferredColor"];
 Assert.AreEqual(result, expectedResult);
}

If your controller method only reads from Session, your test can be even simpler and you can avoid
faking the Session entirely. Here’s a sample controller action:

public ActionResult GetColor()
{
 var o = Session["PreferredColor"];
 if (o == null)
 ViewData["Color"] = "No preferred color";
 else
 ViewData["Color"] = o as String;

 return View("Color");
}

The following code snippet shows a possible way to test the method just shown:

// Arrange
var contextBase = MockRepository.GenerateMock<HttpContextBase>();
contextBase.Expect(s => s.Session["PreferredColor"]).Return("Blue");
var controller = new HomeController();
controller.ControllerContext = new ControllerContext(
 contextBase.Object, new RouteData(), controller);

 CHAPTER 9 Testing and testability in ASP.NET MVC 333

// Act
var result = controller.GetColor() as ViewResult;
if (result == null)
 Assert.Fail("Result is null");

// Assert
Assert.AreEqual(result.ViewData["Color"].ToString(), "Blue");

In this case, you instruct the HTTP context mock to return the string “Blue” when its Session prop-
erty is requested to provide a value for the entry “PreferredColor”.

In what is likely the much more common scenario, that in which a controller method needs to read
and write the session state, you need to use the test solution based on some FakeSession class.

Mocking the Cache object
Mocking the ASP.NET Cache object is a task that deserves a bit more attention, even though mocking
a caching layer doesn’t require a new approach. The HttpContextBase class has a Cache property, but
you can’t mock it up because the property doesn’t represent an abstraction of the ASP.NET caching
systems; it's a concrete implementation of a particular class, instead. Here’s how the Cache property is
declared on the HttpContextBase class:

public abstract class HttpContextBase : IServiceProvider
{
 public virtual Cache Cache { get; }
 ...
}

The type of the Cache property is actually System.Web.Caching.Cache—the real cache object, not
an abstraction. Even more unfortunate, the Cache type is sealed and therefore is not mockable and is
unusable in unit tests.

What can you do? There are two options. One entails using testing tools that can deal with sealed
classes. An example of one of these tools is Typemock Isolator (a commercial product); another is Mi-
crosoft Moles. The other possibility is to use a wrapper class to perform any access to the Cache from
within any code you intend to test. Chapter 5 examines this approach.

Based on what you’ve seen, you create a cache service object that implements a given interface;
for example, ICacheService. Next, you register this class with the application in global.asax and add a
public static property to read/write the cache:

protected void Application_Start()
{
 ...

 // Inject a global caching service(for example, one based on ASP.NET Cache)
 RegisterCacheService(new AspNetCacheService());
}

334 PArT II ASP.NET MVC software design

private static ICacheService _internalCacheObject;
public void RegisterCacheService(ICacheService cacheService)
{
 _internalCacheObject = cacheService;
}

public static ICacheService CacheService
{
 get { return _internalCacheObject; }
}

In controller methods, you stop using the HttpContext.Cache entirely. Your controller will have the
following layout, instead:

public partial class HomeController : Controller
{
 public ActionResult SetCache()
 {
 // MvcApplication is the name of the global.asax class; change it at will
 MvcApplication.CacheService["PreferredColor"] = "Blue";
 return View();
 }
 ...
 }

How would you test this? Here’s an example:

[TestMethod]
public void Should_Write_To_Cache()
{
 // Arrange
 var fakeCache = new FakeCache();
 MvcApplication.RegisterCacheService(fakeCache);

 // Act
 controller.SetCache();

 // Assert
 Assert.AreEqual("Blue", fakeCache["PreferredColor"].ToString());
}

The FakeCache class can be something like this:

public class FakeCache : ICacheService
{
 private readonly Dictionary<String, Object> _cacheItems =
 new Dictionary<String, Object>();

 CHAPTER 9 Testing and testability in ASP.NET MVC 335

 public object this[String name]
 {
 get
 {
 if (_cacheItems.ContainsKey(name))
 return _cacheItems[name];
 else
 return null;
 }
 set { _cacheItems[name] = value; }
 }
}

In this way, you can test controller methods and services, making use of cached data even when
the cache is a distributed cache. The cache service hides all details and makes the application more
extensible and testable.

Summary

Testability is a fundamental aspect of software, as the paper ISO/IEC 9126 recognized back in 1991.
With ASP.NET MVC, designing your code for testability is easier and encouraged. But, you also can
write testable code in ASP.NET Web Forms and test it to a good extent. Testability is an excellent
excuse to pursue good design. Design makes a difference under the hood.

We all agree that writing tests is helpful, recommended, and even sexy. However, unless you associ-
ate it with some test-driven design methodology, writing tests risks being an end in and of itself. On one
hand, you have the classes to test; on the other hand, you have classes that promise to test other classes.
And, you have nothing in the middle that guarantees that tests are appropriate and meaningful.

An approach that creates the environment for a much more effective refactoring while not exclud-
ing unit testing is based on software contracts. A software contract defines the terms and conditions
for each method in each class. That gives you an optional run-time checking mechanism as well as
concrete guidance on how to refactor when you have to. Software contracts are not a new concept in
software, but they have found widespread implementation only in .NET 4. Check out the documenta-
tion for code contracts and the articles I wrote on the subject in the Cutting Edge column in MSDN
Magazine, which is available at http://msdn.microsoft.com/en-us/magazine/default.aspx.

http://msdn.microsoft.com/en-us/magazine/default.aspx

 337

C H A P T E R 1 0

An executive guide to Web API

The visionary lies to himself, the liar only to others.
—Friedrich Nietzsche

ASP.NET Web API is a new framework expressly designed to support and simplify the building of
HTTP services that can be consumed by a variety of clients; in particular, HTML pages and mobile

applications. The core idea behind Web API is nothing new, and developers and architects have been
facing the same challenge for at least a decade now. Along the way, several frameworks and tech-
nologies have been worked out and each was regularly presented as the definitive solution to the
issue. How many times did you hear that Windows Communication Foundation (WCF) was the ideal
technology to build a service layer for whatever kind of client, including TCP and HTTP?

In this regard, Web API is at least the latest attempt—and hopefully the last and truly definitive
one—to provide an ideal framework for web services over HTTP.

The scope of Web API is broad enough to make it compelling and useful to just about any devel-
oper, not just web developers. For some reasons, though, Web API is sometimes presented, or just
perceived, as an ASP.NET MVC–related tool. This is misleading; in addition, if you look at core func-
tionality, ASP.NET MVC developers are the only ones in Microsoft’s space who can happily live without
Web API.

Web API is a well-designed framework for building both RESTful (Representational State Transfer)
and remote procedure calls (RPC)–style HTTP services for .NET applications. Web API intersects vari-
ous aspects of ASP.NET MVC such as routing, security, controllers, and extensibility and has specific
areas not directly supported by plain ASP.NET MVC. In short, Web API deserve its own book to be
covered appropriately. This chapter represents an executive summary of the key facts of Web API—
how to build and use HTTP services—from the perspective of an ASP.NET MVC developer. For more
examples and an even deeper look at the internal architecture, I suggest you look at the excellent
documentation that you can find at http://www.asp.net/web-api.

The whys and wherefores of Web API

Web API is not a framework that was devised overnight, and I’d say it’s not even a framework created
following some divine inspiration. More simply, it is hopefully the final stage of an evolutionary pro-
cess that began about a decade ago with the goal of making available standardized web services.

http://www.asp.net/web-api

338 PArT II ASP.NET MVC software design

The need for a unified HTTP API
Before being bound to specific technologies and frameworks, the term web service was merely
intended to describe a software service that is available over the web. The need for shared HTTP end-
points returning data instead of markup was already strong and clear in the late 1990s, when the ASP.
NET framework was being crafted.

As it often happens in software development, architects managed to place a specific need into a
broader and broader context and ended up creating technologies and patterns that not only ad-
dressed the initial need but offered much more. After a few years of experience, the software com-
munity is back to the initial need—“All we want is the simplest infrastructure that could possibly allow
us to call endpoints via HTTP.” Amazingly, there was no such infrastructure within and around ASP.
NET and the Microsoft stack. Instead, there was a number of technologies that developers could bend
to operate as HTTP services, each of these technologies having its own pros and cons.

Web API addresses the problem of giving developers an effective and unique platform to expose
application services via HTTP. Defining the shape and form of “application services” is up to the archi-
tect. It could be that the software development kit (SDK) of the application is published to the web.
It could be, instead, that the application’s SDK is over the web but accessed in a controlled way and
then is not publicly available. Finally, it could be that you use Web API just to publish a service in the
Service-Oriented Architecture (SOA) sense—an autonomous, stand-alone application with no user
interface, just serving data in a variety of formats.

Beyond WCF
When the world realized about the power of web services, a standard protocol was worked out
quickly to become the currency that web services could exchange with callers: Simple Object Access
Protocol (SOAP). On top of that, a number of more in-depth specifications became a work-in-progress
collectively known as WS-* protocols.

WCF was initially conceived to support SOAP and WS-* over a wide variety of transportation layers
including TCP, Message Queuing (MSMQ), named pipes, and last but not least, HTTP.

It didn’t take much to see that although WCF had its own solid motivation and rationale, devel-
opers were mostly using it as a shortcut to HTTP endpoints. This raised the need for the WCF infra-
structure to support more effectively non-SOAP services becoming able to serve plain XML, text, and
JavaScript Object Notation (JSON) over HTTP. Over the years, we had first the webHttpBinding binding
mechanism from the WCF team and then came bolted-on frameworks such as the REST starter kit.

In the end, it was a matter of providing some “syntactic sugar” to make the pill of using HTTP as
a mere transportation layer easier to swallow. HTTP facilities on top of WCF didn’t eliminate the true
roadblocks that developers were facing such as notorious WCF over-configuration and overuse of at-
tributes, and its structure not being specifically designed for testability.

The key change was separating multitransport services from plain HTTP services and removing all
the heavy machinery of WCF to create a thin and HTTP-focused framework for HTTP services. This is
Web API.

 CHAPTER 10 An executive guide to Web API 339

Note As the focus for services shifts away from WCF, does it mean that WCF is a dead
technology with no realistic application left? Indeed, it does not. WCF is the only significant
option when you really need to expose a service that can be invoked over protocols other
than HTTP. WCF also remains a key solution when you really need advanced features such
as security and support for transactions.

What Web API means for client applications
Web API fits nicely in what today appears to be a fairly common application scenario: a client ap-
plication needing to invoke a remote back end to download data or request processing. The client
application can take many forms: a JavaScript-intensive webpage, a rich client, or a mobile application.

In all of these cases, the HTTP protocol seems to be as effective as SOAP but far simpler and sub-
sequently faster. You can use HTTP verbs and headers to identify operations to perform on remote re-
sources; you can use URL templates to express semantics if you prefer an approach that focuses more
on actions. Either way, you use the body of messages to serialize any input value and receive content.
The JSON format is ideal to serialize objects between clients and HTTP services.

What Web API means for ASP.NET Web Forms applications
Like it or not, the number of websites that use ASP.NET Web Forms is still larger than those based on
ASP.NET MVC. With ASP.NET 4 and newer versions, Microsoft managed to streamline issues, such as
limited accessibility of generated HTML, more control over the HTML being generated, mitigating
the impact of viewstate, routing, and more. One issue that wasn’t solved, though, was enabling Web
Forms developers to quickly expose an HTTP callable endpoint.

This is not to say that in Web Forms you can’t expose HTTP endpoints to be called back from client
pages; you can use HTTP handlers or WCF services with freely generated JavaScript proxy classes. In
the end, it works, but coding that is more and more perceived as bothersome.

Web API makes exposing an HTTP service from a Web Forms application as easy as it is to have a
controller in ASP.NET MVC: just add a class and it works according to predefined routing rules. Don’t
like the default routing rules? Adding your own rules is easy, too!

Web API brings a huge benefit to Web Forms developers. At the same time, it represents a source
of confusion for ASP.NET MVC developers. In fact, a common question is, why should I use it? What
benefits does Web API offer over plain controllers?

MVC controllers vs. Web API
An ASP.NET MVC application results from the combination of multiple controller classes. Typically,
each controller class exposes a number of actions that the user interface can invoke through URLs.
The neat separation between the processing of the request and generation of the response makes it
possible for controller classes to return any response in a variety of formats, including HTML, JSON,
XML, or even plain text.

340 PArT II ASP.NET MVC software design

In light of this, what’s the point of using Web API in an ASP.NET MVC application?

The Controller class does it all
If you want to return some JSON data from within an ASP.NET MVC application, all you need to do is
create an ad hoc method in a new or existing Controller class. The sole specific requirement for the
new method is returning a JsonResult object, as illustrated here:

public JsonResult LatestNews(int count)
{
 var listOfNews = _service.GetRecentNews(count);
 return Json(listOfNews, JsonRequestBehavior.AllowGet);
}

More than the declared return type of the method, which could also be the parent ActionResult
class, what matters is the call to the Json method. The Json method ensures that the given object is
packaged in a JsonResult object. After it is returned from the controller class, the JsonResult object is
processed by the action invoker in charge of the current request.

The overall effect is that the contained object—originally calculated by the controller—is serialized
to JSON and embedded in the body of the response sent back to the requesting device. Similarly, you
can serve plain text, binary content, or even XML content formatted the way you like.

Feeling the difference
In ASP.NET MVC you can have HTTP services for nothing more than the cost of adding a new control-
ler class or a specific method to an existing controller class. This has always worked since version 1
and still works today with the latest version of ASP.NET MVC. Why should you look into something
else?

The Web API framework relies on a different run-time environment that is totally separated from
that of ASP.NET MVC. This has been done just to enable non–ASP.NET MVC applications to use Web
API. The run-time environment is inevitably largely inspired to ASP.NET MVC but overall looks simpler
and more straight-to-the-point because it is expected to only serve and not markup.

From the viewpoint of an ASP.NET developer, the following three points summarize the advantages
that Web API sports over ASP.NET MVC:

■■ Decoupling code from serialization of results This refers to the fact that a Web API con-
troller requires you to simply return data from each method without dealing with the serial-
ization of the results within the method.

■■ Content negotiation A new family of components called formatters take care of the serial-
ization of the data being returned to the requesting device. More interesting, formatters are
automatically selected based on the content of the Accept header of the incoming request.
Built-in XML and JSON formatters are provided; replacing them is a simple matter of configu-
ration. This feature simplifies the development of methods that might return the same raw
data in a variety of formats, most typically XML and JSON.

 CHAPTER 10 An executive guide to Web API 341

■■ Hosting outside Internet Information Services (IIS) To some extent, content negotiation
is a feature that can also be achieved in plain ASP.NET MVC. However, if you opt for imple-
menting your HTTP services within an ASP.NET MVC application, you are bound to IIS as the
web server; in other words, you can’t host your API elsewhere. This is because ASP.NET MVC is
inherently bound to IIS because it was primarily designed to serve as a framework for web ap-
plications. But, Web API does not require IIS, and you can self-host it in your own host process
such as a Windows service or a console application. (This aspect makes Web API services close
to WCF services.)

The bottom line is that Web API doesn’t really add much power to ASP.NET MVC development to
be considered a must-have feature as it is, for example, in Web Forms development. As usual, it de-
pends on the requirements of the specific project and to some extent on the preferences of the team.

Building rESTful applications
If you struggled to make ASP.NET MVC controllers as RESTful as possible in the past, you’ll find that
you can do it in a much easier way by choosing Web API and organizing your web application accord-
ingly. For example, you can have a mostly client-side solution (for example, a single-page application)
or a bunch of server-side webpages doing most of the work via direct HTTP calls to the API to Create,
Read, Update, and Delete (CRUD) data.

To build a RESTful application, you have to identify the different resources in the application and
map the actions performed over them to the HTTP methods and address. With Web API, this comes
for the most part naturally; all you do is define a data transfer object to return to the client and work
out a class in the host ASP.NET MVC application that performs on that object the basic CRUD op-
erations. The RESTfulness of the solution is guaranteed by Web API, which ensures that HTTP PUT
requests map to the Create action, the HTTP GET requests map to the Read action, the HTTP POST
requests map to the Update action, and the HTTP DELETE requests are associated with the Delete
action.

Without further ado, let’s proceed with some sample code.

Putting Web API to work

From Microsoft Visual Studio, you start by creating an ASP.NET MVC project of type Web API. What
you get in return is an ASP.NET MVC application with two main characteristics. First, the App_Start
project folder contains an initializer component for Web API that sets up an ad hoc route. Second, the
Controllers folder contains two sample controller classes: the usual HomeController class and the Web
API–specific ValuesController class. The latter inherits from ApiController instead of Controller.

This is a pillar of Web API. A Web API module is a collection of controller classes that inherit from
predefined ApiController rather than Controller. Figure 10-1 illustrates that the Web API infrastructure
and the ASP.NET MVC infrastructure are independent, with no hidden dependencies.

342 PArT II ASP.NET MVC software design

FIGURE 10-1 Web API can be hosted by different apps and is not tightly coupled to ASP.NET.

A Web API module is a stand-alone HTTP-based service that can be hosted by a number of ap-
plications, with an ASP.NET MVC application being probably the most common type of host. This is
a key point: don’t be fooled by seeing the term “controller” appear nearly everywhere. In the end,
an ASP.NET MVC application that embeds a Web API–powered set of HTTP endpoints uses the plain
Controller class to derive HTML-based controllers and ApiController to derive controller classes that
return plain data to be formatted as JSON or XML. Let’s see how to build a Web API module within a
host ASP.NET MVC application.

Designing a rESTful interface
Web API uses conventions extensively. According to default conventions, the resulting programming
style is essentially a RESTful style. This represents another relevant difference with plain ASP.NET MVC
controllers, which are mostly RPC-oriented. To be precise, Web API is in no way limited to a RESTful
style; as you’ll see later in the chapter, you can choose to give your Web API a RESTful style or an RPC
style. However, the default, and most touted, style is essentially RESTful.

Defining the resource type
REST purists argue (and with good reason) that CRUD is not even part of the REST definition. REST is
defined as an architectural style centered on identification and manipulation of resources through
web protocols, most notably HTTP. So much for abstract theory and philosophy; but when it comes to
building a concrete implementation of any software that adheres to good REST principles, well… you
go really close to building CRUD over HTTP.

At any rate, REST is all about giving a representation of a resource and associating server actions to
common HTTP verbs when applied to those resources.

In the context of Web API, this simply means that a Web API module is a class library comprising
many controller classes. These controller classes inherit from ApiController, which is a class defined
in the new System.Web.Http assembly that doesn’t inherit from the ASP.NET MVC Controller class.
When built with the default RESTful style, Web API controller classes expose a programming interface
that provide CRUD over a given resource type. Most likely, you end up having a controller class per
resource type that you intend to deal with programmatically.

A resource type is commonly defined as a plain data transfer object (DTO), ultimately a plain C#
class. The sample Web API controller class that the Visual Studio wizard generates for you initially
doesn’t have a true resource type. The sample controller just uses values in the form of plain strings.

 CHAPTER 10 An executive guide to Web API 343

public class ValuesController : ApiController
{
 public IEnumerable<string> Get()
 {
 return new [] { "value1", "value2" };
 }

 public string Get(int id)
 {
 return "value";
 }
 ...
}

In a more realistic example, you might want to have some News class defined as follows:

public class News
{
 public String Title { get; set; }
 public String Content { get; set; }
 public DateTime Published { get; set; }
}

Next, you can have a controller such as the one in the following code that deals with news entities:

public class NewsController : ApiController
{
 public IEnumerable<News> GetAll()
 {
 var url = ...;
 var client = new WebClient();
 var rss = client.DownloadString(url);
 var news = ParseRssInternal(rss);
 return news;
 }

 public News Get(int index)
 {
 var all = GetAll();
 return all[index];
 }
 ...
}

In the end, a Web API controller class is a collection of public methods. Each method just accepts
and returns DTOs when not primitive data. How can a plain class like NewsController have its methods
invoked over a URL and, for example, return values serialized to JSON or XML? That happens because
of the run-time Web API pipeline (for example, routing) and the work done behind the scenes by the
ApiController class.

344 PArT II ASP.NET MVC software design

The ApiController Class
Web API controllers do not return views; instead, they return data to callers. Callers are any clients
that can connect to an endpoint over HTTP; for example, a webpage, C# class, or mobile app. Return
values are only the most visible difference between Web API controllers and ASP.NET MVC control-
lers. In Web API the base controller class unifies the behavior of the action invoker and controller in
ASP.NET MVC.

Chapter 1, “ASP.NET MVC controllers,” demonstrates that a request captured by the ASP.NET MVC
runtime is processed to a pair given by controller name and action name. The action invoker is the
system component in charge of getting a fresh instance of controller class, invoking the method,
and executing the expected action on the results. Executing the action on results means essentially
preparing the response for the caller. Typically, this involves producing the HTML markup, serializing
to JSON or configuring the HttpResponse ASP.NET object for a redirect.

In Web API, all these tasks are coordinated from within the ApiController class through the
ExecuteAsync method. Among other things, this also means that in Web API each request is served
asynchronously. Be aware, though, that this doesn’t strictly mean that every potentially long-running
task triggered by the request is asynchronous.

The ApiController class also has access to the current configuration of the Web API environment
and uses that information appropriately. An instance of the new HttpConfiguration class, the configu-
ration container stores the list of registered formatters for XML and JSON, routes, binding rules, and
filters.

Note The Web API infrastructure, and most notably the ApiController class and related
classes, are hosted in the new System.Web.Http assembly. As mentioned, this assembly has
no dependencies on System.Web and System.Web.Mvc. Any concept that sounds similar to
ASP.NET MVC (for example, action filters, routing, binding) are re-implemented for the pur-
pose of Web API.

routing to action methods
When the Web API framework receives an HTTP request, it resolves it in terms of an action method
to call on a controller class. To determine which action to invoke, the Web API framework, similar to
classic ASP.NET MVC, uses a routing table. The WebApiConfig class in the default project template
contains the following default route:

public static void Register(HttpConfiguration config)
{
 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
}

 CHAPTER 10 An executive guide to Web API 345

As you can see, the default format of URLs recognized by Web API is one that contains the api
token right after the server name and then the controller name. Based on the aforementioned
NewsController class, a valid URL might be:

http://server/api/news/1

Coming from a solid ASP.NET MVC background, you should immediately spot a missing element:
the action name. This is just another significant difference between Web API and ASP.NET MVC. By
default, the Web API framework uses the HTTP method to select the action, not the URL. This is just
the aspect that gives a touch of RESTfulness to the entire framework.

In the end, which method is called on NewsController when the above URL is requested?

To find the method, the Web API framework looks for a match on the HTTP method of the request.
If the request comes over an HTTP GET method, Web API looks for an action whose name begins with
Get. In the NewsController class shown earlier, there are two methods whose name begins with Get:
GetAll and Get. Which one is picked up? It depends on binding rules similar to ASP.NET MVC binding
rules discussed in Chapter 3, “The model-binding architecture.”

According to the default route, both methods pass the test on the name. However, with the default
route, methods can have an optional trailing parameter named id. The GetAll method has no param-
eters and thus represents a good match. The Get method, instead, requires a parameter named index.
Because this parameter can’t be found in the URL, the method doesn’t match.

Dealing with multiple matches
It is interesting to note that little changes in the method’s signature can avoid the exception depicted
in Figure 10-2. For example, turn the index parameter of the Get method into a parameter with a
default value, as shown here:

public News Get(int index=1)
{
 ...
}

Then, the following URL can be matched by both Get and GetAll:

http://server/api/news/1

When this happens, Web API throws an exception internally and the status code received by the
caller is HTTP 500 with the JSON error message shown in Figure 10-2 embedded in the response
body.

346 PArT II ASP.NET MVC software design

FIGURE 10-2 The JSON error message being returned in case of multiple matches.

For a scenario in which the action name is not matched entirely, the risk of running into multiple
action methods that match the request is high. A multiple action exception is also thrown if you re-
name the index parameter to id as in the route. In this case, because id is optional, any method with a
single parameter whose name begins with Get is a candidate to serve the request.

Active naming conventions
So, it seems that you can have a hard time just finding the right names for your action methods.
That’s precisely the point, and it comes out of default conventions. For instance, if the request is
made by using the HTTP POST verb, in order for the request to be served successfully there should be
exactly one method whose name begins with Post. The same default convention applies to requests
coming over GET, PUT, and DELETE verbs.

Note To prevent a method from being invoked as an action, you use the NonAction at-
tribute. This instructs the Web API framework that the method, even if public and matching
the routing rules, should not be taken into account as an action method.

Expected method behavior
The Web API framework builds some expectation with regard to the behavior of each method as it
matches HTTP verbs. As you have already seen, for an HTTP GET method, all that is required is that
the method returns some serializable .NET object. For other common HTTP verbs such as PUT, POST,
and DELETE, things are a little bit trickier.

Semantic of POST methods
A POST method is typically expected to add a new resource to some back-end store. The return type
is HttpResponseMessage which represents an HTTP response message and includes both status code
and actual content being returned to the caller. Here’s a common signature and implementation for a
POST method:

public HttpResponseMessage PostNews(News news)
{
 // Do something here to store the news
 var newsId = SaveNewsInSomeWay(news);

 CHAPTER 10 An executive guide to Web API 347

 // Build an empty response: 201 is code for Created
 var response = Request.CreateResponse<String>(HttpStatusCode.Created, "OK");

 // Store location of the new item
 var relativePath = String.Format("/api/news/{0}", newsId);
 response.Headers.Location = new Uri(Request.RequestUri, relativePath);
 return response;
}

For its first task, the method should do its job of inserting or saving any received data properly.
Next, it should manage to create a response object. The status code should be set to Created (if a
new resource was actually created) and the content should be any message back for the caller. It is
also recommended that the location of the newly created item be added to the collection of response
headers.

Semantic of PUT methods
A PUT method is typically expected to update an existing resource in some back-end store. The return
type can be void if you don’t want to share feedback with the caller. To be fair, though, you should
return an instance of HttpResponseMessage set to either HTTP 200 or HTTP 204, as is done in the fol-
lowing code:

public HttpResponseMessage PutNews(Int32 id, News news)
{
 if (id <= 0)
 throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.NotFound));

 // Do something here to update the news: consider returning HTTP 200
 var response = Request.CreateResponse<String>(HttpStatusCode.OK, "OK");
 return response;
}

It is also acceptable that you return a status code of HTTP 204, which indicates that the request has
been successfully processed but the response is left blank intentionally. The HttpStatusCode value to
select is NoContent.

Semantic of DELETE methods
A DELETE method is typically expected to delete an existing resource in some back-end store. Keep-
ing the method void is acceptable, but as is shown in the code that follows, you should aim at return-
ing HTTP 200 or HTTP 204. In this case, HTTP 200 or 204 will be read as the proof that the resource
has been deleted successfully.

public HttpResponseMessage DeleteNews(Int32 id)
{
 if (id <= 0)
 throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.NotFound));

 // Do something here to delete the news

 return new HttpResponseMessage(HttpStatusCode.NoContent); // 204
}

348 PArT II ASP.NET MVC software design

For a DELETE request, you can also opt for returning a status code HTTP 202 which would imply
that the request was accepted by the server and the resource was marked for deletion. For what that
matters, this gives no certainty to the caller that the resource was really removed, but at the same
time it moves the responsibility of deletion to the server.

Semantic of other methods
Although GET, PUT, POST, and DELETE are the most common HTTP verbs, the list of feasible HTTP
verbs doesn’t end here. From the perspective of Web API, though, any other legitimate HTTP verbs
except the four above don’t receive special treatment from the framework. This means that no con-
ventions apply to them. Have a look at the following code:

public HttpResponseMessage HeadNews(int id)
{
 var message = new HttpResponseMessage(HttpStatusCode.OK);
 message.Headers.Add("NewsId", id.ToString());
 return message;
}

According to the World Wide Web Consortium (W3C), a HEAD request is expected to work like a
GET except that the response body is empty and only response headers are returned.

The preceding code, however, doesn’t work and produces an HTTP 404. The reason is that the
naming convention we discussed for most popular verbs isn’t applied here. If you want the method to
run for a request coming over HTTP HEAD, you should use the AcceptVerbs attribute.

[AcceptVerbs("HEAD")]
public HttpResponseMessage HeadNews(int id)
{
 ...
}

Again, notice that AcceptVerbs has the same name and behavior of the ASP.NET MVC attribute, but
it is defined in a separate assembly. In the end, it’s an entirely different class with the same name and
largely the same behavior.

Using the Web API
A Web API module built inside an ASP.NET MVC application is hosted by the ASP.NET MVC applica-
tion. To go live with the Web API module, you just need to go live with the ASP.NET MVC site. At
that point, all you see are HTTP endpoints that you can reach with whatever API you have available,
including a JavaScript-based API.

 CHAPTER 10 An executive guide to Web API 349

Invoking Web API from JavaScript
From within a web client, the Web API front end is a simple collection of HTTP endpoints. You can use
jQuery facilities to place an HTTP call and perhaps use KnockoutJS facilities to render out a collection
of objects. Here’s the code you need to set up Web API remote data binding (this is an excerpt from a
.cshtml view file):

<h1>Web API DEMO</h1>
<script type="text/javascript">
 function News(title) {
 this.title = title;
 }
 function NewsViewModel(listOfNews) {
 this.allNews = listOfNews;
 }
</script>
<script type="text/javascript">
 $(document).ready(function () {
 getNews(function (listOfNews) {
 ko.applyBindings(new NewsViewModel(listOfNews));
 });
 });

 function getNews(callback) {
 $.ajax({
 url: "/api/news/all",
 type: "GET",
 statusCode: {
 200: function (listOfNews) { callback(listOfNews); },
 404: function () { alert("No news found!"); }
 }
 });
 }
</script>

<div id="news-container">
 <h2>Late breaking tennis news</h2>
 <table>
 <thead><tr>
 <th>Title</th>
 </tr></thead>
 <tbody data-bind="foreach: allNews">
 <tr>
 <td data-bind="text: Title"></td>
 </tr>
 </tbody>
 </table>
</div>

350 PArT II ASP.NET MVC software design

Figure 10-3 shows the final result.

FIGURE 10-3 Downloading late-breaking tennis news by using Web API.

The $.ajax jQuery facility makes it possible for you to specify the HTTP verb and headers. In this
way, you can easily prepare calls to invoke any sort of action on the Web API back end.

Invoking from server-side code
Because the Web API module is a plain HTTP front end, invoking it from within some .NET server-side
code is in no way different from invoking any other kind of remote endpoint. From within an ASP.NET
MVC application, you can have a controller method that produces HTML, as presented here:

public ActionResult News()
{
 var client = new WebClient();
 var content = client.DownloadString("/api/news");
 var serializer = new JavaScriptSerializer();
 var listOfNews = serializer.Deserialize<IList<News>>(content);
 return View(listOfNews);
}

The code downloads data as JSON and then uses the JavaScriptSerializer class to turn it into a .NET
object—specifically, a list of News data objects. The list is then passed as the view model to the view
engine for generating the user interface via Razor.

@model IList<Simplest.Models.Dto.News>
<h1>Web API DEMO</h1>

 CHAPTER 10 An executive guide to Web API 351

<div id="news-container">
 <h2>Late breaking tennis news</h2>
 <table>
 <thead><tr>
 <th>Title</th>
 </tr></thead>
 <tbody>
 @foreach (var n in Model)
 {
 <tr>
 <td>@n.Title</td>
 </tr>
 }
 </tbody>
 </table>
</div>

The preceding code uses the simplest (but still largely effective) way of downloading and convert-
ing JSON data. In the latest versions of the .NET Framework, you have other built-in JSON convert-
ers or HTTP client classes that offer a better support for asynchronous calls. At the end of the day,
though, regardless of any specific tool or technology, what’s required is downloading JSON data and
converting it to a .NET object.

Making the call asynchronous
We all know that the code we write must always be highly scalable. Now, I can blissfully admit that
not any code lives in the context of a highly scalable application. When it comes to refactoring for
scalability, though, there are two basic things you can do in both reading and writing: use caching
and asynchronous logic. For a long time, writing asynchronous code was painful in .NET languages.
However, starting with C# 5.0 and .NET Framework 4.5, new keywords such as async/await made the
pill easier to swallow by adding a pinch of syntactic sugar.

As a result, although I’m still not convinced that any remote call must be asynchronous because
we all need scalability, I also don’t see special reasons not to write remote calls asynchronously with
the advent of the async/await keywords, which make it possible for us to avoid non-blocking calls
(especially from the user interface) and still manage to keep the code highly readable. So, here’s how
to rewrite a Web API method by using the async/await language facilities:

public async Task<IList<News>> GetAll()
{
 var url = ...;
 var client = new HttpClient();
 var rss = await client.GetStringAsync(url);
 var news = ParseRssInternal(rss);
 return news;
}

Instead of using WebClient to make the remote call, you can use the newest HttpClient, which is a
revamped and richer version of the old-faithful WebClient client. HttpClient is defined in the System.
Net.Http namespace.

352 PArT II ASP.NET MVC software design

The ASP.NET MVC method in charge of invoking an async-coded Web API module uses the follow-
ing code:

public async Task<ActionResult> News()
{
 var feed = new FeedController();
 var model = await feed.GetAll();
 return View(model);
}

Invoking an asynchronous-coded Web API module from JavaScript doesn’t require any change at
all at the client code.

Designing an rPC-oriented Interface
So far, we experimented with Web API assuming a RESTful approach to the definition of the public
API. All in all, for developers coming from ASP.NET MVC, just putting Web API in the right perspective
is the most difficult aspect. Web API looks too similar to plain controllers that you’re accustomed to,
and the risk of lightly boiling it down to yet-another-weird-type-of-controller is high.

Web API is the SDK of your business domain; if used within an ASP.NET MVC application, it is the
SDK on which your application is based. At the same time, though, this SDK is publicly exposed over
HTTP.

CrUD-over-hTTP is just one option
Conventions enabled by default on the API tend to make developers see the API in the context of
CRUD over HTTP. You define a model object and build an API controller to work on it. API methods
are modeled after basic HTTP verbs performing basic operations on a given resource. This gives a
flavor of RESTfulness to the design.

As seen earlier, this approach also can raise naming conflicts because you might find it hard to
name a method that returns data following an unconventional scheme. The RESTful approach is not
the only one that is possible: an RPC-oriented vision is fine, as well.

It’s hard to say whether REST is preferable over RPC. I’d say that the largest share of apps is RPC-
oriented. For example, most ASP.NET MVC sites are built on a set of methods only invoked over GET
or POST. In fact, in the early years of ASP.NET MVC, many personal projects have been started to give
an air of clear RESTfulness to ASP.NET MVC.

At the end of the day, though, the resolution is simple: no matter the default conventions of Web
API projects in Visual Studio, you can gain total control of the API and, if you like it, give it an RPC style.

 CHAPTER 10 An executive guide to Web API 353

Action attributes
The key to turning the design of the Web API into RPC is using action attributes. Much like you do
in ASP.NET MVC controllers, you can use attributes such as HttpGet, HttpPost, HttpPut, or HttpDelete
to mark Web API methods so that, regardless of the name, they will be taken into account only if the
request verb matches the attribute.

[HttpGet]
public IEnumerable<News> All()
{
 ...
}

The All method now is taken into account for a GET request even though its name doesn’t be-
gin with Get. The Web API libraries offer predefined attributes such HttpGet, HttpPost, HttpPut, or
HttpDelete, as well as AcceptVerbs that you can use to bind one or more HTTP verbs to a method.

Custom routes
Action attributes alone are not enough to give you full control over the API. You might also need
to change the default route defined in the standard Web API project that the Visual Studio wizard
creates for you initially. The default route doesn’t have a placeholder for the action name. You might
want to replace the DefaultApi route discussed earlier in the section “Routing to action methods” with
the following:

RouteTable.Routes.MapHttpRoute(
 name: "RpcRoute",
 routeTemplate: "api/{controller}/{action}/{id}",
 defaults: new { id = RouteParameter.Optional });

The key difference is that the route now reserves a placeholder for the method name—the {action}
placeholder. This makes the process of resolving requests to methods nearly identical to ASP.NET
MVC plain controllers except for the extra api literal in the URL.

http://server/api/news/all

The preceding URL will generate an exception in a RESTful model, but with the combined use of
HttpGet on the All method and the custom RpcRoute route defined, it works just fine.

Attribute routing
Web API owes a large part of its design to ASP.NET MVC, even though it has no point of contact with
the ASP.NET MVC runtime. In the latest version of Web API that ships with Visual Studio 2013 and ASP.
NET MVC 5, you will find a feature called attribute routing that has no direct counterpart in ASP.NET
MVC; it derives instead from old-fashioned WCF Web HTTP binding.

354 PArT II ASP.NET MVC software design

Classic routing is based on conventions. Any time a request comes in, the URL is matched against
the template of routes registered in global.asax. If a match is found, the appropriate controller and
action methods to serve the request are determined from the template. If not, the request is denied
and the result is usually an HTTP 404 message. Route matching works on a first-match basis. The most
immediate consequence of first-match is that the order in which routes are registered is essential.
Most specific routes should appear first in the list; catch-all and most generic routes should go to the
bottom of the list. Why is this so significant?

