

PHP Solutions
Dynamic Web Design Made Easy

Second Edition

David Powers

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

ii

PHP Solutions: Dynamic Web Design
Made Easy, Second Edition

Copyright © 2010 by DAVID POWERS

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-3249-0

ISBN-13 (electronic): 978-1-4302-3250-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special

Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to

any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com in the Downloads
section.

Credits

Lead Editor:
Ben Renow-Clarke

Technical Reviewers:
Kristian Besley and Jason Nadon

Editorial Board:
 Steve Anglin, Mark Beckner, Ewan Buckingham, Tony

Campbell, Gary Cornell, Jonathan Gennick, Michelle
Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann,

Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade,
Tom Welsh

Project Manager:
Anita Castro

Copy Editor:
Heather Lang

Compositor:
Bronkella Publishing, LLC

Indexer:
Toma Mulligan

Artist:
April Milne

Cover Designer:
Anna Ishchenko

Cover Artist:
Corné van Doreen

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.friendsofed.com

CONTENTS

iii

Contents at a Glance

Contents at a Glance.. iii

Contents.. iv

About the Author ... xiii

About the Technical Reviewers ...xiv

Acknowledgments ...xv

Introduction ..xvi

Chapter 1: What Is PHP—And Why Should I Care?... 1

Chapter 2: Getting Ready to Work with PHP... 9

Chapter 3: How to Write PHP Scripts .. 29

Chapter 4: Lightening Your Workload with Includes.. 69

Chapter 5: Bringing Forms to Life ... 103

Chapter 6: Uploading Files ... 141

Chapter 7: Using PHP to Manage Files ... 179

Chapter 8: Generating Thumbnail Images.. 215

Chapter 9: Pages That Remember: Simple Login and Multipage Forms 243

Chapter 10: Getting Started with MySQL.. 279

Chapter 11: Connecting to MySQL with PHP and SQL 303

Chapter 12: Creating a Dynamic Online Gallery ... 335

Chapter 13: Managing Content... 355

Chapter 14: Formatting Text and Dates ... 383

Chapter 15: Pulling Data from Multiple Tables ... 415

Chapter 16: Managing Multiple Database Tables ... 431

Chapter 17: Authenticating Users with a Database .. 459

Index... 475

CONTENTS

iv

Contents

Contents at a Glance.. iii

Contents.. iv
About the Author ... xiii

About the Technical Reviewers ...xiv
Acknowledgments ...xv

Introduction ..xvi
Chapter 1: What Is PHP—And Why Should I Care?... 1

How PHP has grown..2

How PHP makes pages dynamic..2

Creating pages that think for themselves..4

How hard is PHP to use and learn? ...5

Can I just copy and paste the code?..6

How safe is PHP?..6

What software do I need to write PHP? ...6

What to look for when choosing a PHP editor..7

So, let s get on with it8

Chapter 2: Getting Ready to Work with PHP... 9

Checking whether your website supports PHP..9

Deciding where to test your pages...10

What you need for a local test environment..10

Individual programs or an all-in-one package?..11

Setting up on Windows ...11

Getting Windows to display filename extensions..11

Choosing a web server..12

Installing XAMPP on Windows..12

Installing PHP with the Microsoft Web Platform Installer ...16

CONTENTS

v

Setting up on Mac OS X..19

Installing MAMP ..19

Testing and configuring MAMP...20

Checking your PHP settings (Windows and Mac) ..21

Editing php.ini ..25

Where to locate your PHP files ...26

What s next?..27

Chapter 3: How to Write PHP Scripts .. 29

PHP: The big picture...30

Telling the server to process PHP..30

Embedding PHP in a web page...31

Storing PHP in an external file ..31

Using variables to represent changing values ..32

Ending commands with a semicolon ..34

Commenting scripts ..34

Using arrays to store multiple values...35

PHP s built-in superglobal arrays ...36

Understanding when to use quotes..37

Making decisions ..39

Making comparisons ...41

Using indenting and whitespace for clarity ..42

Using loops for repetitive tasks ...42

Using functions for preset tasks ..42

Understanding PHP classes and objects ..43

Displaying PHP output ..44

Understanding PHP error messages..45

PHP: A quick reference ..47

Using PHP in an existing website ...48

Data types in PHP...48

Doing calculations with PHP...49

Adding to an existing string ..51

All you ever wanted to know about quotes—and more ...51

CONTENTS

vi

Creating arrays..55

The truth according to PHP...57

Creating loops ...62

Modularizing code with functions ...64

PHP quick checklist..67

Chapter 4: Lightening Your Workload with Includes.. 69

Including code from external files ..70

Introducing the PHP include commands..71

Where PHP looks for include files ..71

Choosing the right filename extension for includes ..74

Creating pages with changing content...83

Preventing errors with include files ..92

Choosing where to locate your include files ..98

Adjusting your include_path...98

Why can t I use site-root-relative links with PHP includes? ...100

Security considerations with includes ...101

Chapter review ..101

Chapter 5: Bringing Forms to Life ... 103

How PHP gathers information from a form ..103

Understanding the difference between post and get ..105

Keeping safe with PHP superglobals ...107

Removing unwanted backslashes from form input ...108

Processing and validating user input ..110

Creating a reusable script...110

Preserving user input when a form is incomplete ..115

Filtering out potential attacks ...118

Sending email...121

Using additional email headers safely ...122

Keeping spam at bay...129

Handling multiple-choice form elements ..132

Chapter review ..140

CONTENTS

vii

Chapter 6: Uploading Files ... 141

How PHP handles file uploads ..142

Checking whether your server supports uploads..142

Adding a file upload field to a form..143

Understanding the $_FILES array..144

Establishing an upload directory..146

Uploading files ...147

Moving the temporary file to the upload folder...148

Creating a PHP file upload class..150

Defining a PHP class...151

Checking upload errors ...156

Changing protected properties...161

Explicitly changing a data type ..166

Preventing files from being overwritten ...166

Uploading multiple files..171

How the $_FILES array handles multiple files ...171

Using namespaces in PHP 5.3 and later ...176

Using the upload class...177

Points to watch with file uploads ..178

Chapter review ..178

Chapter 7: Using PHP to Manage Files ... 179

Checking that PHP has permission to open a file ...179

Configuration settings that affect file access ...180

Creating a file storage folder for local testing..181

Reading and writing files..181

Reading files in a single operation..181

Opening and closing files for read/write operations..188

Exploring the file system ..195

Inspecting a folder with scandir() ...195

Inspecting the contents of a folder with DirectoryIterator..196

Restricting file types with the RegexIterator ...198

CONTENTS

viii

Accessing remote files..203

Consuming news and other RSS feeds..204

Using SimpleXML ..205

Creating a download link..210

Chapter review ..213

Chapter 8: Generating Thumbnail Images.. 215

Checking your server s capabilities ..216

Manipulating images dynamically...216

Making a smaller copy of an image ..217

Resizing an image automatically on upload...235

Extending a class..235

Using the Ps2_ThumbnailUpload class ...240

Chapter summary..241

Chapter 9: Pages That Remember: Simple Login and Multipage Forms 243

What sessions are and how they work...243

Creating PHP sessions...245

Creating and destroying session variables ...246

Destroying a session ..246

Regenerating the session ID..247

The “Headers already sent” error ...247

Using sessions to restrict access...247

Using file-based authentication ...251

Making passwords more secure...258

Setting a time limit on sessions..270

Passing information through multipage forms ..273

Chapter review ..278

Chapter 10: Getting Started with MySQL.. 279

Why MySQL? ..280

Which version?..280

How a database stores information..281

How primary keys work ...281

Linking tables with primary and foreign keys...282

CONTENTS

ix

Breaking down information into small chunks ...283

Checkpoints for good database design ...284

Using MySQL with a graphical interface ...284

Launching phpMyAdmin..286

Setting up the phpsols database ...287

MySQL naming rules ...287

Using phpMyAdmin to create a new database...288

Creating database-specific user accounts ...288

Creating a database table...291

Inserting records into a table..293

Creating a SQL file for backup and data transfer..297

Choosing the right data type in MySQL..299

Storing text ..299

Storing numbers ..300

Storing dates and times ..300

Storing predefined lists ...301

Storing binary data..301

Chapter review ..301

Chapter 11: Connecting to MySQL with PHP and SQL 303

Checking your remote server setup...304

How PHP communicates with MySQL...305

Connecting with the MySQL Improved extension ...305

Connecting with PDO..305

PHP Solution 11-1: Making a reusable database connector ..306

Finding the number of results from a query..307

Displaying the results of a query..310

MySQL connection crib sheet ..313

Using SQL to interact with a database ..314

Writing SQL queries ..314

Refining the data retrieved by a SELECT query ..315

Understanding the danger of SQL injection...319

Chapter review ..334

CONTENTS

x

Chapter 12: Creating a Dynamic Online Gallery ... 335

Why not store images in a database? ...336

Planning the gallery...336

Converting the gallery elements to PHP ..339

Building the dynamic elements ..341

Passing information through a query string...341

Creating a multicolumn table ..344

Paging through a long set of records ...347

Chapter review ..353

Chapter 13: Managing Content... 355

Setting up a content management system ...355

Creating the blog database table ...356

Creating the basic insert and update form...357

Inserting new records ...359

Linking to the update and delete pages ...363

Updating records...366

Deleting records ..375

Reviewing the four essential SQL commands ..376

SELECT ...377

INSERT ..379

UPDATE...380

DELETE ...380

Security and error messages ...380

Chapter review ..381

Chapter 14: Formatting Text and Dates ... 383

Displaying a text extract ..383

Extracting a fixed number of characters ...384

Ending an extract on a complete word...385

Extracting the first paragraph ..385

Extracting complete sentences ...387

Let s make a date ...390

How MySQL handles dates...390

CONTENTS

xi

Inserting dates into MySQL..394

Working with dates in PHP..399

Chapter review ..414

Chapter 15: Pulling Data from Multiple Tables ... 415

Understanding table relationships ..415

Linking an image to an article ...417

Altering the structure of an existing table..417

Inserting a foreign key in a table ..419

Selecting records from multiple tables...422

Finding records that don t have a matching foreign key ...427

Creating an intelligent link...428

Chapter review ..429

Chapter 16: Managing Multiple Database Tables ... 431

Maintaining referential integrity ...431

Inserting records into multiple tables..435

Creating a cross-reference table ...436

Getting the filename of an uploaded image..437

Adapting the insert form to deal with multiple tables ...438

Updating and deleting records in multiple tables ...448

Updating records in a cross-reference table ...449

Preserving referential integrity on deletion..452

Creating delete scripts with foreign key constraints...456

Creating delete scripts without foreign key constraints ...457

Chapter review ..458

Chapter 17: Authenticating Users with a Database .. 459

Choosing an encryption method ...459

Using one-way encryption ...460

Creating a table to store users details ..460

Registering new users in the database..461

Using two-way encryption ...469

Creating the table to store users details ...469

Registering new users ..469

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CONTENTS

xii

User authentication with two-way encryption..471

Decrypting a password ...472

Updating user details...472

Where next? ..472

Index: .. 475

CONTENTS

xiii

About the Author

David Powers is the author of a series of highly successful books on PHP and web development. He
began developing websites in 1994 when—as Editor, BBC Japanese TV—he needed a way to promote his
fledgling TV channel but didn t have an advertising budget. He persuaded the IT department to let him
have some space on the BBC s server and hand-coded a bilingual website from scratch. That experience
ignited a passion for web development that burns just as brightly as ever.

After leaving the BBC in 1999, David developed an online system with PHP and MySQL to deliver daily
economic and political analysis in Japanese for the clients of a leading international consultancy. Since
2004, he has devoted most of his time to writing books and teaching web development.

David is an Adobe Community Professional and Adobe Certified Instructor for Dreamweaver. In 2010, he
became one of the first people to qualify as a PHP 5.3 Zend Certified Engineer.

CONTENTS

xiv

About the Technical Reviewers

Kristian Besley is the lead developer at Beetroot Design (www.beetrootdesign.co.uk) where he develops
web applications, websites, educational interactions and games written mainly in various combinations of
PHP, Flash and Javascript.

He has been working with computers and the web for far too long. He also spends far too much time
hacking and developing for open-source applications - including Moodle - so that they work just so. Health
warning: he has an unhealthy obsession with making his applications super-RSS compatible and overly
configurable.

His past and current clients include the BBC, Pearson Education, Welsh Assembly Government and loads
of clients with acronyms such as JISC, BECTA, MAWWFIRE and - possibly his favourite of all (well, just
try saying it out loud) - SWWETN.

When he isn't working, he's working elsewhere lecturing in Interactive Media (at Gower College Swansea)
or providing geeky technical assistance to a whole gamut of institutions or individuals in an effort to save
them time and money (at his own expense!!!).

He has authored and co-authored a large number of books for friends of ED and Apress including the
Foundation Flash series, Flash MX Video, Foundation ActionScript for Flash (with the wonderful David
Powers) and Flash MX Creativity. His words have also graced the pages of Computer Arts a few times too.

Kristian currently resides with his family in Swansea, Wales and is a proud fluent Welsh speaker with a
passion for pushing the language on the web and in bilingual web applications where humanly possible.

Jason Nadon has ten years experience building and supporting complex web applications. He is an active
member of the web developer community and teaches several classes in his hometown in Michigan. He
has been in the Information Technology field for more than twelve years and holds several industry
certifications. He is currently working as an Infrastructure Manager for a global information company.

http://www.beetrootdesign.co.uk

CONTENTS

xv

Acknowledgments

My thanks go to everyone who was involved in the production of this book. The original idea to write PHP

Solutions came from Chris Mills, my editor for many years at Apress/friends of ED, who s now Developer
Relations Manager at Opera and a passionate advocate of web standards. It was a great idea, Chris.
Thanks to your help, the first edition of this book became my biggest seller. The invitation to write this
second edition came from Chris s successor, Ben Renow-Clarke. Like Chris, Ben has given me free rein to
shape this book according to my own ideas but has always put himself in the position of the reader,
nudging me in the right direction when an explanation wasn t clear enough or a chapter was badly
organized.

I m grateful to Kris Besley and Jason Nadon, who scoured my text and code for errors. Much though I hate
to admit it, they did find some. Kris, in particular, made some really good suggestions for improving the
code. Diolch yn fawr iawn. Any mistakes that remain are my responsibility alone.

Most of all, thanks to you for reading. I hope you enjoy the book as much as I have enjoyed writing it.

INTRODUCTION

xvi

Introduction

When the first edition of PHP Solutions was published, I was concerned that the subtitle, Dynamic Web

Design Made Easy, sounded overambitious. PHP is not difficult, but nor is it like an instant cake mix: just
add water and stir. Every website is different, so it s impossible to grab a script, paste it into a web page,
and expect it to work. My aim was to help web designers with little or no knowledge of programming gain
the confidence to dive into the code and adjust it to their own requirements.

The enduring popularity of the first edition suggests that many readers took up the challenge. Part of the
book s success stemmed from the use of clear, straightforward language, highlighting points where you
might make mistakes, with advice on how to solve problems. Another factor was its emphasis on forward
and backward compatibility. The solutions were based on PHP 5, but alternatives were provided for
readers still stuck on PHP 4.

Time has moved on. PHP 5 is now a mature and stable platform. This new edition of PHP Solutions
requires PHP 5.2 and MySQL 4.1 or later. Some code will work with earlier versions, but most of it won t.
The emphasis on future compatibility remains unchanged. All the code in this book avoids features
destined for removal when work resumes on PHP 6 (at the time of this writing, it s not known when that will
be).

The decision to drop support for older versions of PHP and MySQL has been liberating. When friends of
ED asked me to prepare a new edition of this book, I initially thought it would involve just brushing away a
few cobwebs. As soon as I started reviewing the code, I realized just how much the need to cater for PHP
4 had constrained me. It s also fair to say that my coding style and knowledge of PHP had expanded
greatly in the intervening years.

As a result, this new edition is a major rewrite. The basic structure of the book remains the same, but
every chapter has been thoroughly revised, and an extra two have been added. In some cases, little
remains of the original chapter other than the title. For example, the file upload and thumbnail creation
scripts in Chapters 6 and 8 have been completely refactored as PHP 5 custom classes, and the mail
processing script in Chapter 5 has been rewritten to make it easier to redeploy in different websites. Other
big changes include a class to check password strength in Chapter 9 and detailed coverage of the date
and time classes introduced in PHP 5.2 and 5.3. Want to display the date of events on the second
Tuesday of each month? Chapter 14 shows how to do it in half a dozen lines of code. Chapter 16 adds
coverage of foreign key constraints in InnoDB, the default storage engine in MySQL 5.5.

I hesitated before devoting so much attention to using PHP classes. Many regard them as an advanced
subject, not suitable for readers who don t have a programming background. But the advantages far
outweighed my reservations. In simple terms, a class is a collection of predefined functions designed to
perform related tasks. The beauty of using classes is that they re project-neutral. Admittedly, the file
upload class in Chapter 6 is longer than the equivalent script in the first edition of PHP Solutions, but you
can reuse it in multiple projects with just a few lines of code. If you re in hurry or are daunted by the
prospect of building class definitions, you can simply use the finished files. However, I encourage you to
explore the class definitions. The code will teach you a lot of PHP that you ll find useful in other situations.

INTRODUCTION

xvii

Each chapter takes you through a series of stages in a single project, with each stage building on the
previous one. By working through each chapter, you get the full picture of how everything fits together.
You can later refer to the individual stages to refresh your memory about a particular technique. Although
this isn t a reference book, Chapter 3 is a primer on PHP syntax, and some chapters contain short
reference sections—notably Chapter 7 (reading from and writing to files), Chapter 9 (sessions), Chapter
10 (MySQL data types), Chapter 11 (MySQL prepared statements), Chapter 13 (the four essential SQL
commands), and Chapter 14 (working with dates and times).

So, how easy is easy? I have done my best to ease your path, but there is no magic potion. It requires
some effort on your part. Don t attempt to do everything at once. Add dynamic features to your site a few
at a time. Get to understand how they work, and your efforts will be amply rewarded. Adding PHP and
MySQL to your skills will enable you to build websites that offer much richer content and an interactive
user experience.

Using the example files
All the files necessary for working through this book can be downloaded from the friends of ED website at
http://www.friendsofed.com/downloads.html. Make sure you select the download link for PHP

Solutions: Dynamic Web Design Made Easy, Second Edition. The code is very different from the first
edition.

Set up a PHP development environment, as described in Chapter 2. Unzip the files, and copy the phpsols
folder and all its contents into your web server s document root. The code for each chapter is in a folder
named after the chapter: ch01, ch02, and so on. Follow the instructions in each PHP solution, and copy
the relevant files to the site root or the work folder indicated.

Where a page undergoes several changes during a chapter, I have numbered the different versions like
this: index_01.php, index_02.php, and so on. When copying a file that has a number, remove the
underscore and number from the filename, so index_01.php becomes index.php. If you are using a
program like Dreamweaver that prompts you to update links when moving files from one folder to another,
do not update them. The links in the files are designed to pick up the right images and style sheets when
located in the target folder. I have done this so you can use a file comparison utility to check your files
against mine.

If you don t have a file comparison utility, I strongly urge you to install one. It will save you hours of head
scratching when trying to spot the difference between your version and mine. A missing semicolon or
mistyped variable can be hard to spot in dozens of lines of code. Windows users can download WinMerge
for free from http://winmerge.org/. I use Beyond Compare (www.scootersoftware.com). It s not free
but is excellent and reasonably priced. BBEdit on a Mac includes a file comparison utility. Alternatively,
use the file comparison feature in TextWrangler, which can be downloaded free from
www.barebones.com/products/textwrangler/.

The HTML code in the example files and text uses HTML5 syntax, but I have avoided using elements that
are not supported by older browsers. Even Internet Explorer 6 understands the HTML5 DOCTYPE
declaration, and new form elements that older browsers don t recognize are rendered as text input fields.

http://www.friendsofed.com/downloads.html
http://winmerge.org/
http://www.scootersoftware.com
http://www.barebones.com/products/textwrangler/

INTRODUCTION

xviii

Layout conventions
To keep this book as clear and easy to follow as possible, the following text conventions are used
throughout.

Important words or concepts are normally highlighted on the first appearance in bold type.

Code is presented in fixed-width font.

New or changed code is normally presented in bold fixed-width font .

Pseudo-code and variable input are written in italic fixed-width font.

Menu commands are written in the form Menu ➤ Submenu ➤ Submenu.

Where I want to draw your attention to something, I ve highlighted it like this:

Ahem, don t say I didn t warn you.

Sometimes code won t fit on a single line in a book. Where this happens, I use an arrow like this: ➥.

This is a very, very long section of code that should be written all on the same ➥

line without a break.

1

Chapter 1

What Is PHP—And Why Should I Care?

One of the first things most people want to know about PHP is what the initials stand for. Then they wish

they had never asked. Officially, PHP stands for PHP: Hypertext Preprocessor. It s an ugly name that

gives the impression that it s strictly for nerds or propellerheads. Nothing could be further from the truth.

PHP is a scripting language that brings websites to life in the following ways:

• Sending feedback from your website directly to your mailbox

• Uploading files through a web page

• Generating thumbnails from larger images

• Reading and writing to files

• Displaying and updating information dynamically

• Using a database to display and store information

• Making websites searchable

• And much more . . .

By reading this book, you ll be able to do all that. PHP is easy to learn; it s platform-neutral, so the same

code runs on Windows, Mac OS X, and Linux; and all the software you need to develop with PHP is open

source and therefore free. Several years ago, there was a lighthearted debate on the PHP General mailing

list (http://news.php.net/php.general) about changing what PHP stands for. Among the suggestions

were Positively Happy People and Pretty Happy Programmers. The aim of this book is to help you put PHP

to practical use—and in the process understand what makes PHP programmers so happy.

In this chapter, you ll learn about the following:

• How PHP has grown into the most widely used technology for dynamic websites

• How PHP makes web pages dynamic

• How difficult—or easy—PHP is to learn

• Whether PHP is safe

• What software you need to write PHP

http://news.php.net/php.general

CHAPTER 1

2

How PHP has grown
Although PHP is now the most widely used technology for creating dynamic websites, it started out with

rather modest ambitions—and a different name—in 1995. Originally called Personal Home Page Tools

(PHP Tools), one of its goals was to create a guestbook by gathering information from an online form and

displaying it on a web page. Shortly afterward, the ability to communicate with a database was added.

When version 3 was released in 1998, it was decided to drop Personal Home Page from the name,

because it sounded like something for hobbyists and didn t do justice to the range of sophisticated

features that had been added. PHP 3 was described as “a very programmer-friendly scripting language

suitable for people with little or no programming experience as well as the seasoned web developer who

needs to get things done quickly.”

Since then, PHP has developed even further, adding extensive support for object-oriented programming

(OOP) in PHP 5. One of the language s great attractions, though, is that it remains true to its roots. You

can start writing useful scripts without the need to learn lots of theory, yet be confident in the knowledge

that you re using a technology with the capability to develop industrial-strength applications. PHP is the

language that drives the highly popular content management systems (CMSs), Drupal

(http://drupal.org/), Joomla! (www.joomla.org), and WordPress (http://wordpress.org/). It also

runs some of the most heavily used websites, including Facebook (www.facebook.com) and Wikipedia

(www.wikipedia.org).

PHP can now be regarded as a mature technology in the sense that it has a large user base, is widely

supported, and has many advanced features. New features are being continually added, although these

are mainly of interest to advanced users.

At the time of this writing, the current version is PHP 5.3. Development of PHP 6 was suspended

indefinitely in early 2010, when it was realized the original plans had been too ambitious.

The emphasis in this book is on code that works now, not on what might work at some unspecified

time in the future. Care has also been taken to avoid using features that have been deprecated—in

other words, marked for removal from the next major version of PHP.

How PHP makes pages dynamic
PHP was originally designed to be embedded in the HTML of a web page, and that s the way it s often still

used. For example, if you want to display the current year in a copyright notice, you could put this in your

footer:

<p>© <<?php echo date('Y'); ?> PHP Solutions</p>

On a PHP–enabled web server, the code between the <?php and ?> tags is automatically processed and

displays the year like this:

This is only a trivial example, but it illustrates some of the advantages of using PHP:

http://drupal.org/
http://www.joomla.org
http://wordpress.org/
http://www.facebook.com
http://www.wikipedia.org

WHAT IS PHP—AND WHY SHOULD I CARE?

3

• You can enjoy your New Year s party without worrying about updating your copyright notice.

Anyone accessing your site after the stroke of midnight sees the correct year.

• Unlike using JavaScript to display the date, the processing is done on the web server, so it

doesn t rely on JavaScript being enabled in the user s browser.

• The date is calculated by the web server, so it s not affected if the clock in the user s computer

is set incorrectly.

Although it s convenient to embed PHP code in HTML like this, it often results in typing the same code

repeatedly, which is boring and leads to mistakes. It can also make your web pages difficult to maintain,

particularly once you start using more complex PHP code. Consequently, it s common practice to store a

lot of dynamic code in separate files and use PHP to build your pages from the different components. The

separate files—or include files, as they re usually called—can contain either only PHP, only HTML, or a

mixture of both.

At first, it can be difficult to get used to this way of working, but it s much more efficient. As a simple

example, you can put your website s navigation menu in an include file and use PHP to include it in each

page. Whenever you need to make any changes to the menu, you edit just one file—the include file—and

the changes are automatically reflected in every page that includes the menu. Just imagine how much

time that saves on a website with dozens of pages.

With an ordinary HTML page, the content is fixed by the web developer at design time and uploaded to the

web server. When somebody visits the page, the web server simply sends the HTML and other assets,

such as images and style sheet. It s a simple transaction—the request comes from the browser, and the

fixed content is sent back by the server. When you build web pages with PHP, much more goes on. Figure

1-1 shows what happens.

Figure 1-1. The web server builds each PHP page dynamically in response to a request.

When a PHP–driven website is visited, it sets in train the following sequence of events:

1. The browser sends a request to the web server.

2. The web server hands the request to the PHP engine, which is embedded in the server.

3. The PHP engine processes the code. In many cases, it might also query a database before

building the page.

4. The server sends the completed page back to the browser.

This process usually takes only a fraction of a second, so the visitor to a PHP website is unlikely to notice

any delay. Because each page is built individually, PHP pages can respond to user input, displaying

different content when a user logs in or showing the results of a database search.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 1

4

Creating pages that think for themselves

PHP is a server-side language. The PHP code remains on the web server. After it has been processed,

the server sends only the output of the script. Normally, this is HTML, but PHP can also be used to

generate other web languages, such as Extensible Markup Language (XML).

PHP enables you to introduce logic into your web pages. This logic is based on alternatives. Some

decisions are based on information that PHP gleans from the server: the date, the time, the day of the

week, information in the page s URL, and so on. If it s Wednesday, show Wednesday s TV schedules. At

other times, decisions are based on user input, which PHP extracts from online forms. If you have

registered with a site, display your personalized information . . . that sort of thing.

As a result, you can create an infinite variety of output from a single script. For example, if you visit my

blog at http://foundationphp.com/blog/ (see Figure 1-2), and click various internal links, what you

see is always the same page but with different content. Admittedly, I tend to write always about the same

kinds of subjects, but that s my fault, not PHP s.

Figure 1-2. Blogs are a good example of sites ideally suited to PHP.

http://foundationphp.com/blog/

WHAT IS PHP—AND WHY SHOULD I CARE?

5

How hard is PHP to use and learn?
PHP isn t rocket science, but at the same time, don t expect to become an expert in five minutes. Perhaps

the biggest shock to newcomers is that PHP is far less tolerant of mistakes than browsers are with HTML.

If you omit a closing tag in HTML, most browsers will still render the page. If you omit a closing quote,

semicolon, or brace in PHP, you ll get an uncompromising error message like the one shown in Figure 1-3.

This isn t just a feature of PHP but of all server-side technologies, including ASP, ASP.NET, and

ColdFusion.

Figure 1-3. Server-side languages like PHP are intolerant of most coding errors.

If you re the sort of web designer or developer who uses a visual design tool, such as Adobe Dreamweaver

or Microsoft Expression Web, and never looks at the underlying code, it s time to rethink your approach.

Mixing PHP with poorly structured HTML is likely to lead to problems. PHP uses loops to perform repetitive

tasks, such as displaying the results of a database search. A loop repeats the same section of code—

usually a mixture of PHP and HTML—until all results have been displayed. If you put the loop in the wrong

place, or if your HTML is badly structured, your page is likely to collapse like a house of cards. If you re

not already in the habit of doing so, it s a good idea to check your pages using the World Wide Web

Consortium s (W3C) Markup Validation Service (http://validator.w3.org/unicorn).

The W3C is the international body that develops standards—such as HTML and CSS—and guidelines

to ensure the long-term growth of the Web. It s led by the inventor of the World Wide Web, Tim

Berners-Lee. To learn about the W3C s mission, see www.w3.org/Consortium/mission.

http://validator.w3.org/unicorn
http://www.w3.org/Consortium/mission

CHAPTER 1

6

Can I just copy and paste the code?

There s nothing wrong with copying the code in this book. That s what it s there for. Copying is the way we

all learn as children, but most of us progress from the copycat stage by asking questions and beginning to

experiment on our own. Rather than attempt to teach you PHP by going through a series of boring

exercises that have no immediate value to your web pages, I ve structured this book so that you jump

straight into applying your newfound knowledge to practical projects. At the same time, I explain what the

code is for and why it s there. Even if you don t understand exactly how it all works, this should give you

sufficient knowledge to know which parts of the code to adapt to your own needs and which parts are best

left alone.

PHP is a toolbox full of powerful features. It has thousands of built-in functions that perform all sorts of

tasks, such as converting text to uppercase, generating thumbnail images from full-sized ones, or

connecting to a database. The real power comes from combining these functions in different ways and

adding your own conditional logic. To get the best out of this book, you need to start experimenting with

the tools you learn about in these pages and come up with your own solutions.

How safe is PHP?

PHP is like the electricity or kitchen knives in your home: handled properly, it s very safe; handled

irresponsibly, it can do a lot of damage. One of the inspirations for the first edition of this book was a spate

of malicious attacks that erupted in late 2005. The attacks exploited a vulnerability in email scripts,

turning websites into spam relays. Few people were immune. I certainly wasn t, but once I was alerted to

the problem, I plugged the hole and stopped the attacks in their tracks. However, day after day, people

were sending frantic pleas for help to online forums. Even when they were told how to deal with the

problem, their response became even more frantic. Many admitted they didn t know the first thing about

any of the code they were using in their websites. For someone building websites as a hobby, this might be

understandable, but many of these people were “professionals” who had built sites on behalf of clients.

The clients were naturally unhappy when their mailboxes started filling with spam. They were no doubt

even unhappier when their domains were suspended by hosting companies fed up with insecure scripts on

their servers.

The moral of this story is not that PHP is unsafe; nor does everyone need to become a security expert to

use PHP. What is important is to understand the basic principle of PHP safety: always check user input

before processing it. You ll find that to be a constant theme throughout this book. Most security risks can

be eliminated with very little effort.

Perhaps the most worrying aspect is that, more than five years after this exploit was first revealed, I still

see people using insecure email scripts. The best way to protect yourself is to understand the code you re

using. Even if you can t solve a problem yourself, you can implement any remedies suggested to you by

the author of the script or another expert.

What software do I need to write PHP?
Strictly speaking, you don t need any special software to write PHP scripts. PHP code is plain text and

can be created in any text editor, such as Notepad on Windows or TextEdit on Mac OS X. Having said

that, you would need to be a masochist to use a plain text editor. Your current web development program

might already support PHP. If it doesn t there s a wide choice of programs—both paid-for and free—that

have features designed to speed up the development process.

WHAT IS PHP—AND WHY SHOULD I CARE?

7

What to look for when choosing a PHP editor

If there s a mistake in your code, your page will probably never make it as far as the browser, and all you ll

see is an error message. You should choose a script editor that has the following features:

• PHP syntax checking: This used to be found only in expensive, dedicated programs, but it s

now a feature in several free programs. Syntax checkers monitor the code as you type and

highlight errors, saving a great deal of time and frustration.

• PHP syntax coloring: Code is highlighted in different colors according to the role it plays. If

your code is in an unexpected color, it s a sure sign you ve made a mistake.

• PHP code hints: PHP has so many built-in functions, it can be difficult to remember how to

use them—even for an experienced user. Many script editors automatically display tooltips

with reminders of how a particular piece of code works.

• Line numbering: Finding a specific line quickly makes troubleshooting a lot simpler.

• A “balance braces” feature: Parentheses (()), square brackets ([]), and curly braces ({})

must always be in matching pairs. It s easy to forget to close a pair. All good script editors help

find the matching parenthesis, bracket, or brace.

The following sections describe some of the script editors you might like to consider. It s by no means an

exhaustive list but is based on personal experience.

General purpose web development tools with PHP support

Two of the most widely used integrated development environments (IDEs) for building websites, Adobe

Dreamweaver (www.adobe.com/products/dreamweaver/) and Microsoft Expression Web

(www.microsoft.com/expression/products/web_overview.aspx), have built-in support for PHP.

• Dreamweaver CS5: Dreamweaver is a good, standards-compliant visual editor. PHP support

was taken to a completely new level in Dreamweaver CS5 with the addition of syntax checking,

embedded documentation (complete with examples), and autocompletion of variables.

Particularly useful is the ability to work in PHP includes, while keeping the main page visible in

the workspace (see Figure 1-4).

Figure 1-4. Dreamweaver CS5 lets you edit PHP include files and view the results in Live View.

http://www.adobe.com/products/dreamweaver/
http://www.microsoft.com/expression/products/web_overview.aspx

CHAPTER 1

8

• Expression Web : The level of PHP support in versions 2, 3, and 4 of Expression Web is

similar to that offered in older versions of Dreamweaver—in other words, syntax coloring, code

hints for PHP core functions, and line numbers. The big drawback at the time of this writing is

there s no support for syntax checking.

Dedicated script editors

Even if you don t plan to do a lot of PHP development, you should consider using a dedicated script editor

if your web development IDE doesn t support syntax checking. The following dedicated script editors have

all the essential features, such as syntax checking and code hints. They also support HTML and CSS but

lack the visual display offered by Dreamweaver or Expression Web.

• Zend Studio (www.zend.com/en/products/studio/): If you re really serious about PHP

development, Zend Studio is the most fully featured IDE for PHP. It s created by Zend, the

company run by leading contributors to the development of PHP. Zend Studio runs on

Windows, Mac OS X, and Linux. Its main drawback is cost, although the price includes 12

months of free upgrades and support.

• PhpED (www.nusphere.com/products/phped.htm): This is available in three different

versions. The least expensive version has all the features you need as a beginner. If you need

the more advanced features later, you can upgrade to one of the other versions. Windows

only.

• PHP Development Tools (www.eclipse.org/pdt/): PDT is actually a cut-down version of

Zend Studio and has the advantage of being free. The disadvantage is that at the time of this

writing, the documentation for PDT is almost nonexistent. It runs on Eclipse, the open source

IDE that supports multiple computer languages. If you have used Eclipse for other languages,

you should find it relatively easy to use. PDT runs on Windows, Mac OS X, and Linux and is

available either as an Eclipse plug-in or as an all-in-one package that automatically installs

Eclipse and the PDT plug-in.

• Komodo Edit (www.activestate.com/komodo-edit): This is a free, open source IDE for

PHP and a number of other popular computer languages. It s available for Windows, Mac OS X,

and Linux. It s a cut-down version of Komodo IDE, which is a paid-for program with more

advanced features. There are separate download links for a free trial of Komodo IDE, which is

time-limited, and for Komodo Edit, which doesn t expire.

So, let s get on with it . . .
This chapter has provided only a brief overview of what PHP can do to add dynamic features to your

websites and what software you need. The first stage in working with PHP is to set up a testing

environment. The next chapter covers the process for both Windows and Mac OS X.

http://www.zend.com/en/products/studio/):
http://www.nusphere.com/products/phped.htm):
http://www.eclipse.org/pdt/):
http://www.activestate.com/komodo-edit):

9

Chapter 2

Getting Ready to Work with PHP

Now that you ve decided to use PHP to enrich your web pages, you need to make sure that you have

everything you need to get on with the rest of this book. Although you can test everything on your remote

server, it s usually more convenient to test PHP pages on your local computer. Everything you need to

install is free. In this chapter, I ll explain the various options and give instructions for both Windows and

Mac OS X.

What this chapter covers:

• Determining what you need

• Deciding whether to create a local testing setup

• Using a ready-made package

• Making sure PHP has the right settings

Checking whether your website supports PHP
The easiest way to find out whether your website supports PHP is to ask your hosting company. The other

way to find out is to upload a PHP page to your website and see if it works. Even if you know that your site

supports PHP, do the following test to confirm which version is running:

1. Open a text editor, such as Notepad or TextEdit, and type the following code into a blank page:

<?php echo phpversion(); ?>

2. Save the file as phpversion.php. It s important to make sure that your operating system

doesn t add a .txt filename extension after the .php. Mac users should also make sure that

TextEdit doesn t save the file in Rich Text Format (RTF). If you re at all unsure, use

phpversion.php from the ch02 folder in the files accompanying this book.

CHAPTER 2

10

3. Upload phpversion.php to your website in the same way you would an HTML page, and then

type the URL into a browser. Assuming you upload the file to the top level of your site, the URL

will be something like http://www.example.com/phpversion.php.

If you see a three-part number like 5.3.3 displayed onscreen, you re in business: PHP is

enabled. The number tells you which version of PHP is running on your server. You need a

minimum of 5.2.0 to use the code in this book.

If you get a message that says something like Parse error, it means PHP is supported but

that you have made a mistake in typing the file. Use the version in the ch02 folder instead.

If you just see the original code, it means PHP is not supported.

Official support for PHP 4 was terminated in August 2008. Although PHP 4 was excellent, the time to lay it

to rest has long since passed. PHP 5 has been around since 2004. It s faster and has more features, and

most important of all, it s actively maintained, making it more secure.

At the time of this writing, two series are being currently maintained: PHP 5.2 and PHP 5.3. All the code in

this book has been designed to run on both versions, and it avoids using features that are scheduled to be

removed from future versions. If your server is running a version earlier than PHP 5.2, contact your host

and tell them you want the most recent stable version of PHP. If your host refuses, it s time to change

your hosting company.

Deciding where to test your pages

Unlike ordinary web pages, you can t just double-click PHP pages in Windows Explorer or Finder on a Mac

and view them in your browser. They need to be parsed—processed—through a web server that supports

PHP. If your hosting company supports PHP, you can upload your files to your website and test them

there. However, you need to upload the file every time you make a change. In the early days, you ll

probably find you have to do this often because of some minor mistake in your code. As you become more

experienced, you ll still need to upload files frequently because you ll want to experiment with different

ideas.

If you want to get working with PHP straight away, by all means use your own website as a test bed.

However, you ll soon discover the need for a local PHP test environment. The rest of this chapter is

devoted to showing you how to do it, with instructions for Windows and Mac OS X.

What you need for a local test environment
To test PHP pages on your local computer, you need to install the following:

• A web server (Apache or IIS)

• PHP

To work with a database, you ll also need MySQL and a web-based front end for MySQL called

phpMyAdmin. All the software you need is free. The only cost to you is the time it takes to download the

necessary files, plus, of course, the time to make sure everything is set up correctly. In most cases, you

should be up and running in less than an hour, probably considerably less.

http://www.example.com/phpversion.php

GETTING READY TO WORK WITH PHP

11

You don t need any special equipment. A web server is a piece of software that displays web pages, not a

separate computer. As long as you have at least 1GB of free disk space, you should be able to install all

the software on your computer—even one with modest specifications.

If you already have a PHP test environment on your local computer, there s no need to reinstall. Just

check the section at the end of the chapter titled “Checking your PHP (Windows and Mac).”

Individual programs or an all-in-one package?

For many years, I advocated installing each component of a PHP testing environment separately, rather

than using a package that installs Apache, PHP, MySQL, and phpMyAdmin automatically in a single

operation. My advice was based on the dubious quality of some early all-in-one packages, which installed

easily but were next to impossible to uninstall or upgrade. The all-in-one packages currently available are

excellent, and I have no hesitation in recommending them. On my computers, I use XAMPP for Windows

(www.apachefriends.org/en/xampp-windows.html) and MAMP for Mac OS X (www.mamp.info/en/
mamp/index.html).

Setting up a PHP testing environment with an all-in-one package is normally trouble free. The main

cause of difficulty is a conflict with another program using port 80, which Apache and IIS use to listen

for page requests. If Skype is installed, go to the Advanced section of Skype Preferences, and

make sure it s not using port 80. Try 42815 as the incoming port instead.

Setting up on Windows
These instructions have been tested on Windows 7, Windows Vista, and Windows XP. Make sure that

you re logged on as an Administrator before proceeding.

Getting Windows to display filename extensions

By default, most Windows computers hide the three- or four-letter filename extension, such as .doc or

.html, so all you see in dialog boxes and Windows Explorer is thisfile instead of thisfile.doc or

thisfile.html. The ability to see these filename extensions is essential for working with PHP.

Use these instructions to enable the display of filename extensions in Windows 7 and Windows Vista:

1. Open Start Computer.

2. Select Organize Folder and Search Options.

3. In the dialog box that opens, select the View tab.

4. In the Advanced settings section, uncheck the box marked Hide extensions for known

file types.

5. Click OK.

http://www.apachefriends.org/en/xampp-windows.html
http://www.mamp.info/en/mamp/index.html
http://www.mamp.info/en/mamp/index.html

CHAPTER 2

12

Use these instructions in Windows XP:

1. Open Start My Computer.

2. Select Tools Folder Options.

3. In the dialog box that opens, select the View tab.

4. Uncheck the box marked Hide extensions for known file types.

5. Click OK.

I recommend that you leave your computer at this setting because it is more secure—you can tell if a virus

writer has attached an .exe or .scr executable file to an innocent-looking document.

Choosing a web server

Most PHP installations run on the Apache web server. Both are open source and work well together.

However, Windows has its own web server, Internet Information Services (IIS), which also supports PHP.

In fact, Microsoft has worked closely with the PHP development team to improve the performance of PHP

on IIS to roughly the same level as Apache. So, which should you choose?

The answer depends on whether you develop web pages using ASP or ASP.NET, or intend to do so. ASP

and ASP.NET require IIS. You can install Apache on the same computer as IIS, but they both listen for

requests on port 80. You can t run both servers simultaneously on the same port.

Unless you need IIS for ASP or ASP.NET, I recommend that you install Apache, using XAMPP or one of

the other popular all-in-one packages, as described in the next section. For instructions on how to install

PHP in IIS, skip ahead to “Installing PHP with the Microsoft Web Platform Installer.”

Installing XAMPP on Windows

XAMPP installs Apache, PHP, MySQL, phpMyAdmin, and several other tools on your computer in a single

operation. Apart from the time it takes to download, the installation process normally takes less than five

minutes. Once it has been installed, you need to change a few settings, but most changes can be made

through a web interface.

XAMPP isn t the only all-in-one package. Two others are WampServer (www.wampserver.com/en/) and

EasyPHP (www.easyphp.org). They all install the software you need to develop PHP. The main difference

lies in the interface they provide to control the web server and database.

The following instructions describe how to install XAMPP:

1. In a browser, go to www.apachefriends.org/en/xampp-windows.html#641, and download

XAMPP for Windows. Choose the Basic package self-extracting RAR archive.

2. Close all applications on your computer, and double-click the .exe file you downloaded. A

dialog box asks you where you want to install XAMPP. The default is C:\. If you select the

default, all the necessary files are extracted to a new folder called C:\xampp.

http://www.wampserver.com/en/
http://www.easyphp.org
http://www.apachefriends.org/en/xampp-windows.html#641

GETTING READY TO WORK WITH PHP

13

3. At the end of the extraction process, the installer opens a Windows Command Prompt window

with a series of questions about installation options. Type y or n, depending on your

preference, and press Enter.

4. After you have set the options, you should see a message telling you that XAMPP is ready.

Type 1, and press Enter to start the XAMPP Control Panel (see Figure 2-1).

Figure 2-1. The XAMPP Control Panel

5. Type x, and press Enter to close the Command Prompt window.

6. Start Apache and MySQL by clicking the top two Start buttons in the XAMPP Control Panel.

FileZilla, Mercury, and Tomcat are not required for a PHP testing environment and are not

covered in this book. If the servers start up without error, the control panel should display

Running alongside Apache and MySQL, and the labels on the Start buttons should change to

Stop, as shown in Figure 2-2.

Figure 2-2. The XAMPP Control Panel confirms the servers are running.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 2

14

Troubleshooting

If Apache or MySQL fail to start, check the following:

• If Apache reports an error on startup, double-click C:\xampp\apache\logs\error.log in

Windows Explorer, and scroll to the bottom of the file to read any error messages.

• Check that another program isn t using port 80. Your security software should indicate any

program that has initiated communication on port 80. This port is used for HTTP (Hypertext

Transfer Protocol), so the program is usually web-related.

• The error log for MySQL is located in the C:\xampp\mysql\data folder. It's in a file that uses

the same name as your computer followed by an .err filename extension. Double-click its

icon, and select Notepad when prompted to select a program to use.

• If the error logs don t reveal the cause, try disabling any security software temporarily. If that

solves problem, adjust the settings in the security software before re-enabling it.

The Explore button in the XAMPP Control Panel is a quick way to open the xampp folder. The Port-

Check button will let you know what s running on each port, so you can see if you have a conflict on

port 80.

Configuring XAMPP

After installing XAMPP, you need to create a password for the main administrative account in the MySQL

database. This is how you do it:

1. Make sure that Apache and MySQL are running. Launch a browser, type http://localhost/

into the address bar, and press Enter.

2. You should see a web page offering a choice of languages. Select the language you want to

use. This launches the XAMPP welcome screen, as shown in Figure 2-3.

Figure 2-3. The XAMPP Welcome screen

http://localhost/

GETTING READY TO WORK WITH PHP

15

3. Click Security in the menu on the left of the screen. This opens a new browser window or tab

with a report on your installation s security status. Scroll down below the status report, and

click the following link: http://localhost/security/xamppsecurity.php.

This displays the screen shown in Figure 2-4, which prompts you to create a password for the

MySQL superuser, root. Even if you are the only person using the computer, it's good practice

to password protect the MySQL database.

4. Enter your chosen password in both fields. It can contain special characters but should not

have any spaces.

Figure 2-4. Setting the MySQL root password in XAMPP.

5. Immediately below the password fields is a pair of radio buttons that determine how

phpMyAdmin connects to MySQL as the root superuser. The default is to store it in a cookie.

This is fine for a local development environment.

6. You are also asked whether to set a random password for the phpMyAdmin pma user.

phpMyAdmin uses this for advanced features beyond the scope of this book, but the default

Yes is fine.

7. If you're worried about forgetting the root superuser password, select the check box to store it

in a plain text file at C:\xampp\security\mysqlrootpassword.txt. How much of a security

risk this represents depends on who else has access to your computer.

8. After making your choices, click the Password changing button.

Starting Apache and MySQL automatically with XAMPP

The Apache web server needs to be running whenever you test your PHP scripts. MySQL also needs to be

running if your script accesses a database. Forgetting to switch them on is a common mistake. Apache

and MySQL consume few computer resources, so many developers leave them running all the time. To

launch them automatically as Windows services each time your computer starts, select the Svc check

boxes alongside Apache and MySQL in the XAMPP Control Panel. On the other hand, the XAMPP Control

Panel makes it easy to run the servers whenever you need them. The servers take only a few seconds to

start and stop, so it s up to you if you want to leave them running or only start them when required.

http://localhost/security/xamppsecurity.php

CHAPTER 2

16

Congratulations. You now have a working PHP development environment on your computer. Skip to

“Checking you PHP settings (Windows and Mac)” later in this chapter.

If you run into problems with installing or running XAMPP, the best place to start looking for answers

is in the XAMPP forum at www.apachefriends.org/f/viewforum.php?f=34.

Installing PHP with the Microsoft Web Platform Installer

If you need to use IIS instead of Apache, the easiest way to install PHP is with the Microsoft Web Platform

Installer (Web PI). The Web PI automatically downloads the correct version of PHP and integrates it into

your IIS server. At the time of this writing, the Web PI doesn t support MySQL or phpMyAdmin, so you

need to install them separately afterward. If you haven t yet installed IIS or the .NET framework, the Web

PI can install them at the same time as PHP.

1. Download the Web PI from www.microsoft.com/web/downloads/platform.aspx. If you are

using Internet Explorer, click Run to install it. Otherwise, save the .exe file to your local

computer, and double-click it to install the Web PI.

You need to remain online, because the Web PI connects to Microsoft to find the most up-to-

date components and then asks which ones you want to install (see Figure 2-5).

Figure 2-5. The Microsoft Web Platform Installer makes it easy to integrate PHP in IIS.

http://www.apachefriends.org/f/viewforum.php?f=34
http://www.microsoft.com/web/downloads/platform.aspx

GETTING READY TO WORK WITH PHP

17

2. Select Web Platform from the menu on the left. To select the components you want to install,

click the Customize link in the relevant section. IIS and ASP are located in the Web Server

section. PHP and ASP.NET are in the Frameworks and Runtimes section.

3. At the time of this writing, the Database section supports only Microsoft SQL Server. If you

want to use this database instead of MySQL, you also need to select the Microsoft SQL

Server Driver for PHP.

Using PHP with Microsoft SQL Server is beyond the scope of this book. However, the chapters on

database connection show how to use PHP Data Objects (PDO), which work with all major

databases, including Microsoft SQL Server and MySQL.

4. After you have made your selections, click Install. The Web PI downloads the necessary

components and installs them on your computer.

5. When the installation is complete, launch your browser, type http://localhost/ in the

address bar, and press Enter. In Windows 7, Windows Vista, and other recent versions of

Windows, you should see the IIS welcome page.

6. If this is the first time you have installed IIS, you need to change the permissions on the folder

where IIS stores websites:

• In Windows Explorer, locate C:\inetpub\wwwroot, right-click, and select

Properties.

• Select the Security tab, and click Edit.

• In the Group Or User Names section at the top of the panel, select

IIS_IUSRS, and select the Allow check box for the Write permission in the

lower half of the panel.

• Click OK twice to close the Permissions and Properties panels.

Installing MySQL separately (for IIS only)

The Web PI doesn t install MySQL, so you need to download and install it independently. During the

configuration process, you re prompted to create a password for the root superuser. This is the main

administrative user account in MySQL. Make a note of the password, because you won t be able to

access MySQL without it.

1. Go to the MySQL downloads page at http://dev.mysql.com/downloads/mysql/. Select

Microsoft Windows from the Select Platform menu, and download the MSI Installer Essentials

for your operating system (there are different versions for 32-bit and 64-bit Windows).

2. Double-click the installer file, and follow the onscreen instructions. Choose Typical Install.

3. At the end of the installation process, select the option to configure the MySQL server, and

click Finish.

http://localhost/
http://dev.mysql.com/downloads/mysql/

CHAPTER 2

18

4. In the MySQL Server Instance Configuration Wizard, select the following options:

• Configuration type: Detailed Configuration

• Server type: Developer Machine

• Database usage: Multifunctional Database

• Number of concurrent connections: Decision Support (DSS)/OLAP

• Networking options: Accept the default settings.

• Default character set: Accept the default setting.

• Windows options: Select Install As Windows Service and Include Bin

Directory in Windows Path.

• Security: Enter and confirm a password for the root superuser.

5. Click Execute to configure MySQL.

Installing phpMyAdmin separately (for IIS only)

phpMyAdmin is a web-based front end for MySQL. Use the following instructions to install it in IIS:

1. Go to www.phpmyadmin.net/home_page/, and download the latest version of phpMyAdmin.

2. Unzip the downloaded file. It extracts the contents to a folder called phpMyAdmin-x.x.x,

where x represents the version number.

3. Rename the folder phpMyAdmin, and move it to C:\inetpub\wwwroot\phpmyadmin.

4. Create a new subfolder called config in C:\inetpub\wwwroot\phpmyadmin.

5. Open a browser, type http://localhost/phpmyadmin/setup/index.php in the address

bar, and press Enter. Ignore any warning about the connection not being secure. It applies

only if you are installing phpMyAdmin on a live server on the Internet.

6. Click the New Server button in the Servers section. This loads a form with most of the

necessary information already filled in. Verify the following settings:

• Server hostname: localhost

• Server port: Leave blank

• Server socket: Leave blank

• Connection type : tcp

• Authentication type: config

• User for config auth: root

• Password for config auth: Enter your MySQL root password.

http://www.phpmyadmin.net/home_page/
http://localhost/phpmyadmin/setup/index.php

GETTING READY TO WORK WITH PHP

19

7. Click Save. The next screen will probably warn you that using the config authentication type

is not desirable for live hosts. This is not important in a local testing environment. However, if

you share the computer with others and want to force users to log into phpMyAdmin, click the

Edit link in the Servers section to return to the setup, and select http as the authentication

type.

You might also see a warning that you didn't set up a phpMyAdmin database. You can set one

up later if you decide to use the advanced features of phpMyAdmin.

8. Scroll down to the Configuration file section near the bottom of the page, and click Save.

9. Open the config folder in Windows Explorer. You should see a new file called

config.inc.php. Move it the main phpmyadmin folder.

10. Delete the config folder.

11. Type http://localhost/phpmyadmin/ in your browser address bar, and press Enter to load

phpMyAdmin to verify you have installed it correctly.

Congratulations. You now have a working PHP development environment on your computer. Skip to

“Checking you PHP settings (Windows and Mac)” later in this chapter.

Setting up on Mac OS X
The Apache web server and PHP are preinstalled on Mac OS X, but they are not enabled by default.

Rather than using the preinstalled versions, I recommend that you use MAMP, which installs Apache,

PHP, MySQL, and phpMyAdmin in a single operation.

To avoid conflicts with the preinstalled versions of Apache and PHP, MAMP locates all the applications in

a dedicated folder on your hard disk. This makes it easier to uninstall everything by simply dragging the

MAMP folder to the Trash if you decide you no longer want MAMP on your computer.

Installing MAMP

Before you begin, check that the preinstalled versions of Apache and PHP are not running. You should

also be logged into your computer with administrative privileges.

1. Open System Preferences, and select Sharing in Internet & Network.

2. Make sure that Web Sharing is not selected. If MySQL is installed on your computer (it s not

installed by default), make sure it s turned off, and deselect the option to launch it when you

start your computer.

3. Go to www.mamp.info/en/downloads/index.html, and select the link for MAMP & MAMP

PRO. This downloads a disk image that contains both the free and commercial versions of

MAMP.

4. When the download completes, you will be presented with a license agreement. You must click

Agree to continue with mounting the disk image.

http://localhost/phpmyadmin/
http://www.mamp.info/en/downloads/index.html

CHAPTER 2

20

5. Drag the MAMP folder onto the shortcut icon for the Applications folder.

6. Verify that MAMP has been copied to your Applications folder, and eject the disk image.

Testing and configuring MAMP

By default, MAMP uses nonstandard ports for Apache and MySQL. Unless you re using multiple

installations of Apache and MySQL, you should change the port settings.

1. Double-click the MAMP icon in Applications/MAMP. Your default browser should launch and

present you with the MAMP welcome page. Note that the URL in the browser address bar

begins with http://localhost:8888. The :8888 indicates that Apache is listening for

requests on the nonstandard port 8888.

2. Minimize the browser, and locate the MAMP control panel (see Figure 2-6), which should be

running on your desktop. The green lights alongside Apache Server and MySQL Server

indicate that both servers are running.

Figure 2-6. The MAMP control panel

3. Click the Preferences button, and select Ports at the top of the panel that opens. It shows

Apache and MySQL are running on ports 8888 and 8889 (see Figure 2-7).

http://localhost:8888

GETTING READY TO WORK WITH PHP

21

Figure 2-7. Changing the Apache and MySQL ports

4. Click Set to default Apache and MySQL ports, as shown in Figure 2-7. The numbers

change to the standard ports: 80 for Apache and 3306 for MySQL.

5. Click OK, and enter your Mac password when prompted. MAMP restarts both servers.

If any other program is using port 80, Apache won't restart. If you can't find what's preventing

Apache from using port 80, open the MAMP preference panel, and click Reset MAMP ports.

6. When both lights are green again, click Open start page in the MAMP Control Panel. This

reloads the MAMP welcome page into your browser. This time, the URL is likely to have :80

after localhost. Because port 80 is the default, the addition of :80 is unnecessary, so it

doesn't matter if it's missing. The only time you need the colon followed by a number is if you

use nonstandard ports.

If you were expecting to have to do more, that s all there is to it. The Windows section was longer because

of the different options for XAMPP and IIS. If you run into difficulties, the best place to look for help is in

the MAMP forum (http://forum.mamp.info/index.php?c=1).

Checking your PHP settings (Windows and Mac)
After installing PHP, it s a good idea to inspect how it has been configured. In addition to the core

features, PHP has a large number of optional extensions. Which ones have been installed depends on the

package you chose. XAMPP, MAMP, and the Microsoft Web PI install all the extensions that you need for

this book. However, some of the basic configuration settings might be slightly different. To avoid

unexpected problems, adjust your PHP configuration to match the settings recommended in the following

pages.

http://forum.mamp.info/index.php?c=1

CHAPTER 2

22

1. Make sure that Apache or IIS is running on your local computer.

2. If you installed XAMPP or MAMP, click the phpinfo link in the XAMPP or MAMP welcome page.

In XAMPP, it s in the menu on the left of the screen. In MAMP, it s in the menu at the top of the

browser window. Skip to step 6.

If you installed PHP in IIS, continue with step 3.

3. Open Notepad or a script editor, and type the following script:

<?php phpinfo(); ?>

There should be nothing else in the file.

4. Save the file as phpinfo.php in C:\inetpub\wwwroot.

5. Type http://localhost/phpinfo.php in your browser address bar, and press Enter.

You should see a page similar to Figure 2-8 displaying the version of PHP running in your local

testing environment followed by extensive details of your PHP configuration.

Figure 2-8. Running the phpinfo() command displays full details of your PHP configuration.

6. Make a note of the value of Loaded Configuration File. This tells you where to find php.ini,

the text file that you need to edit to change most settings in PHP.

7. Scroll down to the section labeled Core (in PHP 5.2, it s called PHP Core), and compare the

settings with those recommended in Table 2-1. Make a note of any differences, so you can

change them as described later in this chapter.

http://localhost/phpinfo.php

GETTING READY TO WORK WITH PHP

23

Table 2-1. Recommended PHP configuration settings

Directive Local value Remarks

display_errors On Essential for debugging mistakes in your scripts. If set to

Off, some errors result in a completely blank screen, leaving

you clueless as to the possible cause.

error_reporting 32767 This sets error reporting to the highest level. In PHP 5.2, the

value should be 6143.

file_uploads On Allows you to use PHP to upload files to a website.

log_errors Off With display_errors set on, you don t need to fill your

hard disk with an error log.

magic_quotes_gpc Off See “Eliminating magic quotes.”

8. The rest of the configuration page shows you which PHP extensions are enabled. Although the

page seems to go on forever, they re all listed in alphabetical order after Core (or PHP Core).

To work with this book, make sure the following extensions are enabled:

• gd: Enables PHP to generate and modify images and fonts.

• mbstring: Provides multilingual support.

• mysqli: Connects to MySQL (note the “i,” which stands for “improved” and distinguishes

this extension from the older mysql one, which should no longer be used).

• PDO: Provides software-neutral support for databases (optional).

• pdo_mysql: Alternative method of connecting to MySQL (optional).

• session: Sessions maintain information associated with a user and are used, among

other things, for user authentication.

• SPL: This is the Standard PHP Library, which improves performance with loops and file

manipulation.

If you installed XAMPP, MAMP, or used the Microsoft Web PI to install PHP, all the extensions listed here

should be enabled. If you used a different method to install PHP, and any of the extensions are missing

from your setup, you need to upgrade your PHP testing environment.

You should also run phpinfo() on your remote server to check which features are enabled. If the listed

extensions aren t supported, some of the code in this book won t work when you upload your files to your

website. PDO and pdo_mysql aren t always enabled on shared hosting, but you can use mysqli instead.

The advantage of PDO is that it s software-neutral, so you can adapt scripts to work with a database other

than MySQL by changing only one or two lines of code. Using mysqli ties you to MySQL.

If any of the Core settings in your setup are different from the recommendations in Table 2-1, you need to

edit the PHP configuration file, php.ini, as described in “Editing php.ini.” Before doing so, read the next

section about magic quotes, because it might influence which setting you use for magic_quotes_gpc.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 2

24

Eliminating magic quotes

Quotation marks need special handling when querying a database, so the developers of PHP had what

they thought was the brilliant idea to insert a backslash automatically in front of single and double quotes

in text submitted from an online form. They called this idea magic quotes. For a while, most people were

happy. It was good magic; it made life easier for beginners and went a long way toward solving security

problems. Then, people realized magic quotes didn t really do the job properly. Worse, they littered

dynamically generated text with unsightly backslashes.

Eventually, it was decided that magic quotes should have no future in PHP; but by then, the damage had

already been done. Countless scripts that rely on magic quotes had already been deployed on websites.

Simply removing the feature would cause mayhem. So, magic quotes are being phased out gradually. In

PHP 5.3, magic quotes are disabled by default, but system administrators can still turn them back on.

However, that won t be possible in the next major version of PHP. The feature will no longer exist.

Because magic quotes are destined for the chop, all the scripts in this book are written on the assumption

that magic_quotes_gpc in your PHP configuration is set to Off. However, that presents a problem if the

setting on your remote server is On.

To find out whether your remote server has magic quotes on or off, upload phpinfo.php from the ch02

folder to your website. This contains a single-line script <?php phpinfo(); ?> that displays your PHP

configuration. Load the page into a browser, and find the line indicated in Figure 2-9. It s in the section

labeled Core close to the top of the page.

Figure 2-9. Checking whether magic quotes are enabled

Delete phpinfo.php, or move it to a password-protected folder after checking your remote server s

settings. Leaving it publicly accessible exposes details that malicious users might try to exploit.

If the value of magic_quotes_gpc is Off, you re in luck. Just check that it s also turned off in your testing

environment.

If the value of magic_quotes_gpc is On, you need to turn off magic quotes. There are three ways to do

so, as follows:

• If your hosting company allows you to edit php.ini, the PHP configuration file, this is the best

option. Change the value of magic_quotes_gpc from On to Off, and restart the web server.

Some companies allow you to make changes through a web interface, but you might need to

edit the configuration file manually in a text editor.

GETTING READY TO WORK WITH PHP

25

• If you don t have control over the settings in php.ini, but your hosting company uses Apache

and allows you to control your configuration with an .htaccess file, add the following line to the

.htaccess file in the top-level folder of your website:

php_flag magic_quotes_gpc Off

• If neither option is available, you need to include nuke_magic_quotes.php at the beginning of

all scripts that process the input of online forms. The file contains a script that strips the

backslashes from form input. Chapter 4 describes how to include external scripts in PHP.

Using nuke_magic_quotes.php is inefficient. If you can t edit php.ini or use an .htaccess file, ask

your hosting company if you can transfer to a server where magic quotes are disabled.

If you can t turn off magic quotes on your remote server, make sure magic_quotes_gpc is set to On in

your local testing environment.

Editing php.ini

The PHP configuration file, php.ini, is a very long file, which tends to unnerve newcomers to

programming, but there s nothing to worry about. It s written in plain text, and one reason for its length is

that it contains copious comments explaining the various options. That said, it s a good idea to make a

backup copy before editing php.ini in case you make a mistake.

How you open php.ini for editing depends on your operating system and how you installed PHP:

• If you used an all-in-one package, such as XAMPP, on Windows, double-click php.ini in

Windows Explorer. The file opens automatically in Notepad.

• If you installed PHP using the Microsoft Web PI, php.ini is normally located in a subfolder of

Program Files. Although you can open php.ini by double-clicking it, you won t be able to

save any changes you make. Instead, select Start All Programs Accessories, right-

click Notepad, and select Run as Administrator from the context menu. Inside Notepad,

select File Open, and set the option to display All Files (*.*). Navigate to the folder where

php.ini is located, select the file, and click Open.

• On Mac OS X, php.ini is displayed in Finder as an executable file. Use a text editor, such as

BBEdit or TextWrangler (both available from www.barebones.com), to open php.ini.

Lines that begin with a semicolon (;) are comments. The lines you need to edit do not begin with a

semicolon.

Use your text editor s Find functionality to locate the directives you need to change to match the

recommended settings in Table 2-1. Most directives are preceded by one or more examples of how they

should be set. Make sure you don t edit one of the commented examples by mistake.

For directives that use On or Off, just change the value to the recommended one. For example, if you need

to turn on the display of error messages, edit this line:

display_errors = Off

Change it to this:

http://www.barebones.com

CHAPTER 2

26

display_errors = On

To set the level of error reporting, you need to use PHP constants, which are written in uppercase and are

case-sensitive.

For PHP 5.3, the directive should look like this:

error_reporting = E_ALL | E_STRICT

The character between E_ALL and E_STRICT is a vertical pipe. On most keyboards, you insert it by holding

down the Shift key and typing a backslash.

To set the level of error reporting on PHP 5.2, use this:

error_reporting = E_ALL

After editing php.ini, save the file, and restart Apache or IIS for the changes to take effect.

If the web server won t start, check the log files, as described earlier in this chapter, and be thankful you

followed the advice to make a backup of php.ini before editing it. Start again with a fresh copy of

php.ini, and check your edits carefully.

Where to locate your PHP files
You need to create your files in a location where the web server can process them. Normally, this means

that the files should be in the server s document root or a subfolder of the document root. The default

location of the document root for the most common setups is as follows:

• XAMPP: C:\xampp\htdocs

• WampServer: C:\wamp\www

• EasyPHP: C:\EasyPHP\www

• IIS: C:\inetpub\wwwroot

• MAMP: Macintosh HD:Applications:MAMP:htdocs

To view a PHP page, you need to load it in a browser using a URL. The URL for the web server s document

root in your local testing environment is http://localhost/.

If you store the files for this book in a subfolder of the document root called phpsols, the URL is

http://localhost/phpsols/ followed by the name of the folder (if any) and file.

If your web server uses a nonstandard port, add the port number preceded by a colon after localhost.

For example, if you installed MAMP and decided against using the default Apache and MySQL ports, use

http://localhost:8888/ instead of http://localhost/.

http://localhost/
http://localhost/phpsols/
http://localhost:8888/
http://localhost/

GETTING READY TO WORK WITH PHP

27

In some rare cases, you might need to use http://127.0.0.1/ instead of http://localhost/ .

127.0.0.1 is the loopback IP address all computers use to refer to the local machine.

The alternative to storing your PHP files in the web server s document root is to use virtual hosts. A virtual

host creates a unique address for each site and is how hosting companies manage shared hosting.

Setting up virtual hosts involves editing one of your computer s system files to register the host name on

your local machine. You also need to tell the web server in your local testing environment where the files

are located. The process isn t difficult, but it needs to be done each time you set up a new virtual host.

The advantage of setting up each site in a virtual host is that it matches more accurately the structure of a

live website. However, when learning PHP, it s probably more convenient to use a subfolder of your testing

server s document root. Once you have gained experience with PHP, you can advance to using virtual

hosts. Instructions for setting up virtual hosts in Apache are on my website at the following addresses:

• Windows: http://foundationphp.com/tutorials/apache22_vhosts.php

• MAMP: http://foundationphp.com/tutorials/vhosts_mamp.php

Creating a new website in IIS on Windows 7 and Windows Vista is the equivalent of creating a virtual host.

The first stage involves editing the hosts file in C:\Windows\System32\drivers\etc in the same way as

described on my website for setting up a virtual host on Apache. Then register the new site in Internet

Information Services (IIS) Manager by selecting Sites in the Connections panel. Right-click and select

Add Web Site .

IIS on Windows XP does not support more than one website. You can store files in a virtual directory, but

the URL remains http://localhost/foldername/.

Remember to start the web server in your testing environment to view PHP pages.

What s next?
Now that you ve got a working test bed for PHP, you re no doubt raring to go. The last thing I want to do is

dampen any enthusiasm, but before using any PHP in a live website, it s important to have a basic

understanding of the basic rules of the language. So before jumping into the really cool stuff, the next

chapter explains how to write PHP. Don t skip it—it s really important stuff. You may also be pleasantly

surprised at how few rules there are.

http://127.0.0.1/
http://localhost/
http://foundationphp.com/tutorials/apache22_vhosts.php
http://foundationphp.com/tutorials/vhosts_mamp.php
http://localhost/foldername/

CHAPTER 2

28

29

Chapter 3

How to Write PHP Scripts

If you re the sort of person who runs screaming at the sight of code, this is probably going to be the

chapter you enjoy least, but it s an important one—and I ve tried to make it as user friendly as possible.

I ve divided this chapter into two parts: the first section offers a quick overview of how PHP works and

gives you the basic rules; the second section goes into more detail.

Depending on your style of working, you can read just the first section and come back to the more detailed

parts later, or you can read the chapter straight through. However, don t attempt to memorize everything

at one sitting. The best way to learn anything is by doing it. Coming back to the second part of the chapter

for a little information at a time is likely to be much more effective.

If you re already familiar with PHP, you may want to skim through the main headings to see what this

chapter contains and brush up your knowledge on any aspects that you re a bit hazy about.

This chapter covers:

• Understanding how PHP is structured

• Embedding PHP in a web page

• Storing data in variables and arrays

• Getting PHP to make decisions

• Looping through repetitive tasks

• Using functions for preset tasks

• Understanding PHP objects and classes

• Displaying PHP output

• Understanding PHP error messages

CHAPTER 3

30

PHP: The big picture
At first glance, PHP code can look quite intimidating, but once you understand the basics, you ll discover

that the structure is remarkably simple. If you have worked with any other computer language, such as

JavaScript or ActionScript, you ll find they have a lot in common.

Every PHP page must have the following:

• The correct filename extension, usually .php

• Opening and closing PHP tags surrounding each block of PHP code (although the closing PHP

tag can be omitted in certain circumstances)

A typical PHP page will use some or all of the following elements:

• Variables to act as placeholders for unknown or changing values

• Arrays to hold multiple values

• Conditional statements to make decisions

• Loops to perform repetitive tasks

• Functions or objects to perform preset tasks

Let s take a quick look at each of these in turn, starting with the filename and the opening and closing

tags.

Telling the server to process PHP

PHP is a server-side language. This means that the web server processes your PHP code and sends

only the results—usually as HTML—to the browser. Because all the action is on the server, you need to

tell it that your pages contain PHP code. This involves two simple steps, namely:

• Give every page a PHP filename extension—the default is .php. Do not use anything other

than .php unless you are told to specifically by your hosting company.

• Enclose all PHP code within PHP tags.

The opening tag is <?php and the closing tag is ?>. If you put the tags on the same line as surrounding

code, there doesn t need to be a space before the opening tag or after the closing one, but there must be a

space after the php in the opening tag like this:

<p>This is HTML with embedded PHP<?php //some PHP code ?>.</p>

When inserting more than one line of PHP, it s a good idea to put the opening and closing tags on separate

lines for the sake of clarity.

<?php
// some PHP code
// more PHP code
?>

You may come across <? as an alternative short version of the opening tag. However, <? doesn t work on

all servers. Stick with <?php, which is guaranteed to work.

HOW TO WRITE PHP SCRIPTS

31

To save space, most examples in this book omit the PHP tags. You must always use them when

writing your own scripts or embedding PHP into a web page.

Embedding PHP in a web page

PHP is an embedded language. This means that you can insert blocks of PHP code inside ordinary web

pages. When somebody visits your site and requests a PHP page, the server sends it to the PHP engine,

which reads the page from top to bottom looking for PHP tags. HTML passes through untouched, but

whenever the PHP engine encounters a <?php tag, it starts processing your code and continues until it

reaches the closing ?> tag. If the PHP code produces any output, it s inserted at that point.

You can have multiple PHP code blocks on a page, but they cannot be nested inside each other.

Figure 3-1 shows a block of PHP code embedded in an ordinary web page and what it looks like in a

browser and in a page source view after it has been passed through the PHP engine. The code calculates

the current year, checks whether it s different from a fixed year (represented by $startYear in line 26 of

the code on the left of the figure), and displays the appropriate year range in a copyright statement. As

you can see from the page source view at the bottom right of the figure, there s no trace of PHP in what s

sent to the browser.

Figure 3-1. The PHP code remains on the server; only the output is sent to the browser.

PHP doesn t always produce direct output for the browser. It may, for instance, check the contents

of form input before sending an email message or inserting information into a database. So some

code blocks are placed above or below the main HTML code, or in external files. Code that produces

direct output, however, always goes where you want the output to be displayed.

Storing PHP in an external file

As well as embedding PHP in HTML, it s common practice to store frequently used code in separate files.

When a file contains only PHP code, the opening <?php tag is mandatory, but the closing ?> tag is

CHAPTER 3

32

optional. In fact, the recommended practice is to leave out the closing PHP tag. However, you must use

the closing ?> tag if the external file contains HTML after the PHP code.

Using variables to represent changing values

The code in Figure 3-1 probably looks like an awfully long-winded way to display a range of years. Surely

it s much simpler to just type out the actual dates? Yes, it is, but the PHP solution saves you time in the

long run. Instead of you needing to update the copyright statement every year, the PHP code does it

automatically. You write the code once and forget it. What s more, as you ll see in the next chapter, if you

store the code in an external file, any changes to the external file are reflected on every page of your site.

This ability to display the year automatically relies on two key aspects of PHP: variables and functions.

As the name suggests, functions do things; they perform preset tasks, such as getting the current date

and converting it into human readable form. I ll cover functions a little later, so let s take variables first.

The script in Figure 3-1 contains two variables: $startYear and $thisYear.

A variable is simply a name that you give to something that may change or that you don t know in

advance. Variables in PHP always begin with $ (a dollar sign).

Although the concept of variables sounds abstract, we use variables all the time in everyday life. When

you meet somebody for the first time, one of the first things you ask is “What s your name?” It doesn t

matter whether the person you ve just met is Tom, Dick, or Harry, the word “name” remains constant.

Similarly, with your bank account, money goes in and out all of the time (mostly out, it seems), but as

Figure 3-2 shows, it doesn t matter whether you re scraping the bottom of the barrel or as rich as Croesus,

the amount available is always referred to as the balance.

Figure 3-2. The balance on your bank statement is an everyday example of a variable—the name stays

the same, even though the value may change from day to day.

So, “name” and “balance” are everyday variables. Just put a dollar sign in front of them, and you have two

ready-made PHP variables, like this:

$name
$balance

Simple.

HOW TO WRITE PHP SCRIPTS

33

Naming variables

You can choose just about anything you like as the name for a variable, as long as you keep the following

rules in mind:

• Variables always begin with a dollar sign ($).

• The first character after the dollar sign cannot be a number.

• No spaces or punctuation marks are allowed, except for the underscore (_).

• Variable names are case-sensitive: $startYear and $startyear are not the same.

When choosing names for variables, it makes sense to choose something that tells you what it s for. The

variables you ve seen so far—$startYear, $thisYear, $name, and $balance—are good examples.

Because you can t use spaces in variable names, it s a good idea to capitalize the first letter of the

second or subsequent words when combining them (sometimes called camel case). Alternatively, you

can use an underscore ($start_year, $this_year, etc.). Technically speaking, you can use an

underscore as the first character after the dollar sign, but starting a variable name with an underscore is

normally reserved for special situations, such as creating protected properties in a class (you'll learn

about protected properties in Chapter 6). PHP predefined variables (e.g., the superglobal arrays

described a little later in this chapter) also begin with an underscore.

Don t try to save time by using really short variables. Using $sy, $ty, $n, and $b instead of the more

descriptive ones makes code harder to understand—and that makes it hard to write. More important, it

makes errors more difficult to spot. As always, there are exceptions to a rule. By convention, $i, $j, and

$k are frequently used to keep count of the number of times a loop has run; and $e is used in error

checking. You ll see examples of these later in this chapter.

Although you have considerable freedom in the choice of variable names, you can t use $this,

because it has a special meaning in PHP object-oriented programming. It s also advisable to avoid

using any of the keywords listed at http://docs.php.net/manual/en/reserved.php.

Assigning values to variables

Variables get their values from a variety of sources, including the following:

• User input through online forms

• A database

• An external source, such as a news feed or XML file

• The result of a calculation

• Direct inclusion in the PHP code

Wherever the value comes from, it s always assigned with an equal sign (=), like this:

$variable = value;

The variable goes on the left of the equal sign, and the value goes on the right. Because it assigns a

value, the equal sign is called the assignment operator.

Familiarity with the equal sign from childhood makes it difficult to get out of the habit of thinking that it

means “is equal to.” However, PHP uses two equal signs (==) to signify equality. This is one of the biggest

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://docs.php.net/manual/en/reserved.php

CHAPTER 3

34

causes of beginner mistakes—and it often catches more experienced developers, too. The difference

between = and == is covered in more detail later in this chapter.

Ending commands with a semicolon

PHP is written as a series of commands or statements. Each statement normally tells the PHP engine to

perform a particular action, and it must always be followed by a semicolon, like this:

<?php
do this;
now do something else;
?>

As with all rules, there is an exception: you can omit the semicolon if there s only one statement in the

code block. However, don t do it. Unlike JavaScript or ActionScript, PHP won t automatically assume

there should be a semicolon at the end of a line if you miss it out. This has a nice side-effect: you can

spread long statements over several lines and lay out your code for ease of reading. PHP, like HTML,

ignores whitespace in code. Instead, it relies on semicolons to indicate where one command ends and the

next one begins.

Using a semicolon at the end of a PHP statement (or command) is always right. A missing semicolon

will bring your script to a grinding halt.

Commenting scripts

PHP treats everything between the opening and closing PHP tags as statements to be executed, unless

you tell it not to do so by marking a section of code as a comment. The following three reasons explain why

you may want to do this:

• To insert a reminder of what the script does

• To insert a placeholder for code to be added later

• To disable a section of code temporarily

When a script is fresh in your mind, it may seem unnecessary to insert anything that isn t going to be

processed. However, if you need to revise the script several months later, you ll find comments much

easier to read than trying to follow the code on its own. Comments are also vital when you re working in a

team. They help your colleagues understand what the code is intended to do.

During testing, it s often useful to prevent a line of code, or even a whole section, from running. PHP

ignores anything marked as a comment, so this is a useful way of turning on and off code.

There are three ways of adding comments: two for single-line comments and one for comments that

stretch over several lines.

HOW TO WRITE PHP SCRIPTS

35

Single-line comments

The most common method of adding a single-line comment is to precede it with two forward slashes, like

this:

// this is a comment and will be ignored by the PHP engine

PHP ignores everything from the double slashes to the end of the line, so you can also place comments

alongside code (but only to the right):

$startYear = 2006; // this is a valid comment

Comments aren t PHP statements, so they don t end with a semicolon. But don t forget the semicolon at

the end of a PHP statement that s on the same line as a comment.

An alternative style uses the hash or pound sign (#) like this:

this is another type of comment that will be ignored by the PHP engine
$startYear = 2006; # this also works as a comment

Because # stands out prominently when several are used together, this style of commenting often

indicates sections of a longer script, like this:

##################
Menu section ##
##################

Multiline comments

For a comment to stretch over several lines, use the same style of comments as in Cascading Style

Sheets (CSS), JavaScript, and ActionScript. Anything between /* and */ is treated as a comment, like

this:

/* This is a comment that stretches
 over several lines. It uses the same
 beginning and end markers as in CSS. */

Multiline comments are particularly useful when testing or troubleshooting, as they can be used to disable

long sections of script without the need to delete them.

A combination of good comments and well-chosen variable names makes code easier to understand

and maintain.

Using arrays to store multiple values

In common with other computing languages, PHP lets you store multiple values in a special type of

variable called an array. The simple way of thinking about arrays is that they re like a shopping list.

Although each item might be different, you can refer to them collectively by a single name. Figure 3-3

demonstrates this concept: the variable $shoppingList refers collectively to all five items—wine, fish,

bread, grapes, and cheese.

CHAPTER 3

36

Figure 3-3. Arrays are variables that store multiple items, just like a shopping list.

Individual items—or array elements—are identified by means of a number in square brackets

immediately following the variable name. PHP assigns the number automatically, but it s important to note

that the numbering always begins at 0. So the first item in the array, wine in our example, is referred to as

$shoppingList[0], not $shoppingList[1]. And although there are five items, the last one (cheese) is

$shoppingList[4]. The number is referred to as the array key or index, and this type of array is called

an indexed array.

PHP uses another type of array, in which the key is a word (or any combination of letters and numbers).

For instance, an array containing details of this book might look like this:

$book['title'] = 'PHP Solutions: Dynamic Web Design Made Easy, Second Edition';
$book['author'] = 'David Powers';
$book['publisher'] = 'friends of ED';
$book['ISBN'] = '978-1-4302-3249-0';

This type of array is called an associative array. Note that the array key is enclosed in quotes (single or

double, it doesn t matter). It mustn t contain any spaces or punctuation, except for the underscore.

Arrays are an important—and useful—part of PHP. You ll use them a lot, starting with the next chapter,

when you ll store details of images in an array to display a random image on a web page. Arrays are also

used extensively with a database, as you fetch the results of a search in a series of arrays. You can learn

the various ways of creating arrays in the second half of this chapter.

PHP s built-in superglobal arrays

PHP has several built-in arrays that are automatically populated with really useful information. They are

called superglobal arrays, and all begin with a dollar sign followed by an underscore. Two that you will

meet frequently are $_POST and $_GET. They contain information passed from forms through the

Hypertext Transfer Protocol (HTTP) post and get methods, respectively. The superglobals are all

HOW TO WRITE PHP SCRIPTS

37

associative arrays, and the keys of $_POST and $_GET are automatically derived from the names of form

elements.

Let s say you have a text input field called address in a form; PHP automatically creates an array element

called $_POST['address'] when the form is submitted by the post method or $_GET['address'] if you

use the get method. As Figure 3-4 shows, $_POST['address'] contains whatever value a visitor enters

in the text field, enabling you to display it onscreen, insert it in a database, send it to your email inbox, or

do whatever you want with it.

Figure 3-4. You can retrieve the values of user input through the $_POST array, which is created

automatically when a form is submitted using the post method.

You ll work with the $_POST array in Chapter 5, when you send the content of an online feedback form by

email to your inbox. Other superglobal arrays that you ll use in this book are $_SERVER, to get information

from the web server in Chapters 4, 12, and 13, $_FILES to upload files to your website in Chapter 6, and

$_SESSION, to create a simple login system in Chapters 9 and 17.

Don t forget that PHP is case-sensitive. All superglobal array names are written in uppercase. $_Post

or $_Get, for example, won t work.

Understanding when to use quotes

If you look closely at the PHP code block in Figure 3-1, you ll notice that the value assigned to the first

variable isn t enclosed in quotes. It looks like this:

$startYear = 2006;

Yet all the examples in “Using arrays to store multiple values” did use quotes, like this:

$book['title'] = 'PHP Solutions: Dynamic Web Design Made Easy, Second Edition';

The simple rules are as follows:

• Numbers: No quotes

• Text: Requires quotes

As a general principle, it doesn t matter whether you use single or double quotes around text—or a string,

as text is called in PHP and other computer languages. The situation is actually a bit more complex than

that, as explained in the second half of this chapter, because there s a subtle difference in the way single

and double quotes are treated by the PHP engine.

The word “string” is borrowed from computer and mathematical science, where it means a sequence

of simple objects—in this case, the characters in text.

CHAPTER 3

38

The important thing to remember for now is that quotes must always be in matching pairs. This means

you need to be careful about including apostrophes in a single-quoted string or double quotes in a double-

quoted string. Take a look at the following line of code:

$book['description'] = 'This is David's latest book on PHP.';

At first glance, there seems nothing wrong with it. However, the PHP engine sees things differently from

the human eye, as Figure 3-5 demonstrates.

Figure 3-5. An apostrophe inside a single-quoted string confuses the PHP engine.

There are two ways around this problem:

• Use double quotes if the text includes any apostrophes.

• Precede apostrophes with a backslash (this is known as escaping).

So, either of the following is acceptable:

$book['description'] = "This is David's latest book on PHP.";
$book['description'] = 'This is David\\'s latest book on PHP.';

The same applies with double quotes in a double-quoted string (although with the rules reversed). The

following code causes a problem:

$play = "Shakespeare's "Macbeth"";

In this case, the apostrophe is fine, because it doesn t conflict with the double quotes, but the opening

quotes in front of Macbeth bring the string to a premature end. To solve the problem, either of the following

is acceptable:

$play = 'Shakespeare\'s "Macbeth"';
$play = "Shakespeare's \"Macbeth\"";

In the first example, the entire string has been enclosed in single quotes. This gets around the problem of

the double quotes surrounding Macbeth but introduces the need to escape the apostrophe in

Shakespeare s. The apostrophe presents no problem in a double-quoted string, but the double quotes

around Macbeth both need to be escaped. So, to summarize:

• Single quotes and apostrophes are fine inside a double-quoted string.

• Double quotes are fine inside a single-quoted string.

• Anything else must be escaped with a backslash.

HOW TO WRITE PHP SCRIPTS

39

The key is to remember that the outermost quotes must match. My preference is to use single quotes and

to reserve double quotes for situations where they have a special meaning, as described in the second

half of this chapter.

Special cases: true, false, and null

Although text should be enclosed in quotes, three special cases—true, false, and null—should never

be enclosed in quotes unless you want to treat them as genuine text (or strings). The first two mean what

you would expect; the last one, null, means “nothing” or “no value.”

Technically speaking, true and false are Boolean values. The name comes from a nineteenth-

century mathematician, George Boole, who devised a system of logical operations that subsequently

became the basis of much modern-day computing. It s a complicated subject, but you can find out

more at http://en.wikipedia.org/wiki/Boolean_logic. For most people, it s sufficient to know

that Boolean means true or false.

As the next section explains, PHP makes decisions on the basis of whether something equates to true or

false. Putting quotes around false has surprising consequences. The following code

$OK = false;

does exactly what you expect: it makes $OK false. Now, take a look at this:

$OK = 'false';

This does exactly the opposite of what you might expect: it makes $OK true! Why? Because the quotes

around false turn it into a string, and PHP treats strings as true. (There s a more detailed explanation in

“The truth according to PHP” in the second half of this chapter.)

The other thing to note about true, false, and null is that they are case-insensitive. The following

examples are all valid:

$OK = TRUE;
$OK = tRuE;
$OK = true;

So, to recap: PHP treats true, false, and null as special cases.

• Don t enclose them in quotes.

• They are case-insensitive.

Making decisions

Decisions, decisions, decisions . . . Life is full of decisions. So is PHP. They give it the ability to display

different output according to circumstances. Decision-making in PHP uses conditional statements. The

most common of these uses if and closely follows the structure of normal language. In real life, you may

be faced with the following decision (admittedly not very often if you live in Britain): if the weather s hot, I ll

go to the beach.

http://en.wikipedia.org/wiki/Boolean_logic

CHAPTER 3

40

In PHP pseudo-code, the same decision looks like this:

if (the weather's hot) {
 I'll go to the beach;
}

The condition being tested goes inside parentheses, and the resulting action goes between curly braces.

This is the basic decision-making pattern:

if (condition is true) {
 // code to be executed if condition is true
}

Confusion alert: I mentioned earlier that statements must always be followed by a semicolon. This

applies only to the statements (or commands) inside the curly braces. Although called a conditional

statement, this decision-making pattern is one of PHP s control structures, and it shouldn t be

followed by a semicolon. Think of the semicolon as a command that means “do it.” The curly braces

surround the command statements and keep them together as a group.

The code inside the curly braces is executed only if the condition is true. If it s false, PHP ignores

everything between the braces and moves on to the next section of code. How PHP determines whether a

condition is true or false is described in the following section.

Sometimes, the if statement is all you need, but you often want a default action to be invoked if the

condition isn t met. To do this, use else, like this:

if (condition is true) {
 // code to be executed if condition is true
} else {
 // default code to run if condition is false
}

What if you want more alternatives? One way is to add more conditional statements like this:

if (condition is true) {
 // code to be executed if condition is true
} else {
 // default code to run if condition is false
}
if (second condition is true) {
 // code to be executed if second condition is true
} else {
 // default code to run if second condition is false
}

However, it s important to realize that both conditional statements will be run. If you want only one code

block to be executed, use elseif like this:

if (condition is true) {
 // code to be executed if first condition is true

HOW TO WRITE PHP SCRIPTS

41

} elseif (second condition is true) {
 // code to be executed if first condition fails
 // but second condition is true
} else {
 // default code if both conditions are false
}

You can use as many elseif clauses in a conditional statement as you like. It s important to note that

only the first one that equates to true will be executed; all others will be ignored, even if they re also

true. This means you need to build conditional statements in the order of priority that you want them to be

evaluated. It s strictly a first-come, first-served hierarchy.

Although elseif is normally written as one word, you can use else if as separate words.

An alternative decision-making structure, the switch statement, is described in the second half of this

chapter.

Making comparisons

Conditional statements are interested in only one thing: whether the condition being tested equates to

true. If it s not true, it must be false. There s no room for half-measures or maybes. Conditions often

depend on the comparison of two values. Is this bigger than that? Are they both the same? And so on.

To test for equality, PHP uses two equal signs (==) like this:

if ($status == 'administrator') {
 // send to admin page
} else {
 // refuse entry to admin area
}

Don t use a single equal sign in the first line ($status = 'administrator'). Doing so will open the

admin area of your website to everyone. Why? Because this automatically sets the value of $status

to administrator; it doesn t compare the two values. To compare values, you must use two equal

signs. It s an easy mistake to make, but one with potentially disastrous consequences.

Size comparisons are performed using the mathematical symbols for less than (<) and greater than (>).

Let s say you re checking the size of a file before allowing it to be uploaded to your server. You could set a

maximum size of 50kB like this (1 kilobyte = 1024 bytes):

if ($bytes > 51200) {
 // display error message and abandon upload
} else {
 // continue upload
}

You can test for multiple conditions simultaneously. Details are in the second half of this chapter.

CHAPTER 3

42

Using indenting and whitespace for clarity

Indenting code helps to keep statements in logical groups, making it easier to understand the flow of the

script. There are no fixed rules; PHP ignores any whitespace inside code, so you can adopt any style you

like. The important thing is to be consistent so that you can spot anything that looks out of place.

The limited width of the printed page means that I normally use just two spaces to indent code in this book,

but most people find that tabbing four or five spaces makes for the most readable code. Perhaps the

biggest difference in styles lies in the way individual developers arrange curly braces. I put the opening

curly brace of a code block on the same line as the preceding code, and put the closing brace on a new

line after the code block, like this:

if ($bytes > 51200) {
 // display error message and abandon upload
} else {
 // continue upload
}

However, others prefer this style:

if ($bytes > 51200)
 {
 // display error message and abandon upload
 }
else
 {
 // continue upload
 }

The style isn t important. What matters is that your code is consistent and easy to read.

Using loops for repetitive tasks

Loops are huge time-savers because they perform the same task over and over again, yet involve very

little code. They re frequently used with arrays and database results. You can step through each item one

at a time looking for matches or performing a specific task. Loops are particularly powerful in combination

with conditional statements, allowing you to perform operations selectively on a large amount of data in a

single sweep. Loops are best understood by working with them in a real situation, but details of all looping

structures, together with examples, are in the second half of this chapter.

Using functions for preset tasks

As I mentioned earlier, functions do things . . . lots of things, mind-bogglingly so in PHP. A typical PHP

setup gives you access to several thousand built-in functions. Don t worry: you ll only ever need to use a

handful, but it s reassuring to know that PHP is a full-featured language capable of industrial-strength

applications.

The functions you ll be using in this book do really useful things, such as get the height and width of an

image, create thumbnails from existing images, query a database, send email, and much, much more. You

can identify functions in PHP code because they re always followed by a pair of parentheses. Sometimes,

the parentheses are empty, as in the case of phpversion(), which you used in phptest.php in the

HOW TO WRITE PHP SCRIPTS

43

previous chapter. Often, though, the parentheses contain variables, numbers, or strings, like this line of

code from the script in Figure 3-1:

$thisYear = date('Y');

This calculates the current year and stores it in the variable $thisYear. It works by feeding the string 'Y'
to the built-in PHP function date(). Placing a value between the parentheses like this is known as

passing an argument to a function. The function takes the value in the argument and processes it to

produce (or return) the result. For instance, if you pass the string 'M' as an argument to date() instead

of 'Y', it will return the current month as a three-letter abbreviation (e.g., Mar, Apr, May). As the following

example shows, you capture the result of a function by assigning it to a suitably named variable:

$thisMonth = date('M');

The date() function is covered in depth in Chapter 14.

Some functions take more than one argument. When this happens, separate the arguments with commas

inside the parentheses, like this:

$mailSent = mail($to, $subject, $message);

It doesn t take a genius to work out that this sends an email to the address stored in the first argument,

with the subject line stored in the second argument, and the message stored in the third one. You ll see

how this function works in Chapter 5.

You ll often come across the term “parameter” in place of “argument.” There is a technical difference

between the two words, but for all practical purposes, they are interchangeable.

As if all the built-in functions weren t enough, PHP lets you build your own custom functions. Even if you

don t relish the idea of creating your own, throughout this book you ll use some that I have made. You use

them in exactly the same way.

Understanding PHP classes and objects

Functions and variables give PHP tremendous power and flexibility, but classes and objects take the

language to an even higher level. Classes are the fundamental building blocks of object-oriented

programming (OOP), an approach to programming that s designed to make code reusable and easier to

maintain. PHP isn t an object-oriented language, but it has supported OOP since version 3. Unfortunately,

PHP s original implementation of OOP had severe shortcomings. The problems were rectified in PHP 5, but

in a way that was incompatible with PHP 4, slowing down widespread adoption of OOP in PHP. Now that

PHP 4 is no longer supported, use of classes and objects is likely to increase significantly. In fact, you ll

start building classes in Chapter 6.

An object is a sophisticated data type that can store and manipulate values. A class is the code that

defines an object s features and can be regarded as a blueprint for making objects. Among PHP s many

built-in classes, two of particular interest are the DateTime and DateTimeZone classes, which deal with

dates and time zones. Two other classes that you ll use in this book are MySQLi and PDO, which are used

for communicating with databases.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 3

44

To create an object, you use the new keyword with the class name like this:

$now = new DateTime();

This creates an instance of the DateTime class and stores it in a DateTime object called $now. What

distinguishes this from the date() function in the preceding section is that a DateTime object is aware not

only of the date and time it was created but also of the time zone used by the web server. The date()

function, on the other hand, simply generates a number or string containing the date formatted according

to the arguments passed to it.

In the preceding example, no arguments were passed to the class, but classes can take arguments in the

same way as functions, as you ll see in the next example.

Most classes also have properties and methods, which are similar to variables and functions, except that

they re related to a particular instance of a class. For example, you can use the DateTime class s

methods to change certain values, such as the month, year, or time zone. A DateTime object is also

capable of performing date calculations, which are much more complicated using ordinary functions.

You access an object s properties and methods using the -> operator. To reset the time zone of a

DateTime object, pass a DateTimeZone object as an argument to the setTimezone() method like this:

$westcoast = new DateTimeZone('America/Los_Angeles');
$now->setTimezone($westcoast);

This resets the date and time stored in $now to the current date and time in Los Angeles, regardless of

where the web server is located, automatically making any adjustments for daylight saving time.

The DateTime and DateTimeZone classes don t have properties, but you access an object s properties

using the -> operator in the same way like this:

$someObject->propertyName

Don t worry if you find the concepts of objects, properties, and methods difficult to grasp. All you need to

know is how to instantiate objects with the new keyword and how to access properties and methods with

the -> operator.

For an in-depth discussion of OOP in PHP with extensive hands-on examples, see my book PHP

Object-Oriented Solutions (friends of ED, 2008, ISBN: 978-1-4302-1011-5).

Displaying PHP output

There s not much point in all this wizardry going on behind the scenes unless you can display the results in

your web page. There are two ways of doing this in PHP: using echo or print. There are some subtle

differences between the two, but they are so subtle, you can regard echo or print as identical. I prefer

echo for the simple reason that it s one fewer letter to type.

You can use echo with variables, numbers, and strings. Simply put it in front of whatever you want to

display, like this:

$name = 'David';
echo $name; // displays David
echo 5; // displays 5

HOW TO WRITE PHP SCRIPTS

45

echo 'David'; // displays David

The important thing to remember about echo and print, when using them with a variable, is that they work

only with variables that contain a single value. You cannot use them to display the contents of an array or

of a database result. This is where loops are so useful: you use echo or print inside the loop to display

each element individually. You will see plenty of examples of this in action throughout the rest of the book.

You may see scripts that use parentheses with echo and print, like this:

echo('David'); // displays David

The parentheses make no difference. Unless you enjoy typing for the sake of it, leave them out.

Joining strings together

PHP has a rather unusual way of joining strings (text). Although many other computer languages use the

plus sign (+), PHP uses a period, dot, or full stop (.) like this:

$firstName = 'David';
$lastName = 'Powers';
echo $firstName.$lastName; // displays DavidPowers

As the comment in the final line of code indicates, when two strings are joined like this, PHP leaves no gap

between them. Don t be fooled into thinking that adding a space after the period will do the trick. It won t.

You can put as much space on either side of the period as you like; the result will always be the same,

because PHP ignores whitespace in code. In fact, it s recommended to leave a space on either side of the

period for readability.

To display a space in the final output, you must either include a space in one of the strings or insert the

space as a string in its own right, like this:

echo $firstName . ' ' . $lastName; // displays David Powers

The period—or concatenation operator, to give it its correct name—can be difficult to spot among a

lot of other code. Make sure the font size in your script editor is large enough to read without

straining to see the difference between periods and commas.

Working with numbers

PHP can do a lot with numbers—from simple addition to complex math. The second half of this chapter

contains details of the arithmetic operators you can use with PHP. All you need to remember at the

moment is that numbers mustn t contain any punctuation other than a decimal point. PHP will choke if you

feed it numbers that contain commas (or anything else) as the thousands separator.

Understanding PHP error messages

Error messages are an unfortunate fact of life, so you need to understand what they re trying to tell you.

The following illustration shows a typical error message.

CHAPTER 3

46

The first thing to realize about PHP error messages is that they report the line where PHP discovered a

problem. Most newcomers—quite naturally—assume that s where they ve got to look for their mistake.

Wrong . . .

What PHP is telling you most of the time is that something unexpected has happened. In other words, the

mistake lies before that point. The preceding error message means that PHP discovered an echo

command where there shouldn t have been one. (Error messages always prefix PHP elements with T_,

which stands for token. Just ignore it.)

Instead of worrying what might be wrong with the echo command (probably nothing), start working

backward, looking for anything missing, probably a semicolon or closing quote on a previous line.

Sometimes, the message reports the error on the last line of the script. That always means you have

omitted a closing curly brace somewhere further up the page.

There are seven main categories of error, presented here in descending order of importance:

• Fatal error: Any HTML output preceding the error will be displayed, but once the error is

encountered—as the name suggests—everything else is killed stone dead. A fatal error is

normally caused by referring to a nonexistent file or function.

• Recoverable error: This type of error occurs only when a particular type of error known as an

exception is thrown. The error message contains much detail, explaining the cause and

location of the problem, but it can be difficult for beginners to understand. To avoid

recoverable errors, use try and catch blocks as described in “Handling exceptions.”

• Parse error: This means there s a mistake in your code syntax, such as mismatched quotes

or a missing semicolon or closing brace. It stops the script in its tracks, and it doesn t even

allow any HTML output to be displayed.

• Warning: This alerts you to a serious problem, such as a missing include file. (Include files are

the subject of Chapter 4.) However, the error is not serious enough to prevent the rest of the

script from being executed.

• Deprecated: Introduced in PHP 5.3.0, this warns you about features that are scheduled to be

removed from the next major version of PHP. If you see this type of error message, you should

seriously consider updating your script, as it could suddenly stop working if your server is

upgraded.

• Strict: This type of error message warns you about using techniques that are not considered

good practice.

• Notice: This advises you about relatively minor issues, such as the use of a nondeclared

variable. Although this type of error won t stop your page from displaying (and you can turn off

the display of notices), you should always try to eliminate them. Any error is a threat to your

output.

HOW TO WRITE PHP SCRIPTS

47

Handling exceptions

PHP 5 introduced a new way of handling errors—common to many other programming languages—known

as exceptions. When a problem arises, many built-in classes automatically throw an exception—or

generate a special type of object that contains details of what caused the error and where it arose. You

can also throw custom exceptions, using the keyword throw like this:

if (error occurs) {
 throw new Exception('Houston, we have a problem');
}

The string inside the parentheses is used as the error message. Obviously, in a real script, you need to

make the message more explicit.

When an exception is thrown, you should deal with it in a separate code block called—appropriately

enough—catch.

When using objects, wrap your main script in a block called try, and put the error handling code in a catch

block. If an exception is thrown, the PHP engine abandons the code in the try block, and executes only

the code in the catch block. The advantage is that you can use the catch block to redirect the user to an

error page, rather than displaying an ugly error message onscreen—or a blank screen if the display of

error messages is turned off, as it should be in a live website.

During the development stage, you should use the catch block to display the error message generated by

the exception like this:

try {
 // main script goes here
} catch (Exception $e) {
 echo $e->getMessage();
}

This produces an error message that s usually much easier to understand than the lengthy message

generated by a recoverable error. In the case of the previous example, it would output “Houston, we have

a problem.” Although I advised you earlier to use descriptive variable names, using $e for an exception is

a common convention.

PHP: A quick reference
The first half of this chapter gave you a high-level overview of PHP and should be sufficient to get you

started. The rest of this chapter goes into greater detail about individual aspects of writing PHP scripts.

Rather than plowing straight on, I suggest you take a short break and then move on to the next chapter.

Come back to this reference section when you ve gained some practical experience of working with PHP,

as it will make much more sense then.

The following sections don t attempt to cover every aspect of PHP syntax. For that, you should refer to

the PHP documentation at http://docs.php.net/manual/en/ or a more detailed reference book, such

as Beginning PHP and MySQL: From Novice to Professional, Fourth Edition by W. Jason Gilmore

(Apress, 2010, ISBN: 978-1-4302-3114-1).

http://docs.php.net/manual/en/

CHAPTER 3

48

Using PHP in an existing website

There is no problem mixing .html and .php pages in the same website. However, PHP code will be

processed only in files that have the .php filename extension, so it s a good idea to give the same

extension to all your pages, even if they don t all contain dynamic features. That way, you have the

flexibility to add PHP to pages without breaking existing links or losing search engine rankings.

Data types in PHP

PHP is what s known as a weakly typed language. In practice, this means that, unlike some other

computer languages (e.g., Java or C#), PHP doesn t care what type of data you store in a variable.

Most of the time, this is very convenient, although you need to be careful with user input. You may expect

a user to enter a number in a form, but PHP won t object if it encounters a word instead. Checking user

input carefully is one of the major themes of later chapters.

Even though PHP is weakly typed, it uses the following eight data types:

• Integer: This is a whole number, such as 1, 25, 42, or 2006. Integers must not contain any

commas or other punctuation as thousand separators. You can also use hexadecimal

numbers, which should be preceded by 0x (e.g., 0xFFFFFF, 0x000000).

• Floating-point number: This is a number that contains a decimal point, such as 9.99, 98.6, or

2.1. PHP does not support the use of the comma as the decimal point, as is common in many

European countries. You must use a period. Like integers, floating-point numbers must not

contain thousand-separators. (This type is also referred to as float or double.)

• String: A string is text of any length. It can be as short as zero characters (an empty string),

and it has no upper limit.

• Boolean: This type has only two values: true or false. However, PHP treats other values as

implicitly true or false. See “The truth according to PHP” later in this chapter.

• Array: An array is a variable capable of storing multiple values, although it may contain none at

all (an empty array). Arrays can hold any data type, including other arrays. An array of arrays

is called a multidimensional array. See “Creating arrays” later in this chapter for details of

how to populate an array with values.

• Object: An object is a sophisticated data type capable of storing and manipulating values.

You ll learn more about objects in Chapter 6.

• Resource: When PHP connects to an external data source, such as a file or database, it

stores a reference to it as a resource.

• NULL: This is a special data type that indicates that a variable has no value.

An important side-effect of PHP s weak typing is that, if you enclose an integer or floating-point number in

quotes, PHP automatically converts it from a string to a number, allowing you to perform calculations

without the need for any special handling. This is different from JavaScript and ActionScript, and it can

have unexpected consequences. When PHP sees the plus sign (+), it assumes you want to perform

addition, and it tries to convert strings to integers or floating-point numbers, as in the following example

(the code is in data_conversion1.php in the ch03 folder):

$fruit = '2 apples';

HOW TO WRITE PHP SCRIPTS

49

$veg = ' 2 carrots';
echo $fruit + $veg; // displays 4

PHP sees that both $fruit and $veg begin with a number, so it extracts the number and ignores the rest.

However, if the string doesn t begin with a number, PHP converts it to 0, as shown in this example (the

code is in data_conversion2.php):

$fruit = '2 apples';
$veg = ' and 2 carrots';
echo $fruit + $veg; // displays 2

Weak typing is a mixed blessing. It makes PHP very easy for beginners, but it means you often need to

check that a variable contains the correct data type before using it.

Doing calculations with PHP

PHP is highly adept at working with numbers and can perform a wide variety of calculations, from simple

arithmetic to complex math. This reference section covers only the standard arithmetic operators. See

http://docs.php.net/manual/en/book.math.php for details of the mathematical functions and

constants supported by PHP.

A constant is similar to a variable in that it uses a name to represent a value. However, the value of

a constant, once defined, cannot be changed. All PHP predefined constants are in uppercase. Unlike

variables, they do not begin with a dollar sign. For example, the constant for (pi) is M_PI.

Arithmetic operators

The standard arithmetic operators all work the way you would expect, although some of them look slightly

different from those you learned at school. For instance, an asterisk (*) is used as the multiplication sign,

and a forward slash (/) is used to indicate division. Table 3-1 shows examples of how the standard

arithmetic operators work. To demonstrate their effect, the following variables have been set:

$x = 20;
$y = 10;
$z = 3;

Table 3-1. Arithmetic operators in PHP

Operation Operator Example Result

Addition + $x + $y 30

Subtraction - $x - $y 10

Multiplication * $x * $y 200

Division / $x / $y 2

http://docs.php.net/manual/en/book.math.php

CHAPTER 3

50

Operation Operator Example Result

Modulo division % $x % $z 2

Increment (add 1) ++ $x++ 21

Decrement (subtract 1) -- $y-- 9

The modulo operator returns the remainder of a division, as follows:

26 % 5 // result is 1
26 % 27 // result is 26
10 % 2 // result is 0

A practical use of modulo division is to work out whether a number is odd or even. $number % 2 always

produces 0 or 1. If the result is 0, there is no remainder, so the number must be even.

The increment (++) and decrement (--) operators can come either before or after the variable. When they

come before the variable, 1 is added to or subtracted from the value before any further calculation is

carried out. When they come after the variable, the main calculation is carried out first, and then 1 is either

added or subtracted. Since the dollar sign is an integral part of the variable name, the increment and

decrement operators go before the dollar sign when used in front:

++$x
--$y

Determining the order of calculations

Calculations in PHP follow exactly the same rules as standard arithmetic. Table 3-2 summarizes the

precedence of arithmetic operators.

Table 3-2. Precedence of arithmetic operators

Precedence Group Operators Rule

Highest Parentheses () Operations contained within parentheses are

evaluated first. If these expressions are

nested, the innermost is evaluated foremost.

Next Multiplication and division * / % These operators are evaluated next. If an

expression contains two or more operators,

they are evaluated from left to right.

Lowest Addition and subtraction + - These are the final operators to be evaluated

in an expression. If an expression contains

two or more operators, they are evaluated

from left to right.

HOW TO WRITE PHP SCRIPTS

51

Combining calculations and assignment

PHP offers a shorthand way of performing a calculation on a variable and reassigning the result to the

variable through combined assignment operators. The main ones are listed in Table 3-3.

Table 3-3. Combined arithmetic assignment operators used in PHP

Operator Example Equivalent to

+= $a += $b $a = $a + $b

-= $a -= $b $a = $a - $b

*= $a *= $b $a = $a * $b

/= $a /= $b $a = $a / $b

%= $a %= $b $a = $a % $b

Adding to an existing string

The same convenient shorthand allows you to add new material to the end of an existing string by

combining a period and an equal sign, like this:

$hamlet = 'To be';
$hamlet .= ' or not to be';

Note that you need to create a space at the beginning of the additional text unless you want both strings

to run on without a break. This shorthand, known as the combined concatenation operator, is

extremely useful when combining many strings, such as you need to do when building the content of an

email message or looping through the results of a database search.

The period in front of the equal sign is easily overlooked when copying code. When you see the same

variable repeated at the beginning of a series of statements, it s often a sure sign that you need to

use .= instead of = on its own.

All you ever wanted to know about quotes—and more

Handling quotes within any computer language—not just PHP—can be fraught with difficulties because

computers always take the first matching quote as marking the end of a string. Structured Query

Language (SQL)—the language used to communicate with databases—also uses strings. Since your

strings may include apostrophes, the combination of single and double quotes isn t enough. Moreover,

PHP gives variables and escape sequences (certain characters preceded by a backslash) special

treatment inside double quotes.

Over the next few pages, I ll unravel this maze and make sense of it all for you.

CHAPTER 3

52

How PHP treats variables inside strings

Choosing whether to use double quotes or single quotes might just seem like a question of personal

preference, but there s an important difference in the way that PHP handles them.

• Anything between single quotes is treated literally as text.

• Double quotes act as a signal to process variables and special characters known as escape

sequences.

Take a look at the following examples to see what this means. In the first example (the code is in

quotes1.php), $name is assigned a value and then used in a single-quoted string. As you can see from

the screenshot alongside the code, $name is treated like normal text.

$name = 'Dolly';
// Single quotes: $name is treated as literal text
echo 'Hello, $name';

If you replace the single quotes in the final line with double ones (see quotes2.php), $name is processed

and its value is displayed onscreen.

$name = 'Dolly';
// Double quotes: $name is processed
echo "Hello, $name";

In both examples, the string in the first line is in single quotes. What causes the variable to be

processed is the fact that it s in a double-quoted string, not how it originally got its value.

Because double quotes are so useful in this way, many people use them all the time. Technically

speaking, using double quotes when you don t need to process any variables is inefficient. My preference

is to use single quotes unless the string contains variables.

Using escape sequences inside double quotes

Double quotes have another important effect: they treat escape sequences in a special way. All escape

sequences are formed by placing a backslash in front of a character. Most of them are designed to avoid

conflicts with characters that are used with variables, but three of them have special meanings: \n inserts

a new line character, \r inserts a carriage return, and \t inserts a tab. Table 3-4 lists the main escape

sequences supported by PHP.

HOW TO WRITE PHP SCRIPTS

53

Table 3-4. The main PHP escape sequences

Escape sequence Character represented in double-quoted string

\" Double quote

\n New line

\r Carriage return

\t Tab

\\ Backslash

\$ Dollar sign

\{ Opening curly brace

\} Closing curly brace

\[Opening square bracket

\] Closing square bracket

With the exception of \\, the escape sequences listed in Table 3-4, work only in double-quoted

strings. If you use them in a single-quoted string, they will be treated as a literal backslash followed

by the second character. A backslash at the end of the string always needs to be escaped.

Otherwise, it s interpreted as escaping the following quotation mark. In a single-quoted string, escape

single quotes and apostrophes with a backslash as described in the first half of this chapter.

Avoiding the need to escape quotes with heredoc syntax

Using a backslash to escape one or two quotation marks isn t a great burden, but I frequently see

examples of code where backslashes seem to have run riot. It must be difficult to type, and it s certainly

difficult to read. Moreover, it s totally unnecessary. The PHP heredoc syntax offers a relatively simple

method of assigning text to a variable without any special handling of quotes.

The name “heredoc” is derived from here-document, a technique used in Unix and Perl programming

to pass large amounts of text to a command.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 3

54

Assigning a string to a variable using heredoc involves the following steps:

1. Type the assignment operator, followed by <<< and an identifier. The identifier can be any

combination of letters, numbers, and the underscore, as long as it doesn t begin with a

number. The same combination is used later to identify the end of the heredoc.

2. Begin the string on a new line. It can include both single and double quotes. Any variables will

be processed in the same way as in a double-quoted string.

3. Place the identifier on a new line after the end of the string. Nothing else should be on the same

line, except for a final semicolon. Moreover, the identifier must be at the beginning of the line;

it cannot be indented.

It s a lot easier when you see it in practice. The following simple example can be found in heredoc.php in

the files for this chapter:

$fish = 'whiting';
$mockTurtle = <<< Gryphon
"Will you walk a little faster?" said a $fish to a snail.
"There's a porpoise close behind us, and he's treading on my tail."
Gryphon;
echo $mockTurtle;

In this example, Gryphon is the identifier. The string begins on the next line, and the double quotes are

treated as part of the string. Everything is included until you reach the identifier at the beginning of a new

line. As you can see from the following screenshot, the heredoc displays the double quotes and

processes the $fish variable.

To achieve the same effect without using the heredoc syntax, you need to add the double quotes and

escape them like this:

$fish = 'whiting';
$mockTurtle = "\"Will you walk a little faster?\" said a $fish to a snail.
\"There's a porpoise close behind us, and he's treading on my tail.\""
echo $mockTurtle;

The heredoc syntax is mainly of value when you have a long string and/or lots of quotes. It s also useful if

you want to assign an XML document or a lengthy section of HTML to a variable.

PHP 5.3 introduced a related technique called nowdoc syntax, which treats variables in the same

way as single quotes—in other words, as literal text. To create a string using nowdoc syntax,

enclose the identifier in single quotes like this: <<< 'Gryphon'. The closing identifier does not use

quotes. For more details, see http://docs.php.net/manual/en/language.types.string.php.

http://docs.php.net/manual/en/language.types.string.php

HOW TO WRITE PHP SCRIPTS

55

Creating arrays

As explained earlier, there are two types of arrays: indexed arrays, which use numbers to identify each

element, and associative arrays, which use strings. You can build both types by assigning a value directly

to each element. Let s take another look at the $book associative array:

$book['title'] = 'PHP Solutions: Dynamic Web Design Made Easy, Second Edition';
$book['author'] = 'David Powers';
$book['publisher'] = 'friends of ED';
$book['ISBN'] = '978-1-4302-3249-0';

To build an indexed array the direct way, use numbers instead of strings as the array keys. Indexed

arrays are numbered from 0, so to build the $shoppingList array depicted in Figure 3-3, you declare it

like this:

$shoppingList[0] = 'wine';
$shoppingList[1] = 'fish';
$shoppingList[2] = 'bread';
$shoppingList[3] = 'grapes';
$shoppingList[4] = 'cheese';

Although both are perfectly valid ways of creating arrays, it s a nuisance to have to type out the variable

name each time, so there s a much shorter way of doing it. The method is slightly different for each type of

array.

