
www.SoftGozr.com

Oracle Database
Administration for
Microsoft® SQL Server® DBAs

Michelle Malcher

New York Chicago San Francisco
Lisbon London Madrid Mexico City Milan
New Delhi San Juan Seoul Singapore Sydney Toronto

www.SoftGozr.com

Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act of 1976,
no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the
prior written permission of the publisher.

ISBN: 978-0-07-174430-0

MHID: 0-07-174430-4

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-174431-7,
MHID: 0-07-174431-2.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we
use names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of infringement of the trademark. Where such
designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or mechanical error
by our sources, Publisher, or others, Publisher does not guarantee the accuracy, adequacy, or completeness of any information included in this Work
and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and to the work. Use of
this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work,
you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate,
sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own noncommercial
and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these
terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM
ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the
work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to
you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill
has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors
be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work,
even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever
whether such claim or cause arises in contract, tort or otherwise.

www.SoftGozr.com

www.SoftGozr.com

www.SoftGozr.com

www.SoftGozr.com

This book is dedicated to all of the hard-working DBAs
who learn of ways to work smarter and then share

that information so that others can learn as well.

About the Author
Michelle Malcher is a Senior Database Administrator at DRW Holdings with
more than 12 years of experience in database development, design, and
administration. She has expertise in performance tuning, security, data
modeling, and database architecture of very large database environments.
She has administered environments supporting multiple database platforms,
including Oracle, SQL Server, and Sybase. As a DBA, she has strived to design,
implement, and maintain stable, reliable, and secure database environments
in order to support the business and important business processes.

Michelle enjoys contributing to the database technology user community
by speaking at conferences and being on the Independent Oracle User
Group (IOUG) Board of Directors as the Director of Education. She feels
that being able to learn from others and teach what you know are key ways
to enjoy working with databases. There is always something to learn and
challenge us to come up with better solutions.

About the Technical Editor
Kimberly Floss is a Manager of Database Services for a large Fortune
500 company. She has managed teams responsible for both database
administration and database engineering for Oracle, DB2, Teradata,
and SQL Server. She has been largely responsible for database/system
administration, general architecture, system performance monitoring,
tuning, backup and recovery, and capacity planning of hundreds of
database environments.

Kimberly is a former President of the Independent Oracle User Group
(IOUG) and has been a board member for six years. She currently serves
as a member of the Conference Committee for IOUG. She also serves on
the board for the North Central Teradata User Group and has served as a
content reviewer for the Professional Association of SQL Server (PASS).
She is a frequent speaker at conferences such as Oracle OpenWorld and
Collaborate.

Kimberly has a BS in Computer Information Systems from Purdue and an
MBA with emphasis in MIS from Loyola University. She teaches a Database
Applications and SQL Programming class at a local community college.

Contents

ACKNOWLEDGMENTS . xi
INTRODUCTION . xiii

1 The Database Administrator . 1
General DBA Skills . 2
Where Do DBAs Belong in an Organization? 4
Database Installation Planning . 5
Leveraging Skills . 5
Database Migrations . 9
Summary . 13

2 Oracle Internals . 15
Memory Structures . 16

Oracle Memory Parameters . 17
Sizing the SGA and PGA . 20

Where Are the master, msdb, and tempdb Databases? 22
System-level Information . 23
Data Dictionary Views . 26
Jobs and Schedules . 28
Templates and Temporary Tables 28

Services and Processes . 29
sp_configure Options and Parameters . 32

Viewing and Setting Parameters . 33
Getting Started with Some Parameters 34

Undo, Redo, and Logs . 38
Transaction Logs Versus Redo Logs 38
Undo and Beyond . 39

Summary . 42

v

3 Oracle Installation . 43
Operating Systems . 44

Windows Setup . 46
Useful Linux/Unix Commands . 48
Linux Setup . 50

Storage Requirements . 55
Disk Storage . 56
Storage Management with ASM . 57
Oracle Files . 61
Oracle Database Components . 63

Oracle Software Installation . 64
Using a Response File . 67
Removing Software . 68
Upgrading the Database . 68
Applying Patches . 70

Summary . 71

4 Database Definitions and Setup . 73
Servers, Databases, Instances, and Schemas 74
SQL Server Setup Versus Oracle Setup . 77
Creating Databases . 79

Using the DBCA . 79
Duplicating Databases with Templates and Scripts 83
Creating the Listener . 85
Choosing a Character Set . 89

Security . 94
Permissions for the Server . 95
Permissions for Schemas . 98
DBA Roles and Responsibilities Revisited 101

Summary . 102

5 DBA Tools . 103
Overview of Tools for Typical Database Tasks 104
Oracle Enterprise Manager . 105

OEM Navigation . 105
Storage Management . 107
Database Configuration . 108
Oracle Scheduler . 109
Statistics and Resource Management 109

vi Oracle Database Administration for Microsoft SQL Server DBAs

Security . 109
Enterprise Manager Configuration 111

SQL*Plus . 112
SQL Developer . 117
Client Connections . 119

Client Connection Configuration . 120
JDBC Connections . 123
Aliases . 123

My Oracle Support . 124
Summary . 125

6 Database Backup, Restore, and Recovery 127
Backing Up Databases . 128

Backup Strategies . 128
Backup and Restore Commands . 129
RMAN Configuration for Backups 131
Backup Options . 135
Backup Examples . 137
OEM Backup Jobs . 137

Restoring and Recovering Databases . 141
What Can Go Wrong? . 141
Restore and Recover Options . 143
Data Recovery Advisor . 147
Copying the Database . 149

Managing Backups . 152
Viewing Backups . 152
Purging Obsolete Files . 155

Backing Up and Restoring Objects . 156
Copying Objects at the Table and Schema Level 156
Using Data Pump . 157

Protecting Users from Users . 161
Recycle Bin . 161
Flashback . 164

Summary . 169

7 Database Maintenance . 171
Maintenance Tasks . 172
Consistency Checks . 173
Health Checks . 174

Contents vii

viii Oracle Database Administration for Microsoft SQL Server DBAs

Update Statistics . 176
System Statistics . 177
Object Statistics . 178

Object Maintenance . 181
Index Rebuild . 181
Table Reorganization . 184
Invalid Objects . 187
Grants . 189
Synonyms . 190

Job Scheduling . 191
Creating a Job in Oracle Scheduler 191
Using DBMS_SCHEDULER . 194
Setting Up System and User Jobs . 196

File Maintenance . 197
Shrinking and Resizing Files . 197
Tablespace Monitoring . 200
Error Logs, Alert Logs, and Trace Files 203

Summary . 204

8 Performance and Tuning . 207
Better-Performing Systems . 208
Indexes . 209

Index Monitoring . 210
Index Types . 210

Locking . 219
Current Activity Views . 221

Current Sessions . 222
Activity Monitors . 223
Waits . 225

SQL Plans . 226
Viewing Explain Plans . 226
Tuning Using Explain Plans . 228

Automatic Workload Repository . 233
AWR Reports . 233
Active Session History View . 236
Library Cache for SQL Statements 236

Summary . 238

9 PL/SQL . 239
Database Coding Practices . 240
Packages and Package Bodies . 243

Contents ix

Triggers . 246
Updates and Conditions . 249
Transactions . 250

Beginning a Transaction . 251
Defining Commits . 253
Cursor Processing . 254
Processing with FORALL . 257

Functions . 258
Debugging Procedures and Unit Testing 262
Error Handling . 264

Error Handling Packages . 266
Standard Error Messages . 268

Using DBMS Packages . 270
Summary . 271

10 High-Availability Architecture . 273
Options for High Availability . 274
Clustering with RAC . 276

Configuring RAC . 278
Testing RAC . 282
Setting Up Client Failover . 283
Setting Up RAC Listeners . 285
Patching RAC . 286
Deploying RAC . 286
Configuring and Monitoring RAC Instances 287

Primary and Standby Databases . 289
Using Active Standby Databases . 290
Setting Up a Standby Database . 292

ASM in an RAC Environment . 297
Managing ASM Disk Groups . 297
Viewing ASM Information . 302

Streams and Advanced Replication . 304
Oracle Streams . 304
Advanced Replication . 307

Summary . 307

Appendix . 309

Index . 315

This page intentionally left blank

Acknowledgments

It is because I have been able to share this experience with my family,
friends, and coworkers that I have felt such a sense of accomplishment in
completing this book. I truly would like to thank all of them, and I am glad
that they share in different aspects of my life.

Thanks to my junior DBAs, Emily and Mandy, who have also heard what
an Oracle SGA is as I have read some pages to them for bedtime stories.
Thanks for listening to me even without understanding, and now we can
get back to other bedtime stories. Thanks to my husband, Bernd, for his
understanding as I pursue new challenges.

Thanks to my technical editor, Kim Floss, for reviewing and making the
book even better. Thanks to my sister, Carrie Steyer, for being available as
a sounding board for some of my ideas.

Thanks to the awesome DBA team at DRW, which I am proud to be a
part of—Laura Culley, Randy Swanson, and Henry Treftz—and for their help
in testing some of the examples contained in this book.

Thanks to the IOUG Board of Directors, Ian Abramson, Judi Doolittle,
Andy Flower, Kent Hinckley, Steve Lemme, John Matelski, Todd Sheetz,
Jon Wolfe, and my mentors in the user group community, who have
encouraged me to share my ideas and have provided me with opportunities
to grow and develop in my career.

xi

This page intentionally left blank

Introduction

Database environments are constantly growing. There is definitely not a
shortage of data, and many companies need their systems to be constantly
up and available. For various reasons, companies may have different
database platforms that they use for storing the data. This means that DBAs
need the skills to support mixed environments.

Oracle database solutions are a large part of a robust enterprise database
environment. Oracle provides high-availability solutions, efficient ways to
manage very large databases, and configurations for better performance.
New features in Oracle Database 11g have simplified some of the
configurations and maintenance for the database. However, even with
some of the areas being automated and easier to manage, there is still much
to learn about Oracle and the different options and components of Oracle
databases.

Some database concepts, such as data modeling and database backup
and recovery plans, carry across different platforms. Also, there are common
tasks that DBAs perform to maintain any database environment.

This book covers tasks in Oracle as they relate to the SQL Server ways of
doing things, providing translations between the two platforms. It compares
some of the standard practices and looks at how the internals of the
database require some different maintenance and health checks. The point
is not to say that one platform’s feature is better than the other’s, but to help
you learn how to use and implement both similar features and different
features. Each chapter includes comparison tables listing the SQL Server and
Oracle commands or components related to the topic. This makes it easy for
those who are familiar with how to do something in SQL Server to find the
information they need for working with Oracle.

xiii

The book covers a broad range of topics related to administering
databases, including the following:

■ The internals of Oracle and system information that is available to
configure the database settings

■ Installations, including some basic Linux commands and details that
are needed for the installation on Linux

■ Database creation and the different terminology and security
associated with Oracle databases

■ The tools available to perform administrative tasks, such as Oracle
Enterprise Manager and SQL Developer

■ Backup and restore planning and procedures

■ Management of statistics and database objects, and performance
tuning

■ Use of PL/SQL, including how it varies from Transact-SQL

■ High-availability solutions for the architecture and design of the
database system

This book is designed to help DBAs leverage the skill set they’ve already
developed on another database platform and advance that knowledge to the
Oracle database systems. The goal is to ease your transition to Oracle and
show you how to effectively administer the Oracle database system.

xiv Oracle Database Administration for Microsoft SQL Server DBAs

CHAPTER
1

The Database
Administrator

D
atabase administrators (DBAs) have significant responsibilities.
They must not only provide reliable access to company data,
but also protect that data, monitor the database environment,
troubleshoot problems, and more. If the lives of DBAs were
simple, what fun would that be? That is probably why

I enjoy the job so much—because of the different opportunities and challenges
that I get to face day to day.

To provide a stable and highly available database environment, along
with planning backups and performing recoveries and all the other
maintenance tasks, DBAs are usually exploring how to use new features,
and even learning multiple database platforms. Yes, I said it: as a DBA, you
probably need to know more than one database platform. The days of being
just an Oracle or SQL Server DBA are probably gone. Companies are
adopting more than one database platform, and applications may import or
export data from one database system to another. But why am I telling you
this? You have already decided to add Oracle to your arsenal. The big
question is, How hard will this be?

If you are a SQL Server DBA, you don’t need to start back at square one
to support Oracle databases. Certainly, there are differences between the
platforms, but many of the DBA tasks are basically the same. You can apply
the skills you already have to learning Oracle, using this book as your
guide. This book will even translate terms from SQL Server to Oracle,
because sometimes being able to speak the language is half of the battle.

Before we look into the specifics of Oracle, in this chapter, we will
review the role of the DBA, so you can see how to leverage the skills you
already have as you learn the new database platform. We will also look
briefly at the migration process.

General DBA Skills
The role of the DBA is more than just backing up the database and making
sure the database is available. There are several hats that are worn by a
DBA—from tuning queries to server configuration, as well as making sure
the database is secure.

Here are some of the tasks a DBA performs:

■ Installing databases

■ Backing up and restoring databases

2 Oracle Database Administration for Microsoft SQL Server DBAs

■ Troubleshooting problems and errors

■ Coding and tuning SQL statements

■ Monitoring space and growth

■ Establishing best practices

■ Configuring highly available environments

■ Developing security strategies

■ Performing maintenance tasks

On a given day, a DBA may need to validate backups, handle some
support issues, add users, and possibly roll out some new code to the
production database. Some days may be spent just troubleshooting
performance, tuning code, or working on the database model. Even if the
production database might not need to be restored on a regular basis (a very
good thing!), a test environment may need to be refreshed frequently. Being
able to resolve an issue as quickly as possible is important, which may
require research and drilling through database logs and trace files.

Other general skills for a DBA might include managing projects and
creating and following processes. DBAs are not working in an environment
where only one person is accessing the database system. The database is
normally supporting enterprise-level applications with many users and
various workloads.

Software vendors have stated that installing databases and monitoring
them are simple tasks, but somehow there seems to be more moving parts
these days. Also, new areas, such as compliance and business intelligence,
provide different challenges for DBAs.

The DBA may have the responsibility to back up databases and restore
and copy them into another environment. The DBA may be required to
design the database model and coding procedures. A DBA may even be
more of an enterprise architect, who knows how to use data at an enterprise
level to support the business and add value through business intelligence
solutions. This type of role would also involve assessing if the right tool is
being used, understanding the differences in platforms, and managing these
to help make better design decisions.

Chapter 1: The Database Administrator 3

Where Do DBAs Belong
in an Organization?
Are DBAs in production support, the architecture team, the engineering
team, or the development team? Actually, they could probably be a part of
all these teams or in a separate group altogether. But in any case, they still
need to work with all the teams.

DBAs work with system administrators for configuring operating systems
and providing input to hardware decisions for the environment. DBAs work
with developers to design systems and provide coding standards and best
practices for developing applications that use databases. DBAs work with
networking and interface teams for connections and hooks into the
database. DBAs work with users, operations, and anyone else who needs
access to the database. DBAs are considered to be experts in the area of
databases, and they are expected to know enough information in other
areas to be able to support and communicate needs for the database
environment. Some DBAs may even be considered engineers instead of
administrators, which implies more of a design and architecture type of role
than production support.

Depending on the size of the company and number of databases, there
might be one DBA who does it all, or separate DBAs, such as a system DBA,
an application DBA, a development DBA, and an architecture DBA. In
following compliance regulations, the separation of these roles for the DBAs
is becoming more important.

Just as application developers shouldn’t have access to the production
system, the development DBA may just be working in the development
space, and passing scripts to production support DBAs for execution. The
development DBA could be working with the developers on the design of
the database application, developing the data model and data flows. The
role might involve looking at performance and coding SQL, as well as
seeing how best to implement new features.

The system DBA will concentrate on backups, space monitoring, and
maintenance jobs like reviewing statistics and rebuilding indexes. This DBA
would probably be the one who provides production support and runs
prepared scripts for changing objects or implementing upgrades.

The roles for DBAs also depend on whether applications are developed
in-house or third-party applications are running in the environment.

4 Oracle Database Administration for Microsoft SQL Server DBAs

Database Installation Planning
Several pieces need to be coordinated and communicated to install and
upgrade databases. Basic installations wouldn’t need much planning if we
were just installing software on a desktop somewhere and the application
was used by just one person. Also, an organization will probably need more
than just one database, so a repeatable process would be useful.

DBAs need to manage installations to be able to communicate needs to
other teams for hardware and operating system configurations. They must
get details about the application to make sure that the database has the
features needed. Properly managing database installations is important for
planning upgrades and implementing enterprise monitoring systems. On a
smaller scale, this planning is useful for patching, making changes to
security configurations, and rolling out auditing tools. Developing standards
and building a process will create a more consistent and stable database
environment.

When installing SQL Server, you can choose where to put data files and
log files, if the instance is the default unnamed or named instance, which
patch set is to be applied, if Reporting Services and Analysis Services are to
be installed, and so on. You probably have a checklist so that a standard
installation can be repeated on multiple databases. Creating a checklist or
standard installation document is just as important for Oracle databases.
Instance names, parameters that should be set, components that should be
installed, Oracle home directories, directories for data files and log files, as
well as recovery areas, should all be included. Table 1-1 shows high-level
checklists for preparing to install SQL Server and Oracle databases. Notice
that many of the same tasks are listed for both platforms. (Chapter 3 covers
Oracle installation in detail.)

Leveraging Skills
We’ve reviewed some general DBA skills and practices, which you are
probably currently applying to support the SQL Server system you are
managing. Now let’s look at how these skills provide a starting point for
learning Oracle.

Chapter 1: The Database Administrator 5

Table 1-2 compares the skills needed for managing SQL Server databases
with those required for managing Oracle databases.

You probably expected that these tasks and skills are needed no matter
which database platform is being supported and managed. The trick is
discovering the differences, such as new best practices, variations in
features, and differences in syntax for these tasks in Oracle. This way, you
can distinguish what you already know from what you need to learn.

For example, whether the database is Oracle or SQL Server, part of the
DBA’s job is to make sure things are backed up properly, including having a
strategy for the types of backups required. Recovery and restore procedures
are also part of this strategy. You already understand general backup
concepts. You know that you want transaction log backups and to be able
to recover up to a point in time, as you’ve set up in SQL Server. Now you
need to know the details of backup and restore options in Oracle. For
example, to create a backup in SQL Server, you execute a backup database
command; in Oracle, using the RMAN utility, you execute a backup
database command—that’s simple enough, right?

6 Oracle Database Administration for Microsoft SQL Server DBAs

SQL Server Oracle

Obtain software and release notes Obtain software and release notes

Configure Windows, memory, etc. Validate operating system
configuration

Set up domain account and
privileges

Create user for installing Oracle and
processes (other users might be
needed for other components)

Allocate storage Allocate storage

Configure network Configure network

Install software Install software

Validate install Validate install

Back up system, excluding .mdf
and .ldf files

Back up system, excluding data files

TABLE 1-1. SQL Server and Oracle Installation Checklists

System monitoring is another example. Understanding why certain areas
need to be monitored for better-running databases is half of the battle. If you
know the information you want to monitor, then you just need to find out
how to do it in Oracle. Knowing which areas to check comes from the
experience of dealing with databases and troubleshooting issues in the past.
Performing health checks against the database and reviewing database logs
are good first steps.

Health checks are not just looking into current issues, but also monitoring
several areas and verifying that databases are running well. Health checks in
SQL Server could be verifying if jobs are running properly, checking disk
space, reviewing last-analyzed-for statistics, making sure old backups have
been purged, and running other monitoring scripts. Oracle’s high-level list of
health checks include validating backups, checking available space in
tablespaces and file systems, making sure statistics are up to date, and
verifying that other scripts are running and completing as expected.

Chapter 1: The Database Administrator 7

Task/Skill SQL Server Oracle

Backing up X X

Restoring X X

Disaster recovery planning X X

Monitoring X X

Performance tuning X X

Patching X X

Installing X X

Troubleshooting X X

Coding X X

Developing standards and best practices X X

Implementing security X X

Capacity planning X X

Managing projects X X

TABLE 1-2. SQL Server and Oracle Skill Sets

The home page of Oracle Enterprise Manager, shown in Figure 1-1,
provides a quick look at the status of the database. It shows if the database
is up or down, a list of errors in the alert log, and general server information
about CPU and active sessions. Checking system-level resources, such as
CPU and memory usage, in a Microsoft Windows system is probably
already part of your SQL Server health check routine. Knowing that these
details are available in Oracle Enterprise Manager gives you a good place to
start. You’ll learn more about Oracle Enterprise Manager in Chapter 5.

If you have scripts created in Perl or another programming language to
monitor and manage SQL Server, these scripts can be leveraged to create
similar scripts for Oracle. Having such scripts is a great start.

8 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 1-1. Oracle Enterprise Manager home page

Database Migrations
You might need to learn Oracle because your company’s current database
will be converted from SQL Server to Oracle. There are various ways to
migrate, but all begin with a solid plan. The options available have varying
inputs and outputs, as well as varying amounts of downtime and risk.

You will need an Oracle database, a way to convert the definitions of
the tables from SQL Server datatypes to Oracle datatypes, a way to move
the data over to the new system, and a way to convert the stored procedures
and packages. Depending on how big and complex the database is, this
could be a very simple or a very complicated move.

Not all of the datatypes can translate exactly from one platform to
another. Table 1-3 shows just an example of some of the conversions.

Moving the data is probably the least of your concerns, unless you have
several terabytes of data to transfer. Data can be moved out of SQL Server
with the bcp utility, and then SQL*Loader can load it on the Oracle side.
SQL Server Integration Services (SSIS) packages can be created to export
from one database into the other.

Chapter 1: The Database Administrator 9

DBA Monitoring Checklist
DBAs typically monitor the following:

■ Backup jobs ran successfully (full and logs)

■ Space on server and tablespaces/data files

■ Errors in the alert log/server log

■ Any new information in the alert log/server log

■ Security auditing

■ Scheduled jobs ran successfully

■ Current statistics

www.SoftGozr.com

The Oracle SQL Developer tool is available to assist with any of these
types of migrations, as shown in Figure 1-2. The Migration Wizard sets up a
repository for the work area of the conversion process. It pulls in the source
information, translates the structures to Oracle structures, and then allows
for movement of data online or offline, depending on how much data needs
to be transferred. The constraints, primary keys, foreign keys, and check
constraints are included in the migration process, and stored procedures are
translated into Oracle structures. If there are issues in converting a datatype,
you will get an error when attempting the migration process. (Oracle SQL
Developer is discussed in more detail in Chapter 5.)

NOTE
Oracle SQL Developer can be used to manage
SQL Server databases. Java Database
Connectivity (JDBC) drivers will need to be
configured with Oracle SQL Developer before
the SQL Server tab is present to connect to the
SQL Server database. Details on the procedure
are available from the Oracle SQL Developer
Help menu. Search for “database: third-party
JDBC drivers.”

Well, pulling the SQL Server database over into an Oracle database with
the provided tools sounds simple enough. Then the fun begins. Just because

10 Oracle Database Administration for Microsoft SQL Server DBAs

SQL Oracle

DATETIME DATE, TIMESTAMP

FLOAT NUMBER

VARCHAR VARCHAR2

CHAR CHAR

VARBINARY BLOB

NUMERIC NUMBER

TABLE 1-3. Example Datatype Conversions

the SQL Server database is now available in Oracle doesn’t mean that all of
the indexes, statistics, and types of stored procedures are the best for use in
Oracle and will perform optimally. Testing and more testing are needed to
validate that the new structures and datatypes match those in the stored
procedures, tables, and views.

Validation of the data should include looking at the timestamps and
verifying that times as well as dates match up as needed. Indexes and
referential integrity need to be verified. The stored procedures need to be
checked to ensure they can return expected results. Jobs will need to be
scheduled using DBMS_SCHEDULER. Permissions need to be examined to
confirm that the security configured for access by the users is present.

As these pieces get validated for the application, you can look at the
areas that would benefit from different standards or from using some new
features in Oracle. You can see how you did it in SQL Server and consider
the best way to do it in Oracle. The rest of this book will help guide you
along that path.

Chapter 1: The Database Administrator 11

FIGURE 1-2. Migration Wizard in Oracle SQL Developer

Here’s a checklist of common migration tasks:

■ Gather information about the source database, including size,
running jobs, objects, and strange datatypes.

■ Create an Oracle database for the target.

■ Convert the object structures to Oracle, using the Migration Wizard
in Oracle SQL Developer.

■ Validate indexes, triggers, and stored procedures.

■ Validate permissions to make sure that the new users in Oracle have
access to the objects and system privileges they need.

■ Move the data over. You can use the Migration Wizard in Oracle
SQL Developer, or the bcp utility and SQL*Loader or an SSIS
package in SQL Server.

■ Run update statistics on the Oracle tables.

■ Review the indexes and referential integrity.

■ Recompile all of the objects, and make sure there are no invalid
objects.

■ Validate the data and application. Following a plan for testing pieces
of the application would be the best route here. It might be a test
plan that was used for a previous upgrade or a new one, but you
need a way to confirm that the results in the application are as
expected.

■ Look for performance issues.

■ Look for areas that might benefit from changing to an Oracle feature.

■ Adjust any of the stored procedures and indexes.

■ Schedule jobs in DBMS_SCHEDULER.

■ Run maintenance jobs against the Oracle database to perform
backups and update statistics.

■ Run through the test plan again.

12 Oracle Database Administration for Microsoft SQL Server DBAs

These steps would be executed first in a development environment to
work through any issues and make a couple of these adjustment steps. In
production, you could just make the changes to any of the stored procedures
or indexes. Of course, validation of performance as well as the application
in production is highly recommended.

The tools are useful for making this a more consistent process. You’ll
need to know more about Oracle to work through the rest of the conversion,
such as to develop the scheduled jobs (Chapter 7) and validate indexes
(Chapter 8) and stored procedures (Chapter 9).

Summary
As a DBA, you perform several tasks on a daily basis. You have skills that
you use for managing projects and troubleshooting issues. These general
skills, along with the knowledge you’ve gained through your experience
managing databases on SQL Server, can be leveraged to learn Oracle.

For example, maintenance and monitoring are tasks that are needed on
any database system. Having an existing list of these jobs on SQL Server will
help you develop the list for Oracle. In later chapters, we will look at some
of the syntax for these jobs and how to perform tasks such as performing
backups and gathering statistics. You also will want to look at the best
practices for maintaining the database environment. SQL Server and Oracle
handle various components, such as transaction logs, in different ways,
which will require a different approach to maintaining and monitoring
them.

If you are converting an existing SQL Server database to Oracle, Oracle
provides a useful tool to assist with the migration: Oracle SQL Developer.
Being able to convert the database is only part of the battle, however. The
rest involves configuring the database and application to run well and
taking advantage of existing features in Oracle. Even though some areas are
similar and may just use different terms, there are actual differences. Also,
each platform has its own ways to use these features of the database for
performance, security, high availability, and manageability.

Knowing that you can leverage what you already understand in the
SQL Server world will make it easier to develop your knowledge of Oracle
databases. In the next chapter, we’ll begin with a look at Oracle internals.

Chapter 1: The Database Administrator 13

This page intentionally left blank

CHAPTER
2

Oracle Internals

A
nother name for this chapter could be “The Guts of Oracle.”
What is it doing in there? It is obvious that the inside workings
of SQL Server and Oracle are not the same, or they wouldn’t
be two different database platforms. Understanding how the
internal and system structures are set up in Oracle will give

you insight into some of the best practices for Oracle.
In this chapter, we will focus on configurations and how the memory

and system areas are organized. There are also Oracle processes or services
to get to know. Then we will take a look at some of the knobs that can be
turned for options of the database. Finally, we will examine how changes
and transactions are handled by the logs and processes.

Memory Structures
Databases use memory to cache data blocks for fast access. They have some
processes that use memory for sorting or calculations, and other processes
that use the memory allocated to cache results.

SQL Server has minimum and maximum values for the memory available
for the server. Memory it uses is limited to the memory available on the
server. The minimum value does not affect how much memory SQL Server
will start with, but rather up to what point it will give back memory to the
operating system if the memory isn’t being used. Planning the memory for a
SQL Server system is based on how many database instances and application
processes will be running on the server.

Oracle also uses the memory available on the server. Oracle can
dynamically allocate memory between the different memory structures
under the server and process area, and with Oracle Database 11g, even
between the server and user process areas. There are parameter settings
for maximum values, dynamic allocation, and configuring the operating
system to have shared memory available for Oracle to use. As with SQL
Server, planning for memory is based on how many database instances and
application processes will be running on the server.

For either database system, it is not good practice to allocate all of the
memory available on the server to the database. The operating system also
needs space for its operations.

16 Oracle Database Administration for Microsoft SQL Server DBAs

Oracle Memory Parameters
With Oracle Database 11g’s Automatic Shared Memory Management (ASMM)
feature, the management of Oracle’s various memory parameters has essentially
come down to setting one parameter. And if there were no more 9i or 10g
databases out there, or if all applications used memory in the optimal way,
memory management would be simple. However, just as some SQL Server
2000 and 2005 servers are still in use, earlier versions of Oracle remain in
service. So, you do need an understanding of how Oracle uses memory.

The two main memory areas for Oracle are the System Global Area
(SGA) and the Program Global Area (PGA). Under the SGA, the memory is
divided into other areas for handling the SQL statements, data blocks, and
log buffers. The PGA is the workload area for server processes. Figure 2-1
shows the memory parameters for the SGA and PGA.

In Oracle9i Database and Oracle Database 10g, the dynamic memory
parameters allow the memory to adjust within the SGA. The SGA_MAX_SIZE
and SGA_TARGET parameters are set, and then memory is adjusted between
DB_CACHE_SIZE, SHARED_POOL_SIZE, and the other pools (such as
LARGE_POOL_SIZE and JAVA_POOL_SIZE). This helps for systems that
might have different types of workload at different times. Without manual
intervention, the allocations could adjust based on the memory needs of the

Chapter 2: Oracle Internals 17

FIGURE 2-1. Memory parameters for the SGA and PGA

different areas. Of course, in setting the SGA_MAX_SIZE and SGA_TARGET
parameters, the statistics must be at the typical level for the correct information
to be collected to provide the details required to adjust the memory areas. But
why not just set SGA_TARGET and SGA_MAX_SIZE to the same values, if you
are allocating a maximum value of memory to Oracle? And, in that case, why
not have just one parameter to set?

In Oracle Database 11g using ASMM, you can simply set MEMORY_TARGET
and let Oracle handle the rest. In this version, the memory allocation on the
operating system side is divided into smaller chunks. Shared memory
segments are available for Oracle to use for the SGA.

NOTE
Oracle Database 11g also has the parameter
MEMORY_MAX_TARGET, which allows you to
specify the maximum setting for the MEMORY_
TARGET parameter. However, when you set
MEMORY_TARGET, the MEMORY_MAX_TARGET
parameter will be set to the same value
automatically, so you don’t need to set
MEMORY_MAX_TARGET directly.

On the Linux platform, Oracle uses shared memory in /dev/shm. Here is
a typical error message that will come up if the operating system doesn’t
have enough memory to mount the /dev/shm file system:

SQL> startup

ORA-00845: MEMORY_TARGET not supported on this system

In the alert log:

Starting ORACLE instance (normal)

WARNING: You are trying to use the MEMORY_TARGET feature. This

feature requires the /dev/shm file system to be mounted for at

least 4294967296 bytes. /dev/shm is either not mounted or is

mounted with available space less than this size. Please fix this

so that MEMORY_TARGET can work as expected. Current available is 0

and used is 0 bytes.

NOTE
I’m using Linux in this example just to give you
an idea about running Oracle on another
operating system. Chapter 3 covers using
Oracle on a Linux platform.

18 Oracle Database Administration for Microsoft SQL Server DBAs

Using operating system memory in this way is a new shift in the Oracle
Database 11g approach. Earlier versions used the System V-style shared
memory, and you could verify the size of the shared memory used by
Oracle using the operating system command ipcs –b which shows what
semaphores have been allocated. To be able to view the memory allocated
to Oracle with the POSIX-style shared memory, the OS commands for
checking the space used in the file system are used, as in the following
example.

$df –k /dev/shm

Filesystem 1K-blocks Used Available Use% Mounted on

32486028 180068 32305960 1% /dev/shm

Using the memory in Windows for Oracle is similar to using it for SQL
Server. Address Windowing Extensions (AWE) and the Windows 4GB RAM
Tuning feature are options available for the Oracle database, too. Using a
Very Large Memory (VLM) configuration has been available for Oracle on
Windows since Oracle8i.

Oracle Database 11g on Windows can take advantage of AWE to use
more than 3GB of memory. Also, setting the /3GB switch in the boot.ini file
will at least allow for using about 3GB of memory for Oracle. To use up to
64GB of memory, the /PAE switch needs to be enabled. Physical Address
Extension (PAE) allows for mapping of a virtual addressable space above the
4GB of memory. Having both the /3GB and /PAE switches enabled at the
same time will allow only 16GB of memory to be available, so the /3GB
switch should be disabled to allow for more memory to be used by the PAE.
The memory limitations are really applicable only on 32-bit Windows
systems. With 64-bit systems, the limitations are measured in terabytes.

Windows supports the use of large pages for systems using a large
amount of memory. The parameter in the Oracle key of the registry needs to
be set as ORA_LPENABLE=1 to enable the large pages. In order to use VLM
on Windows, the oracle user needs the “Lock memory pages” privilege.
The USE_INDIRECT_DAT_BUFFERS=TRUE parameter must be set in the
parameter file for Oracle. Also, the DB_BLOCK_BUFFERS parameter must
be set for the database cache.

The dynamic SGA parameters are not available for the very large memory
settings. If the system doesn’t need more than the 3GB of memory for the SGA,
you should consider just using the 4GB RAM Tuning feature, so the dynamic
parameters are available.

Chapter 2: Oracle Internals 19

Again, with Oracle Database 11g, you can simply set the MEMORY_TARGET
parameter and have Oracle manage the rest. However, adjusting some of
the other memory parameters may improve the performance of particular
applications. When used in combination with ASMM, the settings of the
individual parameters are implemented as minimum values.

Sizing the SGA and PGA
As discussed in the previous section, with the new features of Oracle
Database 11g, the configuration of each individual parameter for memory
has become less important. Setting the MEMORY_TARGET is a simple way
to manage the memory, even between the SGA and PGA. However,
appropriately sizing the SGA and PGA memory remains important for
Oracle database performance.

SGA Considerations
Several views provide SGA information. To look at the current sizing of the
SGA, use v$sga and v$sgainfo. The v$sgainfo view shows the current
sizes and which areas can be resized. The resizeable areas make up the
variable size with the database buffers in v$sga.

SQL> select * from v$sga;

NAME VALUE

-------------------- ----------

Fixed Size 2086288

Variable Size 939526768

Database Buffers 1677721600

Redo Buffers 14688256

SQL> select * from v$sgainfo;

NAME BYTES RESIZEABLE

Fixed SGA Size 2086288 No

Redo Buffers 14688256 No

Buffer Cache Size 1677721600 Yes

Shared Pool Size 889192448 Yes

Large Pool Size 16777216 Yes

Java Pool Size 16777216 Yes

Streams Pool Size 16777216 Yes

Granule Size 16777216 No

Maximum SGA Size 2634022912 No

Startup overhead in Shared Pool 201326592 No

Free SGA Memory Available 0

20 Oracle Database Administration for Microsoft SQL Server DBAs

To see which objects are using the current memory areas, use the
v$sgastat view.

To get assistance in sizing the database cache, use the v$db_cache_
advice view.

SQLPLUS> select size_for_estimate, buffers_for_estimate,

estd_physical_read_factor, estd_physical_reads

from v$db_cache_advice

where name = 'DEFAULT' and block_size = (select value from v$parameter

where name='db_block_size')

and advice_status = 'ON';

Size_for_est buffer_for_est estd_physical_read_factor estd_physical_reads

160 19790 1.8477 38053244

320 39580 1.3063 26904159

480 59370 1.2169 25061732

640 79160 1.2016 24746320

800 98950 1.1884 24474411

960 118740 1.1792 24284735

1120 138530 1.1762 24223738

1280 158320 1.042 21459758

1440 178110 1.0379 21376570

1600 197900 1 20595061

1760 217690 .9959 20510626

1920 237480 .9938 20466583

2080 257270 .9921 20431565

2240 277060 .9908 20405971

2400 296850 .9902 20393666

2560 316640 .9895 20379145

2720 336430 .9884 20356415

2880 356220 .9848 20281604

3040 376010 .9808 20199710

3200 395800 .972 20018812

As you can see in this example, there is a point of diminishing returns for
the amount of memory set and the reduction of physical reads. Even though
there is a decrease in physical reads with settings higher than 1600, the
decrease is not that significant. Just throwing memory at the database cache
may not help the performance of the database.

Since block reads from memory are normally faster than going to disk
to get the data block, why don’t we size the memory to hold the whole
database? Well, for large databases (talking well into terabytes), this isn’t
normally cost-effective. Of course, with different types of hardware, solid-
state disks and flash memory cards could be used as part of a solution. For
smaller databases—say, one that might be 20GB—you could have 20GB of
memory allocated to the SGA, but that wouldn’t necessarily keep all of the
data blocks in memory, because the database needs memory for other
processes.

Chapter 2: Oracle Internals 21

Also, think about the data being accessed. Is all of the data always being
read? And if it is, what about growth? It will be hard to keep up with supplying
memory to the server as the size of the database grows. Full scans of tables
will flush some of the blocks out of memory, and when code pulls more
data than expected, having everything in memory might prove difficult. Tuning
queries to pull just the data that is needed might avoid some of these larger
scans, at least minimizing the physical reads.

Blocks that are read into the buffer cache are ordered from most recently
used (MRU) to least recently used (LRU). Blocks that are read as part of a
full-table scan are put on the LRU end. If the buffer cache is full, the LRU
blocks will be flushed out of the cache. The goal is to keep the most
frequently used data in memory for quicker access. This also includes the
code (SQL statements) in the library cache. So, you will want to size the
SGA to follow these guidelines, and then tune it as the database changes
and grows.

PGA Considerations
The PGA is used for the program or user processes. As shown earlier in
Figure 2-1, there are manual and automatic options for managing the PGA.
Setting the WORKAREA_SIZE_POLICY=AUTO parameter has Oracle use the
PGA_AGGREGATE_TARGET parameter for sizing the user processes for SQL
that use memory, such as for sorts, group by, hash joins, and bitmaps. You
can find information about PGA usage in the v$pgastat view, and also by
looking at the maximum values of the pga_used_mem, pga_alloc_mem,
and pga_max_mem columns in the v$process view. There is also an
advice table for PGA, v$pga_target_advice, to help determine a good
setting for PGA_AGGREGATE_TARGET.

Where Are the master, msdb,
and tempdb Databases?
The SQL Server master, msdb, and tempdb databases do not exist in the
Oracle world. In Oracle, other areas keep the system information, provide
a way to schedule jobs, and maintain a temporary space for sorting and
temporary tables.

22 Oracle Database Administration for Microsoft SQL Server DBAs

System-level Information
For SQL Server databases and logins, the master database has the
details. The master database contains the system information and server
configurations. So, where is the master database information in Oracle?

In Oracle, the system-level information for the database instance is in the
data dictionary, which is stored in the SYSTEM tablespace under the SYS
schema. You can query views to retrieve this information about the database
and objects contained in the databases and schemas. Here is a small sampling
of the information stored and where it can be found on SQL Server and
Oracle systems:

SQL Server Master Database Oracle Data Dictionary

Users syslogins dba_users

Objects sys.objects dba_objects

Tables sys.tables dba_tables

Datafiles sys.databases dba_data_files

NOTE
Some of the system tables are new to version
SQL Server 2008. There are also system tables
at the database level.

There are many more tables in both the SQL Server master database
and Oracle data dictionary.

The Oracle catalog also contains system information. The catalog is
created when a database is created, and it is updated with upgrades and
patches. The catalog.sql and catproc.sql scripts run as part of the Oracle
installation, and they create the data dictionary. The GRANT SELECT ANY
CATALOG to USER role can be granted to a user to allow read access to
the catalog views. This role can have three different levels of permissions:
USER_ for those objects owned by the user, ALL_ for any objects for which
the user has permissions, and DBA_ for any catalog. As you probably
noticed, SYS isn’t included to qualify the name. This is because the public
synonyms are set up to allow just using the name of the view.

Chapter 2: Oracle Internals 23

As an example, let’s see how we can get information about the database
objects on each platform. Here’s the SQL Server query to discover which
objects are in the databases:

Select type_desc, count(1) from sys.all_objects

Group by type_desc

Order by type_desc;

RESULTS

CLR_STORED_PROCEDURE 3

DEFAULT_CONSTRAINT 1

EXTENDED_STORED_PROCEDURE 149

INTERNAL_TABLE 3

PRIMARY_KEY_CONSTRAINT 80

SERVICE_QUEUE 3

SQL_INLINE_TABLE_VALUED_FUNCTION 19

SQL_SCALAR_FUNCTION 27

SQL_STORED_PROCEDURE 1275

SQL_TABLE_VALUED_FUNCTION 12

SYSTEM_TABLE 41

USER_TABLE 82

VIEW 286

In Oracle, we query dba_objects to get information about the
database objects:

SQLPLUS> select owner, object_type, count(1) from dba_objects

Group by owner, object_type

Order by owner, object_type;

OWNER OBJECT_TYPE COUNT(1)

------------------------------ ------------------- ----------

MMALCHER FUNCTION 6

MMALCHER INDEX 149

MMALCHER LOB 14

MMALCHER PACKAGE 310

MMALCHER PACKAGE BODY 236

MMALCHER PROCEDURE 6

MMALCHER SEQUENCE 60

MMALCHER SYNONYM 1

MMALCHER TABLE 133

MMALCHER TRIGGER 158

MMALCHER TYPE 2

PUBLIC SYNONYM 20066

SYS CLUSTER 10

SYS CONSUMER GROUP 5

SYS CONTEXT 5

SYS DIRECTORY 25

24 Oracle Database Administration for Microsoft SQL Server DBAs

SYS EVALUATION CONTEXT 10

SYS FUNCTION 75

SYS INDEX 718

SYS INDEX PARTITION 216

SYS JAVA CLASS 14747

SYS JAVA DATA 296

SYS JAVA RESOURCE 704

SYS JOB 5

SYS JOB CLASS 2

SYS LIBRARY 115

SYS LOB 112

SYS LOB PARTITION 1

SYS OPERATOR 6

SYS PACKAGE 506

SYS PACKAGE BODY 484

SYS PROCEDURE 56

SYS PROGRAM 4

SYS QUEUE 15

SYS RESOURCE PLAN 3

SYS RULE 4

SYS RULE SET 11

SYS SCHEDULE 2

SYS SEQUENCE 81

SYS SYNONYM 9

SYS TABLE 727

SYS TABLE PARTITION 205

SYS TRIGGER 9

SYS TYPE 1127

SYS TYPE BODY 81

SYS UNDEFINED 6

SYS VIEW 2958

SYS WINDOW 2

SYS WINDOW GROUP 1

SYSMAN EVALUATION CONTEXT 1

SYSMAN FUNCTION 8

SYSMAN INDEX 398

SYSMAN LOB 28

SYSMAN PACKAGE 73

SYSMAN PACKAGE BODY 72

SYSMAN PROCEDURE 2

SYSMAN QUEUE 2

SYSMAN RULE SET 2

SYSMAN SEQUENCE 5

SYSMAN TABLE 342

SYSMAN TRIGGER 48

SYSMAN TYPE 217

SYSMAN TYPE BODY 7

Chapter 2: Oracle Internals 25

SYSMAN VIEW 136

SYSTEM INDEX 191

SYSTEM INDEX PARTITION 32

SYSTEM LOB 25

SYSTEM PACKAGE 1

SYSTEM PACKAGE BODY 1

SYSTEM PROCEDURE 8

SYSTEM QUEUE 4

SYSTEM SEQUENCE 20

SYSTEM SYNONYM 8

Not only does this query result show the different object types, but it also
lists them by schema owner. Here, you see a few different schemas: SYS has
the data dictionary, SYSTEM has objects for the database tools, and SYSMAN
has the objects for Oracle Enterprise Manager. MMALCHER is just a user schema.

The count of objects will vary by Oracle version and depends on the
different components that were installed. Also, the PUBLIC owner has the
synonyms available to all users for the queries against the system objects, so
they do not need to be fully qualified.

Data Dictionary Views
The Oracle data dictionary views are the place to go to get details about
objects and even sizing. Instead of sp_help, you use DESCRIBE or queries
that can be run against the dictionary tables. So just as sp_help has been
your friend for looking into SQL Server objects, dba_ views will become
your new Oracle friend. When I want to know what a table looks like, how
many objects are owned by a user, or the name of a particular dba_ view,
I run a quick query to find out.

With so many views available, memorizing them is not a good option.
Fortunately, it’s easy to find the view that contains the information you’re
seeking. If you know the view has a name that contains segments,
tables, stats, or data, you can generate a list of views with that
keyword in their name. For example, I know that the dba_ view for data
files starts with data, and can use this query to find it:

SQLPLUS> select object_name from dba_objects where object_name like 'DBA_DATA%';

OBJECT_NAME

DBA_DATA_FILES <======

DBA_DATAPUMP_JOBS

DBA_DATAPUMP_SESSIONS

26 Oracle Database Administration for Microsoft SQL Server DBAs

3 rows selected.

SQLPLUS> DESC DBA_DATA_FILES;

Name Null? Type

--- -------- ---------------

FILE_NAME VARCHAR2(513)

FILE_ID NUMBER

TABLESPACE_NAME VARCHAR2(30)

BYTES NUMBER

BLOCKS NUMBER

STATUS VARCHAR2(9)

RELATIVE_FNO NUMBER

AUTOEXTENSIBLE VARCHAR2(3)

MAXBYTES NUMBER

MAXBLOCKS NUMBER

INCREMENT_BY NUMBER

USER_BYTES NUMBER

USER_BLOCKS NUMBER

ONLINE_STATUS VARCHAR2(7)

Also, some of the v$ views that contain dynamic information are available
even when the database is not open. For example, the v$datafile and
v$logfile views show information about the datafiles and redo log files,
respectively:

SQLPLUS> select file#,status, (bytes/1024)/1024 size_MB, name from v$datafile;

FILE# STATUS SIZE_MB NAME

----- ------- ---------- --

1 SYSTEM 1070 /data/oracle/orcl/system01.dbf

2 ONLINE 9225 /data/oracle/orcl/undotbs01.dbf

3 ONLINE 1230 /data/oracle/orcl/sysaux01.dbf

4 ONLINE 32767.5 /data/oracle/orcl/users01.dbf

5 ONLINE 14924 /data/oracle/orcl/users02.dbf

6 ONLINE 12724 /data/oracle/orcl/users03.dbf

select * from v$logfile order by group#;

GROUP# STATUS TYPE MEMBER

------ ------- ------- --

1 ONLINE /data/oracle/orcl/redo01.log

1 ONLINE /data/oracle/orcl/redo01b.log

2 ONLINE /data/oracle/orcl/redo02.log

2 ONLINE /data/oracle/orcl/redo02b.log

3 ONLINE /data/oracle/orcl/redo03b.log

3 ONLINE /data/oracle/orcl/redo03.log

4 ONLINE /data/oracle/orcl/redo04b.log

4 ONLINE /data/oracle/orcl/redo04.log

Now we have found that the type of data in SQL Server’s master
database type is stored in the Oracle SYS schema. But where are the jobs
stored? And what about templates that are used by the model database to
create new databases. And do we even look for a tempdb? The information
is closer than you might think.

Chapter 2: Oracle Internals 27

Jobs and Schedules
Scheduling a job is done either via the Oracle Enterprise Manager (OEM)
or using the DBMS_SCHEDULER package. If the job is scheduled using
DBMS_SCHEDULER, it can be monitored and viewed in OEM. To create a
job, a user needs “Select any catalog role” and “Create job” permissions.

There are three main components to a job: schedule, program, and job.
The program and job contain the definitions, and the schedule sets regular
times for the job to be run. Just as there are maintenance jobs as well as
application jobs that can be scheduled in SQL Server, Oracle jobs can be
run to take snapshots of the database and gather statistics, as well as create
backups. The program can be PL/SQL code or an executable.

The history of jobs and their status is available on the Database Home
page of OEM and in DBA_SCHEDULER_JOBS.

SQLPLUS> select owner,job_name, schedule_name, last_start_date, next_run_date from

dba_scheduler_jobs;

OWNER JOB_NAME SCHEDULE_NAME LAST_START_DATE

SYS GATHER_STATS_WEEKLY WEEKLY_MAINTENANCE_JOB 21-DEC-09

SYS AUTO_SPACE_ADVISOR_JOB MAINTENANCE_WINDOW 26-DEC-09

SYS GATHER_STATS_JOB MAINTENANCE_WINDOW 26-DEC-09

Templates and Temporary Tables
The SQL Server model database has the default template for creating new
databases. The Oracle database is created once with the use of the Database
Configuration Assistant, script, or template. The schemas are created as
users, and the templates or creation scripts can be used to set up other
servers that are similar for development or new production environments.

The SQL Server model database is also used to create the tempdb database
every time the server is shut down and restarted. It sets the tempdb size and
growth of the database. Oracle doesn’t need to re-create a temporary database
each time it is started, because it doesn’t have a temporary database. Oracle
uses a temporary tablespace with tempfiles that act in this capacity. The
temporary area is used for sorting, join operations, and global temporary
tables. Similar to the tempdb database, the temporary tablespace cannot
store permanent objects, so it doesn’t need to be backed up.

The tempfiles are not fully initialized and are sparse files. Only the
header information and last block of the file are created, so sizing on the file
system might be off, because the tempfile might not be using all of the space

28 Oracle Database Administration for Microsoft SQL Server DBAs

that could be allocated to the file. The tempfiles are also not included in the
control files. But there is a dictionary view for the tempfiles:

SQLPLUS> select file_name,tablespace_name,bytes, status from dba_temp_files;

FILE_NAME tablespace_name BYTES STATUS

/data/oracle/orcl/temp01.dbf TEMP 5368709120 AVAILABLE

A database has a default TEMP tablespace, and a database can also
have more than one temporary tablespace. So, users can fill up their own
temporary space only if they have a different one set as their default for
sorting and temporary tables. Even with the default temporary tablespace
set as TEMP1, for example, user1 might have TEMP2 as the default and
will use only the TEMP2 tablespace for the temporary space. It is a nice way
to isolate some of the areas that are normally shared among different users
or different applications.

How Oracle handles temporary tables demonstrates how application
coding would be different between the two platforms. Oracle temporary
tables are either transaction- or session-specific tables. It doesn’t open the
temporary or work tables available to other users or sessions. Some of the
temporary tables in SQL Server are available for other sessions and processes
until the server is restarted, and they are cleaned up at the end of the transaction
or session, whether or not there were issues with the transaction or session.

Now that we’ve covered where to find the information that SQL Server
stores in its master, msdb, and tempdb databases in Oracle, let’s look at
the Oracle services and processes.

Services and Processes
Various processes and services start up with Oracle, just as there are services
for the SQL Server instance and SQL Server Agent. On Windows, an Oracle
service needs to be started for the database. There is also a listener in the service
list for Oracle—the TNS Listener service must be running for remote sessions
to connect to the Oracle database. Along with these services, background
processes are running on Windows. These processes run on any database
server, no matter which operating system hosts it.

When looking at the sessions in the database, you will see a list of other
system processes that are started. These take care of writing, logging, jobs,
gathering statistics, and monitoring.

Chapter 2: Oracle Internals 29

The SMON background process performs the system monitoring
functions. It takes care of the recovery of transactions after restarting the
database. For example, if the database crashes, the SMON process uses the
undo tablespace to detect and recover any transactions that were interrupted.
If you see the SMON process using up more than the normal amount of
CPU, Oracle might not have shut down nicely, and this process could be
cleaning up the transactions.

The PMON background process is for the user processes. It will clean up
after a failed or killed user process.

When the Oracle database is started, the SMON and PMON processes
are always running. You can use this information as a quick check to see
which Oracle databases are available on a server. Here is an example that
shows two databases (orcl and DBA1) are running on the server:

> ps –ef | grep smon

oracle 4889 1 0 Dec26 ? 00:00:04 ora_smon_orcl

oracle 8168 1 0 Dec26 ? 00:00:02 ora_smon_DBA1

> ps –ef | grep pmon

oracle 4877 1 0 Dec26 ? 00:00:01 ora_pmon_orcl

oracle 8154 1 0 Dec26 ? 00:00:00 ora_pmon_DBA1

The number of background processes can vary depending on components
and how slaves for certain processes might be available. Here is a typical
list of processes you will see running in the database:

■ SMON System monitor process

■ PMON Process monitor process

■ ARC0 Archiver process for writing out archive logs from the redo logs

■ MMON Memory monitor gathering memory statistics

■ MMAN Memory manager for resizing the SGA areas

■ DBW0 Database writer process writing blocks from the buffer
cache to datafiles

■ LGWR Log writer process for flushing the redo log buffer

■ CKPT Checkpoint process to timestamp the datafiles and control
files when checkpoints occur

■ MMNL Process to assist the MMON process

30 Oracle Database Administration for Microsoft SQL Server DBAs

■ RECO Recoverer background process for distributed transactions
for two-phase commits

■ CJQ0 Job queue process for batch processing (slave processes may
be spawned)

■ PSP0 Process spawner, to spawn slave processes for Oracle

■ J000 Job queue slave process

Other background processes depend on which components are installed.
For example, the ASMB and RBAL background processes run for Automatic
Storage Management (ASM), and the QMN0 process runs for Oracle Streams.
For Data Guard, the DMON and MRP0 processes run. In Real Application
Clusters (RAC) environments, you will see the MS0, LMON, LMD, LCK, and
DIAG processes.

You can see which background processes are running by listing the
processes running as oracle on a server, and they are also visible in the
v$sessions view. OEM also shows the processes under session activity,
as shown in Figure 2-2.

Chapter 2: Oracle Internals 31

FIGURE 2-2. OEM view of background processes

As you can see, there are quite a few background processes running with
Oracle. Depending on how many slaves are spawned and which different
components are installed, more processes may be running. Let me just say
that there are definitely more than ten background processes! The fact that
particular processes are running on the database system can give you more
information about the database, such as which components are installed or
if the database is in ARCHIVELOG mode.

sp_configure Options
and Parameters
Those who say database administration is getting easier are not looking
at all of the knobs that can be turned. More options and parameters are
released with each new version of Oracle. I think that you will agree that
more configurable parameters have been added to SQL Server as well.
But setting the parameters is actually not the tricky part. The challenge is
knowing which parameters might be related or impacted when you adjust
a particular parameter.

As discussed earlier, Oracle has overall parameters, such as MEMORY_
TARGET, which manage the other underlying parameters dynamically.
This approach makes it easier to change the parameters, but you still need
to know which settings are appropriate—for example, which ones are for
online transaction processing (OLTP) and which ones are for data warehouse
systems.

I think of these parameters and options like a stereo tuner or soundboard.
Preconfigured settings for different types of music can be used, and they will
work for most people listening to the music. But then there are trained ears
that need more of a definition of the tones or mixes of the music to make it
sound exactly the way they want it. What happens if the music type changes
or an instrument affects the volume? What if it is playing in the orchestra
hall? How about in a small car? For these cases, more adjustments are
needed. And when making such adjustments, you need to consider whether
changing one setting will affect another, such as causing another part of the
music to be louder or softer.

Similarly, the default database configurations may work for several
database applications, but other applications need to be top performers and
tuned specifically to get the desired results. This does take some understanding
of the different settings and how they might affect other settings. On the

32 Oracle Database Administration for Microsoft SQL Server DBAs

other hand, a DBA can spend too much time trying to configure and set
values without getting much of a return, especially if the environment is
changing rapidly. Balance is important here. You need to know which
options are available, and how to validate that the dynamic settings are
performing as they should, so they can be left alone (giving you time to deal
with other administration tasks!).

Viewing and Setting Parameters
In Oracle, you can view all of the parameter settings in OEM, or you can
run a quick show query in SQL*Plus. Table 2-1 compares the SQL Server
and Oracle commands for retrieving the values of parameters and options.

NOTE
In SQL Server, to see all of the advanced
parameters, enable show advanced option
first with sp_configure. Oracle has hidden
parameters that begin with an underscore.
These are normally not configured except
internally by Oracle or when working on an
issue with Oracle support.

Chapter 2: Oracle Internals 33

SQL Server Oracle

List all parameters sp_configure show parameter

List a parameter sp_configure
'remote access'

show parameter
db_block_buffers

List parameters with a
keyword (all parameters
that have the keyword
in their name)

sp_configure
remote

show parameter
buffers

TABLE 2-1. Viewing Parameters

For SQL Server, the options can be set at the server and database level.
For Oracle, the parameters are normally configured at the server level, but
some can be modified for a user session, so there are system- and session-
level options.

SQLPLUS> alter system set parameter = X scope=both;

SQLPLUS> alter session set parameter = X;

Oracle parameters are maintained in the init.ora (known as the pfile) or
spfile.ora file. The pfile is a text file (initSID.ora) that can be edited directly.
The spfile has some binary information so it cannot be edited directly. It is
updated through the following alter statements:

alter system set parameter=x scope=spfile

alter system set parameter=x scope=both

The spfile allows for the dynamic parameter changes; you can run
alter statements against the running database, spfile, or both.

An spfile can be created from a pfile, and a pfile from an spfile. You can
change a parameter by editing the pfile, and restart the database with the
pfile instead of the spfile. Then create an spfile from the edited pfile to have
the spfile file updated with the parameters, if you normally start up using the
spfile.

SQLPLUS> startup pfile='/u01/oracle/product/11.0.1/dbs/initDBA1.ora'

SQLPLUS> create spfile from pfile; /*can also use create spfile from memory */

SQLPLUS>shutdown immediate;

SQLPLUS>startup /* as long as the spfile parameter is set in the parameter it

will start up using the spfile */

Getting Started with Some Parameters
How many knobs are available to adjust? In Oracle Database 10g, there are
about 259 configurable parameters, with well over 1100 hidden parameters.
In Oracle Database 11g, there are around 342 configurable parameters, and
even more hidden parameters. Here, we will take a quick look at just some
of these parameters.

Transaction Log Parameters
In SQL Server, transaction logs are handled with the SIMPLE or FULL
option. In Oracle, ARCHIVELOG mode is similar to FULL. Archiving will
write out the redo logs to a file for backing up, and allow for hot backups

34 Oracle Database Administration for Microsoft SQL Server DBAs

www.SoftGozr.com

and point-in-time recovery. The default is NOARCHIVELOG mode, which is
good for creating the database, but after the database is created and started
it should be changed to ARCHIVELOG mode to be able to run the hot
backups and have the full recovery options.

Versions prior to Oracle Database 10g included a parameter to start
archiving. Now just the parameter for the location of the archive logs is
needed: LOG_ARCHIVE_DEST.

Database Creation Parameters
The database name (DB_NAME) and character set are some of the parameters
set up when a database is created. Parameters also set the location of
control files, alert logs, and trace files.

The MAXDATAFILES and MAXLOGFILES parameters are limits that are set
to size the control file when creating the database. MAXDATAFILES sets the
total number of datafiles you can have in the database. If you reach the limit
of MAXDATAFILES, you not only need to adjust the parameter, but also to
re-create the control files to allow for the larger limit. MAXLOGFILES sets
the total number of redo log files. The DB_FILES parameter is more of the soft
limit that can be adjusted, but it needs a restart of the database to be put into
effect.

Some Basic Parameters
The following are some basic parameters that are normally adjusted in some
way. These parameters deal with system size, the database version, and
resources available on the server.

■ DB_BLOCK_SIZE Size of the database block in bytes.

■ PROCESSES Number of allowable user processes. You need to
restart the database to change this value, so plan for the number of
users accessing the server.

■ SESSIONS Number of allowable sessions. You need to restart
the database to change this value, so plan for the number of users
accessing the server. This setting is similar to the maximum number
of connections for SQL Server.

■ COMPATIBLE Database compatible with this software version.
The current version would be ideal, but you can also allow for
upgrades and still have Oracle behave as a different version. This
setting is similar to the compatibility level in SQL Server.

Chapter 2: Oracle Internals 35

■ PGA_AGGREGATE_TARGET PGA memory, user process area.

■ SGA_TARGET SGA memory.

■ MEMORY_TARGET SGA memory (Oracle Database 11g).

■ UNDO_MANAGEMENT Automatic undo management when TRUE.

■ UNDO_TABLESPACE Tablespace for undo management.

Location and Destination Parameters
The following parameters will probably be different for every system, as they
set the location of files for a database, and they tend to have a database
name somewhere in a directory for separation of these locations.