Already in medium-sized applications with a strong REST flavor, the number of routes can be quite
large, easily in the order of hundreds. It can definitely become hard to determine the right order of
more than 200 routes and you might find that infinite loops around regression are detected during
automated tests or notified by users and testers. Attribute routing offers a smoother way to handle
routing in such situations.

As the name suggests, attribute routing is all about having a route attached (as an attribute) to a
specific action method, as shown in the following code:

[HttpGet("orders/{orderId}/show")]
public Order GetOrderById(int orderId)
{
 ...
}

The preceding snippet indicates that the method GetOrderById will be available over an HTTP GET
call only if the requested URL template matches the specified pattern. The route parameter—the
orderId token—must match one of the parameters defined in the method’s signature. There are a few
more details to be discussed, but the gist of attribute routes is all here. It’s hard to deny that this has a
close resemblance with the now-old-fashioned WCF Web HTTP programming model and the WebGet
attribute in particular.

[WebGet(UriTemplate="orders/{id}/show")]
Order GetOrderById(int id);

Turning on attribute routing
Attribute routing is not turned on by default, but it can work side by side with conventional routing.
Here’s the standard way to turn it on:

public static class WebApiConfig
{
 public static void Setup(HttpConfiguration config)
 {
 config.MapHttpAttributeRoutes();
 }
}

In case you intend to use the two types of routing together, it is preferable that you give prece-
dence to attribute routing. This means that you call MapHttpAttributeRoutes before you begin adding
global routes into the system.

 CHAPTER 10 An executive guide to Web API 355

You can define a route via attribute for each method you like and also filter on the HTTP method
used to call the action. In Web API, attribute classes such as HttpGet, HttpPost, HttpDelete, HttpPut,
and all others have been extended with an overload that accepts a route URL template. If you prefer,
you can also use the AcceptVerbs attribute, where the first parameter indicates the method name and
the second parameter sets the route, as demonstrated here:

[AcceptVerbs("GET", "orders/{id}/show")]

You can use AcceptVerbs also for unsupported HTTP methods or perhaps WebDAV methods.

Attribute routing also supports constraints on parameters using a slightly different syntax than
classic routing. The API has a list of predefined constraints such as int, bool, alpha, min, max, length,
minlength, and range. Here’s how to use them:

[HttpGet("orders/{id:int}/show"]

The goal of constraints is straightforward. For more details, you can check out some documenta-
tion at http://www.asp.net/web-api/overview/web-api-routing-and-actions/attribute-routing-in-
web-api-2.

You can concatenate as many constraints as you wish and create custom constraints, as well.

[HttpGet("orders/{id:int:range(1, 100)}/show"]

To create a custom constraint, you create a class that implements the IHttpRouteConstraint inter-
face and use the following code to register it:

var resolver = new DefaultInlineConstraintResolver();
resolver.ConstraintMap.Add("custom", typeof(YourCustomConstraint));
config.MapHttpAttributeRoutes(new HttpRouteBuilder(resolver));

The interface IHttpRouteConstraint has a single method named Match.

Security considerations
Overall, securing a web application is simpler than securing a Web API module for just one reason:
there are fewer scenarios to consider. Because an ASP.NET MVC application is aimed at end users,
security mostly means authenticating users and ensuring that each authenticated user is authorized
to execute a given action.

Forms authentication (for example, a logon window in which to enter credentials) is the most
common way to capture and verify credentials. In ASP.NET MVC, the Authorize attribute on action
methods instructs the runtime that only authenticated users can invoke the method. Parameters on
the Authorize attribute or plain code in the method’s implementation will then perform more sophis-
ticated checks about roles assigned to a given logged-on user. The security aspects of ASP.NET MVC
applications are discussed at length in Chapter 6, “Securing your application.”

http://www.asp.net/web-api/overview/web-api-routing-and-actions/attribute-routing-in- web-api-2
http://www.asp.net/web-api/overview/web-api-routing-and-actions/attribute-routing-in- web-api-2

356 PArT II ASP.NET MVC software design

When it comes to Web API, there are additional scenarios to observe. A Web API module is just
an API that can be written for third-party developers to use. How would you control that the client is
known and authorized?

The host takes care of security
The simplest but not necessarily most common scenario for a Web API module is when the API and
host are managed by the same team. In this case, the host is responsible for authenticating the user
and avoiding that any user interface where a call to the API is possible is ever displayed.

Web API, therefore, assumes that any authentication takes place in the host; for example, within IIS
through HTTP modules for authentication whether built-in modules or custom modules. To address
this scenario, you use the Authorize attribute on API controller classes or individual methods. This is
nearly the same scenario you face in plain ASP.NET MVC applications.

[Authorize]
public IList<News> GetAll()
{
 ...
}

Observe that the AuthorizeAttribute class used here is not the same as the AuthorizeAttribute used
in ASP.NET MVC. The programming interface is the same, but the class is defined elsewhere to avoid
dependencies on the ASP.NET runtime.

You can also set the Authorize attribute globally so that it applies to all methods of all API control-
lers. If this is what you intend to do, use the following code:

public static SetupAuthorization(HttpConfiguration config)
{
 config.Filters.Add(new AuthorizeAttribute());
}

Keep in mind that in this case all methods are subject to security; however, the AllowAnonymous
attribute lets you keep a method available for anonymous calls.

public class NewsController : ApiController
{
 [AllowAnonymous]
 public IList<News> GetAll() { ... }
 public HttpResponseMessage PostNews(News news) { ... }
}

After authentication has taken place in the body of the method, you can use the User property on
the ApiController class to check details and the role of the user and deny the call if that is the case.

 CHAPTER 10 An executive guide to Web API 357

Using Basic authentication
Outside of the scenario in which the host provides for authentication and authorization rules, it’s all
about incorporating the security layer in the Web API module. The simplest approach is using the
Basic authentication that is built in to the web server. Basic authentication is based on the idea that
user credentials are packaged in each and every request.

Basic authentication has pros and cons. On the pros side, it is supported on major browsers; it is
an Internet standard; it is simple to configure. The downside is that credentials are sent with every
request and, worse yet, they are sent as clear text.

Basic authentication expects that credentials are sent to be validated on the server. The request is
then accepted only if credentials are valid. If credentials are not in the request, an interactive dialog
box will display. Realistically, Basic authentication also requires a custom HTTP module to check cre-
dentials against accounts stored in some custom database.

Note Basic authentication is simple and quite effective if combined with a layer that does
custom validation of credentials. To overcome the limitation of credentials sent as clear text,
you should always implement a basic authentication solution over HTTPS.

Using access tokens
The idea here is that the Web API receives an access token (typically a GUID or an alphanumeric
string), validates it, and serves the request if the token is not expired and is valid for the application.
There are various ways to issue a token as well as different security solutions.

The simplest scenario for tokens is that they are issued offline when a customer contacts you to
use your API. You create the token and associate it with a particular customer. From that point for-
ward, the customer is responsible for abuse or misuse of the API.

The Web API back end needs to have a layer that checks tokens. You can add this layer as plain
code to just any method or, better yet, configure it to be a message handler. In Web API, a message
handler is a component that examines the HTTP request and sets the principal on the request so that
the User property on ApiController can be properly populated.

Note Similar to HTTP handlers of ASP.NET, message handlers apply only the traffic toward
Web API. You can read more at http://www.asp.net/web-api/overview/working-with-http/
http-message-handlers.

http://www.asp.net/web-api/overview/working-with-http/http-message-handlers
http://www.asp.net/web-api/overview/working-with-http/http-message-handlers

358 PArT II ASP.NET MVC software design

Using OAuth
A much more complex scenario is using OAuth authentication to restrict access to a Web API module.
Chapter 6 discusses how to use OAuth in conjunction with Facebook or Twitter to authenticate users
of a site. The point here is to just turn your Web API module into an OAuth server similar to what
Twitter or Facebook do.

In the end, OAuth is a variation of the token scenario discussed a moment ago. The difference is
that you need to have a distinct component that issues tokens online after checking credentials of us-
ers. The authorization server mediates between the protected resources (the Web API) and the poten-
tial customers. Figure 10-4 shows the layout of a typical OAuth conversation.

FIGURE 10-4 The typical OAuth handshake between a client and a Web API server.

How would you code this in practice?

It is mostly up to you, but it probably requires having a web back end that acts as the authoriza-
tion server. It will be responsible for issuing access tokens according to the credentials provided by
authenticated users (a là Facebook). Next, you want to have a message handler in the Web API layer
that processes the token and sets the principal to actually authorize the call. In the message handler,
you can also introduce any mechanism to invalidate the token in any way you reckon worthwhile—
expiration, misuse, or because the caller exceeded the allotted quota of calls.

Using cross-origin resource sharing
Cross-origin resource sharing (CORS) is a W3C standard that defines the behavior of webpages that
intend to make Ajax requests to a different domain. CORS relaxes the same-origin policy that all
browsers implement which restricts calls to the sole domain of the page that makes the call.

Note Browsers implement the same-origin policy and prevent cross-domain Ajax call for
security reasons. Thus, is CORS a trustworthy approach? Doesn’t it weaken security, instead?
The browser’s same-origin policy just limits the client page to make any cross-domain calls
regardless of the fact that the target site might agree to receive cross-domain calls. The
CORS specification just defines a protocol through which a site can agree to receive calls
from remote sites. CORS doesn’t weaken security for the simple reason that cross-domain
calls find both parties consenting.

 CHAPTER 10 An executive guide to Web API 359

You turn CORS on through a new attribute named EnableCors. You can set the attribute on
controllers as well as methods. For the attribute to be effective, you also need to call the EnableCors
method on the HttpConfiguration object in global.asax.

using System.Web.Http.Cors;
public static class WebApiConfig
{
 public static void Register(HttpConfiguration config)
 {
 config.EnableCors();
 }
}

You pass a freshly created instance of the EnableCorsAttribute class to the method you obtain to
turn on CORS globally for all methods and all controllers. If you have CORS turned on at the controller
level and want to turn it off on a particular method, you just use the DisableCors attribute.

Negotiating the response format

As you practiced a bit with the sample NewsController class, you probably noticed that by default all
action methods return their data serialized as JSON strings. This is just what developers want most
of the time, but it doesn’t exhaust all possible scenarios. Sometimes, in fact, you want to expose the
same data also through XML, as plain text or (why not) also as an iCalendar feed. Does that mean that
you need to have multiple action methods for each possible output format? This is just where content
negotiation in Web API fits in.

The ASP.NET MVC approach
In classic ASP.NET MVC, you address the issue by enforcing manually a neat separation in each action
method between the code that produces the raw data to return and the code that formats it in a way
that suits the caller.

Understanding the requested format
First and foremost, ASP.NET MVC doesn’t have a default and well-defined way by which callers can
specify the expected output format. A broadly accepted solution consists of using a parameter in
the query string (or ad hoc routes) that bring inside the controller code the selection of the response
format. Here’s my favorite scheme:

public ActionResult All(Boolean xml = false)
{
 // Get raw data
 var listOfNews = NewsHelper.GetAllNews();

 // Serialize raw data
 if (xml)
 return new NewsXmlFormatter().Serialize(listOfNews);
 return Json(listOfNews, JsonRequestBehavior.AllowGet);
}

360 PArT II ASP.NET MVC software design

This means that by simply adding xml=true to the query string of the URL, you can have data back
as XML. In any other case, you’ll get back JSON. As for the XML scheme to format data, depending on
circumstances, I resort to a generic XML formatter or a formatter specific of a particular object.

If you don’t like the use of parameters, you can opt for an ad hoc route such as the following:

routes.MapRoute(
 name: "Xml",
 url: "xml/{controller}/{action}/{id}",
 defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional, xml =
true }
);

More in general, it’s up to the developer to find a way to figure out the expected response format.
Using routes or parameters is only a possibility. You can require that callers add a specific HTTP
header or perhaps you can check some default HTTP headers such as Accept or Content-Type.

Enforcing data and format separation
As you can guess from the code earlier, the body of an ASP.NET MVC controller method is usually split
in two: acquisition of action results, and processing of action results. Keeping these two phases sepa-
rated is up to you. As long as you choose only between JSON and XML, this is not hard to manage.
However, what if you have multiple formats to handle? And, what if you must add a new format for all
methods after the service is in production?

A better strategy for negotiating the format of the response is required, and it is available in
Web API.

how content negotiation works in Web API
In Web API, the term content negotiation refers to the process of inspecting the structure of the
incoming request (typically, HTTP headers) to determine the ideal response format (or formats) that
the client wants to receive.

Involved hTTP headers
In Web API, two HTTP headers play a key role in content negotiation. They are Accept and Content-
Type. Of the two, the primary is Accept in the sense that Content-Type is taken into account only if
the Accept header is missing or has invalid content. The following code shows how to set the Accept
header in a jQuery call to a Web API endpoint to receive back some XML.

$.ajax({
 url: "/api/news/all",
 type: "GET",
 headers: { Accept: "text/xml; charset=utf-8" }
});

 CHAPTER 10 An executive guide to Web API 361

In C# code, you set the Accept header as shown here:

var client = new WebClient();
client.Headers.Add("Accept", "text/xml; charset=utf-8");

The ApiController class internally has a segment of code that processes the data being returned by
each method and turns that raw data into JSON or XML as appropriate. The neat separation between
production of raw results and formatting is native in Web API, and as a developer you can select XML
or JSON without being exposed to the details of embedded formatter components. By using Web
API, you have automatic and free serialization to JSON or XML as part of the deal.

If the Accept header is missing, or has some invalid content, Web API looks into the Content-Type
header. If the header has valid content, its content is used to format results. If a valid serialization
format cannot be determined either via Accept or Content-Type, Web API picks up the first formatter
registered with the runtime. By default, it is the JSON formatter.

Changing default formatters
When it comes to services returning data formatted as JSON, a common issue is the case of object
property names when used from within a JavaScript client and a .NET client. In .NET and JavaScript
(and Java to the same extent), camelCasing is the default. However, in .NET, PascalCasing is the default.
Because you write services in C#, you then likely define data transfer objects (DTOs) by using the
Pascal-case. This creates a conflict when this data is received on the JavaScript end.

As an example of replacing default formatters, let’s pick up one of the various community projects
that contribute special flavors of formatters. I used JsonCamelCaseFormatter, which is available at
https://gist.github.com/rdingwall/2012642. The class modifies the way in which JSON data is serialized,
ensuring that camelCasing is applied to member names.

A custom formatter is an instance of a class that inherits from MediaTypeFormatter and overrides
four key methods: CanReadType, CanWriteType, ReadFromStreamAsync, and WriteToStreamAsync.
The names of these methods with respect to what they do are self-explanatory. Here’s how you can
register a new JSON formatter:

public static class WebApiConfig
{
 public static void Register(HttpConfiguration config)
 {
 var index = config.Formatters.IndexOf(config.Formatters.JsonFormatter);
 config.Formatters[index] = new JsonCamelCaseFormatter();
 }
}

In particular, the example shows how to replace the default JSON formatter—an instance of
JsonMediaTypeFormatter—with an instance of JsonCamelCaseFormatter. If you simply want to add
yet another formatter to the list, you use the Insert or Add method on the Formatters collection of the
HttpConfiguration object.

https://gist.github.com/rdingwall/2012642

362 PArT II ASP.NET MVC software design

Defining formatters for specific types
Another common scenario that I’ve run into frequently is facing the need of returning a different
format for some types, in particular, a different XML schema. The aforementioned CanReadType and
CanWriteType methods are of some help here. Here’s a custom XML formatter for the News type:

public class NewsXmlFormatter : MediaTypeFormatter
{
 public NewsXmlFormatter()
 {
 SupportedMediaTypes.Add(new MediaTypeHeaderValue("application/xml"));
 SupportedMediaTypes.Add(new MediaTypeHeaderValue("text/xml"));
 }

 public override bool CanReadType(Type type)
 {
 return false;
 }

 public override bool CanWriteType(Type type)
 {
 var result = (type == typeof(News) || type == typeof(IList<News>));
 return result;
 }

 public override Task WriteToStreamAsync(Type type,
 Object value,
 Stream writeStream,
 HttpContent content,
 TransportContext transportContext)
 {
 return Task.Factory.StartNew(
 () =>
 {
 var listOfNews = (IList<News>) value;
 using (var writer = new StreamWriter(writeStream))
 {
 foreach (var n in listOfNews)
 {
 writer.WriteLine("<news>");
 writer.WriteLine("<title>{0}</title>", n.Title);
 writer.WriteLine("</news>");
 }
 }
 });
 }
}

The formatter handles only serialization and ignores deserialization. (See Figure 10-5.)

 CHAPTER 10 An executive guide to Web API 363

FIGURE 10-5 A request for XML data served by a custom XML formatter.

The question now becomes how you can ensure that this formatter is invoked only for the speci-
fied type and the default is used in all other cases. It’s all about the order in which formatters are
registered with the Web API runtime.

var xmlIndex = config.Formatters.IndexOf(config.Formatters.XmlFormatter);
config.Formatters.Insert(xmlIndex, new NewsXmlFormatter());

The code inserts the type-specific XML formatter just before the generic one. In this way, it will be
invoked first.

Summary

This chapter was dedicated to a framework that plays a key role in the immediate future of web
solutions. As is made clear in Chapter 12, “Making websites mobile-friendly,” web solutions today are
sometimes made of a mix of static HTML markup with dynamic sections generated on the fly with
data coming from a remote back end. The traits of this remote back end were never defined clearly. It
was first SOAP-based web services, then WCF services, and then simply a segment of an ASP.NET MVC
application.

364 PArT II ASP.NET MVC software design

Web API is as thin and easy to code as ASP.NET MVC controllers have always been. More than this,
though, Web API has no dependencies on the ASP.NET framework and can be hosted even outside
IIS; for example, in a Windows service.

Web API is a full-fledged framework; it deserves a book of its own to be covered appropriately.
This chapter scratched its classic surface from the perspective of an ASP.NET MVC developer. It’s a
design choice, but I’m not sure that you always need to use Web API if you are simply going to set up
a website. If this is the scenario you are thinking of, Web API will likely be pretty much useless for you.
But if you foresee multiple front ends for some core SDK, Web API is for you, for the simple reason
that it has been created specifically for that purpose.

 365

PART III

Mobile clients

CHAPTER 11 Effective JavaScript .367

CHAPTER 12 Making websites mobile-friendly399

CHAPTER 13 Building sites for multiple devices439

 367

C H A P T E R 1 1

Effective JavaScript

It matters not what someone is born, but what they grow to be.
—J. K. Rowling

Developed for the web in the 1990s, JavaScript is widely used today outside the realm of web ap-
plications. For example, you find JavaScript used to write application extensions for Adobe

Photoshop, Google Chrome, and Mozilla Firefox. It’s also used to create native mobile applications; for
example, PhoneGap or Appcelerator Titanium. JavaScript is also used for some flavors of server-side
applications, most noticeably Node.js.

JavaScript’s fate is curious. Born to be the language of the first web fan-boys, it has been through
a series of highs and lows since the early 1990s. At some point, its use was boosted by the advent of
Dynamic HTML and calmed down in only a few years with the consolidation of Java Server Pages and
ASP.NET, which brought the focus of web development back to the server side. JavaScript revived and
sprang back to life with Ajax and was fortified by Node.js and mobile frameworks. As the quote at the
beginning of the chapter reminds us, it doesn’t matter what JavaScript was born; it counts a lot more
what it has grown to be.

JavaScript is a programming language that is easy to get acquainted with; at the same time,
though, it is not trivial to master.

All web applications these days are required to add more and more client-side features. I’m not
simply talking about client-side validation and facilities, I’m talking about full Ajax applications. A full
Ajax application is a web application that reduces page swaps to a bare minimum. A full Ajax appli-
cation is centered on very few core pages whose user interface changes interactively following the
user’s action. Obviously, you do a lot of work on the HTML Document Object Model (DOM), and you
do that work by using JavaScript.

Note As an ASP.NET MVC developer, you should be ready to write more and more
JavaScript code. More important, you should be ready to import more and more JavaScript
code written by others. These two are not mutually exclusive options. As a matter of fact,
there are nearly no websites today that are written without importing features from jQuery
and a few other libraries, such as AngularJS, KnockoutJS, or Modernizr.

368 PArT III Mobile clients

Revisiting the JavaScript language

JavaScript is an unusual language because it was created for non-developers; it has remarkably low
barriers to entry, yet it’s flexible enough that experts can use it to do nearly everything they need to,
as well. As I see things, the challenge today is for average JavaScript developers to create effective
content with some good design while keeping readability and maintainability at a decent level. For
this reason, this section aims at refreshing some basic JavaScript facts.

Language basics
JavaScript code is interpreted, meaning that JavaScript programs need an environment in which to
run. Their natural habitat is the web browser. The language syntax is driven by one solid standard:
ECMA-262, which is also catalogued as ISO/IEC 16262:201. Over the years, a few JavaScript dialects
have arisen based on different implementations of the standard. Sometimes, these dialects have an
entirely different name such as JScript, JScript.NET, ActionScript, or EcmaScript. In the end, though,
it’s the result of different engines that process the JavaScript source code. Popular engines usually
associated with web browsers are V8 (Google Chrome), Chakra (Microsoft Internet Explorer), Gecko
(Firefox), and Opera.

Let’s briefly navigate through the basics of the language and refresh concepts that, frankly, most
ASP.NET developers just picked up but never studied thoroughly.

The type system
The JavaScript type system comprises primitive types and a few built-in objects. When you write
JavaScript code, however, the range of types that you can work with is actually larger. In addition
to using built-in objects, you can also rely on objects provided by the host. The canonical example
is the window object that the most common JavaScript host—the web browser—publishes into the
JavaScript engine.

Primitive types are number, string, Boolean, null, undefined, Object, and function. The built-in
objects are Array, Math, Date, Error, RegExp, plus wrapper objects for a few primitive types: string,
Boolean, and number.

The number type represents floating-point numbers with 0 or more decimal places. There are no
separate types for integers, long, or bytes. The range of numbers is between –10308 and 10308. You
can write numbers in decimal, octal, or hexadecimal format. The special number NaN represents the
result of a math operation that makes no sense (such as division by zero).

The string type represents a row of 0 or more characters; it doesn’t represent an array. Individual
characters are represented as strings of 1 character. Special characters in a string begin with a back
slash (\), such as \n to indicate a carriage return. The content of a string is bracketed in matching pairs
of single or double quotes. The primitive value is wrapped in a string object that adds a few methods,
including split and substring.

 CHAPTER 11 Effective JavaScript 369

Null vs. undefined
A JavaScript variable that doesn’t contain a meaningful value can be assigned a null value as well as
undefined. What’s the difference? When it comes to nullness, JavaScript introduces a subtle difference
that many higher-level languages such as C# and Java miss.

In particular, undefined is the default value that the run-time environment assigns to any variables
being declared. Most remarkably, an unassigned variable contains undefined, not null or some default
value as in C#. On the other hand, null is a value that still represents a null, empty, or non-existing ref-
erence, but it has been explicitly assigned by the developer. In a nutshell, a variable set to undefined
has never been touched by any code; a variable that holds null was assigned that value via some path
in your code.

If you run typeof on an unassigned variable, you get undefined—it’s a distinct type by itself. If you
run typeof on a variable assigned with null, you get object. Pay attention to the following code:

var x; // hence, undefined
var y = null;

What happens if you compare x and y? If you use the == operator, you get true, meaning that
undefined ultimately evaluates to null. If you compare using the === operator, you get false: the two
variables hold the same value but are of different types.

Local and global variables
In JavaScript, a variable is a storage location that is not restricted to always storing values of a fixed
type. When assigned a value, variables take on the type of the data being stored. For this reason, a
JavaScript variable might change its type quite a few times during its lifespan.

var data = "dino"; // now data is of type string
data = 123; // now data is of type number

This behavior is different from the typical behavior of C# variables, unless C# variables are defined
of type dynamic in .NET 4. Variables spring into existence the first time they’re used; until then, they
hold a value of undefined.

When defining variables, you should always use the var keyword as a hint to the parser and your-
self. The var keyword is not strictly required, but it’s highly recommended. Variables defined within a
function are scoped to the function if declared by using var. If not, variables are treated as global, but
they remain as undefined until the function executes once. Variables declared in the global scope are
always global regardless of whether var is used.

<script type="text/javascript">
 var rootServer = "http://www.expoware.org/"; // global
 section = "mobile"; // global
</script>

370 PArT III Mobile clients

<script>
 function doSomething() {
 var temp = 1; // local
 mode = 0; // global, but undefined until called
 }
</script>

The JavaScript run-time environment stores global variables as properties of hidden objects refer-
enced through the this keyword. Browsers often mirror this object via the window object.

In any programming language, coding is (much) easier if you can use global variables. However,
globals have downsides, too. A critical downside is the risk of name collisions between variables de-
fined in different parts of your code, third-party libraries, advertising partners, and analytics libraries.
A name collision combined with the dynamic typing of JavaScript variables might lead you to inadver-
tently modify the state of the application with unpleasant anomalies at run time.

Consider that creating globals unwillingly is easy, too: miss a var and you end up with a global;
mistype a variable name in an assignment and you have a fresh new global. This latter feature is pos-
sible because with JavaScript you can use a variable without declaring it first. When you need to use
global variables, a good technique is creating them as properties of a wrapper object. You place the
following code in a JavaScript file that you link from every page:

var GLOBALS = (function() { return this; }());

Next, you use GLOBALS.Xxx, where Xxx is any global variable you might need to have. This at least
ensures that your global variables will stand out.

An even better approach is to simply not use the global namespace and the this object and instead
use a brand new global dictionary object. You initialize it as below:

var GLOBALS = GLOBALS || {};

If you have multiple JavaScript files in your application that need to reference GLOBALS, you place
the preceding line at the top of each file. The || in the syntax ensures that the dictionary is not reini-
tialized every time a file is processed.

Note JSLint (available at http://www.jslint.com)—an online tool for static analysis of
JavaScript code—does help catch antipatterns in your code, including the lack of var
keywords.

Variables and hoisting
Hoisting is a JavaScript feature with which developers can declare variables anywhere in the scope
and use them anywhere in that scope. In JavaScript, you can first use the variable and then declare it
(as var) later, as demonstrated here:

http://www.jslint.com

 CHAPTER 11 Effective JavaScript 371

function() { // Not allowed in C#
 mode = 1;
 ...
 var mode;
}

The overall behavior is as if the var statement was placed at the top. Historically, the feature was
introduced to keep as low as possible the entry barrier to JavaScript. When you use JavaScript to
write significant portions of code, however, hoisting is a clear source of confusion and becomes error
prone. A good habit consists of placing all your variables at the top of each function—preferably, in a
single var statement, as shown here:

function() {
 var start = 0,
 total = 10,
 sum = function (x,y) {return x+y;},
 index;
 ...
}

JSLint can be instructed to catch the use of multiple var statements in a single function and remind
you about this pattern.

Objects
The primary reason for not cataloging JavaScript as an object-oriented language is that the definition
of an object you get from JavaScript is different from the commonly accepted idea of an object you
get out of classic object-oriented languages such as C++ or C#.

In JavaScript, an object is a dictionary of name/value pairs. The blueprint of the object is implicit,
and you have no way to access it. A JavaScript object usually has only data, but you can add behavior.
The (explicit) structure of an object can change at any time, with new methods and properties; the
implicit structure never changes. Because of the implicit blueprint, any apparently blank object in
JavaScript still has a few properties, such as prototype. (I’ll return to prototype later.)

Keep in mind that variables that store objects don’t actually contain the object’s dictionary; they
just reference the object’s bag of properties. The bag of properties is distinct from the variable store,
and different variables can reference the same bag of data. The new operator creates a new bag of
properties. When you pass an object around, you just pass the reference to the bag.

Adding a member to a JavaScript object works only for that particular instance. If you want to
add a new member to all instances being created of that type, you have to add the member to the
object’s prototype.

if (typeof Number.prototype.random === "undefined") {
 Number.prototype.random = function() {
 var n = Math.floor(Math.random() * 1000);
 return n;
 };
}

372 PArT III Mobile clients

Note Augmenting the prototype of native objects is considered by some developers a
bad practice (or at least, arguable) because it makes the code less predictable and can hurt
maintainability. Overall, I believe this is questionable and mostly a matter of perspective. I’d
say this: Be aware of potential issues and do as you feel comfortable.

You use the Object type to create aggregates of values and methods, which is the closest you
come in JavaScript to C# objects. The direct use of the Object’s constructor (as shown in the following)
is usually disregarded:

var dog = new Object();
dog.name = "Jerry Lee Esposito";
dog.getName = function() {
 return this.name;
}

A better approach entails using an object literal, as demonstrated here:

var dog = {
 name: "Jerry Lee Esposito",
 getName: function() {
 return this.name;
 }
};

If you use the Object’s constructor, the interpreter has to resolve the scope of the constructor call.
In JavaScript, there’s no guarantee that no local object exists in the scope with the same name as a
global object. Therefore, the interpreter must walk up the stack to find the nearest definition of the
constructor that applies. In addition to this performance issue, using the constructor directly also
doesn’t transmit the sense of objects as dictionaries, which is a key point of JavaScript programming.

Functions
In JavaScript, a function is a bit of code bundled up into a block and, optionally, given a name. If a
function is not given a name, it’s an anonymous function. You treat functions like objects: They can
have properties, and you can pass them around and interact with them.

In JavaScript, anonymous functions are the pillar of functional programming. An anonymous func-
tion is a direct offshoot of lambda calculus or, if you prefer, a language adaptation of old-fashioned
function pointers. Here’s an example of an anonymous function:

function(x, y) {
 return x + y;
}

The only difference between a regular function and an anonymous function is in the name (or lack
thereof).

 CHAPTER 11 Effective JavaScript 373

You use functions for two main reasons: for creating custom objects and, of course, for defining
repeatable behavior. Of the two reasons, the former is the most compelling in JavaScript. Consider the
following code:

// The this object is implicitly returned
var Dog = function(name) {
 this.name = name;
 this.bark = function() {
 return "bau";
 };
};

To use the Dog object, you need to instantiate it by using the classic new constructor, as illustrated
here:

var jerry = new Dog("jerry"); // OK
var hassie = Dog("hassie"); // Doesn't throw but, worse, may alter the application's state

The tricky thing is that if you forget the new operator, you won’t get any exception and your code
just runs, but the this object being used is now the global this object. This means that you’re poten-
tially altering the state of the application. Here’s a safe countermeasure:

var Dog = function(name) {
 var that = {};
 that.name = name;
 that.bark = function() {
 return "bau";
 };
 return that;
};

The difference is that you now explicitly create and return a new object named that. This is famil-
iarly known as the “Use-That-Not-This” pattern.

Object-orientation in JavaScript
There was a time when JavaScript code in webpages was limited to a few lines of basic manipulation
of the DOM. There was no need to design this code into reusable blocks and attach it unobtrusively
to page elements. Although the average level of JavaScript code complexity is nearly the same as
in the recent past, the quantity of it you need to have on each page is rising dramatically. Forms of
packaging are required because today, JavaScript code is like a small application on its own. You
need to make gains in reusability and also (if not especially) in maintainability. Furthermore, you need
to ensure that your code runs in isolation because in JavaScript, it’s too easy to miss variables, spoil
globals, and mistype names without a clear indication that you have done so. In this regard, JSLint is a
great help, but it’s not like a compiler.

To top off the discussion about the basics of the JavaScript language, let me introduce closures and
prototypes—two approaches you can take to implement object-orientation in JavaScript.

374 PArT III Mobile clients

Making objects look like classes
Before I get to closures and prototypes, let me say a few more words on the native Object type and its
usage. As mentioned, you can use the new keyword to create a new dictionary-like object. Next, you
stuff data into it and add methods by wiring functions to property names. Here’s an example:

var person = new Object();
person.Name = "Dino";
person.LastName = "Esposito";
person.BirthDate = new Date(1979,10,17);
person.getAge = function() {
 var today = new Date();
 var thisDay = today.getDate();
 var thisMonth = today.getMonth();
 var thisYear = today.getFullYear();
 var age = thisYear-this.BirthDate.getFullYear()-1;
 if (thisMonth > this.BirthDate.getMonth())
 age = age +1;
 else
 if (thisMonth == this.BirthDate.getMonth() &&
 thisDay >= this.BirthDate.getDate())
 age = age +1;
 return age;
}

What you have is an object modeled after a person; you don’t really have a Person object. As
you saw earlier, this has both readability and performance issues. In addition, the object is sparsely
defined over multiple lines.

Closures and prototypes offer alternate ways to define the layout of a type, and they are the native
mechanisms to use for doing object-oriented programming in JavaScript.

Using closures
A closure is a general concept of programming languages. Applied to JavaScript, a closure is a func-
tion that can have variables and methods defined together within the same context. In this way, the
outermost (anonymous or named) function “closes” the expression. Here’s an example of the closure
model for a function that represents a Person type:

var Person = function(name, lastname, birthdate) {
 this.Name = name;
 this.LastName = lastname;
 this.BirthDate = birthdate;
 this.getAge = function() {
 var today = new Date();
 var thisDay = today.getDate();
 var thisMonth = today.getMonth();
 var thisYear = today.getFullYear();
 var age = thisYear-this.BirthDate.getFullYear()-1;
 if (thisMonth > this.BirthDate.getMonth())
 age = age +1;

 CHAPTER 11 Effective JavaScript 375

 else
 if (thisMonth == this.BirthDate.getMonth() &&
 thisDay >= this.BirthDate.getDate())
 age = age +1;
 return age;
 }
}

As you can see, the closure is nothing more than the constructor of the pseudo-class. In a closure
model, the constructor contains the member declarations, and members are truly encapsulated and
private to the class. In addition, members are instance based, which increases the memory used by
the class. Here’s how you use the object:

var p = new Person("Dino", "Esposito", new Date(...);
alert(p.Name + " is " + p.getAge());

The closure model gives full encapsulation but nothing more. To compose objects, you can only
resort to aggregation.

Using prototypes
The prototype model entails defining the public structure of the class through the JavaScript proto-
type object. The following code sample shows how to rewrite the preceding Person class to avoid a
closure:

// Pseudo constructor
var Person = function(name, lastname, birthdate) {
 this.initialize(name, lastname, birthdate);
}

// Members
Person.prototype.initialize = function(name, lastname, birthdate) {
 this.Name = name;
 this.LastName = lastname;
 this.BirthDate = birthdate;
}

Person.prototype.getAge = function() {
 var today = new Date();
 var thisDay = today.getDate();
 var thisMonth = today.getMonth();
 var thisYear = today.getFullYear();
 var age = thisYear-this.BirthDate.getFullYear()-1;
 if (thisMonth > this.BirthDate.getMonth())
 age = age +1;
 else
 if (thisMonth == this.BirthDate.getMonth() &&
 thisDay >= this.BirthDate.getDate())
 age = age +1;
 return age;
}

376 PArT III Mobile clients

In the prototype model, the constructor and members are clearly separated, and a constructor is
always required. As for private members, well, you just don’t have them. The var keyword that would
keep them local in a closure doesn’t apply in the prototype model. So, you can define a getter/setter
for what you intend to be properties, but the backing field will remain accessible from the outside.
You can resort to some internal convention, such as prefixing with an underscore the name of mem-
bers you intend as private. However, that’s just a convention, and nothing prevents developers from
accessing what the class author considers private.

By using the prototype feature, you can achieve inheritance by simply setting the prototype prop-
erty of a derived object to an instance of the “parent” object.

Developer = function Developer(name, lastname, birthdate) {
 this.initialize(name, lastname, birthdate);
}
Developer.prototype = new Person();

Be aware that you always need to use this to refer to members of the prototype from within any
related member function.

In the prototype model, members are shared by all instances because they are invoked on the
shared prototype object. In this way, the amount of memory used by each instance is reduced, which
also provides for faster object instantiation. Aside from syntax peculiarities, the prototype model
makes defining classes much more similar to the classic object-oriented model than the closure
model.

Plain custom objects vs. a hierarchy of classes
The choice between closure and prototype should also be guided by performance considerations and
browser capabilities. Prototypes have good load times in all browsers. Closures work great in some
browsers (for example, Internet Explorer) and worse in others.

Prototypes provide better support for Microsoft IntelliSense, and they accommodate tool-based
statement completion when used in tools that support this feature, such as Microsoft Visual Studio.
Prototypes can also help you to obtain type information by simply using reflection. You won’t have to
create an instance of the type to query for type information, which is unavoidable if closures are used.
Finally, prototypes make it possible for you to easily view private class members when debugging.

So, you have two basic options for dealing with JavaScript objects that look like classes. Prototypes
are the option chosen most often by library designers. Also, in jQuery, the prototype property is used
extensively.

Having said that, if I had to write client code for a web front end, I’d probably go with jQuery, use a
lot of anonymous functions, and not even bother about having a hierarchy of custom objects. I would
certainly create custom objects, but I’d use them as plain and flat containers of data and behavior,
with no inheritance or polymorphism. If, on the other hand, I had to write my own framework to sup-
port some server-side infrastructure, I’d probably opt for a more classic object-oriented approach. In
that case, however, I’d probably consider using an existing library instead of creating one of my own.
For that, MooTools (http://mootools.net) is an excellent choice.

http://mootools.net

 CHAPTER 11 Effective JavaScript 377

jQuery’s executive summary

Without beating around the bush, I’ll say that if you’re writing JavaScript code in web views today,
you’re likely using jQuery. If you’re not, you should be; the only reasonable scenario I can think for not
using jQuery is mobile sites. The jQuery library is certainly not the only JavaScript library you can pick
up to save yourself quite a bit of work around DOM manipulation and event handling. However, it’s
the world de facto standard. I consider jQuery almost an extension to the JavaScript language, and
certainly an extension to the JavaScript skills of any web developers.