Using array() to build an indexed array

Instead of declaring each array element individually, you declare the variable name once and assign all

the elements by passing them as a comma-separated list to array(), like this:

$shoppingList = array('wine', 'fish', 'bread', 'grapes', 'cheese');

The comma must go outside the quotes, unlike American typographic practice. For ease of reading, I

have inserted a space following each comma, but it s not necessary to do so.

PHP numbers each array element automatically, beginning from 0, so this creates exactly the same array

as if you had numbered them individually. To add a new element to the end of the array, use a pair of empty

square brackets like this:

$shoppingList[] = 'coffee';

PHP uses the next number available, so this becomes $shoppingList[5].

Using array() to build an associative array

The shorthand way of creating an associative array uses the => operator (an equal sign followed by a

greater-than sign) to assign a value to each array key. The basic structure looks like this:

$arrayName = array('key1' => 'element1', 'key2' => 'element2');

CHAPTER 3

56

So, this is the shorthand way to build the $book array:

$book = array(
 'title' => 'PHP Solutions: Dynamic Web Design Made Easy, Second Edition',
 'author' => 'David Powers',
 'publisher' => 'friends of ED',
 'ISBN' => '978-1-4302-3249-0');

It s not essential to align the => operators like this, but it makes code easier to read and maintain.

Using array() to create an empty array

There are two reasons you might want to create an empty array, as follows:

• To create (or initialize) an array so that it s ready to have elements added to it inside a loop

• To clear all elements from an existing array

To create an empty array, simply use array() with nothing between the parentheses, like this:

$shoppingList = array();

The $shoppingList array now contains no elements. If you add a new one using $shoppingList[], it will

automatically start numbering again at 0.

Multidimensional arrays

Array elements can store any data type, including other arrays. For instance, the $book array holds

details of only one book. It might be more convenient to create an array of arrays—in other words, a

multidimensional array—containing details of several books, like this:

$books = array(
 array(
 'title' => 'PHP Solutions: Dynamic Web Design Made Easy, Second Edition',
 'author' => 'David Powers',
 'publisher' => 'friends of ED',
 'ISBN' => '978-1-4302-3249-0'),
 array(
 'title' => 'Beginning PHP and MySQL: From Beginner to Professional,
 Fourth Edition',
 'author' => 'W. Jason Gilmore',
 'publisher' => 'Apress',
 'ISBN' => 978-1-4302-3114-1')
);

This example shows associative arrays nested inside an indexed array, but multidimensional arrays can

nest either type. To refer to a specific element, use the key of both arrays, for example:

$books[1]['author'] // value is 'W. Jason Gilmore'

Working with multidimensional arrays isn t as difficult as it first looks. The secret is to use a loop to get to

the nested array. Then, you can work with it in the same way as an ordinary array. This is how you handle

the results of a database search, which is normally contained in a multidimensional array.

HOW TO WRITE PHP SCRIPTS

57

Using print_r() to inspect an array

To inspect the content of an array during testing, pass the array to print_r() like this (see

inspect_array1.php):

print_r($books);

Load inspect_array1.php into a browser to see how print_r() outputs the contents of an ordinary

array. The following screenshot shows how PHP displays a multidimensional array. Often, it helps to

switch to Source view to inspect the details, as browsers ignore indenting in the underlying output.

Alternatively, add HTML <pre> tags outside the PHP code block to preserve the indenting.

Always use print_r() to inspect arrays; echo and print don t work. To display the contents of an

array in a web page, use a foreach loop, as described later in this chapter.

The truth according to PHP

Decision-making in PHP conditional statements is based on the mutually exclusive Boolean values, true

and false. If the condition equates to true, the code within the conditional block is executed. If false ,

it s ignored. Whether a condition is true or false is determined in one of these ways:

CHAPTER 3

58

• A variable set explicitly to one of the Boolean values

• A value PHP interprets implicitly as true or false

• The comparison of two non-Boolean values

Explicit Boolean values

If a variable is assigned the value true or false and used in a conditional statement, the decision is

based on that value. The keywords true and false are case-insensitive and must not be enclosed in

quotes, for example:

$OK = false;
if ($OK) {
 // do something
}

The code inside the conditional statement won t be executed, because $OK is false.

Implicit Boolean values

Using implicit Boolean values provides a convenient shorthand, although it has the disadvantage—at

least to beginners—of being less clear. Implicit Boolean values rely on PHP s relatively narrow definition

of what it regards as false, namely:

• The case-insensitive keywords false and null

• Zero as an integer (0), a floating-point number (0.0), or a string ('0' or "0")

• An empty string (single or double quotes with no space between them)

• An empty array

• SimpleXML objects created from empty tags

Everything else is true.

This definition explains why "false" (in quotes) is interpreted by PHP as true.

Making decisions by comparing two values

Most true/false decisions are based on a comparison of two values using comparison operators.

Table 3-5 lists the comparison operators used in PHP.

Table 3-5. PHP comparison operators used for decision-making

Symbol Name Example Result

== Equality $a == $b Returns true if $a and $b are equal; otherwise, returns

false.

!= Inequality $a != $b Returns true if $a and $b are different; otherwise, returns

false.

HOW TO WRITE PHP SCRIPTS

59

Symbol Name Example Result

=== Identical $a === $b Determines whether $a and $b are identical. They must not

only have the same value but also be of the same data type

(e.g., both integers).

!== Not identical $a !== $b Determines whether $a and $b are not identical (according to

the same criteria as the previous operator).

> Greater than $a > $b Returns true if $a is greater than $b.

>= Greater than or

equal to

$a >= $b Returns true if $a is greater than or equal to $b.

< Less than $a < $b Returns true if $a is less than $b.

<= Less than or

equal to
$a <= $b Returns true if $a is less than or equal to $b.

When comparing two values, you must always use the equality operator (==), the identical operator

(===), or their negative equivalents (!= and !==). A single equal sign assigns a value; it doesn t

perform comparisons.

Testing more than one condition

Frequently, comparing two values is not enough. PHP allows you to set a series of conditions using

logical operators to specify whether all, or just some, need to be fulfilled.

The most important logical operators in PHP are listed in Table 3-6. The logical Not operator applies to

individual conditions rather than a series.

Table 3-6. The main logical operators used for decision-making in PHP

Symbol Name Example Result

&& And $a && $b Equates to true if both $a and $b are true.

|| Or $a || $b Equates to true if either $a or $b is true; otherwise, false.

! Not !$a Equates to true if $a is not true.

Technically speaking, there is no limit to the number of conditions that can be tested. Each condition is

considered in turn from left to right, and as soon as a defining point is reached, no further testing is carried

out. When using &&, every condition must be fulfilled, so testing stops as soon as one turns out to be

CHAPTER 3

60

false. Similarly, when using ||, only one condition needs to be fulfilled, so testing stops as soon as one

turns out to be true.

$a = 10;
$b = 25;
if ($a > 5 && $b > 20) // returns true
if ($a > 5 || $b > 30) // returns true, $b never tested

You should always design your tests to provide the speediest result. If all conditions must be met,

evaluate the one most likely to fail first. If only one condition needs to be met, evaluate the one most likely

to succeed first. If a set of conditions needs to be considered as a group, enclose them in parentheses.

if (($a > 5 && $a < 8) || ($b > 20 && $b < 40))

PHP also uses AND in place of && and OR in place of ||. However, they aren t exact equivalents. To

avoid problems, it s advisable to stick with && and ||.

Using the switch statement for decision chains

The switch statement offers an alternative to if . . . else for decision making. The basic structure

looks like this:

switch(variable being tested) {
 case value1:
 statements to be executed
 break;
 case value2:
 statements to be executed
 break;
 default:
 statements to be executed
}

The case keyword indicates possible matching values for the variable passed to switch(). Each

alternative value must be preceded by case and followed by a colon. When a match is made, every

subsequent line of code is executed until the break keyword is encountered, at which point the switch

statement comes to an end. A simple example follows:

switch($myVar) {
 case 1:
 echo '$myVar is 1';
 break;
 case 'apple':
 case 'banana':
 case 'orange':
 echo '$myVar is a fruit';
 break;
 default:
 echo '$myVar is neither 1 nor a fruit';
}

HOW TO WRITE PHP SCRIPTS

61

The main points to note about switch are as follows:

• The expression following the case keyword must be a number or a string.

• You can t use comparison operators with case. So case > 100: isn t allowed.

• Each block of statements should normally end with break, unless you specifically want to

continue executing code within the switch statement.

• You can group several instances of the case keyword together to apply the same block of

code to them.

• If no match is made, any statements following the default keyword are executed. If no

default has been set, the switch statement exits silently and continues with the next block of

code.

Using the ternary operator

The ternary operator (?:) is a shorthand method of representing a simple conditional statement. Its

name comes from the fact that it normally uses three operands. The basic syntax looks like this:

condition ? value if true : value if false;

Here is an example of it in use:

$age = 17;
$fareType = $age > 16 ? 'adult' : 'child';

The second line tests the value of $age. If it s greater than 16, $fareType is set to adult, otherwise

$fareType is set to child. The equivalent code using if . . . else looks like this:

if ($age > 16) {
 $fareType = 'adult';
} else {
 $fareType = 'child';
}

The if . . . else version is easier to read, but the conditional operator is more compact. Most

beginners hate this shorthand, but once you get to know it, you ll realize how convenient it can be.

In PHP 5.3 and later, you can leave out the value between the question mark and the colon. This has the

effect of assigning the value of the condition to the variable if the condition is true. In the preceding

example, leaving out the value between the question mark and the colon results in $fareType being true:

$age = 17;
$fareType = $age > 16 ?: 'child'; // $fareType is true

In this case, the result is almost certainly not what you want. This shorthand is useful when the condition

is a value that PHP treats as implicitly true, such as an array with at least one element.

Omitting the value between the question mark and the colon is a specialized use of the ternary

operator and is not used in the scripts in this book. It is mentioned here only to alert you to its

meaning if you come across it elsewhere.

CHAPTER 3

62

Creating loops

A loop is a section of code that is repeated over and over again until a certain condition is met. Loops are

often controlled by setting a variable to count the number of iterations. By increasing the variable by one

each time, the loop comes to a halt when the variable gets to a preset number. The other way loops are

controlled is by running through each item of an array. When there are no more items to process, the loop

stops.

Loops frequently contain conditional statements, so although they re very simple in structure, they can be

used to create code that processes data in often sophisticated ways.

Loops using while and do . . . while

The simplest type of loop is called a while loop. Its basic structure looks like this:

while (condition is true) {
 do something
}

The following code displays every number from 1 through 100 in a browser (you can test it in while.php in

the files for this chapter). It begins by setting a variable ($i) to 1 and then using the variable as a counter

to control the loop, as well as display the current number onscreen.

$i = 1; // set counter
while ($i <= 100) {
 echo "$i
";
 $i++; // increase counter by 1
}

In the first half of this chapter, I warned against using variables with cryptic names. However, using

$i as a counter is widely accepted convention. If $i is already in use, the normal practice is to use

$j or $k as counters.

A variation of the while loop uses the keyword do and follows this basic pattern:

do {
 code to be executed
} while (condition to be tested);

The difference between a do . . . while loop and a while loop is that the code within the do block is

executed at least once, even if the condition is never true. The following code (in dowhile.php) displays

the value of $i once, even though it s greater than the maximum expected.

$i = 1000;
do {
 echo "$i
";
 $i++; // increase counter by 1
} while ($i <= 100);

HOW TO WRITE PHP SCRIPTS

63

The danger with while and do . . . while loops is forgetting to set a condition that brings the loop to

an end or setting an impossible condition. When this happens, you create an infinite loop that either

freezes your computer or causes the browser to crash.

The versatile for loop

The for loop is less prone to generating an infinite loop because you are required to declare all the

conditions of the loop in the first line. The for loop uses the following basic pattern:

for (initialize loop; condition; code to run after each iteration) {
 code to be executed
}

The following code does exactly the same as the previous while loop, displaying every number from 1 to

100 (see forloop.php):

for ($i = 1; $i <= 100; $i++) {
 echo "$i
";
}

The three expressions inside the parentheses control the action of the loop (note that they are separated

by semicolons, not commas):

• The first expression is executed before the loop starts. In this case, it sets the initial value of

the counter variable $i to 1.

• The second expression sets the condition that determines how long the loop should continue

to run. This can be a fixed number, a variable, or an expression that calculates a value.

• The third expression is executed at the end of each iteration of the loop. In this case, it

increases $i by 1, but there is nothing stopping you from using bigger steps. For instance,

replacing $i++ with $i+=10 in this example would display 1, 11, 21, 31, and so on.

Looping through arrays with foreach

The final type of loop in PHP is used exclusively with arrays. It takes two forms, both of which use

temporary variables to handle each array element. If you only need to do something with the value of each

array element, the foreach loop takes the following form:

foreach (array_name as temporary_variable) {
 do something with temporary_variable
}

The following example loops through the $shoppingList array and displays the name of each item (the

code is in shopping_list.php):

$shoppingList = array('wine', 'fish', 'bread', 'grapes', 'cheese');
foreach ($shoppingList as $item) {
 echo $item . '
';
}

Although the preceding example uses an indexed array, you can also use the simple form of the foreach
loop with an associative array. However, the alternative form of the foreach loop is of more use with

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 3

64

associative arrays, because it gives access to both the key and value of each array element. It takes this

slightly different form:

foreach (array_name as key_variable => value_variable) {
 do something with key_variable and value_variable
}

This next example uses the $book associative array from the “Creating arrays” section earlier in the

chapter and incorporates the key and value of each element into a simple string, as shown in the

screenshot (see book.php):

foreach ($book as $key => $value) {
 echo "The value of $key is $value
";
}

The foreach keyword is one word. Inserting a space between for and each doesn t work.

Breaking out of a loop

To bring a loop prematurely to an end when a certain condition is met, insert the break keyword inside a

conditional statement. As soon as the script encounters break, it exits the loop.

To skip an iteration of the loop when a certain condition is met, use the continue keyword. Instead of

exiting, it returns to the top of the loop and executes the next iteration. For example, the following loop

skips the current element if $photo has no value:

foreach ($photos as $photo) {
 if (empty($photo)) continue;
 // code to display a photo
}

Modularizing code with functions

Functions offer a convenient way of running frequently performed operations. In addition to the large

number of built-in functions, PHP lets you create your own. The advantages are that you write the code

only once, rather than needing to retype it everywhere you need it. This not only speeds up your

development time but also makes your code easier to read and maintain. If there s a problem with the code

in your function, you update it in just one place rather than hunting through your entire site. Moreover,

functions usually speed up the processing of your pages.

HOW TO WRITE PHP SCRIPTS

65

Building your own functions in PHP is very easy. You simply wrap a block of code in a pair of curly braces

and use the function keyword to name your new function. The function name is always followed by a pair

of parentheses. The following—admittedly trivial—example demonstrates the basic structure of a custom-

built function (see functions1.php in the files for this chapter):

function sayHi() {
 echo 'Hi!';
}

Simply putting sayHi(); in a PHP code block results in Hi! being displayed onscreen. This type of

function is like a drone: it always performs exactly the same operation. For functions to be responsive to

circumstances, you need to pass values to them as arguments (or parameters).

Passing values to functions

Let s say you want to adapt the sayHi() function so that it displays someone s name. You do this by

inserting a variable between the parentheses in the function declaration. The same variable is then used

inside the function to display whatever value is passed to the function. To pass more than one argument

to a function, separate the variables with commas inside the opening parentheses. This is how the revised

function looks (see functions2.php):

function sayHi($name) {
 echo "Hi, $name!";
}

You can now use this function inside a page to display the value of any variable passed to sayHi(). For

instance, if you have an online form that saves someone s name in a variable called $visitor, and Ben

visits your site, you give him the sort of personal greeting shown alongside by putting sayHi($visitor);

in your page.

A downside of PHP s weak typing is that if Ben is being particularly uncooperative, he might type 5 into the

form instead of his name, giving you not quite the type of high five you might have been expecting.

This illustrates why it s so important to check user input before using it in any critical situation.

It s also important to understand that variables inside a function remain exclusive to the function. This

example should illustrate the point (see functions3.php):

function doubleIt($number) {
 $number *= 2;
 echo "$number
";
}
$number = 4;
doubleIt($number);
echo $number;

CHAPTER 3

66

If you view the output of this code in a browser, you may get a very different result from what you expect.

The function takes a number, doubles it, and displays it onscreen. Line 5 of the script assigns the value 4

to $number. The next line calls the function and passes it $number as an argument. The function

processes $number and displays 8. After the function comes to an end, $number is displayed onscreen

by echo. This time, it will be 4 and not 8.

This example demonstrates that the variable $number that has been declared inside the function is limited

in scope to the function itself. The variable called $number in the main script is totally unrelated to the one

inside the function. To avoid confusion, it s a good idea to use variable names in the rest of your script

that are different from those used inside functions. This isn t always possible, so it s useful to know that

functions work like little black boxes and don t normally have any direct impact on the values of variables

in the rest of the script.

Returning values from functions

There s more than one way to get a function to change the value of a variable passed to it as an argument,

but the most important method is to use the return keyword and to assign the result either to the same

variable or to another one. This can be demonstrated by amending the doubleIt() function like this:

function doubleIt($number) {
 return $number *= 2;
}
$num = 4;
$doubled = doubleIt($num);
echo "\$num is: $num
";
echo "\$doubled is: $doubled";

You can test this code in functions4.php. The result is shown in the screenshot following the code. This

time, I have used different names for the variables to avoid confusing them. I have also assigned the

result of doubleIt($num) to a new variable. The benefit of doing this is that I now have available both the

original value and the result of the calculation. You won t always want to keep the original value, but it can

be very useful at times.

Where to locate custom-built functions

If your custom-built function is in the same page as it s being used, it doesn t matter where you declare the

function; it can be either before or after it s used. It s a good idea, however, to store functions together,

either at the top or the bottom of a page. This makes them easier to find and maintain.

Functions that are used in more than one page are best stored in an external file and included in each

page. Including external files with include() and require() is covered in detail in Chapter 4. When

functions are stored in external files, you must include the external file before calling any of its functions.

HOW TO WRITE PHP SCRIPTS

67

PHP quick checklist
This chapter contains a lot of information that is impossible to absorb in one sitting, but hopefully the first

half has given you a broad overview of how PHP works. Here s a reminder of some of the main points:

• Always give PHP pages the correct filename extension, normally .php.

• Enclose all PHP code between the correct tags: <?php and ?>.

• Avoid the short form of the opening tag: <?. Using <?php is more reliable.

• It s recommended to omit the closing PHP tag in files that contain only PHP code.

• PHP variables begin with $ followed by a letter or the underscore character.

• Choose meaningful variable names, and remember they re case-sensitive.

• Use comments to remind you what your script does.

• Remember that numbers don t require quotes, but strings (text) do.

• You can use single or double quotes, but the outer pair must match.

• Use a backslash to escape quotes of the same type inside a string.

• To store related items together, use an array.

• Use conditional statements, such as if and if . . . else, for decision-making.

• Simplify repetitive tasks with loops.

• Use functions to perform preset tasks.

• Display PHP output with echo or print.

• Inspect the content of arrays with print_r().

• With most error messages, work backward from the position indicated.

• Keep smiling—and remember that PHP is not difficult.

CHAPTER 3

68

69

Chapter 4

Lightening Your Workload with Includes

The ability to include the contents of one file inside another is one of the most powerful features of PHP.

It s also one of the easiest to implement.

Most pages in a website share common elements, such as a header, footer, and navigation menu. You

can alter the look of those elements throughout the site by changing the style rules in an external style

sheet. But CSS has only limited ability to change the content of page elements. If you want to add a new

item to your menu, you need to edit the HTML in every page that displays it. Web authoring tools, such as

Dreamweaver and Expression Web, have templating systems that automatically update all pages

connected to a master file, but you still need to upload all the files to your remote server.

That s not necessary with PHP, which supports server-side includes (SSI). A server-side include is an

external file, which contains dynamic code or HTML (or both) that you want to incorporate into multiple

pages. PHP merges the content into each web page on the server. Because each page uses the same

external file, you can update a menu or other common element by editing and uploading a single file—a

great timesaver.

As you work through this chapter, you ll learn how PHP includes work, where PHP looks for include files,

and how to prevent error messages when an include file can t be found. In addition, you ll learn to do some

cool tricks with PHP, such as creating a random image generator.

This chapter covers the following topics:

• Understanding the different include commands

• Telling PHP where to find your include files

• Using PHP includes for common page elements

• Protecting sensitive information in include files

• Automating a “you are here” menu link

• Generating a page s title from its filename

• Automatically updating a copyright notice

• Displaying random images complete with captions

CHAPTER 4

70

• Handling errors with include files

• Changing your web server s include_path

Figure 4-1 shows how four elements of a page benefit from a little PHP magic with include files.

Figure 4-1. Identifying elements of a static web page that could be improved with PHP

The menu and copyright notice appear on each page. By turning them into include files, you can make

changes to just one page and see them propagate throughout the site. With PHP conditional logic, you

can also get the menu to display the correct style to indicate which page the visitor is on. Similar PHP

wizardry automatically changes the date on the copyright notice and the text in the page title. PHP can

also add variety by displaying a random image. JavaScript solutions fail if JavaScript is disabled, but with

PHP, your script is guaranteed to work all the time. The images don t need to be the same size; a PHP

function inserts the correct width and height attributes in the tag. And with a little extra scripting,

you can add a caption to each image.

Including code from external files
The ability to include code from other files is a core part of PHP. All that s necessary is to use one of

PHP s include commands and tell the server where to find the file.

LIGHTENING YOUR WORKLOAD WITH INCLUDES

71

Introducing the PHP include commands

PHP has four commands that can be used to include code from an external file, namely:

• include()

• include_once()

• require()

• require_once()

They all do basically the same thing, so why have four?

The fundamental difference is that include() attempts to continue processing a script, even if the

external file is missing, whereas require() is used in the sense of mandatory: if the file is missing, the

PHP engine stops processing and throws a fatal error. In practical terms, this means you should use

include() if your page would remain usable even without the contents of the external file. Use

require() if the page depends on the external file.

The other two commands, include_once() and require_once(), work the same way, but they prevent

the same file from being included more than once in a page. This is particularly important when including

files that define functions or classes. Attempting to define a function or class more than once in a script

triggers a fatal error. So, using include_once() or require_once() ensures that functions and classes

are defined only once, even if the script tries to include the external file more than once, as might happen

if the commands are in conditional statements.

So, which should you use? I recommend using include() for external files that aren't mission critical, and

require_once() for files that define functions and classes.

Where PHP looks for include files

To include an external file, you pass the file path to one of the four include commands as a string—in other

words, the file path must be in quotes (single or double, it doesn t matter). The file path can be either

absolute or relative to the current document. For example, any of the following will work (as long as the

target file exists):

include('includes/menu.inc.php');
include('C:/xampp/htdocs/phpsols/includes/menu.inc.php');
include('/Applications/MAMP/htdocs/phpsols/includes/menu.inc.php');

PHP accepts forward slashes in Windows file paths.

Using parentheses with the include commands is optional, so the following would also work:

include 'includes/menu.inc.php';
include 'C:/xampp/htdocs/phpsols/includes/menu.inc.php';
include '/Applications/MAMP/htdocs/phpsols/includes/menu.inc.php';

When using a relative file path, it s recommended to use ./ to indicate that the path begins in the current

folder. So, it s more efficient to rewrite the first example like this:

include('./includes/menu.inc.php'); // path begins in current folder

CHAPTER 4

72

What doesn t work is using a file path relative to the site root like this:

include('/includes/menu.inc.php'); // THIS WILL NOT WORK

If PHP can t find the file, it also looks in the include_path, as defined in your PHP configuration. I ll return

to this subject later in this chapter. Before that, let s put PHP includes to practical use. For the time being,

I recommend you use file paths relative to the current document.

PHP Solution 4-1: Moving the menu and footer to include files

Let s convert the page shown in Figure 4-1 to use include files. Because the menu and footer appear on

every page of the Japan Journey site, they re prime candidates for include files. Here s the code for the

body of the page with the menu and footer highlighted in bold.

Listing 4-1. The static version of index.php

<body>
<div id="header">
 <h1>Japan Journey</h1>
</div>
<div id="wrapper">
 <ul id="nav">
 Home
 Journal
 Gallery
 Contact

 <div id="maincontent">
 <h2>A journey through Japan with PHP</h2>
 <p>One of the benefits of using PHP . . .</p>
 <div id="pictureWrapper">
 <img src="images/water_basin.jpg" alt="Water basin at Ryoanji temple"
 width="350" height="237" class="picBorder">
 </div>
 <p>Ut enim ad minim veniam, quis nostrud . . .</p>
 <p>Eu fugiat nulla pariatur. Ut labore et dolore . . .</p>
 <p>Sed do eiusmod tempor incididunt ullamco . . .</p>
 <p>Quis nostrud exercitation eu fugiat nulla . . .</p>
 </div>
 <div id="footer">
 <p>© 2006&8211;2010 David Powers</p>
 </div>
</div>
</body>

1. Copy index_01.php from the ch04 folder to the phpsols site root, and rename it index.php.

If you are using a program like Dreamweaver that offers to update the page links, don t update

them. The relative links in the download file are correct. Check that the CSS and images are

displaying properly by loading index.php into a browser. It should look the same as Figure 4-

1.

LIGHTENING YOUR WORKLOAD WITH INCLUDES

73

2. Copy blog.php, gallery.php, and contact.php from the ch04 folder to your site root folder.

These pages won t display correctly in a browser yet because the necessary include files still

haven t been created. That ll soon change.

3. In index.php, highlight the nav unordered list as shown in bold in Listing 4-1, and cut

(Ctrl+X/Cmd+X) it to your computer clipboard.

4. Create a new file called menu.inc.php in the includes folder. Remove any code inserted by

your editing program; the file must be completely blank.

5. Paste (Ctrl+V/Cmd+V) the code from your clipboard into menu.inc.php and save the file. The

contents of menu.inc.php should look like this:

 <ul id="nav">
 Home
 Journal
 Gallery
 Contact

6. Don t worry that your new file doesn t have a DOCTYPE declaration or any <html>, <head>, or

<body> tags. The other pages that include the contents of this file will supply those elements.

7. Open index.php, and insert the following in the space left by the nav unordered list:

<?php include('./includes/menu.inc.php'); ?>

This uses a document-relative path to menu.inc.php. The ./ at the beginning of the path

indicates explicitly that the path starts in the current folder and is more efficient.

8. Save index.php, and load the page into a browser. It should look exactly the same as before.

Although the menu and the rest of the page are coming from different files, PHP merges them

before sending any output to the browser.

Don t forget that PHP code needs to be processed by a web server. If you have stored your files in a

subfolder of your server s document root called phpsols, you should access index.php using the

URL http://localhost/phpsols/index.php. See “Where to locate your PHP files” in Chapter 2 if

you need help finding the server s document root.

9. Do the same with the footer <div>. Cut the lines highlighted in bold in Listing 4-1, and paste

them into a blank file called footer.inc.php in the includes folder. Then insert the command

to include the new file in the gap left by the footer <div>:

 <?php include('./includes/footer.inc.php'); ?>

10. Save all pages, and reload index.php in your browser. Again, it should look identical to the

original page. If you navigate to other pages in the site, the menu and footer should appear on

every page. The code in the include files is now serving all pages.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://localhost/phpsols/index.php

CHAPTER 4

74

11. To prove that the menu is being drawn from a single file, change the text in the Journal link in

menu.inc.php like this:

 Blog

12. Save menu.inc.php and reload the site. The change is reflected on all pages. You can check

your code against index_02.php, menu.inc_01.php, and footer.inc_01.php in the ch04

folder.

As Figure 4-2 shows, there s a problem with the code at the moment. Even when you navigate away from

the home page, the style that indicates which page you re on doesn t change (it s controlled by the here

ID in the <a> tag).

Figure 4-2. The current page indicator still points to the Home page.

Fortunately, that s easily fixed with a little PHP conditional logic. Before doing so, let s take a look at how

the web server and the PHP engine handle include files.

Choosing the right filename extension for includes

As you have just seen, an include file can contain raw HTML. When the PHP engine encounters an include

command, it stops processing PHP at the beginning of the external file and resumes again at the end. If

you want the external file to use PHP code, the code must be enclosed in PHP tags. As a consequence of

this behavior, an include file can have any filename extension.

A common convention is to use .inc as the filename extension to make it clear that the file is intended to

be included in another file. However, most servers treat .inc files as plain text. This poses a security risk

if the file contains sensitive information, such as the username and password to your database. If the file

is stored within your website s root folder, anyone who discovers the name of the file can simply type the

URL in a browser address bar, and the browser will obligingly display all your secret details!

On the other hand, any file with a .php extension is automatically sent to the PHP engine for parsing

before it s sent to the browser. So, as long as your secret information is inside a PHP code block and in a

file with a .php extension, it won t be exposed. That s why many developers use .inc.php as a double

extension for PHP includes. The .inc part reminds you that it s an include file, but servers are only

interested in the .php on the end, which ensures that all PHP code is correctly parsed.

Since it s common practice to store include files in a separate folder—often called includes—you could

argue that .inc.php is superfluous. Which naming convention you choose is up to you, but using .inc on

its own is the least secure.

LIGHTENING YOUR WORKLOAD WITH INCLUDES

75

PHP Solution 4-2: Testing the security of includes

This solution demonstrates the difference between using .inc and .inc.php as the filename extension

for an include file. Use index.php and menu.inc.php from the previous section. Alternatively, use

index_02.php and menu.inc_01.php from the ch04 folder. If you use the download files, remove the _02

and _01 from the filenames before using them.

1. Rename menu.inc.php to menu.inc, and edit index.php accordingly to include it:

 <?php include('./includes/menu.inc'); ?>

2. Load index.php into a browser. You should see no difference.

3. Amend the code inside menu.inc to store a password inside a PHP variable like this:

 <ul id="nav">
 Home
 <?php $password = 'topSecret'; ?>
 Blog
 Gallery
 Contact

4. Reload the page. As Figure 4-3 shows, the password remains hidden in the source code.

Although the include file doesn t have a .php filename extension, its contents have been

merged with index.php, so the PHP code is processed.

Figure 4-3. There s no output from the PHP code, so only the HTML is sent to the browser.

5. Now load menu.inc directly in the browser. Figure 4-4 shows what happens.

CHAPTER 4

76

Figure 4-4. Loading menu.inc directly in a browser exposes the PHP code.

Neither the server nor the browser knows how to deal with an .inc file, so the entire contents

are displayed onscreen: raw HTML, your secret password, everything . . .

6. Change the name of the include file back to menu.inc.php, and load it directly into your

browser by adding .php to the end of the URL you used in the previous step. This time, you

should see an unordered list of links. Inspect the browser s source view. The PHP isn t

exposed.

7. Remove the password PHP code you added to menu.inc.php in step 3, and change the

include command inside index.php back to its original setting like this:

 <?php include('./includes/menu.inc.php'); ?>

PHP Solution 4-3: Automatically indicating the current page

Now that you have seen the difference between using .inc and .php as filename extensions, let s fix the

problem with the menu not indicating the current page. The solution involves using PHP to find out the

filename of the current page and then using conditional statements to insert an ID in the corresponding

<a> tag.

Continue working with the same files. Alternatively, use index_02.php, contact.php, gallery.php,

blog.php, menu.inc_01.php, and footer.inc_01.php from the ch04 folder, and remove the _01 and

_02 from any filenames.

1. Open menu.inc.php. The code currently looks like this:

 <ul id="nav">
 Home
 Blog
 Gallery
 Contact

The style that indicates the current page is controlled by the id="here" highlighted in line 2.

You need PHP to insert id="here" into the blog.php <a> tag if the current page is blog.php,

into the gallery.php <a> tag if the page is gallery.php, and into the contact.php <a> tag

if the page is contact.php.

LIGHTENING YOUR WORKLOAD WITH INCLUDES

77

Hopefully, you have got the hint by now—you need an if statement (see “Making decisions,”

in Chapter 3) in each <a> tag. Line 2 needs to look like this:

 <a href="index.php" <?php if ($currentPage == 'index.php') {
 echo 'id="here"'; } ?>>Home

The other links should be amended in a similar way. But how does $currentPage get its value?

You need to find out the filename of the current page.

2. Leave menu.inc.php to one side for the moment, and create a new PHP page called

get_filename.php. Insert the following code between a pair of PHP tags (alternatively, use

get_filename.php in the ch04 folder):

 echo $_SERVER['SCRIPT_FILENAME'];

3. Save get_filename.php, and view it in a browser. On a Windows system, you should see

something like the following screenshot. (The version in the ch04 folder contains the code for

this step and the next, together with text indicating which is which.)

On Mac OS X, you should see something similar to this:

$_SERVER['SCRIPT_FILENAME'] comes from one of PHP s built-in superglobal arrays, and it

always gives you the absolute file path for the current page. What you need now is a way of

extracting just the filename.

4. Amend the code in the previous step like this:

 echo basename($_SERVER['SCRIPT_FILENAME']);

5. Save get_filename.php, and click the Reload button in your browser. You should now see

just the filename: get_filename.php.

The built-in PHP function basename() takes a file path as an argument and extracts the

filename. So, there you have it—a way of finding the filename of the current page.

CHAPTER 4

78

6. Amend the code in menu.inc.php like this (the changes are highlighted in bold):

 <?php $currentPage = basename($_SERVER['SCRIPT_FILENAME']); ?>
 <ul id="nav">
 <a href="index.php" <?php if ($currentPage == 'index.php') {
 echo 'id="here"';} ?>>Home
 <a href="blog.php" <?php if ($currentPage == 'blog.php') {
 echo 'id="here"';} ?>>Blog
 <a href="gallery.php" <?php if ($currentPage == 'gallery.php') {
 echo 'id="here"';} ?>>Gallery
 <a href="contact.php" <?php if ($currentPage == 'contact.php') {
 echo 'id="here"';} ?>>Contact

Make sure you get the combination of single and double quotes correct. Although enclosing the value

of attributes, such as id, in quotes is optional in HTML, it s considered best practice to use them.

Since I used double quotes around here, I wrapped the string 'id="here"' in single quotes. I could

have written "id=\"here\"", but a mixture of single and double quotes is easier to read.

7. Save menu.inc.php, and load index.php into a browser. The menu should look no different

from before. Use the menu to navigate to other pages. This time, as shown in Figure 4-5, the

border alongside the current page should be white, indicating your location within the site. If

you inspect the page s source view in the browser, you ll see that the here ID has been

automatically inserted into the correct link.

Figure 4-5. Conditional code in the include file produces different output for each page.

If necessary, compare your code with menu.inc_02.php in the ch04 folder.

LIGHTENING YOUR WORKLOAD WITH INCLUDES

79

PHP Solution 4-4: Generating a page s title from its filename

Now that you know how to find the filename of the current page, you might also find it useful to automate

the <title> tag of each page. This solution uses basename() to extract the filename and then uses PHP

string functions to format the name ready for insertion in the <title> tag.

This works only with filenames that tell you something about the page s contents, but since that s a good

practice anyway, it s not really a restriction. Although the following steps use the Japan Journey website,

you can try this out with any page.

1. Create a new PHP file called title.inc.php, and save it in the includes folder.

2. Strip out any code inserted by your script editor, and type in the following code:

 <?php
 $title = basename($_SERVER['SCRIPT_FILENAME'], '.php');

Because this file contains only PHP code, do not add a closing PHP tag at the end. The closing PHP

tag is optional when nothing follows the PHP code in the same file. Omitting the tag helps avoid a

common error with include files known as “headers already sent.” You ll learn more about this error in

PHP Solution 4-8.

The basename() function used in PHP Solution 4-3 takes an optional second argument: a

string containing the filename extension preceded by a leading period. Adding the second

argument extracts the filename and strips the filename extension from it. So, this code finds

the filename of the current page, strips the .php filename extension, and assigns the result to

a variable called $title.

3. Open contact.php and include title.inc.php by typing this above the DOCTYPE:

 <?php include('./includes/title.inc.php'); ?>

4. Amend the <title> tag like this:

 <title>Japan Journey<?php echo "—{$title}"; ?></title>

This uses echo to display — (the numerical entity for an em dash) followed by the value

of $title. Because the string is enclosed in double quotes, PHP displays the value of

$title. The variable $title has been enclosed in curly braces because there is no space

between the em dash and $title. Although not always necessary, it s a good idea to enclose

variables in braces when using them without any whitespace in a double-quoted string, as it

makes the variable clear to you and the PHP engine. The first few lines of your page should

look like this:

CHAPTER 4

80

Normally, nothing should precede the DOCTYPE declaration in a web page. However, this doesn t apply

to PHP code, as long as it doesn t send any output to the browser. The code in title.inc.php only

assigns a value to $title, so the DOCTYPE declaration remains the first output the browser sees.

5. Save both pages, and load contact.php into a browser. The filename without the .php

extension has been added to the browser title bar and tab, as shown in Figure 4-6.

Figure 4-6. Once you extract the filename, you can generate the page title dynamically.

6. Not bad, but what if you prefer an initial capital letter for the part of the title derived from the

filename? Nothing could be simpler. PHP has a neat little function called ucfirst(), which

does exactly that (the name is easy to remember once you realize that uc stands for

“uppercase”). Add another line to the code in step 2 like this:

 <?php
 $title = basename($_SERVER['SCRIPT_FILENAME'], '.php');
 $title = ucfirst($title);

If you re new to programming, this might look confusing, but it s actually quite simple once you

analyze it: the first line of code after the PHP tag gets the filename, strips the .php off the

end, and stores it as $title. The next line takes the value of $title, passes it to ucfirst()

to capitalize the first letter, and stores the result back in $title. So, if the filename is

contact.php, $title starts out as contact, but by the end of the following line, it has

become Contact.

You can shorten the code by combining both lines into one like this:

$title = ucfirst(basename($_SERVER['SCRIPT_FILENAME'], '.php'));

When you nest functions like this, PHP processes the innermost one first and passes the result to

the outer function. It makes your code shorter, but it s not so easy to read.

7. A drawback with this technique is that filenames consist of only one word—at least they

should. If you ve picked up bad habits from Windows and Mac OS X permitting spaces in

LIGHTENING YOUR WORKLOAD WITH INCLUDES

81

filenames, get out of them immediately. Spaces are not allowed in URLs, which is why most

web design software replaces spaces with %20. You can get around this problem, though, by

using an underscore.

Change the filename of contact.php to contact_us.php.

8. Amend the code in title.inc.php like this:

 <?php
 $title = basename($_SERVER['SCRIPT_FILENAME'], '.php');
 $title = str_replace('_', ' ', $title);
 $title = ucwords($title);

The middle line uses a function called str_replace() to look for every underscore and

replace it with a space. The function takes three arguments: the character(s) you want to

replace, the replacement character(s), and the string you to change.

You can also use str_replace() to remove character(s) by using an empty string (a pair of quotes

with nothing between them) as the second argument. This replaces the string in the first argument

with nothing, effectively removing it.

Instead of ucfirst(), the final line of code uses the related function ucwords(), which gives

each word an initial cap.

9. Save title.inc.php, and load the renamed contact_us.php into a browser. Figure 4-7

shows the result.

Figure 4-7. The underscore has been removed, and both words have been given initial caps.

10. Change the name of the file back to contact.php, and reload the file into a browser. The script

in title.inc.php still works. There are no underscores to replace, so str_replace() leaves

the value of $title untouched, and ucwords() converts the first letter to uppercase, even

though there s only one word.

11. The home page of the Japan Journey site is called index.php. As Figure 4-8 shows, applying

the current solution to this page doesn t seem quite right.

CHAPTER 4

82

Figure 4-8. Generating the page title from index.php produces an unsatisfactory result.

There are two solutions: either don t apply this technique to such pages or use a conditional

statement (an if statement) to handle special cases. For instance, to display Home instead

of Index , amend the code in title.inc.php like this:

 <?php
 $title = basename($_SERVER['SCRIPT_FILENAME'], '.php');
 $title = str_replace('_', ' ', $title);
 if ($title == 'index') {
 $title = 'home';
 }
 $title = ucwords($title);

The first line of the conditional statement uses two equal signs to check the value of $title.

The following line uses a single equal sign to assign the new value to $title. If the page is

called anything other than index.php, the line inside the curly braces is ignored, and $title

keeps its original value.

PHP is case-sensitive, so this solution works only if “index” is all lowercase. To do a case-insensitive

comparison, change the fourth line of the preceding code like this:

if (strtolower($title) == 'index') {

The function strtolower() converts a string to lowercase—hence its name—and is frequently used

to make case-insensitive comparisons. The conversion to lowercase is not permanent, because

strtolower($title) isn t assigned to a variable; it s only used to make the comparison. To make a

change permanent, you need to assign the result back to a variable as in the final line, when

ucwords($title) is assigned back to $title.

To convert a string to uppercase, use strtoupper().

12. Save title.inc.php, and reload index.php into a browser. The page title now looks more

natural, as shown in Figure 4-9.

LIGHTENING YOUR WORKLOAD WITH INCLUDES

83

Figure 4-9. The conditional statement changes the title on index.php to Home .

13. Navigate back to contact.php, and you ll see that the page title is still derived correctly from

the page name.

14. There s one final refinement you should make. The PHP code inside the <title> tag relies on

the existence of the variable $title, which won t be set if there s a problem with the include

file. Before attempting to display the contents of a variable that comes from an external

source, it s always a good idea to check that it exists, using a function called isset(). Wrap

the echo command inside a conditional statement, and test for the variable s existence like

this:

 <title>Japan Journey<?php if (isset($title)) {echo "—{$title}";}
 ?></title>

If $title doesn t exist, the rest of the code is ignored, leaving the default site title, Japan

Journey.

You can check your code against title.inc.php and an updated version of index.php in

index_03.php in the ch04 folder.

Creating pages with changing content

So far, you ve used PHP to generate different output depending on the page s filename. The next two

solutions generate content that changes independently of the filename: a copyright notice that updates

the year automatically on January 1 and a random image generator.

PHP Solution 4-5: Automatically updating a copyright notice

At the moment, the copyright notice in footer.inc.php contains only static HTML. This PHP solution

shows how to use the date() function to generate the current year automatically. The code also specifies

the first year of copyright and uses a conditional statement to determine whether the current year is

different. If it is, both years are displayed.

Continue working with the files from PHP Solution 4-4. Alternatively, use index_03.php and

footer.inc_01.php from the ch04 folder, and remove the numbers from the filenames. If using the files

from the ch04 folder, make sure you have copies of title.inc.php and menu.inc.php in the includes
folder.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 4

84

1. Open footer.inc.php. It contains the following HTML:

 <div id="footer">
 <p>© 2006–2010 David Powers</p>
 </div>

The – between the dates is the numeric entity for an en dash.

2. The advantage of using an include file is that you can update the copyright notice throughout

the site by changing this one file. However, it would be much more efficient to increment the

year automatically, doing away with the need for updates altogether.

The PHP date() function takes care of that very neatly. Change the code in the paragraph like

this:

 <p>© 2006–<?php echo date('Y'); ?> David Powers</p>

This replaces the second date and displays the current year using four digits. Make sure you

pass an uppercase Y as the argument to date().

3. Save footer.inc.php and load index.php into a browser. The copyright notice at the foot of

the page should look the same as before—unless, of course, you re reading this in 2011 or

later, in which case the current year will be displayed.

Like most copyright notices, this covers a range of years, indicating when a site was first

launched. Since the first date is in the past, it can be hard-coded. But what if you re creating a

new website? You don t want to have to break away from the New Year revelries just to update

the copyright notice. There needs to be a better way. Thanks to PHP, you can party to your

heart s content on New Year s Eve.

4. To display a range of years, you need to know the start year and the current year. If both years

are the same, display only the current year; if they re different, display both with an en dash

between them. It s a simple if. . .else situation. Change the code in the paragraph in

footer.inc.php like this:

 <p>©
 <?php
 $startYear = 2006;
 $thisYear = date('Y');
 if ($startYear == $thisYear) {
 echo $startYear;
 } else {
 echo "{$startYear}–{$thisYear}";
 }
 ?>
 David Powers</p>

As in PHP Solution 4-4, I ve used curly braces around the variables in the else clause

because they re in a double-quoted string that contains no whitespace.

5. Save footer.inc.php, and reload index.php in a browser. The copyright notice should look

the same as before.

LIGHTENING YOUR WORKLOAD WITH INCLUDES

85

6. Change the argument passed to the date() function to a lowercase y like this:

 $thisYear = date('y');

7. Save footer.inc.php, and click the Reload button in your browser. The second year is

displayed using only the last two digits, as shown in the following screenshot:

This should serve as a reminder that PHP is case-sensitive. Uppercase Y and lowercase y produce

different results with the date() function. Forgetting about case sensitivity is one of the most

common causes of errors in PHP.

8. Change the argument passed to date() back to an uppercase Y. Set the value of $startYear

to the current year, and reload the page. This time, you should see only the current year

displayed.

You now have a fully automated copyright notice. The finished code is in footer.inc_02.php

in the ch04 folder.

PHP Solution 4-6: Displaying a random image

Displaying a random image is very easy. All you need is a list of available images, which you store in an

indexed array (see “Creating arrays” in Chapter 3). Since indexed arrays are numbered from 0, you can

select one of the images by generating a random number between 0 and one less than the length of the

array. All accomplished in a few lines of code . . .

Continue using the same files. Alternatively, use index_03.php from the ch04 folder and rename it

index.php. Since index_03.php uses title.inc.php, menu.inc.php, and footer.inc.php, make

sure all three files are in your includes folder. The images are already in the images folder.

1. Create a blank PHP page in the includes folder, and name it random_image.php. Insert the

following code (it s also in random_image_01.php in the ch04 folder):

 <?php
 $images = array('kinkakuji', 'maiko', 'maiko_phone', 'monk', 'fountains',
 'ryoanji', 'menu', 'basin');
 $i = rand(0, count($images)-1);
 $selectedImage = "images/{$images[$i]}.jpg";

This is the complete script: an array of image names minus the .jpg filename extension

(there s no need to repeat shared information—they re all JPEG), a random number generator,

and a string that builds the correct pathname for the selected file.

To generate a random number within a range, you pass the minimum and maximum numbers as

arguments to the function rand(). Since there are eight images in the array, you need a

CHAPTER 4

86

number between 0 and 7. The simple way to do this would be to use rand(0, 7)—simple, but

inefficient. Every time you change the $images array, you need to count how many elements

it contains and change the maximum number passed to rand().

It s much easier to get PHP to count them for you, and that s exactly what the count()

function does: it counts the number of elements in an array. You need a number one less than

the number of elements in the array, so the second argument passed to rand() becomes

count($images)-1, and the result is stored in $i.

The random number is used in the final line to build the correct pathname for the selected file.

The variable $images[$i] is embedded in a double-quoted string with no whitespace

separating it from surrounding characters, so it s enclosed in curly braces. Arrays start at 0,

so if the random number is 1, $selectedImage is images/maiko.jpg.

If you re new to PHP, you may find it difficult to understand code like this:

 $i = rand(0, count($images)-1);

All that s happening is that the second argument passed to rand() is an expression rather

than a number. If it makes it easier for you to follow, rewrite the code like this:

 $numImages = count($images); // $numImages is 8
 $max = $numImages – 1; // $max is 7
 $i = rand(0, $max); // $i = rand(0, 7)

2. Open index.php, and include random_image.php by inserting the command in the same code

block as title.inc.php like this:

 <?php include('./includes/title.inc.php');
 include('./includes/random_image.php'); ?>

Since random_image.php doesn t send any direct output to the browser, it s safe to put it

above the DOCTYPE.

3. Scroll down inside index.php, and locate the code that displays the image in the

maincontent <div>. It looks like this:

 <div id="pictureWrapper">
 <img src="images/basin.jpg" alt="Water basin at Ryoanji temple"
 width="350" height="237" class="picBorder">
 </div>

Instead of using images/basin.jpg as a fixed image, replace it with $selectedImage. All the

images have different dimensions, so delete the width and height attributes, and use a

generic alt attribute. The code in step 3 should now look like this:

 <div id="pictureWrapper">
 <img src="<?php echo $selectedImage; ?>" alt="Random image"
 class="picBorder">
 </div>

LIGHTENING YOUR WORKLOAD WITH INCLUDES

87

4. Save both random_image.php and index.php, and load index.php into a browser. The image

should now be chosen at random. Click the Reload button in your browser, and you should see

a variety of images, as shown in Figure 4-10.

Figure 4-10. Storing image filenames in an indexed array makes it easy to display a random image.

You can check your code against index_04.php and random_image_01.php in the ch04

folder.

This is a simple and effective way of displaying a random image, but it would be much better if you could

add a caption and set the width and height for different sized images dynamically.

PHP Solution 4-7: Adding a caption to the random image

This solution uses a multidimensional array—or an array of arrays—to store the filename and caption for

each image. If you find the concept of a multidimensional array difficult to understand in abstract terms,

think of it as a large box with a lot of envelopes inside, and inside each envelope are the photos and

captions. The box is the top-level array, and the envelopes inside are the subarrays.

CHAPTER 4

88

The images are different sizes, but PHP conveniently provides a function called getimagesize(). Guess

what it does.

This PHP solution builds on the previous one, so continue working with the same files.

1. Open random_image.php, and change the code like this:

 <?php
 $images = array(
 array('file' => 'kinkakuji',
 'caption' => 'The Golden Pavilion in Kyoto'),
 array('file' => 'maiko',
 'caption' => 'Maiko—trainee geishas in Kyoto'),
 array('file' => 'maiko_phone',
 'caption' => 'Every maiko should have one—a mobile, of course'),
 array('file' => 'monk',
 'caption' => 'Monk begging for alms in Kyoto'),
 array('file' => 'fountains',
 'caption' => 'Fountains in central Tokyo'),
 array('file' => 'ryoanji',
 'caption' => 'Autumn leaves at Ryoanji temple, Kyoto'),
 array('file' => 'menu',
 'caption' => 'Menu outside restaurant in Pontocho, Kyoto'),
 array('file' => 'basin',
 'caption' => 'Water basin at Ryoanji temple, Kyoto')
);
 $i = rand(0, count($images)-1);
 $selectedImage = "images/{$images[$i]['file']}.jpg";
 $caption = $images[$i]['caption'];

Although the code looks complicated, it s an ordinary indexed array that contains eight items,

each of which is an associative array containing definitions for 'file' and 'caption'. The

definition of the multidimensional array forms a single statement, so there are no semicolons

until line 19. The closing parenthesis on that line matches the opening one on line 2. All the

array elements in between are separated by commas. The deep indenting isn t necessary, but

it makes the code a lot easier to read.

The variable used to select the image also needs to be changed, because $images[$i] no

longer contains a string, but an array. To get the correct filename for the image, you need to

use $images[$i]['file']. The caption for the selected image is contained in

$images[$i]['caption'] and stored in a shorter variable.

2. You now need to amend the code in index.php to display the caption like this:

 <div id="pictureWrapper">
 <img src="<?php echo $selectedImage; ?>" alt="Random image"
 class="picBorder">
 <p id="caption"><?php echo $caption; ?></p>
 </div>

LIGHTENING YOUR WORKLOAD WITH INCLUDES

89

3. Save index.php and random_image.php, and load index.php into a browser. Most images

will look fine, but there s an ugly gap to the right of the image of the trainee geisha with a mobile

phone, as shown in Figure 4-11.

Figure 4-11. The long caption protrudes beyond the image and shifts it too far left.

4. Add the following code at the end of random_image.php:

 if (file_exists($selectedImage) && is_readable($selectedImage)) {
 $imageSize = getimagesize($selectedImage);
 }

The if statement uses two functions, file_exists() and is_readable(), to make sure

$selectedImage not only exists but also that it s accessible (it may be corrupted or have the

wrong permissions). These functions return Boolean values (true or false), so they can be

used directly as part of the conditional statement.

The single line inside the if statement uses the function getimagesize() to get the image s

dimensions and stores them in $imageSize. You ll learn more about getimagesize() in

Chapter 8. At the moment, you re interested in the following two pieces of information:

• $imageSize[0]: The width of the image in pixels

• $imageSize[3]: A string containing the image s height and width formatted for

inclusion in an tag

5. First of all, let s fix the code in the tag. Change it like this:

 <img src="<?php echo $selectedImage; ?>" alt="Random image"
 class="picBorder" <?php echo $imageSize[3]; ?>>

This inserts the correct width and height attributes inside the tag.

CHAPTER 4

90

6. Although this sets the dimensions for the image, you still need to control the width of the

caption. You can t use PHP inside an external style sheet, but there s nothing stopping you

from creating a <style> block in the <head> of index.php. Insert the following code just

before the closing </head> tag.

 <?php
 if (isset($imageSize)) {
 ?>
 <style>
 #caption {
 width: <?php echo $imageSize[0]; ?>px;
 }
 </style>
 <?php } ?>

This code consists of only nine short lines, but it s an odd mix of PHP and HTML. Let s start

with the first three lines and the final one. If you strip away the PHP tags and replace the HTML

<style> block with a comment, this is what you end up with:

 if (isset($imageSize)) {
 // do something if $imageSize has been set
 }

In other words, if the variable $imageSize hasn t been set (defined), the PHP engine ignores

everything between the curly braces. It doesn t matter that most of the code between the

braces is HTML and CSS. If $imageSize hasn t been set, the PHP engine skips to the closing

brace, and the intervening code isn t sent to the browser.

Many inexperienced PHP coders wrongly believe that they need to use echo or print to create

HTML output inside a conditional statement. As long as the opening and closing braces match, you

can use PHP to hide or display sections of HTML like this. It s a lot neater and involves a lot less

typing than using echo all the time.

If $imageSize has been set, the <style> block is created, and $imageSize[0] is used to set

the correct width for the paragraph that contains the caption.

7. Save random_image.php and index.php, and reload index.php into a browser. Click the

Reload button until the image of the trainee geisha with the mobile phone appears. This time, it

should look like Figure 4-12. If you view the browser s source code, the style rule uses the

correct width for the image.

LIGHTENING YOUR WORKLOAD WITH INCLUDES

91

Figure 4-12. The ugly gap is removed by creating a style rule directly related to the image size.

If the caption still protrudes, make sure there s no gap between the closing PHP tag and px in the

<style> block. CSS does not permit whitespace between the value and unit of measurement.

8. The code in random_image.php and the code you have just inserted prevent errors if the

selected image can t be found, but the code that displays the image is devoid of similar

checks. Temporarily change the name of one of the images, either in random_image.php or in

the images folder. Reload index.php several times. Eventually, you should see an error

message like that in Figure 4-13. It looks very unprofessional.

Figure 4-13. An error in an include file can destroy the look of your page.

9. The conditional statement at the foot of random_image.php sets $imageSize only if the

selected image both exists and is readable, so if $imageSize has been set, you know it s all

systems go. Add the opening and closing blocks of a conditional statement around the <div>

that displays the image in index.php like this:

 <?php if (isset($imageSize)) { ?>
 <div id="pictureWrapper">

CHAPTER 4

92

 <img src="<?php echo $selectedImage; ?>" alt="Random image"
 class="picBorder" <?php echo $imageSize[3]; ?> />
 <p id="caption"><?php echo $caption; ?></p>
 </div>
 <?php } ?>

Images that exist will display normally, but you ll avoid any embarrassing error messages in

case of a missing or corrupt file—a much more professional look. Don t forget to restore the

name of the image you changed in the previous step. You can check your code against

index_05.php and random_image_02.php in the ch04 folder.

Preventing errors with include files

Many hosting companies turn off error reporting for notices, so you probably wouldn t be aware of the

problem shown in Figure 4-13 if you did all your testing on your remote server. However, it s important to

eliminate all errors before deploying PHP pages on the Internet. Just because you can t see the error

message, doesn t mean your page is OK.

Pages that use a server-side technology such as PHP deal with a lot of unknowns, so it s wise to code

defensively, checking values before using them. This section describes measures you can take to

prevent and troubleshoot errors with include files.

Checking the existence of variables

The lesson that can be drawn from PHP Solution 4-7 is that you should always use isset() to verify the

existence of a variable that comes from an include file and wrap any code that uses it in a conditional

statement. In this particular case, you know there s no image to display if $imageSize doesn t exist, so

the pictureWrapper <div> is dropped. However, in other cases, you might be able to assign a default

value to the variable like this:

if (!isset($someVariable)) {
 $someVariable = default value;
}

This uses the logical Not operator (see Table 3-6 in Chapter 3) to check if $someVariable has not been

set. If $someVariable doesn t exist, it s assigned a default value, which can then be used later in your

script. If it does exist, the code inside the conditional statement is skipped, and the original value is used.

Checking whether a function or class has been defined

Include files are frequently used to define custom functions or classes. Attempting to use a function or

class that hasn t been defined triggers a fatal error. To check whether a function has been defined, pass

the name of the function as a string to function_exists(). When passing the name of the function to

function_exists(), omit the parentheses at the end of function name. For example, you check whether

a function called doubleIt() has been defined like this:

if (function_exists('doubleIt')) {
 // use doubleIt()
}

LIGHTENING YOUR WORKLOAD WITH INCLUDES

93

To check whether a class has been defined, use class_exists() in the same way, passing a string

containing the class name as the argument:

if (class_exists('MyClass')) {
 // use MyClass
}

Assuming you want to use the function or class, a more practical approach is to use a conditional

statement to include the definition file if the function or class hasn t already been defined. For example, if

the definition for doubleIt() is in a file called utilities.inc.php:

if (!function_exists('doubleIt')) {
 require_once('includes/utilities.inc.php');
}

Temporarily turning on error messages

Error messages are there to help the developer. Unfortunately, displaying them in a live website exposes

information that could be useful to an attacker, which is why it s now common for hosting companies to

turn off the display of error messages. Depending on the nature of the error, all you might see when

accessing the page is a blank screen. This isn t very helpful when you need to find out what s wrong with a

page that worked perfectly in your local testing environment.

Fortunately, it s easy to turn on the display of error messages temporarily for an individual page with

ini_set(), which can be used to override some directives in php.ini, the server s PHP configuration

file. Add the following code at the top of the page that s causing problems:

<?php ini_set('display_errors', '1'); ?>

Upload the file to your remote server, and reload the page in your browser. You should then be able to read

the error message onscreen. Fix the problem, and test the page again. If the page displays correctly,

remove the extra line of code.

If you still see a blank screen, it means there s a syntax error in your PHP code. Using ini_set()

has no effect if there s a parse error.

The most common cause of errors is forgetting to upload the include file to your remote server. Even if you

have uploaded all the files, you might get an error message telling you that you don t have permission to

access an include file. This is likely to happen in the following circumstances:

• The server is running in safe mode: If your hosting company is running PHP in a highly

restricted way, you will see a warning that a safe mode restriction is in effect. Run phpinfo(),

and check the value of safe_mode_include_dir in the Core section. All your include files

must be stored in this location. Adjust your site structure accordingly. Safe mode is scheduled

to be removed from the next major version of PHP, so this problem is less common.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 4

94

• The open_basedir directive has been set: The open_basedir directive restricts your

ability to include or open files. This should affect you only when the include file is outside your

web server s document root. The warning message produced by PHP lists the allowed path(s).

Move your include file to a permitted location, and adjust the path in the include command

accordingly.

Dealing with missing include files

Assuming your include files are working normally on your remote server, that s probably all the error

checking you need. However, if your remote server displays error messages, you should take steps to

suppress them in case an include file is accidentally deleted or corrupted.

A rather crude, but effective way is to use the PHP error control operator (@), which suppresses error

messages associated with the line of code in which it s used. You place the error control operator either at

the beginning of the line or directly in front of the function or command that you think might generate an

error like this:

@ include('./includes/random_image.php');

The problem with the error control operator is that it hides errors, rather than working around them. It s only

one character, so it s easy to forget you have used it. Consequently, you can waste a lot of time looking

for errors in the wrong part of your script. If you use the error control operator, the @ mark should be the

first thing you remove when troubleshooting a problem.

The other drawback is that you need to use the error control operator in every line that might generate an

error message, because it affects only the current line.

A better way of suppressing error messages in a live website is to turn off the display_errors directive

in the web server s configuration. The most effective way is to edit php.ini if your hosting company gives

you control over its settings. Alternatively, if your server runs on Apache and you have permission to

change the configuration with an .htaccess file, you should add the following command to the .htaccess

file in your server root folder:

php_flag display_errors Off

If neither option is available, add the following line at the top of any script that uses include files:

<?php ini_set('display_errors', '0'); ?>

All the techniques suggested so far only suppress error messages if an include file can t be found. If a

page would be meaningless without the include file, you should redirect the user to an error page if the

include file is missing.

One way to do so is to throw an exception like this:

$file = 'includes/menu.inc.php';
if (file_exists($file) && is_readable($file)) {
 include($file);
} else {
 throw new Exception("$file can't be found");
}

LIGHTENING YOUR WORKLOAD WITH INCLUDES

95

When using code that might throw an exception, you need to wrap it in a try block and create a catch

block to handle the exception (see “Handling Exceptions” in Chapter 3). The next PHP solution shows how

to do this.

PHP Solution 4-8: Redirecting when an include file can t be found

This PHP solution shows how to redirect users to a different page if an include file can t be found. If you

have designed and tested your site thoroughly, this technique should not be necessary on most pages

that use include files. However, this is by no means a pointless exercise. It demonstrates several

important features of PHP: how to throw and catch exceptions and how to redirect to another page. As

you ll see from the following instructions, redirection isn t always straightforward. This PHP solution shows

how to overcome the most common problem.

Continue working with index.php from PHP Solution 4-7. Alternatively, use index_05.php from the ch04

folder.

1. Copy error.php from the ch04 folder to the site root. Don t update the links in the page if your

editing program prompts you to do so. This is a static page that contains a generic error

message and links back to the other pages.

2. Open index.php in your editing program. The navigation menu is the most indispensible

include file, so edit the include command in index.php like this:

 $file = 'includes/menu.inc.php';
 if (file_exists($file) && is_readable($file)) {
 include($file);
 } else {
 throw new Exception("$file can't be found");
 }

Storing the path of the include file in a variable like this avoids the need to retype it four times,

reducing the likelihood of spelling mistakes.

3. To redirect the user to another page, you use the header() function. However, redirection

doesn t work if any output has been sent to the browser before you call header(). Unless

there s a syntax error, the PHP engine normally processes a page from the top outputting the

HTML until it reaches a problem. This means that output will have already begun by the time the

PHP engine gets to this code. To prevent this from happening, start the try block before any

output is generated. (This actually won t work, but bear with me, because it demonstrates an

important point.)

Scroll to the top of the page, and edit the opening PHP code block like this:

 <?php try {
 include('./includes/title.inc.php');
 include('./includes/random_image.php'); ?>

This opens the try block.

CHAPTER 4

96

4. Scroll down to the bottom of the page, and add the following code after the closing </html>

tag:

 <?php } catch (Exception $e) {
 header('Location: http://localhost/phpsols/error.php');
 } ?>

This closes the try block and creates a catch block to handle the exception. The code in the

catch block uses header() to redirect the user to error.php.

The header() function is used to send any HTTP headers to the browser. It takes as its

argument a string containing the header and its value separated by a colon. In this case, it

uses the Location header to redirect the browser to the page specified by the URL following

the colon. Adjust the URL to match your own setup if necessary.

5. Save index.php, and test the page in a browser. It should display as normal.

6. Change the value of $file, the variable you created in step 2, to point to a nonexistent include

file, such as menu.php.

7. Save index.php, and reload it in your browser. Instead of being redirected to error.php,

you re likely to see the following message:

This error message is probably responsible for more heads being banged against keyboards

than any other. (I, too, bear the scars.) As mentioned earlier, the header() function cannot

be used if output has been sent to the browser. So, what s happened?

The answer is in the error message, but it s not immediately obvious. It says the error

happened on line 54, which is where the header() function is called. What you really need to

know is where the output was generated. That information is buried here:

 (output started at C:\xampp\htdocs\phpsols\index.php:9)

The number 9 after the colon is the line number. So, what s on line 9 of index.php?

http://localhost/phpsols/error.php

LIGHTENING YOUR WORKLOAD WITH INCLUDES

97

As you can see from the preceding screenshot, line 9 uses echo to display the value of

$title. Because there s no error in the code up to this point, the PHP engine has already

output the HTML. Once that has happened, header() can t redirect the page. However, even

if you remove this line of PHP, the error message simply reports that output started on the next

line that contains a PHP block. What s happening is that the web server is outputting all the

HTML following the DOCTYPE, but the PHP engine needs to process a PHP code block before it

can report a line number. This poses the problem of how to redirect a page after output has

been sent to the browser. Fortunately, PHP provides the answer by allowing you to store the

output in a buffer (the web server s memory).

8. Edit the code block at the top of index.php like this:

 <?php ob_start();
 try {
 include('./includes/title.inc.php');
 include('./includes/random_image.php'); ?>

The ob_start() function turns on output buffering, preventing any output from being sent to

the browser before the header() function is called.

9. The PHP engine automatically flushes the buffer at the end of the script, but it s better to do so

explicitly. Edit the PHP code block at the foot of the page like this:

 <?php } catch (Exception $e) {
 ob_end_clean();
 header('Location: http://localhost/phpsols/error.php');
 }
 ob_end_flush();
 ?>

Two different functions have been added here. When redirecting to another page, you don t

want the HTML stored in the buffer. So, inside the catch block, a call is made to

ob_end_clean(), which turns off the buffer and discards its contents.

However, if an exception isn t thrown, you want to display the contents of the buffer, so

ob_end_flush() is called at the end of the page after both the try and catch blocks. This

flushes the contents of the buffer and sends it to the browser.

10. Save index.php and reload it in a browser. This time, you should be redirected to the error

page:

http://localhost/phpsols/error.php

CHAPTER 4

98

11. Change the value of $file back to includes/menu.inc.php, and save index.php. When

you click the Home link in the error page, index.php should display normally.

You can compare your code with index_06.php in the ch04 folder.

Redirecting the page when an error occurs improves the user experience, but you should also log the

error. You ll learn how to do that in Chapter 6.

Choosing where to locate your include files

A useful feature of PHP include files is they can be located anywhere, as long as the page with the include

command knows where to find them. Include files don t even need to be inside your web server root. This

means that you can protect include files that contain sensitive information, such as passwords, in a

private directory (folder) that cannot be accessed through a browser. So, if your hosting company

provides a storage area outside your server root, you should seriously consider locating some, if not all,

of your include files there.

An include command expects either a relative path or a fully qualified path. If neither is given, PHP

automatically looks in the include_path specified in your PHP configuration. The following section

explains how to change the folders PHP searches automatically for include files.

Adjusting your include_path

The advantage of locating include files in a folder specified in your web server s include_path is that you

don t need to worry about getting the relative or absolute path correct. All you need is the filename. This

can be very useful if you use a lot of includes or you have a site hierarchy several levels deep. There are

three ways to change the include_path:

• Edit the value in php.ini: If your hosting company gives you access to php.ini, this is the

best way to add a custom includes folder.

• Use .htaccess: If your remote web server runs on Apache and you are allowed to change the

configuration with an .htaccess file, this is a good alternative.

• Use set_include_path(): Use this only if the previous options are not available to you,

because it affects the include_path only for the current file.

The value of the include_path for your web server is listed in the Core section of the configuration details

when you run phpinfo(). It normally begins with a period, which indicates the current folder, and is

followed by the absolute path of each folder to be searched. On Linux and Mac OS X, each path is

separated by a colon. On Windows, the separator is a semicolon.

On a Linux or Mac server your existing include_path directive might look like this:

.:/php/PEAR

On a Windows server, the equivalent would look like this:

.;C:\php\PEAR

LIGHTENING YOUR WORKLOAD WITH INCLUDES

99

Editing the include_path in php.ini

In php.ini, locate the include_path directive. To add a folder called includes in your own site, add a

colon or semicolon—depending on your server s operating system—at the end of the existing value

followed by the absolute path to the includes folder.

On a Linux or Mac server, use a colon like this:

include_path=".:/php/PEAR:/home/mysite/public_html/includes"

On a Windows server, use a semicolon:

include_path=".;C:\php\PEAR;C:\sites\mysite\www\includes"

Using .htaccess to change the include_path

If you can use .htaccess to change the server s configuration, you can adjust the include_path on

Linux or Mac like this:

php_value include_path ".:/php/PEAR:/home/mysite/public_html/includes"

The command is the same on Windows, except that you separate the paths with a semicolon:

php_value include_path ".;C:\php\PEAR;C:\sites\mysite\www\includes"

Do not insert an equal sign between include_path and the list of path names. Because .htaccess

overrides the default include_path, make sure you copy the existing value from phpinfo() and add

the new path to it.

If you re testing locally in XAMPP in a subfolder of the server root called phpsols, you can create an

.htaccess file for this book like this:

php_value include_path ".;C:\xampp\php\PEAR;C:\xampp\htdocs\phpsols\includes"

If you re testing locally in MAMP, the file should look like this:

php_value include_path ".:/Applications/MAMP/bin/php5.3/lib/php:/Applications/
MAMP/htdocs/phpsols/includes"

These values are correct at the time of this writing, but you should check the actual value of

include_path in your own setup and adjust the path accordingly if it s different.

The best way to create an .htaccess file on your local computer is to use a dedicated web

development program, such as Dreamweaver or Zend Studio. If you create an .htaccess file in a

text editor on a Mac, it will disappear without trace in Finder. Mac OS X has the infuriating habit of

hiding files with filenames that begin with a dot. Dedicated web development programs are more

understanding.

CHAPTER 4

100

Using set_include_path()

Although set_include_path() affects only the current page, you can easily create a code snippet and

paste it into pages where you want to use it. PHP also makes it easy to get the existing include_path and

combine it with the new one in a platform-neutral way.

Store the new path in a variable and then combine it with the existing include path like this:

$includes_folder = '/home/mysite/public_html/includes';
set_include_path(get_include_path() . PATH_SEPARATOR . $includes_folder);

It looks as though three arguments are being passed to set_include_path(), but it s only one, because

the three elements are joined by the concatenation operator (a period), not commas. As you can imagine,

get_include_path() gets the existing include_path. PATH_SEPARATOR is a PHP constant that

automatically inserts a colon or semicolon depending on the operating system. The result is a string that

contains both the original and new paths.

The problem with this approach is that the path to the new includes folder won t be the same on your

remote and local testing servers. Fortunately, you can fix that with a conditional statement. The

superglobal variable $_SERVER['HTTP_HOST'] contains the domain name of the website. So, if your

domain is www.example.com, you can set the correct path for each server like this:

if ($_SERVER['HTTP_HOST'] == 'www.example.com') {
 $includes_folder = '/home/example/public_html/includes';
} else {
 $includes_folder = 'C:/xampp/htdocs/phpsols/includes';
}
set_include_path(get_include_path() . PATH_SEPARATOR . $includes_folder);

Using set_include_path() is probably not worthwhile for small websites that don t use many include

files. Where it comes in really useful is if you use a third-party PHP library, such as Zend Framework

(http://framework.zend.com/) or Symfony (www.symfony-project.org), which relies heavily on

include files.

Why can t I use site-root-relative links with PHP includes?

Well, you can and you can t. For the sake of clarity, I ll begin by explaining the distinction between links

relative to the document and to the site root. When you click a link to go to another page, the path in the

<a> tag tells the browser how to get from the current page to the next one. Most web authoring tools

specify the path relative to the current document. If the target page is in the same folder, just the filename

is used. If it s one level higher than the current page, the filename is preceded by ../. This is known as a

document-relative path or link. If you have a site with many levels of folders, this type of link can be

difficult to understand—at least for humans.

The other type of link always begins with a forward slash, which is shorthand for the site root. The

advantage of a site-root-relative path is that it doesn t matter how deep the current page is in the site

hierarchy, the forward slash at the beginning guarantees the web server will start looking from the top level

of the site. Although site-root-relative links are much easier to read, PHP include commands can t handle

them. You must use a document-relative path, an absolute path, or specify the includes folder in your

include_path directive.

http://www.example.com
http://www.example.com
http://framework.zend.com/
http://www.symfony-project.org

LIGHTENING YOUR WORKLOAD WITH INCLUDES

101

Having said that, you can convert a site-root-relative path to an absolute one by concatenating the

superglobal variable $_SERVER['DOCUMENT_ROOT'] to the beginning of the path like this:

include($_SERVER['DOCUMENT_ROOT'] . '/includes/filename.php');

Most servers support $_SERVER['DOCUMENT_ROOT'], but you should check the PHP Variables section

at the bottom of the configuration details displayed by phpinfo() to make sure.

Now, this is the point that tends to confuse many people. Although you can t use a site-root-relative link to

include a file, the links inside the include file should normally be relative to the site root. This is because an

include file can be included at any level of the site hierarchy, so document-relative links break when a file

is included at a different level.

You might have noticed a contradiction between the previous paragraph and the document-relative

links in menu.inc.php. They have been deliberately left like that because, unless you have created a

virtual host, the site root is localhost, not phpsols. This is a disadvantage of testing a site in a

subfolder of the web server s document root. The Japan Journey site used throughout this book has

only one level, so the document-relative links work. When developing a site that uses multiple levels

of folders, use site-root-relative links inside your include files, and consider setting up a virtual host

for testing (see Chapter 2 for details).

Security considerations with includes

Include files are a very powerful feature of PHP. With that power come some serious security risks. As

long as the external file is accessible, PHP includes it and incorporates any code into the main script. But,

as mentioned in the previous section, include files can be located anywhere. Technically speaking, they

can even be on a different server. However, this was considered such a security risk, a new configuration

directive, allow_url_include, was introduced in PHP 5.2. The default setting is Off, so it s now

impossible to include files from a different server unless you have complete control over your server s

configuration. Unlike include_path, the allow_url_include directive cannot be overridden except by

the server administrator.

Even if you control both servers yourself, you should never include a file from a different server. It s

possible for an attacker to spoof the address and try to execute a malicious script on your site.

Chapter review
This chapter has plunged you headlong into the world of PHP, using includes, arrays, and

multidimensional arrays. It has shown you how to extract the name of the current page, display a random

image, and get the image s dimensions. You have also learned how to throw and catch exceptions and to

redirect to a different page. There s a lot to absorb, so don t worry if it doesn t all sink in the first time. The

more you use PHP, the more familiar you ll become with the basic techniques. In the next chapter, you ll

learn how PHP processes input from online forms and will use that knowledge to send feedback from a

website to your email inbox.

CHAPTER 4

102

103

Chapter 5

Bringing Forms to Life

Forms lie at the very heart of working with PHP. You use forms for logging in to restricted pages,
registering new users, placing orders with online stores, entering and updating information in a database,
sending feedback . . . The list goes on. The same principles lie behind all these uses, so the knowledge
you gain from this chapter will have practical value in most PHP applications. To demonstrate how to
process information from a form, I m going to show you how to gather feedback from visitors to your site
and send it to your mailbox.

Unfortunately, user input can expose your site to malicious attacks. It s important to always check data
submitted from a form before accepting it. Although HTML5 form elements validate user input in the most
recent browsers, you still need to check the data on the server. HTML5 validation helps legitimate users
avoid submitting a form with errors, but malicious users can easily sidestep checks performed in the
browser. Server-side validation is not optional, but essential. The PHP solutions in this chapter show you
how to filter out or block anything suspicious or dangerous. It doesn t take a lot of effort to keep
marauders at bay. It s also a good idea to preserve user input and redisplay it if the form is incomplete or
errors are discovered.

These solutions build a complete mail processing script that can be reused in different forms, so it s
important to read them in sequence.

In this chapter, you ll learn about the following:

• Understanding how user input is transmitted from an online form

• Displaying errors without losing user input

• Validating user input and preventing spam with a CAPTCHA

• Sending user input by email

How PHP gathers information from a form
Although HTML contains all the necessary tags to construct a form, it doesn t provide any means to
process the form when submitted. For that, you need a server-side solution, such as PHP.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5

104

The Japan Journey website contains a simple feedback form (see Figure 5-1). Other elements—such as
radio buttons, check boxes, and drop-down menus—will be added later.

Figure 5-1. Processing a feedback form is one of the most popular uses of PHP.

First, let s take a look at the HTML code for the form (it s in contact_01.php in the ch05 folder):

<form id="feedback" method="post" action="">
 <p>
 <label for="name">Name:</label>
 <input name="name" id="name" type="text" class="formbox">
 </p>
 <p>
 <label for="email">Email:</label>
 <input name="email" id="email" type="text" class="formbox">
 </p>
 <p>
 <label for="comments">Comments:</label>
 <textarea name="comments" id="comments" cols="60" rows="8"></textarea>
 </p>
 <p>
 <input name="send" id="send" type="submit" value="Send message">
 </p>
</form>

BRINGING FORMS TO LIFE

105

The first thing to notice about this code is that the <input> and <textarea> tags contain both name and
id attributes set to the same value. The reason for this duplication is that HTML, CSS, and JavaScript all
refer to the id attribute. Form processing scripts, however, rely on the name attribute. So, although the id
attribute is optional, you must use the name attribute for each element that you want to be processed.

Two other things to notice are the method and action attributes inside the opening <form> tag. The
method attribute determines how the form sends data. It can be set to either post or get. The action
attribute tells the browser where to send the data for processing when the submit button is clicked. If the
value is left empty, as here, the page attempts to process the form itself.

I have deliberately avoided using any of the new HTML5 form features, such as type="email" and

the required attribute. This makes it easier to test the PHP server-side validation scripts. After

testing, update your forms to use the HTML5 validation features.

Understanding the difference between post and get

The best way to demonstrate the difference between the post and get methods is with a real form. If you
completed the previous chapter, you can continue working with the same files.

Otherwise, the ch05 folder contains a complete set of files for the Japan Journey site with all the code
from the last chapter incorporated in them. Make sure that the includes folder contains title.inc.php,
footer.inc.php and menu.inc.php. Copy contact_01.php to the site root, and rename it
contact.php.

1. Locate the opening <form> tag in contact.php, and change the value of the method attribute

from post to get like this:

 <form id="feedback" method="get" action="">

2. Save contact.php, and load the page in a browser. Type your name, email address, and a

short message into the form, and click Send message.

CHAPTER 5

106

3. Look in the browser address bar. You should see the contents of the form attached to the end

of the URL like this:

If you break up the URL, it looks like this:

 http://localhost/phpsols/contact.php
 ?name=David+Powers
 &email=david%40example.com
 &comments=I+hope+you+get+this.+%3B-%29
 &send=Send+message

Each line after the basic URL begins with the name attribute of one of the form elements,

followed by an equal sign and the contents of the input fields. URLs cannot contain spaces or

certain characters (such as my smiley), so the browser encodes them as hexadecimal values,

a process known as URL encoding (for a full list of values, see

www.w3schools.com/tags/ref_urlencode.asp).

The first name attribute is preceded by a question mark (?) and the others by an ampersand

(&). You ll see this type of URL when using search engines, which helps explain why

everything after the question mark is known as a query string.

4. Go back into the code of contact.php, and change method back to post, like this:

 <form id="feedback" method="post" action="">

5. Save contact.php, and reload the page in your browser. Type another message, and click

Send message. Your message should disappear, but nothing else happens. So where has it

gone? It hasn t been lost, but you haven t done anything to process it yet.

6. In contact.php, add the following code immediately below the closing </form> tag:

 <pre>
 <?php if ($_POST) { print_r($_POST); } ?>
 </pre>

This displays the contents of the $_POST superglobal array if any post data has been sent. As

explained in Chapter 3, the print_r() function allows you to inspect the contents of arrays;

the <pre> tags simply make the output easier to read.

7. Save the page, and click the Refresh button in your browser. You ll probably see a warning

similar to the following. This tells you that the data will be resent, which is exactly what you

want. Click OK or Send depending on your browser.

http://localhost/phpsols/contact.php
http://www.w3schools.com/tags/ref_urlencode.asp

BRINGING FORMS TO LIFE

107

The code from step 6 should now display the contents of your message below the form as

shown in Figure 5-2. Everything has been stored in one of PHP s superglobal arrays, $_POST,

which contains data sent using the post method. The name attribute of each form element is

used as the array key, making it easy to retrieve the content.

Figure 5-2. The $_POST array contains form data with each element identified by its name attribute.

As you have just seen, the get method sends your data in a very exposed way, making it vulnerable to
alteration. Also, Internet Explorer limits the maximum length of a URL to 2,048 characters, so the get
method can be used only for small amounts of data. The post method is more secure and can be used for
much larger amounts of data. By default, PHP permits up to 8MB of post data, although hosting
companies may set a smaller limit.

Consequently, you should normally use the post method with forms. The get method is used mainly in
conjunction with database searches and has the advantage that you can bookmark a search result
because all the data is in the URL. We ll return to the get method later in the book. This chapter
concentrates on the post method and its associated superglobal array, $_POST.

Although the post method is more secure than get, you shouldn t assume that it s 100% safe. For

secure transmission, you need to use encryption or the Secure Sockets Layer (SSL) with a URL that

begins with https://.

Keeping safe with PHP superglobals

While I m on the subject of security, it s worth explaining the background to the PHP superglobal arrays,
which include $_POST and $_GET. The $_POST array contains data sent using the post method. So it
should come as no surprise that data sent by the get method is in the $_GET array.

In the early days of PHP, you didn t need to use special arrays to access data submitted from a form. If
the name of the form element was email, all that was necessary was to stick a dollar sign on the front, like
this: $email. Bingo, you had instant access to the data. It was incredibly convenient. Unfortunately, it

CHAPTER 5

108

also left a gaping security hole. All that an attacker needed to do was view the source of your web page
and pass values to your script through a query string.

Occasionally, you ll still see “advice” to turn on register_globals in php.ini to restore the old way of
gathering form data. Turning on register_globals is foolish for the following reasons:

• It s totally insecure.

• Most hosting companies now disable register_globals. There is no way to override the

setting for individual scripts, so any scripts that rely on it won t work.

• The register_globals setting will be removed completely from the next major version of

PHP. Scripts that rely on register_globals won t work with that version, period.

It s very easy to write scripts that don t rely on register_globals. It just requires putting the name
attribute of the form element in quotes between square brackets after $_POST or $_GET, depending on the
form s method attribute. So email becomes $_POST['email'] if sent by the post method, and
$_GET['email'] if sent by the get method. That s all there is to it.

You may come across scripts that use $_REQUEST, which avoids the need to distinguish between $_POST
or $_GET. It s less secure. Always use $_POST or $_GET instead.

Old scripts may use $HTTP_POST_VARS or $HTTP_GET_VARS, which have the same meaning as $_POST
and $_GET. The old versions don t work on most servers.

Always use $_POST and $_GET when processing user input from a form.

Removing unwanted backslashes from form input

Some PHP servers automatically insert backslashes in front of quotes when a form is submitted. You
should follow the instructions in Chapter 2 to check the value of magic_quotes_gpc on your remote
server. If it s on, and you can t use php.ini or an .htaccess file to turn it off, you need to remove these
backslashes with the script in nuke_magic_quotes.php.

You can ignore PHP Solution 5-1 entirely if magic_quotes_gpc is off on your remote server.

PHP Solution 5-1: Using a script to eliminate magic quotes

This PHP solution is the least efficient way of dealing with magic quotes and should be used only if you
cannot turn off magic_quotes_gpc on your remote server by any other means. To reproduce the same
conditions as on your remote server, edit your local version of php.ini to turn on magic_quotes_gpc
(Chapter 2 describes how to edit configuration directives in php.ini).

Continue working with the file from the previous exercise. Alternatively, use contact_02.php from the
ch05 folder. Copy it to the site root and rename it contact.php.

1. Load contact.php into a browser. Enter some text that contains an apostrophe or some

double quotes. Click Send message .

BRINGING FORMS TO LIFE

109

2. Check the contents of the $_POST array at the bottom of the screen. If magic quotes are on,

you will see something like Figure 5-3. A backslash has been inserted in front of all single and

double quotes (apostrophes are treated the same as single quotes). If magic quotes are off,

you will see no change from your original text.

Figure 5-3. PHP magic quotes automatically insert a backslash in front of quotes when a form is
submitted.

3. If your remote server uses magic quotes, add the following code shown in bold at the end of

the code block at the top of contact.php:

 <?php
 include('./includes/title.inc.php');
 if ($_POST) {
 include('./includes/nuke_magic_quotes.php');
 }
 ?>

4. The conditional statement checks if the $_POST array contains any values. If it does, it

includes the file nuke_magic_quotes.php, which contains a script from the PHP manual at

http://docs.php.net/manual/en/security.magicquotes.disabling.php. The script

removes backslashes from form data and cookies. You should always include this script at the

beginning of any page that processes form data.

In this case, I have wrapped the include command in a conditional statement that checks only

the $_POST array. Obviously, if the form is submitted using the get method, you should check

the $_GET array. If you re expecting data from multiple sources, you can omit the conditional

statement, but it s slightly more efficient to use one, because it avoids running the script in

nuke_magic_quotes.php unnecessarily.

The script in nuke_magic_quotes.php automatically checks whether magic_quotes_gpc is

on. If it s off, the form data is not touched, so your pages will continue to work correctly even if

your hosting company changes the setting.

5. Save contact.php, and click the Reload button in your browser. Confirm that you want to

resend the post data.

http://docs.php.net/manual/en/security.magicquotes.disabling.php

CHAPTER 5

110

6. The $_POST array should now be clear of backslashes, as shown in Figure 5-4. You can check

your code with contact_03.php in the ch05 folder.

Figure 5-4. The backslashes have been cleaned up from the $_POST array.

Since magic quotes are rapidly being phased out of PHP, the remaining PHP solutions and download

files assume magic_quotes_gpc is off.

Processing and validating user input
The ultimate aim of this chapter is to send the input from the form in contact.php by email to your inbox.
Using the PHP mail() function is relatively simple. It takes a minimum of three arguments: the
address(es) the email is being sent to, a string containing the subject line, and a string containing the
body of the message. You build the body of the message by concatenating (joining) the contents of the
input fields into a single string.

Security measures implemented by most Internet service providers (ISPs) make it difficult—if not
impossible—to test the mail() function in a local testing environment. Instead of jumping straight into the
use of mail(), PHP Solutions 5-2 through 5-5 concentrate on validating user input to make sure required
fields are filled in and displaying error messages. Implementing these measures makes your online forms
more user-friendly and secure.

For many years, web designers have used JavaScript to check user input when the submit button is
clicked. That role is being gradually taken over by browsers that support HTML5. This is called client-side

validation because it happens on the user s computer (or client). It s useful because it s almost
instantaneous and can alert the user to a problem without making an unnecessary round trip to the server.
However, you should never rely on client-side validation alone because it s too easy to sidestep. All a
malicious user has to do is turn off JavaScript in the browser, or submit data from a custom script, and
your checks are rendered useless. It s vital to check user input on the server side with PHP, too.

Creating a reusable script

Email processing scripts are usually stored in a separate file that contains generic code capable of
handling any form input. Information specific to the form, such as the destination address and subject
line, must be added directly to the script or sent to it using hidden form fields. The location of the
processing script is stored in the action attribute of the <form> tag, so the browser knows where to send
the input data when the user clicks the submit button.

BRINGING FORMS TO LIFE

111

The ability to reuse the same script—perhaps with only a few edits—for multiple websites is a great
timesaver. However, sending the input data to a separate file for processing makes it difficult to alert
users to errors without losing their input. To get around this problem, the approach taken in this chapter is
to use what s known as a self-processing form.

Instead of sending the data to a separate file, the page containing the form is reloaded, and the
processing script is wrapped in a PHP conditional statement above the DOCTYPE declaration that checks if
the form has been submitted. The advantage is that the form can be redisplayed with error messages and
preserving the user s input if errors are detected by the server-side validation.

Parts of the script that are specific to the form will be embedded in the PHP code block above the DOCTYPE
declaration. The generic, reusable parts of the script will be in a separate file that can be included in any
page that requires an email processing script.

PHP Solution 5-2: Making sure required fields aren t blank

When required fields are left blank, you don t get the information you need, and the user may never get a
reply, particularly if contact details have been omitted.

Continue using the same files. Alternatively, use contact_02.php from the ch05 folder. If your remote
server has magic quotes turned on, use contact_03.php instead.

1. The processing script uses two arrays called $errors and $missing to store details of errors

and required fields that haven t been filled in. These arrays will be used to control the display of

error messages alongside the form labels. There won t be any errors when the page first loads,

so initialize $errors and $missing as empty arrays in the PHP code block at the top of

contact.php like this:

 <?php
 include('./includes/title.inc.php');
 $errors = array();
 $missing = array();
 ?>

2. The email processing script should be executed only if the form has been submitted. As

Figures 5-2 through 5-4 show, the $_POST array contains a name/value pair for the submit

button, which is called send in contact.php. You can test whether the form has been

submitted by creating a conditional statement and passing $_POST['send'] to isset(). If

$_POST['send'] has been defined (set), the form has been submitted. Add the code

highlighted in bold to the PHP block at the top of the page.

 <?php
 include('./includes/title.inc.php');
 $errors = array();
 $missing = array();
 // check if the form has been submitted
 if (isset($_POST['send'])) {
 // email processing script
 }
 ?>

CHAPTER 5

112

Note that send is the value of the name attribute of the submit button in this form. If you give

your submit button a different name, you need to use that name.

If your remote server has magic_quotes_gpc turned on, this is where you should include

nuke_magic_quotes.php:

 if (isset($_POST['send'])) {
 // email processing script
 include('./includes/nuke_magic_quotes.php');
 }

You don t need to include nuke_magic_quotes.php if your remote server has turned off

magic_quotes_gpc.

3. Although you won t be sending the email just yet, define two variables to store the destination

address and subject line of the email. The following code goes inside the conditional statement

that you created in the previous step:

 if (isset($_POST['send'])) {
 // email processing script
 $to = 'david@example.com'; // use your own email address
 $subject = 'Feedback from Japan Journey';
 }

4. Next, create two arrays: one listing the name attribute of each field in the form and the other

listing all required fields. For the sake of this demonstration, make the email field optional, so

that only the name and comments fields are required. Add the following code inside the

conditional block immediately after the code that defines the subject line:

 $subject = 'Feedback from Japan Journey';
 // list expected fields
 $expected = array('name', 'email', 'comments');
 // set required fields
 $required = array('name', 'comments');
 }

Why is the $expected array necessary? It s to prevent an attacker from injecting other variables in

the $_POST array in an attempt to overwrite your default values. By processing only those variables

that you expect, your form is much more secure. Any spurious values are ignored.

5. The next section of code is not specific to this form, so it should go in an external file that can

be included in any email processing script. Create a new PHP file called

processmail.inc.php in the includes folder. Then include it in contact.php immediately

after the code you entered in the previous step like this:

 $required = array('name', 'comments');

mailto:david@example.com

BRINGING FORMS TO LIFE

113

 require('./includes/processmail.inc.php');
 }

6. The code in processmail.inc.php begins by checking the $_POST variables for required

fields that have been left blank. Strip any default code inserted by your editor, and add the

following to processmail.inc.php:

 <?php
 foreach ($_POST as $key => $value) {
 // assign to temporary variable and strip whitespace if not an array
 $temp = is_array($value) ? $value : trim($value);
 // if empty and required, add to $missing array
 if (empty($temp) && in_array($key, $required)) {
 $missing[] = $key;
 } elseif (in_array($key, $expected)) {
 // otherwise, assign to a variable of the same name as $key
 ${$key} = $temp;
 }
 }

In simple terms, this foreach loop goes through the $_POST array, strips out any whitespace

from text fields, and assigns its contents to a variable with the same name (so

$_POST['email'] becomes $email, and so on). If a required field is left blank, its name
attribute is added to the $missing array.

7. Save processmail.inc.php. You ll add more code to it later, but let s turn now to the main

body of contact.php. You need to display a warning if anything is missing. Add a conditional

statement at the top of the page content between the <h2> heading and first paragraph like

this:

 <h2>Contact us</h2>
 <?php if ($missing || $errors) { ?>
 <p class="warning">Please fix the item(s) indicated.</p>
 <?php } ?>
 <p>Ut enim ad minim veniam . . . </p>

This checks $missing and $errors, which you initialized as empty arrays in step 1. PHP

treats an empty array as false, so the paragraph inside the conditional statement isn t

displayed when the page first loads. However, if a required field hasn t been filled in when the

form is submitted, its name is added to the $missing array. An array with at least one element

is treated as true. The || means “or,” so this warning paragraph will be displayed if a required

field is left blank or if an error is discovered. (The $errors array comes into play in PHP

Solution 5-4.)

8. To make sure it works so far, save contact.php, and load it normally in a browser (don t click

the Refresh button). The warning message is not displayed. Click Send message without

filling in any of the fields. You should now see the message about missing items, as shown in

the following screenshot.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5

114

9. To display a suitable message alongside each missing required field, add a PHP code block to

display a warning as a inside the <label> tag like this:

 <label for="name">Name:
 <?php if ($missing && in_array('name', $missing)) { ?>
 Please enter your name
 <?php } ?>
 </label>

The first condition checks the $missing array. If it s empty, the conditional statement fails,

and the is never displayed. But if $missing contains any values, the in_array()

function checks if the $missing array contains the value name. If it does, the is

displayed as shown in Figure 5-5.

10. Insert similar warnings for the email and comments fields like this:

 <label for="email">Email:
 <?php if ($missing && in_array('email', $missing)) { ?>
 Please enter your email address
 <?php } ?>
 </label>
 <input name="email" id="email" type="text" class="formbox">
 </p>
 <p>
 <label for="comments">Comments:
 <?php if ($missing && in_array('comments', $missing)) { ?>
 Please enter your comments
 <?php } ?>
 </label>

The PHP code is the same except for the value you are looking for in the $missing array. It s

the same as the name attribute for the form element.

11. Save contact.php, and test the page again, first by entering nothing into any of the fields.

The page should look like Figure 5-5.

BRINGING FORMS TO LIFE

115

Figure 5-5. By validating user input, you can display warnings about required fields.

Although you added a warning to the <label> for the email field, it s not displayed, because

email hasn t been added to the $required array. As a result, it s not added to the $missing

array by the code in processmail.inc.php.

12. Add email to the $required array in the code block at the top of comments.php like this:

$required = array('name', 'comments', 'email');

13. Click Send message again without filling in any fields. This time, you ll see a warning

message alongside each label.

14. Type your name in the Name field. In the Email and Comments fields, just press the

spacebar several times. Then click Send message. The warning message alongside the

Name field disappears, but the other two warning messages remain. The code in

processmail.inc.php strips whitespace from text fields, so it rejects attempts to bypass

required fields by entering a series of spaces.

If you have any problems, compare your code with contact_04.php and

processmail.inc_01.php in the ch05 folder.

All you need to do to change the required fields is change the names in the $required array and add a
suitable alert inside the <label> tag of the appropriate input element inside the form. It s easy to do,
because you always use the name attribute of the form input element.

Preserving user input when a form is incomplete

Imagine you have spent ten minutes filling in a form. You click the submit button, and back comes the
response that a required field is missing. It s infuriating if you have to fill in every field all over again. Since
the content of each field is in the $_POST array, it s easy to redisplay it when an error occurs.

CHAPTER 5

116

PHP Solution 5-3: Creating sticky form fields

This PHP solution shows how to use a conditional statement to extract the user s input from the $_POST
array and redisplay it in text input fields and text areas.

Continue working with the same files as before. Alternatively, use contact_04.php and
processmail.inc_01.php from the ch05 folder.

1. When the page first loads, you don t want anything to appear in the input fields. But you do

want to redisplay the content if a required field is missing or there s an error. So that s the key:

if the $missing or $errors arrays contain any values, you want the content of each field to be

redisplayed. You set default text for a text input field with the value attribute of the <input>

tag, so amend the <input> tag for name like this:

 <input name="name" id="name" type="text" class="formbox"
 <?php if ($missing || $errors) {
 echo 'value="' . htmlentities($name, ENT_COMPAT, 'UTF-8') . '"';
 } ?>>

The line inside the curly braces contains a combination of quotes and periods that might

confuse you. The first thing to realize is that there s only one semicolon—right at the end—so

the echo command applies to the whole line. As explained in Chapter 3, a period is called the

concatenation operator, which joins strings and variables. You can break down the rest of the

line into three sections, as follows:

• 'value="' .

• htmlentities($name, ENT_COMPAT, 'UTF-8')

• . '"'

The first section outputs value=" as text and uses the concatenation operator to join it to the

next section, which passes $name to a function called htmlentities(). I ll explain what the

function does in a moment, but the third section uses the concatenation operator again to join

the next section, which consists solely of a double quote. So, if $missing or $errors contain

any values, and $_POST['name'] contains Joe, you ll end up with this inside the <input> tag:

 <input name="name" id="name" type="text" class="formbox" value="Joe">

The $name variable contains the original user input, which was transmitted through the $_POST

array. The foreach loop that you created in processmail.inc.php in PHP Solution 5-2

processes the $_POST array and assigns each element to a variable with the same name. This

allows you to access $_POST['name'] simply as $name.

So, what s the htmlentities() function for? As the function name suggests, it converts

certain characters to their equivalent HTML entity. The one you re concerned with here is the

double quote. Let s say Elvis really is still alive and decides to send feedback through the

form. If you use $name on its own, Figure 5-6 shows what happens when a required field is

omitted and you don t use htmlentities().

BRINGING FORMS TO LIFE

117

Figure 5-6. Quotes need special treatment before form fields can be redisplayed.

Passing the content of the $_POST array element to the htmlentities(), however, converts

the double quotes in the middle of the string to ". And, as Figure 5-7 shows, the content

is no longer truncated. What s cool about this is that the HTML entity " is converted

back to double quotes when the form is resubmitted. As a result, there s no need for any

further conversion before the email can be sent.

Figure 5-7. The problem is solved by passing the value to htmlentities() before it s displayed.

By default, htmlentities() uses the Latin1 (ISO-8859-1) character set, which doesn t

support accented characters. To support Unicode (UTF-8) encoding, you need to pass three

arguments to htmlentities():

• The string you want to convert

• A PHP constant indicating how to handle single quotes (ENT_COMPAT leaves
them untouched; ENT_QUOTES converts them to ', the numeric entity for a
single straight quote)

• A string containing one of the permitted character sets (encodings) listed at

http://docs.php.net/manual/en/function.htmlentities.php

http://docs.php.net/manual/en/function.htmlentities.php

CHAPTER 5

118

2. Edit the email field the same way, using $email instead of $name.

3. The comments text area needs to be handled slightly differently because <textarea> tags

don t have a value attribute. You place the PHP block between the opening and closing tags

of the text area like this (new code is shown in bold):

 <textarea name="comments" id="comments" cols="60" rows="8"><?php
 if ($missing || $errors) {
 echo htmlentities($comments, ENT_COMPAT, 'UTF-8');
 } ?></textarea>

It s important to position the opening and closing PHP tags right up against the <textarea>

tags. If you don t, you ll get unwanted whitespace inside the text area.

4. Save contact.php, and test the page in a browser. If any required fields are omitted, the form

displays the original content along with any error messages.

You can check your code with contact_05.php in the ch05 folder.

Using this technique prevents a form reset button from clearing any fields that have been changed by the
PHP script. This is a minor inconvenience in comparison with the greater usability offered by preserving
existing content when an incomplete form is submitted.

Filtering out potential attacks

A particularly nasty exploit known as email header injection seeks to turn online forms into spam relays.
A simple way of preventing this is to look for the strings “Content-Type:”, “Cc:”, and “Bcc:”, as these are
email headers that the attacker injects into your script to trick it into sending HTML email with copies to
many people. If you detect any of these strings in user input, it s a pretty safe bet that you re the target of
an attack, so you should block the message. An innocent message may also be blocked, but the
advantages of stopping an attack outweigh that small risk.

PHP Solution 5-4: Blocking emails that contain specific phrases

This PHP solution checks the user input for suspect phrases. If one is detected, a Boolean variable is set
to true. This will be used later to prevent the email from being sent.

Continue working with the same page as before. Alternatively, use contact_05.php and
processmail.inc_01.php from the ch05 folder.

1. PHP conditional statements rely on a true/false test to determine whether to execute a

section of code. So the way to filter out suspect phrases is to create a Boolean variable that is

switched to true as soon as one of those phrases is detected. The detection is done using a

search pattern or regular expression. Add the following code at the top of

processmail.inc.php before the existing foreach loop:

 // assume nothing is suspect
 $suspect = false;
 // create a pattern to locate suspect phrases
 $pattern = '/Content-Type:|Bcc:|Cc:/i';

 foreach ($_POST as $key => $value) {

BRINGING FORMS TO LIFE

119

The string assigned to $pattern will be used to perform a case-insensitive search for any of

the following: “Content-Type:”, “Bcc:”, or “Cc:”. It s written in a format called Perl-compatible

regular expression (PCRE). The search pattern is enclosed in a pair of forward slashes, and

the i after the final slash makes the pattern case-insensitive.

For a basic introduction to regular expressions (regex), see my tutorial in the Adobe Developer

Connection at www.adobe.com/devnet/dreamweaver/articles/regular_expressions_pt1.html.

For a more in-depth treatment, Regular Expressions Cookbook by Jan Goyvaerts and Steven Levithan

(O Reilly, 2009, ISBN: 978-0-596-52068-7) is excellent.

2. You can now use the PCRE stored in $pattern to filter out any suspect user input from the

$_POST array. At the moment, each element of the $_POST array contains only a string.

However, multiple-choice form elements, such as check box groups, return an array of results.

So you need to tunnel down any subarrays and check the content of each element separately.

That s precisely what the following custom-built function isSuspect() does. Insert it

immediately after the $pattern variable from step 1.

 $pattern = '/Content-Type:|Bcc:|Cc:/i';

 // function to check for suspect phrases
 function isSuspect($val, $pattern, &$suspect) {
 // if the variable is an array, loop through each element
 // and pass it recursively back to the same function
 if (is_array($val)) {
 foreach ($val as $item) {
 isSuspect($item, $pattern, $suspect);
 }
 } else {
 // if one of the suspect phrases is found, set Boolean to true
 if (preg_match($pattern, $val)) {
 $suspect = true;
 }
 }
 }

 foreach ($_POST as $key => $value) {

The isSuspect() function is a piece of code that you may want to just copy and paste without

delving too deeply into how it works. The important thing to notice is that the third argument

has an ampersand (&) in front of it (&$suspect). This means that any changes made to the

variable passed as the third argument to isSuspect() will affect the value of that variable

elsewhere in the script.

This technique is known as passing by reference. As explained in “Passing values to

functions” in Chapter 3, changes to a variable passed as an argument to a function normally

have no effect on the variable s value outside the function unless you explicitly return the

http://www.adobe.com/devnet/dreamweaver/articles/regular_expressions_pt1.html

CHAPTER 5

120

value and reassign it to the original variable. They re limited in scope. Prefixing an argument

with an ampersand in the function definition overrides this limited scope. When you pass a

value by reference, the changes are automatically reflected outside the function. There s no

need to return the value and reassign it to the same variable. This technique isn t used very

often, but it can be useful in some cases. The ampersand is used only when defining the

function. When using the function, you pass arguments in the normal way.

The other feature of this function is that it s what s known as a recursive function. It keeps on

calling itself until it finds a value that it can compare against the regex.

3. To call the function, pass it the $_POST array, the pattern, and the $suspect Boolean variable.

Insert the following code immediately after the function definition:

 // check the $_POST array and any subarrays for suspect content
 isSuspect($_POST, $pattern, $suspect);

Note that you don t put an ampersand in front of $suspect this time. The ampersand is required only

when you define the function in step 2, not when you call it.

4. If suspect phrases are detected, the value of $suspect changes to true. There s also no

point in processing the $_POST array any further. Wrap the code that processes the $_POST

variables in a conditional statement like this:

 if (!$suspect) {
 foreach ($_POST as $key => $value) {
 // assign to temporary variable and strip whitespace if not an array
 $temp = is_array($value) ? $value : trim($value);
 // if empty and required, add to $missing array
 if (empty($temp) && in_array($key, $required)) {
 $missing[] = $key;
 } elseif (in_array($key, $expected)) {
 // otherwise, assign to a variable of the same name as $key
 ${$key} = $temp;
 }
 }
 }

This processes the variables in the $_POST array only if $suspect is not true.

Don t forget the extra curly brace to close the conditional statement.

5. Add a new warning message at the top of page in contact.php like this:

 <?php if ($_POST && $suspect) { ?>
 <p class="warning">Sorry, your mail could not be sent. Please try later.</p>
 <?php } elseif ($missing || $errors) { ?>
 <p class="warning">Please fix the item(s) indicated.</p>
 <?php } ?>

BRINGING FORMS TO LIFE

121

This sets a new condition that takes priority over the original warning message by being

considered first. It checks if the $_POST array contains any elements—in other words, the

form has been submitted—and if $suspect is true. The warning is deliberately neutral in tone.

There s no point in provoking attackers. More important, it avoids offending anyone who may

have innocently used a suspect phrase.

6. Save contact.php, and test the form by typing one of the suspect phrases in one of the

fields. You should see the second warning message, but your input won t be preserved.

You can check your code against contact_06.php and processmail.inc_02.php in the

ch05 folder.

Sending email
Before proceeding any further, it s necessary to explain how the PHP mail() function works, because it
will help you understand the rest of the processing script.

The PHP mail() function takes up to five arguments, all of them strings, as follows:

• The address(es) of the recipient(s)

• The subject line

• The message body

• A list of other email headers (optional)

• Additional parameters (optional)

Email addresses in the first argument can be in either of the following formats:

 'user@example.com'
 'Some Guy <user2@example.com>'

To send to more than one address, use a comma-separated string like this:

 'user@example.com, another@example.com, Some Guy <user2@example.com>'

The message body must be presented as a single string. This means that you need to extract the input
data from the $_POST array and format the message, adding labels to identify each field. By default, the
mail() function supports only plain text. New lines must use both a carriage return and newline character.
It s also recommended to restrict the length of lines to no more than 78 characters. Although it sounds
complicated, you can build the message body automatically with about 20 lines of PHP code, as you ll see
in PHP Solution 5-6.

Adding other email headers is covered in detail in the next section.

Many hosting companies now make the fifth argument a requirement. It ensures that the email is sent by a
trusted user, and it normally consists of your own email address prefixed by -f (without a space in
between), all enclosed in quotes. Check your hosting company s instructions to see whether this is
required and the exact format it should take.

mailto:user@example.com
mailto:user2@example.com
mailto:user@example.com
mailto:another@example.com
mailto:user2@example.com

CHAPTER 5

122

Using additional email headers safely

You can find a full list of email headers at www.faqs.org/rfcs/rfc2076, but some of the most well-
known and useful ones enable you to send copies of an email to other addresses (Cc and Bcc), or to
change the encoding. Each new header, except the final one, must be on a separate line terminated by a
carriage return and new line character. This means using the \r and \n escape sequences in double-
quoted strings (see Table 3-4 in Chapter 3).

By default, mail() uses Latin1 (ISO-8859-1) encoding, which doesn t support accented characters. Web
page editors these days frequently use Unicode (UTF-8), which supports most written languages,
including the accents commonly used in European languages, as well as nonalphabetic scripts, such as
Chinese and Japanese. To ensure that email messages aren t garbled, use the Content-Type header to
set the encoding to UTF-8 like this:

$headers = "Content-Type: text/plain; charset=utf-8\r\n";

You also need to add UTF-8 as the charset attribute in a <meta> tag in the <head> of your web pages like
this in HTML5:

<meta charset=utf-8">

In HTML 4.01, use this:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

Let s say you also want to send copies of messages to other departments, plus a copy to another address
that you don t want the others to see. Email sent by mail() is often identified as coming from
nobody@yourdomain (or whatever username is assigned to the web server), so it s a good idea to add a
more user-friendly “From” address. This is how you build those additional headers, using the combined
concatenation operator (.=) to add each one to the existing variable:

$headers .= "From: Japan Journey<feedback@example.com>\r\n";
$headers .= "Cc: sales@example.com, finance@example.com\r\n";
$headers .= 'Bcc: secretplanning@example.com';

After building the set of headers you want to use, you pass the variable containing them as the fourth
argument to mail() like this (assuming that the destination address, subject, and message body have
already been stored in variables):

$mailSent = mail($to, $subject, $message, $headers);

Hard-coded additional headers like this present no security risk, but anything that comes from user input
must be filtered before it s used. The biggest danger comes from a text field that asks for the user s email
address. A widely used technique is to incorporate the user s email address into a Reply-To header,
which enables you to reply directly to incoming messages by clicking the Reply button in your email
program. It s very convenient, but attackers frequently try to pack an email input field with a large number
of spurious headers.

Although email fields are the prime target for attackers, the destination address and subject line are both
vulnerable if you let users change the value. User input should always be regarded as suspect. PHP
Solution 5-4 performs only a basic test for suspect phrases. Before using external input directly in a
header you need to apply a more rigorous test.

http://www.faqs.org/rfcs/rfc2076
mailto:sales@example.com
mailto:secretplanning@example.com

BRINGING FORMS TO LIFE

123

PHP Solution 5-5: Adding headers and automating the reply address

This PHP solution adds three headers to the email: From, Content-Type (to set the encoding to UTF-8),
and Reply-To. Before adding the user s email address to the final header, it uses one of the filter
functions introduced in PHP 5.2 to verify that the submitted value conforms to the format of a valid email
address.

Continue working with the same page as before. Alternatively, use contact_06.php and
processmail.inc_02.php from the ch05 folder.

1. Headers are often specific to a particular website or page, so the From and Content-Type
headers will be added to the script in contact.php. Add the following code to the PHP block at

the top of the page just before processmail.inc.php is included:

 $required = array('name', 'comments', 'email');
 // create additional headers
 $headers = "From: Japan Journey<feedback@example.com>\r\n";
 $headers .= 'Content-Type: text/plain; charset=utf-8';
 require('./includes/processmail.inc.php');

The \r\n at the end of the From header is an escape sequence that inserts a carriage return

and newline character, so the string must be in double quotes. At the moment, Content-Type
is the final header, so it isn t followed by a carriage return and newline character, and the string

is in single quotes.

2. The purpose of validating the email address is to make sure it s in a valid format, but the field

might be empty because you decide not to make it required or because the user simply ignored

it. If the field is required but empty, it will be added to the $missing array, and the warning you

added in PHP Solution 5-2 will be displayed. If the field isn t empty, but the input is invalid, you

need to display a different message.

Switch to processmail.inc.php, and add this code at the bottom of the script:

 // validate the user's email
 if (!$suspect && !empty($email)) {
 $validemail = filter_input(INPUT_POST, 'email', FILTER_VALIDATE_EMAIL);
 if ($validemail) {
 $headers .= "\r\nReply-To: $validemail";
 } else {
 $errors['email'] = true;
 }
 }

This begins by checking that no suspect phrases have been found and that the email field

isn t empty. Both conditions are preceded by the logical Not operator (!), so they return true
if $suspect and empty($email) are both false. The foreach loop you added in PHP

Solution 5-2 assigns all expected elements in the $_POST array to simpler variables, so

$email contains the same value as $_POST['email'].

The next line uses filter_input() to validate the email address. The first argument is a PHP

constant, INPUT_POST, which specifies that the value must be in the $_POST array. The

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5

124

second argument is the name of the element you want to test. The final argument is another

PHP constant that specifies you want to check the element conforms to the valid format for an

email.

The filter_input() function returns the value being tested if it s valid. Otherwise, it returns

false. So, if the value submitted by the user looks like a valid email address, $validemail

contains the address. If the format is invalid, $validemail is false. The

FILTER_VALIDATE_EMAIL constant accepts only a single email address, so any attempt to

insert multiple email addresses will be rejected.

FILTER_VALIDATE_EMAIL checks only the format. It doesn t check that the address is genuine.

If $validemail isn t false, it s safe to incorporate into a Reply-To email header. Since the

last value added to $headers in step 1 doesn t end with a carriage return and newline

character, they re added before Reply-To. When building the $headers string, it doesn t

matter whether you put the \r\n at the end of a header or at the beginning of the next one, as

long as a carriage return and newline character separates them.

If $validemail is false, $errors['email'] is added to the $errors array.

3. You now need to amend the <label> for the email field in contact.php like this:

 <label for="email">Email:
 <?php if ($missing && in_array('email', $missing)) { ?>
 Please enter your email address
 <?php } elseif (isset($errors['email'])) { ?>
 Invalid email address
 <?php } ?>
 </label>

This adds an elseif clause to the first conditional statement and displays a different warning

if the email address fails validation.

4. Save contact.php, and test the form by leaving all fields blank and clicking Send message .

You ll see the original error message. Test it again by entering a value that isn t an email

address in the Email field. This time, you ll see the invalid message. The same happens if you

enter two email addresses.

You can check your code against contact_07.php and processmail.inc_03.php in the

ch05 folder.

PHP Solution 5-6: Building the message body and sending the mail

Many PHP tutorials show how to build the message body manually like this:

$message = "Name: $name\r\n\r\n";
$message .= "Email: $email\r\n\r\n";
$message .= "Comments: $comments";

BRINGING FORMS TO LIFE

125

This adds a label to identify which field the input comes from and inserts two carriage returns and newline
characters between each one. This is fine for a small number of fields, but it soon becomes tedious with
more fields. As long as you give your form fields meaningful name attributes, you can build the message
body automatically with a foreach loop, which is the approach taken in this PHP solution.

The name attribute must not contain any spaces. If you want to use multiple words to name your

form fields, join them with an underscore or hyphen, for example: first_name or first-name.

Continue working with the same files as before. Alternatively, use contact_07.php and
processmail.inc_03.php from the ch05 folder.

1. Add the following code at the bottom of the script in processmail.inc.php:

 $mailSent = false;

This initializes a variable that will be used to redirect the user to a thank you page after the mail

has been sent. It needs to be set to false until you know the mail() function has succeeded.

2. Now add that code that builds the message. It goes immediately after the variable you have

just initialized.