■ CONTROL_FILES Directory and file names of the control files.

■ BACKGROUND_DUMP_DEST Directory for the alert log.

■ USER_DUMP_DEST Directory for the user trace files.

■ AUDIT_FILE_DEST Directory for audit logs.

■ LOG_ARCHIVE_DEST Directory for archive logs.

Optimizer and Performance Parameters
Optimizer parameters set different behaviors of the optimizer. These
parameters are available to assist with performance and adjust settings to
deal with applications in particular ways. They help Oracle to choose a
good path for execution plans.

■ OPTIMIZER_MODE FIRST_ROW or ALL ROWS (also CHOOSE and
RULE in Oracle Database 10g). This is the setting for the default
behavior of the optimizer for cost-based query plans. The default for
Oracle Database 11g is ALL ROWS.

■ CURSOR_SHARING FORCE, EXACT, or SIMILAR. This setting is
used to help reuse SQL statements in the library cache. FORCE and
SIMILAR are good for use with code that uses literal values to force
the optimizer to use a similar plan if the plan can’t be matched
because of the literal value.

36 Oracle Database Administration for Microsoft SQL Server DBAs

■ QUERY_REWRITE_ENABLED Allow rewrite of queries using
materialized views.

■ SESSION_CACHED_CURSORS Number of cursors to place in the
cache for a session.

Other Parameters
Let’s round off the list with a couple more parameters that should be mentioned
here. These parameters will normally use the default setting, but if you’re
wondering where all of the slave job processes come from, they are probably
run by the following parameters.

■ STATISTICS_LEVEL ALL, BASIC, or TYPICAL. TYPICAL will
collect the major statistics needed for automatic parameters like
memory and gathering information for workload repository. BASIC
will disable automated optimizer statistics and advisory components
for memory settings. SQL Server has an auto-update statistics for a
database, which gathers only the table statistics. This setting for
Oracle gathers database, table, and operating system statistics.

■ RECYCLEBIN ON or OFF. ON is the default. With this setting,
dropped objects are collected in the recycle bin, and objects can be
retrieved from the recycle bin if needed (unless it has been cleared).

■ SPFILE Use of the spfile, file name, and location.

■ JOB_QUEUE_PROCESSES Number of job slave processes. This
setting is used by replication and user jobs through DBMS_JOBS. If
it is set to 0, DBMS_JOBS is disabled.

■ MAX_JOB_SLAVE_PROCESSES Limits the number of job slaves
and user jobs scheduled through DBMS_SCHEDULER. You can use
DBMS_JOBS and DBMS_SCHEDULER to create jobs, and these two
parameters will set the maximum number of job slave processes.

■ DB_WRITER_PROCESSES Number for database writer processes
for background proceses. This is useful for an environment with a
large amount of writes. The default is CPU_COUNT/8.

Chapter 2: Oracle Internals 37

■ REMOTE_LOGIN_PASSWORDFILE EXCLUSIVE, SHARED, or
NONE. When SHARED or EXCLUSIVE, a password file must be
available; normally used for SYS, but can be for other users as well.
NONE means it will be using operating system authentication. The
password file is needed to be able to log in to the database remotely
from SQL*Plus or another remote client as SYSDBA.

I believe that you have now seen more than enough parameters and
options to have fun with. In later chapters, we will look at a couple more
that affect performance and high-availability features. Our next topic is
automatic undo management.

Undo, Redo, and Logs
Undo versus redo—this almost sounds like the start of a bad joke. Undo and
redo were in a boat. Undo jumps out. Who is left on the boat? Redo! In all
seriousness, understanding the purpose of the redo logs and undo
tablespace will also help explain read consistency and why SELECT
statements do not block writers and writers do not block readers in Oracle
databases.

Transaction Logs Versus Redo Logs
In SQL Server, transactions and changes are written out to the transaction
log, which is used by SQL Server to either commit the changes or roll back
changes. There is also a save point that can be used for larger transactions,
to basically commit the changes up to this point and continue with the
transaction. The logs can either be overwritten if the database is in simple
mode, or backed up to provide full backup and point-in-time restores. This
is the basic flow of transactions through SQL Server and how it uses the
transaction logs.

Oracle, with the undo and redo logs, handles transaction flow differently.
However, some comparisons can be made between the Oracle redo logs and
the SQL Server transaction logs. Like the SQL Server transaction logs, the redo
logs record all of the transactions and changes made to the database.

When the database is in ARCHIVELOG mode, the archiver process will
write off the redo logs for backing up and keeping these changes. When in

38 Oracle Database Administration for Microsoft SQL Server DBAs

NOARCHIVELOG mode, the transactions that are committed will continue
to be overwritten in the redo logs. In NOARCHIVELOG mode, the overwriting
of the logs happens only once the changes have been recorded in the datafiles,
and the changes can be committed or uncommitted transactions. There is
enough information in the redo logs to roll back the transactions that might
be rolled back, but Oracle is pulling the information from the datafiles.

The database will hang (or appear to hang) if it’s waiting for the redo log
to be available after writing the changes to the datafiles, and if in ARCHIVELOG
mode writing to the archive log. If there are no other logs available to use,
it will wait until these writes are complete to be able to reuse the redo log.
If you’re getting several waits here, you can increase either the number or
size of the redo logs.

The redo logs are only one piece of the puzzle. Next, let’s look how undo
fits into Oracle processing.

Undo and Beyond
In the parameters section, you saw the LOG_BUFFERS, UNDO_MANAGEMENT,
and UNDO_TABLESPACE parameters. The background processes have log
writers (LGWR) and archiver processes (ARCn). The redo logs are created
with a fixed size during database creation, normally in at least pairs, and
there can be several groups. You saw an example of a redo log in the
v$logfile view in the discussion of data dictionary views earlier in this
chapter. See how nicely that all fits together?

Undo Sizing and Retention
The undo area provides read consistency to the users. Readers get consistent
data, not dirty block reads, and at the same time, they are not blocked from
anyone updating the data. Not only does the undo area provide concurrency
for users, but it also rolls back transactions for rollback statements, provides
the details to recover the database from logical corruptions, and allows for
analyzing the data for flashback query operations. For all of these cases, the
undo tablespace must have a before image of the data.

The undo tablespace should be sized to hold the larger transactions and
be able to keep them for a period of time. The UNDO_RETENTION parameter
is the setting for Oracle to attempt to keep the changes in the undo segments.
If there are committed transactions, and there is more space needed in the

Chapter 2: Oracle Internals 39

undo tablespace, they will be overwritten, even if the time set by the UNDO_
RETENTION period has not passed.

To view the statistics for the undo area, use the v$undostat view. To
see undo history, use dba_hist_undostat. This information, along with
knowledge of what is running against the database and the undo advisor
information, will help you to size the undo tablespace and set the retention
period. The package DBMS_UNDO_ADV and the functions available from
this package provide the advisory information. For example dbms_undo_
adv.required_retention will help with setting the retention.

Another good practice is to keep transactions small enough to be handled
efficiently. Larger transactions run into issues for space, and if they fail
(whether because of a transaction issue or a system outage), the rollback
time can be significant. Reading through 20GB of undo segments will
take time, and making the changes to the before image of the data will
also take time.

Overwriting the committed change of the same block in one transaction
that was being used in a longer running batch transaction can cause the
transaction to fail with an “ORA-1555: snapshot too old” error. Receiving
this error doesn’t necessarily mean you need to resize the undo tablespace.
You may be able to handle the problem by changing the transaction size or
by improving the performance of the transaction. In the newer releases,
Oracle automatically manages the undo segments, and these errors are less
likely to occur. (With the manual configuration of the rollback segments,
you risk creating rollback segments that might be too small.)

Transaction Process Flow
Transactions are performed against the database. The log buffer, which is in
memory, caches the transaction details. The blocks that are pulled into the
buffer cache now have before and after images in the undo segments. The
log buffer is flushed out to the redo logs by the log writer. Since the log
buffer may not be as big as the transaction, the log writer is continuously
writing to the redo logs, not just on commit. So, the redo logs contain
committed as well as uncommitted transactions. The redo logs contain
the replay SQL, which can be used for other systems, such as a standby
database, which we will discuss in Chapter 10.

The redo logs are a fixed size; they are not set to autogrow as are some
datafiles. There can be several groups of redo logs. Once a redo log group is

40 Oracle Database Administration for Microsoft SQL Server DBAs

full or a switch log file occurs, the archiver process writes the redo log out
to an archive file to be picked up by a backup process.

If all of the redo logs are full and have not yet been archived completely,
the transaction will wait until that archive process is finished. The alert log
will contain the message “checkpoint not complete.” This means Oracle
was unable to overwrite the redo log the first time and waited until it could
overwrite the redo log. To address this issue, you could increase the size of
the redo logs, but this is not always the best solution. You might instead add
another group of redo logs to give the archiver more time to write out the
log to the archive log. Log switching through the redo logs is important so
that you have archive logs to back up, because the redo logs are not backed
up during the hot backups. You can check how many times the log is
switching per hour, through the v$log_history view or the alert log. If it
is too many times per hour, make the logs bigger. If not, just add more
groups of logs.

Figure 2-3 shows a view how this process flows when transactions are
performed against the database. The transaction is not showing as being
committed or rolled back. At the point of being committed or when

Chapter 2: Oracle Internals 41

FIGURE 2-3. Transaction process flow

checkpoints run, the database writers would join into the process to write
the changed database blocks back to the datafiles.

Understanding how Oracle handles transactions will help you in sizing
the memory, undo tablespaces, and redo logs. Being able to have consistent
reads in the database and provide a way to access the data without being
blocked or needing to wait for transactions to complete is also key in the
performance of queries against the database.

Summary
SQL Server has system databases, such as master, msdb, model, and
tempdb. Even though Oracle does not have individual system databases
that match the ones in SQL Server, the platforms share some similar
concepts. There is a need for system information, there are parameters and
options that can be configured and viewed, and transaction logging keeps
track of changes.

Oracle has memory structures for supplying memory to server processes
and user processes. There are individual parameters to manually configure
memory, or dynamic settings that are available in Oracle Database 11g by
setting one parameter. Data dictionary views show the system information,
including the values of the parameters. Oracle offers quite a few parameters
for tuning and adjusting to provide the best performance options. We went
over only a small portion of them in this chapter, but you have a starting
point for common requirements.

Temporary and undo tablespaces are distinctive features of Oracle. It is
able to have more than one temporary area that can be assigned to different
users to isolate their sorting and temporary table processing. The undo
tablespace keeps track of the before and after copies to provide consistent
reads for concurrent users and be able to roll back changes if needed.

Changes are written to redo logs and kept in the undo segments to
handle transactions. There is also a memory cache for the logs to buffer the
log for the log writer to be able to process the changes to the redo logs and
then off to the archive logs.

The server configurations and background processes offer just a glimpse
into the internal workings of Oracle. There are several other system views
available to see how Oracle is performing and gathering statistics to be able
to process the requests and changes in the database. Some of them will be
discussed in the following chapters as needed for more details, and the
complete list is provided in the Oracle documentation.

42 Oracle Database Administration for Microsoft SQL Server DBAs

CHAPTER
3

Oracle Installation

E
ven a basic database system installation requires some planning
and preparation. You need to plan for both the hardware and
software, including which components you will install. You
need to prepare by validating that the prerequisites are in place,
creating the users, and determining the required steps. You must

consider the operating system version as well as platform. Oracle supports
Windows and various flavors of Unix and Linux, so you have several
operating system options.

Having checklists and using available scripts to check prerequisites will
make the installation process more consistent and repeatable. The Oracle
installer does run a check, but it is easier to have this check pass than to
wait for this step in the installation to fail and then need to start over.

For SQL Server installation, you have probably planned for various
requirements, such as having the logs default to a different file system than
where the datafiles are stored, and placing the system databases on a drive
other than C:. You may have decided which patches to apply and which
version of the operating system to use.

Just as with SQL Server, you’ll need to decide where to install the
software, where to create the databases, and whether to use the default
installation (probably for a test environment) or a custom installation (for
a production environment).

This chapter covers Oracle installation, beginning with the operating
system preparations. Along the way, we will look at some scripts that you
can use to make the rollout to other environments a repeatable process.

Operating Systems
The installation of the Oracle software is very similar on the different
operating systems. Some of the types of checks are also the same, such as
making sure the version of the operating system is compatible with the
version of the database. A 64-bit Linux version of Oracle will not install
on a 32-bit Linux or Windows 64-bit system, for example.

The Oracle release notes provide information about where to find the
compatibility matrix and the system requirements for the server. As shown
in Table 3-1, the requirements listed are minimum values; they might not be
adequate for some systems to perform as needed. The additional Oracle
components may have some requirements outside the database lists. So, the

44 Oracle Database Administration for Microsoft SQL Server DBAs

components you plan to install will also determine what is needed for the
server. The disk space requirements depend on the components installed,
but the base product alone does require more disk space for 64-bit operating
systems. Also note that newer processors that are not listed could meet or
exceed the minimum requirements.

You can use the following command-line option to run the installer with
parameters to perform just the system prerequisites checks, without continuing
to install Oracle:

E:\Oracle11gR2\database> setup.exe -executeSysPrereqs

The results can be viewed in the prerequisite_results.xml file, which will
be in the oraInventory/logs directory.

NOTE
Checking for prerequisites does not quite work
as expected in Oracle Database 11g Release 1,
but it does work in Release 2. In Release 1, the
check will be performed during the install
process, so you may need to start over if one of
the checks fails.

Chapter 3: Oracle Installation 45

Windows
32-Bit

Windows
64-Bit Linux 32-Bit Linux 64-Bit

RAM 1GB 1GB 1GB 1GB

Virtual
memory

2 × RAM 2 × RAM 1GB RAM
2 to 16 GB
> 16 GB RAM

= 1.5GB swap
= 2 to 16GB swap
= 16GB swap*

Disk space 4.7GB 5.2GB 3.5–5GB = 3.5–5GB

Processor* 550 MHz AMD64 or Intel
(EM64T)

32-bit
supported

= 64-bit supported

*For Linux, the swap space should be the same as the RAM up to 16GB.

TABLE 3-1. Hardware Requirements (Minimum Values)

Since SQL Server DBAs are familiar with the Windows platform, we will
first discuss the Windows setup for Oracle. Then we will cover Linux, which
is a popular platform on which to run Oracle databases. For those who are
considering the move from a Windows-based to a Linux-based database
system, I will review some useful Linux commands and point out where to
find the information to validate the configuration and prerequisites.

Windows Setup
There are advantages to installing Oracle on the Windows platform. One is
that as a SQL Server administrator, you are already working with a Windows
system. Another is that some tasks that must be done manually on the Linux
platform are taken care of automatically on Windows. For example, the
environment variables are set up for you, and Windows handles the startup
and shutdown of services.

Oracle Homes
SQL Server tends to have a default location for the binaries, and Oracle will
set up a default as well: the Oracle home directory. This directory location
can be set during the installation process, or it can be specified by setting
the ORACLE_HOME environment variable before running the installer.

Although the environment variables are set by the Oracle installer for
Windows, there might be more than one Oracle home on a server. If this is
the case, when using a command line, you will need to set the variable
ORACLE_HOME first, or fully qualify the path to the correct Oracle home.

C:\> set ORACLE_HOME=d:\oracle\product\11.2.0\db_1

C:\> set ORACLE_SID=orcl

C:\> sqlplus

The release might be different for the Oracle homes, so looking at the
set environment variables will be one way of noticing what homes are
available, and what the locations of the Oracle homes are. Also, with more
than one database on the server, you might get an “ORA-12560: TNS:protocol
adapter” error when the ORACLE_SID (database instance name) isn’t
specified. Using the set commands in Windows or setting the environment
variables for both the Oracle home and Oracle SID are important for being
able to connect to the database.

46 Oracle Database Administration for Microsoft SQL Server DBAs

User Account for Installation
The installer creates the ORA_DBA group automatically on the Windows
platform. A standard practice with SQL Server is to create another user that
has administrator privileges to install the software and be the owner of the
SQL Server services. This is also a recommended practice with Oracle, even
though you can log in as administrator and do not need a separate account.

By default, the Oracle services will use the Local Service account. By
having a separate domain account to manage these services and perform the
installation, you may even be able to match a standard that is already being
used in your current SQL Server environment.

File System
The database software should be installed on the NTFS file system because
of the security available for the Oracle home directory, which will contain
trace files and database files. You need to plan the Oracle home directory
location and on which file system the datafiles should reside. These
locations will be needed for the installation.

Network Connectivity
One more minor detail is that, considering that the database is not really
meant to be a stand-alone machine, it needs network connectivity. Clustering
will have different requirements, but the database server needs to have a
primary IP address that is accessible (it doesn’t need to be a static IP, unless
your environment requires that).

If you are using a dynamic configuration (DHCP), a test conducted during
the Oracle installer’s prerequisite check will fail if Microsoft Loopback Adapter
is not the primary network adapter on the system. Here is a quick check for this
adapter:

C:\> ipconfig /all

Ethernet adapter Local Area Connection 2:

Connection-specific DBS Suffix :

Description: Microsoft Loopback Adapter

Physical Address : 7A-80-4C-9F-57-5D

DHCP Enabled: Yes

Autoconfiguration Enabled: Yes

If Microsoft Loopback Adapter is not configured, you can set it up
through Add/Remove Hardware in the Control Panel. Select Network
Adapters, and add it as a new network adapter.

Chapter 3: Oracle Installation 47

Useful Linux/Unix Commands
Linux might be a new operating system for you. If so, you will be happy to
learn that there are graphical user interface (GUI) tools as well as simple
commands that will help you navigate through the Linux environment.
Here, I’ll introduce some commonly used Linux commands. If you’re
already familiar with Linux, you can skip to the next section, which covers
Linux setup for Oracle installation.

Table 3-2 compares some of the command-line commands for Windows
and Linux. As you can see, several are the same or similar.

CAUTION
When you are dealing with files from the
command line, you should be aware that files
removed with rm do not go to a recycle bin. To
get these files back after removal, you will need
to restore them. Be particularly careful in using
rm with a wildcard.

The following are some other useful Linux commands:

■ pwd Shows the current directory.

■ echo $ORACLE_HOME Shows the value of the variable.

48 Oracle Database Administration for Microsoft SQL Server DBAs

Windows Platform Checklist
Here’s a quick checklist for Windows installations:

■ Check that the operating system version and Oracle version and
edition are correct.

■ Verify that the hardware requirements are met.

■ Create an Oracle account with administrator permissions to
perform the installation.

■ Run the prerequisite check and correct any issues found.

■ whoami Shows the current user.

■ ps -ef Shows the list of current processes running on the server.

■ grep Searches for a name or value in a file or list or process.

■ chmod Changes permissions for a file or directory.

■ chgrp Changes the group for permissions of a file or directory.

■ chown Changes the owner of a file or directory.

The manual pages (man pages) provide parameter options and examples
of how to use the commands. To access the man page for a command, just
type man and the command at the prompt, as in this example:

> man grep

When you download files for a Linux system, such as patches or
software, they might come in a couple of formats, with file names ending in
.Z, .gz, .zip, .cpio, or .tar. These are compressed files. You’ll need to

Chapter 3: Oracle Installation 49

Task Windows Linux

List files and directories Dir ls

Change directory Cd cd

Copy file Copy cp

Move the file to another name or location Move mv

Delete a file Del rm

View contents of a file Type cat or more

Make a directory Mkdir mkdir

Remove a directory Del rm –r

View the current environment variables Set env

TABLE 3-2. Command-Line Commands in Windows and Linux

uncompress these files so that they are usable. The following are sample
commands to uncompress the various formats:

> uncompress *.Z

> unzip *.zip

> gunzip *.gz

> tar -xvf file.tar

> cpio -idmv < file_name

Again, you can view the man page for help with the options available
and other examples by entering man followed by the command at the
command line.

Linux Setup
For a Linux system, you need to set up users, adjust permissions and kernel
parameters, and make sure the required packages are installed.

Users and Groups
Although you can install Oracle and own the services for Oracle as the
administrator on the server, this is not recommended, particularly for Linux
systems, where the administrator account is the root account. You should
create a user and group for the Oracle installation. The Oracle processes
will also run under this user. Additionally, if you will be installing certain
Oracle components, such as Automatic Storage Management and Clusterware,
you should create separate users and groups to own the different pieces of
software.

The following example demonstrates creating the oinstall (Oracle
installation), dba (database administrator), asmdba (Automatic Storage
Management administrator), and crs (Clusterware) groups:

/usr/sbin/groupadd g 501 oinstall

/usr/sbin/groupadd g 502 dba

/usr/sbin/groupadd g 504 asmdba

/usr/sbin/groupadd g 505 crs

The users for this example are added as follows:

/usr/sbin/useradd u 502 g oinstall G dba oracle

/usr/sbin/useradd u 503 g oinstall G asmdba osasm

/usr/sbin/useradd u 504 g oinstall G crs crs

50 Oracle Database Administration for Microsoft SQL Server DBAs

Figure 3-1 shows these users listed in User Manager, which is a Linux
tool for managing user permissions and group associations.

As you can see in User Manager, for each user, there is also an
associated /home directory. You can browse through the directories and
look at the file systems using the GUI, by clicking the Computer or Oracle’s
Home icon on the desktop (also shown in Figure 3-1).

The oracle user is not normally created in Linux with full
administration permissions, but certain rights are needed for resources for
the software to run properly. The /etc/security/limits.conf file has the
resources for nproc and nofile, which allow a certain number of
processes and number of files to be open by the user, and possibly memory
limits. Session permissions are in the /etc/pam.d/login file. View these files

Chapter 3: Oracle Installation 51

FIGURE 3-1. Linux User Manager

to check that the oracle user has been added and to verify permissions.
You can edit the files with the vi editor or another text editor.

> cat /etc/security/limits.conf

#<domain> <type> <item> <value>

#

oracle soft nproc 2047

oracle hard nproc 16384

oracle soft nofile 1024

oracle hard nofile 65536

End of file

> cat /etc/pam.d/login

#%PAM-1.0

auth [user_unknown=ignore success=ok ignore=ignore default=bad]

pam_security.so

auth include system-auth

account required pam_nologin.so

account include system-auth

password include system-auth

pam_selinux.so close should be the first session rule

session required pam_selinux.so close

session include system-auth

session required pam_loginuid.so

session optional pam_console.so

pam_selinux.so open should only be followed by sessions to be

executed in the user context

session required pam_selinux.so open

session optional pam_keyinit.so force revoke

session required /lib/security/pam-limits.so

session required pam_limits.so

Some system areas, such as those listed for the parameter and option
settings, can normally be viewed but not modified. Administrator permissions
(root access) might be needed to make changes to these files. If sharing the
server with another application, it’s important to make sure that changes to
these system areas are communicated, or discussed first. Even without write
permissions, having access to this information is helpful for doing a comparison
of what is needed and being able to communicate what configuration changes
are needed to the server administrator.

52 Oracle Database Administration for Microsoft SQL Server DBAs

Other Linux Considerations
Filling up some shared areas, such as /tmp, will cause issues with running or
installing Oracle software. You should be careful about placing files in these
areas and be sure to purge any old installation logs that are placed there.

Required Packages
The Oracle installation guide lists the required packages for the various Linux
flavors. Some of the packages will already exist on your system, since they are
included in the Linux installation. You should verify that they were installed
by using the command rpm –q package_name. You will need to install
any of the required packages that have not been installed by default.

As an example, for Red Hat or Oracle Enterprise Linux 5.2 and Oracle
Database 11g Release 2 (R2), the following required packages are included in
the Linux installation by default (verified by using rpm with the –q option):

binutils-2.17.50.0.6-6.el5 (x86_64)

compat-libstdc++-33-3.2.3-61 (x86_64)

compat-libstdc++33-3.2.3.61 (i386)

elfutils-libelf-9.125-3.el5 (x86_64)

glibc-2.5-24 (x86_64)

glibc-2.5-24 (i686)

glibc-common-2.5-24 (x86_64)

ksh-20060214-1.7 (x86_64)

libaio-0.3.106-3.2 (x86_64)

libaio-0.3.106-3.2 (i386)

libgcc-4.1.2-42.el5 (i386)

libgcc-4.1.2-42.el5 (x86_64)

libstdc++-4.1.2-42.el5 (x86_64)

libstdc++-4.1.2-42.el5 (i386)

make-3.81-3.el5 (x86_64)

If there are 32-bit and 64-bit versions listed, it doesn’t matter whether
you are running on a 32-bit or 64-bit version—both must be installed.

Continuing with the same example, the following required packages are
not installed by default and will need to be added:

elfutils-libelf-devel-0.125-3.el5.x86_64.rpm

elfutils-libelf-devel-static-0.125-3.el5.x86_64.rpm

elfutils-libelf-devel and elfutils-libelf-devel-static

static-0.125-3.el5.x86_64.rpm

glibc-headers-2.5-24.x86_64.rpm

kernel-headers-2.6.18-92.el5.x86_64.rpm

glibc-devel-2.5-24.x86_64.rpm

Chapter 3: Oracle Installation 53

glibc-devel-2.5-24.i386.rpm

gcc-4.1.2-42.el5.x86_64.rpm

libgomp-4.1.2-42.el5.x86_64.rpm

libstdc++-devel-4.1.2-42.el5.x86_64.rpm

gcc-c++-4.1.2-42.el5.x86_64.rpm

libaio-devel-0.3.106-3.2.x86_64.rpm

libaio-devel-0.3.106-3.2.i386.rpm

sysstat-7.0.2-1.el5.x86_64.rpm

unixODBC-2.2.11-7.1.x86_64.rpm

unixODBC-2.2.11-7.1.i386.rpm

unixODBC-devel-2.2.11-7.1.x86_64.rpm

unixODBC-devel-2.2.11-7.1.i386.rpm

The first three packages listed need to be installed together:

> rpm -ivh elfutils-libelf-devel-0.125-3.el5.x86_64.rpm elfutils-libelf-devel

To install the unixODBC-devel-2 packages, enter the following at the
Linux prompt:

>rpm –ivh unixODBC-devel-2*rpm

Once again, use rpm with the -q option to verify that a package is
installed:

>rpm –q unixODBC-devel-2.2.11

The installation guide provided by Oracle will have the most up-to-date
information for your versions of Oracle and Linux, and point out any
dependencies with certain packages and if there are any issues.

Kernel Parameters
You may need to adjust the kernel parameters if your Oracle system will
have high memory needs. Recall from Chapter 2 the example of the error
message that appears when the operating system doesn’t have enough
memory to mount the /dev/shm file system. Kernel parameters are in the
/etc/sysctl.conf file, which can be edited to make the necessary modifications.

kernel.shmall = physical RAM size / pagesize

kernel.shmmax = ½ of physical RAM, but < 4GB

kernel.shmmni =4096

54 Oracle Database Administration for Microsoft SQL Server DBAs

kernel.sem = 250 32000 100 128

fs.file-max = 512 x processes

fs.aio-max-nr = 1048576

net.ipv4.ip_local_port_range = 9000 65500

net.core.rmem_default = 262144

net.core.mem_max = 4194304

net.core.wmem_default = 262144

net.core_wmem_max = 1048576

After this file is edited, you must activate the changes by running the
following at the command prompt as root:

sysctl –p

Use the following command to view the current settings for a kernel
parameter:

> /sbin/sysctl -a | grep <param-name>

This was a quick overview of the setup for the Linux operating system.
The Oracle installation guide will have the details for your specific
environment.

Storage Requirements
Now we need to look at where the database is going to live. There are many
storage options available with hardware, configurations, and file systems,
and with new hardware developments, even more options may be coming
soon. However, we do want to eventually get to actually installing Oracle,
so this will not be an all-inclusive discussion about storage, but enough to
cover the basics.

If you don’t have enough memory in which to store the database—
whether it’s SQL Server or Oracle—fast read access is great. For backing up
data and applications that are heavy on the transactions, fast writing to the
disk is another bonus. In designing the storage layout, striping and mirroring
play a definite part. The databases need to be highly available, and the users
will always be happier with faster access, so building in fault-tolerant systems

Chapter 3: Oracle Installation 55

at the storage level is a necessity. Making it fast is even better. Chapter 10
will cover some I/O tuning and possible issues. Here, we’ll first examine
what disk storage is needed, and then look at Oracle Automatic Storage
Management (ASM), which can simplify your work by handling much of
the storage for you. We’ll also review the types of Oracle files.

Disk Storage
You will need storage for datafiles and log files, as well as disk space for
installing the software, but what other disk storage is required? You will
need space for server logs and backups, and possibly a scratch area for
exports and working with files.

Although you could use certain storage solutions, such as striping, to make
your database system work with just two disk drives or one file system, such a
setup isn’t ideal. With Linux, it’s possible to just have one mount point and
place everything there under different directories. To set up storage for a
particular system properly, the DBA needs to understand the different pieces:
files, I/O events, and backups. You need to know which are typical events for
databases and which are not, and which databases are heavy on read and
writes of disk, and how each of these can affect the disk storage needed.

Under Windows, you would at least hope for two additional drives
besides the C: drive. For example, you might set up disk storage on
Windows as follows:

■ D:\oracle Base directory for software and server logs

■ D:\oradata For datafiles and one control file

■ E:\orabackup For backups

■ E:\oraarch For archive logs

■ E:\oraexp For data dump files and exports

■ E:\oradata Another location for control files

Control files contain information about the datafiles that can be used
for recovery, as discussed in the “Oracle Files” section a little later in the
chapter. You should place the control files in different directories and have
multiple copies available in case they are needed.

56 Oracle Database Administration for Microsoft SQL Server DBAs

Under Linux, you might set up your disk storage as follows (/u0n is a
typical naming convention):

■ /u01/oracle Base directory for software, server logs, and control files

■ /u02/oracle/SID For exports, archives, backups, and control files

■ /u03/oracle/SID For datafiles (numbers can continue to increase)
and control files

Alternatively, you could use another naming convention such as /ora0n,
and this type of setup:

■ /ora01/oracle Base directory for software

■ /ora01/SID For datafiles and control files

■ /ora02 and subdirectories For export, backups, control files, and
so on

These are just some examples, intended to demonstrate how you might
break up the software, datafiles, and backup files.

Storage Management with ASM
ASM makes managing datafiles simple. With Oracle Database 11g R2, ASM
can manage all of the files—database files, nonstructured binary files, and
external files including text files.

This means that all of the discussion in the previous section could
actually be ignored. ASM handles managing the disk, adding disk storage,
and tuning I/O performance with rebalancing while the storage is up and
available to the Oracle databases on that server. The discussion then just
comes down to how many disk groups you will create. ASM will take care
of mirroring and striping. Different levels of redundancy are available for the
disk groups: normal, high, and external. With external, ASM doesn’t provide
the redundancy, but it can take advantage of external hardware mirroring.

Chapter 3: Oracle Installation 57

With Oracle Database 10g and even 11g R2, the ASM installation was part
of the database software installation routine. Starting with Oracle Database 11g
R2, ASM is a separate installation using the Grid Infrastructure. Use a different
home directory than the database home directory for the installation of ASM,
and perform the installation as another user, such as asmadm user. The home
directory for ASM contains other pieces, such as Clusterware, which are part
of the ASM installation.

If you are installing a version of Oracle earlier than 11g R2, start the
installation process of the database software. After you set the home to install
the software, an option will come up for choosing which type of install to
do, as shown in Figure 3-2.

58 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 3-2. Choose to install ASM in Oracle Database 11g R1 or earlier
versions

After you choose the ASM installation, the Database Configuration
Assistant will start to create the instance that is used by ASM. In Figure 3-3,
the password is set for the system user, and the parameters to discover the
disk groups can be set here as well.

Next, create the disk groups. You can also add disk groups later. You
should see a list of devices available for the disk groups; if not, the parameter
for disk discovery might not be set. Figure 3-4 shows how to set this discovery
path, and then select the disks to be part of the disk group. Here is where the
redundancy for the disk group is selected. This is just the setup of the ASM
instance. In Chapter 10, we will look at how this plays into a highly available
database environment.

Chapter 3: Oracle Installation 59

FIGURE 3-3. ASM instance creation

If you are installing Oracle Database 11g R2, ASM is a Grid Infrastructure
installation. As shown in Figure 3-5, you can install Clusterware and the Grid
Infrastructure. With this installation, the creation of the ASM instance, disk
groups, and volumes is done by the ASM Configuration Assistant instead of
the Database Configuration Assistant.

You can also use the ASM command-line utilities ASMCMD and ACFSUTIL
to create and manage the disks. Here’s an example of creating a volume
group from the operating system command line:

ASMCMD > volcreate -d DISKGRPDATA -s 20G volume1

ASMCMD can help manage the instance, with startup and shutdown, disk
group, and disk failure management.

60 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 3-4. ASM disk groups

The setup of the ASM disks needs to be done before even installing ASM
instance. The disk groups can be created so that they are available for the
software install. If using the file manager for the regular files, such as create
scripts and parameter files, as well as the datafiles for the database, these
disks and storage areas will need to be available for installation.

We have just scratched the surface of ASM. It has many more features
and options, and is an important piece of a stable database environment.

Oracle Files
Various types of files are part of the Oracle system. Understanding what
these files contain will help you to plan for storage and disk space.

Chapter 3: Oracle Installation 61

FIGURE 3-5. ASM installation on Oracle Database 11g R2

Are These Really .mdf Files?
The datafiles that make up the tablespaces in Oracle are the most similar to
SQL Server’s .mdf files, and the redo logs could be considered similar to the
.ldf files. Also, if the database is not running, these files can be copied for a
cold backup, similar to SQL Server when taking a database offline or if the
instance service has been stopped to take a copy of the .mdf file and .ldf files.

SQL Server databases typically have one .mdf file and one .ldf file per
database. Larger databases may spread out more files across different drives,
using the naming convention .mdf for the primary file and .ndf for the other
files.

Oracle tablespaces might be compared to SQL Server filegroups, but the
filegroups are specific to one database to manage multiple datafiles and are
not at the server level. The tablespaces are available at the server level, but
might be managed to allocate files to one user.

Oracle tends to use the same extension for all of the datafiles. It is typical
to use the tablespace name in the datafile name. For example, the SYSTEM
tablespace may have system01.dbf, and the SYSAUX tablespace may have
sysaux01.dbf. These examples show one file for one tablespace, but this is
normally not the case. Especially with older versions, it is typical to see
several datafiles make up a tablespace.

Multiple datafiles for a tablespace might be due to earlier operating
system limitations, to prevent the datafiles from becoming too large.
Balancing the need for fewer files to manage against being able to easily
restore datafiles is one of the fun tasks of a DBA. It’s nice to be able to turn
over this task to ASM. If faced with an application that has been around for
a couple of versions of Oracle, and the tablespaces seem a little on the
unmanageable side, it might be time to convert to ASM.

More Files to Manage
Datafiles are just some of the files needed by the Oracle database. Then
there are control files, parameter files, password files, and log files. Each file
type has a specific purpose in the Oracle environment, and these files are
key pieces for being able to restore systems, configure parameters dynamically,
and allow access for privileged users.

The control files are critical for database operation. They contain
information about the change numbers in the redo logs; records of the
datafiles with checkpoints, file names, database name, and creation
timestamp; and backup information. With all of these details in the file, you
can see that it’s important to have several copies, as noted in the earlier
section on disk storage.

62 Oracle Database Administration for Microsoft SQL Server DBAs

The location of the control files is set at database creation, and the
parameter CONTROL_FILES has the values for the location:

CONTROL_FILES = (/u02/oracle/SID/control01.ctl,

/u03/oracle/SID/control02.ctl,/u04/oracle/SID/control03.ctl)

Oracle Database Components
The Oracle system is made up of database components. Many are included
as options with the database installation. Other components—such as client
tools and client connectivity pieces, Grid Infrastructure, gateways, and
examples with schemas—are available as separate downloads. For Windows
and earlier releases of Linux, Clusterware is a separate installation. Oracle
Database 11g R2 has Clusterware as part of the Linux database main
installation. (Clusterware is discussed in Chapter 10.) You can install the
client from the server media, but if you are installing only the client,
separate downloads are available.

The default installation will not install all of the components. You will
need to decide which ones you need for your environment. Also, you should
understand the licensing impact before installing everything available. Installing
only the components you will use and have licensed will keep the environment
simple and is a first step to a secure configuration. Note that even some of the
components that are installed by default may require additional licensing for
use in the environment.

The following are some of the components that are part of the database
installation:

Oracle Advanced Security Oracle Partitioning

Oracle Spatial Oracle Label Security

Oracle OLAP COM Automation Feature

Data Mining RDBMS Database Extensions for .NET

Database Vault Real Application Testing

Oracle Net Services Oracle Net Listener

Oracle Connection Manager Oracle Call Interface

Oracle Programmer XML Development Kit

Oracle Configuration Manager

Chapter 3: Oracle Installation 63

Also, as part of the Windows installation, the following components are
available:

■ Services for Microsoft Transaction Server

■ Administration Assistant for Windows

■ Counters for Windows Performance Monitor

■ OLE, ODBC, and .NET drivers

NOTE
Oracle Configuration Manager is available
without additional licensing. It hooks into My
Oracle Support, which allows for health checks
and provides details on patches that are
available based on the release of the database.

You can add and remove components as necessary after the initial
installation. This means that the software can be installed in pieces, such as
first some components like Clusterware and ASM, and then the binaries for
the database system. The database creation can be done as part of the
installation. Taking this approach allows you to make sure each component
is working properly before moving on to the next one. It also means that if
the prerequisites are not met, you just need to take a quick step back, rather
than completely starting over.

Oracle Software Installation
Operating system configurations—check; storage—check; users—check.
You’re ready to install the software. With the planning and setup completed,
the installation of the Oracle software is the easy part. I recommend that you
install just the software first, and then run the assistants separately to create
a database and configure other required components.

On Windows, start the installation by executing setup.exe to run the
Oracle Universal Installer (OUI).

64 Oracle Database Administration for Microsoft SQL Server DBAs

On Linux, a couple of environment variables need to be set up first, and
then the installer program can run.

> export DISPLAY = ip address:0.0

> export ORACLE_BASE = /u01/oracle

> export ORACLE_HOME = /u01/oracle/product/11.2.0

> export PATH = $PATH:$ORACLE_HOME/bin

> export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ORACLE_HOME/lib

> cd ../oracle/Disk1

>./runInstaller

When setting up the variables in Linux, they will appear as the selected
values in the install screen (similar to Figure 3-6).

After the opening welcome screen, you will be asked to choose between
basic and advanced installation, as shown in Figure 3-6. Notice that the
Oracle home location is already filled in by default. This is where the
software will be installed, as well as the datafile for the sample database.
Note that you can choose the advanced installation and change the Oracle
home directory.

Chapter 3: Oracle Installation 65

FIGURE 3-6. Selecting basic or advanced installation

The advanced installation allows for the following:

■ Install the software first without creating any databases.

■ Choose which software components to install. As noted earlier, this
is part of a secure configuration for the environment. Also, knowing
which pieces have been installed will help with patching and
upgrading.

■ Configure the passwords for the system users differently for each user.

■ Install RAC.

■ Configure ASM.

■ Use a different template or configuration for the database.

■ Select a character set.

■ Upgrade an existing database.

■ Use a different file system for the database files to separate them
from the Oracle home.

As you can see, these are definitely areas that should be customized.
It would not be typical to choose a default installation for a production
environment, especially when using ASM and RAC.

So, why choose the basic (default) installation? You might take this route
for testing the installation and verifying what is installed for new releases.
With new versions, this is a good place to start, because it will install some
of the recommended default configurations as well as a database. You will
be able to check for new parameters or default behaviors that have changed.
Another reason to choose a basic installation would be to see the flow of
the installation process and the checks that it makes. You could see where
it sets up the alert logs, control files, and other files.

The components that are installed with the basic installation are the
some as those that are already selected for the advanced installation—you
just can’t change them if you chose the basic installation. Figure 3-7 shows
the screen to choose components in an advanced installation. If you’re
walking through the installation a second time to install one or more
components, you will see Installed as the state of the components you have
already installed.

66 Oracle Database Administration for Microsoft SQL Server DBAs

As you go through the rest of the installation process, the screens provide
information and details about the current step of the process; they are not
just a place where you blindly hit the Next button. The installation screens
have information about where the logs are for the installation, if there are
errors or issues, and other configurations. During the installation, make sure
the default directories match the planned directories and file systems.

Using a Response File
When installing one server, going through the screens and responding is not
that bad. But the option to silently install and have the same responses is
useful to ensure consistent environments. You can do this with a response
file. A response file can be recorded, or a template can be used and edited.
Response files are not just for the server level, but also for the client
installation. Having a noninteractive mode for installing the client piece is
probably even more valuable.

Chapter 3: Oracle Installation 67

FIGURE 3-7. Choosing Oracle components for installation

To record a response file, run the installer with the parameters of
-record and the destination of the response file:

E:\oracle\Disk1> setup -record -destinationFile

d:\oracle\response\install_oracle11.rsp

Select all of the choices and walk through the installation screens. On
the summary window of the installation, either finish the installation or
choose to cancel because the response file has already been recorded.

To run the installation with the response file, enter the following:

E:\oracle\Disk1> setup -silent -nowelcome -noconfig –nowait

-responseFile

d:\oracle\response\install_oracle11.rsp

The noconfig option does a software-only installation, and doesn’t go
through the configuration assistants. There is also an option for passing in
the variables instead of updating them in the response file. The nowelcome
and nowait options suppress the startup screen and exit the installer when
installation is complete.

Removing Software
Even though you can add and remove components after installing Oracle, it
might take a couple of attempts to get everything right. You may need to
deinstall the software or components to develop a clean installation. The
OUI can handle this step as well.

After opening the OUI, click Installed Products. You will see a list of
Oracle homes and installed software, as shown in Figure 3-8. Select a home
or component to remove. This will remove the software, but some of the
file structures will remain. They can be removed manually. On Windows,
information is written to the registry, which could be cleaned up, depending
on if you want to reuse an Oracle home. Services can also be removed.

Upgrading the Database
As part of the installation, if an Oracle database already exists on the server,
there will be an option to upgrade the database. The Oracle Database
Upgrade Assistant (DBUA) is also available after the installation of the
software to perform upgrades.

68 Oracle Database Administration for Microsoft SQL Server DBAs

The DBUA will do an in-place upgrade of the database under the new
version of the database. But there is work to be done before the DBUA runs.
As discussed earlier, installing the database software so you can review the
new features and parameters that come with the new release is an excellent
way to prepare for this upgrade. You may want to create a test database first
to look at which defaults have changed and see which parameters should be
adjusted for the upgraded database. This information can be used after the
DBUA runs to modify the parameters and validate if there are configuration
issues or if there are areas that will benefit from the new features.

Getting help in planning and looking at some of the pitfalls of an
upgrade are extremely useful for a DBA. The Oracle Database Upgrade
Guide and the Upgrade Companion provide some guidance for a successful
upgrade. The Upgrade Companion, which is a part of My Oracle Support,
isn’t an automatic tool for testing, and even if it were, there would still be

Chapter 3: Oracle Installation 69

FIGURE 3-8. Installed products

some double-checking and testing that would be done. It is partially
automated, however, which helps speed the process for upgrades and
provides some recommendations, but the DBA still needs to review the
recommendations and tweak as needed.

A couple of different upgrade paths are available. The software can be
installed, and the data can be exported and imported into the new database
environment as another method of installation. These different methods
provide ways to test and develop a back-out plan to roll back changes if
necessary. There are also extra options for the database to do real application
testing and easy ways to do versioning to develop a safer and more consistent
way to upgrade the databases.

Applying Patches
Patches are nothing new to DBAs. SQL Server has hot fixes, security updates,
and service packs for patching the base release. The patches have one-off
fixes for bugs or a group of fixes or security releases. Oracle also has different
types of patches.

Patches are single fixes for issues, and can be applied as issues are
discovered. The patches are rolled up into patchsets. As with managing
any database environment, testing and planning are required before
applying patchsets.

The Critical Patch Update (CPU) has the latest security updates for the
database. These are released on a quarterly basis, and applying them in a
regular fashion reduces the risks for security vulnerabilities. The Patch Set
Update (PSU) includes the security patches and the recommended and
proactive patches. These are also released quarterly. Only one patching
path can be chosen for the environment. If applying the PSUs, then the
CPUs cannot be used going forward, and the PSUs will be the way to
implement the security updates.

The Oracle Configuration Manager component provides help in managing
the patches through My Oracle Support, as shown in the example in Figure 3-9.
The support tools make recommendations for the patches and issue alerts
for security patching to proactively maintain the environment.

70 Oracle Database Administration for Microsoft SQL Server DBAs

Summary
This chapter walked through the preparations and procedures for installing
Oracle. It covered the operating system setup for both Windows and Linux,
storage planning, an introduction to ASM, and other preinstallation
considerations. As you saw, with proper planning and preparation, the
actual installation of Oracle is straightforward.

Several options and configurations are possible with the Oracle database.
Getting it installed is just a first step. Setting up a database environment that is
easy to maintain, secure, stable, and robust comes next.

Chapter 3: Oracle Installation 71

FIGURE 3-9. My Oracle Support, Patches & Updates tab

There are some shared areas such as /tmp that will cause issues to
running or installing Oracle software if they fill up. So carefully place files
here, or be sure to purge out old installation logs that are placed here. There
are also system areas which can normally be viewed but not modified. If
sharing the server it would be important to make sure that changes to these
system areas are communicated, or discussed first. The Oracle user does not
need full permissions or root access to view the configuration information,
but being able to view the information is useful to verify the configurations.

72 Oracle Database Administration for Microsoft SQL Server DBAs

CHAPTER
4

Database Definitions
and Setup

I
n the previous chapter, we walked through installing the Oracle
software. The server should now be configured for Oracle, and
the required components installed. The advantage of installing the
software by itself first is that if there are any issues with the
configuration, the database doesn’t need to be dropped and re-

created each time. It is very easy to launch the Oracle configuration assistants
after the installation.

This chapter covers the next steps after the software is installed. The
Database Configuration Assistant will guide you through the creation of the
database. We will look at some of the configuration options, as well as how
to use templates and scripts.

Security is a big part of database setup. We already talked about security
at the operating system level, and there will be more at the application
level. Here, we will look at server and schema security. These various levels
of security will help you to achieve a more secure system.

Before we get into the details of database setup, let’s clarify some of the
terminology, which also will reveal some of the differences between the
SQL Server and Oracle platforms.

Servers, Databases, Instances,
and Schemas
As a DBA, you are certainly familiar with database terminology. The problem
is that on different database platforms, the terms don’t always mean the
same thing. Consider that even general terms can take on various meanings.
A generic definition of database is “data and information that is collected
together for the ability to access and manage.” The term server could refer
to the actual server hardware or to the database server.

A SQL Server database is not the same as an Oracle database. The SQL
Server database has users allocated to it, its own system objects, and its own
datafiles. In Oracle, the term schema is more closely related to the SQL
Server database. Schemas can own the objects in both environments. In
SQL Server, there could be several databases for the instance, so there can
be several different schemas in a database. In Oracle, there are multiple
schemas in a database, including the system schemas.

The Oracle schema is a collection of objects, and it could have its own
tablespace allocated to it on the datafiles for the database. The user schema
usually does not contain system objects, because the system objects are in
their own schema. There is only one set of system objects for each database

74 Oracle Database Administration for Microsoft SQL Server DBAs

server, unlike with SQL Server, which has different layers of system objects
at the server level and the database level. Also, there are no users inside the
Oracle schemas, because they are only at the server level.

The Oracle database is almost like the instance level for SQL Server. The
Oracle database is the overall group of datafiles and system information.
The Oracle software, memory structures, and processes make up an
instance. There is one Oracle database for the instance. In a clustered
environment, there can be multiple instances that all point to one database
on a shared disk.

Database owner is another term that doesn’t really exist in Oracle.
Typically, the term schema owner is used.

Figure 4-1 shows some of these terms and how they apply in the different
database environments. Understanding the differences will help you to see
where the services, processes, and datafiles play their parts, and how the
different levels interact and handle processes within the various structures.

Chapter 4: Database Definitions and Setup 75

FIGURE 4-1. Comparing SQL Server and Oracle terminology

To clarify how these terms are used in the different database systems,
let’s look at some naming examples. We’ll use the domain us.demo.com
and a server intended to support a human resources (HR) application, with
information about payroll, benefits, employees, and so on. Table 4-1 shows
the names for a single server, and Table 4-2 shows the names for a clustered
environment.

NOTE
It is helpful to name a server with a department
or functional name, so that it’s easy to
recognize the purpose of the server.

76 Oracle Database Administration for Microsoft SQL Server DBAs

Database Name Definitions
The following are used to identify Oracle databases:

■ SID System identifier—database or instance name. The SID
and hostname uniquely identify an Oracle database (similar to a
SQL Server instance name).

■ Database name Unique name, normally the same as a SID.

■ Global database name Database name plus the domain (such
as us.demo.com).

■ DBID Unique database identifier that is assigned by the
system. This information is found in v$database.

The SQL Server SID and Oracle SID are two very different animals.
A SQL Server SID is a security identifier, which is the system-assigned
key to a login, as seen in the syslogins table. The Oracle SID is the
database name that the database creator chooses for the database or
instance.

SQL Server Setup Versus
Oracle Setup
With SQL Server, we tend to install an instance with the software, which
creates the service and allocates the memory. The system databases are also
created, with some of the defaults being set up in the model database for
other databases. SQL Server databases can be a different collation and a

Chapter 4: Database Definitions and Setup 77

Name SQL Server Oracle

Server sqlsrvhr01v, sqlsrvhr02v orasrvhr01v,
orasrvhr02v

Instance PRODHR PRODHR01,
PRODHR02 (SID)

Database payroll_db, benefits_db,
hr_db, employee_db

PRODHR

TABLE 4-2. Clustered Environment Naming Examples

Name SQL Server Oracle

Server (Windows
or Linux)

sqlsrvhr01.us
.demo.com

orasrvhr01.us
.demo.com

Instance Local server or named instance:
PRODHR

PRODHR (SID)

Database payroll_db, benefits_db,
hr_db, employee_db

PRODHR
(global database name
PRODHR.us.demo.com)

Schema dbo PAYROLL, BENEFITS,
HR, EMPLOYEE

Database server sqlsrvhr01\PRODHR orasrvhr01\PRODHR

TABLE 4-1. Database Server Naming Examples

different version than the server. For example, a server can have the
collation of SQL_Latin1_General_CP1_CI_AS, and a new database
can be created with a collation of French_CI_AI.

SELECT

SERVERPROPERTY('ProductVersion') AS ProductVersion,

SERVERPROPERTY('Collation') AS Collation;

ProductVersion Collation

10.0.1600.22 SQL_Latin1_General_CP1_CI_AS

Create database Example1

collate French_CI_AI;

select name, collation_name, compatibility_level

from sys.databases;

name collation_name compatibility_level

master SQL_Latin1_General_CP1_CI_AS 100

tempdb SQL_Latin1_General_CP1_CI_AS 100

model SQL_Latin1_General_CP1_CI_AS 100

msdb SQL_Latin1_General_CP1_CI_AS 100

test1 SQL_Latin1_General_CP1_CI_AS 100

example1 French_CI_AI 100

A SQL Server database gets a different version by attaching a database
from a different version. The upgrade of the database can be done after
attaching it to the server, but it can also exist as a different version than the
server version. The following example shows the compatibility level from
SQL Server 2005 on a SQL Server 2008 instance.

select name, collation_name, compatibility_level

from sys.databases;

name collation_name compatibility_level

master SQL_Latin1_General_CP1_CI_AS 100

tempdb SQL_Latin1_General_CP1_CI_AS 100

model SQL_Latin1_General_CP1_CI_AS 100

msdb SQL_Latin1_General_CP1_CI_AS 100

mmtest SQL_Latin1_General_CP1_CI_AS 90

With Oracle, the software is installed, and then we set up the database
with character sets, system information, and version. The database and
instance have the same character set. The Oracle schemas do not have the
option for changing the character set. The software components installed
are the versions that are used for the database server. This demonstrates that
the Oracle database has the system objects and keeps the system-level options
at the database level.

78 Oracle Database Administration for Microsoft SQL Server DBAs

Creating Databases
Oracle provides the Database Configuration Assistant (DBCA) to help
you create new databases. Other assistants are available for configuring
upgrades (DBUA) and Oracle Enterprise Manager (EMCA). You can also
use database scripts and templates to re-create databases with the same
configuration. We’ll start by walking through the DBCA.

Using the DBCA
The DBCA will create the instance parts, which are the processes and the
datafiles for the database. It will set up the memory structures.

Launch the DBCA from the ORACLE_HOME\bin directory. Figure 4-2
shows step 1 of the assistant, where you select to create a database.

Chapter 4: Database Definitions and Setup 79

FIGURE 4-2. Selecting to create a database with the DBCA

As you step through the assistant, you name the database and accept
default values or change them as necessary. Here are some points to keep
in mind:

■ Choose a unique name for the database. It is possible to create
a database with the same name as an existing database if it is on
another server. You might do this if you are planning a move or
an upgrade that is not in place. The global name just includes the
domain name for the environment.

■ The generic templates are good starting points for creating a
database. You can choose from a data warehousing template, a
general transaction database, or a custom shell to start, as shown
in Figure 4-3. The transaction processing and data warehouse
templates have the option to set up the datafiles. The custom
template starts without the datafiles, which can be added later.

80 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 4-3. Choosing a database template

■ Oracle Enterprise Manager (OEM) and the dbconsole process will be
set up to manage a couple of the regular maintenance jobs. Having
these steps here is just a convenience, as these can be set up
separately at another time.

■ The variables set for ORACLE_HOME and ORACLE_BASE will be used
for where the datafiles and various alert log directories are set up.

■ You can select ASM and add disk groups for this database or for
using the file systems, and changes can be made to where the files
are created.

■ As part of the database creation, the SYSTEM, UNDO, and TEMP
tablespaces are created. A user tablespace can also be configured.

■ You can specify locations for the database files, as shown in Figure 4-4.

Chapter 4: Database Definitions and Setup 81

FIGURE 4-4. Choosing database file locations with the DBCA

■ The flash recovery area is a valuable location for being able to
flashback the database. The sizing of this area may need to change
based on the size of the transactions and database, but it is a
dynamic change that can be made as needed. The key to sizing this
area is to have the disk space available. This will be the area where
the backup files can be stored, and based on retention, should be
estimated appropriately.

You can also remove databases with the DBCA. The Delete a Database
option (see Figure 4-2) takes care of removing the services and datafiles.

CAUTION
Even though the DBCA will ask “Are you sure?”
when you choose to delete a database, without
a backup of the database, the only parts that
can be re-created are the structures.

So what is created with the database? The redo logs and log groups,
SYSTEM tablespace, SYSAUX tablespace, temporary tablespace, undo
tablespace, and control files will be created. The catalog.sql and catproc.sql
construct the data dictionary with the views, tables, and stored procedures.
SYS, SYSTEM, and a couple more users are added as well.

The job scheduler is set up with background processes, because it is the
default setting for parameters to have job slave processes. The parameter
JOB_QUEUE_PROCESSES in Oracle Database 11g has a default of 1000,
and the job coordinator starts only as many processes as requested.

82 Oracle Database Administration for Microsoft SQL Server DBAs

Database Templates = model Database?
Are the Oracle templates really like SQL Server’s model database?

The templates are the basic building blocks for the database
creation. They have defaults for the files, parameters, and some basic
configuration. In that respect, they have the same kind of information
that is stored in the model database.

However, only one database is created for an Oracle server; there is
no need for templates to be used over and over again to create the
databases, as the model database is used in SQL Server.

Duplicating Databases
with Templates and Scripts
Oracle template files can be used to duplicate and rebuild databases. You can
use a template you saved to create another database in the same Oracle home
or copy the template file to another server for use. This obviously makes it easy
to duplicate a database without having to go through the setup and configure all
the options. You can reuse previously defined values and make adjustments as
needed. The database can be created easily, similar to using a response file, but
without having to go through all of the steps.

Database scripts provide another way to duplicate or re-create databases.
Using a script is really the manual way to create the database. It has the
advantage that you can take a database script from an older version, make
a couple of modifications if you want to use any new features, and then use
it to create the database in a new Oracle version.

When you use a script, setting up the external operating system and
Oracle environment is more critical than with the DBCA. This is because
nothing is set up to take the defaults. All the environment variables are
empty, and you need to make sure they are set up properly before you
create the database.

For scripts, a parameter file must be available with the parameters set for
control files. This parameter file can be copied from another database and
modified with the new database name and file directories. Also, all of the
directories need to be created before running the script. Otherwise, the
script will fail with the “ORA-27040: file create” error. The following code
shows the command-line steps for manual database creation in a Windows
environment.

set ORACLE_SID=dba01

set ORACLE_HOME=d:\oracle\app\product\11.2

Create service

ORADIM –NEW –SID dba01 –STARTMODE auto

Instance created.

sqlplus /nolog

sqlplus> connect / as sysdba

Connected to an idle instance

sqlplus> startup nomount

Chapter 4: Database Definitions and Setup 83

pfile='d:\oracle\app\product\11.2.\database\initdba01.ora'

sqlplus> create database dba01;

Database created.

create tablespace for Temp, users

>sqlplus> create temporary tablespace TEMP1 TEMPFILE

'e:\oracle\oradata\dba01\temp01.dbf'

Tablespace created.

sqlplus> alter database default temporary tablespace TEMP1;

Database altered.

Run scripts for dictionary views

sqlplus> %ORACLE_HOME%\rdbms\admin\catalog.sql

sqlplus> %ORACLE_HOME%\rdbms\admin\catproc.sql

sqlplus> %ORACLE_HOME%\sqlplus\admin\pupbld.sql

Create server parameter file

sqlplus> create spfile from pfile;

Shutdown and startup the database

sqlplus> shutdown immediate;

Database closed.

Database dismounted.

ORACLE instance shut down.

sqlplus> startup

ORACLE instance started.

Total System Global Area 535662592 bytes

Fixed Size 1334380 bytes

Variable Size 234881940 bytes

Database Buffers 293601280 bytes

Redo Buffers 5844992 bytes

Database mounted.

Database opened.

sqlplus>

The creation of the instance starts with the service on the Windows
platform. When logging in to the database and doing a startup nomount,
the background processes actually get started and services are running, so that
the database can be created.

You can use additional scripts to continue the configuration, including to
create other tablespaces, set up the server parameter file, and then build the
dictionary views, synonyms, and PL/SQL packages.

84 Oracle Database Administration for Microsoft SQL Server DBAs

Creating the Listener
A listener is needed on the database server in order for clients to connect to
the database. The listener can be created via another creation assistant: the
Net Configuration Assistant (NETCA), as shown in Figure 4-5.

The listener can retain the default name of LISTENER, or be renamed,
perhaps to indicate the Oracle version or database service that it is listening
for, as shown in the example in Figure 4-6.

Chapter 4: Database Definitions and Setup 85

Shutdown Options
Several options are available for how the database is shut down:

■ Shutdown normal will not allow any new connections, but will
wait until all current connections disconnect from the database.
This is obviously the cleanest shutdown process, but can also
take a long time if users do not disconnect from the database,
and large transactions haven’t completed.

■ Shutdown immediate will not allow any new connections, but
will not wait for users to disconnect. Any active transactions
will be rolled backed. Long, uncommitted transactions still
might take a while to roll back with this option, but there is no
recovery needed on startup.

■ Shutdown transactional will wait for the currently running
transactions to complete. There are no new connections allowed,
and connected users that are inactive are disconnected. Current
transactions are not rolled backed because of shutdown, and
there is no recovery needed on startup.

■ Shutdown abort is a last resort. It will bring the database down
fast, but it will abort the current transactions, and uncommitted
transactions are not rolled back before shutting down. A media
recovery on startup will be required to roll back the terminated
transactions and clean up these connections.

86 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 4-5. Creating a listener with the Net Configuration Assistant

FIGURE 4-6. Naming the listener

One listener can listen for all of the databases on the server, so you do not
need a listener for every database. However, depending on your upgrade
plans or maintenance downtime considerations, it might be useful to have
more than one listener. Each listener will need a different port number.

The listener must be started before connections from other clients can be
made. On Windows, the listener is a service, which can be started and
stopped via the Administration panel. On both Windows and Linux, the
lsnrctl utility can be used to script the startup and shutdown of the listener,
as in the following example.

####TO START####

>lsnrctl start LISTENER

LSNRCTL for 32-bit Windows: Version 11.1.0.6.0 - Production

on 07-FEB-2010 13:49:33

Copyright (c) 1991, 2007, Oracle. All rights reserved.

Starting tnslsnr: please wait...