This chapter is not the place where you can expect to find some sort of extensive coverage of
jQuery. For that, you can pick some good books or just check out the online documentation at http://
docs.jquery.com/Main_Page. If you’re looking for online content in a more readable format than dry
documentation, go to http://jqfundamentals.com/book.

In this chapter, I provide an overview of the key concepts in jQuery, a strong understanding of
which will enable you to quickly grab programming details and features in the library.

DOM queries and wrapped sets
The main reason for the worldwide success of the jQuery library is its unique mix of functional and
DOM programming. The library works by selecting DOM elements and applying functions over them,
which is just what client web developers need to do most of the time.

The root object
The root of the jQuery library is the jQuery function. Here’s the overall structure of the library:

(
 function(window, undefined)
 {
 var jQuery = (function() {
 // Define a local copy of jQuery
 var jQuery = function(selector, context) {
 ...
 }
 ...
 return jQuery;
 })();

 /* the rest of the library goes here */
 ...
 window.jQuery = window.$ = jQuery;
 }
) (window);

The nested jQuery function is mapped as an extension to the browser’s window object and is
aliased with the popular $ function. The function has the following prototype:

function(selector, context)

http://docs.jquery.com/Main_Page
http://docs.jquery.com/Main_Page
http://jqfundamentals.com/book

378 PArT III Mobile clients

The selector indicates the query expression to run over the DOM; the context indicates the por-
tion of the DOM from which to run the query. If no context is specified, the jQuery function looks for
DOM elements within the entire page DOM.

The jQuery function typically returns a wrapped set—namely, a collection of DOM elements.
Nicely enough, this wrapped set is still a jQuery object that can be queried by using the same syntax,
resulting in chained queries.

running a query
The word query in the library’s name says it all (j stands for JavaScript, but you knew that already)—
the jQuery library is primarily designed for running (clever) queries over the DOM and executing
operations over the returned items.

The query engine behind the library goes far beyond the simple search capabilities of, for in-
stance, document.getElementById (and related functions) that you find natively in the DOM. The query
capabilities of jQuery use the powerful CSS syntax, which gives you a surprising level of expressivity.
You find similar query expressivity only in the DOM of HTML5, for which CSS syntax is widely and
uniformly supported.

The result of a query is a wrapped set. A wrapped set is an object containing a collection of DOM
elements. Elements are added to the collection in the order in which they appear in the original
document.

A wrapped set is never null, even if no matching elements have been found. You check the actual
size of the wrapped set by looking at the length property of the jQuery object, as shown here:

// Queries for all IMG tags in the page
var wrappedSet = new jQuery("img");
var length = wrappedSet.length;
if (length == 0)
 alert("No IMG tags found.");

Note that the expression just shown, through which you get the wrapped set, is fully equivalent to
the more commonly used $(“img”).

The wrapped set is not a special data container. “Wrapped set” is a jQuery-specific term that indi-
cates the results of a query.

Enumerating the content of a wrapped set
To loop through the elements in the wrapped set, you use the each function. This function gets a
function as a parameter and invokes that on each element:

// Prints out names of all images
$("img").each(function(index) {
 alert(this.src);
});

 CHAPTER 11 Effective JavaScript 379

The callback function you pass to each receives the 0-based index of the current iteration. Nicely
enough, you don’t need to retrieve the corresponding DOM element yourself; you just use the
keyword this to refer to the element currently being processed. If the callback function returns false,
the iteration is stopped. Be aware that each is a quite generic function made available for any task for
which a more specific jQuery function doesn’t exist. If you find a jQuery function that already does
what you intend to code through each, by all means use the native function.

You use the length property to read the size of the wrapped set. You can also use the size function,
but the length property is slightly faster.

// You better use the length property
alert($("img").size());

The get function extracts the wrapped set from the jQuery object and returns it as a JavaScript ar-
ray of DOM elements. If you pass an index argument, instead, it will return the DOM element found at
the specified 0-based position in the wrapped set.

var firstImage = $("img")[0];

Note that the get function (as well as indexers) breaks the jQuery chainability because it returns a
DOM object or an array of DOM objects. You can’t further apply jQuery functions to the results of a
get call.

Many more operations are available on wrapped sets, and you can add many others through plug-ins.

Selectors
A query is characterized by a selector. A selector is simply the expression that, when properly evalu-
ated, selects one or more DOM elements. In jQuery, you have three basic types of selectors: selectors
based on IDs, cascading style sheets (CSS), or tag names. In addition, a selector can result from the
composition of multiple simpler selectors combined by using ad hoc operators. In this case, you have
a compound selector.

Basic selectors
An ID selector picks up DOM elements by ID. An ID selector commonly selects only one element
unless multiple elements in the page share the same ID—this condition violates the HTML DOM stan-
dard, but it’s not too unusual in the real world. Here’s the syntax of an ID selector:

// Select all elements in the context whose ID is Button1
$("#Button1")

The leading # symbol instructs jQuery how to interpret the text that follows it.

A CSS-based selector picks up all elements that share the given CSS class. The syntax is shown
here:

// Select all elements in the context styled with the specified CSS class
$(".header")

380 PArT III Mobile clients

In this case, the leading dot (.) symbol directs jQuery to interpret the following text as a CSS style
name.

Finally, a tag-based selector picks up all elements with the specified tag, such as all tags, all
<div> tags, or whatever else you specify. In the following example, the selector consists of the plain
tag name—no leading symbol is required:

// Select all IMG elements in the context
$("img")

As mentioned, you can also concatenate two or more selectors to form a more specific one.

Compound selectors
Concatenation is possible through a number of operators. For example, the white space picks up all
elements that satisfy the second selector and are descendants of those matching the first. Here’s an
example:

// Select all anchors contained within a DIV
$("div a")

The selector just shown is functionally equivalent to the following jQuery expression:

$("div").find("a");

Similar to the white space, the > operator selects elements that are direct child elements (and not
just descendants) of the elements matched by the first selector:

// All anchors direct child elements of a DIV
$("div > a")

The preceding selector is functionally equivalent to the following jQuery expression:

$("div").children("a")

Plain concatenation of selectors results in a logical AND of conditions. For example, consider the
following query:

$("div.header.highlight")

It selects all <div> elements styled using both the class header and class highlight.

The + operator—the adjacent operator—selects sibling elements in the second selector immedi-
ately preceded by elements selected by the first selector. Here’s an example:

// All P immediately preceded by A
$("a + p")

 CHAPTER 11 Effective JavaScript 381

The ~ operator—the next operator—is similar to + except that it selects sibling elements just pre-
ceded by others. Here’s an example:

// All P preceded by A
$("a ~ p")

By using the comma, instead, you return the union of elements queried by multiple selectors. In
terms of operations, the comma represents a logical OR of selectors. The following example, picks up
elements that are either A or P:

// All A and all P
$("a, p")

Beyond simple operators, you have filters. A filter is a jQuery-specific expression that contains
some custom logic to further restrict the selected elements.

Predefined filters
You can further refine selectors by applying filters on position, content, attributes, and visibility. A
filter is a sort of built-in function applied to the wrapped set returned by a basic selector. Table 11-1
lists positional filters in jQuery.

TABLE 11-1 Positional filters

Filter Description

:first Returns the first DOM element that matches

:last Returns the last DOM element that matches

:not(selector) Returns all DOM elements that do not match the specified selector

:even Returns all DOM elements that occupy an even position in a 0-based indexing

:odd Returns all DOM elements that occupy an odd position in a 0-based indexing

:eq(index) Returns the DOM element in the wrapped set that occupies the specified 0-based position

:gt(index) Returns all DOM elements that occupy a position in a 0-based indexing greater than the
specified index

:lt(index) Returns all DOM elements that occupy a position in a 0-based indexing less than the speci-
fied index

:header Returns all DOM elements that are headers, such as H1, H2, and the like

:animated Returns all DOM elements that are currently being animated via some functions in the
jQuery library

Table 11-2 lists all filters through which you can select elements that are children of a parent
element.

382 PArT III Mobile clients

TABLE 11-2 Child filters

Filter Description

:nth-child(expression) Returns all child elements of any parent that match the given expression. The expression
can be an index or a math sequence (for example, 3n+1), including standard sequences
such as odd and even.

:first-child Returns all elements that are the first child of their parent

:last-child Returns all elements that are the last child of their parent

:only-child Returns all elements that are the only child of their parent

A particularly powerful filter is nth-child. It supports a number of input expressions, as shown here:

:nth-child(index)
:nth-child(even)
:nth-child(odd)
:nth-child(expression)

The first format selects the nth child of all HTML elements in the source selector. All child elements
placed at any odd or even position in a 0-based indexing are returned if you specify the odd or even
filter, instead.

Finally, you can pass the nth-child filter a mathematical sequence expression, such as 3n to indicate
all elements in a position that are a multiple of 3. The following selector picks up all rows in a table
(labeled Table1) that are at the positions determined by the sequence 3n+1—that is, 1, 4, 7, and so
forth:

#Table1 tr:nth-child(3n+1)

Table 11-3 lists expressions used to filter elements by content.

TABLE 11-3 Content Filters

Filter Description

:contains(text) Returns all elements that contain the specified text

:empty Returns all elements with no children

:has(selector) Returns all elements that contain at least one element that matches the given selector

:parent Returns all elements that have at least one child

As far as content filters are concerned, you should note that any text in an HTML element is con-
sidered a child node. So, elements selected by the empty filter have no child nodes nor any text. An
example is the
 tag.

A popular and powerful category of filters are attribute filters. Using attribute filters, you can select
HTML elements where a given attribute is in a given relationship with a value. Table 11-4 lists all at-
tribute filters supported in jQuery.

 CHAPTER 11 Effective JavaScript 383

TABLE 11-4 Attribute filters

Filter Description

[attribute] Returns all elements that have the specified attribute. This filter selects the element regard-
less of the attribute’s value.

[attribute = value] Returns all elements where the specified attribute is set to the specified value

[attribute != value] Returns all elements whose specified attribute has a value different from the given one

[attribute ^= value] Returns all elements whose specified attribute has content that starts with the given value

[attribute $= value] Returns all elements whose specified attribute has content that ends with the given value

[attribute *= value] Returns all elements whose specified attribute has content that contains the given value

You can also concatenate attribute filters by simply placing two or more of them side by side, as in
the following example:

var elems = $("td[align=right][valign=top]");

The returned set includes all <td> elements for which the horizontal alignment is right and the
vertical alignment is top.

The next expression, which is much more sophisticated, demonstrates the power and flexibility of
jQuery selectors because it combines quite a few of them:

#Table1 tr:nth-child(3n+1):has(td[align=right]) td:odd

It reads as follows:

Within the body of element Table1, select all <tr> elements at positions 1, 4, 7, and
so forth. Next, you keep only table rows for which a <td> element exists with the
attribute align equal to the value of right. Furthermore, of the remaining rows, you
take only the cells on columns with an odd index.

The result is a wrapped set made of <td> elements.

Finally, a couple more filters exist that are related to the visibility of elements. The :visible filter
returns all elements that are currently visible. The :hidden filter returns all elements that are currently
hidden from view. The wrapped set also includes all input elements whose type attribute equals
“hidden.”

Filter vs. find
To further restrict a query, you can use either the find or filter function on a wrapped set. They are not
the same, of course.

The function filter explores the current wrapped set for matching elements and doesn’t ever look
into the DOM for descendants. Instead, the function find looks inside of each of the elements in the
wrapped set for elements that match the expression. In doing so, however, the function explores
the DOM of each element in the wrapped set.

384 PArT III Mobile clients

Chaining operations on a wrapped set
The jQuery library offers a wide range of functions that you can apply to the content of a wrapped
set. (For a complete list, you can only resort to online documentation or look for an in-depth book.)
You can chain function calls because any wrapped set returned by a query is, in turn, another jQuery
object that can be further queried. The following expression, for example, works just fine:

$(selector).hide().addClass("hiddenElement");

It first hides from view all matching elements and then adds a specific CSS class to each of them.

You can classify operations that you can perform on wrapped sets in a few groups, as described in
Table 11-5.

TABLE 11-5 Operations on a wrapped set

Effect Description

DOM manipulation Creates DOM trees, adds/removes elements, or modifies existing elements

Event binding Binds and unbinds handlers to events fired by DOM elements

Styling Applies, removes, or toggles CSS classes to selected elements and gets or sets individual
CSS properties

Visibility Shows and hides DOM elements using transition effects (for example, fading) and duration

In addition, in jQuery you find two other groups of functionalities—cache and Ajax calls—that
work with the content of wrapped sets, though they can’t be strictly considered operations available
on wrapped sets.

Events
Handling events is a common activity in JavaScript programming. The jQuery library provides a bunch
of functions to bind and unbind handlers to events fired by DOM elements.

Binding and unbinding
The bind and unbind pair of functions are used to attach a callback function to the specified event.
Here’s an example in which all elements that match the selector will have the same handler attached
for the click event:

$(selector).bind("click", function() {
 ...
});

You use the unbind function to detach any currently defined handler for the specified event:

$(selector).unbind("click");

Be aware that the unbind function doesn’t remove handlers that have been inserted directly in the
markup through any of the onXXX attributes.

 CHAPTER 11 Effective JavaScript 385

The jQuery library also defines a number of direct functions to bind specific events. Facilities exist
for events such as click, change, blur, focus, dblclick, keyup, and so forth. The following code shows
how to bind a handler for the click event:

$(selector).click(function() {
 ...
});

Invoked without a callback, the same event functions produce the effect of invoking the current
handler, if any are registered. For example, the following code simulates the user clicking a specific
button:

$("#Button1").click();

You can achieve the same effect in a more generic way by using the trigger function:

$("#Button1").trigger("click");

Event handlers receive a jQuery internal object—the Event object. This object provides a unified
programming interface for events that goes hand in hand with the World Wide Web Consortium
(W3C) recommendation, and it resolves discrepancies in the slightly different implementations pro-
vided by some browsers:

$("#Button1").click(function(evt) {
 // Access information about the event
 ...

 // Return false if you intend to stop propagation
 return false;
});

The Event object features properties such as mouse coordinates, the JavaScript time of the event,
which mouse button was used, and the target element of the event.

Live event binding
Live binding is a nice feature of jQuery by which you can keep track of event bindings for a given sub-
set of DOM elements for the entire page lifetime. In other words, if you opt for live binding instead of
plain binding, you are guaranteed that any new dynamically added elements that match the selector
will automatically have the same handlers attached. Starting with jQuery 1.7, you should operate live
binding through on and off functions. Here’s an example:

$(document).on("click", ".specialButton ", function() {
 ...
})

All buttons decorated with the specialButton CSS style have the given function attached as the
handler for the click event. To stop live binding for some elements, you use the off function:

$(".specialButton").off("click");

386 PArT III Mobile clients

The difference between using on and bind (or specific event functions such as click) is that
when the on function is used, any new DOM elements added to the page and decorated with the
specialButton style automatically have the handler added. This won’t happen if bind is used.

Note If you’re using a version of jQuery older than 1.7, you use live and die methods in-
stead of on and off. The syntax is slightly different because the live method doesn’t take the
selector as an argument. Instead, the method applies directly to the selector.

Page and DOM readiness
In the beginning of client-side development, there was just one place where you could put the initial-
ization code of a webpage: in the onload event on either the window object or the <body> tag. The
onload event fires as soon as the page has finished loading—that is, after the download of all linked
images, CSS styles, and scripts is complete. However, there’s no guarantee that at this time the DOM
has been fully initialized and is ready to accept instructions.

The document root object in the DOM exposes a read-only readyState property just to let you
know the current state of the DOM and figure out when it’s OK for your page to start scripting it.
Using the readyState property is an approach that definitely works, but it’s a bit cumbersome. For
this reason, jQuery offers its own ready event that signals when you can start making calls into the
framework safely.

<script type="text/javascript">
$(document).ready(
 function() {
 alert("I'm ready!");
 });
</script>

You can have multiple calls to ready in a page or view. When multiple calls to ready are specified,
jQuery pushes specified functions to an internal stack and serves them sequentially after the DOM is
effectively ready.

The ready event is fired only at the document level; you can’t have it defined for individual ele-
ments or any collection of elements in a wrapped set.

Note The onload event is called after the HTML and any auxiliary resources are loaded. The
ready event is called after the DOM is initialized. The two events can run in any order. The
onload event won’t ensure that the page DOM is loaded; the ready event won’t ensure that
all resources (such as images) have been loaded.

 CHAPTER 11 Effective JavaScript 387

Aspects of JavaScript programming

Today, you often use JavaScript for some client-side logic and input validation. You use JavaScript to
download data from remote servers, to implement Windows-like effects such as drag-and-drop, for
resizing, for templates, for pop-up and graphic effects, for local data caching, and to manage history
and events around the page. It’s used for large chunks of code that have a good level of reusability
and need to be safely isolated from one another.

In other words, you want your JavaScript code to be maintainable and unobtrusive.

Unobtrusive code
For years, it has been common to write HTML pages with client buttons explicitly attached to
JavaScript event handlers. Here’s a typical example:

<input type="button" value="Click me" onclick="handleClick()" />

From a purely functional perspective, there’s nothing wrong with this code; it works as expected,
running the handleClick JavaScript function whenever the user clicks the button. This approach is
largely acceptable when JavaScript is just used to spice up webpages; however, it becomes unwieldy
when the amount of JavaScript code represents a significant portion of the page or the view.

Style the view by using code
The expression “unobtrusive JavaScript” is popular these days, and it just means that it would be
desirable not to have explicit links between HTML elements and JavaScript code. In a way, unobtrusive
JavaScript is the script counterpart of CSS classes.

With CSS, you write plain HTML without inline style information and add style to elements by us-
ing CSS classes. Likewise, you avoid using event handler attributes (onclick, onchange, onblur, and the
like) and use a single JavaScript function to attach handlers when the DOM is ready. Here’s a concise
but effective example of unobtrusive JavaScript:

<script type="text/javascript">
 $(document).ready(function () {
 $("#Button1").bind("click", function () {
 var date = new Date().toDateString();
 alert(date);
 });
 });
</script>

<h2>JavaScript Patterns</h2>
<fieldset>
 <legend>#1 :: Click</legend>
 <input type="button" id="Button1" value="Today" />
</fieldset>

You can move the entire <script> block to a separate JavaScript file and have your view be clean
and readable.

388 PArT III Mobile clients

Pragmatic rules of unobtrusive JavaScript
Unobtrusive JavaScript establishes a fundamental principle—any behavior in any webpage has to be
an injectable dependency and not a building block. Rich JavaScript code is made of processing logic
and code that manages the user interface (UI). The UI logic needs to know about the DOM and the
structure of the view. This necessarily creates a dependency. You can live with such dependencies, but
you live better if you work around dependencies.

One way of limiting the impact of UI dependencies is by using templates and ad hoc libraries such
as KnockoutJS to render the page. You can learn more about KnockoutJS at http://knockoutjs.com.

reusable packages and dependencies
More and more pages are extensively based on JavaScript, raising the problem of componentizing
more and more the structure of pages. Let’s explore a widely accepted approach for packaging code
in JavaScript that has no dependencies on external libraries.

The Namespace pattern
A golden rule of JavaScript programming is grouping related properties—including globals—into
containers. When such containers are shared among multiple script files, it might be hard to decide
(and enforce) which file has the responsibility of initializing containers and child objects. You just saw
an example of a simple syntax that you can use to define a global container.

var GLOBALS = GLOBALS || {};

This trick works, but it’s often too cumbersome to use when you have several nested objects that
you need to manage. Here’s where the Namespace pattern comes to the rescue.

The Namespace pattern consists of a piece of code that iterates over the tokens of a dot-separated
string (for example, a C# or Java namespace) and ensures that the proper hierarchy of objects is
initialized. The namespace function ensures that the code is not being destructive and skips over
existing instances. Here’s some sample code:

var GLOBALS = GLOBALS || {};

GLOBALS.namespace = function (ns) {
 var objects = ns.split("."),
 parent = GLOBALS,
 startIndex = 0,
 i;

 // You have one GLOBALS object per app. This object already exists if you
 // can call this function. So you can safely ignore the root of the namespace
 // if it matches the parent string.
 if (objects[0] === "GLOBALS")
 startIndex = 1;

http://knockoutjs.com

 CHAPTER 11 Effective JavaScript 389

 // Create missing objects in the namespace string
 for (i = startIndex; i < objects.length; i++) {
 var name = objects[startIndex];
 if (typeof parent[name] === "undefined")
 parent[name] = {};
 parent = parent[name];
 }
 return parent;
};

After you have referenced the namespace function, you can then place the following calls:

GLOBALS.namespace("Widgets"); // GLOBALS has a Widgets property
GLOBALS.namespace("GLOBALS.Widgets"); // GLOBALS has a Widgets property

These two calls are equivalent, and both guarantee that GLOBALS has an initialized Widgets prop-
erty. Consider the following:

// GLOBALS has a Widgets property, and Widgets has a NewsBox property
GLOBALS.namespace("GLOBALS.Widgets.NewsBox");

The namespace function proceeds iteratively and also ensures that Widgets has an NewsBox
property.

Important Although the implementation shown here can be considered relatively stan-
dard, I feel obliged to credit Stoyan Stefanov for inspiring this code and the section on the
Module pattern. Stoyan is the author of the excellent book JavaScript Patterns (O’Reilly
Media, 2010). I recommend it to anybody who wants to go beyond the content of this
chapter.

The Module pattern
The Module pattern provides a way to package self-contained blocks of code that you can simply add
or remove from a project. The pattern wraps a classic JavaScript function into an immediate function
that guarantees privacy of data and ensures that only what you explicitly reveal as public is actually
perceived as public by clients. In JavaScript, an immediate function is a function defined inline and
immediately executed. The syntax is shown here:

(
 function(...) {
 // Body
 } (...)
);

390 PArT III Mobile clients

Let’s use the Module pattern to build a self-contained widget that grabs news from a given feed.
Suppose that you save all of the following code to a JavaScript file:

GLOBALS.namespace("Widgets.News");
GLOBALS.Widgets.News = function () {
 var localUrl = "...",
 localWidget = "",
 localBuildWidget = function (items) {
 var numOfNews = items.length;
 if (localSettings.maxNews >0)
 numOfNews = Math.min(localSettings.maxNews, numOfNews);

 var buffer = "<table rules='rows'>";
 for (var i = 0; i < numOfNews; i++) {
 buffer += "<tr><td>" + items[i].Title + "</td></tr>";
 }
 buffer += "</table>";
 localWidget = buffer;
 },
 localSettings = {
 maxNews: 5,
 autoRefreshEvery: 0
 };

 return {
 load: function (selector, settings) {
 if (settings != null)
 localSettings = settings;

 $.getJSON(localUrl)
 .done(function (data) {
 localBuildWidget(data);
 $(selector).html(localWidget);
 });
 },
 getHtml: function () {
 return localWidget;
 }
 };
} ();

The code defines a logical block that contains all the logic required to download and format a
bunch of news from a feed.

With the Module pattern, you return an object that reveals the public API that you want to make
visible. Here’s how you use a module:

<script type="text/javascript" src="@Url.Content("~/content/scripts/module-news.js")"></script>
<script type="text/javascript">
 GLOBALS.Widgets.News.load("#twitter-box", {maxNews: 10});
</script>

 CHAPTER 11 Effective JavaScript 391

You first link the distinct file that contains the widget and then initialize it, passing settings as
appropriate. The widget in this case gets the jQuery selector of the UI where it will make graphical
changes—specifically, where the widget will insert the HTML table with the list of selected news.

The Namespace pattern is not necessary for the implementation of the Module pattern, but it
helps a lot to have it.

Script and resource loading
More and more script in webpages means more and more script files to download. This might soon
become a serious issue and needs to be addressed. When a page has several scripts, the degree of
parallelism at which the browser can operate is dramatically lowered. So it is for the load time of the
page. Let’s see why.

The download is always synchronous
The HTTP/1.1 specification suggests that browsers download no more than two components in paral-
lel per host name. However, that never happens for script files: browsers always download script files
synchronously and one at a time. As a result, the total download time is at least the sum of times re-
quired to download individual files and, maybe worse, the browser is idle while downloading a script
file. Page rendering resumes only after the script files have been downloaded, parsed, and executed.

Browsers implement synchronous downloads mostly to stay on the safe side. In fact, there’s
always the possibility that script files include instructions such as JavaScript immediate functions or
document.write that could modify the status of the current DOM.

Scripts at the bottom
To improve the page-loading performance, you can use a simple trick that consists of moving all links
to script files to the bottom of the page just before the </body> tag. When you do this, browsers
don’t need to interrupt the page rendering process to load scripts. Browsers can then do their best to
display an early view of the page.

Although placing manual scripts at the bottom is the safest approach, another option exists that
you can set up declaratively and without resorting to writing or importing ad hoc JavaScript code: the
defer attribute.

<script src="..." defer="defer"></script>

Introduced with the HTML 4 specification, the defer attribute instructs the browser whether load-
ing the script can be deferred to the end of the page processing. A <script> tag decorated with the
defer attribute implicitly states that it’s not doing any direct document writing and it’s safe for it to be
loaded at the end. The purpose of the defer attribute is similar to the async attribute you find in the
HTML5 specification.

392 PArT III Mobile clients

Dealing with static files
A golden rule of web development states that after you’ve neutralized the performance hit of static
files such as scripts, style sheets, and images, you’re pretty much done with optimization. There are
two main ways to minimize the download time of static resources, and one doesn’t exclude the other.

The most obvious trick is reducing the size of the files being downloaded. The second most obvi-
ous trick consists of not downloading them at all. Before I get into the details, let me state up front
that these optimization tricks should be played when you’re done with development. If they’re ap-
plied at development time, most of them only add frustration and slow down your progress.

Reducing the size of downloadable files means compressing their content. Browsers inform
the web server about the type of compression they support through the Accept-Encoding header.
Chapter 8, “Customizing ASP.NET MVC controllers,” demonstrates that in ASP.NET MVC you can add
a proper response header to any controller action and instruct the web server to use any of the sup-
ported encodings for the response. Compression can also be turned on for static resources directly
at the web-server level. It should be noted that you should not use GZIP compression (or perhaps the
deflate compression) on files (and responses) that are already compressed on their own. For example,
you don’t want to use GZIP for a JPEG image. Although GZIP compression can cut the size by 50 per-
cent or so, it gives you much less impressive results on sources that are already compressed and at the
cost of more CPU work.

The second aspect to consider is browser caching. Static resources are said to be static just because
they don’t change frequently. So, why should you download them over and over again? By assign-
ing your static resources a very long duration (through the Expires response header), you save the
browser from downloading these resources frequently. Again, you can do that at the web-server level
for static resources and programmatically via the Response object for dynamically served resources.

In this regard, a content delivery network (CDN) is beneficial because it increases the likelihood
that the browser cache already contains a resource that might have been referenced by using the
same URL by other sites using the same CDN. Be aware that you won’t benefit much from placing on
a CDN files that only one application uses.

Note Yet another option to neutralize the costs of static resources is putting those re-
sources on a different server that is optimized to return static content. Or, perhaps you can
use a reverse proxy tool such as Varnish (http://www.varnish-cache.org) to collect images
from various servers and return them as if they originated from the proxy. By having a re-
verse proxy in front of the CDN or the website, you can get significant benefits in terms of
reduced requests for static files.

http://www.varnish-cache.org

 CHAPTER 11 Effective JavaScript 393

Using sprites
To improve the serving of images, you can consider using sprites. A sprite is a single image that results
from the composition of multiple images. Constituent images are saved side by side in the process of
forming a new image, as shown in Figure 11-1.

FIGURE 11-1 A composed image served as a sprite.

In pages, you use the tag to reference the total image and resort to using a specific CSS
style to select the portion of it in which you’re interested. For example, here’s the CSS you need to
use for the segments of the image just shown to render a clickable button:

.signup-link
{
 width: 175px;
 height: 56px;
 background-image: url(/images/loginsprite.png);
 background-position: -0px 0px;
 background-repeat: no-repeat;
}

.signup-link:hover
{
 background-position: -177px 0px;
}

.signup-link:active
{
 background-position: -354px 0px;
}

The background-position indicates the relative position at which to start rendering the image.
For example, when the mouse hovers over the image, the browsers begins rendering skipping the
initial 177 pixels. This means that the first button is not displayed and the section of the sprite that is
rendered coincides with the highlighted button. (As you can see in Figure 11-1, for clarity, I added a
blank line of pixels, which is why you have to skip one pixel when counting positions.) The net effect
is that you have just one image, just one download, a cached image, and a cool effect for users. (See
Figure 11-2.)

394 PArT III Mobile clients

FIGURE 11-2 Sprites in action.

Bundling and minification
As webpages continue to offer ever-richer visual content, the cost of downloading related resources
such as CSS, scripts, and images grows significantly. Surely, for the most part these resources might be
cached locally by the browser; yet the initial footprint can really be hard to sustain. For script and CSS
files, GZIP compression can be combined with bundling and minification.

Bundling is the process of rolling up a number of distinct resources together into a single down-
loadable resource. For example, a bundle might consist of multiple JavaScript or CSS files. Minification
is a transformation applied to an individual resource. In particular, minification consists of remov-
ing all unnecessary characters from a text-based resource in a way that doesn’t alter the expected
functionality. This means removing comments, white space characters and new lines; in general all
characters that are usually added for readability but take up space and do not really serve any func-
tional purposes.

You can apply bundling and minification together, but they remain independent processes. De-
pending on the needs, you can decide to only create bundles or minify individual files. Usually, how-
ever, there are no reasons on production sites not to bundle and minify all CSS and JavaScript files.
At debug time, though, it’s an entirely different story: a minified or bundled resource is quite hard to
read and step through, so you just don’t want bundling and minification enabled.

 CHAPTER 11 Effective JavaScript 395

There are a lot of frameworks out there that provide bundling and minification services with
slightly different levels of extensibility and different feature sets. I dare say that for the most part they
all offer the same capabilities; so, picking one over the other is purely a matter of preference. If you’re
writing an ASP.NET MVC application, the natural choice for bundling and minification is the Microsoft
ASP.NET Web Optimization framework, available through a NuGet package.

Bundling related resources
Typically, you create bundles programmatically in global.asax. In accordance with the ASP.NET MVC
conventions, you create a BundleConfig class in the App_Start folder and expose a static initialization
method out of it, as shown here:

BundleConfig.RegisterBundles(BundleTable.Bundles);

A bundle is simply a collection of files (typically style sheets or script files). Here’s the code you
need to group two CSS files into a single download:

public class BundleConfig
{
 public static void RegisterBundles(BundleCollection bundles)
 {
 bundles.Add(new Bundle("~/all-css").Include(
 "~/content/styles/site1.css",
 "~/content/styles/site2.css"));

 BundleTable.EnableOptimizations = true;
 }
}

You create a new Bundle class and pass to the constructor the virtual path that will be used to
reference the bundle from within a view. To associate CSS files with the bundle, you use the Include
method. The method takes an array of strings representing virtual paths. You can indicate CSS files
explicitly, as in the preceding example, or you can indicate a pattern string, as demonstrated in the
following:

bundles.Add(new Bundle("~/all-css").Include("~/content/styles/*.css");

Bundling is a form of optimization; as such, it mostly makes sense when the site is in production.
The EnableOptimization property is a convenient way to set up bundling as it should work in produc-
tion. Be aware that until it is turned on explicitly, bundling is not active.

Bundling script files
Bundle classes can work with CSS or JavaScript files without difference. However, the BundleCollection
class has a couple of features that are mostly useful when bundling script files: ordering and ignore
lists.

The BundleCollection class has a property named Orderer of type IBundleOrderer. As obvious as
it might seem, an orderer is a component responsible for determining the actual order in which you
want files to be bundled for download. The default orderer is the DefaultBundleOrderer class. This

396 PArT III Mobile clients

class bundles files in the order that results from the settings set through the FileSetOrderList property,
which is another property of BundleCollection. The FileSetOrderList property is designed to be a col-
lection of BundleFileSetOrdering classes. Each of these classes defines a pattern for files (for example,
jquery-*) and the order of BundleFileSetOrdering instances determines the actual order of files in
the bundle. For example, given the default configuration, all jQuery files are always bundled before
Modernizr files. Orderings for common groups of files (such as jQuery, jQuery UI and Modernizr) are
predefined; you can programmatically reset and update orderings at will.

Note The impact of the DefaultBundleOrderer class on CSS files is more limited but
not null. If you have a reset.css and/or a normalize.css file in your website, these files are
automatically bundled before any of your other CSS files, and reset.css always precedes
normalize.css. The goal of having reset/normalize style sheets is to provide a standard set
of style attributes for all HTML (reset) and HTML5 (normalize) elements so that your pages
don’t inherit browser-specific settings such as fonts, sizes, margins. Although some recom-
mended content exists for both CSS files, the actual content is up to you. If you have files
with these names in your project, ASP.NET MVC makes an extra effort to ensure that they
are bundled before anything else.

If you want to override the default orderer and ignore predefined bundle file set orderings, you
have two options. First, you can create your own orderer which works on a per-bundle basis. Here’s
an example that just ignores predefined orderings:

public class SimpleOrderer : IBundleOrderer
{
 public IEnumerable<FileInfo> OrderFiles(
 BundleContext context, IEnumerable<FileInfo> files)
 {
 return files;
 }
}

You use it as illustrated here:

var bundle = new Bundle("~/all-css");
bundle.Orderer = new SimpleOrderer();

In addition, you can reset all orderings by using the following code:

bundles.ResetAll();

In this case, the effect of using the default orderer or the simple orderer shown earlier is the same.
However, be aware that ResetAll also resets all current script orderings.

 CHAPTER 11 Effective JavaScript 397

The second noteworthy feature is the ignore list. Defined through the IgnoreList property of the
BundleCollection class, it defines the pattern matching strings for files that were selected for inclusion
in the bundle, but should be ignored instead. The major benefit of ignore lists is you can specify *.js
in the bundle, but you can use them to skip over, for instance, *.vsdoc.js files. The default configura-
tion for IgnoreList takes care of most common scenarios (including *.vsdoc.js files) while giving you a
chance to customize.

Adding minification
The Bundle class is only concerned with packing multiple resources together so that they are cap-
tured in a single download and cached. However, both style sheets and script files are padded with
blanks and newline characters for readability purposes. Readability is important for humans (and then
at debug time) but is never an issue for browsers. The string below is a sample minified version CSS
perfectly acceptable for a browser. As you can see, it doesn’t include any extra characters.

html,body{font-family:'segoe ui';font-size:1.5em;}html,body{background-color:#111;color:#48d1cc}

How would you add minification to CSS and JavaScript files? It is as simple as changing the Bundle
class with StyleBundle or ScriptBundle class. Both classes are surprisingly simple: They inherit from
Bundle and just consist of a different constructor.

public ScriptBundle(string virtualPath)
 : base(virtualPath, new IBundleTransform[] { new JsMinify() })
{
}

The Bundle class has a constructor that accepts a list of IBundleTransform objects. These transforms
are just applied one after the next to the content. The ScriptBundle class just adds the JsMinify trans-
former. The StyleBundle class adds instead the CssMinify transformer. CssMinify and JsMinify are the
default minifiers for ASP.NET MVC 4 and are based on the WebGrease framework. Needless to say, if
you want to switch to a different minifier, all you need to do is to create the class—an implementation
of IBundleTransform—and pass it via the constructor.

Summary

People like to consume interactive applications through the web. For various reasons, the most com-
mon way of writing these applications is still JavaScript. A die-hard language, JavaScript happily sur-
vived the advent of Adobe Flash and Microsoft Silverlight. Although Flash and Silverlight are still used
in some web applications, they currently have no chance to cannibalize JavaScript.

398 PArT III Mobile clients

JavaScript was originally introduced to give web authors the ability to incorporate some simple
logic and action in HTML pages. JavaScript was not designed to be a cutting-edge programming
language. The design of JavaScript was influenced by many languages, but the predominant factor
was simplicity. It needs extra facilities to support the development of any functionality that goes be-
yond changing the attribute of a DOM element, which is where libraries such as the de facto standard
jQuery as well as KnockoutJS and AngularJS fit in.

In Chapter 12, “Making websites mobile-friendly,” we step into the development of a type of client-
side, JavaScript-intensive application: single page applications.

 399

C H A P T E R 1 2

Making websites mobile-friendly

Don’t walk in front of me, I may not follow. Don’t walk behind me, I may not lead.
Walk beside me and be my friend.

—A. Camus

When referring to software, the term mobile is usually associated with native applications for a
particular platform such as Apple’s iOS, Windows Phone, or Android. A common vision in fact

is that you should aim at having apps for some platforms and just ensure that the website can be
comfortably viewed on smartphones and (mini) tablets. Most recent devices can comfortably display
nearly any website. This leads many executives to address mobile with just a few native apps, thus
completely ignoring the subtler issues of mobile web.