 // go ahead only if not suspect and all required fields OK
 if (!$suspect && !$missing && !$errors) {
 // initialize the $message variable
 $message = '';
 // loop through the $expected array
 foreach($expected as $item) {
 // assign the value of the current item to $val
 if (isset(${$item}) && !empty(${$item})) {
 $val = ${$item};
 } else {
 // if it has no value, assign 'Not selected'
 $val = 'Not selected';
 }
 // if an array, expand as comma-separated string
 if (is_array($val)) {
 $val = implode(', ', $val);
 }
 // replace underscores and hyphens in the label with spaces
 $item = str_replace(array('_', '-'), ' ', $item);
 // add label and value to the message body
 $message .= ucfirst($item).": $val\r\n\r\n";
 }

 // limit line length to 70 characters
 $message = wordwrap($message, 70);

 $mailSent = true;
 }

CHAPTER 5

126

This is another complex block of code that you might prefer just to copy and paste. Still, you

need to know what it does. In brief, the code checks that $suspect, $missing, and $errors

are all false. If they are, it builds the message body by looping through the $expected array

and stores the result in $message as a series of label/value pairs. The label is derived from the

input field s name attribute. Underscores and hyphens in name attributes are replaced by

spaces, and the first letter is set to uppercase.

If a field that s not specified as required is left empty, its value is set to “Not selected.” The

code also processes values from multiple-choice elements, such as check box groups and

<select> lists, which are transmitted as subarrays of the $_POST array. The implode()

function converts the subarrays into comma-separated strings.

After the message body has been combined into a single string, it s passed to the

wordwrap() function to limit the line length to 70 characters. The code that sends the email

still needs to be added, but for testing purposes, $mailSent has been set to true.

If you re interested in learning how the code in this block works, read the inline comments,

which describe each stage of the process. The key to understanding it is in the following

conditional statement:

 if (isset(${$item}) && !empty(${$item})) {
 $val = ${$item};
 }

The rather odd-looking ${$item} is what s known as a variable variable (the repetition is

deliberate, not a misprint). Since the value of $item is name the first time the loop runs,

${$item} refers to $name. In effect, the conditional statement becomes this:

 if (isset($name) && !empty($name)) {
 $val = $name;
 }

On the next pass through the loop, ${$item} refers to $email, and so on.

The vital point about this script is that it builds the message body only from items in the $expected

array. You must list the names of all form fields in the $expected array for it to work.

3. Save processmail.inc.php. Locate this code block at the bottom of contact.php:

 <pre>
 <?php if ($_POST) {print_r($_POST);} ?>
 </pre>

4. Change it to this:

 <pre>
 <?php if ($_POST && $mailSent) {
 echo htmlentities($message, ENT_COMPAT, 'UTF-8') . "\n";
 echo 'Headers: '. htmlentities($headers, ENT_COMPAT, 'UTF-8');
 } ?>
 </pre>

BRINGING FORMS TO LIFE

127

This checks that the form has been submitted and the mail is ready to send. It then displays

the values in $message and $headers. Both values are passed to htmlentities() to ensure

they display correctly in the browser.

5. Save contact.php, and test the form by entering your name, email address, and a brief

comment. When you click Send message, you should see the message body and headers

displayed at the bottom of the page, as shown in Figure 5-8.

Figure 5-8. Verifying that the message body and headers are correctly formed

Assuming that the message body and headers display correctly at the bottom of the page,

you re ready to add the code to send the email. If your code didn t work, check it against

contact_08.php and processmail.inc_04.php in the ch05 folder.

6. In processmail.inc.php, add the code to send the mail. Locate the following line:

 $mailSent = true;

Change it to this:

 $mailSent = mail($to, $subject, $message, $headers);
 if (!$mailSent) {
 $errors['mailfail'] = true;
 }

This passes the destination address, subject line, message body, and headers to the mail()

function, which returns true if it succeeds in handing the email to the web server s mail

transport agent (MTA). If it fails—perhaps because the mail server is down—$mailSent is set

to false, and the conditional statement adds an element to the $errors array, allowing you to

preserve the user s input when the form is redisplayed.

7. In the PHP block at the top of contact.php, add the following conditional statement

immediately after the command that includes processmail.inc.php:

 require('./includes/processmail.inc.php');
 if ($mailSent) {

CHAPTER 5

128

 header('Location: http://www.example.com/thank_you.php');
 exit;
 }
 }
 ?>

Replace www.example.com with your own domain name. This checks if $mailSent is true. If

it is, the header() function redirects the user to thank_you.php, a page acknowledging that

the message has been sent. The exit command on the following line ensures that the script is

terminated after the page has been redirected.

There s a copy of thank_you.php in the ch05 folder.

8. If $mailSent is false, contact.php is redisplayed, and you need to warn the user that the

message couldn t be sent. Edit the conditional statement just after the <h2> heading like this:

 <h2>Contact Us </h2>
 <?php if (($_POST && $suspect) || ($_POST && isset($errors['mailfail']))) { ?>
 <p class="warning">Sorry, your mail could not be sent. Please try later.</p>

The original and new conditions have been wrapped in parentheses, so each pair is considered

as a single entity. The warning about the message not being sent is displayed if the form has

been submitted and suspect phrases have been found, or if the form has been submitted and

$errors['mailfail'] has been set.

9. Delete the code block (including the <pre> tags) that displays the message body and headers

at the bottom of contact.php.

10. Testing this locally is likely to result in the thank you page being shown, but the email never

arriving. This is because most testing environments don t have an MTA. Even if you set one

up, most mail servers reject mail from unrecognized sources. Upload contact.php and all

related files, including processmail.inc.php and thank_you.php to your remote server, and

test the contact form there.

You can check your code with contact_09.php and processmail.inc_05.php in the ch05

folder.

Troubleshooting mail()

It s important to understand that mail() isn t an email program. PHP s responsibility ends as soon as it
passes the address, subject, message, and headers to the MTA. It has no way of knowing if the email is
delivered to its intended destination. Normally, email arrives instantaneously, but network logjams can
delay it by hours or even a couple of days.

If you re redirected to the thank you page after sending a message from contact.php, but nothing arrives
in your inbox, check the following:

• Has the message been caught by a spam filter?

• Have you checked the destination address stored in $to? Try an alternative email address to

see if it makes a difference.

http://www.example.com/thank_you.php
http://www.example.com

BRINGING FORMS TO LIFE

129

• Have you used a genuine address in the From header? Using a fake or invalid address is likely

to cause the mail to be rejected. Use a valid address that belongs to the same domain as your

web server.

• Check with your hosting company to see if the fifth argument to mail() is required. If so, it

should normally be a string composed of -f followed by your email address. For example,

david@example.com becomes '-fdavid@example.com'.

If you still don t receive messages from contact.php, create a file with this simple script:

<?php
ini_set('display_errors', '1');
$mailSent = mail('you@example.com', 'PHP mail test', 'This is a test email');
if ($mailSent) {
 echo 'Mail sent';
} else {
 echo 'Failed';
}

Replace you@example.com with your own email address. Upload the file to your website, and load the
page into a browser.

If you see an error message about there being no From header, add one as a fourth argument to the
mail() function like this:

$mailSent = mail('you@example.com', 'PHP mail test', 'This is a test email',
 'From: me@example.com');

It s usually a good idea to use a different address from the destination address in the first argument.

If your hosting company requires the fifth argument, adjust the mail() function like this:

$mailSent = mail('you@example.com', 'PHP mail test', 'This is a test email', null,
 '-fme@example.com');

Using the fifth argument normally replaces the need to supply a From header, so using null (without
quotes) as the fourth argument indicates that it has no value.

If you see Mail sent and no mail arrives, or you see Failed after trying all five arguments, consult your
hosting company for advice.

If you receive the test email from this script but not from contact.php, it means you have made a mistake
in the code, or that you have forgotten to upload processmail.inc.php.

Keeping spam at bay

Validating user input on the server is an important weapon in the fight against spam. Unfortunately, spam
merchants are resourceful and often find ways of circumventing measures designed to stop them.
Opinions differ about the effectiveness of anti-spam techniques, but one that s worth considering is
reCAPTCHA (www.google.com/recaptcha/captcha).

CAPTCHA stands for Completely Automated Public Turing Test to Tell Computers and Humans Apart. In its
most common form, the user is presented with an image of random characters that need to be typed
correctly into a text field. The images are designed to be unreadable by optical character recognition

mailto:david@example.com
mailto:'-fdavid@example.com
mailto:you@example.com
mailto:you@example.com
mailto:you@example.com
mailto:me@example.com
mailto:you@example.com
mailto:'-fme@example.com
http://www.google.com/recaptcha/captcha

CHAPTER 5

130

(OCR) software, but humans often have equal difficulty in reading them. The downside of CAPTCHA tests
is that they also present a barrier to the blind and people with poor eyesight.

What makes reCAPTCHA (see Figure 5-9) stand out among similar anti-spam measures is that it
automatically provides an option to refresh the image if the user can t read it. Perhaps more important, it
offers an audio alternative for people with visual difficulties.

Figure 5-9. Adding a reCAPTCHA widget to a form is an effective anti-spam measure.

Using reCAPTCHA actually has a double benefit. The images used by the reCAPTCHA service come from
books and newspapers that have been digitized but which OCR software has difficulty in deciphering. The
user is asked to type two words, one of which has been successfully deciphered by OCR. Success or
failure is determined by the response to the known word, which could be on either the left or the right. The
service collates responses to the unknown word, and uses them to improve the accuracy of OCR
technology.

To use reCAPTCHA, you need to set up a Google account, which is free, and obtain a pair of software
keys (random strings designed to prevent spammers from circumventing the test). Once you have set up
an account, incorporating a reCAPTCHA widget into your contact form is easy.

BRINGING FORMS TO LIFE

131

PHP Solution 5-7: Incorporating a reCAPTCHA widget into your form

This PHP solution describes how to obtain a pair of software keys and add a reCAPTCHA widget to
contact.php. Continue working with the same files as before. Alternatively, use contact_09.php and
processmail.inc_05.php from the ch05 folder.

1. Go to www.google.com/recaptcha/whyrecaptcha, and click the Sign up Now! button. If

you have a Gmail account, log in with your email address and password. If you don t have a

Google account, you ll be prompted to create one.

2. To create the software keys, enter your website s domain name, select the check box if you

want to enable them on all domains, and click Create Key. The public and private keys are

random strings of characters. Copy and save them in a text file on your local computer.

3. You also need recaptchalib.php, which contains the PHP code to generate the reCAPTCHA

widget. There s a copy in the includes folder. To get the most up-to-date version go to

http://code.google.com/apis/recaptcha/docs/php.html, and click the link for the

reCAPTCHA PHP library.

4. Include recaptchalib.php in contact.php. The file is needed both when the form first loads

and when the mail processing script runs, so the include command needs to come before the

conditional statement that runs only if the form has been submitted. You also need to create

variables for the public and private keys. Edit the code at the top of contact.php like this

(using your own public and private keys):

 <?php
 include('./includes/title.inc.php');
 require_once('./includes/recaptchalib.php');
 $public_key = 'your_public_key';
 $private_key = 'your_private_key';
 $errors = array();

5. The code that checks the user s response must be run only when the form has been

submitted. If you plan to use a reCAPTCHA widget on every site, you can put it in

processmail.inc.php immediately after the code that validates the email address. However,

it will trigger an error if you decide not to use reCAPTCHA, so I have put it in contact.php just

before processmail.inc.php is included. The code looks like this:

 $headers .= 'Content-Type: text/plain; charset=utf-8';
 $response = recaptcha_check_answer($private_key, $_SERVER['REMOTE_ADDR'],
 $_POST['recaptcha_challenge_field'], $_POST['recaptcha_response_field']);
 if (!$response->is_valid) {
 $errors['recaptcha'] = true;
 }
 require('./includes/processmail.inc.php');

The recaptcha_get_answer() function takes four arguments: your private key, a PHP

superglobal variable that identifies the user s IP address, and two $_POST variables that

contain the challenge and response. The result is stored in an object called $response.

http://www.google.com/recaptcha/whyrecaptcha
http://code.google.com/apis/recaptcha/docs/php.html

CHAPTER 5

132

The conditional statement checks the response by accessing the object s is_valid property.

If the response is invalid, $errors['recaptcha'] is added to the $errors array, preventing

processmail.inc.php from sending the email.

6. To display the reCAPTCHA widget in the contact form, add the following code above the submit

button:

 <?php if (isset($errors['recaptcha'])) { ?>
 <p class="warning">The values didn't match. Try again.</p>
 <?php }
 echo recaptcha_get_html($public_key); ?>
 <p>
 <input name="send" id="send" type="submit" value="Send message">
 </p>

This adds a paragraph that displays an error message if the user s response was invalid,

followed by the code to display the reCAPTCHA widget.

7. Upload the revised version of contact.php and recaptchalib.php to your remote server,

and load the contact form into a browser. A reCAPTCHA widget should appear above the

submit button as shown in Figure 5-9.

You can check your code against contact_10.php in the ch05 folder.

The code generated by reCAPTCHA creates a <div> with the ID recaptcha_widget_div, which you can
use to create a CSS style rule to align the widget with other form elements.

You can find instructions on how to customize the look of a reCAPTCHA widget at
http://code.google.com/apis/recaptcha/docs/customization.html. At the time of this writing,
you can choose from four themes or create your own. You can also change the language. There are built-
in translations for several languages, including French, Spanish, and Russian. If your language isn t
supported, you can define your own custom translations.

Handling multiple-choice form elements
The form in contact.php uses only text input fields and a text area. To work successfully with forms, you
also need to know how to handle multiple-choice elements, namely:

• Radio buttons

• Check boxes

• Drop-down option menus

• Multiple-choice lists

The principle behind them is the same as the text input fields you have been working with: the name
attribute of the form element is used as the key in the $_POST array. However, there are some important
differences:

• Check box groups and multiple-choice lists store selected values as an array, so you need to

add an empty pair of square brackets at the end of the name attribute for these types of input.

For example, for a check box group called interests, the name attribute in each <input> tag

http://code.google.com/apis/recaptcha/docs/customization.html

BRINGING FORMS TO LIFE

133

should be name="interests[]". If you omit the square brackets, only the last item selected

is transmitted through the $_POST array.

• The values of selected items in a check box group or multiple-choice list are transmitted as a

subarray of the $_POST array. The code in PHP Solution 5-6 automatically converts these

subarrays to comma-separated strings. However, when using a form for other purposes, you

need to extract the values from the subarrays. You ll see how to do so in later chapters.

• Radio buttons, check boxes, and multiple-choice lists are not included in the $_POST array if

no value is selected. So, it s vital to use isset() to check for their existence before

attempting to access their values when processing the form.

Figure 5-10 shows contact.php with each type of input added to the original design.

Figure 5-10. The feedback form with examples of multiple-choice form elements

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5

134

The remaining PHP solutions in this chapter show how to handle multiple-choice form elements. Rather
than go through each step in detail, I ll just highlight the important points. Bear the following points in mind
when working through the rest of this chapter:

• Processing these elements relies on the code in processmail.inc.php.

• You must add the name attribute of each element to the $expected array for it to be added to

the message body.

• To make a field required, add its name attribute to the $required array.

• If a field that s not required is left blank, the code in processmail.inc.php sets its value to

“Not selected.”

The completed code for the rest of the chapter is in contact_11.php. The reCAPTCHA widget has been
omitted to simplify the page.

HTML5 adds many new types of form input. They all use the name attribute and send values as text

or as a subarray of the $_POST array, so you should be able to adapt the code accordingly.

PHP Solution 5-8: Handling radio button groups

Radio button groups let you pick only one value. Although it s common to set a default value in the HTML
markup, it s not obligatory. This PHP solution shows how to handle both scenarios.

1. The simple way to deal with radio buttons is to make one of them the default. The radio group is

always included in the $_POST array, because a value is always selected.

The code for a radio group with a default value looks like this (the name attributes and PHP

code are highlighted in bold):

 <fieldset id="subscribe">
 <h2>Subscribe to newsletter?</h2>
 <p>
 <input name="subscribe" type="radio" value="Yes" id="subscribe-yes"
 <?php
 if ($_POST && $_POST['subscribe'] == 'Yes') {
 echo 'checked';
 } ?>>
 <label for="subscribe-yes">Yes</label>
 <input name="subscribe" type="radio" value="No" id="subscribe-no"
 <?php
 if (!$_POST || $_POST['subscribe'] == 'No') {
 echo 'checked';
 } ?>>
 <label for="subscribe-no">No</label>
 </p>
 </fieldset>

All members of the radio group share the same name attribute. Because only one value can be

selected, the name attribute does not end with a pair of empty brackets.

BRINGING FORMS TO LIFE

135

The conditional statement in the Yes button checks $_POST to see if the form has been

submitted. If it has and the value of $_POST['subscribe'] is “Yes,” the checked attribute is

added to the <input> tag.

In the No button, the conditional statement uses || (or). The first condition is !$_POST, which

is true when the form hasn t been submitted. If true, the checked attribute is added as the

default value when the page first loads. If false, it means the form has been submitted, so the

value of $_POST['subscribe'] is checked.

2. When a radio button doesn t have a default value, it s not included in the $_POST array, so it

isn t detected by the loop in processmail.inc.php that builds the $missing array. To ensure

that the radio button element is included in the $_POST array, you need to test for its existence

after the form has been submitted. If it isn t included, you need to set its value to an empty

string like this:

 $required = array('name', 'comments', 'email', 'subscribe');
 // set default values for variables that might not exist
 if (!isset($_POST['subscribe'])) {
 $_POST['subscribe'] = '';
 }

3. If the radio button group is required but not selected, you need to display an error message

when the form reloads. You also need to change the conditional statements in the <input>

tags to reflect the different behavior.

The following listing shows the subscribe radio button group from contact_11.php, with all

the PHP code highlighted in bold:

 <fieldset id="subscribe">
 <h2>Subscribe to newsletter?
 <?php if ($missing && in_array('subscribe', $missing)) { ?>
 Please make a selection
 <?php } ?>
 </h2>
 <p>
 <input name="subscribe" type="radio" value="Yes" id="subscribe-yes"
 <?php
 if ($_POST && $_POST['subscribe'] == 'Yes') {
 echo 'checked';
 } ?>>
 <label for="subscribe-yes">Yes</label>
 <input name="subscribe" type="radio" value="No" id="subscribe-no"
 <?php
 if ($_POST && $_POST['subscribe'] == 'No') {
 echo 'checked';
 } ?>>
 <label for="subscribe-no">No</label>
 </p>
 </fieldset>

CHAPTER 5

136

The conditional statement that controls the warning message in the <h2> tag uses the same

technique as for the text input fields. The message is displayed if the radio group is a required

item and it s in the $missing array.

The conditional statement surrounding the checked attribute is the same in both radio

buttons. It checks if the form has been submitted and displays the checked attribute only if

the value in $_POST['subscribe'] matches.

PHP Solution 5-9: Handling check boxes and check box groups

Check boxes can be used in two ways:

• Individually: Each check box must have a unique name attribute. The value attribute is

optional. If omitted, the default is “on.”

• As a group: When used this way, all check boxes in the group share the same name attribute,

which needs to end with an empty pair of square brackets for PHP to transmit the selected

values as an array. To identify which check boxes have been selected, each one needs a

unique value attribute.

This PHP solution shows how to deal with a check box group called interests. If no items are selected,
the check box group is not included in the $_POST array. After the form has been submitted, you need to
check the $_POST array to see if it contains a subarray for the check box group. If it doesn t, you need to
create an empty subarray as the default value for the script in processmail.inc.php.

1. To save space, just the first two check boxes of the group are shown. The name attribute and

PHP sections of code are highlighted in bold.

 <fieldset id="interests">
 <h2>Interests in Japan</h2>
 <div>
 <p>
 <input type="checkbox" name="interests[]" value="Anime/manga" id="anime"
 <?php
 if ($_POST && in_array('Anime/manga', $_POST['interests'])) {
 echo 'checked';
 } ?>>
 <label for="anime">Anime/manga</label>
 </p>
 <p>
 <input type="checkbox" name="interests[]" value="Arts & crafts" id="art"
 <?php
 if ($_POST && in_array('Arts & crafts', $_POST['interests'])) {
 echo 'checked';
 } ?>>
 <label for="art">Arts & crafts</label>
 </p>
 . . .
 </div>
 </fieldset>

BRINGING FORMS TO LIFE

137

Each check box shares the same name attribute, which ends with an empty pair of square

brackets, so the data is treated as an array. If you omit the brackets, $_POST['interests']

contains the value of only the first check box selected.

Although the brackets must be added to the name attribute for multiple selections to be treated as an

array, the subarray of selected values is in $_POST['interests'], not $_POST['interests[]'].

The PHP code inside each check box element performs the same role as in the radio button

group, wrapping the checked attribute in a conditional statement. The first condition checks

that the form has been submitted. The second condition uses the in_array() function to

check whether the value associated with that check box is in the $_POST['interests']

subarray. If it is, it means the check box was selected.

2. After the form has been submitted, you need to check for the existence of

$_POST['interests']. If it hasn t been set, you must create an empty array as the default

value for the rest of the script to process. The code follows the same pattern as for the radio

group:

 $required = array('name', 'comments', 'email', 'subscribe', 'interests');
 // set default values for variables that might not exist
 if (!isset($_POST['subscribe'])) {
 $_POST['subscribe'] = '';
 }
 if (!isset($_POST['interests'])) {
 $_POST['interests'] = array();
 }

When dealing with a single check box, use an empty string instead of an empty array.

3. To set a minimum number of required check boxes, use the count() function to check the

number of values transmitted from the form. If it s less than the minimum required, add the

group to the $errors array like this:

 if (!isset($_POST['interests'])) {
 $_POST['interests'] = array();
 }
 // minimum number of required check boxes
 $minCheckboxes = 2;
 if (count($_POST['interests']) < $minCheckboxes) {
 $errors['interests'] = true;
 }

The count() function returns the number of elements in an array, so this creates

$errors['interests'] if fewer than two check boxes have been selected. You might be

wondering why I have used a variable instead of the number like this:

 if (count($_POST['interests']) < 2) {

CHAPTER 5

138

This certainly works and it involves less typing, but $minCheckboxes can be reused in the

error message. Storing the number in a variable means this condition and the error message

always remain in sync.

4. The error message in the body of the form looks like this:

 <h2>Interests in Japan
 <?php if (isset($errors['interests'])) { ?>
 Please select at least <?php echo $minCheckboxes;
 ?>
 <?php } ?>
 </h2>

PHP Solution 5-10: Using a drop-down option menu

Drop-down option menus created with the <select> tag are similar to radio button groups in that they
normally allow the user to pick only one option from several. Where they differ is one item is always
selected in a drop-down menu, even if it s only the first item inviting the user to select one of the others.
As a result, this means that the $_POST array always contains an element referring to a <select> menu,
whereas a radio button group is ignored unless a default value is preset.

1. The following code shows the first two items from the drop-down menu in contact_11.php with

the PHP code highlighted in bold. As with all multiple-choice elements, the PHP code wraps the

attribute that indicates which item has been chosen. Although this attribute is called checked

in radio buttons and check boxes, it s called selected in <select> menus and lists. It s

important to use the correct attribute to redisplay the selection if the form is submitted with

required items missing. When the page first loads, the $_POST array contains no elements, so

you can select the first <option> by testing for !$_POST. Once the form is submitted, the

$_POST array always contains an element from a drop-down menu, so you don t need to test for

its existence.

 <p>
 <label for="select">How did you hear of Japan Journey?</label>
 <select name="howhear" id="howhear">
 <option value="No reply"
 <?php
 if (!$_POST || $_POST['howhear'] == 'No reply') {
 echo 'selected';
 } ?>>Select one</option>
 <option value="foED"
 <?php
 if (isset($_POST && $_POST['howhear'] == 'foED') {
 echo 'selected';
 } ?>>friends of ED</option>
 . . .
 </select>
 </p>

2. Even though an option is always selected in a drop-down menu, you might want to force users

to make a selection other than the default. To do so, add the name attribute of the <select>

BRINGING FORMS TO LIFE

139

menu to the $required array, and set the value attribute and the $_POST array element for

the default option to an empty string like this:

 <option value=""
 <?php
 if (!$_POST || $_POST['howhear'] == '') {
 echo 'selected';
 } ?>>Select one</option>

The value attribute is not required in the <option> tag, but if you leave it out, the form uses

the text between the opening and closing tags as the selected value. So, it s necessary to set

the value attribute explicitly to an empty string. Otherwise, “Select one” is transmitted as the

selected value.

3. The code that displays a warning message if no selection has been made follows the familiar

pattern:

 <label for="select">How did you hear of Japan Journey?
 <?php if ($missing && in_array('howhear', $missing)) { ?>
 Please make a selection
 <?php } ?>
 </label>

PHP Solution 5-11: Handling a multiple-choice list

Multiple-choice lists are similar to check boxes: they allow the user to choose zero or more items, so the
result is stored in an array. If no items are selected, you need to add an empty subarray to the $_POST
array in the same way as with a check box group.

1. The following code shows the first two items from the multiple-choice list in contact_11.php

with the name attribute and PHP code highlighted in bold. Note that the name attribute needs a

pair of square brackets on the end to store the results as an array. The code works in an

identical way to the check boxes in PHP Solution 5-9.

 <p>
 <label for="select">What characteristics do you associate with ➥
 Japan?</label>
 <select name="characteristics[]" size="6" multiple="multiple" ➥
 id="characteristics">
 <option value="Dynamic"
 <?php
 if ($_POST && in_array('Dynamic', $_POST['characteristics'])) {
 echo 'selected';
 } ?>>Dynamic</option>
 <option value="Honest"
 <?php
 if ($_POST && in_array('Honest', $_POST['characteristics'])) {
 echo 'selected';
 } ?>>Honest</option>
 . . .

CHAPTER 5

140

 </select>
 </p>

2. In the code that processes the message, set a default value for a multiple-choice list in the

same way as for an array of check boxes.

 if (!isset($_POST['interests'])) {
 $_POST['interests'] = array();
 }
 if (!isset($_POST['characteristics'])) {
 $_POST['characteristics'] = array();
 }

3. To make a multiple-choice list required and set a minimum number of choices, use the same

technique as for a check box group in PHP Solution 5-9.

Chapter review
A lot of work has gone into building processmail.inc.php, but the beauty of this script is that it works
with any form. The only parts that need changing are the $expected and $required arrays and details
specific to the form, such as the destination address, headers, and default values for multiple-choice
elements that won t be included in the $_POST array if no value is selected.

I ve avoided talking about HTML email because the mail() function handles only plain text email. The
PHP online manual at www.php.net/manual/en/function.mail.php shows a way of sending HTML mail
by adding an additional header. However, it s not a good idea, as HTML mail should always contain
an alternative text version for email programs that don t accept HTML. If you want to send HTML mail
or attachments, try PHPM@iler (http://phpmailer.worxware.com/) or Zend_Mail (http://
zendframework.com/manual/en/zend.mail.html).

As you ll see in later chapters, online forms lie at the heart of just about everything you do with PHP.
They re the gateway between the browser and the web server. You ll come back time and again to the
techniques that you have learned in this chapter.

http://www.php.net/manual/en/function.mail.php
http://phpmailer.worxware.com/
http://zendframework.com/manual/en/zend.mail.html
http://zendframework.com/manual/en/zend.mail.html

141

Chapter 6

Uploading Files

PHP s ability to handle forms isn t restricted to text. It can also be used to upload files to a server. For

instance, you could build a real estate website for clients to upload pictures of their properties or a site for

all your friends and relatives to upload their holiday photos. However, just because you can do it, doesn t

necessarily mean that you should. Allowing others to upload material to your website could expose you to

all sorts of problems. You need to make sure that images are the right size, that they re of suitable quality,

and that they don t contain any illegal material. You also need to ensure that uploads don t contain

malicious scripts. In other words, you need to protect your website just as carefully as your own

computer.

PHP makes it relatively simple to restrict the type and size of files accepted. What it cannot do is check

the suitability of the content. Think carefully about security measures, such as restricting uploads to

registered and trusted users by placing the upload form in a password-protected area.

Until you learn how to restrict access to pages with PHP in Chapters 9 and 17, use the PHP solutions in

this chapter only in a password-protected directory if deployed on a public website. Most hosting

companies provide simple password protection through the site s control panel.

The first part of this chapter is devoted to understanding the mechanics of file uploads, which will make it

easier to understand the code that follows. This is a fairly intense chapter, not a collection of quick

solutions. But by the end of the chapter, you will have built a PHP class capable of handling single and

multiple file uploads. You can then use the class in any form by writing only a few lines of code.

You ll learn about the following:

• Understanding the $_FILES array

• Restricting the size and type of uploads

• Preventing files from being overwritten

• Organizing uploads into specific folders

• Handling multiple uploads

CHAPTER 6

142

How PHP handles file uploads
The term “upload” means moving a file from one computer to another, but as far as PHP is concerned, all

that s happening is that a file is being moved from one location to another. This means you can test all the

scripts in this chapter on your local computer without the need to upload files to a remote server.

PHP supports file uploads by default, but hosting companies can restrict the size of uploads or disable

them altogether. Before going any further, it s a good idea to check the settings on your remote server.

Checking whether your server supports uploads

All the information you need is displayed in the main PHP configuration page that you can display by

running phpinfo() on your remote server, as described in Chapter 2. Scroll down until you find

file_uploads in the Core section, as shown in the following screenshot.

If the Local Value is On, you re ready to go, but you should also check the other configuration settings

listed in Table 6-1.

Table 6-1. PHP configuration settings that affect file uploads

Directive Default value Description

max_execution_time 30 The maximum number of seconds that a PHP script can run. If

the script takes longer, PHP generates a fatal error.

max_input_time 60 The maximum number of seconds that a PHP script is allowed to

parse the $_POST and $_GET arrays and file uploads. Very large

uploads are likely to run out of time.

post_max_size 8M The maximum permitted size of all $_POST data, including file

uploads. Although the default is 8MB, hosting companies may

impose a smaller limit.

UPLOADING FILES

143

Directive Default value Description

upload_tmp_dir This is where PHP stores uploaded files until your script moves

them to a permanent location. If no value is defined in php.ini,

PHP uses the system default temporary directory

(C:\Windows\Temp or /tmp on Mac/Linux).

upload_max_filesize 2M The maximum permitted size of a single upload file. Although the

default is 2MB, hosting companies may impose a smaller limit. A

number on its own indicates the number of bytes permitted. A

number followed by K indicates the number of kilobytes

permitted.

The default 8MB value of post_max_size includes the content of the $_POST array, so the total size of

files that can be uploaded simultaneously is less than 8MB, with no single file greater than 2MB. These

defaults can be changed by the server administrator, so it s important to check the limits set by your

hosting company. If you exceed those limits, an otherwise perfect script will fail.

If the Local Value of file_uploads is Off, uploads have been disabled. There is nothing you can do

about it, other than ask your hosting company if it offers a package with file uploading enabled. Your only

alternatives are to move to a different host or to use a different solution, such as uploading files by FTP.

After using phpinfo() to check your remote server s settings, it s a good idea to remove the script or

put it in a password-protected directory.

Adding a file upload field to a form

Adding a file upload field to an HTML form is easy. Just add enctype="multipart/form-data" to the

opening <form> tag, and set the type attribute of an <input> element to file. The following code is a

simple example of an upload form (it s in file_upload_01.php in the ch06 folder):

<form action="" method="post" enctype="multipart/form-data" id="uploadImage">
 <p>
 <label for="image">Upload image:</label>
 <input type="file" name="image" id="image">
 </p>
 <p>
 <input type="submit" name="upload" id="upload" value="Upload">
 </p>
</form>

Although this is standard HTML, how it s rendered in a web page depends on the browser (see Figure 6-1).

Some browsers insert a text input field with a Browse button on the right. In older browsers, the text input

field is editable, but most modern browsers make it read-only or launch the operating system s file

navigation panel as soon as you click inside the field. Browsers that use the WebKit engine, such as

Safari and Google Chrome, display a Choose File button with a status message or name of the selected

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6

144

file on the right. These differences don t affect the operation of an upload form, but you need to take them

into account when designing the layout.

Figure 6-1. The look of a file input field depends on the browser.

Understanding the $_FILES array

What confuses many people is that their file seems to vanish after it has been uploaded. This is because

you can t refer to an uploaded file in the $_POST array in the same way as with text input. PHP transmits

the details of uploaded files in a separate superglobal array called, not unreasonably, $_FILES. Moreover,

files are uploaded to a temporary folder and are deleted unless you explicitly move them to the desired

location. Although this sounds like a nuisance, it s done for a very good reason: you can subject the file to

security checks before accepting the upload.

Inspecting the $_FILES array

The best way to understand how the $_FILES array works is to see it in action. If you have installed a local

test environment, you can test everything on your computer. It works in exactly the same way as

uploading a file to a remote server.

1. Create a new folder called uploads in the phpsols site root. Create a new PHP file called

file_upload.php in the uploads folder, and insert the code from the previous section.

Alternatively, copy file_upload_01.php from the ch06 folder, and rename the file

file_upload.php.

2. Insert the following code right after the closing </form> tag (it s also in

file_upload_02.php):

 </form>
 <pre>
 <?php
 if (isset($_POST['upload'])) {
 print_r($_FILES);

UPLOADING FILES

145

 }
 ?>
 </pre>
 </body>

This uses isset() to checks whether the $_POST array contains upload, the name attribute of

the submit button. If it does, you know the form has been submitted, so you can use

print_r() to inspect the $_FILES array. The <pre> tags make the output easier to read.

3. Save file_upload.php, and load it into a browser.

4. Click the Browse (or Choose File) button, and select a file on your hard disk. Click Open (or

Choose on a Mac) to close the file selection dialog box, and then click Upload. You should

see something similar to Figure 6-2.

You can see that the $_FILES array is actually a multidimensional array—an array of arrays.

The top-level array contains just one element, which gets its key (or index) from the name

attribute of the file input field—in this case, image.

Figure 6-2. The $_FILES array contains the details of an uploaded file.

The image element contains another array (or subarray) that consists of five elements,

namely:

• name: The original name of the uploaded file

• type: The uploaded file s MIME type

• tmp_name: The location of the uploaded file

• error: An integer indicating the status of the upload

• size: The size of the uploaded file in bytes

Don t waste time searching for the temporary file indicated by tmp_name: it won t be there. If

you don t save it immediately, PHP discards it.

5. Click Upload without selecting a file. The $_FILES array should look like Figure 6-3.

CHAPTER 6

146

Figure 6-3. The $_FILES array still exists when no file is uploaded.

An error level of 4 indicates that no file was uploaded; 0 means the upload succeeded. Table 6-

2 later in this chapter lists all the error codes.

6. Select a program file, and click the Upload button. In many cases, the form will happily try to

upload the program and display its type as application/zip or something similar. This is a

warning that it s important to check the MIME type of uploaded files.

Establishing an upload directory

Another source of confusion is the question of permissions. An upload script that works perfectly locally

may confront you with a message like this when you transfer it to your remote server:

Warning: move_uploaded_file(/home/user/htdocs/testarea/kinkakuji.jpg)
[function.move-uploaded-file]: failed to open stream: Permission denied in
 /home/user/htdocs/testarea/upload_test.php on line 3

Why is permission denied? Most hosting companies use Linux servers, which impose strict rules about

the ownership of files and directories. In most cases, PHP doesn t run in your name, but as the web

server—usually nobody or apache. Unless PHP has been configured to run in your name, you need to give

global access (chmod 777) to every directory to which you want to upload files.

Since 777 is the least secure setting, begin by testing uploads with a setting of 700. If that doesn t work,

try 770, and use 777 only as a last resort. The upload directory doesn t need to be within your site root. If

your hosting company gives you a private directory outside the site root, create a subdirectory for

uploads inside the private one. Alternatively, create a directory inside your site root, but don t link to it

from any web pages. Give it an innocuous name, such as lastyear.

Creating an upload folder for local testing on Windows

For the following exercises, I suggest you create a folder called upload_test at the top level of the C

drive. There are no permissions issues on Windows, so that s all that you need to do.

UPLOADING FILES

147

Creating an upload folder for local testing on Mac OS X

Mac users need to do a little more preparation, because file permissions are similar to Linux. Without

changing the permissions, you ll be confronted with a screen like this:

1. Create a folder called upload_test within your home folder.

2. Select upload_test in Finder, and select File ➤ Get Info (Cmd-I) to open its Info panel.

3. In Sharing & Permissions, click the padlock icon at the bottom right to unlock the settings,

and change the setting for everyone from Read only to Read & Write , as shown in the

following screenshot.

In older versions of Mac OS X, Sharing & Permissions is called Ownership & Permissions,

and everyone is called Others.

4. Click the padlock icon again to preserve the new settings, and close the Info panel. Your

upload_test folder is now ready for use.

Uploading files
Before building the file upload class, it s a good idea to create a simple file upload script to make sure that

your system handles uploads correctly.

CHAPTER 6

148

Moving the temporary file to the upload folder

The temporary version of an uploaded file has only a fleeting existence. If you don t do anything with the

file, it s discarded immediately. You need to tell PHP where to move it and what to call it. You do this with

the move_uploaded_file() function, which takes the following two arguments:

• The name of the temporary file

• The full pathname of the file s new location, including the filename itself

Obtaining the name of the temporary file itself is easy: it s stored in the $_FILES array as tmp_name.

Because the second argument requires a full pathname, it gives you the opportunity to rename the file. For

the moment, let s keep things simple and use the original filename, which is stored in the $_FILES array as

name.

PHP Solution 6-1: Creating a basic file upload script

Continue working with the same file as in the previous exercise. Alternatively, use file_upload_03.php

from the ch06 folder. The final script for this PHP solution is in file_upload_04.php.

1. If you are using the file from the previous exercise, delete the code highlighted in bold between

the closing </form> and </body> tags:

 </form>
 <pre>
 <?php
 if (isset($_POST['upload'])) {
 print_r($_FILES);
 }
 ?>
 </pre>
 </body>

2. In addition to the automatic limits set in the PHP configuration (see Table 6-1), you can specify

a maximum size for an upload file in your HTML form. Add the following line highlighted in bold

immediately before the file input field:

 <label for="image">Upload image:</label>
 <input type="hidden" name="MAX_FILE_SIZE" value="<?php echo $max; ?>">
 <input type="file" name="image" id="image">

This is a hidden form field, so it won t be displayed onscreen. However, it s vital to place it

before the file input field; otherwise, it won t work. The name attribute, MAX_FILE_SIZE, is

fixed. The value attribute sets the maximum size of the upload file in bytes. Instead of

specifying a numeric value, I have used a variable, which needs to be defined next. This value

will also be used in the server-side validation of the file upload, so it makes sense to define it

once, avoiding the possibility of changing it in one place, but forgetting to change it elsewhere.

3. Define the value of $max in a PHP block above the DOCTYPE declaration like this:

 <?php
 // set the maximum upload size in bytes

UPLOADING FILES

149

 $max = 51200;
 ?>
 <!DOCTYPE HTML>

This sets the maximum upload size to 50kB (51,200 bytes).

4. The code that moves the uploaded file from its temporary location to its permanent one needs

to be run after the form has been submitted. Insert the following code in the PHP block you

have just created at the top of the page:

 $max = 51200;
 if (isset($_POST['upload'])) {
 // define the path to the upload folder
 $destination = '/path/to/upload_test/';
 // move the file to the upload folder and rename it
 move_uploaded_file($_FILES['image']['tmp_name'], $destination .
 $_FILES['image']['name']);
 }
 ?>

Although the code is quite short, there s a lot going on. The entire code block is enclosed in a

conditional statement that checks whether the Upload button has been clicked by checking

to see if its key is in the $_POST array.

The value of $destination depends on your operating system and the location of the upload

folder.

• If you are using Windows, and you created the upload_test folder at the top

level of the C drive, it should look like this:

 $destination = 'C:/upload_test/';

Note that I have used forward slashes instead of the Windows convention of

backslashes. You can use either, but if you use backslashes, the final one

needs to be escaped by another backslash, like this (otherwise the backslash

escapes the quote):

 $destination = 'C:\upload_test\\';

• On a Mac, if you created the upload_test folder in your home folder, it should

look like this (replace username with your Mac username):

 $destination = '/Users/username/upload_test/';

• On a remote server, you need the fully qualified filepath as the second

argument. On Linux, it will probably be something like this:

 $destination = '/home/user/private/upload_test/';

The final line inside the if statement moves the file with the move_uploaded_file()

function. Since $_FILES['image']['name'] contains the name of the original file, the

second argument, $destination . $_FILES['image']['name'], stores the uploaded file

under its original name inside the upload folder.

CHAPTER 6

150

You may come across scripts that use copy() instead of move_uploaded_file(). Without other

checks in place, copy() can expose your website to serious security risks. For example, a malicious

user could try to trick your script into copying files that it should not have access to, such as

password files. Always use move_uploaded_file(); it s much more secure.

5. Save file_upload.php, and load it into your browser. Click the Browse or Choose File

button, and select a file from the images folder in the phpsols site. If you choose one from

elsewhere, make sure it s less than 50kB. Click Open (Choose on a Mac) to display the

filename in the form. In browsers that display a file input field, you might not be able to see the

full path. That s a cosmetic matter that I ll leave you to sort out yourself with CSS. Click the

Upload button. If you re testing locally, the form input field should clear almost instantly.

6. Navigate to the upload_test folder, and confirm that a copy of the image you selected is

there. If there isn t, check your code against file_upload_04.php. Also check that the

correct permissions have been set on the upload folder, if necessary.

The download files set $destination to C:/upload_test/. Adjust this to your own setup.

7. If you get no error messages and cannot find the file, make sure that the image didn t exceed

upload_max_filesize (see Table 6-1). Also check that you didn t leave the trailing slash off

the end of $destination. Instead of myfile.jpg in upload_test, you may find

upload_testmyfile.jpg one level higher in your disk structure.

8. Change the value of $max to 3000, save file_upload.php, and test it again by selecting a file

bigger than 2.9kB to upload (any file in the images folder will do). Click the Upload button, and

check the upload folder. The file shouldn t be there.

9. If you re in the mood for experimentation, move the MAX_FILE_SIZE hidden field below the file

input field, and try it again. Make sure you choose a different file from the one you used in step

6, because move_uploaded_file() overwrites existing files of the same name. You ll learn

later how to give files unique names.

This time the file should be copied to your upload folder. Move the hidden field back to its

original position before continuing.

The advantage of using MAX_FILE_SIZE is that PHP abandons the upload if the file is bigger than the

stipulated value, avoiding unnecessary delay if the file is too big. Unfortunately, users can get around this

restriction by faking the value submitted by the hidden field, so the script you ll develop in the rest of this

chapter will check the actual size of the file on the server side, too.

Creating a PHP file upload class
As you have just seen, it takes just a few lines of code to upload a file, but this is not enough on its own.

You need to make the process more secure by implementing the following steps:

UPLOADING FILES

151

• Check the error level.

• Verify on the server that the file doesn t exceed the maximum permitted size.

• Check that the file is of an acceptable type.

• Remove spaces from the filename.

• Rename files that have the same name as an existing one to prevent overwriting.

• Handle multiple file uploads automatically.

• Inform the user of the outcome.

You need to implement these steps every time you want to upload files, so it makes sense to build a script

that can be reused easily. That s why I have chosen to use a custom class. Building PHP classes is

generally regarded as an advanced subject, but don t let that put you off. I won t get into the more esoteric

details of working with classes, and the code is fully explained. Although the class definition is long, using

the class involves writing only a few lines of code.

A class is a collection of functions designed to work together. That s an oversimplification, but it s

sufficiently accurate to give you the basic idea behind building a file upload class. Each function inside a

class should normally focus on a single task, so you ll build separate functions to implement the steps

outlined in the previous list. The code should also be generic, so it isn t tied to a specific web page. Once

you have built the class, you can reuse it in any form.

If you re in a hurry, the finished class is in the classes/completed folder of the download files. Even if

you don t build the script yourself, read through the descriptions so you have a clear understanding of how

it works.

Defining a PHP class

Defining a PHP class is very easy. You use the class keyword followed by the class name and put all the

code for the class between a pair of curly braces. By convention, class names normally begin with an

uppercase letter and are stored in a separate file. It s also recommended to prefix class names with an

uncommon combination of 3–4 letters followed by an underscore to prevent naming conflicts (see

http://docs.php.net/manual/en/userlandnaming.tips.php). All custom classes in this book use

Ps2_.

PHP 5.3 introduced the concept of namespaces to avoid naming conflicts. At the time of this writing,

many hosting companies have not yet migrated to PHP 5.3, so namespaces may not be supported

on your server. PHP Solution 6-7 converts the scripts to use namespaces.

PHP Solution 6-2: Creating the basic file upload class

In this PHP solution, you ll create the basic definition for a class called Ps2_Upload, which stores the

$_FILES array in an internal property ready to handle file uploads. You ll also create an instance of the

class (a Ps2_Upload object), and use it to upload an image.

1. Create a subfolder called Ps2 in the classes folder.

2. In the new Ps2 folder, create a file called Upload.php, and insert the following code:

 <?php

http://docs.php.net/manual/en/userlandnaming.tips.php

CHAPTER 6

152

 class Ps2_Upload {

 }

That, believe it or not, is a valid class called Ps2_Upload. It doesn t do anything, so it s not

much use yet, but it will be once you start adding code between the curly braces. This file will

contain only PHP code, so you don t need a closing PHP tag.

3. In many ways, a class is like a car engine. Although you can strip down the engine to see its

inner workings, most of the time, you re not interested in what goes on inside, as long as it

powers your car. PHP classes hide their inner workings by declaring some variables and

functions as protected. If you prefix a variable or function with the keyword protected, it can

be accessed only inside the class. The reason for doing so is to prevent values from being

changed accidentally.

Technically speaking, a protected variable or function can also be accessed by a subclass derived

from the original class. To learn about classes in more depth, see my PHP Object-Oriented Solutions

(friends of ED, 2008, ISBN: 978-1-4302-1011-5).

The Ps2_Upload class needs protected variables for the following items:

• $_FILES array

• Path to the upload folder

• Maximum file size

• Messages to report the status of uploads

• Permitted file types

• A Boolean variable that records whether a filename has been changed

Create the variables by adding them inside the curly braces like this:

 class Ps2_Upload {

 protected $_uploaded = array();
 protected $_destination;
 protected $_max = 51200;
 protected $_messages = array();
 protected $_permitted = array('image/gif',
 'image/jpeg',
 'image/pjpeg',
 'image/png');
 protected $_renamed = false;

 }

UPLOADING FILES

153

I have begun the name of each protected variable (or property, as they re normally called

inside classes) with an underscore. This is a common convention programmers use to remind

themselves that a property is protected; but it s the protected keyword that restricts access

to the property, not the underscore.

By declaring the properties like this, they can be accessed elsewhere in the class using

$this->, which refers to the current object. For example, inside the class definition, you

access $_uploaded as $this->_uploaded.

When you first declare a property inside a class, it begins with a dollar sign like any other variable.

However, you omit the dollar sign from the property name after the -> operator.

With the exception of $_destination, each protected property has been given a default

value:

• $_uploaded and $_messages are empty arrays.

• $_max sets the maximum file size to 50kB (51200 bytes).

• $_permitted contains an array of image MIME types.

• $_renamed is initially set to false.

The value of $_destination will be set when an instance of the class is created. The other

values will be controlled internally by the class, but you ll also create functions (or methods,

as they re called in classes) to change the values of $_max and $_permitted.

4. When you create an instance of a class (an object), the class definition file automatically

calls the class s constructor method, which initializes the object. The constructor method for

all classes is called __construct() (with two underscores). Unlike the properties you defined

in the previous step, the constructor needs to be accessible outside the class, so you

precede its definition with the public keyword.

The public and protected keywords control the visibility of properties and methods. Public

properties and methods can be accessed anywhere. Any attempt to access protected properties or

methods outside the class definition or a subclass triggers a fatal error.

The constructor for the Ps2_Upload class takes the path to the upload folder as an argument

and assigns it to $_destination. It also assigns the $_FILES array to $_uploaded. The code

looks like this:

 protected $_renamed = false;

 public function __construct($path) {
 if (!is_dir($path) || !is_writable($path)) {
 throw new Exception("$path must be a valid, writable directory.");

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6

154

 }
 $this->_destination = $path;
 $this->_uploaded = $_FILES;
 }

 }

The conditional statement inside the constructor passes $path to the is_dir() and

is_writable() functions, which check that the value submitted is a valid directory (folder)

that is writable. If either condition fails, the constructor throws an exception with a message

indicating the problem.

If $path is OK, it s assigned the $_destination property of the current object, and the

$_FILES array is assigned to $_uploaded.

Don t worry if this sounds mysterious. You ll soon see the fruits of your efforts.

5. With the $_FILES array stored in $_uploaded, you can access the file s details and move it to

the upload folder with move_uploaded_file(). Create a public method called move()

immediately after the constructor, but still inside the curly braces of the class definition. The

code looks like this:

 public function move() {
 $field = current($this->_uploaded);
 $success = move_uploaded_file($field['tmp_name'], $this->_destination .
 $field['name']);
 if ($success) {
 $this->_messages[] = $field['name'] . ' uploaded successfully';
 } else {
 $this->_messages[] = 'Could not upload ' . $field['name'];
 }
 }

To access the file in the $_FILES array in PHP Solution 6-1, you needed to know the name

attribute of the file input field. The form in file_upload.php uses image, so you accessed

the filename as $_FILES['image']['name']. But if the field had a different name, such as

upload, you would need to use $_FILES['upload']['name']. To make the script more

flexible, the first line of the move() method passes the $_uploaded property to the

current() function, which returns the current element of an array—in this case, the first

element of the $_FILES array. As a result, $field holds a reference to the first uploaded file

regardless of name used in the form. This is the first benefit of building generic code. It takes

more effort initially, but saves time in the end.

So, instead of using $_FILES['image']['tmp_name'] and $_FILES['image']['name'] in

move_uploaded_file(), you refer to $field['tmp_name'] and $field['name']. If the

upload succeeds, move_uploaded_file() returns true. Otherwise, it returns false. By

storing the result in $success, you can control which message is assigned to the $_messages

array.

UPLOADING FILES

155

6. Since $_messages is a protected property, you need to create a public method to retrieve the

contents of the array. Add this to the class definition after the move() method:

 public function getMessages() {
 return $this->_messages;
 }

This simply returns the contents of the $_messages array. Since that s all it does, why not

make the array public in the first place? Public properties can be accessed—and changed—

outside the class definition. This ensures that the contents of the array cannot be altered, so

you know the message has been generated by the class. This might not seem such a big deal

with a message like this, but it becomes very important when you start working with more

complex scripts or in a team.

7. Save Upload.php, and change the code at the top of file_upload.php like this:

 <?php
 // set the maximum upload size in bytes
 $max = 51200;
 if (isset($_POST['upload'])) {
 // define the path to the upload folder
 $destination = 'C:/upload_test/';
 require_once('../classes/Ps2/Upload.php');
 try {
 $upload = new Ps2_Upload($destination);
 $upload->move();
 $result = $upload->getMessages();
 } catch (Exception $e) {
 echo $e->getMessage();
 }
 }
 ?>

This includes the Ps2_Upload class definition and creates an instance of the class called

$upload by passing it the path to the upload folder. It then calls the $upload object s move()

and getMessages() methods, storing the result of getMessages() in $result. Because the

object might throw an exception, the code is wrapped in a try/catch block.

At the moment, the value of $max in file_upload.php affects only MAX_FILE_SIZE in the

hidden form field. Later, you ll also use $max to control the maximum file size permitted by the

class.

8. Add the following PHP code block above the form to display any messages returned by the

$upload object:

 <body>
 <?php
 if (isset($result)) {
 echo '';
 foreach ($result as $message) {

CHAPTER 6

156

 echo "$message";
 }
 echo '';
 }
 ?>
 <form action="" method="post" enctype="multipart/form-data" id="uploadImage">

This is a simple foreach loop that displays the contents of $result as an unordered list.

When the page first loads, $result isn t set, so this code runs only after the form has been

submitted.

9. Save file_upload.php, and test it in a browser. As long as you choose an image that s less

than 50kB, you should see confirmation that the file was uploaded successfully, as shown in

Figure 6-4.

Figure 6-4. The Ps2_Upload class reports a successful upload.

You can compare your code with file_upload_05.php and Upload_01.php in the ch06

folder.

The class does exactly the same as PHP Solution 6-1: it uploads a file, but it requires a lot more code to do

so. However, you have laid the foundation for a class that s going to perform a series of security checks

on uploaded files. This is code that you ll write once. When you use the class, you won t need to write this

code again.

If you haven t worked with objects and classes before, some of the concepts might seem strange. Think

of the $upload object simply as a way of accessing the functions (methods) you have defined in the

Ps2_Upload class. You often create separate objects to store different values, for example, when

working with DateTime objects. In this case, a single object is sufficient to handle the file upload.

Checking upload errors

As it stands, the Ps2_Upload class uploads any type of file indiscriminately. Even the 50kB maximum

size can be circumvented, because the only check is made in the browser. Before handing the file to

move_uploaded_file(), you need to run a series of checks to make sure the file is OK. And if a file is

rejected, you need to let the user know why.

UPLOADING FILES

157

PHP Solution 6-3: Testing the error level, file size, and MIME type

This PHP solution shows how to create a series of internal (protected) methods for the class to verify that

the file is OK to accept. If a file fails for any reason, an error message reports the reason to the user.

Continue working with Upload.php. Alternatively, use Upload_01.php in the ch06 folder, and rename it

Upload.php. (Always remove the underscore and number from partially completed files.)

1. The first test you should run is on the error level. As you saw in the exercise at the beginning of

this chapter, level 0 indicates the upload was successful and level 4 that no file was selected.

Table 6-2 shows a full list of error levels. Error level 8 is the least helpful, because PHP has no

way of detecting which PHP extension was responsible for stopping the upload. Fortunately,

it s rarely encountered.

Table 6-2. Meaning of the different error levels in the $_FILES array

Error level* Meaning

0 Upload successful

1 File exceeds maximum upload size specified in php.ini (default 2MB)

2 File exceeds size specified by MAX_FILE_SIZE (see PHP Solution 6-1)

3 File only partially uploaded

4 Form submitted with no file specified

6 No temporary folder

7 Cannot write file to disk

8 Upload stopped by an unspecified PHP extension

*Error level 5 is not currently defined.

2. Add the following code after the definition of getMessages() in Upload.php:

 protected function checkError($filename, $error) {
 switch ($error) {
 case 0:
 return true;
 case 1:
 case 2:
 $this->_messages[] = "$filename exceeds maximum size: " .
 $this->getMaxSize();
 return true;
 case 3:

CHAPTER 6

158

 $this->_messages[] = "Error uploading $filename. Please try again.";
 return false;
 case 4:
 $this->_messages[] = 'No file selected.';
 return false;
 default:
 $this->_messages[] = "System error uploading $filename. Contact
 webmaster.";
 return false;
 }
 }

Preceding the definition with the protected keyword means this method can be accessed

only inside the class. The checkError() method will be used internally by the move() method

to determine whether to save the file to the upload folder.

It takes two arguments, the filename and the error level. The method uses a switch statement

(see “Using the switch statement for decision chains” in Chapter 3). Normally, each case in a

switch statement is followed by the break keyword, but that s not necessary here, because

return is used instead.

Error level 0 indicates a successful upload, so it returns true.

Error levels 1 and 2 indicate the file is too big, and an error message is added to the

$_messages array. Part of the message is created by a method called getMaxSize(), which

converts the value of $_max from bytes to kB. You ll define getMaxSize() shortly. Note the

use of $this->, which tells PHP to look for the method definition in this class.

Logic would seem to demand that checkError() should return false if a file s too big.

However, setting it to true gives you the opportunity to check for the wrong MIME type, too,

so you can report both errors.

Error levels 3 and 4 return false and add the reason to the $_messages array. The default

keyword catches other error levels, including any that might be added in future, and adds a

generic reason.

3. Before using the checkError() method, let s define the other tests. Add the definition for the

checkSize() method, which looks like this:

 protected function checkSize($filename, $size) {
 if ($size == 0) {
 return false;
 } elseif ($size > $this->_max) {
 $this->_messages[] = "$filename exceeds maximum size: " .
 $this->getMaxSize();
 return false;
 } else {
 return true;
 }
 }

UPLOADING FILES

159

Like checkError(), this takes two arguments—the filename and the size of the file as

reported by the $_FILES array—and returns true or false.

The conditional statement starts by checking if the reported size is zero. This happens if the

file is too big or no file was selected. In either case, there s no file to save and the error

message will have been created by checkError(), so the method returns false.

Next, the reported size is compared with the value stored in $_max. Although checkError()

should pick up files that are too big, you still need to make this comparison in case the user

has managed to sidestep MAX_FILE_SIZE. The error message also uses getMaxSize() to

display the maximum size.

If the size is OK, the method returns true.

4. The third test checks the MIME type. Add the following code to the class definition:

 protected function checkType($filename, $type) {
 if (!in_array($type, $this->_permitted)) {
 $this->_messages[] = "$filename is not a permitted type of file.";
 return false;
 } else {
 return true;
 }
 }

This follows the same pattern of accepting the filename and the value to be checked as

arguments and returning true or false. The conditional statement checks the type reported

by the $_FILES array against the array stored in $_permitted. If it s not in the array, the

reason for rejection is added to the $_messages array.

5. The getMaxSize() method used by the error messages in checkError() and checkSize()

converts the raw number of bytes stored in $_max into a friendlier format. Add the following

definition to the class file:

 public function getMaxSize() {
 return number_format($this->_max/1024, 1) . 'kB';
 }

This uses the number_format() function, which normally takes two arguments: the value you

want to format and the number of decimal places you want the number to have. The first

argument is $this->_max/1024, which divides $_max by 1024 (the number of bytes in a kB).

The second argument is 1, so the number is formatted to one decimal place. The . 'kB' at the

end concatenates kB to the formatted number.

The getMaxSize() method has been declared public in case you want to display the value in

another part of a script that uses the Ps2_Upload class.

6. You can now check the validity of the file before handing it to move_uploaded_file(). Amend

the move() method like this:

CHAPTER 6

160

 public function move() {
 $field = current($this->_uploaded);
 $OK = $this->checkError($field['name'], $field['error']);
 if ($OK) {
 $success = move_uploaded_file($field['tmp_name'], $this->_destination
 . $field['name']);
 if ($success) {
 $this->_messages[] = $field['name'] . ' uploaded successfully';
 } else {
 $this->_messages[] = 'Could not upload ' . $field['name'];
 }
 }
 }

The arguments passed to the checkError() method are the filename and the error level

reported by the $_FILES array. The result is stored in $OK, which a conditional statement uses

to control whether move_uploaded_file() is called.

7. The next two tests go inside the conditional statement. Both pass the filename and relevant

element of the $_FILES array as arguments. The results of the tests are used in a new

conditional statement to control the call to move_uploaded_file() like this:

 public function move() {
 $field = current($this->_uploaded);
 $OK = $this->checkError($field['name'], $field['error']);
 if ($OK) {
 $sizeOK = $this->checkSize($field['name'], $field['size']);
 $typeOK = $this->checkType($field['name'], $field['type']);
 if ($sizeOK && $typeOK) {
 $success = move_uploaded_file($field['tmp_name'], $this->_destination
 . $field['name']);
 if ($success) {
 $this->_messages[] = $field['name'] . ' uploaded successfully';
 } else {
 $this->_messages[] = 'Could not upload ' . $field['name'];
 }
 }
 }
 }

8. Save Upload.php, and test it again with file_upload.php. With images smaller than 50kB, it

works the same as before. But if you try uploading a file that s too big and of the wrong MIME

type, you get a result similar to Figure 6-5.

You can check your code against Upload_02.php in the ch06 folder.

UPLOADING FILES

161

Figure 6-5. The class now reports errors with invalid size and MIME types.

Changing protected properties

The $_permitted property restricts uploads to images, but you might want to allow different types.

Instead of diving into the class definition file every time you have different requirements, you can create

public methods that allow you to make changes to protected properties on the fly.

You can find definitions of recognized MIME types at www.iana.org/assignments/media-types. Table

6-3 lists some of the most commonly used ones.

Table 6-3. Commonly used MIME types

Category MIME type Description

Documents application/pdf PDF document

text/plain Plain text

text/rtf Rich text format

Images image/gif GIF format

image/jpeg JPEG format (includes .jpg files)

image/pjpeg JPEG format (nonstandard, used by Internet Explorer)

image/png PNG format

image/tiff TIFF format

An easy way to find other MIME types not listed in Table 6-3 is to use file_upload_02.php and see what

value is displayed for $_FILES['image']['type'].

PHP Solution 6-4: Allowing different types and sizes to be uploaded

This PHP solution shows you how to add one or more MIME types to the existing $_permitted array and

how to reset the array completely. To keep the code relatively simple, the class checks the validity of only

http://www.iana.org/assignments/media-types

CHAPTER 6

162

a few MIME types. Once you understand the principle, you can expand the code to suit your own

requirements. You ll also add a public method to change the maximum permitted size.

Continue working with Upload.php from the previous PHP solution. Alternatively, use Upload_02.php in

the ch06 folder.

1. The Ps2_Upload class already defines four permitted MIME types for images, but there might

be occasions when you want to permit other types of documents to be uploaded as well.

Rather than listing all permitted types again, it s easier to add the extra ones. Add the following

method definition to the class file:

 public function addPermittedTypes($types) {
 $types = (array) $types;
 $this->isValidMime($types);
 $this->_permitted = array_merge($this->_permitted, $types);
 }

This takes a single argument, $types, which is checked for validity and then merged with the

$_permitted array. The first line inside the method looks like this:

 $types = (array) $types;

The highlighted code is what s known as a casting operator (see “Explicitly changing a data

type” after this PHP solution). It forces the following variable to be a specific type—in this

case, an array. This is because the final line of code passes $types to the array_merge()

function, which expects both arguments to be arrays. As the function name indicates, it

merges the arrays and returns the combined array.

The advantage of using the casting operator here is that it allows you to use either an array or

a string as an argument to addPermittedTypes(). For example, to add multiple types, you

use an array like this:

 $upload->addPermittedTypes(array('application/pdf', 'text/plain'));

But to add one new type, you can use a string like this:

 $upload->addPermittedTypes('application/pdf');

Without the casting operator, you would need an array for even one item like this:

 $upload->addPermittedTypes(array('application/pdf'));

The middle line calls an internal method isValidMime(), which you ll define shortly.

2. On other occasions, you might want to replace the existing list of permitted MIME types

entirely. Add the following definition for setPermittedTypes() to the class file:

 public function setPermittedTypes($types) {
 $types = (array) $types;
 $this->isValidMime($types);
 $this->_permitted = $types;
 }

UPLOADING FILES

163

This is quite simple. The first two lines are the same as addPermittedTypes(). The final line

assigns $types to the $_permitted property, replacing all existing values.

3. Both methods call isValidMime(), which checks the values passed to them as arguments.

Define the method now. It looks like this:

 protected function isValidMime($types) {
 $alsoValid = array('image/tiff',
 'application/pdf',
 'text/plain',
 'text/rtf');
 $valid = array_merge($this->_permitted, $alsoValid);
 foreach ($types as $type) {
 if (!in_array($type, $valid)) {
 throw new Exception("$type is not a permitted MIME type");
 }
 }
 }

The method begins by defining an array of valid MIME types not already listed in the

$_permitted property. Both arrays are then merged to produce a full list of valid types. The

foreach loop checks each value in the user-submitted array by passing it to the in_array()
function. If a value fails to match those listed in the $valid array, the isValidMime() method

throws an exception, preventing the script from continuing.

4. The public method for changing the maximum permitted size needs to check that the submitted

value is a number and assign it to the $_max property. Add the following method definition to

the class file:

 public function setMaxSize($num) {
 if (!is_numeric($num)) {
 throw new Exception("Maximum size must be a number.");
 }
 $this->_max = (int) $num;
 }

This passes the submitted value to the is_numeric() function, which checks that it s a

number. If it isn t, an exception is thrown.

The final line uses another casting operator—this time forcing the value to be an integer—

before assigning the value to the $_max property. The is_numeric() function accepts any

type of number, including a hexadecimal one or a string containing a numeric value. So, this

ensures that the value is converted to an integer.

PHP also has a function called is_int() that checks for an integer. However, the value cannot be

anything else. For example, it rejects '102400' even though it s a numeric value because the quotes

make it a string.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6

164

5. Save Upload.php, and test file_upload.php again. It should continue to upload images

smaller than 50kB as before.

6. Amend the code in file_upload.php to change the maximum permitted size to 3000 bytes

like this:

 $max = 3000;
 if (isset($_POST['upload'])) {
 // define the path to the upload folder
 $destination = 'C:/upload_test/';
 require_once('../classes/Ps2/Upload.php');
 try {
 $upload = new Ps2_Upload($destination);
 $upload->setMaxSize($max);
 $upload->move();

By changing the value of $max and passing it as the argument to setMaxSize(), you affect

both MAX_FILE_SIZE in the form s hidden field and the maximum value stored inside the class.

Note that the call to setMaxSize() must come before you use the move() method. There s no

point changing the maximum size in the class after the file has already been saved.

7. Save file_upload_php, and test it again. Select an image you haven t used before, or delete

the contents of the upload_test folder. The first time you try it, you should see a message

that the file is too big. If you check the upload_test folder, you ll see it hasn t been

transferred.

8. Try it again. This time, you should see a result similar to Figure 6-6.

Figure 6-6. The size restriction is working, but there s an error in checking the MIME type.

What s going on? The reason you probably didn t see the message about the permitted type of

file the first time is because the value of MAX_FILE_SIZE in the hidden field isn t refreshed until

you reload the form in the browser. The error message appears the second time because the

updated value of MAX_FILE_SIZE prevents the file from being uploaded. As a result, the type

element of the $_FILES array is empty. You need to tweak the checkType() method to fix this

problem.

9. In Upload.php, amend the checkType() definition like this:

 protected function checkType($filename, $type) {
 if (empty($type)) {

UPLOADING FILES

165

 return false;
 } elseif (!in_array($type, $this->_permitted)) {
 $this->_messages[] = "$filename is not a permitted type of file.";
 return false;
 } else {
 return true;
 }
 }

This adds a new condition that returns false if $type is empty. It needs to come before the

other condition, because there s no empty value in the $_permitted array, which is why the

false error message was generated.

10. Save the class definition, and test file_upload.php again. This time, you should see only

the message about the file being too big.

11. Reset the value of $max at the top of file_upload.php to 51200. You should now be able to

upload the image. If it fails the first time, it s because MAX_FILE_SIZE hasn t been refreshed in

the form.

12. Test the addPermittedTypes() method by adding an array of MIME types like this:

 $upload->setMaxSize($max);
 $upload->addPermittedTypes(array('application/pdf', 'text/plain'));
 $upload->move();

MIME types must always be in lowercase.

13. Try uploading a PDF file. Unless it s smaller than 50kB, it won t be uploaded. Try a small text

document. It should be uploaded. Change the value of $max to a suitably large number, and the

PDF should also be uploaded.

14. Replace the call to addPermittedTypes() with setPermittedTypes() like this:

 $upload->setMaxSize($max);
 $upload->setPermittedTypes('text/plain');
 $upload->move();

You can now upload only text files. All other types are rejected.

If necessary, check your class definition against Upload_03.php in the ch06 folder.

Hopefully, by now you should be getting the idea of how a PHP class is built from functions (methods) that

are dedicated to doing a single job. Fixing the incorrect error message about the image not being a

permitted type was made easier by the fact that the message could only have come from the

checkType() method. Most of the code used in the method definitions relies on built-in PHP functions.

Once you learn which functions are the most suited to the task in hand, building a class—or any other

PHP script—becomes much easier.

CHAPTER 6

166

Explicitly changing a data type

Most of the time, you don t need to worry about the data type of a variable or value. Strictly speaking, all

values submitted through a form are strings, but PHP silently converts numbers to the appropriate data

type. This automatic type juggling, as it s called, is very convenient. There are times, though, when you

want to make sure a value is a specific data type. In such cases, you can cast (or change) a value to the

desired type by preceding it with the name of the data type in parentheses. You saw two examples of this

in PHP Solution 6-4, casting a string to an array and a numeric value to an integer. This is how the value

assigned to $types was converted to an array:

$types = (array) $types;

If the value is already of the desired type, it remains unchanged. Table 6-4 lists the casting operators

used in PHP.

Table 6-4. PHP casting operators

Operator Alternatives Converts to

(array) Array

(bool) (boolean) Boolean (true or false)

(float) (double), (real) Floating-point number

(int) (integer) Integer

(object) Object

(string) String

(unset) Null

To learn more about what happens when casting between certain types, see the online documentation at

http://docs.php.net/manual/en/language.types.type-juggling.php.

Preventing files from being overwritten

As the script stands, PHP automatically overwrites existing files without warning. That may be exactly

what you want. On the other hand, it may be your worst nightmare. The class needs to offer a choice of

whether to overwrite an existing file or to give it a unique name.

PHP Solution 6-5: Checking an uploaded file s name before saving it

This PHP solution improves the Ps2_Upload class by adding the option to insert a number before the

filename extension of an uploaded file to avoid overwriting an existing file of the same name. By default,

this option is turned on. At the same time, all spaces in filenames are replaced with underscores. Spaces

should never be used in file and folder names on a web server, so this feature isn t optional.

http://docs.php.net/manual/en/language.types.type-juggling.php

UPLOADING FILES

167

Continue working with the same class definition file as before. Alternatively, use Upload_03.php in the

ch06 folder.

1. Both operations are performed by the same method, which takes two arguments: the filename

and a Boolean variable that determines whether to overwrite existing files. Add the following

definition to the class file:

 protected function checkName($name, $overwrite) {
 $nospaces = str_replace(' ', '_', $name);
 if ($nospaces != $name) {
 $this->_renamed = true;
 }
 if (!$overwrite) {
 // rename the file if it already exists
 }
 return $nospaces;
 }

This first part of the method definition takes the filename and replaces spaces with

underscores using the str_replace() function, which takes the following three arguments:

• The character(s) to replace—in this case, a space

• The replacement character(s)—in this case, an underscore

• The string you want to update—in this case, $name

The result is stored in $nospaces, which is then compared to the original value in $name. If

they re not the same, the filename has been changed, so the $_renamed property is reset to

true. If the original name didn t contain any spaces, $nospaces and $name are the same, and

the $_renamed property—which is initialized when the Ps2_Upload object is created—remains

false.

The next conditional statement controls whether to rename the file if one with the same name

already exists. You ll add that code in the next step.

The final line returns $nospaces, which contains the name that will be used when the file is

saved.

2. Add the code that renames the file if another with the same name already exists:

 protected function checkName($name, $overwrite) {
 $nospaces = str_replace(' ', '_', $name);
 if ($nospaces != $name) {
 $this->_renamed = true;
 }
 if (!$overwrite) {
 // rename the file if it already exists
 $existing = scandir($this->_destination);
 if (in_array($nospaces, $existing)) {
 $dot = strrpos($nospaces, '.');
 if ($dot) {

CHAPTER 6

168

 $base = substr($nospaces, 0, $dot);
 $extension = substr($nospaces, $dot);
 } else {
 $base = $nospaces;
 $extension = '';
 }
 $i = 1;
 do {
 $nospaces = $base . '_' . $i++ . $extension;
 } while (in_array($nospaces, $existing));
 $this->_renamed = true;
 }
 }
 return $nospaces;
 }

The first line of new code uses the scandir() function, which returns an array of all the files

and folders in a directory (folder), and stores it in $existing.

The conditional statement on the next line passes $nospaces to the in_array() function to

determine if the $existing array contains a file with the same name. If there s no match, the

code inside the conditional statement is ignored, and the method returns $nospaces without

any further changes.

If $nospaces is found the $existing array, a new name needs to be generated. To insert a

number before the filename extension, you need to split the name by finding the final dot

(period). This is done with the strrpos() function (note the double-r in the name), which finds

the position of a character by searching from the end of the string.

It s possible that someone might upload a file that doesn t have a filename extension, in which

case strrpos() returns false.

If a dot is found, the following line extracts the part of the name up to the dot and stores it in

$base:

$base = substr($nospaces, 0, $dot);

The substr() function takes two or three arguments. If three arguments are used, it returns a

substring from the position specified by the second argument and uses the third argument to

determine the length of the section to extract. PHP counts the characters in strings from 0, so

this gets the part of the filename without the extension.

If two arguments are used, substr() returns a substring from the position indicated by the

second argument to the end of the string. So this line gets the filename extension:

$extension = substr($nospaces, $dot);

If $dot is false, the full name is stored in $base, and $extension is an empty string.

The section that does the renaming looks like this:

 $i = 1;

UPLOADING FILES

169

 do {
 $nospaces = $base . '_' . $i++ . $extension;
 } while (in_array($nospaces, $existing));

It begins by initializing $i as 1. Then a do. . . while loop builds a new name from $base, an

underscore, $i, and $extension. Let s say you re uploading a file called menu.jpg, and

there s already a file with the same name in the upload folder. The loop rebuilds the name as

menu_1.jpg and assigns the result to $nospaces. The loop s condition then uses

in_array() to check whether menu_1.jpg is in the $existing array.

If menu_1.jpg already exists, the loop continues, but the increment operator (++) has

increased $i to 2, so $nospaces becomes menu_2.jpg, which is again checked by

in_array(). The loop continues until in_array() no longer finds a match. Whatever value

remains in $nospaces is used as the new filename.

Finally, $_renamed is set to true.

Phew! The code is relatively short, but it has a lot of work to do.

3. Now you need to amend the move() method to call checkName(). The revised code looks like

this:

 public function move($overwrite = false) {
 $field = current($this->_uploaded);
 $OK = $this->checkError($field['name'], $field['error']);
 if ($OK) {
 $sizeOK = $this->checkSize($field['name'], $field['size']);
 $typeOK = $this->checkType($field['name'], $field['type']);
 if ($sizeOK && $typeOK) {
 $name = $this->checkName($field['name'], $overwrite);
 $success = move_uploaded_file($field['tmp_name'], $this->_destination
 . $name);
 if ($success) {
 $message = $field['name'] . ' uploaded successfully';
 if ($this->_renamed) {
 $message .= " and renamed $name";
 }
 $this->_messages[] = $message;
 } else {
 $this->_messages[] = 'Could not upload ' . $field['name'];
 }
 }
 }
 }

The first change adds $overwrite = false as an argument to the method. Assigning a value

to an argument in the definition like this sets the default value and makes the argument

optional. So, using $upload->move() automatically results in the checkName() method

assigning a unique name to the file if necessary.

CHAPTER 6

170

The checkName() method is called inside the conditional statement that runs only if the

previous checks have all been positive. It takes as its arguments the filename transmitted

through the $_FILES array and $overwrite. The result is stored in $name, which now needs to

be used as part of the second argument to move_uploaded_file() to ensure the new name is

used when saving the file.

The final set of changes assign the message reporting successful upload to a temporary

variable $message. If the file has been renamed, $_renamed is true and a string is added to

$message reporting the new name. The complete message is then assigned to the $_messages

array.

4. Save Upload.php, and test the revised class in file_upload.php. Start by amending the call

to the move() method by passing true as the argument like this:

 $upload->move(true);

5. Upload the same image several times. You should receive a message that the upload has been

successful, but when you check the contents of the upload_test folder, there s only one

copy of the image. It has been overwritten each time.

6. Remove the argument from the call to move():

 $upload->move();

7. Save file_upload.php, and repeat the test, uploading the same image several times. Each

time you upload the file, you should see a message that it has been renamed.

8. Repeat the test with an image that has a space in its filename. The space is replaced with an

underscore, and a number is inserted in the name after the first upload.

9. Check the results by inspecting the contents of the upload_test folder. You should see

something similar to Figure 6-7.

You can check your code, if necessary, against Upload_04.php in the ch06 folder.

UPLOADING FILES

171

Figure 6-7. The class removes spaces from filenames and prevents files from being overwritten.

Uploading multiple files
You now have a flexible class for file uploads, but it can handle only one file at a time. Adding the

multiple attribute to the file field s <input> tag permits the selection of multiple files in an HTML5-

compliant browser. Older browsers also support multiple uploads if you add extra file fields to your form.

The final stage in building the Ps2_Upload class is to adapt it to handle multiple files. To understand how

the code works, you need to see what happens to the $_FILES array when a form allows multiple uploads.

How the $_FILES array handles multiple files

Since $_FILES is a multidimensional array, it s capable of handling multiple uploads. In addition to adding

the multiple attribute to the <input> tag, you need to add an empty pair of square brackets to the name

attribute like this:

<input type="file" name="image[]" id="image" multiple>

Support for the multiple attribute is available in Firefox 3.6, Safari 4, Chrome 4, and Opera 10. At the

time of this writing, it is not supported in any version of Internet Explorer, but that might change once the

final version of IE9 is released. If you need to support older browsers, omit the multiple attribute, and

create separate file input fields for however many files you want to upload simultaneously, Give each

<input> tag the same name attribute followed by square brackets.

As you learned in Chapter 5, adding square brackets to the name attribute submits multiple values as an

array. You can examine how this affects the $_FILES array by using file_upload_06.php or

file_upload_07.php in the ch06 folder. Figure 6-8 shows the result of selecting four files in an HTML5-

CHAPTER 6

172

compliant browser. The structure of the $_FILES array is the same when a form uses separate input fields

that share the same name attribute.

Figure 6-8. The $_FILES array can upload multiple files in a single operation.

Although this structure is not as convenient as having the details of each file stored in a separate

subarray, the numeric keys keep track of the details that refer to each file. For example,

$_FILES['image']['name'][2] relates directly to $_FILES['image']['tmp_name'][2], and so on.

When you use the HTML5 multiple attribute on file input fields, older browsers upload a single file using

the same structure, so the name of the file is stored as $_FILES['image']['name'][0].

PHP Solution 6-6: Adapting the class to handle multiple uploads

This PHP solution shows how to adapt the move() method of the Ps2_Upload class to handle multiple file

uploads. The class detects automatically when the $_FILES array is structured like Figure 6-8 and uses a

loop to handle however many files are uploaded.

Continue working with your existing class file. Alternatively, use Upload_04.php in the ch06 folder.

1. When you upload a file from a form designed to handle only single uploads, the $_FILES array

stores the name like this (see Figure 6-2 earlier in this chapter):

 $_FILES['image']['name']

When you upload a file from a form capable of handling multiple uploads the name of the first

file is stored like this (see Figure 6-8):

 $_FILES['image']['name'][0]

UPLOADING FILES

173

In Figures 6-2 and 6-8, both refer to fountains.jpg. $_FILES['image']['name'] is a string

in Figure 6-2, but in Figure 6-8 it s an array.

So, by detecting whether the name element is an array, you can decide how to process the

$_FILES array. If it s an array, you need to loop through it, passing the appropriate values to

the checkError(), checkSize(), checkType(), and checkName() protected methods

before passing it to move_uploaded_file(). The problem is that you need to add the index

number for a multiple upload, but not for a single upload.

One solution is to require the upload form to use square brackets at the end of the name
attribute, even for single uploads. This forces the form to submit the $_FILES array in the

same format as shown in Figure 6-8. However, that s far from ideal.

The solution I have adopted is to split the move() method into two.

2. In the move() method select the code highlighted in bold, and cut it to your clipboard.

 public function move($overwrite = false) {
 $field = current($this->_uploaded);
 $OK = $this->checkError($field['name'], $field['error']);
 if ($OK) {
 $sizeOK = $this->checkSize($field['name'], $field['size']);
 $typeOK = $this->checkType($field['name'], $field['type']);
 if ($sizeOK && $typeOK) {
 $name = $this->checkName($field['name'], $overwrite);
 $success = move_uploaded_file($field['tmp_name'],
 $this->_destination . $name);
 if ($success) {
 $message = $field['name'] . ' uploaded successfully';
 if ($this->_renamed) {
 $message .= " and renamed $name";
 }
 $this->_messages[] = $message;
 } else {
 $this->_messages[] = 'Could not upload ' . $field['name'];
 }
 }
 }
 }

3. Create a new protected method called processFile(), and paste the code from the move()
method between the curly braces like this:

 protected function processFile() {
 $OK = $this->checkError($field['name'], $field['error']);
 if ($OK) {
 $sizeOK = $this->checkSize($field['name'], $field['size']);
 $typeOK = $this->checkType($field['name'], $field['type']);
 if ($sizeOK && $typeOK) {
 $name = $this->checkName($field['name'], $overwrite);

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6

174

 $success = move_uploaded_file($field['tmp_name'],
 $this->_destination . $name);
 if ($success) {
 $message = $field['name'] . ' uploaded successfully';
 if ($this->_renamed) {
 $message .= " and renamed $name";
 }
 $this->_messages[] = $message;
 } else {
 $this->_messages[] = 'Could not upload ' . $field['name'];
 }
 }
 }
 }

At the moment, this new method won t do anything because the arguments to checkError(),

checkSize(), and so on are dependent on the move() method. To activate the

processFile() method, you need to call it from the move() method, and pass the following

values as arguments:

• $field['name']

• $field['error']

• $field['size']

• $field['type']

• $field['tmp_name']

• $overwrite

4. Amend the move() method like this:

 public function move($overwrite = false) {
 $field = current($this->_uploaded);
 $this->processFile($field['name'], $field['error'], $field['size'],
 $field['type'], $field['tmp_name'], $overwrite);
 }

5. Next, fix the arguments in the processFile() definition. Although, you could use the same

variables, the code is cleaner and easier to understand if you change them both in the

arguments declared between the parentheses and in the body of the method. Amend the code

like this:

 protected function processFile($filename, $error, $size, $type,
 $tmp_name, $overwrite) {
 $OK = $this->checkError($filename, $error);
 if ($OK) {
 $sizeOK = $this->checkSize($filename, $size);
 $typeOK = $this->checkType($filename, $type);
 if ($sizeOK && $typeOK) {
 $name = $this->checkName($filename, $overwrite);

UPLOADING FILES

175

 $success = move_uploaded_file($tmp_name, $this->_destination . $name);
 if ($success) {
 $message = "$filename uploaded successfully";
 if ($this->_renamed) {
 $message .= " and renamed $name";
 }
 $this->_messages[] = $message;
 } else {
 $this->_messages[] = "Could not upload $filename";
 }
 }
 }
 }

In other words, $field['name'] has been converted to $filename, $field['error'] to

$error, and so on.

6. Splitting the functionality like this gives you a method that handles individual files. You can

now use it inside a loop to handle multiple files one by one. Update the move() method like this:

 public function move($overwrite = false) {
 $field = current($this->_uploaded);
 if (is_array($field['name'])) {
 foreach ($field['name'] as $number => $filename) {
 // process multiple upload
 $this->_renamed = false;
 $this->processFile($filename, $field['error'][$number],
 $field['size'][$number], $field['type'][$number],
 $field['tmp_name'][$number], $overwrite);
 }
 } else {
 $this->processFile($field['name'], $field['error'], $field['size'],
 $field['type'], $field['tmp_name'], $overwrite);
 }
 }

The conditional statement checks if $field['name'] is an array ($field is the current

element of the $_FILES array, so $field['name'] stores $_FILES['image']['name']). If it

is an array, a foreach loop is created to handle each uploaded file. The key of each element is

assigned to $number. The value of each element is assigned to $filename. These two

variables give you access to each file and its details. Using the example in Figure 6-8, the first

time the loop runs, $number is 0 and $filename is fountains.jpg. The next time, $number is

1 and $filename is kinkakuji.jpg, and so on.

Each time the loop runs, the $_renamed property needs to be reset to false. The values

extracted from the current element of the $_FILES array are then passed to the

processFile() method.

The existing code is wrapped in an else block that runs when a single file is uploaded. Don t

forget the extra curly brace to close the else block.

CHAPTER 6

176

7. Save Upload.php, and test it with file_upload.php. It should work the same as before.

8. If you re using an HTML5-compliant browser, add a pair of square brackets at the end of the

name attribute in the file field, and insert the multiple attribute like this:

 <input type="file" name="image[]" id="image" multiple>

You don t need to make any changes to the PHP code above the DOCTYPE declaration. The

code is the same for both single and multiple uploads.

9. Save file_upload.php, and reload it in your browser. Test it by selecting multiple files. When

you click Upload, you should see messages relating to each file. Files that meet your criteria

are uploaded. Those that are too big or of the wrong type are rejected.

You can check your code against Upload_05.php in the ch06 folder.

Using namespaces in PHP 5.3 and later

Prefixing the class names with Ps2_ to avoid potential name clashes is a minor inconvenience when you re

using only a handful of classes. But third-party libraries of PHP classes, such as the Zend Framework

(http://framework.zend.com/), often consist of thousands of files in hundreds of folders. Naming the

classes can become a major headache. The Zend Framework uses the convention of naming classes after

the folder structure, so you can end up with unwieldy class names such as Zend_File_Transfer_
Adapter_Http.

This led to the decision to implement namespaces in PHP 5.3. The idea is to prevent name collisions and

very long class names. Instead of using underscores to indicate the folder structure, namespaces uses

backslashes. So, instead of Ps2_Upload, the namespaced class name becomes Ps2\Upload. Although

that doesn t sound like much of a gain, the advantage is that instead of referring all the time to

Ps2\Upload, you can shorten it to Upload.

To declare a namespace, just use the namespace keyword followed by the name like this:

namespace Ps2;

This must be the first line of code after the opening PHP tag.

PHP Solution 6-7: Converting the class to use a namespace

This PHP solution shows how to convert the Ps2_Upload class to use a namespace. Your server must be

running PHP 5.3 or later. It will not work in earlier versions of PHP.

1. Open your copy of Upload.php in the Ps2 folder.

2. Declare the Ps2 namespace immediately after the opening PHP tag, and change the class

name from Ps2_Upload to Upload like this:

 <?php
 namespace Ps2;
 class Upload {

3. Save Upload.php. That s all you need to do to the class definition.

4. Open file_upload.php in the uploads folder.

http://framework.zend.com/

UPLOADING FILES

177

5. Locate the following line:

 $upload = new Ps2_Upload($destination);

Change it to this:

 $upload = new Ps2\Upload($destination);

6. Save file_upload.php, and test it. It should work as before.

7. Add the namespace declaration immediately after the opening PHP tag in file_upload.php:

 <?php
 namespace Ps2;

8. Change the code that instantiates the upload object like this:

 $upload = new Upload($destination);

9. Save file_upload.php, and test it again. It should continue to work as before.

You can find examples of the code in file_upload_ns.php and Upload_ns.php in the ch06

folder.

This has been a relatively trivial example, which sidesteps many subtleties of using namespaces. To learn

more about using namespaces, see www.phparch.com/2010/03/29/namespaces-in-php/, as well as

http://docs.php.net/manual/en/language.namespaces.faq.php.

Using the upload class
The Ps2_Upload class is simple to use. Just include the class definition in your script, and create a

Ps2_Upload object by passing the file path to the upload folder as an argument like this:

$destination = 'C:/upload_test/';
$upload = new Ps2_Upload($destination);

The path to the upload folder must end in a trailing slash.

The class has the following public methods:

• setMaxSize(): Takes an integer and sets the maximum size for each upload file, overriding

the default 51200 bytes (50kB). The value must be expressed as bytes.

• getMaxSize(): Reports the maximum size in kB formatted to one decimal place.

• addPermittedTypes(): Takes an array of MIME types, and adds them to the types of file

accepted for upload. A single MIME type can be passed as a string.

• setPermittedTypes(): Similar to addPermittedTypes(), but replaces existing values.

• move(): Saves the file(s) to the destination folder. Spaces in filenames are replaced by

underscores. By default, files with the same name as an existing file are renamed by inserting

a number in front of the filename extension. To overwrite files, pass true as an argument.

• getMessages(): Returns an array of messages reporting the status of uploads.

http://www.phparch.com/2010/03/29/namespaces-in-php/
http://docs.php.net/manual/en/language.namespaces.faq.php

CHAPTER 6

178

Points to watch with file uploads
Uploading files from a web form is easy with PHP. The main causes of failure are not setting the correct

permissions on the upload directory or folder, and forgetting to move the uploaded file to its target

destination before the end of the script. Letting other people upload files to your server, however,

exposes you to risk. In effect, you re allowing visitors the freedom to write to your server s hard disk. It s

not something you would allow strangers to do on your own computer, so you should guard access to your

upload directory with the same degree of vigilance.

Ideally, uploads should be restricted to registered and trusted users, so the upload form should be in a

password-protected part of your site. Also, the upload folder does not need to be inside your site root, so

locate it in a private directory whenever possible unless you want uploaded material to be displayed

immediately in your web pages. Remember, though, there is no way PHP can check that material is legal or

decent, so immediate public display entails risks that go beyond the merely technical. You should also

bear the following security points in mind:

• Set a maximum size for uploads both in the web form and on the server side.

• Restrict the types of uploaded files by inspecting the MIME type in the $_FILES array.

• Replace spaces in filenames with underscores or hyphens.

• Inspect your upload folder on a regular basis. Make sure there s nothing in there that shouldn t

be, and do some housekeeping from time to time. Even if you limit file upload sizes, you may

run out of your allocated space without realizing it.

Chapter review
This chapter has introduced you to creating a PHP class. If you re new to PHP or programming, you might

have found it tough going. Don t be disheartened. The Ps2_Upload class contains more than 170 lines of

code, and some of it is complex, although I hope the descriptions have explained what the code is doing at

each stage. Even if you don t understand all the code, the Ps2_Upload class will save you a lot of time. It

implements the main security measures necessary for file uploads, yet using it involves as little as ten

lines of code:

if (isset($_POST['upload'])) {
 require_once('classes/Ps2/Upload.php');
 try {
 $upload = new Ps2_Upload('C:/upload_test/');
 $upload->move();
 $result = $upload->getMessages();
 } catch (Exception $e) {
 echo $e->getMessage();
 }
}

If you found this chapter a struggle, come back to it later when you have more experience, and you should

find the code easier to understand.

In the next chapter, you ll learn some techniques for inspecting the contents of files and folders, including

how to use PHP to read and write text files.

179

Chapter 7

Using PHP to Manage Files

PHP has a huge range of functions designed to work with the server s file system, but finding the right one

for the job isn t always easy. This chapter cuts through the tangle to show you some practical uses of

these functions, such as reading and writing text files to store small amounts of information without a

database. Loops play an important role in inspecting the contents of the file system, so you ll also explore

some of the Standard PHP Library (SPL) iterators that are designed to make loops more efficient.

As well as opening local files, PHP can read public files, such as news feeds, on other servers. News

feeds are normally formatted as XML (Extensible Markup Language). In the past, extracting information

from an XML file was tortuous process, but that s no longer the case thanks to the very aptly named

SimpleXML that was introduced in PHP 5. In this chapter, I ll show you how to create a drop-down menu

that lists all images in a folder, create a function to select files of a particular type from a folder, pull in a

live news feed from another server, and prompt a visitor to download an image or PDF file rather than open

it in the browser. As an added bonus, you ll learn how to change the time zone of a date retrieved from

another website.

This chapter covers the following subjects:

• Reading and writing files

• Listing the contents of a folder

• Inspecting files with the SplFileInfo class

• Controlling loops with SPL iterators

• Using SimpleXML to extract information from an XML file

• Consuming an RSS feed

• Creating a download link

Checking that PHP has permission to open a file
As I explained in the previous chapter, PHP runs on most Linux servers as nobody or apache .

Consequently, a folder must have minimum access permissions of 755 for scripts to open a file. To create

CHAPTER 7

180

or alter files, you normally need to set global access permissions of 777, the least secure setting. If PHP

is configured to run in your own name, you can be more restrictive, because your scripts can create and

write to files in any folder for which you have read, write, and execute permissions. On a Windows server,

you need write permission to create or update a file. If you need assistance with changing permissions,

consult your hosting company.

Configuration settings that affect file access

Hosting companies can impose further restrictions on file access through php.ini. To find out what

restrictions have been imposed, run phpinfo() on your website, and check the settings in the Core

section. Table 7-1 lists the settings you need to check. Unless you run your own server, you normally

have no control over these settings.

Table 7-1. PHP configuration settings that affect file access

Directive Default value Description

allow_url_fopen On Allows PHP scripts to open public files on the Internet.

allow_url_include Off Controls the ability to include remote files.

open_basedir no value Restricts accessible files to the specified directory tree.

Even if no value is set, restrictions may be set directly in the

server configuration.

safe_mode Off Mainly restricts the ability to use certain functions (for

details, see www.php.net/manual/en/features.safe-
mode.functions.php). This feature has been deprecated

since PHP 5.3 and will be removed at a future date.

safe_mode_include_dir no value If safe_mode is enabled, user and group ID checks are

skipped when files are included from the specified directory

tree.

Accessing remote files

Arguably the most important setting in Table 7-1 is allow_url_fopen. If it s disabled, you cannot access

useful external data sources, such as news feeds and public XML documents. Prior to PHP 5.2,

allow_url_fopen also allowed you to include remote files in your pages. This represented a major

security risk, prompting many hosting companies to disabled allow_url_fopen. The security risk was

eliminated in PHP 5.2 by the introduction of a separate setting for including remote files:

allow_url_include, which is disabled by default.

After PHP 5.2 was released, not all hosting companies realized that allow_url_fopen had changed, and

continued to disable it. Hopefully, by the time you read this, the message will have sunk in that

allow_url_fopen allows you to read remote files, but not to include them directly in your scripts. If your

hosting company still disables allow_url_fopen, ask it to turn it on. Otherwise, you won t be able to use

http://www.php.net/manual/en/features.safe-mode.functions.php
http://www.php.net/manual/en/features.safe-mode.functions.php
http://www.php.net/manual/en/features.safe-mode.functions.php

USING PHP TO MANAGE FILES

181

PHP Solution 7-5. If the hosting company refuses, you should consider moving to one with a better

understanding of PHP.

Configuration settings that affect local file access

If the Local Value column for open_basedir or safe_mode_include_dir displays no value, you can

ignore this section. However, if it does have a value, the meaning depends on whether the value ends with

a trailing slash, like this:

/home/includes/

In this example, you can open or include files only from the includes directory or any of its

subdirectories.

If the value doesn t have a trailing slash, the value after the last slash acts as a prefix. For example,

/home/inc gives you access to /home/inc, /home/includes, /home/incredible, and so on—

assuming, of course, that they exist or you have the right to create them. PHP Solution 7-1 shows what

happens when you try to access a file outside the limits imposed by open_basedir.

Creating a file storage folder for local testing

Storing data inside your site root is highly insecure, particularly if you need to set global access

permissions on the folder. If you have access to a private folder outside the site root, create your data

store as a subfolder and give it the necessary permissions.

For the purposes of this chapter, I suggest that Windows users create a folder called private on their C

drive. Mac users should create a private folder inside their home folder and then set Read & Write

permissions in the folder s Info panel as described in the previous chapter.

Reading and writing files
The restrictions described in the previous section reduce the attraction of reading and writing files with

PHP. Using a database is more convenient and offers greater security. However, that assumes you have

access to a database and the necessary knowledge to administer it. So, for small-scale data storage and

retrieval, working directly with text files is worth considering.

Reading files in a single operation

The simplest way to read the contents of a text file is to use file_get_contents() or readfile().

PHP Solution 7-1: Getting the contents of a text file

This PHP solution demonstrates how to use file_get_contents() and readfile(), and explains how

they differ.

1. Create a text file in your private folder, type some text into it, and save it as

filetest_01.txt (or use the version in the ch07 folder).

2. Create a new folder called filesystem in your phpsols site root, and create a PHP file called

get_contents.php in the new folder. Insert the following code inside a PHP block

CHAPTER 7

182

(get_contents_01.php in the ch07 folder shows the code embedded in a web page, but you

can use just the PHP code for testing purposes):

 echo file_get_contents('C:/private/filetest_01.txt');

If you re on a Mac, amend the pathname like this, using your own Mac username:

 echo file_get_contents('/Users/username/private/filetest_01.txt');

If you re testing on a remote server, amend the pathname accordingly.

For brevity, the remaining examples in this chapter show only the Windows pathname.

3. Save get_contents.php, and view it in a browser. Depending on what you wrote in

filetest_01.txt, you should see something like the following screenshot.

You shouldn t see any error messages on your local system, unless you typed the code

incorrectly or you didn t set the correct permissions on a Mac. However, on a remote system,

you may see error messages similar to this:

The error messages in the preceding screenshot were created on a local system to

demonstrate what happens when open_basedir has been set either in php.ini or on the

server. They mean you re trying to access a file outside your permitted file structure. The first

error message should indicate the allowed paths. On a Windows server, each path is

separated by a semicolon. On Linux, the separator is a colon.

4. Change the code in get_contents.php like this (it s in get_contents_02.php):

 readfile('C:/private/filetest_01.txt');

USING PHP TO MANAGE FILES

183

5. Save get_contents.php, and reload it in your browser. The contents of the text file are

displayed as before.

So, what s the difference? The original code uses echo to display the contents of the file. The

amended code doesn t use echo. In other words, file_get_contents() simply gets the

contents of a file, but readfile() also displays it immediately. The advantage of

file_get_contents() is that you can assign the file contents to a variable and process it in

some way before deciding what to do with it.

6. Change the code in get_contents.php like this (or use get_contents_03.php), and load the

page into a browser:

 // get the contents of the file
 $contents = file_get_contents('C:/private/filetest_01.txt');
 // split the contents into an array of words
 $words = explode(' ', $contents);
 // extract the first four elements of the array
 $first = array_slice($words, 0, 4);
 // join the first four elements and display
 echo implode(' ', $first);

This stores the contents of filetest_01.txt in a variable, which is passed to the explode()
function. This alarmingly named function “blows apart” a string and converts it into an array,

using the first argument to determine where to break the string. In this case, a space is used,

so the contents of the text file are split into an array of words.

The array of words is then passed to the array_slice() function, which takes a slice out of

an array starting from the position specified in the second argument. The third argument

specifies the length of the slice. PHP counts arrays from 0, so this extracts the first four

words.

Finally, implode() does the opposite of explode(), joining the elements of an array and

inserting the first argument between each one. The result is displayed by echo, producing the

following outcome:

Instead of displaying the entire contents of the file, the script now displays only the first four

words. The full string is still stored in $contents.

7. If you need to extract the first few words from a string on a regular basis, you could create a

custom function like this:

 function getFirstWords($string, $number) {

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7

184

 $words = explode(' ', $string);
 $first = array_slice($words, 0, $number);
 return implode(' ', $first);
 }

You can extract the first seven words like this (the code is in get_contents_04.php):

 $contents = file_get_contents('C:/private/filetest_01.txt');
 echo getFirstWords($contents, 7);

8. Among the dangers with accessing external files are that the file might be missing or its name

misspelled. Change the code like this (it s in get_contents_05.php):

 $contents = file_get_contents('C:/private/filetest_01.txt');
 if ($contents === false) {
 echo 'Sorry, there was a problem reading the file.';
 } else {
 echo $contents;
 }

If the file_get_contents() function can t open the file, it returns false. Often, you can

test for false by using the logical Not operator like this:

 if (!$contents) {

If the file is empty or contains only the number 0, $contents is implicitly false. To make sure

the returned value is explicitly false, you need to use the identical operator (three equal

signs).

9. Test the page in a browser, and it should display the contents of the text file as before.

10. Replace the contents of filetest_01.txt with the number 0. Save the text file, and reload

get_contents.php in the browser. The number displays correctly.

11. Delete the number in the text file, and reload get_contents.php. You should get a blank

screen, but no error message. The file loads, but doesn t contain anything.

12. Change the code in get_contents.php so that it attempts to load a nonexistent file. When

you load the page, you should see an ugly error message like this:

“Failed to open stream” means it couldn t open the file.

USING PHP TO MANAGE FILES

185

13. This is an ideal place to use the error control operator (see Chapter 4). Insert an @ mark

immediately in front of the call to file_get_contents() like this (the code is in

get_contents_07.php):

 $contents = @ file_get_contents('C:/private/filetest0.txt');

14. Test get_contents.php in a browser. You should now see only the following custom error

message:

Always add the error control operator only after testing the rest of a script. When developing, you

need to see error messages to understand why something isn t working the way you expect.

Text files can be used as a flat-file database—where each record is stored on a separate line, with a tab,

comma, or other delimiter between each field (see http://en.wikipedia.org/
wiki/Flat_file_database). With this sort of file, it s more convenient to store each line individually in

an array to process with a loop. The file() function builds the array automatically.

PHP Solution 7-2: Reading a text file into an array

To demonstrate the file() function, this PHP solution uses filetest_02.txt, which contains just two

lines as follows:

david, codeslave
chris, bigboss

This will be used as the basis for a simple login system to be developed further in Chapter 9.

1. Create a PHP file called file.php inside the filesystem folder. Insert the following code (or

use file_01.php from the ch07 folder):

 <?php
 // read the file into an array called $users
 $users = file('C:/private/filetest_02.txt');
 ?>
 <pre>
 <?php print_r($users); ?>
 </pre>

This draws the contents of filetest_02.txt into an array called $users and then passes it

to print_r() to display the contents of the array. The <pre> tags simply make the output

easier to read in a browser.

http://en.wikipedia.org/

CHAPTER 7

186

2. Save the page, and load it in a browser. You should see the following output:

It doesn t look very exciting, but now that each line is a separate array element, you can loop

through the array to process each line individually.

3. You need to use a counter to keep track of each line; a for loop is the most convenient (see

“The versatile for loop” in Chapter 3). To find out how many times the loop should run, pass the

array to the count() function to get its length. Amend the code in file.php like this (or use

file_02.php):

 <?php
 // read the file into an array called $users
 $users = file('C:/private/filetest03.txt');

 // loop through the array to process each line
 for ($i = 0; $i < count($users); $i++) {
 // separate each element and store in a temporary array
 $tmp = explode(', ', $users[$i]);
 // assign each element of the temporary array to a named array key
 $users[$i] = array('name' => $tmp[0], 'password' => $tmp[1]);
 }
 ?>
 <pre>
 <?php print_r($users); ?>
 </pre>

The count() function returns the length of an array, so in this case, the value of

count($users) is 2. This means the first line of the loop is equivalent to this:

 for ($i = 0; $i < 2; $i++) {

The loop continues running while $i is less than 2. Since arrays are always counted from 0,

this means the loop runs twice before stopping.

Inside the loop, the current array element ($users[$i]) is passed to the explode() function.

In this case, the separator is defined as a comma followed by a space (', '). However, you

can use any character or sequence of characters: using "\t" (see Table 3-4 in Chapter 3) as

the first argument to explode() turns a tab-separated string into an array.

USING PHP TO MANAGE FILES

187

The first line in filetest 02.txt looks like this:

 david, codeslave

When this line is passed to explode(), the result is saved in $tmp, so $tmp[0] is david, and

$tmp[1] is codeslave. The final line inside the loop reassigns $tmp[0] to

$users[0]['name'], and $tmp[1] to $users[0]['password'].

The next time the loop runs, $tmp is reused, and $users[1]['name'] becomes chris, and

$users[1]['password'] becomes bigboss.

4. Save file.php, and view it in a browser. The result looks like this:

5. Take a close look at the gap between codeslave and the closing parenthesis of the first

subarray. The file() function doesn t remove newline characters or carriage returns, so you

need to do it yourself. Pass the final item of $tmp to rtrim() like this:

 $users[$i] = array('name' => $tmp[0], 'password' => rtrim($tmp[1]));

The rtrim() function removes whitespace (spaces, tabs, newline characters, and carriage

returns) from the end of a string. It has two companions: ltrim() which removes whitespace

from the beginning of a string, and trim(), which removes whitespace from both ends of a

string.

 If you re working with each line as a whole, pass the entire line to rtrim().

6. As always, you need to check that the file is accessible before attempting to process its

contents, so wrap the main PHP block in a conditional statement like this (see file_03.php):

CHAPTER 7

188

 $textfile = 'C:/private/filetest_02.txt';
 if (file_exists($textfile) && is_readable($textfile)) {
 // read the file into an array called $users
 $users = file($textfile);

 // loop through the array to process each line
 for ($i = 0; $i < count($users); $i++) {
 // separate each element and store in a temporary array
 $tmp = explode(', ', $users[$i]);
 // assign each element of the temporary array to a named array key
 $users[$i] = array('name' => $tmp[0], 'password' => rtrim($tmp[1]));
 }
 } else {
 echo "Can't open $textfile";
 }

To avoid typing out the file pathname each time, begin by storing it in a variable.

This simple script extracts a useful array of names and associated passwords. You could also use this

with a series of sports statistics or any data that follows a regular pattern.

Opening and closing files for read/write operations

The functions we have looked at so far do everything in a single pass. However, PHP also has a set of

functions that allow you to open a file, read it and/or write to it, and then close the file. The following are the

most important functions used for this type of operation:

• fopen(): Opens a file

• fgets(): Reads the contents of a file, normally one line at a time

• fread(): Reads a specified amount of a file

• fwrite(): Writes to a file

• feof(): Determines whether the end of the file has been reached

• rewind(): Moves an internal pointer back to the top of the file

• fclose(): Closes a file

The first of these, fopen(), is the most difficult to understand, mainly because you need to specify how

the file is to be used once it s open: fopen() has one read-only mode, three write-only modes, and four

read/write modes. Sometimes, you want to overwrite the existing content. At other times, you may want to

append new material. At yet other times, you may want PHP to create a file if it doesn t already exist.

The other thing you need to understand is where each mode places the internal pointer when it opens the

file. It s like the cursor in a word processor: PHP starts reading or writing from wherever the pointer

happens to be when you call fread() or fwrite().

Table 7-2 brings order to the confusion.

USING PHP TO MANAGE FILES

189

Table 7-2. Read/write modes used with fopen()

Type Mode Description

Read-only r Internal pointer initially placed at beginning of file.

Write-only w Existing data deleted before writing. Creates a file if it doesn t already exist.

a Append mode. New data added at end of file. Creates a file if it doesn t already

exist.

x Creates a file only if it doesn t already exist, so no danger of deleting existing

data.

r+ Read/write operations can take place in either order and begin wherever the

internal pointer is at the time. Pointer initially placed at beginning of file. File must

already exist for operation to succeed.

w+ Existing data deleted. Data can be read back after writing. Creates a file if it

doesn t already exist.

a+ Opens a file ready to add new data at end of file. Also permits data to be read

back after internal pointer has been moved. Creates a file if it doesn t already

exist.

Read/write

x+ Creates a new file, but fails if a file of the same name already exists. Data can be

read back after writing.

Choose the wrong mode, and you could end up deleting valuable data. You also need to be careful about

the position of the internal pointer. If the pointer is at the end of the file, and you try to read the contents,

you end up with nothing. On the other hand, if the pointer is at the beginning of the file, and you start

writing, you overwrite the equivalent amount of any existing data. “Moving the internal pointer” later in this

chapter explains this in more detail with a practical example.

You work with fopen() by passing it the following two arguments:

• The path to the file you want to open

• One of the modes listed in Table 7-2

The fopen() function returns a reference to the open file, which can then be used with any of the other

read/write functions. So, this is how you would open a text file for reading:

$file = fopen('C:/private/filetest_02.txt', 'r');

Thereafter, you pass $file as the argument to other functions, such as fgets() and fclose(). Things

should become clearer with a few practical demonstrations. Rather than building the files yourself, you ll

probably find it easier to use the files in the ch07 folder. I ll run quickly through each mode.

CHAPTER 7

190

Mac users need to adjust the path to the private folder in the example files to match their setup.

Reading a file with fopen()

The file fopen_read.php contains the following code:

// store the pathname of the file
$filename = 'C:/private/filetest_02.txt';
// open the file in read-only mode
$file = fopen($filename, 'r');
// read the file and store its contents
$contents = fread($file, filesize($filename));
// close the file
fclose($file);
// display the contents
echo nl2br($contents);

If you load this into a browser, you should see the following output:

Unlike file_get_contents(), the function fread() needs to know how much of the file to read. So you

need to supply a second argument indicating the number of bytes. This can be useful if you want, say,

only the first 100 characters of a text file. However, if you want the whole file, you need to pass the file s

pathname to filesize() to get the correct figure.

The nl2br() function in the final line converts new line characters to HTML
 tags.

The other way to read the contents of a file with fopen() is to use the fgets() function, which retrieves

one line at a time. This means that you need to use a while loop in combination with feof() to read right

through to the end of the file. This is done by replacing this line:

$contents = fread($file, filesize($filename));

with this (the full script is in fopen_readloop.php):

// create variable to store the contents
$contents = '';
// loop through each line until end of file
while (!feof($file)) {
 // retrieve next line, and add to $contents
 $contents .= fgets($file);
}

USING PHP TO MANAGE FILES

191

The while loop uses fgets() to retrieve the contents of the file one line at a time—!feof($file) is the

same as saying until the end of $file—and stores them in $contents.

Both methods are more long-winded than file() or file_get_contents(). However, you need to use

either fread() or fgets() if you want to read and write to a file at the same time.

Replacing content with fopen()

The first of the write-only modes (w) deletes any existing content in a file, so it s useful for working with

files that need to be updated frequently. You can test the w mode with fopen_write.php, which has the

following PHP code above the DOCTYPE declaration:

<?php
// if the form has been submitted, process the input text
if (isset($_POST['contents'])) {
 // open the file in write-only mode
 $file = fopen('C:/private/filetest_03.txt', 'w');
 // write the contents
 fwrite($file, $_POST['contents']);
 // close the file
 fclose($file);
}
?>

There s no need to use a loop this time: you re just writing the value of $contents to the opened file. The

function fwrite() takes two arguments: the reference to the file and whatever you want to write to it.

In other books or scripts on the Internet, you may come across fputs() instead of fwrite(). The

two functions are identical: fputs() is a synonym for fwrite().

If you load fopen_write.php into a browser, type something into the text area, and click Write to file ,

PHP creates filetest_03.txt and inserts whatever you typed into the text area. Since this is just a

demonstration, I ve omitted any checks to make sure that the file was successfully written. Open

filetest_03.txt to verify that your text has been inserted. Now, type something different into the text

area and submit the form again. The original content is deleted from filetest_03.txt and replaced with

the new text. The deleted text is gone forever.

Appending content with fopen()

The append mode is one of the most useful ways of using fopen(), because it adds new content at the

end, preserving any existing content. The main code in fopen_append.php is the same as

fopen_write.php, apart from those elements highlighted here in bold:

// open the file in append mode
$file = fopen('C:/private/filetest_03.txt', 'a');
// write the contents after inserting new line
fwrite($file, PHP_EOL . $_POST['contents']);
// close the file
fclose($file);

CHAPTER 7

192

Notice that I have concatenated PHP_EOL to the beginning of $_POST['contents'] . This is a PHP

constant that represents a new line on any operating system. On Windows, new lines require a carriage

return and newline character, but Macs traditionally use only a carriage return, while Linux uses only a

newline character. PHP_EOL gets round this nightmare by automatically choosing the correct characters

depending on the server s operating system.

If you load fopen_append.php into a browser and insert some text, it should now be added to the end of

the existing text, as shown in the following screenshot.

This is a very easy way of creating a flat-file database. We ll come back to append mode in Chapter 9.

Writing a new file with fopen()

Although it can be useful to have a file created automatically with the same name, it may be exactly the

opposite of what you want. To make sure you re not overwriting an existing file, you can use fopen() with

x mode. The main code in fopen_exclusive.php looks like this (changes are highlighted in bold):

// create a file ready for writing only if it doesn't already exist
$file = fopen('C:/private/filetest_04.txt', 'x');
// write the contents
fwrite($file, $_POST['contents']);
// close the file
fclose($file);

If you load fopen_exclusive.php into a browser, type some text, and click Write to file, the content

should be written to filetest_04.txt in your target folder.

If you try it again, you should get a series of error messages telling you that the file already exists.

Combined read/write operations with fopen()

By adding a plus sign (+) after any of the previous modes, the file is opened for both reading and writing.

You can perform as many read or write operations as you like—and in any order—until the file is closed.

The difference between the combined modes is as follows:

• r+: The file must already exist; a new one will not be automatically created. The internal pointer

is placed at the beginning, ready for reading existing content.

• w+: Existing content is deleted, so there is nothing to read when the file is first opened.

• a+: The file is opened with the internal pointer at the end, ready to append new material, so the

pointer needs to be moved back before anything can be read.

• x+: Always creates a new file, so there s nothing to read when the file is first opened.

Reading is done with fread() or fgets() and writing with fwrite() exactly the same as before. What s

important is to understand the position of the internal pointer.

USING PHP TO MANAGE FILES

193

Moving the internal pointer

Reading and writing operations always start wherever the internal pointer happens to be, so you normally

want it to be at the beginning of the file for reading, and at the end of the file for writing.

To move the pointer to the beginning of a file, pass the file reference to rewind() like this:

rewind($file);

Moving the pointer to the end of a file is more complex. You need to use fseek(), which moves the pointer

to a location specified by an offset and a PHP constant. The constant that represents the end of the file is

SEEK_END, so an offset of 0 bytes places the pointer at the end. You also need to pass fseek() a

reference to the open file, so all three arguments together look like this:

fseek($file, 0, SEEK_END);

SEEK_END is a constant, so it doesn t need quotes, and it must be in uppercase. You can also use

fseek() to move the internal pointer to a specific position or relative to its current position. For details,

see http://docs.php.net/manual/en/function.fseek.php.

The file fopen_pointer.php uses the fopen() r+ mode to demonstrate combining several read and

write operations, and the effect of moving the pointer. The main code looks like this:

$filename = 'C:/private/filetest_04.txt';
// open a file for reading and writing
$file = fopen($filename, 'r+');

// the pointer is at the beginning, so existing content is overwritten
fwrite($file, $_POST['contents']);

// read the contents from the current position
$readRest = '';
while (!feof($file)) {
 $readRest .= fgets($file);
}

// reset internal pointer to the beginning
rewind($file);

// read the contents from the beginning (nasty gotcha here)
$readAll = fread($file, filesize($filename));

// pointer now at the end, so write the form contents again
fwrite($file, $_POST['contents']);

// read immediately without moving the pointer
$readAgain = '';
while (!feof($file)) {
 $readAgain .= fgets($file);
}

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://docs.php.net/manual/en/function.fseek.php

CHAPTER 7

194

// close the file
fclose($file);

The version of this file in the ch07 folder contains code that displays the values of $readRest, $readAll,

and $readAgain to show what happens at each stage of the read/write operations. The existing content in

filetest_04.txt was This works only the first time. When I typed New content. in

fopen_pointer.php and clicked Write to file, I got the results shown here:

Table 7-3 describes the sequence of events.