TNSLSNR for 32-bit Windows: Version 11.1.0.6.0 – Production

System parameter file is

d:\oracle\product\11.1.0\db_1\network\admin\listener.ora

Log messages written to

d:\oracle\tnslsnr\MMTEST\listener\alert\log.xml

Listening on: (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)

(HOST=MMTEST.US.demo.com)(PORT=1521)))

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)

(HOST=MMTEST.US.demo.com)(PORT=1521)))

STATUS of the LISTENER

Alias LISTENER

Version TNSLSNR for 32-bit Windows:

Version 11.1.0.6.0 – Production

Start Date 07-FEB-2010 13:49:35

Uptime 0 days 0 hr. 0 min. 3 sec

Trace Level off

Security ON: Local OS Authentication

SNMP OFF

Listener Parameter File

D:\oracle\product\11.1.0\db_1\network\admin\listener.ora

Listener Log File

D:\oracle\tnslsnr\MMTEST\listener\alert\log.xml

Listening Endpoints Summary... (DESCRIPTION=(ADDRESS=

(PROTOCOL=tcp)(HOST=MMTEST.US.demo.com)(PORT=1521)))

The listener supports no services

The command completed successfully

Chapter 4: Database Definitions and Setup 87

####CHECK STATUS####

>lsnrctl status listener_name

LSNRCTL for 32-bit Windows: Version 11.1.0.6.0 – Production

on 07-FEB-2010 13:50:00

Copyright (c) 1991, 2007, Oracle. All rights reserved.

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)

(HOST=MMTEST.US.demo.com)(PORT=1521)))

STATUS of the LISTENER

Alias LISTENER

Version TNSLSNR for 32-bit Windows:

Version 11.1.0.6.0 – Production

Start Date 07-FEB-2010 13:49:35

Uptime 0 days 0 hr. 0 min. 25 sec

Trace Level off

Security ON: Local OS Authentication

SNMP OFF

Listener Parameter File

D:\oracle\product\11.1.0\db_1\network\admin\listener.ora

Listener Log File

D:\oracle\tnslsnr\MMTEST\listener\alert\log.xml

Listening Endpoints Summary...

(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)

(HOST=MMTEST.US.demo.com)(PORT=1521)))

Services Summary...

Service "+ASM" has 1 instance(s).

Instance "+ASM", status READY, has 1 handler(s)

for this service...

Service "MMDEV" has 1 instance(s).

Instance "MMDEV", status READY, has 1 handler(s)

for this service...

The command completed successfully

####TO STOP####

>lsnrctl stop listener_name

LSNRCTL for 32-bit Windows: Version 11.1.0.6.0 – Production

on 07-FEB-2010 14:13:08

Copyright (c) 1991, 2007, Oracle. All rights reserved.

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)

(HOST=MMTEST.US.demo.com)(PORT=1521)))

The command completed successfully

There is also a client piece for the listener, which we will look at in the
next chapter.

The database is now ready to use, but it might still need some user
tablespaces. User objects should not be in the SYSTEM tablespaces or

88 Oracle Database Administration for Microsoft SQL Server DBAs

owned be the SYSTEM schema. You might develop scripts to add some
regular users, schemas, and tablespaces.

Next, we’ll look at choosing a character set for your Oracle database.

Choosing a Character Set
An important consideration for your Oracle database is the character set it
uses. Before just accepting the default character set, you should do some
research about globalization and the options available, as well as the
application requirements for the character set of the database.

For SQL Server, collations are available at the server level and can be
configured down to the column level of a table. The SQL Server collations
are not only for international characters, but also affect whether the
database is case-sensitive and the sort order.

NLS Parameters
In Oracle, the character set choice is governed by which languages the
database needs to support, and separate parameters deal with sort order and
case sensitivity: NLS_SORT and NLS_COMP. As of Oracle Database 10g, the
CI value appended to the NLS_SORT parameter setting will determine if the
sort is case-sensitive. The NLS_SORT default value is BINARY, and with a
case-insensitive sort setting, it is BINARY_CI. Here is a quick sort example
using NLS_SORT, which shows the default behavior:

sqlplus> select first_name, last_name from cust1

order by last_name;

first_name last_name

-------------------- --------------------

RANDY EASTWOOD

Laura Eastwood

danimal Johnson

BO MEYERS

henry johnson

sqlplus> select first_name, last_name from cust1

order by nlssort(last_name,'NLS_SORT=BINARY_CI');

first_name last_name

-------------------- --------------------

Laura Eastwood

RANDY EASTWOOD

henry johnson

danimal Johnson

BO MEYERS

Chapter 4: Database Definitions and Setup 89

NLS_SORT can also be set at the server or session level, instead of
including it in the sort of the query.

The client and the database can even have different character set settings
based on the NLS_LANGUAGE (NLS_LANG) parameter, which has three
parts: the language, territory, and character set. Here are a few examples:

NLS_LANG=AMERICAN_AMERICA.AL32UTF8

NLS_LANG=GERMAN_GERMANY.WE8ISO8859P1

NLS_LANG=FRENCH_CANADA.WE8ISO8859P1

The NLS (National Language Support) parameters are also modifiable at
a session level, so that the sorting and language can be changed by altering
the session. Here is a quick look at the NLS parameter list:

SQL> select parameter from v$nls_parameters;

PARAMETER

NLS_CALENDAR

NLS_CHARACTERSET

NLS_COMP

NLS_CURRENCY

NLS_DATE_FORMAT

NLS_DATE_LANGUAGE

NLS_DUAL_CURRENCY

NLS_ISO_CURRENCY

NLS_LANGUAGE

NLS_LENGTH_SEMANTICS

NLS_NCHAR_CHARACTERSET

NLS_NCHAR_CONV_EXCP

NLS_NUMERIC_CHARACTERS

NLS_SORT

NLS_TERRITORY

NLS_TIME_FORMAT

NLS_TIMESTAMP_FORMAT

NLS_TIMESTAMP_TZ_FORMAT

NLS_TIME_TZ_FORMAT

These parameters are useful for globalization and allow you to adjust
sorting and languages. This is similar to collations on columns and
databases with SQL Server. However, the Oracle database is created with
the chosen character set. It is possible to change a database character set,
but it isn’t always an easy process.

90 Oracle Database Administration for Microsoft SQL Server DBAs

If different languages need to be supported in the database, the character
set needs to be able to handle storing and retrieving the characters for the
language. That is also why a Unicode character set, AL32UTF8, is normally
selected for databases that must support international languages. There is
also a national character setting for NCHAR, NVARCHAR2, and NCLOB. This
recommended value is AL16UTF16.

At this point, you might be thinking, “NLS this and that, sorting, case-
sensitive with Unicode character sets—does this all really mean SQL_
Latin1_General_CPI_CI_AS?” An example might make things clearer.
First, to handle international characters and support other client character
sets, such as WE8ISO8859P1, the AL32UTF8 character set is recommended.
Using AL32UTF8, the database will hold multibyte characters. Let’s look at
the type definition of two columns:

last_name varchar2(20 BYTE),

last_name2 varchar2(20 CHAR)

The last_name column will hold international characters, but it will
hold only 20 bytes. So, if any characters are 2 or more bytes, the column
will hold fewer than 20 characters. The last_name2 column will hold
20 characters, no matter how many bytes are involved. The NLS_LENGTH_
SEMANTICS parameter can be set to BYTE or CHAR for the database level,
or the datatypes can be defined on the column level.

For an example for sorting and case sensitivity, consider the following
table, which has some columns for first name, last name, and an updated
date. The character set for the database was created as AL32UTF8, and the
NLS_LANG parameter was set to AMERICAN_AMERICA.UTF8 on the server
side.

SQL> select first_name, last_name, entered_date

from mmalcher.example_sort;

FIRST_NAME LAST_NAME ENTERED_D

------------------------ ------------------------ ---------

LAURA EASTWOOD 02-JAN-10

D'Animal Eastwood 17-JAN-10

Henry Johnson 23-JAN-10

RANDY JOHNSON 28-JAN-10

Bo Meyers 29-JAN-10

SQL> select customer_id,last_name,entered_date

from example_sort where last_name='JOHNSON';

Chapter 4: Database Definitions and Setup 91

CUSTOMER_ID LAST_NAME ENTERED_D

----------- ------------------------------ ---------

1487 JOHNSON 28-JAN-10

--Change the NLS parameters for sort and case

SQL> alter session set NLS_COMP='LINGUISTIC';

SQL> alter session set NLS_SORT=GERMAN_CI;

SQL> select customer_id,last_name, entered_date

from example_sort where last_name='JOHNSON;

CUSTOMER_ID LAST_NAME ENTERED_D

----------- ------------------------------ ---------

1032 Johnson 23.01.10

1487 JOHNSON 28.01.10

--The date is also now changed because of the client

connection was set as NLS_LANG=GERMAN_GERMANY.UTF8 and

date format is also set as German standard.

Of course, the application itself can ensure consistent data by allowing
only certain formats to even make it into the database. These examples were
just intended to demonstrate the use of the NLS parameters for language.
The character set allows for the international characters to be stored and the
base for globalization of the database, and the other parameters help with
region and understanding how data is being retrieved to adjust sorts, dates,
and other formats accordingly.

Setting the Environment Variable for NLS_LANG
The NLS_LANG parameter should be part of the environment variable setup,
and on the database server, you want to set the value to be the same as the
character set. When you are exporting or importing files that require character
set conversions, the utilities may not be able to import the records because
the records in a different character set might not fit in the datatype length for
the database character set.

Example error message value too large

Some rows will import, only those that don't fit will fail

ORA-02374: conversion error loading table "TBL1"

ORA-12899: value too large for column COL1 (actual: 263,

maximum: 255)

Data Pump jobs will use the NLS_CHARACTERSET parameter, but non-
English parameter files will use NLS_LANG, so setting this variable correctly
is important for character set conversions.

>export NLS_LANG=AMERICAN_AMERICA.US7ASCII

>exp FULL=Y file=Exp_test.dmp log=Exp_test.log

92 Oracle Database Administration for Microsoft SQL Server DBAs

Export done in US7ASCII character set and AL16UTF16 NCHAR

character set server uses WE8MSWIN1252 character set (possible

charset conversion)

…

#Using NLS_LANG=AMERICAN_AMERICA.WE8MSWIN1252 will avoid the

charset conversion

Changing the Character Set
Even with the best planning, you might need to change the character set
after the database has been created. This is possible, but there are some
hoops to go through. There is no simple “alter database” command for
changing the character set.

One approach is to just start over and create a new database, export out
the current one, and import that data into the new database with a new
character set. However, that might not be possible, so you might need to
instead use a tool to do the character set conversion.

The csscan utility is one tool you can use for character set conversion. It
will list areas that are issues and also create a script to change the character
set after the issues are handled. Exporting a couple of tables and importing
them back in might be easier than re-creating the database. The following
example shows the steps involved in changing the character set and gives
an idea of what will need to be planned.

>csscan FULL=Y TONCHAR=UTF8 LOG=check CAPTURE=Y ARRAY=1000000

PROCESS=2

csscan> sys as sysdba

--Use the sys password to login and get the output of the scan

-- Now log into the database via sqlplus and shutdown database

-- and startup in restrict mode

SQL>shutdown immediate;

SQL>startup restrict

SQL> alter system set aq_tm_processes=0;

SQL> alter system set job_queue_processes=0;

SQL> alter database CHARACTER SET new_characterset;

-- National character can be set here

SQL> %ORACLE_HOME%/rdbms/admin/csalter.plb

--set the aq_tm_processes and job_queue_processes back

to their initial settings and restart the database

This example demonstrates some of the issues that will need to be
resolved to change the character set. For more details, see the Oracle
documentation on csscan.

Chapter 4: Database Definitions and Setup 93

Security
As a DBA, you have probably dealt with plenty of compliance and security
considerations. Protecting the company assets that are stored in the database
is one of the main focuses of a DBA. Compliance and tracking of who has
permissions to update and change data or systems and security can become
a DBA nightmare if not planned for and handled properly.

Maintaining a security standard—whether it includes some security
tools, password policies, or highly privileged accounts—is a key component
here as well. With SQL Server, you might have a policy to use Windows
authenticated logins where possible, and when using database logins, have
the same password policies as the operating system. For managing
permissions, the policy might be to use the system-provided roles with
limited permissions and use roles to grant permissions to users.

With Oracle Database 11g, several new features focus on security and
being able to secure Oracle by default:

■ Strong passwords are enforced, and the default policies are 10 failed
login attempts, 180 days for password lifetime, and case-sensitive
passwords.

■ Sensitive packages that allow access to more than what is needed by
most users are no longer available for nonprivileged users.

■ Auditing is turned on by default. Many auditing options are available.
The performance of auditing can be improved by using an XML format.

NOTE
When creating a new database, it is great to
have a more secure configuration by default.
When upgrading, some of these security
features will need to be tested to verify their
functionality. Also, just upgrading doesn’t turn
on the auditing or password policies.

After creating a database using the DBCA, you are offered the option of
having different passwords for the system users, which is the recommended
configuration. In Oracle Database 11g, the DBCA expires and locks most
default accounts. If you’re using an earlier release or created the database

94 Oracle Database Administration for Microsoft SQL Server DBAs

manually, any users that were created as a part of features that were
installed but are not being used should be expired and locked.

Here, we will focus on the database security and look at the permissions
for highly privileged accounts, as well as schema permissions.

Permissions for the Server
As discussed in the previous chapter, the oracle user for the operating
system is the owner of the software and directories, and normally owns the
processes and services. You can create other operating system users to
restrict access to these directories but still allow access to different parts of
Oracle software, if desired. Operating system users can also get access to
the database. Just as with using Windows authentication for SQL Server, a
user can be granted access by external authentication.

The permissions on the operating system don’t carry through to the
database. The user must be added to the database and granted database

Chapter 4: Database Definitions and Setup 95

Security Considerations
The following are some points to keep in mind for a secure configuration:

■ Install only what is needed.

■ Ensure strong password authentication.

■ Protect sensitive database resources with permissions and
access.

■ Expire and lock out old users.

■ Use sample schemas only in test environments.

■ Use the principle of least privileges.

■ Use DBA permissions only when needed.

■ Take advantage of new security features and defaults.

permissions. For example, the oracle user on Linux can be added to the
database and granted permissions and login from the same server.

sqlplus>create user ops$oracle identified externally;

sqlplus>grant create session to ops$oracle;

sqlplus>exit

. . .

>whoami

oracle

>sqlplus

enter user-name: /

The / will use the OS user to login

sqlplus> select sysdate from dual;

SYSDATE

27-FEB-10

What permissions are needed as a DBA? A simple answer would be all
the permissions to be able to do your job to maintain, back up, and support
the database environment. Are all of these permissions needed all of the
time? Probably not. For example, being able to shut down a database or
change system configurations any time isn’t normally needed for day-to-day
tasks. There are several different ways to grant access at different times or
audit when someone logs in to a database as SYSDBA.

NOTE
Oracle Database Vault is an extra security tool
that will prevent access as a full-privileged user
to sensitive data areas. It creates realms around
parts of the database that are based on roles to
allow super users the access they need.

Table 4-3 lists some of the server roles of SQL Server and Oracle. Realize
that these are not exactly equal, but the roles do have similar permissions.
To see the underlying permissions for the roles, select against the dba_sys_
privs view. Obviously, the DBA and SYSDBA roles have several permissions
granted. RESOURCE is another role that receives more permissions than might
be expected. To limit permissions, you can create another role and grant only
those permissions needed.

96 Oracle Database Administration for Microsoft SQL Server DBAs

www.SoftGozr.comwww.SoftGozr.com

Oracle includes some other roles that are needed for users to log in that
are not typical in SQL Server. For example, the CONNECT role has the
CREATE SESSION permission.

NOTE
The CONNECT role has changed over time and
across many versions of Oracle. In Oracle
Database 10g and later, it has only the CREATE
SESSION permission to allow a user to log in
directly to the database. In previous versions, it
had more rights.

The sysadmin role has full system privileges for SQL Server—from
being able to shut down a server to backing up a database or even creating
a user and granting any permission. In Oracle, SYSDBA is similar to
sysadmin. If you need to do anything to the database, the SYSDBA role
would be the one place to go. The SYS account normally gets the role of
SYSDBA granted for these permissions. Both roles are created with Oracle
installation. The SYS user has the SYSDBA role granted, but SYS needs to
log in as SYSDBA to use the permissions.

Chapter 4: Database Definitions and Setup 97

SQL Server Oracle

sa DBA

sysadmin SYSDBA

bulkadmin EXP/IMP_FULL_DATABASE

db_ddladmin RESOURCE

Processadmin SCHEDULER_ADMIN

db_datawriter UPDATE, INSERT, DELETE grants

db_datareader SELECT grants (select ANY table)

TABLE 4-3. Server Roles in SQL Server and Oracle

www.SoftGozr.com

NOTE
SYSDBA can also be granted to other users, but
with that many permissions, it should be
granted with caution and its use very limited.

Other system roles can be used to grant some of the permissions of
SYSDBA without granting everything. For example, the SYSOPER role is
used for granting operations, such as shutdown and startup, but does not
give full access to the database. SYSASM is a new role in Oracle Database
11g that allows for management of the ASM instance, separating storage
management from database management.

In SQL Server, sa used to be the main login, but now it is recommended
that you avoid the use of the sa account and revoke some of the permissions or
lock the account. Since SQL Server has Windows authentication for the other
SQL Server logins, it provides the needed security by having the sysadmin
role available to people who need to perform server administration. In Oracle,
the SYSTEM user has this lesser role.

The SYSTEM user in Oracle owns some of the objects for the data
dictionary and system information, but it does not have the SYSDBA role
granted to it. It’s a scaled-down version of SYS, because it doesn’t have all
of the privileges of SYS but still has the DBA role. It is even a better practice
to create another user account for the DBAs, and then grant the DBA role to
these accounts. It makes it easier to audit these logins and activities, rather
than keeping track of several users using the SYSTEM account.

Permissions for Schemas
With SQL Server, the user is added to the database, and then permissions can
be granted to either roles or different schemas. Users can create their own
objects in their own schemas in the database, or just get permissions on
another user’s schema.

With Oracle, the user is added to the database server. With the
appropriate permissions, users can create their own schema objects. Users
may just have read or other types of permissions to execute parts of the
application, and permissions are even needed to connect to the database
directly with the CONNECT role or CREATE SESSION. The application
could validate the permissions and user in the Oracle database, but that user

98 Oracle Database Administration for Microsoft SQL Server DBAs

is not allowed direct access to the database; it is the application account
that is logging in to the database.

SQL> create user mmtest identified by "passwd1";

User created.

SQL> connect mmtest

Enter password:

ERROR:

ORA-01045: user MMTEST lacks CREATE SESSION privilege; logon denied

Warning: You are no longer connected to ORACLE.

Setting up users takes some planning and decisions on server roles and
user-defined roles for a schema. For example, for schema users, you might
set up one role with read-only permissions, a second role for a super user
type with the ability to execute procedures, and a third role to create views
from tables.

Now let’s take a look at what permissions might be needed for SQL
Server database owners compared to Oracle schema owners.

Database Owners
In SQL Server, if you are the database owner, you have permissions to
everything in the database, but not necessarily all of the server roles. Grant
dbo to another user, and that user has all of the permissions in the database.

Oracle database owners are the system users, and SYS and SYSTEM
serve in this role. They own the server objects, services, and data dictionary.
These users also are the ones to shut down and start up the database.

Since the Oracle database owner is more of the system owner, there are
server roles that can be granted to a user. However, it is recommended that
you do not create any user objects in the SYS or SYSTEM schemas, or in the
SYSTEM or SYSAUX tablespaces. Even if the user has the DBA and SYSDBA
roles, that user is still not really considered the database owner; if there
were to be an “owner,” it would be the user that is running the processes.

The DBAs should also be the system owners for several of their activities.
They would have the DBA role, which will allow for backing up the
database, creating new users and objects, running maintenance jobs, and
managing the database server.

Chapter 4: Database Definitions and Setup 99

Schema Owners
If a user is granted dbo in SQL Server, that user has permissions to create
the different objects in the database. As we discussed, a database in SQL
Server is similar to the schema in Oracle, so the SQL Server database owner
is similar to the Oracle schema owner.

Each of the users in Oracle could potentially be a schema owner and
create objects. Permissions would need to be granted to create and alter
certain objects. Other objects that should be maintained by another role or
by the DBAs can be restricted. The RESOURCE role grants most of the
typical permissions for creating objects.

SQL> select grantee,privilege from dba_sys_privs

where grantee='RESOURCE';

GRANTEE PRIVILEGE

------------------------------ -----------------------

RESOURCE CREATE TRIGGER

RESOURCE CREATE SEQUENCE

RESOURCE CREATE TYPE

RESOURCE CREATE PROCEDURE

RESOURCE CREATE CLUSTER

RESOURCE CREATE OPERATOR

RESOURCE CREATE INDEXTYPE

RESOURCE CREATE TABLE

8 rows selected.

CREATE PROCEDURE includes packages, package bodies, and
functions, and the owner of the objects can also change and alter the
objects. Additional object permissions, such as for creating views and
synonyms, would need to be granted outside this role if needed.

Access to the tablespace is needed for the schema owner to be able to
create objects on a tablespace. Granting an unlimited quota on a specific
tablespace is recommended, as opposed to granting the UNLIMITED
TABLESPACE role, which would also allow access to the system
tablespaces.

SQL> alter user ABC123 quota 4000M on USERS;

SQL> alter user DEF123 quota unlimited on USERS;

In this example, the ABC123 user would be allowed to use only a total
of 4GB of space on the USERS tablespace. The DEF123 user would be able
to use all of the available space on USERS, but this access applies only to
the USERS tablespace.

100 Oracle Database Administration for Microsoft SQL Server DBAs

Another way to secure a schema is to not give out the password for
access to the schema. This would allow for auditing of the schema changes
or setting up a change process to have only the access needed. The other
users could still have access for read and write permissions, but other
actions, such as altering the objects, would be handled in other ways. The
session can be altered to change the current user, which is an action that
can be audited and allow for logging in as a schema owner without
knowing the password to do selected activities.

SQL> grant alter session to MMTEST;

SQL> alter session set current_schema=SCHEMA_OWNER;

This example is intended to give you an idea of how to change to a
different user and the permissions needed for the schema owner. Triggers
and other auditing would need to be set up to track these types of changes
if required for compliance.

As the schema owner creates objects, grants to execute or access those
objects need to be passed on to the other roles or users.

DBA Roles and Responsibilities Revisited
In Chapter 1, we looked at various DBA responsibilities and roles, such as
system DBA, application DBA, development DBA, and architecture DBA.
Now that we’ve discussed database security, we can explore some ways to
divide privileges among these roles.

The DBA has the responsibility to create the database and create users.
Depending on the access to the production environment, the application
DBA might be the only one with the schema password to make changes to
tables or objects. The application and development DBAs might have these
roles in a test environment, and the application code should be what is
running against the data to perform the updates and changes, rather than
via direct loads to the database or ad hoc queries that directly make data
changes. This sounds like a typical database environment.

The system DBA would have the roles of SYSOPER and EXP/IMP_
FULL_DATABASE to be able to maintain and back up the database. The
architecture DBA may have access only to a development machine or a lab
machine. Granting SELECT ANY CATALOG provides a higher-access
privilege, but less than SYSDBA or DBA, and that would allow any of these
DBAs to look at performance and see what is running against the database.

Chapter 4: Database Definitions and Setup 101

A new role with the select permissions could be created for each of the
represented DBA roles, which would limit full access to the database based
on responsibility. Even if there is only one DBA, creating a different user
with some of the basic permissions for a DBA would be better than always
logging in as SYSDBA.

Summary
In this chapter, we first looked at some database terminology used by the
different platforms. You saw that the SQL Server database is more similar to
the Oracle schema than to the Oracle database. Since there is one Oracle
database server for an Oracle instance, creating an Oracle database requires
a good bit of configuration and planning.

Several assistants are available to create a database, upgrade a database,
create a listener, create scripts and templates for the database, and set up
the OEM. The assistants provide an interface to be able to walk through the
different steps, and allow for configuration and customizations along the
way.

Database scripts and templates can be used to re-create the same
database or to clone the database in another environment. The scripts can
also be modified to create a new database with similar characteristics. The
DBCA is a good tool for creating a database for a new Oracle version and
taking the defaults to see what some of the new default parameters and
configurations might be. This could help in planning upgrades and
acceptance of new features.

Security is another important topic when it comes to databases, and
setting up permissions for least privilege is a database standard. Users are
added only to the Oracle database server, and then granted permissions to
create objects in their schemas or have access to other schema objects.
There are some system roles for just the DBAs to use with caution.

Access to the database can be handled in several different ways. Also,
determining who has permissions to create objects and manipulate data can
be based on application security and other security policies and standards.

In discussing the creation assistants in this chapter, we have already
started to look at some of the Oracle tools. In the next chapter, we’ll
continue to explore the tools that are provided to aid DBAs in an Oracle
environment.

102 Oracle Database Administration for Microsoft SQL Server DBAs

CHAPTER
5

DBA Tools

I
n the previous chapters, we’ve covered installing Oracle and
creating the database. The next chapters will move on to specific
Oracle database administration tasks. Here, we will take a look at
the tools available for performing these tasks.

What do I mean by “tool”? It’s true that even a simple SQL statement
that is saved to be reused can be considered a tool. And, yes, we could be
writing Perl and shell scripts to manage everything. But we’ll focus on some
of the Oracle-provided tools that make the job a little easier, and some good
checks and verification steps to do when using these tools. Note that tools
from third-party vendors are available, and although they are not included
in this discussion, some are also quite useful for DBAs.

Overview of Tools for Typical
Database Tasks
Table 5-1 shows the main tools in SQL Server and Oracle for performing
some common DBA tasks.

104 Oracle Database Administration for Microsoft SQL Server DBAs

Task SQL Server Oracle

Get an overview of
objects and database
activity

SQL Server Management
Studio

Oracle Enterprise Manager

Run queries SQL Server Management
Studio, Query Analyzer

SQL Developer, SQL*Plus,
SQL Worksheet

Trace sessions Profiler Oracle Enterprise
Manager, v$ views

Back up databases Maintenance Plans, SQL
Server Management Studio

Oracle Recovery Manager,
Oracle Enterprise Manager

Monitor SQL Server Management
Studio

Oracle Enterprise
Manager, v$ views

Schedule SQL Server Agent, SQL
Server Management Studio

Oracle Scheduler, Oracle
Enterprise Manager

TABLE 5-1. DBA Tools for Common Tasks

You can see from the table that both SQL Server and Oracle provide a
main tool for database administration: SQL Server Management Studio and
Oracle Enterprise Manager (OEM). Let’s start with a look at OEM.

Oracle Enterprise Manager
OEM is similar to SQL Server Management Studio in that it gives you a look
at the server information, error logs, scheduled tasks, and object information.
OEM also provides some operating system information and performance
statistics. OEM offers an easy view into a database and provides the ability
to manage the database in a GUI.

NOTE
Managing multiple databases in an enterprise
environment is better left to the Grid Control,
rather than the single instance of the Database
Control. However, the Database Control for a
single database is a good starting point for
understanding the templates and setup for
monitoring.

OEM Navigation
OEM has come a long way since it was first introduced. With the improvements
in OEM, there have been many changes to where things appear within the
tool. Even from OEM 11g R1 to R2, a few categories have been rearranged.
Some of these changes come directly from recommendations by users,
based on how they use features. So change is good, but explaining where
to find different options and administration tasks is more difficult, since it
depends on the version. However, although a tool may be in a different
place in the various versions, its header or description will be very similar.

The first page that appears after logon provides some basic information
about the system being up and available, any new alerts in the error log, the
server name and listener, and if using ASM, the ASM instance information.
The tabs and categories changed from Oracle Database 10g to 11g, but you
can still navigate from this home page to the areas to manage the server and
perform administration tasks.

Chapter 5: DBA Tools 105

The tabs do a good job of describing the areas that are available:

■ Performance The Performance tab has some graphs that show the
active sessions, CPU utilization, and throughput statistics. It has links
to drill down into the top sessions, currently running SQL, and a
view to check if there is any blocking. These areas will allow for
some tuning of queries and the current activity.

■ Availability The Availability tab has the backup and recovery tasks.
We will look at these options and settings in the next chapter.

■ Server The Server tab contains tasks such as scheduling jobs,
setting up security, configuring parameters, and managing storage
and statistics. This area is probably the closest to the information in
properties for a SQL Server instance, as well as the database
properties that are seen in SQL Server Management Studio.

■ Schema The Schema tab provides a view into the objects in the
schemas. The tables, indexes, views, packages, procedures, triggers,
materialized views, defined types, and other objects are available to
view by schema. After drilling down to an object, such as a table,
the object can be edited or new objects of that type can be created.
The Schema tab is similar to the Object Explorer for SQL Server
Management Studio, but it also offers the functionality to walk
through the tasks, step by step. Additionally, you can view the SQL
statements to perform the tasks, which can be executed in other
tools.

■ Data Movement As the name suggests, the Data Movement tab
has steps for exporting and importing data. There is also a Streams
category, which is for the setup and management of replication.

■ Software and Support The Software and Support tab includes details
on the host configuration and the Oracle Inventory, including the
version of the installed Oracle software. There is a section for patching,
with a way to stage and apply patches. The Real Application Testing
option allows for replay of the database activity to test a patch rollout,
upgrade, or new deployment of configurations.

106 Oracle Database Administration for Microsoft SQL Server DBAs

In SQL Server, after installation of an instance, you launch SQL Server
Management Studio to verify and adjust settings, create users, and configure the
instance for the needed databases. The options and configurations available
in properties of the SQL Server instance correspond to the properties that are
available in the Server tab of OEM, as shown in Figure 5-1. After creating the
database, the Server tab of OEM is a good place to start to add users, create user
tablespaces, and verify the parameter settings. Most of the server setup and
configurations are under the Server tab, and by exploring the categories, you
can learn how to navigate through the OEM to perform the needed tasks. So,
let’s take a closer look at the Server tab.

Storage Management
Under the Storage category, the Tablespaces section will list the system
tablespaces that have been created: SYSTEM, SYSAUX, TEMP, UNDO, and

Chapter 5: DBA Tools 107

FIGURE 5-1. OEM Server tab

probably USER as well. You can adjust the defaults for sizing the tablespaces
and add new tablespaces, for an application or for a schema. Having
different tablespaces helps to organize the objects in the database. This
organization used to be mainly by tables and indexes, but now it can be
more about usage and how and when the tablespaces are being accessed.
You can size the tablespaces based on initial estimates when you create
them, and then use OEM to watch their growth and see if more disk is needed.

From the Control Files section under Storage, you can back up the control
file, which is part of a backup strategy, as discussed in the next chapter. The last
change number is here with the database ID, which is important information
about the database, particularly if you need to recover the database.

Redo logs can be managed from here as well. The Redo Log Groups
section shows the current log file. Here, you can add groups or add
members to the groups.

NOTE
It is good practice to name redo logs with an
extension other than .log, even though that is
the Oracle default. Use something like .rdo or
.ldf to make sure that these are treated like
critical database files, rather than output logs.

Database Configuration
Under the Database Configuration category, the Initialization Parameters
section lists the database parameters. You can verify and adjust these
parameters as needed. You can also modify the way that the parameters are
listed, so that they are divided by basic, dynamic, or categories (such as
memory) to give a more meaningful grouping of the parameters—the whole
listing of all the parameters can be overwhelming.

The View Database Feature Usage section shows the installed components.
After the database is up and running, it will show which components are
actually being used. This is useful information for patching and testing the
areas in use. If some installed components are not being used, you may want
to consider disabling those components.

The Memory Advisors section is the place to go to view how memory is
being allocated and managed. It shows statistics about the memory. Obviously,
viewing this section after there is load on the database will provide more
valuable information than looking at it immediately after database startup.

108 Oracle Database Administration for Microsoft SQL Server DBAs

Oracle Scheduler
The Oracle Scheduler category provides information similar to what you
find in the SQL Server Agent and Job Activity Monitor in SQL Server
Management Studio.

The Jobs section lists all of the jobs that run against the database. You
can view and edit the job description and properties. The jobs can also be
run from here, and you can view the history of the job and the schedule.

The Automated Maintenance Tasks section lists tasks such as statistics
gathering and possibly backups. This is different from how these tasks are
handled in SQL Server, which has the Maintenance Plans feature for setting
up backups and statistics gathering. This feature is found under Management,
rather than with the jobs and schedules.

Statistics and Resource Management
The Statistics Management category offers a view into the workload repository.
These are statistics that are collected for sessions and processes running
against the database. The repository pulls together the information to help
assess the database performance, with top wait events, top SQL sessions,
cache hit ratios, and several other statistics.

SQL Server 2008 introduced a new Resource Governor, under the
Management folder. In Oracle, Resource Manager has been around for
a few versions. The Resource Manager category on the Server tab has
sections for setting up consumer groups and plans.

Security
The Security category provides access to security-related areas. Under
Users, all of the system users are listed, and the list might be longer than
expected, depending on the components and examples installed. Many of
the users might be locked and expired, which is the default security for the
components. You can activate the user accounts you need and change their
passwords. You can also create new users, either as a copy of an existing
user or as a completely new user.

When creating users that will be allowed to create tables and indexes,
keep in mind that they will need a quota on a tablespace—just setting a
default tablespace will not be enough. Even with the permissions to create

Chapter 5: DBA Tools 109

a table or index, without access to a tablespace, users will receive an error
when they try to create the object:

SQL> create table example1

(object_id number,

object_desc varchar2(20));

create table example1

*

ERROR at line 1:

ORA-01950: no privileges on tablespace 'USERS'

Figure 5-2 shows an example of a USER tablespace quota being set for a
new user. The quota can be a specific value or be set to unlimited. You can
also edit an existing account to set the quota.

Even though the UNDO and TEMP tablespaces are listed as options here,
you cannot grant a quota on these tablespaces, as they are used for transactions
and available to all of the users. If you try, you will get an “ORA-30041:
Cannot grant quota on the tablespace” error. You can grant quotas on the
SYSTEM and SYSAUX tablespaces, but this is not recommended, because
those areas should be used for system objects.

110 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 5-2. Setting a USER tablespace quota

Enterprise Manager Configuration
One other area to look at under the Server tab is Enterprise Manager
Administration. The agent and dbconsole process were created with the
creation of the database. Here, you can configure notifications, set
thresholds for monitoring, and set blackouts.

Figure 5-3 shows the Administrators section, which lists the system
administrators who can log in to OEM to perform management tasks. A new
administrator account can be created outside the system accounts, with
fewer privileges, to allow administrators to manage templates, blackouts,
and notifications (a good practice to follow for a secure implementation).

The other sections show setup information for OEM. The Management
Pack Access section lists some of the database packs which are options and
may require additional licensing.

This was just a brief overview of some of the areas of OEM to get you
started with this tool. Next, we’ll look at SQL*Plus, a tool for managing
database objects.

Chapter 5: DBA Tools 111

When Do You Need Quotas?
You do not need to set tablespace quotas for users if they will just be
performing transactions on that table—selecting, inserting, updating,
and deleting. However, if the schema owner had a set quota of 2GB
and a user attempted to insert 3GB of data, that user might receive an
“exceeded quota” error on the transaction.

Quotas are just needed to create tables or indexes in tablespaces.
Procedures and functions do not need tablespaces, so a user that will
be creating these objects might not have quotas on tablespaces.

There is a system privilege of unlimited tablespace, which grants
a user unlimited access to all of the tablespaces, including system
tablespaces. So you can see why it’s a good idea to just grant access to
the specific tablespaces, instead of opening up the system tablespace
for some random object from a user.

SQL*Plus
If you created a database in the Linux environment, you have already used
SQL*Plus. With Windows versions before Oracle Database 11g, SQL*Plus
was a simple graphical interface for entering SQL statements. With 11g,
running SQL*Plus opens a command-line window for executing queries.
Figure 5-4 shows the new and previous versions.

112 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 5-3. Enterprise Manager Configuration, Administrators section

FIGURE 5-4. SQL*Plus in Oracle Database 11g (left) and 10g (right)

You may be thinking, “Oh no—not command line! How can I go from a
nice graphical interface to using a command-line tool?” It is not as bad as
you might think.

SQL*Plus is handy for queries, such as a quick check or count, and also
to incorporate into scripts. Consider how you might use SQL Server sqlcmd
or osql to run a query or for scripting. For example, here’s how you would
pass in a SQL statement and capture the output of the statement in a log file
with osql:

>osql –U user1 –P userpasswd –i sqltest.sql –o output.log

In Oracle, with SQL*Plus, you can do this as follows:

>sqlplus user2/userpasswd sqltest.sql > output.log

So now you are probably wondering where the sp_who and sp_who2
commands are in Oracle, because they would be useful for a quick check
from the command line. Well, there is not really an sp_who command, but
here’s a query that will provide the same results:

SQLPLUS> SELECT s.username, s.schemaname, s.status,

s.process, t.sql_text

from v$session s, v$sql t

where t.sql_id(+) = s.sql_id and s.type = 'USER';

USERNAME SCHEMANAME STATUS PROCESS SQL_TEXT

--

MMTEST MMTEST INACTIVE 5840:5140 select cust_name,…

…

You can put this query in a package or procedure to create your own
version.

Using the command line in scripts or batch files is very useful. You can
write the results of a query to file, and if you’re using the results to create
new SQL commands, these files can then be executed. The spool
command used with a file name will write the results to a file.

SQLPLUS> spool c:\temp\results.lst

SQLPLUS> select customer_name, created_date from cust_table;

SQLPLUS> spool off

This example will write the results of the query, including the header and
verify information. Using the SET command, you can suppress the header
and verify information from appearing in the output, both on the screen and

Chapter 5: DBA Tools 113

in files. Table 5-2 shows just some of the SET commands for directing how
the output is shown on the screen and in the output files.

Let’s look at a few script examples that demonstrate the use of some of
the output options shown in Table 5-2. The following script can run in silent
mode, process the query, and capture the output to a log file to check if
there were errors and validate that things ran correctly.

View system information without headers and verification:

SQL> select tablespace_name from dba_tablespaces;

TABLESPACE_NAME

SYSTEM

SYSAUX

UNDOTBS1

TEMP

114 Oracle Database Administration for Microsoft SQL Server DBAs

Output Option SET Command

Turn off column headings SET HEADING OFF

Suppress display of the number of records
returned

SET FEEDBACK OFF

Suppress display of the commands SET ECHO OFF

Suppress display of the command when
replacing substitution variables

SET VERIFY OFF

Suppress display of the output from a
command file (doesn’t affect the display of
commands entered)

SET TERMOUT OFF

Turn on the display of the output from PL/SQL,
such as DBMS_OUTPUT.PUT_LINE

SET SERVEROUTPUT ON

Set the width of the line before wrapping SET LINESIZE 200

Suppress all headings, page breaks, and titles SET PAGESIZE 0

Display the timing statistics for each command
or block of PL/SQL

SET TIMING ON

TABLE 5-2. Some SQL*Plus SET Commands

USERS

SQL> set heading off

SQL> set pagesize 0

SQL> select tablespace_name from dba_tablespaces;

SYSTEM

SYSAUX

UNDOTBS1

TEMP

USERS

--without the pagesize 0, there will be a blank line before the

--first result record

-- To be able to view the output from dbms_output, you need

--serveroutput on. Otherwise it does just verify the procedure

--executed.

SQL> exec dbms_output.put_line('testing output');

PL/SQL procedure successfully completed.

SQL> set serveroutput on

SQL> exec dbms_output.put_line('testing output');

testing output

PL/SQL procedure successfully completed.

--To remove the statement that the script ran and just return

--the value

SQL> set feedback off

SQL> exec dbms_output.put_line('testing output');

testing output

The next example is just a check to make sure that the database is up
and available. It will return an error if there is an issue running queries
against the database.

Just checking that an instance is up and available:

>$ORACLE_HOME/bin/sqlplus –s > output.log <<EOF_SQL1

$USER/$PASSWORD

select 1 from dual;

exit

EOF_SQL1

>view output.log

1

1

Chapter 5: DBA Tools 115

>$ORACLE_HOME/bin/sqlplus –s > output.log <<EOF_SQL1

$USER/$PASSWORD

set feedback off

set heading off

set pagesize 0

select 1 from dual;

exit

EOF_SQL1

>view output.log

1

--The output log can also scanned for ORA- errors and then message

sent if failures.

As a final example, the following script generates SQL statements that
can be run against the database.

SQL> spool gen_sql.sql

SQL> select 'select count(1) from '||table_name||';'

from user_tables;

select count(1) from TABLE1;

SQL> spool off;

. . .

SQL> show heading

heading ON

SQL> gen_sql.sql

SP2-0734: unknown command beginning "SQL> gen_..."

- rest of line ignored.

COUNT(1)

0

SP2-0734: unknown command beginning "SQL> spool..."

- rest of line ignored.

--Errors are because of the commands coming after the spool

--command and they are in the spool file.

> view gen_sql.sql

SQL> select 'select count(1) from '||table_name||';'

from user_tables;

select count(1) from TABLE1;

SQL> spool off

>

--A cleaner way to do this is by having the SQL in a file and

--using termout which doesn't display the output of the

--command file.

> view gen_count.sql

set heading off

116 Oracle Database Administration for Microsoft SQL Server DBAs

set termout off

set pagesize 0

set feedback off

set echo off

set verify off

spool gen_sql.sql

select 'select count(1) from '||table_name||';'

from user_tables;

spool off

exit;

>sqlplus –S user1/userpass gen_count.sql

>sqlplus

SQL>gen_sql.sql

COUNT(1)

0

SQL>

These examples should give you an idea of some of the options available
with the SQL*Plus command-line tool. Many Oracle DBAs have a set of
SQL statements and scripts to generate other statements, and get quick
information from the database. The formatting might not matter, depending
on what is being executed, but you do have some control over how the
output appears.

As you’ve seen, ad hoc queries, generated SQL, and code extracted from
OEM or another place can be run in SQL*Plus. They can be also run in
another tool: SQL Developer, which offers a query window and puts you
back in a GUI.

SQL Developer
SQL Developer is a free graphical tool that Oracle provides for database
development. This tool supports several platforms, so it is useful for
managing environments with multiple platforms, such as SQL Server and
Oracle. With SQL Developer, you have a tool to work with the database
objects, develop code for the database, and even do some unit testing and
data modeling in one place.

SQL Server DBAs will find that SQL Developer has a more familiar look
and feel than the other Oracle tools. Instead of drilling down to new
windows for information, as in OEM, you can right-click on objects to view
properties and perform tasks, as shown in the example in Figure 5-5.

Chapter 5: DBA Tools 117

The first step in using SQL Developer is to create connections. The
connections are defined by the user, database name, and other information,
including hostname and port. The connections can also be for another
database platform.

As you can see in Figure 5-5, in SQL Developer, you can browse the
objects by type under the schema you connected as. The other users are the
other schemas available, and under each schema there are the different
object types.

As also shown in Figure 5-5, right-clicking a table brings up a menu with
options to edit, move, rename, drop, get a row count, truncate, and more.
You can create indexes, constraints, and triggers, as well as configure privileges
and storage. There are also options to export and import the data.

118 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 5-5. SQL Developer

When the view of the object is in the right pane, the SQL statement that
created it is available on the SQL tab. The other tabs show the columns,
data, constraints, grants, statistics, indexes, and dependencies. Under the
Tools menu, there is an option to export the DDL, which will walk through
scripting out several objects at one time. Along with the scripts of the
objects, there is a filter to pull data.

Take a look at the query in Figure 5-5. Notice that the result set is not
listed below it but it has just the explain plan with information about the
tables and any indexes used. This brief query plan has full-table scans—
thank goodness there are only 14 rows in one table and 4 in the other.

Since SQL Developer is a development tool, it includes features for
editing PL/SQL and running, debugging, and formatting code. It provides a
command history and version control, which hooks into something like CVS
and Subversion, to keep track of the code while developing against the
databases. You can copy a schema to another one, as well as compare two
schemas or objects (to check for differences in indexes, stored procedures,
and so on).

Although SQL Developer is primarily a tool for developers, it definitely
has value for DBAs. It will help you understand the different database
options and how to use explain plans, and let you pull code out of the
database. Don’t forget that this is a free tool. And if you’re managing
multiple database platforms, having all of the connections in one place is
very nice.

Client Connections
With all of the tools discussed in this chapter, you need to pass in
information about the database. SQL Server has an instance name (or may
be local if not named), a server, and a port. The same is true with Oracle. It
has the database name (SID), server name, and port. The SID is the instance
name, and a service name could be for the database, as in the case of a
clustered database.

Just as with SQL Server, the clients and tools need to be able to connect
to the database. You can install some sort of client on the client side or use a
database driver that can accept the information needed to connect. Table 5-3
compares the connection tools available for SQL Server and Oracle.

Chapter 5: DBA Tools 119

Several different types of Oracle clients are available for installation:

■ Instant client This is a minimal client that doesn’t require an Oracle
home to be set up and has different drivers for connections. SQL*Plus
is not installed with this client, but it can be added.

■ Administrator client This type of client installs with the tools
needed for DBAs, such as SQL Developer and SQL*Plus. During the
installation, the Net Configuration Assistant is executed to set up the
information for the connections to the databases.

■ Runtime client With this client, the client pieces are installed in
an Oracle home. SQL*Plus and some of the basic tools needed to
connect to the databases are included.

A custom installation will allow for different parts of the client to be
installed.

Client Connection Configuration
Instant client connections do not require extra files or a service definition on
the client side. The following is an example of a connection string for a
database:

connect username/passwordoraserver1:1521/MMDEV1

120 Oracle Database Administration for Microsoft SQL Server DBAs

Connection Tool SQL Server Oracle

Client Client Tools install Client install, instant client,
runtime client, administrator
client

Drivers ODBC, JDBC, OLE DB,
OCI, native, etc.

ODBC, JDBC, OLE DB, OCI,
native, etc.

Connection
configuration

Client Network Utility Net Configuration Assistant

TABLE 5-3. Client Connection Tools

The other types of clients require details on the database connection and
the location for the client to connect, which can be handled through a
tnsnames.ora file or the Oracle Internet Directory (and LDAP directory).

As discussed in Chapter 4, the listener is configured on the server side
with the database. The Net Configuration Assistant sets up the host, port,
and database name to listen for. The tnsnames.ora file has the details for the
client to connect to the listener on the server. The sqlnet.ora file has
information such as domain and if the tnsnames file or the Oracle Internet
Directory should be used to look up listeners. These files are created as part
of the installation of the administrator client or runtime client, and are found
in the ORACLE_HOME/network/admin directory.

So, what is in the tnsnames.ora file? Really, it just lists the server
locations and where to find the listener. Here is a sample tnsnames.ora file,
including an example for a cluster database.

Connection to a single database server

MMDEV1 =

(DESCRIPTION =

(ADDRESS = (PROTOCOL = TCP)(HOST = oraserver1)(PORT = 1521))

(CONNECT_DATA =

(SERVER = DEDICATED)

(SERVICE_NAME = MMDEV1)

)

)

Connect with fail over and load balancing to a RAC database

RACDB =

(DESCRIPTION_LIST =

(FAILOVER = true)

(LOAD_BALANCE = true)

(DESCRIPTION =

(ADDRESS = (PROTOCOL = TCP)(HOST = orasrvrac1-vip)(PORT = 1521))

(ADDRESS = (PROTOCOL = TCP)(HOST = orasrvrac2-vip)(PORT = 1521))

(CONNECT_DATA =

(SERVICE_NAME = RACDB)

(SERVER = dedicated)

(FAILOVER_MODE = (BACKUP=orasrvrac2)(TYPE=select)(METHOD=BASIC))

)

)

)

Depending on the size of the environment, managing the tnsnames.ora
file can become cumbersome, unless you have ways to push the file changes
out to the application servers and client servers as needed. Oracle Internet
Directory is another option. This is a directory for the database servers and

Chapter 5: DBA Tools 121

locations that can be centrally managed. All that is required on the client
side is the information for the Oracle Internet Directory. For the connection
to the Oracle Internet Directory to look up the location of the database, an
ldap.ora file is needed in the ORACLE_HOME/network/admin directory.
Here is an example of an ldap.ora file:

DEFAULT_ADMIN_CONTEXT = "ou=databases,dc=company1,dc=com"

DIRECTORY_SERVICES = (ldap_server.company1.com:389:636)

DIRECTORY_SERVER_TYPE = OID

The sqlnet.ora file has parameters for using the Oracle Internet Directory,
tnsnames.ora, EZCONNECT (easy connection naming method without
tnsnames.ora), and the default domain. There is also expiration time of the
client connection, and this can be used to trace client sessions. Here is a list
of some of these parameters in a sample sqlnet.ora:

NAMES.DEFAULT_DOMAIN = (US.COM)

###It will try these connections in this order path first

LDAP, etc.

NAMES.DIRECTORY_PATH = (LDAP, TNSNAMES, EZCONNECT)

NTS allows oracle to use current Windows domain credentials to

authenticate. If Oracle server is not configured for this, errors will

occur in connecting.But setting NONE first will only disable the local

support using Windows credentials

SQLNET.AUTHENTICATION_SERVICES = (NONE,NTS)

##These parameters can be uncommented to start the tracing

##TRACE_LEVEL_CLIENT=4

##TRACE_FILE_CLIENT=client_sqlnet.trc

##TRACE_DIRECTORY_CLEINT=D:\oracle\trace

Time is specified in minutes for the expire time but this

would be set on the database server

SQLNET.EXPIRE_TIME=30

As seen with the NTS setting in this file, the Windows domain credentials
would be useful for defining externally authenticated users in the database,
and then setting AUTHENTICATION_SERVICES = (NTS) will allow for
passing the Windows credentials through to the database. Since the sqlnet.ora
file is on both the client and server side, there might be some parameters
that are set for the server, but these may still have an effect on the client.
For example, EXPIRE_TIME will time out sessions.

122 Oracle Database Administration for Microsoft SQL Server DBAs

The most common issues when setting up a connection to the database
stem from incorrect information in the connection string, tnsnames.ora file,
or sqlnet.ora file. I have even tried to track down a connection issue, only to
discover that there were two different tnsnames.ora files, and the one with
the incorrect information was being looked at first because it came up first
in the path environment variable.

As you’ve seen, the sqlnet.ora file also has information on authentication
and the domain. If this doesn’t match up with your environment, it might
be looking for a database in a different domain, or even looking for a
tnsnames.ora file when it is set up to use LDAP.

These files can be edited manually, but typing issues may cause trouble
if the files were generated by an Oracle configuration tool.

It is also possible that TNS errors will come up if you are logging in
to SQL*Plus and the ORACLE_SID variable is not set or you are using
usernameORACLE_SID to define which database the client is attempting
to connect to.

JDBC Connections
The applications and clients normally set up the connections, and the
details of the host, database name, and port should be all that they need to
get started. However, they may sometimes need assistance with connections
and using different drivers.

For JDBC drivers, there are thin and thick clients. There is not much
difference between the two, except that the thick client has the ability to use
the tnsnames.ora file, and the thin client might not have these structures set
up because just the drivers were installed.

url="jdbc:oracle:thin:host:port:sid"

url="jdbc:oracle:thin:(DESCRIPTION=

(LOAD_BALANCE=on)

(ADDRESS=(PROTOCOL=TCP)(HOST=orasrvrac1-vip)(PORT=1521))

(ADDRESS=(PROTOCOL=TCP)(HOST=orasrvrac2-vip)(PORT=1521))

(COONECT_DATA=(SERVICE_NAME=RACDB)))"

thick client can use the database name in the tnsnames.ora file

url="jdbc:oracle:orci:MMDEV1"

Aliases
A SQL Server instance can have an alias to use a client network utility. Even
a local instance with no name can get a different name to use as an alias.

Chapter 5: DBA Tools 123

The same is true for Oracle databases. A database alias can be set up in the
tnsnames.ora file.

DB_ALIAS =

(DESCRIPTION =

(ADDRESS = (PROTOCOL = TCP)(HOST = oraserver1)(PORT = 1521))

(CONNECT_DATA =

(SERVER = DEDICATED)

(SERVICE_NAME = MMDEV1)

)

)

In this example, DB_ALIAS will actually connect to the MMDEV1 database.
It is that simple to create an alias, and it obviously doesn’t change the actual
name of the database.

CAUTION
In the tnsnames.ora file, having the same name
listed twice can cause connection issues. Even
if the details are the same for both of the
listings, duplicates can cause problems
connecting.

My Oracle Support
Most of these tools discussed in this chapter are used on a daily basis to
manage the database and log in to databases. I consider My Oracle Support
a tool, because not only does it have a knowledge base for commands,
issues, and possible errors, but it also has the Configuration Manager for
assistance in applying patches and upgrades. It also offers a health check
monitor that provides some suggestions based on the configurations in the
databases.

There is community out there, and through My Oracle Support, you can
have discussions with other DBAs. In addition to those you can find through
the message areas in My Oracle Support, other Oracle user communities are
great resources for information and networking. User groups such as the
Independent Oracle User Group (IOUG) have real DBAs performing real
tasks, and they are willing to share their experiences and help you to work
through issues.

124 Oracle Database Administration for Microsoft SQL Server DBAs

Summary
In this chapter, we have discussed several different tools available to Oracle
DBAs. Some of the tools are geared more toward the management of the
database servers; others might be more focused on development. Both types
are useful for DBAs. There are several areas to explore in OEM and SQL
Developer to make you more productive as a DBA. And don’t forget that
even though it is good to have an easy interface to use, it’s also handy to be
able to run simple scripts and queries in a regular SQL*Plus session.

However, it’s not too useful to have these tools if you cannot connect
them to the database. So, we discussed how to get connected and took a
look at the pieces that are needed to connect, including the tnsnames.ora
and sqlnet.ora files.

Chapter 5: DBA Tools 125

This page intentionally left blank

CHAPTER
6

Database Backup,
Restore, and

Recovery

A
s a DBA, you already know the importance of database
backups. You have probably developed your own backup
strategies and disaster recovery plans for the SQL Server
databases you support.

You also know that being able to back up a database is just part of the
job. You need to manage the backups and know which backup pieces to
use to be able to recover quickly and easily. Testing restore procedures
validates that you have solid, usable backups, and also lets you develop
restore scripts to save for a rainy day.

In this chapter, you will learn about the set of backup and recovery tools
available for the Oracle platform. This will help you to develop your backup
and recovery strategies for your Oracle databases.

Backing Up Databases
Sometimes your job as a DBA may seem like all you are doing is verifying
that backups are running successfully and restoring testing environments
with those backups. This is definitely an important task for the system DBA,
and backups are key to providing a secure and reliable database environment.

Backup Strategies
As a DBA, no matter which database platform you are administering, you
need to plan a backup strategy that makes recovery a simple process and fits
the needs of the business. There are several strategies for backing up databases,
depending on resources, the importance of the data, and if it is needed for
recovery and running the business.

For SQL Server databases, creating maintenance plans sets up some
backup strategies. The SQL Server database recovery model setting of either
SIMPLE or FULL also determines if log backups are needed. As the database
changes or grows, plans to compress, write to tape, and allocate threads to
use for the backup are all taken into consideration.

The Oracle DBCA also has a step to set up maintenance plans, which
include backup settings. You also have the option to create the database in
NOARCHIVELOG mode, which is similar to the SQL Server SIMPLE option,
or ARCHIVELOG mode, which is like the FULL option.

128 Oracle Database Administration for Microsoft SQL Server DBAs

It is important to be able to communicate the options for backup and
restore strategies to the business owners. Understanding the options, the
resources needed (disks, tapes, and so on), and what data loss would mean
to the business are key to being able to convey how the restore options
would benefit the business. This will help you and the business owners to
develop the best plan to balance the resources and protect the data assets.

What are you protecting against? You probably have been setting up
backup strategies to protect against hardware failures, data loss, changes
that have gone wrong, and disasters. Running backup database and
transaction logs, and saving copies to disk and tape with certain retention
policies are all part of this plan.

So what options are available in Oracle to protect the data against those
“oops” or “oh no” moments? Besides the backups, there are exports, a
recycle bin, and a way to flashback queries and even the database. We’ll
start with some of the commands for backing up the database, and then
progress through the other options.

Backup and Restore Commands
The basic commands for backing up and restoring Oracle databases should
look familiar to SQL Server DBAs. Let’s start with the SQL Server command
to back up a database:

backup database customer_db to

disk ='E:\mssql\bkups\customer_db_02022010.bak'

backup log customer_db to

disk='E:\mssql\bkups\customer_db_log_02022010.trn'

This will take care of the SQL Server database and log backups, and
write the backup file to disk.

In Oracle, you use a Recovery Manager (RMAN) command, like this:

RMAN> run {

allocate channel disk1 device type disk;

backup database plus archivelog;

}

This command will back up the database with the archive logs and write
the backup file to disk.

Chapter 6: Database Backup, Restore, and Recovery 129

Here is the SQL Server command to restore a database:

restore database customer_db from

disk ='E:\mssql\bkups\customer_db_02022010.bak'

The Oracle RMAN command is basically the same:

RMAN> run {

allocate channel disk1 device type disk;

restore database;

}

Both database platforms can perform “hot backups” while the database
is up and available, when it’s possible that changes are happening as the
backup is running. The transaction and archive logs keep these changes, so
these logs must be part of the backup set.

NOTE
RMAN puts the database (datafiles and
tablespaces) in backup mode when it runs the
backups. If you’re not using RMAN, you’ll need
to issue ALTER DATABASE BEGIN BACKUP
before being able to do a hot backup of the
database.

Typically, 24/7 access to the database is required, so hot backups are
made. However, there might be opportunities to take a cold backup when
the downtime is available, such as before an upgrade or hardware move.
This will get a full backup, so the transaction and archive logs do not need
to be handled. In SQL Server, if the instance services are shut down for a
cold backup, the files can be copied over. The same is true for Oracle
databases. This script runs a cold backup:

RMAN> run {

shutdown immediate

startup mount

allocate channel disk1 device type disk;

backup database;

}

130 Oracle Database Administration for Microsoft SQL Server DBAs

Looking at the script, you may wonder why there is a startup. The
startup mount command will allow RMAN to read the control files to
know which datafiles need to be backed up. The database server is still not
available, so the files can be copied and backed up by RMAN in this “cold”
state.

Since the database is down for a cold backup, the datafiles can be
copied without using RMAN. Scripts can be written using operating system
commands to just copy the datafiles to another location, tape, or another
mount point while the database is down. A shell script or batch file can shut
down the database, and then cp/copy commands can be issued to copy the
datafiles, or a file system backup can be done. This type of cold backup
would not need the database in mount state, because it wouldn’t be using
the control file, as RMAN does.

As you can see from the examples, RMAN is a big part of the backup
and restore strategies for Oracle databases. RMAN can be used through the
command line as well as OEM. We’ve skipped over a few pieces in these
examples. As you’ll learn next, RMAN requires some configuration to be
able to run backups.

RMAN Configuration for Backups
RMAN is installed with the Oracle software and placed in the ORACLE_
HOME/bin/ directory. RMAN can use a catalog to track and manage the
backups, or it can use the control file of the database for this purpose.

A database must be available to be able to create the schema needed
for the RMAN catalog. One catalog can manage the backups of several
databases, but the catalog should be at the same database version as the
databases being backed up.

To configure RMAN, create a user to be catalog owner, and grant that
user a quota on the tablespace where the schema is going to live, as well as
the RECOVERY_CATALOG_OWNER role. Next, create the catalog using the
RMAN command line:

>rman

RMAN> connect target

connected to target database: DBDEV1 (DBID=280973718)

-- DBDEV1 will be the database that will have the catalog schema.

Chapter 6: Database Backup, Restore, and Recovery 131

If another database is to have the catalog, the connect

catalog string will have the database as part of the

string: rman/rmanpswdRMANCAT

RMAN> connect catalog rman/rmanpswd

connected to recovery catalog database

RMAN> create catalog

recovery catalog created

RMAN> register database;

database registered in recovery catalog

starting full resync of recovery catalog

full resync complete

RMAN>

After the catalog is created, the databases can be registered with the
catalog. The target database that is connected is the one that is registered
with the catalog. Now the target database is ready for backups.

You can configure RMAN for the default backup type, where the backup
files should be written, the format of the backup file, retention policies,
compression, encryption, and control file autobackup. The tape drivers and
encryption options are part of the Oracle Secure Backup product. Other
vendors provide drivers to write directly to tape and encryption, and Secure
Backup will also integrate directly with RMAN.

Looking at the configuration for RMAN is just like looking at the
parameters in the Oracle database, but from the RMAN command line.

RMAN> show default device type;

RMAN configuration parameters for database with

db_unique_name MMDEV1 are:

CONFIGURE DEFAULT DEVICE TYPE TO DISK; # default

Change the default device from disk to tape

RMAN> configure default device type to sbt;

new RMAN configuration parameters:

CONFIGURE DEFAULT DEVICE TYPE TO 'SBT_TAPE';

new RMAN configuration parameters are successfully stored

These configuration settings can be part of a script. If they are set in a
script, the script settings will overwrite any defaults that are set up for that
database in RMAN.