My vision is different. I don’t argue with having (or not having) mobile apps, because that is an
aspect that is too business-specific to be addressed in general terms. But, I do argue that providing a
mobile-friendly website is indeed quite important. More precisely, I argue that although any company
can content itself with a website that just shows up and can be read on a smartphone, the user expe-
rience (UX) that you can provide with a mobile-optimized design of the site is incomparably better
than just pinch-and-zoom to fill forms and read news.

In this chapter, you’ll first review some of the technologies that help you to make a website
mobile-friendly. Of course, the list includes HTML5, but it also extends to Responsive Web Design
(RWD) and touches on some specific JavaScript frameworks such as jQuery Mobile. Next, you’ll learn
about the concrete challenges you face when you’re called to action. You will see how to link together
two distinct sites (desktop and mobile) so that they appear to be just one to users. Chapter 13, “Build-
ing sites for multiple devices,” takes the discussion one step further and addresses the entire point of
multidevice website design.

Technologies for enabling mobile on sites

Mobile users have high expectations in terms of UX; they expect the application to provide an overall
user interface (UI) similar to that of popular devices (for example, iPhone), touch-based, and populat-
ed by common widgets such as pick-lists and the iPhone-ish toggle-switch. These widgets don’t exist
(yet?) as native elements of HTML and must be simulated by using server-side controls that output a
mix of JavaScript and markup every time.

400 PArT III Mobile clients

The bottom line is that it is one thing to create a plain site making the best possible use of HTML,
cascading style sheets (CSS), and JavaScript; it is quite another to make a compelling mobile site that
looks like a native application or, at the very minimum, behaves like that.

On the average, mobile browsers offer good support for HTML5 elements. This means that at least
on devices that fall under the umbrella of “smartphones” or “tablets,” you can default to HTML5 ele-
ments without worrying about workarounds and shims. So, let’s summarize the key facts of HTML5.

HTML5 for the busy developer
HTML5 marks the beginning of the third age of the web in which HTML advances at a brisk pace
toward becoming a true and fully-fledged application delivery format. HTML5 is not limited to pre-
sentation; rather, it also provides a slew of new functionalities for web and other types of applications.
The big change is that HTML5 is about client-side programming and about building applications that
can run within the browser with limited (or no) interaction with the back end.

Compared to its predecessor (which was defined more than a decade ago), HTML5 is a significantly
richer markup language. One could say that all these years have not passed in vain as HTML5 now
incorporates in the standard syntax many common practices that developers and designers employed
in thousands of websites. In doing so, HTML5 issues specific rules on how to structure HTML elements
and deprecates tags that were introduced in the past in favor of style elements. The new message is
that you should use CSS to style elements and use specific (new) tags to define the structure of the
document.

Semantic markup
Most all websites share a common layout that includes a header and footer as well as a navigation
bar on the left of the page. More often than not, these results are achieved by using <div> elements
styled to align to the left or the right. Most pages today end up with the following template that we
also used in the samples throughout this book:

<div id="page">
 <div id="header">
 ...
 </div>
 <div id="navbar">

 ...
 ...
 ...

 </div>
 <div id="container">
 <div id="left-sidebar">
 ...

 ...
 ...
 ...

 CHAPTER 12 Making websites mobile-friendly 401

 </div>
 <div id="content">
 ...
 </div>
 <div id="right-sidebar">
 ...
 </div>
 </div>
 <div id="footer">
 ...
 </div>
</div>

This template includes header, navigation bar, footer, and a three-column layout between. The
preceding markup alone, however, doesn’t produce the expected results. For that, you need to add ad
hoc CSS styles to individual <div> elements and make them float and anchor to the left or right edge.

What’s different in HTML5?
First off, using HTML5 doesn’t mean that you stop using CSS to transform a layout into a nice looking
page. You still need to use the same bit of CSS to make the page look compelling and place segments
where they belong. However, you can now describe the page in a much cleaner way that is also easier
to read for a designer working on CSS stylesheets. Essentially, with HTML5 you replace generic <div>
elements with more semantically meaningful elements such as <header>, <footer>, and <article>.
Here’s how you can rewrite the preceding template by using the newest HTML tags.

<header> ... </header>
<nav> ... </nav>
<article>
 <aside>
 ...
 </aside>
 <section> ... </section>
 <section> ... </section>
 <section> ... </section>
 <aside>
 ...
 </aside>
</article>
<footer> ... </footer>

The <nav> element logically groups links that would go in a navigation bar. The <article> ele-
ment represents the container of any content for the page and incorporates <aside> elements and
<section> elements.

All of these are block elements which must be styled properly to form a presentable page. Other
new elements complete the list of enhancements such as <figure> and <details>. The <figure> ele-
ment is designed to include figures with caption, whereas <details> replaces the canonical hidden
<div> that developers use to hide optional content and display it via JavaScript.

402 PArT III Mobile clients

A native collapsible element
The new <details> element is functionally equivalent to a <div> but its internal content is interpreted
by the browser and used to implement a collapsible panel. Here’s an example of the new element:

<details open="true">
 <summary>Drill down</summary>
 <div id="details_inside">
 This text was initially kept hidden from view
 </div>
 </details>

The open attribute indicates whether you want the content to be initially displayed or not (see
Figure 12-1). The <summary> element designates the text for the clickable placeholder, whereas
the remaining content is hidden or shown on demand. As of this writing, Google Chrome and Apple
Safari are among the few browsers that support this feature. Internet Explorer 11 doesn’t support it.

FIGURE 12-1 The new <details> element in action in Google Chrome.

Note If you want to support HTML5-compliant browsers while remaining compatible
with old browsers, too, you should use both new HTML5 tags and replacement tags;
older browsers will just ignore the new HTML5 tags.

The icon you see in the figure is provided by the browser. The <details> element requires a bit of
CSS to look nice. Here’s the CSS used for the element in Figure 12-1:

<style>
summary {
 padding: 5px;
 font-weight: bold;
 color: #708090;
}
#details_inside {
 font-style: italic;
}

</style>

 CHAPTER 12 Making websites mobile-friendly 403

Note HTML5 removes a few elements of little use whose presence would only increase
redundancy. The list of elements no longer supported most notably includes the <frame>
(the IFRAME element remains, however) and elements. In addition, a few style ele-
ments such as <center>, <u> and <big> are removed. The reason is that this functionality
can be easily achieved through CSS. For some reason, the current draft maintains analo-
gous elements such as and <i>.

New input types
Currently, HTML (and subsequently browsers) supports only plain text as input. There’s quite a bit of
difference between dates, numbers, or even email addresses, not to mention predefined values. To-
day, developers are responsible for preventing users from typing unwanted characters by implement-
ing client-side validation of the entered text. The jQuery library has several plugins that simplify the
task, but this just reinforces the point—input is a delicate matter.

HTML5 comes with a plethora of new values for the attribute type of the <input> element. In ad-
dition the <input> counts several new attributes mostly related to these new input types. Here are a
few examples:

<input type="date" />
<input type="time" />
<input type="range" />
<input type="number" />
<input type="search" />
<input type="color" />
<input type="email" />
<input type="url" />
<input type="tel" />

What’s the real effect of these new input types? The intended effect, although not completely
standardized yet, is that browsers provide an ad hoc UI with which users can comfortably enter a
date, time, or number. Some of these new input types specifically address the need of mobile site us-
ers. In particular, email, url, and tel types push mobile browsers on smartphones (for example, iPhone,
Android, Windows Phone) to automatically adjust the input scope of the keyboard. Figure 13-2 shows
the effect of typing on a tel input field on an iPhone: the keyboard defaults to numbers and phone-
related symbols.

404 PArT III Mobile clients

FIGURE 12-2 The tel input field on Safari for iPhone. You will find a similar implementation on Android and
Windows Phone.

Today, not all browsers provide the same experience, and although they mostly agree on the UI
associated with the various input types, still some key differences exist that might require developers
to add script-based custom polyfills. As an example, let’s consider the date type. As of this writing,
the interface provided by Opera is different from what you see in Chrome (see Figure 12-3); Internet
Explorer 11 doesn’t offer any special support for dates.

FIGURE 12-3 The date input field as currently implemented by Google Chrome.

 CHAPTER 12 Making websites mobile-friendly 405

In general, mobile browsers on recent smartphones are quite respectful of HTML5 elements. Still,
as a mobile site developer, you might want to be very careful when using new input elements for
email, number, url, date, tel—well, for just about everything!

Finally, it’s worth noting that for the placeholder attribute that implements the long-awaited ability
to display a hint in a text box wherever possible, hint text is not displayed for range and date/time
input fields.

Note In the end, until browsers willfully and uniformly support the new input fields, de-
velopers have still a bit of work to do with JavaScript polyfills to ensure that correct data is
posted to the server and that the users are properly informed about what is wrong. Mobile
pages, much more than desktop pages, benefit from HTML5-compliant browsers.

The <datalist> element
Another nice improvement in HTML5 forms is the <datalist> element. The element is a specialized
version of the popular <select> element. It provides the same behavior except that the drop-down
list applies to a text input field. Here’s an example:

<input list="countries" />
<datalist id="countries">
 <option value="Italy">
 <option value="Austria">
 <option value="Australia">
 <option value="Albania">
 <option value="Sweden">
 <option value="Denmark">
</datalist>

The net effect is that when the input field receives the focus, the menu displays and the user can
either enter free text or pick up one of the predefined options. Figure 12-4 presents the feature as
you would find it in Google Chrome.

FIGURE 12-4 The <datalist> element in action.

406 PArT III Mobile clients

Local storage
HTML5 provides a standard API that makes saving data on the user’s device more affordable and rep-
resents an effective replacement for cookies. The average size of local storage is around 5 MB, which
is much more than a cookie.

You access the local storage through the localStorage property exposed by the browser’s window
object. The localStorage property offers a dictionary-based programming interface similar to that
of cookies. You have methods to add and remove items, to count the number of items in the store,
to get the value of a particular item, and to empty the store. Here’s how you can save a value and
retrieve it later:

<script type="text/javascript">
function save() {
 window.localStorage["message"] = "hello";
}
function init() {
 document.getElementById("message").innerHTML = window.localStorage["message"];
}
</script>

Upon loading, the page retrieves and displays data from the local storage (if any). Data is saved to the
storage through a function invoked interactively. Data saved to the local storage remains on the user’s
device indefinitely unless you programmatically empty it. The storage is specific for the application.

In addition to localStorage, HTML5 provides a sessionStorage object with the same programming
interface but saving to the browser’s memory, instead. The sessionStorage object is emptied at the
end of the current browser session. Web storage accepts primitive types (the specification is not re-
strictive on this point, so any JavaScript type is acceptable), but you can save complex objects, as well,
if serialized to the JavaScript Object Notation (JSON) format.

Audio and video
One of the biggest gains of HTML5 is saying farewell (but really?) to external plugins such as Flash
and Silverlight for just playing audio and video. HTML5 brings two new elements, <audio> and
<video>, that point to a URL and play any content. The browser implementation of these tags is also
expected to provide a control bar for the user to pause and resume the playback. Here’s how to link
an audio resource.

<audio poster="init.png" controls="controls">
 <source src="nicestory.wav" />
</audio>

The sore point of multimedia elements (mostly, video) is the format of files, both file format and
codecs. The HTML5 standard won’t make an official call about codecs, so deciding about the format
to support will remain up to the vendors. From a developer’s perspective this is not exactly great news
because it represents a breaking point; different browsers support different formats, and you should
detect the browser or provide multiple files for the browser to choose. Here’s the syntax to indicate a
selection of video formats:

 CHAPTER 12 Making websites mobile-friendly 407

<video poster="init.png" controls="controls">
 <source src="tiger.mp4" type="video/mp4" />
 <source src="tiger.webm" type="video/ogg" />
 Oops, it seems that your browser doesn't support video.
</video>

Observe that you use the controls attribute to display the control bar and the poster attribute to
specify an image to use as a splash-screen until the media is ready to play.

Popular codecs are MP4, MOV, and AVI. You should plan to have an MP4-encoded video for Inter-
net Explorer and Safari, and OGG/Theora for all the others. At present, this seems to be the perfect
solution to avoid external plugins. But, because this is a matter that changes frequently, look before
you leap.

rWD
Most developers and technical managers remember very well the nightmare it was to build web-
sites for a variety of browsers a mere decade ago. There was a time at which, for example, Internet
Explorer had a different set of features compared to Firefox or perhaps Safari, or even just an earlier
version of itself. That really made authoring markup for pages a mess. It is said that about 70 percent
of the code that makes up jQuery today deals with quirks for older browsers, most notably Safari
and Internet Explorer. I’d even say that developers started forgetting the “browser wars” as jQuery
conquered ground; at the same time, the browser wars were definitely one of the factors for jQuery’s
rapid adoption.

In the mobile space, the order of magnitude of different devices is thousands, not units as with
desktop browsers a while back. If the browsers fragmentation of a decade ago scared you, what
about the vastly larger fragmentation of mobile devices today? This can be a real torment. Mindful of
that, developers learned to focus on effective capabilities rather than pointing out a generic behavior
associated with a browser’s brand and name. This principle, however, is simple in understanding but
quite hard in adoption. This is the starting point of RWD.

Feature detection
RWD sprung to life from the following example of lateral thinking. Detecting devices is hard? Well,
then don’t do that. You grab a few snippets of basic information available on the client side (for ex-
ample, the size of the browser window), set up ad hoc style sheets, and let the browser reflow content
in the page accordingly.

You stop detecting the capabilities of the requesting device and decide what to display based on
what you can detect programmatically on the device. This approach relies extensively on a number
of browser technologies—primarily CSS media queries—and offers the significant plus that you as a
developer have just one site to design and maintain. The burden of adapting content responsively is
pushed to graphical designers or to ad hoc libraries such as Twitter Bootstrap.

408 PArT III Mobile clients

The major strength of feature detection, which we can summarize as “one site fits all,” is also likely
to be the major weakness, though. Is just one site what you really want? Do you really want to serve
the “same” site to smartphones, tablets, laptops, and smart TVs? The answer to this question invari-
ably is specific to each business. In general terms, it can only be a resounding, “It depends.”

Let’s first see the essence of RWD and then move to its possible shortcomings.

CSS media queries
The magic potion that gave life to RWD is CSS media queries. Introduced with CSS 3, media queries
is syntax for developers to define conditional CSS style sheets that the browser will load dynamically
any time the window is resized or some other system event takes place. CSS media queries make it
possible for developers to easily create multiview pages that can be consumed through devices of
different screen sizes ranging from the 24 inches of a desktop monitor to the 3-inch screen of most
smartphones.

Note It is crucial to note that CSS media queries are not specifically a technology for mo-
bile development. However, the inherent power and flexibility of the solution makes it suit-
able for use in the building of a mobile site, too.

The key benefit of CSS media queries for developers is obvious. Developers write one set of pages
and one back end. The set of pages targets the widest possible screen you intend to support—typi-
cally the desktop size—and stores as many elements as possible. Next, designers come up with multi-
ple CSS files, one for each intermediate screen size to support. An intermediate screen size is referred
to as a layout breakpoint. Most commonly, you have a break point placed at 480 pixels and another at
800 pixels, and possibly more. As the user resizes the browser window and width falls below 480 pix-
els, the browser automatically selects the CSS for 480 pixels. The same happens when the window is
between 480 and 800 pixels; in this case, the CSS for 800 pixels is picked up. When the same page is
viewed with a smartphone, the CSS for small screens (480 pixels) is automatically applied; for tablets
you’ll likely get the 800-pixel layout. Simple and effective.

By adding another break point and related CSS file, you can create an ad hoc view when the screen
size is between 480 and 800 pixels. In this way, you address minitablets, as well. Do you need to sup-
port large screens such as smart TVs? No problem. You just add another CSS file. It is really easy and
it works great, even though setting up an RWD solution for a realistically complex set of pages might
not exactly be a walk in the park.

CSS media queries in action
How many different screen resolutions do you want to support? The answer depends on the expected
audience and also on the content to render. However, there’s a huge difference between a desktop
browser resized to a width of 400 pixels and a smartphone screen of the same size. A laptop is one
thing; a smartphone is quite another, as far as computing power and resources are concerned. CSS
media queries, though, are unable to distinguish on a per-device basis.

 CHAPTER 12 Making websites mobile-friendly 409

Let’s assume that this is not going to be an issue for now and further assume that it is acceptable
from a business viewpoint to focus only on the size of the viewport. First, you need to decide for how
many resolutions you intend to have a different layout. A sample classification might consist of the
following breakpoints:

■■ Up to 480 pixels

■■ Up to 800 pixels

■■ Beyond 800 pixels

For each breakpoint, you create a distinct CSS file that takes care of styling elements, including
flowing them toward the bottom of the screen or hiding some. In doing so, you can also decide to
reference smaller images, if your pages link static images.

You reference such CSS files by using a slight variation of the classic syntax for the <link> element:

<link type="text/css"
 rel="stylesheet"
 href="view480.css"
 media="only screen and (max-width: 480px)">

In this case, the file view480.css will be used only when the page is rendering on a screen and
when the browser window is no larger than 480 pixels. When media queries are used and no match
can be found, quite simply no style sheet will be applied to the page.

Note Historically the media attribute indicates the medium for which the CSS is intended—
screen, printer, TV, video terminals, and more. In modern browsers that support the full
CSS 3 standard, the value of the media attribute can include a query that selects the medi-
um as well as some run-time conditions. You can find the full documentation about media
queries at http://www.w3.org/TR/css3-mediaqueries.

The CSS media query language is based on a pair of Boolean operators—and and not—and a few
browser properties. Table 12-1 lists the browser properties that you can use to select the most ap-
propriate style sheet.

TABLE 12-1 Properties to build CSS media queries.

Browser property Description

device-width, device-height Width and height of the physical device screen.

width, height Width and height of the rendering viewport; for example, the browser’s window.

orientation Returns portrait when height is greater or equal than width. Otherwise, it returns
landscape.

aspect-ratio Indicates the ratio between width and height; an example is “16/9”.

device-aspect-ratio Indicates the ratio between device-width and device-height; an example is “16/9”.

http://www.w3.org/TR/css3-mediaqueries

410 PArT III Mobile clients

Keep in mind that device-width and device-height, as well as the width and height properties, also
support min/max prefixes.

You often find the keyword only at the beginning of media query expressions, but it doesn’t really
play a functional role. This keyword is added for the sole purpose of keeping older browsers away
from the media query statements; older browsers don’t understand the media type when it is pre-
fixed with only and blissfully ignore the statement.

You can use the media query expression within the <link> element of the host page as shown ear-
lier. In this way, you end up with one distinct CSS file for each breakpoint. You can also create a single
CSS file that contains multiple media sections, as demonstrated in the following code:

@media screen and (min-width: 480px) {
 body {
 background: yellow;
 }
 ...
}
@media screen and (min-width: 800px) {
 body {
 background: blue;
 }
 ...
}

Note Whether you create a single file or multiple files, consider that in an RWD solution,
you deal with a ton of CSS settings, repetitive for the most part. For this reason, it might
be worth taking a look at dynamic stylesheet frameworks such as LESS (http://lesscss.org).
Using these type of frameworks, you can create the CSS settings programmatically by using
programmer-friendly constructs such as variables and functions.

In Table 12-1, there are two similar-looking properties: width and device-width. As mentioned,
the former refers to the browser’s width, whereas the latter indicates the device’s screen width. For
adaptive rendering, you should always be using width. However, on mobile devices (smartphones and
tablets), any application is always available in full-screen mode, so there’s really no actual difference
between the two. In this regard, Windows 8 tablets are a notable exception because applications can
run in snapped and filled mode, not just in full-screen mode.

Note In CSS Media Queries Level 4 (http://dev.w3.org/csswg/mediaqueries4), the next ver-
sion of the standard, a few new properties will be added to make it simpler to distinguish
between a mobile and a desktop device. It doesn’t seem, however, to be the set of device
capabilities that developers need to arrange really mobile-oriented views.

http://lesscss.org
http://dev.w3.org/csswg/mediaqueries4

 CHAPTER 12 Making websites mobile-friendly 411

Fluid layout
CSS media queries alone don’t really make the layout responsive, but it surely helps responding in
some way to dynamically changing conditions. If your design caters only for a few preset breakpoints,
users will get the same layout whenever their browser’s width falls between two breakpoints. For
example, suppose you have the following:

@media screen and (min-width: 480px) {
 body {
 background: yellow;
 }
 #container {
 width: 480px;
 }
 ...
}
@media screen and (min-width: 800px) {
 body {
 background: blue;
 }
 #container {
 width: 800px;
 }
 ...
}

You have one breakpoint set when the browser width reaches 480 pixels—at that point, the back-
ground becomes yellow and the container element is set to 480 pixels. You can enlarge the browser
window but you won’t notice any change until the width reaches 800 pixels. Figure 12-5 depicts a
screen captured at 600 pixels.

FIGURE 12-5 An adaptive view but not fully responsive.

412 PArT III Mobile clients

Because the layout uses fixed measures, we end up with some empty and unused space. The
impact of unused space can be mitigated by adding more breakpoints and then by authoring and
maintaining more CSS files. However, for non-toy sites you can’t realistically deal with more than three
or four breakpoints.

A truly responsive layout is a layout that adapts to any change in the width and/or height of the
browser window. To achieve this, you need to build your layout using CSS measures based on ems or
percentages. In this way, your design can scale up and down with nearly no limits. This is also some-
times referred to as a fluid or proportional layout.

In CSS, you can use a number of units to set width, height, and font sizes. A unit that is becoming
more and more popular is em. One “em” equals the current font size; subsequently, “1.2 em” increases
the current font size by 20 percent. Pixels and points are both fixed unit and can’t scale with the size
of the window. However, percentage and em are both relative measures—although relative to differ-
ent things. The unit “em” is always relative to font size, whereas percentage is relative to the contain-
ing block (for example, <body> or <div>). You can also apply a percentage to a font size. In this case,
it indicates a variance related to the parent font size. In general, I’d say that using percentages to
express dimensions of web elements (blocks and text) is more reliable and consistent across browsers.

Having said that, a fluid layout results primarily from expressing whatever is in the layout through
relative measurements.

When rWD meets mobile
RWD is definitely a powerful approach to web design. It helps you in two ways: It makes your site
look better, whatever the browser’s size is, and, through frameworks such as Twitter Bootstrap, it also
makes it possible for non-designers to quickly create nice templates. RWD, however, was not devised
to serve mobile devices specifically, but it is so powerful and flexible that it can be used to adapt
views of pages on nearly any mobile device.

One of the key characteristics of mobile devices is a smaller screen—around 400 pixels for a
smartphone and around 800 to 1000 pixels for a tablet. When RWD renders your views well on those
screen sizes, you should be all set—right?

RWD requires CSS and CSS media queries to work. With CSS, you can do a lot, but CSS is not about
programming. CSS media query properties tell you something about the device, but not all that you
might need to know. For example, you still have no clue about the operating system, whether the
device is mobile, whether it’s a tablet, smart TV, or perhaps a web robot.

RWD informs you that the page is currently hosted on a viewport, for instance, 800 pixels wide.
But, it can’t indicate to you whether that viewport belongs to tablet or a resized Internet Explorer
desktop window. Sometimes, this is a detail that makes a considerable difference for the end user;
and subsequently for developers. So, the question is where exactly does RWD fit in a mobile scenario?
Is it really reliable to use RWD when you are about to create a mobile site?

 CHAPTER 12 Making websites mobile-friendly 413

A mobile device is different from a classic personal computer. It has a smaller screen—sometimes
a significantly smaller screen. It doesn’t have the same computing horsepower and storage; it doesn’t
have the same power source; and it is always touch-enabled (the same can’t be said for desktops,
although newer models might use a touchscreen monitor). Furthermore, a mobile device is often used
on-the-go and to do things quickly and immediately. Because of this, connectivity might come and
go at any time and might sometimes be slow and unreliable.

When users are on a mobile device they want to find options and actions one or two taps away;
they likely don’t need a lot of functions and information. They sometimes need information or aggre-
gates of information different from those that work well for full sites. Mobile users might need a dif-
ferent metaphor of work and definitely need you to carefully devise the use-cases of the application.

RWD is an excellent approach to take a site devised for the desktop and make it render well on a
variety of mobile devices. But even with it, you won’t necessarily end up with a site that is optimized
for mobile devices. Many developers sometimes claim to design in a mobile-first way, but all they are
really doing is designing for desktop and then simply adapting to mobile. I’m not sure this is really a
mobile-first approach!

Note RWD works well for some websites such as portals. It doesn’t work the same way for
sites that are highly interactive, implement workflows (for example, a booking site) and are
full of forms that the user must fill in.

jQuery Mobile’s executive summary
Working on top of the popular jQuery library, jQuery Mobile (jQM) is built from the ground up to be
a comprehensive platform for building mobile sites. You code your way through the library and the
library takes care of rendering the markup in the best possible way on the browser. By using jQM, you
don’t have (necessarily) to worry about device detection and capabilities. The library guarantees that
the output works also on down-level browsers; whether the obtained output is really what you want…
well, that’s quite another story.

ASP.NET MVC developers can find the jQM library featured in the mobile project template that
comes with Microsoft Visual Studio. This fact seems to push the vision that jQM is sort of a must for
enabling mobile support in websites. As usual, it depends.

The quick answer is that jQM is simply a rendering JavaScript library that knows how to turn plain
HTML markup into a mobile view. This means that buttons and input fields you might have in pages
are rendered in a way that mimics the look-and-feel (and partly the behavior) of analogous visual
elements of popular mobile platforms such as iOS. The simple adoption of jQM lends a mobile look-
and-feel to your pages. It doesn’t necessarily mean that your site has suddenly become a well-crafted
mobile site.

414 PArT III Mobile clients

Important You can use jQM (or even other vendor-specific frameworks such as Kendo UI
or Sencha) and be happy. However, you'll keep your customers happy primarily if you de-
sign the site to be easily and comfortably used from mobile devices. This is also a matter of
reworking use-cases and data aggregations. No libraries will help with this.

The official site of jQM is http://www.jquerymobile.com. You can also get the latest version from
NuGet or directly at http://code.jquery.com.

Themes and styles
The jQM library is nearly unusable without a companion CSS file. The library does a lot of work on
any page and transforms it from a plain collection of <div> tags into a pleasing, usable, and mobile-
friendly document. For this to happen, a slew of styles and images must be created that follow strict
standards. The library comes with a predefined CSS file to include. Like many other things, themes are
of course customizable by developers.

The jQM library comes with a few predefined themes identified with the first letters of the alpha-
bet: a, b, c, and so forth. Each theme consists of a number of CSS styles being uniformly applied to
various HTML elements. Most of the time, you just pick up the theme you prefer; and the choice is
based on colors. Here’s how to set a theme.

<div data-role="page" data-theme="b">
 ...
</div>

You can apply a different theme to different parts of the page by using the data-theme attribute.
(More on data-* attributes in a moment.) Themes are applied by default; however, you can override
their settings by using plain CSS commands on particular elements, as shown here:

<div data-role="footer" class="my-footer center">
 ...
</div>

The preceding <div> element has been given the role of the footer. As such, it gets a particular
style from the library depending on the current theme. However, the class attribute is used to over-
ride some properties (colors, borders, font, and so on). The class attribute will hardly replace settings
completely; if that’s your purpose, you are probably better off creating your own custom theme by
using the ThemeRoller tool of jQM.

Data-* attributes
In HTML5, data-xxx attributes are custom attributes that you can use to better define the semantic of
an element. Such attributes are forced to have a name in the form of data-xxx, but any framework (or
page) is responsible for specifying the xxx variable part and, more important, for its interpretation. A
data-xxx attribute always returns and accepts a string.

http://www.jquerymobile.com
http://code.jquery.com

 CHAPTER 12 Making websites mobile-friendly 415

The jQM library recognizes quite a few data-xxx attributes and uses them to decorate HTML ele-
ments and give them a special meaning. The semantic expressed by the attributes determines the
graphical output.

One of the most important data-* attributes in jQM is the data-role attribute. It indicates the role
played by that specific element in the context of the page. The attribute is commonly used to deco-
rate <div> tags and make them pass as very specific semantic components such as the header, footer,
or content.

Pages in jQM
In jQM, a page can either be a single HTML file or an internal section of an existing page. In the
library jargon, the two scenarios are referred to as single-page template and multi-page template.
Nicely enough, the library makes it possible for you to navigate to pages regardless of their nature,
whether physical pages (distinct HTML file) or logical sections of an existing HTML file. Here’s the typi-
cal page definition:

<div id="homePage" data-role="page" data-theme="a" class="my-bkgnd">
 ...
</div>

A page is identified by a <div> element decorated with the data-role attribute set to the page
value. The page can have its own ID and can use the class attribute to override style settings. You can
select the theme for the entire page by using the data-theme attribute. A jQM page often comprises
a header, footer, and content. It should be noted, however, that this is just a convention; the page can
contain any valid markup. An HTML file can contain multiple elements marked as logical pages, such
as those presented here:

<div id="homePage" data-role="page" data-theme="a">
 ...
</div>
<div id="aboutPage" data-role="page" data-theme="b">
 ...
</div>

When multiple logical pages are used, you might want to use unique IDs for each of them in order
to enable navigation and also initialization.

jQuery developers are very familiar with the ready event. This event is fired as soon as the page
DOM is fully initialized and the page author can safely complete the initialization of the page ele-
ments. In jQM, you don’t use the ready event; instead, you use the new pageinit event.

<div id="homePage" data-role="page">
 <script type="text/javascript">
 $("#homePage").bind("pageinit", function () { alert("home"); });
 </script>
 ...
</div>

416 PArT III Mobile clients

The difference is that in jQM, Ajax calls are used to silently download requested pages and set up
animations and page transitions. This means that the display of the page (whether a real page or a
virtual page container) follows different rules than in classic jQuery.

In a nutshell, all you need to do is to add a <script> tag within the page element and bind the
<div> that represents the page with the pageinit event. This code is guaranteed to be invoked every
time that page is loaded, whether it was requested following a link or an Ajax call. In pageinit, you
typically register your jQuery plugins and do your initialization work (apply localized strings, set up
controls, and the like). Similar events exist for page display and unload.

header and footer
Two commonly used values for the data-role attribute are header and footer. The header bar contains
the page title and a couple of optional buttons to the left and right (mimicking the iPhone template).
The header role receives a special style by the framework and undergoes some default manipulation.
As a developer, you can completely customize both the header template and text and target of the
buttons. Here’s a sample header bar:

<div data-role="header">
 <h1>Home page</h1>
</div>

In particular, the first heading element (h1 through h6) is used to title the bar; if the content is not
empty, that text also becomes the page title, overriding any value assigned to the <title> element.
The heading element you use to title the header bar doesn’t matter as long as it is an Hx element—
the style applied is the same. If you want to give the page its own title distinct from the header text,
you use the data-title attribute on the page container. The first link found in the header bar is auto-
matically styled as a button and moved to the left.

<div data-role="header">
 <h1>ASP.NET MVC</h1>
 Login
</div>

The second link, instead, is placed to the right. If you want just one button to the right, you add an
extra class attribute, as illustrated in the following:

<div data-role="header">
 <h1>ASP.NET MVC</h1>
 Back
 Login
</div>

The data-icon attribute selects one of the predefined icons in the jQM themes; the ui-btn-right
value moves the button to the right (in the example, it is not strictly needed because the button to

 CHAPTER 12 Making websites mobile-friendly 417

the right is the second.) It is interesting to note that if you use ASP.NET MVC and HTML helpers, the
preceding anchors must be rewritten as demonstrated here (the names of the methods and control-
lers might change):

@Html.ActionLink("Back", "index", "home", null, new {data_icon = "back"})
@Html.ActionLink("Save", "login", "account", null, new {data_icon="gear", @class="ui-btn-right"})

ASP.NET MVC will automatically expand the underscore (_) to the dash (-) symbol and the @ symbol
escapes the word class, which would otherwise have another meaning to the Razor compiler.

Unlike the header, the footer is not designed to simplify a given markup template. However, any
link you place in the footer area is automatically turned into a button and any markup, including form
markup, is acceptable in the footer. In this way, you can place an application bar in the footer or even
a drop-down list to let the user choose, for instance, the language. Note that jQM manages the actual
position of the footer bar. By using the data-position attribute you can keep the position constant to
the bottom of the page, as illustrated here:

<div data-role="footer" data-position="fixed" data-id="about">
 ...
</div>

When the user follows links between pages, jQM applies transitions to the entire page. Sometimes,
you get a smoother effect by keeping the footer still. For this to happen, the footer must be fixed in
both pages making the transition, and in addition, both footers must have the data-id attribute set to
the same (unique) identifier. Figure 12-6 shows a sample page with header, footer, and a placeholder
for the body.

FIGURE 12-6 Header and footer in a jQM template.

418 PArT III Mobile clients

To customize the header template entirely, you add a child <div> to the header block and popu-
late it at will. Keep in mind that in this case you lose automatic manipulation; for example, links dis-
play as plain links. You need the data-role=button attribute to make the transformation.

<div data-role="header">
 <div>

 <h3>Custom templates</h3>
 @Html.ActionLink("Back", "index", "home", null,
 new {data_icon = "back", data_role="button", @class="ui-btn-right"})
 </div>
</div>

Lists, lists, and lists
The home page of most mobile sites should simply provide a list of actions like the classic main menu
of applications of some thirty years ago. You can render the items of the menu in a number of ways;
you can have them form a navigation bar, a button bar, a collection of tiles, or a plain list of nice-
looking links. jQM supports nearly any scenario, but in particular, it is works great with navigation
bars and list views.

The listview role provides the most common UI on mobile devices these days—very close to
iPhone and Android picklists. The following plain HTML code, massaged by jQM, produces the output
of Figure 12-7.

<ul data-role="listview" data-inset="true" data-theme="c" data-dividertheme="a">
 <li data-role="list-divider">Chapter 12
 @Html.ActionLink("Read content", "Content", "Home")
 @Html.ActionLink("Run samples", "Samples", "Home")
 <li data-role="list-divider">General
 @Html.ActionLink("About the author", "About", "Home")
 @Html.ActionLink("About the publisher", "About", "Home")
 @Html.ActionLink("Related books", "About", "Home")

 CHAPTER 12 Making websites mobile-friendly 419

FIGURE 12-7 A jQM list view.

By using variations of the and elements you can create numbered lists as well as nested
lists. Graphical variations include the data-inset attribute responsible for the rounded corners and nice
scaffolding displayed in Figure 12-7 and data-filter to add a search bar with autocompletion of the list
items statically added to the page. (This autocompletion doesn’t entail connecting to a remote service
to download dynamic data.)

You can add icons and images to the list items. Here’s how to add a small icon to the left of the list
item:

 Run samples

420 PArT III Mobile clients

The class ui-li-icon ensures that the image is left-aligned; note that the image element must be a
child of the anchor. Similarly, you can add text to the right of the list item. If you want the text to be
automatically rendered within a bubble, as demonstrated in Figure 12-8, you mark the text with the
ui-li-count class; otherwise, use the ui-li-aside class.

 @Html.ActionLink("Related books", "Related", "Home")
 3

FIGURE 12-8 Showing bubble text in a jQM listview.

Fluid layout
Although having multiple columns in the layout is hardly a great idea in a mobile site, having an easy
way to place a few elements side by side would be really nice. In jQM, you find a very basic but effec-
tive implementation of CSS grids and fluid layouts that automatically adapt to the screen.

 CHAPTER 12 Making websites mobile-friendly 421

The library makes available two main CSS classes: ui-grid and ui-block. The former marks a <div>
(or a <fieldset>) as the container grid, whereas the latter marks a <div> as a child element. The main
CSS classes, however, need a progressive letter to indicate number of cells and position, respectively.
For example, the ui-grid-a class splits each row evenly into two blocks. The first is assigned to the
content referenced by ui-block-a; the second goes to ui-block-b. Here’s an example:

<fieldset class="ui-grid-a">
 <div class="ui-block-a"> First block </div>
 <div class="ui-block-b"> Second block </div>
 <div class="ui-block-c"> Third block </div>
</fieldset>

In this case, we also have a third cell assigned to a grid that can’t host more than two (it splits
50/50 the row width). The net effect is that the third <div> styled as ui-block-c wraps to a second row.
To keep the three child blocks on the same row, you change the grid style to ui-grid-b, which splits
into three even parts (see Figure 12-9). Likewise, ui-grid-c splits into four parts, and ui-grid-d into five
parts.

FIGURE 12-9 Fluid layout with jQM.

422 PArT III Mobile clients

Collapsible panels
Collapsible panels are easy, too, as the following code snippet shows:

<div data-role="collapsible" data-theme="a" data-collapsed="true" data-content-theme="e">
 <h3>See navigation options</h3>
 <div>

 ...

 </div>
</div>

Assigned to a container element, the collapsible role uses the first <Hn> child element to title the
panel and makes everything else collapsible. You can use data-collapsed to decide whether the con-
tent is initially hidden. You use data-content-theme to style the content of the panel and data-theme
to style the header, as depicted in Figure 12-10.

FIGURE 12-10 Collapsible panels with jQM.

By simply surrounding an array of collapsible panels with an outermost container, you can obtain
an accordion widget.

 CHAPTER 12 Making websites mobile-friendly 423

<div data-role="collapsible-set">
 <div data-role="collapsible">
 ...
 </div>
 <div data-role="collapsible">
 ...
 </div>
 ...
</div>

By placing style attributes on the parent container, all panels are styled the same. Otherwise, you
can style each panel individually.