Table 7-3. Sequence of read/write operations in fopen_pointer.php

Command Position of pointer Result

$file = fopen($filename,'r+'); Beginning of file File opened for processing

fwrite($file, $_POST['contents']); End of write operation Form contents overwrites

beginning of existing content

while (!feof($file)) {
 $readRest .= fgets($file);
}

End of file Remainder of existing content

read

rewind($file); Beginning of file Pointer moved back to beginning

of file

$readAll = fread($file,
filesize($filename));

See text Content read from beginning of file

fwrite($file, $_POST['contents']); At end of previous

operation

Form contents added

at current position of pointer

while (!feof($file)) {
 $readAgain .= fgets($file);
}

End of file Nothing read because pointer was

already at end of file

fclose($file); Not applicable File closed and all changes saved

USING PHP TO MANAGE FILES

195

When I opened filetest_04.txt, this is what it contained:

If you study the code in fopen_pointer.php, you ll notice that the second read operation uses fread() .

It works perfectly with this example but contains a nasty surprise. Change the code in

fopen_pointer.php to add the following line after the external file has been opened (it s commented out

in the download version):

$file = fopen($filename, 'r+');
fseek($file, 0, SEEK_END);

This moves the pointer to the end of the file before the first write operation. Yet, when you run the script,

fread() ignores the text added at the end of the file. This is because the external file is still open, so

filesize() reads its original size. Consequently, you should always use a while loop with !feof() and

fgets() if your read operation takes place after any new content has been written to a file.

The changes to a file with read and write operations are saved only when you call fclose() or when

the script comes to an end. Although PHP saves the file if you forget to use fclose(), you should

always close the file explicitly. Don t get into bad habits; one day they may cause your code to break

and lose valuable data.

When you create or open a file in a text editor, you can use your mouse to highlight and delete existing

content, or position the insertion point exactly where you want. You don t have that luxury with a PHP

script, so you need to give it precise instructions. On the other hand, you don t need to be there when the

script runs. Once you have designed it, it runs automatically every time.

Exploring the file system
PHP s file system functions can also open directories (folders) and inspect their contents. You put one of

these functions to practical use in PHP Solution 6-5 by using scandir() to create an array of existing

filenames in the images folder and looping through the array to create a unique name for an uploaded file.

From the web developer s point of view, other practical uses of the file system functions are building drop-

down menus displaying the contents of a folder and creating a script that prompts a user to download a

file, such as an image or PDF document.

Inspecting a folder with scandir()

Let s take a closer look at the scandir() function, which you used in PHP Solution 6-5. It returns an array

consisting of the files and folders within a specified folder. Just pass the pathname of the folder

(directory) as a string to scandir(), and store the result in a variable like this:

$files = scandir('../images');

CHAPTER 7

196

You can examine the result by using print_r() to display the contents of the array, as shown in the

following screenshot (the code is in scandir.php in the ch07 folder):

As you can see, the array returned by scandir() doesn t contain only files. The first two items are known

as dot files, which represent the current and parent folders. The third item is a folder called _notes, and

the penultimate item is a folder called thumbs.

The array contains only the names of each item. If you want more information about the contents of a

folder, it s better to use the DirectoryIterator class.

Inspecting the contents of a folder with DirectoryIterator

The DirectoryIterator class is part of the Standard PHP Library (SPL), which has been part of PHP

since PHP 5.0. The SPL offers a mind-boggling assortment of specialized iterators that allow you to create

sophisticated loops with very little code. As the name suggests, the DirectoryIterator class lets you

loop through the contents of a directory or folder.

Because it s a class, you instantiate a DirectoryIterator object with the new keyword and pass the

path of the folder you want to inspect to the constructor like this:

$files = new DirectoryIterator('../images');

Unlike scandir(), this doesn t return an array of filenames—although you can loop through $files in the

same way as an array. Instead, it returns an SplFileInfo object that gives you access to a lot more

information about the folder s contents than just the filenames. Because it s an object, you can t use

print_r() to display its contents.

However, if all you want to do is to display the filenames, you can use a foreach loop like this (the code is

in iterator_01.php in the ch07 folder):

$files = new DirectoryIterator('../images');
foreach ($files as $file) {
 echo $file . '
';
}

USING PHP TO MANAGE FILES

197

This produces the following result:

Although using echo in the foreach loop displays the filenames, the value stored in $file each time the

loop runs is not a string. In fact, it s another SplFileInfo object. Table 7-4 lists the main SplFileInfo

methods that can be used to extract useful information about files and folders.

Table 7-4. File information accessible through SplFileInfo methods

Method Returns

getFilename() The name of the file

getPath() The current object s relative path minus the filename, or minus the folder name if

the current object is a folder

getPathName() The current object s relative path, including the filename or folder name,

depending on the current type

getRealPath() The current object s full path, including filename if appropriate

getSize() The size of the file or folder in bytes

isDir() True, if the current object is a folder (directory)

isFile() True, if the current object is a file

isReadable() True, if the current object is readable

isWritable() True, if the current object is writable

CHAPTER 7

198

The RecursiveDirectoryIterator class burrows down into subfolders. To use it, you wrap it in the

curiously named RecursiveIteratorIterator like this (the code is in iterator_03.php):

$files = new RecursiveIteratorIterator(new RecursiveDirectoryIterator('../images'));
foreach ($files as $file) {
 echo $file->getRealPath() . '
';
}

As the following screenshot shows, the RecursiveDirectoryIterator inspects the contents of all

subfolders, revealing the contents of the thumbs and _notes folders, in a single operation:

However, what if you want to find only certain types of files? Cue another iterator. . . .

Restricting file types with the RegexIterator

The RegexIterator acts as a wrapper to another iterator, filtering its contents using a regular expression

(regex) as a search pattern. To restrict the search to the most commonly used types of image files, you

need to look for any of the following filename extensions: .jpg, .png, or .gif. The regex used to search

for these filename extensions looks like this:

'/\.(?:jpg|png|gif)$/i'

In spite of its similarity to Vogon poetry, this regex matches image filename extensions in a case-

insensitive manner. The code in iterator_04.php has been modified like this:

$files = new RecursiveIteratorIterator(new RecursiveDirectoryIterator('../images'));
$images = new RegexIterator($files, '/\.(?:jpg|png|gif)$/i');
foreach ($images as $file) {
 echo $file->getRealPath() . '
';
}

USING PHP TO MANAGE FILES

199

The original $files object is passed to the RegexIterator constructor, with the regex as the second

argument, and the filtered set is stored in $images. The result is this:

Only image files are now listed. The folders and other miscellaneous files have been removed. Before PHP

5, the same result would have involved many more lines of complex looping.

To learn more about the mysteries of regular expressions (regexes), see my two-part tutorial at

www.adobe.com/devnet/dreamweaver/articles/regular_expressions_pt1.html. As you progress

through this book, you ll see I make frequent use of regexes. They re a useful tool to add to your skill

set.

I expect that by this stage, you might be wondering if this can be put to any practical use. OK, let s build a

drop-down menu of images in a folder.

PHP Solution 7-3: Building a drop-down menu of files

When you work with a database, you often need a list of images or other files in a particular folder. For

instance, you may want to associate a photo with a product detail page. Although you can type the name

of the image into a text field, you need to make sure that the image is there and that you spell its name

correctly. Get PHP to do the hard work by building a drop-down menu automatically. It s always up-to-

date, and there s no danger of misspelling the name.

1. Create a PHP page called imagelist.php in the filesystem folder. Alternatively, use

imagelist_01.php in the ch07 folder.

http://www.adobe.com/devnet/dreamweaver/articles/regular_expressions_pt1.html

CHAPTER 7

200

2. Create a form inside imagelist.php, and insert a <select> element with just one <option>

like this (the code is already in imagelist_01.php):

 <form id="form1" name="form1" method="post" action="">
 <select name="pix" id="pix">
 <option value="">Select an image</option>
 </select>
 </form>

This <option> is the only static element in the drop-down menu.

3. Amend the form like this:

 <form id="form1" name="form1" method="post" action="">
 <select name="pix" id="pix">
 <option value="">Select an image</option>
 <?php
 $files = new DirectoryIterator('../images');
 $images = new RegexIterator($files, '/\.(?:jpg|png|gif)$/i');
 foreach ($images as $image) {
 ?>
 <option value="<?php echo $image; ?>"><?php echo $image; ?></option>
 <?php } ?>
 </select>
 </form>

4. Make sure that the path to the images folder is correct for your site s folder structure.

5. Save imagelist.php, and load it into a browser. You should see a drop-down menu listing all

the images in your images folder, as shown in Figure 7-1.

USING PHP TO MANAGE FILES

201

Figure 7-1. PHP makes light work of creating a drop-down menu of images in a specific folder.

When incorporated into an online form, the filename of the selected image appears in the

$_POST array identified by the name attribute of the <select> element—in this case,

$_POST['pix']. That s all there is to it!

You can compare your code with imagelist_02.php in the ch07 folder.

PHP Solution 7-4: Creating a generic file selector

The previous PHP solution relies on an understanding of regular expressions. Adapting it to work with

other filename extensions isn t difficult, but you need to be careful that you don t accidentally delete a

vital character. Unless regexes or Vogon poetry are your specialty, it s probably easier to wrap the code in

a function that can be used to inspect a specific folder and create an array of filenames of specific types.

For example, you might want to create an array of PDF document filenames or one that contains both

PDFs and Word documents. Here s how you do it.

1. Create a new file called buildlist.php in the filesystem folder. The file will contain only

PHP code, so delete any HTML inserted by your editing program.

CHAPTER 7

202

2. Add the following code to the file:

 function buildFileList($dir, $extensions) {
 if (!is_dir($dir) || !is_readable($dir)) {
 return false;
 } else {
 if (is_array($extensions)) {
 $extensions = implode('|', $extensions);
 }
 }
 }

This defines a function called buildFileList(), which takes two arguments:

• $dir: The path to the folder from which you want to get the list of filenames.

• $extensions: This can be either a string containing a single filename extension

or an array of filename extensions. To keep the code simple, the filename

extensions should not include a leading period.

The function begins by checking whether $dir is a folder and is readable. If it isn t, the

function returns false, and no more code is executed.

If $dir is OK, the else block is executed. It also begins with a conditional statement that

checks whether $extensions is an array. If it is, it s passed to implode(), which joins the

array elements with a vertical pipe (|) between each one. A vertical pipe is used in regexes to

indicate alternative values. Let s say the following array is passed to the function as the

second argument:

 array('jpg', 'png', 'gif')

The conditional statement converts it to jpg|png|gif. So, this looks for jpg, or png, or gif.

However, if the argument is a string, it remains untouched.

3. You can now build the regex search pattern and pass both arguments to the

DirectoryIterator and RegexIterator like this:

 function buildFileList($dir, $extensions) {
 if (!is_dir($dir) || !is_readable($dir)) {
 return false;
 } else {
 if (is_array($extensions)) {
 $extensions = implode('|', $extensions);
 }
 $pattern = "/\.(?:{$extensions})$/i";
 $folder = new DirectoryIterator($dir);
 $files = new RegexIterator($folder, $pattern);
 }
 }

USING PHP TO MANAGE FILES

203

The regex pattern is built using a string in double quotes and wrapping $extensions in curly

braces to make sure it s interpreted correctly by the PHP engine. Take care when copying the

code. It s not exactly easy to read.

4. The final section of the code extracts the filenames to build an array, which is sorted and then

returned. The finished function definition looks like this:

 function buildFileList($dir, $extensions) {
 if (!is_dir($dir) || !is_readable($dir)) {
 return false;
 } else {
 if (is_array($extensions)) {
 $extensions = implode('|', $extensions);
 }
 // build the regex and get the files
 $pattern = "/\.(?:{$extensions})$/i";
 $folder = new DirectoryIterator($dir);
 $files = new RegexIterator($folder, $pattern);
 // initialize an array and fill it with the filenames
 $filenames = array();
 foreach ($files as $file) {
 $filenames[] = $file->getFilename();
 }
 // sort the array and return it
 natcasesort($filenames);
 return $filenames;
 }
 }

This initializes an array and uses a foreach loop to assign the filenames to it with the

getFilename() method. Finally, the array is passed to natcasesort(), which sorts it in a

natural, case-insensitive order. What “natural” means is that strings that contain numbers are

sorted in the same way as a person would. For example, a computer normally sorts img12.jpg
before img2.jpg, because the 1 in 12 is lower than 2. Using natcasesort() results in

img2.jpg preceding img12.jpg.

5. To use the function, use as arguments the path to the folder and the filename extensions of

the files you want to find. For example, you could get all Word and PDF documents from a

folder like this:

 $docs = buildFileList('folder_name', array('doc', 'docx', 'pdf'));

The code for the buildFileList() function is in buildlist.php in the ch07 folder.

Accessing remote files
Reading, writing, and inspecting files on your local computer or on your own website is useful. But

allow_url_fopen also gives you access to publicly available documents anywhere on the Internet. You

can t directly include files from other servers—not unless allow_url_include is on—but you can read

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7

204

the content, save it to a variable, and manipulate it with PHP functions before incorporating it in your own

pages or saving the information to a database. You can also write to documents on a remote server as

long as the owner sets the appropriate permissions.

A word of caution is in order here. When extracting material from remote sources for inclusion in your own

pages, there s a potential security risk. For example, a remote page might contain malicious scripts

embedded in <script> tags or hyperlinks. Unless the remote page supplies data in a known format from a

trusted source—such as product details from the Amazon.com database, weather information from a

government meteorological office, or a newsfeed from a newspaper or broadcaster—sanitize the content

by passing it to htmlentities() (see PHP Solution 5-3). As well as converting double quotes to ",

htmlentities() converts < to < and > to >. This displays tags in plain text, rather than treating

them as HTML.

If you want to permit some HTML tags, use the strip_tags() function instead. If you pass a string to

strip_tags(), it returns the string with all HTML tags and comments stripped out. It also removes PHP

tags. A second, optional argument is a list of tags that you want preserved. For example, the following

strips out all tags except paragraphs and first- and second-level headings:

$stripped = strip_tags($original, '<p><h1><h2>');

For an in-depth discussion of security issues, see Pro PHP Security by Chris Snyder and Michael

Southwell (Apress, 2005, ISBN: 978-1-59059-508-4).

Consuming news and other RSS feeds

Some of the most useful remote sources of information that you might want to incorporate in your sites

come from RSS feeds. RSS stands for Really Simple Syndication, and it s a dialect of XML. XML is similar

to HTML in that it uses tags to mark up content. Instead of defining paragraphs, headings, and images,

XML tags are used to organize data in a predictable hierarchy. XML is written in plain text, so it s

frequently used to share information between computers that might be running on different operating

systems.

Figure 7-2 shows the typical structure of an RSS 2.0 feed. The whole document is wrapped in a pair of

<rss> tags. This is the root element, similar to the <html> tags of a web page. The rest of the document is

wrapped in a pair of <channel> tags, which always contains the following three elements that describe the

RSS feed: <title>, <description>, and <link>.

USING PHP TO MANAGE FILES

205

rss

channel

link

descriptionlinktitle pubDate

rss

hannehanne

link

hanne

title description itemitem

criptioubDatlinktitle

Figure 7-2. The main contents of an RSS feed are in the item elements.

In addition to the three required elements, the <channel> can contain many other elements, but the

interesting material is to be found in the <item> elements. In the case of a news feed, this is where the

individual news items can be found. If you re looking at the RSS feed from a blog, the <item> elements

normally contain summaries of the blog posts.

Each <item> element can contain several elements, but those shown in Figure 7-2 are the most

common—and usually the most interesting:

• <title>: The title of the item

• <link>: The URL of the item

• <pubDate>: Date of publication

• <description>: Summary of the item

This predictable format makes it easy to extract the information from an RSS feed using SimpleXML.

You can find the full RSS Specification at www.rssboard.org/rss-specification. Unlike most

technical specifications, it s written in plain language, and easy to read.

Using SimpleXML

As long as you know the structure of an XML document, SimpleXML does what it says on the tin: it makes

extracting information from XML simple. The first step is to pass the URL of the XML document to

simplexml_load_file(). You can also load a local XML file by passing the path as an argument. For

example, this gets the world news feed from the BBC:

$feed = simplexml_load_file('http://feeds.bbci.co.uk/news/world/rss.xml');

This creates an instance of the SimpleXMLElement class. All the elements in the feed can now be

accessed as properties of the $feed object, using the names of the elements. With an RSS feed, the

<item> elements can be accessed as $feed->channel->item.

http://www.rssboard.org/rss-specification
http://feeds.bbci.co.uk/news/world/rss.xml

CHAPTER 7

206

To display the <title> of each <item>, create a foreach loop like this:

foreach ($feed->channel->item as $item) {
 echo $item->title . '
';
}

If you compare this with Figure 7-2, you can see that you access elements by chaining the element names

with the -> operator until you reach the target. Since there are multiple <item> elements, you need to use

a loop to tunnel further down. Alternatively, use array notation like this:

$feed->channel->item[2]->title

This gets the <title> of the third <item> element. Unless you want only a specific value, it s simpler to

use a loop.

With that background out of the way, let s use SimpleXML to display the contents of a news feed.

PHP Solution 7-5: Consuming an RSS news feed

This PHP solution shows how to extract the information from a live news feed using SimpleXML and

display it in a web page. It also shows how to format the <pubDate> element to a more user-friendly format

and how to limit the number of items displayed using the LimitIterator class.

1. Create a new page called newsfeed.php in the filesystem folder. This page will contain a

mixture of PHP and HTML.

2. The news feed chosen for this PHP solution is the BBC World News. A condition of using most

news feeds is that you acknowledge the source. So add The Latest from BBC News

formatted as an <h1> heading at the top of the page.

See http://news.bbc.co.uk/1/hi/help/rss/4498287.stm for the full terms and conditions of

using a BBC news feed on your own site.

3. Create a PHP block below the heading, and add the following code to load the feed:

 $url = 'http://feeds.bbci.co.uk/news/world/rss.xml';
 $feed = simplexml_load_file($url);

4. Use a foreach loop to access the <item> elements and display the <title> of each one:

 foreach ($feed->channel->item as $item) {
 echo $item->title . '
';
 }

5. Save newsfeed.php, and load the page in a browser. You should see a long list of news items

similar to Figure 7-3.

http://news.bbc.co.uk/1/hi/help/rss/4498287.stm
http://feeds.bbci.co.uk/news/world/rss.xml

USING PHP TO MANAGE FILES

207

Figure 7-3. The news feed contains a large number of items.

6. The normal feed often contains 50 or more items. That s fine for a news site, but you probably

want a shorter selection in your own site. Use another SPL iterator to select a specific range of

items. Amend the code like this:

 $url = 'http://feeds.bbci.co.uk/news/world/rss.xml';
 $feed = simplexml_load_file($url, 'SimpleXMLIterator');
 $filtered = new LimitIterator($feed->channel->item, 0 , 4);
 foreach ($filtered as $item) {
 echo $item->title . '
';
 }

To use SimpleXML with an SPL iterator, you need to supply the name of the

SimpleXMLIterator class as the second argument to simplexml_load_file(). You can

then pass the SimpleXML element you want to affect to an iterator constructor.

In this case, $feed->channel->item is passed to the LimitIterator constructor. The

LimitIterator takes three arguments: the object you want to limit, the starting point

(counting from 0), and the number of times you want the loop to run. This code starts at the

first item and limits the number of items to four.

The foreach loop now loops over the $filtered result. If you test the page again, you ll see

just four titles, as shown in Figure 7-4. Don t be surprised if the selection of headlines is

different from before. The BBC News website is updated every minute.

http://feeds.bbci.co.uk/news/world/rss.xml

CHAPTER 7

208

Figure 7-4. The LimitIterator restricts the number of items displayed.

7. Now that you have limited the number of items, amend the foreach loop to wrap the <title>

elements in a link to the original article, and display the <pubDate> and <description> items.

The loop looks like this:

 foreach ($filtered as $item) { ?>
 <h2><a href="<?php echo $item->link; ?>"><?php echo $item->title;
 ?></h2>
 <p class="datetime"><?php echo $item->pubDate; ?></p>
 <p><?php echo $item->description; ?></p>
 <?php } ?>

8. Save the page, and test it again. The links take you directly to the relevant news story on the

BBC website. The news feed is now functional, but the <pubDate> format follows the format

laid down in the RSS specification, as shown in the next screenshot:

9. To format the date and time in a more user-friendly way, pass $item->pubDate to the

DateTime class constructor, and then use the DateTime format() method to display it.

10. Change the code in the foreach loop like this:

 <p class="datetime"><?php $date= new DateTime($item->pubDate);
 echo $date->format('M j, Y, g:ia'); ?></p>

This reformats the date like this:

The mysterious PHP formatting strings for dates are explained in Chapter 14.

USING PHP TO MANAGE FILES

209

11. That looks a lot better, but the time is still expressed in GMT (London time). If most of your

site s visitors live on the East Coast of the United States, you probably want to show the local

time. That s no problem with a DateTime object. Use the setTimezone() method to change to

New York time. You can even automate the display of EDT (Eastern Daylight Time) or EST

(Eastern Standard Time) depending on whether daylight saving time is in operation. Amend the

code like this:

 <p class="datetime"><?php $date = new DateTime($item->pubDate);
 $date->setTimezone(new DateTimeZone('America/New_York'));
 $offset = $date->getOffset();
 $timezone = ($offset == -14400) ? ' EDT' : ' EST';
 echo $date->format('M j, Y, g:ia') . $timezone; ?></p>

To create a DateTimeZone object, you pass it as an argument one of the time zones listed at

http://docs.php.net/manual/en/timezones.php. This is the only place that the

DateTimeZone object is needed, so it has been created directly as the argument to the

setTimezone() method.

There isn t a dedicated method that tells you whether daylight saving time is in operation, but

the getOffset() method returns the number of seconds the time is offset from Coordinated

Universal Time (UTC). The following line determines whether to display EDT or EST:

 $timezone = ($offset == -14400) ? ' EDT' : ' EST';

This uses the value of $offset with the conditional operator. In summer, New York is 4 hours

behind UTC (–14440 seconds). So, if $offset is –14400, the condition equates to true, and

EDT is assigned to $timezone. Otherwise, EST is used.

Finally, the value of $timezone is concatenated to the formatted time. The string used for

$timezone has a leading space to separate the time zone from the time. When the page is

loaded, the time is adjusted to the East Coast of the United States like this:

12. All the page needs now is smartening up with CSS. Figure 7-5 shows the finished news feed

styled with newsfeed.css in the styles folder.

You can learn more about SPL iterators and SimpleXML in my PHP Object-Oriented Solutions (friends

of ED, 2008, ISBN: 978-1-4302-1011-5).

http://docs.php.net/manual/en/timezones.php

CHAPTER 7

210

Figure 7-5. The live news feed requires only a dozen lines of PHP code.

Although I have used the BBC News feed for this PHP solution, it should work with any RSS 2.0 feed. For

example, you can try it locally with http://rss.cnn.com/rss/edition.rss. Using a CNN news feed in a

public website requires permission from CNN. Always check with the copyright holder for terms and

conditions before incorporating a feed into a website.

Creating a download link
A question that crops up regularly in online forums is, “How do I create a link to an image (or PDF file) that

prompts the user to download it?” The quick solution is to convert the file into a compressed format, such

as ZIP. This frequently results in a smaller download, but the downside is that inexperienced users may

not know how to unzip the file, or they may be using an older operating system that doesn t include an

extraction facility. With PHP file system functions, it s easy to create a link that automatically prompts the

user to download a file in its original format.

PHP Solution 7-6: Prompting a user to download an image

The script in this PHP solution sends the necessary HTTP headers, opens the file, and outputs its

contents as a binary stream.

1. Create a PHP file called download.php in the filesystem folder. The full listing is given in the

next step. You can also find it in download.php in the ch07 folder.

http://rss.cnn.com/rss/edition.rss

USING PHP TO MANAGE FILES

211

2. Remove any default code created by your script editor, and insert the following code:

 <?php
 // define error page
 $error = 'http://localhost/phpsols/error.php';
 // define the path to the download folder
 $filepath = 'C:/xampp/htdocs/phpsols/images/';

 $getfile = NULL;

 // block any attempt to explore the filesystem
 if (isset($_GET['file']) && basename($_GET['file']) == $_GET['file']) {
 $getfile = $_GET['file'];
 } else {
 header("Location: $error");
 exit;
 }

 if ($getfile) {
 $path = $filepath . $getfile;
 // check that it exists and is readable
 if (file_exists($path) && is_readable($path)) {
 // get the file's size and send the appropriate headers
 $size = filesize($path);
 header('Content-Type: application/octet-stream');
 header('Content-Length: '. $size);
 header('Content-Disposition: attachment; filename=' . $getfile);
 header('Content-Transfer-Encoding: binary');
 // open the file in read-only mode
 // suppress error messages if the file can't be opened
 $file = @fopen($path, 'r');
 if ($file) {
 // stream the file and exit the script when complete
 fpassthru($file);
 exit;
 } else {
 header("Location: $error");
 }
 } else {
 header("Location: $error");
 }

The only two lines that you need to change in this script are highlighted in bold type. The first

defines $error, a variable that contains the URL of your error page. The second line that

needs to be changed defines the path to the folder where the download file is stored.

The script works by taking the name of the file to be downloaded from a query string appended

to the URL and saving it as $getfile. Because query strings can be easily tampered with,

http://localhost/phpsols/error.php

CHAPTER 7

212

$getfile is initially set to NULL. This is an important security measure. If you fail to do this,

you could give a malicious user access to any file on your server.

The opening conditional statement uses basename() to make sure that an attacker cannot

request a file, such as one that stores passwords, from another part of your file structure. As

explained in Chapter 4, basename() extracts the filename component of a path, so if

basename($_GET['file']) is different from $_GET['file'], you know there s an attempt to

probe your server, and you can stop the script from going any further by using the header()

function to redirect the user to the error page.

After checking that the requested file exists and is readable, the script gets the file s size,

sends the appropriate HTTP headers, and opens the file in read-only mode using fopen().

Finally, fpassthru() dumps the file to the output buffer. But if the file can t be opened or

doesn t exist, the user is redirected to the error page.

3. Test the script by creating another page and add a couple of links to download.php. Add a

query string at the end of each link with file= followed by the name a file to be downloaded.

You ll find a page called getdownloads.php in the ch07 folder, which contains the following

two links:

 <p>Download image 1</p>
 <p>Download image 2</p>

4. Click one of the links, and the browser should present you with a dialog box prompting you to

download the file or choose a program to open it, as shown in Figure 7-6.

Figure 7-6. The browser prompts the user to download the image, rather than opening it directly.

USING PHP TO MANAGE FILES

213

5. Select Save File, and click OK, and the file should be saved rather than displayed. Click

Cancel to abandon the download. Whichever button you click, the original page remains in the

browser window. The only time download.php should load into the browser is if the file cannot

be opened. That s why it s important to send the user to an error page if there s a problem.

I ve demonstrated download.php with image files, but it can be used for any type of file because the

headers send the file as a binary stream.

This script relies on header() to send the appropriate HTTP headers to the browser. It is vital to

ensure that there are no new lines or whitespace ahead of the opening PHP tag. If you have removed

all whitespace and still get an error message saying “headers already sent,” your editor may have

inserted invisible control characters at the beginning of the file. Some editing programs insert the byte

order mark (BOM), which is known to cause problems with the ability to use the header() function.

Check your program preferences to make sure the option to insert the BOM is deselected.

Chapter review
The file system functions aren t particularly difficult to use, but there are many subtleties that can turn a

seemingly simple task into a complicated one. It s important to check that you have the right permissions.

Even when handling files in your own website, PHP needs permission to access any folder where you want

to read files or write to them.

The SPL DirectoryIterator and RecursiveDirectoryIterator classes make it easy to examine the

contents of folders. Used in combination with the SplFileInfo methods and the RegexIterator, you

can quickly find files of a specific type within a folder or folder hierarchy.

When dealing with remote data sources, you need to check that allow_url_fopen hasn t been disabled.

One of the most common uses of remote data sources is extracting information from RSS news feeds or

XML documents, a task that takes only a few lines of code thanks to SimpleXML.

In the next two chapters, we ll put some of the PHP solutions from this chapter to further practical use

when working with images and building a simple user authentication system.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7

214

215

Chapter 8

Generating Thumbnail Images

PHP has an extensive range of functions designed to work with images. You ve already met one of them,
getimagesize(), in Chapter 4. As well as providing useful information about an image s dimensions, PHP
can manipulate images by resizing or rotating them. It can also add text dynamically without affecting the
original; it can even create images on the fly.

To give you just a taste of PHP image manipulation, I m going to show you how to generate a smaller copy
of an uploaded image. Most of the time, you ll want to use a dedicated graphics program, such as
Photoshop or Fireworks, to generate thumbnail images because it gives you much better quality control.
However, automatic thumbnail generation with PHP can be very useful if you want to allow registered
users to upload images, but make sure they conform to a maximum size. You can save just the resized
copy, or the copy along with the original.

In Chapter 6, you built a PHP class to handle file uploads. In this chapter, you ll create two classes: one to
generate thumbnail images, the other to upload and resize images in a single operation. Rather than build
the second class from scratch, you ll base it on the Ps2_Upload class from Chapter 6. A great advantage
of using classes is that they re extensible—a class based on another can inherit the functionality of its
parent class. Building the classes to upload images and generate thumbnails from them involves a lot of
code. But once you have defined the classes, using them involves only a few lines of script. If you re in a
rush or writing a lot of code makes you break out in a cold sweat, you can just use the finished classes.
Come back later to learn how the code works. It uses many basic PHP functions that you ll find useful in
other situations.

In this chapter you ll learn about the following:

• Scaling an image

• Saving a rescaled image

• Automatically resizing and renaming uploaded images

• Creating a subclass by extending an existing one

CHAPTER 8

216

Checking your server s capabilities
Working with images in PHP relies on the GD extension. Originally GD stood for GIF Draw, but problems
with the GIF patent led to support for GIF files being dropped in 1999, but the name GD stuck. The
problematic patent expired in 2004, and GIF is once again supported. The all-in-one PHP packages
recommended in Chapter 2 support GD by default, but you need to make sure the GD extension has also
been enabled on your remote web server.

As in previous chapters, run phpinfo() on your website to check the server s configuration. Scroll down
until you reach the section shown in the following screenshot (it should be about halfway down the page).

If you can t find this section, the GD extension isn t enabled, so you won t be able to use any of the scripts
in this chapter on your website. Ask for it to be enabled or move to a different host.

Strictly for abbreviation/acronym freaks: GIF stands for Graphics Interchange Format, JPEG is the

standard created by the Joint Photographic Experts Group, and PNG is short for Portable Network

Graphics. Although JPEG is the correct name for the standard, the “E” is frequently dropped,

particularly when used as a filename extension.

Manipulating images dynamically
The GD extension allows you to generate images entirely from scratch or work with existing images. Either
way, the underlying process always follows four basic steps:

1. Create a resource for the image in the server s memory while it s being processed.

GENERATING THUMBNAIL IMAGES

217

2. Process the image.

3. Display and/or save the image.

4. Remove the image resource from the server s memory.

This process means that you are always working on an image in memory only and not on the original.
Unless you save the image to disk before the script terminates, any changes are discarded. Working with
images requires a lot of memory, so it s vital to destroy the image resource as soon as it s no longer
needed. If a script runs very slowly or crashes, it probably indicates that the original image is too large.

Making a smaller copy of an image

The aim of this chapter is to show you how to resize images automatically on upload. This involves
extending the Ps2_Upload class from Chapter 6. However, to make it easier to understand how to work
with PHP s image manipulation functions, I propose to start by using images already on the server, and
create a separate class to generate the thumbnail images.

Getting ready

The starting point is the following simple form, which uses PHP Solution 7-3 to create a drop-down menu of
the photos in the images folder. You can find the code in create_thumb_win01.php and
create_thumb_mac01.php in the ch08 folder. Copy it to a new folder called gd in the phpsols site root,
and rename it create_thumb.php.

<form id="form1" name="form1" method="post" action="">
 <p>
 <select name="pix" id="pix">
 <option value="">Select an image</option>
 <?php
 $files = new DirectoryIterator('../images');
 $images = new RegexIterator($files, '/\.(?:jpg|png|gif)$/i');
 foreach ($images as $image) {
 ?>
 <option value="C:/xampp/htdocs/phpsols/images/<?php echo $image; ?>">
 <?php echo $image; ?></option>
 <?php } ?>
 </select>
 </p>
 <p>
 <input type="submit" name="create" id="create" value="Create Thumbnail">
 </p>
</form>

The Win and Mac versions contain the fully qualified path to the images folder in default installations of
XAMPP and MAMP. If necessary, change the path (highlighted in bold) to match your setup. When loaded
into a browser, the drop-down menu should display the names of the photos in the images folder. This
makes it easier to pick images quickly for testing.

CHAPTER 8

218

Inside the upload_test folder that you created in Chapter 6, create a new folder called thumbs, and make
sure it has the necessary permissions for PHP to write to it. Refer to “Establishing an upload directory” in
Chapter 6 if you need to refresh your memory.

Building the Ps2_Thumbnail class

To generate a thumbnail image, the class needs to execute the following steps:

1. Get the dimensions of the original image.

2. Get the image s MIME type.

3. Calculate the scaling ratio.

4. Create an image resource of the correct MIME type for the original image.

5. Create an image resource for the thumbnail.

6. Create the resized copy.

7. Save the resized copy to the destination folder using the correct MIME type.

8. Destroy the image resources to free memory.

In addition to generating a thumbnail image, the class automatically inserts _thb before the filename
extension, but a public method allows you to alter this value. The class also needs public methods to set
the destination folder and the maximum size of the thumbnail, and to retrieve messages generated by the
class. To keep the calculations simple, the maximum size controls only the larger of the thumbnail s
dimensions.

There s a lot to do, so I ll break up the code into sections. They re all part of the same class definition, but
presenting the script this way should make it easier to understand, particularly if you want to use some of
the code in a different context.

PHP Solution 8-1: Getting the image details

This PHP Solution describes how to get the dimensions and MIME type of the original image.

1. Create a new page called Thumbnail.php in the classes/Ps2 folder. The file will contain only

PHP, so strip out any HTML code inserted by your editing program.

2. The class needs to keep track of quite a few properties. Begin the class definition by listing

them like this:

 <?php
 class Ps2_Thumbnail {
 protected $_original;
 protected $_originalwidth;
 protected $_originalheight;
 protected $_thumbwidth;
 protected $_thumbheight;
 protected $_maxSize = 120;
 protected $_canProcess = false;
 protected $_imageType;

GENERATING THUMBNAIL IMAGES

219

 protected $_destination;
 protected $_name;
 protected $_suffix = '_thb';
 protected $_messages = array();
 }

As in the Ps2_Upload class, all the properties have been declared as protected, which means

they can t be changed accidentally outside the class definition. Again, I have followed the

convention of beginning protected property names with an underscore. The names are

descriptive, so they need little explanation. The $_maxSize property has been given a default

value of 120 (pixels). This determines the maximum size of the thumbnail s longer dimension.

The $_canProcess Boolean is initially set to false. This is to prevent the script from

attempting to process a file that isn t an image. The value will be reset to true if the MIME type

matches that of an image. You can also use it to prevent the generation of a thumbnail if

another error occurs.

3. The constructor takes one argument, the path to an image. Add the constructor definition after

the list of protected properties, but inside the the closing curly brace:

 protected $_messages = array();

 public function __construct($image) {
 if (is_file($image) && is_readable($image)) {
 $details = getimagesize($image);
 } else {
 $details = null;
 $this->_messages[] = "Cannot open $image.";
 }
 // if getimagesize() returns an array, it looks like an image
 if (is_array($details)) {
 $this->_original = $image;
 $this->_originalwidth = $details[0];
 $this->_originalheight = $details[1];
 // check the MIME type
 $this->checkType($details['mime']);
 } else {
 $this->_messages[] = "$image doesn't appear to be an image.";
 }
 }
 }

The constructor begins with a conditional statement that checks that $image is a file and is

readable. If it is, it s passed to getimagesize() and the result is stored in $details.

Otherwise, $details is set to null, and an error message is added to the $_messages

property.

When you pass an image to getimagesize(), it returns an array containing the following

elements:

CHAPTER 8

220

• 0: width (in pixels)

• 1: height

• 2: an integer indicating the type of image

• 3: a string containing the correct width and height attributes ready for insertion
in an tag

• mime: the image s MIME type

• channels: 3 for RGB, and 4 for CMYK images

• bits: the number of bits for each color

If the value passed as an argument to getimagesize() isn t an image, it returns false.

Consequently, if $details is an array, you know you re dealing with an image. The image s

path is stored in the $_original property, and its width and height are stored in

$_originalWidth and $_originalHeight respectively.

However, the image might not be a suitable type, so the final check is to pass its MIME type to

an internal method called checkType(), which you ll define next.

4. The checkType() method compares the MIME type with an array of acceptable image types. If

it finds a match, it resets the $_canProcess property to true, and stores the type in the

$_imageType property. The method is used internally, so it needs to be declared as protected.

Add the following code to the class definition:

 protected function checkType($mime) {
 $mimetypes = array('image/jpeg', 'image/png', 'image/gif');
 if (in_array($mime, $mimetypes)) {
 $this->_canProcess = true;
 // extract the characters after 'image/'
 $this->_imageType = substr($mime, 6);
 }
 }

There are many types of images, but only JPEG, PNG, and GIF are used in web pages, so the

$_canProcess property is set to true only if the image s MIME type matches one of those

listed in the $mimetypes array. If the MIME type isn t in the list $_canProcess remains false,

which later prevents the class from attempting to create a thumbnail.

All image MIME types begin with image/. To make the value easier to use later, the substr()

function extracts the characters after the slash and stores them in the $_imageType

property. When used with two arguments, substr() starts at the position (counting from 0)

specified in the second argument, and returns the rest of the string.

5. It s a good idea to test your code as you build the class. Catching errors early is much easier

than hunting for a problem in a long script. To test the code, create a new public method called

test() inside the class definition.

GENERATING THUMBNAIL IMAGES

221

It doesn t matter which order your methods appear inside the class definition, but it s common

practice to keep all public methods together after the constructor and to put protected

methods at the bottom of the file. This makes the code easier to maintain.

Insert the following definition between the constructor and the checkType() definition:

 public function test() {
 echo 'File: ' . $this->_original . '
';
 echo 'Original width: ' . $this->_originalwidth . '
';
 echo 'Original height: ' . $this->_originalheight . '
';
 echo 'Image type: ' . $this->_imageType . '
';
 if ($this->_messages) {
 print_r($this->_messages);
 }
 }

This uses echo and print_r() to display the value of the properties.

6. To test the class definition so far, save Thumbnail.php, and add the following code block

above the DOCTYPE declaration in create_thumb.php (the code is in

create_thumb_win02.php and create_thumb_mac02.php in the ch08 folder):

 <?php
 if (isset($_POST['create'])) {
 require_once('../classes/Ps2/Thumbnail.php');
 try {
 $thumb = new Ps2_Thumbnail($_POST['pix']);
 $thumb->test();
 } catch (Exception $e) {
 echo $e->getMessage();
 }
 }
 ?>

The name of the submit button in create_thumb.php is create, so this code runs only when

the form has been submitted. It includes the Ps2_Thumbnail class definition, creates an

instance of the class, passing the selected value from the form as an argument, and calls the

test() method.

7. Save create_thumb.php, and load it into a browser. Select an image, and click Create

Thumbnail. This produces output similar to Figure 8-1.

CHAPTER 8

222

Figure 8-1. Displaying the details of the selected image confirms the code is working.

If necessary, check your code against Thumbnail_01.php in the ch08 folder.

Although some properties have default values, you need to provide the option to change them by creating
public methods to set the maximum size of the thumbnail image, and the suffix applied to the base of the
filename. You also need to tell the class where to create the thumbnail. The formal term for this type of
method is a mutator method. However, because it sets a value, it s commonly referred to as a setter

method. The next stage is to create the setter methods.

PHP Solution 8-2: Creating the setter methods

In addition to setting the value of protected properties, setter methods play an important role in ensuring
the validity of the value being assigned. Continue working with the same class definition. Alternatively,
use Thumbnail_01.php in the ch08 folder.

1. Begin by creating the setter method for the folder where the thumbnail is to be created. Add the

following code to Thumbnail.php after the constructor definition.

 public function setDestination($destination) {
 if (is_dir($destination) && is_writable($destination)) {
 // get last character
 $last = substr($destination, -1);
 // add a trailing slash if missing
 if ($last == '/') || $last == '\\') {
 $this->_destination = $destination;
 } else {
 $this->_destination = $destination . DIRECTORY_SEPARATOR;
 }
 } else {
 $this->_messages[] = "Cannot write to $destination.";
 }
 }

GENERATING THUMBNAIL IMAGES

223

This begins by checking that $destination is a folder (directory) and that it s writable. If it

isn t, the error message in the else clause at the end of the method definition is added to the

$_messages property. Otherwise, the rest of the code is executed.

Before assigning the value of $destination to the $_destination property, the code

checks whether the value submitted ends in a forward slash or backslash. It does this by

extracting the final character in $destination, using the substr() function. The second

argument to substr() determines the position from which to start the extract. A negative

number counts from the end of the string. If the third argument is omitted, the function returns

the rest of the string. So, $last = substr($destination, -1) has the effect of extracting

the last character, and storing it in $last.

The conditional statement checks whether $last is a forward slash or a backslash. Two

backslashes are needed because PHP uses a backslash to escape quotes (see

“Understanding when to use quotes” and “Using escape sequences” in Chapter 3).

It s necessary to check for both forward slashes and backslashes in $destination because

a Windows user might use backslashes out of habit. If the conditional statement confirms that

the final character is a forward slash or a backslash, $destination is assigned to the

$_destination property. Otherwise, the else clause concatenates the PHP constant

DIRECTORY_SEPARATOR to the end of $destination before assigning it to the

$_destination property. The DIRECTORY_SEPARATOR constant automatically chooses the

right type of slash depending on the operating system.

PHP treats forward slashes or backslashes equally in a path. Even if this results in adding the

opposite type of slash, the path remains valid as far as PHP is concerned.

2. The setter method for the maximum size of the thumbnail simply needs to check that the value

is a number. Add the following code to the class definition:

 public function setMaxSize($size) {
 if (is_numeric($size)) {
 $this->_maxSize = abs($size);
 }
 }

The is_numeric() function checks that the submitted value is a number. If it is, it s assigned

to the $_maxSize property. As a precaution, the value is passed to the abs() function, which

converts a number to its absolute value. In other words, a negative number is converted into a

positive one.

If the submitted value isn t a number, nothing happens. The property s default value remains

unchanged.

3. The setter function for the suffix inserted in the filename needs to make sure the value doesn t

contain any special characters. The code looks like this:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 8

224

 public function setSuffix($suffix) {
 if (preg_match('/^\w+$/', $suffix)) {
 if (strpos($suffix, '_') !== 0) {
 $this->_suffix = '_' . $suffix;
 } else {
 $this->_suffix = $suffix;
 }
 } else {
 $this->_suffix = '';
 }
 }

This uses preg_match(), which takes a regular expression as its first argument and

searches for a match in the value passed as the second argument. Regular expressions need

to be wrapped in a pair of matching delimiter characters—normally forward slashes, as used

here. Stripped of the delimiters, the regex looks like this:

 ^\w+$

In this context, the caret (^) tells the regex to start at the beginning of the string. The \w

matches any alphanumeric character or an underscore. The + means match one or more of the

preceding character, and the $ means match the end of the string. In other words, the regex

matches a string that contains only alphanumeric characters and underscores. If the string

contains spaces or special characters, it won t match.

As mentioned before, regexes can be difficult to learn, but they re extremely useful in PHP,

JavaScript, and other web-related languages.

If the match fails, the else clause at the end of the method definition sets the $_suffix

property to an empty string. Otherwise, this conditional statement is executed.

 if (strpos($suffix, '_') !== 0) {

The condition equates to true if the first character of $suffix is not an underscore. It uses

the strpos() function to find the position of the first underscore. If the first character is an

underscore, the value returned by strpos() is 0. However, if $suffix doesn t contain an

underscore, strpos() returns false. As explained in Chapter 3, 0 is treated by PHP as

false, so the condition needs to use the “not identical” operator (with two equal signs). So, if

the suffix doesn t begin with an underscore, one is added. Otherwise, the original value is

preserved.

Don t confuse strpos() and strrpos(). The former finds the position of the first matching

character. The latter searches the string in reverse.

GENERATING THUMBNAIL IMAGES

225

4. Update the test() method to display the values of the properties for which you have just

created setter methods. The revised code looks like this:

 public function test() {
 echo 'File: ' . $this->_original . '
';
 echo 'Original width: ' . $this->_originalwidth . '
';
 echo 'Original height: ' . $this->_originalheight . '
';
 echo 'Image type: ' . $this->_imageType . '
';
 echo 'Destination: ' . $this->_destination . '
';
 echo 'Max size: ' . $this->_maxSize . '
';
 echo 'Suffix: ' . $this->_suffix . '
';
 if ($this->_messages) {
 print_r($this->_messages);
 }
 }

5. Test the updated class by using the new setter methods in create_thumb.php like this:

 $thumb = new Ps2_Thumbnail($_POST['pix']);
 $thumb->setDestination('C:/upload_test/thumbs/');
 $thumb->setMaxSize(100);
 $thumb->setSuffix('small');
 $thumb->test();

6. Save both pages, and select an image from the list in create_thumb.php. You should see

results similar to Figure 8-2.

Figure 8-2. Verifying that the setter methods work

7. Try a number of tests, omitting the trailing slash from the value passed to setDestination()

or selecting a nonexisting folder. Also pass invalid values to the setters for the maximum size

and suffix. An invalid destination folder produces an error message, but the others fail silently,

using the default value for the maximum size or an empty string for the suffix.

CHAPTER 8

226

If necessary, compare your code with Thumbnail_02.php in the ch08 folder.

You might not agree with my decision to fail silently when the values passed as arguments are invalid. By
now, though, you should have sufficient experience of conditional statements to adapt the code to your
own requirements. For example, if you want the setter method for the thumbnail s maximum size to return
an error message instead of failing silently, check that the value is greater than zero, and add an else
clause to generate the error message. The else clause should also set the $_canProcess property to
false to prevent the class from attempting to create a thumbnail image. This is how you would adapt the
setMaxSize() method:

 public function setMaxSize($size) {
 if (is_numeric($size) && $size > 0) {
 $this->_maxSize = $size;
 } else {
 $this->_messages[] = 'The value for setMaxSize() must be a positive number.';
 $this->_canProcess = false;
 }
}

Before you can create the thumbnail image, you need to calculate its size. The value set in the $_maxSize
property determines the width or height, depending which is larger. To avoid distorting the thumbnail, you
need to calculate the scaling ratio for the shorter dimension. The ratio is calculated by dividing the
maximum thumbnail size by the larger dimension of the original image.

For example, the original image of the Golden Pavilion (kinkakuji.jpg) is 270 346 pixels. If the
maximum size is set at 120, dividing 120 by 346 produces a scaling ratio of 0.3468. Multiplying the width of
the original image by this ratio fixes the thumbnail s width at 94 pixels (rounded up to the nearest whole
number), maintaining the correct proportions. Figure 8-3 shows how the scaling ratio works.

Figure 8-3. Working out the scaling ratio for a thumbnail image.

GENERATING THUMBNAIL IMAGES

227

The base filename also needs to be split from the filename extension in preparation for inserting the suffix
indicating it s a thumbnail.

PHP Solution 8-3: Final preparations for generating the thumbnail

This PHP solution adds three new methods to the Ps2_Thumbnail class: a public method that initiates the
generation of the thumbnail image, and two internal methods that calculate the thumbnail s dimensions
and split the image s base name from its filename extension. In PHP Solution 6-5, isolating the filename
extension was done by searching for a dot or period in the filename. This time, you know the file types in
advance, so a regular expression is used.

Continue working with your existing class definition. Alternatively, use Thumbnail_02.php in the ch08
folder.

1. Calculating the thumbnail dimensions doesn t require any further user input, so it can be

handled by an internal method. Add the following code to the class definition. It s a protected

method, so put it at the end of the file, just inside the closing curly brace.

 protected function calculateSize($width, $height) {
 if ($width <= $this->_maxSize && $height <= $this->_maxSize) {
 $ratio = 1;
 } elseif ($width > $height) {
 $ratio = $this->_maxSize/$width;
 } else {
 $ratio = $this->_maxSize/$height;
 }
 $this->_thumbwidth = round($width * $ratio);
 $this->_thumbheight = round($height * $ratio);
 }

The dimensions of the original image are stored as properties of the Ps2_Thumbnail object,

so you could refer to them directly as $this->_originalWidth and

$this->_originalHeight. However, the method needs to refer to these values often, so I

decided to pass them as arguments to make the code easier to read and type.

The conditional statement begins by checking if the width and height of the original image are

less than or equal to the maximum size. If they are, the image doesn t need to be resized, so

the scaling ratio is set to 1.

The elseif clause checks if the width is greater than the height. If it is, the width is used to

calculate the scaling ratio. The else clause is invoked if the height is greater or both sides are

equal. In either case, the height is used to calculate the scaling ratio.

The last two lines multiply the original width and height by the scaling ratio, and assign the

results to the $_thumbwidth and $_thumbheight properties. The calculation is wrapped in

the round() function, which rounds the result to the nearest whole number.

2. Next, add the method that gets the filename and strips off the filename extension. The code

looks like this:

 protected function getName() {

CHAPTER 8

228

 $extensions = array('/\.jpg$/i', '/\.jpeg$/i', '/\.png$/i', '/\.gif$/i');
 $this->_name = preg_replace($extensions, '', basename($this->_original));
 }

The code inside the method is only two lines, but there s a lot going on. The first line creates

an array of regular expressions. As mentioned earlier, regexes are wrapped in delimiter

characters, normally forward slashes. The i after the closing slash of each regex tells it to

peform a case-insensitive search.

A period normally represents any character, but escaping it with a backslash makes the regex

look only for a period. The $ matches the end of the string. Everything else matches a literal

character. In other words, these regexes match .jpg, .jpeg, .png, and .gif in a case-

insensitive manner.

The second line uses the preg_replace() function, which performs a find and replace

operation using a regex or array of regexes. The first argument is the value(s) you want to

replace. The second argument is the replacement text—in this case, an empty string. The

third argument is the subject of the search and replace operation.

Here, the third argument is the value of the $_original property, which has been passed to

the basename() function. You met basename() in PHP Solution 4-3. It extracts the filename

from a path. So, the code in the second line searches the filename for an image filename

extension and replaces it with nothing. In other words, it strips off the filename extension, and

assigns the result to the $_name property.

3. These two methods need to be called by the method that creates the thumbnail image. Add the

following public method to the class definition above the protected methods:

 public function create() {
 if ($this->_canProcess && $this->_originalwidth != 0) {
 $this->calculateSize($this->_originalwidth, $this->_originalheight);
 $this->getName();
 } elseif ($this->_originalwidth == 0) {
 $this->_messages[] = 'Cannot determine size of ' . $this->_original;
 }
 }

This checks that $_canProcess is true and that the width of the original image is not 0. The

second test is necessary because getimagesize() sets the width and height to 0 if it can t

determine the size. This usually happens if the image format contains multiple images. The

method then calls the two internal methods you have just created. If the $_originalwidth

property is 0, an error message is added to the $_messages property.

4. To test the new methods, amend the test() method like this:

 public function test() {
 echo 'File: ' . $this->_original . '
';
 echo 'Original width: ' . $this->_originalwidth . '
';
 echo 'Original height: ' . $this->_originalheight . '
';
 echo 'Image type: ' . $this->_imageType . '
';

GENERATING THUMBNAIL IMAGES

229

 echo 'Destination: ' . $this->_destination . '
';
 echo 'Max size: ' . $this->_maxSize . '
';
 echo 'Suffix: ' . $this->_suffix . '
';
 echo 'Thumb width: ' . $this->_thumbwidth . '
';
 echo 'Thumb height: ' . $this->_thumbheight . '
';
 echo 'Base name: ' . $this->_name . '
';
 if ($this->_messages) {
 print_r($this->_messages);
 }
 }

5. The call to create() needs to come before the test() method. Otherwise, the new values

won t have been generated. Amend the code in create_thumb.php like this:

 $thumb = new Ps2_Thumbnail($_POST['pix']);
 $thumb->setDestination('C:/upload_test/thumbs/');
 $thumb->setMaxSize(100);
 $thumb->setSuffix('small');
 $thumb->create();
 $thumb->test();

6. Test the updated class by selecting an image in create_thumb.php and clicking Create

Thumbnail. You should see the values displayed onscreen, as shown in Figure 8-4.

Figure 8-4. The class is now generating all the values needed to create the thumbnail image.

If necessary, check your code against Thumbnail_03.php in the ch08 folder.

After you have gathered all the necessary information, you can generate a thumbnail image from a larger
one. This involves creating image resources for the original image and the thumbnail. For the original
image, you need to use one of these functions specific to the image s MIME type:

CHAPTER 8

230

• imagecreatefromjpeg()

• imagecreatefrompng()

• imagecreatefromgif()

The functions take a single argument: the path to the file. Because the thumbnail doesn t yet exist, you
use a different function, imagecreatetruecolor(), which takes two arguments—the width and height (in
pixels).

The function that creates a resized copy of an image is imagecopyresampled(), which takes no fewer
than ten arguments—all of them required. The arguments fall into five pairs as follows:

• References to the two image resources—copy first, original second

• The x and y coordinates of where to position the top-left corner of the copied image

• The x and y coordinates of the top-left corner of the original

• The width and height of the copy

• The width and height of the area to copy from the original

Figure 8-5 shows how the last four pairs of arguments can be used to extract a specific area, rather than
copy the whole image, using the following arguments to imagecopyresampled():

imagecopyresampled($thumb, $source, 0, 0, 170, 20, $thbwidth,$thbheight, 170, 102);

Figure 8-5. The imagecopyresampled() function allows you to copy part of an image.

The x and y coordinates of the area to copy are measured in pixels from the top left of the image. The x
and y axes begin at 0 at the top left, and increase to the right and down. By setting the width and height of
the area to copy to 170 and 102, respectively, PHP extracts the area outlined in white.

So, now you know how websites manage to crop uploaded images. They calculate the coordinates
dynamically using JavaScript or Flash, both of which are beyond the scope of this book. For the
Ps2_Thumbnail class, you ll use the whole of the original image to generate the thumbnail.

After creating the copy with imagecopyresampled(), you need to save it, again using a function specific
to the MIME type, namely:

• imagejpeg()

GENERATING THUMBNAIL IMAGES

231

• imagepng()

• imagegif()

Each function takes as its first two arguments: the image resource and the path to where you want to save
it.

The imagejpeg() and imagepng() functions take an optional third argument to set the image quality. For
imagejpeg(), you set quality by specifying a number in the range of 0 (worst) to 100 (best). If you omit
the argument, the default is 75. For imagepng(), the range is 0 to 9. Confusingly, 0 produces the best
quality (no compression).

Finally, once you have saved the thumbnail, you need to destroy the image resources by passing them to
imagedestroy(). In spite of its destructive name, this function has no effect on the original image or the
thumbnail. It simply frees the server memory by destroying the image resources required during
processing.

PHP Solution 8-4: Generating the thumbnail image

This PHP Solution completes the Ps2_Thumbnail class by creating the image resources, copying the
thumbnail, and saving it in the destination folder.

Continue working with your existing class definition. Alternatively, use Thumbnail_03.php in the ch08
folder.

1. The image resource for the original image needs to be specific to its MIME type, so start by

creating an internal method to select the correct type. Add the following code to the class

definition. It s a protected method, so put it at the bottom of the page (but inside the class s

closing curly brace).

 protected function createImageResource() {
 if ($this->_imageType == 'jpeg') {
 return imagecreatefromjpeg($this->_original);
 } elseif ($this->_imageType == 'png') {
 return imagecreatefrompng($this->_original);
 } elseif ($this->_imageType == 'gif') {
 return imagecreatefromgif($this->_original);
 }
 }

The checkType() method that you created in PHP Solution 8-1 stores the MIME type as jpeg,

png, or gif. So, the conditional statement checks the MIME type, matches it to the appropriate

function, and passes the original image as an argument. The method then returns the resulting

image resource.

2. Now it s time to define the internal method that does all the hard work. It contains a lot of code,

so I ll break it into sections. Start by defining the createThumbnail() method like this:

 protected function createThumbnail() {
 $resource = $this->createImageResource();
 $thumb = imagecreatetruecolor($this->_thumbwidth, $this->_thumbheight);

 }

CHAPTER 8

232

This calls the createImageResource() method that you created in step 1, and then creates

an image resource for the thumbnail, passing the thumbnail s width and height to

imagecreatetruecolor().

3. The next stage in creating the thumbnail involves passing both image resources to

imagecopyresampled() and setting the coordinates and dimensions. Amend the

createThumbnail() method like this:

 protected function createThumbnail() {
 $resource = $this->createImageResource();
 $thumb = imagecreatetruecolor($this->_thumbwidth, $this->_thumbheight);
 imagecopyresampled($thumb, $resource, 0, 0, 0, 0, $this->_thumbwidth,
 $this->_thumbheight, $this->_originalwidth, $this->_originalheight);
 }

The first two arguments are the image resources you have just created for the thumbnail and

original image. The next four arguments set the x and y coordinates for both the copy and the

original to the top left corner. Next come the width and height calculated for the thumbnail,

followed by the original image s width and height. By setting arguments 3–6 to the top left

corner and both sets of dimensions to the full amounts, this copies the whole original image to

the whole of the thumbnail. In other words, it creates a smaller copy of the original.

Note that you don t need to assign the result of imagecopyresampled() to a variable. The

scaled down image is now stored in $thumb, but you still need to save it.

4. Complete the definition of createThumbnail() like this:

 protected function createThumbnail() {
 $resource = $this->createImageResource();
 $thumb = imagecreatetruecolor($this->_thumbwidth, $this->_thumbheight);
 imagecopyresampled($thumb, $resource, 0, 0, 0, 0, $this->_thumbwidth,
 $this->_thumbheight, $this->_originalwidth, $this->_originalheight);
 $newname = $this->_name . $this->_suffix;
 if ($this->_imageType == 'jpeg') {
 $newname .= '.jpg';
 $success = imagejpeg($thumb, $this->_destination . $newname, 100);
 } elseif ($this->_imageType == 'png') {
 $newname .= '.png';
 $success = imagepng($thumb, $this->_destination . $newname, 0);
 } elseif ($this->_imageType == 'gif') {
 $newname .= '.gif';
 $success = imagegif($thumb, $this->_destination . $newname);
 }
 if ($success) {
 $this->_messages[] = "$newname created successfully.";
 } else {
 $this->_messages[] = "Couldn't create a thumbnail for " .
 basename($this->_original);
 }
 imagedestroy($resource);

GENERATING THUMBNAIL IMAGES

233

 imagedestroy($thumb);
 }

The first line of new code concatenates the suffix to the filename stripped of its filename

extension. So, if the original file is called menu.jpg and the default _thb suffix is used,

$newname becomes menu_thb.

The conditional statement checks the image s MIME type and appends the appropriate

filename extension. In the case of menu.jpg, $newname becomes menu_thb.jpg. The scaled

down image is then passed to the appropriate function to save it, using the destination folder

and $newname as the path where it is saved. For JPEG and PNG images, the optional quality

argument is set to the highest level: 100 for JPEG and 0 for PNG.

The result of the save operation is stored in $success. Depending on the outcome, $success
is either true or false, and an appropriate message is added to the $_messages property.

Finally, imagedestroy() frees the server memory by destroying the resources used to create

the thumbnail image.

5. Update the definition of the create() method to call the createThumbnail() method:

 public function create() {
 if ($this->_canProcess && $this->_originalwidth != 0) {
 $this->calculateSize($this->_originalwidth, $this->_originalheight);
 $this->getName();
 $this->createThumbnail();
 } elseif ($this->_originalwidth == 0) {
 $this->_messages[] = 'Cannot determine size of ' . $this->_original;
 }
 }

6. You no longer need the test() method. You can either delete it from the class definition or

comment it out. If you plan to experiment further or make enhancements to the class,

commenting it out saves the effort of creating it again from scratch.

7. Up to now, you have used the test() method to display error messages. Create a public

method to get the messages:

 public function getMessages() {
 return $this->_messages;
 }

8. Save Thumbnail.php. In create_thumb.php, replace the call to the test() method with a

call to getMessages(), and assign the result to a variable like this:

 $thumb->create();
 $messages = $thumb->getMessages();

9. Add a PHP code block just after the opening <body> tag to display any messages:

 <?php
 if (isset($messages) && !empty($messages)) {

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 8

234

 echo '';
 foreach ($messages as $message) {
 echo "$message";
 }
 echo '';
 }
 ?>

You ve seen this code in previous chapters, so it needs no explanation.

10. Save create_thumb.php, load it in a browser, and test it by selecting an image from the list

and clicking Create Thumbnail. If all goes well, you should see a message reporting the

creation of the thumbnail, and confirm its existence in the thumbs subfolder of upload_test,

as shown in Figure 8-6.

Figure 8-6. The thumbnail has been successfully created in the destination folder.

11. If the thumbnail isn t created, the error message generated by the Ps2_Thumbnail class

should help you detect the source of the problem. Also, check your code carefully against

Thumbnail_04.php in the ch08 folder. If the tests in the previous PHP solutions worked, the

error is likely to be in the create(), createImageResource(),or createThumbnail()

method definitions. The other place to check is, of course, your PHP configuration. The class

depends on the GD extension being enabled. Although GD is widely supported, it s not always

on by default.

GENERATING THUMBNAIL IMAGES

235

Resizing an image automatically on upload
Now that you have a class that creates a thumbnail from a larger image, it s relatively simple to adapt the
Ps2_Upload class from Chapter 6 to generate a thumbnail from an uploaded image—in fact, not only from
a single image, but also from multiple images.

Instead of changing the code in the Ps2_Upload class, it s more efficient to extend the class and create a
subclass. You then have the choice of using the original class to perform uploads of any type of file, or the
subclass to create thumbnail images on upload. The subclass also needs to provide the option to save or
discard the larger image after the thumbnail has been created.

Before diving into the code, let s take a quick look at how you create a subclass.

Extending a class

A major advantage of using classes is that they re extensible. To extend a class, you simply include the
original class definition and define the subclass using the extends keyword like this:

require_once('OriginalClass.php');
class MyNewClass extends OriginalClass {
 // subclass definition
}

This creates a new subclass or child class called MyNewClass from the original or parent class,
OriginalClass. The parent-child analogy is apposite, because the child inherits all the features of its
parent, but can adapt some of them and acquire new ones of its own. This means that MyNewClass shares
the same properties and methods as OriginalClass, but you can add new properties and methods. You
can also redefine (or override) some of the parent s methods and properties. This simplifies the process
of creating a class to perform a more specialized task. The Ps2_Upload class you created in Chapter 6
performs basic file uploads. In this chapter, you ll extend it to create a child class called
Ps2_ThumbnailUpload that uses the basic upload features of its parent, but adds specialized features
that create thumbnail images.

Like all children, a child class often needs to borrow from its parent. This frequently happens when you
override a method in the child class, but need to use the original version as well. To refer to the parent
version, you prefix it with the parent keyword followed by two colons like this:

parent::originalMethod();

You ll see how this works in PHP Solution 8-5, because the child class defines its own constructor to add
an extra argument, but also needs to use the parent constructor.

This description of inheritance covers only the bare minimum you need to understand PHP Solution 8-

5. For a more detailed insight into PHP classes, see my PHP Object-Oriented Solutions (friends of

ED, 2008, ISBN: 978-1-4302-1011-5).

So, let s create a class capable of uploading images and generating thumbnails at the same time.

CHAPTER 8

236

PHP Solution 8-5: Creating the Ps2_ThumbnailUpload class

This PHP solution extends the Ps2_Upload class from Chapter 6 and uses it in conjunction with the
Ps2_Thumbnail class to upload and resize images. It demonstrates how to create a child class and
override parent methods. To create the child class, you need Upload.php from Chapter 6 and
Thumbnail.php from this chapter. Copies of both files are in the classes/completed folder.

1. Create a new file called ThumbnailUpload.php in the classes/Ps2 folder. It will contain

only PHP code, so strip out any HTML inserted by your script editor, and add the following

code:

 <?php
 require_once('Upload.php');
 require_once('Thumbnail.php');

 class Ps2_ThumbnailUpload extends Ps2_Upload {

 }

This includes the definitions of the Ps2_Upload and Ps2_Thumbnail classes, and declares

that the Ps2_ThumbnailUpload class extends Ps2_Upload. All subsequent code needs to be

inserted between the curly braces.

2. The child class needs three properties: for the folder where the thumbnail is to be saved, a

Boolean that determines whether to delete the original image, and for the suffix to be added to

the thumbnail. The last of these is required in case you don t want to use the default suffix

defined in Ps2_Thumbnail. Add the following property definitions inside the curly braces:

 protected $_thumbDestination;
 protected $_deleteOriginal;
 protected $_suffix = '_thb';

3. When you extend a class, the only time you need to define a constructor method is when you

want to change how the constructor works. The Ps2_ThumbnailUpload class takes an extra

argument that determines whether to delete the original image, giving you the option to retain

only the thumbnail or to keep both versions of the image. When testing locally, a

Ps2_Thumbnail object can access the original image on your own hard drive. But generating

the thumbnail is a server-side operation, so it won t work on a website without first uploading

the original image to the server.

The constructor also needs to call the parent constructor to define the path to the upload

folder. Add the following definition to the class:

 public function __construct($path, $deleteOriginal = false) {
 parent::__construct($path);
 $this->_thumbDestination = $path;
 $this->_deleteOriginal = $deleteOriginal;
 }

GENERATING THUMBNAIL IMAGES

237

The constructor takes two arguments: the path to the upload folder and a Boolean variable

that determines whether to delete the original image. The second argument is set to false in

the constructor signature, making it optional.

The first line of code inside the constructor passes $path to the parent constructor to set the

destination folder for the file uploads. The second line also assigns $path to the

$_thumbDestination property, making the same folder the default for both images.

The final line assigns the value of the second argument to the $_deleteOriginal property.

Because the second argument is optional, it s automatically set to false and both images are

retained unless you set it explicitly to true.

4. Create the setter method for the thumbnail destination folder like this:

 public function setThumbDestination($path) {
 if (!is_dir($path) || !is_writable($path)) {
 throw new Exception("$path must be a valid, writable directory.");
 }
 $this->_thumbDestination = $path;
 }

This takes a path as its only argument, checks that it s a folder (directory) and is writable, and

assigns the value to the $_thumbDestination property. If the value passed as an argument

is invalid, the class throws an exception.

Instead of creating a setter method for the thumbnail destination folder, I could have added an extra

argument to the constructor. However, my choice simplifies the constructor for occasions when you

want to save the thumbnail and original image in the same folder. Also, I could have silently used the

original upload folder instead of throwing an exception if there s a problem with the thumbnail

destination. I decided that a problem with the destination folder is too serious to ignore. Decisions like

this are an integral part of writing any script, not just designing a class.

5. Apart from the name, the setter method for the thumbnail suffix is identical to the one in

Thumbnail.php. It looks like this:

 public function setThumbSuffix($suffix) {
 if (preg_match('/\w+/', $suffix)) {
 if (strpos($suffix, '_') !== 0) {
 $this->_suffix = '_' . $suffix;
 } else {
 $this->_suffix = $suffix;
 }
 } else {
 $this->_suffix = '';
 }
 }

CHAPTER 8

238

You need to define the method here because the class inherits from Ps2_Upload, not

Ps2_Thumbnail. A PHP class can have only a single parent.

6. Next, create a protected method to generate the thumbnail using the following code:

 protected function createThumbnail($image) {
 $thumb = new Ps2_Thumbnail($image);
 $thumb->setDestination($this->_thumbDestination);
 $thumb->setSuffix($this->_suffix);
 $thumb->create();
 $messages = $thumb->getMessages();
 $this->_messages = array_merge($this->_messages, $messages);
 }

This takes a single argument, the path to an image, and creates a Ps2_Thumbnail object. The

code is similar to create_thumb.php, so it shouldn t need explanation.

The final line uses array_merge() to merge any messages generated by the Ps2_Thumbnail

object with the $_messages property of the Ps2_ThumbnailUpload class. Although the

properties you defined in step 2 don t include a $_messages property, the child class

automatically inherits it from its parent.

7. In the parent class, the processFile() method saves an uploaded file to its target

destination. The thumbnail needs to be generated from the original image, so you need to

override the parent s processFile() method, and use it to call the createThumbnail()

method that you have just defined. Copy the processFile() method from Upload.php, and

amend it by adding the code highlighted in bold.

 protected function processFile($filename, $error, $size, $type,
 $tmp_name, $overwrite) {
 $OK = $this->checkError($filename, $error);
 if ($OK) {
 $sizeOK = $this->checkSize($filename, $size);
 $typeOK = $this->checkType($filename, $type);
 if ($sizeOK && $typeOK) {
 $name = $this->checkName($filename, $overwrite);
 $success = move_uploaded_file($tmp_name, $this->_destination . $name);
 if ($success) {
 // don't add a message if the original image is deleted
 if (!$this->_deleteOriginal) {
 $message = $filename . ' uploaded successfully';
 if ($this->_renamed) {
 $message .= " and renamed $name";
 }
 $this->_messages[] = $message;
 }
 // create a thumbnail from the uploaded image
 $this->createThumbnail($this->_destination . $name);
 // delete the uploaded image if required
 if ($this->_deleteOriginal) {

GENERATING THUMBNAIL IMAGES

239

 unlink($this->_destination . $name);
 }
 } else {
 $this->_messages[] = 'Could not upload ' . $filename;
 }
 }
 }
 }

If the original image has been uploaded successfully, the new code adds a conditional

statement to generate the message only if $_deleteOriginal is false. It then calls the

createThumbnail() method, passing it the uploaded image as the argument. Finally, if

$_deleteOriginal has been set to true, it uses unlink() to delete the uploaded image,

leaving only the thumbnail.

8. Save ThumbnailUpload.php. To test it, copy create_thumb_upload_01.php from the ch08

folder to the gd folder, and save it as create_thumb_upload.php. The file contains a simple

form with a file field and a PHP block that displays messages. Add the following PHP code

block above the DOCTYPE declaration:

 if (isset($_POST['upload'])) {
 require_once('../classes/Ps2/ThumbnailUpload.php');
 try {
 $upload = new Ps2_ThumbnailUpload('C:/upload_test/');
 $upload->setThumbDestination('C:/upload_test/thumbs/');
 $upload->move();
 $messages = $upload->getMessages();
 } catch (Exception $e) {
 echo $e->getMessage();
 }
 }

Adjust the paths in the constructor and setThumbDestination() method, if necessary.

9. Save create_thumb_upload.php, and load it in an HTML5-compliant browser. Click the

Browse or Choose File button, and select multiple images. When you click the Upload

button, you should see messages informing you of the successful upload and creation of the

thumbnails. Check the destination folders, as shown in Figure 8-7.

CHAPTER 8

240

Figure 8-7. The thumbnails are created in the same operation as the images are uploaded.

10. Test the Ps2_ThumbnailUpload class by uploading the same images again. This time, the

original images and thumbnails should be renamed in the same way as in Chapter 6 through the

addition of a number before the filename extension.

11. Try different tests, changing the suffix inserted into the thumbnail names, or deleting the

original image after the thumbnail has been created. If you run into problems, check your code

carefully against ThumbnailUpload.php in the ch08 folder.

In older browsers that don t support the multiple attribute on form fields, the class uploads a single

image and creates a thumbnail from it. To support multiple uploads from older browsers, create

multiple file fields in the form, and give them all the same name attribute followed by an empty pair of

square brackets like this: name="image[]".

Using the Ps2_ThumbnailUpload class

The Ps2_ThumbnailUpload class is easy to use. Just include the class definition in your file, and pass the
path to the upload folder to the constructor as an argument like this:

$upload = new Ps2_ThumbnailUpload('C:/upload_test/');

GENERATING THUMBNAIL IMAGES

241

If you want to delete the original image after the thumbnail has been created, pass true as the second
argument to the constructor like this:

$upload = new Ps2_ThumbnailUpload('C:/upload_test/', true);

The class has the following public methods:

• setThumbDestination(): This sets the path to the folder where the thumbnail images are to

be saved. If you don t call this method, the thumbnails are stored in the same folder as the

original images.

• setThumbSuffix(): Use this to change the suffix inserted into the thumbnail names. The

default is _thb.

• move(): This uploads the original image(s) and generates the thumbnail(s). By default, images

that have the same name as an existing one are renamed. To overwrite existing images, pass

true as an argument to this method.

It also inherits the following methods from the parent Ps2_Upload class:

• getMessages(): Retrieves messages generated by the upload and the thumbnail.

• getMaxSize(): Gets the maximum upload size. The default is 50kB.

• setMaxSize(): Changes the maximum upload size. The argument should be expressed as the

number of bytes permitted.

• addPermittedTypes(): This allows you to add other MIME types to the upload. The

Ps2_Thumbnail class rejects MIME types that it doesn t recognize, but the files are uploaded

as normal to the main destination folder.

The Ps2_ThumbnailUpload class wasn t designed with mixed uploads in mind, so refine the messages
generated by the Ps2_Thumbnail class if you want to use the inherited addPermittedTypes() method.

Because the Ps2_ThumbnailUpload class is dependent on the Ps2_Upload and Ps2_Thumbnail
classes, you need to upload all three class definition files to your remote web server when using this class
on a live website.

Chapter summary
This has been quite an intense chapter, showing not only how to generate thumbnails from larger images,
but also introducing you to extending an existing class and overriding inherited methods. Designing and
extending classes can be confusing at first, but it becomes less intimidating if you concentrate on what
each method is doing. A key principle of class design is to break large tasks down into small, manageable
units. Ideally, a method should perform a single task, such as creating the image resource for the original
image. This isn t always possible. For example, the createThumbnail() and processFile() methods
perform multiple operations.

The real advantage of using classes is the time and effort they save once you have defined them. Instead
of typing dozens of lines of code each time you want to add file or thumbnail upload functionality to a
website, calling the class involves just a few simple lines. Also don t just think of the code in this chapter
as being for creating and uploading thumbnail images. Many of the subroutines in the class files could be
adapted for use in other situations.

CHAPTER 8

242

In the next chapter, you ll learn all about PHP sessions, which preserve information related to a specific
user and play a vital role in password-protecting web pages.

243

Chapter 9

Pages That Remember:
Simple Login and Multipage Forms

The Web is a brilliant illusion. When you visit a well-designed website, you get a great feeling of continuity,

as though flipping through the pages of a book or a magazine. Everything fits together as a coherent

entity. The reality is quite different. Each part of an individual page is stored and handled separately by

the web server. Apart from needing to know where to send the relevant files, the server has no interest in

who you are. Each time a PHP script runs, the variables exist only in the server s memory and are normally

discarded as soon as the script finishes. Even variables in the $_POST and $_GET arrays have only a brief

life span. Their value is passed once to the next script and then removed from memory unless you do

something with it, such as store the information in a hidden form field. Even then, it persists only if the

form is submitted.

To get around these problems, PHP uses sessions. After briefly describing how sessions work, I ll show

you how you can use session variables to create a simple file-based login system and pass information

from one page to another without the need to use hidden form fields.

In this chapter, you ll learn about the following:

• Understanding what sessions are and how to create them

• Creating a file-based login system

• Checking password strength with a custom-built class

• Setting a time limit for sessions

• Using sessions to keep track of information over multiple pages

What sessions are and how they work
A session ensures continuity by storing a random identifier—the session ID—on the web server and on

the visitor s computer (as a cookie). The web server uses the cookie to recognize that it s communicating

with the same person (or, to be more precise, with the same computer). Figures 9-1 through 9-3 show the

details of a simple session created in my local testing environment.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9

244

As Figure 9-1 shows, the cookie stored in the browser is called PHPSESSID, and the content is a jumble of

letters and numbers. This random string is the session s ID.

Figure 9-1. PHP sessions store a unique identifier as a cookie in the browser.

A matching file, which contains the same jumble of letters and numbers as part of its filename, is created

on the web server, as shown in Figure 9-2.

Figure 9-2. The content of the cookie identifies the session data stored on the web server.

When a session is initiated, the server stores information in session variables that can be accessed by

other pages as long as the session remains active (normally until the browser is closed). Because the

session ID is unique to each visitor, the information stored in session variables cannot be seen by anyone

else. This means sessions are ideal for user authentication, although they can be used for any situation

PAGES THAT REMEMBER: SIMPLE LOGIN AND MULTIPAGE FORMS

245

where you want to preserve information for the same user when passing from one page to the next, such

as with a multipage form or a shopping cart.

The only information stored on the user s computer is the cookie that contains the session ID, which is

meaningless by itself. This means there is no danger of private information being exposed through

someone examining the contents of a cookie on a shared computer.

The session variables and their values are stored on the web server. Figure 9-3 shows the contents of a

simple session file. As you can see, it s in plain text, and the content isn t difficult to decipher. The

session shown in the figure has one variable: name. The variable s name is followed by a vertical pipe, then

the letter “s”, a colon, a number, another colon, and the variable s value in quotes. The “s” stands for

string, and the number indicates how many characters the string contains. So, this session variable

contains my name as a string, which is five characters long.

Figure 9-3. The details of the session are stored on the server in plain text.

This setup has several implications. The cookie containing the session ID normally remains active until

the browser is closed. So, if several people share the same computer, they all have access to each

other s sessions unless they always close the browser before handing over to the next person, something

over which you have no control. So, it s important to provide a logout mechanism to delete both the cookie

and the session variables, keeping your site secure. You can also create a timeout mechanism, which

automatically prevents anyone from regaining access after a certain period of inactivity.

Storing session variables in plain text on the web server is not, in itself, a cause for concern. As long as

the server is correctly configured, the session files cannot be accessed through a browser. Inactive files

are also routinely deleted by PHP (in theory, the lifetime is 1,440 seconds—24 minutes—but this cannot

be relied upon). Nevertheless, it should be obvious that, if an attacker manages to compromise the server

or hijack a session, the information could be exposed. So, although sessions are generally secure enough

for password protecting parts of a website or working with multipage forms, you should never use session

variables to store sensitive information, such as passwords or credit card details. As you ll see in “Using

sessions to restrict access” later in this chapter, although a password is used to gain access to a

protected site, the password itself is stored (preferably encrypted) in a separate location, and not as a

session variable.

Sessions are supported by default, so you don t need any special configuration. However, sessions won t

work if cookies are disabled in the user s browser. It is possible to configure PHP to send the session ID

through a query string, but this is considered a security risk.

Creating PHP sessions

Just put the following command in every PHP page that you want to use in a session:

session_start();

This command should be called only once in each page, and it must be called before the PHP script

generates any output, so the ideal position is immediately after the opening PHP tag. If any output is

generated before the call to session_start(), the command fails and the session won t be activated for

that page. (See “The Headers already sent error” section later for an explanation.)

CHAPTER 9

246

Creating and destroying session variables

You create a session variable by adding it to the $_SESSION superglobal array in the same way you would

assign an ordinary variable. Say you want to store a visitor s name and display a greeting. If the name is

submitted in a login form as $_POST['name'], you assign it like this:

$_SESSION['name'] = $_POST['name'];

$_SESSION['name'] can now be used in any page that begins with session_start(). Because session

variables are stored on the server, you should get rid of them as soon as they are no longer required by

your script or application. Unset a session variable like this:

unset($_SESSION['name']);

To unset all session variables—for instance, when you re logging someone out—set the $_SESSION

superglobal array to an empty array, like this:

$_SESSION = array();

Do not be tempted to try unset($_SESSION). It works all right—but it s a little too effective. It not
only clears the current session but also prevents any further session variables from being stored.

Destroying a session

By itself, unsetting all the session variables effectively prevents any of the information from being reused,

but you should also invalidate the session cookie like this:

if (isset($_COOKIE[session_name()])) {
 setcookie(session_name(), '', time()-86400, '/');
}

This uses the function session_name() to get the name of the session dynamically and resets the

session cookie to an empty string and to expire 24 hours ago (86400 is the number of seconds in a day).

The final argument ('/') applies the cookie to the whole domain.

Finally, destroy the session with the following command:

session_destroy();

By destroying a session like this, there is no risk of an unauthorized person gaining access either to a

restricted part of the site or to any information exchanged during the session. However, a visitor may

forget to log out, so it s not always possible to guarantee that the session_destroy() command will be

triggered, which is why it s so important not to store sensitive information in a session variable.

You may find session_register() and session_unregister() in old scripts. These functions are
deprecated. Use $_SESSION['variable_name'] and unset($_SESSION['variable_name']) instead.

PAGES THAT REMEMBER: SIMPLE LOGIN AND MULTIPAGE FORMS

247

Regenerating the session ID

When a user changes status, such as after logging in, it s recommended as a security measure to

regenerate the session ID. This changes the random string of letters and numbers that identify the

session, but preserves all the information stored in session variables. In PHP Pro Security (Apress,

2005, ISBN 978-1-59059-508-4), Chris Snyder and Michael Southwell explain that “the goal of generating a

fresh session ID is to remove the possibility, however slight, that an attacker with knowledge of the low-

level security session might be able to perform high-security tasks.”

To regenerate the session ID, simply call session_regenerate_id() and redirect the user to another

page or reload the same one.

The “Headers already sent” error

Although using PHP sessions is very easy, there s one problem that causes beginners a great deal of

head banging. Instead of everything working the way you expect, you see the following message:

Warning: Cannot add header information - headers already sent

I ve mentioned this problem several times before in conjunction with the header() function. It affects

session_start() and setcookie() as well. In the case of session_start(), the solution is simple:

make sure that you put it immediately after the opening PHP tag (or very soon thereafter), and check that

there s no whitespace before the opening tag.

Sometimes, the problem occurs even if there is no whitespace ahead of the PHP tag. This is usually

caused by editing software inserting the byte order mark (BOM) at the beginning of the script. If this

happens, open your script editor s preferences and disable the use of the BOM in PHP pages.

When using setcookie() to destroy the session cookie, though, it s quite likely that you may need to

send output to the browser before calling the function. In this case, PHP lets you save the output in a

buffer using ob_start(). You then flush the buffer with ob_end_flush() after setcookie() has done its

job. You ll see how to do this in PHP Solution 9-2.

Using sessions to restrict access
The first words that probably come to mind when thinking about restricting access to a website are

“username” and “password.” Although these generally unlock entry to a site, neither is essential to a

session. You can store any value as a session variable and use it to determine whether to grant access to

a page. For instance, you could create a variable called $_SESSION['status'] and give visitors access

to different parts of the site depending on its value, or no access at all if it hasn t been set.

A little demonstration should make everything clear and show you how sessions work in practice.

PHP Solution 9-1: A simple session example

This should take only a few minutes to build, but you can also find the complete code in session_01.php,

session_02.php, and session_03.php, in the ch09 folder.

1. Create a page called session_01.php in a new folder called sessions in the phpsols site

root. Insert a form with a text field called name and a submit button. Set the method to post and

action to session_02.php. The form should look like this:

CHAPTER 9

248

 <form id="form1" method="post" action="session_02.php">
 <p>
 <label for="name">Name:</label>
 <input type="text" name="name" id="name">
 </p>
 <p>
 <input type="submit" name="Submit" value="Submit">
 </p>
 </form>

2. In another page called session_02.php, insert this above the DOCTYPE declaration:

 <?php
 // initiate session
 session_start();
 // check that form has been submitted and that name is not empty
 if ($_POST && !empty($_POST['name'])) {
 // set session variable
 $_SESSION['name'] = $_POST['name'];
 }
 ?>

The inline comments explain what s going on. The session is started, and as long as

$_POST['name'] isn t empty, its value is assigned to $_SESSION['name'].

3. Insert the following code between the <body> tags in session_02.php:

 <?php
 // check session variable is set
 if (isset($_SESSION['name'])) {
 // if set, greet by name
 echo 'Hi, ' . $_SESSION['name'] . '. Next';
 } else {
 // if not set, send back to login
 echo 'Who are you? Login';
 }
 ?>

4. If $_SESSION['name'] has been set, a welcome message is displayed along with a link to

session_03.php. Otherwise, the page tells the visitor that it doesn t recognize who s trying to

gain access, and provides a link back to the first page.

Take care when typing the following line:

echo 'Hi, ' . $_SESSION['name'] . '. Next';

The first two periods (surrounding $_SESSION['name']) are the PHP concatenation operator. The

third period (immediately after a single quote) is an ordinary period that will be displayed as part of the

string.

PAGES THAT REMEMBER: SIMPLE LOGIN AND MULTIPAGE FORMS

249

5. Create session_03.php. Type the following above the DOCTYPE to initiate the session:

 <?php session_start(); ?>

6. Insert the following code between the <body> tags of session_03.php:

 <?php
 // check whether session variable is set
 if (isset($_SESSION['name'])) {
 // if set, greet by name
 echo 'Hi, ' . $_SESSION['name'] . '. See, I remembered your name!
';
 // unset session variable
 unset($_SESSION['name']);
 // invalidate the session cookie
 if (isset($_COOKIE[session_name()])) {
 setcookie(session_name(), '', time()-86400, '/');
 }
 // end session
 session_destroy();
 echo 'Page 2';
 } else {
 // display if not recognized
 echo "Sorry, I don't know you.
";
 echo 'Login';
 }
 ?>

If $_SESSION['name'] has been set, the page displays it, then unsets it and invalidates the

current session cookie. By placing session_destroy() at the end of the first code block, the

session and its associated variables cease to be available.

7. Load session_01.php into a browser, type your name in the text field, and click Submit.

You should see something like the following screenshot. At this stage, there is no apparent

difference between what happens here and in an ordinary form.

8. When you click Next, the power of sessions begins to show. The page remembers your name,

even though the $_POST array is no longer available to it. There s a problem, though, with that

headers already sent error message. You ll fix that later.

CHAPTER 9

250

9. Click the link to Page 2 (just below the error message). The session has been destroyed, so

this time session_02.php has no idea who you are.

10. Type the address of session_03.php in the browser address bar and load it. It, too, has no

recollection of the session and displays an appropriate message.

You need to get rid of the warning message in step 8, not only because it looks bad but also because it

means setcookie() can t invalidate the session cookie. Even though session_start() comes

immediately after the opening PHP tag in session_03.php, the warning message is triggered by the

DOCTYPE declaration, the <head>, and other HTML being output before setcookie().

PHP Solution 9-2: Buffering the output with ob_start()

Although you could put setcookie() in the PHP block above the DOCTYPE declaration, you would also

need to assign the value of $_SESSION['name'] to an ordinary variable, because it ceases to exist after

the session is destroyed. Rather than pull the whole script apart, the answer is to buffer the output with

ob_start().

Continue working with session_03.php from the previous section.

1. Amend the PHP block above the DOCTYPE declaration like this:

PAGES THAT REMEMBER: SIMPLE LOGIN AND MULTIPAGE FORMS

251

 <?php
 session_start();
 ob_start();
 ?>

This turns on output buffering and prevents output being sent to the browser until the end of

the script, or until you specifically flush the output with ob_end_flush().

2. Flush the output immediately after invalidating the session cookie like this:

 // invalidate the session cookie
 if (isset($_COOKIE[session_name()])) {
 setcookie(session_name(), '', time()-86400, '/');
 }
 ob_end_flush();

3. Save session_03.php, and test the sequence again. This time, there should be no warning.

More importantly, the session cookie is no longer valid.

Using file-based authentication

As you have just seen, the combination of session variables and conditional statements lets you present

completely different pages to a visitor depending on whether a session variable has been set. All you need

to do is add a password checking system, and you have a basic user authentication system.

In PHP Solution 7-2, I showed you how to use the file() function to read each line of a text file into an

array. You can now adapt that script to create a simple login system using sessions. Each person s

username and password is separated by a comma and recorded on a new line of a text file like this:

david, codeslave
chris, bigboss

I ll use the same text file as before: filetest_02.txt, which is in the private folder that was set up in

Chapter 7. Refer to Chapter 7 if you haven t set up a folder for PHP to read and write files.

PHP Solution 9-3: Building the login page

This PHP solution shows how to submit a username and password through the post method and check the

submitted values against those stored in an external text file. It uses the file() function to inspect the

external file one line at a time. If a match is found, the script sets a session variable and then redirects the

user to another page.

1. Create a file called login.php in the sessions folder, and insert a form with a text input field

each for username and password, plus a submit button named login, like this (alternatively,

use login_01.php in the ch09 folder):

 <form id="form1" method="post" action="">
 <p>
 <label for="username">Username:</label>
 <input type="text" name="username" id="username">
 </p>
 <p>

CHAPTER 9

252

 <label for="pwd">Password:</label>
 <input type="password" name="pwd" id="pwd">
 </p>
 <p>
 <input name="login" type="submit" id="login" value="Log in">
 </p>
 </form>

It s a simple form, nothing fancy.

2. Add the following code in a PHP block above the DOCTYPE declaration:

 $error = '';
 if (isset($_POST['login'])) {
 session_start();
 $username = $_POST['username'];
 $password = $_POST['pwd'];
 // location of usernames and passwords
 $userlist = 'C:/private/filetest_02.txt;
 // location to redirect on success
 $redirect = 'http://localhost/phpsols/sessions/menu.php';
 require_once('../includes/authenticate.inc.php');
 }

This initializes a variable called $error as an empty string. If the login fails, this will be used to

display an error message informing the user of the reason.

The conditional statement then checks whether the $_POST array contains an element named

login. If it does, the form has been submitted, and the code inside the curly braces initiates a

PHP session and stores the values passed through the $_POST array in $username and

$password. Then, it creates $userlist, which defines the location of the file that contains

the registered usernames and passwords, and $redirect, the URL of the page the user will

be sent to after logging in successfully.

Finally, the code inside the conditional statement includes authenticate.inc.php, which

you ll create next.

http://localhost/phpsols/sessions/menu.php

PAGES THAT REMEMBER: SIMPLE LOGIN AND MULTIPAGE FORMS

253

Adjust the value of $userlist to match the location in your own setup, if necessary.

3. Create a file called authenticate.inc.php in the includes folder. It will contain only PHP

code, so strip out any HTML inserted by your script editor, and insert the following code:

 <?php
 if (!file_exists($userlist) || !is_readable($userlist)) {
 $error = 'Login facility unavailable. Please try later.';
 } else {
 // read the file into an array called $users
 $users = file($userlist);
 // loop through the array to process each line
 for ($i = 0; $i < count($users); $i++) {
 // separate each element and store in a temporary array
 $tmp = explode(', ', $users[$i]);
 // assign each element of the temp array to a named array key
 $users[$i] = array('name' => $tmp[0], 'password' => rtrim($tmp[1]));
 }
 }

This is almost identical to the code that you used in file.php in PHP Solution 7-2. The only

differences are the use of $userlist instead of $textfile and the conditional statement.

Rather than testing that the file exists and is readable, the conditions check for a nonexistent

file or one that can t be read. This has been done to make the code easier to read. If there s a

problem with $userfile, the error message is created immediately. Otherwise, the main code

in the else clause is executed.

The main code works exactly the same as in PHP Solution 7-2. It extracts the content of the

text file into an array and loops through it, creating a multidimensional array containing the

name and password of each registered user. The names and passwords in filetest_02.txt
produce the following values:

 $users[0]['name'] = 'david';
 $users[0]['password'] = 'codeslave';
 $users[1]['name'] = 'chris';
 $users[1]['password'] = 'bigboss';

4. To authenticate the user, you need to check the submitted values against those stored in the

text file. Add the highlighted code to the for loop:

 for ($i = 0; $i < count($users); $i++) {
 // separate each element and store in a temporary array
 $tmp = explode(', ', $users[$i]);
 // assign each element of the temp array to a named array key
 $users[$i] = array('name' => $tmp[0], 'password' => rtrim($tmp[1]));
 // check for a matching record
 if ($users[$i]['name'] == $username && $users[$i]['password'] ==
 $password) {

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9

254

 $_SESSION['authenticated'] = 'Jethro Tull';
 session_regenerate_id();
 break;
 }
 }

If the record matches $username and $password, the script creates a variable called

$_SESSION['authenticated'] and assigns it the name of one of the great folk-rock bands of

the 70s. There s nothing magic about either of these (apart from Jethro Tull s music); I ve

chosen the name and value of the variable arbitrarily. All that matters is a session variable is

created. As soon as a match is found, the session ID is regenerated, and break exits the loop.

5. Take a closer look at these two lines:

 $users[$i] = array('name' => $tmp[0], 'password' => rtrim($tmp[1]));
 if ($users[$i]['name'] == $username && $users[$i]['password'] == $password) {

The first one assigns $tmp[0] to $users[$i]['name'] and rtrim($tmp[1]) to

$users[$i]['password']. The next line compares the values in the $users array with

$username and $password. That s all the $users array is ever used for. Creating the array

made sense in PHP Solution 7-2, because you wanted to inspect the entire contents of the

file. However, all you need here is to compare $tmp[0] with $username and rtrim($tmp[1])

with $password.

Delete the first of these two lines, and amend the second one like this:

 if ($tmp[0] == $username && rtrim($tmp[1]) == $password) {

6. If the login is successful, the header() function needs to redirect the user to the URL stored

in $redirect, and exit the script. Otherwise, an error message needs to be created, informing

the user that the login failed. The complete script looks like this:

 <?php
 if (!file_exists($userlist) || !is_readable($userlist)) {
 $error = 'Login facility unavailable. Please try later.';
 } else {
 // read the file into an array called $users
 $users = file($userlist);
 // loop through the array to process each line
 for ($i = 0; $i < count($users); $i++) {
 // separate each element and store in a temporary array
 $tmp = explode(', ', $users[$i]);
 // check for a matching record
 if ($tmp[0] == $username && rtrim($tmp[1]) == $password) {
 $_SESSION['authenticated'] = 'Jethro Tull';
 session_regenerate_id();
 break;
 }
 }
 // if the session variable has been set, redirect
 if (isset($_SESSION['authenticated'])) {

PAGES THAT REMEMBER: SIMPLE LOGIN AND MULTIPAGE FORMS

255

 header("Location: $redirect");
 exit;
 } else {
 $error = 'Invalid username or password.';
 }
 }

7. In login.php, add the following short code block just after the opening <body> tag to display

any error messages:

 <body>
 <?php
 if ($error) {
 echo "<p>$error</p>";
 }
 ?>
 <form id="form1" method="post" action="">

Before you can test login.php, you need to create menu.php and restrict access with a session.

PHP Solution 9-4: Restricting access to a page with a session

This PHP solution demonstrates how to restrict access to a page by checking for the existence of a

session variable that indicates the user s credentials have been authenticated. If the variable hasn t been

set, the header() function redirects the user to the login page.

1. Create two pages in the sessions folder called menu.php and secretpage.php. It doesn t

matter what they contain, as long as they link to each other. Alternatively, use menu_01.php

and secretpage_01.php in the ch09 folder.

2. Protect access to each page by inserting the following above the DOCTYPE declaration:

<?php
session_start();
// if session variable not set, redirect to login page
if (!isset($_SESSION['authenticated'])) {

header('Location: http://localhost/phpsols/sessions/login.php');
exit;

}
?>

After starting the session, the script checks whether $_SESSION['authenticated'] has

been set. If it hasn t, it redirects the user to login.php and exits. That s all there is to it! The

script doesn t need to know the value of $_SESSION['authenticated'], although you could

make doubly sure by amending line 4 like this:

if (!isset($_SESSION['authenticated']) || $_SESSION['authenticated']
!= 'Jethro Tull') {

This now also rejects a visitor if $_SESSION['authenticated'] has the wrong value.

http://localhost/phpsols/sessions/login.php

CHAPTER 9

256

3. Save menu.php and secretpage.php, and try to load either of them into a browser. You

should always be redirected to login.php.

4. Enter a valid username and password in login.php, and click Log in. You should be

redirected immediately to menu.php, and the link to secretpage.php should also work.

5. All you need to do to protect any page on your site is add the eight lines of code in step 2

above the DOCTYPE declaration.

PHP Solution 9-5: Creating a reusable logout button

As well as logging into a site, users should be able to log out. This PHP solution shows how to create a

logout button that can be inserted in any page.

Continue working with the files from the preceding section.

1. Create a logout button in the <body> of menu.php by inserting the following form:

<form id="logoutForm" method="post" action="">
<input name="logout" type="submit" id="logout" value="Log out">
</form>

The page should look similar to the following screenshot:

2. You now need to add the script that runs when the logout button is clicked. Amend the code

above the DOCTYPE declaration like this (the code is in menu_02.php):

 <?php
 session_start();
 // if session variable not set, redirect to login page
 if (!isset($_SESSION['authenticated'])) {
 header('Location: http://localhost/phpsols/sessions/login.php');
 exit;
 }
 // run this script only if the logout button has been clicked
 if (isset($_POST['logout'])) {
 // empty the $_SESSION array
 $_SESSION = array();
 // invalidate the session cookie

http://localhost/phpsols/sessions/login.php

PAGES THAT REMEMBER: SIMPLE LOGIN AND MULTIPAGE FORMS

257

 if (isset($_COOKIE[session_name()])) {
 setcookie(session_name(), '', time()-86400, '/');
 }
 // end session and redirect
 session_destroy();
 header('Location: http://localhost/phpsols/sessions/login.php');
 exit;
 }
 ?>

This is the same code as in “Destroying a session” earlier in this chapter. The only differences

are that it s enclosed in a conditional statement so that it runs only when the logout button is

clicked, and it uses header() to redirect the user to login.php.

3. Save menu.php, and test it by clicking Log out. You should be redirected to login.php. Any

attempt to return to menu.php or secretpage.php will bring you back to login.php.

4. You can put the same code in every restricted page, but PHP is all about saving work, not

making it. It makes sense to turn this into an include file. Create a new file called

logout.inc.php in the includes folder. Cut and paste the new code from steps 1 and 2 into

the new file like this (it s in logout.inc.php in the ch09 folder):

<?php
// run this script only if the logout button has been clicked
if (isset($_POST['logout'])) {
 // empty the $_SESSION array
 $_SESSION = array();
 // invalidate the session cookie
 if (isset($_COOKIE[session_name()])) {
 setcookie(session_name(), '', time()-86400, '/');
 }
 // end session and redirect
 session_destroy();

 header('Location: http://localhost/phpsols/sessions/login.php');
 exit;
}
?>
<form id="logoutForm" method="post" action="">
 <input name="logout" type="submit" id="logout" value="Log out">
</form>

5. At the same point in menu.php from which you cut the code for the form, include the new file

like this:

 <?php include('../includes/logout.inc.php'); ?>

6. Including the code from an external file like this means that there will be output to the browser

before the calls to setcookie() and header(). So you need to buffer the output, as shown in

PHP Solution 9-2.

http://localhost/phpsols/sessions/login.php
http://localhost/phpsols/sessions/login.php

CHAPTER 9

258

Add ob_start(); immediately after the call to session_start() at the top of menu.php.

There s no need to use ob_end_flush() or ob_end_clean(). PHP automatically flushes the

buffer at the end of the script if you haven t already done so explicitly.

7. Save menu.php, and test the page. It should look and work exactly the same as before.

8. Repeat steps 5 and 6 with secretpage.php. You now have a simple, reusable logout button

that can be incorporated in any restricted page.

9. You can check your code against menu_03.php, secretpage_02.php, and logout.inc.php

in the ch09 folder.

Making passwords more secure

Although this file-based user authentication setup is adequate for restricting access to web pages, all the

passwords are stored in plain text. For greater security, it s advisable to encrypt passwords. PHP

provides a simple and effective way to encrypt passwords, using the SHA-1 (US Secure Hash Algorithm 1;

for more info, see www.faqs.org/rfcs/rfc3174), which produces a 40-digit hexadecimal number. When

encrypted with SHA-1, codeslave turns into this:

fe228bd899980a7e23fd08082afddb74a467e467

SHA-1 performs one-way encryption. This means that even if your password file is exposed, no one will be

able to work out what the passwords are. It also means that you have no way of converting

fe228bd899980a7e23fd08082afddb74a467e467 back to codeslave. In one respect, this is unimportant:

when a user logs in, you encrypt the password again and compare the two encrypted versions. The

disadvantage is that there is no way that you can send users password reminders if they forget them; you

must generate a new password. Nevertheless, good security demands encryption.

Another precaution that s worth taking is adding a salt to the password before encrypting it. This is a

random value that s added to make decryption even harder. Even if two people choose the same

password, adding a unique value to the password before encryption ensures that the encrypted values

are different.

Encryption is no protection against the most common problem with passwords: ones that are easy to

guess or use common words. Many registration systems now enforce the use of stronger passwords by

requiring a mixture of alphanumeric characters and symbols.

To improve the basic login system developed so far, you need to create a user registration form that

checks the following:

• The password and username contain a minimum number of characters.

• The password matches minimum strength criteria, such as containing a mixture of numbers,

uppercase and lowercase characters, and symbols.

• The password matches a second entry in a confirmation field.

• The username isn t already in use.

PHP Solution 9-6: Creating a password strength checker

This PHP solution shows how to create a class that checks whether a password meets certain

requirements, such as no spaces, a minimum number of characters, and a combination of different types

http://www.faqs.org/rfcs/rfc3174

PAGES THAT REMEMBER: SIMPLE LOGIN AND MULTIPAGE FORMS

259

of characters. By default, the class checks only that the password has no spaces and contains a

minimum number of characters. Optional methods allow you to set tougher conditions, such as using a

combination of uppercase and lowercase characters, numbers, and nonalphanumeric symbols.

This PHP solution starts by building the user registration form that will also be used in PHP Solution 9-7.

1. Create a page called register.php in the sessions folder, and insert a form with three text

input fields and a submit button. Lay out the form, and name the input elements as shown in

the following screenshot. If you want to save time, use register_01.php in the ch09 folder.

2. As always, you want the processing script to run only if the form has been submitted, so

everything needs to be enclosed in a conditional statement that checks whether the name

attribute of the submit button is in the $_POST array. Then, you need to check that the input

meets your minimum requirements. Insert the following code in a PHP block above the

DOCTYPE declaration:

 if (isset($_POST['register'])) {
 $username = trim($_POST['username']);
 $password = trim($_POST['pwd']);
 $retyped = trim($_POST['conf_pwd']);
 require_once('../classes/Ps2/CheckPassword.php');
 }

The code inside the conditional statement passes the input from the three text fields to trim()

to remove whitespace from the beginning and end, and assigns the results to simple variables.

It then includes the file that will contain the class that checks the password, which you ll define

next.

3. Create a file called CheckPassword.php in the classes/Ps2 folder. It will contain only PHP

script, so strip out any HTML, and add the following code:

 <?php
 class Ps2_CheckPassword{

CHAPTER 9

260

 protected $_password;
 protected $_minimumChars;
 protected $_mixedCase = false;
 protected $_minimumNumbers = 0;
 protected $_minimumSymbols = 0;
 protected $_errors = array();

 public function __construct($password, $minimumChars = 8) {
 $this->_password = $password;
 $this->_minimumChars = $minimumChars;
 }

 public function check() {
 if (preg_match('/\s/', $this->_password)) {
 $this->_errors[] = 'Password cannot contain spaces.';
 }
 if (strlen($this->_password) < $this->_minimumChars) {
 $this->_errors[] = "Password must be at least $this->_minimumChars
 characters.";
 }
 return $this->_errors ? false : true;
 }

 public function getErrors() {
 return $this->_errors;
 }

 }

This defines the basic Ps2_CheckPassword class, which initially checks only whether the

password contains any spaces and whether it has the required minimum number of

characters. You ll add the other features shortly.

The class begins by defining six protected properties. The first two are for the password and

minimum number of characters. The $_mixedCase, $_minimumNumbers, and

$_minimumSymbols properties will be used to add strength to the password but are initially set

to false or 0. The $_errors property will be used to store an array of error messages if the

password fails any of the checks.

The constructor method takes two arguments—the password and minimum number of

characters—and assigns them to the relevant properties. By default, the minimum number of

characters is set to 8, making this an optional argument.

The check() method contains two conditional statements. The first uses preg_match() with

a regular expression that searches for whitespace characters inside the password. The

second conditional statement uses strlen(), which returns the length of a string, and

compares the result with $_minimumChars.

PAGES THAT REMEMBER: SIMPLE LOGIN AND MULTIPAGE FORMS

261

If the password fails either test or both, the $_errors property contains at least one element,

which PHP treats as intrinsicly true. The final line in the check() method uses the $_errors

property as the condition with the ternary operator. If any errors are found, the check()

method returns false indicating that the password failed validation. Otherwise, it returns

true.

The getErrors() public method simply returns the array of error messages.

4. Save CheckPassword.php, and switch to register.php.

5. In register.php, create a Ps2_CheckPassword object, passing $password as the argument.

Then call the check() method and handle the result like this:

 require_once('../classes/Ps2/CheckPassword.php');
 $checkPwd = new Ps2_CheckPassword($password);
 $passwordOK = $checkPwd->check();
 if ($passwordOK) {
 $result = array('Password OK');
 } else {
 $result = $checkPwd->getErrors();
 }

6. The second argument to the Ps2_CheckPassword constructor is optional, so leaving it out

sets the minimum number of characters to the default 8. The result of the check() method is

assigned to $passwordOK. If it returns true, a single-element array reporting that the

password is OK is assigned to $result. Otherwise, the getErrors() method is used to

retrieve the array of errors from the $checkPwd object.

The single-element array will be used only to test the class. Once testing is complete, it will be
replaced by the script that registers the user.

7. Add the following PHP code block just above the form in the body of the page:

 <h1>Register User</h1>
 <?php
 if (isset($result)) {
 echo '';
 foreach ($result as $item) {
 echo "$item";
 }
 echo '';
 }
 ?>
 <form action="" method="post" id="form1">

This displays the results of the password test as an unordered list after the form has been

submitted.

CHAPTER 9

262

8. Save register.php, and load it in a browser. Test the Ps2_CheckPassword class by clicking

the Register button without filling in any of the fields. You should see a message informing

you that the password requires a minimum of eight characters.

9. Try it with a password that contains eight characters. You should see Password OK.

10. Try a password with at least eight characters but insert a space in the middle. You ll be warned

that no spaces are permitted.

11. Try one with fewer than eight characters but with a space in the middle. You ll see the following

warnings:

12. Change the code in register.php to pass the optional second argument to the

Ps2_CheckPassword constructor, and set the minimum number of characters to 10:

 $checkPwd = new Ps2_CheckPassword($password, 10);

13. Save and test the page again. If you encounter any problems, compare your code with

register_02.php and CheckPassword_01.php in the ch09 folder.

14. Assuming that your code is working, add to the class definition in CheckPassword.php the

public methods to set the password strength. Where you put them inside the class makes no

difference technically (as long as they re inside the curly braces), but my preference is to put

public methods in the same order as they re used. You need to set the options before calling

the check() method, so insert the following code between the constructor and check()

method definitions:

 public function requireMixedCase() {
 $this->_mixedCase = true;
 }

 public function requireNumbers($num = 1) {
 if (is_numeric($num) && $num > 0) {
 $this->_minimumNumbers = (int) $num;
 }
 }

 public function requireSymbols($num = 1) {

PAGES THAT REMEMBER: SIMPLE LOGIN AND MULTIPAGE FORMS

263

 if (is_numeric($num) && $num > 0) {
 $this->_minimumSymbols = (int) $num;
 }
 }

The code is pretty straightforward. The requireMixedCase() method takes no arguments and

resets the $_mixedCase property to true. The other two methods take one argument, check

that it s a number greater that 0, and assign it to the relevant property. The (int) casting

operator ensures that it s an integer. You first met the casting operator in PHP Solution 6-4.

The value of $num sets the minimum amount of numbers or nonalphanumeric symbols the

password must contain. By default, the value is set to 1, making the argument optional.

15. The check() method needs to be updated to perform the necessary checks for these strength

criteria. Amend the code like this:

 public function check() {
 if (preg_match('/\s/', $this->_password)) {
 $this->_errors[] = 'Password cannot contain spaces.';
 }
 if (strlen($this->_password) < $this->_minimumChars) {
 $this->_errors[] = "Password must be at least $this->_minimumChars
 characters.";
 }
 if ($this->_mixedCase) {
 $pattern = '/(?=.*[a-z])(?=.*[A-Z])/';
 if (!preg_match($pattern, $this->_password)) {
 $this->_errors[] = 'Password should include uppercase and lowercase
 characters.';
 }
 }
 if ($this->_minimumNumbers) {
 $pattern = '/\d/';
 $found = preg_match_all($pattern, $this->_password, $matches);
 if ($found < $this->_minimumNumbers) {
 $this->_errors[] = "Password should include at least
 $this->_minimumNumbers number(s).";
 }
 }
 if ($this->_minimumSymbols) {
 $pattern = "/[-!$%^&*(){}<>[\]'" . '"|#@:;.,?+=_\/\~]/';
 $found = preg_match_all($pattern, $this->_password, $matches);
 if ($found < $this->_minimumSymbols) {
 $this->_errors[] = "Password should include at least
 $this->_minimumSymbols nonalphanumeric character(s).";
 }
 }
 return $this->_errors ? false : true;
 }

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9

264

Each of the three new conditional statements is run only if the equivalent public method is

called before the check() method. Each one stores a regular expression as $pattern and

then uses preg_match() or preg_match_all() to test the password.

If the $_mixedCase property is set to true, the regular expression and password are passed

to preg_match() to look for at least one lowercase letter and one uppercase letter in any

position in the password.

The $_minimumNumbers and $_minimumSymbols properties are set to 0 by default. If they re

reset to a positive number, the regular expression and password are passed to the

preg_match_all() function to find how many times the regex matches. The function requires

three arguments: the regex, the string to be searched, and a variable to store the matches.

And it returns the number of matches found. In this case, all you re interested in is the number

of matches. The variable that stores the matches is discarded.

The horrendous $pattern in the last conditional statement is actually a regex created by

concatenating a single-quoted string to a double-quoted one. This is necessary to include

single and double quotation marks in the permitted symbols. I have included most

nonalphanumeric symbols on an English keyboard. If you want to add others, put them just

before the final closing square bracket like this:

 $pattern = "/[-!$%^&*(){}<>[\]'" . '"|#@:;.,?+=_\/\~£¦]/';

16. Save CheckPassword.php, and test the updated class by calling the new methods in

register.php. For example, the following requires the password to have a minimum of 10

characters, at least one uppercase and one lowercase letter, two numbers, and one

nonalphanumeric symbol:

 $checkPwd = new Ps2_CheckPassword($password, 10);
 $checkPwd->requireMixedCase();
 $checkPwd->requireNumbers(2);
 $checkPwd->requireSymbols();
 $passwordOK = $checkPwd->check();

It doesn t matter which order you call the new methods, as long as they re after the

constructor and before the call to the check() method. Use a variety of combinations to

enforce different strengths of password.

If necessary, check your code against register_03.php and CheckPassword_02.php in the

ch09 folder.

When developing the code for this chapter, I originally designed the password checker as a function. The

basic code inside the function was the same, but I decided to convert it into a class to make it more

flexible and easier to use. The problem with the function was that it needed a large number of arguments to

set the different options, and it was difficult to remember which order they came in. There was also the

difficulty of handling the result. If there were no errors, the function returned true; but if any errors were

found, it returned the array of error messages. Since PHP treats an array with elements as implicitly true ,

this meant using the identical operator (three equal signs—see Table 3-5) to check whether the result was

a Boolean true.

PAGES THAT REMEMBER: SIMPLE LOGIN AND MULTIPAGE FORMS

265

Converting the code to a class eliminated these problems. The public methods to set the options have

intuitive names and can be set in any order—or not at all. And the result is always a Boolean true or

false, because a separate method retrieves the array of error messages. It involved writing more code,

but the improvements made it worthwhile.

PHP Solution 9-7: Creating a file-based user registration system

This PHP solution creates a simple user registration system that encrypts passwords with SHA-1 and a

salt. It uses the Ps2_CheckPassword class from PHP Solution 9-6 to enforce minimum strength

requirements. Further checks ensure that the username contains a minimum number of characters and

that the user has retyped the password correctly in a second field.

The user credentials are stored in a plain text file, which must be outside the web server s document root.

The instructions assume you have set up a private folder that PHP has write access to, as described in

Chapter 7. It s also assumed you re familiar with “Appending content with fopen()” in the same chapter.

Continue working with the files from the preceding PHP solution. Alternatively, use register_03.php in

the ch09 folder and CheckPassword.php in the classes/completed folder.

1. Create a file called register_user_text.inc.php in the includes folder, and strip out any

HTML inserted by your script editor.

2. Cut the following code from register.php (it doesn t matter if your settings for the

Ps2_CheckPassword object are different):

 require_once('../classes/Ps2/CheckPassword.php');
 $checkPwd = new Ps2_CheckPassword($password, 10);
 $checkPwd->requireMixedCase();
 $checkPwd->requireNumbers(2);
 $checkPwd->requireSymbols();
 $passwordOK = $checkPwd->check();
 if ($passwordOK) {
 $result = array('Password OK');
 } else {
 $result = $checkPwd->getErrors();
 }

3. At the end of the remaining script above the DOCTYPE declaration in register.php, create a

variable for the location of the text file that will be used to store the user credentials, and

include register_user_text.inc.php. The code in the PHP block at the top of

register.php should now look like this:

 if (isset($_POST['register'])) {
 $username = trim($_POST['username']);
 $password = trim($_POST['pwd']);
 $retyped = trim($_POST['conf_pwd']);
 $userfile = 'C:/private/encrypted.txt';
 require_once('../includes/register_user_text.inc.php');
 }

CHAPTER 9

266

The text file for the user credentials doesn t exist yet. It will be created automatically when the

first user is registered. Amend the path to the private folder to match your own setup if

necessary.

4. In register_user_text.inc.php, paste the code you cut from register.php in step 2, and

add the following code immediately after the command that includes the class definition:

 require_once('../classes/Ps2/CheckPassword.php');
 $usernameMinChars = 6;
 $errors = array();
 if (strlen($username) < $usernameMinChars) {
 $errors[] = "Username must be at least $usernameMinChars characters.";
 }
 if (preg_match('/\s/', $username)) {
 $errors[] = 'Username should not contain spaces.';
 }
 $checkPwd = new Ps2_CheckPassword($password, 10);

The first two lines of new code specify the minimum number of characters in the username and

initialize an empty array for error messages. The rest of the new code checks the length of the

username and tests whether it contains any spaces. The conditional statements use the same

code as in the Ps2_CheckPassword class.

