
  991

www.SoftGozar.com



PUBLISHED BY 
Microsoft Press 
A Division of Microsoft Corporation 
One Microsoft Way 
Redmond, Washington 98052-6399 
 
Copyright © 2012 Microsoft Corporation 
  
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by 
any means without the written permission of the publisher. 
 
ISBN: 978-0-7356-7261-1 
 
Microsoft Press books are available through booksellers and distributors worldwide. If you need support 
related to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what 
you think of this book at  http://aka.ms/tellpress. 
 
Unless otherwise noted, the companies, organizations, products, domain names, e-mail addresses, logos, 
people, places, and events depicted in examples herein are fictitious. No association with any real company, 
organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be 
inferred.  
 
Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights 
under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval 
system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or 
otherwise), or for any purpose, without the express written permission of Microsoft Corporation. 
 
Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/ 
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of 
their respective owners. 
 
This book expresses the author’s views and opinions. The information contained in this book is provided 
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its 
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly or 
indirectly by this book. 
 
Acquisitions, Developmental, and Project Editor: Devon Musgrave 
Cover: Twist Creative • Seattle 

 

2

www.SoftGozar.com



Table of Contents 

Introduction ............................................................................................................................................ 19 

Who This Book Is For ................................................................................................................................................................... 20 

What You'll Need (Can You Say “Samples”?) ...................................................................................................................... 21 

A Formatting Note ........................................................................................................................................................................ 22 

Acknowledgements ...................................................................................................................................................................... 23 

Errata & Book Support ................................................................................................................................................................ 24 

We Want to Hear from You ....................................................................................................................................................... 25 

Stay in Touch .................................................................................................................................................................................. 25 

Chapter 1: The Life Story of a Windows Store App:  
Platform Characteristics of Windows 8 ................................................................................... 26 

Leaving Home: Onboarding to the Windows Store .......................................................................................................... 27 

Discovery, Acquisition, and Installation ................................................................................................................................. 30 

Playing in Your Own Room: The App Container ................................................................................................................ 34 

Different Views of Life: View States and Resolution Scaling .......................................................................................... 37 

Those Capabilities Again: Getting to Data and Devices .................................................................................................. 40 

Taking a Break, Getting Some Rest: Process Lifecycle Management .......................................................................... 43 

Remembering Yourself: App State and Roaming .............................................................................................................. 45 

Coming Back Home: Updates and New Opportunities ................................................................................................... 48 

And, Oh Yes, Then There’s Design .......................................................................................................................................... 50 

Chapter 2: Quickstart ................................................................................................................ 52 

A Really Quick Quickstart: The Blank App Template ........................................................................................................ 52 

Blank App Project Structure .................................................................................................................................................. 55 

QuickStart #1: Here My Am! and an Introduction to Blend for Visual Studio ......................................................... 59 

Design Wireframes ................................................................................................................................................................... 59 

Create the Markup ................................................................................................................................................................... 62 

Styling in Blend .......................................................................................................................................................................... 64 

Adding the Code ...................................................................................................................................................................... 68 

Creating a Map with the Current Location ..................................................................................................................... 69 

Oh Wait, the Manifest! ........................................................................................................................................................... 73 

3

www.SoftGozar.com



Capturing a Photo from the Camera ................................................................................................................................ 75 

Sharing the Fun! ....................................................................................................................................................................... 78 

Extra Credit: Receiving Messages from the iframe ....................................................................................................... 81 

The Other Templates ................................................................................................................................................................... 82 

Fixed Layout Template ............................................................................................................................................................ 82 

Navigation Template ............................................................................................................................................................... 83 

Grid Template ............................................................................................................................................................................ 83 

Split Template ............................................................................................................................................................................ 83 

What We’ve Just Learned ........................................................................................................................................................... 84 

Chapter 3: App Anatomy and Page Navigation ..................................................................... 85 

Local and Web Contexts within the App Host .................................................................................................................... 86 