Mobile frameworks
The jQM library has been the first framework for mobile programming to appear. At first, it
gained the reputation of being slow, and this caused developers to explore other options and
vendors to propose new frameworks. Over the course of a few versions, jQM has become more
usable and just represents one option.

The fact is, even though vanilla JavaScript is always an option—and likely the most compact
and fastest option—you probably need to look around for some framework to keep users
happy with a nicer UI and UX. If you don’t use jQM, where else can you turn?

An interesting option is Twitter Bootstrap. Even though this framework is not specifically
designed for mobile scenarios, it offers excellent capabilities when it comes to fluid layouts and
incorporates several jQuery plugins to implement quickly many of the jQM features. On the
other hand, Bootstrap has an overall nimbler structure.

By contrast, Kendo UI is a fully-fledged framework for mobile devices developed based on
HTML5 and designed from the ground up to produce high-quality and nifty UIs for different
classes of devices. Similar in these goals is Sencha. And, the list of new frameworks grows big-
ger every day.

If you’re a bit confused, don’t worry: you’re not alone. In general there’s no clear winner
here. If you find that a given framework works well for you, just stick with it. On the other hand,
if the framework you’re using doesn’t work that well, you can easily find a better one just wait-
ing for you to download it.

Twitter Bootstrap at a glance
All websites today are expected to be responsive—at least responsive to changes in the width of the
host screen. As a member of a development team, you can achieve this in two main ways: You can just
order an HTML responsive template from a vendor (and be transparent to implementation details),
or you can do in-house development of the template. In the latter case, which framework would you
use? Bootstrap is probably the first framework that you should consider, but it’s not the only one.

424 PArT III Mobile clients

Other equally popular and effective responsive frameworks are Foundation (http://foundation.zurb.
com), Skeleton (http://getskeleton.com), and Gumby (http://www.gumbyframework.com). You can find
a quick guide to CSS responsive frameworks and custom development approaches at http://mashable.
com/2013/04/26/css-boilerplates-frameworks.

Bootstrap is quickly becoming the de facto standard in modern web development, especially now
that Visual Studio 2013 incorporates it in the default template for ASP.NET MVC applications. With
Bootstrap, you can easily arrange the UI of webpages, make them responsive, and provide ad-
vanced navigation and graphical features. Bootstrap essentially consists of a CSS file and an optional
JavaScript file. Applied to HTML page elements, Bootstrap’s CSS classes change the appearance of the
current DOM and, more than everything else, your code will still look like plain HTML. As an added
bonus, for most tasks you don’t even need additional JavaScript.

Setting up Bootstrap
Bootstrap is articulated in modules and was originally developed as a collection of LESS files. You have
essentially a LESS file for each module the Bootstrap framework is made of: forms, buttons, naviga-
tion, dialogs, and so forth. A LESS file is an abstraction over plain CSS syntax that makes it possible for
you to declare how a CSS file will ultimately be. You can consider LESS as a programming language
that when compiled, produces CSS. For this reason, with LESS, you can use variables, functions, and
operators—wildly streamlining the process of creating large and complex CSS stylesheets.

By making changes to the original LESS file, as a developer you can customize Bootstrap at will. If
you don’t feel comfortable with the LESS syntax, you can still apply light forms of customization to
Bootstrap by using a configuration engine. If you’re OK with the Bootstrap internals and only want to
minimize the download, you can pick up the CSS file from the central GitHub repository, selecting just
the modules in which you’re interested. You can download Bootstrap from http://getbootstrap.com.

Recently, Twitter released version 3.0 of Bootstrap, which introduces some new elements but also
changed the behavior of existing styles. If you have a Bootstrap 2.x site, have a look at the migra-
tion guide on http://getbootstrap.com before you leap; in general you might expect some breaking
changes.

To begin with Bootstrap, you just add the following to the <head> section of an empty HTML
page:

<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link href="bootstrap.min.css" rel="stylesheet" media="screen">

The viewport meta tag sets the width of the browser viewport to the actual device width and sets
zoom level to normal. The <link> element just brings in the minified version of the Bootstrap style
sheet. You are expected to download the Bootstrap CSS files from http://getbootstrap.com or link it
from a known content delivery network (CDN).

<link rel="stylesheet"
 href="//netdna.bootstrapcdn.com/bootstrap/3.0.0/css/bootstrap.min.css">

http://foundation.zurb.com
http://foundation.zurb.com
http://getskeleton.com
http://www.gumbyframework.com
http://mashable.com/2013/04/26/css-boilerplates-frameworks
http://mashable.com/2013/04/26/css-boilerplates-frameworks
http://getbootstrap.com
http://getbootstrap.com
http://getbootstrap.com

 CHAPTER 12 Making websites mobile-friendly 425

You also need to link the jQuery library. This is enough for having a responsive template with no
additional features such as drop-down menus or pop-up dialog boxes. If you intend to bring in some
of the most advanced features that require client-side scripting, you should also add the Bootstrap.js
file that you can find in the download. If you picked up a special Bootstrap theme, add the CSS file to
the page, too. You can find free Bootstrap themes at http://wrapbootstrap.com/themes.

Keep in mind that Bootstrap is not supported in the old Internet Explorer compatibility mode.
The best way to ensure that your pages are being viewed in the best possible rendering mode under
Internet Explorer is to add the following <meta> tag in your pages:

<meta http-equiv="X-UA-Compatible" content="IE=edge">

CSS classes of Bootstrap make use of the latest CSS features (such as rounded corners) that might
not be available on older browsers. A good example of an older browser that is partially supported by
Bootstrap is Internet Explorer 8.

The grid system
Responsiveness in Bootstrap is achieved through a few breakpoints. The first breakpoint is placed
at 480 pixels, which is considered the default. Other breakpoints are at 768 pixels (mostly tablets), at
992 pixels for desktops, and over 1,200 pixels for large screens. Any content in Bootstrap is usually
laid out according to the following schema:

container > row > span

Each of the words above refers to a Bootstrap class name you typically apply to a <div> element.
In particular, container manages the width of the page and padding. The row style ensures that the
content is placed within the same row and multiple rows are stacked up vertically. Without a row ele-
ment, any content within the container will flow horizontally and wrap to the next line when the end
of the screen is reached. Finally, the span style identifies monolithic blocks of content within a row. In
general, if you choose a combination different from container-row-span, results might be unpredict-
able. However, if you can manage to get exactly what you want, don’t be worried if it doesn’t fit the
suggested relationship.

<div class="container">
 <div class="row">
 ...
 </div>
 <div class="row">
 ...
 </div>
</div>

http://wrapbootstrap.com/themes

426 PArT III Mobile clients

The content of a row is subject to a fluid grid system that scales up to 12 columns as the device
size grows. You use the col-md-N style for a row cell, where N is the number of cells in the grid to be
used. In addition, you can use columns of different sizes using styles such as col-lg-N (large screens),
col-sm-N (tablets), and col-xs-N (smartphones). Here’s an example:

<div class="container">
 <div class="row">
 <div class="col-md-3">
 </div>
 <div class="col-md-3">
 </div>
 <div class="col-md-3">
 </div>
 </div>
</div>

The preceding code snippet creates a block element with three <div> elements laid out horizon-
tally to take up evenly the entire space. Content within each <div> is centered in the available space.

Navigation bars
You can easily turn a <div> element into a navigational bar by using the nav base class followed by
more specific styles. Here’s how to create a top-level tab menu.

<ul class="nav nav-tabs">
 <li class="active">One
 Two
 Three

Accessory styles are nav-tabs, nav-pills, nav-stacked, and nav-justified. They end up producing
graphical effects such as pills (equally spaced buttons), vertically stacked blocks, and horizontally
centered blocks.

The navbar style generates a responsive navigation header for the website—something very
similar to the classic toolbar. Quite interesting, Bootstrap navbars are initially displayed in a col-
lapsed state in small views and stretch horizontally when there’s enough room and the viewport size
increases. All of this behavior is automatic and built in to the Bootstrap CSS. If you’re not convinced
yet, consider that this style gives you (for free) the typical behavior of a horizontal menu that col-
lapses to a few vertical lines and expands back when the size of the host windows can accommodate
that. Likewise, you can easily fix the position of the navbar at the top or bottom of the page by simply
using the additional navbar-fixed-top or navbar-fixed-bottom styles.

Sometimes, the navigation bar is used to host the logical path of the page within the application’s
tree. This is called a breadcrumb in Bootstrap. Here’s the code you need:

<ol class="breadcrumb">
 One
 <li class="active">Two
 Three

 CHAPTER 12 Making websites mobile-friendly 427

The final output is a string of markup that automatically includes links and separators. You don’t
have to spend a line of script or markup to complete the rendering.

Finally, as far as the top of the page is concerned, you can also use the page-header style. It is a
basic wrapper for the <h1> markup element and recognizes the <small> element within the content.
The nice effect is that the child small text is automatically styled differently to reflect a lower-level
heading.

Embellishing the UI with icons and images
The zipped file that contains the Bootstrap files also includes a directory full of glyph icons licensed
free from http://glyphicons.com. You can use these icons in any place where markup is expected; you
don’t need an element. Most typically, you wrap glyphs in a tag set and combine that
with some free text, as shown here:

 Tools

The effect of the markup is to show the wrench glyphs followed by the text “Tools”. You can use
that within a <div> element and easily style the container as a button. It is important to notice that
you need to specify two classes: the base glyphicon class followed by the specific class that identifies
just the icon you want.

In a responsive template, images are a bottleneck in the sense that they might be too large for
some screen sizes and hit the bandwidth. In addition, when too large, images can be cut off the
screen and provide a poor UI. In Bootstrap 3, you can easily make an tag responsive by doing
nothing more than adding the img-responsive class.

The effect is that the following styles are added:

max-width: 100%;
height: auto;

In this way, the image scales nicely to the size of the parent element. Be aware that this trick is not
helpful with the download. It only ensures that the images are rendered nicely and properly shrunk;
however, the size of the downloaded image is always the same.

Drop-down menus
Drop-down menus are nothing new in computer UIs, but they only recently started becoming com-
mon in webpages. HTML—and not even the latest HTML5—has no syntax element that can be used
to produce drop-down menus when buttons are clicked. You can accomplish this by using a mix of
everything: CSS, ad hoc markup, and jQuery plugins. With Bootstrap 3, all of these nitty-gritty details
are completely hidden from view. The code that follows shows the markup you need in a webpage to
place a button and attach a drop-down menu to it.

http://glyphicons.com

428 PArT III Mobile clients

<div class="dropdown">
 <button data-toggle="dropdown">Actions</button>
 <ul class="dropdown-menu" role="menu">
 <li role="presentation">
 One
 <li role="presentation">
 Two
 <li role="presentation">
 Three
 <li role="presentation" class="divider">
 <li role="presentation">
 Four/a>

</div>

As you can see, all of the markup is wrapped in a <div> element styled by the dropdown class.
Defined in the Bootstrap CSS file, the class prepares the ground for actual UI and associated behavior.
In a way, you could rewrite the entire preceding HTML markup by using some pseudo-markup, as
illustrated in the following:

<dropdown>
 <trigger>Actions</trigger>
 <dropdown-menu>
 <menuitem href="#">One</menuitem>
 <menuitem href="#">Two</menuitem>
 <menuitem href="#">Three</menuitem>
 <menudivider />
 <menuitem href="#">Four</menuitem>
 </dropdown-menu>
</dropdown>

All a developer needs to do is to define the target URLs and the code behind them. It can be a
hash tag to some internal HTML element or it can be a pointer to some JavaScript code or external
URL. Figure 12-11 shows the effect of the drop-down markup.

FIGURE 12-11 A drop-down menu associated with a button.

 CHAPTER 12 Making websites mobile-friendly 429

There are many other aspects of the drop-down menu that you can customize. For example, you
can add a sort of comment line between clickable menu items. All you need to do is define a regular
 element and assign it the dropdown-header class.

<li role="presentation" class="dropdown-header">Special actions

You can disable a menu item by styling the corresponding element with the disabled class, as
demonstrated here:

<li role="presentation" class="disabled">
 Four/a>

To trigger the menu, you need a <button> or an <a> element configured with the data-toggle
attribute set to the dropdown value. In Bootstrap, you use the data-toggle attribute for requesting
click behavior on some elements. The value of the attribute is one of a few predefined keywords that
basically instruct the framework to select a particular jQuery plugin which will actually do the dirty
work. You use the keyword “dropdown” if you want a drop-down behavior accomplished through the
dropdown jQuery plugin.

Button groups
More often than not, a webpage needs to display several buttons that are somewhat related. You can
certainly treat buttons individually and style them as you prefer. However, a few years ago, the iOS UI
introduced the concept of segmented buttons; now, segmented buttons are, if not a must, a feature
that’s desirable to have on board. A segmented button is essentially a group of buttons acting indi-
vidually but rendered as a single strip of buttons. The nicest effect is that the first and last button of
the strip have rounded corners, whereas middle buttons are fully squared. In Bootstrap, you use the
following HTML-based markup:

<div class="btn-group">
 <button type="button" class="btn btn-success">Agree</button>
 <button type="button" class="btn btn-default">Not sure</button>
 <button type="button" class="btn btn-danger">Disagree</button>
</div>

As you can see, there’s really little more than just a few distinct buttons, each with its own click
handler added either explicitly through the onclick attribute or unobtrusively via jQuery. To have a
button group, all you need to do is wrap the list of buttons with a <div> element styled as btn-group.
Figure 12-12 shows the effect.

FIGURE 12-12 The HTML counterpart of iOS segmented buttons.

430 PArT III Mobile clients

Each button is styled individually through the btn class; you can add additional attributes through
the btn-xxx classes that affect the background color: success, danger, warning, info. You can control
the size of buttons in the group with an additional class: btn-group-lg, btn-group-sm or btn-group-xs.
By default, buttons are stacked horizontally. To stack them vertically, you just use the btn-group-
vertical class. You can place multiple groups side by side by wrapping them in a button toolbar:

<div class="btn-toolbar">
 <div class="btn-group">...</div>
 <div class="btn-group">...</div>
 <div class="btn-group">...</div>
</div>

Finally, you can nest button groups. Nesting makes particular sense when one group is rendered as
a drop-down list. Here’s an example:

<div class="btn-group">
 <button type="button" class="btn btn-default">One</button>
 <button type="button" class="btn btn-default">Two</button>
 <div class="btn-group">
 <button type="button" class="btn dropdown-toggle" data-toggle="dropdown">
 Numbers

 </button>
 <ul class="dropdown-menu">
 1
 2
 3

 </div>
</div>

The first two items in the group are plains buttons, followed by a nested group. The button group
is made of a button with an attached drop-down menu. Of interest, the button features a caret seg-
ment that visually implies the message that there are more options to see. The class caret assigned to
a element within a button renders a down arrow similar to that of classic Windows drop-
down arrows.

Note Bootstrap has many more features than discussed here. To find out more, visit http://
getbootstrap.com.

Adding mobile capabilities to an existing site

The most important task when planning a mobile site is selecting use-cases. It doesn’t mean, however,
that use-case selection is unimportant when developing full sites or other types of applications. It’s
just that a mobile application and site are structurally built around a few (and well-chosen) use-cases.
Sometimes, even if you simply pick up a use-case from the existing desktop site, the way in which you

http://getbootstrap.com
http://getbootstrap.com

 CHAPTER 12 Making websites mobile-friendly 431

implement it for a mobile audience might require significant changes—possibly a different UI and
perhaps even a different workflow. RWD is not always as powerful as you need it to be when it comes
to serving completely different views to mobile users.

So, more often than many seem to think, it turns out that you need to have one set of pages for
full browsers and then multiple sets of pages for each class of mobile devices that you support. Really,
the desktop becomes the special case. How would you manage to make these multiple sets of pages
look like a single site? In Chapter 13, I discuss the native tools that ASP.NET MVC makes available to
route users to specific views depending on the requesting device.

Sometimes, though, it is simpler to build a separate website designed from the ground up for a
mobile audience and then link the two sites together by using HTTP modules and cookies.

routing users to the correct site
Because you now have two distinct sites, you now need an automatic mechanism to switch users
to the appropriate site based on the capabilities of the requesting device. If the host name belongs to
the desktop site and the requesting browser is detected to be a desktop browser, everything works as
expected. Otherwise, the user should be presented with a landing page on which she will be informed
that she’s trying to access a desktop site with a mobile device. The user is given a chance to save her
preference for future similar situations. The preference is stored to a cookie and checked next.

The routing algorithm
If the request refers to a URL in the mobile site and the user seems to have a desktop browser,
consider showing another landing page rather than simply letting the request go as usual. Finally, if
a request is placed from a mobile device to the mobile site, it will be served as expected; namely, by
looking into the device capabilities and determining the most appropriate view. Figure 12-13 presents
a diagram of the algorithm.

FIGURE 12-13 The desktop/mobile view switcher algorithm.

432 PArT III Mobile clients

Note It’s always a mistake to assume a one-to-one correspondence between desktop and
mobile pages. This might happen, but it should not be considered a common occurrence.
By saying “page correspondence,” I simply mean that both applications can serve the same
URL; I’m not implying anything about what each page will actually serve.

How would you implement the algorithm depicted in Figure 12-13?

Implementing the routing algorithm
In ASP.NET, the natural tool to implement this routing algorithm is by using an HTTP module that is
active on both sites and capturing the BeginRequest event. The module will use plain redirection or, if
possible, URL rewriting to change the target page, as appropriate.

Here’s some code that implements the aforementioned algorithm in the desktop site:

public class MobileRouter : IHttpModule
{
 private const String FullSiteModeCookie = "FullSiteMode";
 public void Dispose()
 {
 }
 public void Init(HttpApplication context)
 {
 context.BeginRequest += OnBeginRequest;
 }

 private static void OnBeginRequest(Object sender, EventArgs e)
 {
 var app = sender as HttpApplication;
 if (app == null)
 throw new ArgumentNullException("sender");

 var isMobileDevice = IsRequestingBrowserMobile(app);

 // Mobile on desktop site, but FULL-SITE flag on the query string
 if (isMobileDevice && HasFullSiteFlag(app))
 {
 app.Response.AppendCookie(new HttpCookie(FullSiteModeCookie));
 return;
 }

 // Mobile on desktop site, but FULL-SITE cookie
 if (isMobileDevice && HasFullSiteCookie(app))
 return;

 CHAPTER 12 Making websites mobile-friendly 433

 // Mobile on desktop site => landing page
 if (isMobileDevice)
 ToMobileLandingPage(app);
 }

 #region Helpers
 private static Boolean IsRequestingBrowserMobile(HttpApplication app)
 {
 return app.Context.Request.IsMobileDevice();
 }

 private static Boolean HasFullSiteFlag(HttpApplication app)
 {
 var fullSiteFlag = app.Context.Request.QueryString["m"];
 if (!String.IsNullOrEmpty(fullSiteFlag))
 return String.Equals(fullSiteFlag, "f", StringComparison.
 InvariantCultureIgnoreCase);
 return false;
 }

 private static Boolean HasFullSiteCookie(HttpApplication app)
 {
 var cookie = app.Context.Request.Cookies[FullSiteModeCookie];
 return cookie != null;
 }

 private static void ToMobileLandingPage(HttpApplication app)
 {
 var landingPage = ConfigurationManager.AppSettings["MobileLandingPage"];
 if (!String.IsNullOrEmpty(landingPage))
 app.Context.Response.Redirect(landingPage);
 }
 #endregion
}

After it is installed on the desktop site, the HTTP module captures every request and checks the
requesting browser. If the browser runs within a mobile device, the module redirects to the specified
landing page. The landing page will be a mobile-optimized page that basically offers a couple of links
to the home of the desktop site and to the home of the mobile site. Figure 12-14 shows a sample
landing page as viewed on an old Android 2.2 device.

434 PArT III Mobile clients

FIGURE 12-14 The landing page of a sample mobile site, viewed on an Android 2.2 device.

Tracking the chosen route
If the user insists on viewing the full site, you can’t simply redirect to the plain home page. By its na-
ture, the HTTP module will intercept the new request and redirect again to the mobile landing page.
From the landing page, you can simply add a specific query string parameter that the HTTP module
will detect on the successive request. Here’s the actual link that results in Figure 12-14:

Full site

You are responsible for defining the query string syntax; in this case, m stands for mode and f for
full. The task is not finished yet, though. At this point, users navigate to the home page of the site.
What about any other requests? Those requests, in fact, will be intercepted by the HTTP module. By
adding a cookie, you can provide additional information to the HTTP module about requests deliber-
ately sent to the desktop site from a mobile device.

How can the user switch back to the mobile site? Ideally, any desktop site with a sister mobile site
should offer a clearly visible link to switch to the mobile version (and vice versa when the full site is
viewed on a mobile device). If not, the user won’t be offered a chance to choose the full or mobile site
until the cookie expires or is cleared. To clear cookies, users deal with the Settings page of the mobile
browser.

 CHAPTER 12 Making websites mobile-friendly 435

Tweaking the configuration files
Where do you place the landing page? Is it on the desktop or on the mobile site? In general, it doesn’t
matter; however, if you put it on the mobile site, you really can enable a scenario in which you deploy
a mobile site with all the required routing logic without touching the codebase of the existing desk-
top site.

However, the desktop site needs some changes in its configuration. In particular, you edit the
web.config file of the desktop site and deploy a library with the HTTP module in the Bin folder. No
changes should be made to the source code. Here’s the configuration script to add a router HTTP
module to the desktop site:

<system.webServer>
 <modules>
 <add name="MobileRouter" type="..." />
 </modules>
 ...
</system.webServer>

Keep in mind that the welcome page should always be visible, and it never should need authen-
tication. Depending on how you deploy the mobile site—a distinct root site/application or a child
application/directory—you might need to tweak the web.config file of the mobile site to turn off the
HTTP module. If the mobile site is a distinct application, it needs its own web.config file that has been
fully configured with the HTTP module. However, if the mobile site is hosted as a child directory in the
desktop site, it inherits the configuration settings of the parent site (the desktop site), including the
HTTP module. To speed up requests, you might want to disable the HTTP module in the mobile site.

Following is the configuration script that you need in the mobile site’s web.config file. The script
clears the list of HTTP modules required by the mobile site.

<system.webServer>
 <modules>
 <clear />
 </modules>
 ...
</system.webServer>

In addition, you need to instruct the parent application/site explicitly to stop the default inheritance
chain of settings. Here’s what you need:

<location path="." inheritInChildApplications="false">
<system.webServer>
 <modules>
 <add name="MobileRouter" type="..." />
 </modules>
 ...
</system.webServer>
</location>

436 PArT III Mobile clients

Also, notice that when the mobile site is a child application/directory, it inherits a bunch of settings
(for the section where inheritance is not turned off) that don’t need to be repeated (for example, con-
nection strings and membership providers).

Note This example is based on the default Internet Information Services (IIS) 7.5 configura-
tion, integrated pipeline mode. If you’re using the classic pipeline mode, instead of system.
webServer/modules, you should operate on the system.web/httpModules section.

From mobile to devices
Until a couple of years ago, websites were for desktop browsers or mobile browsers. The term “mo-
bile,” however, is progressively losing focus. Does mobile refers to smartphones or tablets, or both?
And, what about minipads or large smartphones? How about regular cell phones? Smart TVs? The
point is that you really need to start thinking in terms of multiple devices and decide whether your
RWD gives you all that you need or you need to look elsewhere for more powerful device detection.
In light of this, adding a single “mobile” site to an existing desktop site tastes like a temporary or just
patched solution.

Reasonably, you should split the term “mobile” at least into two categories: smartphones and tab-
lets. Having other categories such as large screens (for instance, smart TVs) and legacy, old-fashioned
phones is also recommended but not strictly needed in just any application.

If you opted for a mobile site bolted on an existing desktop site, does this mean that you need
to have two or three additional sites? When support for multiple classes of devices cannot be further
delayed, you should look into multidevice design. Conceptually, it shares some aspects with RWD; in
particular, it pushes the idea of a single back end and a single URL to invoke. Yet, at a deeper look,
multidevice design is different from RWD because it pushes the use of different views for different
classes of devices. A view is not simply a different CSS file, but it encompasses different markup and
script, as well.

Multidevice doesn’t mean you are going to create a different UI for each device; and it doesn’t
mean that you must be responsible for the identification of a given device. Classes of devices (smart-
phones, tablets, large screens) are nearly the same as the breakpoints in RWD. Feature detection
needs to happen, but on the server side with some help from ad hoc tools such as device description
repositories (DDR). Chapter 13 covers this in greater detail.

 CHAPTER 12 Making websites mobile-friendly 437

Summary

The challenge I see these days is how we can find a programming paradigm that weds mobile needs
with desktop needs. Many efforts are focused on making mobile look and behave like the desktop.
I’m not sure this is the right way of approaching mobile development.

Let’s even assume that in, say, five years, we end up with even more powerful devices than today;
this won’t change the basic characteristics of a mobile device, though, which will likely remain smaller
and less powerful than a laptop. In addition, businesswise, there’s the problem of the long-tail to ad-
dress. How many devices do you lose along the way (possibly leaving them to your competitors) by
addressing only the high-end devices?

Although several solutions are possible to make a website device-friendly, the main route passes
through an architecture that serves different views for different classes of devices. Sometimes, differ-
ent views can be simply obtained by changing a CSS file; sometimes this is not sufficient, and different
markup and script is required. In the former case, RWD and client-side feature detection is a great
option. Otherwise, you need to implement server-side feature detection, but possibly by using smart
tools and not handmade code.

In this chapter, we covered the basics of what you need to make your webpages responsive to
different browser window sizes. We covered HTML5, the foundation of responsive web design, and
Twitter Bootstrap as one of the most common ways to create a responsive experience on websites.
Furthermore, we looked into jQuery Mobile as a sample JavaScript framework for mobile views.

 439

C H A P T E R 1 3

Building sites for multiple devices

The future belongs to those who prepare for it today.
—Malcolm X

I predict that within a couple of years any website that is not easy to consume by mainstream devices
will suffer a significant drop in traffic. I deliberately used the term “mainstream device” here instead

of a more specific term like tablet or smartphone just to give a measure of how fluid the situation is:
nobody knows exactly which devices might show up and enjoy widespread adoption in a couple of
years.

Beyond predictions, however, one thing is a certainty: Cell phones are a thing of the past. They’re
as modern as a dinosaur can be. The definition of smartphones is changing, too, and devices only two
years old are already significantly different in terms of capabilities and power from the latest genera-
tion. In this context, nobody can reasonably afford to stick to Web Forms websites that are stretched
into the device viewport and that require users to zoom in and out to read and follow links.

How should you approach the task of creating websites that look great and are highly usable on a
broad range of devices?

There are two main schools of thought. Some claim that you should always focus on the features
that the device actually exposes. Called feature-detection, this approach is inherently client-side and
uses cascading style sheets (CSS)/JavaScript frameworks to decide which layout is more appropriate
for the requested page. Also related to client-side feature detection is Responsive Web Design (RWD),
a popular design methodology that pushes liquid layouts which take advantage of advanced CSS
capabilities to flow pieces of content into the available space.

At the other extreme of the scale, there are server-side folks. They prefer to sniff the user agent
string sent by the device’s browser and figure out statically some of the capabilities the detected
device is known to have. Then, based on this information a server-side solution can intelligently serve
ad hoc markup, tailor-made for the requesting device.

RWD is a good approach; server-side is a good approach. You can use both to work out solutions;
sometimes a mix of the two is even more powerful. Supporters of the client-side solution definitely
scream louder than supporters of the server-side approach. This has attracted more and more people
who seem to have bought the argument that feature-detection is smarter and quicker than any
search in an unmaintainable mess of weird user agent strings.

www.SoftGozar.com

440 PArT III Mobile clients

Overall, I believe that the pros of RWD are well understood and cons of RWD are being mitigated
by additional frameworks that show up every day. However, I also believe that the pros of server-side
solutions are not really understood and the alleged cons are children of a previous and completely
bygone software age—the age of the desktop-browser wars.

In this chapter, I aim at presenting the pros and cons of a server-side feature-detection approach
and the additional (and not free of charge) tools you might need to use to implement it.

Understanding display modes in ASP.NET MVC

For years a webpage has always been just a webpage. If, for instance, a user requested default.
aspx, she just got the content computed for default.aspx, usually regardless of the capabilities of the
requesting browser. This more or less worked as long as requesting browsers were all fitting into the
same class: desktop browsers. There might be slight (and annoying) rendering differences between
different versions of desktop browsers, but by using a bit of jQuery and some forks in the HTML,
we all worked around it for years. The advent of HTML5 added another level of differences beyond
markup: functionality. Thankfully, libraries such as Modernizr came to the rescue, helping with the
detection of some functionality and providing an infrastructure for shims.

Supporting multiple devices (and not just desktop browsers) is a different problem, though.

Multiple devices mean that requesting browsers can be of significantly different types because
they might be mounted on smartphones, tablets, smart TVs, very large screens, or very small screens.
It’s not simply a matter of adapting the same content to render in the best possible way; it becomes a
matter of adapting both content and behavior to completely different types of devices and possibly
implementing a different set of use-cases.

In a multidevice scenario, the aforementioned default.aspx page explodes into a slew of pages
such as default.smartphone.aspx, default.tablet.aspx, and so forth. Each logical page might therefore
display in several ways according to user-defined rules.

Display modes form the infrastructure in ASP.NET MVC to effectively address multiple views for a
single logical page.

Separated mobile and desktop views
Even though I’m a firm believer that there can’t be any magic in software, I have to say that I faced
some terrible doubts when I went through the following steps and met ASP.NET MVC display modes.

Built-in support for mobile views
In ASP.NET MVC, you now experience an interesting feature that apparently works as a result of pure
magic. Suppose that you have a HomeController class with a plain simple Index method, such as that
shown here:

CHAPTER 13 Building sites for multiple devices 441

public class HomeController : Controller
{
 public ActionResult Index()
 {
 var model = ProcessRequestAndGetData();
 return View(model);
 }
}

Chapter 2, “ASP.NET MVC views,” points out that a file named index.cshtml located in the Views/
Home folder in the project provides the HTML for the browser to render.

You now add a view file to the Views/Home folder and name it index.mobile.cshtml. You can give
this file any content you like; just ensure that the content is different from the aforementioned index.
cshtml. Now, launch the sample site and visit it with a regular desktop browser (for example, Microsoft
Internet Explorer) and a mobile browser. You can use the Windows Phone emulator or perhaps Opera
Emulator. Quite surprisingly, the view you get for the home/index URL is the mobile view as coded in
the file index.mobile.cshtml.

Note Overall, the simplest thing you can do to test the feature without much pain is to
press F12 in Internet Explorer to bring up the Developer Tools window. From there, you set
a fake user agent that matches a mobile device. If you are not sure about what to enter,
here’s a suggestion that matches an iPhone running iPhone OS 6: Mozilla/5.0 (iPhone; CPU
iPhone OS 6_0 like Mac OS X) AppleWebKit/536.26 (KHTML, like Gecko).

What’s going on here? How is all this possible?

Default configuration for mobile views
Let’s step through the code of ASP.NET MVC. From the View method invoked in the controller’s method,
the code flow reaches the RazorViewEngine class in all cases in which CSHTML views are used. In ASP.
NET MVC, all predefined view engines inherit from the same class: VirtualPathProviderViewEngine.
This class has a protected property named DisplayModeProvider of type DisplayModeProvider. The
view engine receives the name of the view as set at the controller level: it can be a name such as “in-
dex” or it can be the empty string, as in the preceding example. If no view name is provided, the view
engine assumes that it is the name of the action.

In the VirtualPathProviderViewEngine base class, from which both WebFormsViewEngine and
RazorViewEngine inherit, during the resolution of the view name, the view engine queries the
DisplayModeProvider object to see if any of the registered display modes can be applied to the
requested view.

Each display mode is characterized by a suffix string, such as “mobile”. If a match is found between
the suffix string and an existing view name, the original view name is changed to point to the CSHTML
file that represents the match. So, for instance, it can happen that “index” becomes “index.mobile” if
such a view file exists in the project.

www.SoftGozar.com

442 PArT III Mobile clients

It turns out that by default DisplayModeProvider holds two predefined display modes: default and
mobile. The default display mode is characterized by the empty string; the mobile display mode is
characterized by the “mobile” string. These strings basically identify the suffix appended to the view
name. This is where the file name index.mobile.cshtml comes from.

rules for selecting the display mode
At the end of the day, the display mode provider is the internal component that decides about the
actual view that the view engine needs to render. It receives the view name set at the controller
level and decides whether to replace it with the name of a device-specific view, if any. The question
is: which logic is driving the choice? By default, the display mode provider can choose between the
regular desktop view and the mobile view. But, what determines the best choice?

Naming a display mode
In ASP.NET MVC, a display mode is represented by an instance of a class named DefaultDisplayMode.
Here’s the definition of the mobile display mode:

var mobileMode = new DefaultDisplayMode("mobile") {
 ContextCondition = context => context.GetOverriddenBrowser().IsMobileDevice
};

A display mode class is built around two main pieces of information: suffix name and matching
rule. In the preceding code snippet, a new display mode class is created with the suffix of “mobile”
and a matching rule assigned to the ContextCondition property.

The display mode name can be any string that uniquely identifies the particular view you want
your site to support. By convention, the empty string identifies the default view—mostly, but not nec-
essarily the desktop view. By default, the mobile view identifies any other requesting browser whose
user agent string can be matched to a mobile device by using some internal ASP.NET logic.

It should be noted that under the umbrella of the mobile display mode fall any sort of non-
desktop device, including old-fashioned legacy cell phones, the newest smartphones, tablets, mini-
pads, and so forth. Also, the mobile display mode doesn’t distinguish between operating systems. In
this regard, an iPhone device is completely indistinguishable from an Android device, and a device
with Android 2.1 is treated the same as an Android 5.0 device.

This is precisely the area where you want to intervene with some deep customization to tailor-
make the markup being served to devices.

www.SoftGozar.com

 CHAPTER 13 Building sites for multiple devices 443

The matching rule
The DefaultDisplayMode class has a property named ContextCondition that you use to examine the
context of the request and match it to one of the supported display modes. The ContextCondition
property is a delegate defined as shown in the following:

Func<HttpContextBase, Boolean>

The purpose of the delegate is to analyze the HTTP context of the current request and return a
Boolean answer to the following question: should this display mode be used to serve the current re-
quest? How the Boolean response is found is entirely up to the implementation of the matching rule.

In ASP.NET MVC, the default implementation of the mobile display mode parses the user agent
string that comes with the request and seeks to find known keywords that would mark the request
originator as a mobile device.

Note In the end, it turns out that the name of the DefaultDisplayMode class is a bit mis-
leading. That’s just the class that defines a display mode. As I see things, the “Default” prefix
in the name is just out of place.

Adding custom display modes
Display modes are a truly powerful feature, but you get the most out of it only when you wipe out the
default configuration and create your own. To begin, and to become familiar with the API, let’s first
see how you list existing display modes.

Listing current display modes
You hardly have the need to do this in code, but I encourage you to try it out for pure fun. Here’s the
code that reads and displays the currently available modes:

 @{
 foreach(var d in DisplayModeProvider.Instance.Modes)
 {
 @(String.IsNullOrEmpty(d.DisplayModeId) ?"default" :d.DisplayModeId)
 }
 }

You use the Instance static member to access the singleton instance of the DisplayModeProvider
class and flip through the Modes property. Figure 13-1 shows the sample page when a mobile and
desktop user agent string is selected through the Internet Explorer Developer’s toolbar.

444 PArT III Mobile clients

FIGURE 13-1 The sample ASP.NET MVC application choosing between desktop and mobile views of a given page.

Modern websites need more than just a mobile/desktop dichotomy for selecting views. Most likely,
you will want to distinguish tablets, smartphones, legacy phones, and perhaps smart TVs. Sometimes,
a simple CSS manipulation is enough to give you the output you need. This is where RWD is up to the
task. Sometimes, however, you need to do server-side detection of the device via its provided user-
agent string.

Going beyond the default configuration
Even if a plain desktop/mobile dichotomy works for your site, you should note that the logic behind
the default mobile context condition is weak and flaky. It has good chances to work with iPhone and
BlackBerry devices, but it might not even work with Windows Phone and Android devices, let alone
with older and simpler devices. The IsMobileDevice method that you saw referenced a while back
does sniffing of the user agent string based on the information it can find in the .browser files that are
installed with ASP.NET, which are illustrated in Figure 13-2.

The model is clearly extensible and you can add more information at any time; but writing a
.browser file might not be easy, and the burden of testing, checking, and further extending the data-
base is entirely on your shoulders.

If you compare the content of Figure 13-2 with the content of the same folder you might have on
your Internet Information Services (IIS) computer, you might notice some differences. In particular,
the folder in the figure includes a fairly large (18 MB) browser file—an XML file actually—named
mobile.browser. That file comes from an old, discontinued Microsoft project and contains a reason-
able amount of devices as of the summer of 2013. (See mdbf.codeplex.com.) All devices and browsers
which came next are not correctly detected.

http://mdbf.codeplex.com

 CHAPTER 13 Building sites for multiple devices 445

FIGURE 13-2 The list of browser configuration files you get out of the box with a clean installation of ASP.NET on
a server computer.