5. Amend the code at the bottom of register_user_text.inc.php like this:

 $passwordOK = $checkPwd->check();
 if (!$passwordOK) {
 $errors = array_merge($errors, $checkPwd->getErrors());
 }
 if ($password != $retyped) {
 $errors[] = "Your passwords don't match.";
 }
 if ($errors) {
 $result = $errors;
 } else {
 $result = array('All OK');
 }

This adds the logical Not operator to the conditional statement that tests the value of

$passwordOK. If the password fails to validate, array_merge() is used to merge the result of

$checkPwd->getErrors() with the existing $errors array.

The next conditional statement compares $password with $retyped and adds an error

message to the $errors array if they don t match.

If any errors are discovered, the final conditional statement assigns the $errors array to

$result. Otherwise, a single-element array is assigned to $result, reporting that all is OK.

Again, this is only for testing purposes. Once you have checked your code, the script that

registers the user will replace the final conditional statement.

PAGES THAT REMEMBER: SIMPLE LOGIN AND MULTIPAGE FORMS

267

6. Save register_user_text.inc.php and register.php, and test the form again. Leave all

the fields blank and click Register. You should see the following error messages:

7. Try a variety of tests to make sure your validation code is working.

If you have problems, compare your code with register_user_text.inc_01.php and

register_04.php in the ch09 folder.

Assuming that your code is working, you re ready to create the registration part of the script. Let s pause

to consider what the main script needs to do. First, you need to encrypt the password by combining it with

the username as a salt. Then, before writing the details to a text file, you must check whether the

username is unique. This presents a problem of which mode to use with fopen().

The various fopen() modes are described in Chapter 7.

Ideally, you want the internal pointer at the beginning of the file so that you can loop through existing

records. The r+ mode does this, but the operation fails unless the file already exists. You can t use w+,

because it deletes existing content. You can t use x+ either, because it fails if a file of the same name

already exists. That leaves a+ as the only option with the flexibility you need: it creates the file if

necessary and lets you read and write.

The file is empty the first time you run the script (you can tell because the filesize() function returns 0),

so you can go ahead and write the details. If filesize() doesn t return 0, you need to reset the internal

pointer and loop through the records to see if the username is already registered. If there s a match, you

break out of the loop and prepare an error message. If there isn t a match by the end of the loop, you not

only know it s a new username, you also know you re at the end of the file. So, you write a new line followed

by the new record. Now that you understand the flow of the script, you can insert it into

register_user_text.inc.php.

8. Delete the following code at the bottom of register_user_text.inc.php:

 if ($errors) {
 $result = $errors;
 } else {
 $result = array('All OK');
 }

9. Replace it with the following code:

 if (!$errors) {
 // encrypt password, using username as salt

CHAPTER 9

268

 $password = sha1($username.$password);
 // open the file in append mode
 $file = fopen($userfile, 'a+');
 // if filesize is zero, no names yet registered
 // so just write the username and password to file
 if (filesize($userfile) === 0) {
 fwrite($file, "$username, $password");
 $result = "$username registered.";
 } else {
 // if filesize is greater than zero, check username first
 // move internal pointer to beginning of file
 rewind($file);
 // loop through file one line at a time
 while (!feof($file)) {
 $line = fgets($file);
 // split line at comma, and check first element against username
 $tmp = explode(', ', $line);
 if ($tmp[0] == $username) {
 $result = "$username taken - choose a different username.";
 break;
 }
 }
 // if $result not set, username is OK
 if (!isset($result)) {
 // insert line break followed by username, comma, and password

 fwrite($file, PHP_EOL . "$username, $password");
 $result = "$username registered.";
 }
 // close the file
 fclose($file);
 }
 }

The preceding explanation and inline comments should help you follow the script.

10. Windows, Mac OS X, and Linux use different characters to create a new line, so the script

uses the PHP_EOL constant introduced in Chapter 7 to insert a line break in a platform-neutral

way. The registration script stores the outcome as a string in $result. Amend the code in the

body of register.php to display the result or the error messages like this:

 <?php
 if (isset($result) || isset($errors)) {
 echo '';
 if (!empty($errors)) {
 foreach ($errors as $item) {
 echo "$item";
 }
 } else {
 echo "$result";

PAGES THAT REMEMBER: SIMPLE LOGIN AND MULTIPAGE FORMS

269

 }
 echo '';
 }
 ?>

This loops through the $errors array if it s not empty. Otherwise, it displays the value of

$result as a single bulleted item.

11. Save both register_user_text.inc.php and register.php, and test the registration

system. Try registering the same username more than once. You should see a message

informing you the username is taken and asking you to choose another.

12. Open encrypted.txt. You should see the usernames in plain text, but the passwords have

been encrypted. Even if you choose the same password for two different users, the encrypted

version is different because of the password being combined with the username as a salt.

Figure 9-4 shows two users that were both registered with the password Ps2_Chapter9.

Figure 9-4. Using a salt produces completely different encryptions of the same password.

If necessary, check your code against register_user_text.inc_02.php and

register_05.php in the ch09 folder.

Most of the code in register_user_text.php is generic. All you need to do to use it with any registration

form is define $username, $password, $retyped, and $userfile before including it, and capture the

results using $errors and $result. The only changes you might need to make to the external file are in

setting the minimum number of characters in the username and the password strength. Those settings are

defined at the top of the file, so they re easy to access and adjust.

PHP Solution 9-8: Using an encrypted login

Now that you have encrypted passwords, you need to change the login form to handle the new setup. All

that s necessary is to select the text file that contains the encrypted passwords and to encrypt the

password before comparing it with the one stored in the file.

1. Open login.php from PHP Solution 9-3, or use login_01.php from the ch09 folder. Amend

the code like this:

 $username = trim($_POST['username']);
 $password = sha1($username . $_POST['pwd']);
 // location of usernames and passwords
 $userlist = 'C:/private/encrypted.txt';

This trims whitespace from the username. The next line adds the username to the front of the

password before passing it to sha1() for encryption. Finally, the file that stores the user

credentials is changed to the encrypted version.

CHAPTER 9

270

2. Save login.php, and test it. It should work the same as before but be more secure. Check

your code if necessary with login_02.php in the ch09 folder.

PHP Solutions 9-3 to 9-8 build a simple, yet effective, user authentication system that doesn t require a

database back end. However, it does have its limitations. Above all, it s essential that the text file

containing the usernames and passwords be outside the server root. Even though the passwords are

encrypted, knowing the usernames reduces the effort that an attacker needs to try to break through your

security. Another weakness is that the salt is the username. Ideally, you should create a random salt for

each password, but you need to store it somewhere. If it s in the same file as the usernames, they would

both be exposed at the same time.

Using a database for user authentication gets around many of these problems. It involves more work, but

is likely to be more secure. Also, once you get more than a few records, querying a database is usually

much faster than looping through a text file line by line. Chapter 17 covers user authentication with a

database.

Setting a time limit on sessions
By default, PHP sets the lifetime of the session cookie on the user s computer to 0, which keeps the

session active until the user logs out or the browser is closed. You can make the session timeout earlier

through a call to ini_set(), the function that allows you to change some PHP configuration directives on

the fly. As soon as the session starts, pass the directive session.cookie_lifetime as the first

argument and a string containing the number of seconds you want the cookie to remain active as the

second argument. For example, you could limit the session cookie s lifetime to ten minutes like this:

session_start();
ini_set('session.cookie_lifetime', '600');

Although this is effective, it has two drawbacks. First, the expiration is set relative to the time on the

server, not the user s computer. If the user s computer clock is wrong, the cookie might be out of date

immediately, or it might persist much longer than you anticipate. The other problem is that the user might

be automatically logged out without explanation. The next PHP solution offers a user-friendlier approach.

PHP Solution 9-9: Ending a session after a period of inactivity

This PHP solution shows how to end a session if a user doesn t do anything that triggers a page to load

after a specified period. When the session first starts, typically when the user logs in, the current time is

stored in a session variable. Each time the user loads a page, the session variable is compared with the

current time. If the difference is greater than a predetermined limit, the session and its variables are

destroyed. Otherwise, the variable is updated to the current time.

These instructions assume you have set up the login system in PHP Solutions 9-3 to 9-8.

1. You need to store the current time after the user s credentials have been authenticated but

before the script redirects the user to the restricted part of the site. Locate the following

section of code in authenticate.inc.php (around lines 12–16), and insert the new code

highlighted in bold as follows:

 if ($tmp[0] == $username && rtrim($tmp[1]) == $password) {
 $_SESSION['authenticated'] = 'Jethro Tull';
 $_SESSION['start'] = time();

PAGES THAT REMEMBER: SIMPLE LOGIN AND MULTIPAGE FORMS

271

 session_regenerate_id();
 break;
 }

The time() function returns a current timestamp. By storing it in $_SESSION['start'], it

becomes available to every page that begins with session_start().

2. When a session times out, just dumping a user unceremoniously back at the login screen isn t

very friendly, so it s a good idea to explain what s happened. In login.php, add the code

highlighted in bold to the PHP block immediately after the opening <body> tag (around lines

22–26):

 <?php
 if ($error) {
 echo "<p>$error</p>";
 } elseif (isset($_GET['expired'])) {
 ?>
 <p>Your session has expired. Please log in again.</p>
 <?php } ?>

The message is shown if the URL contains a variable called expired in a query string.

3. Open menu.php, cut the code in the PHP block above the DOCTYPE declaration, and paste it

into a new blank file.

4. Save the file as session_timeout.inc.php in the includes folder, and edit the code like

this:

 <?php
 session_start();
 ob_start();
 // set a time limit in seconds
 $timelimit = 15;
 // get the current time
 $now = time();
 // where to redirect if rejected
 $redirect = 'http://localhost/phpsols/sessions/login.php';
 // if session variable not set, redirect to login page
 if (!isset($_SESSION['authenticated'])) {
 header("Location: $redirect");
 exit;
 } elseif ($now > $_SESSION['start'] + $timelimit) {
 // if timelimit has expired, destroy session and redirect
 $_SESSION = array();
 // invalidate the session cookie
 if (isset($_COOKIE[session_name()])) {
 setcookie(session_name(), '', time()-86400, '/');
 }
 // end session and redirect with query string
 session_destroy();
 header("Location: {$redirect}?expired=yes");

http://localhost/phpsols/sessions/login.php

CHAPTER 9

272

 exit;
 } else {
 // if it's got this far, it's OK, so update start time
 $_SESSION['start'] = time();
 }

The inline comments explain what is going on, and you should recognize most of the elseif

clause from PHP Solution 9-5. PHP measures time in seconds, and I ve set $timelimit (in

line 5) to a ridiculously short 15 seconds purely to demonstrate the effect. To set a more

reasonable limit of, say, 15 minutes, change this later like this:

 $timelimit = 15 * 60; // 15 minutes

You could, of course, set $timelimit to 900, but why bother when PHP can do the hard work

for you?

If the sum of $_SESSION['start'] plus $timelimit is less than the current time (stored as

$now), you end the session and redirect the user to the login page. The line that performs the

redirect adds a query string to the end of the URL like this:

 http://localhost/phpsols/sessions/login.php?expired=yes

The code in step 2 takes no notice of the value of expired; adding yes as the value just

makes it look user-friendlier in the browser address bar.

If the script gets as far as the final else, it means that $_SESSION['authenticated'] has

been set and that the time limit hasn t been reached, so $_SESSION['start'] is updated to

the current time, and the page displays as normal.

5. Include session_timeout.inc.php above the DOCTYPE declaration in menu.php. The include

command should be the only code in the PHP block:

 <?php
 require_once('../includes/session_timeout.inc.php');
 ?>
 <!DOCTYPE HTML>

6. Replace the code above the DOCTYPE declaration in secretpage.php in the same way.

7. Save all the pages you have edited, and load either menu.php or secretpage.php into a

browser. If the page displays, click Log out. Then log back in, and navigate back and forth

between menu.php and secretpage.php. Once you have verified that the links work, wait 15

seconds or more, and try to navigate back to the other page. You should be automatically

logged out and presented with the following screen:

http://localhost/phpsols/sessions/login.php?expired=yes

PAGES THAT REMEMBER: SIMPLE LOGIN AND MULTIPAGE FORMS

273

If necessary, check your code against authenticate.inc_02.php, login_03.php,

session_timeout.inc.php, menu_04.php, and secretpage_03.php in the ch09 folder.

Passing information through multipage forms
Variables passed through the $_POST and $_GET arrays have only a fleeting existence. Once they have

been passed to a page, they re gone, unless you save their values in some way. The usual method of

preserving information that s passed from one form to another is to extract its value from the $_POST array

and store it in a hidden field in HTML like this:

<input type="hidden" name="address" id="address" value="<?php echo
 $_POST['address']; ?>">

As their name suggests, hidden fields are part of a form s code, but nothing is displayed onscreen. Hidden

fields are fine for one or two items, but say you have a survey that s spread over four pages. If you have

10 items on a page, you need a total of 60 hidden fields (10 on the second page, 20 on the third, and 30 on

the fourth). Session variables can save you all that coding. They can also make sure that visitors always

start on the right page of a multipage form.

PHP Solution 9-10: Using sessions for a multipage form

In this PHP solution, you ll build a script for use in multipage forms that gathers data from the $_POST array

and assigns it to session variables. The script automatically redirects the user to the first page of the form

if an attempt is made to access any other part of the form first.

1. Copy multiple_01.php, multiple_02.php, multiple_03.php, and multiple_04.php from

the ch09 folder to the sessions folder. The first three pages contain simple forms that ask for

the user s name, age, and address. The action attribute of each <form> tag is empty, so the

forms are self-processing, but they don t yet contain any processing script. The final page is

where the data from the first three pages will eventually be displayed.

2. Add the following code in a PHP block above the DOCTYPE declaration in multiple_01.php:

 if (isset($_POST['next'])) {
 session_start();
 // set a variable to control access to other pages

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9

274

 $_SESSION['formStarted'] = true;
 // set required fields
 $required = 'first_name';
 $firstPage = 'multiple_01.php';
 $nextPage = 'multiple_02.php';
 $submit = 'next';
 require_once('../includes/multiform.inc.php');
 }

The name attribute of the submit button is next, so the code in this block runs only if the form

has been submitted. It initiates a session and creates a session variable that will be used to

control access to the other form pages.

Next come four variables that will be used by the script that processes the multipage form:

• $required: This is an array of the name attributes of required fields in the

current page. If only one field is required, a string can be used instead of an

array. If no fields are required, it can be omitted.

• $firstPage: The filename of the first page of the form.

• $nextPage: The filename of the next page in the form.

• $submit: The name of the submit button in the current page.

Finally, the code includes the script that processes the multipage form.

3. Create a file called multiform.inc.php in the includes folder. Delete any HTML markup, and

insert the following code:

 <?php
 if (!isset($_SESSION)) {
 session_start();
 }
 $filename = basename($_SERVER['SCRIPT_FILENAME']);
 $current = 'http://' . $_SERVER['HTTP_HOST'] . $_SERVER['PHP_SELF'];

Each page of the multipage form needs to call session_start(), but calling it twice on the

same page generates an error, so the conditional statement first checks whether the

$_SESSION superglobal variable is accessible. If it isn t, it initiates the session for the page.

After the conditional statement, $_SERVER['SCRIPT_FILENAME'] is passed to the

basename() function to extract the filename of the current page. This is the same technique

that you used in PHP Solution 4-3. $_SERVER['SCRIPT_FILENAME'] contains the path of the

parent file, so when this script is included in multiple_01.php, the value of $filename will be

multiple_01.php, not multiform.inc.php.

The next line builds the URL for the current page from the string http:// and the values of

$_SERVER['HTTP_HOST'], which contains the current domain name, and

$_SERVER['PHP_SELF'], which contains the path of the current file minus the domain name.

If you re testing locally, when you load the first page of the multipage form $current is

http://localhost/phpsols/sessions/multiple_01.php.

http://and
http://localhost/phpsols/sessions/multiple_01.php

PAGES THAT REMEMBER: SIMPLE LOGIN AND MULTIPAGE FORMS

275

4. Now that you have both the name of the current file and its URL, you can use str_replace()

to create the URLs for the first and next pages like this:

 $redirectFirst = str_replace($filename, $firstPage, $current);
 $redirectNext = str_replace($filename, $nextPage, $current);

The first argument to str_replace() is the string you want to replace, the second is the

replacement string, and the third argument is the target string. In step 2, you set $firstPage

to multiple_01.php and $nextPage to multiple_02.php. As a result, $redirectFirst

becomes http://localhost/phpsols/sessions/multiple_01.php, and $redirectNext

is http://localhost/phpsols/sessions/multiple_02.php.

5. To prevent users from accessing the multipage form without starting at the beginning, add a

conditional statement that checks the value of $filename. If it s not the same as the first

page and $_SESSION['formStarted'] hasn t been created, the header() function redirects

to the first page like this:

 if ($filename != $firstPage && !isset($_SESSION['formStarted'])) {
 header("Location: $redirectFirst");
 exit;
 }

6. The rest of the script loops through the $_POST array, checking for required fields that are

blank and adding them to a $missing array. If nothing is missing, the header() function

redirects the user to the next page of the multipage form. The complete script for

multiform.inc.php looks like this:

 <?php
 if (!isset($_SESSION)) {
 session_start();
 }
 $filename = basename($_SERVER['SCRIPT_FILENAME']);
 $current = 'http://' . $_SERVER['HTTP_HOST'] . $_SERVER['PHP_SELF'];
 $redirectFirst = str_replace($filename, $firstPage, $current);
 $redirectNext = str_replace($filename, $nextPage, $current);
 if ($filename != $firstPage && !isset($_SESSION['formStarted'])) {
 header("Location: $redirectFirst");
 exit;
 }

 if (isset($_POST[$submit])) {
 // create empty array for any missing fields
 $missing = array();
 // create $required array if not set
 if (!isset($required)) {
 $required = array();
 } else {
 // using casting operator to turn single string to array
 $required = (array) $required;
 }

http://localhost/phpsols/sessions/multiple_01.php
http://localhost/phpsols/sessions/multiple_02.php

CHAPTER 9

276

 // process the $_POST variables and save them in the $_SESSION array
 foreach ($_POST as $key => $value) {
 // skip submit button
 if ($key == $submit) continue;
 // assign to temporary variable and strip whitespace if not an array
 $temp = is_array($value) ? $value : trim($value);
 // if empty and required, add to $missing array
 if (empty($temp) && in_array($key, $required)) {
 $missing[] = $key;
 } else {
 // otherwise, assign to a variable of the same name as $key
 $_SESSION[$key] = $temp;
 }
 }
 // if no required fields are missing, redirect to next page
 if (!$missing) {
 header("Location: $redirectNext");
 exit;
 }
 }

The code is very similar to that used in Chapter 5 to process the feedback form, so the inline

comments should be sufficient to explain how it works. The conditional statement wrapped

around the new code uses $_POST[$submit] to check if the form has been submitted. I have

used a variable rather than hard-coding the name of the submit button to make the code more

flexible. Although this script is included in the first page only after the form has been

submitted, it s included directly in the other pages, so it s necessary to add the conditional

statement here.

The name and value of the submit button are always included in the $_POST array, so the

foreach loop uses the continue keyword to skip to the next item if the key is the same as the

submit button s name. This avoids adding the unwanted value to the $_SESSION array. See

“Breaking out of a loop” in Chapter 3 for a description of continue.

7. Add the following code in a PHP block above the DOCTYPE declaration in multiple_02.php:

 $firstPage = 'multiple_01.php';
 $nextPage = 'multiple_03.php';
 $submit = 'next';
 require_once('../includes/multiform.inc.php');

This sets the values of $firstPage, $nextPage, and $submit, and includes the processing

script you have just created. The form in this page contains only one field, which is optional, so

the $required variable isn t needed. The processing script automatically creates an empty

array if it isn t set in the main page.

8. In multiple_03.php, add the following in a PHP code block above the DOCTYPE declaration:

 // set required fields
 $required = array('city', 'country');

PAGES THAT REMEMBER: SIMPLE LOGIN AND MULTIPAGE FORMS

277

 $firstPage = 'multiple_01.php';
 $nextPage = 'multiple_04.php';
 $submit = 'next';
 require_once('../includes/multiform.inc.php');

Two fields are required, so their name attributes are listed as an array and assigned to

$required. The other code is the same as in the previous page.

9. Add the following code above the <form> tag in multiple_01.php, multiple_02.php, and

multiple_03.php:

 <?php if (isset($missing)) { ?>
 <p> Please fix the following required fields:</p>

 <?php
 foreach ($missing as $item) {
 echo "$item";
 }
 ?>

 <?php } ?>

This displays a list of required items that haven t been filled in.

10. In multiple_04.php, add the following code in a PHP block above the DOCTYPE declaration to

redirect users to the first page if they didn t enter the form from there:

 session_start();
 if (!isset($_SESSION['formStarted'])) {
 header('Location: http://localhost/phpsols/sessions/multiple_01.php');
 exit;
 }

11. In the body of the page, add the following code to the unordered list to display the results:

 <?php
 $expected = array('first_name', 'family_name', 'age',
 'address', 'city', 'country');
 // unset the formStarted variable
 unset($_SESSION['formStarted']);
 foreach ($expected as $key) {
 echo "$key: $_SESSION[$key]";
 // unset the session variable
 unset($_SESSION[$key]);
 }
 ?>

This lists the name attributes of the form fields as an array and assigns it to $expected. This is

a security measure to ensure you don t process bogus values that might have been injected

into the $_POST array by a malicious user.

http://localhost/phpsols/sessions/multiple_01.php

CHAPTER 9

278

The code then unsets $_SESSION['formStarted'] and loops through the $expected array

using each value to access the relevant element of the $_SESSION array and display it in the

unordered list. The session variable is then deleted. Deleting the session variables individually

leaves intact any other session-related information.

12. Save all the pages, and try to load one of the middle pages of the form or the last one into a

browser. You should be taken to the first page. Click Next without filling in either field. You ll

be asked to fill in the first_name field. Fill in the required fields, and click Next on each page.

The results should be displayed on the final page, as shown in Figure 9-5.

Figure 9-5. The session variables preserved the input from multiple pages.

You can check your code against multiple_01_done.php, multiple_02_done.php,

multiple_03_done.php, multiple_04_done.php, and multiform.inc.php in the ch09

folder.

This is just a simple demonstration of a multipage form. In a real-world application, you would need to

preserve the user input when required fields are left blank.

The script in multiform.inc.php can be used with any multipage form by creating

$_SESSION['formStarted'] on the first page after the form has been submitted, and using $required,

$firstPage, $nextPage, and $submit on each page. Use the $missing array to handle required fields

that aren t filled in.

Chapter review
If you started this book with little or no knowledge of PHP, you re no longer in the beginners league, but

are leveraging the power PHP in a lot of useful ways. Hopefully, by now, you ll have begun to appreciate

that the same or similar techniques crop up again and again. Instead of just copying code, you should

start to recognize techniques that you can adapt to your needs and experiment on your own.

The rest of this book continues to build on your knowledge, but brings a new factor into play: the MySQL

relational database, which will take your PHP skills to a higher level. The next chapter offers an

introduction to MySQL and shows you how to set it up for the remaining chapters.

279

Chapter 10

Getting Started with MySQL

Dynamic websites take on a whole new meaning in combination with a database. Drawing content from a
database allows you to present material in ways that would be impractical—if not impossible—with a static
website. Examples that spring to mind are online stores, such as Amazon.com; news sites, such as the
BBC (www.bbcnews.com); and the big search engines, including Google and Yahoo! Database technology
allows these websites to present thousands, sometimes millions, of unique pages. Even if your ambitions
are nowhere near as grandiose, a database can increase your website s richness of content with relatively
little effort.

PHP supports all major databases, including Microsoft SQL Server, Oracle, and PostgreSQL, but it s most
frequently used in conjunction with the open source MySQL database, which is the choice for this book.
MySQL is actually a database management system that consists of several components: a database
server, a client program for accessing individual databases and records, and utility programs for various
administrative tasks. What comes as a shock to many people is that MySQL doesn t have a glossy
graphical user interface (UI). The traditional way to work with MySQL is on the command line—through the
Command Prompt on Windows or Terminal on a Mac. However, several third-party graphical UIs are
available. I ll discuss some of them in this chapter, but the one I ll concentrate on is phpMyAdmin, a web-
based interface. It s free. It s installed by default with XAMPP and MAMP, and many hosting companies
offer it as the default interface to MySQL.

In this chapter, you ll learn about the following:

• The main features of MySQL

• How a database stores information

• Choosing a graphical interface for MySQL

• Creating MySQL user accounts

• Defining a database table with the appropriate data types

• Backing up and transferring data to another server

4

http://www.bbcnews.com

CHAPTER 10

280

Why MySQL?
Of all the available databases, why choose MySQL? The following reasons should convince you:

• Cost: The MySQL Community Edition is free under the open source GPL license

(www.gnu.org/copyleft/gpl.html).

• Powerful: The same basic database system as the Community Edition is used by leading

organizations such as YouTube, Wikipedia, NASA, Flickr, and Facebook. It s feature-rich and

fast.

• Widespread availability: MySQL is the most popular open source database. Most hosting

companies automatically offer MySQL in combination with PHP.

• Cross-platform compatibility: MySQL runs on Windows, Mac OS X, and Linux. A database

requires no conversion when transferred from one system to another.

• Open source: Although there is a commercial version, the code and features in the

Community Edition are identical. New features are being added constantly.

• Security: Bugs, when found, are dealt with quickly.

Older versions of MySQL lacked several features considered as standard by its main commercial rivals,
Microsoft SQL Server and Oracle, and the open source PostgreSQL (www.postgresql.org). However,
MySQL 5.0 and later offers an excellent range of features, and certainly everything you ll need for this
book. MySQL s great strengths lie in speed and efficiency. It s particularly suited to web-based
applications.

MySQL was originally developed by MySQL AB in Sweden, but the company was sold to Sun
Microsystems in 2008. Sun was acquired two years later by Oracle, a major commercial database
supplier. Many regarded this as a threat to MySQL s continued survival as a free, open source database.
However, Oracle is on record as saying “MySQL is integral to Oracle's complete, open and integrated
strategy.” The difference between the free Community Edition and the commercial one is that the latter
provides paying customers with automatic updates and service packs. Otherwise, the software is the
same.

Which version?

At the time of this writing, the current version of MySQL is 5.1, and MySQL 5.5 is in an advanced stage of
development. Unfortunately, hosting companies are often slow to update. Although the code in this book
works on MySQL 4.1 or later, official support for MySQL 4.1 ended in 2009, and support for MySQL 5.0
ends in 2011 (see http://www.mysql.com/about/legal/lifecycle/).

Even if you don t need the advanced features offered by the latest version, it s important to use a version
that s still officially supported to ensure you benefit from security updates. If your hosting company is
offering an outdated version and refuses to upgrade, it s time to move.

http://www.gnu.org/copyleft/gpl.html
http://www.postgresql.org
http://www.mysql.com/about/legal/lifecycle/

GETTING STARTED WITH MYSQL

281

How a database stores information
All the data in MySQL is stored in tables, very much in the same way as in a spreadsheet, with information
organized into rows and columns. Figure 10-1 shows the database table that you will build later in this
chapter, as displayed in phpMyAdmin.

Figure 10-1. A database table stores information in rows and columns like in a spreadsheet.

Each column has a name (image_id, filename, and caption) indicating what it stores.

The rows aren t labeled, but the first column (image_id) contains a unique value known as a primary key,
which identifies the data associated with the row. Each row contains an individual record of related data.

The intersection of a row and a column, where the data is stored, is called a field. For instance, the
caption field for the third record in Figure 10-1 contains the value “The Golden Pavilion in Kyoto” and the
primary key for that record is 3.

The terms “field” and “column” are often used interchangeably, particularly by phpMyAdmin. A field

holds one piece of information for a single record, whereas a column contains the same field for all

records.

How primary keys work

Although Figure 10-1 shows image_id as a consecutive sequence from 1 to 8, they re not row numbers.
Figure 10-2 shows the same table with the captions sorted in alphabetical order. The field highlighted in
Figure 10-1 has moved to the seventh row, but it still has the same image_id and filename.

CHAPTER 10

282

Figure 10-2. The primary key identifies the row even when the table is sorted in a different order.

Although the primary key is rarely displayed, it identifies the record and all the data stored in it. Once you
know the primary key of a record, you can update it, delete it, or use it to display data in a separate page.
Don t worry about how you find the primary key. It s easily done using Structured Query Language (SQL),
the standard means of communicating with all major databases. The important thing to remember is to
assign a primary key to every record.

• A primary key doesn t need to be a number, but it must be unique.

• Social security, staff ID, or product numbers make good primary keys. They may consist of

numbers, letters, and other characters but are always different.

• MySQL can generate a primary key for you automatically.

• Once a primary key has been assigned, it should never—repeat, never—be changed.

Because a primary key must be unique, MySQL doesn t normally reuse the number when a record is
deleted. This leaves holes in the sequence. Don t even think about renumbering. Gaps in the sequence
are of no importance whatsoever. The purpose of the primary key is to identify the record, and by
changing the numbers to close the gaps, you put the integrity of your database at serious risk.

Some people want to remove gaps in the sequence to keep track of the number of records in a table.

It s not necessary, as you ll discover in the next chapter.

Linking tables with primary and foreign keys

Unlike a spreadsheet, most databases store data in several smaller tables, rather than in one huge table.
This prevents duplication and inconsistency. Let s say you re building a database of your favorite
quotations. Instead of typing out the name of the author each time, it s more efficient to put the authors
names in a separate table, and store a reference to an author s primary key with each quotation. As you
can see in Figure 10-3, every record in the left-hand table identified by author_id 32 is a quotation from
William Shakespeare.

GETTING STARTED WITH MYSQL

283

Figure 10-3. Foreign keys are used to link information stored in separate tables.

Because the name is stored in only one place, it guarantees that it s always spelled correctly. And if you
do make a spelling mistake, just a single correction is all that s needed to ensure that the change is
reflected throughout the database.

Storing a primary key from one table in another table is known as creating a foreign key. Using foreign
keys to link information in different tables is one of the most powerful aspects of a relational database. It
can also be difficult to grasp in the early stages, so we ll work with single tables until Chapter 15 and 18,
which cover foreign keys in detail. In the meantime, bear the following points in mind:

• When used as the primary key of a table, the value must be unique within the column. So each

author_id in the table on the right of Figure 10-3 is used only once.

• When used as a foreign key, there can be multiple references to the same value. So 32

appears several times in the author_id column in the table on the left.

As long as author_id remains unique in the table where it s the primary key, you know that it always

refers to the same person.

Breaking down information into small chunks

You may have noticed that the table on the right in Figure 10-3 has separate columns for each author s
first name and family name. This is an important principle of a relational database: break down complex

information into its component parts, and store each part separately.

It s not always easy to decide how far to go with this process. In addition to first and last name, you might
want separate columns for title (Mr., Mrs., Ms., Dr., and so on) and for middle names or initials. Addresses
are best broken down into street, town, county, state, zip code, and so on. Although it may be a nuisance
to break down information into small chunks, you can always use SQL and/or PHP to join them together

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 10

284

again. However, once you have more than a handful of records, it s a major undertaking to try to separate
complex information stored in a single field.

Checkpoints for good database design

There is no right way to design a database—each one is different. However, the following guidelines
should point you in the right direction:

• Give each record in a table a unique identifier (primary key).

• Put each group of associated data in a table of its own.

• Cross-reference related information by using the primary key from one table as the foreign key

in other tables.

• Store only one item of information in each field.

• Stay DRY (don t repeat yourself).

In the early stages, you are likely to make design mistakes that you later come to regret. Try to anticipate
future needs, and make your table structure flexible. You can add new tables at any time to respond to
new requirements.

That s enough theory for the moment. Let s get on with something more practical by building a database
for the Japan Journey website from Chapters 4 and 5.

Using MySQL with a graphical interface
Rather than working with MySQL in a Command Prompt window or Terminal, it s a lot easier to use a
graphic interface. In addition to phpMyAdmin, there are several others to choose from, both commercial
and free. Among the free offerings is MySQL Workbench (http://dev.mysql.com/downloads/
workbench/), which is created by MySQL itself. Two other graphical front ends for MySQL worthy of note
are Navicat (www.navicat.com), and SQLyog (www.webyog.com), which are available in both commercial
and free versions.

MySQL Workbench seems aimed at the professional database administrator. Navicat (see Figure 10-4)
and SQLyog are particularly popular among web developers, because the commercial versions are
capable of performing scheduled backups of databases from a remote server to your local computer. They
also help you build SQL queries in a visual and intuitive manner. The free versions have fewer features.
MySQL Workbench and Navicat are available for both Windows and Mac OS X. There s also a version of
Navicat for Linux. SQLyog runs on Windows only.

http://dev.mysql.com/downloads/workbench/
http://dev.mysql.com/downloads/workbench/
http://www.navicat.com
http://www.webyog.com

GETTING STARTED WITH MYSQL

285

Figure 10-4. Navicat is one of the most popular graphical UIs for MySQL.

Because phpMyAdmin (www.phpmyadmin.net) is installed automatically with XAMPP and MAMP, it s the
UI chosen for this book. It s a browser-based application (see Figure 10-5), so it doesn t have the glossy
interface of MySQL Workbench, Navicat, or SQLyog, but it s easy to use and has all the basic
functionality required for setting up and administering MySQL databases. It works on Windows, Mac OS
X, and Linux. Version 3.x of phpMyAdmin requires PHP 5.2 and MySQL 5.0 or later. Many hosting
companies provide it as the standard interface to MySQL.

http://www.phpmyadmin.net

CHAPTER 10

286

Figure 10-5. phpMyAdmin is a free graphical interface to MySQL that runs in your browser.

If you work with databases on a regular basis, you may want to explore the other graphical interfaces
later. However, since phpMyAdmin is free, you have nothing to lose—and you may find it does everything
you want.

Launching phpMyAdmin

If you re running XAMPP on Windows, there are three ways to launch phpMyAdmin:

• Enter http://localhost/phpMyAdmin/ in the browser address bar.

• Click the MySQL Admin button in the XAMPP Control Panel.

• Click the phpMyAdmin link under Tools in the XAMPP administration page

(http://localhost/xampp/).

If you installed MAMP on Mac OS X, click the phpMyAdmin tab in the menu at the top of the MAMP start
page (click Open start page in the MAMP control widget).

If you installed phpMyAdmin manually, enter the appropriate address in your browser address bar
(normally http://localhost/phpmyadmin/).

http://localhost/phpMyAdmin/
http://localhost/xampp/
http://localhost/phpmyadmin/

GETTING STARTED WITH MYSQL

287

If you get a message saying that the server is not responding or that the socket is not correctly

configured, make sure that the MySQL server is running.

If you installed XAMPP, you might be presented with a screen asking for a username and password. If so,
log into phpMyAdmin as the root superuser. Enter root as the username, and use the password you
created for root when setting up XAMPP.

Setting up the phpsols database
In a local testing environment, there s no limit to the number of databases that you can create in MySQL,
and you can call them whatever you like. I am going to assume that you are working in a local testing
environment and will show you how to set up a database called phpsols, together with two user accounts
called psread and pswrite.

On shared hosting, you may be limited to just one database set up by the hosting company. If you re

testing on a remote server and don t have the freedom to set up a new database and user accounts,

substitute the name and username allocated by your hosting company for phpsols and pswrite

respectively throughout the rest of this book.

MySQL naming rules

The basic MySQL naming rules for databases, tables, and columns are as follows:

• Names can be up to 64 characters long.

• Legal characters are numbers, letters, the underscore, and $.

• Names can begin with a number, but cannot consist exclusively of numbers.

Some hosting companies seem blissfully ignorant of these rules and assign clients databases that
contain one or more hyphens (an illegal character) in their name. If a database, table, or column name
contains spaces or illegal characters, you must always surround it by backticks (`) in SQL queries. Note
that this is not a single quote ('), but a separate character. On my Windows keyboard, it s directly above
the Tab key. On my Mac keyboard, it s next to the left Shift key on the same key as the tilde (~).

When choosing names, you might accidentally choose one of MySQL s many reserved words
(http://dev.mysql.com/doc/refman/5.1/en/reserved-words.html), such as date or time. One
technique to avoid this is to use compound words, such as arrival_date, arrival_time, and so on.
Alternatively, surround all names with backticks. phpMyAdmin does this automatically, but you need to do
this manually when writing your own SQL in a PHP script.

Because so many people have used date, text, time, and timestamp as column names, MySQL

permits their use without backticks. However, you should avoid using them. It s bad practice and is

unlikely to work if you migrate your data to a different database system.

http://dev.mysql.com/doc/refman/5.1/en/reserved-words.html

CHAPTER 10

288

Case sensitivity of names

Windows and Mac OS X treat MySQL names as case-insensitive. However, Linux and Unix servers
respect case sensitivity. To avoid problems when transferring databases and PHP code from your local
computer to a remote server, I strongly recommend that you use lowercase exclusively in database,
table, and column names. When building names from more than one word, join them with an underscore.

Using phpMyAdmin to create a new database

Creating a new database in phpMyAdmin is easy.

1. Launch phpMyAdmin.

2. Type the name of the new database (phpsols) into the field labeled Create new database .

Leave the Collation drop-down menu at its default setting, and click Create , as shown in the

following screenshot:

Collation determines the sort order of records according to the rules of the language being used.

Unless you are using a language other than English, Swedish, or Finnish, you never need to change

its value. Collation is not supported in MySQL 3.23 or 4.0.

3. The next screen should confirm that the database has been created and offer you the

opportunity to create your first table. Before creating any tables in a new database, it s a good

idea to create user accounts for it. Leave phpMyAdmin open, as you ll continue using it in the

next section.

Creating database-specific user accounts

A new installation of MySQL normally has only one registered user—the superuser account called “root,”
which has complete control over everything. (XAMPP also creates a user account called “pma,” which
phpMyAdmin uses for advanced features not covered by this book.) The root user should never be used
for anything other than top-level administration, such as the creation and removal of databases, creating
user accounts, and exporting and importing data. Each individual database should have at least one—
preferably two—dedicated user accounts with limited privileges.

When you put a database online, you should grant users the least privileges they need, and no more.
There are four important privileges—all named after the equivalent SQL commands:

• SELECT: Retrieves records from database tables

• INSERT: Inserts records into a database

GETTING STARTED WITH MYSQL

289

• UPDATE: Changes existing records

• DELETE: Deletes records, but not tables or databases (the command for that is DROP)

Most of the time, visitors need only to retrieve information, so the psread user account will have just the
SELECT privilege and be read-only. However, for user registration or site administration, you need all four
privileges. These will be made available to the pswrite account.

Granting user privileges

1. Return to the main phpMyAdmin screen by clicking either the little house icon at the top left of

the left frame or Server: localhost at the top left of the main frame.

2. Click the Privileges tab at the top of the page to open the User overview page.

Most links and tabs in phpMyAdmin are context-sensitive. It s important to click the Privileges tab

on the welcome page rather than at the top of the previous screen. The tab on the welcome page lets

you set up new user accounts. The Privileges tab at the top of any other page only provides

information about existing accounts.

3. Click the Add a new User link halfway down the page.

4. In the page that opens, enter pswrite (or the name of the user account that you want to

create) in the User name field. Select Local from the Host drop-down menu. This

automatically enters localhost in the field alongside. Selecting this option allows the pswrite

user to connect to MySQL only from the same computer. Then enter a password in the

Password field, and type it again for confirmation in the Re-type field.

In the example files for this book, I ve used 0Ch@Nom1$u as the password. MySQL passwords are

case-sensitive.

5. Beneath the Login Information table is one labeled Global privileges. These give a user

privileges on all databases, including the mysql one, which contains sensitive information.

Granting such extensive privileges is insecure, so leave the Global privileges table

unchecked, and click the Go button right at the bottom of the page.

6. The next page confirms that the pswrite user has been created and displays many options,

beginning with the Global privileges table again. Scroll down below this to the section labeled

Database-specific privileges. Activate the drop-down menu to display a list of all databases

on your system. Select phpsols.

CHAPTER 10

290

MySQL has three default databases: information_schema, a read-only, virtual database that

contains details of all other databases on the same server; mysql, which contains details of all user

accounts and privileges; and test, which is empty. You should never edit the mysql database

directly unless you re sure what you re doing.

A rather annoying quirk of phpMyAdmin is the way the drop-down menu inserts a backslash in front

of underscores in database names, such as information_schema. You don t need the backslash

when inserting a name that uses an underscore.

7. The next screen allows you to set the privileges for this user on just the phpsols database.

You want pswrite to have all four privileges listed earlier, so click the check boxes next to

SELECT, INSERT, UPDATE, and DELETE. (If you hover your mouse pointer over each option,

phpMyAdmin displays a tooltip describing what the option is for, as shown.) After selecting the

four privileges, click the top Go button. (Always click the Go button at the foot of or alongside

the section with the options you want to set.)

8. phpMyAdmin presents you with confirmation that the privileges have been updated for the

pswrite user account: the page displays the Database-specific privileges table again, in

case you need to change anything. Click the Privileges tab at the top of the page. You should

now see pswrite listed the User overview.

9. If you ever need to make any changes to a user s privileges, click the Edit Privileges icon to

the right of the listing, as shown.

10. To delete a user, select the check box to the left of the account s username, and then click Go

in the Remove selected users section.

GETTING STARTED WITH MYSQL

291

11. Click Add a new User, and repeat steps 4 through 8 to create a second user account called

psread. This user will have much more restricted privileges, so when you get to step 7, check

only the SELECT option. The password used for psread in the example files is K1y0mi$u.

Creating a database table

Now that you have a database and dedicated user accounts, you can begin creating tables. Let s begin by
creating a table to hold the details of images, as shown in Figure 10-1. Before you can start entering data,
you need to define the table structure. This involves deciding the following:

• The name of the table

• How many columns it will have

• The name of each column

• What type of data will be stored in each column

• Whether the column must always have data in each field

• Which column contains the table s primary key

If you look at Figure 10-1, you can see that the table contains three columns: image_id (primary key),
filename, and caption. Because it contains details of images, that s a good name to use for the table.
There s not much point in storing a filename without a caption, so every column must contain data. Great!
Apart from the data type, all the decisions have been made. I ll explain the data types as we go along.

Defining the images table

These instructions show how to define a table in phpMyAdmin. If you prefer to use Navicat, SQLyog, or a
different UI for MySQL, use the settings in Table 10-1.

1. Launch phpMyAdmin, if it s not already open, and select phpsols from the Database drop-

down menu in the left frame. Type the name of the new table (images) in the field labeled

Create new table on database phpsols, and enter 3 as the Number of fields. (As

mentioned before, phpMyAdmin refers to columns as fields. What it means is how many fields

each record has.) Then click the Go button.

2. The next screen is where you define the table. Because the images table contains only three

columns, the options for each column are listed vertically. When you define a table with more

than three columns, the options are displayed horizontally. There are a lot of options, but not

all of them need to be filled in. Table 10-1 lists the settings for the images table.

Table 10-1. Settings for the images table

Field Type Length/Values Attributes Null Index AUTO_INCREMENT

image_id INT UNSIGNED Deselected PRIMARY Selected

filename VARCHAR 25 Deselected

caption VARCHAR 120 Deselected

CHAPTER 10

292

The first column, image_id, is defined as type INT, which stands for integer. Its attribute is

set to UNSIGNED, which means that only positive numbers are allowed. Its index is declared as

PRIMARY, and the AUTO_INCREMENT check box is selected, so MySQL automatically inserts in

this column the next available number (starting at 1) whenever a new record is inserted.

The next column, filename, is defined as type VARCHAR with a length of 25. This means it

accepts up to 25 characters of text.

The final column, caption, is also VARCHAR with a length of 120, so it accepts up to 120

characters of text.

The Null check box for all columns is deselected, so they must always contain something.

However, that “something” can be as little as an empty string. I ll describe the column types in

more detail in “Choosing the right column type in MySQL” later in this chapter.

The following screenshot shows the options after they have been set in phpMyAdmin:

3. Toward the bottom of the screen is an option for Storage Engine. This determines the format

used internally by MySQL to store the database files. MyISAM is the default storage engine in

MySQL 3.23 through 5.1. However, it has been announced that an improved version of the

InnoDB storage engine will become the default in MySQL 5.5. At the time of this writing, many

GETTING STARTED WITH MYSQL

293

hosting companies don t support InnoDB or offer it only on premium hosting plans. I ll explain

the differences between these storage engines in Chapter 16. In the meantime, use MyISAM.

Converting from one storage engine to another is very simple.

4. When you have finished, click the Save button at the bottom of the screen.

If you click Go instead of Save, phpMyAdmin adds an extra column for you to define. If this

happens, give the new column a dummy name, and set the Type option to INT. You can then delete

the extra column by clicking the Delete icon (a red cross) in the relevant row in the Structure table

that appears in the next screen.

5. The next screen displays the SQL query that phpMyAdmin used to define the images table.

Beneath that, you ll see the structure of the table displayed like this:

Don t be alarmed by the fact that Collation displays latin1_swedish_ci. MySQL was originally developed
in Sweden, and Swedish uses the same sort order as English (and Finnish). The underlining of image_id
indicates that it s the table s primary key. To change any settings, click the pencil-like icon in the
appropriate row. This opens a version of the previous screen and allows you to change the values. If you
made a complete mess and want to start again, click the Drop tab at the top right of the screen, and
confirm that you want to drop the table. (In SQL, delete refers only to records. You drop a table or a
database.)

Inserting records into a table

Now that you have a table, you need to put some data into it. Eventually, you ll need to build your own
content management system using HTML forms, PHP, and SQL; but the quick and easy way to do it is with
phpMyAdmin.

Using phpMyAdmin to insert records manually

These instructions show how to add individual records to the images table through the phpMyAdmin
interface.

1. If phpMyAdmin is still displaying the structure of the images table as at the end of the previous

section, skip to step 2. Otherwise, launch phpMyAdmin, and select the phpsols database

from the drop-down menu in the left frame. Then click the Structure icon alongside images, as

shown in the following screenshot:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 10

294

The breadcrumb trail at the top of the main frame provides the context for the tabs across the head

of the page. The Structure tab at the top left of the preceding screenshot refers to the structure of

the phpsols database. At the moment, it contains only one table, images. To access the structure of

an individual table, click the Structure icon alongside its name. Use your mouse pointer to reveal

tooltips for each icon. Some, such as Browse, are grayed out because there are no records in the

table.

2. Click the Insert tab in the center top of the page. This displays the following screen, ready for

you to insert up to two records:

3. The forms display the names and details of each column. You can ignore the Function fields.

MySQL has a large number of functions that you can apply to the values being stored in your

GETTING STARTED WITH MYSQL

295

table. You ll learn more about them in the following chapters. The Value field is where you enter

the data you want to insert in the table.

Because you have defined image_id as AUTO_INCREMENT, MySQL inserts the next available

number automatically. So you must leave the image_id Value field blank. Fill in the next two

Value fields as follows:

• filename: basin.jpg

• caption: Water basin at Ryoanji temple, Kyoto

4. In the second form, leave the Value field for image_id blank, and fill in the next two fields like

this:

• filename: fountains.jpg

• caption: Fountains in central Tokyo

Normally, the Ignore check box is automatically deselected when you add values to the

second form, but deselect it if necessary.

5. Click Go. The SQL used to insert the records is displayed at the top of the page, together with

a report that two rows have been inserted. I ll explain the basic SQL commands in the

remaining chapters, but studying the SQL that phpMyAdmin displays is a good way to learn

how to build your own queries. SQL is closely based on human language, so it isn t all that

difficult to learn.

6. Click the Browse tab at the top left of the page. You should now see the first two entries in the

images table, as shown here:

As you can see, MySQL has automatically inserted 1 and 2 in the image_id fields.

You could continue typing out the details of the remaining six images, but let s speed things up a bit by
using a SQL file that contains all the necessary data.

Loading the images records from a SQL file

Because the primary key of the images table has been set to AUTO_INCREMENT, it s necessary to drop the
original table and all its data. The SQL file does this automatically and builds the table from scratch. These
instructions assume that phpMyAdmin is open at the page in step 6 of the previous section.

1. If you re happy to overwrite the data in the images table, skip to step 2. However, if you have

entered data that you don t want to lose, copy your data to a different table. Click the

Operations tab at the top of the page, type the name of the new table in the blank field in the

section titled Copy table to (database.table), and click Go. The following screenshot

shows the settings for copying the images table to images_backup:

CHAPTER 10

296

2. After clicking Go, you should see confirmation that the table has been copied. The

breadcrumb trail at the top of the page indicates that phpMyAdmin is still in the images table,

so you can proceed to step 2, even though you have a different page onscreen.

3. Click the Import tab at the top right of the page. In the next screen, click the Browse (or

Choose File) button in File to import, and navigate to images.sql in the ch10 folder. Leave

all options at their default setting, and click Go at the foot of the page.

4. phpMyAdmin drops the original table, creates a new version, and inserts all the records. When

you see confirmation that the file has been imported, click the Browse button at the top left of

the page. You should now see the same data as shown in Figure 10-1 at the beginning of the

chapter.

If you open the images.sql in a text editor, you ll see that it contains the SQL commands that create the
images table and populate it with data. This is how the table is built:

DROP TABLE IF EXISTS `images`;
CREATE TABLE IF NOT EXISTS `images` (
 `image_id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 `filename` varchar(25) NOT NULL,
 `caption` varchar(120) NOT NULL,
 PRIMARY KEY (`image_id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=9 ;

GETTING STARTED WITH MYSQL

297

Importing data from a SQL file like this is how you transfer data from your local testing environment to the
remote server where your website is located. Assuming that your hosting company provides phpMyAdmin
to administer your remote database, all you need to do to transfer the data is to launch the version of
phpMyAdmin on your remote server, click the Import tab, select the SQL file on your local computer, and
click Go.

The next section describes how to create the SQL file.

Creating a SQL file for backup and data transfer

MySQL doesn t store your database in a single file that you can simply upload to your website. Even if you
find the right files (on Windows, they re located in C:\Program Files\MySQL\MySQL Server 5.1\data),
you re likely to damage them unless the MySQL server is turned off. Anyway, most hosting companies
won t permit you to upload the raw files because it would also involve shutting down their server, causing a
great deal of inconvenience for everyone.

Nevertheless, moving a database from one server to another is very easy. All it involves is creating a
backup dump of the data and loading it into the other database with phpMyAdmin or any other database
administration program. The dump is a text file that contains all the necessary SQL commands to populate
an individual table or even an entire database elsewhere. phpMyAdmin can create backups of your entire
MySQL server, individual databases, selected tables, or individual tables. To keep things simple, these
instructions show you how to back up only a single database.

1. In phpMyAdmin, select the phpsols database from the drop-down menu in the navigation

frame. If the database was already selected, click the Database: phpsols breadcrumb at the

top of the screen, as shown here:

2. Select Export from the tabs along the top of the screen.

3. The rather fearsome looking screen shown in Figure 10-6 opens. In spite of all the options, you

need to concern yourself with only a few.

• The Export section on the left of the screen lists all the tables in your database. Click

Select All, and leave the radio buttons on the default SQL.

• If the database has never been transferred to the other server before, the only option that

you need to set on the right side of the screen is the drop-down menu labeled SQL export

compatibility. If the other server is running MySQL 3.23, choose MYSQL323. If the other

server is running MySQL 4.0, choose MYSQL40. Otherwise, choose NONE.

• If the database has already been transferred on a previous occasion, select Add DROP

TABLE in the Structure section. The existing contents of each table are dropped and are

replaced with the data in the backup file.

CHAPTER 10

298

Figure 10-6. phpMyAdmin offers a wide range of choices when exporting data from MySQL.

4. Make sure the check box labeled Save as file at the bottom of the screen is selected. The

default setting in File name template is __DB__, which automatically gives the backup file

the same name as your database. So, in this case, it becomes phpsols.sql. If you add

anything after the final double underscore, phpMyAdmin adds this to the name. For instance,

GETTING STARTED WITH MYSQL

299

you might want to indicate the date of the backup, so you could add 2011-11-11 for a backup

made on November 11, 2011. The file would then be named phpsols2011-11-11.sql.

5. If your database contains a lot of data, select a compression format from one of the radio

buttons at the bottom of the page. When you import the file to another server, phpMyAdmin

automatically decompresses it.

6. Click Go, and save the SQL file to your local hard disk. You now have a backup that can be

used to transfer the contents of your database to another server.

The file created by phpMyAdmin contains the SQL commands only to create and populate the

database tables. It does not include the command to create the database. This means you can

import the tables into any database. It does not need to have the same name as the one in your local

testing environment.

Choosing the right data type in MySQL
You may have received a bit of a shock when selecting Type for the image_id column. phpMyAdmin lists
all available data types—there are nearly 40 in MySQL 5.1. Rather than confuse you with unnecessary
details, I ll explain just the most commonly used. You can find full details of all data types in the MySQL
documentation at http://dev.mysql.com/ doc/refman/5.1/en/data-types.html.

Storing text

The difference between the main text data types boils down to the maximum number of characters that
can be stored in an individual field, the treatment of trailing spaces, and whether you can set a default
value.

• CHAR: A fixed-length string. You must specify the required length in the Length/Values field.

The maximum permitted value is 255. Internally, strings are right-padded with spaces to the

specified length, but the trailing spaces are stripped when you retrieve the value. You can

define a default.

• VARCHAR: A variable-length string. You must specify the maximum number of characters you

plan to use (in phpMyAdmin, enter the number in the Length/Values field). Prior to MySQL

5.0, the limit was 255. This was increased to 65,535 in MySQL 5.0. If a string is stored with

trailing spaces, they are preserved on retrieval. Accepts a default value.

• TEXT: Stores text up to a maximum of 65,535 characters (approximately 50% longer than this

chapter). Cannot define a default value.

TEXT is convenient because you don t need to specify a maximum size (in fact, you can t). Although the
maximum length of VARCHAR is the same as TEXT in MySQL 5.0 and later, other factors may limit the actual
amount that can be stored.

Keep it simple: use VARCHAR for short text items and TEXT for longer ones.

http://dev.mysql.com/

CHAPTER 10

300

Storing numbers

The most frequently used numeric column types are as follows:

• INT: Any whole number (integer) between –2,147,483,648 and 2,147,483,647. If the column is

declared as UNSIGNED, the range is from 0 to 4,294,967,295.

• FLOAT: A floating-point number. You can optionally specify two comma-separated numbers to

limit the range. The first number specifies the maximum number of digits, and the second

specifies how many of those digits should come after the decimal point. Since PHP will format

numbers after calculation, I recommend that you use FLOAT without the optional parameters.

• DECIMAL: A number with a fraction containing a fixed number of digits after the decimal point.

When defining the table, you need to specify the maximum number of digits and how many of

those digits should come after the decimal point. In phpMyAdmin, enter the numbers

separated by a comma in the Length/Values field. For example, 6,2 permits numbers in the

range from –9999.99 to 9999.99. If you don t specify the size, the decimal fraction is truncated

when values are stored in this type of column.

The difference between FLOAT and DECIMAL is accuracy. Floating-point numbers are treated as
approximate values and are subject to rounding errors (for a detailed explanation, see
http://dev.mysql.com/doc/refman/5.1/en/problems-with-float.html).

Use DECIMAL to store currencies. However, it s important to note that prior to MySQL 5.0.3, the DECIMAL
data type was stored as a string, so could not be used with SQL functions, such as SUM(), to perform
calculations inside the database. If your remote server is running an older version of MySQL, store
currencies in an INT column as cents; for pounds, use pence. Then use PHP to divide the result by 100,
and format the currency as desired. Better still, move to a server that runs MySQL 5.0 or higher.

Don t use commas or spaces as the thousands-separator. Apart from numerals, the only characters

permitted in numbers are the negative operator (-) and the decimal point (.).

Storing dates and times

MySQL stores dates in one format only: YYYY-MM-DD. It s the standard approved by the ISO (International
Organization for Standardization) and avoids the ambiguity inherent in different national conventions. I ll
return to the subject of dates in Chapter 14. The most important column types for dates and times are as
follows:

• DATE: A date stored as YYYY-MM-DD. The range is 1000-01-01 to 9999-12-31.

• DATETIME: A combined date and time displayed in the format YYYY-MM-DD HH:MM:SS.

• TIMESTAMP: A timestamp (normally generated automatically by the computer). Legal values

range from the beginning of 1970 to partway through January 2038.

http://dev.mysql.com/doc/refman/5.1/en/problems-with-float.html

GETTING STARTED WITH MYSQL

301

MySQL timestamps are based on a human-readable date and, since MySQL 4.1, use the same format as
DATETIME. As a result, they are incompatible with Unix and PHP timestamps, which are based on the
number of seconds elapsed since January 1, 1970. Don t mix them.

Storing predefined lists

MySQL lets you store two types of predefined list that could be regarded as the database equivalents of
radio button and check box states:

• ENUM: This column type stores a single choice from a predefined list, such as “yes, no, don t

know” or “male, female.” The maximum number of items that can be stored in the predefined list

is a mind-boggling 65,535—some radio-button group!

• SET: This column type stores zero or more choices from a predefined list. The list can hold a

maximum of 64 choices.

While ENUM is quite useful, SET tends to be less so, mainly because it violates the principle of storing only
one piece of information in a field. The type of situation where it can be useful is when recording optional
extras on a car or multiple choices in a survey.

Storing binary data

Storing binary data, such as images, isn t a good idea. It bloats your database, and you can t display
images directly from a database. However, the following column types are designed for binary data:

• TINYBLOB: Up to 255 bytes

• BLOB: Up to 64kB

• MEDIUMBLOB: Up to 16MB

• LONGBLOB: Up to 4GB

With such whimsical names, it s a bit of a letdown to discover that BLOB stands for binary large object.

Chapter review
Much of this chapter has been devoted to theory, explaining the basic principles of good database design.
Instead of putting all the information you want to store in a single, large table like a spreadsheet, you need
to plan the structure of your database carefully, moving repetitive information into separate tables. As
long as you give each record in a table a unique identifier—its primary key—you can keep track of
information and link it to related records in other tables through the use of foreign keys. The concept of
using foreign keys can be difficult to understand at the outset, but it should become clearer by the end of
this book.

You have also learned how to create MySQL user accounts with limited privileges, as well as how to define
a table and import and export data using a SQL file. In the next chapter, you ll use PHP to connect to the
phpsols database to display the data stored in the images table.

CHAPTER 10

302

303

Chapter 11

Connecting to MySQL with PHP and SQL

PHP offers three different ways to connect to and interact with a MySQL database: the original MySQL

extension, MySQL Improved (MySQLi), or PHP Data Objects (PDO). Which one you choose is an

important decision, because they use incompatible code. You can t mix them in the same script. The

original MySQL extension is no longer actively developed and is not recommended for new PHP/MySQL

projects. It s not covered in this book.

The PHP documentation describes MySQLi as the preferred option recommended by MySQL for new

projects. However, that doesn t mean you should discount PDO. The advantage of PDO is that it s

software-neutral. In theory, at least, you can switch your website from MySQL to Microsoft SQL Server or

a different database system by changing only a couple of lines of PHP code. In practice, you normally

need to rewrite at least some of your SQL queries because each database vendor adds custom functions

on top of standard SQL. Still, it s simpler than switching from MySQLi, which works exclusively with

MySQL. Switching a MySQLi script to a different database involves rewriting all of the PHP code in

addition to any changes needed to the SQL.

If you have no plans to use a database other than MySQL, I recommend that you use MySQLi. It s

designed specifically to work with MySQL. Just ignore the sections on PDO. On the other hand, if

database flexibility is important to you, choose PDO. Both methods are covered in the remaining chapters

of this book.

Although PHP connects to the database and stores any results, the database queries need to be written

in SQL. This chapter teaches you the basics of retrieving information stored in a table.

In this chapter, you ll learn the following:

• Connecting to MySQL with MySQLi and PDO

• Counting the number of records in a table

• Using SELECT queries to retrieve data and display it in a web page

• Keeping data secure with prepared statements and other techniques

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11

304

Checking your remote server setup
XAMPP and MAMP support all three methods of communicating with MySQL, but you need to check the

PHP configuration of your remote server to verify the degree of support it offers. Run phpinfo() on your

remote server, scroll down the configuration page, and look for the following sections. They re listed

alphabetically, so you ll need to scroll down a long way to find them.

All hosting companies should have the first two sections (mysql and mysqli). If you plan to use PDO, you

not only need to check that PDO is enabled, but you must also make sure mysql is listed among the PDO

drivers.

CONNECTING TO MYSQL WITH PHP AND SQL

305

How PHP communicates with MySQL
Regardless of whether you use MySQLi or PDO, the process always follows this sequence:

1. Connect to MySQL using the hostname, username, password, and database name.

2. Prepare a SQL query.

3. Execute the query and save the result.

4. Extract the data from the result (usually with a loop).

Username and password are straightforward: they re the username and password of the accounts you

have just created or the account given to you by your hosting company. But what about hostname? In a

local testing environment it s localhost. What comes as a surprise is that MySQL often uses localhost

even on a remote server. This is because in many cases the database server is located on the same

server as your website. In other words, the web server that displays your pages and the MySQL server

are local to each other. However, if your hosting company has installed MySQL on a separate machine, it

will tell you the address to use. The important thing to realize is that the MySQL hostname is not the same

as your website domain name.

Let s take a quick look at how you connect to a MySQL server with each of the methods.

Connecting with the MySQL Improved extension

MySQLi has two interfaces: procedural and object-oriented. The procedural interface is designed to ease

the transition from the original MySQL functions. Since the object-oriented version is more compact,

that s the version adopted here.

To connect to a MySQL server, you create a mysqli object by passing four arguments to new mysqli():

the hostname, username, password, and the name of the database. This is how you connect to the

phpsols database:

$conn = new mysqli($hostname, $username, $password, 'phpsols');

This stores the connection object as $conn.

Connecting with PDO

PDO requires a slightly different approach. The most important difference is that, if you re not careful,

PDO displays your database username and password onscreen when it can t connect to the database.

This is because PDO throws an exception if the connection fails. So, you need to wrap the code in a try

block, and catch the exception.

To create a connection to the MySQL server, you create a data object by passing the following three

arguments to new PDO():

• A string specifying the database type, the hostname, and the name of the database. The

string must be presented in the following format:

 'mysql:host=hostname;dbname=databaseName'

• The username.

CHAPTER 11

306

• The user s password.

The code looks like this:

try {
 $conn = new PDO("mysql:host=$hostname;dbname=phpsols", $username, $password);
} catch (PDOException $e) {
 echo $e->getMessage();
}

Using echo to display the message generated by the exception is OK during testing, but when you deploy

the script on a live website, you need to redirect the user to an error page, as described in PHP Solution 4-

8.

PHP Solution 11-1: Making a reusable database connector

Connecting to a database is a routine chore that needs to be performed in every page from now on. This

PHP solution creates a simple function stored in an external file that connects to the database. It s

designed mainly for testing the different MySQLi and PDO scripts in the remaining chapters without the

need to retype the connection details each time or to switch between different connection files.

1. Create a file called connection.inc.php in the includes folder, and insert the following code

(there s a copy of the completed script in the ch11 folder):

 <?php
 function dbConnect($usertype, $connectionType = 'mysqli') {
 $host = 'localhost';
 $db = 'phpsols';
 if ($usertype == 'read') {
 $user = 'psread';
 $pwd = 'K1y0mi$u';
 } elseif ($usertype == 'write') {
 $user = 'pswrite';
 $pwd = '0Ch@Nom1$u';
 } else {
 exit('Unrecognized connection type');
 }
 // Connection code goes here
 }

The function takes two arguments: the user type and the type of connection you want. The

second argument defaults to mysqli. If you want to concentrate on using PDO, set the

default value of the second argument to pdo.

The first two lines inside the function store the name of the host server and database that you

want to connect to.

The if... elseif conditional statement checks the value of the first argument and switches

between the psread and pswrite username and password as appropriate.

2. Replace the Connection code goes here comment with the following:

CONNECTING TO MYSQL WITH PHP AND SQL

307

 if ($connectionType == 'mysqli') {
 return new mysqli($host, $user, $pwd, $db) or die ('Cannot open database');
 } else {
 try {
 return new PDO("mysql:host=$host;dbname=$db", $user, $pwd);
 } catch (PDOException $e) {
 echo 'Cannot connect to database';
 exit;
 }
 }

If the second argument is set to mysqli, a MySQLi connection object is returned. Otherwise,

the function returns a PDO connection. The rather foreboding die() simply stops the script

from attempting to continue and displays the error message.

To create a MySQLi connection to the phpsols database, include connection.inc.php, and call the

function like this for the psread user:

$conn = dbConnect('read');

For the pswrite user, call it like this:

$conn = dbConnect('write');

To create a PDO connection, add the second argument like this:

$conn = dbConnect('read', 'pdo');
$conn = dbConnect('write', 'pdo');

Finding the number of results from a query

Counting the number of results from a database query is useful in several ways. It s necessary for

creating a navigation system to page through a long set of results (you ll learn how to do that in the next

chapter). It s also important for user authentication (covered in Chapter 17). If you get no results from

matching a username and password, you know that the login procedure should fail.

MySQLi has a convenient method of finding out the number of results returned by a query. However, PDO

doesn t have a direct equivalent.

PHP Solution 11-2: Counting records in a result set (MySQLi)

This PHP solution shows how to submit a SQL query to select all the records in the images table, and

store the result in a MySQLi_Result object. The object s num_rows property contains the number of

records retrieved by the query.

1. Create a new folder called mysql in the phpsols site root, and create a new file called

mysqli.php inside the folder. The page will eventually be used to display a table, so it should

have a DOCTYPE declaration and an HTML skeleton.

2. Include the connection file in a PHP block above the DOCTYPE declaration, and create a

connection to MySQL using the account that has read-only privileges like this:

 require_once('../includes/connection.inc.php');

CHAPTER 11

308

 // connect to MySQL
 $conn = dbConnect('read');

3. Next, prepare the SQL query. Add this code immediately after the previous step (but before

the closing PHP tag):

 // prepare the SQL query
 $sql = 'SELECT * FROM images';

This means “select everything from the images table.” The asterisk (*) is shorthand for “all

columns.”

4. Now execute the query by calling the query() method on the connection object and passing

the SQL query as an argument like this:

 // submit the query and capture the result
 $result = $conn->query($sql) or die(mysqli_error());

The result is stored in a variable, which I have imaginatively named $result. If there is a

problem, the database server returns an error message, which can be retrieved using

mysqli_error(). By placing this function between the parentheses of die(), the script

comes to a halt if there s a problem and displays the error message.

5. Assuming there s no problem, $result now holds a MySQLi_Result object. To get the number

of records found by the SQL query, assign the value to a variable like this:

 // find out how many records were retrieved
 $numRows = $result->num_rows;

The complete code above the DOCTYPE declaration looks like this:

 require_once('../includes/connection.inc.php');
 // connect to MySQL
 $conn = dbConnect('read');
 // prepare the SQL query
 $sql = 'SELECT * FROM images';
 // submit the query and capture the result
 $result = $conn->query($sql) or die(mysqli_error());
 // find out how many records were retrieved
 $numRows = $result->num_rows;

6. You can now display the value of $numRows in the body of the page like this:

 <p>A total of <?php echo $numRows; ?> records were found.</p>

7. Save mysqli.php and load it into a browser. You should see the following result:

CONNECTING TO MYSQL WITH PHP AND SQL

309

Check your code, if necessary, with mysqli_01.php in the ch11 folder.

PHP Solution 11-3: Counting records in a result set (PDO)

PDO doesn t have an equivalent of the MySQLi num_rows property. With most databases, you need to

execute a SQL query to count the number of items in the table, and then fetch the result. However, you re

in luck, because the PDO rowCount() method fulfils a dual purpose with MySQL. Normally, the

rowCount() method reports only the number of rows affected by inserting, updating, or deleting records;

but with MySQL, it also reports the number of records found by a SELECT query.

1. Create a new file called pdo.php in the mysql folder. The page will eventually be used to

display a table, so it should have a DOCTYPE declaration and an HTML skeleton.

2. Include the connection file in a PHP block above the DOCTYPE declaration, and create a PDO

connection to MySQL using the read-only account like this:

 require_once('../includes/connection.inc.php');
 // connect to MySQL
 $conn = dbConnect('read', 'pdo');

3. Next, prepare the SQL query:

 // prepare the SQL query
 $sql = 'SELECT * FROM images';

This means “select every record in the images table.” The asterisk (*) is shorthand for “all

columns.”

4. Now execute the query and store the result in a variable like this:

 // submit the query and capture the result
 $result = $conn->query($sql);
 $error = $conn->errorInfo();
 if (isset($error[2])) die($error[2]);

PDO uses errorInfo() to build an array of error messages from the database. The third

element of the array is created only if something goes wrong. I ve stored the result of

$conn->errorInfo() as $error, so you can tell if anything went wrong by using isset() to

check whether $error[2] has been defined. If it has, die() brings the script to a halt and

displays the error message.

5. To get the number of rows in the result set, call the rowCount() method on the $result

object. The finished code in the PHP block above the DOCTYPE declaration looks like this:

CHAPTER 11

310

 require_once('../includes/connection.inc.php');
 // connect to MySQL
 $conn = dbConnect('read', 'pdo');
 // prepare the SQL query
 $sql = 'SELECT * FROM images';
 // submit the query and capture the result
 $result = $conn->query($sql);
 $error = $conn->errorInfo();
 if (isset($error[2])) die($error[2]);
 // find out how many records were retrieved
 $numRows = $result->rowCount();

6. You can now display the value of $numRows in the body of the page like this:

 <p>A total of <?php echo $numRows; ?> records were found.</p>

7. Save the page, and load it into a browser. You should see the same result as shown in step 5

of PHP Solution 11-2. Check your code, if necessary, with pdo_01.php.

In my tests, using rowCount() reported the number of items found by a SELECT query in MySQL on both

Mac OS X and Windows. However, it cannot be guaranteed to work on all databases. If rowCount()

doesn t work, use the following code instead:

// prepare the SQL query
$sql = 'SELECT COUNT(*) FROM images';
// submit the query and capture the result
$result = $conn->query($sql);
$error = $conn->errorInfo();
if (isset($error[2])) die($error[2]);
// find out how many records were retrieved
$numRows = $result->fetchColumn();
// free the database resource
$result->closeCursor();

This uses the SQL COUNT() function with an asterisk to count all items in the table. There s only one

result, so it can be retrieved with the fetchColumn() method, which gets the first column from a database

result. After storing the result in $numRows, you need to call the closeCursor() method to free the

database resource for any further queries.

Displaying the results of a query

The most common way to display the results of a query is to use a loop in combination with the MySQLi or

PDO method to extract the current record into a temporary array.

With MySQLi, use the fetch_assoc() method like this:

while ($row = $result->fetch_assoc()) {
 // do something with the current record
}

PDO handles it slightly differently. You can use the query() method directly inside a foreach loop to

create an array for each record like this:

CONNECTING TO MYSQL WITH PHP AND SQL

311

foreach ($conn->query($sql) as $row) {
 // do something with the current record
}

In the case of the images table, $row contains $row['image_id'], $row['filename'], and

$row['caption']. Each element is named after the corresponding column in the table.

PHP Solution 11-4: Displaying the images table using MySQLi

This PHP solution shows how to loop through a MySQLi_Result object to display the results of a SELECT

query. Continue using the file from PHP Solution 11-2.

1. Add the following table to the main body of mysqli.php (the PHP code that displays the result

set is highlighted in bold):

 <table>
 <tr>
 <th>image_id</th>
 <th>filename</th>
 <th>caption</th>
 </tr>
 <?php while ($row = $result->fetch_assoc()) { ?>
 <tr>
 <td><?php echo $row['image_id']; ?></td>
 <td><?php echo $row['filename']; ?></td>
 <td><?php echo $row['caption']; ?></td>
 </tr>
 <?php } ?>
 </table>

The while loop iterates through the database result, using the fetch_assoc() method to

extract each record into $row. Each element of $row is displayed in a table cell. The loop

continues until fetch_assoc() comes to the end of the result set.

2. Save mysqli.php, and view it in a browser. You should see the contents of the images table

displayed as shown in the following screenshot:

CHAPTER 11

312

You can compare your code, if necessary with mysql_02.php in the ch11 folder.

PHP Solution 11-5: Displaying the images table using PDO

Instead of a while loop with fetch_assoc(), PDO uses the query() method in a foreach loop.

Continue working with pdo.php, the same file as in PHP Solution 11-3.

1. Insert the following table in the body of pdo.php (the PHP code that displays the result set is

displayed in bold):

 <table>
 <tr>
 <th>image_id</th>
 <th>filename</th>
 <th>caption</th>
 </tr>
 <?php foreach ($conn->query($getDetails) as $row) { ?>
 <tr>
 <td><?php echo $row['image_id']; ?></td>
 <td><?php echo $row['filename']; ?></td>
 <td><?php echo $row['caption']; ?></td>
 </tr>
 <?php } ?>
 </table>

2. Save the page, and view it in a browser. It should look like the screenshot in PHP Solution 11-

4. You can compare your code against pdo_02.php in the ch11 folder.

CONNECTING TO MYSQL WITH PHP AND SQL

313

MySQL connection crib sheet

Tables 11-2 and 11-3 summarize the basic details of connection and database query for MySQLi and

PDO. Some commands will be used in later chapters, but are included here for ease of reference.

Table 11-2. Connection to MySQL with the MySQL Improved object-oriented interface

Action Usage Comments

Connect $conn = new mysqli($h,$u,$p,$d); All arguments optional; first four always

needed in practice: hostname, username,

password, database name. Creates

connection object.

Choose DB $conn->select_db('dbName'); Use to select a different database.

Submit query $result = $conn->query($sql); Returns result object.

Count results $numRows = $result->num_rows; Returns number of rows in result object.

Release DB

resources

$result->free_result(); Frees up connection to allow new query.

Extract record $row = $result->fetch_assoc(); Extracts current row from result object as

associative array.

Extract record $row = $result->fetch_row(); Extracts current row from result object as

indexed (numbered) array.

Table 11-3. Connection to MySQL with PDO

Action Usage Comments

Connect $conn = new PDO($DSN,$u,$p); In practice, requires three arguments: data

source name (DSN), username, password.

Must be wrapped in try/catch block.

Submit query $result = $conn->query($sql); Can also be used inside foreach loop to

extract each record.

Count results $numRows = $result->rowCount() Should work with MySQL, but use SELECT
COUNT(*) FROM table_name for other

databases.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11

314

Action Usage Comments

Get single result $item = $result->fetchColumn(); Gets first column in first record of result. To

get result from other columns, use column

number (from 0) as argument.

Get next record $row = $result->fetch(); Gets next row from result set as associative

array.

Release DB

resources

$result->closeCursor(); Frees up connection to allow new query.

Extract records foreach($conn->query($sql) as
$row) {

Extracts current row from result set as

associative array.

When using PDO with MySQL, the data source name (DSN) is a string that takes the following format:

'mysql:host=hostname;dbname=databaseName'

If you need to specify a different port from the MySQL default (3306), use the following format,

substituting the actual port number:

'mysql:host=hostname;port=3307;dbname=databaseName'

Using SQL to interact with a database
As you have just seen, PHP connects to the database, sends the query, and receives the results; but the

query itself needs to be written in SQL. Although SQL is a common standard, there are many dialects of

SQL. Each database vendor, including MySQL, has added extensions to the standard language. These

improve efficiency and functionality, but are usually incompatible with other databases. The SQL in this

book works with MySQL 4.1 or later, but it won t necessarily transfer to Microsoft SQL Server, Oracle, or

another database.

Writing SQL queries

SQL syntax doesn t have many rules, and all of them are quite simple.

SQL is case-insensitive

The query that retrieves all records from the images table looks like this:

SELECT * FROM images

The words in uppercase are SQL keywords. This is purely a convention. The following are all equally

correct:

SELECT * FROM images
select * from images

CONNECTING TO MYSQL WITH PHP AND SQL

315

SeLEcT * fRoM images

Although SQL keywords are case-insensitive, the same doesn t apply to database column names. The

advantage of using uppercase for keywords is that it makes SQL queries easier to read. You re free to

choose whichever style suits you best, but the ransom-note style of the last example is probably best

avoided.

Whitespace is ignored

This allows you to spread SQL queries over several lines for increased readability. The one place where

whitespace is not allowed is between a function name and the opening parenthesis. The following

generates an error:

SELECT COUNT (*) FROM images /* BAD EXAMPLE */

The space needs to be closed up like this:

SELECT COUNT(*) FROM images /* CORRECT */

As you probably gathered from these examples, you can add comments to SQL queries by putting them

between /* and */.

Strings must be quoted

All strings must be quoted in a SQL query. It doesn t matter whether you use single or double quotes, as

long as they are in matching pairs. However, it s normally better to use MySQLi or PDO prepared

statements, as explained later in this chapter.

Handling numbers

As a general rule, numbers should not be quoted, as anything in quotes is a string. However, MySQL

accepts numbers enclosed in quotes and treats them as their numeric equivalent. Be careful to

distinguish between a real number and any other data type made up of numbers. For instance, a date is

made up of numbers but should be enclosed in quotes and stored in a date-related column type. Similarly,

telephone numbers should be enclosed in quotes and stored in a text-related column type.

SQL queries normally end with a semicolon, which is an instruction to the database to execute the

query. When using PHP, the semicolon must be omitted from the SQL. Consequently, standalone

examples of SQL are presented throughout this book without a concluding semicolon.

Refining the data retrieved by a SELECT query

The only SQL query you have run so far retrieves all records from the images table. Much of the time, you

want to be more selective.

Selecting specific columns

Using an asterisk to select all columns is a convenient shortcut, but you should normally specify only

those columns you need. List the column names separated by commas after the SELECT keyword. For

example, this query selects only the filename and caption fields for each record:

CHAPTER 11

316

SELECT filename, caption FROM images

You can test this in mysqli_03.php and pdo_03.php in the ch11 folder.

Changing the order of results

To control the sort order, add an ORDER BY clause with the name(s) of the column(s) in order of

precedence. Separate multiple columns by commas. The following query sorts the captions from the

images table in alphabetical order (the code is in mysqli_04.php and pdo_04.php):

$sql = 'SELECT * FROM images ORDER BY caption';

The semicolon indicates the end of the PHP statement. It is not part of the SQL query.

To reverse the sort order, add the DESC (for “descending”) keyword like this:

$sql = 'SELECT * FROM images ORDER BY caption DESC';

CONNECTING TO MYSQL WITH PHP AND SQL

317

There is also an ASC (for “ascending”) keyword. It s the default sort order, so is normally omitted.

However, specifying ASC increases clarity when columns in the same table are sorted in a different order.

For example, if you publish multiple articles every day, you could use the following query to display titles in

alphabetical order, but ordered by the date of publication with the most recent ones first:

SELECT * FROM articles
ORDER BY published DESC, title ASC

Searching for specific values

To search for specific values, add a WHERE clause to the SELECT query. The WHERE clause follows the

name of the table. For example, the query in mysqli_06.php and pdo_06.php looks like this:

$sql = 'SELECT * FROM images
 WHERE image_id = 6';

Note that SQL uses a single equal sign to test for equality, unlike PHP, which uses two.

It produces the following result:

CHAPTER 11

318

In addition to testing for equality, a WHERE clause can use comparison operators, such as greater than (>)

and less than (<). Rather than go through all the options now, I ll introduce others as needed. Chapter 13

has a comprehensive roundup of the four main SQL commands: SELECT, INSERT, UPDATE, and DELETE ,

including a list of the main comparison operators used with WHERE.

If used in combination with ORDER BY, the WHERE clause must come first. For example (the code is in

mysqli_07.php and pdo_07.php):

$sql = 'SELECT * FROM images
 WHERE image_id > 6
 ORDER BY caption DESC';

This selects the two images that have an image_id greater than 6 and sorts them by their captions in

reverse order.

Searching for text with wildcard characters

In SQL, the percentage sign (%) is a wildcard character that matches anything or nothing. It s used in a

WHERE clause in conjunction with the LIKE keyword.

The query in mysqli_08.php and pdo_08.php looks like this:

$sql = 'SELECT * FROM images
 WHERE caption LIKE "%Kyoto%"';

It searches for all records in the images table where the caption column contains “Kyoto,” and produces

the following result:

As the preceding screenshot shows, it finds six records out of the eight in the images table. All the

captions end with “Kyoto,” so the wildcard character at the end is matching nothing, whereas the wildcard

at the beginning matches the rest of each caption.

If you omit the leading wildcard ("Kyoto%"), the query searches for captions that begin with “Kyoto.” None

of them does, so you get no results from the search.

The query in mysqli_09.php and pdo_09.php looks like this:

CONNECTING TO MYSQL WITH PHP AND SQL

319

$sql = 'SELECT * FROM images
 WHERE caption LIKE "%maiko%"';

It produces the following result:

The query spells “maiko” all in lowercase, but the query also finds it with an initial capital. Wildcard

searches with LIKE are case-insensitive.

To perform a case-sensitive search, you need to add the BINARY keyword like this (the code is in

mysqli_10.php and pdo_10.php):

$sql = 'SELECT * FROM images
 WHERE caption LIKE BINARY "%maiko%"';

All the examples you have seen so far have been hard-coded, but most of the time, the values used in

SQL queries need to come from user input. Unless you re careful, this puts you at risk from a malicious

exploit know as SQL injection. The rest of this chapter explains the danger and how to avoid it.

Understanding the danger of SQL injection

SQL injection is very similar to the email header injection I warned you about in Chapter 5. An injection

attack tries to insert spurious conditions into a SQL query in an attempt to expose or corrupt your data.

The meaning of the following query should be easy to understand:

SELECT * FROM users WHERE username = 'xyz' AND pwd = 'abc'

It s the basic pattern for a login application. If the query finds a record where username is xyz and pwd is

abc, you know that a correct combination of username and password have been submitted, so the login

succeeds. All an attacker needs to do is inject an extra condition like this:

SELECT * FROM users WHERE username = 'xyz' AND pwd = 'abc' OR 1 = 1

The OR means only one of the conditions needs to be true, so the login succeeds even without a correct

username and password. SQL injection relies on quotes and other control characters not being properly

escaped when part of the query is derived from a variable or user input.

There are several strategies you can adopt to prevent SQL injection, depending on the situation:

• If the variable is an integer (for example, the primary key of a record), use is_numeric() and

the (int) casting operator to ensure it s safe to insert in the query.

CHAPTER 11

320

• If you are using MySQLi, pass each variable to the real_escape_string() method before

inserting it in the query.

• The PDO equivalent of real_escape_string() is the quote() method, but it doesn t work

with all databases. The PDO documentation advises against using quote(), strongly

recommending the use of prepared statements instead.

• Use a prepared statement. In a prepared statement, placeholders in the SQL query

represent values that come from user input. The PHP code automatically wraps strings in

quotes, and escapes embedded quotes and other control characters. The syntax is different

for MySQLi and PDO.

• None of the preceding strategies is suitable for column names, which must not be enclosed in

quotes. To use a variable for column names, create an array of acceptable values, and check

that the submitted value is in the array before inserting it into the query.

With the exception of quote(), let s take a look at using each of these techniques.

PHP Solution 11-6: Inserting an integer from user input into a query
This PHP solution shows how to sanitize a variable from user input to make sure it contains only an integer

before inserting the value in a SQL query. The technique is the same for both MySQLi and PDO.

1. Copy either mysqli_integer_01.php or pdo_integer_01.php from the ch11 folder to the

mysql folder. Each file contains a SQL query that selects the image_id and filename

columns from the images table. In the body of the page, there s a form with a drop-down menu

which is populated by a loop that runs through the results of the SQL query. The MySQLi

version looks like this:

 <form action="" method="get" id="form1">
 <select name="image_id" id="image_id">
 <?php while ($row = $images->fetch_assoc()) { ?>
 <option value="<?php echo $row['image_id']; ?>"
 <?php if (isset($_GET['image_id']) && $_GET['image_id'] ==
 $row['image_id']) {
 echo 'selected';
 } ?>
 ><?php echo $row['filename']; ?></option>
 <?php } ?>
 </select>
 <input type="submit" name="go" id="go" value="Display">
 </form>

The form uses the get method and assigns the image_id to the value attribute of the

<option> tags. If $_GET['image_id'] has the same value as $row['image_id'], the

current image_id is the same as passed through the page s query string, so the selected

attribute is added to the opening <option> tag. The value of $row['filename'] is inserted

between the opening and closing <option> tags.

The PDO version is identical apart from the fact that it runs the query directly in a foreach

loop.

CONNECTING TO MYSQL WITH PHP AND SQL

321

2. If you load the page into a browser, you ll see a drop-down menu that lists the files in the

images folder like this:

3. Insert the following code immediately after the closing </form> tag. The code is the same for

both MySQLi and PDO, apart from one line.

 <?php
 if (isset($_GET['image_id'])) {
 if (!is_numeric($_GET['image_id'])) {
 $image_id = 1;
 } else {
 $image_id = (int) $_GET['image_id'];
 }
 $sql = "SELECT filename, caption FROM images
 WHERE image_id = $image_id";
 $result = $conn->query($sql);
 $row = $result->fetch_assoc();
 ?>
 <figure><img src="../images/<?php echo $row['filename']; ?>">
 <figcaption><?php echo $row['caption']; ?></figcaption>
 </figure>
 <?php } ?>

The conditional statement checks whether image_id has been sent through the $_GET array.

If it has, the next conditional statement uses the logical Not operator with is_numeric() to

check whether it s not numeric. The is_numeric() function applies a strict test, accepting

only numbers or numeric strings. It doesn t attempt to convert the value to a number if it

begins with a digit.

If the value submitted through the query string isn t numeric, a default value is assigned to a

new variable called $image_id. However, if $_GET['image_id'] is numeric, it s assigned to

$image_id using the (int) casting operator. Using the casting operator is an extra

precaution in case someone tries to probe your script for error messages by submitting a

floating point number.

Since you know $image_id is an integer, it s safe to insert directly in the SQL query. Because

it s a number, it doesn t need to be wrapped in quotes, but the string assigned to $sql needs

to use double quotes to ensure the value of $image_id is inserted into the query.

f

CHAPTER 11

322

The new query is submitted to MySQL by the query() method, and the result is stored in $row.

Finally, $row['filename'] and $row['caption'] are used to display the image and its

caption in the page.

4. If you are using the PDO version, locate this line:

 $row = $result->fetch_assoc();

Change it to this:

 $row = $result->fetch();

5. Save the page, and load it into a browser. When the page first loads, only the drop-down menu

is displayed.

6. Select a filename from the drop-down menu, and click Display. The image of your choice

should be displayed, as shown in the following screenshot:

7. If you encounter problems, check your code against mysqli_integer_02.php or

pdo_integer_02.php in the ch11 folder.

8. Edit the query string in the browser, changing the value of image_id to a string or a string that

begins with a number. You should see basin.jpg, which has image_id 1.

9. Try a floating point number between 1.0 and 8.9. The relevant image is displayed normally.

10. Try a number outside the range of 1–8. No error messages are displayed because there s

nothing wrong with the query. It s simply looking for a value that doesn t exist. In this example,

it doesn t matter, but you should normally check the number of rows returned by the query,

using the num_rows property with MySQLi or the rowCount() method with PDO.

11. Change the code like this for MySQLi:

CONNECTING TO MYSQL WITH PHP AND SQL

323

 $result = $conn->query($sql);
 if ($result->num_rows) {
 $row = $result->fetch_assoc();
 ?>
 <figure><img src="../images/<?php echo $row['filename']; ?>">
 <figcaption><?php echo $row['caption']; ?></figcaption>
 </figure>
 <?php } else { ?>
 <p>Image not found</p>
 <?php }
 }?>

For PDO, use $result->rowCount() in place of $result->num_rows.

If no rows are returned by the query, 0 is treated by PHP as implicitly false, so the condition

fails, and the else clause is executed instead.

12. Test the page again. When you select an image from the drop-down menu, it displays normally

as before. But if you try entering an out-of-range value in the query string, you see the

following message instead:

The amended code is in mysqli_integer_03.php and pdo_integer_03.php in the ch11
folder.

PHP Solution 11-7: Inserting a string with real_escape_string()

This PHP solution works only with MySQLi. It shows how to insert a value from a search form into a SQL

query using the real_escape_string() method. If you have used the original MySQL extension before,

it does the same as the mysql_real_escape_string() function. In addition to handling single and

double quotes, it also escapes other control characters, such as newlines and carriage returns. Although

the functionality is the same, you must use the MySQLi version. You can t use

mysql_real_escape_string() with MySQLi.

1. Copy mysqli_real_escape_01.php from the ch11 folder, and save it in the mysql folder as

mysql_real_escape.php. The file contains a search form and a table for displaying the

results.

2. Add the following code in a PHP block above the DOCTYPE declaration:

 if (isset($_GET['go'])) {
 require_once('../includes/connection.inc.php');

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11

324

 $conn = dbConnect('read');
 $searchterm = '%' . $conn->real_escape_string($_GET['search']) . '%';
 }

3. This includes the connection file and establishes a MySQLi connection for the read-only user

account if the form has been submitted. Then, the value of $_GET['search'] is passed to the

connection object s real_escape_string() method to make it safe to incorporate into a SQL

query, and the % wildcard character is concatenated to both ends before the result is assigned

to $searchterm. So, if the value submitted through the search form is “hello,” $searchterm

becomes %hello%.

4. Add the SELECT query on the next line (before the closing curly brace):

 $sql = "SELECT * FROM images WHERE caption LIKE '$searchterm'";

The whole query is wrapped in double quotes so that the value of $searchterm is

incorporated. However, $searchterm contains a string, so it also needs to be wrapped in

quotes. To avoid a clash, use single quotes around $searchterm.

5. Execute the query, and get the number of rows returned. The complete code in the PHP block

above the DOCTYPE declaration looks like this:

 if (isset($_GET['go'])) {
 require_once('../includes/connection.inc.php');
 $conn = dbConnect('read');
 $searchterm = '%' . $conn->real_escape_string($_GET['search']) . '%';
 $sql = "SELECT * FROM images WHERE caption LIKE '$searchterm'";
 $result = $conn->query($sql) or die($conn->error);
 $numRows = $result->num_rows;
 }

6. Add the PHP code to the body of the page to display the results:

 <?php if (isset($numRows)) { ?>
 <p>Number of results for <?php echo htmlentities($_GET['search'],
 ENT_COMPAT, 'utf-8'); ?>: <?php echo $numRows; ?></p>
 <?php if ($numRows) { ?>
 <table>
 <tr>
 <th scope="col">image_id</th>
 <th scope="col">filename</th>
 <th scope="col">caption</th>
 </tr>
 <?php while ($row = $result->fetch_assoc()) { ?>
 <tr>
 <td><?php echo $row['image_id']; ?></td>
 <td><?php echo $row['filename']; ?></td>
 <td><?php echo $row['caption']; ?></td>
 </tr>
 <?php } ?>
 </table>

CONNECTING TO MYSQL WITH PHP AND SQL

325

 <?php }
 } ?>

The first conditional statement is wrapped around the paragraph and table, preventing them

from being displayed if $numRows doesn t exist, which happens when the page is first loaded.

If the form has been submitted, $numRows will have been set, so the search term is

redisplayed using htmlentities() (see Chapter 5), and the value of $numRows reports the

number of matches.

If the query returns no results, $numRows is 0, which is treated as false, so the table is not

displayed. If $numRows contains anything other than 0, the table is displayed, and the while

loop displays the results of the query.

7. Save the page, and load it into a browser. Enter some text in the search field, and click

Search. The number of results is displayed, together with any captions that contain the search

term, as shown in the following screenshot:

If you don t use real_escape_string() or a prepared statement, the search form still works most of the

time. But if the search term includes an apostrophe or quotation marks, your page will fail to load correctly,

and a SQL syntax error will be displayed like this:

Worse, it leaves your database wide open to malicious attack.

Although real_escape_string() escapes quotes and other control characters in the submitted

value, you still need to wrap strings in quotes in the SQL query. The LIKE keyword must always be

followed by a string, even if the search term is limited to numbers.

CHAPTER 11

326

Embedding variables in MySQLi prepared statements

Instead of incorporating variables directly in the SQL query, you use question marks as placeholders like

this:

$sql = 'SELECT image_id, filename, caption FROM images WHERE caption LIKE ?';

Using a MySQLi prepared statement involves the following steps:

1. Initialize the statement.

2. Pass the SQL query to the statement to make sure it s valid.

3. Bind the variable(s) to the query.

4. Bind results to variables (optional).

5. Execute the statement.

6. Store the result (optional).

7. Fetch the result(s).

To initialize the prepared statement, call the stmt_init() method on the database connection, and store

it in a variable like this:

$stmt = $conn->stmt_init();

You then pass the SQL query to $stmt->prepare(). This checks that you haven t used question mark

placeholders in the wrong place, and that when everything is put together, the query is valid SQL. If there

are any mistakes, $stmt->prepare() returns false, so you need to enclose the next steps in a

conditional statement to ensure they run only if everything is still OK.

Error messages can be accessed by using $stmt->error.

Binding the parameters means replacing the question marks with the actual values held in the variables.

This is what protects your database from SQL injection. You pass the variables to $stmt->bind_param()

in the same order as you want them inserted into the SQL query, together with a first argument specifying

the data type of each variable, again in the same order as the variables. The data type must be specified

by one of the following four characters:

• b: Binary (such as an image, Word document, or PDF file)

• d: Double (floating point number)

• i: Integer (whole number)

• s: String (text)

The number of variables passed to $stmt->bind_param() must be exactly the same as the number of

question mark placeholders. For example, to pass a single value as a string, use this:

$stmt->bind_param('s', $_GET['words']);

To pass two values, the SELECT query needs two question marks as placeholders, and both variables

need to be bound with bind_param() like this:

$sql = 'SELECT * FROM products WHERE price < ? AND type = ?';
$stmt = $conn->stmt_init();

CONNECTING TO MYSQL WITH PHP AND SQL

327

$stmt->prepare($sql);
$stmt->bind_param('ds', $_GET['price'], $_GET['type']);

The first argument to bind_param(),'ds', specifies $_GET['price'] as a floating point number, and

$_GET['type'] as a string.

Optionally, you can bind the results of a SELECT query to variables with the bind_result() method. This

avoids the need to extract each row and access the results as $row['column_name']. To bind the

results, you must name each column specifically in the SELECT query. List the variables you want to use in

the same order, and pass them as arguments to bind_result(). To bind the results of the query at the

beginning of this section, use this:

$stmt->bind_result($image_id, $filename, $caption);

This allows you to access the results directly as $image_id, $filename, and $caption.

Once the statement has been prepared, you call $stmt->execute(), and the result is stored in $stmt.

To access the num_rows property, you must first store the result like this:

$stmt->store_result();
$numRows = $stmt->num_rows;

Using store_result() is optional, but if you don t use it, num_rows returns 0.

To loop through the results of a SELECT query executed with a prepared statement, use the fetch()

method. If you have bound the results to variables, do it like this:

while ($stmt->fetch()) {
 // display the bound variables for each row
}

If you don t bind the result to variables, use $row = $stmt->fetch(), and access each variable as

$row['column_name'].

When you have finished with a result, you can free the memory by using the free_result() method. The

close() method frees the memory used by the prepared statement.

PHP Solution 11-8: Using a MySQLi prepared statement in a search

This PHP solution shows how to use a MySQLi prepared statement with a SELECT query and demonstrates

binding the result to named variables.

1. Copy mysql_prepared_01.php from the ch11 folder and save it in the mysql folder as

mysql_prepared.php. It contains the same search form and results table as used in PHP

Solution 11-7.

2. In a PHP code block above the DOCTYPE declaration, create a conditional statement to include

connection.inc.php and create a MySQL read-only connection when the search form is

submitted. The code looks like this:

 if (isset($_GET['go'])) {
 require_once('../includes/connection.inc.php');
 $conn = dbConnect('read');
 }

CHAPTER 11

328

3. Next, add the SQL query inside the conditional statement. The query needs to name the three

columns you want to retrieve from the images table. Use a question mark as the placeholder

for the search term like this:

 $sql = 'SELECT image_id, filename, caption FROM images
 WHERE caption LIKE ?';

4. Before passing the user-submitted search term to the bind_param() method, you need to add

the wildcard characters to it and assign it to a new variable like this:

 $searchterm = '%'. $_GET['search'] .'%';

5. You can now create the prepared statement. The finished code in the PHP block above the

DOCTYPE declaration looks like this:

 if (isset($_GET['go'])) {
 require_once('../includes/connection.inc.php');
 $conn = dbConnect('read');
 $sql = 'SELECT image_id, filename, caption FROM images
 WHERE caption LIKE ?';
 $searchterm = '%'. $_GET['search'] .'%';
 $stmt = $conn->stmt_init();
 if ($stmt->prepare($sql)) {
 $stmt->bind_param('s', $searchterm);
 $stmt->bind_result($image_id, $filename, $caption);
 $stmt->execute();
 $stmt->store_result();
 $numRows = $stmt->num_rows;
 } else {
 echo $stmt->error;
 }
 }

This initializes the prepared statement and assigns it to $stmt. The SQL query is then passed

to the prepare() method, which checks the validity of the query s syntax. If there s a

problem with the syntax, the else block displays the error message. If the syntax is OK, the

rest of the script inside the conditional statement is executed.

The code is wrapped in a conditional statement for testing purposes only. If there s an error with your

prepared statement, echo $stmt->error; displays a MySQL error message to help identify the

problem. In a live website, you should remove the conditional statement, and call

$stmt->prepare($sql); directly

The first line inside the conditional statement binds $searchterm to the SELECT query,

replacing the question mark placeholder. The first argument tells the prepared statement to

treat it as a string.

CONNECTING TO MYSQL WITH PHP AND SQL

329

The next line binds the results of the SELECT query to $image_id, $filename, and $caption.

These need to be in the same order as in the query. I have named the variables after the

columns they represent, but you can use any variables you want.

Then the prepared statement is executed and the result stored. Note that the result is stored

in the $stmt object. You don t assign it to a variable.

Assigning $stmt->store_result() to a variable doesn t store the database result. It records only

whether the result was successfully stored in the $stmt object.

Finally, the number of rows retrieved by the query is stored in $numRows.

6. Add the following code after the search form to display the result:

 <?php if (isset($numRows)) { ?>
 <p>Number of results for <?php echo htmlentities($_GET['search'],
 ENT_COMPAT, 'utf-8'); ?>: <?php echo $numRows; ?></p>
 <?php if ($numRows) { ?>
 <table>
 <tr>
 <th scope="col">image_id</th>
 <th scope="col">filename</th>
 <th scope="col">caption</th>
 </tr>
 <?php while ($stmt->fetch()) { ?>
 <tr>
 <td><?php echo $image_id; ?></td>
 <td><?php echo $filename; ?></td>
 <td><?php echo $caption; ?></td>
 </tr>
 <?php } ?>
 </table>
 <?php }
 } ?>

Most of this code is the same as in PHP Solution 11-7. The difference lies in the while loop

that displays the results. Instead of using the fetch_assoc() method on a result object and

storing the result in $row, it simply calls the fetch() method on the prepared statement.

There s no need to store the current record as $row, because the values from each column

have been bound to $image_id, $filename, and $caption.

You can compare your code with mysqli_prepared_02.php in the ch11 folder.

Embedding variables in PDO prepared statements

Whereas MySQLi always uses question marks as placeholders in prepared statements, PDO offers

several options. I ll describe the two most useful: question marks and named placeholders.

CHAPTER 11

330

Question mark placeholders Instead of embedding variables in the SQL query, you replace them with

question marks like this:

$sql = 'SELECT image_id, filename, caption FROM images WHERE caption LIKE ?';

This is identical to MySQLi. However, the way that you bind the values of the variables to the placeholders

is completely different. It involves just two steps, as follows:

1. Prepare the statement to make sure the SQL is valid.

2. Execute the statement by passing the variables to it as an array.

Assuming you have created a PDO connection called $conn, the PHP code looks like this:

// prepare statement
$stmt = $conn->prepare($sql);
// execute query by passing array of variables
$stmt->execute(array($_GET['words']));

The first line of code prepares the statement and stores it as $stmt. The second line binds the values of

the variable(s) and executes the statement all in one go. The variables must be in the same order as the

placeholders. Even if there is only one placeholder, the variable must be passed to execute() as an

array. The result of the query is stored in $stmt.

Named placeholders Instead of embedding variables in the SQL query, you replace them with named

placeholders beginning with a colon like this:

$sql = 'SELECT image_id, filename, caption FROM images WHERE caption LIKE :search';

With named placeholders, you can either bind the values individually or pass an associative array to

execute(). When binding the values individually, the PHP code looks like this:

$stmt = $conn->prepare($sql);
// bind the parameters and execute the statement
$stmt->bindParam(':search', $_GET['words'], PDO::PARAM_STR);
$stmt->execute();

You pass three arguments to $stmt->bindParam(): the name of the placeholder, the variable that you

want to use as its value, and a constant specifying the data type. The main constants are as follows:

• PDO::PARAM_INT: Integer (whole number)

• PDO::PARAM_LOB: Binary (such as an image, Word document, or PDF file)

• PDO::PARAM_STR: String (text)

There isn t a constant for floating point numbers, but the third argument is optional, so you can just leave it

out. Alternatively, use PDO::PARAM_STR. This wraps the value in quotes, but MySQL converts it back to a

floating point number.

If you pass the variables as an associative array, you can t specify the data type. The PHP code for the

same example using an associative array looks like this:

// prepare statement
$stmt = $conn->prepare($sql);
// execute query by passing array of variables
$stmt->execute(array(':search' => $_GET['words']));

CONNECTING TO MYSQL WITH PHP AND SQL

331

In both cases, the result of the query is stored in $stmt.

Error messages can be accessed in the same way as with a PDO connection. However, instead of calling

the errorInfo() method on the connection object, use it on the PDO statement like this:

$error = $stmt->errorInfo();
if (isset($error[2])) {
 echo $error[2];
}

To bind the results of a SELECT query to variables, each column needs to bound separately using the

bindColumn() method before calling execute(). The bindColumn() method takes two arguments. The

first argument can be either the name of the column or its number counting from 1. The number comes from

its position in the SELECT query, not the order it appears in the database table. So, to bind the result from

the filename column to $filename, either of the following is acceptable:

$stmt->bindColumn('filename', $filename);
$stmt->bindColumn(2, $filename);

PHP Solution 11-9: Using a PDO prepared statement in a search

This PHP solution shows how to embed the user-submitted value from a search form into a SELECT query

with a PDO prepared statement. It uses the same search form as the MySQLi versions in PHP Solutions

11-7 and 11-8.

1. Copy pdo_prepared_01.php from the ch11 folder, and save it in the mysql folder as

pdo_prepared.php.

2. Add the following code in a PHP block above the DOCTYPE declaration:

 if (isset($_GET['go'])) {
 require_once('../includes/connection.inc.php');
 $conn = dbConnect('read', 'pdo');
 $sql = 'SELECT image_id, filename, caption FROM images
 WHERE caption LIKE :search';
 $searchterm = '%'. $_GET['search'] .'%';
 $stmt = $conn->prepare($sql);
 $stmt->bindParam(':search', $searchterm, PDO::PARAM_STR);
 $stmt->bindColumn('image_id', $image_id);
 $stmt->bindColumn('filename', $filename);
 $stmt->bindColumn(3, $caption);
 $stmt->execute();
 $numRows = $stmt->rowCount();
 }

When the form is submitted, this includes the connection file and creates a PDO connection to

MySQL. The prepared statement uses :search as a named parameter in place of the user-

submitted value. Like MySQLi prepared statements, you need to add the % wildcard characters

to the search term before binding it to the prepared statement with bindParam(). The results

are bound to $image_id, $filename, and $caption. The first two use the column names, but

the caption column is referred to by its position in the SELECT query.

CHAPTER 11

332

3. The code that displays the results is identical to step 6 in PHP Solution 11-8. The finished file

is in pdo_prepared_02.php in the ch11 folder.

PHP Solution 11-10: Changing column options through user input

This PHP solution shows how to change the name of SQL keywords in a SELECT query through user input.

SQL keywords cannot be wrapped in quotes, so using prepared statements or the MySQLi

real_escape_string() method won t work. Instead, you need to ensure that the user input matches an

array of expected values. If no match is found, use a default value instead. The technique is identical for

MySQLi and PDO.

1. Copy either mysqli_order_01.php or pdo_order_01.php from the ch11 folder, and save it in

the mysql folder. Both versions select all records from the images table and display the

results in table. The pages also contain a form that allows the user to select the name of a

column to sort the results in either ascending or descending order. In their initial state, the

form is inactive. The pages display the details sorted by image_id in ascending order like this:

2. Amend the code in the PHP block above the DOCTYPE declaration like this (the following listing

shows the MySQLi version, but the changes highlighted in bold type are the same for PDO):

 require_once('../includes/connection.inc.php');
 // connect to MySQL
 $conn = dbConnect('read');
 // set default values
 $col = 'image_id';
 $dir = 'ASC';
 // create arrays of permitted values
 $columns = array('image_id', 'filename', 'caption');
 $direction = array('ASC', 'DESC');
 // if the form has been submitted, use only expected values
 if (isset($_GET['column']) && in_array($_GET['column'], $columns)) {
 $col = $_GET['column'];

CONNECTING TO MYSQL WITH PHP AND SQL

333

 }
 if (isset($_GET['direction']) && in_array($_GET['direction'], $direction)) {
 $dir = $_GET['direction'];
 }
 // prepare the SQL query using sanitized variables
 $sql = "SELECT * FROM images
 ORDER BY $col $dir";
 // submit the query and capture the result
 $result = $conn->query($sql) or die(mysqli_error());

The new code defines two variables, $col and $dir, that are embedded directly in the SELECT
query. Because they have been assigned default values, the query displays the results

sorted by the image_id column in ascending order when the page first loads.

Two arrays, $columns and $direction, then define permitted values: the column names, and

the ASC and DESC keywords. These arrays are used by the conditional statements that check

the $_GET array for column and direction. The submitted values are reassigned to $col and

$dir only if they match a value in the $columns and $direction arrays respectively. This

prevents any attempt to inject illegal values into the SQL query.

3. Edit the <option> tags in the drop-down menus so they display the selected values for $col
and $dir like this:

 <select name="column" id="column">
 <option <?php if ($col == 'image_id') echo 'selected'; ?>>image_id</option>
 <option <?php if ($col == 'filename') echo 'selected'; ?>>filename</option>
 <option <?php if ($col == 'caption') echo 'selected'; ?>>caption</option>
 </select>
 <select name="direction" id="direction">
 <option value="ASC" <?php if ($dir == 'ASC') echo 'selected'; ?>>
 Ascending</option>
 <option value="DESC" <?php if ($dir == 'DESC') echo 'selected'; ?>>
 Descending</option>
 </select>

4. Save the page, and test it in a browser. You can change the sort order of the display by

selecting the values in the drop-down menus and clicking Change. However, if you try to inject

an illegal value through the query string, the page uses the default values of $col and $dir to

display the results sorted by image_id in ascending order.

You can check your code against mysqli_order_02.php and pdo_order_02.php in the ch11
folder.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11

334

Chapter review
PHP provides three methods of communicating with MySQL:

• The original MySQL extension, which is no longer actively maintained: It should not be

used for new projects. If you need to maintain an existing site, you can easily recognize

whether it uses the original MySQL extension, because all functions begin with mysql_. For

help using it, consult the first edition of this book or use the online documentation at

http://docs.php.net/manual/en/book.mysql.php.

• The MySQL Improved (MySQLi) extension: This is recommended for all new MySQL

projects. It requires PHP 5.0 and MySQL 4.1 or higher. It s more efficient, and has the added

safety of prepared statements.

• The PHP Data Objects (PDO) abstraction layer, which is software-neutral: You should

choose this option if your projects are likely to need to be adapted to use other databases.

Although PHP communicates with the database and stores the results, queries need to be written in SQL,

the standard language used to query a relational database. This chapter showed how to retrieve

information stored in a database table using a SELECT statement, refining the search with a WHERE clause,

and changing the sort order with ORDER BY. You also learned several techniques to protect queries from

SQL injection, including prepared statements, which use placeholders instead of embedding variables

directly in a query.

In the next chapter, you ll put this knowledge to practical use creating an online photo gallery.

http://docs.php.net/manual/en/book.mysql.php

335

Chapter 12

Creating a Dynamic Online Gallery

The previous chapter concentrated mainly on extracting the contents of the images table as text. This

chapter builds on those techniques to develop the mini photo gallery shown in Figure 12-1.

Figure 12-1. The mini photo gallery is driven by pulling information from a database.

The gallery also demonstrates some cool features that you ll want to incorporate into text-driven pages,

too. For instance, the grid of thumbnail images on the left displays two images per row. Just by changing

two numbers, you can make the grid as many columns wide and as many rows deep as you like. Clicking

one of the thumbnails replaces the main image and caption. It s the same page that reloads, but exactly

CHAPTER 12

336

the same technique is used to create online catalogs that take you to another page with more details

about a product. The Next link at the foot of the thumbnails grid shows you the next set of photographs,

using exactly the same technique as you use to page through a long set of search results. This gallery

isn t just a pretty face or two . . .

What this chapter covers:

• Why storing images in a database is a bad idea, and what you should do instead

• Planning the layout of a dynamic gallery

• Displaying a fixed number of results in a table row

• Limiting the number of records retrieved at a time

• Paging through a long set of results

Why not store images in a database?
The images table contains only filenames and captions, but not the images themselves. Even though I

said in the previous chapter that you can always add new columns or tables to a database when new

requirements arise, I don t intend to store the images in the database for the simple reason that it s usually

more trouble than it s worth. The main problems are as follows:

• Images can t be indexed or searched without storing textual information separately.

• Images are usually large, bloating the size of tables. If there s a limit on the amount of storage

in your database, you risk running out of space.

• Table fragmentation affects performance if images are deleted frequently.

• Retrieving images from a database involves passing the image to a separate script, slowing

down display in a web page.

Storing images in a database is messy. It s more efficient to store images in an ordinary folder on your

website and use the database for information about the images. You need just two pieces of information in

the database—the filename and a caption that can also be used as alt text. Some developers store the

full path to the image in the database, but I think storing only the filename gives you greater flexibility. The

path to the images folder will be embedded in the HTML. You could also store the image s height and width,

but it s not absolutely necessary. As you saw in Chapter 4, you can generate that information

dynamically.

Planning the gallery
Unless you re good at visualizing how a page will look simply by reading its source code, I find that the

best way to design a database-driven site is to start with a static page and fill it with placeholder text and

images. I then create my CSS style rules to get the page looking the way I want, and finally replace each

placeholder element with PHP code. Each time I replace something, I check the page in a browser to make

sure everything is still holding together.

Figure 12-2 shows the static mockup I made of the gallery and points out the elements that need to be

converted to dynamic code. The images are the same as those used for the random image generator in

Chapter 4 and are all different sizes. I experimented by scaling the images to create the thumbnails but

decided that the result looked too untidy, so I made the thumbnails a standard size (80 54 pixels). Also,

CREATING A DYNAMIC ONLINE GALLERY

337

to make life easy, I gave each thumbnail the same name as the larger version and stored them in a

separate subfolder of the images folder called thumbs.

As you saw in the previous chapter, displaying the contents of the entire images table was easy. You

created a single table row, with the contents of each field in a separate table cell. By looping through the

result set, each record displayed on a row of its own, simulating the column structure of the database

table. This time, the two-column structure of the thumbnail grid no longer matches the database structure.

This means that you need to count how many thumbnails have been inserted in each row before triggering

the creation of the next row.

Figure 12-2. Working out what needs to be done to convert a static gallery to a dynamic one

Figure 12-3 shows the framework I created to hold the gallery together. The table of thumbnails and the

main_image <div> are floated left and right respectively in a fixed-width wrapper <div> called gallery. I

don t intend to go into the details of the CSS, but you may study that at your leisure.

CHAPTER 12

338

Figure 12-3. The underlying structure of the image gallery

Once I had worked out what needed to be done, I stripped out the code for thumbnails 2 to 6, and for the

navigation link (which is nested in the final row of the thumbs table). The following listing shows what was

left in the maincontent <div> of gallery.php, with the elements that need to be converted to PHP code

highlighted in bold (you can find the code in gallery_01.php in the ch12 folder):

<div id="maincontent">
 <h2>Images of Japan</h2>
 <p id="picCount">Displaying 1 to 6 of 8</p>
 <div id="gallery">
 <table id="thumbs">
 <tr>
 <!-- This row needs to be repeated -->
 <td><img src="images/thumbs/basin.jpg" alt=""
 width="80" height="54"></td>
 </tr>
 <!-- Navigation link needs to go here -->
 </table>
 <div id="main_image">
 <p></p>
 <p>Water basin at Ryoanji temple, Kyoto</p>
 </div>
 </div>
</div>

CREATING A DYNAMIC ONLINE GALLERY

339

Converting the gallery elements to PHP
Before you can display the contents of the gallery, you need to connect to the phpsols database and

retrieve all the records stored in the images table. The procedure for doing so is the same as in the

previous chapter, using the following simple SQL query:

SELECT filename, caption FROM images

You can then use the first record to display the first image and its associated caption and thumbnail. You

don t need image_id.

PHP Solution 12-1: Displaying the first image

If you set up the Japan Journey website in Chapter 4, you can work directly with the original gallery.php.

Alternatively, copy gallery_01.php from the ch12 folder, and save it in the phpsols site root as

gallery.php. You also need to copy title.inc.php, menu.inc.php, and footer.inc.php to the

includes folder of the phpsols site. If your editing program asks if you want to update the links in the

files, choose the option not to update.

1. Load gallery.php into a browser to make sure that it displays correctly. The maincontent

part of the page should look like Figure 12-4, with one thumbnail image and a larger version of

the same image.

Figure 12-4. The stripped-down version of the static gallery ready for conversion

2. The gallery depends on a connection to the database, so include connection.inc.php,

create a read-only connection to MySQL, and define the SQL query. Add the following code

just before the closing PHP tag above the DOCTYPE declaration in gallery.php (new code is

highlighted in bold):

 include('./includes/title.inc.php');
 require_once('./includes/connection.inc.php');

CHAPTER 12

340

 $conn = dbConnect('read');
 $sql = 'SELECT filename, caption FROM images';

If you are using PDO, add 'pdo' as the second argument to dbConnect().