132 Oracle Database Administration for Microsoft SQL Server DBAs

Here are some examples of setting the defaults for the backup directory,
file format, type of backup, and retention policy:

--example to configure channel to write to disk using

the diskgroup format

RMAN> configure channel device type disk format '+dgroupbkup1';

-- examples of two different backup types

RMAN> configure device type disk backup type to backupset;

RMAN> configure device type disk backup type to

compressed backupset;

-- example to configure retention policy

RMAN> configure retention policy to recovery window of 7 days;

RMAN> ## use recovery window or redundancy (but not both)

RMAN> ## configure retention policy to redundancy 3;

In the example, the disk format is configured to be used with ASM and a
disk group that has been set up as a backup disk group. For a regular file
system, the format can also be set as /orabkup/ora_d%_%T.bak, which
will define the backup with the name of the database and a date in the file
system directory.

The example uses the backupset backup type. Another type is copy,
which will do an image copy of the database. The copy backup type is
allowed only for writing the copy to disk; it does not work for tape backups.

When allocating a channel as type disk in a script, these parameters
become part of that allocation. Unless you want to overwrite the defaults,
they do not need to be mentioned each time a backup is run.

For the retention policy, the setting of the recovery window sets the
number of days between the current time and the earliest point of recovery,
which doesn’t matter if there are incremental or full backups in between.
But those backups will be marked obsolete when they hit the number of
days set here. This example sets the window to seven days, which makes
sure that the database can be recovered within the past week. The retention
policy’s redundancy setting indicates the specific number of full backups to
be kept. The example sets redundancy to 3, which will keep three full
backups; it doesn’t matter how many days are in between backups.

The same configurations that were demonstrated here in the command
line can be done through OEM’s Backup Settings. Figure 6-1 shows the

Chapter 6: Database Backup, Restore, and Recovery 133

Device tab, where you set the backup location and type. Figure 6-2 shows
the Policy tab, where you set the retention policies. As you can see in
Figure 6-2, you can set up the retention policies by date or number of
backups to be retained. The Policy tab also includes an area to exclude
tablespaces from whole backups, which is useful for tablespaces that might
be in read-only mode or archived tablespaces that might not need to be
included in every full backup.

134 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 6-1. OEM Backup Settings, Device tab

Backup Options
Table 6-1 shows some common backup types and how to run them in SQL
Server and RMAN.

Your backup strategy should include full and incremental backups. It
should also make sure all of the needed pieces are backed up properly.

For incremental backups, a base backup (full backup) is needed first. The
cumulative database backup option in RMAN backs up all of the changes
since the base, or level 0, backup. The incremental backup backs up the
differences between the incremental backups. The advantage of having a
cumulative backup is that only the last cumulative backup would need to
be restored to recover the database. With incremental backups, all of them
need to be available to restore. Of course, an incremental backup will use
less disk or tape, and it usually takes less time to run.

Chapter 6: Database Backup, Restore, and Recovery 135

FIGURE 6-2. OEM Backup Settings, Policy tab

In SQL Server, the system databases, as well as master, msdb, and
model, need to be backed up. Similarly, in Oracle, the control files, system
datafiles, and parameter files for the Oracle database need to be backed up.
In SQL Server, the tempdb database is not part of backups; in Oracle, the
temporary tablespace is not included. The undo tablespace does contain
uncommitted changes, but with the newer versions of RMAN, only the
uncommitted changes that haven’t been written out to the datafiles are
backed up.

Full backups will include all of the datafiles in the Oracle database,
including system datafiles, but not the control files. As discussed in Chapter 3,
the control files have information about the changes and archive logs needed
for recovery. Without a current control file, the recovery up to the latest
point could be difficult. You may run backups of the control files outside

136 Oracle Database Administration for Microsoft SQL Server DBAs

Backup Type SQL Server Command Oracle (RMAN) Command

FULL backup database backup database

Files or file
groups

backup database db1
filegroup ='db1file1'
to disk…

backup as
backupset datafile
'/u01/data/
users01.dbf';

Tablespaces backup tablespace
system, users;

Logs (transaction
and archive)

backup log db1 to
disk …

backup archivelog
all;

Incremental
backups/base
backup

Backup database db1
to disk='S:\bkups\
db1.bak' with init

Backup incremental
level 0 database;

Incremental
backups/
differential
backups

Backup database db1
to disk='S:\bkups\
db1.bak' with
differential

Backup incremental
level 1 cumulative
database;

Backup incremental
level 1 database;

TABLE 6-1. Backup Options in SQL Server and Oracle

the full backup, or after backups of the full or transaction logs, you can
include the control files to make sure the information is captured. Backups
of parameter files might not be as important, but you need to have a copy in
case changes must be reverted.

Backup Examples
Allocating more channels is like using multiple devices and writing in
parallel. For example, if you have a couple of tape drives available, this
would allow you to take full advantage of the multiple drives and speed up
the backup.

> rman target rman/rmanpwdrmancat

RMAN> run {

RMAN> allocate channel disk1 device type disk;

RMAN> allocate channel disk2 device type disk;

RMAN> backup database plus archivelog;

RMAN> backup current controlfile;

RMAN> }

Just as you would run transaction log backups multiple times a day with
SQL Server, with Oracle, the archive logs need to be backed up more than
once a day. The number of transactions and size of disk space available to
hold the logs will determine how often.

> rman target rman/rmanpwdrmancat

RMAN> run {

RMAN> allocate channel disk1 device type disk;

RMAN> allocate channel disk2 device type disk;

RMAN> backup archivelog all delete all input;

RMAN> }

Running archive log backups helps you to avoid filling up the space
allocated to the logs. The preceding example will back up any archive logs
and then delete them from this space, because they are now included in a
backup set. This will keep the file system to a manageable size for archiving.

OEM Backup Jobs
With OEM, you can configure backups and schedule them as jobs in the
database. OEM will generate the RMAN script and display it for your
review. This provides a good way to gain a better understanding of the
backup options and RMAN commands.

Chapter 6: Database Backup, Restore, and Recovery 137

Figure 6-3 shows the options for customizing a backup job in OEM.
If the database is running in NOARCHIVELOG mode, only the full cold
backup is available (as well as any files that might be in the flash/fast
recovery area, as discussed later in this chapter). If it’s in ARCHIVELOG

138 Oracle Database Administration for Microsoft SQL Server DBAs

When You Run Out of Archive Space
If the archive log space fills up, the database will just hang, with the error
“archiver error connect internal until freed.” Knowing the command-
line RMAN commands is important in this situation. Chances are that
the connection through OEM will not be available because of the
limited connections allowed to the database as it is waiting for archive
log backup space to be freed up.

Moving archive logs to another location will free up space to allow
the archive process to continue to run until the files can be backed up
and purged. However, after archive logs are moved or deleted, RMAN
may fail to run the backup because expected files are not there. So,
before you run the backup, you should perform a cross-check to verify
which files are available and what has been backed up. The cross-
check will also resynchronize the catalog with the files that are present
in the backup directory or tape. It will expire the backups in the catalog
that are no longer available.

validate archive logs are available

RMAN> crosscheck archivelog all;

validate database backupsets available

RMAN> crosscheck database;

So, you’ve moved archive logs to another location to free up the
space, completed the cross-check, and then run the backup. But there
are still logs in another location that have not been backed up. If there
is now space in the archive log directory, you can move those files
back, perform a cross-check, back them up, and then delete them. If
the archive files are just deleted without being backed up, recovery will
not be possible.

All of this bouncing around of the archive files is to prevent the
database from being put into a hung state, waiting to be able to archive
logs again. A better approach is to plan the available space and make
sure that the archive logs are backed up to prevent filling up the space.

mode, there are more options, including those to back up tablespaces,
datafiles, archive logs, and recovery files.

Next, you set up the schedule for the backup, as shown in Figure 6-4.
As typical for other database jobs, you can run the backup as a one-time job
immediately or later, or make it a repeating job.

The final step, shown in Figure 6-5, shows the RMAN script and provides
an opportunity to edit the script, or even copy it to modify and run outside
the scheduler. Submit the job to save and schedule the backup, or run the
backup if it’s a one-time job.

You can also use OEM to create a restore point, which is useful when
you’re performing a task against the database for data changes, application
upgrades, or even database upgrades. The restore point marks a time to
recover to if the upgrade goes awry. Although you could also get the
information from the logs and database about the last change or current
archive log sequence, having a defined point to roll back to makes the

Chapter 6: Database Backup, Restore, and Recovery 139

FIGURE 6-3. Customizing a backup job in OEM

140 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 6-4. Scheduling a backup job in OEM

FIGURE 6-5. Reviewing the RMAN script in OEM

restore process easier. Figure 6-6 shows an example of setting the restore
point in OEM.

Restoring and Recovering Databases
What good are backups if you can’t use them to restore the database? Oracle
provides several ways to restore all or parts of a database. But before we look
at the various restore methods, let’s consider why you might need to use them.
We’ll examine some of the failures and consider ways to recover the database.
I say “recover,” rather than “restore,” because in recovery, the system needs to
go back to where it was, and this might not mean restoring the entire database.

What Can Go Wrong?
Understanding the different ways a database can fail and reasons for a
restore can help in planning a backup strategy. So, what can go wrong?

■ Hardware failures/firmware issues

■ User error

Chapter 6: Database Backup, Restore, and Recovery 141

FIGURE 6-6. Creating a restore point in OEM

■ Bad code

■ Loss of a file, control file, redo log, or datafile

■ Corrupt block

■ Upgrade issues

■ Bad change

■ Disaster

A disk or hardware has an issue and the database needs to be restored.
Or perhaps a panicked user tells you that an upgrade failed and the application
isn’t working anymore. As a DBA, you need to really understand the issue
before you can develop an effective plan to bring the system back to where
it needs to be. For example, a disaster might require a restore in another
location. Does the database need to be just read-only to get some information
temporarily? Does an application need to be functional at the other location
and then moved back when things are cleaned up?

Troubleshooting failures and understanding if there is data corruption or
loss of any files are first steps to determine whether individual files need to
be restored or if a full recovery is required. Knowing which backups are
available will give you different possible solutions. You’ll need to consider
how long it takes to do the restore, as well as the expected data loss because
of the restore.

Suppose the database crashed for some reason, it did a shutdown abort,
or the hardware rebooted, and the database came up with an ORA-01113
error saying that a datafile needs recovery. Before heading down the path of
restoring the datafile or even the whole database, do a little investigating. If
the backup happened to be running when the database crashed, the database
might still be in backup mode, which is causing it to think that it needs to
be recovered. Looking at the v$database view will show you if it is still in
backup mode. If so, you can end the backup (with ALTER DATABASE END
BACKUP), and then open the database. This will fix the issue, without having
to go through the restore.

Being prepared to do a restore at a critical moment means at least practicing
a couple of different restores. Normally, I include testing of restores of databases
that I just created, so I have a script that is valid for the database and ready to be
used if needed. I also know that the script works, since I just tested it against the
database.

142 Oracle Database Administration for Microsoft SQL Server DBAs

Oracle provides various options for recovery, such as rolling back a
query or returning to a point before a change. Since we just finished
discussing RMAN backups, we’ll start with how to restore pieces of the
database using RMAN.

Restore and Recover Options
To use RMAN to restore or recover a database, you must first connect to the
recovery catalog, and then allocate channels to the tape or disk. The catalog
has the information about the database backup and backup set. A control file
can be used for the same information. The restore database command
restores the database files, and the recover database command applies
any of the changes that are in the archive logs.

RMAN> connect target

connected to target database: MMDEV1 (DBID=298473718)

RMAN> connect catalog rman/rmanbkup

connected to recovery catalog database

RMAN> run {

allocate channel disk1 device type disk;

allocate channel disk2 device type disk;

restore database;

recover database;

}

Using the control file is the default if you are not connected to the
catalog.

RMAN> connect target

connected to target database: MMDEV1 (DBID=298473718)

RMAN> restore database;

Starting restore at 12-APR-10

using target database control file instead of recovery catalog

allocated channel: ORA_DISK_1

channel ORA_DISK_1: SID=114 device type=DISK

If the current control file is not available, you must restore the control
file first before restoring the database.

RMAN> connect target

RMAN> run {

allocate channel disk1 device type disk;

restore controlfile;

}

Chapter 6: Database Backup, Restore, and Recovery 143

If you’re doing a full restore of the database, and you have already
verified that you have a good backup, the restore performs faster if the
existing datafiles are not there to be overwritten. If possible, rename the files
(if space permits) or remove the files before doing a complete restore for
better performance. Later in this chapter, in the “Managing Backups”
section, we will look at how to verify that backups are available before
removing files that you are not able to restore because of a bad backup.

Recovering to a Specific Point
In SQL Server, you have the options to restore with recovery or with no
recovery. With Oracle, you can just restore the database, and then use the
recover database command with options to define to which point to
recover. Along with recovering everything possible, the Oracle RMAN
recover database command can bring the database to a point in time,
to a change number, or to a specific archive log.

144 Oracle Database Administration for Microsoft SQL Server DBAs

How Long Will the Restore Take?
You might find it useful to know how long a restore will take. Here’s an
example that will provide this information:

RMAN> run {

allocate channel tape1 device type sbt;

allocate channel tape2 device type sbt;

debug io;

restore database;

debug off;

}

Since the restore is writing the database files from the backup, it will
show how much time is left. Here is the output of the preceding
example:

RMAN> debug io;

DBGIO: channel tape2: blocks=131072 block_size=8192 (rsdf_name)

command restore:7.9% complete, time left 00:24:32

command restore:23.2% complete, time left 00:13:29

command restore:40.6% complete, time left 00:08:55

command restore:57.2% complete, time left 00:06:04

command restore:71.2% complete, time left 00:04:05

channel tape1: restored backup piece 1

You can recover to a system change number (SCN). The current SCN can
be seen in the v$database view (select current_scn from
v$database;). You can also recover to an “until time” or a sequence from
archive logs. If a restore point, such as before_upgrade, has been set for
the backup, you can recover the database to that point. Here are some
examples of the recovery options:

RMAN> run {

allocate channel tape1 device type sbt;

recover database until scn 4059040147;

}

Other options to set UNTIL, but only one option can be

used at a time. This just lists the possibilities

RMAN> run {

allocate channel disk1 device type disk;

set until time 'Dec 20 2009 08:23:00';

set until sequence 3421;

set until restore point before_upgrade;

restore database;

recover database;

}

With a point-in-time recovery, the database will need to be opened
using ALTER DATABASE OPEN RESETLOGS, which will reset all of the
redo logs and the SCN for the database. Since the archive logs and backup
sets cannot be used after the reset of the logs, this is a good time to take
another backup of the database.

As you would expect, you are able to recover only to the point in time
when logs and information are available. If you have a SQL Server database
in SIMPLE mode, you can recover only to the last backup. If you are using
WITH RECOVERY, you must have all of the log backups or have the data
needed in the current log file to the point you want to recover. If one of the
log backups is missing, you can recover only to that point, even if you have
logs available after the missing one. The same is true for Oracle.

With a cold backup and in NOARCHIVE LOG mode, you are rolling
back to that last cold backup. In ARCHIVELOG mode, if any of the archive
logs are missing or are deleted before being backed up, they will not be in
the set, and the restore option will be only to the point before the missing
file. This also applies to the redo logs. The options for restoring to an SCN,
sequence, or time are valuable to get at least up to the latest point when the
needed data was still available.

Chapter 6: Database Backup, Restore, and Recovery 145

Restoring Tablespaces, Datafiles, and Blocks
In some cases, just a block is corrupted, or there was an issue with just one
of the tablespaces or datafiles. With RMAN, you can recover just these
pieces of the database.

A full backup can be used to restore just a tablespace or datafile. It
doesn’t need to be a tablespace backup to restore a tablespace.

Need to login to SQLPlus to offline the tablespace

SQLPLUS> alter tablespace USERS offline;

Login to rman for the restore, and notice all of the

configurations that are set up are being used and not

scripted out with these commands.

RMAN> connect target

RMAN> restore tablespace users;

RMAN> recover tablespace users;

Back to SQLPLUS

SQLPLUS> alter tablespace USERS online;

This example does a full recovery of the tablespace up to the current
database time. If there are more tablespaces in the database, this would be
one way to recover with downtime for only the applications or users in the
damaged tablespace. To recover a tablespace to a point in time, to before
an error occurred or it was corrupted, an auxiliary database or files would
be used. After restoring a tablespace, you should run a backup, because
recovering the tablespace after the restore is not possible.

With SQL Server, you have DBCC procedures to look for block corruption.
In Oracle, the DBVERIFY utility serves this function.

Execute DBVERIFY check

to check file, and dbv help=Y for other options

> dbv file=/u01/oradata/users01.dbf

DBVERIFY - Verification complete

Total Pages Examined : 1280

Total Pages Processed (Data) : 151

Total Pages Failing (Data) : 0

Total Pages Processed (Index): 96

Total Pages Failing (Index): 0

Total Pages Processed (Other): 502

Total Pages Processed (Seg) : 0

Total Pages Failing (Seg) : 0

Total Pages Empty : 531

Total Pages Marked Corrupt : 0

146 Oracle Database Administration for Microsoft SQL Server DBAs

Total Pages Influx : 0

Total Pages Encrypted : 0

Highest block SCN : 1647260 (0.1647260)

If a block of data is corrupt, DBVERIFY will throw an error and provide
some details about the datafile number and block number. The system view
v$database_block_corruption will confirm the block number. Using
RMAN, you can supply the datafile number and block number to recover
the blocks.

SQLPLUS> alter system switch logfile;

switching redologs will cause it to write out to the

archive logs (may need to do a couple of times), which will

make the redo log information available in the archive logs

for recovery, and not have the restore in the same redo logs.

login to RMAN connect to target

RMAN> recover

datafile 4 block 23

datafile 3 block 58;

Along with tablespace-level restores, there are other options for restoring
objects and schemas, which are especially useful when dealing with a
database that supports multiple applications. Only one of the applications
might have had an issue, and just that object or schema may need to be
restored. We will look at some of those other backup and restore options in
the “Backing Up and Restoring Objects” section later in this chapter.

OEM Restore and Recovery
As with backups, OEM can walk you through restoring the database. In
Figure 6-7, you see the same recovery options we just went through in the
RMAN scripts—point-in-time, whole database, datafile, tablespace, block,
and so on.

Data Recovery Advisor
If there was an issue with one of the database files, you can use the LIST
FAILURE command and ADVISE FAILURE command to help figure out
what to do. Here is an example:

RMAN> list failure;

using target database control file instead of recovery catalog

List of Database Failures

=========================

Chapter 6: Database Backup, Restore, and Recovery 147

Failure ID Priority Status Time Detected Summary

---------- -------- ------- ------------- -------

582 HIGH OPEN 13-MAR-10 One or more non-system

datafiles are missing

RMAN> advise failure;

analyzing automatic repair options; this may take some time

allocated channel: ORA_DISK_1

channel ORA_DISK_1: SID=170 device type=DISK

analyzing automatic repair options complete

Mandatory Manual Actions

========================

no manual actions available

Optional Manual Actions

=======================

1. If file D:\ORADATA\MMDEV1\USERS01.DBF was unintentionally

renamed or moved, restore it

Automated Repair Options

========================

Option Repair Description

1 Restore and recover datafile 4

Strategy: The repair includes complete media recovery

with no data loss

Repair script:

d:\app\diag\rdbms\mmdev1\mmdev1\hm\reco_2315272930.hm

148 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 6-7. Restoring in OEM

As you can see, the advisor also provides a repair script and, in this
example, says that the recovery is possible without data loss. The script can
be run after running the advisor, with REPAIR FAILURE. Using REPAIR
FAILURE PREVIEW will show you the script first, which in this case, just
has to restore datafile 4 and recover datafile 4.

The same steps can be taken in OEM. When you perform a recovery (see
Figure 6-7), the Oracle Advised Recovery section offers information about
the failure and the steps needed to recover.

Copying the Database
So far, we’ve looked at the options to restore databases back to their original
spot, which are useful to recover from failures in a production environment.
However, you may want to use backups in other ways, such as to refresh
test environments or set up a new database on a different server. For example,
you may want to create a test environment for upgrades or patching, providing
a production-like environment in development with all of the same permissions,
data, and so on. Copying the database can also be useful for troubleshooting.
Since you can go back in time, you can look into an issue from a couple of
days ago by creating a new database server, doing the research, and then
knocking it down after the issue has been resolved.

Using WITH MOVE of the datafiles will restore a SQL Server backup to
another location. This could be on a different server, such as development,
or just to provide another copy. Oracle allows for moving datafiles to another
location to either make another copy or to duplicate the database to another
server. This is normally accomplished with RMAN’s DUPLICATE command.

When you duplicate a database to a new host, the files may be in the same
place, but chances are that they are under a different database name, and
they might have a different file sytem structure. The following RMAN
example demonstrates moving the files, which can be used on both a
different host or the same host, and if the file structures are the same.

RMAN> connect target sysPROD01

RMAN> connect auxiliary sysDEV01

RMAN> connect catalog rmanrmanprod

RMAN> run {

DUPLICATE TARGET DATABASE to DEV01

from active database

Chapter 6: Database Backup, Restore, and Recovery 149

DB_FILE_NAME_CONVERT '/u01/oracle/oradata/PROD01/',

'/u01/oracle/oradata/DEV01'

spfile

NOFILENAMECHECK – needed to restore to a different host

PARAMETER_VALUE_CONVERT '/u01/oracle/oradata/PROD01/',

'/u01/oracle/oradata/DEV01'

set LOG_FILE_NAME_CONVERT ''/u01/oracle/redo/PROD01/',

'/u01/oracle/redo/DEV01';

}

To use a backup file allocations to a channel to be

used for pulling the backup file

Also you can duplicate the database to a previous point in time

This example will also assume same directory structure for

the file systems but different host

RMAN> connect target sysPROD01

RMAN> connect auxiliary sysDEV01

RMAN> connect catalog rmanrmanprod

RMAN> run {

allocate channel disk1 device type disk;

allocate auxiliary channel disk2 device type disk;

DUPLICATE TARGET DATABASE to DEV01

SPFILE

NOFILENAMECHECK

UNTIL TIME 'SYSDATE-2'; --restore to two days ago

}

You may want to use a duplicate database to migrate to ASM. To do this,
first create an ASM instance, and then move from the current database to
the new instance and duplicate the database using RMAN. Or if your test
environment is also an ASM instance, you might need to duplicate from ASM
to ASM for the datafiles. The next two examples show both approaches.

file system migrate to ASM

RMAN> connect target sysPROD01

RMAN> connect auxiliary sysPROD02

RMAN>run{

DUPLICATE target database to PROD02

from active database

spfile

PARAMETER_VALUE_CONVERT '/u01/oracle/oradata/PROD01/','+DG_DATA01'

150 Oracle Database Administration for Microsoft SQL Server DBAs

set DB_CREATE_FILE_DEST +DG_DATA01;

}

ASM to ASM

RMAN> connect target sysPROD01

RMAN> connect auxiliary sysDEV01

RMAN>run{

DUPLICATE target database to DEV01

from active database

spfile

PARAMETER_VALUE_CONVERT '+DG_DATA01','+DG_DEV01'

set DB_FILE_NAME_CONVERT '+DG_DATA01','+DG_DEV01'

set LOG_FILE_NAME_CONVERT '+DG_DATA01','+DG_DEV01';

}

Again, you can use OEM to make the database copy and review the
RMAN script it generates. In OEM, from the Move Data tab, choose the
Clone Database option (which uses the RMAN DUPLICATE command),
as shown in Figure 6-8. In the next steps, it gathers the information about
moving the files, database to copy to, and host information.

These duplicates include the whole database, with all of the different
users and schemas. So if there is more than one application in the database,

Chapter 6: Database Backup, Restore, and Recovery 151

FIGURE 6-8. Cloning a database in OEM

this will take all of the application databases and copy them over to the new
database server.

Managing Backups
Managing backups is not just about purging and maintaining the retention
policy, but also about knowing which backups are available for restores.
Oracle provides several ways to get information about backup sets.

Viewing Backups
RMAN has a LIST command that will return the backup sets that are present
in the catalog or control file. The listing shows the different backup pieces and
details, including the checkpointed SCN, the date, full or incremental, and
tablespaces that were backed up. In the following example, the archive logs
were included as part of the full backup, so they are also listed.

RMAN> list backup;

using target database control file instead of recovery catalog

List of Backup Sets

===================

BS Key Type LV Size Device Type Elapsed Time Completion Time

------- ---- -- ---------- ----------- ------------ ---------------

13 Full 1.02G DISK 00:01:20 08-MAR-10

BP Key: 13 Status: AVAILABLE Compressed: NO

Tag: TAG20100308T200144

Piece Name:

E:\APP\FLASH_RECOVERY_AREA\MMDEV1\BACKUPSET\2010_03_08\

O1_MF_NNNDF_TAG20100308T200144_5SCC0GDZ_.BKP

List of Datafiles in backup set 13

File LV Type Ckp SCN Ckp Time Name

---- -- ---- ---------- --------- ----

1 Full 1760175 08-MAR-10 D:\ORADATA\MMDEV1\SYSTEM01.DBF

2 Full 1760175 08-MAR-10 D:\ORADATA\MMDEV1\SYSAUX01.DBF

3 Full 1760175 08-MAR-10 D:\ORADATA\MMDEV1\UNDOTBS01.DBF

4 Full 1760175 08-MAR-10 D:\ORADATA\MMDEV1\USERS01.DBF

BS Key Type LV Size Device Type Elapsed Time Completion Time

------- ---- -- ---------- ----------- ------------ ---------------

14 Full 9.36M DISK 00:00:07 08-MAR-10

BP Key: 14 Status: AVAILABLE Compressed: NO

Tag: TAG20100308T200144

Piece Name: E:\APP\FLASH_RECOVERY_AREA\MMDEV1\BACKUPSET\2010_03_08\

O1_MF_NCSNF_TAG20100308T200144_5SCC2YYM_.BKP

152 Oracle Database Administration for Microsoft SQL Server DBAs

SPFILE Included: Modification time: 08-MAR-10

SPFILE db_unique_name: MMDEV1

Control File Included: Ckp SCN: 1760265 Ckp time: 08-MAR-10

BS Key Type LV Size Device Type Elapsed Time Completion Time

------- ---- -- ---------- ----------- ------------ ---------------

15 Full 9.36M DISK 00:00:06 12-MAR-10

BP Key: 15 Status: AVAILABLE Compressed: NO

Tag: TAG20100312T054615

Piece Name:

E:\APP\FLASH_RECOVERY_AREA\MMDEV1\BACKUPSET\2010_03_12\

O1_MF_NCSNF_TAG20100312T054615_5SNBH7Z5_.BKP

SPFILE Included: Modification time: 12-MAR-10

SPFILE db_unique_name: MMDEV1

Control File Included: Ckp SCN: 1905411 Ckp time: 12-MAR-10

BS Key Size Device Type Elapsed Time Completion Time

------- ---------- ----------- ------------ ---------------

16 58.13M DISK 00:00:09 12-MAR-10

BP Key: 16 Status: AVAILABLE Compressed: NO

Tag: TAG20100312T054803

Piece Name:

E:\APP\FLASH_RECOVERY_AREA\MMDEV1\BACKUPSET\2010_03_12\

O1_MF_ANNNN_TAG20100312T054803_5SNBHRFM_.BKP

List of Archived Logs in backup set 16

Thrd Seq Low SCN Low Time Next SCN Next Time

---- ------- ---------- --------- ---------- ---------

1 35 1757126 08-MAR-10 1782135 09-MAR-10

1 36 1782135 09-MAR-10 1802422 09-MAR-10

1 37 1802422 09-MAR-10 1828159 10-MAR-10

1 38 1828159 10-MAR-10 1853573 10-MAR-10

1 39 1853573 10-MAR-10 1879239 11-MAR-10

1 40 1879239 11-MAR-10 1902061 12-MAR-10

1 41 1902061 12-MAR-10 1905455 12-MAR-10

To list the details about the archive logs, you can use the sequence
number or SCN.

RMAN> list archivelog sequence=36;

List of Archived Log Copies for database with db_unique_name MMDEV1

===

Key Thrd Seq S Low Time

------- ---- ------- - ---------

18 1 36 A 09-MAR-10

Name:

E:\APP\FLASH_RECOVERY_AREA\MMDEV1\ARCHIVELOG\2010_03_09\

O1_MF_1_36_5SDDN6X8_.ARC

17 1 36 A 09-MAR-10

Name:

E:\APP\PRODUCT\11.1.0\DB_1\RDBMS\ARC00036_0710094395.001

Chapter 6: Database Backup, Restore, and Recovery 153

This example shows two archive log files with the same sequence
number. This means that a copy was included in the backup set and is also
still in the archive log file on the database server. This is the case when the
DELETE ALL INPUT option isn’t used with the backup command. But the
archive logs can also be cleared out another way: by being expired and
deleted, as discussed in the next section.

In OEM, you can see the same backup set listing on the Backup Sets tab
of Manage Current Backups, as shown in Figure 6-9. This page also offers
the options to catalog additional files, so if a backup was taken and not
recorded in the catalog, you can add those files, cross-check all of the
archive logs and backups, delete obsolete files, and expire obsolete files.

Data dictionary views and recovery catalog tables also provide views
into the backup sets, to help manage backups and know which backups are
available for restoring. These are also good places to check to make sure
backups are running properly.

154 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 6-9. Managing backups in OEM

In the RMAN catalog, RC_DATABASE has the list of databases that are
registered in the catalog. RC_BACKUP_SET has the completion time of the
backup, type of backup, and some additional information. It might seem
like duplicate information, but remember that the RMAN catalog can keep
the information for multiple databases, so a report can be run for all of the
databases in the catalog. The data dictionary view v$backup_set has
the same details, but it is valid for only the database server, not all of the
databases registered in the catalog.

The scripts are also stored in the RMAN catalog. The RC_STORED_
SCRIPT_LINE table contains details about the scripts that are scheduled.
Other tables that might be useful are RC_BACKUP_SET_DETAILS, RC_
BACKUP_FILES, and RC_RMAN_BACKUP_JOB_DETAILS. The
corresponding data dictionary views are v$backup_datafile,
v$backup_set_details, and v$rman_backup_job_details.

You can build reports from these tables outside OEM or RMAN to
provide details about the backups that are running against one of the
database servers or multiple databases (from the RMAN catalog).

Purging Obsolete Files
Keeping the catalog a manageable size is part of backup maintenance. In
SQL Server, you can handle this when you schedule a database backup by
setting an expire time on the backup, by number of days or on a specific
date. In Oracle, the parameters REDUNDANCY and RECOVERY WINDOW set
the number of backups and number of days for retention policies. Table 6-2
shows the options for expiring and deleting backup files in SQL Server and
Oracle.

You can run reports to get the status of the backup pieces, including
which ones have been marked obsolete by the retention policy, deleted, or
expired. First, run a cross-check to check the files that have been deleted or
marked obsolete. Then run the RMAN DELETE OBSOLETE command to
remove the files.

RMAN> CROSSCHECK BACKUP;

RMAN> CROSSCHECK ARCHIVELOG ALL;

RMAN> DELETE EXPIRED BACKUP;

--If not deleting archive logs as they are backed up,

--delete from file system via DELETE

RMAN> DELETE ARCHIVELOG ALL BACKED UP 2 TIMES;

Chapter 6: Database Backup, Restore, and Recovery 155

It is possible to override the defaults for retention policies as well as
force the backups to be deleted by using the RMAN DELETE FORCE
command.

Backing Up and Restoring Objects
With SQL Server, it is typical to restore a database to get a copy of just the
objects that are needed. With Oracle, restoring the database is normally to
restore the full system, but there are utilities available to pull out just the
objects by schema, or even at the table level. This allows you to secure
backups for these objects or copy them to another system, perhaps to refresh
a test environment with just the needed schema or tables.

Copying Objects at the Table
and Schema Level
Using a SQL statement, you can create a table from an existing table for a
quick backup of a table before data changes. A backup table can be defined
(such as CREATE table TAB_BACKUP AS select * from TAB_PROD)
with tablespaces, no logging (to avoid some of the logging in the redo logs),
and with some of the other table options. The table will not include any of

156 Oracle Database Administration for Microsoft SQL Server DBAs

Option SQL Server Oracle

Expire Part of backup job or script
parameters EXPIREDATE or
RETAINDAYS (number of days
or on a date)

RMAN parameters
REDUNDANCY and
RECOVERY WINDOW
(number of days or
number of backups)

Delete (from
msdb/catalog)

sp_delete_backuphistory DELETE EXPIRED

Delete expired
backup files

Maintenance Cleanup task DELETE OBSOLETE

BACKUP ARCHIVELOGS
DELETE ALL INPUT

TABLE 6-2. Delete and Expire Backup Options in SQL Server and Oracle

the indexes, constraints, or triggers that might be on the “real” table, but it
will have the same datatypes and the same data. A WHERE clause can also
be defined in the CREATE table AS statement to capture data that might
be archived or deleted, as an extra security blanket.

SQL Server also has a couple of utilities to pull out table-level data as
well as the table definitions. The bcp utility could be used copy table
objects on the SQL Server side.

Oracle has the Data Pump utility, which handles both exports and
imports, as well as older EXP and IMP utilities. For example, you might
export a schema with just the simple EXP, and remap the schema to a new
user to refresh a test schema. Chapter 5 covered some other tools, such as
SQL Developer, that can pull the structure information for tables and also
help copy objects to another environment or schema. However, the Data
Pump utilities are easier to use and generally perform better, so we’ll take a
closer look at them here.

Using Data Pump
Since Oracle Database 10g, the new improved version of the export and
import utilities is Data Pump. You can set up a Data Pump export job to
allow you to recover just a table or another object, such as a view or stored
procedure. The exports include the Data Definition Language (DDL), which
creates the structures of the tables, procedures, trigger, indexes, views, and
other objects. Exports can also be done without data, to provide just these
structures, which you can then copy to another schema or save as a backup.

Data Pump does require some setup and permissions. Since the export file
is being written out, it needs a directory for the file to write to. Directories are
defined in the database, and permissions are given to read or write to the files
for users that need to perform these tasks. If the exports and imports are being
used only by the DBA for backups or refreshes, then these are privileged
accounts.

A job is created with each Data Pump execution. A name can be
specifically given to a job to be able to view its progress. The dba_
datapump_jobs view shows the jobs.

The Data Pump job can also export the full database by setting the
parameter FULL=Y, and then be used to restore only a schema or table.
Tablespaces and queries can also be exported. Even if you’re exporting a
full schema or tablespace, you can exclude a table or object by using the
EXCLUDE parameter. This is useful for skipping over history tables or very
large tables that might be used only for reading or reporting. To view the

Chapter 6: Database Backup, Restore, and Recovery 157

different parameters available for these utilities from the command line,
execute expdp help=Y.

Here are a few examples of creating a directory and exporting and
importing with Data Pump from the command line:

SQLPLUS> create directory DATAPUMP_DIR

as '/oraexport/DB01/dpdump';

SQLPLUS> grant read, write on directory DATAPUMP_DIR to MMTEST;

To run an datapump export from the command line

This will export a couple of tables

> expdp mmprod/mmpasswd schemas=MMPROD tables=TAB1,TAB2

directory=DATAPUMP_DIR dumpfile=exp_tables.dmp log=Exp_tables.log

This will export one schema

> expdp mmprod/mmpasswd schemas=MMPROD directory=DATAPUMP_DIR

dumpfile=exp_mmprod.dmp log=Exp_mmprod.log

To run a datapump import to refresh the

test schema from the dump

> impdp mmtest/mmpasswd remap_schema=MMPROD:MMTEST

directory=DATAPUMP_DIR file=exp_mmprod.dmp log=Imp_mmtest.log

Just as you can schedule RMAN backup jobs in OEM, you can also
schedule Data Pump jobs. Figure 6-10 shows the selection of an export to a

158 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 6-10. Choosing what to export in OEM

www.SoftGozr.com

file, which is found under the Data Movement tab. The options are to export
the database, schemas, tables, or tablespace.

After selecting what to export, you can get an estimate of the disk space
and set other parameters, as shown in Figure 6-11. Estimating the disk space
would be useful in planning the directory space for the job, especially if you’re
keeping a couple of copies of the export files. You can choose whether to use
the actual data blocks or the table statistics to gather this information. You select
the directory here, or you can create one if you are using an account with the
appropriate permissions (the actual file name for the export file is specified in
the next step). You also can choose whether or not you want a log of the export.
The advanced options allow for selections of data and structures, just data, or
just structures. Objects can be either included or excluded—choosing the one
that makes the shortest list is recommended.

Chapter 6: Database Backup, Restore, and Recovery 159

FIGURE 6-11. Defining an export job in OEM

Figure 6-12 shows the OEM options for scheduling a Data Pump job.
After you have set up the Data Pump job, even if it is a one-time run of the
job, it will be listed in the job activity for the export jobs and other scheduled
jobs. You can monitor it by clicking its name (DAILY_EXP in the example in
Figure 6-12).

Another option available in OEM is to set up a connection to a different
database through a database link when importing, as shown in Figure 6-13.
This would be run from the server to which you want to copy the objects,
and the database link would be created to the source database.

NOTE
I am sure I don’t need to warn you about being
careful with mixing production and test
environments with links. Sometimes it is
necessary to be able to refresh the test
environment. This chapter has given you some
examples of how to recover the database if
something goes wrong.

160 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 6-12. Scheduling a Data Pump job in OEM

Protecting Users from Users
Much of the thought put into backups and recovery is to protect the system
from hardware issues or even disasters, but you also need to consider what
damage people can do. Developers, users, and DBAs use the database
environment for development, testing, running applications, making changes,
and just doing their jobs. As a DBA, you probably confirm which environment
you are logged in to before making a change. You probably run an extra
backup just to give yourself that extra protection in case something goes wrong.
But other users may not be so cautious. They may accidentally log in to the
wrong environment and drop a table or change a stored procedure. Fortunately,
Oracle offers some features to assist in protecting users from themselves.

Recycle Bin
How many times have you pulled something out of the Windows Recycle Bin
after deleting it? The Oracle recycle bin works the same way with tables that
have been dropped. For example, if you were refreshing a couple of tables,
and realized you dropped the wrong tables, you can retrieve those objects

Chapter 6: Database Backup, Restore, and Recovery 161

FIGURE 6-13. Importing objects with OEM

from the recycle bin. The recycle bin has been available since Oracle
Database 10g and is on by default. Users have their own recycle bins.

NOTE
The recycle bin does not provide protection
from truncating the data from the table or other
data manipulations. However, changes like
deletes and updates can be handled with
commits and rollbacks.

The user_recyclebin and dba_recyclebin views show information
about the contents of the recycle bin. The dba_recyclebin view has an
owner column, which lists who owns the object.

SQLPLUS> desc DBA_RECYCLEBIN;

Name Null? Type

--- -------- ------------

OWNER NOT NULL VARCHAR2(30)

OBJECT_NAME NOT NULL VARCHAR2(30)

ORIGINAL_NAME VARCHAR2(32)

OPERATION VARCHAR2(9)

TYPE VARCHAR2(25)

TS_NAME VARCHAR2(30)

CREATETIME VARCHAR2(19)

DROPTIME VARCHAR2(19)

DROPSCN NUMBER

PARTITION_NAME VARCHAR2(32)

CAN_UNDROP VARCHAR2(3)

CAN_PURGE VARCHAR2(3)

RELATED NOT NULL NUMBER

BASE_OBJECT NOT NULL NUMBER

PURGE_OBJECT NOT NULL NUMBER

SPACE NUMBER

Since the names of the objects in the database need to be unique by
owner and object name, the name of the object in the recycle bin is system-
generated and starts with BIN$. Here is an example of a quick query against
dba_recyclebin:

SQLPLUS> select owner, object_name, original_name, droptime from dba_recyclebin;

OWNER OBJECT_NAME ORIGINAL_NAME DROPTIME

WK_TEST BIN$7qfPJ4jvSjOSTM1Vng==$0 TAB_CUST_PK 2010-02-04:16

WK_TEST BIN$oxgITJMlRtmNZOVYtw==$0 TAB_CUST 2010-02-04:16

WK_TEST BIN$rdtRhxXVSANuLmU6+w==$0 TAB_INV_PK 2010-02-04:16

162 Oracle Database Administration for Microsoft SQL Server DBAs

Or you can run a SHOW RECYCLEBIN:

SQLPLUS> show recyclebin;

As you can see from the description of the view and the sample query,
the object name is definitely unique, and the only way to relate it back to
the original object is through the original name and owner. The change
number and the time that the object was dropped are also provided.

Since the object isn’t really dropped and the data is there, you can
actually run queries against the object by using the new system name.

SQLPLUS> select * from "BIN$LGYYp0ydRYyeNUiq66IHHw==$0";

Restoring Tables from the Recycle Bin
To “undrop” a table in the recycle bin, you flashback the table.

SQLPLUS> flashback table TAB_CUST to before drop;

Flashback complete.

When flashed back, the table will no longer be in the recycle bin. If
multiple versions of a table exist in the recycle bin, the most recent one is
returned. You can continue to issue flashback table until you get the
correct object. Alternatively, you can use the system name (BIN$) to
identify the table that should be flashed back.

SQLPLUS> flashback table "BIN$LGYYp0ydRYyeNUiq66IHHw==$0"

to before drop;

Flashback complete.

NOTE
Any constraints on the tables are not
maintained when restoring the table
from the recycle bin.

Purging the Recycle Bin
As long as the dropped tables remain in the recycle bin, they are taking up
space in the user tablespace. You won’t want to allow the objects to stay
there forever, unless you have completely unlimited disk space. Like backups,
the recycle bin versions are great to have, but they need to be managed for
size and which objects are being kept.

Chapter 6: Database Backup, Restore, and Recovery 163

The objects in the recycle bin can be cleared out with the purge
command. Users can clear their own recycle bins:

SQLPLUS> purge recyclebin;

Purging the DBA recycle bin clears out all of the user recycle bins.

SQLPLUS> conn / as sysdba

SQLPLUS> purge dba_recyclebin;

If you are absolutely sure about the table you are dropping, include the
purge command after the DROP table command, and the table will not
appear in the recycle bin.

After a purge, when you query the system tables, no rows are returned
(which can be used as validation that the objects have been cleared).

You can also turn off the recycle bin by running either of these
commands:

ALTER SESSION SET RECYCLEBIN=OFF;

ALTER SYSTEM SET RECYCLEBIN=OFF;

Flashback
As you saw in the previous section, the flashback command lets you pull
a table out of the recycle bin. But flashback also has a greater purpose in the
recovery strategy. You can flashback a query, table, and even the database. But
before you can use flashback in this way, you must configure a recovery area.

Configuring the Recovery Area
Just as with archiving, the flashback feature is either on or off, and to turn on
flashback, archiving needs to be on, too. This can be set up as part of the
database creation.

Additionally, you need an area to store the flashback information, which
is a file destination that is allocated and configured in a parameter setting.
This location is known as the flashback recovery area in Oracle Database
10g and 11g R1; in 11g R2, it is called the fast recovery area. Both names
become FRA for short.

SQLPLUS> startup mount restrict

ORACLE instance started.

Total System Global Area 535662592 bytes

Fixed Size 1334380 bytes

Variable Size 243270548 bytes

164 Oracle Database Administration for Microsoft SQL Server DBAs

Database Buffers 285212672 bytes

Redo Buffers 5844992 bytes

Database mounted.

SQLPLUS> alter database flashback on;

Database altered.

SQLPLUS> alter database open;

Database altered.

SQLPLUS> alter system set db_recovery_file_dest='/oraFRA/MMDEV1'

scope=both;

System altered.

SQLPLUS> alter system set db_recovery_file_dest_size=100G

scope=both;

System altered.

SQLPLUS> alter system set db_flashback_retention_target=1440

scope both;

System altered.

The DB_RECOVERY_FILE_DEST_SIZE parameter allocates how much
disk is available for the FRA. The size and the destination parameters are
required. The DB_FLASHBACK_RETENTION_TARGET parameter is the limit
in minutes of how far back to keep files available in the FRA to be able to
flashback the database.

The FRA should be able to hold backups of the database, archive logs, and
control files. The appropriate sizing depends on the database size and how
many backups should be held there. The size can be adjusted with more disk
space or by changing the location. The v$flashback_database_log
view shows information about the FRA.

SQLPLUS> desc v$flashback_database_log;

Name Null? Type

--- -------- -------------

OLDEST_FLASHBACK_SCN NUMBER

OLDEST_FLASHBACK_TIME DATE

RETENTION_TARGET NUMBER

FLASHBACK_SIZE NUMBER

ESTIMATED_FLASHBACK_SIZE NUMBER

The estimated size should be based on the retention target and size of
the current files in the FRA. The default retention value is one day.

Other views are available for monitoring the FRA, showing the files it
currently contains and how they are being used. The v$flash_recovery_
area_usage view shows how the FRA is used.

SQLPLUS> select file_type, percent_space_used as "%_used",

number_of_files

Chapter 6: Database Backup, Restore, and Recovery 165

from v$flash_recovery_area_usage;

FILE_TYPE %_used NUMBER_OF_FILES

-------------------- ---------- ---------------

CONTROL FILE 0 0

REDO LOG 0 0

ARCHIVED LOG 6.45 19

BACKUP PIECE 27.41 4

IMAGE COPY 0 0

FLASHBACK LOG 1.12 6

FOREIGN ARCHIVED LOG 0 0

The v$recovery_file_dest view provides similar information, as
well as space limits that might be set for a file type.

Flashing Back Items
To flashback the database, you use RMAN to run the commands and can go
back to a point in time, SCN, or restore point—starting to sound familiar?

RMAN> shutdown immediate

RMAN> startup mount

RMAN> flashback database to SCN 2126976;

Starting flashback at 18-MAR-10

allocated channel: ORA_DISK_1

channel ORA_DISK_1: SID=153 device type=DISK

starting media recovery

media recovery complete, elapsed time: 00:00:07

Finished flashback at 18-MAR-10

RMAN> alter database open;

-- this will cause an error because logs need to be reset

--since the database went back to a point in time.

RMAN-00571:===

RMAN-00569: =========== ERROR MESSAGE STACK FOLLOWS =============

RMAN-00571:===

RMAN-03002: failure of alter db command at 03/18/2010 05:49:09

ORA-01589: must use RESETLOGS or NORESETLOGS option for

database open

RMAN> alter database open resetlogs;

database opened

166 Oracle Database Administration for Microsoft SQL Server DBAs

Now that the database has been flashed back to the appropriate SCN,
things can continue running against the database. This is similar to RMAN
restore, but the files are probably more available because they are in the
FRA.

The FRA is also useful for flashing back queries to see how the data was
before the transaction happened. Transactions can be fairly complex,
depending on constraints and what triggers and referential integrity are in
place. For example, flashing back a query can be useful when you’ve
updated the wrong table or modified data in an ad hoc query that doesn’t
have a simple rollback statement. You can even create another table or a
view for the data if you want to just validate the change or compare the data
to make sure it has the values expected.

Here is a simple example of how to create a table with the data that is
flashed back:

SQLPLUS> desc mmalcher.emp

Name Type

--- --------------------------

EMPNO NUMBER(4)

ENAME VARCHAR2(10)

JOB VARCHAR2(9)

MGR NUMBER(4)

HIREDATE DATE

SAL NUMBER(7,2)

COMM NUMBER(7,2)

DEPTNO NUMBER(2)

SQLPLUS> insert into mmalcher.emp

values(9012,'MALCHER','DBA',2382,sysdate,1000,100);

1 row created.

SQLPLUS> commit;

Commit complete.

To get the current database SCN

SQLPLUS> select dbms_flashback.get_system_change_number

from dual;

GET_SYSTEM_CHANGE_NUMBER

2199747

SQLPLUS> delete from mmalcher.emp where ename='MALCHER';

1 row deleted.

SQLPLUS> commit;

Commit complete.

Use the current database SCN before delete to get the

values from the table as of that change

SQLPLUS> create table emp_compare as select *

from mmalcher.emp as of scn 2199747;

Chapter 6: Database Backup, Restore, and Recovery 167

Table created.

SQLPLUS> select * from emp where ename='MALCHER';

no rows selected.

SQLPLUS> select * from emp_compare where ename='MALCHER';

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

------------ ------- --------------- --------- --------- -------

8901 MALCHER DBA 2382 05-JAN-10 1000 40 10

As you can see, the transaction was committed, and yet you can create a
table with the old values of the table. You can run queries against the new
table and compare what data changed. You could also use a timestamp to
go back as the information is available in the FRA, to bring back the query
or changes to the data as needed.

This example gets the SCN before the delete, and you would only know
what this value is before your change because you have queried for it. This
could be useful in putting in rollback points into the code, and having the
SCN values stored in a log table for the process.

Another way to confirm you’re using the right SCN is to get the information
about queries and SCNs by time and other details. You can query the
flashback_transaction_query view for these details, which is especially
useful when more than one table might be involved, as in the simple example:

SQLPLUS> desc flashback_transaction_query;

Name Type

--- -----------------------

XID RAW(8)

START_SCN NUMBER

START_TIMESTAMP DATE

COMMIT_SCN NUMBER

COMMIT_TIMESTAMP DATE

LOGON_USER VARCHAR2(30)

UNDO_CHANGE# NUMBER

OPERATION VARCHAR2(32)

TABLE_NAME VARCHAR2(256)

TABLE_OWNER VARCHAR2(32)

ROW_ID VARCHAR2(19)

UNDO_SQL VARCHAR2(4000)

As you can see, being able to flashback a query or table lets you avoid
that panic attack of “I think I updated something wrong” or “I might have
dropped the production table or a key development table.” Being able to
restore what is needed is key to a DBA’s peace of mind.

168 Oracle Database Administration for Microsoft SQL Server DBAs

Summary
RMAN is the main tool for the Oracle backups, and it can be used through
the command line or OEM. The RMAN catalog helps to manage the backups
and backup pieces. RMAN can back up a tablespace, archive logs, datafiles,
or even just control files, as well as the complete database. Incremental
backups are an option after a full baseline backup. This tool also allows for
parts of the backup to be restored, such as tablespaces, datafiles, or blocks
of data. The backups do not need to be broken down into these pieces in
order to just recover one file, but all of the backup set pieces that are
needed to apply the archive log information must be available.

Oracle’s Data Pump is another tool you can use if you need to pull a
table back for comparison, or if the database isn’t updated frequently, as
a way to restore what is needed. The exports allow for imports into other
environments for refreshing test or development databases, and jobs can be
scheduled to use such a strategy.

The recycle bin offers a way to “undrop” tables, and with an FRA set up,
you can also flashback a query, table, and even the database. You can’t
prevent all user errors, but you can be prepared to recover from them.

Backups are part of providing a secure and stable database environment.
All of these options could be part of your backup and recovery strategies.

Chapter 6: Database Backup, Restore, and Recovery 169

This page intentionally left blank

CHAPTER
7

Database
Maintenance

I
f there were no database users, data growth, or business
modifications, the database could be installed and left alone. But
as we all know, there are constant changes: application upgrades,
new business requirements, different access needed by users, and
just more data. So, installation isn’t enough, and there is a

constant need for monitoring databases and running maintenance jobs to
maintain stable systems.

In the previous chapter, we looked at one big part of database maintenance:
running backups and making sure you are able to recover from failures and
errors. In this chapter, we will look at maintenance that can prevent some
issues or serve as a warning to help you avoid problems about to happen.

Maintenance Tasks
As a SQL Server DBA, you’ve planned database monitoring and set up
maintenance jobs. With various versions of SQL Server, some tasks may be
more important than others; something that was a must for SQL Server 2000
might still need to be run in SQL Server 2008, but not as frequently because
it’s not as crucial. Oracle versions make a difference as well, especially if
your database has older features, such as dictionary-managed tablespaces.

In large database environments, it is not possible to spend all of your
time logging in to every database and validating logs and jobs. Automated
tasks need to be developed to perform these tasks, and you will want to
generate a report or summary to let you know that all systems are looking
good. (I do tend to do a manual check occasionally—not that I don’t trust
the automated jobs, but a verification every now and then is reassuring.)

Generally, it’s easier to develop maintenance jobs for a new database
that you create, because you understand that database’s setup. It may be
more difficult to make sure that the maintenance jobs are running against
existing systems, because jobs might be named differently or scheduled
another way. However, you can use the database tools to verify that these
tasks are running and if new ones need to be included.

In SQL Server, the Maintenance Plan Wizard helps you set up general
maintenance tasks. These include checking for database integrity, cleaning
up history, rebuilding and reorganizing indexes, shrinking the database, and
updating statistics. In Oracle, you can schedule maintenance tasks in the
Oracle Scheduler, and some system jobs are set up when the database is
created.

172 Oracle Database Administration for Microsoft SQL Server DBAs

Table 7-1 lists some general database maintenance tasks. The specific
tasks for SQL Server and Oracle may be different because of the nature of
the different platforms and how they handle transactions and data blocks
within the datafiles. And, of course, there are other maintenance tasks,
depending on your environment.

In this chapter, we will review the general maintenance tasks and take a
look at how to schedule these tasks and jobs in order to automate them.

Consistency Checks
Consistency checks validate database blocks and look for corruption in the
datafiles. Here, we are not talking about the consistency of the data itself.
Consistency checks look at the physical integrity of the data blocks and
rows of objects. They can also validate the structures of objects, and that the
tables and indexes still have the corresponding values.

In SQL Server, DBCC procedures perform database consistency checks.
In Oracle, the DBVERIFY utility checks for data block corruption, as
discussed in the previous chapter. Oracle also has an ANALYZE command
that will perform structure checks.

The SQL Server command DBCC CHECKDB checks the logical and
physical integrity of all objects in the database. The DBCC CHECKTABLE
command checks only at the table level. The Oracle command for
analyzing the tables is ANALYZE TABLE table_name VALIDATE
STRUCTURE CASCADE. This will detect corruption between tables and

Chapter 7: Database Maintenance 173

Maintenance Area SQL Server Oracle

Database integrity DBCC DBVERIFY and ANALYZE
VALIDATE structure

History cleanup Manage backups and logs Manage backups and logs

Indexes Rebuild and reorganize Rebuild indexes and
reorganize tables

Statistics Update statistics objects Gather object and system
statistics

TABLE 7-1. General Maintenance Tasks in SQL Server and Oracle

indexes. In previous versions, the command was very expensive for large
indexes, but its performance has been improved in Oracle Database 11g.
The ANALYZE command does not put any locks on the tables, so that it can
be run without any impact to users.

Oracle checks for block corruption as the database writers are handling
the blocks of data. The DB_BLOCK_CHECKSUM parameter determines if
blocks will be checked in memory. The TYPICAL setting for this parameter
(the default) verifies checksums before writing to disk. With more data
movement possibly happening in memory, detecting the corruption here
before even writing to disk can be useful. To have Oracle check the blocks
in memory (the buffer cache), set DB_BLOCK_CHECKSUM to FULL. This
setting will perform checksums on all changes before and after writing to the
log. This does add overhead to the system, but FULL is the only setting that
will check for block corruption in the buffer cache. This parameter is
dynamic, so it can be altered to check on its effects in your environment.

So, what about some of the other DBCC commands? The job of DBCC
CHECKALLOC, which checks on space, is handled by the Segment Advisor
in Oracle. This is another automatic job that runs against the database and
can be configured to run against a table or tablespace. It will show details if
an object or tablespace needs to be resized or reorganized. You can also
run queries against the data dictionary tables for this information.

In a SQL Server environment, with the newer hardware and how
transactions might be handled, DBCC procedures may need to be run less
frequently. In Oracle, with the backups also able to validate and check for
block corruption, ANALYZE TABLE might be scheduled to run as a monthly
job, and against only the objects that have a lot of changes, instead of all of
the objects. It could also be run on an ad hoc basis to perform the check
(when there is not much activity on the database, of course).

Health Checks
By health checks, I’m referring to checks that run periodically against the
databases. DBCC procedures/ANALYZE VALIDATE might be part of these
checks. First, you will want to run health checks immediately after creating
the database—if the database does not start off in a good state with all of the
pieces that it is expecting, how is it going to be maintained? It’s also a good
idea to run health checks when taking over support for an existing system.

174 Oracle Database Administration for Microsoft SQL Server DBAs

Health checks include validating the proper permissions for the
administrator accounts, scheduling backups, scheduling maintenance jobs,
checking the version of the database and patches, and checking options and
parameters. This list might sound like tasks you perform after creating the
database, but even permissions and parameters change over time, and
checking that jobs are running as needed is important. Table 7-2 lists some
common health checks in SQL Server and Oracle.

Chapter 7: Database Maintenance 175

SQL Server Oracle

Check password policies and sa
and sysadm permissions.

Check password policies and DBA
and SYSDBA permissions.

Check disk space for software,
data, and logs.

Check disk space for software and
datafiles.

Check version and patchsets. Check version and patchsets.

Check backups are scheduled and
running

Check backups are scheduled and
running.

Check maintenance tasks (update
statistics, shrink files, rebuild
indexes).

Check maintenance tasks (update
statistics, snapshots for performance,
checks for any reorganization of
tables or indexes).

Check for disk space/free space. Check for monitoring of tablespaces
and free space.

Check growth of transaction logs. Check usage of undo and temporary
tablespaces.

Check autostart for SQL Server and
SQL Server Agent.

In Windows, check autostart of
Oracle service and listener service.
For Unix, check if scripts are in place
to start up and shut down gracefully.

Check options and possible
changes, FULL to SIMPLE, memory
less than server memory.

Check parameters, and save copies of
parameter files to track changes.

Check if using default ports or
named instances.

Check listener permissions and ports.

TABLE 7-2. Health Checks in SQL Server and Oracle

Update Statistics
SQL queries tend to perform differently with more or less data, or when
information about the object changes. An object that was originally 2MB
may now be 2GB; more of the columns of a table might be populated after
the initial load, which didn’t have complete information. The information
about the database objects and data is used by the database servers to figure
out indexes and execution plans for queries.

In both SQL Server and Oracle, statistics are updated by default. In SQL
Server, the AUTO_UPDATE_STATISTICS database option, when turned on,
will update the statistics when they become stale. You can also run updates
manually, using sp_updatestats or UPDATE STATISTICS.

In Oracle, the parameter STATISTICS_LEVEL set to TYPICAL or ALL
enables automatic statistics gathering. In Oracle Database 10g, the
GATHER_STATS_JOB job is scheduled to gather stale statistics and keep
them updated. To make sure the job is enabled, you can query the dba_
scheduler_jobs view. In Oracle Database 11g, the Optimizer Statistics
Gathering task, rather than GATHER_STATS_JOB, is scheduled through
Automated Maintenance Tasks, as shown in Figure 7-1.

If the STATISTICS_LEVEL parameter is set to BASIC or the automated
jobs are disabled, you can use the DBMS_STATS package to gather the
statistics. Even if automatic statistics gathering is configured to run, you can
use DBMS_STATS to manually gather statistics for objects. There are options
for this package to lock statistics on the table, export or import statistics,
delete statistics, or run statistics gathering with different default settings.

176 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 7-1. Automated Maintenance Tasks in OEM

The DBMS_STATS package can gather object-level statistics and system
statistics.

System Statistics
The gathered statistics information is used by the cost-based optimizer to create
query plans. Capturing statistics at different times for various activities is
especially useful when the workload on the database is different, such as batch
processing or reporting at night and processing transactions during the day.

sqlplus> exec dbms_stats.gather_system_stats('Start');

-- gather for an hour during peak activity

sqlplus> exec dbms_stats_gather_system_stats('Stop');

You can also capture system statistics on the fixed data dictionary tables,
which should be done during regular workload and run once.

sqlplus> exec dbms_stats.gather_schema_stats('SYS', gather_fixed => TRUE);

sqlplus> exec dbms_stats.gather_fixed_objects_stats('ALL');

Gathering system statistics is an occasional type of maintenance. You
might do this when performance issues arise, or when changes, such as
upgrades or the amount of workload, happen on the database server. This
will give the optimizer information for developing query plans.

Another reason for gathering the system statistics is that they can be
exported from a production environment to import into a test environment,
to be able to look at the queries and performance. This is also useful if the
number of rows, size of the data and workloads are not the same from a
production to test an environment.