Curiously, no changes occurred to the ASP.NET MVC infrastructure to address this point more
specifically. In the end, display modes are an excellent piece of infrastructure but require a bit of work
on your end for configuration and additional tools to carry out view routing work effectively. More
important, to make ASP.NET MVC sites mobile-friendly, you need to pick up an external framework to
help with device detection. (I’ll return to this point in a moment.)

Defining custom display modes
You use display modes to give your site multiple views in front of the same URL. More concretely, this
mostly means defining a display mode for each device or class of devices in which you’re interested.
You could create an iphone display mode, for example. Likewise, you could create a tablet display
mode. In general, display modes are incredibly useful to create mobile-specific views, but they are
just a tool to create specific views to be applied whenever a Boolean condition applied to the HTTP
context evaluates to true. Here’s some code that defines some custom display modes and replaces the
default configuration:

var modeTablet = new DefaultDisplayMode("tablet")
{
 ContextCondition = (c => IsTablet(c.Request))
};

446 PArT III Mobile clients

var modeDesktop = new DefaultDisplayMode("desktop")
{
 ContextCondition = (c => return true)
};
displayModes.Clear();
displayModes.Add(modeTablet);
displayModes.Add(modeDesktop);

Run from Application_Start, the code drops default display modes and defines two new modes:
tablet and desktop. The tablet mode is added first and will be checked first. In fact, the internal logic
that finds the appropriate display mode stops at first match. If the HTTP request is not matched to a
tablet, it is then treated by default with a view optimized for a desktop device.

Be aware that because the desktop mode is associated with a specific non-empty string (desktop),
each view needs to have the proper suffix to be recognized. In other words, standing the configura-
tion above an index.cshtml view file won’t be used. You need to have view files named index.desktop.
cshtml and index.tablet.cshtml, instead.

Introducing the WURFL database

The key question now becomes the following: how could you reliably determine whether a given
request comes from a tablet?

The simple answer is that it is all about sniffing the user agent string. But wait: wasn’t sniffing the
user agent string just the type of nightmare that brought developers to blissfully embrace RWD and
client-side feature detection? And then, wasn’t client-side feature detection insufficient to detect, for
example, the operating system of the device as well as many other device-specific capabilities?

Server-side feature detection is not simply a long list of branches in an endless switch statement—
one for each possible and known agent. More important, you are not expected to code user-agent
sniffing yourself. If you do so, you will likely be reinventing the wheel and giving yourself a very hard
time of crazy development and maintenance. For server-side feature detection to be affordable and
effective, you need a professional tool for user-agent sniffing: a Device Description Repository (DDR)
framework. A DDR is the component that works like an oracle, revealing all (the known) truth about
the mobile browser that is viewing your page so that you can intelligently decide about the markup
to serve as a response.

WURFL (see http://wurfl.sourceforge.net/) is the most widely used DDR today, but certainly it is not
the only one. Large organizations such as Facebook and Google use WURFL for their mobile sites. It is
also free for open-source projects and has a partially-free cloud version. For commercial use, though,
you likely need to buy a license. For more information, refer to http://www.scientiamobile.com.

www.SoftGozar.com

http://wurfl.sourceforge.net/
http://www.scientiamobile.com/

 CHAPTER 13 Building sites for multiple devices 447

Note Whether you opt for WURFL or other products such as 51degrees.mobi, the key point
is that you should not spend a second on crafting your own solution for sniffing user-agent
strings. Not only because it takes a lot of time, but also given the high fragmentation of
mobile browsers, it will also likely produce a flaky solution.

Structure of the repository
The WURFL DDR consists in an XML file that is about 1.5 MB in size when compressed, and just under
20 MB expanded. You can download the latest snapshot of the file from http://wurfl.sourceforge.net.

Note Upon downloading the WURFL database, you must agree explicitly to some terms
and conditions. Basically, you are authorized to use the WURFL file without modification
and only through one of the standard WURFL APIs as provided by ScientiaMobile. For
ASP.NET, you can find a NuGet package to download and install the latest WURFL API and
database.

The overall XML schema
The WURFL data file consists of a flat list of <device> elements. Here’s the overall skeleton of the
database:

<devices>
 <device id="..." user_agent="..." fall_back="...">
 <group id="...">
 <capability name="..." value="..." />
 ...
 </group>
 ...
 <device>
 ...
</devices>

The id attribute uniquely identifies a device by name. The user_agent attribute indicates a specific
user agent string to be matched.

The key attribute is fall_back, which refers by name to other <device> elements. The fall_back at-
tribute indicates the device from which missing capabilities of the present device will be inherited. Put
another way, each device section describes just the delta between the current device and its parent
device. All devices refer directly or indirectly to a root generic device, which ensures that any capabili-
ties supported always have a default value and no exceptions will be thrown during queries. WURFL
supports a number of root generic devices, one for each category of devices recognized: mobile
phones, tablets, smart TVs, and possibly more in the future.

http://wurfl.sourceforge.net

448 PArT III Mobile clients

Groups of capabilities
Each device is associated with a list of capabilities. A capability is described as a name/value pair in
which the value is always considered to be a string. This means that the WURFL API will always return
capability values as plain strings with no attempt to match the value to a specific type such as a Bool-
ean or integer.

This choice has been made to privilege extensibility and performance of the API over everything
else. In fact, quite a few capabilities take values from an enumeration of values. For example, the
pointing_method capability indicates how links are activated on the device. Possible values are stylus,
joystick, touchscreen, clickwheel, or the empty string. All these options could comfortably be expressed
as an enum type in Java and .NET languages. However, in this case any extension to the data file to
add a new possible pointing method would also require a change to the API with the potential of
breaking existing applications.

To keep things manageable, capabilities are split into groups. Table 13-1 lists the currently rec-
ognized groups. Groups, however, have no role in the API, in the sense that you don’t need group
information to retrieve the value of a capability.

TABLE 13-1 Groups of browser and device capabilities in WURFL

Group Description

ajax In spite of the name, this group defines capabilities that also go beyond plain Ajax pro-
gramming. It informs you as to whether Ajax is supported but also whether DOM and CSS
manipulation are allowed and geolocation.

bearer Capabilities regarding networking aspects such as support for radio, Wi-Fi, virtual private
network (VPN), and maximum reachable bandwidth.

cache Capabilities related to the configuration of the cache of the embedded browser.

chtml_ui Capabilities related to Compact HTML markup.

chips Capabilities related to features available through extra chips installed on the device such as
FM radio and a near-field communication (NFC) facility.

css Capabilities related to CSS features such as sprites, borders, rounded corners, and gradients.

display Capabilities related to screen size (both pixels and millimeters) and orientation.

drm Boolean capabilities related to the support of a few DRM standards.

flash_lite Capabilities about built-in support for Flash application types and version.

html_ui Capabilities related to content served with the HTML MIME type. The group includes
properties about viewports, HTML5 canvas, inline images, and preferred Document Type
Description (DTD).

image_format Boolean capabilities related to the support of a few image formats.

j2me Capabilities that inform developers as to which Java features are available for midlets in the
J2ME runtime—location, screen size, sockets, images, multimedia, and more.

markup Boolean capabilities related to the variety of markup types being supported including
XHTML, Wireless Markup Language (WML), and HTML.

mms Capabilities that are relevant for MMS such as images supported, videos, and maximum
frame rate.

object_download Capabilities related to downloadable objects such as video-clips, images, wallpapers,
screensavers, and ringtones.

 CHAPTER 13 Building sites for multiple devices 449

Group Description

pdf Capabilities related to native support for PDF content.

playback Capabilities related to supported video formats and codecs for content downloaded from
websites.

product_info Capabilities related to the device such as brand and model name, whether it is a mobile
device, phone or tablet, operating system, keyboard, and browser.

rss Capabilities related to native support for RSS feeds.

security Capabilities related to HTTPS support and IMEI visibility.

sound_format Boolean capabilities related to a variety of different sound formats.

smarttv Capabilities that are relevant for Smart TVs.

sms Capabilities that are relevant for SMS, EMS (rich-text SMS), and ringtones, including those
specific of some vendors such as Nokia and Panasonic.

storage Capabilities related to the size of the pages the device can manage.

streaming Capabilities related to supported video formats and codecs for content streamed from
websites.

transcoding Capabilities aimed at identifying the request as coming from a transcoder—a piece of
software that can act as a gateway and hide real device information. These capabilities are
offered in case you need to handle such requests in a special way.

wap_push Capabilities aimed at detecting effective Wireless Application Protocol (WAP) features.

wml_ui Capabilities related to WML markup.

xhtml_ui Capabilities related to XHTML markup.

The following listing shows an excerpt illustrating the CSS capabilities of the generic device—the
root of WURFL devices:

<group id="css">
 <capability name="css_gradient" value="none" />
 <capability name="css_border_image" value="none" />
 <capability name="css_rounded_corners" value="none" />
 <capability name="css_spriting" value="false" />
 <capability name="css_supports_width_as_percentage" value="true" />
</group>

By contrast, the following example shows the same group for a generic Android device:

<group id="css">
 <capability name="css_border_image" value="webkit"/>
 <capability name="css_rounded_corners" value="webkit"/>
 <capability name="css_spriting" value="true"/>
 <capability name="css_supports_width_as_percentage" value="true"/>
</group>

As you can see, some properties are overridden.

450 PArT III Mobile clients

WURFL patch files
The WURFL repository comes with two or more files (arbitrarily named): one is the XML file that repre-
sents the repository itself (usually named wurfl.xml); the others are patch files that are usually named
using the pattern xxx_patch.xml. Patch files are optional.

Note The WURFL API is based on a configuration module through which you point to the
repository and optional patch files. In ASP.NET, you can do that either programmatically
through a fluent interface or via a custom section in the web.config file.

Using a patch file, you can make changes to some capabilities within the default repository without
physically tweaking the original file (which would break the license anyway, even if you did it on your
legally acquired copy). In other words, a patch file is the provided way to override some content with-
in the WURFL database. If any patch is found when the WURFL file is parsed, its content is imported
to build a modified version of the repository. Here’s an excerpt from a patch file that adds support for
Firefox 10 (in case it is not supported in the latest update of the repository):

<device user_agent="Firefox" fall_back="generic_web_browser" id="firefox">
 <group id="product_info">
 <capability name="brand_name" value="firefox" />
 </group>
</device>
<device user_agent="Mozilla/5.0 (Windows NT 5.1; rv:10.0) Gecko/20100101 Firefox/10.0"
 fall_back="firefox" id="firefox_10_0">
 <group id="product_info">
 <capability name="model_name" value="10.0"/>
 </group>
</device>

Why would you want to use a patch file?

Overall, the primary reason for using a patch file is that you have your own good reasons to assign
certain capabilities a different value. For example, suppose that you custom-tailored a website for
tablet devices. Next, you run across a particular device whose screen is large enough to accommodate
the tablet user interface that you designed. Unfortunately, though, WURFL continues to consider that
particular device as something other than a tablet. You then create a new patch file (or edit an exist-
ing one) and override the is_tablet capability, for that particular user agent only. Here’s an example:

<device user_agent="your nice tablet device that WURFL doesn't consider a tablet"
 fall_back="generic_mobile" id="mytablet">
 <group id="product_info">
 <capability name="is_tablet" value="true" />
 </group>
</device>

www.SoftGozar.com

 CHAPTER 13 Building sites for multiple devices 451

Another scenario for which patch files are useful is when you need a capability that is not natively
supported in WURFL either because it is too specific for your application or because nobody ever
thought of it before. Finally, a patch file can come to the rescue when some wrong data is found
to exist in the original WURFL database. For more information and examples of patch files, visit
http://wurfl.sourceforge.net/patchfile.php.

Essential WURFL capabilities
Let’s take a closer look at some of the WURFL capabilities to get a precise idea of the level of control
over the content being served that you can gain through WURFL. What follows is just a very small
selection of the over 600 capabilities available. You can find full documentation about capabilities at
http://wurfl.sourceforge.net/help_doc.php.

Identifying the current device
The most common type of information you want to know about the requesting device is its identity.
Table 13-2 lists some very handy capabilities that describe the device being used to carry the current
request. The table shows the name of the capability, its WURFL group, its description, and possible
values for it.

TABLE 13-2 Device-related capabilities

Capability
WURFL
group Value Description

is_wireless_device product_info true/false The device is wireless.

is_tablet product_info true/false The device is a tablet.

is_smarttv smarttv true/false The device is a smart TV.

device_os
device_os_version

product_info string The name and version of the current device
(for instance, Android 2.2).

resolution_width
resolution_height

display integer The screen width and height in pixels.

max_image_width display integer The maximum width, in pixels, of images as
they can be viewed on the device.

can_assign_phone_number product_info true/false The device can be associated with a phone
number. This is used to distinguish devices
using a SIM only to browse the web.

pointing_method product_info joystick, stylus,
touchscreen, clickwheel,
“”

The method used to select links.
Note that the empty string indicates classic
four-way navigation on devices with top-
left-right-bottom buttons to navigate links.

brand_name
model_name
marketing_name

product_info string The brand (for example, HTC), model name
(for example, HTC A8181), and even market-
ing name of the device (for example, HTC
Desire).

http://wurfl.sourceforge.net/patchfile.php
http://wurfl.sourceforge.net/help_doc.php

452 PArT III Mobile clients

Some of these properties make it possible for you to catalog the device very precisely. For exam-
ple, you can check whether the incoming request comes from a browser hosted on a wireless device.
The is_wireless_device capability returns true for any user agent string matched to mobile devices such
as cell phones, PDAs, and tablets (but not laptops and smart TVs such as AppleTV). If all you need to
do is detect a mobile device, this property is all you need. For a more detailed analysis, you can also
check is_tablet which returns true on iPads and can_assign_phone_number which returns true on cell
phones (which can have a phone number assigned) but not on, for instance, iPods. Another similar
capability is has_cellular_radio (in the bearer group): This capability indicates whether the device can
mount a SIM for whatever reason. You can have a SIM on an iPad but not, for example, on an iPod
Touch.

If you need to distinguish iOS from Android or Windows Phone devices, you can use the device_os
and device_os_version capabilities. If you then need to know the exact device (manufacturer and
product name), you can go with model_name and brand_name.

The known size of the actual screen is returned by resolution_width and resolution_height. Finally,
information about touch capabilities is returned by the pointing_method capability when the value
equals touchscreen.

Note Any information about the operating system is implied by the user agent. When a
newer version of the operating system is installed on a device, it should also update the
browser, and the browser should reflect the version of the operating system in the sent us-
er-agent string. However, this is only the expected way of working. On old devices, it might
not be surprising to have, for example, version 2.2 of Android but a browser that still refers
to version 2.1.

Serving browser-specific content
Table 13-3 lists a few capabilities that can help you to fine-tune the markup that you serve to the
browser. WURFL is full of capabilities for fine-tuning the markup being served. The capabilities below
are representative of scenarios in which you will want to use different markup templates on the server
to generate the view.

TABLE 13-3 Capabilities for serving ad-hoc content

Capability WURFL Group Value Description

viewport_supported html_ui true/false The browser supports the <viewport> meta tag.

image_inlining html_ui true/false The browser can display images embedded via the data
Uniform Resource Identifier (URI) scheme.

full_flash_support flash_lite true/false The browser fully supports Flash.

cookie_support xhtml_ui true/false The browser supports cookies.

preferred_markup markup string The preferred type of markup to serve to the browser.

png, jpg, gif, tiff, greyscale image_format true/false The browser can display images of a given type.

 CHAPTER 13 Building sites for multiple devices 453

Some mobile browsers assume that they can render every page, so they shrink the page to the
actual screen size and let users zoom in and out to view a section of the page in a convenient manner.
The HTML <viewport> meta attribute has been introduced to enable the developer to indicate which
size the virtual screen—the viewport—actually should have. However, the <viewport> meta tag is
not standard, and it is safer if you check before you emit it. The viewport_supported capability simply
indicates to you as its name suggests.

Browsers treat images as separate resources and trigger an additional request to download them
(if not cached locally). For mobile devices, HTTP requests carry a much higher cost than they do for
desktop browsers, so any techniques are welcomed that reduce the number of HTTP requests neces-
sary to finalize a page. A common technique consists of embedding small images as Base64-encoded
text within the HTML page. This technique is known as image inlining and is not supported on several
older devices, just the category of devices for which minimizing downloads is more critical.

With the image_inlining capability, you can know in advance whether the requesting browser will
be able to show correctly an image embedded in this way. If you fail this check, though, the worst
problem you can run into is that the image is replaced by the browser’s specific placeholder for miss-
ing images. Image inlining is just one of those features that is simply impossible to check from within
the browser via some smart piece of JavaScript.

In mobile web, there are two types of markup languages, which are only apparently similar:

■■ XHTML MP This is a mobile-optimized markup format that browsers can parse and render
extremely fast. In addition, by simply seeing the Multipurpose Internet Mail Extensions (MIME)
type, any browser can reasonably perceive that the page is a mobile page. Unfortunately, the
markup language is not as powerful as plain HTML, and support for DOM manipulation, CSS,
and JavaScript is not really advanced—at least not in a cross-browser manner.

■■ HTML/viewport This is plain HTML markup with the addition of the <viewport> meta tag.
HTML/viewport was essentially introduced by iPhone and Safari for mobile. Because the MIME
type is the same as for a full webpage, Apple added the <viewport> meta tag as a clue to the
browser about the page being mobile.

In WURFL, the preferred_markup capability indicates which type of markup is ideal for a given
browser. If the capability returns html_wi_oma_xhtmlmp_1_0, you should serve XHTML MP markup; if
the returned value is html_web_4_0, you’d better go with plain HTML and use the <viewport> meta
tag to mark the page as mobile.

Knowing in advance that the page is mobile helps the browser to arrange an optimal rendering,
avoiding shrunken pages and the need to zoom in to interact effectively.

454 PArT III Mobile clients

Using WURFL with ASP.NET MVC display modes

As mentioned, the WURFL library is available for ASP.NET through a NuGet package. Along with
binaries, the NuGet package downloads a sample WURFL database file. Keep in mind that the WURFL
database file you get through the package might not be the most up-to-date file. To get the latest
public chunk of the WURFL database, visit http://wurfl.sourceforge.net.

Configuring the WURFL framework
Using WURFL requires a few simple steps such as getting hold of the binaries and referencing them
through the project and initializing the WURFL runtime.

Installing the NuGet package
The simplest way to add WURFL to an ASP.NET project is via NuGet. The package name is WURFL_
Official_API. (See Figure 13-3.) Among other things, the package installs the WURFL database (a
zipped file) in the App_Data folder. You don’t need to unzip the file; the API can also handle it
when zipped.

FIGURE 13-3 Installing the WURFL API NuGet package.

The package also copies some documentation and an introspector tool (basically, an HTTP
handler) that when placed online facilitates querying remotely the WURFL database for debugging
purposes. You can safely remove it from the project because it doesn’t play any role in the regular
functioning of the API. The package also makes some changes to the web.config file. In particular, the
package adds the following new section:

http://wurfl.sourceforge.net

CHAPTER 13 Building sites for multiple devices 455

<configSections>
 <section name="wurfl" requirePermission="false"
 type="WURFL.Aspnet.Extensions.Config.WURFLConfigurationSection,
 Wurfl.Aspnet.Extensions, Version=1.5 ..." />
</configSections>

It also provides some content for it.

<wurfl mode="Accuracy">
 <mainFile path="~/App_Data/wurfl-latest.zip" />
</wurfl>

The wurfl section is not strictly necessary, and the configuration you get from NuGet only repre-
sents a possible way of configuring WURFL. The wurfl section mainly lets you set the location of the
WURFL database and optionally patch files to apply. You can use the ASP.NET root operator (~) to
refer to a virtual path. However, you can also set source and patch files outside configuration pro-
grammatically by using the native API.

referencing the device database
You can point the WURFL library to the source database in either of two ways by using a configurer
object. You use the ApplicationConfigurer object if you intend to specify the database path through
the web.config file. You add the following line to Application_Start:

WURFLManagerBuilder.Build(new ApplicationConfigurer());

The ApplicationConfigurer class reads path information from the web.config file. You use the
InMemoryConfigurer object, instead, if you intend to specify the location of the WURFL database and
optional patch files programmatically.

 var configurer = new InMemoryConfigurer()
 .MainFile(wurflDataFile)
 .PatchFile(yourWurflPatchFile1)
 .PatchFile(yourWurflPatchFile2);

In case of need, you can also create your own configurer class by implementing the IWURFLConfigurer
interface. The interface is fairly simple and only counts a single method, as illustrated here:

public interface IWURFLConfigurer
{
 Configuration Build();
}

The Configuration object is also part of the public WURFL API. For more details, you can read the
documentation at http://wurfl.sourceforge.net/docs/dotnet or download its source code.

www.SoftGozar.com

http://wurfl.sourceforge.net/docs/dotnet

456 PArT III Mobile clients

Initializing the WURFL runtime
The WURFL library works by loading the content of the database in global memory and serving
responses on demand to callers. Any returned response is cached indefinitely so that it won’t be
recalculated on subsequent requests until the application restarts. The initial loading of the database
takes place on application startup; if at some point you replace the WURFL database on your server
you also need to restart the application for changes to take effect.

The entry point into the WURFL library is the WURFL manager object returned by the Build
method on the aforementioned WURFLManagerBuilder type. The builder does just one main thing: it
locates the WURFL database and loads its content into a memory data structure. Because the WURFL
database is essentially an XML file, the process of loading consists of reading the entire document and
parsing it out to proper bits and pieces.

The memory data structure that ends up containing parsed WURFL data acts as an internal cache
privately owned by the WURFL manager. This data structure takes up most of the run-time memory
required by WURFL. In the end, when you hold an instance to the WURFL manager, you hold both the
actual WURFL data and a tool to read it. WURFL data should be considered global in the context of an
ASP.NET application.

Now, the question becomes how can you reference the single instance of the WURFL manager
being created at startup from any other places within the application? Internally, the WURFL manager
is built like a singleton. The instance of the WURFL manager class created (and then returned) by the
builder is assigned to a public static member of the builder class named Instance. In any place where
you need to make a WURFL query, you refer to the manager, as demonstrated here:

var deviceInfo = WURFLManagerBuilder.Instance.GetDeviceForRequest(userAgent);

Be aware that the WURFL manager is never reset internally. If you correctly initialize it at the start
of the application, there’s no way for the manager to become null; except, of course, that your code
has a path where the manager variable is assigned a potentially null reference.

Detecting device capabilities
Let’s now see what it takes to process a user-agent string and learn as much as possible about the
calling device.

Processing the hTTP request
The WURFL manager object has a method called GetDeviceForRequest, which is the primary tool you’ll
use to learn about the calling device.

var deviceInfo = WURFLManagerBuilder.Instance.GetDeviceForRequest(userAgent);

The GetDeviceForRequest method has a few overloads and can be called passing in the user-agent
string as well as the ASP.NET HttpRequest object or perhaps a WURFL-specific WURFLRequest object.
The overload accepting the WURFLRequest type is the easiest and most flexible to mock up for testing
purposes because you can also use it to list HTTP headers as well as the user-agent string.

CHAPTER 13 Building sites for multiple devices 457

The GetDeviceForRequest method returns an internal object that implements the public IDevice
interface. Of all the members on the interface, the most important and most frequently used is
GetCapability. The method accepts the name of the capability as a string and returns the value for
the identified device as a string. Here’s how you know about the operating system (if any) of the cur-
rent device:

String os = deviceInfo.GetCapability("device_os");

Each call to GetCapability first checks an internal cache and then proceeds to read through the
in-memory database. Any computed results are cached for further use. The WURFL manager holds its
own private cache for obvious performance reasons. You can measure that the startup of the WURFL
library usually takes a few seconds (only once, when Application_Start is invoked), but each request is
served in a matter of milliseconds, and often instantaneously. The WURFL internal cache uses a Least-
Recently-Used (LRU) algorithm and automatically refills device information that might have been
discarded.

For this reason, you can repeatedly call GetCapability to read multiple properties. However, you
also have available a GetAllCapabilities method, and only in version 1.5 of the .NET API can you rely
on API filters that restrict the capabilities managed by the API for performance reasons.

Important WURFL capabilities always return a string value. It is a developer’s responsibility
to turn any returned string into a more manageable data type such as integer or Boolean,
as applicable. You might want to check the documentation carefully to ensure that you are
not missing some possible response strings in the conversion to a basic .NET type.

Virtual capabilities
A common scenario for using WURFL in an ASP.NET website is to serve different markup to differ-
ent classes of devices. For this to happen, you should be able to quickly classify a device from its user
agent string and determine if it’s a smartphone, a tablet, or perhaps a legacy phone. WURFL also
provides a few virtual capabilities just for this purpose.

Virtual capabilities are processed in the same way as regular capabilities; they’re just called virtual
because they don’t specifically refer to an individual and specific attribute of the device. The canoni-
cal example is the capability named is_smartphone. The capability indicates whether the user agent
can be associated with a smartphone device. The algorithm to recognize a smartphone from the
capabilities associated with the user agent is internal to WURFL and basically checks the version of the
operating system, touch capabilities, and screen width. Table 13-4 shows the full list of WURFL virtual
capabilities.

www.SoftGozar.com

458 PArT III Mobile clients

TABLE 13-4 WURFL virtual capabilities

Virtual capability Description

is_android True if the device runs any version of Android.

is_ios True if the device runs any version iOS.

is_windows_phone True if the device runs Windows Phone 6.5 or higher. Note that this does not include
Windows Mobile or Windows CE.

is_app True if the requests come from a native app. This typically is when the request comes from
a WebView component or native app making a REST API call.

is_full_desktop True if the requesting device has a full desktop experience.

is_largescreen True if the requesting device’s screen is of a high resolution (over 480 pixels in width and
height).

is_mobile True if the device is mobile, like a phone, tablet, media player, portable game console, and
so on.

is_robot True if the request is from a robot, crawler, or some other automated HTTP client.

is_smartphone True if the device is a smartphone. Internally, the matcher checks the operating system,
screen width, pointing method, and a few other capabilities.

is_touchscreen True if the primary pointing method is a touchscreen.

is_wml_preferred True if the requesting device should be served with WML markup.

is_xhtmlmp_preferred True if the requesting device should be served with XHTML-MP markup.

is_html_preferred True if the requesting device should be served with HTML markup.

advertised_device_os Returns the operating system name of the requesting device. This works for mobile and
desktop devices (for example: “Windows”, “Mac OS X”).

advertised_device_os_
version

Returns the operating system version of the requesting device. This works for mobile and
desktop devices (for example: “XP”, “10.2.1”).

advertised_browser Returns the browser name of the requesting device. This works for mobile and desktop
devices (for example: “Internet Explorer”, “Chrome”).

To work with virtual capabilities, you use a slightly different API, as shown in the following:

String response = deviceInfo.GetVirtualCapability("is_smartphone");

At any rate, you can override any user agent to be a smartphone through a patch file.

Accuracy vs. performance
The WURFL engine that matches a user agent to a set of capabilities has two working modes: ac-
curacy and performance. You typically set the working mode through the configurer. If you grab
configuration from the web.config file, you specify the working mode through the mode attribute of
the wurfl node, as demonstrated here:

<wurfl mode="Accuracy">
 <mainFile path="~/App_Data/wurfl-latest.zip" />
</wurfl>

CHAPTER 13 Building sites for multiple devices 459

Possible values for the mode attribute are Accuracy and Performance. Alternatively, you can use the
SetMatchMode on the InMemoryConfigurer object and configure the working mode programmatically.

WURFLManagerBuilder.Build(
 new InMemoryConfigurer()
 .MainFile(...)
 .SetMatchMode(MatchMode.Accuracy));

What’s the difference between the two working modes? The difference exists only for desktop
user agents. As far as mobile devices are concerned—those with the is_wireless_device capability set
to true—the working mode is not relevant, and there’s no difference in the overall behavior. For other
types of devices, the Performance mode represents a shortcut and delivers a less accurate response in
a much faster way. The effect of the Performance mode is that if the user agent is a desktop browser,
you won’t get effective capabilities values for the particular user agent, only the description associ-
ated with a generic desktop browser.

Put another way, the Performance mode is an option only if you need to quickly rule out (or in)
a desktop browser without distinguishing between, for instance, versions of Internet Explorer or
Chrome or Opera. For mobile devices, Accuracy or Performance always delivers the same service and
returns the most accurate response possible.

Keep in mind that you can specify the working mode globally (as explained earlier), but you can
also do that on a per-call basis by using the following overload of the GetDeviceForRequest method
on the WURFL manager object:

public IDevice GetDeviceForRequest(WURFLRequest wurflRequest, MatchMode matchMode)

Using WURFL-based display modes
Earlier in the chapter, we discussed ASP.NET MVC display modes as the ideal way to route controllers
to pick up a specific view. In general, display modes are not device-specific modes, in the sense that
you can also use display modes to simply switch to a grayscale version of the site or to optimize for
particular browsers such as Windows 8.

In any case, with display modes, the logic to route to a given view is always up to the coder. If you
intend to build a single website for multiple devices, you just arrange multiple set of views—one for
each class of device that you support. Each class of device then gets its own display mode. WURFL
helps to ensure that the requesting device is mapped to the proper display mode. This means that a
tablet will get the tablet view of a given page (if any) and a smartphone will get its own view, as well.

www.SoftGozar.com

460 PArT III Mobile clients

Important How does this approach ensure that you actually set up multidevice sites? After
you have device-specific home pages, you’re mostly done. From the device-specific home
page, you can point to pages common to all views or just to pages implementing use-cases
specific of a device. You can also decide to have a device-specific controller (for example, a
TabletXxxController) to process use-cases particular to a device class and keep common ac-
tions in any XxxController class that you might have.

Selecting display modes
To effectively plan a multidevice site, regardless of the implementation techniques and patterns that
you intend to use, the first step is always to have a clear idea of the classes of devices you propose
to support. If you want to rely only on CSS, this leads to defining RWD breakpoints (see Chapter 12,
“Making websites mobile-friendly”). Or, if you anticipate setting up a server-side engine and serving
ad hoc markup to requesting devices, it leads to defining display modes.

In global.asax, you place a call to some DisplayConfig class that defines and registers all display
modes that your website supports.

DisplayConfig.RegisterDisplayModes(DisplayModeProvider.Instance.Modes);

Here’s the code for the RegisterDisplayModes method:

public class DisplayConfig
{
 public static void RegisterDisplayModes(IList<IDisplayMode> displayModes)
 {
 var modeDesktop = new DefaultDisplayMode("")
 {
 ContextCondition = (c => c.Request.IsDesktop())
 };
 var modeSmartphone = new DefaultDisplayMode("smartphone")
 {
 ContextCondition = (c => c.Request.IsSmartphone())
 };
 var modeTablet = new DefaultDisplayMode("tablet")
 {
 ContextCondition = (c => c.Request.IsTablet())
 };
 var modeLegacy = new DefaultDisplayMode("legacy")
 {
 ContextCondition = (c => c.Request.IsLegacy())
 };

 displayModes.Clear();
 displayModes.Add(modeSmartphone);
 displayModes.Add(modeTablet);
 displayModes.Add(modeLegacy);
 displayModes.Add(modeDesktop);
 }
}

CHAPTER 13 Building sites for multiple devices 461

The method first clears all default modes and then adds four modes: smartphones, tablets, desk-
top browsers, and legacy phones. This means that any devices used to access the site will be mapped
to any of these modes.

In the preceding code, IsLegacy, IsTablet, and other methods on the HTTP Request object are plain
.NET extension methods that receive the HTTP context and return a Boolean answer to the question
“is this request coming from given type of device?”

Defining matching rules
Beyond tailoring the content of a given view, you can also use WURFL capabilities effectively to deter-
mine whether a user agent belongs to a particular type of device. The extension methods you see in
the source code of the RegisterDisplayModes method implement matching rules for user agent strings
by using WURFL capabilities. Here’s some code that you can use to detect a smartphone:

public static Boolean IsSmartphone(this HttpRequestBase request)
{
 return IsSmartPhoneInternal(request.UserAgent);
}
private static Boolean IsSmartPhoneInternal(String userAgent)
{
 var device = WURFLManagerBuilder.Instance.GetDeviceForRequest(userAgent);
 return device.IsWireless() && !device.IsTablet() &&
 device.IsTouch() &&
 device.Width() > 240 &&
 (device.HasOs("android", new Version(2, 1)) ||
 device.HasOs("iphone os", new Version(3, 2)) ||
 device.HasOs("windows phone os", new Version(7, 1)) ||
 device.HasOs("rim os", new Version(6, 0)));
}

IsTouch, Width, and HasOs, as well as other methods in the listing are themselves extension meth-
ods defined on the WURFL IDevice interface. Here’s the code:

public static class DeviceExtensions
{
 public static Boolean IsWireless(this IDevice device)
 {
 return device.GetCapability("is_wireless_device").ToBool();
 }

 public static Boolean IsTablet(this IDevice device)
 {
 return device.GetCapability("is_tablet").ToBool();
 }

 public static Boolean IsTouch(this IDevice device)
 {
 return device.GetCapability("pointing_method").Equals("touchscreen");
 }

www.SoftGozar.com

462 PArT III Mobile clients

 public static Int32 Width(this IDevice device)
 {
 return device.GetCapability("resolution_width").ToInt();
 }

 public static Boolean HasOs(this IDevice device, String os, Version version)
 {
 // Check OS
 var deviceOs = device.GetCapability("device_os");
 if (!deviceOs.Equals(os, StringComparison.InvariantCultureIgnoreCase))
 return false;

 // Check OS version
 var deviceOsVersion = device.GetCapability("device_os_version");
 if (!deviceOsVersion.Contains("."))
 deviceOsVersion = String.Format("{0}.0", deviceOsVersion);

 Version detectedVersion;
 var success = Version.TryParse(deviceOsVersion, out detectedVersion);
 if (!success)
 return false;

 return detectedVersion.CompareTo(version) >= 0;
 }
 }

Likewise, ToInt and ToBool are also utility extensions methods that just parse strings to numbers or
Booleans. I used extension methods in the example mostly for the purposes of clarity. You can defi-
nitely achieve the same without using them.

A multidevice site in action
The net effect of display modes is that when the request comes from, for instance, a tablet, the view
engine subsystem routes the controller to pick up the tablet version of the view, if any. Given the
previous configuration the selected view matches up to a Razor file named xxx.tablet.cshtml. (See
Figure 13-4.)

 CHAPTER 13 Building sites for multiple devices 463

FIGURE 13-4 Tablet view for the sample multidevice application.

The same page will look different on a smartphone and on a legacy device, as depicted in
Figure 13-5.

464 PArT III Mobile clients

FIGURE 13-5 Smartphone and legacy view for the sample multidevice application.

All you need to do is have multiple Razor files, one for each view you want to be different from
default. The default view is often (but not necessarily) the desktop view. Consider that display modes
are selected on a first-match basis; the order in which you add display modes determines the fallback
mechanism of views you actually have. You are not forced to have a smartphone or tablet file for each
view of the application; for example, if the desktop view doesn’t pose any issue on tablets, you don’t
need to have a xxx.tablet.cshtml file.

The WURFL cloud API
In the example just discussed, we used an on-premises version of WURFL, which requires that you
manage the database yourself, ensuring that you always have an up-to-date repository and can patch
the database properly in case of troubles. However, WURFL also comes as a cloud version.

Not surprisingly, the WURFL cloud offers ranges from a free but restricted plan up to a nearly
unlimited access option for a flat monthly rate. You can find details at http://www.scientiamobile.com/
cloud. The free plan is limited to two capabilities of choice, one IP address and one domain, and no
more than 5,000 detections per month.

www.SoftGozar.com

http://www.scientiamobile.com/cloud
http://www.scientiamobile.com/cloud

CHAPTER 13 Building sites for multiple devices 465

Setting up the API
After you’ve set up a subscription, you’ll have the credentials to access the administrator panel and de-
fine the capabilities in which you’re interested. At that point, you can use code similar to the following:

var config = new DefaultCloudClientConfig
{
 ApiKey = "267026:ZpXrnoY3JOhfzMBd7CEyRS2acuq0H6NU"
};
var manager = new CloudClientManager(config);
var info = manager.GetDeviceInfo(httpContext, new[] { "is_wireless_device", "is_tablet" });

The GetDeviceInfo method takes the HTTP context of the ASP.NET request and an array with the
capabilities properties that you want to receive. For performance reasons, you can also request a
smaller number of capabilities than those to which you are enabled.

The object that is returned to you contains a dictionary named Capabilities with all the values for
the requested capabilities. For more information and details, go to http://www.scientiamobile.com/
wurflCloud/gettingStarted.

Cloud API vs. on-premises API
When it comes to WURFL (and more generally, using a DDR), is the cloud a better option than storing
everything on premises? The trade-off that you need to make is fairly simple to understand.

On one end of the scale you have the performance of a single WURFL request, which is significant-
ly faster if it happens within your web server. On the other end, though, you have the cost of owner-
ship and maintenance. The cost of an on-premises license and the pace at which you can amortize
it is a variable to consider. Another variable is the cost of updating the WURFL database regularly—
downloading the weekly update, restarting the application, and checking patch files. Finally, in an
on-premises scenario you are responsible for any scalability issue that might be tracked down to the
WURFL database.

In a cloud scenario, you just pay for a service, as little as you might need. Each request, though, is
subject to the terms of service and is generally slower. Finally, with the cloud you have no control over
the database and its update cycle.