3. The code for submitting the query and extracting the first record from the result depends on

which method of connection you are using.

For MySQLi, use this:

 // submit the query
 $result = $conn->query($sql) or die(mysqli_error());
 // extract the first record as an array
 $row = $result->fetch_assoc();

For PDO, use this:

 // submit the query
 $result = $conn->query($sql);
 // get any error messages
 $error = $conn->errorInfo();
 if (isset($error[2])) die($error[2]);
 // extract the first record as an array
 $row = $result->fetch();

To display the first image when the page loads, you need to get the first result on its own. The

code for both MySQLi and PDO submits the query, extracts the first record, and stores it in

$row.

4. You now have the details of the first record image stored as $row['filename'] and

$row['caption']. In addition to the filename and caption, you need the dimensions of the

large version so that you can display it in the main body of the page. Add the following code

immediately after the code in the preceding step:

 // get the name and caption for the main image
 $mainImage = $row['filename'];
 $caption = $row['caption'];
 // get the dimensions of the main image
 $imageSize = getimagesize('images/'.$mainImage);

The getimagesize() function was described in Chapters 4 and 8.

5. You can now use this information to display the thumbnail, main image, and caption

dynamically. The main image and thumbnail have the same name, but you eventually want to

display all thumbnails by looping through the full result set, so the dynamic code that goes in

the table cell needs to refer to the current record—in other words, $row['filename'] and

$row['caption'], rather than to $mainImage and $caption. You ll see later why I ve

assigned the values from the first record to separate variables. Amend the code in the table

like this:

 <td> ➥
 <img src="images/thumbs/<?php echo $row['filename']; ?>" ➥

CREATING A DYNAMIC ONLINE GALLERY

341

 alt="<?php echo $row['caption']; ?>" width="80" height="54"></td>

6. Save gallery.php, and view it in a browser. It should look the same as Figure 12-4. The only

difference is that the thumbnail and its alt text are dynamically generated. You can verify this

by looking at the source code. The original static version had an empty alt attribute, but as

the following screenshot shows, it now contains the caption from the first record:

If things go wrong, make sure there s no gap between the static and dynamically generated

text in the image s src attribute. Also check that you re using the right code for the type of

connection you have created with MySQL. You can check your code against

gallery_mysqli_02.php or gallery_pdo_02.php in the ch12 folder.

7. Once you have confirmed that you re picking up the details from the database, you can

convert the code for the main image. Amend it like this (new code is in bold):

 <div id="main_image">
 <p><img src="images/<?php echo $mainImage; ?>" ➥
 alt="<?php echo $caption; ?>" <?php echo $imageSize[3]; ?>></p>
 <p><?php echo $caption; ?></p>
 </div>

8. As explained in Chapter 8, getimagesize() returns an array, the fourth element of which

contains a string with the width and height of an image ready for insertion into an tag. So

$imageSize[3] inserts the correct dimensions for the main image.

Test the page again. It should still look the same as Figure 12-4, but the images and caption

are being drawn dynamically from the database. You can check your code against

gallery_mysqli_03.php, or gallery_pdo_03.php in the ch12 folder.

Building the dynamic elements
The first thing that you need to do after converting the static page is to display all the thumbnails and build

dynamic links that will enable you to display the large version of any thumbnail that has been clicked.

Displaying all the thumbnails is easy—just loop through them (we ll work out how to display them in rows of

two later). Activating the link for each thumbnail requires a little more thought. You need a way of telling

the page which large image to display.

Passing information through a query string

In the last section, you used $mainImage to identify the large image, so you need a way of changing its

value whenever a thumbnail is clicked. The solution is to add the image s filename to a query string at the

end of the URL in the link like this:

CHAPTER 12

342

You can then check whether the $_GET array contains an element called image. If it does, change the

value of $mainImage. If it doesn t, leave $mainImage as the filename from the first record in the result set.

PHP Solution 12-2: Activating the thumbnails

Continue working with the same file as in the previous section. Alternatively, copy

gallery_mysqli_03.php or gallery_pdo_03.php to the phpsols site root, and save it as gallery.php

1. Locate the opening <a> tag of the link surrounding the thumbnail. It looks like this:

2. Change it like this:

 <a href="<?php echo $_SERVER['PHP_SELF']; ?>?image=<?php echo ➥
 $row['filename']; ?>">

Be careful when typing the code. It s easy to mix up the question marks in the PHP tags with

the question mark at the beginning of the query string. It s also important there are no spaces

surrounding ?image=.

$_SERVER['PHP_SELF'] is a handy predefined variable that refers to the name of the current

page. You could just leave gallery.php hard-coded in the URL, but I suspect that many of

you will use the download files, which have a variety of names. Using $_SERVER['PHP_SELF']

ensures that the URL is pointing to the correct page. The rest of the code builds the query

string with the current filename.

3. Save the page, and load it into a browser. Hover your mouse pointer over the thumbnail, and

check the URL displayed in the status bar. It should look like this:

 http://localhost/phpsols/gallery.php?image=basin.jpg

4. If nothing is shown in the status bar, click the thumbnail. The page shouldn t change, but the

URL in the address bar should now include the query string. Check that there are no gaps in

the URL or query string.

5. To show all the thumbnails, you need to wrap the table cell in a loop. Insert a new line after the

HTML comment about repeating the row, and create the first half of a do... while loop like

this (see Chapter 3 for details of the different types of loops):

 <!-- This row needs to be repeated -->
 <?php do { ?>

6. You already have the details of the first record in the result set, so the code to get subsequent

records needs to go after the closing </td> tag. Create some space between the closing

</td> and </tr> tags, and insert the following code. It s slightly different for each method of

database connection.

For MySQLi, use this:

 </td>

5

http://localhost/phpsols/gallery.php?image=basin.jpg

CREATING A DYNAMIC ONLINE GALLERY

343

 <?php } while ($row = $result->fetch_assoc()); ?>
 </tr>

For PDO, use this:

 </td>
 <?php } while ($row = $result->fetch()); ?>
 </tr>

This fetches the next row in the result set and sends the loop back to the top. Because

$row['filename'] and $row['caption'] have different values, the next thumbnail and its

associated alt text are inserted into a new table cell. The query string is also updated with the

new filename.

7. Save the page, and test it in a browser. You should now see all eight thumbnails in a single row

across the top of the gallery, as shown in the following screenshot.

8. Hover your mouse pointer over each thumbnail, and you should see the query string display

the name of the file. You can check your code against gallery_mysqli_04.php or

gallery_pdo_04.php.

9. Clicking the thumbnails still doesn t do anything, so you need to create the logic that changes

the main image and its associated caption. Locate this section of code in the block above the

DOCTYPE declaration:

 // get the name and caption for the main image
 $mainImage = $row['filename'];
 $caption = $row['caption'];

10. Highlight the line that defines $caption, and cut it to your clipboard. Wrap the other line in a

conditional statement like this:

 // get the name for the main image
 if (isset($_GET['image'])) {
 $mainImage = $_GET['image'];

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 12

344

 } else {
 $mainImage = $row['filename'];
 }

The $_GET array contains values passed through a query string, so if $_GET['image'] has

been set (defined), it takes the filename from the query string and stores it as $mainImage. If

$_GET['image'] doesn t exist, the value is taken from the first record in the result set as

before.

11. You finally need to get the caption for the main image. It s no longer going to be the same every

time, so you need to move it to the loop that displays the thumbnails in the thumbs table. It

goes right after the opening curly brace of the loop (around line 45). Position your cursor after

the brace and insert a couple of lines, and then paste the caption definition that you cut in the

previous step. You want the caption to match the main image, so if the current record s

filename is the same as $mainImage, that s the one you re after. Wrap the code that you have

just pasted in a conditional statement like this:

 <?php
 do {
 // set caption if thumbnail is same as main image
 if ($row['filename'] == $mainImage) {
 $caption = $row['caption']; // this is the line you pasted
 }
 ?>

12. Save the page and reload it in your browser. This time, when you click a thumbnail, the main

image and caption will change. Check your code, if necessary, against

gallery_mysqli_05.php, or gallery_pdo_05.php.

Passing information through a query string like this is an important aspect of working with PHP and

database results. Although form information is normally passed through the $_POST array, the $_GET array

is frequently used to pass details of a record that you want to display, update, or delete. It s also

commonly used for searches, because the query string can easily be bookmarked. There s no danger of

SQL injection in this case. If someone changes the value of the filename passed through the query string,

all that happens is the image and caption fail to display.

Creating a multicolumn table

With only eight images, the single row of thumbnails across the top of the gallery doesn t look too bad.

However, it s useful to be able to build a table dynamically with a loop that inserts a specific number of

table cells in a row before moving to the next row. You do this by keeping count of how many cells have

been inserted. When you get to the limit for the row, insert a closing tag for the current row and an opening

tag for the next one. What makes it easy to implement is the modulo operator, %, which returns the

remainder of a division.

This is how it works. Let s say you want two cells in each row. After the first cell is inserted, the counter is

set to 1. If you divide 1 by 2 with the modulo operator (1%2), the result is 1. When the next cell is inserted,

the counter is increased to 2. The result of 2%2 is 0. The next cell produces this calculation: 3%2, which

results in 1; but the fourth cell produces 4%2, which is again 0. So, every time that the calculation results

in 0, you know—or to be more exact, PHP knows—you re at the end of a row.

CREATING A DYNAMIC ONLINE GALLERY

345

So how do you know if there are any more rows left? By putting the code that inserts the closing and

opening <tr> tags at the top of the loop, there must always be at least one image left. However, the first

time the loop runs, the remainder is also 0, so you need to prevent the tags from being inserted until at

least one image has been displayed. Phew . . . let s try it.

PHP Solution 12-3: Looping horizontally and vertically

This PHP solution shows how to control a loop to display a specific number of columns in a table. The

number of columns is controlled by setting a constant. Continue working with the files from the preceding

section. Alternatively, use gallery_mysqli_05.php or gallery_pdo_05.php.

1. You may decide at a later stage that you want to change the number of columns in the table, so

it s a good idea to create a constant at the top of the script, where it s easy to find, rather than

burying the figures deep in your code. Insert the following code just before the database

connection:

 // define number of columns in table
 define('COLS', 2);

A constant is similar to a variable, except that its value cannot be changed by another part of

the script. You create a constant with the define() function, which takes two arguments: the

name of the constant and its value. By convention, constants are always in uppercase. Unlike

variables, they do not begin with a dollar sign.

2. You need to initialize the cell counter outside the loop and create a variable that indicates

whether it s the first row. Add the following code immediately after the constant you have just

defined:

 define('COLS', 2);
 // initialize variables for the horizontal looper
 $pos = 0;
 $firstRow = true;

3. The code that keeps count of the columns goes inside the PHP block at the start of the loop.

Amend the code like this:

 <?php do {
 // set caption if thumbnail is same as main image
 if ($row['filename'] == $mainImage) {
 $caption = $row['caption'];
 }
 // if remainder is 0 and not first row, close row and start new one
 if ($pos++ % COLS === 0 && !$firstRow) {
 echo '</tr><tr>';
 }
 // once loop begins, this is no longer true
 $firstRow = false;
 ?>

Because the increment operator (++) is placed after $pos, its value is divided by the number of

columns before being incremented by 1. The first time the loop runs, the remainder is 0, but

CHAPTER 12

346

$firstRow is true, so the conditional statement fails. However, $firstRow is reset to false.

On future iterations of the loop, the conditional statement closes the current table row and

starts a new one each time the remainder is 0.

4. If there are no more records, you need to check if you have an incomplete row at the bottom of

the table. Add a while loop after the existing do. . . while loop. In the MySQLi version, it

looks like this:

 <?php } while ($row = $result->fetch_assoc());
 while ($pos++ % COLS) {
 echo '<td> </td>';
 }
 ?>

The new code is identical in the PDO version. The only difference is that the preceding line

uses $result->fetch() instead of $result->fetch_assoc().

The second loop continues incrementing $pos while $pos++ % COLS produces a remainder

(which is interpreted as true) and inserting an empty cell.

This second loop is not nested inside the first. It runs only after the first loop has ended.

5. Save the page and reload it in a browser. The single row of thumbnails across the top of the

gallery should now be neatly lined up two by two, as shown in Figure 12-5.

Figure 12-5. The thumbnails are now in neat columns.

6. Try changing the value of COLS and reloading the page. See how easy it is to control the

number of cells in each row by changing just one number. You can check your code against

gallery_mysqli_06.php, or gallery_pdo_06.php.

CREATING A DYNAMIC ONLINE GALLERY

347

Paging through a long set of records

The grid of eight thumbnails fits quite comfortably in the gallery, but what if you have 28 or 48? The answer

is to limit the number of results displayed on each page and build a navigation system that lets you page

back and forth through the results. You ve seen this technique countless times when using a search

engine; now you re going to learn how to build it yourself.

The task can be broken down into the following two stages:

1. Selecting a subset of records to display

2. Creating the navigation links to page through the subsets

Both stages are relatively easy to implement, although it involves applying a little conditional logic. Keep a

cool head, and you ll breeze through it.

Selecting a subset of records

Limiting the number of results on a page is simple. Add the LIMIT keyword to the SQL query like this:

SELECT filename, caption FROM images LIMIT startPosition, maximum

The LIMIT keyword can be followed by one or two numbers. If you use just one number, it sets the

maximum number of records to be retrieved. That s useful, but it s not suitable for a paging system. For

that, you need to use two numbers: the first indicates which record to start from, and the second

stipulates the maximum number of records to be retrieved. MySQL counts records from 0, so to display

the first six images, you need the following SQL:

SELECT filename, caption FROM images LIMIT 0, 6

To show the next set, the SQL needs to change to this:

SELECT filename, caption FROM images LIMIT 6, 6

There are only eight records in the images table, but the second number is only a maximum, so this

retrieves records 7 and 8.

To build the navigation system, you need a way of generating these numbers. The second number never

changes, so let s define a constant called SHOWMAX. Generating the first number (call it $startRecord) is

pretty easy, too. Start numbering the pages from 0, and multiply the second number by the current page

number. So, if you call the current page $curPage, the formula looks like this:

$startRecord = $curPage * SHOWMAX;

And for the SQL, it becomes this:

SELECT filename, caption FROM images LIMIT $startRecord, SHOWMAX

If $curPage is 0, $startRecord is also 0 (0 6), but when $curPage increases to 1, $startRecord

changes to 6 (1 6), and so on.

Since there are only eight records in the images table, you need a way of finding out the total number of

records to prevent the navigation system from retrieving empty result sets. In the last chapter, you used

the MySQLi num_rows property and rowCount() in PDO. However, that won t work this time, because you

CHAPTER 12

348

want to know the total number of records, not how many there are in the current result set. The answer is

to use the SQL COUNT() function like this:

SELECT COUNT(*) FROM images

When used like this in combination with an asterisk, COUNT() gets the total number of records in the table.

So, to build a navigation system, you need to run both SQL queries: one to find the total number of

records, and the other to retrieve the required subset. MySQL is fast, so the result is almost

instantaneous.

I ll deal with the navigation links later. Let s begin by limiting the number of thumbnails on the first page.

PHP Solution 12-4: Displaying a subset of records

This PHP solution shows how to select a subset of records in preparation for creating a navigation system

to page through a longer set. It also demonstrates how to display the numbers of the current selection, as

well as the total number of records.

Continue working with the same file as before. Alternatively, use gallery_mysqli_06.php or

gallery_pdo_06.php.

1. Define SHOWMAX and the SQL query to find the total number of records in the table. Amend the

code toward the top of the page like this (new code is shown in bold):

 // initialize variables for the horizontal looper
 $pos = 0;
 $firstRow = true;
 // set maximum number of records
 define('SHOWMAX', 6);
 $conn = dbConnect('read');
 // prepare SQL to get total records
 $getTotal = 'SELECT COUNT(*) FROM images';

2. You now need to run the new SQL query. The code goes immediately after the code in the

preceding step but differs according to the type of MySQL connection.

For MySQLi, use this:

 // submit query and store result as $totalPix
 $total = $conn->query($getTotal);
 $row = $total->fetch_row();
 $totalPix = $row[0];

This submits the query and then uses the fetch_row() method, which gets a single row from

a MySQLi_Result object as an indexed array. There s only one column in the result, so

$row[0] contains the total count of records in the images table.

For PDO, use this:

 // submit query and store result as $totalPix
 $total = $conn->query($getTotal);
 $totalPix = $total->fetchColumn();
 $total->closeCursor();

CREATING A DYNAMIC ONLINE GALLERY

349

This submits the query and then uses fetchColumn() to get a single result, which is stored in

$totalPix. You then need to use closeCursor() to free the database connection for the

next query.

3. Next, set the value of $curPage. The navigation links that you ll create later pass the value of

the required page through a query string, so you need to check whether curPage is in the

$_GET array. If it is, use that value. Otherwise, set the current page to 0. Insert the following

code immediately after the code in the previous step:

 // set the current page
 $curPage = isset($_GET['curPage']) ? $_GET['curPage'] : 0;

This uses the ternary operator (see Chapter 3). If you find the ternary operator hard to

understand, use the following code instead. It has exactly the same meaning.

 if (isset($_GET['curPage'])) {
 $curPage = $_GET['curPage'];
 } else {
 $curPage = 0;
 }

4. You now have all the information that you need to calculate the start row and to build the SQL

query to retrieve a subset of records. Add the following code immediately after the code in the

preceding step:

 // calculate the start row of the subset
 $startRow = $curPage * SHOWMAX;

5. The original SQL query should now be on the next line. Amend it like this:

 // prepare SQL to retrieve subset of image details
 $sql = "SELECT filename, caption FROM images LIMIT $startRow," . SHOWMAX;

Notice that I ve used double quotes this time, because I want PHP to process $startRow.

Unlike variables, constants aren t processed inside double-quoted strings. So SHOWMAX is

added to the end of the SQL query with the concatenation operator (a period). The comma

inside the closing quotes is part of the SQL, separating the two arguments of the LIMIT

clause.

Although $curPage comes from user input, it s safe to use it to calculate the value of $startRow

because it s multiplied by SHOWMAX, which is an integer. If the value submitted through the query

string is not a number, PHP automatically converts it to 0.

6. Save the page, and reload it into a browser. Instead of eight thumbnails, you should see just

six, as shown in Figure 12-6.

CHAPTER 12

350

Figure 12-6. The number of thumbnails is limited by the SHOWMAX constant.

7. Change the value of SHOWMAX to see a different number of thumbnails.

8. The text above the thumbnail grid doesn t update because it s still hard-coded, so let s fix that.

Locate the following line of code in the main body of the page:

 <p id="picCount">Displaying 1 to 6 of 8</p>

Replace it with this:

 <p id="picCount">Displaying <?php echo $startRow+1;
 if ($startRow+1 < $totalPix) {
 echo ' to ';
 if ($startRow+SHOWMAX < $totalPix) {
 echo $startRow+SHOWMAX;
 } else {
 echo $totalPix;
 }
 }
 echo " of $totalPix";
 ?></p>

Let s take this line by line. The value of $startRow is zero-based, so you need to add 1 to get

a more user-friendly number. So, $startRow+1 displays 1 on the first page and 7 on the

second page.

In the second line, $startRow+1 is compared with the total number of records. If it s less, that

means the current page is displaying a range of records, so the third line displays the text “to”

with a space on either side.

You then need to work out the top number of the range, so a nested if ... else conditional

statement adds the value of the start row to the maximum number of records to be shown on a

page. If the result is less than the total number of records, $startRow+SHOWMAX gives you the

number of the last record on the page. However, if it s equal to or greater than the total, you

display $totalPix instead.

w

CREATING A DYNAMIC ONLINE GALLERY

351

Finally, you come out of both conditional statements and display “of” followed by the total

number of records.

9. Save the page, and reload it in a browser. You still get only the first subset of thumbnails, but

you should see the second number change dynamically whenever you alter the value of

SHOWMAX. Check your code, if necessary, against gallery_mysqli_07.php, or

gallery_pdo_07.php.

Navigating through subsets of records

As I mentioned in step 3 of the preceding section, the value of the required page is passed to the PHP

script through a query string. When the page first loads, there is no query string, so the value of $curPage

is set to 0. Although a query string is generated when you click a thumbnail to display a different image, it

includes only the filename of the main image, so the original subset of thumbnails remains unchanged. To

display the next subset, you need to create a link that increases the value of $curPage by 1. It follows,

therefore, that to return to the previous subset, you need another link that reduces the value of $curPage

by 1.

That s simple enough, but you also need to make sure that these links are displayed only when there is a

valid subset to navigate to. For instance, there s no point in displaying a back link on the first page,

because there isn t a previous subset. Similarly, you shouldn t display a forward link on the page that

displays the last subset, because there s nothing to navigate to.

Both issues are easily solved by using conditional statements. There s one final thing that you need to

take care of. You must also include the value of the current page in the query string generated when you

click a thumbnail. If you fail to do so, $curPage is automatically set back to 0, and the first set of

thumbnails is displayed instead of the current subset.

PHP Solution 12-5: Creating the navigation links

This PHP solution shows how to create the navigation links to page back and forth through each subset of

records. Continue working with the same file as before. Alternatively, use gallery_mysqli_07.php, or

gallery_pdo_07.php.

1. I have placed the navigation links in an extra row at the bottom of the thumbnail table. Insert

this code between the placeholder comment and the closing </table> tag:

 <!-- Navigation link needs to go here -->
 <tr><td>
 <?php
 // create a back link if current page greater than 0
 if ($curPage > 0) {
 echo '<a href="' . $_SERVER['PHP_SELF'] . '?curPage=' . ($curPage-1) .
 '"> < Prev';
 } else {
 // otherwise leave the cell empty
 echo ' ';
 }
 ?>
 </td>

CHAPTER 12

352

 <?php
 // pad the final row with empty cells if more than 2 columns
 if (COLS-2 > 0) {
 for ($i = 0; $i < COLS-2; $i++) {
 echo '<td> </td>';
 }
 }
 ?>
 <td>
 <?php
 // create a forward link if more records exist
 if ($startRow+SHOWMAX < $totalPix) {
 echo '<a href="' . $_SERVER['PHP_SELF'] . '?curPage=' . ($curPage+1) .
 '"> Next >';
 } else {
 // otherwise leave the cell empty
 echo ' ';
 }
 ?>
 </td></tr>
 </table>

It looks like a lot, but the code breaks down into three sections: the first creates a back link if

$curPage is greater than 0; the second pads the final table row with empty cells if there are

more than two columns; and the third uses the same formula as before ($startRow+SHOWMAX
< $totalPix) to determine whether to display a forward link.

Make sure you get the combination of quotes right in the links. The other point to note is that

the $curPage-1 and $curPage+1 calculations are enclosed in parentheses to avoid the

period after the number being misinterpreted as a decimal point. It s used here as the

concatenation operator to join the various parts of the query string.

2. You now need to add the value of the current page to the query string in the link surrounding

the thumbnail. Locate this section of code:

 <a href="<?php echo $_SERVER['PHP_SELF']; ?>?image=<?php echo ➥
 $row['filename']; ?>">

Change it like this:

 <a href="<?php echo $_SERVER['PHP_SELF']; ?>?image=<?php echo ➥
 $row['filename']; ?>&curPage=<?php echo $curPage; ?>">

You want the same subset to be displayed when clicking a thumbnail, so you just pass the

current value of $curPage through the query string.

3. Save the page, and test it. Click the Next link, and you should see the remaining subset of

thumbnails, as shown in Figure 12-7. There are no more images to be displayed, so the Next

link disappears, but there s a Prev link at the bottom left of the thumbnail grid. The record

counter at the top of the gallery now reflects the range of thumbnails being displayed, and if

CREATING A DYNAMIC ONLINE GALLERY

353

you click the right thumbnail, the same subset remains onscreen while displaying the

appropriate large image. You re done!

Figure 12-7. The page navigation system is now complete.

You can check your code against gallery_mysqli_08.php, or gallery_pdo_08.php.

Chapter review
Wow! In a few pages, you have turned a boring list of filenames into a dynamic online gallery, complete

with a page navigation system. All that s necessary is to create a thumbnail for each major image, upload

both images to the appropriate folder, and add the filename and a caption to the images table in the

database. As long as the database is kept up to date with the contents of the images and thumbs folders,

you have a dynamic gallery. Not only that, you ve learned how to select subsets of records, link to related

information through a query string, and build a page navigation system.

The more you use PHP, the more you realize that the skill doesn t lie so much in remembering how to use

lots of obscure functions but in working out the logic needed to get PHP to do what you want. It s a

question of if this, do that; if something else, do something different. Once you can anticipate the likely

eventualities of a situation, you can normally build the code to handle it.

So far, you ve concentrated on extracting records from a simple database table. In the next chapter, I ll

show you how to insert, update, and delete material.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 12

354

355

Chapter 13

Managing Content

Although you can use phpMyAdmin for a lot of database administration, you might want to set up areas

where clients can log in to update some data without giving them full rein of your database. To do so, you

need to build your own forms and create customized content management systems.

At the heart of every content management system lies what is sometimes called the CRUD cycle—create,

read, update, and delete—which utilizes just four SQL commands: INSERT, SELECT, UPDATE, and DELETE.

To demonstrate the basic SQL commands, this chapter shows you how to build a simple content

management system for a table called blog.

Even if you don t want to build your own content management system, the four commands covered in this

chapter are essential for just about any database-driven page, such as user login, user registration,

search form, search results, and so on.

In this chapter, you ll learn how to do the following:

• Inserting new records in a database table

• Displaying a list of existing records

• Updating existing records

• Asking for confirmation before a record is deleted

Setting up a content management system
Managing the content in a database table involves four stages, which I normally assign to four separate

but interlinked pages: one each for inserting, updating, and deleting records, plus a list of existing

records. The list of records serves two purposes: first, to identify what s stored in the database; and more

importantly, to link to the update and delete scripts by passing the record s primary key through a query

string.

The blog table contains a series of titles and text articles to be displayed in the Japan Journey site, as

shown in Figure 13-1. In the interests of keeping things simple, the table contains just five columns:

article_id (primary key), title, article, updated, and created.

CHAPTER 13

356

Figure 13-1. The contents of the blog table displayed in the Japan Journey website

The final two columns hold the date and time when the article was last updated and when it was originally

created. Although it may seem illogical to put the updated column first, this is to take advantage of the

way MySQL automatically updates the first TIMESTAMP column in a table whenever you make any changes

to a record. The created column gets its value from a MySQL function called NOW(), neatly sidestepping

the problem of preparing the date in the correct format for MySQL. The thorny issue of dates will be

tackled in the next chapter.

Creating the blog database table

If you just want to get on with studying the content management pages, Open phpMyAdmin, select the

phpsols database, and use blog.sql to import the table in the same way as in Chapter 10. The SQL file

creates the table and populates it with four short articles.

If you would prefer to create everything yourself from scratch, open phpMyAdmin, select the phpsols

database, and create a new table called blog with five fields (columns). Use the settings shown in the

following screenshot and Table 13-1. Because there are more than three columns, phpMyAdmin displays

MANAGING CONTENT

357

the options horizontally. Because of the layout, the AUTO_INCREMENT check box is abbreviated as

A_I.

Table 13-1. Column definitions for the blog table

Field Type
Length

/Values
Default Attributes Null Index A_I

article_id INT UNSIGNED Deselected PRIMARY Selected

title VARCHAR 255 Deselected

article TEXT Deselected

updated TIMESTAMP CURRENT_
TIMESTAMP

on update
CURRENT_
TIMESTAMP

Deselected

created TIMESTAMP Deselected

The on update CURRENT_TIMESTAMP and CURRENT_TIMESTAMP options aren t available on older versions

of phpMyAdmin and/or MySQL. This doesn t matter, because the default is for the first TIMESTAMP column

in a table to update automatically whenever a record is updated. To keep track of when a record was

originally created, the value in the second TIMESTAMP column is never updated.

Creating the basic insert and update form

SQL makes an important distinction between inserting and updating records by providing separate

commands. INSERT is used only for creating a brand new record. Once a record has been inserted, any

changes must be made with UPDATE. Since this involves working with identical fields, it is possible to use

CHAPTER 13

358

the same page for both operations. However, this makes the PHP more complex, so I prefer to create the

HTML for the insert page first, save a copy as the update page, and then code them separately.

The form in the insert page needs just two input fields: for the title and the article. The contents of the

remaining three columns (the primary key and the two timestamps) are handled automatically either by

MySQL or by the SQL query that you will build shortly. The code for the insert form looks like this:

<form id="form1" method="post" action="">
 <p>
 <label for="title">Title:</label>
 <input name="title" type="text" class="widebox" id="title">
 </p>
 <p>
 <label for="article">Article:</label>
 <textarea name="article" cols="60" rows="8" class="widebox" id="article">
 </textarea>
 </p>
 <p>
 <input type="submit" name="insert" value="Insert New Entry" id="insert">
 </p>
</form>

The form uses the post method. You can find the full code in blog_insert_01.php in the ch13 folder. The

content management forms have been given some basic styling with admin.css, which is in the styles

folder. When viewed in a browser, the form looks like this:

The update form is identical except for the heading and submit button. The button looks like this (the full

code is in blog_update_mysqli_01.php and blog_update_pdo_01.php):

<input type="submit" name="update" value="Update Entry" id="update">

MANAGING CONTENT

359

I ve given the title and article input fields the same names as the columns in the blog table. This makes it

easier to keep track of variables when coding the PHP and SQL later.

As a security measure, some developers recommend using different names from the database

columns because anyone can see the names of input fields just by looking at the form s source code.

Using different names makes it more difficult to break into the database. This shouldn t be a concern

in a password-protected part of a site. However, you may want to consider the idea for publicly

accessible forms, such as those used for user registration or login.

Inserting new records

The basic SQL for inserting new records into a table looks like this:

INSERT [INTO] table_name (column_names)
VALUES (values)

The INTO is in square brackets, which means that it s optional. It s purely there to make the SQL read a

little more like human language. The column names can be in any order you like, but the values in the

second set of parentheses must be in the same order as the columns they refer to.

Although the code is very similar for MySQLi and PDO, I ll deal with each one separately to avoid

confusion.

Many of the scripts in this chapter use a technique known as setting a flag. A flag is a Boolean

variable that is initialized to either true or false and used to check whether something has

happened. For instance, if $OK is initially set to false and reset to true only when a database query

executes successfully, it can be used as the condition controlling another code block.

PHP Solution 13-1: Inserting a new record with MySQLi

This PHP solution shows how to insert a new record into the blog table using a MySQLi prepared

statement. Using a prepared statement avoids problems with escaping quotes and control characters. It

also protects your database against SQL injection (see Chapter 11).

1. Create a folder called admin in the phpsols site root. Copy blog_insert_01.php from the

ch13 folder, and save it as blog_insert_mysqli.php in the new folder.

2. The code that inserts a new record should be run only if the form has been submitted, so it s

enclosed in a conditional statement that checks for the name attribute of the submit button

(insert) in the $_POST array. Put the following above the DOCTYPE declaration:

 <?php
 if (isset($_POST['insert'])) {
 require_once('../includes/connection.inc.php');
 // initialize flag
 $OK = false;
 // create database connection

CHAPTER 13

360

 // initialize prepared statement
 // create SQL
 // bind parameters and execute statement
 // redirect if successful or display error
 }
 ?>

After including the connection function, the code sets $OK to false. This is reset to true only

if there are no errors. The five comments at the end map out the remaining steps that we ll fill in

below.

3. Create a connection to the database as the user with read and write privileges, initialize a

prepared statement, and create the SQL with placeholders for data that will be derived from the

user input like this:

 // create database connection
 $conn = dbConnect('write');
 // initialize prepared statement
 $stmt = $conn->stmt_init();
 // create SQL
 $sql = 'INSERT INTO blog (title, article, created)
 VALUES(?, ?, NOW())';

The values that will be derived from $_POST['title'] and $_POST['article'] are

represented by question mark placeholders. The value for the created column is a MySQL

function, NOW(), which generates a current timestamp. In the update query later, this column

remains untouched, preserving the original date and time.

The code is in a slightly different order from Chapter 11. The script will be developed further in

Chapter 16 to run a series of SQL queries, so the prepared statement is initialized first.

4. The next stage is to replace the question marks with the values held in the variables—a

process called binding the parameters. Insert the code the following code:

 if ($stmt->prepare($sql)) {
 // bind parameters and execute statement
 $stmt->bind_param('ss', $_POST['title'], $_POST['article']);
 $stmt->execute();
 if ($stmt->affected_rows > 0)
 $OK = true;
 }
 }

This is the section that protects your database from SQL injection. Pass the variables to the

bind_param() method in the same order as you want them inserted into the SQL query,

together with a first argument specifying the data type of each variable, again in the same

order as the variables. Both are strings, so this argument is 'ss'.

MANAGING CONTENT

361

Once the statement has been prepared, you call the execute() method.

The affected_rows property records how many rows were affected by an INSERT, UPDATE, or

DELETE query. However, if the query triggers a MySQL error, the value of affected_rows is

–1. Unlike some computing languages, PHP treats –1 as true. So, you need to check that

affected_rows is greater than zero to be sure that the query succeeded. If it is greater than

zero, $OK is reset to true.

5. Finally, redirect the page to a list of existing records or display any error message. Add this

code after the previous step:

 // redirect if successful or display error
 if ($OK) {
 header('Location: http://localhost/phpsols/admin/blog_list_mysqli.php');
 exit;
 } else {
 $error = $stmt->error;
 }
 }

6. Add the following code block in the body of the page to display the error message if the insert

operation fails:

 <h1>Insert New Blog Entry</h1>
 <?php if (isset($error)) {
 echo "<p>Error: $error</p>";
 } ?>
 <form id="form1" method="post" action="">

The completed code is in blog_insert_mysqli.php in the ch13 folder.

That completes the insert page, but before testing it, create blog_list_mysqli.php, which

is described in PHP Solution 13-3.

To focus on the code that interacts with the database, the scripts in this chapter don t validate the

user input. In a real-world application, you should use the techniques described in Chapter 5 to check

the data submitted from the form and redisplay it if errors are detected.

PHP Solution 13-2: Inserting a new record with PDO

This PHP solution shows how to insert a new record in the blog table using a PDO prepared statement. If

you haven t already done so, create a folder called admin in the phpsols site root.

1. Copy blog_insert_01.php to the admin folder and save it as blog_insert_pdo.php.

2. The code that inserts a new record should be run only if the form has been submitted, so it s

enclosed in a conditional statement that checks for the name attribute of the submit button

(insert) in the $_POST array. Put the following in a PHP block above the DOCTYPE declaration:

 if (isset($_POST['insert'])) {

http://localhost/phpsols/admin/blog_list_mysqli.php

CHAPTER 13

362

 require_once('../includes/connection.inc.php');
 // initialize flag
 $OK = false;
 // create database connection
 // create SQL
 // prepare the statement
 // bind the parameters and execute the statement
 // redirect if successful or display error
 }

After including the connection function, the code sets $OK to false. This is reset to true only

if there are no errors. The five comments at the end map out the remaining steps.

3. Create a PDO connection to the database as the user with read and write privileges, and build

the SQL like this:

 // create database connection
 $conn = dbConnect('write', 'pdo');
 // create SQL
 $sql = 'INSERT INTO blog (title, article, created)
 VALUES(:title, :article, NOW())';

The values that will be derived from variables are represented by named placeholders

consisting of the column name preceded by a colon (:title and :article). The value for the

created column is a MySQL function, NOW(), which generates a current timestamp. In the

update query later, this column remains untouched, preserving the original date and time.

4. The next stage is to initialize the prepared statement and bind the values from the variables to

the placeholders—a process known as binding the parameters. Add the following code:

 // prepare the statement
 $stmt = $conn->prepare($sql);
 // bind the parameters and execute the statement
 $stmt->bindParam(':title', $_POST['title'], PDO::PARAM_STR);
 $stmt->bindParam(':article', $_POST['article'], PDO::PARAM_STR);
 // execute and get number of affected rows
 $stmt->execute();
 $OK = $stmt->rowCount();

This begins by passing the SQL query to the prepare() method of the database connection

($conn) and storing a reference to the statement as a variable ($stmt).

Next, the values in the variables are bound to the placeholders in the prepared statement, and

the execute() method runs the query.

When used with an INSERT, UPDATE, or DELETE query, the PDO rowCount() method reports

the number of rows affected by the query. If the record is inserted successfully, $OK is 1,

which PHP treats as true. Otherwise, it s 0, which is treated as false.

5. Finally, redirect the page to a list of existing records or display any error message. Add this

code after the previous step:

MANAGING CONTENT

363

 // redirect if successful or display error
 if ($OK) {
 header('Location: http://localhost/phpsols/admin/blog_list_pdo.php');
 exit;
 } else {
 $error = $stmt->errorInfo();
 if (isset($error[2])) {
 $error = $error[2];
 }
 }
 }
 ?>

Since the prepared statement has been stored as $stmt, you can access an array of error

messages using $stmt->errorInfo(). The most useful information is stored in the third

element of the array.

6. Add a PHP code block in the body of the page to display any error message:

 <h1>Insert New Blog Entry</h1>
 <?php if (isset($error)) {
 echo "<p>Error: $error</p>";
 } ?>
 <form id="form1" method="post" action="">

The completed code is in blog_insert_pdo.php in the ch13 folder.

That completes the insert page, but before testing it, create blog_list_pdo.php, which is

described next.

Linking to the update and delete pages

Before you can update or delete a record, you need to find its primary key. A practical way of doing this is

to query the database and display a list of all records. You can use the results of this query to display a

list of all records, complete with links to the update and delete pages. By adding the value of article_id
to a query string in each link, you automatically identify the record to be updated or deleted. As Figure 13-

2 shows, the URL displayed in the browser status bar (bottom left) identifies the article_id of the article

Tiny Restaurants Crowded Together as 3.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://localhost/phpsols/admin/blog_list_pdo.php

CHAPTER 13

364

Figure 13-2. The EDIT and DELETE links contain the record s primary key in a query string.

The update page uses this to display the correct record ready for updating. The same information is

conveyed in the DELETE link to the delete page.

To create a list like this, you need to start with an HTML table that contains two rows and as many columns

as you want to display, plus two extra columns for the EDIT and DELETE links. The first row is used for

column headings. The second row is wrapped in a PHP loop to display all the results. The table in

blog_list_mysqli_01.php in the ch13 folder looks like this (the version in blog_list_pdo_01.php is

the same, except that the links in the last two table cells point to the PDO versions of the update and

delete pages):

<table>
 <tr>
 <th scope="col">Created</th>
 <th scope="col">Title</th>
 <th> </th>
 <th> </th>
 </tr>
 <tr>
 <td></td>
 <td></td>
 <td>EDIT</td>
 <td>DELETE</td>
 </tr>
</table>

MANAGING CONTENT

365

PHP Solution 13-3: Creating the links to the update and delete pages

This PHP solution shows how to create a page to manage the records in the blog table by displaying a list

of all records and linking to the update and delete pages. There are only minor differences between the

MySQLi and PDO versions, so these instructions describe both.

1. Copy blog_list_mysqli_01.php or blog_list_pdo_01.php to the admin folder, and save it

as blog_list_mysqli.php or blog_list_pdo.php depending on which method of

connection you plan to use. The different versions link to the appropriate insert, update, and

delete files.

2. You need to connect to MySQL and create the SQL query. Add the following code in a PHP

block above the DOCTYPE declaration:

 require_once('../includes/connection.inc.php');
 // create database connection
 $conn = dbConnect('read');
 $sql = 'SELECT * FROM blog ORDER BY created DESC';

If you re using PDO, add 'pdo' as the second argument to the dbConnect() function.

If you re using PDO, skip to step 4.

3. If you re using MySQLi, submit the query by adding the following line before the closing PHP

tag:

 $result = $conn->query($sql) or die(mysqli_error());

4. You now need to enclose the second table row in a loop and retrieve each record from the

result set. The following code goes between the closing </tr> tag of the first row and the

opening <tr> tag of the second row.

For MySQLi, use this:

 </tr>
 <?php while($row = $result->fetch_assoc()) { ?>
 <tr>

For PDO, use this:

 </tr>
 <?php foreach ($conn->query($sql) as $row) { ?>
 <tr>

This is the same as in the previous chapter, so it should need no explanation.

5. Display the created and title fields for the current record in the first two cells of the second

row like this:

 <td><?php echo $row['created']; ?></td>
 <td><?php echo $row['title']; ?></td>

CHAPTER 13

366

6. In the next two cells, add the query string and value of the article_id field for the current

record to both URLs like this (although the links are different, the highlighted code is the same

for the PDO version):

 <td><a href="blog_update_mysqli.php?article_id=<?php echo ➥
 $row['article_id']; ?>">EDIT</td>
 <td><a href="blog_delete_mysqli.php?article_id=<?php echo ➥
 $row['article_id']; ?>">DELETE</td>

What you re doing here is adding ?article_id= to the URL and then using PHP to display the

value of $row['article_id']. It s important that you don t leave any spaces that might

break the URL or the query string. A common mistake is to leave spaces around the equal

sign. After the PHP has been processed, the opening <a> tag should look like this when

viewing the page s source code in a browser (although the number will vary according to the

record):

7. Finally, close the loop surrounding the second table row with a curly brace like this:

 </tr>
 <?php } ?>
 </table>

8. Save blog_list_mysqli.php or blog_list_pdo.php, and load the page into a browser.

Assuming that you loaded the contents of blog.sql into the phpsols database earlier, you

should see a list of four items, as shown in Figure 13-2. You can now test

blog_insert_mysqli.php or blog_insert_pdo.php. After inserting an item, you should be

returned to the appropriate version of blog_list.php, and the date and time of creation,

together with the title of the new item, should be displayed at the top of the list. Check your

code against the versions in the ch13 folder if you encounter any problems.

The code assumes that there will always be some records in the table. As an exercise, use the

technique in PHP Solution 11-2 (MySQLi) or 11-3 (PDO) to count the number of results, and use a

conditional statement to display a suitable message if no records are found. The solution is in
blog_list_norec_mysqli.php and blog_list_norec_pdo.php.

Updating records

An update page needs to perform two separate processes, as follows:

1. Retrieve the selected record, and display it ready for editing

2. Update the edited record in the database

The first stage uses the primary key passed in the URL query string to select the record and display it in

the update form, as shown in Figure 13-3.

MANAGING CONTENT

367

Figure 13-3. The primary key keeps track of a record during the update process.

The primary key is stored in a hidden field in the update form. After you have edited the record in the

update page, you submit the form and pass all the details, including the primary key, to an UPDATE

command.

The basic syntax of the SQL UPDATE command looks like this:

UPDATE table_name SET column_name = value, column_name = value
WHERE condition

The condition when updating a specific record is the primary key. So, when updating article_id 3 in the

blog table, the basic UPDATE query looks like this:

UPDATE blog SET title = value, article = value
WHERE article_id = 3

Although the basic principle is the same for both methods of connecting to MySQL, the code differs

sufficiently to warrant separate instructions.

PHP Solution 13-4: Updating a record with MySQLi

This PHP solution shows how to load an existing record into the update form and then send the edited

details to the database for updating using MySQLi. To load the record, you need to have created the

management page that lists all records, as described in PHP Solution 13-3.

CHAPTER 13

368

1. Copy blog_update_mysqli_01.php from the ch13 folder, and save it in the admin folder as

blog_update_mysqli.php.

2. The first stage involves retrieving the details of the record that you want to update. Put the

following code in a PHP block above the DOCTYPE declaration:

 require_once('../includes/connection.inc.php');
 // initialize flags
 $OK = false;
 $done = false;
 // create database connection
 $conn = dbConnect('write');
 // initialize statement
 $stmt = $conn->stmt_init();
 // get details of selected record
 if (isset($_GET['article_id']) && !$_POST) {
 // prepare SQL query
 $sql = 'SELECT article_id, title, article
 FROM blog WHERE article_id = ?';
 if ($stmt->prepare($sql)) {
 // bind the query parameter
 $stmt->bind_param('i', $_GET['article_id']);
 // bind the results to variables
 $stmt->bind_result($article_id, $title, $article);
 // execute the query, and fetch the result
 $OK = $stmt->execute();
 $stmt->fetch();
 }
 }
 // redirect if $_GET['article_id'] not defined
 if (!isset($_GET['article_id'])) {
 header('Location: http://localhost/phpsols/admin/blog_list_mysqli.php');
 exit;
 }
 // display error message if query fails
 if (isset($stmt) && !$OK && !$done) {
 $error = $stmt->error;
 }

Although this is very similar to the code used for the insert page, the first few lines are outside

the conditional statements. Both stages of the update process require the database

connection and a prepared statement, so this avoids the need to duplicate the same code

later. Two flags are initialized: $OK to check the success of retrieving the record, and $done to

check whether the update succeeds.

The first conditional statement makes sure that $_GET['article_id'] exists and that the

$_POST array is empty. So the code inside the braces is executed only when the query string

is set, but the form hasn t been submitted.

http://localhost/phpsols/admin/blog_list_mysqli.php

MANAGING CONTENT

369

You prepare the SELECT query in the same way as for an INSERT command, using a question

mark as a placeholder for the variable. However, note that instead of using an asterisk to

retrieve all columns, the query specifies three columns by name like this:

 $sql = 'SELECT article_id, title, article
 FROM blog WHERE article_id = ?';

This is because a MySQLi prepared statement lets you bind the result of a SELECT query to

variables, and to be able to do this, you must specify the column names and the order you

want them to be in.

First, you need to initialize the prepared statement and bind $_GET['article_id'] to the

query with $stmt->bind_param(). Because the value of article_id must be an integer, you

pass 'i' as the first argument.

The next line binds the result to variables in the same order as the columns specified in the

SELECT query.

 $stmt->bind_result($article_id, $title, $article);

You can call the variables whatever you like, but it makes sense to use the same names as

the columns. Binding the result like this avoids the necessity to use array names, such as

$row['article_id'], later on.

Then the code executes the query and fetches the result.

The next conditional statement redirects the page to blog_list_mysqli.php if

$_GET['article_id'] hasn t been defined. This prevents anyone from trying to load the

update page directly in a browser.

The final conditional statement stores an error message if the prepared statement has been

created, but both $OK and $done remain false. You haven t added the update script yet, but if

the record is retrieved or updated successfully, one of them will be switched to true. So if

both remain false, you know there was something wrong with one of the SQL queries.

3. Now that you have retrieved the contents of the record, you need to display them in the update

form by using PHP to populate the value attribute of each input field. If the prepared

statement succeeded, $article_id should contain the primary key of the record to be

updated, because it s one of the variables you bound to the result set with the bind_result()

method.

However, if there s an error, you need to display the message onscreen. But if someone alters

the query string to an invalid number, $article_id will be set to 0, so there is no point in

displaying the update form. Add the following conditional statements immediately before the

opening <form> tag:

 <p>List all entries </p>
 <?php if (isset($error)) {
 echo "<p class='warning'>Error: $error</p>";
 }
 if($article_id == 0) { ?>

CHAPTER 13

370

 <p class="warning">Invalid request: record does not exist.</p>
 <?php } else { ?>
 <form id="form1" name="form1" method="post" action="">

The first conditional statement displays any error message reported by the MySQLi prepared

statement. The second wraps the update form in an else clause, so the form will be hidden if

$article_id is 0.

4. Add the closing curly brace of the else clause immediately after the closing </form> tag like

this:

 </form>
 <?php } ?>
 </body>

5. If $article_id is not 0, you know that $title and $article also contain valid values and

can be displayed in the update form without further testing. However, you need to pass text

values to htmlentities() to avoid problems with displaying quotes. Display $title in the

value attribute of the title input field like this:

 <input name="title" type="text" class="widebox" id="title" ➥
 value="<?php echo htmlentities($title, ENT_COMPAT, 'utf-8'); ?>">

6. Do the same for the article text area. Because text areas don t have a value attribute, the

code goes between the opening and closing <textarea> tags like this:

 <textarea name="article" cols="60" rows="8" class="widebox" id="article">
 <?php echo htmlentities($article, ENT_COMPAT, 'utf-8'); ?></textarea>

Make sure there is no space between the opening and closing PHP and <textarea> tags.

Otherwise, you ll get unwanted spaces in your updated record.

7. The UPDATE command needs to know the primary key of the record you want to change. You

need to store the primary key in a hidden field so that it is submitted in the $_POST array with

the other details. Because hidden fields are not displayed onscreen, the following code can go

anywhere inside the form:

 <input name="article_id" type="hidden" value="<?php echo $article_id; ?>">

8. Save the update page, and test it by loading blog_list_mysqli.php into a browser and

selecting the EDIT link for one of the records. The contents of the record should be displayed

in the form fields as shown in Figure 13-3.

The Update Entry button doesn t do anything yet. Just make sure that everything is

displayed correctly, and confirm that the primary key is registered in the hidden field. You can

check your code, if necessary, against blog_update_mysqli_02.php.

9. The name attribute of the submit button is update, so all the update processing code needs to

go in a conditional statement that checks for the presence of update in the $_POST array.

Place the following code highlighted in bold immediately above the code in step 1 that redirects

the page:

MANAGING CONTENT

371

 $stmt->fetch();
 }
 }
 // if form has been submitted, update record
 if (isset($_POST ['update'])) {
 // prepare update query
 $sql = 'UPDATE blog SET title = ?, article = ?
 WHERE article_id = ?';
 if ($stmt->prepare($sql)) {
 $stmt->bind_param('ssi', $_POST['title'], $_POST['article'], ➥
 $_POST['article_id']);
 $done = $stmt->execute();
 }
 }
 // redirect page on success or if $_GET['article_id']) not defined
 if ($done || !isset($_GET['article_id'])) {

The UPDATE query is prepared with question mark placeholders where values are to be

supplied from variables. The prepared statement has already been initialized in the code

outside the conditional statement, so you can pass the SQL to the prepare() method and

bind the variables with $stmt->bind_param(). The first two variables are strings, and the

third is an integer, so the first argument is 'ssi'.

If the UPDATE query succeeds, the execute() method returns true, resetting the value of

$done. Unlike an INSERT query, using the affected_rows property has little meaning

because it returns zero if the user decides to click the Update Entry button without making

any changes, so we won t use it here. You need to add $done || to the condition in the

redirect script. This ensures that the page is redirected either if the update succeeds or if

someone tries to access the page directly.

10. Save blog_update_mysqli.php, and test it by loading blog_list_mysqli.php, selecting

one of the EDIT links, and making changes to the record that is displayed. When you click

Update Entry, you should be taken back to blog_list_mysqli.php. You can verify that

your changes were made by clicking the same EDIT link again. Check your code, if necessary,

with blog_update_mysqli_03.php.

PHP Solution 13-5: Updating a record with PDO

This PHP solution shows how to load an existing record into the update form and then send the edited

details to the database for updating using PDO. To load the record, you need to have created the

management page that lists all records, as described in PHP Solution 13-3.

1. Copy blog_update_pdo_01.php from the ch13 folder, and save it in the admin folder as

blog_update_pdo.php.

2. The first stage involves retrieving the details of the record that you want to update. Put the

following code in a PHP block above the DOCTYPE declaration:

 require_once('../includes/connection.inc.php');
 // initialize flags

CHAPTER 13

372

 $OK = false;
 $done = false;
 // create database connection
 $conn = dbConnect('write', 'pdo');
 // get details of selected record
 if (isset($_GET['article_id']) && !$_POST) {
 // prepare SQL query
 $sql = 'SELECT article_id, title, article FROM blog
 WHERE article_id = ?';
 $stmt = $conn->prepare($sql);
 // bind the results
 $stmt->bindColumn(1, $article_id);
 $stmt->bindColumn(2, $title);
 $stmt->bindColumn(3, $article);
 // execute query by passing array of variables
 $OK = $stmt->execute(array($_GET['article_id']));
 $stmt->fetch();
 }
 // redirect if $_GET['article_id'] not defined
 if (!isset($_GET['article_id'])) {
 header('Location: http://localhost/phpsols/admin/blog_list_pdo.php');
 exit;
 }
 // store error message if query fails
 if (isset($stmt) && !$OK && !$done) {
 $error = $stmt->errorInfo();
 if (isset($error[2])) {
 $error = $error[2];
 }
 }

Although this is very similar to the code used for the insert page, the first few lines are outside

the first conditional statement. Both stages of the update process require the database

connection, so this avoids the need to duplicate the same code later. Two flags are initialized:

$OK to check the success of retrieving the record and $done to check whether the update

succeeds.

The first conditional statement checks that $_GET ['article_id'] exists and that the

$_POST array is empty. This makes sure that the code inside is executed only when the query

string is set, but the form hasn t been submitted.

When preparing the SQL query for the insert form, you used named placeholders for the

variables. This time, let s use a question mark like this:

 $sql = 'SELECT article_id, title, article FROM blog
 WHERE article_id = ?';

http://localhost/phpsols/admin/blog_list_pdo.php

MANAGING CONTENT

373

The results are then bound to $article_id, $title, and $article with the bindColumn()
method. This time, I have used numbers (counting from 1) to indicate which column to bind

each variable to.

When using question marks as placeholders, you pass the variables directly as an array to

$stmt->execute() like this:

 $OK = $stmt->execute(array($_GET['article_id']));

Even though there is only one variable this time, it must still be presented as an array. There s

only one record to fetch in the result, so the fetch() method is called immediately.

The next conditional statement redirects the page to blog_list_pdo.php if

$_GET['article_id'] hasn t been defined. This prevents anyone from trying to load the

update page directly in a browser.

The final conditional statement stores an error message if the prepared statement has been

created, but both $OK and $done remain false. You haven t added the update script yet, but if

the record is retrieved or updated successfully, one of them will be switched to true. So if

both remain false, you know there was something wrong with one of the SQL queries.

3. Now that you have retrieved the contents of the record, you need to display them in the update

form by using PHP to populate the value attribute of each input field. If the prepared

statement succeeded, $article_id should contain the primary key of the record to be

updated, because it s one of the variables you bound to the result set with the bindColumn()
method.

However, if there s an error, you need to display the message onscreen. But if someone alters

the query string to an invalid number, $article_id will be set to 0, so there is no point in

displaying the update form. Add the following conditional statements immediately before the

opening <form> tag:

 <p>List all entries </p>
 <?php if (isset($error)) {
 echo "<p class='warning'>Error: $error</p>";
 }
 if($article_id == 0) { ?>
 <p class="warning">Invalid request: record does not exist.</p>
 <?php } else { ?>
 <form id="form1" name="form1" method="post" action="">

The first conditional statement displays any error message reported by the PDO prepared

statement. The second wraps the update form in an else clause, so the form will be hidden if

$article_id is 0.

4. Add the closing curly brace of the else clause immediately after the closing </form> tag like

this:

 </form>
 <?php } ?>
 </body>

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 13

374

5. If $article_id is not 0, you know that $title and $article also exist and can be displayed

in the update form without further testing. However, you need to pass text values to

htmlentities() to avoid problems with displaying quotes. Display $title in the value

attribute of the title input field like this:

 <input name="title" type="text" class="widebox" id="title" ➥
 value="<?php echo htmlentities($title, ENT_COMPAT, 'utf-8'); ?>">

6. Do the same for the article text area. Because text areas don t have a value attribute, the

code goes between the opening and closing <textarea> tags like this:

 <textarea name="article" cols="60" rows="8" class="widebox" id="article">
 <?php echo htmlentities($article, ENT_COMPAT, 'utf-8'); ?></textarea>

Make sure there is no space between the opening and closing PHP and <textarea> tags.

Otherwise, you will get unwanted spaces in your updated record.

7. The UPDATE command needs to know the primary key of the record you want to change. You

need to store the primary key in a hidden field so that it is submitted in the $_POST array with

the other details. Because hidden fields are not displayed onscreen, the following code can go

anywhere inside the form:

 <input name="article_id" type="hidden" value="<?php echo $article_id; ?>">

8. Save the update page, and test it by loading blog_list_pdo.php into a browser and selecting

the EDIT link for one of the records. The contents of the record should be displayed in the form

fields as shown in Figure 13-3.

The Update Entry button doesn t do anything yet. Just make sure that everything is

displayed correctly, and confirm that the primary key is registered in the hidden field. You can

check your code, if necessary, against blog_update_pdo_02.php.

9. The name attribute of the submit button is update, so all the update processing code needs to

go in a conditional statement that checks for the presence of update in the $_POST array.

Place the following code highlighted in bold immediately above the code in step 1 that redirects

the page:

 $stmt->fetch();
 }
 // if form has been submitted, update record
 if (isset($_POST['update'])) {
 // prepare update query
 $sql = 'UPDATE blog SET title = ?, article = ?
 WHERE article_id = ?';
 $stmt = $conn->prepare($sql);
 // execute query by passing array of variables
 $stmt->execute(array($_POST['title'], $_POST['article'],
 $_POST['article_id']));
 $done = $stmt->rowCount();
 }
 // redirect page on success or $_GET['article_id'] not defined

MANAGING CONTENT

375

 if ($done || !isset($_GET['article_id'])) {

Again, the SQL query is prepared using question marks as placeholders for values to be

derived from variables. This time, there are three placeholders, so the corresponding variables

need to be passed as an array to $stmt->execute(). Needless to say, the array must be in

the same order as the placeholders.

10. If the UPDATE query succeeds, the rowCount() method sets $done to 1, which is treated as

true. You ll notice we have added $done || to the condition in the redirect script. This

ensures that the page is redirected either if the update succeeds or if someone tries to access

the page directly.

11. Save blog_update_pdo.php, and test it by loading blog_list_pdo.php, selecting one of the

EDIT links, and making changes to the record that is displayed. When you click Update

Entry, you should be taken back to blog_list_pdo.php. You can verify that your changes

were made by clicking the same EDIT link again. Check your code, if necessary, with

blog_update_pdo_03.php.

Deleting records

Deleting a record in a database is similar to updating one. The basic DELETE command looks like this:

DELETE FROM table_name WHERE condition

What makes the DELETE command potentially dangerous is that it is final. Once you have deleted a

record, there s no going back—it s gone forever. There s no Recycle Bin or Trash to fish it out from. Even

worse, the WHERE clause is optional. If you omit it, every single record in the table is irrevocably sent into

cyber-oblivion. Consequently, it s a good idea to display details of the record to be deleted and ask the

user to confirm or cancel the process (see Figure 13-4).

Figure 13-4. Deleting a record is irreversible, so get confirmation before going ahead.

Building and scripting the delete page is almost identical to the update page, so I won t give step-by-step

instructions. However, here are the main points:

• Retrieve the details of the selected record.

CHAPTER 13

376

• Display sufficient details, such as the title, for the user to confirm that the correct record has

been selected.

• Give the Confirm Deletion and Cancel buttons different name attributes, and use each name

attribute with isset() to control the action taken.

• Instead of wrapping the entire form in the else clause, use conditional statements to hide the

Confirm Deletion button and the hidden field.

The code that performs the deletion for each method follows.

For MySQLi:

if (isset($_POST['delete'])) {
 $sql = 'DELETE FROM blog WHERE article_id = ?';
 if ($stmt->prepare($sql)) {
 $stmt->bind_param('i', $_POST['article_id']);
 $stmt->execute();
 if ($stmt->affected_rows > 0) {;
 $deleted = true;
 } else {
 $error = 'There was a problem deleting the record.';
 }
 }
}

For PDO:

if (isset($_POST['delete'])) {
 $sql = 'DELETE FROM blog WHERE article_id = ?';
 $stmt = $conn->prepare($sql);
 $stmt->execute(array($_POST['article_id']));
 // get number of affected rows
 $deleted = $stmt->rowCount();
 if (!$deleted) {
 $error = 'There was a problem deleting the record.';
 }
}

You can find the finished code in blog_delete_mysqli.php and blog_delete_pdo.php in the ch13

folder. To test the delete script, copy the appropriate file to the admin folder.

Reviewing the four essential SQL commands
Now that you have seen SELECT, INSERT, UPDATE, and DELETE in action, let s review the basic syntax.

This is not an exhaustive listing, but it concentrates on the most important options, including some that

have not yet been covered. I have used the same typographic conventions as the MySQL online manual

at http://dev.mysql.com/doc/refman/5.1/en (which you may also want to consult):

• Anything in uppercase is a SQL command.

• Expressions in square brackets are optional.

http://dev.mysql.com/doc/refman/5.1/en

MANAGING CONTENT

377

• Lowercase italics represent variable input.

• A vertical pipe (|) separates alternatives.

Although some expressions are optional, they must appear in the order listed. For example, in a SELECT

query, WHERE, ORDER BY, and LIMIT are all optional, but LIMIT can never come before WHERE or ORDER
BY.

SELECT

SELECT is used for retrieving records from one or more tables. Its basic syntax is as follows:

SELECT [DISTINCT] select_list
FROM table_list
[WHERE where_expression]
[ORDER BY col_name | formula] [ASC | DESC]
[LIMIT [skip_count,] show_count]

The DISTINCT option tells the database you want to eliminate duplicate rows from the results.

The select_list is a comma-separated list of columns that you want included in the result. To retrieve all

columns, use an asterisk (*). If the same column name is used in more than one table, you must use

unambiguous references by using the syntax table_name.column_name. Chapter 15 explains in detail

about working with multiple tables.

The table_list is a comma-separated list of tables from which the results are to be drawn. All tables that

you want to be included in the results must be listed.

The WHERE clause specifies search criteria, for example:

WHERE quotations.family_name = authors.family_name
WHERE article_id = 2

WHERE expressions can use comparison, arithmetic, logical, and pattern-matching operators. The most

important ones are listed in Table 13-2.

Table 13-2. The main operators used in MySQL WHERE expressions

Comparison Arithmetic

< Less than + Addition

<= Less than or equal to - Subtraction

= Equal to * Multiplication

!= Not equal to / Division

<> Not equal to DIV Integer division

> Greater than % Modulo

CHAPTER 13

378

Comparison Arithmetic

>= Greater than or equal to

IN() Included in list

BETWEEN min AND
max

Between (and including

two values)

Logical Pattern matching

AND Logical and LIKE Case-insensitive

match

&& Logical and NOT LIKE Case-insensitive

nonmatch

OR Logical or LIKE BINARY Case-sensitive

match

|| Logical or (best avoided) NOT LIKE BINARY Case-sensitive

nonmatch

Of the two operators that mean “not equal to,” <> is standard SQL. Not all databases support !=.

DIV is the counterpart of the modulo operator. It produces the result of division as an integer with no

fractional part, whereas modulo produces only the remainder.

5 / 2 /* result 2.5 */
5 DIV 2 /* result 2 */
5 % 2 /* result 1 */

I suggest you avoid using || because it s actually used as the string concatenation operator in standard

SQL. By not using it with MySQL, you avoid confusion if you ever work with a different relational database.

To join strings, MySQL uses the CONCAT() function (see http://dev.mysql.com/doc/refman/
5.1/en/string-functions.html#function_concat).

IN() evaluates a comma-separated list of values inside the parentheses and returns true if one or more

of the values is found. Although BETWEEN is normally used with numbers, it also applies to strings. For

instance, BETWEEN 'a' AND 'd' returns true for a, b, c, and d (but not their uppercase equivalents).

Both IN() and BETWEEN can be preceded by NOT to perform the opposite comparison.

LIKE, NOT LIKE, and the related BINARY operators are used for text searches in combination with the

following two wildcard characters:

• %: matches any sequence of characters or none.

• _ (an underscore): matches exactly one character.

http://dev.mysql.com/doc/refman/

MANAGING CONTENT

379

So, the following WHERE clause matches Dennis, Denise, and so on, but not Aiden:

WHERE first_name LIKE 'den%'

To match Aiden, put % at the front of the search pattern. Because % matches any sequence of characters

or none, '%den%' still matches Dennis and Denise. To search for a literal percentage sign or underscore,

precede it with a backslash (\% or _).

This explains why some drop-down menus in phpMyAdmin insert a backslash in names that contain

an underscore. phpMyAdmin uses the value directly in a SQL query with LIKE.

Conditions are evaluated from left to right but can be grouped in parentheses if you want a particular set of

conditions to be considered together.

ORDER BY specifies the sort order of the results. This can be specified as a single column, a comma-

separated list of columns, or an expression such as RAND(), which randomizes the order. The default sort

order is ascending (a–z, 0–9), but you can specify DESC (descending) to reverse the order.

LIMIT followed by one number stipulates the maximum number of records to return. If two numbers are

given separated by a comma, the first tells the database how many rows to skip (see “Selecting a subset

of records” in Chapter 12).

For more details on SELECT, see http://dev.mysql.com/doc/refman/5.1/en/select.html.

INSERT

The INSERT command is used to add new records to a database. The general syntax is as follows:

INSERT [INTO] table_name (column_names)
VALUES (values)

The word INTO is optional; it simply makes the command read a little more like human language. The

column names and values are comma-delimited lists, and both must be in the same order. So, to insert the

forecast for New York (blizzard), Detroit (smog), and Honolulu (sunny) into a weather database, this is how

you would do it:

INSERT INTO forecast (new_york, detroit, honolulu)
VALUES ('blizzard', 'smog', 'sunny')

The reason for this rather strange syntax is to allow you to insert more than one record at a time. Each

subsequent record is in a separate set of parentheses, with each set separated by a comma:

INSERT numbers (x,y)
VALUES (10,20),(20,30),(30,40),(40,50)

You ll use this multiple insert syntax in Chapter 16. Any columns omitted from an INSERT query are set to

their default value. Never set an explicit value for the primary key where the column is set to

auto_increment; leave the column name out of the INSERT statement. For more details, see

http://dev.mysql.com/doc/refman/5.1/en/insert.html.

http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/insert.html

CHAPTER 13

380

UPDATE

This command is used to change existing records. The basic syntax looks like this:

UPDATE table_name
SET col_name = value [, col_name = value]
[WHERE where_expression]

The WHERE expression tells MySQL which record or records you want to update (or perhaps in the case of

the following example, dream about):

UPDATE sales SET q1_2011 = 25000
WHERE title = 'PHP Solutions, Second Edition'

For more details on UPDATE, see http://dev.mysql.com/doc/refman/5.1/en/update.html.

DELETE

DELETE can be used to delete single records, multiple records, or the entire contents of a table. The

general syntax for deleting from a single table is as follows:

DELETE FROM table_name [WHERE where_expression]

Although phpMyAdmin prompts you for confirmation before deleting a record, MySQL itself takes you at

your word and performs the deletion immediately. DELETE is totally unforgiving—once the data is deleted,

it is gone forever. The following query will delete all records from a table called subscribers where the

date in expiry_date has already passed:

DELETE FROM subscribers
WHERE expiry_date < NOW()

For more details, see http://dev.mysql.com/doc/refman/5.1/en/delete.html.

Although the WHERE clause is optional in both UPDATE and DELETE, you should be aware that if you

leave WHERE out, the entire table is affected. This means that a careless slip with either of these

commands could result in every single record being identical—or wiped out.

Security and error messages
When developing a website with PHP and MySQL, it s essential to display error messages so that you can

debug your code if anything goes wrong. However, raw error messages look unprofessional in a live

website. They can also reveal clues about your database structure to potential attackers. Therefore,

before deploying your scripts live on the Internet, you should go through them, removing all instances of

mysqli_error() (MySQLi) or $error = $error[2] (PDO).

The simplest way to handle this is to replace the MySQL error messages with a neutral message of your

own, such as “Sorry, the database is unavailable.” A more professional way is to replace or die()

routines with an if... else conditional statement, and to use the error control operator (@) to suppress

the display of error messages. For example, you may have the following line in a current script:

$result = $conn->query($sql) or die(mysqli_error());

http://dev.mysql.com/doc/refman/5.1/en/update.html
http://dev.mysql.com/doc/refman/5.1/en/delete.html

MANAGING CONTENT

381

You can rewrite it like this:

$result = @ $conn->query($sql);
if (!$result) {
 // redirect to custom error page
}

You should also remove the conditional statements surrounding MySQLi prepared statements once you

have verified that they don t generate SQL syntax errors. For example, your development code might look

like this:

if ($stmt->prepare($sql)) {
 $stmt->bind_param('s', $searchterm);
 $stmt->bind_result($image_id, $filename, $caption);
 $stmt->execute();
 $stmt->store_result();
 $numRows = $stmt->num_rows;
} else {
 echo $stmt->error;
}

To deploy it on a live website, change it to this:

$stmt->prepare($sql);
$stmt->bind_param('s', $searchterm);
$stmt->bind_result($image_id, $filename, $caption);
$stmt->execute();
$stmt->store_result();
$numRows = $stmt->num_rows;

Chapter review
Content management with a database involves inserting, selecting, updating, and deleting records. Each

record s primary key plays a vital role in the update and delete processes. Most of the time, generating the

primary key is handled automatically by MySQL when a record is first created. Thereafter, finding a

record s primary key is simply a matter of using a SELECT query, either by displaying a list of all records, or

by searching for something you know about the record, such as a title or words in an article.

MySQLi and PDO prepared statements make database queries more secure by removing the need to

ensure that quotes and control characters are properly escaped. They also speed up your application if

the same query needs to be repeated during a script using different variables. Instead of validating the

SQL every time, the script needs do it only once with the placeholders.

Although this chapter has concentrated on content management, the same basic techniques apply to

most interaction with a database. Of course, there s a lot more to SQL—and to PHP. In the next chapter,

I ll address some of the most common problems, such as displaying only the first sentence or so of a long

text field and handling dates. Then, in Chapter 15 and 16, we ll explore working with more than one table in

a database.

CHAPTER 13

382

383

Chapter 14

Formatting Text and Dates

We have some unfinished business left over from the previous chapter. Figure 13-1 in Chapter 13 shows

content from the blog table with just the first two sentences of each article displayed and a link to the rest

of the article. However, I didn t show you how it was done. There are several ways to extract a shorter

piece of text from the beginning of a longer one. Some are rather crude and usually leave you with a

broken word at the end. In this chapter, you ll learn how to extract complete sentences.

The other piece of unfinished business is that full list of articles in blog_list_mysqli.php and

blog_list_pdo.php displays the MySQL timestamp in its raw state, which isn t very elegant. You need to

reformat the date to look user friendlier. Handling dates can be a major headache because MySQL and

PHP use completely different methods of storing them. This chapter guides you through the minefield of

storing and displaying dates in a PHP/MySQL context. You ll also learn about the powerful new date and

time features introduced in PHP 5.2 and 5.3, which make complex date calculations, such as finding the

second Tuesday of each month, child s play.

In this chapter, you ll learn about the following:

• Extracting the first section of a longer text item

• Using an alias in a SQL query

• Displaying text retrieved from a database as paragraphs

• Formatting dates with MySQL

• Selecting records based on temporal criteria

• Using the PHP DateTime, DateTimeZone, DateInterval, and DatePeriod classes

Displaying a text extract
There are many ways to extract the first few lines or characters from a longer piece of text. Sometimes,

you need just the first 20 or 30 characters to identify an item. At other times, it s preferable to show

complete sentences or paragraphs.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 14

384

Extracting a fixed number of characters

You can extract a fixed number of characters from the beginning of a text item either with the PHP

substr() function or with the LEFT() function in a SQL query.

Using the PHP substr() function

The substr() function extracts a substring from a longer string. It takes three arguments: the string you

want to extract the substring from, the starting point (counted from 0), and the number of characters to

extract. The following code displays the first 100 characters of $row['article']:

echo substr($row['article'], 0, 100);

The original string remains intact. If you omit the third argument, substr() extracts everything to the end

of the string. This makes sense only if you choose a starting point other than 0.

Using the MySQL LEFT() function

The MySQL LEFT() function extracts characters from the beginning of a column. It takes two arguments:

the column name and the number of characters to extract. The following retrieves article_id, title ,

and the first 100 characters from the article column of the blog table:

SELECT article_id, title, LEFT(article, 100)
FROM blog ORDER BY created DESC

Whenever you use a function in a SQL query like this, the column name no longer appears in the result set

as article, but as LEFT(article, 100) instead. So it s a good idea to assign an alias to the affected

column using the AS keyword. You can either reassign the column s original name as the alias or use a

descriptive name as in the following example (the code is in blog_left_mysqli.php and

blog_left_pdo.php in the ch14 folder):

SELECT article_id, title, LEFT(article, 100) AS first100
FROM blog ORDER BY created DESC

If you process each record as $row, the extract is in $row['first100']. To retrieve both the first 100

characters and the full article, simply include both in the query like this:

SELECT article_id, title, LEFT(article, 100) AS first100, article
FROM blog ORDER BY created DESC

Taking a fixed number of characters produces a very crude result, as Figure 14-1 shows.

Figure 14-1. Selecting the first 100 characters from an article chops words in half.

FORMATTING TEXT AND DATES

385

Ending an extract on a complete word
To end an extract on a complete word, you need to find the final space and use that to determine the

length of the substring. So, if you want the extract to be a maximum of 100 characters, use either of the

preceding methods to start with, and store the result in $extract. Then you can use the PHP string

functions strrpos() and substr() to find the last space and end the extract like this (the code is in

blog_word_mysqli.php and blog_word_pdo.php):

$extract = $row['first100'];
// find position of last space in extract
$lastSpace = strrpos($extract, ' ');
// use $lastSpace to set length of new extract and add ...
echo substr($extract, 0, $lastSpace) . '... ';

This produces the more elegant result shown in Figure 14-2. It uses strrpos(), which finds the last

position of a character within another string. Since you re looking for a space, the second argument is a

pair of quotes with a single space between them. The result is stored in $lastSpace, which is passed as

the third argument to substr(), finishing the extract on a complete word. Finally, add a string containing

three dots and a space, and join the two with the concatenation operator (a period or dot).

Figure 14-2. Ending the extract on a complete word produces a more elegant result.

Extracting the first paragraph
Assuming that you have entered your text in the database using the Enter or Return key to indicate new

paragraphs, this is very easy. Simply retrieve the full text, use strpos() to find the first new line

character, and use substr() to extract the first section of text up to that point.

The following SQL query is used in blog_para_mysqli.php, and blog_para_pdo.php:

SELECT article_id, title, article
FROM blog ORDER BY created DESC

The following code is used to display the first paragraph of article:

echo substr($row['article'], 0, strpos($row['article'], PHP_EOL));

If that makes your head spin, then let s break it up and take a look at the third argument on its own:

strpos($row['article'], PHP_EOL)

This locates the first end of line character in $row['article'] in a cross-platform way using the PHP_EOL

constant (see Chapter 7). You could rewrite the code like this:

$newLine = strpos($row['article'], PHP_EOL);
echo substr($row['article'], 0, $newLine);

CHAPTER 14

386

Both sets of code do exactly the same thing, but PHP lets you nest a function as an argument passed to

another function. As long as the nested function returns a valid result, you can frequently use shortcuts

like this.

Using the PHP_EOL constant eliminates the problem of dealing with the different characters used by Linux,

Mac OS X, and Windows to insert a new line.

Displaying paragraphs
Since we re on the subject of paragraphs, many beginners are confused by the fact that all the text

retrieved from a database is displayed as a continuous block, with no separation between paragraphs.

HTML ignores whitespace, including new lines. To get text stored in a database displayed as paragraphs,

you have the following options:

• Store your text as HTML.

• Convert new lines to
 tags.

• Create a custom function to replace new lines with paragraph tags.

The first option involves installing an HTML editor, such as CK Editor (http://ckeditor.com/) or

TinyMCE (http://tinymce.moxiecode.com/) in your content management forms. Mark up your text as

you insert or update it. The HTML is stored in the database, and the text displays as intended. Installing

one of these editors is beyond the scope of this book.

The simplest option is to pass your text to the nl2br() function before displaying it like this:

echo nl2br($row['article']);

Voilà!—paragraphs. Well, not really. The nl2br() function converts new line characters to
 tags.

As a result, you get fake paragraphs. It s a quick and dirty solution, but not ideal.

The nl2br() function inserts the slash before the closing angle bracket for compatibility with

XHTML. The trailing slash is optional in HTML5, so your code remains valid even if you re not using

XHTML-style markup.

To display text retrieved from a database as genuine paragraphs, wrap the database result in a pair of

paragraph tags, and then use the preg_replace() function to convert consecutive new line characters

to a closing </p> tag immediately followed by an opening <p> tag like this:

<p><?php echo preg_replace('/[\r\n]+/', '</p><p>', $row['article']); ?></p>

The regular expression used as the first argument matches one or more carriage returns and/or newline

characters. You can t use the PHP_EOL constant here because you need to match all consecutive newline

characters and replace them with a single pair of paragraph tags. Remembering the pattern for a regex can

be difficult, so you can easily convert this into a custom function like this:

function convertToParas($text) {
 $text = trim($text);
 return '<p>' . preg_replace('/[\r\n]+/', '</p><p>', $text) . '</p>';
}

http://ckeditor.com/
http://tinymce.moxiecode.com/

FORMATTING TEXT AND DATES

387

This trims whitespace, including newline characters from the beginning and end of the text, adds a <p> tag

at the beginning, replaces internal sequences of newline characters with closing and opening tags, and

appends a closing </p> tag at the end.

You can then use the function like this:

<?php echo convertToParas($row['article']); ?>

The code for the function definition is in utility_funcs.inc.php in the ch14 folder. You can see it being

used in blog_ptags_mysqli.php and blog_ptags_pdo.php.

Extracting complete sentences
PHP has no concept of what constitutes a sentence. Counting periods means you ignore all sentences

that end with an exclamation point or question mark. You also run the risk of breaking a sentence on a

decimal point or cutting off a closing quote after a period. To overcome these problems, I have devised a

PHP function called getFirst() that identifies the punctuation at the end of a normal sentence:

• A period, question mark, or exclamation point

• Optionally followed by a single or double quote

• Followed by one or more spaces

The getFirst() function takes two arguments: the text from which you want to extract the first section

and the number of sentences you want to extract. The second argument is optional; if it s not supplied, the

function extracts the first two sentences. The code looks like this (it s in utility_funcs.inc.php):

function getFirst($text, $number=2) {
 // use regex to split into sentences
 $sentences = preg_split('/([.?!]["\']?\s)/', $text, $number+1,
 PREG_SPLIT_DELIM_CAPTURE);
 if (count($sentences) > $number * 2) {
 $remainder = array_pop($sentences);
 } else {
 $remainder = '';
 }
 $result = array();
 $result[0] = implode('', $sentences);
 $result[1] = $remainder;
 return $result;
}

All you really need to know about this function is that it returns an array containing two elements: the

extracted sentences and any text that s left over. You can use the second element to create a link to a

page containing the full text.

If you re interested in how the function works, read on. The line highlighted in bold uses a regex to identify

the end of each sentence—a period, question mark, or exclamation point, optionally followed by a double

or single quotation mark and a space. This is passed as the first argument to preg_split(), which uses

the regex to split the text into an array. The second argument is the target text. The third argument

determines the maximum number of chunks to split the text into. You want one more than the number of

sentences to be extracted. Normally, preg_split() discards the characters matched by the regex, but

using PREG_SPLIT_DELIM_CAPTURE as the fourth argument together with a pair of capturing parentheses

CHAPTER 14

388

in the regex preserves them as separate array elements. In other words, the elements of the $sentences

array consist alternately of the text of a sentence followed by the punctuation and space like this:

$sentences[0] = '"Hello, world';
$sentences[1] = '!" ';

It s impossible to know in advance how many sentences there are in the target text, so you need to find

out if there s anything remaining after extracting the desired number of sentences. The conditional

statement uses count() to ascertain the number of elements in the $sentences array and compares the

result with $number multiplied by 2 (because the array contains two elements for each sentence). If

there s more text, array_pop() removes the last element of the $sentences array and assigns it to

$remainder. If there s no further text, $remainder is an empty string.

The final stage of the function uses implode() with an empty string as its first argument to stitch the

extracted sentences back together and then returns a two-element array containing the extracted text

and anything that s left over.

Don t worry if you found that explanation hard to follow. The code is quite advanced. It took a lot of

experimentation to build the function, and I have improved it gradually over the years.

PHP Solution 14-1: Displaying the first two sentences of an article

This PHP solution shows how to display an extract from each article in the blog table using the

getFirst() function described in the preceding section. If you created the Japan Journey site earlier in

the book, use blog.php. Alternatively, use blog_01.php from the ch14 folder, and save it as blog.php in

the phpsols site root. You also need footer.inc.php, menu.inc.php, title.inc.php, and

connection.inc.php in the includes folder.

1. Copy utility_funcs.inc.php from the ch14 folder to the includes folder, and include it in

the PHP code block above the DOCTYPE declaration. Also include the MySQL connection file,

and create a connection to the database. This page needs read-only privileges, so use read

as the argument passed to dbConnect() like this:

 require_once('./includes/connection.inc.php');

 require_once('./includes/utility_funcs.inc.php');

 // create database connection

 $conn = dbConnect('read');

2. Prepare a SQL query to retrieve all records from the blog table like this:

 $sql = 'SELECT * FROM blog ORDER BY created DESC';

3. For MySQLi, use this:

 $result = $conn->query($sql);

There s no need to submit the query at this stage for PDO.

4. Create a loop inside the maincontent <div> to display the results.

For MySQLi, use this:

 <div id="maincontent">
 <?php
 while ($row = $result->fetch_assoc()) {

FORMATTING TEXT AND DATES

389

 ?>
 <h2><?php echo $row['title']; ?></h2>
 <p><?php $extract = getFirst($row['article']);
 echo $extract[0];
 if ($extract[1]) {
 echo '
 More';
 } ?></p>
 <?php } ?>
 </div>

The code is the same for PDO, except for this line:

 while ($row = $result->fetch_assoc()) {

Replace it with this:

 foreach ($conn->query($sql) as $row) {

The main part of the code is inside the <p> tags. The getFirst() function processes

$row['article'] and stores the result in $extract. The first two sentences of article in

$extract[0] are immediately displayed. If $extract[1] contains anything, it means there is

more to display. So the code inside the if statement displays a link to details.php with the

article s primary key in a query string.

5. Save the page, and test it in a browser. You should see the first two sentences of each article

displayed as shown in Figure 14-3.

Figure 14-3. The first two sentences have been extracted cleanly from the longer text.

6. Test the function by adding a number as a second argument to getFirst() like this:

 $extract = getFirst($row['article'], 3);

This displays the first three sentences. If you increase the number so that it equals or

exceeds the number of sentences in an article, the More link won t be displayed.

You can compare your code with blog_mysqli.php and blog_pdo.php in the ch14 folder.

We ll look at details.php in Chapter 15. Before that, let s tackle the minefield presented by using dates

in a dynamic website.

CHAPTER 14

390

Let s make a date
Dates and time are so fundamental to modern life that we rarely pause to think how complex they are.

There are 60 seconds to a minute and 60 minutes to an hour, but 24 hours to a day. Months range between

28 and 31 days, and a year can be either 365 or 366 days. The confusion doesn t stop there, because 7/4

means July 4 to an American or Japanese, but 7 April to a European. To add to the confusion, PHP and

MySQL handle dates differently. Time to bring order to chaos . . .

How MySQL handles dates

In MySQL, dates and time are always expressed in descending order from the largest unit to the smallest:

year, month, date, hour, minutes, seconds. Hours are always measured using the 24-hour clock with

midnight expressed as 00:00:00. Even if this seems unfamiliar to you, it s the recommendation laid down

by the International Organization for Standardization (ISO).

If you attempt to store a date in any other format than year, month, date, MySQL inserts 0000-00-00 in the

database. MySQL allows considerable flexibility about the separator between the units (any punctuation

symbol is OK), but there is no argument about the order—it s fixed.

I ll come back later to the way you insert dates into MySQL, because it s best to validate them and format

them with PHP. First, let s take a look at some of the things you can do with dates once they re stored in

MySQL. MySQL has many date and time functions, which are listed with examples at

http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html.

One of the most useful functions is DATE_FORMAT(), which does exactly what its name suggests.

Formatting dates in a SELECT query with DATE_FORMAT()

The syntax for DATE_FORMAT() is as follows:

DATE_FORMAT(date, format)

Normally, date is the table column to be formatted, and format is a string composed of formatting

specifiers and any other text you want to include. Table 14-1 lists the most common specifiers, all of which

are case-sensitive.

Table 14-1. Frequently used MySQL date format specifiers

Period Specifier Description Example

%Y Four-digit format 2006 Year

%y Two-digit format 06

%M Full name January, September

%b Abbreviated name, three letters Jan, Sep

Month

%m Number with leading zero 01, 09

http://dev.mysql.com/doc/refman/5.1/en/date-and-time-functions.html

FORMATTING TEXT AND DATES

391

Period Specifier Description Example

 %c Number without leading zero 1, 9

%d With leading zero 01, 25

%e Without leading zero 1, 25

Day of month

%D With English text suffix 1st, 25th

%W Full text Monday, Thursday Weekday name

%a Abbreviated name, three letters Mon, Thu

%H 24-hour clock with leading zero 01, 23

%k 24-hour clock without leading zero 1, 23

%h 12-hour clock with leading zero 01, 11

Hour

%l
(lowercase “L”)

12-hour clock without leading zero 1, 11

Minutes %i With leading zero 05, 25

Seconds %S With leading zero 08, 45

AM/PM %p

As explained earlier, when using a function in a SQL query, assign the result to an alias using the AS

keyword. Referring to Table 14-1, you can format the date in the created column of the blog table in a

common U.S. style and assign it to an alias like this:

DATE_FORMAT(created, '%c/%e/%Y') AS date_created

To format the same date in European style, reverse the first two specifiers like this:

DATE_FORMAT(created, '%e/%c/%Y') AS date_created

If you use the original column name as the alias, it converts the dates to strings, which frequently

plays havoc with the sort order.

CHAPTER 14

392

PHP Solution 14-2: Formatting a MySQL date or timestamp

This PHP solution formats the dates in the blog entry management page from Chapter 13.

1. Open blog_list_mysqli.php or blog_list_pdo.php in the admin folder, and locate the

SQL query. It looks like this:

 $sql = 'SELECT * FROM blog ORDER BY created DESC';

Change it like this:

 $sql = 'SELECT article_id, title,
 DATE_FORMAT(created, "%a, %b %D, %Y") AS date_created
 FROM blog ORDER BY created DESC';

I used single quotes around the whole SQL query, so the format string inside DATE_FORMAT()
needs to be in double quotes.

Make sure there is no gap before the opening parenthesis of DATE_FORMAT().

The format string begins with %a, which displays the first three letters of the weekday name. If

you use the original column name as the alias, the ORDER BY clause sorts the dates in reverse

alphabetical order: Wed, Thu, Sun, and so on. Using a different name as the alias ensures that

the dates are still ordered chronologically.

2. In the first table cell in the body of the page, change $row['created'] to

$row['date_created'] to match the alias in the SQL query.

3. Save the page, and load it into a browser. The dates should now be formatted as shown in

Figure 14-4. Experiment with other specifiers to suit your preferences.

Figure 14-4. The MySQL timestamps are now nicely formatted.

Updated versions of blog_list_mysqli.php and blog_list_pdo.php are in the ch14 folder.

Adding to and subtracting from dates

When working with dates, it s often useful to add or subtract a specific time period. For instance, you may

want to display items that have been added to the database within the past seven days or stop displaying

articles that haven t been updated for three months. MySQL makes this easy with DATE_ADD() and

DATE_SUB(). Both functions have synonyms called ADDDATE() and SUBDATE(), respectively.

FORMATTING TEXT AND DATES

393

The basic syntax is the same for all of them and looks like this:

DATE_ADD(date, INTERVAL value interval_type)

When using these functions, date can be the column containing the date you want to alter, a string

containing a particular date (in YYYY-MM-DD format), or a MySQL function, such as NOW(). INTERVAL is a

keyword followed by a value and an interval type, the most common of which are listed in Table 14-2.

Table 14-2. Most frequently used interval types with DATE_ADD() and DATE_SUB()

Interval type Meaning Value format

DAY Days Number

DAY_HOUR Days and hours String presented as 'DD hh'

WEEK Weeks Number

MONTH Months Number

QUARTER Quarters Number

YEAR Years Number

YEAR_MONTH Years and months String presented as 'YY-MM'

The interval types are constants, so don t add “S” to the end of DAY, WEEK, and so on to make them plural.

One of the most useful applications of these functions is to display only the most recent items in a table.

PHP Solution 14-3: Displaying items updated within the past week

This PHP solution shows how to limit the display of database results according to a specific time interval.

Use blog.php from PHP Solution 14-1.

1. Locate the SQL query in blog.php. It looks like this:

 $sql = 'SELECT * FROM blog ORDER BY created DESC';

Change it like this:

 $sql = 'SELECT * FROM blog
 WHERE updated > DATE_SUB(NOW(), INTERVAL 1 WEEK)
 ORDER BY created DESC';

This tells MySQL that you want only items that have been updated in the past week.

2. Save and reload the page in your browser. Depending on when you last updated an item in the

blog table, you should see nothing or a limited range of items. If necessary, change the

interval type to DAY or HOUR to test that the time limit is working.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 14

394

3. Open blog_list_mysqli.php or blog_list_pdo.php, select an item that isn t displayed in

blog.php, and edit it. Reload blog.php. The item that you have just updated should now be

displayed.

You can compare your code with blog_limit_mysqli.php and blog_limit_pdo.php in the

ch14 folder.

Inserting dates into MySQL
MySQL s requirement for dates to be formatted as YYYY-MM-DD presents a headache for online forms that

allow users to input dates. As you saw in Chapter 13, the current date and time can be inserted

automatically by using a TIMESTAMP column or the MySQL NOW() function. It s when you need any other

date that problems arise.

If you can trust users to follow a set pattern for inputting dates, such as MM/DD/YYYY, you can use the

explode() function to rearrange the date parts like this:

if (isset($_POST['theDate'])) {
 $date = explode('/', $_POST['theDate']);
 $mysqlFormat = "$date[2]-$date[0]-$date[1]";
}

This solution works, but as soon as someone deviates from the format, you end up with invalid dates in

your database. It s better to ensure that dates are both valid and in the correct format.

One way of doing so is to use a date picker widget that outputs the date in the ISO format, but widgets that

rely on JavaScript are useless when visitors to your website have JavaScript disabled in their browsers.

Eventually, this will become less of a problem when mainstream browsers support the new types of input

fields specified in HTML5. To create a date input field, set the type attribute to date like this:

<input name="departure" type="date" required id="departure">

As shown in Figure 14-5, Opera 10.62 automatically displays a date picker when you select this type of

field. Browsers that don t understand the date type render the field as a normal text input field, so there s

no need to wait for old browsers to die before you start using HTML5 form fields.

Figure 14-5. Opera 10.62 automatically displays a date picker in an HTML5 form.

FORMATTING TEXT AND DATES

395

Nevertheless, the most reliable method of gathering dates from an online form remains the use of separate

input fields for month, day, and year.

PHP Solution 14-4: Validating and formatting dates for MySQL input
This PHP solution concentrates on checking the validity of a date and converting it to MySQL format. It s

designed to be incorporated in an insert or update form of your own.

1. Create a page called date_converter.php, and insert a form containing the following code (or

use date_converter_01.php in the ch14 folder):

 <form id="form1" method="post" action="">
 <p>
 <label for="select">Month:</label>
 <select name="month" id="month">
 <option value=""></option>
 </select>
 <label for="day">Date:</label>
 <input name="day" type="number" required id="day" max="31" min="1"
 maxlength="2">
 <label for="year">Year:</label>
 <input name="year" type="number" required id="year" maxlength="4">
 </p>
 <p>
 <input type="submit" name="convert" id="convert" value="Convert">
 </p>
 </form>

This code creates a drop-down menu called month and two input fields called day and year.

The drop-down menu doesn t have any values at the moment, but it will be populated by a PHP

loop. The day and year fields use the HTML5 number type and required attribute. The day

field also has the max and min attributes to restrict the range to between 1 and 31. Browsers

that support the new HTML5 form elements display number steppers alongside the fields and

restrict the type and range of input. Other browsers render them as ordinary text input fields.

For the benefit of older browsers, both have maxlength attributes that limit the number of

characters accepted.

2. Amend the section that builds the drop-down menu like this:

 <select name="month" id="month">
 <?php
 $months = array('Jan','Feb','Mar','Apr','May','Jun','Jul','Aug', ➥
 'Sep','Oct','Nov','Dec');
 $thisMonth = date('n');
 for ($i = 1; $i <= 12; $i++) { ?>
 <option value="<?php echo $i; ?>"
 <?php if ($i == $thisMonth) { echo ' selected'; } ?>>
 <?php echo $months[$i-1]; ?>
 </option>
 <?php } ?>
 </select>

CHAPTER 14

396

This creates an array of month names and uses the date() function to find the number of the

current month. A for loop then populates the menu s <option> tags. I have set the initial

value of $i to 1, because I want to use it for the value of the month. If the values of $i and

$thisMonth are the same, the conditional statement inserts selected into the <option> tag.

The final part of the script displays the name of the month by drawing it from the $months

array. Because indexed arrays begin at 0, you need to subtract 1 from the value of $i to get

the right month.

3. Save the page, and test it in a browser. In a browser that supports HTML5 form elements, it

should look similar to Figure 14-6. In all browsers, the current month should be automatically

displayed in the drop-down menu.

Figure 14-6. Using separate input fields for date parts helps eliminate errors.

4. If you test the input fields, in most browsers, the Date field should accept no more than two

characters, and the Year field a maximum of four. Even though this reduces the possibility of

mistakes, you still need to validate the input and format the date correctly.

5. The code that performs all the checks is a custom function in utilitity_funcs.inc.php. It

looks like this:

 function convertDateToMySQL($month, $day, $year) {
 $month = trim($month);
 $day = trim($day);
 $year = trim($year);
 $result[0] = false;
 if (empty($month) || empty($day) || empty($year)) {
 $result[1] = 'Please fill in all fields';
 } elseif (!is_numeric($month) || !is_numeric($day) || !is_numeric($year)) {
 $result[1] = 'Please use numbers only';
 } elseif (($month < 1 || $month > 12) || ($day < 1 || $day > 31) ||
 ($year < 1000 || $year > 9999)) {
 $result[1] = 'Please use numbers within the correct range';
 } elseif (!checkdate($month,$day,$year)) {
 $result[1] = 'You have used an invalid date';
 } else {
 $result[0] = true;
 $result[1] = "$year-$month-$day";
 }

FORMATTING TEXT AND DATES

397

 return $result;
 }

The function takes three arguments: month, day, and year, all of which should be numbers.

The first three lines of code trim any whitespace from either end of the input, and the next line

initializes the first element of an array called $result. If the input fails validation, the first

element of the array is false, and the second element contains an error message. If it passes

validation, the first element of $result is true, and the second element contains the

formatted date ready for insertion into MySQL.

The series of conditional statements checks the input values to see if they are empty or not

numeric. The third test looks for numbers within acceptable ranges. The range for years is

dictated by the legal range for MySQL. In the unlikely event that you need a year out of that

range, you must choose a different column type to store the data.

By using a series of elseif clauses, this code stops testing as soon as it meets the first

mistake. If the input has survived the first three tests, it s then subjected to the PHP function

checkdate(), which is smart enough to know when it s a leap year and prevents mistakes

such as September 31.

Finally, if the input has passed all these tests, it s rebuilt in the correct format for insertion into

MySQL.

6. For testing purposes, add this code just below the form in the main body of the page:

 if (isset($_POST['convert'])) {
 require_once('utility_funcs.inc.php');
 $converted = convertDateToMySQL($_POST['month'], $_POST['day'],
 $_POST['year']);
 if ($converted[0]) {
 echo 'Valid date: ' . $converted[1];
 } else {
 echo 'Error: ' . $converted[1] . '
';
 echo 'Input was: ' . $months[$_POST['month']-1] . ' ' . $_POST['day']
 . ', ' . $_POST['year'];
 }
 }

This checks whether the form has been submitted. If it has, it includes

utility_funcs.inc.php (there s a copy in the ch14 folder) and passes the form values to

the convertDateToMySQL() function, saving the result in $converted.

If the date is valid, $converted[0] is true, and the formatted date is in $converted[1]. If

the date cannot be converted to MySQL format, the else clause displays the error message

stored in $converted[1], together with the original input. To display the correct value for the

month, 1 is subtracted from the value of $_POST['month'], and the result is used as the key

for the $months array.

7. Save the page, and test it by entering a date and clicking Convert. If the date is valid, you

should see it converted to MySQL format, as shown in Figure 14-7.

CHAPTER 14

398

Figure 14-7. The date has been validated and formatted for MySQL.

Although the date shown at the bottom of Figure 14-7 doesn t use a leading zero for the month,

it s still valid. MySQL automatically adds the leading zero when storing the date.

If you enter an invalid date, you should see an appropriate message instead (see Figure 14-8).

Figure 14-8. The convertDateToMySQL() function rejects invalid dates.

You can compare your code with date_converter_02.php in the ch14 folder.

When creating an insert or update form for a table that requires a date from user input, add three fields for

month, day, and year in the same way as in date_converter.php. Before inserting the form input into the

database, include utilitity_funcs.inc.php (or wherever you decide to store the function), and use

the convertDateToMySQL() function to validate the date parts and prepare them for insertion into the

database.

require_once('utility_funcs.inc.php');
$converted = convertDateToMySQL($_POST['month'], $_POST['day'], $_POST['year']);
if ($converted[0]) {
 $date = $converted[1];
} else {
 $errors[] = $converted[1];
}

If your $errors array has any elements, abandon the insert or update process, and display the errors.

Otherwise, $date is safe to insert in the SQL query.

FORMATTING TEXT AND DATES

399

The rest of this chapter is devoted to handling dates in PHP. It s an important but complex subject. I

suggest that you skim through each section to familiarize yourself with PHP s date-handling

functionality and return to this section when you need to implement a particular feature.

Working with dates in PHP

The way PHP handles dates and time underwent major changes in PHP 5.2 with the introduction of the

DateTime and DateTimeZone classes. Further changes were introduced in PHP 5.3 through the addition

of new DateTime methods and the DateInterval and DatePeriod classes. Prior to the changes, dates

and time were handled exclusively as Unix timestamps—the number of seconds since midnight UTC

(Coordinated Universal Time) on January 1, 1970.

The new classes don t entirely replace the original ways of handling date and time information, but they are

more flexible. PHP stores timestamps as 32-bit integers, restricting the upper limit of the range of

available dates to January 2038. The new classes store date and time information internally as a 64-bit

number, increasing the range from about 292 billion years in the past to the same number of years in the

future. Table 14-3 summarizes the main date- and time-related classes and functions in PHP.

Table 14-3. PHP date- and time-related classes and functions.

 Name Arguments Description

Class

 DateTime Date string,

DateTimeZone object

Creates a time zone-sensitive object

containing date and/or time information

that can be used for calculations

involving dates and times.

 DateTimeZone Time zone string Stores time zone information for use

with DateTime objects.

 DateInterval Interval specification Represents a fixed amount of time in

years, months, hours, etc. Requires

PHP 5.3 or later.

 DatePeriod Start, interval,

end/recurrence, options

Calculates recurring dates over a set

period or number of recurrences.

Requires PHP 5.3 or later.

Function

 time() None Generates a Unix timestamp for the

current date and time.

 mktime() Hour, minute, second,

month, date, year

Generates a Unix timestamp for the

specified date/time.

CHAPTER 14

400

 Name Arguments Description

 strtotime() Date string, timestamp Attempts to generate a Unix timestamp

from an English textual description,

such as “next Tuesday.” The returned

value is relative to the second

argument if supplied.

 date() Format string, timestamp Formats a date in English using the

specifiers listed in Table 14-4. If the

second argument is omitted, the

current date and time are used.

 strftime() Format string, timestamp Same as date(), but uses the

language specified by the system

locale.

All date and time information in PHP is stored according to the server s default time zone setting. It s

common for web servers to be located in a different time zone from your target audience, so it s useful to

know how to change the default.

Setting the default time zone

The server s default time zone should normally be set in the date.timezone directive in php.ini; but if

your hosting company forgets to do so, or you want to use a different time zone, you need to set it

yourself.

If your hosting company gives you control over your own version of php.ini, change the value of

date.timezone there. That way, it s automatically set for all your scripts.

If your remote server runs Apache, you may be able to set a default time zone by putting the following in

an .htaccess file in the site root:

php_value date.timezone 'timezone'

Replace timezone with the correct setting for your location. You can find a full list of valid time zones at

http://docs.php.net/manual/en/timezones.php. This works only if Apache has been set up to allow

.htaccess to override default settings.

If neither of those options is available to you, add the following at the beginning of any script that uses

date or time functions (replacing timezone with the appropriate value):

ini_set('date.timezone', 'timezone');

Creating a DateTime object

To create a DateTime object, just use the new keyword followed by DateTime() like this:

$now = new DateTime();

This creates an object that represents the current date and time according to the web server s clock and

default time zone setting.

http://docs.php.net/manual/en/timezones.php

FORMATTING TEXT AND DATES

401

The DateTime() constructor also takes two optional arguments: a string containing a date and/or time,

and a DateTimeZone object. The date/time string for the first argument can be in any of the formats listed

at http://docs.php.net/manual/en/datetime.formats.php. Unlike MySQL, which accepts only one

format, PHP goes to the opposite extreme. The range of valid formats is overwhelming and potentially

confusing. For example, to create a DateTime object for Christmas Day 2010, all the following formats are

valid:

'12/25/2010'
'25-12-2010'
'25 Dec 2010'
'Dec 25 2010'
'25-XII-2010'
'25.12.2010'
'2010/12/25'
'2010-12-25'
'December 25th, 2010'

This is not an exhaustive list. It s just a selection of valid formats. Where the potential confusion arises is

in the use of separators. For example, the forward slash is permitted in American-style (12/25/2010) and

ISO (2010/12/25) dates, but not when the date is presented in European order or when the month is

represented by Roman numerals. To present the date in European order, the separator must be a dot, tab,

or dash.

Dates can also be specified using relative expressions, such as “next Wednesday,” “tomorrow,” or “last

Monday.” However, there s potential for confusion here, too. Some people use “next Wednesday” to mean

“Wednesday next week.” PHP interprets the expression literally. If today is Tuesday, “next Wednesday”

means the following day.

This situation offers great flexibility—as long as you know where your date and time information is coming

from, and it conforms to one of the many valid formats.

PHP 5.3 expanded this flexibility even further by introducing a method that allows you to specify a

custom format for creating a DateTime object. It s described after the next section because the same

technique is used for specifying both output and input formats.

You can t use echo on its own to display the value stored in a DateTime object. In addition to echo, you

need to tell PHP how to format the output using the format() method.

Formatting dates in PHP

The DateTime class s format() method uses the same format characters as the original date()

function. Although this makes for continuity, the format characters are often difficult to remember and

seem to have no obvious reasoning behind them. Table 14-4 lists the most useful date and time format

characters.

The DateTime class and date() function display the names of weekdays and months in English only, but

the strftime() function uses the language specified by the server s locale. So, if the server s locale is

set to Spanish, a DateTime object and date() display Saturday, but strftime() displays sábado. In

http://docs.php.net/manual/en/datetime.formats.php

CHAPTER 14

402

addition to the format characters used by the DateTime class and the date() function, Table 14-4 lists

the equivalent characters used by strftime().

Table 14-4. The main date and time format characters

Unit DateTime/date() strftime() Description Example

Day d %d Day of the month with leading zero 01 through 31

j %e* Day of the month without leading zero 1 through 31

S English ordinal suffix for day of the month st, nd, rd, or th

D %a First three letters of day name Sun, Tue

l (lowercase “L”) %A Full name of day Sunday,

Tuesday

Month m %m Number of month with leading zero 01 through 12

n Number of month without leading zero 1 through 12

M %b First three letters of month name Jan, Jul

F %B Full name of month January, July

Y %Y Year displayed as four digits 2006 Year

y %y Year displayed as two digits 06

g Hour in 12-hour format without leading zero 1 through 12

h %I Hour in 12-hour format with leading zero 01 through 12

G Hour in 24-hour format without leading zero 0 through 23

Hour

H %H Hour in 24-hour format with leading zero 01 through 23

Minutes i %M Minutes with leading zero if necessary 00 through 59

Seconds s %S Seconds with leading zero if necessary 00 through 59

AM/PM a %p Lowercase am

AM/PM A Uppercase PM

* Note: %e is not supported on Windows.

FORMATTING TEXT AND DATES

403

You can combine these format characters with punctuation to display the current date in your web pages

according to your own preferences.

To format a DateTime object, pass the format string as an argument to the format() method like this (the

code is in date_format_01.php in the ch14 folder):

<?php
$now = new DateTime();
$xmas2010 = new DateTime('12/25/2010');
?>
<p>It's now <?php echo $now->format('g.ia'); ?> on <?php echo
 $now->format('l, F jS, Y'); ?></p>
<p>Christmas 2010 falls on a <?php echo $xmas2010->format('l'); ?></p>

In this example, two DateTime objects are created: one for the current date and time, and the other for

December 25, 2010. Using the format characters from Table 14-4, various date parts are extracted from

the two objects, producing the output shown in the following screenshot:

The code in date_format_02.php produces the same output using the date() and strtotime()
functions like this:

<?php $xmas2010 = strtotime('12/25/2010'); ?>
<p>It's now <?php echo date('g.ia'); ?> on <?php echo date('l, F jS, Y'); ?></p>
<p>Christmas 2010 falls on a <?php echo date('l', $xmas2010); ?></p>

The first line uses strtotime() to create a timestamp for December 25, 2010. There s no need to create a

timestamp for the current date and time, because date() defaults to them when used without a second

argument.

If the timestamp for Christmas Day isn t used elsewhere in the script, the first line can be omitted, and the

last call to date() can be rewritten like this (the code is in date_format_03.php):

echo date('l', strtotime('12/25/2010'));

Creating a DateTime object from a custom format

In PHP 5.3 and later, you can specify a custom input format for a DateTime object using the format

characters in Table 14-4. Instead of creating the object with the new keyword, you use the

createFromFormat() static method like this:

$date = DateTime::createFromFormat(format_string, input_date, timezone);

The third argument, timezone, is optional. If included, it should be a DateTimeZone object.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 14

404

A static method belongs to the whole class, rather than to a particular object. You call a static method

using the class name followed by a double colon and the method name.

The double colon is called the scope resolution operator. You first used it to call the parent

constructor in “Extending a class” in Chapter 8. Internally, it s called PAAMAYIM_NEKUDOTAYIM, which

is Hebrew for “double colon.” Why Hebrew? Because the Zend Engine that powers PHP was

originally developed by Zeev Suraski and Andi Gutmans when they were students at the Technion –

Israel Institute of Technology. Apart from earning points in a geek trivia quiz, knowing the meaning of

PAAMAYIM_NEKUDOTAYIM could save you a lot of head scratching when you see it in a PHP error

message.

For example, you can use the createFromFormat() method to accept a date in the European format of

day, month, year separated by slashes like this (the code is in date_format_04.php):

$xmas2010 = DateTime::createFromFormat('d/m/Y', '25/12/2010');
echo $xmas2010->format('l, jS F Y');

This produces the following output:

Attempting to use 25/12/2010 as the input to the DateTime constructor triggers a fatal error. If you want to

use a format not supported by the DateTime constructor, you must use the createFromFormat() static

method.

Although the createFromFormat() method is useful, it can be used only in circumstances where you

know the date will always be in a specific format. It s also important to note that it does not work in PHP

5.2.

Choosing between date() and the DateTime class

When it comes to displaying a date, it s always a two-step process with the DateTime class. You need to

instantiate the object before you can call the format() method. With the date() function, you can do it in

a single pass. Since they both use the same format characters, date() wins hands down when dealing

with the current date and/or time.

For simple tasks like displaying the current date, time, or year, use date(). Where the DateTime class

comes into its own is when working with date-related calculations and time zones using the methods listed

in Table 14-5. Note that some methods are supported only in PHP 5.3 and later.

FORMATTING TEXT AND DATES

405

Table 14-5. The main DateTime methods

 Method Arguments Description

Since PHP 5.2

 format() Format string Formats the date/time using the format

characters in Table 14-4.

 getOffset() None Returns the time zone offset from UTC

expressed in seconds.

 getTimezone() None Returns a DateTimeZone object

representing the DateTime object s time

zone.

 modify() Relative date

string

Changes the date/time using a relative

expression, such as '+2 weeks'.

 setDate() Year, month, day Changes the date. The arguments should be

separated by commas. Months or days in

excess of the permitted range are added to

the resulting date. For example, using 14 as

the month sets the date to February of the

following year.

 setTime() Hours, minutes,

seconds

Resets the time. Arguments are comma-

separated values. Seconds are optional.

Values in excess of the permitted range are

added to the resulting date/time. For

example, setting the hour to 26 results in

2am on the following day.

 setTimezone() DateTimeZone

object

Changes the time zone.

Since PHP 5.3

add()

DateInterval

object

Increments the date/time by the set period.

 sub() DateInterval

object

Deducts the set period from the date/time.

 diff() DateTime object,

Boolean

Returns a DateInterval object

representing the difference between the

current DateTime object and the one

passed as an argument. The optional

second argument determines whether to

convert negative values to their positive

equivalent. The default is false.

CHAPTER 14

406

 Method Arguments Description

 getTimestamp() None Returns the Unix timestamp for the

date/time.

 setTimestamp() Unix timestamp Sets the date/time according to the Unix

timestamp.

As Table 14-5 explains, adding out-of-range values with setDate() and setTime() results in the excess

being added to the resulting date or time. The same happens with the modify(), add(), and sub()

methods.

For example, if you add one month to a DateTime object that represents January 31, 2011, the resulting

value is not the last day of February, but March 3. This is because adding one month to the original date

results in February 31, but February has only 28 days in a non-leap year. So, the out-of-range value is

added to the month, resulting in March 3. If you subsequently subtract one month from the same

DateTime object, it brings you back to February 3, not to the original starting date. The following code in

date_modify.php in the ch14 folder illustrates this point:

<?php
$format = 'F j, Y';
$date = new DateTime('January 31, 2011');
?>
<p>Original date: <?php echo $date->format($format); ?>.</p>
<p>Add one month: <?php
$date->modify('+1 month');
echo $date->format($format);
$date->modify('-1 month');
?>
<p>Subtract one month: <?php echo $date->format($format); ?>

This produces the output shown in Figure 14-9.

Figure 14-9. Adding and subtracting months can lead to unexpected results.

The modify() method uses ordinary text expressions to add or subtract a set period. The add(), sub(),

and diff() methods added in PHP 5.3 can be used only with DateInterval objects, which are described

later in this chapter.

FORMATTING TEXT AND DATES

407

Using the DateTimeZone class

A DateTime object automatically uses the web server s default time zone unless you have reset the time

zone using one of the methods described earlier. However, you can set the time zone of individual

DateTime objects through the optional second argument of the constructor or by using the

setTimezone() method. In both cases, the argument must be a DateTimeZone object.

To create a DateTimeZone object, pass the constructor one of the supported time zones listed at

http://docs.php.net/manual/en/timezones.php like this:

$UK = new DateTimeZone('Europe/London');
$USeast = new DateTimeZone('America/New_York');
$Hawaii = new DateTimeZone('Pacific/Honolulu');

When checking the list of supported time zones, it s important to realize that they re based on geographic

regions and cities, rather than official time zones. This is because PHP automatically takes account of

daylight saving time. Arizona, which doesn t use daylight saving time, is covered by America/Phoenix.

The organization of time zones into geographic regions produces some surprises. America doesn t mean

the United States of America, but the continents of North and South America and the Caribbean. As a

result, Honolulu is not listed in America, but as a Pacific time zone. Europe also means the European

continent, including the British Isles but excluding other islands. So, Reykjavik and Madeira are listed as

Atlantic time zones, and the Norwegian island of Longyearbyen has the exclusive privilege of being the

only Arctic time zone.

The code in timezones.php creates DateTimeZone objects for London, New York, and Honolulu, and

then initializes a DateTime object using the first one like this:

$now = new DateTime('now', $UK);

After displaying the date and time using echo and the format() method, the time zone is changed using

the setTimezone() method like this:

$now->setTimezone($USeast);

The next time $now is displayed, it shows the date and time in New York. Finally, setTimezone() is used

again to change the time zone to Honolulu, producing the following output:

To find the time zone of your server, you can either check php.ini or use the getTimezone() method

with a DateTime object. The getTimezone() method returns a DateTimeZone object, not a string

containing the time zone. To get the value of the time zone, you need to use the DateTimeZone object s

getName() method like this (the code is in timezone_display.php):

http://docs.php.net/manual/en/timezones.php

CHAPTER 14

408

$now = new DateTime();
$timezone = $now->getTimezone();
echo $timezone->getName();

The DateTimeZone class has several other methods that expose information about a time zone. For the

sake of completeness, they re listed in Table 14-6, but the main use of the DateTimeZone class is to set

the time zone for DateTime objects.

Table 14-6. DateTimeZone methods

Method Arguments Description

getLocation() None Returns an associative array containing the country code,

latitude, longitude, and comments about the time zone.

Requires PHP 5.3 or later.

getName() None Returns a string containing the geographic area and city of

the time zone.

getOffset() DateTime
object

Calculates the offset from UTC (in seconds) of the

DateTime object passed as an argument.

getTransitions() Start, end

(5.3+)

Returns a multidimensional array containing historical and

future dates and times of switching to and from daylight

saving time. Takes no arguments in PHP 5.2. Since PHP

5.3, accepts two timestamps as optional arguments to limit

the range of results.

listAbbreviations() None Generates a large multidimensional array containing the

UTC offsets and names of time zones supported by PHP.

listIdentifiers() DateTimeZone

constant,

country code

(5.3+)

Returns an array of all PHP time zone identifiers, such as

Europe/London, America/New_York, and so on. Takes no

arguments in PHP 5.2. Since PHP 5.3, accepts two

optional arguments to limit the range of results. Use as the

first argument one of the DateTimeZone constants listed

at http://docs.php.net/manual/en/class.
datetimezone.php. If the first argument is

DateTimeZone::PER_COUNTRY, a two-letter country code

can be used as the second argument.

The last two methods in Table 14-6 are static methods. Call them directly on the class using the scope

resolution operator like this:

$abbreviations = DateTimeZone::listAbbreviations();

Adding and subtracting set periods with the DateInterval class

The DateInterval class was introduced in PHP 5.3 and is required to specify the period to be added or

subtracted from a DateTime object using the add() and sub() methods. It s also used by the diff()

http://docs.php.net/manual/en/class

FORMATTING TEXT AND DATES

409

method, which returns a DateInterval object. Using the DateInterval class feels rather odd to begin

with, but it s relatively simple to understand.