Create the statistics table

SQLPLUS> exec dbms_stats.create_stat_table

('MMPROD','STAT_TABLE_PROD');

Export the statistics to the stats table

SQLPLUS> exec dbms_stats.export_schema_stats

('MMPROD','STAT_TABLE_PROD');

export the table using datapump or exp utility

> exp file=Exp_prod_stats.dmp tables=stat_table_prod

import the table into the test environment using imp

utility or datapump

> imp file=Exp_prod_stats.dmp fromuser=MMPROD touser=MMDEV

Import the statistics to the test environment

SQLPLUS> exec dbms_stats.import_schema_stats

('MMDEV','STATS_TABLE_PROD');

Chapter 7: Database Maintenance 177

Now we have production statistics in the test environment even if the
row counts are different between the two environments,

Object Statistics
For Oracle, statistics can be gathered at the schema level, table level, or
index level. Having current statistics on the database objects is important for
the optimizer to be able to choose an appropriate execution plan. As noted,
Oracle Database 11g updates stale information as part of its automatic
maintenance. However, you might need to gather, lock, or delete some of
the statistics for an object. You may also need to get the information at
another sample size. Like SQL Server, Oracle has procedures for handling
statistics, as shown in Table 7-3.

With the automated jobs in place, first look at the values that are already
being collected, and then consider gathering additional information or
deleting statistics as necessary to deal with performance issues. Deleting
statistics might also be useful if you’re changing the type of information or
sample size, to clear out what is currently there before gathering the new
statistics. If you’ve adjusted the statistics gathering, you may want to lock
the statistics on a table so that they don’t change with each regular update.

178 Oracle Database Administration for Microsoft SQL Server DBAs

sp_updatestats (SQL Server) DBMS_STATS.GATHER_* (Oracle)

Name of table, index, or indexed
view

Schema, table, or index

Sample size, either percent or rows
Sample % or rows

FULLSCAN = 100%

Estimate percent is the sample size
estimate_percent => %

COMPUTE = 100%

ALL (default), COLUMNS, or INDEX METHOD_OPT to include columns
and indexed columns

NORECOMPUTE to disable statistics
running after the update

LOCK_TABLE_STATS to lock the
statistics on the table

CASCADE set to TRUE to gather the
indexes for the table

TABLE 7-3. Update Statistics Procedures in SQL Server and Oracle

The following example shows how to use some of the commands for
gathering statistics, locking statistics, and deleting statistics.

--Gather statistics for a table with a sample size of 75% and

--cascade through to indexes, run in parallel degree 8.

Sqlplus> exec dbms_stats.gather_table_stats('MYSCHEMA',

'MYTABLE', estimate_percent => 75, cascade => TRUE,

method_opt => 'for all columns size auto', degree => 8);

--Method_opt will determine which columns need histograms and

--will create them.

--Delete statistics for a column

sqlplus> exec dbms_stats.delete_table_stats('MYSCHEMA',

'MYTABLE');

--to include deleting the indexes with tables

sqlplus> exec dbms_stats.delete_table_stats('MYSCHEMA',

'MYTABLE',cascade_indexes => TRUE);

--Gathering schema statistics using gather auto to analyze

--the tables without statistics and objects that have

--stale statistics or changed more than 10%

sqlplus> exec dbms_stats.gather_schema_stats('MYSCHEMA',

options => 'GATHER AUTO', estimate_percent =>

dbms_stats.auto_sample_size)

You can gather statistics only for tables that do not have any statistics
(GATHER EMPTY) or stale statistics (GATHER STALE). This example uses the
GATHER AUTO option, which is a combination of the EMPTY and STALE
options. There is also a filter to exclude tables when gathering schema-level
statistics.

Jobs with additional statistics-gathering settings or to remove statistics
can be set up to run along with the scheduled maintenance jobs created by
Oracle. Figure 7-2 shows an example.

There are additional GATHER_TABLE_STATS options for running in
parallel and for partitioned tables. GATHER_SCHEMA_STATS has the same
options, but it doesn’t require an object name and will perform the update
on all of the objects in the schema.

Understanding the DBMS_STATS package will also help with previous
versions of Oracle, as well as using the production statistics for test

Chapter 7: Database Maintenance 179

environments to mimic the sizing of tables. DBMS_STATS.EXPORT_TABLE_
STATS and DBMS_STATS.EXPORT_SCHEMA_STATS will pull the statistics
from an environment, and IMPORT_TABLE_STATS and IMPORT_SCHEMA_
STATS will put them into an environment.

Several data dictionary tables show information about statistics collection:

■ dba_tables includes a column that has last-analyzed information,
which is the date that the statistics ran against the object.

■ dba_tab_statistics has the information that was gathered,
such as the number of rows, average space, chained row count, and
sample size.

■ dba_tab_stats_history shows when the statistics were last
updated.

180 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 7-2. Scheduling a DBMS_STATS script

The following example shows a query against the dba_tab_stats_
history table to retrieve the retention period of the statistics, which is how
far back a restore of the statistics can go.

sqlplus> select dbms_stats.get_stats_history_retention

from dual;

GET_STATS_HISTORY_RETENTION

--

31

sqlplus> select table_name, stats_update_time

from dba_tab_stats_history where owner='MYSCHEMA';

TABLE_NAME STATS_UPDATE_TIME

---------------- ---------------------------------------

TABLE1 02-APR-10 10.25.05.268000 PM -05:00

EMP 02-APR-10 10.25.05.377000 PM -05:00

EMP_COMPARE 02-APR-10 10.25.13.971000 PM -05:00

EMP 03-APR-10 01.57.36.941000 PM -05:00

sqlplus> exec dbms_stats.restore_table_stats('MYSCHEMA',

'EMP',' 02-APR-10 10.25.05.377000 PM -05:00');

Understanding which statistics are being gathered and their retention
policy will help you to maintain the options to restore and manage the
statistics for the schema and tables.

Object Maintenance
Along with gathering statistics information about the objects, some maintenance
and checks need to be done on the objects themselves. There might be
fragmentation, so that the object needs to be rebuilt. Invalid objects might
need to be recompiled. Even grants and permissions can be considered part
of object maintenance.

SQL Server has some of these tasks as part of the maintenance jobs. Oracle
has advisors in place to advise if actions should be taken. Additionally, you can
implement scripts to take care of object maintenance.

Index Rebuild
In examining the database objects, you may see some that appear fragmented
and in need of a rebuild. Such rebuilds increase log activity, put additional
resources on the system, and may put locks on the object. Therefore, you
should be selective and plan which indexes to include in the tasks. You can
generate reports to plan maintenance on indexes for another time, if necessary.

Chapter 7: Database Maintenance 181

In SQL Server, clustered indexes are common, and these help to
reorganize fragmented tables. Rebuilding clustered indexes in SQL Server
will place some locks and possibly some blocking on the index. Rebuilding
the clustered index also reorganizes a table. The performance of online
rebuilds has improved with newer versions of SQL Server.

Oracle can use clustered indexes, but it seems to be more common to
use nonclustered indexes. Oracle has an Automatic Segment Space
Management (ASSM) feature, which has improved with each version and
helps to reduce fragmentation during regular processing. As with SQL
Server, online rebuilds in newer versions of Oracle are more efficient.

With SQL Server, you can use DBCC commands to evaluate if an index
should be rebuilt. DBCC SHOWCONTIG shows fragmentation for tables, and
a table with a clustered index probably has the same fragmentations. Also,
the system table dm_db_index_physical_stats can return average
fragmentation for all of the indexes in the database. With Oracle, the
ANALYZE TABLE table_name VALIDATE STRUCTURE command
makes sure the index is in sync with the table. When CASCADE is used with
this command, information will be inserted into an index_stats table,
which you can use to evaluate if indexes need to be rebuilt.

Sqlplus> analyze table emp validate structure cascade;

Table analyzed.

sqlplus> select height, blocks, lf_rows, del_lf_rows,

btree_space, used_space

from index_stats where name='IDX_EMP1';

HEIGHT BLOCKS LF_ROWS del_lf_rows BTREE_SPACE USED_SPACE

---------- ---------- ---------- ----------- ---------- ----------

1 8 14 3 8000 209

The index_stats table shows the height of the index. As a general
rule, an index with a height great than 4 might be considered for a rebuild.
Also look at the deleted leaf blocks (del_fl_rows) value. This amount
should be under 20 percent of the total leaf rows.

As noted earlier, Oracle supplies advisors to help assess maintenance
requirements. The Segment Advisor, part of the default maintenance jobs,
reports on reclaimable space. This could be the result of fragmentation in
the index or tables, or indicative of a bunch of deletions that have cleared
out old data.

Figure 7-3 shows some of the Segment Advisor recommendations about
chained rows, and it lists a couple of indexes that appear to have a BLOB
datatype. Due to the nature of this datatype (it can vary on the space it
consumes), chaining might be very typical here. In deciding on a course of

182 Oracle Database Administration for Microsoft SQL Server DBAs

action, you’ll need to consider that rebuilds for these datatypes are more
costly, and you might not be able to do them online.

You’ll need to weigh the performance and benefits gained by a rebuild
versus the actual cost of the maintenance in making your decision. If it
appears to be regular behavior of the index and table with many deletions
and insertions, and most of the space is able to be reused, that index might
not be at the top of the list to rebuild. It is also not as common to rebuild
b-tree indexes. Because of their structure, b-tree indexes tend to be self-
managing. Even with a lot of deletions, the space is generally reused by new
data being inserted, except if the primary key is on a sequence or date field.
Other types of indexes, such as clustered or bitmap, or those that have a
LOB datatype, might be considered for rebuilding. A coalesce of an index or
an online rebuild might be worth it.

Another possibility is for an index to be in an unusable state. This could
happen if a table was moved (rebuilding the indexes should always be done
after a move) or when direct loads are made into a table. Using SQL*Loader,
which is like using SQL Server’s bcp utility, for a direct load and bypassing
checking constraints could make a primary key index unusable. This can
also occur with partitioned tables, where the index is a global index across
all partitions, and one of the partitions was dropped to purge data, or
partitions were merged, which would be like reorganizing the partitions.

An unusable index will need to be repaired or rebuilt.

sqlplus> select owner, index_name, table_name from dba_indexes

where status="UNUSABLE';

--simple fix for indexes listed

sqlplus> alter index index123 rebuild online;

Chapter 7: Database Maintenance 183

FIGURE 7-3. Segment Advisor, chained row analysis

When an index becomes unusable, any queries against the table, unless
the parameter SKIP_UNUSABLE_INDEX are set to TRUE. In that case, Oracle
will not report an error on the indexes, and will allow selects, inserts, updates,
and deletes to occur against the table. (This parameter does not disable the
error messaging for unique indexes because of possible constraint violations.)
However, the queries will not be able to use the index, which might cause a
performance issue if this index is a key index. Although this will allow some
operations to continue, it’s better to rebuild the index and not have it in an
unusable state.

Table Reorganization
Like indexes, tables can become fragmented, due to chained rows, changes
by updates, and deletions that leave space available that is not being reused. In
some cases, these tables can benefit from reorganization. For example, a table
might need to be reorganized after doing some data cleanup, or if monitoring
shows free space can be reclaimed.

In SQL Server, the DBCC SHOWCONTIG table_name command gives
clues as to whether a table needs to be reorganized. Also, rebuilding a
clustered index on the table will reorganize the table, which is a typical way
to handle table reorganization in SQL Server.

Oracle’s ASSM feature manages the space within a segment. Allowing
Oracle to manage the space in segments for tables reduces the fragmentation of
the table. The Segment Advisor again comes into play with tables, checking for
chained rows and space that can be freed up. Figure 7-4 shows an example of
the Segment Advisor recommendations in OEM.

As with indexes, you’ll need to carefully consider the value of table
reorganization against its costs, especially with very large tables. In Figure 7-4,
the Segment Advisor is showing that 53.64MB can be reclaimed, which is
12.16 percent of the space. But regaining 50MB of space is probably not worth
reorganizing the table. Now, if this were 12 percent of 100GB, a reorganization
might be worthwhile.

If you decide to go ahead with a table reorganization, you can use OEM to
configure and schedule it. Under the Schema tab in the Database Objects area,
select Reorganize Objects, as shown in Figure 7-5. Here, the reorganization of
tables, indexes, schemas, and tablespaces can be set up in a job.

The options that are available in the following steps include doing the
rebuild online or offline, as shown in Figure 7-6. If the downtime is available,

184 Oracle Database Administration for Microsoft SQL Server DBAs

Chapter 7: Database Maintenance 185

FIGURE 7-5. Reorganize Objects: Type

FIGURE 7-6. Reorganize Objects: Options

FIGURE 7-4. Segment Advisor recommendations

the table reorganization will run faster if the object does not need to be
available. Figure 7-6 also shows the option to perform the reorganization in
the current tablespace or another tablespace.

The job can then be scheduled to run immediately or at another time.
The final step has a summary of the commands that will be executed for this
process, as shown in Figure 7-7. You can review the script to better understand
the process.

Many tables can be reorganized by using the MOVE command to move
the table from one tablespace to another tablespace, or within the same
tablespace. There is also a DBMS_REDEFINITION package that will rebuild
tables for those with datatypes (LOB, RAW, and LONG RAW) that cannot
be handled by MOVE.

With some of the options to reorganize the table, space needs to be
available to temporarily house the rebuilt table.

Reorganize the table in the same tablespace

sqlplus> alter table emp_info move;

-- can specify a tablespace to move to another

-- tablespace or keep it in the same one

186 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 7-7. Reorganize Objects: Review

-- dbms_redefinition package example

sqlplus> create table myschema.mytable_redef as

select * from myschema.mytable where 1=2;

sqlplus>exec dbms_redefinition.start_redef_table

('MYSCHEMA','MYTABLE','MYTABLE_REDEF');

sqlplus> exec dbms_redefinition.sync_interim_table

('MYSCHEMA','MYTABLE','MYTABLE_REDEF');

sqlplus> exec dbms_redefinition.finish_redef_table

('MYSCHEMA','MYTABLE','MYTABLE_REDEF');

Indexes will need to be re-created after the table reorganization, and the
old table will need to be dropped.

Invalid Objects
Objects such as procedures, functions, and views can become invalid if a
dependent object is altered. Normally, the object will recompile the next
time the procedure is executed or the view is accessed, as long as there are
no errors in the code. However, making sure that the objects are valid
should be included in a maintenance plan. Alerts will pop up in OEM about
invalid objects in a schema, as shown in Figure 7-8.

With these alerts and a simple query against the dba_objects table, it
is easy to find the objects that are invalid.

sqlplus> select owner, object_name, object_type from dba_objects where

status='INVALID';

OWNER OBJECT_TYPE OBJECT_NAME

------------------- ------------------------- -----------------------------

PROD_1 FUNCTION GET_ID_LIST

PROD_2 PACKAGE UPDATE_VAL1

PROD_1 VIEW ID_VW

Chapter 7: Database Maintenance 187

FIGURE 7-8. Invalid object alerts in OEM

You can recompile invalid objects in a few ways:

■ Recompile all database objects that are invalid The utlrp.sql script,
in the ORACLE_HOME/rdbms/admin directory, will recompile all of
the objects in the whole database. You might consider running this
script after applying a patch or doing overall database maintenance.
You probably would not use this method to recompile one or two
procedures that might be invalid, and you would not run it during a
regular window of availability in the environment.

■ Recompile individual objects To recompile individual objects, you
can alter the object or use DBMS_DDL.ALTER_COMPILE. For day-
to-day maintenance, running a script to recompile individual objects
will be less disruptive to the database than recompiling all of them.
After the recompile, run a check to verify that the object was compiled
successfully.

■ Recompile objects at the schema level You can compile objects at
the schema level by using the DBMS_UTILITY package. If object
changes were applied to one schema, you can run a script to
recompile the objects just for that schema.

Here are examples of these options:

Recompile all database objects that are invalid

sqlplus> $ORACLE_HOME/rdbms/admin/utlrp;

Recompile objects at the schema level

sqlplus> exec DBMS_UTILITY.compile_schema(schema => 'MYSCHEMA');

Recompile individual objects

sqlplus> alter function prod_1.get_id_list compile;

sqlplus> exec DBMS_DDL.alter_compile('PACKAGE','PROD_2','UPDATE_VAL1');

Using a query to find the invalid objects, you can create a script to
recompile the object.

Sqlplus> select 'alter '|| object_type|| ' ' || owner || '.' ||

object_name || ' compile;' from dba_objects where status='INVALID';

188 Oracle Database Administration for Microsoft SQL Server DBAs

Grants
SQL Server has roles available to grant read-only or write permissions
against a database for the users of that database. If these roles are used,
individual grants on objects do not need to be maintained. However, you
can also grant individual permissions against an object. Whether using roles
or users for these permissions, knowing that these grants are present, or at
least making sure the access for the application is still available, is best
practice after doing maintenance.

Oracle does not have fixed roles for read-only or write permissions on a
schema; the roles need to be created with permissions granted. This does
not allow for granting permissions across the whole database, which
provides for separation of the schemas and isolation of permissions.

The dba_tab_privs and dba_col_privs views show the current
grants that have been added to either a role or a user. One way to maintain
grants is to have a copy of the grants that have been granted in a table and
compare that information against the current dba_tab_privs view. (The
name dba_tab_privs might be a little confusing, because it does contain
permissions on other objects besides tables, such as views, procedures,
packages, and functions.)

You can also maintain grants by auditing, which will let you know
which grants have been changed. This approach not only ensures that
access is maintained during an object change, but it also provides audit logs
of the roles and users who have permissions and any changes. This could
provide a needed compliance report.

To set up auditing on the grants, turn on audits for granting the
permissions, and set the parameter AUDIT_SYS_OPERATIONS = TRUE.
This parameter audits the actions of anyone connecting with SYSDBA or
SYSOPER permissions. With auditing enabled, the view dba_audit_
statement is available to see the grants issued or permissions revoked.
This provides good information about new grants, but not necessarily about
objects that were dropped and re-created without the grants. You also need
a table to capture which grants should be there, and not just what changed.
The auditing will require purging the audit tables, and the copy of the table
will need rows removed as grants are verified.

Here are a few quick examples of what can be done to maintain grants:

sqlplus> audit system grant;

Audit succeeded.

sqlplus> audit grant any object privilege by access;

Audit succeeded.

Chapter 7: Database Maintenance 189

sqlplus> audit grant any privilege by access;

Audit succeeded.

sqlplus> audit grant any role by access;

Audit succeeded.

-- Create table to manage the grants

sqlplus> grant insert, update, delete, select on emp to mmtest;

sqlplus> create table grants_expected as select * from dba_tab_privs ;

Table created.

sqlplus> revoke delete on emp from mmtest;

Revoke succeeded.

check the table that has the saved grants and compare

the grant is still listed in the table with the stored

grants even though the privilege is no longer available

sqlplus> select grantee, owner, table_name, privilege

from grants_expected where (grantee,privilege,table_name, owner)

not in (select grantee,privilege, table_name, owner

from dba_tab_privs);

GRANTEE OWNER TABLE_NAME PRIVILEGE

------------------ ---------------- ------------------- ---------------

MMTEST MMALCHER EMP DELETE

Synonyms
Users other than the schema owner may need access to a particular table or
view, which requires them to fully qualify the object with schema_name
.object_name. Alternatively, a synonym can be created for that object.

A good practice is to create the synonym as the user accessing the
object, instead of as PUBLIC, which makes that name available to all users.
The specific permissions for the table still need to be granted to the users.
Once a public synonym is created, the same name cannot be used, even if it
is pointing to an object in a different schema.

In SQL Server, a default schema can be assigned so that the user is, in a
sense, accessing those schema objects by default; otherwise, the user needs
to fully qualify the object with dbo.table_name.

In Oracle, when tables are altered, the synonyms created on the object
are not changed and remain in place. However, if an object is dropped, the
synonym will become invalid, and when the object is re-created, the synonym
might need to be recompiled. The object will appear with INVALID as the
status in the dba_objects table.

The data dictionary view dba_synonyms shows synonyms. The
synonym name needs to be unique to the schema. If there are tables with
the same name in different schemas, they can receive different synonym
names, but at this point, it might be easier to fully qualify the table.

190 Oracle Database Administration for Microsoft SQL Server DBAs

As you’ve seen so far, object maintenance in Oracle has several pieces.
After database changes are rolled out, it’s important to verify there are no
invalid objects, and that grants and synonyms are still available. If you
rebuild indexes or reorganize tables, you will need to validate that the
indexes are still usable. Using alerts in OEM might be one way of verifying
these objects. You can also create jobs to run against the database, and use
the Oracle Scheduler to periodically run the scripts.

Job Scheduling
With SQL Server, the msdb database holds the information about jobs and
schedules, and the SQL Server Agent service must be running for the jobs to
be executed. It logs the information about the jobs and maintains a history
of successful runs and failed jobs with errors. The jobs also can be extracted
from SQL Server and created on another server.

In Oracle, the Oracle Scheduler handles job scheduling. PL/SQL and
Java procedures can be scheduled, as well as scripts outside the database,
such as shell scripts and executables. The Oracle Scheduler has an interface
in OEM. Using the DBMS_SCHEDULER package, you can schedule jobs
and get job information from the command line. The jobs are logged, and
since Oracle Database 10g R2, they can have multiple steps. The Oracle
Scheduler allows for using export and import to move the jobs from one
database to another. It also can take advantage of the high-availability
options since it is in the Oracle database. If the server failed, jobs can be
recovered, as with other database processes.

Table 7-4 shows a summary of job scheduling in SQL Server and Oracle.

Creating a Job in Oracle Scheduler
The Oracle Scheduler is available from the Server tab in OEM (Oracle
Database 11g). Selecting Jobs will show the current jobs scheduled against
the database, and jobs can be viewed, edited, executed, and created from
here.

Figure 7-9 shows an example of creating a job to rebuild an index. A job
is defined with a name and description. You can choose not to log the
running of the job, and to drop the job after completion. (Even if you are
creating a job to run just once, it might be a better idea to disable it, in case
you find that you need it again.)

Chapter 7: Database Maintenance 191

192 Oracle Database Administration for Microsoft SQL Server DBAs

SQL Server Oracle

msdb DBMS_SCHEDULER (DBMS_JOB)

SQL Server Agent Job slave processes (parameter MAX_
JOB_SLAVE_PROCESSES)

History and logs History and logs in dba_scheduler_*
views

Multistep jobs Multistep jobs

Jobs inside and outside the
database

Jobs inside and outside the database

Used for maintenance tasks Used for maintenance tasks

Manage in SQL Server
Management Studio

Manage in OEM or with DBMS_
SCHEDULER

Permissions:
SQLAgentUserRole in msdb

Permissions: “Create job” and “Select
any dictionary”

TABLE 7-4. Scheduling in SQL Server and Oracle

FIGURE 7-9. Creating a job in OEM

For the command type, you have the following options:

■ Program name

■ PL/SQL (enter the code in the text box)

■ Stored procedure

■ Executable

■ Chain (to create steps and chain the jobs together)

Set up the schedule for the job on the Schedule tab. The Options tab lets
you raise events (to handle success, failure, and other job statuses), set limits
on runtime and failures, set priorities, and specify other options.

Creating a chain will set up different steps for the job. The programs should
be created first. In OEM, make sure to enable the jobs that you want to run.
After creating the steps, you can set up rules for what to do between the steps.
The steps also do not need to go in order, and if one job fails, it can skip to
another step. You can create rules for different status values. For example, you
may set up rules that say if the job is successful, continue; if the job fails, run the
last step, which might be to send an e-mail or update a table with information.

NOTE
By default, all of the programs and chains in a
job are not enabled. If a job fails, first check
that all its pieces are enabled.

Figure 7-10 shows an example of creating a chain for a job to reorganize
a table, rebuild the indexes, and then recompile the stored procedures for
that schema. The programs used for the job have the ALTER TABLE emp
MOVE and ALTER INDEX emp_idx1 REBUILD ONLINE commands. The
chain needs to start with a true value; otherwise, the chain will sit in the
stalled state. That is why the first rule’s condition is 1=1, and its action is to
start the first step. The last step should be completed with an END.

To view the SQL for the job, click the Show SQL button in the upper-
right corner of the job-creation page. The SQL statement shows how the job
is created using DBMS_SCHEDULER and different steps along the way.

BEGIN

sys.dbms_scheduler.set_attribute(name => '"MMALCHER"."TAB_REORG"',

attribute => 'job_action', value => '"MMALCHER"."REORGEMP"');

END;

Chapter 7: Database Maintenance 193

In the SQL statement that is created for the job, the value for job_
action is actually the name of the chain. The chain is defined by the
programs and the rules. For this example, programs were used, but another
chain can be called, or an event can be used to trigger the next step.

The history of the job for the chained job will have the start of the chain
and result from each step before completing. You can purge the history,
either by removing all of the logs or setting the history to be kept for a
specific number of days.

Using DBMS_SCHEDULER
You can also create jobs with the DBMS_SCHEDULER package. It takes
parameters for job name, description, and action. You can set up a one-time
job or a repeat interval, which can be by time, days, weeks, and so on. The
start date could be the current time for immediate execution or a future
date. Here is an example:

BEGIN

sys.dbms_scheduler.create_job(

job_name => '"DBA1"."REBUILDINDEXES"',

194 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 7-10. Creating a chain for a job

job_type => 'PLSQL_BLOCK',

job_action => 'begin

execute immediate ''alter index dba1.idx_emp1 coalesce'';

end;',

repeat_interval => 'FREQ=WEEKLY;BYDAY=SAT;BYHOUR=1;BYMINUTE=0;

BYSECOND=0', start_date => systimestamp at time zone 'US/Central',

job_class => '"DEFAULT_JOB_CLASS"',

comments => 'Rebuilds indexes for select tables',

auto_drop => FALSE,

enabled => TRUE);

END;

For external jobs, such as running a script in Linux or an executable in
Windows, you can set up attributes and credentials to be used by the job
definition. In this example, the job action is the simple operating system
command ls, to list the files in the directory:

sqlplus> Exec dbms_scheduler.create_credential (

credential_name => 'MM_WINDOWS',

username => 'mm1',

password => 'passwd',

windows_domain => 'domain1');

-- Linux credential is really the same but doesn't

-- require the domain.

-- attributes can be set with job arguments

begin

dbms_scheduler.create_job(

job_name => 'test_OS_job',

job_type => 'EXECUTABLE',

number_of_arguments => 1,

job_action => '/bin/ls',

auto_drop => FALSE,

enabled => FALSE);

dbms_scheduler.set_job_argument_value('test_OS_job',1,

'/home/oracle');

dbms_scheduler.set_attribute('test_OS_job','credential_name',

'MM_LINUX');

dbms_scheduler.enable('test_OS_job');

end;

/

Several procedures are part of the DBMS_SCHEDULER package. The
chain can be built with CREATE_CHAIN, DEFINE_CHAIN_RULE, and
DEFINE_CHAIN_STEP.

Chapter 7: Database Maintenance 195

You can see the chain steps in the dba_scheduler_chain_steps
view. The attributes and arguments are placed in a dba_scheduler_*
view to define the job. As shown in the example, to set these attributes,
the job name is used to link the arguments and attributes to the job in the
scheduler. Selecting from dba_scheduler_running_jobs will show
the current jobs that are running, and dba_scheduler_job_log will
show the status of the job.

You can also use the DBMS_SCHEDULER package to change the status
of a job, complete a job, start a job, and change the attributes of the job.

Setting Up System and User Jobs
When you create the database, you have the option to set up system
maintenance jobs. These jobs include gathering statistics, running the
Segment Advisor and other advisors, and performing some cleanup.

Maintenance windows are predefined and can be used by the system
jobs or user jobs. You can also create maintenance windows to run
maintenance jobs in other windows. The following three automated

196 Oracle Database Administration for Microsoft SQL Server DBAs

Using DBMS_JOB
Prior to Oracle Database 10g, DBMS_JOB was the package to schedule
jobs. This package is still available to submit, change, run, and disable
jobs.

Individual jobs that were created with the DBMS_JOB package can
be converted to DBMS_SCHEDULER jobs. The basic definition of the
job can be translated, and defining schedules and job classes can be
done later.

For DBMS_JOB, the parameter WHAT becomes JOB_ACTION,
NEXT_DATE becomes START_DATE, and INTERVAL becomes
REPEAT_INTERVAL. The job can be created in DBMS_SCHEDULER
and then removed from DBMS_JOB. Jobs can be running from both
packages, but the parameters JOB_QUEUE_PROCESSES and MAX_
JOB_SLAVE_PROCESSES will have to be set. If JOB_QUEUE_
PROCESSES is set to 0, DBMS_JOB is disabled.

maintenance tasks are configured to run in all maintenance windows. The
system jobs can be enabled and disabled using DBMS_AUTO_TASK_ADMIN.

sqlplus> exec dbms_auto_task_admin.disable(client_name=>'sql tuning

advisor',operation=> NULL,window_name=>NULL);

PL/SQL procedure successfully completed.

sqlplus> select client_name,status from dba_autotask_client;

CLIENT_NAME STATUS

-- --------

auto optimizer stats collection ENABLED

auto space advisor ENABLED

sql tuning advisor DISABLED

The system privilege “Manage Scheduler” allows users to manage the
attributes, such as the job classes and maintenance windows; this should be
treated like a DBA type role. Users can create jobs and schedule jobs
without this privilege, but they do need the “Create job” system privilege
and “Select any dictionary” privilege.

When the system jobs complete, they are tracked in the history view.
Statistics are collected about the job, which are included in columns of the
dba_autotask_client view.

Job information, logs, and history can be viewed from the user
perspective in the user_scheduler_* views. These allow the users to get
details about the jobs and create jobs as needed. But it is still left to an
administrator to set up the configurations and settings that the Oracle
Scheduler uses.

File Maintenance
Datafiles, log files, error logs, history logs, trace files—oh my! File maintenance
is very important to the health of the database and maintaining a stable
environment. Developing tasks and scripts will be useful for managing the
many different files. We discussed backups and managing the backup files
in Chapter 6. Here, we will look ways to maintain the datafiles, alert logs,
and trace files.

Shrinking and Resizing Files
In SQL Server, you might shrink files as part of getting a production database
to fit into a development environment. Especially if you are not running in
FULL mode, large transaction files can be shrunk down to size. Also, if

Chapter 7: Database Maintenance 197

production backups have an issue, or a large transaction filled up more
space than normally needed, you could shrink the log. In Oracle, the logs
are sized and remain that same size, so shrinking the file is not the issue.
However, depending on how many times the transactions are looping
through the redo logs, there might be a reason to adjust the size of the logs.

Datafiles are slightly different, because they are normally growing. But
you might need to clean up data or start an archive process that frees up the
space. In SQL Server, you have the same options as with the transaction logs
to shrink datafiles. There is some movement of the segments to bring down
the high water mark so that the file can be shrunk down as much as
possible. In Oracle, you can also shrink datafiles.

Logs
If there is not enough time to archive the logs, this issue will show up in the
alert log as “checkpoint not complete.” To address this issue, you might add
more redo log groups at the same size or re-create the redo logs at a
different size. If you resize the redo logs, you can create new groups with
the bigger size. Then, as the older redo logs become inactive, they can be
dropped. All of the redo log groups should have the same size set for the
redo logs.

If the redo logs are too big, there might be issues with not having the logs
switch for a long period of time. The v$log_history view will provide
some insight into how frequently the log is changing. Here is an example of
a query using the Oracle Database 11g pivot tables to get the breakdown of
the number of log switches by hour for the previous five days:

sqlplus> select hour_of_day,

sum(decode(day123, to_char(sysdate-5,'MM/DD/YYYY'),

log_switches,0)) as "5_days_ago",

sum(decode(day123, to_char(sysdate-4,'MM/DD/YYYY'),

log_switches,0)) as "4_days_ago",

sum(decode(day123, to_char(sysdate-3,'MM/DD/YYYY'),

log_switches,0)) as "3_days_ago",

sum(decode(day123, to_char(sysdate-2,'MM/DD/YYYY'),

log_switches,0)) as "2_days_ago",

sum(decode(day123, to_char(sysdate-1,'MM/DD/YYYY'),

log_switches,0)) as "1_day_ago",

sum(decode(day123, to_char(sysdate,'MM/DD/YYYY'),

log_switches,0)) as "Today"

from (SELECT to_char(first_time,'MM/DD/YYYY') as

day123,to_char(first_time,'HH24') as hour_of_day,count(1)

as log_switches from gv$log_historyGROUP BY to_char(first_time,'MM/DD/YYYY'),

to_char(first_time,'HH24'))

group by hour_of_day

order by 1;

198 Oracle Database Administration for Microsoft SQL Server DBAs

HO 5_days_ago 4_days_ago 3_days_ago 2_days_ago 1_day_ago Today

-- ---------- ---------- ---------- ---------- ---------- -------

00 6 71 6 4 4 6

01 4 81 4 4 6 6

02 4 81 4 4 4 4

03 8 63 8 8 8 8

04 4 76 4 4 4 4

05 4 62 4 4 4 0

06 4 76 4 4 4 0

07 4 83 6 4 4 0

08 4 48 4 4 6 0

09 4 4 4 4 4 0

10 39 4 4 4 4 0

11 77 4 4 4 4 0

12 77 4 4 8 4 0

13 79 8 4 4 4 0

14 10 4 4 4 4 0

15 51 4 4 4 4 0

16 80 4 4 4 4 0

17 83 4 4 4 4 0

18 70 4 4 4 4 0

19 66 4 6 4 6 0

20 81 8 6 8 10 0

21 75 6 6 4 4 0

22 80 6 4 10 12 0

23 78 4 6 6 4 0

24 rows selected.

These results show that five days ago at 10 A.M., there was a significant
increase in log activity. This was due to a change made to the application
that caused more transactions against the database. With an understanding
of what changed, the decision was made to resize the redo logs to handle
the additional load. Resizing was chosen in this example because 12 log
groups are already set up, and the redo logs are not yet that big.

In summary, using an appropriate number of log groups and size for the
redo logs will help you to keep up with the activity of the server, avoiding
the “checkpoint not complete” alert in the alert log.

Datafiles
Oracle datafiles will have a high water mark, and the files can be resized to
only this point to reclaim the space. If you attempt to shrink a file below the
high water mark, the procedure will fail. Here is an example of a query to
get this information:

###assumes that block size is 8k

sqlplus>select

a.tablespace_name,

a.file_name,

a.bytes file_size_in_bytes,

Chapter 7: Database Maintenance 199

(c.block_id+(c.blocks-1)) * 8192 HWM_BYTES,

a.bytes - ((c.block_id+(c.blocks-1)) * 8192) SAVING

from dba_data_files a,

(select file_id,max(block_id) maximum

from dba_extents

group by file_id) b,

dba_extents c

where a.file_id = b.file_id

and c.file_id = b.file_id

and c.block_id = b.maximum

order by 6;

TABLESPACE FILE_NAME FILE_SIZE_IN_BYTES HWM_BYTES SAVING

---------- --- ---------- ----------

USERS /u01/oradata/MMDEV1/USERS01.DBF 10485760 9961472 524288

UNDOTBS1 /u01/oradata/MMDEV1/UNDOTBS01.DBF 41943040 37814272 4128768

SYSTEM /u01/oradata/MMDEV1/SYSTEM01.DBF 754974720 746651648 8323072

SYSAUX /u01/oradata/MMDEV1/SYSAUX01.DBF 92715520 659619840 33095680

To resize a datafile (to be either smaller or larger than its current size),
use the ALTER DATABASE DATAFILE command, as follows:

sqlplus> alter database datafile '/u01/oradata/MMDEV1/users01.dbf' resize 100M;

CAUTION
When resizing a datafile, be careful not to
make it too small. Otherwise, you might just
run out of space much sooner than you
expected.

You can adjust the datafile in OEM. From the Server tab, under the
Storage category, choose Tablespaces. Select a tablespace, and from there
you will be able to edit datafiles, as shown in Figure 7-11. The datafiles are
part of a tablespace, so resizing the datafiles will affect how much space is
available in the tablespace for the database objects.

Tablespace Monitoring
In SQL Server, the datafiles might be created with a fixed size or set to
autogrow. With an autogrow setting, you need to monitor how much disk is
available on the drive. With a fixed size setting, it’s important to monitor
database growth to check whether it is approaching the maximum size.

Oracle tablespaces are created with one or more datafiles. As the database
grows, the tablespaces and datafiles need to be maintained to allow for
the growth. Planning the size of the system tablespaces is recommended.

200 Oracle Database Administration for Microsoft SQL Server DBAs

Not having enough space in SYSTEM and SYSAUX could hang up the database.
Allowing too much growth in the temporary and undo tablespaces could
result in poorly performing queries and transactions, and fill up the file
systems, causing issues with the database.

Oracle datafiles are set to a fixed size or to autoextend. You can monitor
space at the tablespace level in OEM. From the Server tab, under the
Storage category, choose Tablespaces to see a list of tablespaces, as shown
in Figure 7-12.

Selecting the tablespace name drills down into the datafiles that make
up the tablespace (see Figure 7-11). Along with setting the file size, as
discussed in the previous section, you can set alerts and thresholds to
monitor the tablespace usage. The free space available threshold can be a
specific amount or a percentage. The actual size of free space is useful for
very large tablespaces. For example, 20 percent free of a 10GB datafile and
20 percent free of a 2TB datafile may have very different levels of urgency.
The percent of allocated space amount does not take into account autoextend
for the datafiles.

The autoextend setting for datafiles allows the files to grow as needed.
Using autoextend is useful when you do not know how much data is being
loaded. However, as the database becomes more stable or consistent,
setting a size limit is usually better. With unlimited growth on datafiles, the
space on the file systems must be monitored, because filling up the file

Chapter 7: Database Maintenance 201

FIGURE 7-11. Resizing a datafile in OEM

system tends to cause some issues with the entire database, not with just the
tablespace that has run out of space.

Also, a couple of tablespaces could possibly cause some issues if just left to
autoextend. The undo and temporary tablespaces should be sized as needed.
Joins, views, and sorts could take up a lot of the temporary tablespace. Just
as you would look at actions that were using up more space in the tempdb
database on SQL Server, you should investigate the statements running against
the database before adding more space to the temporary tablespace.

When monitoring the tablespaces, it might appear that the temporary
tablespace is completely used, but the space does get reused, just as with
tempdb. The undo tablespace also could appear full, but the new transactions
reuse the space if the old transactions are completed. Resizing the temporary
and undo tablespaces might just open up the database for other issues, without
solving the problem of transactions that are using up the space. One indicator of
problems is when the temporary or undo tablespace is using two or three times
the space used by all of the other tablespaces. When transactions are needing
that much space, examining the queries is a good first step. We will take a
closer look at this in the next chapter.

202 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 7-12. Tablespace listing in OEM

Maintaining the SYSAUX and SYSTEM tablespaces is somewhat easier
than managing the user tablespaces. Placing user objects in either of these
tablespaces is not recommended, and a quick check for user objects that
are not owned by the system users could be run as a scheduled script or
maintenance task. The SYSAUX tablespace has some automatic cleanup
when the retention periods are set for the performance snapshots and other
logs. The SYSTEM tablespace grows as new objects and more datafiles are
added in the database. The initial size of the SYSTEM tablespace is normally
about 500MB to 1GB. With applications that have a significant number of
objects, it is not unusual for the SYSTEM tablespace to grow to 3GB or 4GB.
Filling up the SYSTEM tablespace would not be good, so you should monitor
its growth. You might consider letting SYSTEM grow to a size such as 8GB,
which would give you enough time to resize it if needed.

The following is a sample query that will look at the total space in
a tablespace and how many bytes are still free. It does not consider
autoextend, and it looks only at the permanent tablespaces (excluding the
temporary and undo tablespaces).

sqlplus>select sysdate,a.tablespace_name, sum(a.bytes), b.bytes

from dba_data_files a, (select tablespace_name, sum(bytes) bytes

from dba_free_space

group by tablespace_name) b,

(select tablespace_name

from dba_tablespaces

where contents='PERMANENT') c

where a.tablespace_name = b.tablespace_name

and c.tablespace_name=a.tablespace_name

group by sysdate, a.tablespace_name,b.bytes;

TOTAL FREE

SYSDATE TABLESPACE_NAME SUM(A.BYTES) BYTES

--------- ------------------------------ ------------ ----------

07-APR-10 SYSTEM 754974720 9043968

07-APR-10 SYSAUX 692715520 40042496

07-APR-10 USERS 10485760 589824

Planning and monitoring the growth of your tablespaces could allow for
larger allocations to tablespaces, reducing the need to resize tablespaces.

Error Logs, Alert Logs, and Trace Files
SQL Server error logs cycle through with restart of the server. There is also a
retention policy to keep logs.

Chapter 7: Database Maintenance 203

Oracle alert logs contain information about the status of the database
and error messages. The alert log errors are on the first page of OEM. When
the instance is restarted, the alert log is not cycled to the next log; writing
continues to the current log.

You might consider saving the current log (using operating system
commands) to allow Oracle to write to a new log. You could then run a
purge script against the file system to delete any trace files and logs that are
older than a certain date.

The directories as set by the parameters background_dump_dest,
user_dump_dest, and background_core_dump contain trace files and
log files. In Oracle 11g there is also the diagnostic_dest which can be single
directory for the trace and log files. If there is enough space allocated to the
server to have unlimited files here, not much maintenance needs to be
done. Otherwise, these directories should be purged by days.

Using operating system commands, you can find the files in the dump
destinations, and the mtime sets how many days the files should be
retained.

find "/u01/oracle/product/11.2.0/db_1/admin/orcl/udump"

-name "*.trc" -type f -mtime +15 -exec rm -f {} \;

find "/u01/oracle/product/11.2.0/db_1/admin/orcl/bdump"

-name "*.trc" -type f -mtime +15 -exec rm -f {} \;

find "/u01/oracle/product/11.2.0/db_1/admin/orcl/cdump"

-name "*.trc" -type f -mtime +15 -exec rm -f {} \;

You should clean up the older alert logs as well. The command to do so
might include the date or *.log, depending how the alert log is named
when rotating logs.

Summary
Having a stable and consistent database environment is a primary goal for
any DBA. Having good maintenance plans in place to monitor and fix
pieces of the database before they become issues will help you to achieve
this goal. Developing health checks that start after first creating the database
and continue as the database changes allows you to assess the environment
and keep things running smoothly.

Along with backups, your maintenance plans should include validating
data block consistency and object structures for fragmentation and updated
statistics. Even though the Oracle database has become more automated in

204 Oracle Database Administration for Microsoft SQL Server DBAs

handling statistics and fragmentation, applications and transactions running
against the database might require additional statistics gathering or other
handling.

Maintenance checks can be scheduled in the Oracle Scheduler. You can
create and manage jobs to run health checks and perform maintenance as
necessary.

And what would database maintenance be without monitoring space
and managing all of the files associated with the database? In Oracle, this
means watching database growth and managing the tablespaces. Running
jobs to purge older log and trace files and monitoring the information in the
alert logs are parts of maintaining the files for the database.

Chapter 7: Database Maintenance 205

This page intentionally left blank

CHAPTER
8

Performance
and Tuning

W
e would all like the fastest possible access to the data in
the database. Planning the system should account for how
the system is going to be used and the areas of growth.
This helps determine the initial database instance setup for
best performance. However, just as we talked about in the

previous chapter on maintenance and monitoring, things change. Monitoring
for performance issues and doing the regular maintenance against the database
will keep the database tuned and running faster.

In this chapter, we will look at the ways to do some proactive performance
tuning, as well as how to troubleshoot performance issues that arise. You’ll
see that there are some differences in the areas to check and tools available
in SQL Server and Oracle environments.

Better-Performing Systems
Planning the initial database design, monitoring, and maintenance are the
proactive steps to achieving better-performing systems. This applies to any
database environment. As a DBA, you know that database performance is a
priority, and you make sure the system is running well. The differences
between SQL Server and Oracle systems tend to lie in the areas of the
database that might be more prone to problems and the configurations
available to tune the database for better performance.

Along with the proactive monitoring and tuning for performance, DBAs
need to deal with performance issues that arise. We are all familiar with that
call or e-mail message complaining that the database is slow. These types of
fire drills are always fun, and whatever the cause, troubleshooting the
problem starts with the same question: What do you mean by slow?

■ Is it currently slow, or was it running slowly earlier and is now back
to “normal”?

■ What is running slowly—the application, a query, or something
else?

■ How fast does it normally run?

■ Slow compared to what—yesterday, last night, last month?

■ Is this a new report or a new query that is running slowly?

■ Did something change?

208 Oracle Database Administration for Microsoft SQL Server DBAs

■ Does this normally run at a different time?

■ Is this the case for one user or all users?

■ Have the data volumes changed?

■ Are you performing a normal activity that you do every day at this time?

This list can go on and on, and it’s similar for any database platform.
However, where you start looking first for the issue may vary.

In SQL Server, you can use the Session Monitor and Profiler to see what
might be running now. The first items to check are blocking sessions, then
currently running SQL statements, and then maybe that the objects have the
correct indexes and statistics.

Oracle has a view into the sessions and a way to see the current
statements that are running against the database. Looking at the queries
running and validating that statistics are current on the tables might be first
steps. With the cost-based optimizer, current statistics are important for the
queries to choose the right plan. In OEM alerts, waits are shown with the
alert, and OEM provides a list of top queries running and also shows if any
process is being blocked. In Oracle, blocking normally is checked after
figuring out what is running and validating statistics. This is in the opposite
sequence that you would follow with SQL Server.

For performance tuning, there are differences in what is available in the
SQL Server and Oracle environments. Let’s start with the type of indexes
and how they affect database performance.

Indexes
Indexes exist to help speed up queries. Having the proper columns indexed
can reduce the logical I/Os for queries. However, creating an index to make
one query run faster may not be a good solution. Begin by examining the
SQL statements that are currently being run against the database. If the
query can be adjusted, that would be a logical first step. This is the same for
both SQL Server and Oracle platforms.

There are costs associated with data changes when the indexes are
involved. The maintenance requirements should be considered. The
performance gains of adding the index should be more than the cost of
maintaining the index. Also, too many indexes can add to performance

Chapter 8: Performance and Tuning 209

issues instead of resolving them. Indexes should be used selectively and
their usage monitored.

Index Monitoring
By enabling index monitoring, you can see which indexes are being used in
Oracle. The owner of the index can alter the index to enable monitoring,
and leave monitoring on for a set period. The v$object_usage table will
show whether or not the index is used.

SQLPLUS> alter index IDX1_EMP_DEPT monitoring usage;

Index altered.

SQLPLUS> select empno from emp where deptno=10;

…rows returned…

SQLPLUS> select index_name,used, monitoring

from v$object_usage;

INDEX_NAME USED MONITORING

----------------------------- ------------- --------------

IDX1_EMP_DEPT YES YES

The v$object_usage table has two other columns that show the time
the monitoring was started and stopped. To end the monitoring of the index,
use this statement:

alter index index_name nomonitoring usage

Index monitoring will not track how many times the index is used, but it
does offer a way to find out if there are unused indexes on a table, assuming
you leave monitoring on long enough. Watch out for indexes added only for
month-end or year-end processing, which can appear unused if you don’t
turn on monitoring during that time period.

Index Types
Indexes are definitely a useful tool for improving access to the data in the
database. Several types of indexes are available on both database platforms.
Table 8-1 shows the types of indexes available in SQL Server and Oracle.

Understanding which type of index is being used and how to improve
that index will help in performance tuning. Knowing how the various index
types affect data changes and improve SELECT statements will help you to
decide if the benefits of the index outweigh the costs for putting it in place.

210 Oracle Database Administration for Microsoft SQL Server DBAs

Primary Key Indexes
Creating indexes on primary keys is a good place to start. In SQL Server, it is
typical to create a clustered index for the primary key. The clustered index
organizes the table for efficient access. Clustered indexes even help with the
reorganization of tables when they are rebuilt. But just because this is an
effective practice in SQL Server doesn’t mean that it translates to Oracle
databases.

In Oracle, the primary key index is created for a table when a constraint
is added, and you can either use an existing index or create a new one. The
concept of a clustered index for Oracle corresponds to that of the index-
organized table (IOT). Organizing a table like this would make it fast when
using the primary key for the joins or using just the primary key as the part
of the WHERE clause. If the table is normally searched by other columns
than how the table is organized, creating an IOT might not be the solution.

Here’s how to check if a table is an IOT:

SQLPLUS> select owner, table_name, IOT_TYPE from dba_tables

where IOT_TYPE='IOT';

OWNER TABLE_NAME IOT_TYPE

------------------------------ ----------------- ---------

ACB01 MSTR_TBL IOT

ACB02 WORK_TBL IOT

Chapter 8: Performance and Tuning 211

SQL Server Index Types Oracle Index Types

Unique clustered
Nonunique clustered
Unique Nonclustered
Nonunique nonclustered
Indexed views
Full text
Spatial
Filtered
XML

B-tree
Function-based
Reverse key
Index-organized tables (IOT)
Bitmap
Bitmap join
Compressed
Descending
Partitioned
Domain
Invisible
Intermedia (for LOBs and text)

TABLE 8-1. Index Types in SQL Server and Oracle

If not IOT the column IOT_TYPE is blank

SQLPLUS> select owner, table_name, IOT_TYPE from dba_tables;

OWNER TABLE_NAME IOT_TYPE

------------------------------ ----------------- ---------

. . .

ACB01 MSTR_TBL IOT

ACB01 PRODUCTS

ACB01 SALES

ACB01 WORK_TBL IOT

An IOT_TYPE of NULL means that the table is not an IOT.
In Oracle, it is typical to use b-tree indexes for the primary keys. The

primary key indexes for Oracle are unique and help enforce data integrity,
but they do not need to be clustered. So if using an IOT is faster for access
to a table, why would you use a b-tree index instead?

As an example, consider a table in which the primary key is an ID for the
object or symbol that makes the row unique, but you typically access the
table by the date (perhaps the effective date or load date). You could place
an additional index on the IOT table, but access might not be as fast as it
would be if there were a b-tree index to access the table by date. And then
both indexes must be maintained, which might slow down the updates and
inserts.

Function-Based Indexes
Oracle’s function-based index type can dramatically reduce query time.
In SQL Server, if you need to use a string function or another function to
compare the column in the WHERE clause, the index will not be used.
However, in Oracle you can create function-based indexes with the exact
function to use, so you can use an index instead of a full-table scan.
Function-based indexes can be useful for large tables even with simple
functions like UPPER to do string comparisons.

Example of using a function-based index

SQLPLUS> select employee_name from tbl1

where to_char(hiredate,'MON')='MAY';

Plan

--

SELECT STATEMENT

TABLE ACCESS FULL TBL1

SQLPLUS> create index IDX_TBL1_FUNC

on TBL1(to_char(hiredate,'MON'));

Index created.

212 Oracle Database Administration for Microsoft SQL Server DBAs

SQLPLUS> select employee_name from tbl1

where to_char(hiredate,'MON')='MAY';

Plan

--

SELECT STATEMENT

TABLE ACCESS BY INDEX ROWID TBL1

INDEX RANGE SCAN IDX_TBL1_FUNC

The function-based index can be a composite index with other
columns included in the index. The function that is used needs to match
what is being used in the WHERE clause. For example, if the WHERE
clause has SUBSTR(col1,1,12), the function-based index cannot be
SUBSTR(col1,1,15). User-defined functions can also be used, but if
the function changes, the index might become unusable.

NOTE
Composite indexes will use multiple columns
of the table, with the most selective going first.
In general, limiting the number of columns
used for the index will make the index more
usable. In Oracle, the optimizer may even skip
the first column in a composite index. The skip
scan of the index is probably more efficient
than a full-table scan. This allows you to avoid
creating more indexes to support possible
searches based on the secondary columns of
the indexes.

If the index is not part of the query plan, statistics for the index (and the
table) should be updated.

To use function-based indexes, you need to set the QUERY_REWRITE_
ENABLED=TRUE and QUERY_REWRITE_INTEGRITY=TRUSTED parameters.
The user needs to have permissions to execute any of the user-based functions
and also must be granted the “query rewrite” privilege to be able to create
the index.

As an alternative to having the function-based index, in Oracle Database
11g, you can use a virtual column on the table. The virtual column can be a
calculation or function, which is stored in the table definition. For example,
you might use this type of column to keep the month that is derived from
another date column or a symbol that is created from concatenating some of
the fields or parts of the fields together. The advantage of the virtual column

Chapter 8: Performance and Tuning 213

is that statistics can be gathered for this column. This virtual column can
then be indexed.

Indexes for Views
Views use the indexes on their associated tables to build the information in
the view, but there might be a need for an index for selecting from the view.
SQL Server has indexed views—you create a view, and then create an index
on the view. Oracle has materialized views, which are similar to views but
are a snapshot of the data. They can be a join of one or more tables, and
can be refreshed automatically or on demand. Indexes can be created on
materialized views. For both the SQL Server indexed view and the Oracle
materialized view, the query results are stored, so they require storage
space, unlike a regular view.

The indexed view and materialized view both provide a useful tool to
access expensive joins. SQL Server indexed views are limited in that they
cannot reference another view or subqueries. Oracle materialized views can
have functions and aggregations, along with subqueries and other views,
including self-joins.

Materialized views are great for summarizing information and
aggregating functions to allow this information to be queried faster. Oracle
provides several ways to work with and manage materialized views. They
are key to managing performance in large environments and data
warehouses.

The materialized view log is associated with the master table for the
view to be able to perform fast refreshes. As changes are made to the data in
the master table, they are stored in the materialized view log, and then the
log information is used for the refresh of the materialized view. There can be
only one materialized view log on a table.

Here are a couple of examples of how to create materialized views and
refresh them:

Fast refresh requires a log

SQLPLUS> create materialized view log on scott.emp;

Materialized view log created.

SQLPLUS> create materialized view emp_sal

build immediate

refresh fast on commit

as select empno, sal*1.10

from scott.emp;

Materialized view created.

214 Oracle Database Administration for Microsoft SQL Server DBAs

Complete refresh does not need a log

SQLPLUS>create materialized view dept_sal

build immediate

refresh complete

as select deptno,sum(sal)

from scott.emp

group by deptno;

Materialized view created.

Build deferred will build view later to refresh

SLQPLUS> exec dbms_mview.refresh('dept_sal','C');

Using a materialized view requires setting the same parameters as for
function-based indexes: QUERY_REWRITE_ENABLED=TRUE and QUERY_
REWRITE_INTEGRITY=TRUSTED.

Whether you should use a materialized view in your environment
depends on the performance gains it can provide and the complexity of the
view. A fast or complete refresh time also factors into this decision.

Bitmap Indexes
Bitmap indexes are stored differently than b-tree indexes. Instead of storing
the row ID, a bitmap for each key is used. Because of this, these indexes are
typically smaller in size and are useful for columns that have a low cardinality
(such as a region or marital status column). Bitmap indexes are also good for
read-only tables. They might be more expensive than other types of indexes
for tables in which the data changes.

Bitmap join indexes store the join of two tables. This type of index is
useful in a data warehousing environment and with a star data model
schema, because it will index the smaller table information on the larger
fact table. The row IDs are stored for the corresponding row ID of the joined
table. This is really an extension of the materialized view, and allows for
compression of the index, which is more efficient for storage.

SQLPLUS> create bitmap index idx_sales_prod

on sales(product.name)

from sales, product

where sales.prod_id=product.prod_id;

SQLPLUS> select sales.amount, product.name

from sales,product

where sales.prod_id=product.prod_id

and product.name='Thingy';

Chapter 8: Performance and Tuning 215

Sample output from explain plan

| 0 | SELECT STATEMENT |

| 1 | NESTED LOOPS |

| 2 | NESTED LOOPS |

| 3 | TABLE ACCESS BY INDEX ROWID | SALES

| 4 | BITMAP CONVERSION TO ROWIDS|

|* 5 | BITMAP INDEX SINGLE VALUE | IDX_SALES_PROD

Can also create composite bitmap join indexes

SQLPLUS> create bitmap index idx_sales_prod_2

on sales(product.name,states.name)

from sales, product, states

where sales.prod_id=product.prod_id

and sales.state_id=states.state_id;

Pulls in the data from the state table for sales.

SQLPLUS> select sales.amount, stats.name, product.name

from sales, product, states

where sales.prod_id=product.prod_id

and sales.state_id=states.state_id;

Execution Plan

--

| Id | Operation | Name

| 0 | SELECT STATEMENT |

| 1 | NESTED LOOPS |

| 2 | NESTED LOOPS |

| 3 | NESTED LOOPS

| 4 | TABLE ACCESS BY INDEX ROWID | SALES

| 5 | BITMAP CONVERSION TO ROWIDS|

| 6 | BITMAP INDEX FULL SCAN |

Predicate Information (identified by operation id):

8 - access("SALES"."STATE_ID"="STATES"."STATE_ID")

9 - access("SALES"."PROD_ID"="PRODUCT"."PROD_ID")

The fact table has the index based on the ID being joined and could
have another column in the index as well. In this example, the information
is on the joins of the IDs for the other tables. The columns from the other
tables are included in the index so that the query doesn’t need to go back to
the other tables to get the information; it can use the bitmap join index.

Reverse Key Indexes
Reverse key indexes are a nice little trick to spread out index blocks for a
sequenced column. With a sequence, there can be thousands of records that

216 Oracle Database Administration for Microsoft SQL Server DBAs

all start with the same number. Reversing the numbers will allow for the
index to have different beginning values and use different blocks in the
index b-tree structure. This is especially useful for RAC environments. When
you are doing inserts, the reverse index will minimize the concurrency on
the index blocks.

To create a reverse key index

SQLPLUS> create index on idx_prod_id on product(prod_id) reverse;

To alter an index to remove the reverse key

SQLPLUS> alter index idx_prod_id rebuild noreverse;

To alter an index to a reverse key

SQLPLUS> alter index idx_prod_id rebuild reverse;

Partitioned Indexes
Partitioning is a useful way to tune a large database environment. Oracle
offers options for partitioning table, such as LIST, HASH, RANGE, and
COMPOSITE. The partition key is how the table is partitioned. You can
create partitioned indexes for these tables. The index can be a local
partitioned index based on the partition key and set up for each partition.
Local indexes are easier to manage because they are handled with each
partition, as partitions might be added, dropped, or merged.

Example: EMP table partitioned by deptno

Create local partitioned index

SQLPLUS> create index idx_emp_local on emp (empno) local;

Global partitioned indexes are indexes that can have a different partition
key than the table. Maintenance against the partitioned table could mark the
global partitioned index unusable.

Same emp table partitioning, create global partitioned index

SQLPLUS> create index idx_emp_global on emp(empno);

Partition maintenance with global index

SQLPLUS> alter table drop partition P1 update global indexes;

Understanding how local and global indexes could become unusable
and how they benefit by accessing the data on each partition is helpful
when looking at the performance of large tables. (It never seems to be the
small tables that cause the performance issues.)

Chapter 8: Performance and Tuning 217

Invisible Indexes
Invisible indexes are hidden from the optimizer, but not from being
maintained, so as rows are changed, so is the index. I am sure you are
thinking that seems backwards. The optimizer is looking for good indexes to
use to create the best query plan, so why make an index invisible?

One reason to use an invisible index is to test the performance of the
queries without the index. Suppose you have found that the index on a large
table is not being used. Creation of indexes on large tables can take a lot of
time, so you want to be sure you don’t need the index before you drop it.
You can alter the index to be invisible. Then if you find the index is needed,
you can alter it to be visible again, rather than needing to re-create it.

SQLPLUS> alter index idx_prod_date invisible;

Index altered.

SQLPLUS> select index_name, visibility

from dba_indexes where index_name='IDX_PROD_DATE';

INDEX_NAME VISIBILITY

--- -----------------

IDX_PROD_DATE INVISIBLE

SQLPLUS> alter index idx_prod_date visible;

Index altered.

You can also use an invisible index to see if an index would be
beneficial. Create an index and make it invisible. At the session level, alter
the session:

alter session set OPTIMIZER_USE_INVISIBLE_INDEXES=TRUE

This will allow the session to see the index, and you can even gather
statistics for the index in this session. At this point, the index should not
affect any statements other than the ones in the current session. The query
plan can be run against the query to validate that the index will be used and
confirm if there are performance benefits from using the index. The index
then can be made visible, as in the preceding example. If it does start to
drag down the performance of the insert and update statements, the index
can be made invisible again, and then dropped.

NOTE
Rebuilding an index will make the index
visible.

218 Oracle Database Administration for Microsoft SQL Server DBAs

So, it turns out that invisible indexes do make sense. They allow you to
monitor index usage as well as test if an index would be useful.

Locking
Holding locks on a database object will also cause another concurrent
session to wait. Waits to acquire a lock or perform a transaction could even
cause blocking, depending on the locks required to perform a select or
transaction.

Both SQL Server and Oracle have exclusive modes for modifying data
and shared lock modes for sharing resources among multiple users. The
locks are held for the duration of the transaction, and the first statement to
acquire the lock will release it after the first transaction is committed or
rolled back. The exclusive lock is obtained at the row level for all of the
rows of the insert, update, or delete operation.