As usual, the best option will vary depending on the particular situation.

www.SoftGozar.com

http://www.scientiamobile.com/wurflCloud/gettingStarted
http://www.scientiamobile.com/wurflCloud/gettingStarted

466 PArT III Mobile clients

Why you should consider server-side solutions

In web development, you can achieve multivision—that is, content that is intended to be viewed on
different devices such as tablets, laptops, and smartphones—in either of two ways. You can have a
single set of pages and multiple auxiliary resources such as CSS, images, and script files, or you can
have multiple sets of pages and related resources. In both cases, the backend of the site is the same
and the business logic is nearly the same.

But do you want it to be “nearly the same” or “exactly the same”?

This is one of the key points that might influence your decision process. If the experience you want
must be the same across tablets, smartphones, and laptops, RWD and a client solution is the ideal ap-
proach. RWD is a technique that creates a single website that automatically adapts and renders differ-
ently to fit the size of the screen on which it displays, whether that screen belongs to a smartphone,
tablet, desktop computer, or perhaps a smart TV. The work of detecting the screen size and applying
the correct stylesheet is performed by the web browser.

Does this sound like the perfect solution? Should you stop here or give it more thought? Let’s see
what might come out of a second pass.

A common complaint about RWD is that it doesn’t really distinguish devices, but only screen sizes.
Subsequently, it might be sending a lot of content to small devices connected via a slow 3G network.
Put another way, RWD is a methodology for effectively handling multiple screen sizes but not neces-
sarily multiple devices with different characteristics, including different screen sizes. A point that you
can hardly address with RWD is how to handle situations in which you want to offer different func-
tions, layout, and use-cases to users connecting through a particular device.

To cut a long story short, the key question you must answer to make an informed decision is
whether you want to provide a unique and device-specific experience. Do you want to make different
analysis and design for tablets, smartphones, and laptops? Is one design good for you? If so, proceed
with RWD and use implementation tricks to minimize download and performance issues. If not, focus
on technologies and products to do server-side analysis of the user agent to recognize the class of
the requesting device.

A client solution can work when you’re OK with a single design/project to be adapted to any de-
vice. A server solution is appropriate when you want to have a specific design/project for each class of
device in the context of a single website.

 CHAPTER 13 Building sites for multiple devices 467

Summary

There aren’t many websites that really need to resort to server-side device detection. For most sites, a
client solution based on RWD principles is more than acceptable. But, this doesn’t mean that a client-
side solution is always preferable to a server-side solution.

A server-side solution is inherently much more flexible than a purely client-side, RWD-based solution.

To overcome some of the structural limitations of RWD solutions, you need to add some server-
side logic. This means that you identify the requesting device, figure out its capabilities, and then
serve ad hoc markup. This guarantees that an 800-pixel tablet will receive content tailor-made for
a mobile audience, whereas users who connect through an 800-pixel browser window will receive
desktop-specific content. With client-side logic, you can’t determine if the browser viewing the page
is hosted on a mobile device or in a small browser window.

This chapter offered a powerful perspective of server-side detection; use it to match a class of de-
vice (smartphone, tablet, smart TV, laptop, and whatever else you can think of) and serve the site you
have in mind for those devices. The display mode feature of ASP.NET MVC makes it so easy to create a
single website with as many faces (and groups of functionality) that you might need.

469

Accuracy mode, 459
action attributes, 353
ActionFilterAttribute class, 267, 272
action filters

built-in, 266
custom

adding response header, 267–268
compressing response, 268–271
view selector, 271–275

defined, 255, 263
dynamic loader filter

adding action filter using fluent code, 280
customizing action invoker, 280–282
enabling via filter provider, 282–285
interception points, 279–280
registering custom invoker, 282

embedded, 263–264
external, 263–264
global, 266–267
implementing as attribute, 264
types of, 265–266

Action HTML helper, 72
action invoker

defined, 79
replaceable components, 256, 258
view engine and, 37–38

ActionLink HTML helper, 18, 43, 47, 53
action links, 46–47
action methods

controller classes, 20–22
example of proper, 236
keeping lean, 231–236
restricting, 190–191
routing to

REST, 344–346
RPC, 353

Index

Symbols
51degrees.mobi, 447
200 response code (HTTP), 347
202 response code (HTTP), 348
204 response code (HTTP), 347
301 response code (HTTP), 152–153, 155
302 response code (HTTP), 8, 113, 152, 172
400 response code (HTTP), 163
403 response code (HTTP), 172, 286
404 response code (HTTP), 8, 172–173
500 response code (HTTP), 163, 345
$ function, 377
, (comma), 381
{ } curly brackets, 10
. (dot), 380
/ (forward slash), 10, 13
+ operator, 380
== operator, 369
=== operator, 369
> operator, 380
| (pipe symbol), 370
@ symbol, 44, 55–56, 58
~ (tilde), 177, 381, 455

A
AAA (arrange, act, assert), 311
acceptance tests, 322
Accept-Encoding header, 269, 270, 392
Accept header, 360
AcceptVerbs attribute, 19, 348, 353, 355
access tokens

social authorization, 221–223
Web API, 357

Account controller, 218

www.SoftGozar.com

ActionMethodSelectorAttribute class

470 Index

ActionMethodSelectorAttribute class, 277
ActionName attribute, 19, 275, 278
ActionNameSelectorAttribute class, 275
ActionResult class, 22, 26, 285–286, 290, 340
action results

built-in
returning custom status code, 285–287
returning HTML, 28–29
returning JavaScript, 287–288
returning JSON, 29–31, 288–290
returning primitive types, 290

custom
returning binary data, 295–297
returning JSONP, 290–292
returning PDF files, 297–299
returning syndication feed, 293–295

mechanics of, 27–28
types of, 26–28

Actions and HTTP verbs, 19–20
ActionScript, 368
action selectors

action method selectors, 276–277
action name selectors, 274–275
restricting method to Ajax calls only, 277–278
restricting method to button, 277–279

addMethod function, 144
adjacent operator, 380
advertised_browser capability, 458
advertised_device_os capability, 458
advertised_device_os_version capability, 458
Ajax (Asynchronous JavaScript and XML)

form submission using, 104, 116
in jQM, 416
JavaScript history, 367
Remember-Me feature and

reproducing problem, 204–205
solving, 205–207

restricting method to calls using, 277–278
WURFL capability group, 448

Ajax.BeginForm, 139
Ajax helper, 51, 53
Ajax property, 58
aliasing parameters, 92–93
AllowAnonymous attribute, 191, 356
Android, 399
AngularJS, 367
:animated filter, 381

annotations
form display templates, 117–120
input validation

client-side validation, 139–140
cross-property validation, 135–137
culture-based validation, 140–141
custom validation attributes, 137–139
decorating model class, 132–133
enumerated types, 133–134
error messages, 134–135
validating properties remotely, 141–142
validation provider, 130–131

anonymous functions, 372
anonymous users

authorization and, 191
vs. not authorized, 193

AntiForgeryToken method, 48
ApiController class, 341–344, 361
Appcelerator Titanium, 367
Apple Safari, 402
ApplicationConfigurer class, 455
ApplicationDbContext class, 203
ApplicationException class, 164
application layer, 240–241
application routes

defining, 11–12
processing, 12–13

Application_Start event handler, 11, 36, 251
ApplicationUser class, 202, 203
architectural style, 342
AreaMasterLocationFormats property, 54–55
AreaPartialViewLocationFormats property, 54–55
AreaViewLocationFormats property, 54–55
ArgumentException, 165, 312
ArgumentNullException, 165
arrange, act, assert (AAA), 311
Array object, 368
<article> elements, 401
aspect-ratio property, 409
AspNetCacheService class, 161
ASP.NET MVC

backward compatibility, 4
version 4, 34, 61

.aspx files, 39
ASPX pages and security, 189
ASPX view engine, 28, 34, 38, 40, 42
assemblies

for resources, 177
referencing embedded files, 178
visibility of internal members, 318

 binding, model

 Index 471

assemblyinfo.cs file, 179, 317
assertions, 317
Assert.Throws method, 313
async attribute, 391
asynchronous calls to Web API, 351–352
Asynchronous JavaScript and XML. See Ajax
async keyword, 30, 351
AsyncTimeout filter, 266
Atom Syndication Format, 293
at symbol, 44, 55–56, 58
AttemptedValue property, 25
AttributeEncode method, 48
attribute filters, jQuery, 383
attribute routing

defined, 15
enabling, 354–355
overview, 353–354

audio in HTML5, 406–407
AuthController class, 196
authentication

authentication filters, 194–195
configuring, 190
membership system

identity system, 201–204
integrating with roles, 200–201
Membership API, 198–199
overview, 195
SimpleMembership API, 200–201
validating user credentials, 196–198

methods for, 189
OpenID protocol

vs. OAuth, 214–216
overview, 208
using, 209–214

Remember-Me feature and Ajax
reproducing problem, 204–205
solving, 205–207

social networks
access tokens, 221–223
enabling social authentication, 217–218
membership system, 220–221
registering application with Twitter, 215–216
starting process, 218–219
Twitter response, 219

Twitter, 221
AuthenticationResult class, 219, 222
<authentication> section, 190
authorization

action methods restrictions, 190–191
allowing anonymous callers, 191

anonymous vs. not authorized, 193
hiding user interface elements, 192
output caching and, 192

authorization filters, 265
Authorize action filter, 286
Authorize attribute, 190–192, 355–356
AuthorizeAttribute class, 356
AuthorizedOnly attribute, 206
Authorize filter, 266
AuthorizeRequest action filter, 73
Autofac, 249
AutoMapper, 243
AVI codec, 407
await keyword, 30, 351

B
background-position property, 393
basic authentication, 357–358
basic helpers

action links, 46–47
forms, 44–46
HtmlHelper class, 48
input elements, 46
partial views, 47

bearer capability group, 448
BeginForm HTML helper, 43–45, 109, 116
BeginRequest event, 432
BeginRouteForm HTML helper, 43–45
 element, 403
<big> element, 403
binary data, returning using action result, 295–297
Bind attribute

overview, 91
using, 107

bind function, 384
binding events using jQuery, 384–385
binding layer, 78
binding, model

custom type binders
creating, 94–95
customizing default binder, 93–94
registering, 96

DateTime model binder
code for, 99–101
controller method, 98–99
displayed data, 97–98
overview, 96

black-box testing

472 Index

default model binder
aliasing parameters, 92–93
Bind attribute, 91
binding collections, 84–89
binding complex types, 83–84
binding content from uploaded files, 89–91
binding primitive types, 80–81
blacklist of properties, 92
optional values, 81–82
value providers, 82
whitelist of properties, 92

method signature, 79
model binders, 79

black-box testing, 321
blacklist of properties, 92
block elements, 401
blur event, 385
<body> tag, 391
Bootstrap

button groups, 429–430
drop-down menus, 427–429
feature detection, 407
glyph icons, 427
grid system, 425–426
images, 427
mobile-friendly websites, 412, 423
navigation bars, 426–427
overview, 423–424
setting up, 424–425

brand_name capability, 451–452
.browser files, 444
browsers, specific content for, 452–453
btn-group style, 429
built-in action filters, 266
built-in action results

returning custom status code, 285–287
returning JavaScript, 287–288
returning JSON, 288–290
returning primitive types, 290

BundleCollection class, 395
BundleConfig class, 395
BundleFileSetOrdering class, 396
bundling JavaScript

overview, 394–395
resources, 395
script files, 395–397

button groups, 429–430
ByteArrayModelBinder class, 95

C
cache capability group, 448
Cache object

caching method response, 161–162
distributed caching, 161–162
HttpContext and, 152
injecting caching service, 158–160
mocking, 333–335
OutputCache attribute, 161–162
overview, 157
partial caching, 162
pros and cons, 157–158

CacheProfile property, 162
caching layer, 107
camelCasing, 361
can_assign_phone_number capability, 451–452
CanReadType method, 361
CanWriteType method, 361
capabilities, device

accuracy vs. performance, 458–459
processing HTTP request, 456
virtual capabilities, 457–458
WURFL capability groups, 448–449

Capabilities dictionary, 465
caret segment, 430
Cascading Style Sheets. See CSS
case for URLs, and SEO, 154
Castle DynamicProxy, 328
Castle Windsor, 249
catch-all route, 172–174
CDN (content delivery network), 392, 424
cell phones, 436
<center> element, 403
centralized validation, 143
chaining operations

queries, 378
wrapped sets, 384

Chakra JavaScript engine, 368
change event, 385
ChangePassword method, 198
CheckBoxFor HTML helper, 43
CheckBox HTML helper, 43
ChildActionMvcHandler class, 73
ChildActionOnly attribute, 73, 162, 266
child actions, 73–74
chips capability group, 448
chtml_ui capability group, 448
ClassCleanup attribute, 311
ClassInitialize attribute, 311

 controllers

 Index 473

class-level validation, 143
click event, 385
client-side validation, 130, 139–140, 403
closures (JavaScript), 374–376
Cloud API, WURFL

vs. on-premise API, 465
overview, 462–463
setting up, 464–465

code
coverage, 318
decoupling from serialization, 340
layers of, 3
nuggets, Razor view engine

conditional nuggets, 58
overview, 55–57
special expressions of, 57

Code Contracts, 146, 236
collapsible elements

HTML5, 402–403
jQuery Mobile, 422–423

collections, naming of, 87
comma (,), 381
comments in Razor code, 57
Compare annotation, 131, 137
complex types, binding, 83–84
Compress attribute, 270, 280
consumer key/secret, 216
container style, 425
:contains filter, 382
content delivery network (CDN), 392, 424
Content-Disposition header, 296
Content-Encoding header, 269, 270
Content folder, 177
content negotiation

default formatters, 361–362
defined, 360
defining formatters for types, 362–363
HTTP headers, 360–361

ContentResult class, 26, 29, 290
Content-Type header, 360
ContentType property, 296
ContextCondition property, 442, 443
Context property, 58
ControllerBase class, 49
Controller class, 110, 263, 340, 342
ControllerContext class, 273
controller factory

creating, 251–252
multiple instances and, 261
registering custom, 251

replaceable components, 256, 258
Unity-based, 252–253

controllers
action filters

built-in, 266
custom, 267–274
embedded, 263–264
external, 263–264
global, 266–267
types of, 265–266

action results
ActionResult class, 26
mechanics of, 27–28
returning binary data, 295–297
returning custom status code, 285–287
returning HTML, 28–29
returning JavaScript, 287–288
returning JSON, 29–31, 288–290
returning JSONP, 290–292
returning PDF files, 297–299
returning primitive types, 290
returning syndication feed, 293–295
types of, 26–28

action selectors
action method selectors, 276–277
action name selectors, 274–275
restricting method to Ajax calls only, 277–278
restricting method to button, 277–279

classes for
action methods, 20–22
Actions and HTTP verbs, 19–20
from routing to actions, 19
from routing to controllers, 17–19

dynamic loader filter
adding action filter using fluent code, 280
customizing action invoker, 280–282
enabling via filter provider, 282–285
interception points, 279–280
registering custom invoker, 282

extensibility models, 255
folder for, 226
granularity of, 16
injecting data and services

“Dependency Injection” pattern, 247–248
Dependency Inversion Principle, 244–245
IoC tools, 248–249
poor man’s dependency injection, 249–250
“Service Locator” pattern, 245–247

input model and, 76

Controllers namespace

474 Index

keeping lean
action method sample, 236
action methods coded as view model

builders, 231–232
short is always better, 230–231

“Layered Architecture” pattern
application layer, 240–241
domain layer, 241–242
exposing entities of domain, 242–243
infrastructure layer, 243–244
overview, 237–238
presentation layer, 239

layering, 16
processing input data

from multiple sources, 23–24
from Request object, 22–25
from route, 23
ValueProvider dictionary, 24–25

provider-based extension model
alternate TempData storage example, 257
extensibility points, 256–257
using custom components, 257–259

routing requests
attribute routing, 15
defining application routes, 11–12
for physical files, 14
preventing for defined URLs, 14–15
processing routes, 12–13
route handler, 13–14
simulating ASP.NET MVC runtime, 4–7
URL patterns and routes, 10
URL Routing HTTP module, 7–9

Service Locator extension model
in ASP.NET MVC, 260–261
dependency resolvers, 261–262
vs. Dependency Injection, 259–260

Session object and, 156
stateless components, 16
stereotypes for

Controller stereotype, 228–229
Coordinator stereotype, 229–230
request execution and, 227–228
Responsibility-Driven Design, 226–227

testability, 17
vs. Web API

advantages of Web API, 340–341
Controller class, 340
overview, 339
RESTful applications, 341

Controllers namespace, 18

Controller stereotype, 228–229
controls

assigning same ID to, 85
properties for, 77

controls attribute, 407
Convention-over-Configuration pattern, 70
Cookies collection, 22, 25
cookie_support capability, 452
Coordinator stereotype, 227, 229–230
CORS (cross-origin resource sharing), 358–359
CountryIsValid method, 111
coupling and testability, 307
CreateController method, 251
CreateMetadata method, 124
Create/Read/Update/Delete. See CRUD
CreateRequest method, 211
CreateUser method, 198
Credentials property, 170
cross-origin resource sharing (CORS), 358
cross-property validation, 135–137
CRUD (Create/Read/Update/Delete)

REST and, 341, 342
validation and, 130

.cshtml files, 29, 39
css capability group, 448
CSS (Cascading Style Sheets)

Editor/Display helpers and, 120
jQuery, 378, 379
media queries, 408–410
Media Queries Level 4, 410
RWD and, 439
view templates, 39

CssMinify transformer, 397
culture

changing programmatically, 183–186
validation based on, 140–141

CultureAttribute class, 185, 271
Culture property, 58, 140, 182
curly brackets { }, 10
CurrentCulture property, 183
Current property, 124
CurrentUICulture property, 183
custom action filters

adding response header, 267–268
compressing response, 268–271
view selector, 271–275

custom action results
returning binary data, 295–297
returning JSONP, 290–292
returning PDF files, 297–299
returning syndication feed, 293–295

 <details> element

 Index 475

custom binders, 80
custom helpers

Ajax helper example, 53
HTML helper example, 52
MvcHtmlString wrapper object, 51–53
structure of, 51

CustomValidation annotation, 131, 136–138, 143
custom view engines, 71–72

D
data access layer, 321
DataAnnotationsModelMetadataProvider class, 124
DataAnnotationsModelValidatorProvider class, 131
data-* attributes, 414–415
databases, localized resources, 186
data-collapsed attribute, 422
data-content-theme attribute, 422
data-driven tests, 313–314, 327–328
data entry patterns

Post-Redirect-Get pattern
overview, 112–113
saving data across redirects, 114–117
splitting POST and GET actions, 113–114
syncing content and URL, 112–113
updating via POST, 113–114

Select-Edit-Post pattern
editing data, 106–108
overview, 104–105
presenting data, 105–106
saving data, 108–111

data-filter attribute, 419
data-icon attribute, 416
data-id attribute, 417
data-inset attribute, 419
datalist element, 405
data model, 76
data-position attribute, 417
data-role attribute, 415–416, 418
DataSource attribute, 313
data-theme attribute, 414–415
data-title attribute, 416
data-toggle attribute, 429
data-transfer objects (DTOs), 242, 342
DataType annotation, 118, 123
Date object, 368
DateTime model binder

code for, 99–101
controller method, 98–99

displayed data, 97–98
overview, 96

date type, 404–405
DbContext class, 203
dblclick event, 385
DDD (Domain-Driven Design), 241
DDR (Device Description Repository), 446
debugging vs. testing, 302
decision coverage, 318
declarative helpers, 63–65
DefaultActionInvoker class, 256
DefaultBundleOrderer class, 395
DefaultControllerFactory class, 251, 256
DefaultDisplayMode class, 442, 443
default model binder

aliasing parameters, 92–93
Bind attribute, 91
binding collections, 84–89
binding complex types, 83–84
binding content from uploaded files, 89–91
binding primitive types, 80–81
blacklist of properties, 92
class for, 80, 84, 93
optional values, 81–82
value providers, 82
whitelist of properties, 92

defaultRedirect attribute, 172
default route, 173
defer attribute, 391
DELETE method (HTTP)

expected behavior for Web API, 347–348
REST and, 341

dependencies, testing
data access code, 327–328
fake objects, 326–327
mock objects, 326–327

Dependency Injection. See DI
DependencyResolver class, 262
dependency resolvers, 125, 261–262
design and testability

coupling and, 307
Design for Testability

control, 303
simplicity, 303–304
visibility, 303

interface-based programming, 304–306
object-oriented design and, 308–309
relativity of testability, 306–307

<details> element, 401, 402

Developer Tools (IE)

476 Index

Developer Tools (IE), 441
device-aspect-ratio property, 409
Device Description Repository (DDR), 446
<device> elements, 447
device-height property, 409, 410
device identification

accuracy vs. performance, 458–459
overview, 451–452
processing HTTP request, 456
virtual capabilities, 457–458

device_os capability, 451, 452
device_os_version capability, 451, 452
device-width property, 409, 410
DfT (Design for Testability)

control, 303
defined, 302
simplicity, 303–304
visibility, 303

dictionaries, in JavaScript, 371
Dictionary values, 256, 258
DI (Dependency Injection)

overview, 247–248
poor man’s dependency injection, 249–250
vs. Service Locator extension model, 259–260

die method, 386
DIP (Dependency Inversion Principle)

overview, 244–245
SOLID principles, 306

DisableCors attribute, 359
display capability group, 448
DisplayColumn attribute, 130
DisplayConfig class, 460
DisplayFor HTML helper, 49
DisplayFormat annotation, 118
DisplayForModel HTML helper, 49, 51, 119, 125
Display HTML helper, 49
DisplayModeProvider class, 441
display modes

built-in support for mobile views, 440–441
custom, 444–446
default configuration for mobile views, 441–442
defined, 271
example using, 461–462
listing available, 443–444
matching rules, 461–462
naming, 442
overview, 440
selecting, 459–461

DisplayName annotation, 118

display templates
folder for, 122
for forms, 117

distributed caching, 161–162
<div> elements, 401
DLR (Dynamic Language Runtime), 66
DNOA (DotNetOpenAuth) library, 209
Document Object Model. See DOM
document root object, 386
Domain-Driven Design (DDD), 241
domain layer

exposing entities, 242–243
overview, 241–242
testing, 321

domain model, 75, 242
DOM (Document Object Model)

control IDs, 85
querying with jQuery, 377–379
readiness of, 386–387
selectors, 379
SPAs, 367

dot (.), 380
DotNetOpenAuth (DNOA) library, 209
DOTX files, 298
drm capability group, 448
dropdown class, 428
dropdown-header class, 429
DropDownListFor HTML helper, 43
DropDownList HTML helper, 43
drop-down menus, 427–429
DTOs (data-transfer objects), 242, 342
Duration property, 162
Dynamic Language Runtime (DLR), 66
dynamic loader filter

adding action filter using fluent code, 280
customizing action invoker, 280–282
enabling via filter provider, 282–285
interception points, 279–280
registering custom invoker, 282

E
Echo method, 23
ECMA-262 standard, 368
EcmaScript, 368
Edit-and-Post pattern, 104
Edit method, 20
EditorForModel HTML helper, 51, 119, 125, 132
Editor helpers, 49–51

www.SoftGozar.com

 FilePathResult class

 Index 477

editor templates
folder for, 122
for forms, 117

ELMAH (Error Logging Modules And Handlers), 170
email type, 403, 405
embedded action filters, 263–264
Embedded Resource build action, 178
:empty filter, 382
EmptyResult class, 26, 29, 290
em unit, 412
EnableClientValidation method, 48
EnableCorsAttribute class, 359
EnableOptimization property, 395
EnableUnobtrusiveJavaScript method, 48
Encode method, 48
endpoints, HTTP, 339
Engines collection, 35, 40
engines, JavaScript, 368
Enterprise Library Validation Application Block, 142
Entity Framework, 203, 242, 243
EnumDataType annotation, 131, 133
:eq filter, 381
Equals method, 137
ErrorController class, 174
Error event, 169
error handling

exceptions
HandleError attribute, 167–168
handling directly, 163–165
intercepting model-binding exceptions, 171–

172
overriding OnException method, 165–168
route exceptions, 171–172

global error handling
from global.asax, 169–170
using HTTP module, 170

input validation messages, 134–135
missing content

catch-all route, 172–174
overriding IIS policies, 174

overview, 163–164
Error Logging Modules And Handlers (ELMAH), 170
ErrorMessage property, 134
ErrorMessageResourceName property, 135
ErrorMessageResourceType property, 135
Error object, 368
error pages, built-in still showing, 168
ErrorViewModel class, 173
:even filter, 381
EvenNumber attribute, 140, 144

Event object, 385
events, jQuery

binding and unbinding, 384–385
DOM readiness and, 386–387
live event binding, 385–386

Exception class, 164
ExceptionContext class, 166
exception filters, 265
exception handling

HandleError attribute, 167–168
handling directly, 163–165
intercepting model-binding exceptions, 171–172
invalid values passed, 81
overriding OnException method, 165–168
testing for, 312

Exclude attribute, 91–92
ExecuteAsync method, 344
ExecuteResult method, 285, 292, 296
ExpectedException attribute, 313
ExtendedMembershipProvider class, 200
extensibility models for controllers, 255
extensibility point, 255
Extensible Markup Language. See XML
external action filters, 263–264
ExternalLoginCallback method, 219, 222
ExternalLogin method, 218
ExternalLoginResult class, 218
ExtraData property, 222

F
Facebook

authentication using, 194
Client SDK for C#, 222
social authentication importance, 215
SSO, 214

fake objects
testing dependencies, 326–327
unit testing, 315–316

Fakes, 308
fall_back attribute, 447
feature detection

defined, 439
overview, 407–408

<figure> element, 401
FileContentResult class, 26–27, 296
FileDownloadName property, 296
FileExtensions property, 54–55
FilePathResult class, 26–27, 296–297

FileResult class

478 Index

FileResult class, 296
Files collection, 82
FileSetOrderList property, 396
FileStream property, 297
FileStreamResult class, 26–27, 296
file uploads, 90
FilterAttribute class, 266–267
Filter class, 284
FilterInfo class, 279
filters, authentication, 194–195
FilterScope enumeration, 284
filters, jQuery

overview, 381–383
vs. find, 383–384

find method, jQuery, 383–384
FindPartialView method, 36–37
FindView method, 36–37
Firefox, 367–368
:first-child filter, 382
:first filter, 381
Flags attribute, 20
flash_lite capability group, 448
Flickr, 208
fluid layout

jQuery Mobile, 420–421
overview, 411–412

focus event, 385
footer

HTML element, 401
jQuery Mobile, 416–418

FormattedModelValue property, 120
formatters

default, 361–362
defined, 340
defining for types, 362–363

Formatters collection, 361
Form collection, 22, 25, 82
<form> element, 46
forms

data entry patterns
Post-Redirect-Get pattern, 112–117
Select-Edit-Post pattern, 104–111

HTML helpers, 44–46
templates

annotating data members, 117–120
custom, 122–124, 126–129
default templates, 120–121
display and editor templates, 117
nested models, 128–129

read-only members, 123–125
tabular templates, 126–128

validating input
centralized validation advantages, 143
client-side validation, 139–140
cross-property validation, 135–137
culture-based validation, 140–141
custom validation attributes, 137–139
decorating model class, 132–133
enumerated types, 133–134
error messages, 134–135
IClientValidatable interface, 143–145
IValidatableObject interface, 142–143
overview, 130–131
server-side validation, 145–148
validating properties remotely, 141–142
validation provider, 130–131

FormsAuthentication class, 198
FormsCookieName property, 214
forward slash (/), 10, 13
Foundation framework, 424
<frame> element, 403
FriendlyIdentifierForDisplay property, 211
full_flash_support capability, 452
functional programming, 372
function coverage, 318
function filter, 383
functions (JavaScript), 372–373
Function type, 368

G
Gecko JavaScript engine, 368
geolocation, 183, 186
GetAllCapabilities method, 457
GetAll method, 244, 345
GetCapability method, 457
GetControllerInstance method, 251
GetControllerSessionBehavior method, 251
GetControllerType method, 251
GetDeviceForRequest method, 456, 459
GetDeviceInfo method, 465
GetFilters method, 279, 283
get function, 379
GetGlobalResourceObject method, 178
GetHttpHandler method, 14
GetHttpMethodOverride method, 276
getJSON function, 293
GetLocalizedUrl method, 324

 HttpDelete attribute

 Index 479

GET method (HTTP)
defined, 20
example using, 85
Post-Redirect-Get pattern, 113–114
simulating in test, 329
Web API, 341, 345

GetOrderById method, 15
GetPreferredEncoding method, 270
GetSingle function, 244
GetUser method, 198
GetValue method, 24–25
GetWebResourceUrl method, 179
gif capability, 452
global action filters, 266–267
global.asax file

Cache object, 157
global error handling from, 169–170
model binders, 96
registering custom filters, 283
routes, 12

global error handling
from global.asax, 169–170
using HTTP module, 170

GlobalFilters collection, 267
glyph icons, 427
Google

case for URLs, 154
OpenID protocol, 208

Google Chrome, 367–368, 402, 404
granularity of controllers, 16
greyscale capability, 452
grid system, 425–426
:gt filter, 381
Gumby framework, 424
gzip compression, 269, 392

H
HandleError attribute, 167–168, 266
has_cellular_radio capability, 452
:has filter, 382
header

HTML5 element, 401
jQuery Mobile, 416–418

:header filter, 381
Headers collection, 25
headers, HTTP, 360–361
HEAD requests, 348
height property, 409–410

@helper keyword, 64
HiddenFor HTML helper, 43
Hidden HTML helper, 43
HiddenInput annotation, 118, 130
hoisting in JavaScript, 370–371
HomeController class, 341
Href property, 58
HTML5 (Hypertext Markup Language 5)

audio and video, 406–407
<datalist> element, 405
input types, 403–405
local storage, 406
native collapsible element, 402–403
semantic markup, 400–401

HtmlHelper class, 43, 48, 51
HTML helpers

basic helpers
action links, 46–47
forms, 44–46
HtmlHelper class, 48
input elements, 46
partial views, 47

custom helpers
Ajax helper example, 53
HTML helper example, 52
MvcHtmlString wrapper object, 51–53
structure of, 51

overview, 42–43
templated helpers

Display helpers, 49
Editor helpers, 49–51
types of, 48–49

HTML (Hypertext Markup Language)
returning from action result, 28–29
viewport meta attribute, 453

Html property, 58
html_ui capability group, 448
HttpApplication class, 169
HttpClient class, 351
HttpConfiguration class, 344, 359
HTTP context, mocking

Cache object, 333–335
HttpContext object, 329
overview, 328–329
Request object, 329–330
Response object, 330–331
Session object, 331–333

HttpCookieCollection class, 331
HttpDelete attribute, 353, 355

HttpGet attribute

480 Index

HttpGet attribute, 19–20, 85, 353, 355
HTTP handler

behavior of, 5–6
invoking, 6–7

HTTP (Hypertext Transfer Protocol)
200 response code, 347
202 response code, 348
204 response code, 347
301 response code, 152–153, 155
302 response code, 8, 113, 152, 172
400 response code, 163
403 response code, 172, 286
404 response code, 8, 172–173
500 response code, 163, 345
compression, 268
CRUD operations and, 341
endpoints, 339
headers and content negotiation, 360–361
HEAD requests, 348
online resources, 152
returning custom status code, 285–287
stateless protocol, 107
verbs for, and Actions, 19–20

HttpMethodOverride method, 46, 48
HTTP module, 170
HttpNotFoundResult class, 26–27
HttpPost attribute, 19–20, 85, 353, 355
HttpPostedFileBase class, 89
HttpPostedFileBaseModelBinder class, 95
HttpPut attribute, 19, 353, 355
HttpRequestBase class, 276
HttpRequest class, 152, 276
HttpResponse class

devising URLs, 153–154
HttpContext and, 152
mocking, 330
permanent redirection, 152–153
trailing slash, 154–155

HttpResponseMessage class, 346–347
httpRuntime section, 90
HttpSessionState class

HttpContext and, 152
overview, 155

HTTPS (Hypertext Transfer Protocol Secure), 357
HttpStatusCodeResult class, 285
HttpUnauthorizedResult class, 26–27, 286
HttpVerbs enum, 20
Hypertext Markup Language. See HTML
Hypertext Markup Language 5. See HTML5

Hypertext Transfer Protocol. See HTTP
Hypertext Transfer Protocol Secure (HTTPS), 357

I
IActionFilter interface, 263, 265
IAuthenticationFilter interface, 194, 265
IAuthenticationManager interface, 203
IAuthorizationFilter interface, 265
IBundleOrderer interface, 395
IBundleTransform interface, 397
ICacheService interface, 158, 333
IClientValidatable interface, 140, 143–145
IControllerFactory interface, 251
id attribute, 447
IdentityDbContext class, 203
identity system, 201–204
IdentityUser class, 202
IDevice interface, 461
IE. See Internet Explorer
<i> element, 403
IExceptionFilter interface, 167, 265
<iframe> element, 403
if statements, 52
Ignore attribute, 312
IgnoreList property, 397
IHtmlString interface, 52
IHttpHandler interface, 5
IHttpRouteConstraint interface, 355
IIS (Internet Information Services)

HTTP compression, 268
requests and, 8
rewrite module, 155
security mechanisms and, 189
version 7.5, 91
Virtual Accounts feature, 91
Web API and, 341

ILogger interface, 305, 315
image_format capability group, 448
image_inlining capability, 452–453
images, in Bootstrap, 427
img-responsive class, 427
 tag, 393
IModelBinder interface, 93–94, 256
IModelBinderProvider interface, 256
@Import directive, 68
Include method, 395
Include property, 91–92
index parameter, 345–346

IWURFLConfigurer interface

Index 481

Information holder stereotype, 227
infrastructure layer, 243–244
Inherits attribute, 68
injecting data and services

“Dependency Injection” pattern, 247–248
Dependency Inversion Principle, 244–245
IoC tools, 248–249
poor man’s dependency injection, 249–250
“Service Locator” pattern, 245–247

InMemoryConfigurer class, 455
<input> element, 403
input elements, 46
input model

defined, 75
model binders, 78
server controls role, 76–77
view state, 77–78

input types in HTML5, 403–405
input validation. See validation, input
Instance property, 456
IntelliSense, 376
interface-based programming, 304–306
Interfacer stereotype, 227
Interface Segregation Principle, 199, 306
InternalsVisibleTo attribute, 317
Internet Explorer

Developer Tools, 441
HTML5 and, 402, 404
JavaScript engine, 368

Internet Information Services. See IIS
intrinsic objects

Cache object
caching method response, 161–162
distributed caching, 161–162
injecting caching service, 158–160
OutputCache attribute, 161–162
overview, 157
partial caching, 162
pros and cons, 157–158

HttpResponse class
devising URLs, 153–154
permanent redirection, 152–153
trailing slash, 154–155

overview, 151–152
Session object

controller and, 156
overview, 155–156

InvalidOperationException, 165

InvokeActionMethodWithFilters method, 279–280
IoC (Inversion of Control)

extensibility model and, 255
injecting caching service, 158
Select-Edit-Post pattern, 105
tools for, 248–249

iOS, 399
IP addresses, 186
IResourceProvider interface, 187
IResultFilter interface, 265
IRouteHandler interface, 13
IsAjax property, 58
is_android capability, 458
is_app capability, 458
is_full_desktop capability, 458
is_html_preferred capability, 458
is_ios capability, 458
is_largescreen capability, 458
is_mobile capability, 458
IsMobileDevice method, 444
ISO/IEC 16262:201 standard, 368
isolation, testing in, 314
IsPost property, 59
is_robot capability, 458
IsSectionDefined method, 62
is_smartphone capability, 458
is_smarttv capability, 451
is_tablet capability, 450, 451, 452
is_touchscreen capability, 458
IsValidForRequest method, 277
IsValid method, 138
is_windows_phone capability, 458
is_wireless_device capability, 451, 452, 459
is_wml_preferred capability, 458
is_xhtmlmp_preferred capability, 458
ITempDataProvider interface, 256
iTextSharp, 298
IUseFixture interface, 311
IUser interface, 201
IUserStore interface, 202
IValidatableObject interface, 142–143
IValueProvider interface, 25, 256
IViewEngine interface, 36, 256
IViewSelector interface, 273
IWURFLConfigurer interface, 455

www.SoftGozar.com

j2me capability group

482 Index

J
j2me capability group, 448
JavaScript

bundling
overview, 394–395
resources, 395
script files, 395–397

invoking Web API from, 349–350
jQuery

DOM queries, 377–379
events, 384–386
overview, 377
root object, 377–378
selectors, 379–384
wrapped sets, 378–379

language
functions, 372–373
hoisting, 370–371
local and global variables, 369–370
null vs. undefined values, 369
objects, 371–372
type system, 368

loading scripts and resources
download is synchronous, 391
scripts at bottom, 391
sprites, 393–394
static files, 392

minification, 397
object-orientation in

closures, 374–376
making objects look like classes, 374
prototypes, 375–376

overview, 367
packaging for reuse

Module pattern, 389–391
Namespace pattern, 388–389

returning using action result, 287–288
unobtrusive code, 387–388

JavaScript Object Notation. See JSON
JavaScript Object Notation with Padding

(JSONP), 290–292
JavaScriptResult class, 26–27, 287
JavaScriptSerializer class, 29, 288, 350
jpg capability, 452
jQM. See jQuery Mobile
jQuery. See also jQuery Mobile