The DateInterval class and the associated DateTime methods do not work in PHP 5.2.

To create a DateInterval object, you need to pass to the constructor a string that specifies the length of

the interval formatted according to the ISO 8601 standard. The string always begins with the letter P (for

period), followed by one or more pairs of integers and letters known as period designators. If the interval

includes hours, minutes, or seconds, the time element is preceded by the letter T. Table 14-7 lists the

valid period designators.

Table 14-7. ISO 8601 period designators used by the DateInterval class

Period Designator Meaning

Y Years

M Months

W Weeks—cannot be combined with days

D Days—cannot be combined with weeks

H Hours

M Minutes

S Seconds

The following examples should clarify how to specify an interval:

$interval1 = new DateInterval('P2Y'); // 2 years
$interval2 = new DateInterval('P5W'); // 5 weeks
$interval3 = new DateInterval('P37D'); // 5 weeks 2 days
$interval4 = new DateInterval('PT6H20M'); // 6 hours 20 minutes
$interval5 = new DateInterval('P1Y2DT3H5M50S'); // 1 year 2 days 3 hours 5 min
 // 50 sec

Note that $interval3 needs to specify the total number of days, because weeks are automatically

converted to days, so W and D cannot be combined in the same interval definition.

To use a DateInterval object with the add() or sub() method of the DateTime class, pass the object as

an argument. For example, this adds 12 days to the date for Christmas Day 2010:

$xmas2010 = new DateTime('12/25/2010');
$interval = new DateInterval('P12D');
$xmas2010->add($interval);

CHAPTER 14

410

If you don t need to reuse the interval, you can pass the DateInterval constructor directly as the

argument to add() like this:

$xmas2010 = new DateTime('12/25/2010');
$xmas2010->add(new DateInterval('P12D'));

The result of this calculation is demonstrated in date_interval_01.php, which produces the following

output:

An alternative to using the period designators listed in Table 14-7 is to use the static

createFromDateString() method, which takes as an argument an English relative date string in the

same way as strtotime(). Using createFromDateString(), the preceding example can be rewritten

like this (the code is in date_interval_02.php):

$xmas2010 = new DateTime('12/25/2010');
$xmas2010->add(DateInterval::createFromDateString('+12 days'));

This produces exactly the same result.

Adding and subtracting months with DateInterval has the same effect as described earlier. If the

resulting date is out of range, the extra days are added. For example, adding one month to January

31 results in March 3 or 2, depending on whether it s a leap year.

Finding the difference between two dates with the diff() method

To find the difference between two dates, create a DateTime object for both dates, and pass the second

object as the argument to the first object s diff() method. The result is returned as a DateInterval

object. To extract the result from the DateInterval object, you need to use the object s format()

method which uses the format characters listed in Table 14-8. These are different from the format

characters used by the DateTime class. Fortunately, most of them are easy to remember.

Table 14-8. Format characters used by the DateInterval format() method

Format character Description Examples

%Y Years. At least two digits, with leading zero if necessary. 12, 01

%y Years, no leading zero 12, 1

%M Months with leading zero 02, 11

FORMATTING TEXT AND DATES

411

Format character Description Examples

%m Months, no leading zero 2, 11

%D Days with leading zero 03, 24

%d Days, no leading zero 3, 24

%a * Total number of days 15, 231

%H Hours with leading zero 03, 23

%h Hours, no leading zero 3, 23

%I Minutes with leading zero 05, 59

%i Minutes, no leading zero 5, 59

%S Seconds with leading zero 05, 59

%s Seconds, no leading zero 5, 59

%R Display minus when negative, plus when positive -, +

%r Display minus when negative, no sign when positive -

%% Percentage sign %

* A bug verified in PHP 5.3.3 produces an incorrect result for the total number of days on Windows.

Hopefully, this will be fixed in a subsequent release.

The following example in date_interval_03.php shows how to get the difference between the current

date and the American Declaration of Independence using diff() and displaying the result with the

format() method:

<p><?php
$independence = new DateTime('7/4/1776');
$now = new DateTime();
$interval = $now->diff($independence);
echo $interval->format('%Y years %m months %d days'); ?>
since American independence.</p>

If you load date_interval_03.php into a browser, you should see something similar to the following

screenshot (of course, the actual period will be different).

CHAPTER 14

412

The format characters follow a logical pattern. Uppercase characters always produce at least two digits

with a leading zero if necessary. Lowercase characters have no leading zero.

What might not be immediately obvious is that, with the exception of %a, which represents the total number

of days, the format characters represent only specific parts of the overall interval. For example, if you

change the format string to $interval->format('%m months'), it shows only the number of whole

months that have elapsed since last July 4. It does not show the total number of months since July 4,

1776.

Calculating recurring dates with the DatePeriod class

Working out recurring dates, such as the second Tuesday of each month, is now remarkably easy thanks

to the DatePeriod class. It works in conjunction with a DateInterval object and is available only in PHP

5.3 or later.

The DatePeriod constructor is unusual in that it accepts arguments in three different ways. The first way

of creating a DatePeriod object is to supply the following arguments:

• A DateTime object representing the start date

• A DateInterval object representing the recurring interval

• An integer representing the number of recurrences

• The DatePeriod::EXCLUDE_START_DATE constant (optional)

The second way of creating a DatePeriod object is to replace the number of recurrences in the third

argument with a DateTime object representing the end date.

The third way uses a single argument: a string formatted according to the ISO 8601 recurring time interval

standard (see http://en.wikipedia.org/wiki/ISO_8601#Repeating_intervals).

Once you have created a DatePeriod object, you can display the recurring dates in a foreach loop using

the DateTime format() method.

Let s take a quick look at the three ways of creating a DatePeriod object. First, using an integer to

represent the number of occurrences:

The code in date_interval_04.php uses the following code to display the date of the second Tuesday of

each month in 2011:

$start = new DateTime('12/31/2010');
$interval = DateInterval::createFromDateString('second Tuesday of next month');
$period = new DatePeriod($start, $interval, 12, DatePeriod::EXCLUDE_START_DATE);
foreach ($period as $date) {
 echo $date->format('l, F jS, Y') . '
';
}

http://en.wikipedia.org/wiki/ISO_8601#Repeating_intervals

FORMATTING TEXT AND DATES

413

It produces the output shown in Figure 14-10.

Figure 14-10. Calculating a recurring date is remarkably easy with the DatePeriod class.

The first line of PHP code sets the start date as December 31, 2010. The next line uses the DateInterval
static method createFromDateString() to set the interval at the second Tuesday of next month. Both

values are passed to the DatePeriod constructor, together with 12 as the number of recurrences and the

DatePeriod::EXCLUDE_START_DATE constant. The constant s name is self-explanatory. Finally, a

foreach loop displays the resulting dates using the DateTime format() method.

The code in date_interval_05.php has been amended to create a DatePeriod object the second way,

using a DateTime object as the third argument to indicate the end date. It looks like this:

$start = new DateTime('12/31/2010');
$interval = DateInterval::createFromDateString('second Tuesday of next month');
$end = new DateTime('12/31/2011');
$period = new DatePeriod($start, $interval, $end, DatePeriod::EXCLUDE_START_DATE);
foreach ($period as $date) {
 echo $date->format('l, F jS, Y') . '
';
}

This produces exactly the same output as shown in Figure 14-10.

The third way of creating a DatePeriod object using the ISO 8601 recurring time interval standard is

perhaps not as user,friendly, mainly because of the need to construct a string in the correct format, which

looks like this:

Rn/YYYY-MM-DDTHH:MM:SStz/Pinterval

Rn is the letter R followed by the number of recurrences; tz is the time zone offset from UTC (or Z for UTC,

as shown in the following example); and Pinterval uses the same format as the DateInterval class.

The code in date_interval_06.php shows an example of how to use DatePeriod with an ISO 8601

recurring interval. It looks like this:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 14

414

$period = new DatePeriod('R5/2011-02-05T00:00:00Z/P10D');
foreach ($period as $date) {
 echo $date->format('l, F j, Y') . '
';
}

The ISO recurring interval sets five recurrences from midnight UTC on February 5, 2011 at an interval of 10

days. The recurrences are subsequent to the original date, so the preceding example produces six dates,

as shown in the following output.

Chapter review
A large part of this chapter has been devoted to the powerful date and time features introduced in PHP 5.2

and 5.3. You don t need them every day, but they re extremely useful and represent a major improvement

on the original PHP date and time functions. MySQL s date and time functions also make it easy to format

dates and execute queries based on temporal criteria.

Perhaps the biggest problem with dates is deciding whether to use MySQL or PHP to handle the formatting

and/or calculations. A useful feature of the PHP DateTime class is that the constructor accepts a date

stored in the MySQL format, so you can use an unformatted MySQL date or timestamp to create

DateTime objects. However, unless you need to perform further calculations, it s more efficient to use the

MySQL DATE_FORMAT() function as part of a SELECT query.

This chapter has also provided you with three utility functions for formatting text and dates. In the next

chapter, you ll learn how to store and retrieve related information in multiple database tables.

415

Chapter 15

Pulling Data from Multiple Tables

As I explained in Chapter 11, one of the major strengths of a relational database is the ability to link data in
different tables by using the primary key from one table as a foreign key in another table. The phpsols
database has two tables: images and blog. It s time to add some more and join them, so you can assign
categories to blog entries and associate images with individual articles.

You don t join multiple tables physically, but through SQL. Often, you can join tables by identifying a direct
relationship between primary and foreign keys. In some cases, though, the relationship is more complex
and needs to go through a third table that acts as a cross reference between the other two.

In this chapter, you ll learn how to establish the relationship between tables and insert the primary key
from one table as a foreign key in another table. Although it sounds difficult conceptually, it s actually
quite easy—you use a database query to look up the primary key in the first table, save the result, and
use it in another query to insert it in the second table.

In particular, you ll learn about the following:

• Understanding the different types of table relationships

• Using a cross-reference table for many-to-many relationships

• Altering a table s structure to add new columns or an index

• Storing a primary key as a foreign key in another table

• Linking tables with INNER JOIN and LEFT JOIN

Understanding table relationships
The simplest type of relationship is one-to-one (often represented as 1:1). This type of relationship is
often found in databases that contain information only certain people should see. For example, companies
often store details of employees salaries and other confidential information in a separate table from the
more widely accessible staff list. Storing the primary key of each staff member s record as a foreign key in
the salaries table establishes a direct relationship between the tables, allowing the accounts department
to see the full range of information, while restricting others to the public information.

CHAPTER 15

416

There s no confidential information in the phpsols database, but you might create a one-to-one
relationship between a single photo in the images table with an article in the blog table, as illustrated by
Figure 15-1.

Figure 15-1. A one-to-one relationship links one record directly with another.

This is the simplest way of creating a relationship between the two tables, but it s not ideal. As more
articles are added, the nature of the relationship is likely to change. The photo associated with the first
article in Figure 15-1 shows maple leaves floating on the water, so it might be suitable to illustrate an
article about the changing seasons or autumn hues. The crystal-clear water, bamboo water scoop, and
bamboo pipe also suggest other themes that the photo could be used to illustrate. So you could easily end
up with the same photo being used for several articles, or a one-to-many (or 1:n) relationship, as
represented by Figure 15-2.

Figure 15-2. A one-to-many relationship links one record with several others.

As you have already learned, a primary key must be unique. So, in a 1:n relationship, you store the
primary key from the table on the 1 side of the relationship (the primary or parent table) as a foreign key in
the table on the n side (the secondary or child table). In this case, the image_id from the images table
needs to be stored as a foreign key in the blog table. What s important to understand about a 1:n
relationship is that it s also a collection of 1:1 relationships. Reading Figure 15-2 from right to left, each
article has a relationship with a single image. Without this one-on-one relationship, you wouldn t be able to
identify which image is associated with a particular article.

What happens if you want to associate more than one image to each article? You could create several
columns in the blog table to hold the foreign keys, but this rapidly becomes unwieldy. You might start off
with image1, image2, and image3, but if most articles have only one image, two columns are redundant for

PULLING DATA FROM MULTIPLE TABLES

417

much of the time. And are you going add an extra column for that extra-special article that requires four
images?

When faced with the need to accommodate many-to-many (or n:m) relationships, you need a different
approach. The images and blog tables don t contain sufficient records to demonstrate n:m relationships,
but you could add a categories table to tag individual articles. Most articles are likely to belong to
multiple categories, and each category will be related with several articles.

The way to resolve complex relationships is through a cross-reference table (sometimes called a linking

table), which establishes a series of one-to-one relationships between related records. This is a special
table containing just two columns, both of which are declared a joint primary key. Figure 15-3 shows how
this works. Each record in the cross-reference table stores details of the relationship between individual
articles in the blog and categories tables. To find all articles that belong to the Kyoto category, you
match cat_id 1 in the categories table with cat_id 1 in the cross-reference table. This identifies the
records in the blog table with the article_id 2, 3, and 4 as being associated with Kyoto.

Figure 15-3. A cross-reference table resolves many-to-many relationships as 1:1.

Establishing relationships between tables through foreign keys has important implications for how you
update and delete records. If you re not careful, you end up with broken links. Ensuring that dependencies
aren t broken is known as maintaining referential integrity. We ll tackle this important subject in the next
chapter. First, let s concentrate on retrieving information stored in separate tables linked through a foreign
key relationship.

Linking an image to an article
To demonstrate how to work with multiple tables, let s begin with the straightforward scenarios outlined in
Figures 15-1 and 15-2: relations that can be resolved as 1:1 through the storage of the primary key from
one table (the parent table) as a foreign key in a second table (the child or dependent table). This involves
adding an extra column in the child table to store the foreign key.

Altering the structure of an existing table

Ideally, you should design your database structure before populating it with data. However, relational
databases, such as MySQL, are flexible enough to let you add, remove, or change columns in tables even
when they already contain records. To associate an image with individual articles in the phpsols
database, you need to add an extra column to the blog table to store image_id as a foreign key.

CHAPTER 15

418

PHP Solution 15-1: Adding an extra column to a table

This PHP solution shows how to add an extra column to an existing table using phpMyAdmin. It assumes
that you created the blog table in the phpsols database in Chapter 13.

1. Launch phpMyAdmin, select the phpsols database, and click the link for the blog table in the

left-hand navigation frame.

2. Below the blog table structure in the main frame is a form that allows you to add extra

columns. You want to add only one column, so the default value in the Add field(s) text box is

fine. It s normal practice to put foreign keys immediately after the table s primary key, so

select the After radio button, and make sure the drop-down menu is set to article_id, as

shown in the following screenshot. Then click Go.

This opens the screen for you to define column attributes. Use the following settings:

 Field: image_id

 Type: INT

 Attributes: UNSIGNED

 Null: Selected

 Index : INDEX

Do not select AUTO_INCREMENT. The Null check box has been set to selected because not all

articles will necessarily be associated with an image. Click Save.

You will be returned to the blog table structure, which should now look like this:

PULLING DATA FROM MULTIPLE TABLES

419

3. If you click the Browse tab at the top left of the screen, you will see that the value of image_id

is NULL in each record. The challenge now is to insert the correct foreign keys without the need

to look up the numbers manually. We ll tackle that next.

Inserting a foreign key in a table

The basic principle behind inserting a foreign key in another table is quite simple: you query the database
to find the primary key of the record that you want to link to the other table. You can then use an INSERT or
UPDATE query to add the foreign key to the target record.

To demonstrate the basic principle, you ll adapt the update form from Chapter 13 to add a drop-down menu
that lists images already registered in the images table (see Figure 15-4).

Figure 15-4. A dynamically generated drop-down menu inserts the appropriate foreign key.

The menu is dynamically generated by a loop that displays the results of a SELECT query. Each image s
primary key is stored in the value attribute of the <option> tag. When the form is submitted, the selected
value is incorporated into the UPDATE query as the foreign key.

To focus on the structure and PHP logic, the instructions in this chapter and the next one cover only

MySQLi. The only difference in the PDO version lies in the commands used to submit the SQL

queries to the database and to display the results. Fully commented PDO files are in the ch15 and

ch16 folders.

CHAPTER 15

420

PHP Solution 15-2: Adding the image foreign key

This PHP solution shows how to update records in the blog table by adding the primary key of a selected
image as a foreign key. It adapts admin/blog_update_mysqli.php from Chapter 13. Use the version
that you created in Chapter 13. Alternatively, copy blog_update_mysqli_03.php from the ch13 folder to
the admin folder, and remove _03 from the filename.

1. The existing SELECT query that retrieves details of the article to be updated needs to be

amended so that it includes the foreign key, image_id, and the result needs to be bound to a

new result variable, $image_id. You then need to run a second SELECT query to get the details

of the images table, but before you can do so, you need to free the database resources by

applying the free_result() method on the prepared statement ($stmt). Add the following

code highlighted in bold to the existing script:

 if (isset($_GET['article_id']) && !$_POST) {
 // prepare SQL query
 $sql = 'SELECT article_id, image_id, title, article
 FROM blog WHERE article_id = ?';
 $stmt->prepare($sql);
 // bind the query parameter
 $stmt->bind_param('i', $_GET['article_id']);
 // bind the results to variables
 $stmt->bind_result($article_id, $image_id, $title, $article);
 // execute the query, and fetch the result
 $OK = $stmt->execute();
 $stmt->fetch();
 // free the database resources for the second query
 $stmt->free_result();
 }

Notice that the conditional statement wrapping the call to the prepare() method and

subsequent code has been removed. You don t need it after verifying that the prepared

statement doesn t contain any syntax errors.

2. Inside the form, you need to display the filenames stored in the images table. Since the

second SELECT statement doesn t rely on external data, it s simpler to use the query()

method instead of a prepared statement. Add the following code after the article text area

(it s all new code, but the PHP sections are highlighted in bold for ease of reference):

 <p>
 <label for="image_id">Uploaded image:</label>
 <select name="image_id" id="image_id">
 <option value="">Select image</option>
 <?php
 // get the list images
 $getImages = 'SELECT image_id, filename
 FROM images ORDER BY filename';
 $images = $conn->query($getImages);
 while ($row = $images->fetch_assoc()) {
 ?>

PULLING DATA FROM MULTIPLE TABLES

421

 <option value="<?php echo $row['image_id']; ?>"
 <?php
 if ($row['image_id'] == $image_id) {
 echo 'selected';
 }
 ?>><?php echo $row['filename']; ?></option>
 <?php } ?>
 </select>
 </p>

The first <option> tag is hard-coded with the label Select image, and its value is set to an

empty string. The remaining <option> tags are populated by a while loop that extracts each

record to an array called $row.

A conditional statement checks whether the current image_id is the same as the one already

stored in the articles table. If it is, selected is inserted into the <option> tag so that it

displays the correct value in the drop-down menu.

Make sure you don t omit the third character in the following line:

 ?>><?php echo $row['filename']; ?></option>

It s the closing angle bracket of the <option> tag, sandwiched between two PHP tags.

3. Save the page, and load it into a browser. You should be automatically redirected to

blog_list_mysqli.php. Select one of the EDIT links, and make sure that your page looks

like Figure 15-4. Check the browser source code view to verify that the value attributes of the

<option> tags contain the primary key of each image.

4. The final stage is to add the image_id to the UPDATE query. Because some blog entries might

not be associated with an image, you need to create alternative prepared statements like this:

 // if form has been submitted, update record
 if (isset($_POST ['update'])) {
 // prepare update query
 if (!empty($_POST['image_id'])) {
 $sql = 'UPDATE blog SET image_id = ?, title = ?, article = ?
 WHERE article_id = ?';
 $stmt->prepare($sql);
 $stmt->bind_param('issi', $_POST['image_id'], $_POST['title'],
 $_POST['article'], $_POST['article_id']);
 } else {
 $sql = 'UPDATE blog SET image_id = NULL, title = ?, article = ?
 WHERE article_id = ?';
 $stmt->prepare($sql);
 $stmt->bind_param('ssi', $_POST['title'], $_POST['article'],
 $_POST['article_id']);
 }
 $stmt->execute();
 $done = $stmt->affected_rows;
 }

CHAPTER 15

422

If $_POST['image_id'] has a value, you add it to the SQL as the first parameter with a

placeholder question mark. Since it must be an integer, you add i to the beginning of the first

argument of bind_param().

However, if $_POST['image_id'] doesn t contain a value, you need to create a different

prepared statement to set the value of image_id to NULL in the SQL query. Because it has an

explicit value, you don t add it to bind_param().

5. Test the page again, select a filename from the drop-down menu, and click Update Entry. You

can verify whether the foreign key has been inserted into the articles table by refreshing

Browse in phpMyAdmin or by selecting the same article for updating. This time, the correct

filename should be displayed in the drop-down menu.

6. Check your code against blog_update_mysqli_04.php in the ch15 folder, if necessary.

The PDO version is in blog_update_pdo_04.php in the ch15 folder.

Selecting records from multiple tables

There are several ways to link tables in a SELECT query, but the most common is to list the table names
separated by INNER JOIN. On its own, INNER JOIN produces all possible combinations of rows (a
Cartesian join). To select only related values, you need to specify the primary/foreign-key relationship.
For example, to select articles and their related images from the blog and images table, you can use a
WHERE clause like this:

SELECT title, article, filename, caption
FROM blog INNER JOIN images
WHERE blog.image_id = images.image_id

The title and article columns exist only in the blog table. Likewise, filename and caption exist only
in the images table. They re unambiguous and don t need to be qualified. However, image_id exists in
both tables, so you need to prefix each reference with the table name and a period.

For many years, it was common practice to use a comma in place of INNER JOIN like this:

SELECT title, article, filename, caption
FROM blog, images
WHERE blog.image_id = images.image_id

This is no longer recommended practice because of changes made to the way joins are handled in MySQL
5.0.12.

Using a comma to join tables can result in SQL syntax errors that can be difficult to resolve. Use

INNER JOIN instead.

Instead of a WHERE clause, you can use ON like this:

SELECT title, article, filename, caption
FROM blog INNER JOIN images ON blog.image_id = images.image_id

PULLING DATA FROM MULTIPLE TABLES

423

When both columns have the same name, you can use the following syntax:

SELECT title, article, filename, caption
FROM blog INNER JOIN images USING (image_id)

This last method of matching the primary and foreign keys is my personal preference. However, if the
columns you are matching have different names, you must use ON or a WHERE clause.

PHP Solution 15-3: Building the details page

This PHP solution shows how to join the blog and images tables to display a selected article with its
associated photo.

1. Copy details_01.php from the ch15 folder to the phpsols site root, and rename it

details.php. Do not update the links if your editing environment prompts you to do so. Make

sure that footer.inc.php and menu.inc.php are in the includes folder, and load the page in

a browser. It should look like Figure 15-5.

Figure 15-5. The details page contains a placeholder image and text.

2. Load blog_list_mysqli.php or blog_list_pdo.php into a browser, and update the

following three articles by assigning the image filename as indicated:

Basin of Contentment: basin.jpg

Tiny Restaurants Crowded Together: menu.jpg

Trainee Geishas Go Shopping: maiko.jpg

3. Check that the foreign keys have been registered by navigating to the blog table in

phpMyAdmin and clicking the Browse tab. At least one article should have NULL as the value

for image_id, as shown in Figure 15-6.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 15

424

Figure 15-6. The foreign key of the article not associated with an image is set to NULL.

4. In details.php, include utility_funcs.inc.php from the previous chapter (if necessary,

copy it from the ch14 folder to the includes folder). Then include the database connection

file, create a read-only connection, and prepare the SQL query inside a PHP code block above

the DOCTYPE declaration like this:

 require_once('./includes/utility_funcs.inc.php');
 require_once('./includes/connection.inc.php');
 // connect to the database
 $conn = dbConnect('read');
 // check for article_id in query string
 if (isset($_GET['article_id']) && is_numeric($_GET['article_id'])) {
 $article_id = (int) $_GET['article_id'];
 } else {
 $article_id = 0;
 }
 $sql = "SELECT title, article,
 DATE_FORMAT(updated, '%W, %M %D, %Y') AS updated, filename, caption
 FROM blog INNER JOIN images USING (image_id)
 WHERE blog.article_id = $article_id";
 $result = $conn->query($sql);
 $row = $result->fetch_assoc();

The code checks for article_id in the URL query string. If it exists and is numeric, it s

assigned to $article_id using the (int) casting operator to make sure it s an integer.

Otherwise, $article_id is set to 0. You could choose a default article instead, but leave it at

0 for the moment because I want to illustrate an important point.

The SELECT query retrieves the title, article, and updated columns from the blog table,

and the filename and caption columns from the images table. The value of updated is

formatted using the DATE_FORMAT() function and an alias as described in Chapter 14.

Because only one record is being retrieved, using the original column name as the alias

doesn t cause a problem with the sort order.

The tables are joined using INNER JOIN and a USING() clause that matches the values in the

image_id columns in both tables. The WHERE clause selects the article identified by

$article_id. Since the data type of $article_id has been checked, it s safe to use in the

query. There s no need to use a prepared statement.

PULLING DATA FROM MULTIPLE TABLES

425

Note that the query is wrapped in double quotes so that the value of $article_id is

interpreted. To avoid conflicts with the outer pair of quotes, single quotes are used around the

format string passed as an argument to DATE_FORMAT().

5. The rest of the code displays the results of the SQL query in the main body of the page.

Replace the placeholder text in the <h2> tags like this:

 <h2><?php if ($row) {
 echo $row['title'];
 } else {
 echo 'No record found';
 }
 ?>
 </h2>

If the SELECT query finds no results, $row will be empty, which PHP interprets as false. So

this displays the title, or No record found if the result set is empty.

6. Replace the placeholder date like this:

 <p><?php if ($row) { echo $row['updated']; } ?></p>

7. Immediately following the date paragraph is a <div> containing a placeholder image. Even if

the result set isn t empty, not all articles are associated with an image, so the <div> needs to

be wrapped in a conditional statement that also checks that $row['filename'] contains a

value. Amend the <div> like this:

 <?php
 if ($row && !empty($row['filename'])) {
 $filename = "images/{$row['filename']}";
 $imageSize = getimagesize($filename);
 ?>
 <div id="pictureWrapper">
 <img src="<?php echo $filename; ?>" alt="<?php echo $row['caption']; ?>"
 <?php echo $imageSize[3];?>>
 </div>
 <?php } ?>

This uses code that was described in Chapter 12, so I won t go into it again.

8. Finally, you need to display the article. Delete the paragraph of placeholder text, and add the

following code between the closing curly brace and closing PHP tag at the end of the final code

block in the previous step:

 <?php } if ($row) { echo convertToParas($row['article']); } ?>

This uses the convertToParas() function in utility_funcs.inc.php to wrap the blog entry

in <p> tags and replace sequences of new line characters with closing and opening tags (see

“Displaying paragraphs” in Chapter 14).

9. Save the page, and load blog.php into a browser. Click the More link for an article that has an

image assigned through a foreign key. You should see details.php with the full article and

CHAPTER 15

426

image laid out as shown in Figure 15-7. Check your code, if necessary, with

details_mysqli_01.php or details_pdo_01.php in the ch15 folder.

Figure 15-7. The details page pulls the article from one table and the image from another.

10. Click the link back to blog.php, and test the other items. Each article that has an image

associated with it should display correctly. Click the More link for the article that doesn t have

an image. This time you should see the result shown in Figure 15-8.

Figure 15-8. The lack of an associated image causes the SELECT query to fail.

PULLING DATA FROM MULTIPLE TABLES

427

You know that the article is in the database because the first two sentences wouldn t be displayed in
blog.php otherwise. To understand this sudden “disappearance,” see Figure 15-16. The value of
image_id is NULL for the record that doesn t have an image associated with it. Because all the records in
the images table have a primary key, the USING() clause can t find a match. The solution is to use LEFT
JOIN instead of INNER JOIN, as explained in the next section.

Finding records that don t have a matching foreign key

Take the SELECT query from PHP Solution 15-3, and remove the condition that searches for a specific
article, which leaves this:

SELECT title, article,
DATE_FORMAT(updated, '%W, %M %D, %Y') AS updated, filename, caption
FROM blog INNER JOIN images USING (image_id)

If you run this query in the SQL tab of phpMyAdmin, it produces the result shown in Figure 15-9.

Figure 15-9. INNER JOIN finds only records that have a match in both tables.

With INNER JOIN, the SELECT query succeeds only if there is a full match. However, if you use LEFT
JOIN, the result includes records that have a match in the left table, but not in the right one. Left and right
refer to the order in which you perform the join. Rewrite the SELECT query like this:

SELECT title, article,
DATE_FORMAT(updated, '%W, %M %D, %Y') AS updated, filename, caption
FROM blog LEFT JOIN images USING (image_id)

When you run it in phpMyAdmin, you get all four articles as shown in Figure 15-10.

Figure 15-10. LEFT JOIN includes records that don t have a match in the right table.

As you can see, the empty fields from the right table (images) are displayed as NULL.

CHAPTER 15

428

If the column names are not the same in both tables, use ON like this:

FROM table_1 LEFT JOIN table_1 ON table_1.col_name = table_2.col_name

So, now you can rewrite the SQL query in details.php like this:

$sql = "SELECT title, article,
 DATE_FORMAT(updated, '%W, %M %D, %Y') AS updated, filename, caption
 FROM blog LEFT JOIN images USING (image_id)
 WHERE blog.article_id = $article_id";

If you click the More link to view the article that doesn t have an associated image, you should now see
the article correctly displayed as shown in Figure 15-11. The other articles should still display correctly,
too. The finished code is in details_mysqli_02.php, and details_pdo_02.php.

Figure 15-11. LEFT JOIN also retrieves articles that don t have a matching foreign key.

Creating an intelligent link

The link at the bottom of details.php goes straight back to blog.php. That s fine with only four items in
the blog table, but once you start getting more records in a database, you need to build a navigation
system as I showed you in Chapter 12. The problem with a navigation system is that you need a way to
return visitors to the same point in the result set that they came from.

PHP Solution 15-4: Returning to the same point in a navigation system

This PHP solution checks whether the visitor arrived from an internal or external link. If the referring page
was within the same site, the link returns the visitor to the same place. If the referring page was an
external site, or if the server doesn t support the necessary superglobal variables, the script substitutes a
standard link. It is shown here in the context of details.php, but it can be used on any page.

PULLING DATA FROM MULTIPLE TABLES

429

1. Locate the back link in the main body of details.php. It looks like this:

 <p>Back to the blog</p>

2. Place your cursor immediately to the right of the first quotation mark, and insert the following

code highlighted in bold:

 <p><a href="
 <?php
 // check that browser supports $_SERVER variables
 if (isset($_SERVER['HTTP_REFERER']) && isset($_SERVER['HTTP_HOST'])) {
 $url = parse_url($_SERVER['HTTP_REFERER']);
 // find if visitor was referred from a different domain
 if ($url['host'] == $_SERVER['HTTP_HOST']) {
 // if same domain, use referring URL
 echo $_SERVER['HTTP_REFERER'];
 }
 } else {
 // otherwise, send to main page
 echo 'blog.php';
 } ?>">Back to the blog</p>

$_SERVER['HTTP_REFERER'] and $_SERVER['HTTP_HOST'] are superglobal variables that

contain the URL of the referring page and the current hostname. You need to check their

existence with isset() because not all servers support them. Also, the browser might block

the URL of the referring page.

The parse_url() function creates an array containing each part of a URL, so $url['host']

contains the hostname. If it matches $_SERVER['HTTP_HOST'], you know that the visitor was

referred by an internal link, so the full URL of the internal link is inserted in the href attribute.

This includes any query string, so the link sends the visitor back to the same position in a

navigation system. Otherwise, an ordinary link is created to the target page.

The finished code is in details_mysqli_03.php, and details_pdo_3.php in the ch15

folder.

Chapter review
Retrieving information stored in multiple tables is relatively simple with INNER JOIN and LEFT JOIN. The
key to working successfully with multiple tables lies in structuring the relationship between them so that
complex relationships can always be resolved as 1:1, if necessary through a cross-reference (or linking)
table. The next chapter continues the exploration of working with multiple tables, showing you how to deal
with foreign key relationships when inserting, updating, and deleting records.

CHAPTER 15

430

431

Chapter 16

Managing Multiple Database Tables

The previous chapter showed you how to use INNER JOIN and LEFT JOIN to retrieve information stored in

multiple tables. You also learned how to link existing tables by adding an extra column to the child table and

updating each record individually to insert a foreign key. However, most of the time, you ll want to insert data

simultaneously in both tables. That presents a problem, because INSERT commands can operate on only

one table at a time. You need to get around this restriction by constructing scripts that handle the INSERT

operations in the correct sequence, starting with the parent table, so that you can get the new record s

primary key and insert it in the child table at the same time as other details. Similar considerations also need

to be taken into account when updating and deleting records. The code involved isn t difficult, but you need

to keep the sequence of events clearly in mind as you build the scripts.

This chapter guides you through the process of inserting new articles in the blog table, optionally selecting a

related image or uploading a new one, and assigning the article to one or more categories, all in a single

operation. Then, you ll build the scripts to update and delete articles without destroying the referential

integrity of related tables.

You ll also learn about foreign key constraints, which control what happens if you try to delete records that

still have a foreign key relationship in another table. The widely used MyISAM storage engine doesn t

currently support foreign key constraints, but they are supported by InnoDB, the default storage engine in

MySQL 5.5 and later. This chapter describes how to work with both storage engines.

In particular, you ll learn about the following:

• Inserting, updating, and deleting records in related tables

• Finding the primary key of a record immediately after it has been created

• Converting a table s storage engine

• Establishing foreign key constraints between InnoDB tables

Maintaining referential integrity
With single tables, it doesn t matter how often you update a record or how many records you delete, the

impact on other records is zero. Once you store the primary key of a record as a foreign key in a different

CHAPTER 16

432

table, you create a dependency that needs to be managed. For example, if you delete the second article

from the blog table (“Trainee Geishas Go Shopping”), Figure 16-1 shows it linked to the Kyoto and People

categories through the article2cat cross-reference table.

Figure 16-1. You need to manage foreign key relations to avoid orphaned records.

If you fail to delete the entries for article_id 2 in the cross-reference table, a query that looks for all

articles in the Kyoto or People categories tries to match a nonexistent record in the blog table. Similarly, if

you decide to delete one of the categories without also deleting matching records in the cross-reference

table, a query that looks for the categories associated with an article tries to match a nonexistent category.

Before long, your database is littered with orphaned records. Fortunately, maintaining referential integrity is

not difficult. SQL does it through the establishment of rules known as foreign key constraints that tell the

database what to do when you update or delete a record that has dependent records in another table. The

bad news is that the default storage engine prior to MySQL 5.5, MyISAM, doesn t support foreign key

constraints. You need to use InnoDB instead.

Choosing between MyISAM and InnoDB isn t simply a matter of one being “better” than the other.

MyISAM s strengths lie in smaller file sizes and speed. It also supports full text indexing and searching

(see http://dev.mysql.com/doc/refman/5.1/en/fulltext-search.html), which InnoDB does not.

Support for foreign key constraints in MyISAM tables is planned for a later version of MySQL.

InnoDB has been an integral part of MySQL since version 4.0 was released in 2003. Unfortunately, many

hosting companies disable InnoDB or offer it only on premium hosting plans. If your hosting company

supports InnoDB, you can easily convert MyISAM tables and use foreign key constraints. If you don t have

access to InnoDB, you need to maintain referential integrity by building the necessary rules into your PHP

scripts. This chapter shows both approaches.

PHP Solution 16-1: Checking whether InnoDB is supported

This PHP solution explains how to check whether your remote server supports the InnoDB storage engine.

1. If your hosting company provides phpMyAdmin to administer your database(s), launch

phpMyAdmin on your remote server, and click the Engines tab at the top of the screen, if it s

available. This displays a list of storage engines similar to Figure 16-2.

http://dev.mysql.com/doc/refman/5.1/en/fulltext-search.html

MANAGING MULTIPLE DATABASE TABLES

433

Figure 16-2. Checking storage engine support through phpMyAdmin

2. The list displays all storage engines, including those that are not supported. Unsupported or

disabled storage engines are grayed out. If you re not sure of the status of InnoDB, click its

name in the list.

If InnoDB is not supported, you ll see a message telling you so. If, on the other hand, you see a

list of variables similar to Figure 16-3, you re in luck—InnoDB is supported.

Figure 16-3. Confirmation that InnoDB is supported

3. If there s no Engines tab in phpMyAdmin, select any table in your database, and click the

Operations tab at the top right of the screen. In the Table options section, click the down

arrow to the right of the Storage Engine field to display the available options (see Figure 16-4).

If InnoDB is listed, it s supported.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 16

434

Figure 16-4. The available storage engines are listed in the Table options.

4. If neither of the preceding methods gives you the answer, open storage_engines.php in the

ch16 folder. Edit the first three lines to insert the hostname, username, and password for the

database on your remote server.

5. Upload storage_engines.php to your website, and load the page into a browser. You should

see a list of storage engines and level of support, as shown in Figure 16-5. In some cases, NO

will be replaced by DISABLED.

Figure 16-5. The SQL query in storage_engines.php reports which ones are supported.

As Figure 16-5 shows, a typical installation of MySQL supports several storage engines. What may come as

a surprise is that you can use different storage engines within the same database. In fact, it s recommended

that you do. Even if your remote server supports InnoDB, it s usually more efficient to use MyISAM for tables

that don t have a foreign key relationship. Use InnoDB for tables that have foreign key relationships. You

should also use InnoDB if you need support for transactions.

MANAGING MULTIPLE DATABASE TABLES

435

A transaction is a series of related SQL queries. If one part of the series fails, the transaction is

terminated, and the database rolls back to its original state before the transaction. Financial databases

make extensive use of transactions, which are beyond the scope of this book.

I ll explain how to convert tables to InnoDB and set up foreign key constraints later in this chapter. Before

that, let s take a look at how to establish and use foreign key relationships regardless of the storage engine

being used.

Inserting records into multiple tables
An INSERT query can insert data into only one table. Consequently, when working with multiple tables, you

need to plan your insert scripts carefully to ensure that all the information is stored and that the correct

foreign key relationships are established. PHP Solution 15-2 in the previous chapter showed how to add the

correct foreign key for an image that is already registered in the database. However, when inserting a new

blog entry, you need to be able to select an existing image, upload a new image, or choose to have no image

at all. This means that your processing script needs to check whether an image has been selected or

uploaded and execute the relevant commands accordingly. In addition, tagging a blog entry with zero or

more categories increases the number of decisions the script needs to make. Figure 16-6 shows the

decision chain.

Figure 16-6. The decision chain for inserting a new blog article with an image and categories

CHAPTER 16

436

When the page first loads, the form hasn t been submitted, so the page simply displays the insert form. Both

the existing images and categories are listed in the insert form by querying the database in the same way as

for the images in the update form in PHP Solution 15-2.

After the form has been submitted, the processing script goes through the following steps:

1. If an image has been uploaded, the upload is processed, the details of the image are stored in

the images table, and the script gets the primary key of the new record.

2. If no image has been uploaded, but an existing image has been selected, the script gets its

foreign key from the value submitted through the $_POST array.

3. In either case, the new blog article is inserted in the blog table along with the image s primary

key as a foreign key. However, if an image has neither been uploaded nor selected from the

existing ones, the article is inserted in the blog table without a foreign key.

4. Finally, the script checks if any categories have been selected. If they have, the script gets the

new article s primary key and combines it with the primary keys of the selected categories in the

article2cat table.

If there s a problem at any stage, the script needs to abandon the rest of the process and redisplay the

user s input. The script is quite long, so I ll break it up into several sections. The first stage is to create the

article2cat cross-reference table.

Creating a cross-reference table

When dealing with many-to-many relationships in a database, you need to build a cross-reference table like

the one in Figure 16-1. What s unusual about a cross-reference table is that it consists of just two columns,

which are jointly declared as the table s primary key (known as a composite primary key). If you look at

Figure 16-7, you ll see that the article_id and cat_id columns both contain the same number several

times—something that s unacceptable in a primary key, which must be unique. However, in a composite

primary key, it s the combination of both values that is unique. The first two combinations, 1,3 and 2,1, are

not repeated anywhere else in the table, nor are any of the others.

Figure 16-7. In a cross-reference table, both columns together form a composite primary key.

MANAGING MULTIPLE DATABASE TABLES

437

Setting up the categories and cross-reference tables

In the ch16 folder, you ll find categories.sql, which contains the SQL to create the categories table and

the cross-reference table, article2cat, together with some sample data. The settings used to create the

tables are listed in Tables 16-1 and 16-2. Both database tables have just two columns (fields).

Table 16-1. Settings for the categories table

Field Type Length/Values Attributes Null Index AUTO_INCREMENT

cat_id INT UNSIGNED Deselected PRIMARY Selected

category VARCHAR 20 Deselected

Table 16-2. Settings for the article2cat cross-reference table

Field Type Length/Values Attributes Null Index AUTO_INCREMENT

article_id INT UNSIGNED Deselected PRIMARY

cat_id INT UNSIGNED Deselected PRIMARY

The important thing about the definition for a cross-reference table is that both columns are set as primary

key, and that auto_increment is not selected for either column. To ensure that the table recognizes them

as a composite primary key, you must declare both columns as primary key at the same time.

If, by mistake, you declare only one as the primary key, MySQL prevents you from adding the second one

later. You must delete the primary key index from the single column and then reapply it to both. It s the

combination of the two columns that are treated as the primary key.

Getting the filename of an uploaded image

The script makes use of the Ps2_Upload class from Chapter 6, but the class needs tweaking slightly

because the filenames of uploaded files are incorporated into the $_messages property.

PHP Solution 16-2: Improving the Ps2_Upload class

This PHP solution adapts the Ps2_Upload class from Chapter 6 by creating a new protected property to

store the names of successfully uploaded files, together with a public method to retrieve the array.

1. Open Upload.php in the classes/Ps2 folder. Alternatively, copy Upload_05.php from the ch06

folder, and save it in classes/Ps2 as Upload.php.

2. Add the following line to the list of properties at the top of the file:

 protected $_filenames = array();

This initializes a protected property called $_filenames as an empty array.

CHAPTER 16

438

3. Amend the processFile() method to add the amended filename to the $_filenames property if

the file is successfully uploaded. The new code is highlighted in bold.

 protected function processFile($filename, $error, $size, $type,
 $tmp_name, $overwrite) {
 $OK = $this->checkError($filename, $error);
 if ($OK) {
 $sizeOK = $this->checkSize($filename, $size);
 $typeOK = $this->checkType($filename, $type);
 if ($sizeOK && $typeOK) {
 $name = $this->checkName($filename, $overwrite);
 $success = move_uploaded_file($tmp_name, $this->_destination . $name);
 if ($success) {
 // add the amended filename to the array of filenames
 $this->_filenames[] = $name;
 $message = "$filename uploaded successfully";
 if ($this->_renamed) {
 $message .= " and renamed $name";
 }
 $this->_messages[] = $message;
 } else {
 $this->_messages[] = "Could not upload $filename";
 }
 }
 }
 }

The name gets its value from the checkName() method, which replaces spaces with underscores

and renames files that are the same as an existing file. It s added to the $_filenames array only

if the file is successfully moved to the destination folder.

4. Add a public method to return the values stored in the $_filenames property. The code looks

like this:

 public function getFilenames() {
 return $this->_filenames;
 }

It doesn t matter where you put this code in the class definition, but it s common practice to keep

all public methods together.

5. Save Upload.php. If you need to check your code, compare it with Upload_06.php in the ch16

folder.

Adapting the insert form to deal with multiple tables

The insert form for blog articles that you created in Chapter 13 already contains the code needed to insert

most of the details in the blog table. Rather than start again from scratch, it makes sense to adapt the

existing page. As it stands, the page contains only a text input field for the title and a text area for the article.

MANAGING MULTIPLE DATABASE TABLES

439

You need to add a multiple-choice <select> list for categories, and a drop-down <select> menu for existing

images.

To prevent a user from selecting an existing image at the same time as uploading a new one, a check box

and JavaScript control the display of the relevant input fields. Selecting the check box disables the drop-

down menu for existing images and displays the input fields for a new image and caption. Deselecting the

check box hides and disables the file and caption fields, and reenables the drop-down menu. If JavaScript is

disabled, the options for uploading a new image and captions are hidden.

PHP Solution 16-3: Adding the category and image input fields

This PHP solution begins the process of adapting the blog entry insert form from Chapter 13 by adding the

input fields for categories and images.

1. In the admin folder, open the version of blog_insert_mysqli.php that you created in Chapter

13. Alternatively, copy blog_insert_mysqli.php from the ch13 folder to the admin folder.

2. The <select> elements for the categories and existing images need to query the database when

the page first loads, so you need to move the connection script and database connection

outside the conditional statement that checks if the form has been submitted. Locate the lines

highlighted in bold:

 if (isset($_POST['insert'])) {
 require_once('../includes/connection.inc.php');
 // initialize flag
 $OK = false;
 // create database connection
 $conn = dbConnect('write');

Move them outside the conditional statement like this:

 require_once('../includes/connection.inc.php');
 // create database connection
 $conn = dbConnect('write');
 if (isset($_POST['insert'])) {
 // initialize flag
 $OK = false;

3. The form in the body of the page needs to be capable of uploading a file, so you need to add the

enctype attribute to the opening <form> tag like this:

 <form id="form1" method="post" action="" enctype="multipart/form-data">

4. If an error occurs when trying to upload a file—for example, if it s too big or not an image—the

insert operation will be halted. Amend the existing text input field and text area to redisplay the

values using the same technique as in Chapter 5. The text input field looks like this:

 <input name="title" type="text" class="widebox" id="title"
 value="<?php if (isset($error)) {
 echo htmlentities($_POST['title'], ENT_COMPAT, 'utf-8');
 } ?>">

The text area looks like this:

CHAPTER 16

440

 <textarea name="article" cols="60" rows="8" class="widebox" id="article"><?php
 if (isset($error)) {
 echo htmlentities($_POST['article'], ENT_COMPAT, 'utf-8');
 } ?></textarea>

Make sure there s no gap between the opening and closing PHP tags and the HTML. Otherwise,

you ll add unwanted whitespace inside the text input field and text area.

5. The new form elements go between the text area and the submit button. First, add the code for

the multiple-choice <select> list for categories. The code looks like this:

 <p>
 <label for="category">Categories:</label>
 <select name="category[]" size="5" multiple id="category">
 <?php
 // get categories
 $getCats = 'SELECT cat_id, category FROM categories
 ORDER BY category';
 $categories = $conn->query($getCats);
 while ($row = $categories->fetch_assoc()) {
 ?>
 <option value="<?php echo $row['cat_id']; ?>" <?php
 if (isset($_POST['category']) && in_array($row['cat_id'],
 $_POST['category'])) {
 echo 'selected';
 } ?>><?php echo $row['category']; ?></option>
 <?php } ?>
 </select>
 </p>

To allow the selection of multiple values, the multiple attribute has been added to <select>

tag, and the size attribute set to 5. The values need to be submitted as an array, so a pair of

square brackets has been appended to the name attribute.

The SQL queries the categories table, and a while loop populates the <option> tags with the

primary keys and category names. The conditional statement in the while loop adds selected

to the <option> tag to redisplay selected values if the insert operation fails.

6. Save blog_insert_mysqli.php, and load the page into a browser. The form should now look

like Figure 16-8.

MANAGING MULTIPLE DATABASE TABLES

441

Figure 16-8. The multiple-choice <select> list pulls the values from the categories table.

7. View the page s source code to verify that the primary key of each category is correctly

embedded in the value attribute of each <option> tag. You can compare your code with

blog_insert_mysqli_01.php in the ch16 folder.

8. Next, create the <select> drop-down menu to display the images already registered in the

database. Add this code immediately after the code you inserted in step 5:

 <p>
 <label for="image_id">Uploaded image:</label>
 <select name="image_id" id="image_id">
 <option value="">Select image</option>
 <?php
 // get the list of images
 $getImages = 'SELECT image_id, filename
 FROM images ORDER BY filename';
 $images = $conn->query($getImages);
 while ($row = $images->fetch_assoc()) {
 ?>
 <option value="<?php echo $row['image_id']; ?>"
 <?php
 if (isset($_POST['image_id']) && $row['image_id'] == $_POST['image_id']) {
 echo 'selected';
 }
 ?>><?php echo $row['filename']; ?></option>
 <?php } ?>
 </select>

 </p>

CHAPTER 16

442

This creates another SELECT query to get the primary key and filename of each image stored in

the images table. The code should be very familiar by now, so it needs no explanation.

9. The check box, file input field, and text input field for the caption go between the code in the

previous step and the submit button. The code looks like this:

 <p id="allowUpload">
 <input type="checkbox" name="upload_new" id="upload_new">
 <label for="upload_new">Upload new image</label>
 </p>
 <p class="optional">
 <label for="image">Select image:</label>
 <input type="file" name="image" id="image">
 </p>
 <p class="optional">
 <label for="caption">Caption:</label>
 <input name="caption" type="text" class="widebox" id="caption">
 </p>

The paragraph that contains the check box has been given the ID allowUpload, and the two

other paragraphs have been assigned a class called optional. The style rules in admin.css set

the display property of these three paragraphs to none.

10. Save blog_insert_mysqli.php, and load the page in a browser. The images <select> drop-

down menu is displayed below the categories list, but the three form elements you inserted in

step 9 are hidden. This is what will be displayed if JavaScript is disabled in the browser. Users will

have the option to select categories and an existing image but not to upload a new image.

If necessary, check your code against blog_insert_mysqli_02.php in the ch16 folder.

11. Copy toggle_fields.js from the ch16 folder to the admin folder. The file contains the following

JavaScript:

 var cbox = document.getElementById('allowUpload');
 cbox.style.display = 'block';
 var uploadImage = document.getElementById('upload_new');
 uploadImage.onclick = function () {
 var image_id = document.getElementById('image_id');
 var image = document.getElementById('image');
 var caption = document.getElementById('caption');
 var sel = uploadImage.checked;
 image_id.disabled = sel;
 image.parentNode.style.display = sel ? 'block' : 'none';
 caption.parentNode.style.display = sel ? 'block' : 'none';
 image.disabled = !sel;
 caption.disabled = !sel;
 }

This uses the IDs of the elements inserted in step 8 to control their display. If JavaScript is

enabled, the check box is automatically displayed when the page loads, but the file input field

and text input field for the caption remain hidden. If the check box is checked, the drop-down

MANAGING MULTIPLE DATABASE TABLES

443

menu of existing images is disabled, and the hidden elements are displayed. If the check box is

subsequently unchecked, the drop-down menu is reenabled, and the file input field and caption

field are hidden again.

JavaScript is beyond the scope of this book, but you can learn more from Getting StartED with

JavaScript by Terry McNavage (friends of ED, 2010, ISBN: 978-1-4302-7219-9) and DOM Scripting: Web

Design with JavaScript and the Document Object Model, Second Edition by Jeremy Keith (friends of ED,

2010, ISBN: 978-1-4302-3389-3).

12. Link toggle_fields.js to blog_insert_mysqli.php with a <script> tag just before the

closing </body> tag like this:

 </form>
 <script src="toggle_fields.js"></script>
 </body>

Although it has been common practice for many years to put <script> tags for external

JavaScript files in the <head> of a web page, more recent practice recommends adding most

scripts as close to the bottom of the <body> as possible to speed up downloading and display.

The code in toggle_fields.js won t work correctly if you add it to the <head>.

13. Save blog_insert_mysqli.php, and load the page in a browser. In a JavaScript-enabled

browser, the check box should be displayed between the <select> drop-down menu and submit

button. Select the check box to disable the drop-down menu and display the hidden fields, as

shown in Figure 16-9.

Figure 16-9. The check box controls the display of the file and caption input fields.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 16

444

14. Deselect the check box. The file and caption input fields are hidden, and the drop-down menu is

reenabled. You can check your code, if necessary with blog_insert_mysqli_03.php and

toggle_fields.js in the ch16 folder.

If you re wondering why I used JavaScript, rather than PHP, to control the display of the file and caption

input fields, it s because PHP is a server-side language. After the PHP engine has sent the output to the

browser, it has no further interaction with the page unless you send another request to the web server.

JavaScript, on the other hand, works in the browser, so it s able to manipulate the content of the page

locally. JavaScript can also be used in conjunction with PHP to send requests to the web server in the

background and can use the result to refresh part of the page without reloading it—a technique known as

Ajax, which is beyond the scope of this book.

The updated insert form now has input fields for categories and images, but the processing script still

handles only the text input field for the title and the text area for the blog entry.

PHP Solution 16-4: Inserting data into multiple tables

This PHP solution adapts the existing script in blog_insert_mysqli.php to upload a new image (if required)

and insert data into the images, blog, and article2cat tables following the decision chain outlined in

Figure 16-6. It assumes you have set up the article2cat cross-reference table and have completed PHP

Solutions 16-2 and 16-3.

Don t attempt to rush through this section. The code is quite long, but it brings together many of the

techniques you have learned previously.

1. In the conditional statement at the top of blog_insert_mysqli.php locate the following code

highlighted in bold:

 if (isset($_POST['insert'])) {
 // initialize flag
 $OK = false;
 // initialize prepared statement
 $stmt = $conn->stmt_init();

2. Immediately after the highlighted code, insert some space to add the following conditional

statement to process the image, if one has been uploaded or selected.

 // initialize prepared statement
 $stmt = $conn->stmt_init();

 // if a file has been uploaded, process it
 if(isset($_POST['upload_new']) && $_FILES['image']['error'] == 0) {
 $imageOK = false;
 require_once('../classes/Ps2/Upload.php');
 $upload = new Ps2_Upload('../images/');
 $upload->move();
 $names = $upload->getFilenames();
 // $names will be an empty array if the upload failed
 if ($names) {
 $sql = 'INSERT INTO images (filename, caption)
 VALUES (?, ?)';

MANAGING MULTIPLE DATABASE TABLES

445

 $stmt->prepare($sql);
 $stmt->bind_param('ss', $names[0], $_POST['caption']);
 $stmt->execute();
 $imageOK = $stmt->affected_rows;
 }
 // get the image's primary key or find out what went wrong
 if ($imageOK) {
 $image_id = $stmt->insert_id;
 } else {
 $imageError = implode(' ', $upload->getMessages());
 }
 } elseif (isset($_POST['image_id']) && !empty($_POST['image_id'])) {
 // get the primary key of a previously uploaded image
 $image_id = $_POST['image_id'];
 }

 // create SQL
 $sql = 'INSERT INTO blog (title, article, created)
 VALUES(?, ?, NOW())';

This begins by checking if $_POST['upload_new'] has been set. As explained in Chapter 5, a

check box is included in the $_POST array only if it has been selected. So, if the check box

hasn t been selected, the condition fails, and the elseif clause at the bottom is tested instead.

The elseif clause checks for the existence of $_POST['image_id']. If it exists and is not

empty, an existing image has been selected from the drop-down menu, and the value is stored in

$image_id.

If both tests fail, an image has neither been uploaded nor selected from the drop-down menu.

The script later takes this into account when preparing the INSERT query for the blog table,

allowing you to create a blog entry without an image.

However, if $_POST['upload_new'] exists, the check box has been selected, and an image

has probably been uploaded. To make sure, the conditional statement also checks the value of

$_FILES['image']['error']. As you learned in Chapter 6, the error code 0 indicates a

successful upload. Any other error code means the upload failed or that no file was selected.

Assuming a file has been successfully uploaded from the form, the conditional statement

includes the Ps2_Upload class and creates an upload object, setting the destination folder to

images. It then calls the move() method to move the file to the images folder. To avoid

complicating the code, I m using the default maximum size and MIME types.

The changes you made to the Ps2_Upload class in PHP Solution 16-2 add the name of an

uploaded file to the $_filenames property only if the file was moved successfully to the

destination folder. The getFilenames() method retrieves the contents of the $_filenames

property, and assigns the result to $names. If the file was moved successfully, its filename is

stored as the first element of the $names array. So if $names contains a value, you can safely

proceed with the INSERT query, which binds the values of $names[0] and $_POST['caption']

as strings to the prepared statement.

CHAPTER 16

446

After the statement has been executed, the affected_rows property resets the value of

$imageOK. If the INSERT query succeeded, $imageOK is 1, which is treated as true.

If the image details were inserted in the images table, the insert_id property retrieves the

primary key of the new record and stores it in $image_id. The insert_id property must be

accessed before running any other SQL queries, because it contains the primary key of the

most recent query.

However, if $imageOK is still false, the getMessages() method of the upload object is called,

and the result is stored in $imageError. The getMessages() method returns an array, so the

implode() function is used to join the array elements as a single string. The most likely causes

of failure are a file that s too big or of the wrong MIME type.

3. As long as the image upload didn t fail, the next stage in the process is to insert the blog entry

into the blog table. The form of the INSERT query depends on whether an image is associated

with the blog entry. If it is, $image_id exists and needs to be inserted in the blog table as a

foreign key. Otherwise, the original query can be used.

Amend the original query like this:

 // don't insert blog details if the image failed to upload
 if (!isset($imageError)) {
 // if $image_id has been set, insert it as a foreign key
 if (isset($image_id)) {
 $sql = 'INSERT INTO blog (image_id, title, article, created)
 VALUES(?, ?, ?, NOW())';
 $stmt->prepare($sql);
 $stmt->bind_param('iss', $image_id, $_POST['title'], $_POST['article']);
 } else {
 // create SQL
 $sql = 'INSERT INTO blog (title, article, created)
 VALUES(?, ?, NOW())';
 $stmt->prepare($sql);
 $stmt->bind_param('ss', $_POST['title'], $_POST['article']);
 }
 // execute and get number of affected rows
 $stmt->execute();
 $OK = $stmt->affected_rows;
 }

This whole section of code is wrapped in a conditional statement that checks whether

$imageError exists. If it does, there s no point in inserting the new blog entry, so the entire

code block is ignored.

However, if $imageError doesn t exist, the nested conditional statement prepares different

INSERT queries depending on whether $image_id exists and then executes whichever one has

been prepared.

4. The next stage of the process inserts values into the article2cat cross-reference table. The

code follows immediately after the code in the previous step and looks like this:

MANAGING MULTIPLE DATABASE TABLES

447

 // if the blog entry was inserted successfully, check for categories
 if ($OK && isset($_POST['category'])) {
 // get the article's primary key
 $article_id = $stmt->insert_id;
 foreach ($_POST['category'] as $cat_id) {
 if (is_numeric($cat_id)) {
 $values[] = "($article_id, " . (int) $cat_id . ')';
 }
 }
 if ($values) {
 $sql = 'INSERT INTO article2cat (article_id, cat_id)
 VALUES ' . implode(',', $values);
 // execute the query and get error message if it fails
 if (!$conn->query($sql)) {
 $catError = $conn->error;
 }
 }
 }

The value of $OK is determined by the affected_rows property from the query that inserted the

data in the blog table, and the multiple-choice <select> list is included in the $_POST array only

if any categories are selected. So, this code block is run only if the data was successfully

inserted in the blog table and at least one category was selected in the form. It begins by

obtaining the primary key of the insert operation from the prepared statement s insert_id

property and assigning it to $article_id.

The form submits the category values as an array. The foreach loop checks each value in

$_POST['category']. If the value is numeric, the following line is executed:

 $values[] = "($article_id, " . (int) $cat_id . ')';

This creates a string with the two primary keys, $article_id and $cat_id, separated by a

comma and wrapped in a pair of parentheses. The (int) casting operator makes sure that

$cat_id is an integer. The result is assigned to an array called $values. For example, if

$article_id is 10 and $cat_id is 4, the resulting string assigned to the array is (10, 4).

If $values contains any elements, implode() converts it to a comma-separated string and

appends it to the SQL query. For example, if categories 2, 4, and 5 are selected, the resulting

query looks like this:

 INSERT INTO article2cat (article_id, cat_id)
 VALUES (10, 2),(10, 4),(10,5)

As explained in “Reviewing the four essential SQL commands” in Chapter 13, this is how you

insert multiple rows with a single INSERT query.

Because $article_id comes from a reliable source and the data type of $cat_id has been

checked, it s safe to use these variables directly in a SQL query without using a prepared

statement. The query is executed with the query() method. If it fails, the connection object s

error property is stored in $catError.

CHAPTER 16

448

5. The final section of code handles the redirect on success and error messages. The amended

code looks like this:

 // redirect if successful or display error
 if ($OK && !isset($imageError) && !isset($catError)) {
 header('Location: http://localhost/phpsols/admin/blog_list_mysqli.php');
 exit;
 } else {
 $error = $stmt->error;
 if (isset($imageError)) {
 $error .= ' ' . $imageError;
 }
 if (isset($catError)) {
 $error .= ' ' . $catError;
 }
 }
 }

The condition controlling the redirect now makes sure that $imageError and $catError don t

exist. If either does, the value is concatenated to the original $error, which contains any error

message from the prepared statement object.

6. Save blog_insert_mysqli.php, and test it in a browser. Try uploading an image that s too big

or a file of the wrong MIME type. The form should be redisplayed with an error message and the

blog details preserved. Also try inserting blog entries with and without images and/or categories.

You now have a versatile insert form.

If you don t have suitable images to upload, use the images in the phpsols images folder. The

Ps2_Upload class renames them to avoid overwriting the existing files.

You can check your code against blog_insert_mysqli_04.php in the ch16 folder.

The PDO version is in blog_insert_pdo.php in the ch16 folder. PDO uses the lastInsertId() method on

the connection object to get the primary key of the most recent insert operation. For example, the following

line gets the primary key of the blog entry:

$article_id = $conn->lastInsertId();

Like the MySQLi insert_id property, you need to access it immediately after the INSERT query has been

executed.

Updating and deleting records in multiple tables
The addition of the categories and article2cat tables means that the changes you made to

blog_update_mysqli.php in PHP Solution 15-2 in the previous chapter no longer adequately cover the

foreign key relationships in the phpsols database. In addition to amending the update form, you also need to

create scripts to delete records without destroying the database s referential integrity.

http://localhost/phpsols/admin/blog_list_mysqli.php

MANAGING MULTIPLE DATABASE TABLES

449

Updating records in a cross-reference table

Each record in a cross-reference table contains only a composite primary key. Normally, primary keys

should never be altered. Moreover, they must be unique. This poses a problem for updating the

article2cat table. If you make no changes to the selected categories when updating a blog entry, the

cross-reference table doesn t need to be updated. However, if the categories are changed, you need to work

out which cross references to delete and which new ones to insert.

Rather than getting tied up in knots working out whether any changes have been made, a simple solution is

to delete all existing cross references and insert the selected categories again. If no changes have been

made, you simply insert the same ones again.

PHP Solution 16-5: Adding categories to the update form

This PHP solution amends blog_update_mysqli.php from PHP Solution 15-2 in the previous chapter to

allow you to update the categories associated with a blog entry. To keep the structure simple, the only

change that can be made to the image associated with the entry is to select a different existing image or no

image at all.

1. Continue working with blog_update_mysqli.php from PHP Solution 15-2. Alternatively, copy

blog_update_mysqli_04.php from the ch16 folder, and save it in the admin folder as

blog_update_mysqli.php.

2. When the page first loads, you need to run a second query to get the categories associated with

the blog entry. Add the following highlighted code to conditional statement that gets details of the

selected record:

 $stmt->free_result();
 // get categories associated with the article
 $sql = 'SELECT cat_id FROM article2cat
 WHERE article_id = ?';
 $stmt->prepare($sql);
 $stmt->bind_param('i', $_GET['article_id']);
 $stmt->bind_result($cat_id);
 $OK = $stmt->execute();
 // loop through the results to store them in an array
 $selected_categories = array();
 while ($stmt->fetch()) {
 $selected_categories[] = $cat_id;
 }
 }

The query selects cat_id from all records in the cross-reference table that match the primary

key of the selected blog entry. The results are bound to $cat_id, and a while loop extracts the

values into an array called $selected_categories.

3. In the body of the HTML page, add a multiple-choice <select> list between the text area and the

<select> drop-down menu that displays the list of images. Use another SQL query to populate it

like this:

CHAPTER 16

450

 <p>
 <label for="category">Categories:</label>
 <select name="category[]" size="5" multiple id="category">
 <?php
 // get categories
 $getCats = 'SELECT cat_id, category FROM categories
 ORDER BY category';
 $categories = $conn->query($getCats);
 while ($row = $categories->fetch_assoc()) {
 ?>
 <option value="<?php echo $row['cat_id']; ?>" <?php
 if (in_array($row['cat_id'], $selected_categories)) {
 echo 'selected';
 } ?>><?php echo $row['category']; ?></option>
 <?php } ?>
 </select>
 </p>

The while loop builds each <option> tag, inserting cat_id in the value attribute and displaying

the category between the opening and closing tags. If cat_id is in the $selected_categories

array, selected is inserted in the <option> tag. This selects the categories already associated

with the blog entry.

4. Save blog_update_mysqli.php, and select one of the EDIT links in blog_list_mysqli.php to

make sure the multiple-choice list is populated with the categories. If you inserted a new entry in

PHP Solution 16-4, the categories you associated with the item should be selected, as shown in

the following screenshot.

You can check your code, if necessary, against blog_update_mysqli_05.php in the ch16

folder. The PDO version is in blog_update_pdo_05.php.

5. Next, you need to edit the section of code that updates the record when the form is submitted.

The code currently looks like this:

 // if form has been submitted, update record
 if (isset($_POST ['update'])) {
 // prepare update query
 if (!empty($_POST['image_id'])) {
 $sql = 'UPDATE blog SET image_id = ?, title = ?, article = ?
 WHERE article_id = ?';
 $stmt->prepare($sql);
 $stmt->bind_param('issi', $_POST['image_id'], $_POST['title'],
 $_POST['article'], $_POST['article_id']);

MANAGING MULTIPLE DATABASE TABLES

451

 } else {
 $sql = 'UPDATE blog SET image_id = NULL, title = ?, article = ?
 WHERE article_id = ?';
 $stmt->prepare($sql);
 $stmt->bind_param('ssi', $_POST['title'], $_POST['article'],
 $_POST['article_id']);
 }
 $stmt->execute();
 $done = $stmt->affected_rows;
 }

The last two lines of this code block execute the prepared statement that updates the record in

the blog table, and then assign the number of affected rows to $done. If you update a record,

the affected_rows property is 1, which is treated as true. However, if you don t make any

changes to the record, affected_rows is 0, which is treated as false. If you update only the

categories associated with a record, without changing the record itself, $done is interpreted as

false, and you won t be returned to blog_list_mysqli.php.

Delete the following line:

 $done = $stmt->affected_rows;

6. Assign the return value of $stmt->execute() to $done like this:

 $done = $stmt->execute();

The execute() method returns true if the prepared statement is executed successfully, even if

it doesn t result in any changes to the record.

7. Immediately after the line you have just edited, insert the code to delete existing values in the

cross reference table and to insert the newly selected values like this:

 $done = $stmt->execute();

 // delete existing values in the cross-reference table
 $sql = 'DELETE FROM article2cat WHERE article_id = ?';
 $stmt->prepare($sql);
 $stmt->bind_param('i', $_POST['article_id']);
 $stmt->execute();

 // insert the new values in articles2cat
 if (isset($_POST['category']) && is_numeric($_POST['article_id'])) {
 $article_id = (int) $_POST['article_id'];
 foreach ($_POST['category'] as $cat_id) {
 $values[] = "($article_id, " . (int) $cat_id . ')';
 }
 if ($values) {
 $sql = 'INSERT INTO article2cat (article_id, cat_id)
 VALUES ' . implode(',', $values);
 if (!$conn->query($sql)) {
 $catError = $conn->error;

CHAPTER 16

452

 }
 }
 }
 }

This code needs little explanation. The DELETE query removes all entries in the cross-reference

table that match article_id. The remaining code inserts the values selected in the update

form. It s identical to the code in step 4 of PHP Solution 16-4. The key thing to note is that it uses

an INSERT query, not UPDATE. The original values have been deleted, so you re adding them

anew.

8. Save blog_update_mysqli.php, and test it by updating existing records in the blog table. You

can check your code, if necessary, against blog_update_mysqli_06.php in the ch16 folder.

The PDO version is in blog_update_pdo_06.php.

Preserving referential integrity on deletion

In PHP Solution 16-5, there was no need to worry about referential integrity when you deleted records in the

cross-reference table because the values stored in each record are foreign keys. Each record simply refers

to the primary keys stored in the blog and categories tables. Referring to Figure 16-1 at the beginning of

this chapter, deleting from the cross-reference table the record that combines article_id 2 with cat_id 1

simply breaks the link between the article titled “Trainee Geishas Go Shopping” and the Kyoto category.

Neither the article nor the category is affected. They both remain in their respective tables.

The situation is very different if you decide to delete either the article or the category. If you delete the

“Trainee Geishas Go Shopping” article from the blog table, all references to article_id 2 must also be

deleted from the cross-reference table. Similarly, if you delete the Kyoto category, all references to cat_id
1 must be removed from the cross-reference table. Alternatively, you must halt the deletion if an item s

primary key is stored elsewhere as a foreign key.

The best way to do this is through the establishment of foreign key restraints. To do so, you need to convert

the storage engine of related tables to InnoDB.

PHP Solution 16-6: Converting tables to the InnoDB storage engine

This PHP solution shows how to use phpMyAdmin to convert the storage engine of database tables from

MyISAM to InnoDB. If you plan to upload the tables to your remote server, it must also support InnoDB (see

PHP Solution 16-1).

1. Select the phpsols database in phpMyAdmin, and then select the article2cat table.

2. Click the Operations tab at the top right of the screen.

3. In the Table options section, select InnoDB from the Storage Engine drop-down menu, as

shown in Figure 16-10.

MANAGING MULTIPLE DATABASE TABLES

453

Figure 16-10. Changing a table s storage engine is very easy in phpMyAdmin.

4. Click Go. Changing the storage engine is as simple as that!

5. All tables related to each other through foreign key relationships need to use InnoDB. Repeat

steps 1–4 with the blog, categories, and images tables.

PHP Solution 16-7: Setting up foreign key constraints

This PHP solution describes how to set up foreign key constraints between the article2cat, blog, and

category tables in phpMyAdmin. The foreign key constraints must always be defined in the child table. In

this this case, the child table is article2cat, because it stores the article_id and cat_id primary keys

from the other tables as foreign keys.

1. Select the article2cat table in phpMyAdmin, and click the Structure tab.

2. Click Relation view (circled in Figure 16-11) at the bottom of the structure table.

Figure 16-11. Foreign key constraints are defined in phpMyAdmin s Relation view.

3. Foreign key constraints can be set up only on columns that are indexed. The article_id and

cat_id columns in article2cat are the table s composite primary key, so they re both listed in

the screen that opens. If your version of phpMyAdmin has an option labeled Internal relations,

you can ignore it. The section you re interested in is labeled FOREIGN KEY (INNODB).

In the article_id row, click the down arrow to the left of ON DELETE to reveal the list of

indexed columns in the database, and select `phpsols`.`blog`.`article_id` as shown in

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 16

454

Figure 16-12. This will be used to establish a formal foreign key relationship between article_id

in the article2cat table and article_id in the blog table.

Figure 16-12. Selecting the primary key in the parent table

The ON DELETE drop-down menus have the following options:

 CASCADE: When you delete a record in the parent table, all dependent records are

deleted in the child table. For example, if you delete the record with the primary key

article_id 2 in the blog table, all records with article_id 2 in the article2cat

table are automatically deleted.

 SET NULL: When you delete a record in the parent table, all dependent records in

the child table have the foreign key set to NULL. The foreign key column must accept

NULL values.

 NO ACTION: On some database systems, this allows foreign constraint checks to

be delayed. MySQL performs checks immediately, so this has the same effect as

RESTRICT.

 RESTRICT: This prevents the deletion of a record in the parent table if dependent

records still exist in the child table.

The same options are available for ON UPDATE. With the exception of RESTRICT, they are of limited

interest, because you should change the primary key of a record only in exceptional circumstances. ON

UPDATE RESTRICT not only stops changes being made to the primary key in the parent table; it also

rejects any inserts or updates in the child table that would result in foreign key values that don t have a

match in the parent table.

In the case of a cross-reference table, CASCADE is the logical choice. If you decide to delete a

record in the parent table, you want all cross-references to that record to be removed at the

same time. However, to demonstrate the default behavior of foreign key constraints, select

RESTRICT. Leave ON UPDATE blank.

4. In the cat_id row, select `phpsols`.`categories`.`cat_id` from the drop-down menu

immediate to the left of ON DELETE, and set ON DELETE to RESTRICT. Click Save.

If RESTRICT isn t available in the drop-down menu, leave the option blank

5. If you have not already done so, update at least one blog entry to associate it with a category.

MANAGING MULTIPLE DATABASE TABLES

455

6. In phpMyAdmin, select the categories table, and click the Delete icon next to a category that

you know to be associated with a blog entry, as shown in Figure 16-13.

Figure 16-13. Click the large red X to delete a record in phpMyAdmin.

7. Click OK when phpMyAdmin asks you to confirm the deletion. If you have set up the foreign key

constraints correctly, you ll see the error message shown in Figure 16-14.

Figure 16-14. The foreign key constraint prevents the deletion if dependent records exist.

8. Select the article2cat table, and click the Structure tab. Then click Relation view. In all

probability, the ON DELETE options will be blank. This is not a cause for concern, RESTRICT is

the default for both ON DELETE and ON UPDATE. Leaving these options blank has the same

effect as selecting RESTRICT.

9. Change both ON DELETE settings to CASCADE, and click Save.

10. Select a record in the blog table that you know is associated with a category, and delete it.

11. Check the article2cat table. The records associated with the record you have just deleted

have also been deleted.

To continue your exploration of foreign key constraints, select the blog table, and establish a foreign key

relationship with image_id in the images table. If you delete a record from the images table, the image_id

foreign key in the blog table needs to be set to NULL. This is done automatically if you set the value of ON

DELETE to SET NULL. Test it by deleting a record from the images table and checking the associated

record(s) in the blog table.

If you need to convert an InnoDB table back to MyISAM, you must first remove any foreign key

constraints. Select Relation view, set all fields to blank, and click Save. After removing the foreign key

relationships, you can change the storage engine as described in PHP Solution 16-6. Select MyISAM

instead of InnoDB .

CHAPTER 16

456

Creating delete scripts with foreign key constraints

Choosing the values for ON DELETE in InnoDB tables depends on the nature of the relationship between

tables. In the case of the phpsols database, it s not only safe but desirable to set the option to CASCADE

for both columns in the article2cat cross-reference table. If a record is deleted in either the blog or

categories parent table, the related values need to be deleted in the cross-reference table.

The relationship between the images and blog tables is different. If you delete a record from the images

table, you probably don t want to delete related articles in the blog table. In that case, SET NULL is an

appropriate choice. When a record is deleted from the images table, the foreign key in related articles is set

to NULL, but the articles remain intact.

On the other hand, if images are vital to the understanding of articles, select RESTRICT. Any attempt to

delete an image that still has related articles is automatically halted.

These considerations affect how you handle deletion scripts. When the foreign key constraint is set to

CASCADE or SET NULL, you don t need to do anything special. You can use a simple DELETE query and

leave the rest to MySQL.

However, if the foreign key constraint is set to RESTRICT, the DELETE query will fail. To display an

appropriate error message, use the errno property of a MySQLi statement object. The MySQL error code for

a query that fails as a result of a foreign key constraint is 1451. After calling the execute() method, you can

check for errors like this in MySQLi:

$stmt->execute();
if ($stmt->affected_rows > 0) {
 $deleted = true;
} else {
 $deleted = false;
 if ($stmt->errno == 1451) {
 $error = 'That record has dependent files in a child table, and cannot be
 deleted.';
 } else {
 $error = 'There was a problem deleting the record.';
 }
}

If you are using PDO, use the errorCode() method. The code for a query that fails as a result of a foreign

key constraint is HY000. After checking the number of affected rows with rowCount(), you can check the

error code like this with PDO:

$deleted = $stmt->rowCount();
if (!$deleted) {
 if ($stmt->errorCode() == 'HY000') {
 $error = 'That record has dependent files in a child table, and cannot be
 deleted.';
 } else {
 $error = 'There was a problem deleting the record.';
 }
}

MANAGING MULTIPLE DATABASE TABLES

457

The error codes in the PDO and MySQLi versions are different because PDO uses the codes defined by

the ANSI SQL standard, whereas MySQLi uses MySQL-specific codes.

Creating delete scripts without foreign key constraints

If you can t use InnoDB tables, you need to build the same logic into your own delete scripts. To achieve the

same effect as ON DELETE CASCADE, run two consecutive DELETE queries like this:

$sql = 'DELETE FROM article2cat WHERE article_id = ?';
$stmt->prepare($sql);
$stmt->bind_param('i', $_POST['article_id']);
$stmt->execute();
$sql = 'DELETE FROM blog WHERE article_id = ?';
$stmt->prepare($sql);
$stmt->bind_param('i', $_POST['article_id']);
$stmt->execute();

To achieve the same effect as ON DELETE SET NULL, run an UPDATE query combined with a DELETE query

like this:

$sql = 'UPDATE blog SET image_id = NULL WHERE image_id = ?';
$stmt->prepare($sql);
$stmt->bind_param('i', $_POST['image_id']);
$stmt->execute();
$sql = 'DELETE FROM images WHERE image_id = ?';
$stmt->prepare($sql);
$stmt->bind_param('i', $_POST['image_id']);
$stmt->execute();

To achieve the same effect as ON DELETE RESTRICT, you need to run a SELECT query to find if there are

dependent records before continuing with the DELETE query like this:

$sql = 'SELECT image_id FROM blog WHERE image_id = ?';
$stmt->prepare($sql);
$stmt->bind_param('i', $_POST['image_id']);
$stmt->execute();
// if num_rows is not 0, there are dependent records
if ($stmt->num_rows) {
 $error = 'That record has dependent files in a child table, and cannot be deleted.';
} else {
 $sql = 'DELETE FROM images WHERE image_id = ?';
 $stmt->prepare($sql);
 $stmt->bind_param('i', $_POST['image_id']);
 $stmt->execute();
}

CHAPTER 16

458

Chapter review
Once you have learned basic SQL and the PHP commands to communicate with a database, working with

single tables is very easy. Linking tables through foreign keys, however, can be quite challenging. The

power of a relational database comes from its sheer flexibility. The problem is that this infinite flexibility

means there is no single “right” way of doing things.

Don t let this put you off, though. Your instinct may be to stick with single tables, but down that route lies

even greater complexity. The key to making it easy to work with databases is to limit your ambitions in the

early stages. Build simple structures like the one in this chapter, experiment with them, and get to know how

they work. Add tables and foreign key links gradually. People with a lot of experience working with databases

say they frequently spend more than half the development time just thinking about the table structure. After

that, the coding is the easy bit!

In the final chapter, we move back to working with a single table—addressing the important subject of user

authentication with a database and how to handle encrypted passwords.

459

Chapter 17

Authenticating Users with a Database

Chapter 9 showed you the principles of user authentication and sessions to password protect parts of

your website, but the login scripts all relied on usernames and passwords stored in text files. Keeping user

details in a database is both more secure and more efficient. Instead of just storing a list of usernames

and passwords, a database can store other details, such as first name, family name, email address, and

so on. MySQL also gives you the option of using either one- or two-way encryption. In the first section of

this chapter, we ll examine the difference between the two. Then you ll create registration and login scripts

for both types of encryption.

What this chapter contains:

• Deciding how to encrypt passwords

• Using one-way encryption for user registration and login

• Using two-way encryption for user registration and login

• Decrypting passwords

Choosing an encryption method
The PHP solutions in Chapter 9 use the SHA-1 encryption algorithm. It offers a high level of security,

particularly if used in conjunction with a salt (a random value that s added to make decryption harder).

SHA-1 is a one-way encryption method: once a password has been encrypted, there s no way of

converting it back to plain text. This is both an advantage and a disadvantage. It offers the user greater

security because passwords encrypted this way remain secret. However, there s no way of reissuing a

lost password, since not even the site administrator can decrypt it. The only solution is to issue the user a

temporary new password, and ask the user to reset it.

The alternative is to use two-way encryption, which relies on a pair of functions: one to encrypt the

password and another to convert it back to plain text, making it easy to reissue passwords to forgetful

users. Two-way encryption uses a secret key that is passed to both functions to perform the conversion.

The key is simply a string that you make up yourself. Obviously, to keep the data secure, the key needs to

be sufficiently difficult to guess and should never be stored in the database. However, you need to embed

CHAPTER 17

460

the key in your registration and login scripts—either directly or through an include file—so if your scripts

are ever exposed, your security is blown wide apart. MySQL offers a number of two-way encryption

functions, but AES_ENCRYPT() is considered the most secure. It uses the Advanced Encryption Standard

with a 128-bit key length (AES-128) approved by the U.S. government for the protection of classified

material up to the SECRET level (TOP SECRET material requires AES-192 or AES-256).

Both one-way and two-way encryption have advantages and disadvantages. Many security experts

recommend that passwords should be changed frequently. So, forcing a user to change a forgotten

password because it can t be decrypted could be regarded as a good security measure. On the other

hand, users are likely to be frustrated by the need to deal with a new password each time they forget the

existing one. I ll leave it to you to decide which approach is best suited to your circumstances, and I ll

concentrate solely on the technical implementation.

Using one-way encryption
In the interests of keeping things simple, I m going to use the same basic forms as in Chapter 9, so only

the username, salt, and encrypted password are stored in the database.

Creating a table to store users details

In phpMyAdmin, create a new table called users in the phpsols database. The table needs four columns

(fields) with the settings listed in Table 17-1.

Table 17-1. Settings for the users table

Field Type Length/Values Attributes Null Index A_I

user_id INT UNSIGNED Deselected PRIMARY Selected

username VARCHAR 15 Deselected UNIQUE

salt INT UNSIGNED Deselected

pwd CHAR 40 Deselected

To ensure no one can register the same username as one that s already in use, the username column is

given an UNIQUE index.

In Chapter 9, the username doubled as the salt, but storing the details in a database means that you can

choose something more unique and difficult to guess. Although a Unix timestamp follows a predictable

pattern, it changes every second. So even if an attacker knows the day on which a user registered, there

are 86,400 possible values for the salt, which would need to be combined with every attempt to guess the

password. So the salt column needs to store an integer (INT).

The pwd column, which is where the encrypted password is stored, needs to be 40 characters long

because the SHA-1 algorithm always produces an alphanumeric string of that length. It s a fixed length, so

CHAR is used in preference to VARCHAR. The CHAR data type is more efficient when dealing with fixed-length

strings.

AUTHENTICATING USERS WITH A DATABASE

461

Registering new users in the database

To register users in the database, you need to create a registration form that asks for a username and

password. The processing script needs to validate the user input before inserting it in the database.

MySQL returns an error if an attempt is made to insert a username that s already in use because the

username column has been defined with a UNIQUE index. The script needs to detect the error and advise

the user to choose a different username.

PHP Solution 17-1: Creating a user registration form

This PHP solution shows how to adapt the registration script from Chapter 9 to work with MySQL. It uses

the Ps2_CheckPassword class from PHP Solution 9-6 and register_user_text.php from PHP Solution

9-7. If necessary, copy CheckPassword.php from the classes/completed folder to the classes/Ps2

folder, and use a copy of register_user_text.inc_02.php from the ch09 folder in place of

register_user_text.php. You should also read the instructions in PHP Solutions 9-6 and 9-7 to

understand how the original scripts work.

1. Copy register_db.php from the ch17 folder to a new folder called authenticate in the

phpsols site root. The page contains the same basic user registration form as in Chapter 9

with a text input field for the username, a password field, another password field for

confirmation, and a button to submit the data, as shown in the following screenshot.

2. Add the following code in a PHP block above the DOCTYPE declaration:

 if (isset($_POST['register'])) {
 $username = trim($_POST['username']);
 $password = trim($_POST['pwd']);
 $retyped = trim($_POST['conf_pwd']);
 require_once('../includes/register_user_mysqli.inc.php');
 }

This is very similar to the code in PHP Solution 9-7. If the form has been submitted, the user

input is stripped of leading and trailing whitespace and assigned to simple variables. Then, an

CHAPTER 17

462

external file called register_user_mysqli.inc.php is included. If you plan to use PDO,

name the include file register_user_pdo.inc.php instead.

3. The file that processes the user input is based on register_user_text.inc.php, which you

created in Chapter 9. Make a copy of your original file, and save it in the includes folder as

register_user_mysqli.inc.php or register_user_pdo.inc.php.

Alternatively, copy register_user_text_02.php from the ch09 folder to the includes

folder, and save it as register_user_mysqli.inc.php or register_user_pdo.inc.php.

4. In the file you have just copied and renamed, locate the conditional statement that begins like

this (around line 22):

 if (!$errors) {
 // encrypt password, using username as salt
 $password = sha1($username.$password);

Delete all the code inside the conditional statement (from line 23 to the line before the end).

The contents of the file should now look like this:

 require_once('../classes/Ps2/CheckPassword.php');
 $usernameMinChars = 6;
 $errors = array();
 if (strlen($username) < $usernameMinChars) {
 $errors[] = "Username must be at least $usernameMinChars characters.";
 }
 if (preg_match('/\s/', $username)) {
 $errors[] = 'Username should not contain spaces.';
 }
 $checkPwd = new Ps2_CheckPassword($password, 10);
 $checkPwd->requireMixedCase();
 $checkPwd->requireNumbers(2);
 $checkPwd->requireSymbols();
 $passwordOK = $checkPwd->check();
 if (!$passwordOK) {
 $errors = array_merge($errors, $checkPwd->getErrors());
 }
 if ($password != $retyped) {
 $errors[] = "Your passwords don't match.";
 }
 if (!$errors) {

 }

It doesn t matter if your script uses different values for $usernameMinChars and for the

password strength settings.

5. The code that inserts the user s details in the database goes inside the empty conditional

statement at the bottom of the script. Begin by including the database connection file and

creating a connection with read and write privileges.

AUTHENTICATING USERS WITH A DATABASE

463

 if (!$errors) {
 // include the connection file
 require_once('connection.inc.php');
 $conn = dbConnect('write');
 }

The connection file is also in the includes folder, so you need only the filename.

For PDO, add 'pdo' as the second argument to dbConnect().

6. Next, use the time() function to get the current timestamp and assign it to $salt. Then

concatenate the salt to the user-submitted password and encrypt them with the sha1()
function. Amend the code like this:

 if (!$errors) {
 // include the connection file
 require_once('connection.inc.php');
 $conn = dbConnect('write');
 // create a salt using the current timestamp
 $salt = time();
 // encrypt the password and salt
 $pwd = sha1($password . $salt);
 }

7. The final section of the code prepares and executes the prepared statement to insert the

user s details in the database. Because the username column has a UNIQUE index, the query

fails if the username already exists. If that happens, the code needs to generate an error

message. The code is different for MySQLi and PDO.

For MySQLi, add the code highlighted in bold:

 if (!$errors) {
 // include the connection file
 require_once('connection.inc.php');
 $conn = dbConnect('write');
 // create a salt using the current timestamp
 $salt = time();
 // encrypt the password and salt
 $pwd = sha1($password . $salt);
 // prepare SQL statement
 $sql = 'INSERT INTO users (username, salt, pwd)
 VALUES (?, ?, ?)';
 $stmt = $conn->stmt_init();
 $stmt = $conn->prepare($sql);
 // bind parameters and insert the details into the database
 $stmt->bind_param('sis', $username, $salt, $pwd);
 $stmt->execute();
 if ($stmt->affected_rows == 1) {
 $success = "$username has been registered. You may now log in.";
 } elseif ($stmt->errno == 1062) {
 $errors[] = "$username is already in use. Please choose another

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 17

464

 username.";
 } else {
 $errors[] = 'Sorry, there was a problem with the database.';
 }
 }

The new code begins by binding the parameters to the prepared statement. The username and

password are strings, but the salt is an integer, so the first argument to bind_param() is

'sis' (see “Embedding variables in MySQLi prepared statements” in Chapter 11) After the

statement has been executed, the conditional statement checks the value of the

affected_rows property. If it s 1, the details have been inserted successfully.

You need to check the value of affected_rows explicitly because it s –1 if there s an error. Unlike

some programming languages, PHP treats –1 as true.

The alternative condition checks the value of the prepared statement s errno property, which

contains the MySQL error code. The code for a duplicate value in a column with a UNIQUE

index is 1062. If that error code is detected, an error message is added to the $errors array

asking the user to choose a different username. If a different error code is generated, a

generic error message is added to the $errors array instead.

The PDO version looks like this:

 if (!$errors) {
 // include the connection file
 require_once('connection.inc.php');
 $conn = dbConnect('write', 'pdo');
 // create a salt using the current timestamp
 $salt = time();
 // encrypt the password and salt
 $pwd = sha1($password . $salt);
 // prepare SQL statement
 $sql = 'INSERT INTO users (username, salt, pwd)
 VALUES (:username, :salt, :pwd)';
 $stmt = $conn->prepare($sql);
 // bind parameters and insert the details into the database
 $stmt->bindParam(':username', $username, PDO::PARAM_STR);
 $stmt->bindParam(':salt', $salt, PDO::PARAM_INT);
 $stmt->bindParam(':pwd', $pwd, PDO::PARAM_STR);
 $stmt->execute();
 if ($stmt->rowCount() == 1) {
 $success = "$username has been registered. You may now log in.";
 } elseif ($stmt->errorCode() == 23000) {
 $errors[] = "$username is already in use. Please choose another
 username.";
 } else {
 $errors[] = 'Sorry, there was a problem with the database.';

AUTHENTICATING USERS WITH A DATABASE

465

 }
 }

The prepared statement uses named parameters, which are bound to it by the bindParam()

method, specifying the data type as string for the username and pwd columns, and as integer

for salt. After the statement has been executed, the conditional statement uses the

rowCount() method to check if the record has been created.

If the prepared statement fails because the username already exists, the value generated by

the errorCode() method is 23000. As noted in the previous chapter, PDO uses error codes

defined by the ANSI SQL standard instead of those generated by MySQL. If the error code

matches, a message is added to the $errors array asking the user to choose a different

username. Otherwise, a generic error message is used.

8. All that remains is to add the code that displays the outcome in the registration page. Add the

following code just before the opening <form> tag in register_db.php:

 <h1>Register user</h1>
 <?php
 if (isset($success)) {
 echo "<p>$success</p>";
 } elseif (isset($errors) && !empty($errors)) {
 echo '';
 foreach ($errors as $error) {
 echo "$error";
 }
 echo '';
 }
 ?>
 <form id="form1" method="post" action="">

9. Save register_db.php, and load it in a browser. Test it by entering input that you know

breaks the rules. If you make multiple mistakes in the same attempt, a bulleted list of error

messages should appear at the top of the form, as shown in the next screenshot.

CHAPTER 17

466

10. Now fill in the registration form correctly. You should see a message telling you that an

account has been created for the username you chose.

11. Try registering the same username again. This time you should get a message similar to the

one shown in the following screenshot:

12. Check your code, if necessary, against register_db_mysqli.php and

register_user_mysqli.inc.php, or register_db_pdo.php and

register_user_pdo.inc.php in the ch17 folder.

Now that you have a username and password registered in the database, you need to create a login script.

The ch17 folder contains a set of files that replicates the setup in PHP Solution 9-9: a login page and two

password protected pages.

PHP Solution 17-2: Authenticating a user s credentials with a database

This PHP solution shows how to authenticate a user s credentials stored in a database. It involves

querying the database to find the username s salt and stored password and then encrypting the submitted

password with the salt. If the result matches the stored password, the user is redirected to a restricted

page.

1. Copy login_db.php, menu_db.php, and secretpage_db.php from the ch17 folder to the

authenticate folder. Also copy logout_db.inc.php and session_timeout_db.inc.php

from the ch17 folder to the includes folder.

This sets up the same basic test platform as in Chapter 9. The only difference is that the links

have been changed to redirect to the authenticate folder.

2. In login_db.php add the following code in a PHP block above the DOCTYPE declaration:

 $error = '';
 if (isset($_POST['login'])) {
 session_start();
 $username = trim($_POST['username']);
 $password = trim($_POST['pwd']);
 // location to redirect on success
 $redirect = 'http://localhost/phpsols/authenticate/menu_db.php';
 require_once('../includes/authenticate_mysqli.inc.php');
 }

http://localhost/phpsols/authenticate/menu_db.php

AUTHENTICATING USERS WITH A DATABASE

467

This follows a similar pattern to the code in the login form in Chapter 9. It begins by initializing

$error as an empty string. The conditional statement initiates a session if the form has been

submitted. Whitespace is trimmed from the user input fields, and the location of the page the

user will be redirected to on success is stored in a variable. Finally, the authentication script,

which you ll build next, is included.

If you re using PDO, use authenticate_pdo.inc.php as the processing script.

3. Create a new file called authenticate_mysqli.inc.php or authenticate_pdo.inc.php,

and save it in the includes folder. The file will contain only PHP script, so strip out any HTML

markup.

4. Include the database connection file, create a connection to the database with the read-only

account, and use a prepared statement to fetch the user s details.

For MySQLi use the following code:

 <?php
 require_once('connection.inc.php');
 $conn = dbConnect('read');
 // get the username's details from the database
 $sql = 'SELECT salt, pwd FROM users WHERE username = ?';
 // initialize and prepare statement
 $stmt = $conn->stmt_init();
 $stmt->prepare($sql);
 // bind the input parameter
 $stmt->bind_param('s', $username);
 // bind the result, using a new variable for the password
 $stmt->bind_result($salt, $storedPwd);
 $stmt->execute();
 $stmt->fetch();

This is a fairly straightforward SELECT query using a MySQLi prepared statement. The

username is a string, so the first argument to bind_param() is 's'. The results of the query

are bound to $salt and $storedPwd. You need to use a new variable for the stored password

to avoid overwriting the password submitted by the user.

After the statement has been executed, the fetch() method gets the result.

For PDO, use the following code instead:

 <?php
 require_once('connection.inc.php');
 $conn = dbConnect('read', 'pdo');
 // get the username's details from the database
 $sql = 'SELECT salt, pwd FROM users WHERE username = :username';
 // prepare statement
 $stmt = $conn->prepare($sql);
 // bind the input parameter
 $stmt->bindParam(':username', $username, PDO::PARAM_STR);
 // bind the result, using a new variable for the password

CHAPTER 17

468

 $stmt->bindColumn(1, $salt);
 $stmt->bindColumn(2, $storedPwd);
 $stmt->execute();
 $stmt->fetch();

This code does the same as the MySQLi version, but using PDO syntax.

5. Once you have retrieved the username s details, you need to encrypt the password entered by

the user by combining it with the salt and passing them both to sha1(). You can then compare

the result to the stored version of the password, which was similarly encrypted at the time of

registration.

If they match, create the session variables to indicate a successful login and the time the

session began, regenerate the session ID, and redirect to the restricted page. Otherwise,

store an error message in $error.

Insert the following code after the code you entered in the preceding step. It s the same for

both MySQLi and PDO.

 // encrypt the submitted password with the salt
 // and compare with stored password
 if (sha1($password . $salt) == $storedPwd) {
 $_SESSION['authenticated'] = 'Jethro Tull';
 // get the time the session started
 $_SESSION['start'] = time();
 session_regenerate_id();
 header("Location: $redirect");
 exit;
 } else {
 // if no match, prepare error message
 $error = 'Invalid username or password';
 }

As in Chapter 9, the value of $_SESSION['authenticated'] is of no real importance.

6. Save authenticate_mysqli.inc.php or authenticate_pdo.inc.php, and test

login_db.php by logging in with the username and password that you registered at the end of

PHP Solution 17-1. The login process should work in exactly the same way as Chapter 9. The

difference is that all the details are stored more securely in a database, and each user has a

unique and probably unguessable salt.

You can check your code, if necessary, against login_mysqli.php and

authenticate_mysqli.inc.php, or login_pdo.php and authenticate_pdo.inc.php in the

ch17 folder. If you encounter problems, use echo to display the values of the freshly

encrypted password and the stored version. The most common mistake is creating too narrow

a column for the encrypted password in the database. It must be 40 characters wide.

AUTHENTICATING USERS WITH A DATABASE

469

Although storing an encrypted password in a database is more secure than using a text file, the password

is sent from the user s browser to the server in plain, unencrypted text. This is adequate for most

websites, but if you need a high level of security, the login and access to subsequent pages should be

made through a Secure Sockets Layer (SSL) connection.

Using two-way encryption
The main differences in setting up user registration and authentication for two-way encryption are that the

password needs to be stored in the database as a binary object using the BLOB data type (see “Storing

binary data” in Chapter 10 for more information), and that the comparison between the encrypted

passwords takes place in the SQL query, rather than in the PHP script. Although you can use a salt with

the password, doing so involves querying the database twice when logging in: first to retrieve the salt and

then to verify the password with the salt. To keep things simple, I ll show you how to implement two-way

encryption without a salt.

Creating the table to store users details

In phpMyAdmin, create a new table called users_2way in the phpsols database. It needs three columns

(fields) with the settings listed in Table 17-2.

Table 17-2. Settings for the users_2way table

Field Type Length/Values Attributes Null Index A_I

user_id INT UNSIGNED Deselected PRIMARY Selected

username VARCHAR 15 Deselected UNIQUE

pwd BLOB Deselected

Registering new users

The MySQL AES_ENCRYPT() function takes two arguments: the value to be encrypted and an encryption

key. The encryption key can be any string of characters you choose. For the purposes of this example, I

have chosen takeThisWith@PinchOfSalt, but a random series of alphanumeric characters and symbols

would be more secure.

The basic registration scripts for one-way and two-way encryption are the same. The only difference lies in

the section that inserts the user s data into the database.

The following scripts embed the encryption key directly in the page. If you have a private folder

outside the server root, it s a good idea to define the key in an include file and store it in your private

folder.

The code for MySQLi looks like this (it s in register_2way_mysqli.inc.php in the ch17 folder):

CHAPTER 17

470

if (!$errors) {
 // include the connection file
 require_once('connection.inc.php');
 $conn = dbConnect('write');
 // create a key
 $key = 'takeThisWith@PinchOfSalt';
 // prepare SQL statement
 $sql = 'INSERT INTO users_2way (username, pwd)
 VALUES (?, AES_ENCRYPT(?, ?))';
 $stmt = $conn->stmt_init();
 $stmt = $conn->prepare($sql);
 // bind parameters and insert the details into the database
 $stmt->bind_param('sss', $username, $password, $key);
 $stmt->execute();
 if ($stmt->affected_rows == 1) {
 $success = "$username has been registered. You may now log in.";
 } elseif ($stmt->errno == 1062) {
 $errors[] = "$username is already in use. Please choose another username.";
 } else {
 $errors[] = 'Sorry, there was a problem with the database.';
 }
}

For PDO, it looks like this (see register_2way_pdo.inc.php in the ch16 folder):

if (!$errors) {
 // include the connection file
 require_once('connection.inc.php');
 $conn = dbConnect('write', 'pdo');
 // create a key
 $key = 'takeThisWith@PinchOfSalt';
 // prepare SQL statement
 $sql = 'INSERT INTO users_2way (username, pwd)
 VALUES (:username, AES_ENCRYPT(:pwd, :key))';
 $stmt = $conn->prepare($sql);
 // bind parameters and insert the details into the database
 $stmt->bindParam(':username', $username, PDO::PARAM_STR);
 $stmt->bindParam(':pwd', $password, PDO::PARAM_STR);
 $stmt->bindParam(':key', $key, PDO::PARAM_STR);
 $stmt->execute();
 if ($stmt->rowCount() == 1) {
 $success = "$username has been registered. You may now log in.";
 } elseif ($stmt->errorCode() == 23000) {
 $errors[] = "$username is already in use. Please choose another username.";
 } else {
 $errors[] = 'Sorry, there was a problem with the database.';
 }
}

AUTHENTICATING USERS WITH A DATABASE

471

Strictly speaking, it s not necessary to use a bound parameter for $key, because it doesn t come from

user input. If you embed it directly in the query, the whole query needs to be wrapped in double quotes,

and $key needs to be in single quotes.

User authentication with two-way encryption

Creating a login page with two-way encryption is very simple. After connecting to the database, you

incorporate the username, secret key, and unencrypted password in the WHERE clause of a SELECT query.

If the query finds a match, the user is allowed into the restricted part of the site. If there s no match, the

login is rejected. The code is the same as in PHP Solution 17-2, except for the following section.

For MySQLi, it looks like this (see authenticate_2way_mysqli.inc.php for the full listing—this shows

only the sections that are different):

$conn = dbConnect('read');
// create key
$key = 'takeThisWith@PinchOfSalt';
$sql = 'SELECT username FROM users_2way
 WHERE username = ? AND pwd = AES_ENCRYPT(?, ?)';
// initialize and prepare statement
$stmt = $conn->stmt_init();
$stmt->prepare($sql);
// bind the input parameters
$stmt->bind_param('sss', $username, $password, $key);
$stmt->execute();
// store the result
$stmt->store_result();
// if a match is found, num_rows is 1, which is treated as true
if ($stmt->num_rows) {
 $_SESSION['authenticated'] = 'Jethro Tull';

Note that you need to store the result of the prepared statement before you can access the num_rows

property. If you fail to do this, num_rows will always be 0, and the login will fail even if the username and

password are correct.

The revised code for PDO looks like this (see authenticate_2way_pdo.inc.php for the full listing—this

shows only the sections that are different):

$conn = dbConnect('read', 'pdo');
// create key
$key = 'takeThisWith@PinchOfSalt';
$sql = 'SELECT username FROM users_2way
 WHERE username = ? AND pwd = AES_ENCRYPT(?, ?)';
// prepare statement
$stmt = $conn->prepare($sql);
// bind variables when executing statement
$stmt->execute(array($username, $password, $key));
// if a match is found, rowCount() produces 1, which is treated as true
if ($stmt->rowCount()) {
 $_SESSION['authenticated'] = 'Jethro Tull';

CHAPTER 17

472

Decrypting a password

Decrypting a password encrypted with two-way encryption simply involves passing the secret key as the

second argument to AES_DECRYPT() in a prepared statement like this:

$key = 'takeThisWith@PinchOfSalt';
$sql = "SELECT AES_DECRYPT(pwd, '$key') AS pwd
 FROM users_2way
 WHERE username = ?";

The key must be exactly the same as the one originally used to encrypt the password. If you lose the key,

the passwords remain as inaccessible as those stored using one-way encryption.

Normally, the only time you need to decrypt a password is when a user requests a password reminder.

Creating the appropriate security policy for sending out such reminders depends a great deal on the type

of site that you re operating. However, it goes without saying that you shouldn t display the decrypted

password onscreen. You need to set up a series of security checks, such as asking for the user s date of

birth or mother s maiden name, or posing a question whose answer only the user is likely to know. Even if

the user gets the answer right, you should send the password by email to the user s registered address.

All the necessary knowledge should be at your fingertips if you have succeeded in getting this far in this

book.

Updating user details
I haven t included any update forms for the user registration pages. It s a task that you should be able to

accomplish by yourself at this stage. The most important point about updating user registration details is

that you should not display the user s existing password in the update form. If you re using one-way

encryption, you can t anyway.

Where next?
This book has covered a massive amount of ground. If you master all the techniques covered here, you

are well on your way to becoming an intermediate PHP developer, and with a little more effort, you will enter

the advanced level. If it s been a struggle, don t worry. Go over the earlier chapters again. The more you

practice, the easier it becomes.

You re probably thinking, “How on earth can I remember all this?” You don t need to. Don t be ashamed to

look things up. Bookmark the PHP online manual (http://docs.php.net/manual/en/), and use it

regularly. It s constantly updated, and it has lots of useful examples. Type a function name into the

search box at the top right of every page (as shown in the following screenshot), and it takes you straight

to a full description of that function. Even if you can t remember the correct function name, it takes you to

a page that suggests the most likely candidates. Most pages have practical examples showing how the

function or class is used.

http://docs.php.net/manual/en/

AUTHENTICATING USERS WITH A DATABASE

473

What makes dynamic web design easy is not an encyclopedic knowledge of PHP functions and classes

but a solid grasp of how conditional statements, loops, and other structures control the flow of a script.

Once you can visualize your projects in terms of “if this happens, what should happen next?” you re the

master of your own game. I consult the PHP online manual many times a day. To me, it s like a dictionary.

Most of the time, I just want to check that I have the arguments in the right order, but I often find that

something catches my eye and opens up new horizons. I may not use that knowledge immediately, but I

store it at the back of my mind for future use and go back when I need to check the details.

The MySQL online manual (http://dev.mysql.com/doc/refman/5.1/en/index.html) is equally

useful. Make both the PHP and MySQL online manuals your friends, and your knowledge will grow by leaps

and bounds.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://dev.mysql.com/doc/refman/5.1/en/index.html

CHAPTER 17

474

459

Chapter 17

Authenticating Users with a Database

Chapter 9 showed you the principles of user authentication and sessions to password protect parts of

your website, but the login scripts all relied on usernames and passwords stored in text files. Keeping user

details in a database is both more secure and more efficient. Instead of just storing a list of usernames

and passwords, a database can store other details, such as first name, family name, email address, and

so on. MySQL also gives you the option of using either one- or two-way encryption. In the first section of

this chapter, we ll examine the difference between the two. Then you ll create registration and login scripts

for both types of encryption.

What this chapter contains:

• Deciding how to encrypt passwords

• Using one-way encryption for user registration and login

• Using two-way encryption for user registration and login

• Decrypting passwords

Choosing an encryption method
The PHP solutions in Chapter 9 use the SHA-1 encryption algorithm. It offers a high level of security,

particularly if used in conjunction with a salt (a random value that s added to make decryption harder).

SHA-1 is a one-way encryption method: once a password has been encrypted, there s no way of

converting it back to plain text. This is both an advantage and a disadvantage. It offers the user greater

security because passwords encrypted this way remain secret. However, there s no way of reissuing a

lost password, since not even the site administrator can decrypt it. The only solution is to issue the user a

temporary new password, and ask the user to reset it.

The alternative is to use two-way encryption, which relies on a pair of functions: one to encrypt the

password and another to convert it back to plain text, making it easy to reissue passwords to forgetful

users. Two-way encryption uses a secret key that is passed to both functions to perform the conversion.

The key is simply a string that you make up yourself. Obviously, to keep the data secure, the key needs to

be sufficiently difficult to guess and should never be stored in the database. However, you need to embed

CHAPTER 17

460

the key in your registration and login scripts—either directly or through an include file—so if your scripts

are ever exposed, your security is blown wide apart. MySQL offers a number of two-way encryption

functions, but AES_ENCRYPT() is considered the most secure. It uses the Advanced Encryption Standard

with a 128-bit key length (AES-128) approved by the U.S. government for the protection of classified

material up to the SECRET level (TOP SECRET material requires AES-192 or AES-256).

Both one-way and two-way encryption have advantages and disadvantages. Many security experts

recommend that passwords should be changed frequently. So, forcing a user to change a forgotten

password because it can t be decrypted could be regarded as a good security measure. On the other

hand, users are likely to be frustrated by the need to deal with a new password each time they forget the

existing one. I ll leave it to you to decide which approach is best suited to your circumstances, and I ll

concentrate solely on the technical implementation.

Using one-way encryption
In the interests of keeping things simple, I m going to use the same basic forms as in Chapter 9, so only

the username, salt, and encrypted password are stored in the database.

Creating a table to store users details

In phpMyAdmin, create a new table called users in the phpsols database. The table needs four columns

(fields) with the settings listed in Table 17-1.

Table 17-1. Settings for the users table

Field Type Length/Values Attributes Null Index A_I

user_id INT UNSIGNED Deselected PRIMARY Selected

username VARCHAR 15 Deselected UNIQUE

salt INT UNSIGNED Deselected

pwd CHAR 40 Deselected

To ensure no one can register the same username as one that s already in use, the username column is

given an UNIQUE index.

In Chapter 9, the username doubled as the salt, but storing the details in a database means that you can

choose something more unique and difficult to guess. Although a Unix timestamp follows a predictable

pattern, it changes every second. So even if an attacker knows the day on which a user registered, there

are 86,400 possible values for the salt, which would need to be combined with every attempt to guess the

password. So the salt column needs to store an integer (INT).

The pwd column, which is where the encrypted password is stored, needs to be 40 characters long

because the SHA-1 algorithm always produces an alphanumeric string of that length. It s a fixed length, so

CHAR is used in preference to VARCHAR. The CHAR data type is more efficient when dealing with fixed-length

strings.

AUTHENTICATING USERS WITH A DATABASE

461

Registering new users in the database

To register users in the database, you need to create a registration form that asks for a username and

password. The processing script needs to validate the user input before inserting it in the database.

MySQL returns an error if an attempt is made to insert a username that s already in use because the

username column has been defined with a UNIQUE index. The script needs to detect the error and advise

the user to choose a different username.

PHP Solution 17-1: Creating a user registration form

This PHP solution shows how to adapt the registration script from Chapter 9 to work with MySQL. It uses

the Ps2_CheckPassword class from PHP Solution 9-6 and register_user_text.php from PHP Solution

9-7. If necessary, copy CheckPassword.php from the classes/completed folder to the classes/Ps2

folder, and use a copy of register_user_text.inc_02.php from the ch09 folder in place of

register_user_text.php. You should also read the instructions in PHP Solutions 9-6 and 9-7 to

understand how the original scripts work.

1. Copy register_db.php from the ch17 folder to a new folder called authenticate in the

phpsols site root. The page contains the same basic user registration form as in Chapter 9

with a text input field for the username, a password field, another password field for

confirmation, and a button to submit the data, as shown in the following screenshot.

2. Add the following code in a PHP block above the DOCTYPE declaration:

 if (isset($_POST['register'])) {
 $username = trim($_POST['username']);
 $password = trim($_POST['pwd']);
 $retyped = trim($_POST['conf_pwd']);
 require_once('../includes/register_user_mysqli.inc.php');
 }

This is very similar to the code in PHP Solution 9-7. If the form has been submitted, the user

input is stripped of leading and trailing whitespace and assigned to simple variables. Then, an

CHAPTER 17

462

external file called register_user_mysqli.inc.php is included. If you plan to use PDO,

name the include file register_user_pdo.inc.php instead.

3. The file that processes the user input is based on register_user_text.inc.php, which you

created in Chapter 9. Make a copy of your original file, and save it in the includes folder as

register_user_mysqli.inc.php or register_user_pdo.inc.php.

Alternatively, copy register_user_text_02.php from the ch09 folder to the includes

folder, and save it as register_user_mysqli.inc.php or register_user_pdo.inc.php.

4. In the file you have just copied and renamed, locate the conditional statement that begins like

this (around line 22):

 if (!$errors) {
 // encrypt password, using username as salt
 $password = sha1($username.$password);

Delete all the code inside the conditional statement (from line 23 to the line before the end).

The contents of the file should now look like this:

 require_once('../classes/Ps2/CheckPassword.php');
 $usernameMinChars = 6;
 $errors = array();
 if (strlen($username) < $usernameMinChars) {
 $errors[] = "Username must be at least $usernameMinChars characters.";
 }
 if (preg_match('/\s/', $username)) {
 $errors[] = 'Username should not contain spaces.';
 }
 $checkPwd = new Ps2_CheckPassword($password, 10);
 $checkPwd->requireMixedCase();
 $checkPwd->requireNumbers(2);
 $checkPwd->requireSymbols();
 $passwordOK = $checkPwd->check();
 if (!$passwordOK) {
 $errors = array_merge($errors, $checkPwd->getErrors());
 }
 if ($password != $retyped) {
 $errors[] = "Your passwords don't match.";
 }
 if (!$errors) {

 }

It doesn t matter if your script uses different values for $usernameMinChars and for the

password strength settings.

5. The code that inserts the user s details in the database goes inside the empty conditional

statement at the bottom of the script. Begin by including the database connection file and

creating a connection with read and write privileges.

AUTHENTICATING USERS WITH A DATABASE

463

 if (!$errors) {
 // include the connection file
 require_once('connection.inc.php');
 $conn = dbConnect('write');
 }

The connection file is also in the includes folder, so you need only the filename.

For PDO, add 'pdo' as the second argument to dbConnect().

6. Next, use the time() function to get the current timestamp and assign it to $salt. Then

concatenate the salt to the user-submitted password and encrypt them with the sha1()

function. Amend the code like this:

 if (!$errors) {
 // include the connection file
 require_once('connection.inc.php');
 $conn = dbConnect('write');
 // create a salt using the current timestamp
 $salt = time();
 // encrypt the password and salt
 $pwd = sha1($password . $salt);
 }

7. The final section of the code prepares and executes the prepared statement to insert the

user s details in the database. Because the username column has a UNIQUE index, the query

fails if the username already exists. If that happens, the code needs to generate an error

message. The code is different for MySQLi and PDO.

For MySQLi, add the code highlighted in bold:

 if (!$errors) {
 // include the connection file
 require_once('connection.inc.php');
 $conn = dbConnect('write');
 // create a salt using the current timestamp
 $salt = time();
 // encrypt the password and salt
 $pwd = sha1($password . $salt);
 // prepare SQL statement
 $sql = 'INSERT INTO users (username, salt, pwd)
 VALUES (?, ?, ?)';
 $stmt = $conn->stmt_init();
 $stmt = $conn->prepare($sql);
 // bind parameters and insert the details into the database
 $stmt->bind_param('sis', $username, $salt, $pwd);
 $stmt->execute();
 if ($stmt->affected_rows == 1) {
 $success = "$username has been registered. You may now log in.";
 } elseif ($stmt->errno == 1062) {
 $errors[] = "$username is already in use. Please choose another

CHAPTER 17

464

 username.";
 } else {
 $errors[] = 'Sorry, there was a problem with the database.';
 }
 }

The new code begins by binding the parameters to the prepared statement. The username and

password are strings, but the salt is an integer, so the first argument to bind_param() is

'sis' (see “Embedding variables in MySQLi prepared statements” in Chapter 11) After the

statement has been executed, the conditional statement checks the value of the

affected_rows property. If it s 1, the details have been inserted successfully.

You need to check the value of affected_rows explicitly because it s –1 if there s an error. Unlike

some programming languages, PHP treats –1 as true.

The alternative condition checks the value of the prepared statement s errno property, which

contains the MySQL error code. The code for a duplicate value in a column with a UNIQUE

index is 1062. If that error code is detected, an error message is added to the $errors array

asking the user to choose a different username. If a different error code is generated, a

generic error message is added to the $errors array instead.