SQL Server offers different levels of isolation to help minimize some of
the locking that happens with shared and exclusive locks. In Chapter 2, we
discussed how Oracle doesn’t need to provide dirty reads just to avoid a
nonblocking read of the data. Oracle automatically uses the lowest level of
lock to provide data concurrency and consistency.

Oracle also allows the users to lock data manually. A user can issue a
SELECT FOR UPDATE statement. This is when the lock needs to be more
restrictive, but then can be converted to row locking as the rows are
updated. This can cause problems when long-running SELECT statements
put locks on the table longer than necessary. A worst-case scenario would
be a user issuing a SELECT FOR UPDATE statement and then going for
lunch without issuing the UPDATE statement or a commit, causing several
other sessions to be blocked (and sending a red flag to the DBA to kill that
process).

A deadlock is when two or more users are waiting to access data locked
by each other. When the deadlock occurs, Oracle chooses a victim and
rolls back the transaction, and allows the other process to continue. Oracle
does not escalate locks that could possibly cause more deadlocks. Code that
overrides Oracle handling of the transactions and locking tends to cause
some of its own issues with deadlocks and blocking.

Chapter 8: Performance and Tuning 219

Tables 8-2 and 8-3 summarize the lock types available in SQL Server
and Oracle.

Reads through regular SELECT statements are least likely to interfere
with other SQL statements. INSERT, UPDATE, and DELETE statements need
an exclusive lock only on the row of data that is changing. The queries used
as part of the transaction statement can have shared locks on the data being
read.

Because of how Oracle handles locking, blocking is not always the first
area that I check for performance, unless I know that the application is
trying to explicitly handle the locking outside Oracle. Access outside of the
application, such as using query tools for ad hoc queries, could open a
transaction, and since the flow of the query is waiting on the user, the
Oracle database will also wait on the user and hold onto the locks. So, if an
UPDATE, INSERT, or DELETE statement is open in such a tool, there is no
autocommit that will release the locks. If the user does not issue a commit
or rollback, this would leave an uncommitted transaction open, which
could block others.

220 Oracle Database Administration for Microsoft SQL Server DBAs

Lock Type Description

Shared Reads but can’t modify

Update Combination of shared and exclusive locks

Exclusive Writes; only one transaction can hold the lock at a time

Intent Notifies another transaction that a lock will be needed;
prevents other transactions from acquiring the lock

Schema Locks to modify object structures

Bulk update Bulk operations using TABLOCK

TABLE 8-2. SQL Server Lock Types

Current Activity Views
Oracle has various system views that provide current session and wait
information. These are very helpful for performance tuning and
troubleshooting.

Chapter 8: Performance and Tuning 221

Lock Type Description

Row No limit. Readers do not wait for writers, and
writers do not wait for readers. If attempting to
update the same row at the same time, writers will
wait for writers.

Table DML statements—INSERT, UPDATE, DELETE, and
SELECT FOR UPDATE. Table locks prevent DDL
and structure changes while the transaction is
occurring.

Row share table Lock with intent to update data. This is the least
restrictive lock and allows for other transactions to
have the same row share lock.

Row exclusive table Changes being made—INSERT, UPDATE, DELETE.
This is slightly more restrictive than a row share
lock. It allows other transactions on the same table.

Share table Locks the table for updates. It allows reads of the
table but no other writes.

Share row exclusive
table

Only one transaction at a time can acquire a
shared row lock on a table.

Exclusive table Most restrictive lock. Only one transaction can
have this lock on the table.

DDL Dictionary lock for the structure of the objects,
indexes, table, and view definitions.

Internal lock and
latch

Lock on datafiles and internal structures.

TABLE 8-3. Oracle Locking Types

Current Sessions
Obviously, when there are performance issues, it is necessary to take a look
at the current sessions on the database. There is no sp_who, sp_who2, or
sp_lock in Oracle, but there is the v$session view. This view shows
which sessions are active. You can join this with another view to see which
queries a session is running.

SQLPLUS> select username, schemaname,osuser, lockwait,status

from v$session

where status='ACTIVE' and username not in ('SYS','SYSTEM');

USERNAME SCHEMANAME OSUSER LOCKWAIT STATUS

---------------------------------- ----------------------------

DBSNMP DBSNMP oracle (null) ACTIVE

MMALCHER MMALCHER mmalcher (null) ACTIVE

USER1 APP1 user1 (null) ACTIVE

Lockwait will be a non-null value when waiting on a resource

such as a lock or a latch

Another view to see this would be v$session_wait

To see a SQL statement from one of the users currently active

SQLPLUS> select sa.sql_text

from v$sqlarea sa, v$sqltext st, v$session s

where sa.sql_id=st.sql_id

and s.sql_hash_value=st.hash_value and s.username='SCOTT';

SQL_TEXT

INSERT INTO log_messages (id,service,processed_date, log_date)

VALUES(:"SYS_B_0",:"SYS_B_1",TO_TIMESTAMP(:"SYS_B_2",:"SYS_B_3"),

:"SYS_B_4",TO_DATE(:"SYS_B_5",:"SYS_B_6"))

INSERT INTO log_messages (id,service,processed_date,log_date)

VALUES(:"SYS_B_0",:"SYS_B_1",TO_TIMESTAMP(:"SYS_B_2",:"SYS_B_3"),

:"SYS_B_4",TO_DATE(:"SYS_B_5",:"SYS_B_6"))

To see what locks are current on an object

SQLPLUS> select session_id, owner, type, mode_held,

mode_requested

from dba_ddl_locks;

SESSION_ID OWNER TYPE MODE_HELD MODE_REQUESTED

----------- ----------- ----------------- --------- --------------

871 YELL1 Table/Procedure/Type Null None

627 SNAP Table/Procedure/Type Null None

284 SNAP Table/Procedure/Type Null None

286 ADB Table/Procedure/Type Null None

357 ADB 18 Null None

222 Oracle Database Administration for Microsoft SQL Server DBAs

Activity Monitors
In OEM, under the Performance tab, you’ll find additional monitoring links
for looking at the top activity, instance activity, blocking sessions, and
currently running SQL, as shown in Figure 8-1. There are statistics that are
gathered as part of the Automatic Workload Repository to provide reports
for analyzing the health of the database and looking for performance issues.
The historical views are based on snapshots that have been gathered. (The
Automatic Workload Repository is discussed a little later in the chapter.)
Viewing these areas of activity can help you to troubleshoot performance
issues by pointing to an area that might be responding slowly or be
experiencing an overload, such as too many physical I/Os or hard parsing of
SQL statements.

Figure 8-2 shows the Top Activity section. This has information about the
resources that are being used, top SQL statements, and top sessions in the
database. This can be the current information or information from another
point in time. Viewing historical information is useful when a user drops by
in the afternoon to say that he was having issues in the morning, although
everything is fine now. From here, you can drill down to the SQL statements
and look into SQL tuning. Drilling down on the session ID or SQL hash
value can get back to the SQL being run. (Remember the SQL_hash_
value from the v$session table from the example under the Current
Sessions section?)

The Instance Activity section shows values since the database has been
up and running or back until the last snapshot that is available. By default,
these snapshots are kept seven days. Figure 8-3 has a chart of instance
activity about cursors, transactions, physical and logical I/O, and other
activity. It is useful to see the workload on the database server and look at
what is currently running, as well as the snapshots.

Chapter 8: Performance and Tuning 223

FIGURE 8-1. OEM monitoring links

224 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 8-2. OEM Top Activity section

FIGURE 8-3. OEM Instance Activity section

Waits
Another area to check in Oracle for performance issues is wait events. This
information will be available in the OEM views we just looked at, and also
available to query in the v$ views such as v$session_wait. Here are a
few examples of quick queries to check for current database wait events:

SQLPLUS> select sid, event, p1text, wait_time , p1, p2

from v$session_wait;

SID EVENT P1TEXT WAIT_TIME P1 P2

------- ---------------- ----------- ------------ --------------

378 SQL*Net message from client 0 1952673792 1

385 SQL*Net message from client 0 1413697536 1

431 buffer busy waits component 429 3 123

p1 and p2 will provide additional information about

the p1text so if it is an i/o wait, would have data file

or could be about a latch type or object

SQLPLUS> select segment_name, segment_type

from dba_extents where file_id = 3

and 123 between (block_id and block_id + blocks -1);

SEGMENT_NAME SEGMENT_TYPE

----------------------------- ------------

IDX2_SALES_PROD INDEX

SQLPLUS> select event, total_waits, time_waited

from v$system_event;

EVENT TOTAL_WAITS TIME_WAITED

----------------------------- ----------- -----------

db file sequential read 3591611 2309586

SQL*Net message from client 3950929 1892

log file sync 182955 1134406

Some waits give clues to performance issues; others are normal events
that are to be expected. For example, a db file sequential read event is a
block read by indexes. So the indexes are being used instead of full-table
scans. On the other hand, db file scattered read waits could indicate the use
of full-table scans. However, you should gather more information if you see
that the waits are too high because of I/O issues.

The SQL*Net message from client event is the wait for the client to tell
the database server to do something. It is just waiting for instructions, and
really isn’t contributing to issues—you can’t blame the database for being
slow because a session was waiting for an action while the user went to get
coffee. There might be applications that open sessions and then just wait for
responses before getting data from the database.

Chapter 8: Performance and Tuning 225

We’ll look at some other ways to check waits in the “Automatic
Workload Repository” section later in this chapter.

SQL Plans
As a DBA, you know that tuning SQL statements is a good place to start
improving performance. If changes can be made to the code or available
indexes, that is normally the quickest way to get results.

With SQL Server, you can get the execution plan from SQL Server
Management Studio or by enabling showplan_all. This will provide
information about the plan for which order to join the tables and the
indexes to use.

Oracle plans are available through the OEM tools, and they can be
traced through SQL*Plus as well. The plans can be saved in the plan table
or just seen in the output from the trace.

Viewing Explain Plans
Let’s first look at a quick way to use SQL*Plus to see the explain plan for
a query.

To see query results and the execution plan set autotrace

SQLPLUS> set autotrace on explain

SQLPLUS> select empno from emp where deptno=10;

EMPNO

7782

7839

7934

Execution Plan

--

Plan hash value: 3956160932

| Id | Operation | Name | Rows |Cost (%CPU)| Time

| 0 | SELECT STATEMENT | | 5 | 3 (0)| 00:00:01

|* 1 | TABLE ACCESS FULL| EMP | 5 | 3 (0)| 00:00:01

Predicate Information (identified by operation id):

1 - filter("DEPTNO"=10)

Traceonly will not execute the query but just

show the plan

226 Oracle Database Administration for Microsoft SQL Server DBAs

SQLPLUS> set autotrace traceonly explain

SQLPLUS> select empno from emp where deptno=10;

Execution Plan

--

Plan hash value: 3956160932

--

| Id | Operation | Name | Rows | Cost (%CPU)| Time

| 0 | SELECT STATEMENT | | 5 | 3 (0)| 00:00:01

|* 1 | TABLE ACCESS FULL| EMP | 5 | 3 (0)| 00:00:01

--

Predicate Information (identified by operation id):

1 - filter("DEPTNO"=10)

Only difference was that the rows were not returned

Notice the plan hash is the same

Add index to see new plan

SQLPLUS> create index idx_emp1 on emp(deptno);

Index created.

SQLPLUS> select empno from emp where deptno=10;

Execution Plan

--

Plan hash value: 306890541 ## NEW PLAN VALUE

--

| Id | Operation | Name | Rows | Cost (%CPU)| Time

--

| 0 | SELECT STATEMENT | | 5 | 2 (0)| 00:00:01

| 1 | TABLE ACCESS BY

INDEX ROWID| EMP | 5 | 2 (0)| 00:00:01

|* 2 | INDEX RANGE SCAN | IDX_EMP| 5 | 1 (0)| 00:00:01

--

Predicate Information (identified by operation id):

2 - access("DEPTNO"=10)

The plan table, if it does not already exist, can be created from the SQL
provided in ORACLE_HOME/rdbms/admin/utlxplan.sql.

To put the execution plan into the plan table for viewing

SQLPLUS> explain plan set statement_id='my_example' for

select * from claim where claim_id=100;

Explained.

To see the results

SQLPLUS> select * from table(dbms_xplan.display);

Chapter 8: Performance and Tuning 227

PLAN_TABLE_OUTPUT

--

Plan hash value: 3956160932

| Id | Operation | Name | Rows |Cost (%CPU)| Time

--

| 0 | SELECT STATEMENT | | 5 | 3 (0)| 00:00:01

|* 1 | TABLE ACCESS FULL|CLAIM | 5 | 3 (0)| 00:00:01

--

You can also see the explain plan through the SQL Developer GUI. In
Figure 8-4, the icons to get the explain plan are circled.

Tuning Using Explain Plans
In the explain plan, look for how the tables and indexes are accessed. Also
see if the indexes being used are the ones expected and if there are other
options that would be better.

228 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 8-4. Viewing an explain plan in SQL Developer

The explain plan will show the method used to access indexes:

■ A unique scan is normally seen with an unique index.

■ A range scan is used when multiple values could be returned for the
nonunique index.

■ A full or fast full scan of the index may be performed when more
data is being accessed or it is just more efficient to scan all the data
instead of sorting for the range scan.

For tables, the quickest access method is by row ID. Seeing full-table
scans might mean that you can use indexes to improve performance. How
the tables are being joined also affects the query. The methods for joining
tables include sort merge join, nested loops, and hash join.

The cost-based optimizer (CBO) pulls in the details about the system and
objects to create execution plans. The CBO evaluates the details, and then it
does transformation of the statements for complex queries. In performing
these steps, it also calculates the cost to choose the access paths, join orders,
and join methods. The cost of the query is included in the explain plan, which
can help you with tuning and knowing which plan might be better.

The object statistics are needed for the CBO to be able to create the best
execution plan. Incomplete or stale information could cause the optimizer
to use a full-table scan or an inefficient method to access indexes. To make
the CBO’s job easier, you should ensure that the queries are coded the best
they can be, the statistics are updated, and the required indexes are present.

NOTE
Earlier versions of Oracle used a rule-based
optimizer (RBO). Then in the next couple of
Oracle versions, you could choose between the
RBO and CBO, and even let Oracle choose the
best method. There were even times when
deleting statistics from a table or using the RULE
hint (no longer available with Oracle Database
11g) would improve performance. Now, with
the automated statistics gathering and the use of
the information that is available, as well as being
able to do some transformations of the queries,
the CBO has gotten smarter and can create
efficient query plans.

Chapter 8: Performance and Tuning 229

You can use hints to suggest another path or direction for the CBO. Here
are a couple examples:

Hint to just append the rows to the end on an insert

SQLPLUS> insert /*+ APPEND */ into table1 select …

Hint to use an index

SQLPLUS> select /*+ INDEX(a) */ col1, col2 from a where …

However, you should be careful about using hints. They might get you a
performance boost for the current plan, but upgrades and other information
might come along, and the CBO could have better information about a
faster plan to use.

The CBO definitely needs valid statistics and information, and there are
database parameters that can help to decide the best execution plans.

Statistics for Tables and Indexes
Because of the CBO, statistics is one of the first areas that I validate when
looking at performance. Do the index and table have statistics? Are they
current statistics? Do the row counts in the statistics match the current row
count? The row counts could point to a load happening after or during the
time statistics are being generated. The CBO uses the information available,
and if the information is not current or valid, that will not lead to good
execution plans.

SQLPLUS> select num_rows, last_analyzed

from dba_tab_statistics

where table_name='SALES';

NUM_ROWS LAST_ANALYZED

------------------ ----------------

1490 15-MAR-10

SQLPLUS> select count(1) from sales;

COUNT(1)

3919232

Actual row count and number of rows in statistics different

gathering statistics could be useful here.

You may consider making adjustments to the sample size and the
frequency of the statistics collection. The statistics can also be adjusted to
improve plans and methods of scans and access. Specific values can be set

230 Oracle Database Administration for Microsoft SQL Server DBAs

for an index such that it appears that there are more or less distinct values or
a different number of rows.

SQLPLUS> exec dbms_stats.set_column_stats('SCHEMA1','TAB1',

'COL1', DISTCNT => 8, NO_INVALIDATE => FALSE);

PL/SQL procedure successfully completed.

Once set the statistics can be locked

Now lock statistics

SQLPLUS> exec dbms_stats.lock_table_stats('SCHEMA1','TAB1');

PL/SQL procedure successfully completed.

Or if didn’t help just unlock and gather the stats again

SQLPLUS> exec dbms_stats.unlock_table_stats('SCHEMA1','TAB1');

PL/SQL procedure successfully completed.

SQLPLUS> exec dbms_stats.gather_table_stats('SCHEMA1','TAB1',

CASCADE => TRUE);

PL/SQL procedure successfully completed.

Or restore the statistics (schema, table and timestamp)

SQLPLUS> exec dbms_stats.restore_table_stats('SCHEMA1',

'TAB1','12-MAR-10 06.40.33.900462 PM -05:00');

PL/SQL procedure successfully completed.

Number of rows might be useful if a table is loaded as a

batch process and starts off with zero each time.

SQLPLUS> exec dbms_stats.set_table_stats('SCHEMA1','TAB2',

NUMROWS => 4000000, NO_INVALIDATE => FALSE);

Taking a look in the area of table and index statistics is well worth the
time when it comes to tuning current statements. You do need to be careful
to avoid overdoing adjustments or trying to outsmart the CBO. However,
when other options are exhausted, a gentle nudge in one direction can help
improve the execution of the queries.

Database Parameters
Not to say that these are the only parameters to look at when tuning queries,
but Figure 8-5 has the list of database parameters that are classified in the
optimizer area. For most parameters, the Help column includes a link to
specific information about the parameter’s default value and use.

Chapter 8: Performance and Tuning 231

Depending on the type of database that is running, several of these
parameters may be useful for tuning, including the following:

■ The STAR_TRANSFORMATION_ENABLED parameter would probably
be set to TRUE if the database has more of a data warehousing
purpose, rather than is just used as a transactional database.

■ The OPTIMIZER_INDEX_COST_ADJ parameter can be adjusted to
make the optimizer more willing to use indexes. The setting is a
percentage to adjust the cost of using indexes in the query plans. For
example, reducing the value of this parameter from 100 to 50 would
cut the cost of using an index in half.

■ The OPTIMIZER_MODE parameter chooses the approach for the
database instance. FIRST_ROWS will find a best plan to return the
first set of rows faster. ALL_ROWS will develop the plan to return all
of the values of the query in the session.

232 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 8-5. Optimizer parameters

Adjusting the parameters can help change how the optimizer behaves,
and can also give the database instance more resources, especially when
increasing the memory parameters to allocate more memory to the system.
Some of the default settings might be valid for simple database environments.
The type of database environment and how it is being used in general should
be considered when adjusting these parameters. Additional information
from the snapshot reports and advisors that run in the database can help
determine the appropriate settings and configurations for some of the
parameters.

Automatic Workload Repository
The Automatic Workload Repository (AWR) contains significant information
that can be helpful when it comes to tuning the database environment. The
database takes regular snapshots to get information about the database
settings and the workload in the environment, and stores them in the AWR
metadata tables (WRM$_) and historical statistics tables (WRH$_).

In Oracle Database 11g, these reports and information are part of the
Oracle Diagnostic Pack, which provides automated gathering of the
information and ways to pull the information out of the workload and
history tables for review and evaluation of performance issues. You can also
create baseline templates to be able to compare information. Baselines are
especially useful when you find that the database is not performing as it did
before, and you need to understand what might have changed.

AWR Reports
AWR reports have information about the different waits. The reports list the
top waits, providing a quick way to determine the areas that might be of
interest or where to start looking for bottlenecks.

The AWR reports can be viewed in OEM, as shown in Figure 8-6. The
reports are based on the snapshot times. If different intervals are needed,
different reports can be generated.

In OEM, you can view the details in the list or see the reports in HTML
format. The time period, activity on the server, and some information about

Chapter 8: Performance and Tuning 233

the load on the server are summarized first. Figure 8-7 shows this
information at the top of the report, as well as the wait information, which
appears a bit further down in the report.

The first item listed in the wait information is DB CPU at the top. In the
example in Figure 8-7, no waits are listed; it shows just the percent of the
database time for CPU. I would suspect since there is no waiting for CPU,
the time is just the regular activity against the database and what is needed
for CPU.

As noted earlier in the chapter, the db file scattered read wait event
points to full-table scans being done. If you see these waits, check the top
SQL statements to validate query plans and consider placing indexes on the
appropriate tables.

234 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 8-6. AWR reports available for viewing in OEM

Chapter 8: Performance and Tuning 235

FIGURE 8-7. An AWR report in OEM

Active Session History View
The Active Session History (ASH) view has information about waits and
events based on the sessions that are occurring in the database. The
following example generates a list of how many sessions had waits for
an event.

SQLPLUS> select session_id||','||session_serial# SID, n.name,

wait_time, time_waited

from v$active_session_history a, v$event_name n

where n.event# = a.event#

SID NAME WAIT_TIME TIME_WAITED

---------- ------------------------ ----------- -----------

170,3 db file sequential read 0 28852

321,1 reliable message 0 977530

286,33215 db file parallel write 0 1108

240,25727 library cache lock 0 185

…

##plenty more events returned, so just a sampling

The TIME_WAITED column shows the actual time waited for the event,
and will be updated when the event is completed. The WAIT_TIME column
information matches up with the v$session_wait view. When the wait
time is shown as zero, then the session is currently waiting; nonzero values
indicate the session’s last wait time.

The information about events and waits can be overwhelming. In tuning
the database, you should focus on the top wait events, especially if the
information gathered is during a period when performance was an issue.
Getting information about which SQL statements were running and what
Oracle was waiting on will help with this troubleshooting.

Also be aware that some waits are just routine in the system, such as the
reliable message wait listed in the example of the ASH view. This is an idle
wait event, meaning that it is just waiting for work—something to do—and
not waiting on a resource.

Library Cache for SQL Statements
In the wait events listed in the sample AWR report and ASH view, you saw a
couple events pointing to the library cache. The library cache is part of the
shared pool and is the area in memory that handles SQL statements, PL/SQL
packages, and procedures. This can be considered similar to the SQL Server
procedure cache.

236 Oracle Database Administration for Microsoft SQL Server DBAs

Oracle will first look in the library cache for code that is to be executed
against the database, so there is no additional load into memory if the code
is already there. The plans are also available there, so it is beneficial to be
able to reuse SQL that is available in the library cache.

The following wait events appeared in the previous examples:

■ The library cache lock event is when two users want to compile the
same piece of code.

■ The library cache load lock event is a wait for the lock to be able to
load an object into the library cache.

The AWR reports show a library cache hit ratio to indicate how much of
the code is found in the cache and available for reuse.

One reason for not finding code in the library cache is that the cache is
too small to hold all of the statements; if there are a lot of ad hoc statements,
it might be hard to hold all of the statements. Another reason could be due
to the use of literal values instead of bind variables in the code.

SQLPLUS> select …

… where employee_name='George';

SQLPLUS> select …

… where employee_name=:empname;

The code with the variable will be getting the information passed in from
a variable in the package instead of just using the string value that is passed
in. Using bind variables is good practice and will help with management of
the library cache.

There is also a parameter that can help make code seem similar enough
that it can be reused: CURSOR_SHARING. This parameter can be set to one
of the following:

■ EXACT This makes the code match exactly. Using this value will
result in either a large library cache/shared pool or a very low hit
ratio of the library cache if literal values are used in the code and
can’t be matched up.

■ FORCE This will force a substitute of a literal into a bind variable to
reuse the code.

■ SIMILAR This will allow Oracle to decide what to bind, so that
code can be reused.

Chapter 8: Performance and Tuning 237

Other memory areas should also be examined for tuning and performance,
but the library cache is important because it is related to the code running on
the database. If you are able to design this code to use bind variables, or know
how to take advantage of some other parameters to force it to behave in a more
efficient manner, the database will perform better.

Summary
Tuning the performance of the database is a multiple-step process. First,
you’ll need to ask questions to figure out where the performance issue is
and what the issue actually means. Several Oracle tools allow you to gather
information and see history and current statistics, giving you more details
regarding what is running and how the server is behaving.

The areas to check first in an Oracle database are different from those in
a SQL Server database. Since locks and blocking are handled differently in
Oracle, this area is further down on the list that it is in SQL Server. Indexes,
statistics, and waits are the top areas to look at in an Oracle system to validate
that the database has what it needs as input to create good execution plans
and that it is not waiting on resources while the code is running.

Oracle provides several different index types. You may be able to make
code that may be less than optimal more efficient and access data faster,
such as through function-based indexes. Also, indexes that can skip the first
column may allow for fewer indexes to be created and maintained, which
might benefit data change performance. Since the Oracle CBO takes into
account the different costs of the indexes available and statistical information,
it is important to have good indexes and up-to-date statistics on the tables
and indexes.

The system views that provide session and wait information are valuable
in the tuning process, and the summary reports from the AWR provide a
quick glance at the information. Using these tools, you can drill down into
an issue to see if there are bottlenecks or code that needs to be tuned.

238 Oracle Database Administration for Microsoft SQL Server DBAs

CHAPTER
9

PL/SQL

T
he extended programming language for SQL Server is Transact-
SQL (T-SQL). For Oracle, the programming language is PL/SQL.
These programming languages provide additional capabilities
beyond those available with standard SQL. They are used to
develop applications and a way of accessing data. However,

using the database programming languages is not just for developers. Besides
doing code reviews, there are plenty of times for DBAs to use these languages
to write procedures for monitoring databases, performing maintenance, and
moving or loading data.

The database programming languages have some similar characteristics,
but each takes advantage of some features that are platform-specific. For
both, you define the variables and code to be executed, as well as pass in
values and return values. They both provide ways to handle errors and
process standard SQL statements. You can create triggers, stored procedures,
and functions. Oracle also has packages that group functions and procedures
together.

In previous chapters, you have seen several examples of SQL statements
to look at the data in an Oracle database or change it in some way, as well
as examples to execute PL/SQL system-supplied packages and procedures,
such as DBMS_STATS and DBMS_SCHEDULER. This chapter provides more
details about using PL/SQL. If you’re migrating from SQL Server to Oracle,
you’ll probably need to spend some time converting the T-SQL procedures
to PL/SQL procedures.

Database Coding Practices
PL/SQL is a programming language with close integration to the Oracle
database. Some of the standard coding practices used with T-SQL don’t
translate to PL/SQL, and might even seem backward. However, some of the
concepts correspond, although the coding will not be exactly the same. For
example, the concept of SQL Server INSTEAD OF triggers are found in
Oracle’s BEFORE triggers. Table 9-1 shows some examples of commonly
used programming tools in SQL Server and Oracle. As we look at PL/SQL
examples throughout this chapter, you will see how these are used in blocks
of code.

240 Oracle Database Administration for Microsoft SQL Server DBAs

Chapter 9: PL/SQL 241

Usage SQL Server Tool Oracle Tool

Data type
association

User-defined types %TYPE or %ROWTYPE allows for
using a column or row to have the
variable be the same type

Select SELECT 'test'

Can select without
from clause

SELECT 'test' FROM dual;

Dummy table to use with FROM

Row ID Can generate an ID
column on select
using functions

Row ID is automatically created as
a pseudo column

Unique
identifier

Identity Sequences

If this, then
this …

CASE DECODE or CASE

Set operators EXISTS and NOT
EXISTS

INTERSECT and MINUS

Cursors For looking at one row
at a time; tend to be
slower way to process

Implicit cursors used for data
processing; explicit use of cursors
to manipulate the data of a
SELECT statement

Delimiters Statements continue
when previous
statement is completed
without specific
delimiter

Use of ; to delimit statements

Create If exists, drop, then
create

Create or replace

Alter Alters stored
procedure code if
exists

Create or replace

TABLE 9-1. Common Code Usage in SQL Server and Oracle

The SQL Developer tool provides a way to develop, unit test, and handle
version control. In SQL Developer, you can set up basic frameworks for the
database objects.

Statements generated by SQL Developer when creating new object

Create procedure with two parameters passed in

CREATE PROCEDURE EXAMPLE_PROC1

(PARAM1 IN VARCHAR2 , PARAM2 IN NUMBER

) AS

BEGIN

NULL;

END EXAMPLE_PROC1

;

/

Create trigger on insert

CREATE TRIGGER EXAMPLE_TRIGGER1

BEFORE INSERT ON EMP

REFERENCING OLD AS OLD NEW AS NEW

FOR EACH ROW

WHEN (DEPTNO=10)

BEGIN

NULL;

END;

/

As noted in Table 9-1, a semicolon (;) is the delimiter that marks the end
of the block. The forward slash (/) says to execute the code in SQL*Plus.

NOTE
SQL Developer and some of the other tools
have ways to execute statements with a run or
run script statement, which will run the code
without the forward slash. However, in
SQL*Plus, the / is required to have the code
run, like saying “Go.”

In SQL Server, you get an identity column, but Oracle doesn’t have an
identity type. Insert triggers are useful for generating IDs for primary keys.
Using a sequence, you can retrieve the next value for a unique number to
be used as an ID. You could also use a procedure for inserts to pull in the

242 Oracle Database Administration for Microsoft SQL Server DBAs

next value from the sequence without a trigger. This could be used on every
insert, as long as the application does not rely on ad hoc queries for inserts.

Trigger for sequences and populating identity column

create sequence order_id_seq start with 1 increment 1;

create or replace trigger trg_i_orders before insert

for each row

begin

select order_id_seq.nextval

into :new.order_id from dual;

end;

/

You cannot use a role to grant permissions to the objects in a procedure
that the procedure owner is using in that code. Permissions for the objects
that are being accessed and used in the code must be explicitly granted to
the procedure owner.

Also worth mentioning is a difference in create and replace operations
with the database programming languages. In SQL Server, the object is
dropped first and then re-created, normally after first checking if the object
exists. In Oracle, there is no need to check first, because the create or
replace command will create the object if it is not there or replace the
existing object with the new code. This works for stored procedures,
packages, triggers, and views.

Packages and Package Bodies
Along with the usual objects of triggers, functions, and procedures, Oracle
also has packages and package bodies. The package is the collection of the
definitions of the procedures and functions that are found in the package
body. Variables, constants, and cursors are also declared in the package
definition, and can be used in the subprograms found in the package body.
Figure 9-1 shows an example of using SQL Developer to create the
framework for a package.

Using subprograms makes the code more modular, so it is easier to
manage changes to programs and global variables. Since the whole package
is loaded into memory, execution becomes faster; it’s not necessary to
recompile because of dependencies on other programs. Error handling can
also be defined at the package level for all of the subprograms to use, which
makes programming more consistent and avoids repeating the same steps in
several different procedures.

Chapter 9: PL/SQL 243

Here is an example of defining a package with package body, with error
handling (discussed later in this chapter) and variable declarations:

create or replace package modify_product_info

as

TYPE ProductRec is record (prod_id number,longname varchar2(50));

cursor desc_prod return ProductRec;

procedure upd_prod_name(v_prod_id in varchar2);

procedure ins_new_prod

(v_prod_id in varchar2,v_longname in varchar2);

function get_prod_id(v_prod_name in varchar2) RETURN ProductRec;

procedure raise_app_error(v_error_code in varchar2,

v_text in varchar2, v_name1 in varchar2, v_value1 in varchar2);

END modify_product_info;

/

create or replace package body modify_product_info

as

cursor desc_prod return ProductRec is

select prod_id, prod_name from orders;

244 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 9-1. Creating a new package in SQL Developer

procedure upd_prod_name(v_prod_id in number)

is

var_count number;

BEGIN

. . .

update products set prod_name = …

. . .

EXCEPTION

WHEN OTHERS

THEN

Rollback;

raise_app_error(v_error_code => 'UNANTICIPATED-ERROR',

v_text => 'Details…',v_name1 => 'TABLE_NAME');

END upd_prod_name;

function get_prod_id(v_prod_name in varchar2)

RETURN ProductRec

is

var_prod_id prod_id_type%TYPE;

BEGIN

. . .

select prod_id into var_prod_id

from orders

where . . .

. . .

return var_prod_id;

EXCEPTION

WHEN NO_DATA_FOUND

raise_app_error(v_error_code => 'NO DATA…'

. . .

END get_prod_id;

. . .

Define other procedures and functions

. . .

END modify_product_info;

This example shows the flow of the package and package body
definition. As you can see, the functions and procedures are defined just
with the input and output procedures in the package. The functions and
stored procedures are then listed again in the body of the package with the
details of the procedure and statements to be processed. If the package
header has a procedure listed, the body must contain the definition. Of
course, the code is filled in with processing, conditional statements, data
processing, and so on.

Chapter 9: PL/SQL 245

Triggers
In both SQL Server and Oracle environments, triggers are available on
logon, object changes, and data changes. Triggers can be fired for events
such as startup or shutdown and when inserts, updates, and deletes are
issued. The concept of the trigger is the same in both Oracle and SQL
Server, but there are some differences in the types available and when they
execute. Table 9-2 summarizes the types of triggers available on both
platforms.

The triggers on the database system events, such as startup, shutdown,
and server message events, can be used for auditing or changing session
parameters.

##Audit logins via sqlplus into a table

create or replace trigger

after logon on database

begin

insert into logon_from_sqlplus (user_name,logon_time)

select username,sysdate from v$session where program='sqlplus.exe';

end;

/

##Trigger to prevent dropping of objects

create or replace trigger drop_not_allowed

before drop on database

begin

RAISE_APPLICATION_ERROR(-20001,'Drop table not allowed');

end;

/

246 Oracle Database Administration for Microsoft SQL Server DBAs

SQL Server Triggers Oracle Triggers

DML triggers
After
Instead of

DML triggers
Before and after
Instead of
Statement and row

DDL triggers DDL triggers

Event triggers, system and user Event triggers, system and user

TABLE 9-2. SQL Server and Oracle Trigger Types

##Alter the session to have a different parameter setting

create or replace trigger

after logon on database

begin

execute immediate 'alter session set optimizer_mode=FIRST_ROWS';

end;

/

The EXECUTE IMMEDIATE statement executes a SQL statement that
can’t be executed normally in a block of code, such as ALTER SESSION,
ALTER TABLE, and other object changes. Dynamic SQL statements can
also be built and then executed using the EXECUTE IMMEDIATE statement
in the code of triggers, procedures, or functions.

. . .

sql_stmt varchar2(300);

var_col varchar2(30);

begin

. . .

select column_name into var_col from user_tab_cols

where table_name=v_table and column_name=v_column;

Sql_stmt := 'update '||v_table|| ' set price = :1 where '

|| var_col || ' =:2';

execute immediate sql_stmt USING amout, column_value;

. . .

Triggers on tables that fire on update, insert, and delete offer some
different options in Oracle than in SQL Server. In SQL Server, the triggers
fire after the change, or they can do something instead of the action. Oracle
triggers have the option of executing before or after, and they can be fired
for each row that is changed or once for the whole statement. So, if a delete
is run against the table, the statement-level trigger will fire once for the
whole delete, which would be good for an audit record. The row-level
trigger is useful for inserting the data that is being changed into another
table, for example.

The BEFORE trigger is useful for validating the data and checking that the
change should be performed. Being able to execute these actions before
the change occurs could prevent rollbacks, and even disallow changes if
an incorrect role or application is attempting to make them. The BEFORE
trigger also allows for the adjustment of values or determination of values
for another column, and could help maintain referential relationships. For
use with row-level triggers, the variables :NEW and :OLD refer to the new

Chapter 9: PL/SQL 247

and existing values for the columns, respectively. With BEFORE triggers, the
old values cannot be updated, but the new values can change in the trigger
body and be the “new” new values. BEFORE triggers are used on tables;
they cannot be used on views.

AFTER and BEFORE triggers are used in combination with the statement
and row triggers, which create the four types of triggers for actions on tables.

Trigger examples

create or replace trigger trg_u_customers

after update on customers

for each row

begin

update orders set customer_name=:new.customer_name

where custumer_namer=:old.customer_name;

end;

/

Trigger example to combine update, insert and deletes

create or replace trigger trg_iud_customers

after insert or update or delete on customers

for each row

declare

v_order_date date;

BEGIN

v_order_date := sysdate;

if INSERTING THEN

INSERT into orders

values(order_seq.nextval, :new.customer_id,

order_details,v_order_date);

-- other possible inserts or code

end if;

if DELETING THEN

INSERT into customer_hist_tbl

values(:old.customer_id,:old.customer_name,

:old_cust_details);

end if;

if UPDATING ('CUSTOMER_NAME') THEN

update customer_hist_tbl set

customer_name=:old.customer_name

where customer_id=:new.customer_id;

end if;

END;

/

248 Oracle Database Administration for Microsoft SQL Server DBAs

Updates and Conditions
Before getting into the transaction part of the procedures and other useful
information about PL/SQL, let’s take a brief look at UPDATE statements,
which tend to be very different in SQL Server and Oracle. The transition
from doing SQL Server updates to handling them in Oracle is not easy. It
may take several tries to not think in SQL Server syntax and get the correct
statement for an Oracle update. Table 9-3 shows a couple of examples.

One difference is that in Oracle, you can group the columns being
updated to set more than one column equal to the SELECT statement.
Another is that instead of needing to list the table again for joins, Oracle can
use the table being updated to join against in the query. To test the SQL
Server UPDATE statement, you can just run the query after the FROM to

Chapter 9: PL/SQL 249

Update SQL Server Example Oracle Example

Update
one
column

UPDATE titles SET
ytd_sales = t.ytd_sales +
s.qty
FROM titles t, sales s

WHERE t.title_id =
s.title_id

UPDATE titles t
SET ytd_sales=
(SELECT t.ytd_sales + s.qty
FROM sales s
WHERE t.title_id=s.title_id)

Update
multiple
columns

UPDATE orders SET
Customer_id=c.customer_id,
item_id=p.item_id
FROM (SELECT c.customer_id,
p.item_id
FROM products p, customers c,
orders o
WHERE c.order_id=o.order_id
and
o.product_name=p.product_
name)
WHERE order_id=1234

UPDATE orders o SET
(customer_id, item_id)=
(SELECT c.customer_
id,p.item_id
FROM products p, customers c
WHERE c.order_id=o.order_id
and o.product_nsme=
p.product_name)
WHERE o.order_id=1234

TABLE 9-3. UPDATE Statements in SQL Server and Oracle

know which values you are getting. To test the update in Oracle, you can
pull the update table into the query.

SQLPLUS> SELECT c.customer_id,p.item_id

FROM products p, customers c, orders o

WHERE c.order_id=o.order_id and o.product_nsme=p.product_name)

SQLPLUS> UPDATE orders o SET (customer_id, item_id) =

(select c.customer_id,p.item_id FROM products p, customers c

WHERE c.order_id=o.order_id and o.product_nsme=p.product_name)

WHERE o.order_id=1234;

It does take some practice to get used to writing the updates differently.
Other statements that select with joins translate fairly easily. Also, INSERT
and DELETE statements are similar.

Since we are looking at some of the SQL statements here before putting
them into the PL/SQL code, another function worth mentioning is DECODE.
Like CASE (which Oracle also has), DECODE is useful for conditions.

SQLPLUS> select DECODE(deptno, 10, 'Technology',20,'HR', 30,

'Accounting','General') from departments;

start with the value and if it matches then substitute the NEXT value

the last value is the default which is optional

Ranges and not equal values are probably easier to define in a CASE
statement, but DECODE is useful for other situations. For example, you might
use it for date or number comparisons:

SQLPLUS> select DECODE(date1-date2)-abs(date1-date2), 0,

'Date 1 is greater than Date 2,

'Otherwise Date 2 is greater than Date 1')

from list_date_table;

These examples might be useful in developing your code and writing
more effective PL/SQL.

Transactions
Transactions are a main reason for writing procedures, and planning transaction
size, commits, and rollback points are part of good procedures. Transactions
that are too big will cause issues like filling up log space or blocking in SQL
Server, and possibly fill up the undo tablespace in Oracle. Transactions that

250 Oracle Database Administration for Microsoft SQL Server DBAs

are too small can have too many commits and checkpoints, which can slow
down processing.

The starting point for a transaction is defining the blocks of code to be
executed, where to roll back or commit, and then working in this framework
to define transaction size. SQL Server has BEGIN TRAN, and then you can
COMMIT or ROLLBACK TRAN after completion of the statement.

Beginning a Transaction
Oracle has a BEGIN statement to start the transaction, which works just like
BEGIN TRAN in SQL Server. For marking a point to be able to commit or
roll back to, you use SAVEPOINT transaction_name. This will start the
transaction either in a block of code or a stored procedure, or even in a
SQL*Plus session before executing a SQL statement.

SQLPLUS> begin

insert into emp values('Mandy',10);

end;

/

PL/SQL procedure successfully completed.

SQLPLUS> select * from emp;

EMP_NAME EMP_DEPT

-------------------- ----------

Mandy 10

SQLPLUS> begin

insert into emp values('Emily',20);

insert into emp values('Gabrielle',50);

savepoint savepoint_before_delete;

delete emp where emp_dept=10;

end;

/

PL/SQL procedure successfully completed.

SQLPLUS> select * from emp;

EMP_NAME EMP_DEPT

-------------------- ----------

Emily 20

Gabrielle 50

SQLPLUS> rollback to savepoint_before_delete;

Rollback complete.

SQLPLUS> select * from emp;

Chapter 9: PL/SQL 251

EMP_NAME EMP_DEPT

-------------------- ----------

Mandy 10

Emily 20

Gabrielle 50

SQLPLUS> rollback;

Rollback complete.

SQLPLUS> select * from emp;

no rows selected

This example uses an anonymous block of code, rather than a stored
procedure. If you were to put this statement in a stored procedure, after
executing the stored procedure, if you did not have the commits in the
stored procedure, you could still roll back after the execution of the
procedure.

SQLPLUS> create procedure INS_EMP

as

begin

insert into emp values('Mandy',10);

insert into emp values('Emily',20);

savepoint before_delete;

delete from emp where emp_dept=20;

end;

/

Procedure created.

SQLPLUS> select * from emp;

no rows selected

SQLPLUS> exec INS_EMP;

PL/SQL procedure successfully completed.

SQLPLUS> select * from emp;

EMP_NAME EMP_DEPT

-------------------- ----------

Mandy 10

SQLPLUS> rollback to before_delete;

Rollback complete.

SQLPLUS> select * from emp;

EMP_NAME EMP_DEPT

-------------------- ----------

Mandy 10

Emily 20

SQLPLUS> commit;

Commit complete.

SQLPLUS> rollback;

252 Oracle Database Administration for Microsoft SQL Server DBAs

Rollback complete.

Rollback ineffective because commit already done.

SQLPLUS> select * from emp;

EMP_NAME EMP_DEPT

-------------------- ----------

Mandy 10

Emily 20

Add commit to stored procedure

SQLPLUS> create or replace procedure INS_EMP

as

begin

insert into emp values('Mandy',10);

insert into emp values('Emily',20);

savepoint before_delete;

delete from emp where emp_dept=20;

commit;

end;

/

Procedure created

SQLPLUS> exec ins_emp;

PL/SQL procedure successfully completed.

SQLPLUS> select * from emp;

EMP_NAME EMP_DEPT

-------------------- ----------

Mandy 10

commit part of the stored procedure so rollback

to a savepoint will error out

SQLPLUS> rollback to before_delete;

rollback to before_delete

*

ERROR at line 1:

ORA-01086: savepoint 'BEFORE_DELETE' never established

As you can see from the examples, in the same session without a
commit, rollbacks are possible to the beginning of the statement or to the
savepoints.

Defining Commits
With the transaction savepoints in place, you now need to confirm the
changes and commit them. The transaction size is important, as noted
earlier. You do not want commits every record; even every 500 can be too
small. Locking is less of a concern with commit points in Oracle.

Chapter 9: PL/SQL 253

If looping through the data that is being processed can be validated, then
a bulk of the updates can be committed or rolled back as a group in the
transaction. The raising of errors in the procedure will also allow for rollbacks
in the error handling, as discussed later in this chapter.

Commits should be put into the code as needed. It should not be
expected that executing another procedure will automatically commit, or
that a child procedure will commit automatically when completed. When
changing tables and performing DDL statements with transactions in the
same session, a commit does happen before and after the structure change.
So, if you did some transactions, and then did an ALTER TABLE or
CREATE INDEX, the changes would be committed.

Example loop to commit every 10000

declare

loop_num number :=0;

cursor c_products is

select item_id from products;

begin

for i in c_products

loop

update products set prod_num = prod_num + 2000

where item_id = i.item_id;

loop_num := loop_num + 1;

if mod(loop_num, 10000) = 0 THEN

COMMIT;

end if;

end loop;

commit;

end;

This example can be modified to have a parameter passed in to adjust
the commit value, or if it’s part of a package, it can have a global variable
defined for the number of rows to commit at a time.

Notice that the example loop first gathers the IDs to be updated in a
cursor. Next, let’s look at cursor processing in Oracle.

Cursor Processing
In SQL Server, because of the locking and processing of transactions, bulk
transactions are normally the way to go. Looping through cursors is not
normally the most efficient way to process transactions. However, in
Oracle, implicit and explicit cursors are used to process transactions.

254 Oracle Database Administration for Microsoft SQL Server DBAs

Implicit cursors are used automatically to process SELECT, UPDATE,
INSERT, and DELETE statements. If you want to perform some other action
with each row that is being processed, you will need to define an explicit
cursor. Explicit cursors can be very useful in handling transactions that
require additional work for the data or for handling the commit point size.

NOTE
SELECT INTO, which retrieves one row of
data, also uses an implicit cursor. If there is
more than one record returned with the
SELECT INTO, an error is raised for handling
of TOO_MANY_ROWS or NO_DATA_FOUND, as
discussed in the “Error Handling” section later
in this chapter.

The Oracle cursor works in a similar manner to a temporary table in SQL
Server. The cursor pulls out the data set that is to be worked with and uses
that in the rest of the code. It’s true that SQL Server also has cursors, which
can be declared and opened, and the next record can be fetched and then
closed. But behind the scenes, SQL Server is handling this in a temporary
table. With Oracle’s version, we skip to the temporary table. And keep in
mind that Oracle may already be using implicit cursors.

With a cursor, several attributes are useful in processing the rows:
%NOTFOUND, %FOUND, %ROWCOUNT, and %ISOPEN. The %NOTFOUND
attribute is good for error handling of the cursor to check if data is even
returned in the SELECT operation. The cursor could be open for processing
as long as new values are found or while the cursor stays open and hasn’t
been explicitly closed.

DECLARE

CURSOR c_emp_rec IS

select emp_id, emp_name from emp

where emp_dept = var_in_dept_id;

BEGIN

IF NOT c_emp_rec%ISOPEN

THEN

OPEN c_emp_rec;

END IF;

--- Do stuff

. . .

END;

Chapter 9: PL/SQL 255

BULK COLLECT or FOR loops can be used for cursor processing when
you have an expected value of the set of results for the cursor or a manageable
set of data.

DECLARE

TYPE dept_list IS VARRAY of varchar2(50);

v_dept_list dept_list;

BEGIN

select dept_name

BULK COLLECT INTO v_dept_list

from departments;

FOR i IN 1 .. v_dept_list.COUNT

LOOP

-- Do stuff with department names

END LOOP;

END;

Another cursor type is a REF CURSOR. This is a cursor variable that can
be defined with different queries at runtime. Instead of just declaring a cursor
as a SELECT statement, a datatype is defined as a REF CURSOR, and then
can be associated with a variable. The SELECT statement can even be put
together in a variable and then be used with the cursor.

SQLPLUS> create or replace procedure products_query (

var_prod_id product.prod_id%TYPE,

var_prod_name product.name%TYPE)

IS

prod_refcur SYS_REFCURSOR;

v_prod_id product.prod_id%TYPE;

v_prod_name product.name%TYPE;

v_stmt_sql varchar2(300);

BEGIN

v_stmt_sql := 'SELECT prod_id, name from product where ' ||

'prod_id = :productid and prod = :prodname';

OPEN prod_refcur FOR v_stmt_sql USING var_prod_id, var_prod_name;

LOOP

FETCH prod_refcur INTO v_prod_id, v_prod_name;

EXIT WHEN prod_refcur%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(v_prod_id || ' ' || v_prod_name);

END LOOP;

CLOSE prod_refcur;

END;

/

256 Oracle Database Administration for Microsoft SQL Server DBAs

Procedure created.

To see the output from DBMS_OUTPUT for example purposes

SQLPLUS> set serveroutput on

SQLPLUS> exec product_query(4,'Product 2');

4 Product 2

PL/SQL procedure successfully completed.

The cursor in the example can be set to another SELECT statement as
long as the cursor was closed first. Using a variable to build the SELECT
statement gives you a lot of flexibility in the queries that are in the cursor.
For example, in application packages, instead of just outputting the
information, values can be updated or used for comparison.

Processing with FORALL
With a PL/SQL FORALL loop, you can collect data and perform insert,
update, or delete operations.

Create sample table of months

SQLPLUS> create table forall_months (

id NUMBER,

description VARCHAR2(50));

Table created.

Insert some data for example

SQLPLUS> INSERT INTO forall_months VALUES (1, 'JAN');

1 row created.

SQLPLUS> INSERT INTO forall_months VALUES (2, 'FEB');

1 row created.

SQLPLUS> INSERT INTO forall_months VALUES (3, 'MAR');

1 row created.

. . .

SQLPLUS> COMMIT;

Commit complete.

Create procedure that uses FORALL loop to collect

the data and update it.

SQLPLUS> create or replace procedure update_with_year

AS

TYPE t_forall_months_tab IS TABLE OF forall_months%ROWTYPE;

l_tab t_forall_months_tab;

BEGIN

SELECT *

BULK COLLECT INTO l_tab

FROM forall_months;

Chapter 9: PL/SQL 257

FOR indx IN l_tab.first .. l_tab.last LOOP

l_tab(indx).description := l_tab(indx).description||

' 2010 Information';

END LOOP;

FORALL indx IN l_tab.first .. l_tab.last

UPDATE forall_months

SET description = l_tab(indx).description

WHERE id = l_tab(indx).id;

COMMIT;

END;

/

Procedure created.

Execute procedure and look at the data.

SQLPLUS> exec update_with_year;

PL/SQL procedure successfully completed.

SQLPLUS> SELECT * FROM forall_months;

ID DESCRIPTION

---------- ---------------------------------

1 JAN 2010 Information

2 FEB 2010 Information

3 MAR 2010 Information

4 APR 2010 Information

5 MAY 2010 Information

6 JUN 2010 Information

7 JUL 2010 Information

8 AUG 2010 Information

9 SEP 2010 Information

10 OCT 2010 Information

11 NOV 2010 Information

12 DEC 2010 Information

12 rows selected.

Functions
A function in Oracle is the same thing as it is in SQL Server: a program to
return some value. In general, the functions in Oracle are scalar-valued
functions. They return a value to what called the function. In contrast,
stored procedures do not return anything. Table 9-4 summarizes function
types in SQL Server and Oracle.

Coding functions is similar to creating procedures. Functions can take
input parameters and handle errors, but they always return a value. Here is

258 Oracle Database Administration for Microsoft SQL Server DBAs

an example of a simple function that takes in some parameters and returns
a value:

SQLPLUS> create or replace function

get_customer_name(var_cust_id in number)

return varchar2

v_cust_name varchar2(40);

as

BEGIN

SELECT cust_name into v_cust_name

from customers where cust_id = var_cust_id;

return v_cust_name;

END;

/

You can write code to modify and manipulate the values as needed or
pull information from other tables.

Oracle provides multiple system-defined functions for working with
values, dates, and characters. Instead of the SQL Server functions of CAST
and CONVERT, Oracle has TO_ functions: TO_DATE, TO_CHAR, and TO_
NUMBER. These allow for formatting and converting a datatype to another
type. The following demonstrates some of the system-defined functions.

SQLPLUS> select amount from sales

where sales_date >= TO_DATE('05/01/2010','MM/DD/YYYY');

SQLPLUS> select TO_CHAR(sysdate,'YYYYMMDD:HH24:MI') from dual;

20100501:21:23 ## Now a character string

Add 2 months to a date

SQLPLUS> SQL> select add_months(sysdate,2) from dual;

ADD_MONTH

14-JUL-10

Chapter 9: PL/SQL 259

SQL Server Functions Oracle Functions

System- and user-defined functions System- and user-defined functions

Table-valued functions Pipelined table functions

Scalar-valued functions Functions

TABLE 9-4. Function Types in SQL Server and Oracle

Find the first occurrence of some characters

SQLPLUS> select INSTR('Michelle','ich') from dual;

INSTR('MICHELLE','ICH')

2

Replace character with another

SQLPLUS> select replace('Gig Grown Gear','G','B') from dual;

REPLACE('GIGGR

Big Brown Bear

Replace characters and remove spaces

SQLPLUS> select replace(replace('Gig Grown Gear','G','B'),' ','')

from dual;

REPLACE(REPL

BigBrownBear

Substitute a value for NULLs

SQLPLUS> select sales_state,NLV(amount,0) from sales;

STATE_ID AMOUNT

---------- ----------

IL 3000

WI 4000

MN 6520

IN 0

IA 789

MO 0

. . .

Handling CASE

SQLPLUS> select UPPER('Michelle'), LOWER('MicHelle') from dual;

----------------------- ---------------------

MICHELLE michelle

Functions can be used to do comparisons or change data. As discussed
in Chapter 8, function-based indexes improve performance when using
these types of functions to access tables. Even user-defined functions can be
used in indexes.

The pipelined table functions are used to return a collection that can be
queried in the same way as a table.

first create the needed types

SQLPLUS> create type emp_row_type as object (

empname varchar2(20),

empid number,

deptid number,

status varchar2(10));

/

260 Oracle Database Administration for Microsoft SQL Server DBAs

Type created.

create type emp_table_type as table of emp;

/

Type created.

SQLPLUS> create or replace function get_all_names (

p_empname in varchar2,

p_empid in number,

p_deptid in number,

p_status varchar2)

RETURN emp_table_type as

v_tab emp_table_type := emp_table_type();

BEGIN

for cur in (select ename,empno,deptno,job from emp2

where hiredate < sysdate - 1)

LOOP

v_tab.extend;

v_tab(v_tab.last) := emp_row_type

(cur.ename,cur.empno,cur.deptno,cur.job);

END LOOP;

return v_tab;

end;

/

Function created.

Oracle Database 11g has a result cache for functions. Return values can
be cached to reduce the time needed to get the data out of the function. The
following shows the basic structure for defining a function to use the result
cache.

create or replace function get_product (p_in in NUMBER)

return varchar2

result_cache

as

. . .

BEGIN

. . . . function code

END;

/

The optional clause RELIES_ON will invalidate the cache if the
dependent objects are modified. Oracle Database 11g Release 2 uses
RELIES_ON by default, so it will automatically track dependencies and
invalidate the cached results when necessary. This way, the cache will
continue to return the correct result set.

Chapter 9: PL/SQL 261

Debugging Procedures
and Unit Testing
Procedures are made up of the functions, transactions, and cursors we
have been discussing in this chapter. They are also part of the packages.
Understanding how to write stored procedures is important for a DBA.
Understanding how to review procedures and find the good and the bad
in them may be even more important.

When you’re experiencing problems with procedures, check their
permissions on objects. Also check for the dreaded missing semicolon
somewhere. These are quick areas to check, and in a small stored
procedure, they might be easy to spot.

Privileges needed for running in debug mode for PL/SQL are “Debug any
procedure” and “Debug connect session.” Figure 9-2 shows an example of
compiling a procedure in debug mode in SQL Developer. Clicking an error
message shown here will take you to the line in the code that is causing the issue.

262 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 9-2. Debugging procedures in SQL Developer

Breakpoints can also be set to walk through the procedures to validate
code and variables. Another way to get output throughout the procedure to
see what is happening is to use DBMS_OUTPUT.PUT_LINE to output a
statement, value, or step in the procedure.

SQL Developer also has unit testing functionality. Test plans can be set
up as an unit test repository that is created in the database. You can seed
some data and pass in parameters from tables to do the testing. To set up a
repository for unit testing or to connect to an existing repository, select the
Unit Test option from the Tools menu, as shown in Figure 9-3. Create a new
repository if one is not yet available. SYSDBA permissions are required to
create a new repository, but users can be added with lesser permissions to
run unit tests and create the test plans.

Figure 9-4 shows the first step in creating a unit test using the wizard. All
of the packages, procedures, and functions are listed and available for
testing. Other objects can be pulled in for using data or as part of the test in
later steps.

Chapter 9: PL/SQL 263

FIGURE 9-3. Setting up a unit testing repository in SQL Developer

Error Handling
With error handling, if something in a procedure fails, it goes to the routine
for handling that exception. In SQL Server, the TRY CATCH block can be used
for error handling. This is almost like wrapping the code in a transaction
with a BEGIN TRY and then executing some code. If errors come up, it
goes to the BEGIN CATCH.

BEGIN TRY

. (T-SQL Code

END TRY

BEGIN CATCH

……. (Error handling code)

END CATCH

264 Oracle Database Administration for Microsoft SQL Server DBAs

FIGURE 9-4. Creating a unit test in SQL Developer

With PL/SQL’s exception handling, the errors that are raised can be user-
or system-defined.

DECLARE

........... (variables defined)

BEGIN

........... (Blocks of code)

EXCEPTION

WHEN exception_name THEN

............(Exception handling code)

END;

The error functions in SQL Server and Oracle provide information about
the error or failure, as shown in Table 9-5. Oracle’s SQLCODE function
returns an error number. SQLERRM returns a message.

Exceptions do not cause DML statements to roll back unless this happens
by default without an exception handler routine. The exception handler
routine would need to handle commits and rollbacks depending on the
failure. Within the exception handler, there might be a separate commit for
inserting into an error log. Using savepoints is a good way to handle the
rollbacks, so this logging of errors does not become part of the transaction.
Autonomous transactions are another way to handle this. Autonomous
transactions are changes made with a block of code that can be saved or
reversed without affecting the outer or main transaction.

Chapter 9: PL/SQL 265

SQL Server Error Functions Oracle Error Functions

ERROR_NUMBER()

ERROR_SEVERITY()

ERROR_STATE()

ERROR_PROCEDURE()

ERROR_LINE()

ERROR_MESSAGE()

SQLCODE

SQLERRM

TABLE 9-5. Error Functions in SQL Server and Oracle

Let’s take a look at a couple of examples of exception handling.

EXCEPTION

WHEN NO_DATA_FOUND THEN

v_msg := 'Record not found' || TO_CHAR(v_id);

v_err := SQLCODE;

v_prog := 'get product';

insert into errlog

values(v_err,v_msg, v_prog, sysdate);

Error Handling Packages
You can create a package to call your error procedures. Using a standard
package makes it easier to have error handling at the end of each procedure
and provides a centralized place to gather the failure information.

Create a table to hold the error information

SQLPLUS> create table errlog (

errcode integer,

errmsg varchar2(4000),

prog_action varchar2(300),

created_on date,

created_by varchar2(30));

Table created.

Create package with procedures for handling errors

SQLPLUS> create or replace package errlogs

IS

c_table constant NUMBER :=1;

PROCEDURE handle (

errcode IN NUMBER := NULL,

errmsg IN VARCHAR2 := NULL,

logerr IN BOOLEAN := TRUE,

reraise IN BOOLEAN := FALSE);

PROCEDURE raise (errcode IN NUMBER := NULL,

errmsg IN VARCHAR2 := NULL, prog_action IN VARCHAR2);

PROCEDURE log (errcode IN NUMBER := NULL,

errmsg IN VARCHAR2 := NULL, prog_action IN VARCHAR2);

END;

/

CREATE OR REPLACE PACKAGE BODY errlogs

IS

g_target NUMBER := c_table;

PROCEDURE handle (

errcode IN NUMBER := NULL, errmsg IN VARCHAR2 := NULL,

prog_action IN VARCHAR2 := NULL, logerr IN BOOLEAN := TRUE,

reraise IN BOOLEAN := FALSE)

266 Oracle Database Administration for Microsoft SQL Server DBAs

IS

BEGIN

IF logerr

THEN

log (errcode, errmsg, prog_action);

END IF;

IF reraise

THEN

errlogs.raise (errcode, errmsg, prog_action);

END IF;

END;

PROCEDURE raise (

errcode IN PLS_INTEGER := NULL, errmsg IN VARCHAR2 := NULL,

prog_action IN VARCHAR2 := NULL) IS

l_errcode PLS_INTEGER := NVL (errcode, SQLCODE);

l_errmsg VARCHAR2(1000) := NVL (errmsg, SQLERRM);

l_progact VARCHAR2(300) := NVL(prog_action,'Default Action');

BEGIN

IF l_errcode BETWEEN -20999 AND -20000

THEN

raise_application_error (l_errcode, l_errmsg);

ELSIF l_errcode != 0

THEN

EXECUTE IMMEDIATE

'DECLARE myexc EXCEPTION; ' ||

' PRAGMA EXCEPTION_INIT (myexc, ' ||

TO_CHAR (err_in) || ');' ||

'BEGIN RAISE myexc; END;';

END IF;

END;

PROCEDURE log (

errcode IN PLS_INTEGER := NULL,

errmsg IN VARCHAR2 := NULL) IS

PRAGMA AUTONOMOUS_TRANSACTION;

l_sqlcode pls_integer := NVL (errcode, SQLCODE);

l_sqlerrm VARCHAR2(1000) := NVL (errmsg, SQLERRM);

BEGIN

INSERT INTO errlog

(errcode, errmsg, prog_action, created_on, created_by)

VALUES (l_sqlcode,l_sqlerrm,l_progact,SYSDATE,USER);

COMMIT;

EXCEPTION

WHEN OTHERS

THEN ROLLBACK;

END;

/

Chapter 9: PL/SQL 267

This package can be used in the exception handling of any procedure.
The call to the package passes in the needed parameters, including information
about what procedure was running, to put details in the error log.