Ajax calls, 293
Bootstrap requirements, 425
chained queries, 378

client-side validation, 403
date picker, 96
documentation, 377
DOM queries, 377–379
events

binding and unbinding, 384–385
DOM readiness and, 386–387
live event binding, 385–386

globalization plugin, 140
in Ajax helper, 53
Mobile framework, 399
modal dialogs, 104
older browsers and, 407
overview, 377
prototypes and, 376
root object, 377–378
selectors

basic selectors, 379–380
chaining operations on wrapped set, 384
compound selectors, 380–381
filters, 381–383
filter vs. find, 383–384

Validation plugin, 116, 140, 144
wrapped sets, 378–379

jQuery Mobile
collapsible panels, 422–423
data-* attributes, 414–415
fluid layout, 420–421
header and footer, 416–418
lists, 418–421
overview, 413–414
pages in, 415–416
themes, 414

JScript, 368
JScript.NET, 368
JSLint, 370, 373
JsMinify transformer, 397
JsonCamelCaseFormatter class, 361
JSON (JavaScript Object Notation)

formatters, 340
returned by method, 21
returning from action result, 29–31, 288–290
return payload, 141
WCF and, 338
Web storage, 406

JsonMediaTypeFormatter class, 361
Json method, 289, 340
JSONP (JavaScript Object Notation with

Padding), 290–292
JsonpResult class, 291, 293
JsonResult class, 27, 288, 340

 Microsoft.AspNet.Identity.EntityFramework namespace

 Index 483

K
Kendo UI, 414, 423
keyup event, 385
KnockoutJS, 349, 367

L
LabelFor HTML helper, 43
Label HTML helper, 43
lambda expressions, 117
LanguageController class, 185
:last-child filter, 382
:last filter, 381
latency, 186
layer, defined, 237
“Layered Architecture” pattern

application layer, 240–241
domain layer, 241–242
exposing entities of domain, 242–243
infrastructure layer, 243–244
overview, 237–238
presentation layer, 239

layering controllers, 16
layout breakpoint, 408
Layout property, 59, 60
Leaner CSS (LESS), 410, 424
Least-Recently-Used (LRU) algorithm, 457
length property, 379
LESS (Leaner CSS), 410, 424
LinkedIn

authentication using, 194
SSO, 214

<link> element, 154, 410
Liskov’s Substitution Principle, 306
ListBoxFor HTML helper, 43
ListBox HTML helper, 43
lists, using jQuery Mobile, 418–421
listview role, 418
live event binding using jQuery, 385–386
live method, 386
localization

auto-adapting applications, 182–183
changing culture programmatically, 183–186
files for, 177–178
getting localized data from service, 187
multilingual applications, 183
referencing embedded files, 178–180
storing resources in database, 186
text, 175–177

unit testing, 323–325
views, 180–181

local storage, HTML5, 406
localStorage property, 406
local variables in JavaScript, 369–370
Location property, 162
Logoff method, 196
Logon method, 196
LogonViewModel class, 198
LRU (Least-Recently-Used) algorithm, 457
:lt filter, 381

M
maintainability, 304
MapHttpAttributeRoutes method, 354
MapRoute method, 11
marketing_name capability, 451
markup capability group, 448
MasterLocationFormats property, 54, 55
Master property, 168, 193
master view

overview, 42
Razor view engine, 60–61

matching rules for display modes, 443, 461–462
Math object, 368
max_image_width capability, 451
maxRequestLength attribute, 90
media attribute, 409
Media Queries Level 4, CSS, 410
MediaTypeFormatter class, 361
Membership class, 198
MembershipProvider class, 198
membership system (authentication)

identity system, 201–204
integrating with roles, 200–201
Membership API, 198–199
overview, 195
SimpleMembership API, 200–201
social authentication and, 220–221
validating user credentials, 196–198

Memcached, 157
MemoryCache class, 161
message handlers, 357
Message Queuing (MSMQ), 338
metadata provider, 117
Microsoft.AspNet.Identity.Core namespace, 202
Microsoft.AspNet.Identity.EntityFramework

namespace, 202

Microsoft IntelliSense

484 Index

Microsoft IntelliSense, 376
Microsoft Internet Explorer. See Internet Explorer
Microsoft Internet Information Services. See IIS
Microsoft.Owin.Security namespace, 203
Microsoft Passport, 208
MIME (Multipurpose Internet Mail Extensions), 453
minifying JavaScript, 397
missing content

catch-all route, 172–174
overriding IIS policies, 174

mms capability group, 448
mobile.browser file, 444
mobile-first approach, 413
mobile-friendly websites

Bootstrap
button groups, 429–430
drop-down menus, 427–429
glyph icons, 427
grid system, 425–426
images, 427
navigation bars, 426–427
overview, 423–424
setting up, 424–425

HTML5
audio and video, 406–407
<datalist> element, 405
input types, 403–405
local storage, 406
native collapsible element, 402–403
semantic markup, 400–401

jQuery Mobile
collapsible panels, 422–423
data-* attributes, 414–415
fluid layout, 420–421
header and footer, 416–418
lists, 418–421
overview, 413–414
pages in, 415–416
themes, 414

routing users from existing site
configuration files, 435–436
implementing routing, 432–434
overview, 430–431
routing algorithm, 432
tracking chosen route, 434–435

RWD
CSS media queries, 408–410
feature detection, 407–408
fluid layout, 411–412
overview, 412–413

mobile views
built-in support for, 440–441
default configuration for, 441–442

mock objects
mocking Cache object, 333–335
mocking HttpContext object, 329
mocking Request object, 329–330
mocking Response object, 330–331
mocking Session object, 331–333
testing dependencies, 326–327
unit testing, 315–316

modal dialogs, 104
mode attribute, 458
model binding

custom type binders
creating, 94–95
customizing default binder, 93–94
registering, 96

DateTime model binder
code for, 99–101
controller method, 98–99
displayed data, 97–98
overview, 96

default model binder
aliasing parameters, 92–93
Bind attribute, 91
binding collections, 84–89
binding complex types, 83–84
binding content from uploaded files, 89–91
binding primitive types, 80–81
blacklist of properties, 92
optional values, 81–82
value providers, 82
whitelist of properties, 92

exception handling for, 171–172
method signature, 79
model binders, 79
replaceable components, 256, 258

Model metadata, 256, 258
ModelMetadataProvider class, 125, 256
model_name capability, 451, 452
Model property, 59
models. See also model binding

data model, 76
domain model, 75
input model

defined, 75
model binders, 78
server controls role, 76–77
view state, 77–78

 object_download capability group

 Index 485

modeling view
packaging view-model classes, 70
strongly typed view models, 67–70
ViewBag dictionary, 66–67
ViewData dictionary, 65–66

types of, 78
view model, 75

ModelState dictionary, 110, 115, 132
@ModelType keyword, 60
Model validator, 256, 258
ModelValidatorProvider class, 256
Model-View-Controller pattern. See MVC pattern
Modernizr, 367
Module pattern, 389–391
Moles, 308, 333
MooTools, 376
Moq, 316, 326
MOV codec, 407
Mozilla Firefox, 367–368
MP4 codec, 407
MSMQ (Message Queuing), 338
MSTest, 309, 313, 318
multi-device sites

display modes
built-in support for mobile views, 440–441
custom, 444–446
default configuration for mobile views, 441–

442
example using, 461–462
listing available, 443–444
matching rules, 443, 461–462
naming, 442
overview, 440
selecting, 459–461

server-side solution advantages, 466–467
WURFL database

capability groups, 448–449
Cloud API, 462–465
detecting device capabilities, 456–459
identifying current device, 451–452
initializing runtime, 456
installing NuGet package, 454–455
overview, 446–447
patch files, 450–451
referencing device database, 455–456
serving browser-specific content, 452–453
XML schema, 447

multilingual applications, 183. See also localization
Multipurpose Internet Mail Extensions (MIME), 453

multitransport services, 338
MvcHtmlString wrapper object, 51–53
MVC (Model-View-Controller) pattern

ASP.NET runtime and, 3
history, 75

myOpenID, 209

N
naked domains, 155
Namespace pattern, 388–389
navbar style, 426
nav class, 426
navigation bars, 426–427
NCache, 157
nested layouts, 63–64
nested models, 128–129
NETWORKSERVICE account, 91
new operator, 373–374
next operator, 381
Ninject, 249
NMock2, 316
Node.js, 367
NonAction attribute, 19, 276, 346
NoSQL, 239
NoStore property, 162
:not filter, 381
NotSupported exception, 14
:nth-child filter, 382
NuGet, 139
NullReferenceException, 165
null type

JavaScript primitive types, 368
vs. undefined type, 369

number type, 368, 405
NUnit, 309

O
OAuth

ASP.NET identity, 204
authentication filters, 194
vs. OpenID protocol, 214–216
Web API, 358–359

OAuthWebSecurity class, 217
ObjectCache class, 161
Object.cshtml file, 121
object_download capability group, 448

object model

486 Index

object model, 242
object-oriented programming. See OOP
Object/Relational Mapper (O/RM), 241, 244
objects in JavaScript, 371–372
Object type, 368
:odd filter, 381
off function, 386
Office automation, 298
OnActionExecuted method, 263, 265
OnActionExecuting method, 185, 263, 265, 282
OnAuthenticationChallenge method, 194
OnAuthentication method, 194, 265
OnAuthorization method, 193, 265
onclick attribute, 429
OnException method, 165–168, 265
on function, 386
onload event, 386
:only-child filter, 382
OnModelUpdated method, 94
OnPropertyValidating method, 94
OnResultExecuted method, 265
OnResultExecuting method, 265, 272
OOP (object-oriented programming)

in JavaScript
closures, 374–376
making objects look like classes, 374
prototypes, 375–376

testability and, 308–309
open attribute, 402
Open/Closed Principle, 306
OpenID protocol

vs. OAuth, 214–216
overview, 208
using, 209–214

OpenIdRelyingParty class, 211
Open Web Interface for .NET (OWIN), 203
Opera, 368, 404
orchestration, defined, 240
orchestration layer, 321
Orderer property, 395
Order property, 266
orientation property, 409
O/RM (Object/Relational Mapper), 241, 244
OutputCache attribute, 73, 161–162, 192, 266
output caching, 192
OWIN (Open Web Interface for .NET), 203

P
packaging JavaScript for reuse

Module pattern, 389–391
Namespace pattern, 388–389

Page class, 39
pageinit event, 415, 416
parameters, aliasing, 92–93
:parent filter, 382
partial caching, 162
Partial HTML helper, 43, 47, 108, 180
PartialViewLocationFormats property, 54–55
PartialViewResult action result type, 27
partial views

folder for, 71–72
HTML helpers, 47

PascalCasing, 361
PasswordFor HTML helper, 43
Password HTML helper, 43
patch files for WURFL database, 450–451
path coverage, 318
pathInfo parameter, 15
pdf capability group, 449
PDF files, returning using action result, 297–299
Performance mode, 459
Pex add-in, 319
PhoneGap, 367
pipe symbol (|), 370
placeholder attribute, 405
playback capability group, 449
png capability, 452
pointing_method capability, 451–452
poster attribute, 407
POST method (HTTP)

defined, 20
example using, 85
expected behavior for Web API, 346–347
Post-Redirect-Get pattern, 113–114
REST and, 341
simulating in test, 329
X-HTTP-Method-Override, 46

Post-Redirect-Get pattern
overview, 112–113
saving data across redirects, 114–117
splitting POST and GET actions, 113–114
syncing content and URL, 112–113
updating via POST, 113–114

PostResolveRequestCache event, 9
preferred_markup capability, 452–453
Prefix attribute, 91, 92

 Request class

 Index 487

presentation layer, 238, 239
PRG pattern. See Post-Redirect-Get pattern
primitive types

binding with default model binder, 80–81
returning using action result, 290

PrivateObject class, 318
product_info capability group, 449
properties, whitelist/blacklist of, 92
proportional layout, 412
prototypes

in JavaScript, 375–376
performance, 376

provider-based extension model
alternate TempData storage example, 257
extensibility points, 256–257
using custom components, 257–259

PUT method (HTTP)
expected behavior for Web API, 347
REST and, 341

Q
QueryString collection, 22, 25, 82

R
RadioButtonFor HTML helper, 43
RadioButton HTML helper, 43
RAD (Rapid Application Development), 301
Range annotation, 131
Raw HTML helper, 57
Raw method, 48
RawValue property, 25
Razor view engine

code nuggets
conditional nuggets, 58
overview, 55–57
special expressions of, 57

comments, 57
declarative helpers, 63–65
default for ASP.NET MVC 5, 35
master view, 60–61
model for view, 59
nested layouts, 63–64
Razor view object, 58–59
search locations, 54–55
sections

default content for, 62
overview, 61–62

RazorViewEngine class, 441
RDD (Responsibility-Driven Design)

defined, 105
overview, 226–227

readability, 304
ReadFromStreamAsync method, 361
ReadOnly attribute, 118, 123
read-only members, 123–125
ready event, 386, 415
readyState property, 386
Really Simple Syndication. See RSS
Redirect method, 152
RedirectPermanent method, 153
RedirectResult class, 27, 153, 325
redirects, HTTP

permanent, 152–153
Post-Redirect-Get pattern, 114–117
unit testing, 325

RedirectToRouteResult class, 27, 325
refreshing page, avoiding with Ajax, 116
RegExp object, 368
RegisterCacheService method, 160
RegisterDisplayModes method, 460–461
RegisterRoutes method, 11, 18, 325
RegularExpression annotation, 131
ReleaseController method, 251
ReleaseView method, 36–37
RelyingParty property, 211
Remember-Me feature and Ajax

reproducing problem, 204–205
solving, 205–207

Remote annotation, 131, 141
remote procedure calls. See RPC
remote property validation, 141–142
RenderAction HTML helper, 72, 162
render actions, 72–73, 156
RenderBody method, 60–61
RenderPage method, 62
RenderPartial HTML helper, 43, 47, 62, 108, 180
RenderSection method, 61–62
RepeatWithPrecedence method, 82
replaceable components

listing of, 256
registering, 258

Reporting Services, 298
Representational State Transfer. See REST
RequestAuthentication method, 218
Request class

mocking, 329–330
processing input from, 22–25

RequestContext class

488 Index

RequestContext class, 13, 324
Required annotation, 127, 131
RequireHttps filter, 266
ResetAll, 396
resolution_height capability, 451–452
resolution_width capability, 451–452
resources

folder for, 176
separate assembly for, 177
storing in database, 186

Response class, 330–331
response format

ASP.NET MVC approach, 359–360
content negotiation

default formatters, 361–362
defining formatters for types, 362–363
HTTP headers, 360–361

Responsibility-Driven Design. See RDD
Responsive Web Design. See RWD
REST (Representational State Transfer)

application routes and, 9
vs. RPC, 352
Web API

ApiController class, 344
vs. MVC controllers, 341
naming conventions, 346
resource type, 342–343
routing to action methods, 344–346

result filters, 265
.resx files, 175
rewrite module, 155
RFC 2616, 270
Rhino Mocks, 316
Rich Site Summary (RSS), 293
RoleProvider class, 200
roles

authorization of, 191
integrating membership system, 200–201

RouteData collection, 13, 23, 82
route exceptions, 171–172
RouteExistingFiles property, 14
route handler

overview, 13–14
processing input from, 23

RouteLink HTML helper, 18, 43, 46
Routes collection, 11
routing

to action methods
REST, 344–346
RPC, 353

from existing website to mobile-friendly
configuration files, 435–436
implementing routing, 432–434
overview, 430–431
routing algorithm, 432
tracking chosen route, 434–435

unit testing routes, 325–326
routing requests

attribute routing, 15
defining application routes, 11–12
for physical files, 14
preventing for defined URLs, 14–15
processing routes, 12–13
route handler, 13–14
simulating ASP.NET MVC runtime

behavior of HTTP handler, 5–6
invoking HTTP handler, 6–7
syntax of recognized URLs, 4–5

subdomains and, 47
URL patterns and routes, 10
URL Routing HTTP module

internal structure of, 9
routing requests, 8–9
superseding URL rewriting, 7–8

row style, 425
RPC (remote procedure calls)

action attributes, 353
attribute routing

enabling, 354–355
overview, 353–354

routing to action methods, 353
vs. REST, 352
Web API and, 337

rss capability group, 449
RSS (Rich Site Summary), 293
rulesets, VAB, 145
runtime, simulating

behavior of HTTP handler, 5–6
invoking HTTP handler, 6–7
syntax of recognized URLs, 4–5

RWD (Responsive Web Design)
CSS media queries, 408–410
feature detection, 407–408
feature-detection and, 439
fluid layout, 411–412
mobile-friendly technologies, 399
overview, 412–413
pitfalls, 466

 sms capability group

 Index 489

S
same-origin policy, 358
ScaffoldColumn attribute, 130
ScaleOut, 157
ScientiaMobile, 447
ScriptBundle class, 397
<script> element, 288, 293, 391, 416
Script property, 287
scripts, loading of

bottom of page, 391
download is synchronous, 391

SearchedLocations property, 37
search engine optimization. See SEO
sections, Razor view engine, 61–62
security

authentication
authentication filters, 194–195
configuring, 190
membership system, 195–204
OpenID protocol, 208–215
Remember-Me feature and Ajax, 204–207
using social networks, 215–223

authorization
action methods restrictions, 190–191
allowing anonymous callers, 191
anonymous vs. not authorized, 193
hiding user interface elements, 192
output caching and, 192

Web API
access tokens, 357
basic authentication, 357–358
CORS, 358–359
host handles, 355–356
OAuth, 358–359

security capability group, 449
segmented buttons, 429
Select-Edit-Post pattern

defined, 104
editing data, 106–108
overview, 104–105
presenting data, 105–106
saving data, 108–111

selectors, jQuery
basic selectors, 379–380
chaining operations on wrapped set, 384
compound selectors, 380–381
filters, 381–383
filter vs. find, 383–384

self-validation
centralized validation advantages, 143
IClientValidatable interface, 143–145
IValidatableObject interface, 142–143
server-side validation, 145–148

semantic markup of HTML5, 400–401
Sencha, 414, 423
SEO (search engine optimization)

case for URLs, 154
HttpResponse class and

devising URLs, 153–154
permanent redirection, 152–153
trailing slash, 154–155

subdomains, 155
URLs for, 7

Separation of Concerns (SoC), 16, 230
serialization, 340
server controls, 43
server-side validation, 141, 145–148
ServerVariables collection, 22
service layer, 238
Service Locator extension model

in ASP.NET MVC, 260–261
dependency resolvers, 261–262
vs. Dependency Injection, 259–260

“Service Locator” pattern, 245–247
Service-Oriented Architecture (SOA), 240, 338
Service provider stereotype, 227
Session object

controller and, 156
mocking, 331–333
overview, 155–156
saving temporary data, 114

sessionStorage, 406
setAction function, 278
SetResolver method, 262
Shared folder, 42
SimpleMembership API, 200–201
Simple Object Access Protocol (SOAP), 338
single-page applications (SPAs), 239
Single-Page Applications (SPAs), 367
Single Responsibility Principle, 306
single sign-on (SSO), 214
size function, 379
Skeleton framework, 424
<small> element, 427
smartphones, 399, 400, 436
smarttv capability group, 449
Smart TVs, 436
sms capability group, 449

SmtpClient class

490 Index

SmtpClient class, 170
SOAP (Simple Object Access Protocol), 338
SOA (Service-Oriented Architecture), 240, 338
social authentication

access tokens, 221–223
enabling, 217–218
importance of, 215
membership system, 220–221
popularity, 189
registering application with Twitter, 215–216
starting process, 218–219
Twitter response, 219

SoC (Separation of Concerns), 16, 230
SOLID principles, 199, 230, 259, 306
SortEncodings method, 271
sound_format capability group, 449
 element, 427
span style, 425
Spark view engine, 28
SPAs (Single-Page Applications), 239, 367
split method, 368
Spring.NET, 249
sprites, 393–394
SqlDependency property, 162
SSO (single sign-on), 214
stateless components, 16
statement coverage, 318
stereotypes for controllers

Controller stereotype, 228–229
Coordinator stereotype, 229–230
request execution and, 227–228
Responsibility-Driven Design, 226–227

StopRoutingHandler class, 14
storage capability group, 449
streaming capability group, 449
StringBuilder class, 43
StringLength annotation, 131
string type, 368
StructureMap, 249
Structurer stereotype, 227
StyleBundle class, 397
subdomains

routing and, 47
SEO and, 155

substring method, 368
<summary> element, 402
SwitchToErrorView method, 166
syndication feed, returning using action result, 293–

295
SyndicationItem class, 295

SyndicationResult class, 293, 295
System.ComponentModel.DataAnnotations

namespace, 118
System.ComponentModel namespace, 118
System.Net.Http namespace, 351
System.ServiceModel assembly, 293
System.ServiceModel.Syndication namespace, 293
System.Web.Http assembly, 342, 344
System.Web.Mvc namespace, 279
System.Web.Routing namespace, 13

T
tablets, 399, 400, 436
tabular templates, 126–128
TagBuilder class, 51
tel type, 403, 405
TempData

controller extensibility example, 257
replaceable components, 256, 258
saving data across redirects, 114–115

TemplateDepth property, 129
templated helpers

Display helpers, 49
Editor helpers, 49–51
types of, 48–49

TemplateHint property, 124
TemplateInfo property, 121
templates, for forms

annotating data members, 117–120
custom, 122–124, 126–129
default templates, 120–121
display and editor templates, 117
nested models, 128–129
read-only members, 123–125
tabular templates, 126–128

testability. See testing
TestClass attribute, 311
TestCleanup attribute, 311
TestContext variable, 313
test doubles, 314, 326
test fixtures, 310–311
testing

controllers testability, 17
vs. debugging, 302
dependencies

data access code, 327–328
fake objects, 326–327
mock objects, 326–327

 unit testing

 Index 491

design and testability
coupling and, 307
Design for Testability, 302–304
interface-based programming, 304–306
object-oriented design and, 308–309
relativity of testability, 306–307

importance of, 301–302
mocking HTTP context

mocking Cache object, 333–335
mocking HttpContext object, 329
mocking Request object, 329–330
mocking Response object, 330–331
mocking Session object, 331–333
overview, 328–329

unit testing
arrange, act, assert, 311–312
assertions per test, 317
choosing environment, 309–310
code coverage, 318
data-driven tests, 313–314
defined, 308–309
fakes and mocks, 315–316
inner members, 317–318
limited scope, 314
localization, 323–325
overview, 321
redirections, 325
routes, 325–326
test fixtures, 310–311
testing in isolation, 314
using test harness, 309
views, 322–323

which code to test
data access layer, 321
domain layer, 321
orchestration layer, 321
overview, 319–320

TestInitialize attribute, 311
TestMethod attribute, 313
TextAreaFor HTML helper, 43
TextArea HTML helper, 43
TextBoxFor HTML helper, 43
TextBox HTML helper, 43
text, localizing, 175–177
themes for jQuery Mobile, 414
this keyword, 370
ThreadAbortException, 166
tier, defined, 237
tiff capability, 452
tilde (~), 177, 381, 455

TimeSpan class, 98
<title> element, 416
ToBool method, 462
ToInt method, 462
trailing slash, 154–155
Transact-SQL (T-SQL), 16
transcoding capability group, 449
try/catch blocks, 163
TrySkipIisCustomErrors property, 174
T-SQL (Transact-SQL), 16
TweetSharp, 222
Twitter

authentication response, 219
OAuth, 194
registering application with, 215–216
social authentication importance, 215
SSO, 214
testing authentication, 221

Twitter Bootstrap. See Bootstrap
Typemock, 308, 316, 333
typeof method, 369
type system in JavaScript, 368

U
<u> element, 403
UICulture property, 59, 182
UIHint annotation, 118, 123–124
UI (user interface)

hiding elements, 192
mobile-friendly websites, 399

unbind function, 384
unbinding events in jQuery, 384–385
undefined type

JavaScript primitive types, 368
vs. null type, 369

Uniform Resource Identifier (URI), 4
Uniform Resource Locators. See URLs
Uniform Resource Name (URN), 4
unit testing

arrange, act, assert, 311–312
assertions per test, 317
choosing environment, 309–310
code coverage, 318
data-driven tests, 313–314
defined, 308–309
fakes and mocks, 315–316
inner members, 317–318
limited scope, 314
localization, 323–325

Unity

492 Index

overview, 321
quality of numbers, 322
redirections, 325
routes, 325–326
test fixtures, 310–311
testing in isolation, 314
using test harness, 309
views, 322–323
white-box testing, 321

Unity
controller factory based on, 252–253
dependency resolver, 261
IoC frameworks, 249
online resources, 249

unobtrusive code, 387–388
untestable code, 307
URI (Uniform Resource Identifier), 4
Url.Content method, 177
UrlHelper class, 47, 324
Url property, 47
URL Routing HTTP module

internal structure of, 9
routing requests, 8–9
superseding URL rewriting, 7–8

URLs (Uniform Resource Locators)
case for, 154
defined, 4
parameters, 10
patterns and routes, 10
Post-Redirect-Get pattern, 112–113
preventing routing for defined, 14–15
SEO and, 153–154
syntax of recognized, 4–5

url type, 403, 405
URN (Uniform Resource Name), 4
user agents, 447, 452
UserData property, 212, 214
User Experience First (UXF), 240
user interface. See UI
UserManager class, 201–202
UserStore class, 202
“Use-That-Not-This” pattern, 373
UXF (User Experience First), 240

V
V8 JavaScript engine, 368
VAB (Validation Application Block), 145
ValidateAntiForgeryToken filter, 266

ValidateInput filter, 266
Validate, jQuery, 116
Validate method, 143
ValidateUser method, 198–199
Validation Application Block (VAB), 145
ValidationAttribute class, 131
ValidationContext parameter, 136
validation, input

data annotations
client-side validation, 139–140
cross-property validation, 135–137
culture-based validation, 140–141
custom validation attributes, 137–139
decorating model class, 132–133
enumerated types, 133–134
error messages, 134–135
validating properties remotely, 141–142
validation provider, 130–131

overview, 130–131
self-validation

centralized validation advantages, 143
IClientValidatable interface, 143–145
IValidatableObject interface, 142–143
server-side validation, 145–148

ValidationMessageFor HTML helper, 43
ValidationMessage HTML helper, 43, 46, 109–110,

132
ValidationSummary HTML helper, 43, 137
ValueProvider dictionary, 24–25
ValueProviderResult type, 24
value providers, 82
ValuesController class, 341
var keyword, 369, 371, 376
Varnish, 392
VaryByContentEncoding property, 162
VaryByCustom property, 162
VaryByHeader property, 162
VaryByParam property, 162
.vbhtml files, 29, 39
VerifyAuthentication method, 219
video in HTML5, 406–407
ViewBag dictionary, 42, 49, 59, 66–67, 156
ViewData dictionary, 42, 59, 65–66, 68, 121, 156, 173
View engine, 256, 258
ViewEngineResult class, 37
ViewEngines class, 35
ViewLocationFormats property, 54, 55
view model, 75
ViewName property, 273
viewport meta attribute, 424, 453

 web.config file

 Index 493

viewport_supported capability, 452–453
View property, 168, 193
ViewResult class, 27, 274
views

child actions, 73–74
custom view engines, 71–72
HTML helpers

basic helpers, 43–48
custom helpers, 51–53
overview, 42–43
templated helpers, 48–51

localizing, 180–181
modeling view

packaging view-model classes, 70
strongly typed view models, 67–70
ViewBag dictionary, 66–67
ViewData dictionary, 65–66

Razor view engine
code nuggets, 55–57
conditional nuggets, 58
declarative helpers, 63–65
master view, 60–61
model for view, 59
nested layouts, 63–64
Razor view object, 58–59
search locations, 54–55
sections, 61–62
sections, default content for, 62
special expressions of code nuggets, 57

render actions, 72–73
unit testing, 322–323
view engine

action invoker and, 37–38
anatomy of, 36–37
detecting, 34–36
view object, 38–39

view template
default conventions and folders, 39–41
master view, 42
overview, 41–42
resolving, 39

view selector, 271–275
view state, 77–78
Virtual Accounts feature, 91
virtual capabilities, 457–458
VirtualPathProviderViewEngine class, 441
Visual Studio, 195
.vsdoc.js files, 397

W
W3C (World Wide Web Consortium), 153, 348
wap_push capability group, 449
WCF (Windows Communication Foundation), 232,

338–339
Web API

asynchronous calls, 351–352
client applications and, 339
expected method behavior

DELETE method, 347–348
other methods, 348
POST method, 346–347
PUT method, 347

importance of, 338
invoking from JavaScript, 349–350
invoking from server-side code, 350–351
vs. MVC controllers

advantages of Web API, 340–341
Controller class, 340
overview, 339
RESTful applications, 341

response format
ASP.NET MVC approach, 359–360
default formatters, 361–362
defining formatters for types, 362–363
HTTP headers, 360–361

REST
ApiController class, 344
naming conventions, 346
resource type, 342–343
routing to action methods, 344–346

RPC
action attributes, 353
attribute routing, 353–354
routing to action methods, 353
vs. REST, 352

security
access tokens, 357
basic authentication, 357–358
CORS (cross-origin resource sharing), 358–359
host handles, 355–356
OAuth, 358–359

WCF and, 338–339
Web Forms applications, 339

WebApiConfig class, 344
web.config file

adding mobile router to site, 435
authentication in, 190
client-side validation, 139

Web Forms

494 Index

custom error flag, 171
error handling, 163
globalization section, 182
httpRuntime section, 90
IoC configuration, 262
maxRequestLength attribute, 90
Unity configuration, 252
WURFL in, 450

Web Forms
moving to input model

server controls role, 76–77
view state, 77–78

switching views, 274
view templates and, 41
Web API and, 339

WebFormsViewEngine class, 441
webHttpBinding binding, 338
WebMatrix, 39
WebSecurity class, 200
web service, 338
Web storage, 406
WebViewPage class, 60, 62
white-box testing, 321
whitelist of properties, 92
width property, 409–410
window object, 370
Windows 7, 91
Windows 8, 91
Windows authentication

defined, 190
overview, 195

Windows Communication Foundation (WCF), 232,
338–339

Windows Phone, 399
Windows Server 2008 R2, 91
Windows Server AppFabric Caching Services, 157,

161
wml_ui capability group, 449
worker services, 231–236
World Wide Web Consortium (W3C), 153, 348
wrapped sets, jQuery

chaining operations, 384
defined, 378
overview, 378–379

WriteFile method, 296
WriteToStreamAsync method, 361
WS-* protocols, 338

WURFL database
capability groups, 448–449
Cloud API

vs. on-premise API, 465
overview, 462–463
setting up, 464–465

detecting device capabilities
accuracy vs. performance, 458–459
processing HTTP request, 456
virtual capabilities, 457–458

display modes
example using, 461–462
matching rules, 461–462
selecting, 459–461

identifying current device, 451–452
initializing runtime, 456
installing NuGet package, 454–455
overview, 446–447
patch files, 450–451
referencing device database, 455–456
return values, 457
serving browser-specific content, 452–453
XML schema, 447

WURFLManagerBuilder class, 456

X
XHR (XmlHttpRequest), 116, 204, 277
XHTML MP format, 453
xhtml_ui capability group, 449
X-HTTP-Method-Override header, 46, 276
XML (Extensible Markup Language)

formatters, 340
requesting format, 360
VAB rulesets, 145
WURFL database schema, 447

XMLHttpRequest class, 116, 204, 277
xUnit.net, 309, 311, 313

Y
YAGNI (You Aren’t Gonna Need It) principle, 158
Yahoo!, 208

About the author

DINO ESPOSITO is CTO and cofounder of e-tennis.net, a startup provid-
ing software and IT services to professional tennis and sports companies.
Dino still does a lot of training and writing and is the author of several
books on web development and .NET design. His most recent books are
Architecting Mobile Solutions for the Enterprise and Microsoft .NET: Architect-
ing Applications for the Enterprise, both from Microsoft Press. Dino speaks
regularly at industry conferences (including DevConnections) and premier
European events such as Software Architect, DevWeek, and BASTA. A tech-

nical evangelist covering Android and Kotlin development for JetBrains, Dino is also
on the development team of WURFL—the ScientiaMobile database of mobile device
capabilities that is used by large organizations such as Facebook.

You can follow Dino on Twitter at @despos and through his blog (http://software2cents.
wordpress.com).

www.SoftGozar.com

e-tennis.net
http://software2cents.wordpress.com
http://software2cents.wordpress.com

Now that
you’ve
read the
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

Tell us what you think!

www.SoftGozar.com

	Contents at a glance
	Contents
	Introduction
	Part I: ASP.NET MVC fundamentals
	Chapter 1: ASP.NET MVC controllers
	Routing incoming requests
	Simulating the ASP.NET MVC runtime
	The URL routing HTTP module
	Application routes

	The controller class
	Aspects of a controller
	Writing controller classes
	Processing input data
	Producing action results

	Summary

	Chapter 2: ASP.NET MVC views
	The structure and behavior of a view engine
	The mechanics of a view engine
	Definition of the view template

	HTML helpers
	Basic helpers
	Templated helpers
	Custom helpers

	The Razor view engine
	Inside the view engine
	Designing a sample view

	Coding the view
	Modeling the view
	Advanced features

	Summary

	Chapter 3: The model-binding architecture
	The input model
	Evolving from the Web Forms input processing
	Input processing in ASP.NET MVC

	Model binding
	Model-binding infrastructure
	The default model binder
	Customizable aspects of the default binder

	Advanced model binding
	Custom type binders
	A sample DateTime model binder

	Summary

	Chapter 4: Input forms
	General patterns of data entry
	A classic Select-Edit-Post scenario
	Applying the Post-Redirect-Get pattern

	Automating the writing of input forms
	Predefined display and editor templates
	Custom templates for model data types

	Input validation
	Using data annotations
	Advanced data annotations
	Self-validation

	Summary

	Part II: ASP.NET MVC software design
	Chapter 5: Aspects of ASP.NET MVC applications
	ASP.NET intrinsic objects
	HTTP response and SEO
	Managing the session state
	Caching data

	Error handling
	Handling program exceptions
	Global error handling
	Dealing with missing content

	Localization
	Using localizable resources
	Dealing with localizable applications

	Summary

	Chapter 6: Securing your application
	Security in ASP.NET MVC
	Authentication and authorization
	Separating authentication from authorization

	Implementing a membership system
	Defining a membership controller
	The Remember-Me feature and Ajax

	External authentication services
	The OpenID protocol
	Authenticating via social networks

	Summary

	Chapter 7: Design considerations for ASP.NET MVC controllers
	Shaping up your controller
	Choosing the right stereotype
	Fat-free controllers

	Connecting the presentation and back end
	The Layered Architecture pattern
	Injecting data and services in layers
	Gaining control of the controller factory

	Summary

	Chapter 8: Customizing ASP.NET MVC controllers
	The extensibility model of ASP.NET MVC
	The provider-based model
	The Service Locator pattern

	Adding aspects to controllers
	Action filters
	Gallery of action filters
	Special filters
	Building a dynamic loader filter

	Action result types
	Built-in action result types
	Custom result types

	Summary

	Chapter 9: Testing and testability in ASP.NET MVC
	Testability and design
	DfT
	Loosen up your design

	The basics of unit testing
	Working with a test harness
	Aspects of testing

	Testing your ASP.NET MVC code
	Which part of your code should you test?
	Unit testing ASP.NET MVC code
	Dealing with dependencies
	Mocking the HTTP context

	Summary

	Chapter 10: An executive guide to Web API
	The whys and wherefores of Web API
	The need for a unified HTTP API
	MVC controllers vs. Web API

	Putting Web API to work
	Designing a RESTful interface
	Expected method behavior
	Using the Web API
	Designing an RPC-oriented Interface
	Security considerations

	Negotiating the response format
	The ASP.NET MVC approach
	How content negotiation works in Web API

	Summary

	Part III: Mobile clients
	Chapter 11: Effective JavaScript
	Revisiting the JavaScript language
	Language basics
	Object-orientation in JavaScript

	jQuery’s executive summary
	DOM queries and wrapped sets
	Selectors
	Events

	Aspects of JavaScript programming
	Unobtrusive code
	Reusable packages and dependencies
	Script and resource loading
	Bundling and minification

	Summary

	Chapter 12: Making websites mobile-friendly
	Technologies for enabling mobile on sites
	HTML5 for the busy developer
	RWD
	jQuery Mobile’s executive summary
	Twitter Bootstrap at a glance

	Adding mobile capabilities to an existing site
	Routing users to the correct site
	From mobile to devices

	Summary

	Chapter 13: Building sites for multiple devices
	Understanding display modes in ASP.NET MVC
	Separated mobile and desktop views
	Rules for selecting the display mode
	Adding custom display modes

	Introducing the WURFL database
	Structure of the repository
	Essential WURFL capabilities

	Using WURFL with ASP.NET MVC display modes
	Configuring the WURFL framework
	Detecting device capabilities
	Using WURFL-based display modes
	The WURFL cloud API

	Why you should consider server-side solutions
	Summary

	Index
	About the author