The PDO version looks like this:

 if (!$errors) {
 // include the connection file
 require_once('connection.inc.php');
 $conn = dbConnect('write', 'pdo');
 // create a salt using the current timestamp
 $salt = time();
 // encrypt the password and salt
 $pwd = sha1($password . $salt);
 // prepare SQL statement
 $sql = 'INSERT INTO users (username, salt, pwd)
 VALUES (:username, :salt, :pwd)';
 $stmt = $conn->prepare($sql);
 // bind parameters and insert the details into the database
 $stmt->bindParam(':username', $username, PDO::PARAM_STR);
 $stmt->bindParam(':salt', $salt, PDO::PARAM_INT);
 $stmt->bindParam(':pwd', $pwd, PDO::PARAM_STR);
 $stmt->execute();
 if ($stmt->rowCount() == 1) {
 $success = "$username has been registered. You may now log in.";
 } elseif ($stmt->errorCode() == 23000) {
 $errors[] = "$username is already in use. Please choose another
 username.";
 } else {
 $errors[] = 'Sorry, there was a problem with the database.';

AUTHENTICATING USERS WITH A DATABASE

465

 }
 }

The prepared statement uses named parameters, which are bound to it by the bindParam()

method, specifying the data type as string for the username and pwd columns, and as integer

for salt. After the statement has been executed, the conditional statement uses the

rowCount() method to check if the record has been created.

If the prepared statement fails because the username already exists, the value generated by

the errorCode() method is 23000. As noted in the previous chapter, PDO uses error codes

defined by the ANSI SQL standard instead of those generated by MySQL. If the error code

matches, a message is added to the $errors array asking the user to choose a different

username. Otherwise, a generic error message is used.

8. All that remains is to add the code that displays the outcome in the registration page. Add the

following code just before the opening <form> tag in register_db.php:

 <h1>Register user</h1>
 <?php
 if (isset($success)) {
 echo "<p>$success</p>";
 } elseif (isset($errors) && !empty($errors)) {
 echo '';
 foreach ($errors as $error) {
 echo "$error";
 }
 echo '';
 }
 ?>
 <form id="form1" method="post" action="">

9. Save register_db.php, and load it in a browser. Test it by entering input that you know

breaks the rules. If you make multiple mistakes in the same attempt, a bulleted list of error

messages should appear at the top of the form, as shown in the next screenshot.

CHAPTER 17

466

10. Now fill in the registration form correctly. You should see a message telling you that an

account has been created for the username you chose.

11. Try registering the same username again. This time you should get a message similar to the

one shown in the following screenshot:

12. Check your code, if necessary, against register_db_mysqli.php and

register_user_mysqli.inc.php, or register_db_pdo.php and

register_user_pdo.inc.php in the ch17 folder.

Now that you have a username and password registered in the database, you need to create a login script.

The ch17 folder contains a set of files that replicates the setup in PHP Solution 9-9: a login page and two

password protected pages.

PHP Solution 17-2: Authenticating a user s credentials with a database

This PHP solution shows how to authenticate a user s credentials stored in a database. It involves

querying the database to find the username s salt and stored password and then encrypting the submitted

password with the salt. If the result matches the stored password, the user is redirected to a restricted

page.

1. Copy login_db.php, menu_db.php, and secretpage_db.php from the ch17 folder to the

authenticate folder. Also copy logout_db.inc.php and session_timeout_db.inc.php

from the ch17 folder to the includes folder.

This sets up the same basic test platform as in Chapter 9. The only difference is that the links

have been changed to redirect to the authenticate folder.

2. In login_db.php add the following code in a PHP block above the DOCTYPE declaration:

 $error = '';
 if (isset($_POST['login'])) {
 session_start();
 $username = trim($_POST['username']);
 $password = trim($_POST['pwd']);
 // location to redirect on success
 $redirect = 'http://localhost/phpsols/authenticate/menu_db.php';
 require_once('../includes/authenticate_mysqli.inc.php');
 }

http://localhost/phpsols/authenticate/menu_db.php

AUTHENTICATING USERS WITH A DATABASE

467

This follows a similar pattern to the code in the login form in Chapter 9. It begins by initializing

$error as an empty string. The conditional statement initiates a session if the form has been

submitted. Whitespace is trimmed from the user input fields, and the location of the page the

user will be redirected to on success is stored in a variable. Finally, the authentication script,

which you ll build next, is included.

If you re using PDO, use authenticate_pdo.inc.php as the processing script.

3. Create a new file called authenticate_mysqli.inc.php or authenticate_pdo.inc.php,

and save it in the includes folder. The file will contain only PHP script, so strip out any HTML

markup.

4. Include the database connection file, create a connection to the database with the read-only

account, and use a prepared statement to fetch the user s details.

For MySQLi use the following code:

 <?php
 require_once('connection.inc.php');
 $conn = dbConnect('read');
 // get the username's details from the database
 $sql = 'SELECT salt, pwd FROM users WHERE username = ?';
 // initialize and prepare statement
 $stmt = $conn->stmt_init();
 $stmt->prepare($sql);
 // bind the input parameter
 $stmt->bind_param('s', $username);
 // bind the result, using a new variable for the password
 $stmt->bind_result($salt, $storedPwd);
 $stmt->execute();
 $stmt->fetch();

This is a fairly straightforward SELECT query using a MySQLi prepared statement. The

username is a string, so the first argument to bind_param() is 's'. The results of the query

are bound to $salt and $storedPwd. You need to use a new variable for the stored password

to avoid overwriting the password submitted by the user.

After the statement has been executed, the fetch() method gets the result.

For PDO, use the following code instead:

 <?php
 require_once('connection.inc.php');
 $conn = dbConnect('read', 'pdo');
 // get the username's details from the database
 $sql = 'SELECT salt, pwd FROM users WHERE username = :username';
 // prepare statement
 $stmt = $conn->prepare($sql);
 // bind the input parameter
 $stmt->bindParam(':username', $username, PDO::PARAM_STR);
 // bind the result, using a new variable for the password

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 17

468

 $stmt->bindColumn(1, $salt);
 $stmt->bindColumn(2, $storedPwd);
 $stmt->execute();
 $stmt->fetch();

This code does the same as the MySQLi version, but using PDO syntax.

5. Once you have retrieved the username s details, you need to encrypt the password entered by

the user by combining it with the salt and passing them both to sha1(). You can then compare

the result to the stored version of the password, which was similarly encrypted at the time of

registration.

If they match, create the session variables to indicate a successful login and the time the

session began, regenerate the session ID, and redirect to the restricted page. Otherwise,

store an error message in $error.

Insert the following code after the code you entered in the preceding step. It s the same for

both MySQLi and PDO.

 // encrypt the submitted password with the salt
 // and compare with stored password
 if (sha1($password . $salt) == $storedPwd) {
 $_SESSION['authenticated'] = 'Jethro Tull';
 // get the time the session started
 $_SESSION['start'] = time();
 session_regenerate_id();
 header("Location: $redirect");
 exit;
 } else {
 // if no match, prepare error message
 $error = 'Invalid username or password';
 }

As in Chapter 9, the value of $_SESSION['authenticated'] is of no real importance.

6. Save authenticate_mysqli.inc.php or authenticate_pdo.inc.php, and test

login_db.php by logging in with the username and password that you registered at the end of

PHP Solution 17-1. The login process should work in exactly the same way as Chapter 9. The

difference is that all the details are stored more securely in a database, and each user has a

unique and probably unguessable salt.

You can check your code, if necessary, against login_mysqli.php and

authenticate_mysqli.inc.php, or login_pdo.php and authenticate_pdo.inc.php in the

ch17 folder. If you encounter problems, use echo to display the values of the freshly

encrypted password and the stored version. The most common mistake is creating too narrow

a column for the encrypted password in the database. It must be 40 characters wide.

AUTHENTICATING USERS WITH A DATABASE

469

Although storing an encrypted password in a database is more secure than using a text file, the password

is sent from the user s browser to the server in plain, unencrypted text. This is adequate for most

websites, but if you need a high level of security, the login and access to subsequent pages should be

made through a Secure Sockets Layer (SSL) connection.

Using two-way encryption
The main differences in setting up user registration and authentication for two-way encryption are that the

password needs to be stored in the database as a binary object using the BLOB data type (see “Storing

binary data” in Chapter 10 for more information), and that the comparison between the encrypted

passwords takes place in the SQL query, rather than in the PHP script. Although you can use a salt with

the password, doing so involves querying the database twice when logging in: first to retrieve the salt and

then to verify the password with the salt. To keep things simple, I ll show you how to implement two-way

encryption without a salt.

Creating the table to store users details

In phpMyAdmin, create a new table called users_2way in the phpsols database. It needs three columns

(fields) with the settings listed in Table 17-2.

Table 17-2. Settings for the users_2way table

Field Type Length/Values Attributes Null Index A_I

user_id INT UNSIGNED Deselected PRIMARY Selected

username VARCHAR 15 Deselected UNIQUE

pwd BLOB Deselected

Registering new users

The MySQL AES_ENCRYPT() function takes two arguments: the value to be encrypted and an encryption

key. The encryption key can be any string of characters you choose. For the purposes of this example, I

have chosen takeThisWith@PinchOfSalt, but a random series of alphanumeric characters and symbols

would be more secure.

The basic registration scripts for one-way and two-way encryption are the same. The only difference lies in

the section that inserts the user s data into the database.

The following scripts embed the encryption key directly in the page. If you have a private folder

outside the server root, it s a good idea to define the key in an include file and store it in your private

folder.

The code for MySQLi looks like this (it s in register_2way_mysqli.inc.php in the ch17 folder):

CHAPTER 17

470

if (!$errors) {
 // include the connection file
 require_once('connection.inc.php');
 $conn = dbConnect('write');
 // create a key
 $key = 'takeThisWith@PinchOfSalt';
 // prepare SQL statement
 $sql = 'INSERT INTO users_2way (username, pwd)
 VALUES (?, AES_ENCRYPT(?, ?))';
 $stmt = $conn->stmt_init();
 $stmt = $conn->prepare($sql);
 // bind parameters and insert the details into the database
 $stmt->bind_param('sss', $username, $password, $key);
 $stmt->execute();
 if ($stmt->affected_rows == 1) {
 $success = "$username has been registered. You may now log in.";
 } elseif ($stmt->errno == 1062) {
 $errors[] = "$username is already in use. Please choose another username.";
 } else {
 $errors[] = 'Sorry, there was a problem with the database.';
 }
}

For PDO, it looks like this (see register_2way_pdo.inc.php in the ch16 folder):

if (!$errors) {
 // include the connection file
 require_once('connection.inc.php');
 $conn = dbConnect('write', 'pdo');
 // create a key
 $key = 'takeThisWith@PinchOfSalt';
 // prepare SQL statement
 $sql = 'INSERT INTO users_2way (username, pwd)
 VALUES (:username, AES_ENCRYPT(:pwd, :key))';
 $stmt = $conn->prepare($sql);
 // bind parameters and insert the details into the database
 $stmt->bindParam(':username', $username, PDO::PARAM_STR);
 $stmt->bindParam(':pwd', $password, PDO::PARAM_STR);
 $stmt->bindParam(':key', $key, PDO::PARAM_STR);
 $stmt->execute();
 if ($stmt->rowCount() == 1) {
 $success = "$username has been registered. You may now log in.";
 } elseif ($stmt->errorCode() == 23000) {
 $errors[] = "$username is already in use. Please choose another username.";
 } else {
 $errors[] = 'Sorry, there was a problem with the database.';
 }
}

AUTHENTICATING USERS WITH A DATABASE

471

Strictly speaking, it s not necessary to use a bound parameter for $key, because it doesn t come from

user input. If you embed it directly in the query, the whole query needs to be wrapped in double quotes,

and $key needs to be in single quotes.

User authentication with two-way encryption

Creating a login page with two-way encryption is very simple. After connecting to the database, you

incorporate the username, secret key, and unencrypted password in the WHERE clause of a SELECT query.

If the query finds a match, the user is allowed into the restricted part of the site. If there s no match, the

login is rejected. The code is the same as in PHP Solution 17-2, except for the following section.

For MySQLi, it looks like this (see authenticate_2way_mysqli.inc.php for the full listing—this shows

only the sections that are different):

$conn = dbConnect('read');
// create key
$key = 'takeThisWith@PinchOfSalt';
$sql = 'SELECT username FROM users_2way
 WHERE username = ? AND pwd = AES_ENCRYPT(?, ?)';
// initialize and prepare statement
$stmt = $conn->stmt_init();
$stmt->prepare($sql);
// bind the input parameters
$stmt->bind_param('sss', $username, $password, $key);
$stmt->execute();
// store the result
$stmt->store_result();
// if a match is found, num_rows is 1, which is treated as true
if ($stmt->num_rows) {
 $_SESSION['authenticated'] = 'Jethro Tull';

Note that you need to store the result of the prepared statement before you can access the num_rows

property. If you fail to do this, num_rows will always be 0, and the login will fail even if the username and

password are correct.

The revised code for PDO looks like this (see authenticate_2way_pdo.inc.php for the full listing—this

shows only the sections that are different):

$conn = dbConnect('read', 'pdo');
// create key
$key = 'takeThisWith@PinchOfSalt';
$sql = 'SELECT username FROM users_2way
 WHERE username = ? AND pwd = AES_ENCRYPT(?, ?)';
// prepare statement
$stmt = $conn->prepare($sql);
// bind variables when executing statement
$stmt->execute(array($username, $password, $key));
// if a match is found, rowCount() produces 1, which is treated as true
if ($stmt->rowCount()) {
 $_SESSION['authenticated'] = 'Jethro Tull';

CHAPTER 17

472

Decrypting a password

Decrypting a password encrypted with two-way encryption simply involves passing the secret key as the

second argument to AES_DECRYPT() in a prepared statement like this:

$key = 'takeThisWith@PinchOfSalt';
$sql = "SELECT AES_DECRYPT(pwd, '$key') AS pwd
 FROM users_2way
 WHERE username = ?";

The key must be exactly the same as the one originally used to encrypt the password. If you lose the key,

the passwords remain as inaccessible as those stored using one-way encryption.

Normally, the only time you need to decrypt a password is when a user requests a password reminder.

Creating the appropriate security policy for sending out such reminders depends a great deal on the type

of site that you re operating. However, it goes without saying that you shouldn t display the decrypted

password onscreen. You need to set up a series of security checks, such as asking for the user s date of

birth or mother s maiden name, or posing a question whose answer only the user is likely to know. Even if

the user gets the answer right, you should send the password by email to the user s registered address.

All the necessary knowledge should be at your fingertips if you have succeeded in getting this far in this

book.

Updating user details
I haven t included any update forms for the user registration pages. It s a task that you should be able to

accomplish by yourself at this stage. The most important point about updating user registration details is

that you should not display the user s existing password in the update form. If you re using one-way

encryption, you can t anyway.

Where next?
This book has covered a massive amount of ground. If you master all the techniques covered here, you

are well on your way to becoming an intermediate PHP developer, and with a little more effort, you will enter

the advanced level. If it s been a struggle, don t worry. Go over the earlier chapters again. The more you

practice, the easier it becomes.

You re probably thinking, “How on earth can I remember all this?” You don t need to. Don t be ashamed to

look things up. Bookmark the PHP online manual (http://docs.php.net/manual/en/), and use it

regularly. It s constantly updated, and it has lots of useful examples. Type a function name into the

search box at the top right of every page (as shown in the following screenshot), and it takes you straight

to a full description of that function. Even if you can t remember the correct function name, it takes you to

a page that suggests the most likely candidates. Most pages have practical examples showing how the

function or class is used.

http://docs.php.net/manual/en/

AUTHENTICATING USERS WITH A DATABASE

473

What makes dynamic web design easy is not an encyclopedic knowledge of PHP functions and classes

but a solid grasp of how conditional statements, loops, and other structures control the flow of a script.

Once you can visualize your projects in terms of “if this happens, what should happen next?” you re the

master of your own game. I consult the PHP online manual many times a day. To me, it s like a dictionary.

Most of the time, I just want to check that I have the arguments in the right order, but I often find that

something catches my eye and opens up new horizons. I may not use that knowledge immediately, but I

store it at the back of my mind for future use and go back when I need to check the details.

The MySQL online manual (http://dev.mysql.com/doc/refman/5.1/en/index.html) is equally

useful. Make both the PHP and MySQL online manuals your friends, and your knowledge will grow by leaps

and bounds.

1

http://dev.mysql.com/doc/refman/5.1/en/index.html

CHAPTER 17

474

475

Index

Symbols
$_FILES, 37

error levels, table of, 157
handling multiple files, 171
inspecting the $_FILES array, 144
tmp_name, 148

$_GET, 36, 107, 109
$_POST, 36, 106–113, 116, 120–121, 132
$_REQUEST, 108
$_SERVER, 37, 77, 100
$_SESSION, 37
__construct(), 153
=> operator, 55
-> operator, 44

A
abs(), 223
action attribute, 105, 110
Add field(s) text box, 418
add(), 406, 409
ADDDATE(), 392
addPermittedTypes(), 162–163, 165, 241
admin.css, 358, 442
Advanced Encryption Standard, 460
AES_DECRYPT(), 472
AES_ENCRYPT(), 460, 469
affected_rows property, 361, 371, 464
After radio button, 418
alias assigning to a column, 384

allow_url_fopen, 203
disabling of, by hosting companies, 180

allow_url_include, 101, 180, 203
anti-spam techniques, CAPTCHA tests, 129
Apache web server, 10, 12

checking the error log, 14
starting Apache and MySQL automatically

with XAMPP, 15
arguments

passing to a function, 43
separating with commas, 43

arithmetic operators, table of, 49
arrays

=> operator, 55
array elements, identifying, 36
array(), using to build an associative array,

55
array(), using to build an indexed array, 55
array(), using to create an empty array, 56
array_merge(), 162, 238, 266
array_pop(), 388
array_slice(), 183
associative arrays, 36, 55
count(), 186, 388
empty arrays treated as false, 113
explode(), 183, 186
$_FILES, 37
$_GET, 36
get method, 36
implode(), 183, 388, 446–447
in_array(), 163, 168–169

INDEX

476

indexed arrays, 36, 55
inspect_array1.php, 57
key (index) value, 36
multidimensional arrays, 48, 56, 87
parse_url(), 429
$_POST, 36
post method, 36
print_r(), using to inspect the contents of an

array, 57
$_SERVER, 37
$_SESSION, 37
superglobal arrays, 36
types of, 55
underscores, 36
See also data types; superglobal arrays

article2cat table, 432, 444, 446, 448
column settings, 437

AS keyword, 384, 391
ASC keyword, 317
assignment (=) operator, 33
authenticate.inc.php, 253, 270
authenticate_2way_mysqli.inc.php, 471
authenticate_2way_pdo.inc.php, 471
authenticate_mysqli.inc.php, 467–468
authenticate_pdo.inc.php, 467–468
AUTO_INCREMENT, 292, 295, 357, 418

B
backticks, using in SQL queries, 287
basename(), 77, 79, 212, 228, 274
BETWEEN, 378
BINARY keyword, 319
bind_param(), 328, 360, 422, 464, 467
bind_result(), 327, 369
bindColumn(), 331, 373
binding the parameters, 360, 362
bindParam(), 465
BLOB data type, 301
blog table, 416, 418, 422

admin.css, 358
affected_rows property, 371
bind_result(), 369
bindColumn(), 373
blog.php, 393
blog.sql, 356–366
blog_insert_01.php, 358, 361
blog_insert_mysqli.php, 361, 366, 439
blog_insert_mysqli_03.php, 444
blog_insert_pdo.php, 361, 366
blog_limit_mysqli.php, 394
blog_limit_pdo.php, 394

blog_list.php, 366
blog_list_mysqli.php, 361, 365, 370–371,

392
blog_list_mysqli_01.php, 364
blog_list_norec_mysqli.php, 366
blog_list_norec_pdo.php, 366
blog_list_pdo.php, 363, 365, 375, 392
blog_list_pdo_01.php, 364
blog_mysqli.php, 389
blog_para_mysqli.php, 385
blog_para_pdo.php, 385
blog_pdo.php, 389
blog_ptags_mysqli.php, 387
blog_ptags_pdo.php, 387
blog_update_mysqli.php, 368, 371, 420, 449
blog_update_mysqli_01.php, 358
blog_update_mysqli_03.php, 420
blog_update_mysqli_04.php, 449
blog_update_mysqli_05.php, 450
blog_update_mysqli_06.php, 452
blog_update_pdo.php, 371, 375
blog_update_pdo_01.php, 358
blog_update_pdo_02.php, 374
blog_update_pdo_05.php, 450
blog_update_pdo_06.php, 452
building and scripting the delete page, 375
Cancel button, 376
column definitions, table of, 356
Confirm Deletion button, 376
creating the blog database table, 356
creating the links to the update and delete

pages (PHP Solution 13-3), 365
DELETE command, 355
execute(), 362, 371
fetch(), 373
finding the primary key of an update or delete

record, 363
htmlentities(), 370, 374
INSERT command, 357
inserting a new record with MySQLi (PHP

Solution 13-1), 359
inserting a new record with PDO (PHP

Solution 13-2), 361
list of columns, 355
phpsols database, 356
prepare(), 362, 371
rowCount(), 375
SELECT command, 355
UPDATE command, 357, 367, 370
Update Entry button, 370, 375
update page, processes performed, 366

INDEX

477

updating a record with MySQLi (PHP Solution
13-4), 367

updating a record with PDO (PHP Solution
13-5), 371

Boolean values, 39, 48
comparison operators, table of, 58
determining whether a condition is true or

false, 57
explicit and implicit Boolean values, 58
logical operators, table of, 59
See also data types

break keyword, 60, 64
Browse tab, 295, 419, 423
buildFileList(), 202–203
buildlist.php, 201, 203
byte order mark (BOM), 213

disabling in PHP pages, 247

C
camel case, 33
Cancel button, 376
CAPTCHA tests

adding a reCAPTCHA widget to a form (PHP
Solution 5-7), 131

case keyword, 60
casting operators, 162

table of, 166
catch block, 47, 95–96
categories table, 417, 448

column settings, 437
categories.sql, 437
<channel> tag, 204
check(), 260–263
check-box groups

checked attribute, 137
$errors array, 137
handling check boxes and check-box groups

(PHP Solution 5-9), 136
interests check-box group, 136
name attribute, 137
setting a minimum number of required check

boxes, 137
See also radio-button groups

checkdate(), 397
checked attribute, 135–137
checkError(), 158–160, 173–174
checking for PHP support on your website, 9
checking the current running version of PHP, 9
checkName(), 169–170, 173, 438
CheckPassword.php, 259, 262, 265, 461
CheckPassword_01.php, 262

CheckPassword_02.php, 264
checkSize(), 158–159, 173–174
checkType(), 164–165, 173, 220–221, 231
chmod 777, 146
choosing a web server, 12
class_exists(), 93
classes

calling a class s constructor method, 153
class keyword, 151
__construct(), 153
controlling the visibility of properties and

methods, 153
creating a basic file-upload class (PHP

Solution 6-2), 151
creating a new subclass (child class), 235
creating an object, 153
declaring some variables and functions as

protected, 152
definition of, 151
extending a class, 235
extends keyword, 235
methods, 153
namespaces, 151, 176
naming conventions, 151
overriding the methods and properties of the

parent class, 235
parent keyword, 235
properties, 153
protected keyword, 152–153
Ps2_Upload class, 151
public keyword, 153
$this->, 153
See also functions; object-oriented

programming (OOP)
client-side validation, 110
close(), 327
closeCursor(), 310, 349
Collation drop-down menu, 288
columns, 281
combined assignment operators, table of, 51
combined concatenation (.=) operator, 51
commenting scripts, 34
comparison operators, table of, 58
composite primary key, 436
CONCAT(), 378
concatenation (.) operator, 45
conditional statements

break keyword, 60
case keyword, 60
comparison operators, table of, 58
default keyword, 61

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

INDEX

478

determining whether a condition is true or
false, 57

elseif clause, 41
empty arrays treated as false, 113
equality (==) operator, 41
explicit Boolean values, 58
greater than (>) operator, 41
if statement, 40
implicit Boolean values, 58
less than (<) operator, 41
logical operators, table of, 59
switch statement, 60
ternary operator, 61
testing for statement equality, 41
See also loops; operators

Confirm Deletion button, 376
connection.inc.php, 306, 339
constants, defined and predefined, 49
contact.php, 80, 83, 105, 109
contact_02.php, 108, 111
contact_04.php, 115–116
contact_05.php, 118
contact_06.php, 121, 123
contact_07.php, 125
contact_08.php, 127
contact_09.php, 131
contact_10.php, 132
contact_11.php, 134, 139
contact_us.php, 81
content management system

admin.css, 358
bindColumn(), 373
blog table, creating and setting up, 355
building and scripting the delete page, 375
Cancel button, 376
Confirm Deletion button, 376
creating the links to the update and delete

pages (PHP Solution 13-3), 365
CRUD cycle, 355
DELETE command, 355
fetch(), 373
finding the primary key of an update or delete

record, 363
htmlentities(), 374
INSERT command, 357
phpsols database, 356
rowCount(), 375
SELECT command, 355
setting up a content management system,

355

UPDATE command, 357, 367, 370
Update Entry button, 370, 375

Content-Type header, 122
continue keyword, 64
Control Panel (XAMPP)

confirming that Apache and MySQL are
running, 13

Explore button, 14
Port-Check button, 14
starting Apache and MySQL automatically

with XAMPP, 15
convertDateToMySQL(), 397–398
convertToParas(), 425
Coordinated Universal Time (UTC), 209
copy(), potential security risks of, 150
count(), 86, 186, 310, 348, 388

returning the number of elements in an array,
137

create(), 229, 233–234
create_thumb.php, 221, 225
create_thumb_mac01.php, 217
create_thumb_upload.php, 239
create_thumb_win01.php, 217
createFromDateString(), 410, 413
createFromFormat(), 403–404
createImageResource(), 232, 234
createThumbnail(), 231–234, 238–239
cross-reference (linking) table, 417
CRUD cycle, 355
curly braces, arranging, 42
current(), 154

D
data source name (DSN), 314
data types

arrays, 48
Boolean, 48
converting strings to integers or floating-

point numbers, 48
floating-point numbers, 48
hexadecimal numbers, 48
integers, 48
list of, 48
multidimensional arrays, 48
NULL, 48
objects, 48
resources, 48
side-effects of PHP s weak typing, 48
strings, 48

Database drop-down menu, 291
databases

INDEX

479

adding an extra column to a table (PHP
Solution 15-1), 418

adding categories to the update form (PHP
Solution 16-5), 449

adding the category and image input fields
(PHP Solution 16-3), 439

adding the image foreign key (PHP Solution
15-2), 420

altering the structure of an existing table,
417

breaking down information into small chunks,
283

building the details page (PHP Solution
15-3), 423

categories.sql, 437
checking whether a remote server supports

InnoDB (PHP Solution 16-1), 432
checkName(), 438
columns, 281
composite primary key, 436
converting an InnoDB table back to MyISAM,

455
converting tables from MyISAM to InnoDB,

452
creating delete scripts with foreign key

constraints, 456
creating delete scripts without foreign key

constraints, 457
cross-reference (linking) table, 417, 436
DATE_FORMAT(), 424–425
Delete icon, 455
details.php, 423
details_mysqli_03.php, 429
drawing dynamic website content from a

database, 279
establishing relationships between tables

through foreign keys, 415
fields, 281
finding records that don t have a matching

foreign key, 427
FOREIGN KEY (INNODB), 453
foreign key constraints, 432
guidelines for good database design, 284
handling orphaned records, 432
how database information is stored, 281
improving the Ps2_Upload class (PHP

Solution 16-2), 437
INNER JOIN, 422
InnoDB storage engine, 432
inserting a foreign key in a table, 419

inserting data into multiple tables (PHP
Solution 16-4), 444

joint primary key, 417
LEFT JOIN, 427
linking tables in a SELECT query, 422
linking tables with primary and foreign keys,

282
maintaining referential integrity, 417, 431
many-to-many relationship, 417
Microsoft SQL Server, 279
MyISAM storage engine, 432
MySQL, 279
ON DELETE drop-down menu, 453
one-to-many relationship, 416
one-to-one relationship, 415
Oracle, 279
parent and child (dependent) tables, 417
PostgreSQL, 279
preserving referential integrity on record

deletion, 452
primary keys, 281
problems in storing images in a database,

336
processFile(), 438
records, 281
Relation view, 455
returning to the same point in a navigation

system (PHP Solution 15-4), 428
setting up foreign key constraints, 453
storage_engines.php, 434
Structure tab, 455
Structured Query Language (SQL), 282
tables, 281
transaction, definition of, 435
understanding table relationships, 415
updating records in a cross-reference table,

449
Upload.php, 437
Upload_06.php, 438
utility_funcs.inc.php, 424
See also foreign keys; InnoDB storage

engine; MyISAM storage engine;
MySQL; PHP Data Objects (PDO);
phpMyAdmin; phpsols database;
primary keys; Structured Query
Language (SQL); tables

Database-specific privileges table, 290
dates

add(), 406, 409
ADDDATE(), 392

INDEX

480

adding and subtracting set periods with the
DateInterval class, 408

adding or subtracting a specific time period,
392

Apache servers and, 400
blog.php, 393
blog_limit_mysqli.php, 394
blog_limit_pdo.php, 394
blog_list_mysqli.php, 392
blog_list_pdo.php, 392
calculating recurring dates with the

DatePeriod class, 412
calculating the difference between two dates

using diff(), 410
checkdate(), 397
choosing between date() and the DateTime

class, 404
common MySQL date-format specifiers,

table of, 390
convertDateToMySQL(), 397–398
createFromDateString(), 410, 413
createFromFormat(), 403–404
creating a DateTime object from a custom

format (PHP 5.3 and later), 403
creating an HTML5 date input field, 394
date and time changes in PHP 5.2 and 5.3,

399
date(), 43, 83–85, 401, 403
DATE data type, 300
DATE_ADD(), 392
DATE_ADD() and DATE_SUB(), table of

common interval types, 393
date_converter.php, 395
date_converter_01.php, 395
date_converter_02.php, 398
DATE_FORMAT(), 390, 392, 424–425
date_format_01.php, 403
date_format_03.php, 403
date_format_04.php, 404
date_interval_01.php, 410
date_interval_02.php, 410
date_interval_03.php, 411
date_interval_04.php, 412
date_interval_05.php, 413
date_interval_06.php, 413
date_modify.php, 406
DATE_SUB(), 392
DateInterval class, table of ISO 8601 period

designators, 409
DateInterval format(), table of format

characters, 410

DateTime class, table of methods, 404
DATETIME data type, 300
DateTime object, 400
DateTime(), 400
DateTimeZone class, table of methods, 408
DateTimeZone object, 401, 403, 407
diff(), 406
displaying items updated within the past

week (PHP Solution 14-3), 393
ensuring that dates are valid and correctly

formatted, 394
EXCLUDE_START_DATE, 413
explode(), 394
format(), 401, 403–404
formatting a date in European style, 391
formatting a date in U.S. style, 391
formatting a MySQL date or timestamp (PHP

Solution 14-2), 392
getName(), 407
getTimezone(), 407
how MySQL handles dates, 390
International Organization for

Standardization (ISO), 390
main date and time format characters, table

of, 402
modify(), 406
NOW(), 393–394
PHP date- and time-related classes and

functions, table of, 399
php.ini, date.timezone directive, 400
setDate(), 406
setTime(), 406
setTimezone(), 407
setting the server s default time zone, 400
storing timestamps as 32-bit and 64-bit

integers, 399
strftime(), 401
strtotime(), 403, 410
sub(), 406, 409
SUBDATE(), 392
TIMESTAMP column, 394
timezones.php, 407
understanding time zones and their

geographic regions, 407
using date picker widgets, 394
utility_funcs.inc.php, 396–398
validating and formatting dates for MySQL

input (PHP Solution 14-4), 395
working with dates in PHP, 399

dbConnect(), 388, 463
DECIMAL data type, 300

INDEX

481

decrement (--) operator, 50
default keyword, 61
define(), 345
DELETE command, 355, 375

syntax of, 380
WHERE clause, 380

Delete icon, 455
deprecated, 46
DESC keyword, 316
<description> tag, 205, 208
die(), 307–309
diff(), 406
DIRECTORY_SEPARATOR, 223
DirectoryIterator class, 202

looping through the contents of a directory or
folder, 196

displaying filename extensions in Windows, 11
DISTINCT option, 377
do . . . while loop

dowhile.php, 62
syntax of, 62

DOCTYPE, 80, 86
document-relative path, 100
dot files, 196
download.php, 210
Dreamweaver CS5, 7
Drop tab, 293
drop-down option menus

<option> tag, 138
<select> tag, 138
selected attribute, 138
value attribute, 139

E
EasyPHP, 12
echo, 44
Edit Privileges icon, 290
elseif clause, 41
email header injection, 118
encryption

adding a salt to a password before
encryption, 258, 459

Advanced Encryption Standard, 460
AES_DECRYPT(), 472
AES_ENCRYPT(), 460, 469
affected_rows property, 464
authenticate_2way_mysqli.inc.php, 471
authenticate_2way_pdo.inc.php, 471
authenticate_mysqli.inc.php, 467–468
authenticate_pdo.inc.php, 467–468

authenticating a user s credentials with a
database (PHP Solution 16-2), 466

bind_param(), 464, 467
bindParam(), 465
CheckPassword.php, 461
choosing an encryption method, 459
creating a login page with two-way

encryption, 471
creating a user registration form (PHP

Solution 16-1), 461
dbConnect(), 463
decrypting a password encrypted with two-

way encryption, 472
encrypted.txt, 269
encrypting passwords with SHA-1, 258, 459
errorCode(), 465
fetch(), 467
login_db.php, 466, 468
one-way encryption, 258
one-way encryption, advantages and

disadvantages of, 459
one-way encryption, using, 460
Ps2_CheckPassword class, 461
register_2way_mysqli.inc.php, 469
register_2way_pdo.inc.php, 470
register_db.php, 461, 465
register_user_mysqli.inc.php, 462
register_user_pdo.inc.php, 462
register_user_text.inc_02.php, 461
register_user_text.php, 461
reissuing lost passwords to users, 459
rowCount(), 465
Secure Sockets Layer (SSL), 469
sha1(), 463, 468
time(), 463
two-way encryption, advantages and

disadvantages of, 460
two-way encryption, using, 469
users table, creating, 460
users_2way table, creating, 469
using an encrypted login (PHP Solution 9-8),

269
See also one-way encryption; passwords;

sessions; SHA-1; two-way encryption
Engines tab, 432
ENT_COMPAT, 117
ENT_QUOTES, 117
ENUM data type, 301
equality (==) operator, 41
error control (@) operator, 94, 185

INDEX

482

error messages
catch block, 47, 95–96
deprecated, 46
display_errors directive, turning off, 94
displaying temporarily for an individual page,

93
fatal errors, 46
main categories of, 46
notices, 46
open_basedir directive has been set, 94
parse errors, 10, 46
recoverable errors, 46
server is running in safe mode, 93
strict, 46
suppressing error messages in a live

website, 94
throw keyword, 47
throwing an exception, 46–47
try block, 47, 95
understanding, 45
warnings, 46
See also troubleshooting

error.php, 95–96
errorCode(), 456, 465
errorInfo(), 309, 331
$errors array, 111, 113, 116, 137
escape sequences

escaping with a backslash, 38
main escape sequences, table of, 52
using escape sequences inside double

quotes, 52
EXCLUDE_START_DATE, 413
execute(), 330–331, 361–362, 371, 451
$expected array, 112, 134
explode(), 183, 186, 394
Explore button, 14
Export tab, 297
Expression Web, 8
Extensible Markup Language (XML), 179, 204

generating XML from a PHP script, 4
See also namespaces; SimpleXML

F
false keyword, 58
fatal errors, 46
fetch(), 327, 329, 373, 467
fetch_assoc(), 310–311, 329
fetch_row(), 348
fetchColumn(), 310, 349
fields, 281

file system
accessing remote files, 180, 203
allow_url_fopen, 180, 203
allow_url_include, 180, 203
array_slice(), 183
basename(), 212
buildFileList(), 202–203
building a drop-down menu of files in a folder

(PHP Solution 7-3), 199
buildlist.php, 201, 203
byte order mark (BOM), 213
<channel> tag, 204
checking for permissions to open a file, 179
configuration settings affecting file access,

table of, 180
consuming an RSS news feed (PHP Solution

7-5), 206
Coordinated Universal Time (UTC), 209
count(), 186
creating a download link, 210
creating a file-storage folder for local testing,

181
creating a generic file selector (PHP Solution

7-4), 201
DateTime class, 208
<description> tag, 205, 208
DirectoryIterator class, 196, 202
dot files, 196
download.php, 210
error control (@) operator, 185
explode(), 183, 186
Extensible Markup Language (XML), 179,

204
fclose(), 188–189, 195
feof(), 188, 190, 195
fgets(), 188–192, 195
file(), 185, 187, 191
file.php, 185–186
file_01.php, 185
file_02.php, 186
file_03.php, 187
file_get_contents(), 181, 183–184, 190–191
filesize(), 190, 195
filetest_01.txt, 181
filetest_02.txt, 185
filetest_03.txt, 191
filetest_04.txt, 192, 194–195
fopen(), 188–192, 212
fopen_append.php, 191–192
fopen_exclusive.php, 192

INDEX

483

fopen_pointer.php, sequence of read/write
operations, 194

fopen_readloop.php, 190
fopen_write.php, 191
fpassthru(), 212
fputs(), 191
fread(), 188, 190–192, 195
fseek(), 193
fwrite(), 188, 191–192
get_contents.php, 181, 183, 185
get_contents_01.php, 182
get_contents_02.php, 182
get_contents_03.php, 183
get_contents_04.php, 184
get_contents_05.php, 184
getFilename(), 203
getFirstWords(), 183
getOffset(), 209
header(), 213
identical (===) operator, 184
imagelist.php, 199
imagelist_01.php, 199
imagelist_02.php, 201
implode(), 183
inspecting a folder with scandir(), 195
<item> tag, 205
iterator_01.php, 196
iterator_03.php, 198
iterator_04.php, 198
LimitIterator class, 206
<link> tag, 205
ltrim(), 187
moving the internal pointer for read/write

operations, 193
natcasesort(), 203
news feeds, 179
newsfeed.php, 206
nl2br(), 190
open_basedir, 181–182
opening and closing files for read/write

operations, 188
PHP_EOL, 192
print_r(), 185, 196
prompting a user to download an image (PHP

Solution 7-6), 210
<pubDate> tag, 205, 208
readfile(), 181, 183
reading a file with fopen(), 190
reading a text file into an array (PHP Solution

7-2), 185
reading public files, 179

reading the contents of a text file (PHP
Solution 7-1), 181

RecursiveDirectoryIterator class, 198
RecursiveIteratorIterator class, 198
RegexIterator class, 198, 202
rewind(), 188, 193
<rss> tag, 204
RSS 2.0 feed, 204
RSS Specification, online location, 205
rtrim(), 187
safe_mode_include_dir, 181
sanitizing content by passing it to

htmlentities(), 204
saving file changes after read/write

operations, 195
SEEK_END, 193
setTimezone(), 209
SimpleXML, 179, 205
simplexml_load_file(), 205, 207
SimpleXMLElement class, 205
SimpleXMLIterator class, 207
SplFileInfo, 196
strip_tags(), 204
<title> tag, 205, 208
trim(), 187
using text files as a flat-file database, 185
See also fopen(); Ps2_Upload class; text

file(), 251
file_exists(), 89
file_upload.php, 144, 150, 155–156, 160,

164–165, 170
file_upload_01.php, 144
file_upload_02.php, 144, 161
file_upload_03.php, 148
file_upload_04.php, 148
file_upload_05.php, 156
file_upload_06.php, 171
file_upload_07.php, 171
file_uploads, 142
$_FILES, 37

error levels, table of, 157
handling multiple files, 171
inspecting the $_FILES array, 144
tmp_name, 148
See also superglobal arrays

filesize(), 267
filetest_02.txt, 251
filter_input(), 123
FILTER_VALIDATE_EMAIL, 124
Fireworks, 215
FLOAT data type, 300

INDEX

484

floating-point numbers, 48
footer.inc.php, 73, 84
footer.inc_01.php, 76, 83
footer.inc_02.php, 85
fopen()

a+ mode, 267
appending content with, 191
combining read/write operations, 192
moving the internal pointer, 189, 193
r+ mode, 193
read/write modes, table of, 188
reading a file with, 190
replacing content with, 191
required arguments, 189
w mode, 191
writing a new file with, 192
x mode, 192
See also file system; text

for loop, syntax of, 63
foreach loop

syntax of, 63
using with an associative array, 63

foreign keys
creating delete scripts with foreign key

constraints, 456
creating delete scripts without foreign key

constraints, 457
establishing relationships between tables

through foreign keys, 415
finding records that don t have a matching

foreign key, 427
foreign key constraints, 432, 453
inserting a foreign key in a table, 419
linking tables with primary and foreign keys,

282
See also databases; MySQL; PHP Data

Objects (PDO); phpMyAdmin; primary
keys; Structured Query Language
(SQL); tables

format(), 401, 403–404
forms

action attribute, 105, 110
adding a reCAPTCHA widget to a form (PHP

Solution 5-7), 131
adding headers and automating the reply

address (PHP Solution 5-5), 123
anti-spam techniques, 129
building the message body and sending the

mail (PHP Solution 5-6), 124
CAPTCHA tests, 129
checked attribute, 135–137

checking submitted data before accepting it,
103

checking user input for suspect phrases,
118

checking whether the fifth argument to mail()
is required, 121, 129

client-side validation, 110
contact.php, 105, 109, 133
contact_02.php, 108, 111
contact_04.php, 115–116
contact_05.php, 118
contact_06.php, 121, 123
contact_07.php, 125
contact_08.php, 127
contact_09.php, 131
contact_10.php, 132
contact_11.php, 134, 139
Content-Type header, 122
count(), 137
creating a reusable email-processing script,

110
creating sticky form fields (PHP Solution

5-3), 116
displaying a message next to missing

required fields, 114
email header injection, 118
ensuring that required form fields aren t left

blank (PHP Solution 5-2), 111
$errors array, 111, 113, 116, 137
$expected array, 112, 134
filter_input(), 123
FILTER_VALIDATE_EMAIL, 124
filtering out potential attacks, 118
<form> tag, 105, 110
$_GET, 107, 109
get method, 107
handling a multiple-choice list (PHP Solution

5-11), 139
handling check boxes and check-box groups

(PHP Solution 5-9), 136
handling multiple-choice form elements, 132
handling radio-button groups (PHP Solution

5-8), 134
header(), 128
htmlentities(), 116–117, 127
$HTTP_GET_VARS, 108
$HTTP_POST_VARS, 108
id attribute, 105
implode(), 126
in_array(), 114
<input> tag, 105, 116, 132, 135

INDEX

485

INPUT_POST, 123
interests check-box group, 136
isset(), 111
isSuspect(), 119
Japan Journey feedback form, HTML code

listing, 104
<label> tag, 114–115
leaving register_globals turned off, 108
magic_quotes_gpc, 108, 112
mail transport agent (MTA), 127
mail(), 110, 121, 128
<meta> tag, 122
method attribute, 105
$missing array, 111, 113–114, 116, 123
name attribute, 105–107, 125, 134
nuke_magic_quotes.php, 108–109
<option> tag, 138
passing a value by reference, 119
Perl-compatible regular expression (PCRE),

119
$_POST, 106–111, 113, 116, 120–121, 132
post method, 107
<pre> tag, 106
preserving user input when a form is

incomplete, 115
print_r(), 106
processing and validating user input, 110
processmail.inc.php, 112, 115
processmail.inc_01.php, 115–116, 118
processmail.inc_02.php, 121, 123
processmail.inc_03.php, 125
processmail.inc_04.php, 127
processmail.inc_05.php, 131
query string, 106
recaptcha_get_answer(), 131
recaptchalib.php, 131
recursive function, 120
removing unwanted backslashes from form

input, 108
Reply-To header, 122
$_REQUEST, 108
$required array, 115, 134
selected attribute, 138
setting a minimum number of required check

boxes, 137
 tag, 114
subscribe radio-button group, 135
<textarea> tag, 105, 118
understanding the post and get methods,

105
Unicode (UTF-8), 122

URL encoding, 106
using a drop-down option menu (PHP

Solution 5-10), 138
using a script to eliminate magic quotes

(PHP Solution 5-1), 108
using a self-processing form, 111
using a variable variable, 126
using additional email headers safely, 122
using JavaScript to check user input, 110
using regular expressions (regex), 118
validating user input in HTML5, 103
value attribute, 139
verifying that the message body and

headers are correctly formed, 127
wordwrap(), 126
See also login page; mail()

fpassthru(), 212
free_result(), 327, 420
Function field, 294
functions

built-in functions versus custom functions,
43

date(), 43
function_exists(), 92
function keyword, 65
functions2.php, 65
functions3.php, 65
functions4.php, 66
including as external files, 66
parentheses and, 42
passing a value by reference, 119
passing arguments to a function, 43, 65
phpversion(), 42
prefixing an argument with an ampersand,

120
recursive function, 120
return keyword, 66
returning a result from a function, 43, 66
scope of variables, 66
separating arguments with commas, 43
where to store custom-built functions, 66
See also data types

G
gallery (online)

activating the thumbnails (PHP Solution
12-2), 342

building a multicolumn table dynamically, 344
building a navigation system, 347
building the dynamic elements, 341
changing the main image and its caption, 343

INDEX

486

closeCursor(), 349
connection.inc.php, 339
creating a constant with define(), 345
creating the navigation links (PHP Solution

12-5), 351
displaying the first image (PHP Solution

12-1), 339
fetch_row(), 348
fetchColumn(), 349
filling a static page with placeholder text and

images, 336
framework of, 337
gallery.php, 338–339, 341
gallery_01.php, 338
gallery_mysqli_02.php, 341
gallery_mysqli_03.php, 341
gallery_mysqli_04.php, 343
gallery_mysqli_05.php, 344–345
gallery_mysqli_06.php, 346, 348
gallery_mysqli_07.php, 351
gallery_mysqli_08.php, 353
gallery_pdo_02.php, 341
gallery_pdo_03.php, 341
gallery_pdo_04.php, 343
gallery_pdo_05.php, 344–345
gallery_pdo_06.php, 346, 348
gallery_pdo_07.php, 351
gallery_pdo_08.php, 353
getimagesize(), 340–341
images folder, 336
images table, 336, 339
limiting the number of results displayed on a

page, 347
looping horizontally and vertically (PHP

Solution 12-3), 345
making and storing the thumbnails, 336
navigating through subsets of records, 351
paging through a long set of records, 347
passing image information through a query

string, 341
phpsols database, 339
planning and developing the gallery, 336
problems in storing images in a database,

336
selecting a subset of records (PHP Solution

12-4), 348
thumbs folder, 337
See also images; Ps2_Thumbnail class;

Ps2_ThumbnailUpload class; thumbnail
images

GD extension
enabling, 216
manipulating images dynamically, 216
removing the image resource, 217

generating a random number within a range, 85
$_GET, 36, 107, 109
get method, 36, 105, 107
get_contents.php, 181, 183, 185
get_contents_01.php, 182
get_contents_02.php, 182
get_contents_03.php, 183
get_contents_04.php, 184
get_contents_05.php, 184
get_filename.php, 77
getErrors(), 261
getFilename(), 203
getFirst(), 387–388
getFirstWords(), code listing, 183
getimagesize(), 88–89, 215, 219, 228, 340–341
getMaxSize(), 158–159
getMessages(), 155, 157, 233
getName(), 407
getOffset(), 209
getTimezone(), 407
Global privileges table, 289
Go button, 290, 418
Google

adding a reCAPTCHA widget to a form (PHP
Solution 5-7), 131

creating the software keys, 131
customizing the look of a reCAPTCHA

widget, 132
recaptchalib.php, 131
setting up a Google account, 131

greater than (>) operator, 41

H
hash or pound (#) sign, 35
header(), 95–97, 128, 213, 247, 254, 275
"headers already sent" error, 247, 249
heredoc syntax

example of, 54
heredoc.php, 54
procedure for using, 53

hexadecimal numbers, 48
history and development of PHP

date and time changes in PHP 5.2 and 5.3,
399

Personal Home Page Tools (PHP Tools), 2
PHP 3, 2
PHP 4, 10

INDEX

487

PHP 5.3 and suspended development of
PHP 6, 2

PHP as a server-side language, 4
PHP5 and OOP support, 2

.htaccess
changing the include_path, 99
creating an .htaccess file on a local

computer, 99
HTML

embedding PHP code in HTML, 3
include files, 3

HTML5
<meta> tag, 122
multiple attribute, 171
new types of form input, 134
required attribute, 105
validating user input, 103
See also forms

htmlentities(), 116–117, 127, 325, 370, 374
converting certain characters to their

equivalent HTML entities, 116
displaying HTML tags in plain text, 204
ENT_COMPAT, 117
ENT_QUOTES, 117
Latin1 (ISO-8859-1) character set, 117
Unicode (UTF-8) encoding, 117

$HTTP_GET_VARS, 108
$HTTP_POST_VARS, 108

I
id attribute, 105
identical (===) operator, 184
if statement, 40
imagelist.php, 199
imagelist_01.php, 199
imagelist_02.php, 201
images

abs(), 223
addPermittedTypes(), 241
array_merge(), 238
basename(), 228
checkType(), 220–221, 231
create(), 229, 233–234
create_thumb.php, 221, 225
create_thumb_mac01.php, 217
create_thumb_upload.php, 239
create_thumb_win01.php, 217
createImageResource(), 232, 234
createThumbnail(), 231–234, 238–239
creating a class to generate thumbnail

images, 217

creating the Ps2_ThumbnailUpload class
(PHP Solution 8-5), 236

creating the setter methods (PHP Solution
8-2), 222

DIRECTORY_SEPARATOR, 223
ensuring that the GD extension is enabled,

216
final preparations for generating the

thumbnail image (PHP Solution 8-3),
227

Fireworks, 215
generating the thumbnail image (PHP

Solution 8-4), 231
getimagesize(), 215, 219, 228
getMessages(), 233
getting the dimensions and MIME type of the

original image (PHP Solution 8-1), 218
imagecopyresampled(), 230, 232
imagecreatefromgif(), 229
imagecreatefromjpeg(), 229
imagecreatefrompng(), 229
imagecreatetruecolor(), 230, 232
imagedestroy(), 231, 233
imagegif(), 230
imagejpeg(), 230
imagepng(), 230
is_numeric(), 223
manipulating images dynamically, 216
mutator methods, 222
Photoshop, 215
preg_match(), 224
preg_replace(), 228
processFile(), 238
Ps2_Thumbnail class, building, 218
Ps2_ThumbnailUpload class, list of public

methods, 240
Ps2_Upload class, 215, 219, 235
removing the image resource, 217
resizing an image automatically on upload,

235
setDestination(), 225
setMaxSize(), 226
setThumbDestination(), 239
strpos(), 224
substr(), 220, 223
test(), 220, 225, 228, 233
Thumbnail.php, 218, 222, 236
Thumbnail_01.php, 222
Thumbnail_02.php, 226–227
Thumbnail_03.php, 229, 231
Thumbnail_04.php, 234

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

INDEX

488

ThumbnailUpload.php, 236
unlink(), 239
Upload.php, 236
See also gallery (online); Ps2_Thumbnail

class; Ps2_ThumbnailUpload class;
thumbnail images

images folder, 336
images table, 336, 339, 416, 422
images.sql, 296
implode(), 126, 183, 388, 446–447
Import tab, 296
IN(), 378
in_array(), 114, 163, 168–169
include files

adding a caption to a random image (PHP
Solution 4-7), 87

allow_url_include, 101
basename(), 77, 79
checking for the existence of variables, 92
checking if a function or class has been

defined, 92
choosing a filename extension for includes,

74
class_exists(), 93
contact.php, 80, 83
contact_us.php, 81
converting a site-root-relative path to an

absolute one, 101
count(), 86
creating pages with changing content, 83
date(), 83–85
display_errors directive, turning off, 94
displaying a random image (PHP Solution

4-6), 85
DOCTYPE, 80, 86
document-relative path, 100
editing the include_path in php.ini, 98
error control (@) operator, using, 94
error messages, displaying temporarily, 93
error.php, 95–96
file_exists(), 89
flushing the output buffer at the end of a

script, 97
footer.inc.php, 73, 84
footer.inc_01.php, 76, 83
footer.inc_02.php, 85
forward slashes, using in Windows file paths,

71
function_exists(), 92
generating a page s title from its filename

(PHP Solution 4-4), 79

generating a random number within a range,
85

get_filename.php, 77
getimagesize(), 88–89
handling missing include files, 94
header(), 95–97
.htaccess, using to change the

include_path, 99
.inc.php, using as a filename extension, 74
include(), 71
include_once(), 71
include_path, 72, 98
including code from external files, 70
incorporating common elements dynamically

into multiple pages, 69
index_01.php, 72
index_02.php, 75–76
index_03.php, 83, 85
index_06.php, 98
indicating the current page automatically

(PHP Solution 4-3), 76
ini_set(), 93
is_readable(), 89
isset(), 83, 92
Location header, 96
menu.inc.php, 73–74, 76, 78
menu.inc_01.php, 75–76
menu.inc_02.php, 78
most common cause of errors, 93
moving the menu and footer into include files

(PHP Solution 4-1), 72
multidimensional arrays, 87
ob_end_clean(), 97
ob_end_flush(), 97
ob_start(), 97
output buffer, turning on, 97
parentheses, using with include commands,

71
PATH_SEPARATOR, 100
PHP include commands, 71
phpinfo(), 98
preventing and troubleshooting errors with

include files, 92
rand(), 85–86
random_image.php, 85–86, 88–89, 91
random_image_01.php, 85, 87
random_image_02.php, 92
redirecting a page after output has been sent

to the browser, 97
redirecting users when an include file can t

be found (PHP Solution 4-8), 95

INDEX

489

relative file path, using, 71
require(), 71
require_once(), 71
security risks and considerations, 101
$_SERVER, 77, 100
server-side include, definition of, 69
set_include_path(), 98, 100
site-root-relative path, 100
specifying the file path of include files, 71,

98
storing dynamic code in separate files, 3
str_replace(), 81
strtolower(), 82
strtoupper(), 82
suppressing error messages in a live

website, 94
testing the security of includes (PHP

Solution 4-2), 75
title.inc.php, 79, 81–82
ucfirst(), 80
ucwords(), 81–82
updating a copyright notice automatically

(PHP Solution 4-5), 83
See also file system

increment (++) operator, 50
indenting code, 42
index_01.php, 72
index_02.php, 75–76
index_03.php, 83, 85
index_06.php, 98
indexed arrays, 36, 55
ini_set(), 93, 270
INNER JOIN, 422
InnoDB storage engine, 292

converting an InnoDB table back to MyISAM,
455

converting tables from MyISAM to InnoDB,
452

MySQL and, 432
using for tables having foreign key

relationships, 434
See also databases; MyISAM storage

engine; MySQL; PHP Data Objects
(PDO); phpMyAdmin

<input> tag, 105, 116, 132, 135
INPUT_POST, 123
INSERT command, 357, 419

syntax of, 359, 379
Insert tab, 294
inspect_array1.php, 57

installing and configuring MAMP on Mac OS X,
procedure for, 19

installing and configuring XAMPP on Windows,
procedure for, 12

INT data type, 300
integers, 48
integrated development environments (IDEs)

Dreamweaver CS5, 7
Expression Web, 8
Komodo Edit, 8
PDT, 8
PhpED, 8
using a dedicated script editor, 8
Zend Studio, 8
See also PHP editors

International Organization for Standardization
(ISO), 390

Internet Information Services (IIS), 10, 12
changing permissions after installation, 17
installing MySQL on, 17
installing PHP using the Web Platform

Installer (Web PI), procedure for, 16
installing phpMyAdmin on, 18

INTO, 379
is_dir(), 154
is_int(), 163
is_numeric(), 163, 223, 319, 321
is_readable(), 89
is_writable(), 154
isset(), 83, 92, 111, 145
isSuspect(), 119
isValidMime(), 162–163
<item> tag, 205
iterator_01.php, 196
iterator_03.php, 198
iterator_04.php, 198

J
Japan Journey website

adding multiple-choice form elements to
contact.php, 133

blog table, creating and setting up, 355
developing a mini photo gallery, 335
feedback form, HTML code listing, 104

K
key (index) value, 36
keywords

AS, 384, 391
ASC, 317

INDEX

490

BINARY, 319
break, 60, 64
case, 60
class, 151
continue, 64
default, 61
DESC, 316
extends, 235
false, 58
function, 65
LIKE, 318, 325
LIMIT, 347
namespace, 176
new, 44
null, 58
parent, 235
protected, 152–153
public, 153
return, 66
throw, 47
true, 58

Komodo Edit, 8

L
<label> tag, 114–115
lastInsertId(), 448
learning PHP

copying and adapting PHP code, 6
safety of PHP, 6
server-side languages and coding errors, 5

LEFT JOIN, 427
LEFT(), 384
Length/Values field, 299
less than (<) operator, 41
LIKE keyword, 318, 325
LIMIT clause, 347, 349, 379
LimitIterator class, 206
<link> tag, 205
Location header, 96
logical Not (!) operator, 123
logical operators, table of, 59
Login Information table, 289
login page

authenticate.inc.php, 253
building a login page (PHP Solution 9-3), 251
creating a random salt for each password,

270
creating a reusable logout button (PHP

Solution 9-5), 256
header(), 254
login.php, 251, 255, 257, 269

login_01.php, 269
login_02.php, 270
login_db.php, 466, 468
logout.inc.php, 257
ob_end_clean(), 258
ob_end_flush(), 258
ob_start(), 258
restricting access to a page with a session

(PHP Solution 9-4), 255
session_start(), 258
sha1(), 269
using an encrypted login (PHP Solution 9-8),

269
See also forms

LONGBLOB data type, 301
loops, 42

break keyword, 64
continue keyword, 64
definition of, 62
do . . . while loop, 62
for loop, 63
foreach loop, 63
skipping one iteration of a loop, 64
while loop, 62
See also conditional statements; operators

ltrim(), 187

M
magic_quotes_gpc, 108, 112

setting to Off, 24
mail(), 110

adding headers and automating the reply
address (PHP Solution 5-5), 123

building a set of headers, 122
building the message body and sending the

mail (PHP Solution 5-6), 124
checking whether the fifth argument is

required, 121, 129
Content-Type header, 122
filter_input(), 123
FILTER_VALIDATE_EMAIL, 124
INPUT_POST, 123
mail transport agent (MTA), 127
Reply-To header, 122
required and optional arguments, 121
troubleshooting, 128
Unicode (UTF-8), 122
using additional email headers safely, 122
verifying that the message body and

headers are correctly formed, 127
See also forms

INDEX

491

MAMP
installing on Mac OS X, procedure for, 19
testing and configuring, procedure for, 20

many-to-many relationship, 417
max_execution_time, 142
MAX_FILE_SIZE, 148, 150, 164
max_input_time, 142
MEDIUMBLOB data type, 301
menu.inc.php, 73–74, 76, 78
menu.inc_01.php, 75–76
menu.inc_02.php, 78
menu.php, 255–257
menu_01.php, 255
menu_02.php, 256
<meta> tag, 122
method attribute, 105
methods, 44, 153
Microsoft SQL Server, 279
Microsoft Web Platform Installer (Web PI)

installing PHP, procedure for, 16
MIME types

table of, 161
typing in lowercase, 165

$missing array, 111, 113–114, 116, 123
modify(), 406
modulo operator, 50
move(), 154–155, 158–159, 164, 170, 173–174,

445
move_uploaded_file(), 148–150, 154, 159–160,

173
multidimensional arrays, 87

creating and using, 56
multiform.inc.php, 274–275
multiline comments, 35
multiple attribute, 171
multiple_01.php, 273–274
multiple_02.php, 276
multiple_03.php, 276
multiple_04.php, 277
multiple-choice lists, name attribute, 139
mutator methods, 222
MyISAM storage engine, 292

advantages of, 432
converting an InnoDB table back to MyISAM,

455
converting tables from MyISAM to InnoDB,

452
lack of support for foreign key constraints,

432
not using for tables having foreign key

relationships, 434

See also databases; InnoDB storage
engine; MySQL; PHP Data Objects
(PDO); phpMyAdmin

MySQL
ADDDATE(), 392
adding categories to the update form (PHP

Solution 16-5), 449
adding the category and image input fields

(PHP Solution 16-3), 439
Advanced Encryption Standard, 460
advantages of, 280
advantages of using MySQLi, 303
AES_DECRYPT(), 472
AES_ENCRYPT(), 460, 469
affected_rows property, 361, 464
authenticate_2way_mysqli.inc.php, 471
authenticate_mysqli.inc.php, 467–468
authenticating a user s credentials with a

database (PHP Solution 16-2), 466
AUTO_INCREMENT, 292, 295
automatically updating the first TIMESTAMP

column in a table, 356–357
backing up a single database, procedure for,

297
BETWEEN, 378
bind_param(), 360, 422, 464, 467
binding the parameters, 360, 362
BLOB data type, 301
case-sensitivity of names, 288
case-sensitivity of passwords, 289
categories.sql, 437
changing column options through user input

(PHP Solution 11-10), 332
checking the error log, 14
checking the MySQL hostname on a remote

server, 305
checking the PHP configuration of your

remote server, 304
checking whether a remote server supports

InnoDB (PHP Solution 16-1), 432
checkName(), 438
CheckPassword.php, 461
choosing a version, 280
choosing an encryption method, 459
choosing the right data type, 299
commands for connecting to MySQL using

MySQLi, table of, 313
commands for connecting to MySQL using

PDO, table of, 313
common date-format specifiers, table of, 390
components of, 279

INDEX

492

composite primary key, 436
CONCAT(), 378
connecting to a MySQL server with MySQLi,

305
connecting to a MySQL server with PDO,

305
connection.inc.php, 306
convertDateToMySQL(), 397–398
converting an InnoDB table back to MyISAM,

455
converting tables from MyISAM to InnoDB,

452
convertToParas(), 425
creating a login page with two-way

encryption, 471
creating a password for the main

administrative account, 14
creating a SQL file for backup and data

transfer, 297
creating a user registration form (PHP

Solution 16-1), 461
creating database-specific user accounts,

288
creating delete scripts with foreign key

constraints, 456
creating delete scripts without foreign key

constraints, 457
cross-reference table, creating, 436
data types for storing binary data, 301
data types for storing dates and times, 300
data types for storing numbers, 300
data types for storing predefined lists, 301
data types for storing text, 299
DATE data type, 300
DATE_ADD(), 392
DATE_ADD() and DATE_SUB(), table of

common interval types, 393
DATE_FORMAT(), 390, 392
DATE_SUB(), 392
DATETIME data type, 300
dbConnect(), 463
DECIMAL data type, 300
decrypting a password encrypted with two-

way encryption, 472
default databases, 290
DELETE command, 380
die(), 307–308
displaying the images table using MySQLi

(PHP Solution 11-4), 311
displaying the results of a query, 310

embedding variables in MySQLi prepared
statements, 326

ENUM data type, 301
execute(), 361–362
fetch(), 467
fetch_assoc(), 310–311
finding records that don t have a matching

foreign key, 427
FLOAT data type, 300
foreign key constraints, 432, 453
formatting a MySQL date or timestamp (PHP

Solution 14-2), 392
free_result(), 420
granting users privileges, procedure for, 289
handling security and error messages, 380
how MySQL handles dates, 390
how PHP communicates with MySQL, 305
htmlentities(), 325
images table, procedure for creating and

defining, 291
images.sql, 296
improving the Ps2_Upload class (PHP

Solution 16-2), 437
IN(), 378
INNER JOIN, 422
InnoDB storage engine, 292, 432
INSERT command, 379
inserting a new record with MySQLi (PHP

Solution 13-1), 359
inserting a string with real_escape_string()

(PHP Solution 11-7), 323
inserting an integer from user input into a

query (PHP Solution 11-6), 320
inserting data into multiple tables (PHP

Solution 16-4), 444
installing on IIS, 17
INT data type, 300
interfaces to MySQLi, 305
INTO, 379
is_numeric(), 319, 321
LEFT JOIN, 427
LEFT(), 384
LIMIT clause, 379
loading the images records from a SQL file,

295
login_db.php, 466, 468
LONGBLOB data type, 301
main operators used in WHERE expressions,

table of, 377
making a reusable database connector (PHP

Solution 11-1), 306

INDEX

493

MEDIUMBLOB data type, 301
MyISAM storage engine, 292, 432
MySQL AB, 280
MySQL Community Edition, 280
MySQL extension, 303
MySQL online manual, using, 473
MySQL Workbench, 284
mysql_02.php, 312
mysql_real_escape_string(), 323
mysqli.php, 307, 311
mysqli_01.php, 309
mysqli_03.php, 316
mysqli_error(), 308, 380
mysqli_integer_01.php, 320
mysqli_real_escape_01.php, 323
MySQLi_Result object, 307–308
naming rules for databases, tables, and

columns, 287
Navicat, 284
NOW(), 356, 362, 393–394
num_rows property, 307, 322
ON, 422
one-way encryption, advantages and

disadvantages of, 459
one-way encryption, using, 460
Oracle, 280
ORDER BY clause, 379
passing the required arguments to mysqli(),

305
phpMyAdmin, 279, 284, 286
phpsols database, setting up, 287
prepare(), 362, 420
prepared statements, using, 320
processFile(), 438
Ps2_CheckPassword class, 461
query(), 308, 322, 420
real_escape_string(), 320
referential integrity, maintaining, 431
referential integrity, preserving on record

deletion, 452
register_2way_mysqli.inc.php, 469
register_db.php, 461, 465
register_user_mysqli.inc.php, 462
register_user_text.inc_02.php, 461
register_user_text.php, 461
reserved words, 287
root superuser account, 288
SET data type, 301
sha1(), 463, 468

specifying a different port from the default,
314

SQLyog, 284
starting Apache and MySQL automatically

with XAMPP, 15
storage_engines.php, 434
SUBDATE(), 392
Sun Microsystems, 280
surrounding spaces or illegal characters with

backticks in SQL queries, 287
time(), 463
TIMESTAMP data type, 300
TINYBLOB data type, 301
toggle_fields.js, 442
transaction, definition of, 435
two-way encryption, advantages and

disadvantages of, 460
two-way encryption, using, 469
UNSIGNED, 300
UPDATE command, 380
updating a record with MySQLi (PHP Solution

13-4), 367
updating records in a cross-reference table,

449
Upload.php, 437
Upload_06.php, 438
users table, creating, 460
users_2way table, creating, 469
using a MySQLi prepared statement in a

search (PHP Solution 11-8), 327
using MySQLi to count records in a result set

(PHP Solution 11-2), 307
using phpMyAdmin to create a new

database, 288
using phpMyAdmin to insert table records

manually, procedure for, 293
USING() clause, 424, 427
validating and formatting dates for MySQL

input (PHP Solution 14-4), 395
WHERE clause, 424
writing SQL queries, 314
See also databases; foreign keys; InnoDB

storage engine; MyISAM storage
engine; PHP Data Objects (PDO);
phpMyAdmin; phpsols database;
primary keys; Structured Query
Language (SQL); tables

INDEX

494

N
name attribute, 105–107, 125, 134, 139
namespaces

declaring, 176
implementing in PHP 5.3 and later, 151, 176
namespace keyword, 176

naming variables, rules for, 33
natcasesort(), 203
Navicat, 284
new keyword, 44
news feeds, 179
newsfeed.php, 206
nl2br(), 190, 386
Notepad, 6, 9
notices, 46
NOW(), 356, 362, 393–394
nowdoc syntax, 54
nuke_magic_quotes.php, 25, 108–109
Null check box, 418
null keyword, 48, 58
num_rows property, 307, 322
number_format(), 159

O
ob_end_clean(), 258
ob_end_flush(), 247, 251, 258
ob_start(), 247, 258

buffering output (PHP Solution 9-2), 250
object-oriented programming (OOP)

-> operator, 44
accessing an object s properties and

methods, 44
classes, 43
creating an instance of a class, 44
methods, 44
new keyword, 44
objects, 43, 48, 153
PHP s built-in classes, 43
properties, 44
See also classes

ON DELETE drop-down menu, 453
one-to-many relationship, 416
one-to-one relationship, 415
one-way encryption

advantages and disadvantages of, 459
using, 460
See also encryption; passwords; sessions;

SHA-1; two-way encryption
open_basedir directive, 94, 181–182

opening and closing tags, 30
Operations tab, 295, 433
operators

=> operator, 55
-> operator, 44
arithmetic operators, table of, 49
assignment (=) operator, 33
combined arithmetic assignment operators,

table of, 51
combined concatenation (.=) operator, 51
concatenation (.) operator, 45
decrement (--) operator, 50
equality (==) operator, 41
error control (@) operator, 94, 185
greater than (>) operator, 41
identical (===) operator, 184
increment (++) operator, 50
less than (<) operator, 41
logical Not (!) operator, 123
modulo operator, 50
precedence of arithmetic operators, table of,

50
scope resolution (double colon) operator,

404
See also conditional statements; loops

<option> tag, 138
Oracle, 279–280
ORDER BY clause, 316, 379
output buffer

flushing at the end of a script, 97
ob_end_clean(), 97
ob_end_flush(), 97
ob_start(), 97
turning on, 97

overview of PHP
-> operator, 44
accessing an object s properties and

methods, 44
arrays, 35
Boolean values, 39
camel case, 33
case-sensitivity of PHP, 33, 37
classes, 43
commenting scripts, 34
concatenation (.) operator, 45
conditional statements, 39
creating an instance of a class, 44
curly braces, arranging, 42
displaying PHP output, 44
echo, 44
elements required on most PHP pages, 30

INDEX

495

elseif clause, 41
embedding PHP in a web page, 31
enclosing PHP code within opening and

closing tags, 30
ending commands or statements with a

semicolon, 40
equality (==) operator, 41
error messages, 45
escaping with a backslash, 38
functions, 42
greater than (>) operator, 41
hash or pound (#) sign, 35
having multiple PHP code blocks on a page,

31
if statement, 40
indenting code, 42
joining strings, 45
keywords, list of, 33
less than (<) operator, 41
loops, 42
methods, 44
mixing .html and .php pages in the same

website, 48
multiline comments, 35
new keyword, 44
not enclosing true, false, and null in quotes,

39
object-oriented programming (OOP), 43
objects, 43
PHP as a server-side language, 30
PHP as a weakly typed language, 48
PHP as an embedded language, 31
.php filename extension, 30
PHP s built-in classes, 43
print, 44
properties, 44
quotes, using, 37
single-line comments, 35
storing PHP in an external file, 31
$this->, 33, 153
true, false, and null as case-insensitive, 39
underscores, 33, 36
variables, 32
whitespace in code, 42
See also reference guide to PHP

P
PAAMAYIM_NEKUDOTAYIM, meaning of, 404
parentheses, using in functions, 42
parse errors, 10, 46
parse_url(), 429

passing a value by reference, 119
passwords

adding a salt to a password before
encryption, 258

case-sensitivity of, in MySQL, 289
check(), 260–263
CheckPassword.php, 259, 262
CheckPassword_01.php, 262
CheckPassword_02.php, 264
creating a password strength checker (PHP

Solution 9-6), 258
creating a random salt for each password,

270
encrypting passwords with SHA-1, 258
getErrors(), 261
making passwords more secure, 258
one-way encryption, 258
preg_match(), 260, 264
preg_match_all(), 264
Ps2_CheckPassword class, 260
register.php, 259, 261, 264
register_01.php, 259
register_02.php, 262
register_03.php, 264
strlen(), 260
trim(), 259
using an encrypted login (PHP Solution 9-8),

269
See also encryption; one-way encryption;

sessions; SHA-1; two-way encryption
PATH_SEPARATOR, 100
PDT, 8
Perl-compatible regular expression (PCRE), 119
Photoshop, 215
PHP configuration settings (Windows and Mac)

adjusting your PHP configuration, procedure
for, 21

checking which PHP extensions are
enabled, 23

nuke_magic_quotes.php, 25
php.ini, editing, 25
phpinfo link, 22
recommended PHP configuration settings,

table of, 22
running phpinfo() on your local test

environment, 22
running phpinfo() on your remote server, 23
setting magic_quotes_gpc to Off, 24
setting up your site in a virtual host, 27
turning off magic quotes, 24
where to store your PHP files, 26

INDEX

496

See also php.ini; phpinfo()
PHP Data Objects (PDO)

advantages of, 303
authenticate_2way_pdo.inc.php, 471
authenticate_pdo.inc.php, 467–468
bindParam(), 465
changing column options through user input

(PHP Solution 11-10), 332
checking the MySQL hostname on a remote

server, 305
checking the PHP configuration of your

remote server, 304
closeCursor(), 310
commands for connecting to MySQL, table

of, 313
connecting to a MySQL server, 305
connection.inc.php, 306
counting records in a result set (PHP

Solution 11-3), 309
data source name (DSN), 314
die(), 307, 309
displaying the images table (PHP Solution

11-5), 312
displaying the results of a query, 310
embedding variables in PDO prepared

statements, 329
errorCode(), 465
errorInfo(), 309
fetchColumn(), 310
handling a failed database connection, 305
how PHP communicates with MySQL, 305
inserting a new record with PDO (PHP

Solution 13-2), 361
inserting an integer from user input into a

query (PHP Solution 11-6), 320
lastInsertId(), 448
making a reusable database connector (PHP

Solution 11-1), 306
named placeholders, 330
passing the required arguments to PDO(),

305
pdo.php, 309, 312
pdo_02.php, 312
pdo_03.php, 316
pdo_integer_01.php, 320
pdo_prepared.php, 331
pdo_prepared_01.php, 331
prepared statements, using, 320
query(), 310, 312
question mark placeholders, 330
register_2way_pdo.inc.php, 470

register_user_pdo.inc.php, 462
rowCount(), 309–310, 322, 465
updating a record with PDO (PHP Solution

13-5), 371
using a PDO prepared statement in a search

(PHP Solution 11-9), 331
See also databases; foreign keys; MySQL;

phpMyAdmin; phpsols database;
primary keys; Structured Query
Language (SQL); tables

PHP editors
Dreamweaver CS5, 7
Expression Web, 8
integrated development environments

(IDEs), 7
Komodo Edit, 8
Notepad, 6
PDT, 8
PhpED, 8
recommended features, 7
TextEdit, 6
using a dedicated script editor, 8
Zend Studio, 8
See also integrated development

environments (IDEs)
.php filename extension, 30
PHP General mailing list, 1
PHP online manual, using, 472
PHP test environment

Apache web server, 10
EasyPHP, 12
Internet Information Services (IIS), 10
MAMP, 11
MySQL, 10
phpMyAdmin, 10
potential port 80 conflict with Skype, 11
requirements for creating a local test

environment, 10
testing your pages on your own website, 10
WampServer, 12
web server, 10
XAMPP, 11
See also Internet Information Services (IIS);

setting up PHP (Mac OS X); setting up
PHP (Windows)

php.ini
date.timezone directive, 400
editing the PHP configuration file, 25
include_path, 72, 98
leaving register_globals turned off, 108
set_include_path(), 98, 100

INDEX

497

See also PHP configuration settings
(Windows and Mac)

PHP_EOL, 192, 385–386
PhpED, 8
phpinfo link, 22
phpinfo(), 98

file_uploads, 142
max_execution_time, 142
max_input_time, 142
phpinfo.php(), 22–23
post_max_size, 142
upload_max_filesize, 143
upload_tmp_dir, 143
See also PHP configuration settings

(Windows and Mac)
phpMyAdmin

Add field(s) text box, 418
After radio button, 418
AUTO_INCREMENT, 292, 295, 357, 418
backing up a single database, procedure for,

297
blog table, creating and setting up, 356
Browse tab, 295, 419, 423
Collation drop-down menu, 288
converting an InnoDB table back to MyISAM,

455
converting tables from MyISAM to InnoDB,

452
creating a new database, 288
creating a SQL file for backup and data

transfer, 297
creating database-specific user accounts,

288
Database drop-down menu, 291
Database-specific privileges table, 290
Drop tab, 293
Edit Privileges icon, 290
Engines tab, 432
Export tab, 297
Function field, 294
Global privileges table, 289
Go button, 290, 418
granting users privileges, procedure for, 289
images table, procedure for creating and

defining, 291
images.sql, 296
Import tab, 296
InnoDB storage engine, 292
Insert tab, 294
inserting table records manually, procedure

for, 293

installing on IIS, 18
launching, 286
Length/Values field, 299
loading the images records from a SQL file,

295
Login Information table, 289
MyISAM storage engine, 292
Null check box, 418
Operations tab, 295, 433, 452
Privileges tab, 289
Save as file check box, 298
Storage Engine drop-down menu, 433, 452
Structure icon, 293
Structure tab, 453
User overview page, 289
users table, creating, 460
users_2way table, creating, 469
using as a browser-based interface to

MySQL, 285
Value field, 295
See also databases; foreign keys; InnoDB

storage engine; MyISAM storage
engine; MySQL; PHP Data Objects
(PDO); phpsols database; primary
keys; Structured Query Language
(SQL); tables

PHPSESSID, 244
phpsols database, 339, 356

adapting the insert form to handle multiple
tables, 438

adding an extra column to a table (PHP
Solution 15-1), 418

adding categories to the update form (PHP
Solution 16-5), 449

adding the category and image input fields
(PHP Solution 16-3), 439

adding the image foreign key (PHP Solution
15-2), 420

altering the structure of an existing table,
417

article2cat table, 432, 437, 444, 446, 448
bind_param(), 422
blog table, 416, 418, 420, 422
blog_insert_mysqli.php, 439
blog_insert_mysqli_03.php, 444
blog_update_mysqli.php, 420, 449
blog_update_mysqli_03.php, 420
blog_update_mysqli_04.php, 449
blog_update_mysqli_05.php, 450
blog_update_mysqli_06.php, 452
blog_update_pdo_05.php, 450

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

INDEX

498

blog_update_pdo_06.php, 452
building the details page (PHP Solution

15-3), 423
categories table, 417, 437, 448
DATE_FORMAT(), 424–425
decision chain for inserting a blog article with

an image and categories, 435
details.php, 423, 428
details_mysqli_03.php, 429
displaying a selected article with its

associated photo, 423
free_result(), 420
images table, 416, 422
linking an image to an article, 417
linking tables in a SELECT query, 422
many-to-many relationship, 417
one-to-many relationship, 416
one-to-one relationship, 415
prepare(), 420
query(), 420
returning to the same point in a navigation

system (PHP Solution 15-4), 428
setting up with the psread and pswrite user

accounts, 287
toggle_fields.js, 442
users table, creating, 460
users_2way table, creating, 469
utility_funcs.inc.php, 424
See also databases; foreign keys; InnoDB

storage engine; MyISAM storage
engine; MySQL; PHP Data Objects
(PDO); phpMyAdmin; primary keys;
Structured Query Language (SQL);
tables

phpversion(), 42
phpversion.php, uploading to your website,

9–10
Port-Check button, 14
$_POST, 36, 106–113, 116, 120–121, 132
post method, 36, 105

advantages of using over the get method,
107

post_max_size, 142
PostgreSQL, 279
<pre> tag, 106
preg_match(), 224, 260, 264
preg_match_all(), 264
preg_replace(), 228, 386
preg_split(), 387
prepare(), 328, 362, 371, 420

prepared statements
bind_param(), 328
bind_result(), 327
bindColumn(), 331
changing column options through user input

(PHP Solution 11-10), 332
close(), 327
embedding variables in MySQLi prepared

statements, 326
embedding variables in PDO prepared

statements, 329
errorInfo(), 331
execute(), 330–331
fetch(), 327, 329
fetch_assoc(), 329
free_result(), 327
mysqli_prepared_02.php, 329
named placeholders, 330
prepare(), 328
question mark placeholders, 330
stmt_init(), 326
store_result(), 327
using, 320
using a MySQLi prepared statement in a

search (PHP Solution 11-8), 327
using a PDO prepared statement in a search

(PHP Solution 11-9), 331
primary keys

assigning a primary key to every record, 282
composite primary key, 436
identifying and using, 281
joint primary key, 417
linking tables with primary and foreign keys,

282
uniqueness of, 282
See also databases; foreign keys; MySQL;

PHP Data Objects (PDO);
phpMyAdmin; phpsols database;
Structured Query Language (SQL);
tables

print_r(), 106, 145, 185, 196
inspect_array1.php, 57
inspecting the contents of an array, 57

processFile(), 173–175, 238, 438
processmail.inc.php, 112, 115
processmail.inc_01.php, 115–116, 118
processmail.inc_02.php, 121, 123
processmail.inc_03.php, 125
processmail.inc_04.php, 127
processmail.inc_05.php, 131
properties, 44, 153

INDEX

499

protected keyword, 152–153
Ps2_CheckPassword class, 260, 265–266, 461
Ps2_Thumbnail class

abs(), 223
basename(), 228
building, 218
checkType(), 220–221, 231
create(), 229, 233–234
create_thumb.php, 221, 225
createImageResource(), 232, 234
createThumbnail(), 231–234
creating the setter methods (PHP Solution

8-2), 222
DIRECTORY_SEPARATOR, 223
final preparations for generating the

thumbnail image (PHP Solution 8-3),
227

generating the thumbnail image (PHP
Solution 8-4), 231

getimagesize(), 219, 228
getMessages(), 233
getting the dimensions and MIME type of the

original image (PHP Solution 8-1), 218
imagecopyresampled(), 230, 232
imagecreatefromgif(), 229
imagecreatefromjpeg(), 229
imagecreatefrompng(), 229
imagecreatetruecolor(), 230, 232
imagedestroy(), 231, 233
imagegif(), 230
imagejpeg(), 230
imagepng(), 230
is_numeric(), 223
mutator methods, 222
preg_match(), 224
preg_replace(), 228
Ps2_Upload class, 219
setDestination(), 225
setMaxSize(), 226
strpos(), 224
substr(), 220, 223
test(), 220, 225, 228, 233
Thumbnail.php, 218, 222
Thumbnail_01.php, 222
Thumbnail_02.php, 226–227
Thumbnail_03.php, 229, 231
Thumbnail_04.php, 234
See also gallery (online); images;

Ps2_ThumbnailUpload class; thumbnail
images

Ps2_ThumbnailUpload class
addPermittedTypes(), 241
array_merge(), 238
calling the parent constructor, 236
create_thumb_upload.php, 239
createThumbnail(), 238–239
creating a setter method for the thumbnail

destination folder, 237
creating the Ps2_ThumbnailUpload class

(PHP Solution 8-5), 236
list of public methods, 240
processFile(), 238
setThumbDestination(), 239
Thumbnail.php, 236
ThumbnailUpload.php, 236
unlink(), 239
Upload.php, 236
See also gallery (online); images;

Ps2_Thumbnail class; thumbnail
images

Ps2_Upload class, 151, 215, 219, 235, 445, 448
adapting to handle multiple file uploads (PHP

Solution 6-6), 172
adding the multiple attribute to the <input>

tag, 171
addPermittedTypes(), 162–163, 165
allowing different MIME types and sizes to

be uploaded (PHP Solution 6-4), 161
casting operators, 162
checkError(), 158–160, 173–174
checking an uploaded file s name before

saving it (PHP Solution 6-5), 166
checkName(), 169–170, 173
checkSize(), 158–159, 173–174
checkType(), 164–165, 173
common MIME types, table of, 161
constructor, code listing, 153
converting to use a namespace (PHP

Solution 6-7), 176
creating protected variables, 152
current(), 154
getMaxSize(), 158–159
getMessages(), 155, 157
improving the Ps2_Upload class (PHP

Solution 16-2), 437
is_dir(), 154
is_writable(), 154
isValidMime(), 162–163
making changes to protected properties on

the fly, 161
move(), 154–155, 158–159, 164, 170, 173

INDEX

500

move_uploaded_file(), 154
processFile(), 173–175
public methods, list of, 177
scandir(), 168
setMaxSize(), 164
setPermittedTypes(), 162, 165
str_replace(), 167
testing the error level, file size, and MIME

type (PHP Solution 6-3), 157
$upload object, 155–156
Upload.php, 437
Upload_06.php, 438
uploading multiple files, 171
using in a script, 177
See also file system; uploading files

<pubDate> tag, 205, 208
public keyword, 153

Q
query string, 106
query(), 308, 310, 312, 322, 420, 447
quotes

avoiding the need to escape quotes, 53
escaping single quotes and apostrophes in a

single-quoted string, 53
procedure for using, 53
single and double quotes, 37, 52
using escape sequences inside double

quotes, 52
when to use, 37
See also strings; text

R
radio-button groups

checked attribute, 135–136
name attribute, 134
setting a default value for, 134
subscribe radio-button group, 135
See also check-box groups

rand(), 85–86
random_image.php, 85–86, 88–89, 91
random_image_01.php, 85, 87
random_image_02.php, 92
readfile(), 181, 183
real_escape_string(), 320, 323, 332
recaptcha_get_answer(), 131
recaptchalib.php, 131
records, 281
recoverable errors, 46
recursive function, 120

RecursiveDirectoryIterator class, 198
RecursiveIteratorIterator class, 198
reference guide to PHP

=> operator, 55
arithmetic operators, table of, 49
array data type, 48
array(), using to build an associative array,

55
array(), using to build an indexed array, 55
array(), using to create an empty array, 56
associative arrays, 55
avoiding the need to escape quotes, 53
Boolean data type, 48
break keyword, 60, 64
case keyword, 60
casting operators, 166
combined arithmetic assignment operators,

table of, 51
combined concatenation (.=) operator, 51
comparison operators, table of, 58
configuration settings affecting file uploads,

table of, 142
constants, 49
continue keyword, 64
converting strings to integers or floating-

point numbers, 48
data types, list of, 48
decrement (--) operator, 50
default keyword, 61
do . . . while loop, 62
error levels in the $_FILES array, table of,

157
escape sequences, using inside double

quotes, 52
explicit Boolean values, 58
floating-point number data type, 48
for loop, 63
foreach loop, 63
function keyword, 65
heredoc syntax, procedure for using, 53
hexadecimal numbers, 48
implicit Boolean values, 58
increment (++) operator, 50
indexed arrays, 55
integer data type, 48
logical operators, table of, 59
loops, 62
main escape sequences, table of, 52
mixing .html and .php pages in the same

website, 48
modulo operator, 50

INDEX

501

multidimensional arrays, 48, 56
nowdoc syntax, 54
NULL data type, 48
object data type, 48
online documentation for PHP syntax, 47
performing calculations, 49
PHP as a weakly typed language, 48
PHP quick checklist of main language

points, 67
precedence of arithmetic operators, table of,

50
print_r(), using to inspect the contents of an

array, 57
resource data type, 48
return keyword, 66
side-effects of PHP s weak typing, 48
single and double quotes, 52
string data type, 48
switch statement, 60
ternary operator, 61
variables inside strings, 52
while loop, 62
See also overview of PHP

referential integrity
maintaining, 417, 431
preserving on record deletion, 452

RegexIterator class, 198, 202
register.php, 259, 261, 264–265, 268
register_01.php, 259
register_02.php, 262
register_03.php, 264–265
register_04.php, 267
register_05.php, 269
register_2way_mysqli.inc.php, 469
register_2way_pdo.inc.php, 470
register_db.php, 461, 465
register_globals, leaving turned off, 108
register_user_mysqli.inc.php, 462
register_user_pdo.inc.php, 462
register_user_text.inc.php, 265–267, 269
register_user_text.inc_01.php, 267
register_user_text.inc_02.php, 269, 461
register_user_text.php, 461
regular expressions (regex), 119
Relation view, 455
Reply-To header, 122
$_REQUEST, 108
require(), 71
require_once(), 71
$required array, 115, 134
required attribute, 105

resources, 48
return keyword, 66
rewind(), 188, 193
root superuser account, 288
rowCount(), 309–310, 322, 362, 375, 456, 465
<rss> tag, 204
RSS 2.0 feed

RSS Specification, online location, 205
structure of, 204

rtrim(), 187

S
safe_mode_include_dir, 181
Save as file check box, 298
scandir(), 168, 195
scope, 66
scope resolution (double colon) operator, 404
secretpage.php, 255–257
secretpage_01.php, 255
Secure Sockets Layer (SSL), 469

using for secure data transmission, 107
security

checking user input before processing it, 6
using insecure email scripts, 6

SEEK_END, 193
SELECT command, 315, 355, 419

DISTINCT option, 377
linking tables in a SELECT query, 422
syntax of, 369, 377
WHERE clause, 377

<select> tag, 138
selected attribute, 138
self-processing form, 111
semicolons

ending commands or statements with, 34, 40
using in SQL queries along with PHP, 315

$_SERVER, 37, 77, 100
server-side include, definition of, 69
session_start(), 258, 271
sessions

adding a salt to a password before
encryption, 258

array_merge(), 266
authenticate.inc.php, 253, 270
basename(), 274
buffering output with ob_start() (PHP

Solution 9-2), 250
building a login page (PHP Solution 9-3), 251
byte order mark (BOM), 247
check(), 260–263
CheckPassword.php, 259, 262, 265

INDEX

502

CheckPassword_01.php, 262
CheckPassword_02.php, 264
contents of a simple session file, 245
creating a file-based user registration

system (PHP Solution 9-7), 265
creating a password strength checker (PHP

Solution 9-6), 258
creating a random salt for each password,

270
creating a reusable logout button (PHP

Solution 9-5), 256
creating a simple session (PHP Solution

9-1), 247
creating PHP sessions, 245
creating session variables, 246
definition of, 243
destroying a session, 246
disabled cookies and, 245
encrypted.txt, 269
encrypting passwords with SHA-1, 258
ending a session after a period of inactivity

(PHP Solution 9-9), 270
file(), 251
file-based authentication, 251
filesize(), 267
filetest_02.txt, 251
fopen(), 267
getErrors(), 261
handling the "headers already sent" error,

247, 249
header(), 247, 254–255, 275
ini_set(), 270
invalidating the session cookie, 246
login.php, 251, 255, 257, 269, 271
login_01.php, 269
login_02.php, 270
logout.inc.php, 257
making passwords more secure, 258
menu.php, 255–257
menu_01.php, 255
menu_02.php, 256
multiform.inc.php, 274–275
multiple_01.php, 273–274
multiple_02.php, 276
multiple_03.php, 276
multiple_04.php, 277
never using session variables to store

sensitive information, 245
ob_end_clean(), 258
ob_end_flush(), 247, 251, 258
ob_start(), 247, 258

one-way encryption, 258
PHPSESSID, 244
preg_match(), 260, 264
preg_match_all(), 264
Ps2_CheckPassword class, 260
regenerating the session ID, 247
register.php, 259, 261, 264–265, 268
register_01.php, 259
register_02.php, 262
register_03.php, 264–265
register_04.php, 267
register_05.php, 269
register_user_text.inc.php, 265–267, 269
register_user_text.inc_01.php, 267
register_user_text.inc_02.php, 269
removal of inactive session files, 245
restricting access to a page with a session

(PHP Solution 9-4), 255
secretpage.php, 255–257, 272
secretpage_01.php, 255
$_SESSION, 37, 246
session ID, 243
session variables, 244
session_01.php, 247
session_02.php, 247, 250
session_03.php, 248, 250
session_destroy(), 246
session_name(), 246
session_regenerate_id(), 247
session_register(), 246
session_start(), 245, 247, 250, 258, 271
session_timeout.inc.php, 271
session_unregister(), 246
setcookie(), 247, 250
setting a time limit on sessions, 270
sha1(), 269
str_replace(), 275
strlen(), 260
time(), 271
trim(), 259
unsetting session variables, 246
using an encrypted login (PHP Solution 9-8),

269
using sessions for a multipage form (PHP

Solution 9-10), 273
using sessions to restrict website access,

247
See also encryption; one-way encryption;

passwords; SHA-1; two-way encryption
SET data type, 301
set_include_path(), 98, 100

INDEX

503

setDate(), 406
setDestination(), 225
setMaxSize(), 164, 226
setPermittedTypes(), 162, 165
setter methods, 222
setThumbDestination(), 239
setTime(), 406
setTimezone(), 407

creating a DateTimeZone object, 209
setting up PHP (Mac OS X)

installing MAMP, procedure for, 19
testing and configuring MAMP, procedure

for, 20
See also PHP test environment

setting up PHP (Windows)
choosing a web server, 12
configuring XAMPP, procedure for, 14
developing web pages using ASP or

ASP.NET, 12
displaying filename extensions, 11
installing MySQL on IIS, 17
installing PHP using the Web Platform

Installer (Web PI), procedure for, 16
installing phpMyAdmin on IIS, 18
installing XAMPP, procedure for, 12
Internet Information Services (IIS), 12
logging on as an Administrator before

installing, 11
starting Apache and MySQL automatically

with XAMPP, 15
troubleshooting, 14
See also PHP test environment

SHA-1, 265
encrypting passwords with, 258
one-way encryption, 258
sha1(), 269, 463, 468
See also encryption; one-way encryption;

passwords; sessions; two-way
encryption

SimpleXML, 58, 179
consuming an RSS news feed (PHP Solution

7-5), 206
Coordinated Universal Time (UTC), 209
DateTime class, 208
<description> tag, 208
extracting information from XML, 205
getOffset(), 209
newsfeed.php, 206
<pubDate> tag, 208
setTimezone(), 209
simplexml_load_file(), 205, 207

SimpleXMLElement class, 205
SimpleXMLIterator class, 207
<title> tag, 208
See also Extensible Markup Language

(XML)
single-line comments, 35
site-root-relative path, 100
Skype, changing the incoming port, 11
 tag, 114
SplFileInfo, table of methods, 197
SQL Server, using with PHP, 17
SQLyog, 284
Standard PHP Library (SPL), 179

DirectoryIterator class, 196
SplFileInfo, 196

static methods, 404
stmt_init(), 326
Storage Engine drop-down menu, 433, 452
storage_engines.php, 434
store_result(), 327
str_replace(), 81, 167, 275
strftime(), 401
strict, 46
strings, 48

concatenation (.) operator, 45
escaping single quotes and apostrophes in a

single-quoted string, 53
joining strings in PHP, 45
single and double quotes, 52
variables inside strings, 52
See also quotes

strip_tags(), 204
strlen(), 260
strpos(), 224, 385
strrpos(), 168, 385
strtolower(), 82
strtotime(), 403, 410
strtoupper(), 82
Structure icon, 293
Structure tab, 453, 455
Structured Query Language (SQL)

adding comments to queries, 315
affected_rows property, 361
AS keyword, 384, 391
ASC keyword, 317
assigning an alias to a column, 384
BETWEEN, 378
BINARY keyword, 319
bind_param(), 328, 360
bind_result(), 327
bindColumn(), 331

INDEX

504

binding the parameters, 360, 362
changing column options through user input

(PHP Solution 11-10), 332
close(), 327
CONCAT(), 378
controlling the sort order, 316
COUNT(), 310, 348
cross-reference (linking) table, 417
DELETE command, 355, 375, 380
DESC keyword, 316
embedding variables in MySQLi prepared

statements, 326
embedding variables in PDO prepared

statements, 329
errorInfo(), 331
establishing relationships between tables

through foreign keys, 415
execute(), 330–331, 361
fetch(), 327, 329
fetch_assoc(), 329
finding records that don t have a matching

foreign key, 427
foreign key constraints, 432
formatting dates in a SELECT query with

DATE_FORMAT(), 390
free_result(), 327
handling numbers, 315
handling security and error messages, 380
IN(), 378
INNER JOIN, 422
INSERT command, 357, 359, 379, 419
inserting a foreign key in a table, 419
inserting a new record with MySQLi (PHP

Solution 13-1), 359
inserting a new record with PDO (PHP

Solution 13-2), 361
inserting a string with real_escape_string()

(PHP Solution 11-7), 323
inserting an integer from user input into a

query (PHP Solution 11-6), 320
INTO, 379
is_numeric(), 319, 321
joint primary key, 417
keywords as case-insensitive, 314
LEFT JOIN, 427
LEFT(), 384
LIKE keyword, 318, 325
LIMIT clause, 349, 379
LIMIT keyword, 347
linking tables in a SELECT query, 422

main operators used in MySQL WHERE
expressions, table of, 377

many-to-many relationship, 417
mysqli_03.php, 316
mysqli_integer_01.php, 320
mysqli_prepared_02.php, 329
named placeholders, 330
ON, 422
one-to-many relationship, 416
one-to-one relationship, 415
ORDER BY clause, 316, 379
pdo_03.php, 316
pdo_integer_01.php, 320
percentage sign as a wildcard character, 318
performing a case-sensitive search, 319
prepare(), 328
prepared statements, using, 320
preventing SQL injection attacks, 319
query(), 322
question mark placeholders, 330
quoting strings, 315
real_escape_string(), 320
referential integrity, maintaining, 417, 431
reversing the sort order, 316
reviewing the four essential SQL commands,

376
SELECT command, 355, 369, 377, 419
selecting columns, 315
stmt_init(), 326
store_result(), 327
understanding table relationships, 415
UPDATE command, 357, 367, 370, 380, 419
updating a record with MySQLi (PHP Solution

13-4), 367
updating a record with PDO (PHP Solution

13-5), 371
using a MySQLi prepared statement in a

search (PHP Solution 11-8), 327
using a PDO prepared statement in a search

(PHP Solution 11-9), 331
using a variable for a column name, 320
using semicolons in queries along with PHP,

315
USING() clause, 424, 427
WHERE clause, 317, 375, 424
whitespace ignored, 315
writing SQL queries, 314
See also databases; foreign keys; MySQL;

PHP Data Objects (PDO);
phpMyAdmin; phpsols database;
primary keys; tables

INDEX

505

sub(), 406, 409
SUBDATE(), 392
substr(), 168, 220, 223, 384–385
Sun Microsystems, 280
superglobal arrays

$_FILES, 37, 144
$_GET, 36, 107, 109
get method, 36
$_POST, 36, 106–107, 109–111, 113, 116,

120–121, 132
post method, 36
$_REQUEST, 108
$_SERVER, 37
$_SESSION, 37, 246
See also arrays

switch statement
break keyword, 60
case keyword, 60
comparison operators and, 61
default keyword, 61
example of, 60
syntax of, 60
See also conditional statements; loops;

operators
Symfony, 100

T
tables

adding an extra column to a table (PHP
Solution 15-1), 418

altering the structure of an existing table,
417

composite primary key, 436
converting an InnoDB table back to MyISAM,

455
converting tables from MyISAM to InnoDB,

452
cross-reference (linking) table, 417, 436
establishing relationships between tables

through foreign keys, 415
finding records that don t have a matching

foreign key, 427
INNER JOIN, 422
inserting a foreign key in a table, 419
inserting data into multiple tables (PHP

Solution 16-4), 444
LEFT JOIN, 427
linking tables in a SELECT query, 422
many-to-many relationship, 417
one-to-many relationship, 416
one-to-one relationship, 415

referential integrity, maintaining, 417, 431
parent and child (dependent) tables, 417
understanding table relationships, 415
updating records in a cross-reference table,

449
See also databases; foreign keys; MySQL;

PHP Data Objects (PDO);
phpMyAdmin; phpsols database;
primary keys; Structured Query
Language (SQL)

tags, opening and closing, 30
ternary operator, syntax of, 61
test(), 220, 225, 228, 233
text

array_pop(), 388
blog_mysqli.php, 389
blog_pdo.php, 389
blog_ptags_mysqli.php, 387
blog_ptags_pdo.php, 387
count(), 388
displaying a text extract, 383
displaying database text as paragraphs, 386
displaying the first two sentences of an

article (PHP Solution 14-1), 388
ending an extract on a complete word, 385
extracting a fixed number of characters, 384
extracting complete sentences, 387
getFirst(), 387–388
implode(), 388
LEFT(), 384
nl2br(), 386
preg_replace(), 386
preg_split(), 387
strpos(), 385
strrpos(), 385
substr(), 384–385
using the PHP_EOL constant, 385
utility_funcs.inc.php, 387–388
See also file system; fopen()

<textarea> tag, 105, 118
TextEdit, 6, 9
$this->, 33, 153, 158
throwing an exception, 46–47
thumbnail images

generating, 217
Ps2_Thumbnail class, building, 218
Thumbnail.php, 218, 222, 236
Thumbnail_01.php, 222
Thumbnail_02.php, 226–227
Thumbnail_03.php, 229, 231
Thumbnail_04.php, 234

INDEX

506

ThumbnailUpload.php, 236
See also gallery (online); images;

Ps2_Thumbnail class;
Ps2_ThumbnailUpload class

thumbs folder, 337
time(), 271, 463
TIMESTAMP column, 394

automatically updating in a MySQL table,
356–357

TIMESTAMP data type, 300
timezones.php, 407
TINYBLOB data type, 301
<title> tag, 205, 208
title.inc.php, 79, 81–82
tmp_name, 148
toggle_fields.js, 442
transaction, definition of, 435
trim(), 187, 259
troubleshooting

catch block, 95–96
display_errors directive, turning off, 94
open_basedir directive has been set, 94
Parse error, 10
server is running in safe mode, 93
suppressing error messages in a live

website, 94
try block, 47, 95
See also error messages

true keyword, 58
two-way encryption

advantages and disadvantages of, 460
AES_DECRYPT(), 472
creating a login page with, 471
decrypting a password with, 472
storing a password in a database as a binary

object, 469
using, 469
See also encryption; one-way encryption;

passwords; sessions; SHA-1
type juggling, 166

U
ucfirst(), 80
ucwords(), 81–82
underscores, 33, 36
Unicode (UTF-8), 117, 122
unlink(), 239
UNSIGNED, 300
UPDATE command, 357, 370, 419

syntax of, 367, 380
WHERE clause, 380

Update Entry button, 370, 375
Upload.php, 155, 160, 236
Upload_01.php, 156–157
Upload_02.php, 160, 162
Upload_04.php, 170, 172
Upload_05.php, 176
Upload_06.php, 438
upload_test folder, 164, 170
uploading files

$this->, 158
adapting the Ps2_Upload class to handle

multiple file uploads (PHP Solution 6-6),
172

adding a file-upload field to an HTML form,
143

adding the multiple attribute to the <input>
tag, 171

addPermittedTypes(), 162–163, 165
allowing different MIME types and sizes to

be uploaded (PHP Solution 6-4), 161
array_merge(), 162
casting operators, 162, 166
checkError(), 158–160, 173–174
checking an uploaded file s name before

saving it (PHP Solution 6-5), 166
checking the suitability of uploaded content,

141
checking upload errors, 156
checkName(), 169–170, 173
checkSize(), 158–159, 173–174
checkType(), 164–165, 173
common MIME types, table of, 161
configuration settings affecting file uploads,

table of, 142
converting the Ps2_Upload class to use a

namespace (PHP Solution 6-7), 176
copy(), 150
creating a basic file-upload class (PHP

Solution 6-2), 151
creating a basic file-upload script (PHP

Solution 6-1), 148
creating an upload folder for local testing on

Mac OS X, procedure for, 147
creating an upload folder for local testing on

Windows, 146
error levels in the $_FILES array, table of,

157
file_upload.php, 144, 150, 155–156, 160,

164–165, 170
file_upload_01.php, 144
file_upload_02.php, 144, 161

INDEX

507

file_upload_03.php, 148
file_upload_04.php, 148
file_upload_05.php, 156
file_upload_06.php, 171
file_upload_07.php, 171
file_uploads, 142
getMaxSize(), 158–159
getMessages(), 157
giving global access (chmod 777) to upload

directories, 146
hosting companies and file/directory

permissions, 146
how PHP handles file uploads, 142
how the $_FILES array handles multiple files,

171
in_array(), 163, 168–169
inspecting the $_FILES array, 144
is_int(), 163
is_numeric(), 163
isset(), 145
isValidMime(), 162–163
making changes to protected properties on

the fly, 161
max_execution_time, 142
MAX_FILE_SIZE, 148, 150, 164
max_input_time, 142
move(), 158–159, 164, 170, 173–174
move_uploaded_file(), 148–150, 154,

159–160, 173
moving a temporary file to the upload folder,

148
number_format(), 159
post_max_size, 142–143
preventing existing files from being

overwritten, 166
print_r(), 145
processFile(), 173–175
Ps2_Upload class, 151
scandir(), 168
security recommendations for file uploads,

178
setMaxSize(), 164
setPermittedTypes(), 162, 165
specifying a maximum size for an uploaded

file in an HTML form, 148
steps required to ensure a secure file-upload

process, 150
str_replace(), 167
strrpos(), 168
substr(), 168

testing the error level, file size, and MIME
type (PHP Solution 6-3), 157

tmp_name, 148
type juggling, 166
Upload button, 146, 149
upload directory, establishing, 146
Upload.php, 151, 155, 160
Upload_01.php, 156–157
Upload_02.php, 160, 162
Upload_03.php, 167
Upload_04.php, 170, 172
Upload_05.php, 176
upload_max_filesize, 143
upload_test folder, 146–147, 149–150, 164,

170
upload_tmp_dir, 143
uploading multiple files, 171
using the Ps2_Upload class in a script, 177
See also Ps2_Upload class

URL encoding, 106
users table

creating, 460
table of columns, 460

users_2way table
creating, 469
table of columns, 469

USING() clause, 424, 427
utility_funcs.inc.php, 387–388, 396–398, 424

V
value attribute, 139
Value field, 295
variables, 32

assigning values to, 33
assignment (=) operator, 33
camel case, 33
ending commands or statements with a

semicolon, 34
rules for naming variables, 33
scope of, 66
$this->, 33
underscores, 33
using a variable variable, 126
variables inside strings, 52

virtual host
setting up a virtual host for testing, 101
setting up your site in a virtual host, 27

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

INDEX

508

W
WampServer, 12
warnings, 46
websites

building PHP pages dynamically in response
to a browser request, 3

checking for PHP support on your website, 9
checking the current running version of PHP,

9
displaying the current year in a copyright

notice, 2
how PHP makes web pages dynamic, 2
include files, 3
suppressing error messages in a live

website, 94
testing your pages on your own website, 10
uses for PHP, 1
using PHP to introduce logic into web pages,

4
using the W3C s Markup Validation Service,

5
WHERE clause, 317, 375, 377, 380, 424

while loop
syntax of, 62
while.php, 62

whitespace in code, 42
wordwrap(), 126

World Wide Web Consortium (W3C),
Markup Validation Service, 5

X, Y
XAMPP

configuring, procedure for, 14
confirming that Apache and MySQL are

running, 13
Control Panel, 13
Explore button, 14
installing on Windows, procedure for, 12
Port-Check button, 14
troubleshooting, 14

Z
Zend Framework, 100, 176
Zend Studio, 8

	Cover
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Using the example files
	Layout conventions
	Chapter 1

	What Is PHP—And Why Should I Care?
	How PHP has grown
	How PHP makes pages dynamic
	Creating pages that think for themselves

	How hard is PHP to use and learn?
	Can I just copy and paste the code?
	How safe is PHP?

	What software do I need to write PHP?
	What to look for when choosing a PHP editor

	So, lets get on with it . . .
	Chapter 2

	Getting Ready to Work with PHP
	Checking whether your website supports PHP
	Deciding where to test your pages

	What you need for a local test environment
	Individual programs or an all-in-one package?

	Setting up on Windows
	Getting Windows to display filename extensions
	Choosing a web server
	Installing XAMPP on Windows
	Installing PHP with the Microsoft Web Platform Installer

	Setting up on Mac OS X
	Installing MAMP
	Testing and configuring MAMP

	Checking your PHP settings (Windows and Mac)
	Editing php.ini

	Where to locate your PHP files
	Whats next?
	Chapter 3

	How to Write PHP Scripts
	PHP: The big picture
	Telling the server to process PHP
	Embedding PHP in a web page
	Storing PHP in an external file
	Using variables to represent changing values
	Ending commands with a semicolon
	Commenting scripts
	Using arrays to store multiple values
	PHPs built-in superglobal arrays
	Understanding when to use quotes
	Making decisions
	Making comparisons
	Using indenting and whitespace for clarity
	Using loops for repetitive tasks
	Using functions for preset tasks
	Understanding PHP classes and objects
	Displaying PHP output
	Understanding PHP error messages

	PHP: A quick reference
	Using PHP in an existing website
	Data types in PHP
	Doing calculations with PHP
	Adding to an existing string
	All you ever wanted to know about quotes—and more
	Creating arrays
	The truth according to PHP
	Creating loops
	Modularizing code with functions

	PHP quick checklist
	Chapter 4

	Lightening Your Workload with Includes
	Including code from external files
	Introducing the PHP include commands
	Where PHP looks for include files
	Choosing the right filename extension for includes
	Creating pages with changing content
	Preventing errors with include files
	Choosing where to locate your include files
	Adjusting your include_path
	Why cant I use site-root-relative links with PHP includes?
	Security considerations with includes

	Chapter review
	Chapter 5

	Bringing Forms to Life
	How PHP gathers information from a form
	Understanding the difference between post and get
	Keeping safe with PHP superglobals
	Removing unwanted backslashes from form input

	Processing and validating user input
	Creating a reusable script
	Preserving user input when a form is incomplete
	Filtering out potential attacks

	Sending email
	Using additional email headers safely
	Keeping spam at bay

	Handling multiple-choice form elements
	Chapter review
	Chapter 6

	Uploading Files
	How PHP handles file uploads
	Checking whether your server supports uploads
	Adding a file upload field to a form
	Understanding the $_FILES array
	Establishing an upload directory

	Uploading files
	Moving the temporary file to the upload folder

	Creating a PHP file upload class
	Defining a PHP class
	Checking upload errors
	Changing protected properties
	Explicitly changing a data type
	Preventing files from being overwritten

	Uploading multiple files
	How the $_FILES array handles multiple files
	Using namespaces in PHP 5.3 and later

	Using the upload class
	Points to watch with file uploads
	Chapter review
	Chapter 7

	Using PHP to Manage Files
	Checking that PHP has permission to open a file
	Configuration settings that affect file access
	Creating a file storage folder for local testing

	Reading and writing files
	Reading files in a single operation
	Opening and closing files for read/write operations

	Exploring the file system
	Inspecting a folder with scandir()
	Inspecting the contents of a folder with DirectoryIterator
	Restricting file types with the RegexIterator

	Accessing remote files
	Consuming news and other RSS feeds
	Using SimpleXML

	Creating a download link
	Chapter review
	Chapter 8

	Generating Thumbnail Images
	Checking your servers capabilities
	Manipulating images dynamically
	Making a smaller copy of an image

	Resizing an image automatically on upload
	Extending a class
	Using the Ps2_ThumbnailUpload class

	Chapter summary
	Chapter 9

	Pages That Remember: Simple Login and Multipage Forms
	What sessions are and how they work
	Creating PHP sessions
	Creating and destroying session variables
	Destroying a session
	Regenerating the session ID
	The “Headers already sent” error

	Using sessions to restrict access
	Using file-based authentication
	Making passwords more secure

	Setting a time limit on sessions
	Passing information through multipage forms
	Chapter review
	Chapter 10

	Getting Started with MySQL
	Why MySQL?
	Which version?

	How a database stores information
	How primary keys work
	Linking tables with primary and foreign keys
	Breaking down information into small chunks
	Checkpoints for good database design

	Using MySQL with a graphical interface
	Launching phpMyAdmin

	Setting up the phpsols database
	MySQL naming rules
	Using phpMyAdmin to create a new database
	Creating database-specific user accounts
	Creating a database table
	Inserting records into a table
	Creating a SQL file for backup and data transfer

	Choosing the right data type in MySQL
	Storing text
	Storing numbers
	Storing dates and times
	Storing predefined lists
	Storing binary data

	Chapter review
	Chapter 11

	Connecting to MySQL with PHP and SQL
	Checking your remote server setup
	How PHP communicates with MySQL
	Connecting with the MySQL Improved extension
	Connecting with PDO
	PHP Solution 11-1: Making a reusable database connector
	Finding the number of results from a query
	Displaying the results of a query
	MySQL connection crib sheet

	Using SQL to interact with a database
	Writing SQL queries
	Refining the data retrieved by a SELECT query
	Understanding the danger of SQL injection

	Chapter review
	Chapter 12

	Creating a Dynamic Online Gallery
	Why not store images in a database?
	Planning the gallery
	Converting the gallery elements to PHP
	Building the dynamic elements
	Passing information through a query string
	Creating a multicolumn table
	Paging through a long set of records

	Chapter review
	Chapter 13

	Managing Content
	Setting up a content management system
	Creating the blog database table
	Creating the basic insert and update form
	Inserting new records
	Linking to the update and delete pages
	Updating records
	Deleting records

	Reviewing the four essential SQL commands
	SELECT
	INSERT
	UPDATE
	DELETE

	Security and error messages
	Chapter review
	Chapter 14

	Formatting Text and Dates
	Displaying a text extract
	Extracting a fixed number of characters
	Ending an extract on a complete word
	Extracting the first paragraph
	Extracting complete sentences

	Lets make a date
	How MySQL handles dates
	Inserting dates into MySQL
	Working with dates in PHP

	Chapter review
	Chapter 15

	Pulling Data from Multiple Tables
	Understanding table relationships
	Linking an image to an article
	Altering the structure of an existing table
	Inserting a foreign key in a table
	Selecting records from multiple tables
	Finding records that dont have a matching foreign key
	Creating an intelligent link

	Chapter review
	Chapter 16

	Managing Multiple Database Tables
	Maintaining referential integrity
	Inserting records into multiple tables
	Creating a cross-reference table
	Getting the filename of an uploaded image
	Adapting the insert form to deal with multiple tables

	Updating and deleting records in multiple tables
	Updating records in a cross-reference table
	Preserving referential integrity on deletion
	Creating delete scripts with foreign key constraints
	Creating delete scripts without foreign key constraints

	Chapter review
	Chapter 17

	Authenticating Users with a Database
	Choosing an encryption method
	Using one-way encryption
	Creating a table to store users details
	Registering new users in the database

	Using two-way encryption
	Creating the table to store users details
	Registering new users
	User authentication with two-way encryption
	Decrypting a password

	Updating user details
	Where next?
	Chapter 17

	Authenticating Users with a Database
	Choosing an encryption method
	Using one-way encryption
	Creating a table to store users details
	Registering new users in the database

	Using two-way encryption
	Creating the table to store users details
	Registering new users
	User authentication with two-way encryption
	Decrypting a password

	Updating user details
	Where next?

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X, Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