SQLPLUS> create or replace procedure testing_errors

as

procedure_name varchar2(30) := 'testing_errors';

BEGIN

. . .

EXCEPTION

WHEN OTHERS

errlogs.handle(SQLCODE,SQLERRM,procedure_name);

END;

/

Expanding on the error handling could then allow for different logs to be
captured in a table or even a file. Rollback and commit information can be
handled in the executing procedure, and then the error capture in the same
error package for all procedures, to maintain consistency.

Standard Error Messages
PL/SQL can raise user error messages that can be passed along to the
application for handling on the application side as well. Also, application
errors can be raised to pass the information to the application.

The standard Oracle exceptions can be associated with a user-defined
application error. You can also have other data or changes raise user-
defined application errors.

Raised errors can be used in a trigger to disallow updates to a table:

raise_application_error(-20002,'Updates not allowed on this table');

If there is a check on a value, the procedure could raise an error stating
that the value is not allowed or needs to be in a different range:

raise_application_error(-20001,'Salary not in correct range for department');

You can pass through additional information about the values of the
columns or any of the variables in the procedure.

When standard Oracle messages come through, different information
can be passed through to the application:

raise_application_error(-20004,'No Data Found, values not in table');

268 Oracle Database Administration for Microsoft SQL Server DBAs

Here is a partial list of standard exceptions:

■ NO_DATA_FOUND

■ VALUE_ERROR

■ OTHERS

■ INVALID_CURSOR

■ INVALID_NUMBER

■ CASE_NOT_FOUND

■ TOO_MANY_ROWS

■ ROWTYPE_MISMATCH

Instead of having the exception handler looking at WHEN OTHERS, a
different set of steps can be coded for each of these exceptions.

EXCEPTION

WHEN exception1 THEN -- handler for exception1

sequence_of_statements1

WHEN exception2 THEN -- another handler for exception2

sequence_of_statements2

...

WHEN OTHERS THEN -- optional handler for all other errors

sequence_of_statements3

END;

Another example with the raise application

EXCEPTION

WHEN TOO_MANY_ROWS THEN

rollback to savepoint sales1;

errlogs.handle(SQLCODE,SQLERRM,'Sales_records');

raise_application_error(-20001,'Query return more rows

than expected.');

WHEN NO_DATA_FOUND THEN

errlogs.handle(SQLCODE,SQLERRM,'customer_info');

raise_application_error(-20002,

'Data not available for this customer');

WHEN OTHERS THEN

errlogs.handle(SQLCODE,SQLERRM,'Oh No!');

raise_application_error(-20003,'Unknow error details in log');

END;

Chapter 9: PL/SQL 269

Using DBMS Packages
System packages can be used in user packages as long as the user has
permissions. SQL Server has several system procedures and extended
procedures that are used in the same way as the Oracle packages.

We have already looked at DBMS_SCHEDULER and DBMS_STATS in
previous chapters. The following are a few other packages you might
consider using:

■ DBMS_OUTPUT is useful for seeing what is running in a stored
procedure. It sends output to the screen.

■ DBMS_METADATA is useful for getting the definitions of the
objects.

■ DBMS_REDEFINITION offers a way to rebuild a table online.

■ DBMS_SQL is used to create dynamic SQL in PL/SQL.

Here’s an example of using the DBMS_METADATA package:

SQLPLUS> set long 200000 pages 0 lines 131

SQLPLUS> select dbms_metadata.get_ddl('TABLE','SALES') from dual;

CREATE TABLE "MMDEV"."SALES"

("SALES_ID" NUMBER NOT NULL ENABLE,

"PROD_ID" NUMBER,

"STATE_ID" NUMBER,

"SALE_DATE" DATE,

"CUSTOMER_ID" NUMBER,

"REGION_ID" NUMBER,

"AMOUNT" NUMBER,

CONSTRAINT "SALES_PK" PRIMARY KEY ("SALES_ID")

USING INDEX PCTFREE 10 INITRANS 2 MAXTRANS 255

COMPUTE STATISTICS STORAGE(INITIAL 65536 NEXT 1048576

MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0

FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)

TABLESPACE "USERS" ENABLE,

CONSTRAINT "SALES_PRODUCT_FK1" FOREIGN KEY ("STATE_ID")

REFERENCES "MMDEV"."STATES" ("STATE_ID") ENABLE)

PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255

NOCOMPRESS LOGGING STORAGE(INITIAL 65536 NEXT 1048576

MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0

FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)

TABLESPACE "USERS"

270 Oracle Database Administration for Microsoft SQL Server DBAs

There are many more useful packages, including several to help monitor
databases and get details. Because of this access, permissions need to be
granted carefully.

Summary
PL/SQL is an extremely useful database programming language, which you
can use to develop robust applications as well as run maintenance tasks and
monitor databases. This chapter presented examples of how to use PL/SQL
to build packages, procedures, functions, and triggers. We looked at some
of the ways to process data through cursors, the syntax for updates, and
other differences between the database programming languages. As you can
see, there is plenty of fun to have with PL/SQL!

The processing of statements is similar in both platforms, requiring
transaction and points to commit or rollback. Oracle packages allow
procedures and functions to be grouped together. Packages can be used for
several of the transactions and processes that are written in PL/SQL. Error
packages to be used with exception handling are useful to ensure consistent
ways to log errors and raise application errors.

Chapter 9: PL/SQL 271

This page intentionally left blank

CHAPTER
10

High-Availability
Architecture

E
liminating single points of failure and decreasing planned or
unplanned downtime make a database environment more
highly available. Chapter 6 discussed failures and recovery
options to help decrease some unplanned downtime. When
planning high-availability solutions and failover capabilities,

the failures also need to be considered. This includes not only unplanned
outages, but planned ones as well.

Planning for unexpected failures is not an easy task, but with an
understanding of database systems, you can have an idea of what might
happen. So what are some of the unexpected failures? Hardware failures
from servers, memory, storage, network, and other components of the server
can be included in this area. Another area is data failures, which can come
from changes and could be a result of another failure, such as storage.

Planned outages are a little more obvious. Patching, upgrading, and
making configuration changes fall into this category. Some patches and
upgrades can be applied with minimal (or no) downtime.

As a DBA, understanding the options that are available and the purposes
that they serve to develop a high-availability system is critical. The options
and components have pros and cons, whether you are working with an
Oracle or a SQL Server system. You’ll need to gather requirements, explore
the available options, and then architect a solution for your particular
database system. Usually, you’ll use a combination of components and
options to build a successful high-availability design and implementation.

In this chapter, you’ll learn about the high-availability options available
for an Oracle system. This will help you choose the most suitable solution
for your database system.

Options for High Availability
Oracle and SQL Server have different components and features for ensuring
a database system is highly available. Table 10-1 lists the main high-availability
solutions on both platforms.

Oracle has a Maximum Availability Architecture (MAA), which includes
a combination of the options with Data Guard and RAC environments.

Each of these solutions for high availability provides some failover
capabilities. Combinations of these options provide even more protection.
Depending on the environment and business needs, certain solutions will
work better than others. Just as when you’re planning the architecture for

274 Oracle Database Administration for Microsoft SQL Server DBAs

a SQL Server system, you need to decide which options are best suited for
an Oracle environment that requires high availability.

Oracle RAC provides failover if a node has a failure and is no longer
available. With RAC, you can apply rolling patches to eliminate downtime
for patching. Additional nodes can be added to the cluster to provide more
resources, since the nodes can use the CPUs and memory that are available
on each server.

Take an Oracle RAC database and add a standby server with Data
Guard, and now the system can be further protected by being in another
location. Data Guard also provides a way to test an application rollout or
database upgrade by using a snapshot of production database on the
standby server.

ASM, when used in the RAC environment, is part of a high-availability
solution. ASM manages the disks available to databases and instances on a
server. It simplifies the management of Oracle database files and provides a
clustered file system.

Replication and Oracle Streams might not be considered part of a high-
availability solution for Oracle because RAC and Data Guard can provide
the maximum availability without having to manage the replication processes.
However, replication of data to other systems provides data availability.

Designing the high-availability database environment in Oracle may
mean installing just a standby server with Data Guard or using the different
options to combine RAC and an active standby server. Each of these
components provides solutions for high availability. Including backups and
flashback, as discussed in previous chapters, further reduces the risks for
unplanned failures and planned maintenance.

In this chapter, we’ll look at each of the high-availability options in detail.

Chapter 10: High-Availability Architecture 275

SQL Server Options Oracle Options

Clustering Real Application Clusters (RAC)

Log shipping Data Guard (primary and standby databases)

Replication Streams/Advanced Replication

Database mirroring Flashback

TABLE 10-1. High-Availability Options in SQL Server and Oracle

Clustering with RAC
Clustering is ideal for two or more servers that have shared resources, such
as disks. In case of a hardware failure on one server in the cluster, the other
servers can pick up the workload until that server can be brought back up.

SQL Server clustering is dependent on operating system clustering. The
file systems that SQL Server uses for the datafiles need to be on a clustered
shared disk, and the software is installed on all of the nodes of the cluster.
The SQL Server instance can be active on only one node (server) at a time,
but there can be other SQL Server instances active on other nodes. Active/
passive clustering is when one SQL Server instance is installed on the cluster
and running on one node, and the second node is just for failover. Active/
active clustering is when two or more nodes each has an active SQL Server
instance, as illustrated in Figure 10-1. Either SQL Server instance can failover

276 Oracle Database Administration for Microsoft SQL Server DBAs

SQL Server A

SQL Server Cluster SQLSRV

SQL Server B

sqlsrvA sqlsrvB

Instance: srvsql1
SQLSRV\srvsql1

db1 db3 db4db2

Instance: sqlserver1
SQLSRV\sqlserver1

Instance and
databases failover

FIGURE 10-1. SQL Server active/active clustering. The srvsql1 instance
is primary and up on server A, and the sqlserver1
instance is primary and up on server B.

to the other node, so you can have two instances running on one node.
The client connection uses the cluster name with the instance name to
connect to the server that currently has the instance active on it. The SQL
Server instance is available on only one server at a time.

Oracle RAC servers share a disk and have the same Oracle database but
with different instances running on each node, as shown in Figure 10-2. If
one node fails, the connections failover to the other node. The instances do
not failover, because the instances are just the processes on each server that
access the same data. The Oracle database is available from any of the
nodes in the cluster.

Comparing Figures 10-1 and 10-2, you can see that the whole instance
and database must failover with the SQL Server cluster, but with Oracle, the

Chapter 10: High-Availability Architecture 277

Oracle RAC Node 1

dbprod Database

Oracle RAC Node 2

orasrv1 orasrv2

Datafiles and logs

Instance: dbprod1
Processes, memory
(SGA and PGA), software

Instance: dbprod2
Processes, memory
(SGA and PGA), software

Interconnect

FIGURE 10-2. Oracle RAC servers share the same database on all nodes.

datafiles are what must be accessible from either node. The instances are
the processes and memory on each of the nodes. It doesn’t matter which of
the nodes the user is connected to, because all of the tables and objects are
available on all of the nodes for that database. There can also be multiple
databases on a cluster.

The advantage of Oracle RAC is that the resources on both nodes are
used by the database, and each node uses its own memory and CPU.
Information is shared between nodes through the interconnect—the virtual
private network. Parameters can be different on each node for the instance.
This is because even though the application can connect to any of the
nodes, certain applications or pieces, such as reporting, can be configured
to connect to only one node, where the parameters for that instance can be
configured specifically.

RAC provides high availability because of the failover of connections
in the event of a hardware failure or server connection failure. The RAC
environment also provides high availability for patching with rolling
upgrades (Oracle Database 11g). And you can easily add a new server with
memory and CPU to the cluster, make new connections to the new node,
and the workload will be rebalanced between all of the nodes.

Configuring RAC
Configuring an RAC environment starts off similar to setting up a cluster of
servers in a SQL Server environment. The servers need to have a private
network between the machines and a set of disks that can be seen by all of
the servers in the cluster. The disks will need space for the Oracle Cluster
Registry (OCR) and voting disk, just as a SQL Server cluster needs a quorum
disk for the cluster membership. After the network configuration and disk
allocation, the Oracle Clusterware software can be installed. If the
Clusterware software can see both nodes, then the database installation is
available for an RAC database. The software will install on the available
nodes in the cluster. The cluster name can be specified, and the node names
will be visible, with each private and public IP address that is configured.

The Cluster Verification Utility (CVU) assists in the Clusterware setup
and preinstallation tasks, including the operating system and network
settings. With Oracle Database 11g R2, the Grid Infrastructure software
has the installation for Clusterware and ASM. As mentioned in Chapter 3,
Clusterware and ASM should be installed in a different Oracle home
directory than the database, as shown in Figure 10-3.

278 Oracle Database Administration for Microsoft SQL Server DBAs

A few of the preinstallation steps require special consideration. The
network configurations are key because you need a public IP and a private
IP, for the interconnect and virtual IP (VIP). The network adapters need to
be configured the same on all of the nodes of the clusters, so eth0 should
be set to public network on all of the nodes, and eth1 set to the private
network. For Linux environments, you can look at the /etc/hosts file to
see the IP addresses and configurations.

cat /etc/hosts

#eth0 -– Public Network

orarac1.domain1.com orarac1

orarac2.domain1.com orarac2

Chapter 10: High-Availability Architecture 279

FIGURE 10-3. Oracle installation of Grid Infrastructure components

#eth1 – Private / Interconnect Network

10.0.0.1 orarac1priv.domain1.com orarac1priv

10.0.0.2 orarac2priv.domain1.com orarac2priv

#VIPs – Virtual Network

192.168.10.104 orarac1vip.domain1.com orarac1vip

192.168.10.105 orarac2vip.domain1.com orarac2vip

CVU helps with these steps to make sure that everything is configured
and that all of the IPs are available. If you attempt to continue the installation
without addressing the failures or warnings from CVU, that is just asking for
trouble and headaches down the line.

Once the network IPs, kernel parameters, and operating system settings
are configured, and storage is available to the servers in the cluster, the
installation walks through the setup of the Clusterware software. With
Oracle Database 11g, you can choose to have the voting disk and OCR
use ASM instead of just a shared file system. An advanced installation of
Clusterware provides opportunities to configure the storage and additional
networking options.

After Clusterware is installed and the databases are created, the
databases and cluster services need to be monitored, and stopped and
started as needed. Use the cluster and service commands to check the
status, and start and stop the instances and listeners on each node. Here
are some examples:

>crsctl check crs

Cluster Synchronization Services appears healthy

Cluster Ready Services appears healthy

Event Manager appears healthy

> ## Check nodes in the cluster

> crsctl check cluster

orasrv1 ONLINE

orasrv2 ONLINE

> ## Check the database instances

> srvctl status database -d oradb

Instance oradb1 is running on node orasrvdb01

Instance oradb2 is running on node orasrvdb02

> ## Start database or instance

> srvctl start service –d ORADB

> srvctl start instance –d ORADB –i ORADB1

> ## Stop database or instance

> srvctl stop database –d ORADB

> srvctl stop instance –d ORADB –i ORADB1

280 Oracle Database Administration for Microsoft SQL Server DBAs

> ## Start and stop listener

> srvctl (stop/start) listener –n orasrvdb01

> ## See additional commands and details

> srvctl –h

> ## Or use the command and -h

> srvctl status asm –h

Usage: srvctl status asm -n <node_name>

-n <node> Node name

Using the Clusterware commands, you can put together a script to
monitor the health of the cluster and validate that all of the pieces are up
and available.

>export CRS_HOME=/u01/oracle/product/11.2.0/grid

> $CRS_HOME/bin/cluvfy comp clu

Verifying cluster integrity

Checking cluster integrity...

Cluster integrity check passed

Verification of cluster integrity was successful.

> $CRS_HOME/bin/ocrcheck

Status of Oracle Cluster Registry is as follows :

Version : 2

Total space (kbytes) : 200560

Used space (kbytes) : 5136

Available space (kbytes) : 195424

ID : 852915171

Device/File Name : /dev/dbgroup/ocr1

Device/File integrity check succeeded

Device/File Name : /dev/dbgroup/ocr2

Device/File integrity check succeeded

Cluster registry integrity check succeeded

Use to search for failures and output can go to log file

for creating a monitoring script

> $CRS_HOME/bin/ocrcheck | grep failed >> /u01/logs/ocrcheck.log

nothing returned is a good thing

> $CRS_HOME/bin/crs_stat -t

Name Type Target State Host

--

ora....b1.inst application ONLINE ONLINE svr-...db01

ora....b2.inst application ONLINE ONLINE svr-...db02

ora.oradb.db application ONLINE ONLINE svr-...db01

ora....SM1.asm application ONLINE ONLINE svr-...db01

ora....01.lsnr application ONLINE ONLINE svr-...db01

ora....01.lsnr application ONLINE ONLINE svr-...db01

ora....b01.gsd application ONLINE ONLINE svr-...db01

Chapter 10: High-Availability Architecture 281

ora....b01.ons application ONLINE ONLINE svr-...db01

ora....b01.vip application ONLINE ONLINE svr-...db01

ora....SM2.asm application ONLINE ONLINE svr-...db02

ora....02.lsnr application ONLINE ONLINE svr-...db02

ora....02.lsnr application ONLINE ONLINE svr-...db02

ora....b02.gsd application ONLINE ONLINE svr-...db02

ora....b02.ons application ONLINE ONLINE svr-...db02

ora....b02.vip application ONLINE ONLINE svr-...db02

with crs_stat –t grep for OFFLINE for issues

> $CRS_HOME/bin/crsctl check crs

CSS appears healthy

CRS appears healthy

EVM appears healthy

search for where it is not healthy

> $CRS_HOME/bin/crsctl check crs |grep –v healthy >> crsctlchk.log

Oracle RAC databases can also be managed with OEM. The home page
of OEM lists the cluster database, and shutdown and startup options are
available when you are logged in as SYSDBA. The instances on all of the
nodes are listed with their status, showing any alerts at the instance level. If
ASM instances are used, these will also be listed with each instance.

Testing RAC
Of course, you’ll want to test the clustering before implementing it in a
production environment. With SQL Server clustering, you test that the
database failover from one node to another node is successful, validate that
the disk is available, and check that the services start automatically with
failover. You create a checklist and test plan to verify that the cluster is
working properly.

With Oracle RAC, you can test the failover and confirm that the setup
and configuration are working properly. Failover testing includes the client,
network, and storage connections from both servers.

Simply rebooting the servers is first on the checklist. Make sure that the
Clusterware software is still configured as needed and settings are persistent
(the server did not revert to older settings). You can run CVU at any time to
verify the cluster that includes the networking settings.

Another test is to pull the interconnect so that servers do not have their
private network. Then validate that one of the nodes accepts the new
connections, and that the failover of connections to the surviving node runs
the queries as it should.

282 Oracle Database Administration for Microsoft SQL Server DBAs

Next, test the connections from the application and from utilities like
SQL*Plus. This is not just validating that the users can connect, but also
checking what happens if a server goes down. Connect to the database
through the different applications, and then actually shut down a server. The
queries may take a little longer, as they transfer over. To verify, look at the
sessions running on both nodes before the shutdown to confirm that there
are connections to the node, and then look at the sessions on the node that
is still running. If connections do not failover, double-check the tnsnames.ora
file and connection strings to make sure that failover mode is in the string,
as well as that the service name and virtual hostname are being used.

The testing of backups and restores in an RAC environment is basically
the same as on a stand-alone server, and should be included as part of
these tests.

Setting Up Client Failover
Having the capability to failover to another node if some part of a server or
service failed on one node is a big reason to set up clustering of servers.
Being able to handle the failover in the code that is running against the
database to make the failover more transparent to clients is valuable from
the user perspective. The Oracle RAC environment has different possibilities
for failing over queries running against the database at the point of failure.
Also, notifications from these events can be used by applications and PL/
SQL to make failover seamless for the user.

These connections are through Fast Application Notification (FAN) and
Fast Connection Failover (FCF). FAN notifies applications that instances are
up or down. If an instance is not available, the application can rerun a
transaction and handle this type of error. FCF makes the connection failover
possible by being able to connect to whatever instance is available. A
session, that has connected to an instance and is running a SELECT
statement, will failover automatically and continue to run the SELECT
statement on another instance. The error handling of transactions, such as
update, insert and delete, will need to failover by using these configurations,
and will have to pass the needed information about the transaction to the
available instances. There is more to be handled by the application code to
failover processes and transactions, but the information in the FAN can be
by the application to make it RAC-aware.

Chapter 10: High-Availability Architecture 283

Other failovers, such as SELECT statements, can be taken care of
through the connection information, listeners, and tnsnames.ora files for a
Transparent Application Failover (TAF) configuration. Here is an example of
any entry in the tnsnames.ora file:

Example tnsnames.ora entryPROD =

(DESCRIPTION =

(FAILOVER = ON)

(LOAD_BALANCE = YES)

(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = TCP)(HOST = srvora01-vip)

(PORT = 1521))

(ADDRESS = (PROTOCOL = TCP)(HOST = srvora02-vip)

(PORT = 1521)))

(CONNECT_DATA =

(SERVICE_NAME = PROD)

(SERVER = DEDICATED)

(failover_mode =

(type = select)

(method = basic)

)

)

)

And here is an example JDBC connection string:

jdbc:oracle:thin:(DESCRIPTION=(FAILOVER=ON)(ADDRESS_LIST=

(LOAD_BALANCE=ON)(ADDRESS=(PROTOCOL=TCP)(HOST=srvora01-vip)

(PORT=1521))(ADDRESS=(PROTOCOL=TCP)(HOST=srvora02-vip)

(PORT=1521))) (CONNECT_DATA=(SERVICE_NAME=PROD))

(FAILOVER_MODE=(TYPE=SESSION)(METHOD=BASIC)(RETRIES=180)

(DELAY =5)))

The TYPE setting for the TAF configuration allows for different types of
failover:

■ SESSION creates a new session automatically but doesn’t restart the
SELECT statement in the new session.

■ SELECT fails over to an available instance and will continue to fetch
the data and return the SELECT query.

■ NONE prevents the statement and connection from going over to the
other node (no failover will happen).

284 Oracle Database Administration for Microsoft SQL Server DBAs

With TAF, the RAC environment can eliminate single points of failure.
Applications can use OCI packages to manage the transactions (otherwise,
transactions are rolled back and regular PL/SQL would need to be restarted
or rolled back because the session information is not persistent and variable
settings are lost). This is also why FAN can provide the notifications about
failover and restart the procedure with the needed information.

Setting Up RAC Listeners
Along with the client setup for failover, the listener needs to be set up on
the server. This involves setting the parameter LOCAL_LISTENER on the
database needs and configuring the local listener in the tnsnames.ora file on
the server side.

The tnsnames.ora entry looks like this:

tnsnames.ora entry for local listener

LISTENER_NODE1 =

(ADDRESS_LIST =

(ADDRESS = (PROTPCOL = TCP)(HOST = orasvr1-vip)(PORT = 1521))

)

And here is how you set the LOCAL_LISTENER parameter:

set the local_listener parameter

SQLPLUS> alter system set LOCAL_LISTENER='LISTENER_NODE1'

scope=both sid='oradb01';

Same for other nodes

LISTENER_NODE2 =

(ADDRESS_LIST =

(ADDRESS = (PROTPCOL = TCP)(HOST = orasvr2-vip)(PORT = 1521))

)

SQLPLUS> alter system set LOCAL_LISTENER='LISTENER_NODE2'

scope=both sid='oradb02';

The tnsnames.ora file on the client looks for the listener on the server
and the configurations for the local listener. If the listener is running, the
connections can be made, allowing for failover. If the listener is not running
on a node, that node is considered unavailable to the client at that time.

Chapter 10: High-Availability Architecture 285

Patching RAC
RAC environments also provide failover and increased uptime for planned
maintenance as well as unplanned failures. With RAC environments, there
are three ways to apply patches to all of the nodes of the cluster:

■ Patching RAC like a single-instance database. All of the instances
and listeners will be down. Patching starts with the local node and
continues with all the other nodes.

■ Patching RAC with minimum downtime. This method applies the
patches to the local node, requests a subset of nodes to be patched
first, and then applies the patches to other nodes. The downtime
happens when the second subset is shut down for patching and the
initial nodes are brought back online with the new patches.

■ Patching RAC with the rolling method. The patches are applied to
one a node at time, so that at least one node in the cluster is
available while the patching is rolling through the environment.
There is no downtime with this method. The node can be brought
up again after being patched while the other nodes are still up and
available. Then the next node is patched.

Not all patches are available as rolling patches. The patch will indicate if
it can be applied with this method. The Oracle patching method is to use
OPATCH to apply the patches to Oracle homes. Using OPATCH, you can
verify if the patch is a rolling patch.

>export PATH=$ORACLE_HOME/OPatch:$PATH

>opatch query –all <patch_location> | grep rolling

statement will return the line with true or false

Patch is a rolling patch: true

Deploying RAC
Adding another node to a cluster is an easy way to provide more resources
to the RAC database. Using Oracle Grid Control or OEM, you can add a
node with the same configuration and installation as the other nodes. Then
the nodes are available for client connections.

286 Oracle Database Administration for Microsoft SQL Server DBAs

An option pack is available for provisioning new Oracle servers. If you
have several servers to manage or need to upgrade and patch a very large
set of servers, these tools are useful for handling basic configuration and
setup. They can use a golden copy or a template to verify the hardware
installation, and then configure the operating system and database, which
can be a stand-alone database server or Oracle Clusterware with an RAC
database.

Configuring and Monitoring RAC Instances
In a SQL Server clustering environment, the same instance is configured
with the server settings, and connections are being made only to that
instance. The SQL Server instance can failover to another node, but those
settings go with the instance as it fails over.

With an Oracle RAC environment, connections failover, and multiple
instances are involved. There might even be multiple logs and trace files,
depending on how the dump destination is configured for the instance. Each
instance can have its own set of parameters that are different from those on
the other instances in the database. For example, batch jobs, reporting, and
backups can be set to go to one instance over another, but still have the ability
to failover the connections if that node is not available. In the connection
string, you might set FAILOVER=ON but LOAD_BALANCE=OFF to handle
the connections to one instance.

The spfile and init.ora files can be shared by all of the instances in the
RAC database, so the parameters will have a prefix of the instance SID if
they are set for that instance. The view to see all of the parameters is
gv$parameter, instead of v$parameter. Let’s look at both of these
views.

SQL> desc v$parameter

Name Null? Type

----------------------------- -------- -----------------

NUM NUMBER

NAME VARCHAR2(80)

TYPE NUMBER

VALUE VARCHAR2(512)

DISPLAY_VALUE VARCHAR2(512)

ISDEFAULT VARCHAR2(9)

ISSES_MODIFIABLE VARCHAR2(5)

ISSYS_MODIFIABLE VARCHAR2(9)

ISINSTANCE_MODIFIABLE VARCHAR2(5)

ISMODIFIED VARCHAR2(10)

Chapter 10: High-Availability Architecture 287

ISADJUSTED VARCHAR2(5)

ISDEPRECATED VARCHAR2(5)

DESCRIPTION VARCHAR2(255)

UPDATE_COMMENT VARCHAR2(255)

HASH NUMBER

SQL> desc gv$parameter

Name Null? Type

-------------------------------- -------- -----------------

INST_ID NUMBER

NUM NUMBER

NAME VARCHAR2(80)

TYPE NUMBER

VALUE VARCHAR2(512)

DISPLAY_VALUE VARCHAR2(512)

ISDEFAULT VARCHAR2(9)

ISSES_MODIFIABLE VARCHAR2(5)

ISSYS_MODIFIABLE VARCHAR2(9)

ISINSTANCE_MODIFIABLE VARCHAR2(5)

ISMODIFIED VARCHAR2(10)

ISADJUSTED VARCHAR2(5)

ISDEPRECATED VARCHAR2(5)

DESCRIPTION VARCHAR2(255)

UPDATE_COMMENT VARCHAR2(255)

HASH NUMBER

Did you notice the difference? The global views have the inst_id to
indicate for which instance the parameter is set, and join this with the
gv$instance table to get the SID for the instance. Without the gv$ views,
the information would need to be gathered one node at a time, because v$
views return the values for only that current instance. Here’s an example:

SQLPLUS> select i.instance_name, p.name, p.value

2 from gv$instance i , gv$parameter p

3 where i.inst_id = p.inst_id

4 and p.name in ('db_cache_size','processes','optimizer_mode');

INSTANCE_NAME NAME VALUE

---------------- ----------------------- ------------------

db01 optimizer_mode ALL_ROWS

db01 db_cache_size 8000M

db01 processes 300

db02 optimizer_mode ALL_ROWS

db02 db_cache_size 6500M

db02 processes 300

288 Oracle Database Administration for Microsoft SQL Server DBAs

The parameters that can be adjusted for an instance and are dynamic
will need to be qualified with the SID. If you want to set it for all of the
instances, you can use a wildcard.

SQLPLUS> alter system set db_cache_size = 8000M sid='db01';

System altered.

Set all of the instances the same using a wildcard

SQLPLUS> alter system set db_cache_size = 8000M sid='*';

If sid is not set for the current instance an error

will be thrown

SQLPLUS> alter system set db_cache_size = 8000M;

alter system set db_cache_size = 8000M

*

ERROR at line 1:

ORA-32018: parameter cannot be modified in memory on

another instance

The v$ views mentioned in Chapter 8 are available as global views with
the instance IDs to let you see what is happening on each of the instances
collectively. The session information is in gv$session, and waits are in
gv$session_waits.

Using the global views makes it easier to see all of the processes running
across the nodes. But monitoring RAC performance is basically the same as
checking performance on a single instance. You can verify what is running
and check that the statistics are up to date. The same system information is
available. Troubleshooting a query on an RAC database is the same as
looking at the performance of any query on a single database—you check
for the usual suspects.

The interconnect can play a role in the performance, as memory blocks
are swapped between the nodes. Oracle Database 11g has improved the
Cache Fusion protocols to be more workload-aware to help reduce the
messaging for read operations and improve performance.

Primary and Standby Databases
SQL Server has an option to do log shipping to another database server. The
logs are then applied to the database that is in recovery mode. The failover
does not happen automatically, but the database is kept current by applying
the recent transactions. If there is a failure on the primary server, the
database on the secondary server can have the latest possible log applied,
and then be taken out of recovery mode for regular use by connections.

Chapter 10: High-Availability Architecture 289

Oracle offers the option of a standby database with Oracle Data Guard
as another type of failover. The primary and secondary database servers do
not share any of the database files or disk. They can even be servers located
in completely different data centers, which offers a disaster recovery option.
The redo logs from the primary server are transported over to the secondary
server depending on the protection mode, and then they are applied to the
database on the secondary server.

Oracle Data Guard has different protection modes based on the data loss
and downtime tolerance:

■ Maximum Protection provides for zero data loss, but the transactions
must be applied synchronous to both the primary and secondary
database servers. If there are issues applying the logs to the secondary
server, the primary server will wait for the transaction to be completed
on both servers to commit the change.

■ Maximum Availability has zero data loss as the goal, but if there
is a connectivity issue or the transaction cannot be applied to the
secondary server, the primary server will not wait. The primary
server still has a record of what has been applied for verification,
and the standby database might fall slightly behind, but it is more
critical to have the primary database available.

■ Maximum Performance has the potential for minimal data loss.
The transport of the logs is done asynchronously, and there is no
checking back with the primary server about applying the logs and
verifying the change has been completed.

Using Active Standby Databases
As noted, the physical standby database is a copy of the primary database
and is kept in sync with the primary database. With Oracle Database 11g,
the standby database can also be an active database, which remains open
for reading while the database is still being synchronized with the primary.
This is the Active Data Guard option.

Another option that allows for use of the secondary server is a logical
standby database. With this type of standby database, the changes are
applied by SQL statements that are converted from the redo logs. This
allows for some of the structures of the data to vary from the primary
database, and the changes can still be applied through the SQL statements.

290 Oracle Database Administration for Microsoft SQL Server DBAs

A third standby database option is a snapshot database configuration.
The standby database can be converted to a read-write snapshot. It
continues to receive the redo information from the primary database, but
does not apply the changes until converted back to being only a standby
database. While in read-write mode, the snapshot standby database can be
used to test various changes, such as new application rollout, patches, or
data changes. Then the snapshot is set back to before the changes were
made, and the redo log will be applied. Having a copy of the production
database for testing like this is extremely valuable for successful rollouts of
changes.

The standby database can also serve as a copy for disaster recovery
purposes, because it can be at a different site than the primary database, as
illustrated in Figure 10-4. With this setup, the disaster recovery plan is very
simple: connect to the standby database and make it the primary database.
The copies of the databases can also be used to offload work such as
backups and read-only reporting. This takes advantage of the standby
database, which would otherwise sit idle unless the primary database failed.

Chapter 10: High-Availability Architecture 291

Toronto

Chicago

Des MoinesPrimary database

Standby physical

Standby logical

Redo apply

SQL apply

Reporting

Backups

Open for read-write

Open for read

System
testing

Sync or async
transport

FIGURE 10-4. Data Guard server design

Setting Up a Standby Database
An existing database can be configured to have a standby database. The first
step is to install the Oracle software on the standby server. The database
already exists on the primary server. The primary database will need some
configuration with standby logs and parameters. Connections to the secondary
database can be set up, and then using RMAN, the initial copy of the
database can be set up on the standby server.

On the primary database, the following needs to be done:

SQLPLUS> alter database force logging;

Database altered.

Create the standby log files. They need to be the

same size or larger than the primary database

SQLPLUS> alter database add standby logfile

'/u01/oracle/db01/stby01.log' size 50M;

Database altered.

SQLPLUS> alter database add standby logfile

'/u01/oracle/db01/stby02.log' size 50M;

Database altered.

. . .

Continue creating the log files. One more log group

than on the primary is recommended

Parameters

SQLPLUS> show parameter db_name

NAME TYPE VALUE

-------------------------- ----------- ---------

db_name string DB01

Name stays the same

SQLPLUS> show parameter db_unique_name

NAME TYPE VALUE

------------------------- ----------- --------------

db_unique_name string DB01

Standby and Primary will need unique names

Names do not change even if roles switch

SQLPLUS> alter system set

LOG_ARCHIVE_CONFIG='DG_CONFIG=(db01,dbstby01)'

System altered.

SQLPLUS> alter system set log_archive_dest_2=

'service=dbstby01 async valid_for=(online_logfile,

primary_role) db_unique_name=dbstby01';

292 Oracle Database Administration for Microsoft SQL Server DBAs

System altered.

The standby database server should already have the

software and the needed directories for the database

Create a parameter file for the standby with just the DB_NAME

> cat initdbstby01.ora

DB_NAME=dbstby01

> export ORACLE_SID=dbstby01

SQLPLUS> startup nomount pfile=$ORACLE_HOME/dbs/initdbstby01.ora

ORACLE instance started.

. . .

SQLPLUS> exit

To primary database run RMAN to copy database

RMAN> connect target

connected to target database: DB01 (DBID=1382128337)

RMAN> connect auxiliary sysdbstby01

connected to auxiliary database: DBSTBY01 (not mounted)

RMAN> run {

allocate channel disk1 type disk;

allocate auxiliary channel disk2 type disk;

duplicate target database for standby from active database

spfile parameter_value_convert 'db01','dbstby01'

set db_unique_name='dbstby01'

set db_file_name_convert='/db01/','/dbstby01/'

set control_files='/u01/oracle/oradata/dbstby01.ctl'

set fal_client='dbstby01'

set fal_server='db01'

set standby_file_management='AUTO'

set log_archive_config='dg_config=(db01,dbstby01)'

set log_archive_dest_1='service=db01 ASYNC valid_for=

(ONLINE_LOGFILE,PRIMARY_ROLE) db_unique_name=db01';

}

. . .

Can test the standby by switching the log file on the primary

> export ORACLE_SID=DB01

SQLPLUS> alter system switch logfile;

System altered.

In summary, the basic steps are as follows:

1. Install the software on the standby server.

2. Configure the parameters on the primary server.

3. Make the connections by updating tnsnames.ora and listener.

4. Use RMAN to copy the database.

Chapter 10: High-Availability Architecture 293

SQL Server has a manual process for the management of failover for
log shipping. The Oracle Data Guard failover can be configured to occur
automatically. You can use the Data Guard broker and management tools
to set up the automatic failover and manage the standby servers. The Data
Guard broker needs to be running on both the primary and standby server.
A listener entry for the Data Guard broker on the primary and standby
servers will help with failover and avoiding TNS errors.

Parameter for starting the broker

SQLPLUS> alter system set DG_BROKER_START=TRUE scope=both;

System altered.

Example listener entry

(SID_LIST =

(SID_DESC =

(GLOBAL_DBNAME = db01_dgmgrl)

(ORACLE_HOME = /u01/oracle/11.2.0/db_1)

(SID_NAME = db01)

)

. . .

)

Using the Data Guard broker is similar to starting SQL*Plus from the
command line. Enter dgmgrl to start the utility and then issue commands.

Create a broker configuration

> dgmgrl

DGMGRL for Linux: Version 11.2.0.1.0 - 64bit Production

Copyright (c) 2000, 2009, Oracle. All rights reserved.

Welcome to DGMGRL, type "help" for information.

DGMGRL> create configuration 'DG_DB01'

AS PRIMARY DATABASE is 'db01'

CONNECT IDENTIFIER is 'db01';

Configuration "DG_DB01" created with primary database "db01"

DGMGRL> add database 'dbstby01'

AS CONNECT IDENTIFIER is 'dbstby01';

Database "dbstby01" added.

DGMGRL> enable configuration

Enabled.

DGMGRL> show configuration

294 Oracle Database Administration for Microsoft SQL Server DBAs

Configuration

Name: DG_DB01

Enabled: YES

Protection Mode: MaxAvailability

Databases:

db01 – Primary database

dbstby01 – Physical standby database

Fast-Start Failover: DISABLED

Current status for "DG_DB01': SUCCESS

Other utility commands can be used to do a switchover, which changes
the roles of the servers between primary and standby, or failover, which will
fail the primary over to the standby database.

The default configuration for Fast-Start Failover is disabled.
When it is enabled, it can use triggering events to implement the failover
to the standby server. Events include connection loss, instance crash, a
shutdown abort on the primary, and different database health checks such
as loss of a datafile. With these events, you can set thresholds to have more
control over when the failover occurs. This lets you avoid situations where a
small hiccup in the connection or a busy server that doesn’t allow a quick
check will cause the system to failover.

The Data Guard configurations can be modified to automate the failover
for certain thresholds. If there is more than one standby database, the
FastStartFailoverTarget property should be set so that the primary
and standby database reference each other.

DGMGRL> edit database DB01 set property FastStartFailoverTarget =

'dbstby01';

DGMGRL> edit database DBSTBY01 set property

FastStartFailoverTarget = 'db01';

DGMGRL> edit configuration set property

FastStartFailoverThreshold = '180';

NOTE
With automatic failover, the DBA can be
assured of continuing service without having
to log in. However, the DBA may need to
be concerned about unnecessary failovers.

Chapter 10: High-Availability Architecture 295

Maximum Availability Architecture includes a combination of these
solutions, as shown in Figure 10-5. The Oracle RAC database can be a
primary and a standby server. When the Maximum Protection option is
chosen for the Data Guard configuration, having RAC set up on the standby
database will reduce the risk for the logs to be applied. Figure 10-5 shows
the architecture of the Oracle RAC database with the Data Guard standby
database.

296 Oracle Database Administration for Microsoft SQL Server DBAs

Interconnect

RAC production database
primary site

Interconnect

RAC standby database
secondary site

O
racle D

ata G
uard

D
edicated netw

ork

FIGURE 10-5. Oracle Maximum Availability Architecture

www.SoftGozr.com

ASM in an RAC Environment
We have discussed how it is useful to have the ASM instance available for
the disks of the database, but have not yet looked into the details about how
to manage the instance. In the Oracle RAC environment, there needs to be
an ASM instance for every node in the cluster, but one ASM instance can
support multiple instances on that node.

Managing ASM Disk Groups
The ASM disk groups serve as containers for consolidating databases and
file systems to be able to use the storage more efficiently and even share
between databases. The ASM Configuration Assistant (ASMCA) helps you
create and manage disk groups. As shown in Figure 10-6, new disks can be
added to the disk group here, and attributes of the disk group can be edited.
Other ASMCA options allow you to manage the volumes and file system in
a clustered environment.

Chapter 10: High-Availability Architecture 297

FIGURE 10-6. Using ASMCA

ASMLib is the support library for ASM. It is used for initialize the disk for
usage with ASM. The Linux package for the ASMLib needs to be installed
for usage.

>rpm -Uvh oracleasm-2.6.18-8.el5-2.0.4-1.el5.i686.rpm \

oracleasm-support-2.0.4-1.el5.i386.rpm \

oracleasmlib-2.0.3-1.el5.i386.rpm

Configure ASMLib

>/etc/init.d/oracleasm configure

Configuring the Oracle ASM library driver.

. . .

Create disks

>/etc/init.d/oracleasm createdisk ORADATA01 /dev/sda1

Marking disk "/dev/sda1" as an ASM disk:

To see the disks that were created

>/etc/init.d/oracleasm listdisks

ORADATA01

ORADATA02

ORADATA03

ORADATA04

298 Oracle Database Administration for Microsoft SQL Server DBAs

ASM Configuration Parameters
The ASM instance is really a process and a bit of memory. Some
parameters go into the spfile for configuration of this instance. These
parameters provide the details about the type of instance and where
the disks are located for creating the disk groups.

■ INSTANCE_TYPE Set to ASM (default is RDBMS)

■ ASM_DISKGROUPS Lists the disk groups that should be
mounted

■ ASM_DISKSTRING A value that indicates where to discover
the disks that are available to add to a disk group

■ ASM_POWER_LIMIT Maximum power for rebalancing
operation, a value between 1 and 11 (higher number for faster
rebalancing)

The information stored in the ASM instance is the metadata about the
disks, disk groups, names, and directories. The Oracle database creates
the data in the files when the disk groups are allocated to a database. The
ASMCMD command-line utility can help you manage the files. It provides a
quick way to find out information about what the ASM instance is managing
and where the database files are located. You can take backups, make
copies, and move files. ASMCMD commands are similar to file commands
in a Linux environment. Here are some examples of using ASMCMD:

>asmcmd

ASMCMD> ls –l

State Type Rebal Name

MOUNTED NORMAL N DG_DATA01/

MOUNTED NORMAL N DG_DATA02/

ASMCMD> cd DG_DATA01

ASMCMD> ls –l

Type Redund Striped Time Sys Name

Y ASM/

Y DADEV/

Y DSDEV/

Y SQLTEST/

ASMCMD> cd DADEV

ASMCMD> ls –l

Type Redund Striped Time Sys Name

Y DATAFILE/

Y PARAMETERFILE/

Y TEMPFILE/

N spfileDADEV.ora =>

+DG_DATA01/DADEV/PARAMETERFILE/spfile.269.714035663

Search for the spfile

ASMCMD> find / spfile*

+DG_DATA01/DADEV/PARAMETERFILE/spfile.269.714035663

+DG_DATA01/DADEV/spfileDADEV.ora

Check SPACE

ASMCMD> du

Used_MB Mirror_used_MB

23798 47605

Back up a disk group

ASMCMD> md_backup /bkup/dg1_backup –G 'DG_DATA01'

The –G parameter is optional; if none chosen, it will

back up all of the disk groups

See all connected instances

ASMCMD> lsct

Chapter 10: High-Availability Architecture 299

ASMCMD> lsct

DB_Name Status Compatible_version Instance_Name Disk_Group

+ASM CONNECTED 11.2.0.1.0 +ASM DG_DATA01

DADEV CONNECTED 11.2.0.1.0 DADEV DG_DATA02

DBDEV CONNECTED 11.2.0.1.0 DBDEV DG_DATA02

SQLTEST CONNECTED 11.2.0.1.0 SQLTEST DG_DATA01

These simple commands demonstrate the following:

■ Find out how much space is available on one of the disk groups

■ Find out which instances are connected to which disk groups

■ Find a file

■ Execute a backup of one disk group

With ASM, even though everything is laid out in the directories of the
disk groups, creating tablespaces is very simple. You just use a CREATE
TABLE statement with a disk group and a size.

>export ORACLE_SID=DADEV

>sqlplus

SQLPLUS> create tablespace USER_DATA

datafile '+DG_DATA01' size 2048M;

Tablespace created.

Then you have disk space available for users to start filling up with their
tables, objects, and whatever data they need to store.

As you have come to expect, OEM also offers a way to manage the ASM
disk groups and files. Figure 10-7 shows the OEM display of the disk groups
of the ASM instance. In OEM, the ASM instance is available from any of the
database instances that are using the ASM instance. You can mount the disk
groups through this OEM view.

You can see information about the disks, including the status, the type of
redundancy that the disk is configured for, and the space that is allocated
and used. You can also do some health checks and rebalance the disks.
Selecting one of the disk groups will drill down into a view of the files on
the disks, as shown in Figure 10-8. If you find it difficult to work with the file
names with all of those numbers, you can create an alias or rename files.

300 Oracle Database Administration for Microsoft SQL Server DBAs

Chapter 10: High-Availability Architecture 301

FIGURE 10-7. OEM view of ASM disk groups

FIGURE 10-8. OEM view of files in a disk group

Deleting here might be useful for backups, but definitely not something
you would want to do with database files. These are the options that are
available with the ASMCMD utility.

Viewing ASM Information
When connected to the ASM instance, some v$ views give information
about the instances connected, disks that might not be part of a disk group,
and files. For example, the v$asm_disk view shows the disks that are
being used by that database instance, and when viewed from the ASM
instance, it will show all of the disks that are discovered. Table 10-2 lists
some of the ASM v$ views.

302 Oracle Database Administration for Microsoft SQL Server DBAs

View Logged in to ASM Instance
Logged in to Database
Instance

v$asm_client Shows a row for each
database instance using
ASM

Shows a row for the
ASM instance for the
database

v$asm_disk Shows all of the disks that
are discovered

Shows only the disks in
the disk groups being
used by this instance

v$asm_diskgroup Shows all of the disk
groups that are discovered

Shows the disk groups
that are available in the
ASM

v$asm_file Shows the files for each
disk group mounted

Shows the files for the
instance

v$asm_operation Shows the file for each
long-running operation
executing in the ASM
instance

Shows no rows

TABLE 10-2. Some ASM v$ Views

Here are some examples of using SQL*Plus to take a look at the views in
ASM, making sure the environment is set up to log in:

>export ORACLE_SID= +ASM

>export ORACLE_HOME=/u01/oracle/11.2.0/grid

SQLPLUS> select name, state, total_mb from v$asm_disgroup;

NAME STATE TOTAL_MB

------------------------------ ----------- ----------

DG_DATA01 MOUNTED 349962

DG_DATA02 MOUNTED 349942

SQLPLUS> select name from v$asm_disk;

NAME

ORADATA01

ORADATA02

ORADATA03

ORADATA04

SQLPLUS> select instance_name, db_name, status

from v$ASM_CLIENT;

SQL> select group_number, instance_name, db_name, status

from v$ASM_CLIENT;

GROUP_NUMBER INSTANCE_NAME DB_NAME STATUS

-------------- ---------------- -------------- ---------

1 DBDEV DBDEV CONNECTED

2 DB01 DB01 CONNECTED

1 +ASM +ASM CONNECTED

2 +ASM +ASM CONNECTED

4 rows selected.

>export ORACLE_SID=DB01

>export ORACLE_HOME=/u01/oracle/11.2.0/database

SQLPLUS> select group_number, instance_name, status

from v$asm_client;

GROUP_NUMBER INSTANCE_NAME DB_NAME STATUS

------------ ------------------ ---------------- ------------

1 +ASM DB01 CONNECTED

Notice the difference between the view results on the ASM instance and
the database instance. Also, if there are no disks available in v$asm_disk,
this might indicate an issue with the parameter ASM_DISKSTRING or even
permissions on the directories or devices.

Chapter 10: High-Availability Architecture 303

Streams and Advanced Replication
Replication provides copies of data to different servers, and it can be used to
move data. While it isn’t a failover mechanism usually associated with high
availability, it does help ensure that data is available and can provide a way
to selectively pull out the important data.

SQL Server has replication to distribute transactions to a subscriber. You
create the publisher, which can be various tables, and then you can make
subscriptions to the publisher for replicating to another server. The SQL
Server publisher, distributor, and subscriber fill the roles of capture, stage,
and consume or apply. Some setup with a replication administration user
and another database is required.

For replication, Oracle offers Oracle Streams and the Advanced
Replication option. Which one you use depends on your replication
requirements, including what needs to be replicated in your environment.

Oracle Streams
Oracle Streams, included as part of the Oracle database installation,
captures data changes to distribute to another database. The phases of
Streams are similar to the SQL Server publisher, distributor, and subscriber
roles. A user needs to be created to manage the replication, and a
tablespace is also required.

Setting Up Oracle Streams
The Streams administrator user needs the DBA permissions and admin
privilege on the DBMS_STREAMS_AUTH package. Here is an example for
granting the permissions to the user:

SQLPLUS> grant CONNECT, RESOURCE, DBA to streamadmin;

SQLPLUS> begin DBMS_STREAMS_AUTH.GRANT_ADMIN_

PRIVILEGE(grantee => 'streamadmin', grant_privileges => true);

END;

/

SQLPLUS> grant SELECT_CATALOG_ROLE to streamadmin;

SQLPLUS> grant SELECT ANY DICTIONARY to streamadmin;

The parameter configurations for Streams setup are GLOBAL_NAMES=
TRUE, JOB_QUEUE_PROCESS higher than 2, and STREAMS_POOL_SIZE at
least 200MB. A database link is used to connect to the target server, so the
databases do not need to be identical.

304 Oracle Database Administration for Microsoft SQL Server DBAs

Changes for data and objects are captured and replicated. Replication
can be configured for the whole database, schemas, tables, or even tablespaces.
You can set up Streams through OEM, as shown in Figure 10-9, or through
the DBMS packages.

Through OEM, you can also choose to set up downstream capture and
create an advanced queue. Downstream capture collects streams on a
remote database other than the source. The archive logs can be shipped to
where the downstream capture is configured, or the downstream can be a
real-time data capture. The queue is a messaging system that queues up
information to pass it along for other applications or databases to use to
have persistent messages. This is used for distributed applications to
communicate and coordinate processes in an asynchronous manner.

Having the flexibility to implement Streams for just a schema instead of the
whole database allows you to choose which pieces are more highly available.
The replication doesn’t failover the application to a copy of schema, but
provides a place to get the data, at least via a manual connection. The DBMS_
STREAMS_ADM package has procedures for adding schema and table rules,
and setting up the queue table.

Chapter 10: High-Availability Architecture 305

FIGURE 10-9. Setting up Oracle Streams in OEM

Using Oracle Streams
Oracle Streams uses logical change records (LCRs) for each row of a table
modified. Each LCR has the name of the table changed, old and new values
for any changed columns, and values for the key columns. This information
can be applied to the rows at the destination sites and resolve conflicts if
they arise.

The changes are captured and staged based on the rules of what is to be
replicated. For the capture side, log-based capture pulls the changes out of
the redo logs. Capturing the information from the redo logs minimizes the
overhead on the system and any of the table changes. The tables that are
marked for replication need to log supplemental information in the redo
logs, such as the primary key columns. The log-based capture has a reader
service that reads the redo logs, and then prepares servers to scan the
defined regions from the reader. The filter of the LCRs is based on the rules
and definitions set up to replicate, so only the changes that are needed are
captured. The builder server merges the records from the preparer and then
passes the change to the staging area for processing. Capturing the changes
from the redo logs can come from the log buffer, active redo, and the
archive log files.

Another capture type is synchronous, which captures the changes as
they are happening. This can be used for tables that might be updated often
and are a smaller subset of tables. It captures the DML changes for each row
and converts it to an LCR. The capture of this change is then passed along to
the staging area.

Using rules for publishing and subscribing to the staging area offers
flexibility in the routing of the streams. The staging area with the queues will
even allow the information to be passed to a database that might not have a
network connection to the main database, by passing through another
database that has connections to both.

The consumption of the information is done by the apply engine. The
apply engine detects conflicts and applies automatically captured DML and
DDL changes. Here again, you have the flexibility of using declarative
transformations or user-supplied functions to set up each LCR.

The source database is kept throughout the Oracle Streams processing.
The administrator controls which changes are to be captured. The apply
engine can be customized with PL/SQL procedures and functions, which

306 Oracle Database Administration for Microsoft SQL Server DBAs

can be registered with the Streams administrator. An example for this is to
apply all of the changes except the deletions on a specific table.

Streams has an advisor that will help with performance and monitoring
of the throughput and latency. The advisor looks at each of the areas in the
process: capture, stage, and apply.

Advanced Replication
Along with Oracle Streams replication, Oracle offers an Advanced
Replication option. This handles master replication with a single master
or multiple masters.

Multimaster replication is known as peer-to-peer, and any of the servers
can be updated. Advanced Replication processing to multiple masters can
be asynchronous and synchronous.

For this type of replication, you need to set up a replication admin user.
Tables in the databases should have primary keys. The DBMS_REPCAT
package provides routines for administering and updating the replication
catalog.

Advanced Replication offers the option of replicating to non-Oracle
databases. This allows a way to provide data to several different systems.
Also, with this type of replication, the Oracle database version and platform
do not need to be the same for replication. Advanced Replication may be
suitable for distributed or data warehouse databases, to have copies
available for other systems or to maintain the workload on different servers.

Summary
The role of the DBA is to provide a reliable database environment.
Businesses are requiring that systems be up and available 24/7.

The DBA needs to understand the options for the database system to
provide high availability. This includes knowing the resource costs for
each solution and what type of availability it provides.

Making a case for how a high-availability solution improves the
management and reliability of the database, as well as provides for the
needs of the business, is the responsibility of the DBA. Implementing,
deploying, and administering the environment is the fun part for the DBA.

Chapter 10: High-Availability Architecture 307

SQL Server has high-availability solutions that you might have considered
and/or implemented. The options for SQL Server do not behave the same
as those for Oracle. Even though both have clustering, there are significant
differences. Looking at the differences is a good place to start to understand
the Oracle solutions. However, you also should examine the specific features
and possible configurations of Oracle RAC, Data Guard, and other high-
availability options. Look into the Maximum Availability Architecture for
Oracle, which combines solutions to handle different requirements and
reduce the risks for failures.

308 Oracle Database Administration for Microsoft SQL Server DBAs

appendix

Mental Preparedness
for Multiple Platforms

M
y native language is English, but for some crazy reason,
I wanted to learn German in high school. I learned about
the language, discovered new words, and learned how to
speak a couple of phrases. I started to learn about the syntax
and gender of words. I was able to understand a very basic

conversation, and I could read a simple article. My translations were straight
word for word; I did not understand the slang.

At the university, I was exposed to more German. I studied the grammar
and learned more about the culture, which helped me in understanding
different meanings of phrases instead of just translating each word into English.
Then I lived in Germany for several years, immersed in the language. I started
to be able to speak the phrases and dialect. I even began to dream in German,
and I realized I finally had made the German language a part of who I am.

Some of you might have experienced similar situations with learning a new
language. We also experience this with computer languages and database
platforms.

We have spent this book going through typical tasks and syntax of how
to do things in Oracle, even though SQL Server is your native language. We
used this as a baseline to understand the concepts of the database environment
and tasks that need to be done. The translations were done into Oracle—
some more direct than others. For example, the terms database and instance
were matched up with each other. The database/instance comparison was
to illustrate the Oracle environment—its objects and behaviors—and to truly
convey what Oracle DBAs mean when they say “database.”

Mental preparedness for multiple platforms is being able to distinguish
between the different platforms. It is being able to speak the language of one
platform one minute, and switch over to the language of another platform in
the next minute. You start by learning enough of the differences to make the
transition easier, but then begin to learn about the platform in more depth. It
is still possible to translate between the different platforms, but in doing so,
you might miss the real meaning or underlying concept. Take that extra step
to try to “dream in Oracle.” Try to stop comparing it with SQL Server, and
start embracing some of the Oracle features for what they are.

This is definitely not an easy task. It might take a few years for you to be
able to bounce between platforms without thinking about it. A good place
to start is with some checklists for each platform to help smooth the transition.

310 Oracle Database Administration for Microsoft SQL Server DBAs

Each of the platforms has a different starting point for troubleshooting a
problem. Start a checklist for troubleshooting the problems based on each
platform. It will increase the experience you have with the different database
environments when looking at the issues from different perspectives. How do
you go about looking at connection issues? What about performance? How
about permissions and statistics? Consider where all of these types of issues
fall as database administration activities—daily versus weekly, automatic versus
manual, cause of an issue versus fix for an issue, and so on.

Resolving a performance issue in SQL Server might start with looking for
locks and long-running queries, which could lead to needing to rebuild
indexes. In the Oracle environment, the search might start with looking at
session waits and checking if there are table scans because of stale statistics.
These starting points are good to have for each environment to be able to jump
into a different platform quickly. In not thinking about which platform, quite a
few times I have gone down a path in SQL Server to research a performance
issue by looking at statistics and indexes instead of looking at sp_who2 for
blocking issues. In SQL Server, blocking issues might be higher on my list of
things to check, but I might have skipped a quick check because I didn’t think
of the environment and may have even started to work on tuning the queries.
On the other hand, even though that might not have been the solution, tuning
queries is always worth it for better performance no matter what database
environment. At some point, the troubleshooting may look the same or
converge, depending on the issue, but understanding how the system behaves
and what some of the main issues can be is a good place to start.

Of course, some of the DBA tasks in the environments are the same. For
example, backups are important in any database system, but what is backed
up and the options are different. That could even be said for different databases
in the same platform. Not only are you translating to a different database
platform, but you also must use different applications, which, as a DBA,
you should be used to by now.

For maintenance jobs and tasks, be sure to look at the version of the
database, the platform, and any new features that might make the task easier
or even obsolete. Oracle did this with tablespaces. It was very typical to
coalesce and reorganize the tablespaces and tables, but with locally managed
tablespaces, this became less of a worry. SQL Server might have a higher
priority to rebuild cluster indexes, where Oracle might be looking at statistics
on the tables and indexes for the optimizer to have the correct information.
What is new in the database, the tasks, and maintenance should be reviewed

Appendix: Mental Preparedness for Multiple Platforms 311

for each environment. A list of typical jobs and why they run will help keep
your information current and useful for the system.

This all relates back to a DBA attitude toward learning. DBAs want to
learn. And if you don’t want to learn, why are you reading a book about a
different platform? Be mentally prepared to learn with each new release
of the database software, with each new application that is developed or
installed, and with each new platform introduced to the environment. That
is really what makes being a DBA fun—all of the new things to learn. We
are constantly exploring and trying to find better ways to manage a stable
and reliable system. We learn from what we have done in the past and try to
discover what is new for the future.

Realize that you don’t need to know everything, because honestly, that
probably isn’t possible. Just be aware of what’s available and know how to
get more information if that becomes necessary. Some pieces of the software
may seem to be interesting and fun, but there might not be a business reason
to implement them yet. Just knowing that these pieces exist and why they
might be needed is the first step of the process. High availability is a good
example. There are plenty of options with hardware, software, and ways
to move transactions from one system to another. The willingness to learn
about the solutions and be prepared to handle an implementation already
makes you a great DBA. Understanding the options for different platforms
and being willing to know what they have to offer make you even better. Be
brave enough to try different things and throw out the old, familiar methods
if they are no longer valid.

I bet you didn’t even realize that learning new features can be like learning
new database platforms. You’re willing to give up some of the comforts and
go explore what can be done. This is the exciting stuff. But don’t just go for
something because it is new and shiny. Use your experience and knowledge to
see if it also makes sense. Be willing to think outside the box. Understanding
more about databases in general helps with some out-of-the box thinking.
Understanding the processing and tools available in multiple platforms provides
additional resources to come up with different ways to gather information and
integrate solutions. Just because you’re gaining knowledge in one area, don’t
neglect what you already know.

Change is not always easy, but being in the technology business, we expect
change and prepare for it. Learning new technologies and keeping up with the
new features in the current technologies are part of our job. And this is why
I enjoy being a DBA. The job continues to add new challenges and changes.

312 Oracle Database Administration for Microsoft SQL Server DBAs

The roles of the job can change. I can explore the new technologies and work
on the architecture of the database system. I can also work with developers
to incorporate something that can solve a problem. The job also changes
depending on how we monitor the systems and become more proactive in our
administration of the databases. Being willing to learn and change are part of
the DBA mental attitude and preparedness. Taking on multiple platforms is an
excellent way to develop your skills.

Since databases touch so many environments, the learning does not
stop with the new features and other database platforms but continues with
operating systems, networking, and applications. The opportunities are just
out there, waiting to be added to your experiences.

Again, you don’t need to know everything about everything, but you do
need to know what issues are important to the databases. Also, you need to
talk to other teams to be able to maintain a well-performing environment,
because it is definitely a team effort. Learning from other areas is good, but
learning about the databases from other DBAs is also helpful. User group
members and coworkers are great sources of information. Being prepared to
support a different database and even a different operating system requires
learning from others.

DBAs have the opportunity to be in the middle of things, and to work with
different people and teams. Being prepared to offer ideas and knowledge about
database solutions makes the job interesting and makes you more valuable. The
teams will start to depend on your ability to evaluate why a database solution
here makes sense, while using another solution for something else is a good
idea. Being able to see the big picture, including how the application is getting
the information, is a skill we are constantly improving. Being able to speak the
database’s language is valuable when drilling down into the environments.

In becoming a DBA, you might not have initially realized all of the learning
that comes with the job. Those DBAs who challenge themselves and reach out
to learn more are the ones who succeed in their careers. Learning from each
other, being willing to explore new areas, and then being able to pull all of
the information back to apply to the database environment are the tricks of
the trade.

Being mentally prepared to handle multiple platforms means being willing
to dive completely into one platform when dealing with it and being able to
transition into another one as needed. Knowing that there are reasons for the

Appendix: Mental Preparedness for Multiple Platforms 313

database to run in a certain way and grasping the concepts behind how that
database performs are key to being able to support the database environment.

Learning Oracle will broaden your perspective on databases. Keeping
the skills you have already developed as a DBA and learning how to apply
them in other environments will continue to challenge you as you develop
more experience. The fun of the job is being able to be involved in several
aspects of the systems we support as we develop reliable, secure, and robust
database systems.

Be prepared to start dreaming in Oracle and database concepts, and be
prepared to continue to learn new and exciting things about databases and
their environments.

314 Oracle Database Administration for Microsoft SQL Server DBAs

Index

A

abort shutdowns, 85
ACFSUTIL command, ASM, 60
Active Data Guard, 290–291
Active Session History (ASH) view, AWR, 236
active standby databases, 290–291
active/active clustering, SQL Server, 276–277
active/passive clustering, SQL Server, 276
activity monitors, AWR, 224
Address Windowing Extensions (AWE), 19
administrator client, 120
Administrators section, of Enterprise Manager

Configuration, 111–112
advanced queues, Oracle Streams, 305
Advanced Replication, 307
ADVISE FAILURE command, data recovery,

147–148
Advised Recovery section, Oracle, 149
AFTER trigger, 248
AL32UTF8 (Unicode character set),

international language databases, 91–92
alert log

avoiding “checkpoint not complete” alert
in, 41, 198–199

cleaning up older, 204
DBAs monitoring errors in, 9
directory for, 36
invalid object alerts in, 187
listing errors on OEM home page, 8, 204
maintaining, 203–204
resizing, 198–199
in transaction process flow, 41
using DBCA, 81

aliases
overview of, 123–124
using client network utility with,

123–124
ALL_ permission, catalog views, 23
ALTER DATABASE BEGIN BACKUP, hot

backup, 130
ALTER DATABASE DATAFILE, resizing

datafiles, 200
ALTER DATABASE END BACKUP,

troubleshooting backup, 142
ALTER DATABASE OPEN RESETLOGS,

point-in-time recovery, 145
alter statements, spfile.ora file, 34
ANALYZE command, consistency checks,

173–174
ANALYZE TABLE table_name

VALIDATE STRUCTURE CASCADE
command, Oracle

detecting corruption, 173–174
evaluating if index should be

rebuilt, 182
apply engine, Oracle Streams, 306
archive logs, 41

directory for, 36
hot backups and, 130
log switching through redo logs

and, 41
recovering to specific, 144
redo logs and, 38–39
running backups of, 135, 137–138,

152–154
running out of archive space,

39, 138

315

ARCHIVELOG mode
customizing OEM backup jobs, 138–139
FULL transaction logs similar to, 34–35
Oracle DBCA backups, 128–129
point-in-time recoveries, 145
redo logs and, 38–39

ASH (Active Session History) view, AWR, 236
ASM (Automatic Storage Management)

background processes, 31
creating database with DBCA, 81
overview of, 57–61
using duplicate database to migrate to,

150–151
ASM (Automatic Storage Management), in RAC

configuration parameters, 298–302
as high-availability solution, 275
managing disk groups, 297
viewing information, 302–303

ASM Configuration Assistant (ASMCA), 297
ASM_DISKGROUPS parameter, ASM, 298
ASM_DISKSTRING parameter, ASM, 298
ASM_POWER_LIMIT parameter, ASM, 298
ASMCA (ASM Configuration Assistant), 297
ASMCMD command, disk management, 60,

299–300
asmdba (Automatic Storage Management

administrator) group, Oracle installation on
Linux, 50

ASMLib, ASM configuration, 298
ASMM (Automatic Shared Memory

Management), 17–20
ASSM (Automatic Segment Space Management)

evaluating if index should be rebuilt, 182
reducing fragmentation of tables, 184

attributes, cursor processing, 255
audit logs

directory for, 36
setting up for grants, 189

AUTO_UPDATE_STATISTICS option, 176
autoextend setting, datafiles, 201–202
Automated Maintenance Tasks, Oracle

Scheduler, 109
automatic failover, 292–296
Automatic Shared Memory Management. See

ASMM (Automatic Shared Memory
Management)

Automatic Storage Management. See ASM
(Automatic Storage Management)

Automatic Storage Management administrator
(asmdba) group, Oracle installation on
Linux, 50

Automatic Workload Repository. See AWR
(Automatic Workload Repository)

autonomous transactions, PL/SQL, 265
Availability tab, OEM, 106

AWE (Address Windowing Extensions), 19
AWR (Automatic Workload Repository)

Active Session History view, 236
activity monitors in, 224
library cache for SQL statements,

236–238
overview of, 233
reports, 233–235

B

background processes
running in Oracle, 30–32
setting up when database is created, 82

background_core_dump parameter,
directories, 204

background_dump_dest parameter,
directories, 36, 204

BACKUP ARCHIVELOGS command, purging
obsolete files, 156

backups. See also restore and recovery
backup and restore commands,

129–131
backup and restore of objects, 156–161
configuring with RMAN, 131–135
DBA responsibility for, 3
examples of, 137
in OEM, 106, 137–141
options, 135–137
platform differences, 6
preparedness for multiple platforms

and, 311
SQL Server/Oracle tools for, 104
storage setup for files, 56
strategies, 128–129
testing RAC, 283

backupset type, RMAN, 133
base backups, 134–135
batch files, SQL*Plus in, 113
bcp utility, database migrations, 9
BEFORE trigger, 247–248
BEGIN CATCH block, SQL Server, 264
BEGIN statement, PL/SQL, 251
BEGIN TRAN block, SQL Server, 251
BEGIN TRY block, SQL Server, 264
best practices, and DBAs, 4
BIN$, recycle bin, 162–163
blocks, database

backup strategy for corrupted, 142
recovering with RMAN, 146–147
sizing SGA memory, 22
validating with consistency checks,

173–174

316 Oracle Database Administration for Microsoft SQL Server DBAs

breakpoints, debugging in PL/SQL with, 263
b-tree indexes, for primary key indexes, 212
BULK COLLECT

cursor processing, 256
using PL/SQL FORALL loop, 257

bulk update locks, SQL Server, 220

C

cache
database using memory for, 16
defining functions in Oracle to use

result, 261
library, for SQL statements, 236–237

case sensitivity, choosing character set, 89
CASE statement, conditions, 250
cat or more command, Linux, 49
catalog owner, RMAN backups, 131–132
catalogs

containing system-level information, 23
RMAN configuration for backups,

131–132
catalog.sql script, data dictionary, 23
catproc.sql script, data dictionary, 23
CBO (cost-based optimizer)

creating execution plans with gathered
statistics, 177, 209, 229–230

improvements to, 229
statistics for tables/indexes and, 230–231
useful database parameters, 231–232

cd command, Linux, 49
Cd command, Windows, 49
chained row analysis, Segment Advisor,

182–183
chains

creating jobs with DBMS_SCHEDULER,
195–196

creating jobs with Oracle Scheduler,
193–194

character sets
changing, 93
choosing, 89
NLS parameters for, 89–92
setting environment variable for NLS_

LANG, 92–93
checklists

common migration tasks, 12
database installation, 5–6
DBA monitoring, 9
setting up Windows for Oracle

installation, 48
troubleshooting multiple platforms, 311

chgrp command, Linux, 49
chmod command, Linux, 49
chown command, Linux, 49
CI value, NLS_SORT parameter, 89
client connections

configuring, 120–123
in JDBC, 123
setting up aliases in tnsnames.ora file,

123–124
tools for, 119–120

client failover, Oracle RAC, 283–285
cloning database, 151–152
Cluster Verification Utility. See CVU (Cluster

Verification Utility)
clustering. See also RAC (Real Application

Clusters)
indexes, 182, 211
naming examples, 76–77

Clusterware (crs) group, Oracle installation
on Linux, 50

Clusterware software, RAC configuration,
278–282

coding
backup strategy for poor, 142
database practices, 240–243
DBA responsibility for, 3–4
Oracle functions, 258–259

cold backups, 130–131, 145
command-line commands

Automatic Storage Management, 60
backup and restore, 129–131
Linux vs. Unix, 48–49
SQL*Plus, 112–117

commit points
explicit cursors handling size of, 255
PL/SQL error handling with, 265
for PL/SQL transactions, 253–254

COMPATIBLE parameter, 35
components, Oracle

choosing database, 63–64
choosing for installation, 66–67
managing in Database Configuration of

OEM Server tab, 108
composite indexes, 213
conditions, PL/SQL, 250
Configuration Manager, My Oracle

Support, 124
CONNECT role, Oracle, 97–98
connections

client, 119–123
JDBC, 123
testing RAC, 282–283

consistency checks, 173–174

Index 317

constants, declaring in PL/SQL packages, 243
constraints, database migrations and, 10
control files

backing up in Oracle, 135
backup strategy for loss of, 142
created with database, 82
managing in Storage category of OEM

Server tab, 108
not included in full backups, 135–136
RMAN backups of, 131
RMAN restore and recovery of, 143
storage requirements, 56–57, 62–63

CONTROL_FILES parameter, 36
conversions, database migration, 9–10
copy backup type, RMAN, 133
Copy command, Windows, 49
CPU (Critical Patch Update), 70
create operations, 241, 243
CREATE PROCEDURE role, 100
CREATE SESSION permission, CONNECT role,

97, 98
CREATE TABLE statement, ASM, 300
Critical Patch Update (CPU), 70
cross-checks, archive log backups, 138
crs (Clusterware) group, Oracle installation on

Linux, 50
csscan utility, changing character set, 93
cumulative database backup option,

RMAN, 134
CURSOR_SHARING parameter, 36, 237
cursors

declaring in PL/SQL packages, 243
in PL/SQL transactions, 254–257

custom shell database template, 80
CVU (Cluster Verification Utility)

configuring RAC, 278, 280
testing RAC, 282

D

Data Definition Language. See DDL (Data
Definition Language)

data dictionary
capturing object statistics in, 180–181
capturing system statistics in, 177
containing system-level information,

23–26
views, 26–27, 189

Data Guard. See Oracle Data Guard
Data Guard broker, automatic failover,

294–295
Data Movement tab, OEM, 106

Data Pump Utility, 157–161
data warehouse template, creating with

DBCA, 80
database

defined, 74
terminology used in this book, 310

database administrator (dba) group, Oracle
installation on Linux, 50

database administrators
roles of. See DBAs (database

administrators), role of
tools. See DBA (database administrator)

tools
Database Configuration Assistant. See DBCA

(Database Configuration Assistant)
Database Configuration category, OEM Server

tab, 108
database identifier (DBID), 76
database owner, SQL Server, 101–102
Database Upgrade Assistant (DBUA),

68–69, 79
Database Upgrade Guide, Oracle, 69
Database Vault, Oracle, 96
databases, creating

choosing character set, 89–93
creating listener, 85–89
DBA planning/managing installation

of, 5
with DBCA, 79–82
duplicating with templates and scripts,

83–85
instances, 74–75
name definitions, 76–77, 80
naming uniquely, 119
overview of, 74
parameters, 35
schema, 74–75
shutdown options, 85
SQL Server vs. Oracle setup, 77–78

datafiles
backing up in Oracle, 135
backup strategy for loss of, 142
cold backups and, 131
consistency checks in, 173–174
creating database with DBCA, 80
moving to another location, 149–150
recovering with RMAN, 146–147
resizing, 198–201
RMAN hot backups and, 130
shrinking and resizing, 198
storage management with ASM, 57–62
storage setup for, 56–57
tablespace monitoring of, 200–202

318 Oracle Database Administration for Microsoft SQL Server DBAs

datatypes, converting during migration, 10–11
dates, validation after database migration, 11
DB_BLOCK_CHECKSUM parameter, 174
DB_BLOCK_SIZE parameter, 35
DB_CACHE_SIZE parameter, 17
DB_FLASHBACK_RETENTION_TARGET

parameter, 165
DB_NAME parameter, 35
DB_RECOVERY_FILE_DEST_SIZE

parameter, 165
DB_WRITER_PROCESSES parameter, 37
dba (database administrator) group, Oracle

installation on Linux, 50
DBA (database administrator) tools

aliases, 123–124
client connections, 119–123
JDBC connections, 123
My Oracle Support, 124
OEM. See OEM (Oracle Enterprise

Manager)
for performing common tasks, 104–105
SQL Developer, 117–119
SQL*Plus, 112–117

DBA role, Oracle, 96–98
DBA_ permission, 23
dba_audit_statement view, 189
dba_col_privs view, grants, 189
dba_datapump_jobs view, 157
dba_objects, querying, 24–26
dba_objects table, invalid object alerts,

187–188
dba_recyclebin view, 162–163
DBA_SCHEDULER _JOBS, 28
dba_scheduler_chain_steps view,

DBMS_SCHEDULER, 196
dba_tab_privs view, grants, 189
dba_views, data dictionary, 26–27
DBAs (database administrators), role of

database installation planning, 5
database migrations, 9–13
dividing privileges, 101–102
general skills of, 2–3
leveraging skills, 5–8
mental preparedness for multiple

platforms, 310–314
monitoring checklist, 9
overview of, 2
permissions required, 96
placement within organization, 4

DBCA (Database Configuration Assistant)
ASM installation with, 59
creating different passwords for system

users, 94

creating Oracle database with, 28
database creation with, 79–80
removing databases with, 82

DBCC CHECKALLOC command, SQL
Server, 174

DBCC CHECKDB command, SQL Server,
173–174

DBCC CHECKTABLE command, SQL Server,
173–174

DBCC procedures, SQL Server
evaluating if index should be

rebuilt, 182
performing consistency checks, 173
recovering tablespace, 146

DBCC SHOWCONTIG command, SQL Server,
182, 184

dbconsole process, DBCA, 81
DBID (database identifier), name

definition, 76
DBMS packages, PL/SQL, 270–271
DBMS_AUTO_TASK_ADMIN, 197
DBMS_DDL.ALTER_COMPILE, 188
DBMS_JOB package, 196
DBMS_METADATA package, 270
DBMS_OUTPUT package, 263, 270
DBMS_REDEFINITION package, 186, 270
DBMS_REPCAT package, advanced

replication, 307
DBMS_SCHEDULER package

converting jobs created with DBMS_
JOB to, 196

overview of, 194–196
scheduling jobs after database

migration, 11
scheduling jobs with, 28, 191–192

DBMS_SQL package, 270
DBMS_STATS package, 176–177, 179–188
DBMS_STREAMS_ADM package, 305
DBMS_STREAMS_AUTH package, 304–305
DBMS_UTILITY package, 188
DBUA (Database Upgrade Assistant),

68–69, 79
DBVERIFY utility, Oracle, 146–147, 173–174
DDL (Data Definition Language)

dictionary lock, 221
setting up Data Pump export

job, 157
SQL Server vs. Oracle, 246

deadlocks, 219
debugging, stored procedures in PL/SQL,

262–264
DECODE function, conditions, 250
Del command, Windows, 49

Index 319

delete operations
backup options, 155–156
databases, 82
with PL/SQL FORALL loop, 257–258
purging obsolete files, 155–156
SQL Server vs. Oracle triggers for, 247
using implicit cursors, 255

design, DBA responsibility for, 4
destination parameters, 36
developers, SQL Developer tool, 117–119
development DBAs, 4
/dev/shm file system, Linux, 18
dgmgrl command, automatic failover,

294–295
DHCP (Dynamic Host Configuration

Protocol), 47
differential backups, 134–135
Dir command, Windows, 49
directories

duplicating databases with scripts using,
83–84

location and destination parameters
for, 36

maintaining trace files in, 204
disaster recovery. See backups; restore and

recovery
disk groups

ASM, managing, 297
ASM configuration, 298–302
ASM installation, 59–61
creating database with DBCA and

ASM, 81
disks

clustering with RAC. See RAC (Real
Application Clusters)

estimating space for Data Pump jobs,
158–159

Oracle installation requirements, 45
setting up storage for, 56–57

dm_db_index_physical_stats, SQL
Server, 182

DML triggers, 246
downstream capture, Oracle Streams, 305
downtime, patching RAC, 286
DUPLICATE command, RMAN, 149–151
Dynamic Host Configuration Protocol

(DHCP), 47

E

echo $ORACLE_HOME command, Linux, 48
enterprise architect, DBA as, 3

Enterprise Manager (EMCA)
configuring in OEM, 111–112
upgrades with, 79

env command, Linux, 49
environment variables, for NLS_LANG, 92–93
error handling

cursor processing and, 255–256
at package level in PL/SQL, 243–245
PL/SQL, 264–269

error logs, SQL Server, 203–204
error messages

alert logs. See alert log
PL/SQL SQLERRM function

returning, 265
PL/SQL standard, 268–269

/etc/pam.d/login file, 51
/etc/security/limits.conf file, 51
event triggers, 246–247
EXCLUDE parameter, Data Pump jobs,

157–158
exclusive locks

Oracle, 221
overview of, 219
SQL Server, 220

EXECUTE IMMEDIATE statement, 247
EXP/IMP_FULL_DATABASE role,

Oracle, 101
expire backup options, 155–156
explain plans

tuning using, 228–230
viewing for queries, 226–228

explicit cursors, Oracle transactions, 254–255
exporting

with Data Movement tab in OEM, 106
with Data Pump utility, 157–161

F

failover, Oracle RAC
configuring automatic failover,

294–296
Data Guard standby database

option, 290
as high-availability solution, 275–278
setting up client, 283–284
testing, 282

failover, SQL Server log shipping, 289
FAN (Fast Application Notification), client

failover in RAC, 283, 285
Fast Application Notification (FAN), client

failover in RAC, 283, 285

320 Oracle Database Administration for Microsoft SQL Server DBAs

Fast Connection Failover (FCF), client failover
in RAC, 283

Fast-Start Failover, 295
FCF (Fast Connection Failover), client failover

in RAC, 283
file maintenance

datafiles, 199–200
error logs, alert logs and trace files,

203–204
logs, 198–199
shrinking and resizing, 197–198
tablespace monitoring, 200–203

files
backup options, 135
storage requirements, 56, 61–62
Windows installation setup, 47

flash recovery area, creating database with
DBCA, 82

flashback
configuring recovery area for, 82,

163–166
of database, 166–168
as high-availability solution, 275
of queries in undo area, 39
restoring tables from recycle bin, 163

flashback command, 164–168
flashback recovery area (FRA)

configuring, 164–166
flashing back items, 166–168
overview of, 82

flashback table command, from recycle
bin, 163

flashback_transaction_query
view, 168

FOR loops, cursor processing, 256
FORALL loop, PL/SQL transactions, 257–258
format, RMAN configuration for backups,

132–133
forward slash (/), database coding, 242
4GB RAM Tuning, 19
FRA (flashback recovery area)

configuring, 164–166
flashing back items, 166–168
overview of, 82

FULL backups
SQL Server and Oracle options,

128–129, 136–137
of SQL Server transaction logs, 34

full or fast scans, tuning indexes, 229
FULL=Y parameter, exporting full database

with Data Pump job, 157
function-based indexes, 212–214, 260
functions, PL/SQL, 243–245, 258–261

G

GATHER_STATS_JOB, automatic statistics
gathering, 176

general transaction database template,
creating with DBCA, 80

global database name, 76
global partitioned indexes, 217
global views, RAC instances, 288
GRANT SELECT ANY CATALOG to USER

role, 23
grants, 188–190
grep command, Linux, 49
Grid Control, deploying RAC, 286–287
Grid Infrastructure

ASM installation, 58, 60
Oracle installation of components,

278–279
groups

Automatic Storage Management. See
disk groups

managing redo logs, 108
for Oracle installation on Linux,

50–52
shrinking and resizing redo logs,

198–199
gv$ views, RAC, 287–289

H

hardware
backup strategy for, 141–142
DBA decisions about, 4
Oracle installation requirements, 45

health checks
with Configuration Manager, 124
database maintenance, 174–175
platform differences for, 7–8

high-availability architecture
advanced replication, 307
ASM in RAC environment,

297–303
clustering with RAC. See RAC (Real

Application Clusters)
options, 274–275
overview of, 274
primary and standby databases,

289–296
streams, 304–307

history cleanup, in general
maintenance, 173

Index 321

home directory
ASM installation on, 58
Oracle installation in Linux on, 51
Oracle installation in Windows on,

46–47
Oracle software installation on, 64

hot backups, 130

I

identity column, SQL Server, 242
immediate shutdowns, 85
implicit cursors, Oracle transactions, 254–255
importing

with Data Movement tab in OEM, 106
with Data Pump utility, 157–161

incremental backups, 134–135
Independent Oracle User Group (IOUG), 124
index_stats table, 182
indexed views, 214–215
indexes

bitmap, 215–216
detecting corruption between tables and,

173–174
enabling monitoring, 210
function-based, 212–214, 260
general tasks, 173
invisible, 218–219
overview of, 209–210
partitioned, 217
primary key, 211–212
rebuilding, 181–184, 191–192, 218
reorganizing tables, 184–187
reverse key, 216–217
tuning using explain plans, 228–230
types of, 210–211
updating statistics for, 178–181, 230–231
views, 214–215

index-organized table (IOT), creating primary
key index with, 211–212

Initialization Parameters, OEM Server tab
Database Configuration, 108

init.ora file, 287–288
insert operations

with PL/SQL FORALL loop, 257–258
triggers for, 247
using implicit cursors, 255

inst_id parameter, RAC, 288
instance, terminology used in this book, 310
Instance Activity, OEM, 224–225
INSTANCE_TYPE parameter, ASM, 298

instant client, 120
integrity, database, 173
intent locks, SQL Server, 220
interface, DBAs responsibility for, 4
internal locks and latches, 221
Internet Directory, Oracle, 121–122
invalid objects, database maintenance,

187–188
invalid synonyms, database maintenance, 189
invisible indexes, 218–219
I/O events, storage for, 56
IOT (index-organized table), creating primary

key index with, 211–212
IOUG (Independent Oracle User Group), 124
IP addresses, configuring RAC, 279–280
ipcs-b system command, 19
isolation, SQL Server, 219

J

JAVA_POOL_SIZE parameter, 17
JDBC (Java Database Connectivity)

client failover in RAC, 284
connections, 123
managing SQL Server databases, 10

JOB_QUEUE_PROCESSES parameter,
scheduling jobs, 37, 82

jobs
Data Pump, 157–158
scheduling. See scheduling jobs

K

kernel parameters, Oracle installation on
Linux, 54–55

L

languages, choosing character sets, 89–91
large pages, and memory, 19
LARGE_POOL_SIZE parameter, 17
LCRs (logical change records), Oracle

Streams, 306
ldap.ora file, 122
.ldf files, 62
least recently used (LRU) blocks, sizing SGA

memory, 22
library cache for SQL statements, AWR,

236–238

322 Oracle Database Administration for Microsoft SQL Server DBAs

Linux, Oracle installation setup
disk storage, 57
hardware, 45
kernel parameters, 54–55
required packages, 53–54
software, 64
useful commands, 48–50
users and groups, 50–52

LIST command, backup views with, 152–155
LIST FAILURE command, data recovery

advisor, 147–148
listeners

client connection configuration,
85–89, 121

configuring automatic failover, 294–295
in service list for Oracle, 29
setting up RAC, 285

local partitioned indexes, 217
Local Service account, Windows

installation, 47
LOCAL_LISTENER parameter, RAC

listeners, 285
location

choosing for database files, 81–82
database parameters for, 36
file system in Windows for Oracle

installation, 47
locking data, 219–221
log groups, creating with database, 82
LOG_ARCHIVE_DEST parameter, 35–36
logical change records (LCRs), Oracle

Streams, 306
logical standby databases, 290–291
logs

alert. See alert log
archive. See archive logs
audit, 36, 189
overview of, 38
primary/standby databases and, 290–296
redo. See redo logs
resizing, 198–199
SQL Server and Oracle backup

options, 135
storage requirements for, 56–57, 62
transaction logs. See transaction logs,

SQL Server
transaction process flow and, 40–42

LRU (least recently used) blocks, sizing SGA
memory, 22

ls command, Linux, 49
lsnrctl utility, 87

M

MAA (Maximum Availability Architecture),
Oracle, 274, 296

maintenance, database, 171–205
consistency checks, 173–174
files. See file maintenance
grants, 189–190
health checks, 174–175
index rebuild, 181–184
invalid objects, 187–188
job scheduling. See scheduling jobs
mental preparedness for multiple

platforms, 311
Oracle/SQL Server backup plans,

128–129
in SQL Server, 172
synonyms, 190–191
table reorganization, 184–187
tasks, 172–173
update statistics, 176–181

Maintenance Plan Wizard, SQL Server, 172
maintenance window schedules, system and

user job setup, 196–197
man (manual) pages, Linux commands in,

49–50
man command, Linux, 49
Manage Scheduler privilege, 197
master database

backing up in SQL Server, 135
not existing in Oracle, 22
system-level information in Oracle

vs., 23–26
materialized views, creating indexes on,

214–215
MAX_JOB_SLAVE_PROCESSES

parameter, 37
MAXDATAFILES parameter, 35
Maximum Availability Architecture (MAA),

Oracle. See also high-availability
architecture, 274, 296

Maximum Availability, Oracle Data
Guard, 290

Maximum Performance, Oracle Data
Guard, 290

Maximum Protection, Oracle Data
Guard, 290

MAXLOGFILES parameter, database
creation, 35

.mdf files, 62

Index 323

memory
designing storage and, 55
managing in OEM Server tab, 108
Oracle installation requirements, 45
parameters, 17–20
sizing PGA, 22
sizing SGA, 20–22
structures for, 16

Memory Advisors, Database Configuration in
OEM Server tab, 108

MEMORY_MAX_TARGET parameter, 18
MEMORY_TARGET parameter, 18, 20
MEMORY_TARGET parameter, 36
mental preparedness for multiple platforms,

310–314
Microsoft Loopback Adapter, Windows for

Oracle installation, 47
Migration Wizard, database, 10–11
migrations, database

overview of, 9–11
tasks for, 12
validation of data after, 11

mkdir command, Linux, 49
Mkdir command, Windows, 49
MMALCHER, 26
model database, backing up in SQL

Server, 135
monitoring

checklist for, 9
DBA responsibility for, 7–8
tools for, 104

most recently used (MRU) blocks, sizing SGA
memory, 22

MOVE command, tables, 186
Move command, Windows, 49
MRU (most recently used) blocks, sizing SGA

memory, 22
msdb system database, SQL Server

backing up, 135
job scheduling in, 191
not existing in Oracle, 22

multimaster replication, 307
mv command, Linux, 49
My Oracle Support

managing patches, 70–71
overview of, 124

N

naming conventions
Data Pump jobs, 157
Linux disk storage, 57
listeners, 85–89
Oracle database, choosing unique

name, 80

Oracle database, name definitions,
76, 119

recycle bin objects, 162
navigation, OEM, 105–107
Net Configuration Assistant (NETCA), creating

listener, 85–89
NETCA (Net Configuration Assistant), creating

listener, 85–89
network configuration

DBAs working with, 4
Real Application Clusters, 279–280,

282–283
Windows for Oracle setup, 47

NLS (National Language Support) parameters
choosing character set for database,

89–93
setting environment variable for

NLS_LANG, 92–93
NLS_COMP parameter, 89
NLS_LANGUAGE (NLS_LANG)

parameter, 90
NLS_SORT parameter, 89–90
NO_DATA_FOUND error, SELECT INTO, 255
NOARCHIVELOG mode, Oracle

customizing backup job in OEM,
138–139

Oracle DBCA backup strategy,
128–129

point-in-time recovery in, 145
redo logs and, 39
transaction logs and, 35

noconfig option, response files, 68
nonclustered indexes, Oracle, 182
normal shutdowns, 85
%NOTFOUND attribute, cursor processing, 255
nowait option, response files, 68
nowelcome option, response files, 68
NTFS file system, installing database software

on, 47

O

object maintenance
grants, 189–190
index rebuild, 181–184
invalid objects, 187–188
overview of, 181
synonyms, 190–191
table reorganization, 184–187

objects
backing up and restoring, 156–161
granting individual permissions

against, 189
importing with OEM, 160–161

324 Oracle Database Administration for Microsoft SQL Server DBAs

querying information about database,
24–25

recompiling invalid, 187–188
OCR (Oracle Cluster Registry), configuring

RAC, 278, 280
OEM (Oracle Enterprise Manager)

activity monitors, 224–225
ASM disk groups and files, 300–301
AWR reports, 233–235
backup settings, 133–134
backups, managing, 154–155
backups, scheduling jobs, 137–141
configuring table reorganization,

184–186
copying database, 151–152
database configuration, 108
database creation with DBCA, 81
Enterprise Manager Configuration area,

111–112
home page, 8
importing objects, 160–161
invalid object alerts, 187–188
navigation, 105–107
Oracle Scheduler interface, 28, 109
overview of, 105
RAC database management, 282
RAC deployment, 286–287
Resource Manager, 109
restore and recovery, 147–148
scheduling jobs, 191–193
scheduling jobs, backups, 137–141
scheduling jobs, Data Pump, 158–160
security, 109–110
setting up Oracle streams, 305
statistics management, 109
storage management, 107–108
tablespace monitoring, 111, 201–203
viewing background processes, 31

oinstall (Oracle installation) group, on
Linux, 50

OPATCH method, Oracle patches, 286
operating systems

DBAs working with configuration of, 4
Oracle installation preparation, 44–46

optimizer parameters, 36
Optimizer Statistics Gathering task, 176
OPTIMIZER_INDEX_COST_ADJ database

parameter, 232
OPTIMIZER_MODE parameter, 36, 232
options, retrieving values of, 33–34
Options tab, Oracle Scheduler, 193
“ORA-1555: snapshot too old” error, 40

Oracle
PL/SQL language in. See PL/SQL
skills needed for managing, 6–7
SQL Server database migration to, 9–13
SQL Server vs. See SQL Server vs.

Oracle
storage requirements for files, 61–62

Oracle, internal structures
data dictionary views, 26–27
database creation parameters, 35
jobs and schedules, 28
location and destination parameters, 36
master, msdb and tempd not

existing in, 22
memory parameters, 17–20
memory structures, 16
optimizer and performance parameters,

36–37
other parameters, 37–48
parameters. See parameters
services and processes, 29–32
sizing SGA and PGA, 20–22
some basic parameters, 35–36
system-level information, 23–26
templates and temporary tables, 28–29
transaction log parameters, 34–35
transaction logs vs. redo logs, 38–39
transaction process flow, 40–42
undo area, 39–40
viewing and setting parameters, 33–34

Oracle Cluster Registry (OCR), configuring
RAC, 278, 280

Oracle Configuration Manager, 64, 70–71
Oracle Data Guard

configuring automatic failover,
294–296

failover using standby database
option, 290

as high-availability solution, 274–275
server design, 290–291

Oracle Database Upgrade Guide, 69
Oracle Database Vault, 96
Oracle Enterprise Manager. See OEM (Oracle

Enterprise Manager)
Oracle Grid Control, deploying RAC,

286–287
Oracle home directory

planning location of, 47
Windows for Oracle installation

setup, 46
Oracle Internet Directory, client connections,

121–122

Index 325

Oracle Scheduler, OEM
creating job in, 191–194
overview of, 191
Server tab, 109

Oracle Server installation
Linux setup, 50–55
Linux/Unix commands, 48–50
operating system preparations, 44–46
Oracle database components, 63–64
overview of, 44
Windows setup, 46–48

Oracle SQL Developer
creating new package framework,

243–245
creating unit test, 263–264
database development with, 117–119
database migrations, 10
debugging procedures, 262–263
developing, unit testing and version

control, 242
managing SQL Server databases, 10
viewing explain plan, 228

Oracle Streams
background processes, 31
defined, 304
as high-availability solution, 275
setting up, 304–305
using, 306–307

Oracle Universal Installer (OUI), 64, 68
oracle user, 51–52, 95–98
ORACLE_BASE directory, DBCA, 81
ORACLE_HOME directory, DBCA, 79–80, 81
ORACLE_HOME environment variable, 46–47
ORACLE_SID, Windows installation setup, 46
OUI (Oracle Universal Installer), 64, 68

P

packages
error handling, 266–268
Oracle installation requirements for

Linux, 53–54
PL/SQL package bodies and, 243–245
using DBMS, 270

PAE (Physical Address Extension), 19
parameters

ASM, 298
backing up, 135
basic, 35–36
database creation, 35
duplicating databases with scripts, 83
function-based index, 213

location and destination of, 36
managing in Database Configuration of

OEM Server tab, 108
materialized views, 215
memory, 17–20
optimizer and performance, 36–37
Oracle Streams, 304
other, 37–38
overview of, 32–33
performance tuning using, 231–233
RAC, 287–289
storage requirements, 62
transaction log, 34–35
viewing and setting, 33–34

partitioned indexes, 217
partitioned tables, 183–184
passwords

securing schema by not giving out, 101
storage requirements, 62

Patch Set Updates (PSU), 70–71
patches

applying, 70–71
applying with Software and Support tab

in OEM, 106
Configuration Manager for assistance

in, 124
for RAC environments, 286

patchsets, 70
peer-to-peer, multimaster replication as, 307
Performance tab, OEM, 106, 224–225
performance tuning

Automatic Workload Repository,
233–238

better-performing systems and,
208–209

with current activity views, 221–226
of indexes. See indexes
locking, 219–221
Oracle Data Guard protection mode

for, 290
parameters, 36
SQL plans. See SQL plans
troubleshooting multiple platforms, 311
troubleshooting with system

statistics, 177
permissions

catalog view, 23
Data Pump, 157
debugging procedures by

checking, 262
grant, 189–190
Oracle Streams, 304–305
oracle user, 51–52

326 Oracle Database Administration for Microsoft SQL Server DBAs

schema, 98–101
server, 95–98
SQL Server database owners, 99
SQL Server vs. Oracle, 243
viewing session, 51–52

pfile, 34
PGA (Program Global Area) memory,

17–18, 22
PGA_AGGREGATE_TARGET parameter, 22
PGA_AGGREGATE_TARGET parameter, 36
Physical Address Extension (PAE), 19
physical standby databases, 290–291
pipelined table functions, 259–261
platforms, mental preparedness for multiple,

310–314
PL/SQL

database coding, 240–243
debugging procedures and unit testing,

262–264
error handling, 264–269
functions, 258–261
overview of, 240
packages and package bodies, 243–245
triggers, 246–248
updates and conditions, 249–250
using DBMS packages, 270–271

PL/SQL transactions
beginning, 251–253
cursor processing, 254–257
defining commits, 253–254
overview of, 250–251
processing with FORALL loop, 257–258

PMON background processes, 30
point-in-time recoveries

flashing back database to, 166–168
overview of, 145
recovering tablespace to, 146

port numbers, listeners, 87
ports, Oracle client connections, 119
prerequisite checks

Oracle installation requirements, 45
Windows for Oracle installation, 48

primary databases
as high-availability solution, 275
overview of, 289–296
setting up standby database, 292–296

primary key indexes, 211–212
private IP addresses, RAC, 279–280
privileges

Oracle streams, 304–305
PL/SQL debug mode, 262–263
unlimited tablespace, 111
user jobs, 197

processes, running in database, 29–32
PROCESSES parameter, 35
processors, Oracle installation

requirements, 45
Profiler, SQL Server, 209
Program Global Area (PGA) memory,

17–18, 22
programs, job, 28
protection modes, Oracle Data Guard, 290
ps -ef command, Linux, 49
PSU (Patch Set Updates), 70–71
public IP addresses, RAC, 279–280
purging recycle bin, 163–164
pwd command, Linux, 48

Q

QMN0 process, Oracle Streams, 31
queries

executing in SQL*Plus, 112–117
exporting with Data Pump, 157
flashing back, 167–168
invisible indexes testing performance

of, 218
reducing time with indexes. See

indexes
tools for, 104
troubleshooting on RAC database, 289

QUERY_REWRITE_ENABLED parameter, 37
QUERY_REWRITE_ENABLED=TRUE

parameter, 213, 215
QUERY_REWRITE_INTEGRITY=TRUSTED

parameter, 213, 215
queues, Oracle Streams advanced, 305

R

RAC (Real Application Clusters)
Automatic Storage Management in,

297–303
background processes, 31
configuring, 278–282
configuring/monitoring instances of,

287–289
deploying, 286–287
as high-availability solution, 274–275
overview of, 276–278
patching, 286
setting up client failover, 283–285
setting up RAC listeners, 285
testing, 282–283

Index 327

www.SoftGozr.com

RAM, Oracle installation requirements, 45
range scans, tuning indexes, 229
RBO (rule-based optimizer), 229
read-only tables, bitmap indexes for, 215
read-write snapshot, converting to, 291
Real Application Testing, Software and Support

tab, 106
recompiling

invalid objects, 187–188
invalid synonyms, 189

record parameter, response files, 68
recover database command, 143
recovery. See backups; restore and recovery
recovery catalog

purging obsolete files, 155–156
RMAN restore and recovery options, 143

Recovery Manager. See RMAN (Recovery
Manager)

RECOVERY WINDOW parameter, purging
obsolete files, 155–156

RECOVERY_CATALOG_OWNER role, 131
recycle bin, 37, 161–164
RECYCLEBIN parameter, 37
redo logs

created with database, 82
managing in Storage category of OEM

Server tab, 108
planning backup strategy for, 142
resizing, 198–199
transaction logs vs., 38–39
transaction process flow, 40–41

REDUNDANCY parameter, purging obsolete
files, 155–156

REF CURSOR, 256–257
RELIES_ON clause, Oracle, 261
REMOTE_LOGIN_PASSWORDFILE

parameter, 38
REPAIR FAILURE command, data recovery

advisor, 149
REPAIR FAILURE PREVIEW command, data

recovery advisor, 149
replace operations, 241, 243
replication

as high-availability solution, 275
Oracle Advanced Replication, 307
setting up Oracle Streams, 305

reports
AWR, 233–235
backup status, 155–156

resizing. See sizing
Resource Governor, SQL Server, 109
Resource Manager category, OEM Server

tab, 109
RESOURCE role, Oracle, 96–97, 100

response files, 67–68
restore and recovery. See also backups

copying database, 149–152
Data Recovery Advisor, 147–149
DBA responsibility for, 3
knowing length of time for, 144
in OEM, 147–148
options, 143
platform differences for, 6
protecting users with flashback,

164–168
protecting users with Recycle Bin,

161–164
purging obsolete files, 155–156
recovering to specific point, 144–145
SQL Server/Oracle tools for, 104
tablespaces, datafiles, and blocks,

146–147
testing RAC, 283
using standby database for, 291
viewing available backups for,

152–155
what can go wrong, 141–143

restore database command, 143
restore point

creating in OEM, 139–141
flashing back database to, 166–168
recovering to, 145

result cache, 261
retention policies

OEM configuration for backups,
133–134

purging obsolete files, 155–156
RMAN configuration for backups,

132–133
undo, 39–40

reverse key indexes, 216–217
rm command, Linux, 48–49
rm -r command, Linux, 49
RMAN (Recovery Manager)

backup and restore commands,
129–131

configuration for backups, 131–134
configuring/scheduling backup jobs in

OEM, 137–141
copying database in, 149–152
flashing back items with, 166–168
managing backups in, 152–156
restore and recovery options, 143–147

roles. See also DBAs (database
administrators), role of

granting user access to catalog
views, 23

maintaining grants, 189

328 Oracle Database Administration for Microsoft SQL Server DBAs

www.SoftGozr.com

rollbacks
beginning transactions, 251–253
defining commits in PL/SQL

transactions, 254
PL/SQL error handling with, 265

rolling patches, RAC, 286
row exclusive table locks, 221
row locks, 221
row share table locks, 221
row-level triggers, 247–248
rpm -q package_name command, 53–54
rule-based optimizer (RBO), 229
runtime client, 120

S

sa account, SQL Server, 98
savepoints

beginning transactions in Oracle with,
251–253

PL/SQL error handling with, 265
scalar-valued functions, Oracle, 258–259
Schedule tab, Oracle Scheduler, 193
scheduling jobs

for automatic statistics gathering, 176
after creating database, 82
after database migration, 11
defined, 28
in OEM, for backups, 138–140
in OEM, for Data Pump, 158–160
overview of, 191
for system and user jobs, 196–197
for table reorganization, 186
tools for, 104
using DBMS_SCHEDULER package,

194–196
using DBMS_STATS package, 179–180
using Oracle Scheduler, 109, 191–194

schema locks, SQL Server, 220
schema owner, 75
Schema tab, OEM, 106, 184–186
schemas

creating backups of, 156–157
exporting with Data Pump, 157
implementing Oracle Streams for, 305
overview of, 74–75
permissions, 98–101
recompiling invalid objects at level

of, 188
updating statistics for, 178–181

SCN (system change number)
flashing back database to, 166, 168
listing details about archive logs,

153–154

point-in-time recovery to, 145
recovering to, 145

scripts
cold backups and, 131
creating for other platforms, 8
duplicating databases with, 83–84
reviewing RMAN in OEM, 139–140
using SQL*Plus command-line,

113, 114–117
Secure Backup, integration with RMAN, 132
security

considerations, 95
overview of, 94
patches, 70–71
permissions for schemas, 98–101
permissions for server, 95–98
privileges for DBA roles/responsibilities,

101–102
Security category, OEM, 109–110
Segment Advisor

rebuilding indexes, 182–183
table reorganization, 184–185

SELECT ANY CATALOG role, system
DBA, 101

SELECT FOR UPDATE statement, locking
data manually, 219

SELECT INTO, using implicit cursors, 255
SELECT statement

cursor processing in PL/SQL,
255–257

setting up client failover in RAC,
283–284

UPDATE statement in Oracle vs., 249
semicolon (;), database coding, 242, 262
sequences, Oracle, 241–243
server

defined, 74
naming, 76–77, 119
permissions for, 95–98

server log, DBAs monitoring, 9
Server tab, OEM

Database Configuration category, 108
defined, 106
Oracle Scheduler, 109
Security category, 109–110
SQL Server Management Studio

vs., 107
Statistics Management category, 109
Storage category, 107–108

services, running in database, 29–32
Session Monitor, SQL Server, 209
SESSION_CACHED_CURSORS parameter, 37
SESSIONS parameter, 35
Set command, Windows, 49
SET commands, SQL*Plus, 113–114

Index 329

www.SoftGozr.com

SGA (System Global Area) memory
defined, 17
Oracle parameters for, 17–20
sizing, 20–22

SGA_MAX_SIZE parameter, 17–18
SGA_TARGET parameter, 17–18
SGA_TARGET parameter, 36
share row exclusive table locks, Oracle, 221
share table locks, Oracle, 221
shared locks

Oracle, 221
overview of, 219
SQL Server, 220

SHARED_POOL_SIZE parameter, 17
SHOW RECYCLE BIN, 163
shutdown

database options, 85
of listener, 87
triggers used for, 246

SID (system identifier)
client connections and, 119
configuring/monitoring RAC instances,

287–289
database name definitions, 76
disk storage setup in Linux, 57
ORACLE_SID, 46
SQL Server vs. Oracle, 76

SIMPLE option, SQL Server
backup strategy, 128
point-in-time recovery in, 145
transaction logs, 34

single-instance database, patching RAC
like, 286

sizing
configuring flashback recovery area, 165
datafiles, 198–201
files, 197–198
logs, 198–199
SGA and PGA memory, 20–22
tablespaces, 108

SMON background process, 30
snapshot database configuration, 291
software, configuring RAC with

Clusterware, 278
software, installing Oracle

overview of, 64–67
patches, 70–71
removing software, 68
upgrading database, 68–70
using response file, 67–68

Software and Support tab, OEM, 106
sort order, choosing character set, 89
sp_configure, SQL Server parameters, 33

sp_updatestats, update statistics, 176
sp_who command, 113
SPFILE parameter, 37
spfile.ora file

configuring/monitoring RAC, 287–288
defined, 34

spool command, SQL*Plus, 113
SQL Developer. See Oracle SQL Developer
SQL plans

database parameters, 231–233
overview of, 226
statistics for tables and indexes,

230–231
tuning using explain plans, 228–230
viewing explain plans, 226–228

SQL Server Agent, scheduling jobs, 191–192
SQL Server Integration Services (SSIS),

migration, 9
SQL Server Management Studio

defined, 104
OEM vs., 105
Server tab of OEM vs., 107

SQL Server vs. Oracle
backup and restore, 128–131
client connection tools, 119–120
clustering, 276–278
Data Definition Language, 246
database coding practices, 240–243
database creation, 77–78
database definitions, 74–77
database migrations, 9–13
delete and expire backup options, 156
error functions, 265
function types, 258–259
general maintenance tasks, 172–173
health checks, 175
high-availability options, 274–275
index types, 211
installation checklists, 6
lock types, 220–221
locking, 219–221
memory structures, 16
mental preparedness for multiple

platforms, 310–314
performance tuning, 209
querying database objects, 24
scheduling jobs, 192
server roles, 96–98
setup, 77–78
SID (system identifier), 76
system-level information, 23–26
tools for database tasks, 104–105
transaction logs vs. redo logs, 38–39

330 Oracle Database Administration for Microsoft SQL Server DBAs

www.SoftGozr.com

triggers, 246–247
UPDATE statement, 249–250
update statistics procedure, 178
viewing and setting parameters, 33–34

SQL statements, library cache for, 236–237
SQL*Loader

database migrations using, 9
repairing unusable index caused by,

183–184
SQL*Net message, 225
SQL*Plus

overview of, 112–117
viewing ASM information, 303
viewing explain plan for query, 226–228

SQLCODE error function, PL/SQL, 265
SQLERRM error function, PL/SQL, 265
sqlnet.ora file, 122–123
SSIS (SQL Server Integration Services),

migration, 9
staging area, Oracle Streams, 306
standard installation document, 5
standby databases

configuring existing database with,
292–296

as high-availability solution, 275
overview of, 290
using active, 290–291

STAR_TRANSFORMATION_ENABLED database
parameter, 232

startup, triggers used for, 246
startup mount command, cold

backups, 131
statistics

gathering object, 178–181
gathering system, 177–178
maintenance tasks, 173
overview of, 176–177
performance tuning by viewing, 209
validating for performance, 230–231

Statistics Management category, OEM Server
tab, 109

STATISTICS_LEVEL parameter, 37, 176
Storage category, Server tab of OEM, 107–108
storage requirements

disks, 56–57
managing with ASM, 57–61
for Oracle files, 61–62
overview of, 55–56

stored procedures
database migrations and, 10
debugging, 262–264
declaring in PL/SQL packages, 243–245
validation after database migration, 11

streams. See Oracle Streams
synchronous capture, Oracle Streams, 306
synonyms, database maintenance, 190–191
SYS, 24–25
sysadmin role, SQL Server, 97–98
SYSASM role, Oracle, 98
SYSAUX tablespace

creating with database, 82
monitoring, 203
viewing/changing, 107–108

SYSDBA role, Oracle
auditing grants, 189
managing RAC databases with

OEM, 282
overview of, 96–98
preferences, 101

SYSMAN, 25
SYSOPER role, Oracle

auditing grants, 189
defined, 98
of system DBA, 101

SYSTEM, 26
system change number (SCN). See SCN

(system change number)
system DBAs, 4
System Global Area. See SGA (System Global

Area) memory
system identifier. See SID (system identifier)
system maintenance, job setup, 196–197
system monitoring, with SMON background

process, 30
system statistics, 176–178
SYSTEM tablespace

creating with database, 81–82
monitoring, 203
viewing/changing, 107–108

SYSTEM user, Oracle, 98
system views. See views, current activity
System V-style shared memory, 19
system-defined errors, PL/SQL, 265
system-defined functions, 259–260

T

tables
backups of, 156–157
creating with flashed back data,

167–168
detecting corruption between indexes

and, 173–174
locks, 221
partitioned indexes for, 217

Index 331

tables (cont.)
primary indexes for constraints in, 211
recompiling invalid synonyms on,

189–190
reorganizing fragmented, 184–187
restoring from recycle bin, 163
triggers on, 247–248
tuning using explain plans, 228–230
updating statistics, 178–181
validating performance with statistics,

230–231
tablespaces

backup options, 135
created with database, 81–82
datafile storage requirements, 62
exporting with Data Pump, 157
maintaining, 311
monitoring, 200–203
RMAN backup configuration, 131
RMAN hot backups, 130
RMAN recovery of, 146–147
setting quotas, 110–111
viewing/changing, 107–108

TAF (Transparent Application Failover)
configuration, RAC, 284–285

target database, RMAN backups, 132
TEMP tablespace

creating with database, 81–82
overview of, 29
viewing/changing, 107–108

tempdb database
not existing in Oracle, 22
not included in SQL Server backups, 135
SQL Server database vs. Oracle, 28–29

tempfiles, 28
templates

creating databases with DBCA, 80
duplicating databases with, 83–84
overview of, 28–29
SQL Server vs. Oracle, 82

temporary tablespaces
monitoring, 202
not included in Oracle backups, 135
overview of, 28–29

test environment
avoid mixing production and, 160
copying database for, 149–150
importing system statistics into, 177–178
PL/SQL unit tests, 263–264
Real Application Clusters, 282–283

thick clients, JDBC, 123
thin clients, JDBC, 123

TIME_WAITED column, AWR Active Session
History view, 236

times, validating after migration, 11
timestamps, validating after migration, 11
TNS Listener service, 29
tnsnames.ora file

overview of, 121–123
possible connection issues, 124
setting up client failover in RAC, 284
setting up database alias, 124
setting up RAC listeners, 285

TO_functions, Oracle, 259–260
TOO_MANY_ROWS error, SELECT INTO, 255
tools, DBA. See DBA (database administrator)

tools
Top Activity, OEM, 224–225
trace files, maintaining, 204
trace sessions, tools for, 104
transaction logs, SQL Server

hot backups and, 130
parameters for, 34–35
redo logs vs., 38–39
SQL Server and Oracle backup

options, 135
transactions

PL/SQL. See PL/SQL transactions
process flow, 40–41
shutdown of, 85

Transparent Application Failover (TAF)
configuration, RAC, 284–285

triggers
disallowing table updates using, 268
generating IDs for primary keys,

242–243
overview of, 246–248

troubleshooting
copying database for, 149
DBA responsibility for, 3
mental preparedness for in multiple

platforms, 311
restoration of files vs. full recovery, 142

TRY CATCH block, SQL Server, 264
T-SQL (Transaction SQL), 240–241
Type command, Windows, 49
TYPE setting, TAF configuration, 284–285

U

undo area, 39–40
UNDO tablespace

creating with database, 81–82
monitoring, 202

332 Oracle Database Administration for Microsoft SQL Server DBAs

overview of, 39–40
transaction process flow, 41
viewing/changing, 107–108

UNDO_MANAGEMENT parameter, 36
UNDO_RETENTION parameter, 39–40
UNDO_TABLESPACE parameter, 36
Unicode character set (AL32UTF8),

international language databases, 91–92
unique scans, tuning indexes, 229
unit test, PL/SQL, 263–264
Unix commands, 48–49
UNLIMITED TABLESPACE role, 100
“until time,” recovering to, 145
update locks, SQL Server, 220
update operations

PL/SQL conditions and, 249–250
with PL/SQL FORALL loop, 257–258
triggers for, 247

UPDATE statement
SQL Server vs. Oracle, 249–250
using implicit cursors, 255

update statistics
maintenance tasks, 173
objects, 178–181
overview of, 176–177
systems, 177–178

upgrades
backup strategy for, 142
creating restore point in OEM for,

139–140
overview of, 68–70
using Configuration Manager, 124
using Upgrade Companion, 69–70

user accounts, Windows for Oracle
installation, 47

User Manager, Linux, 51
USER tablespace, 107–108, 110
USER_ permission, catalog views, 23
user_dump_dest parameter, directories,

36, 204
user_recyclebin view, 162
user_scheduler_ view, 197
user-defined errors, PL/SQL, 265
user-defined functions, 259–260
users

creating for ASM installation, 58
creating for Oracle installation on Linux,

50–52
DBA responsibility for adding, 3
job setup for, 196–197
planning backup strategy for errors of,

141–142
protecting with recycle bin, 161–164

Users area, Security category of OEM Server
tab, 109–110

utlrp.sql script, 188

V

v$ views, ASM information, 302–303
v$database view, 142, 145
v$db_cache view, 21
v$flash_recovery_area_usage view,

165–166
v$flashback_database_log

view, 165
v$log_history view, 41, 198–199
v$object_usage table, 210
v$pga_target_advice view, 22
v$pgainfo view, 22
v$process view, 22
v$recovery_file_dest view, 166
v$session view, 222
v$session_wait view, 225, 236
v$sga view, 20
v$sgainfo view, 20
v$sgastat view, 21
v$undostat view, 40
validation of data, in database migration, 11
variables, declaring in PL/SQL packages,

243–245
version control, SQL Developer tool, 242
View Database Feature Usage, OEM

Server tab, 108
views

ASM disk group and file, 300–301
background process, 31
backup, 152–155
catalog, 23
data dictionary, 26–27
Data Pump job, 157
flashback recovery area, 165–166
indexed, 214–215
parameter, 33
RAC instance, 287–288
recycle bin, 162
sizing SGA memory, 20–22
statistics for undo area, 40

views, current activity
activity monitors, 223–224
current sessions, 222
defined, 221
wait events, 225–226

VIP (virtual IP) addresses, RAC, 279–280
virtual columns on tables, 213–214

Index 333

www.SoftGozr.com

VLM, using on Windows, 19
voting disk, RAC, 278, 280

W

wait events
acquiring locks/performing

transactions, 219
AWR Active Session History view, 236
AWR library cache for SQL statements,

236–237
AWR reports in OEM, 234–235
checking performance issues, 225

WAIT_TIME column, AWR Active Session
History view, 236

whoami command, Linux, 49
Windows, Oracle installation setup

checklist for, 48
command-line commands, 49
file system, 47
hardware, 45
network connectivity, 47
Oracle home directory, 46
software, 64
user account, 47

WITH RECOVERY option, 145
WORKAREA_SIZE_POLICY=AUTO parameter,

PGA memory, 22
workload repository, managing with

OEM, 109

334 Oracle Database Administration for Microsoft SQL Server DBAs

www.SoftGozr.com

	Contents
	Acknowledgments
	Introduction
	1 The Database Administrator
	General DBA Skills
	Where Do DBAs Belong in an Organization?
	Database Installation Planning
	Leveraging Skills
	Database Migrations
	Summary

	2 Oracle Internals
	Memory Structures
	Oracle Memory Parameters
	Sizing the SGA and PGA

	Where Are the master, msdb, and tempdb Databases?
	System-level Information
	Data Dictionary Views
	Jobs and Schedules
	Templates and Temporary Tables

	Services and Processes
	sp_Configure Options and Parameters
	Viewing and Setting Parameters
	Getting Started with Some Parameters

	Undo, Redo, and Logs
	Transaction Logs Versus Redo Logs
	Undo and Beyond

	Summary

	3 Oracle Installation
	Operating Systems
	Windows Setup
	Useful Linux/Unix Commands
	Linux Setup

	Storage Requirements
	Disk Storage
	Storage Management with ASM
	Oracle Files
	Oracle Database Components

	Oracle Software Installation
	Using a Response File
	Removing Software
	Upgrading the Database
	Applying Patches

	Summary

	4 Database Definitions and Setup
	Servers, Databases, Instances, and Schemas
	SQL Server Setup Versus Oracle Setup
	Creating Databases
	Using the DBCA
	Duplicating Databases with Templates and Scripts
	Creating the Listener
	Choosing a Character Set

	Security
	Permissions for the Server
	Permissions for Schemas
	DBA Roles and Responsibilities Revisited

	Summary

	5 DBA Tools
	Overview of Tools for Typical Database Tasks
	Oracle Enterprise Manager
	OEM Navigation
	Storage Management
	Database Configuration
	Oracle Scheduler
	Statistics and Resource Management
	Security
	Enterprise Manager Configuration

	SQL*Plus
	SQL Developer
	Client Connections
	Client Connection Configuration
	JDBC Connections
	Aliases

	My Oracle Support
	Summary

	6 Database Backup, Restore, and Recovery
	Backing Up Databases
	Backup Strategies
	Backup and Restore Commands
	RMAN Configuration for Backups
	Backup Options
	Backup Examples
	OEM Backup Jobs

	Restoring and Recovering Databases
	What Can Go Wrong?
	Restore and Recover Options
	Data Recovery Advisor
	Copying the Database

	Managing Backups
	Viewing Backups
	Purging Obsolete Files

	Backing Up and Restoring Objects
	Copying Objects at the Table and Schema Level
	Using Data Pump

	Protecting Users From Users
	Recycle Bin
	Flashback

	Summary

	7 Database Maintenance
	Maintenance Tasks
	Consistency Checks
	Health Checks
	Update Statistics
	System Statistics
	Object Statistics

	Object Maintenance
	Index Rebuild
	Table Reorganization
	Invalid Objects
	Grants
	Synonyms

	Job Scheduling
	Creating a Job in Oracle Scheduler
	Using DBMS_SCHEDULER
	Setting Up System and User Jobs

	File Maintenance
	Shrinking and Resizing Files
	Tablespace Monitoring
	Error Logs, Alert Logs, and Trace Files

	Summary

	8 Performance and Tuning
	Better-Performing Systems
	Indexes
	Index Monitoring
	Index Types

	Locking
	Current Activity Views
	Current Sessions
	Activity Monitors
	Waits

	SQL Plans
	Viewing Explain Plans
	Tuning Using Explain Plans

	Automatic Workload Repository
	AWR Reports
	Active Session History View
	Library Cache for SQL Statements

	Summary

	9 PL/SQL
	Database Coding Practices
	Packages and Package Bodies
	Triggers
	Updates and Conditions
	Transactions
	Beginning a Transaction
	Defining Commits
	Cursor Processing
	Processing with FORALL

	Functions
	Debugging Procedures and Unit Testing
	Error Handling
	Error Handling Packages
	Standard Error Messages

	Using DBMS Packages
	Summary

	10 High-Availability Architecture
	Options for High Availability
	Clustering with RAC
	Configuring RAC
	Testing RAC
	Setting Up Client Failover
	Setting Up RAC Listeners
	Patching RAC
	Deploying RAC
	Configuring and Monitoring RAC Instances

	Primary and Standby Databases
	Using Active Standby Databases
	Setting Up a Standby Database

	ASM in an RAC Environment
	Managing ASM Disk Groups
	Viewing ASM Information

	Streams and Advanced Replication
	Oracle Streams
	Advanced Replication

	Summary

	Appendix
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