Referencing Content from App Data: ms-appdata ....................................................................................................... 90 

Here My Am! with ms-appdata ........................................................................................................................................... 92 

Sequential Async Operations: Chaining Promises ............................................................................................................. 94 

Error Handling Within Promises: then vs. done ............................................................................................................. 96 

Debug Output, Error Reports, and the Event Viewer ................................................................................................... 96 

App Activation ................................................................................................................................................................................ 99 

Branding Your App 101: The Splash Screen and Other Visuals ................................................................................ 99 

Activation Event Sequence .................................................................................................................................................. 101 

Activation Code Paths ........................................................................................................................................................... 103 

WinJS.Application Events ..................................................................................................................................................... 105 

Extended Splash Screens ...................................................................................................................................................... 106 

Activation Deferrals ............................................................................................................................................................... 108 

App Lifecycle Transition Events and Session State .......................................................................................................... 109 

Suspend, Resume, and Terminate ..................................................................................................................................... 109 

Basic Session State in Here My Am! ................................................................................................................................. 114 

Data from Services and WinJS.xhr ......................................................................................................................................... 116 

Handling Network Connectivity (in Brief) ...................................................................................................................... 119 

Tips and Tricks for WinJS.xhr .............................................................................................................................................. 120 

Page Controls and Navigation ............................................................................................................................................... 121 

4

www.SoftGozar.com



WinJS Tools for Pages and Page Navigation ................................................................................................................ 121 

The Navigation App Template, PageControl Structure, and PageControlNavigator ..................................... 123 

The Navigation Process and Navigation Styles ............................................................................................................ 129 

Optimizing Page Switching: Show-and-Hide ............................................................................................................... 130 

WinRT Events and removeEventListener ............................................................................................................................. 131 

Completing the Promises Story .............................................................................................................................................. 133 

What We’ve Just Learned ......................................................................................................................................................... 135 

Chapter 4: Controls, Control Styling, and Data Binding ..................................................... 136 

The Control Model for HTML, CSS, and JavaScript ......................................................................................................... 137 

HTML Controls ............................................................................................................................................................................. 138 

WinJS stylesheets: ui-light.css, ui-dark.css, and win-* styles .................................................................................... 141 

Extensions to HTML Elements ............................................................................................................................................ 142 

WinJS Controls ............................................................................................................................................................................. 142 

WinJS Control Instantiation ................................................................................................................................................. 144 

Strict Processing and processAll Functions .................................................................................................................... 145 

Example: WinJS.UI.Rating Control ..................................................................................................................................... 146 

Example: WinJS.UI.Tooltip Control ................................................................................................................................... 147 

Working with Controls in Blend ............................................................................................................................................. 149 

Control Styling ............................................................................................................................................................................. 151 

Styling Gallery: HTML Controls .......................................................................................................................................... 153 

Styling Gallery: WinJS Controls .......................................................................................................................................... 155 

Some Tips and Tricks ............................................................................................................................................................. 158 

Custom Controls .......................................................................................................................................................................... 159 

Custom Control Examples ................................................................................................................................................... 161 

Custom Controls in Blend .................................................................................................................................................... 164 

Data Binding ................................................................................................................................................................................. 167 

Data Binding in WinJS ........................................................................................................................................................... 169 

One-Time Binding.................................................................................................................................................................. 170 

One-Way Binding................................................................................................................................................................... 173 

Implementing Two-Way Binding ..................................................................................................................................... 175 

5

www.SoftGozar.com



Additional Binding Features ............................................................................................................................................... 175 

Binding Initializers .................................................................................................................................................................. 177 

Binding Templates and Lists ............................................................................................................................................... 178 

What We’ve Just Learned ......................................................................................................................................................... 178 

Chapter 5: Collections and Collection Controls .................................................................... 180 

Collection Control Basics .......................................................................................................................................................... 181 

Quickstart #1: The FlipView Control Sample ................................................................................................................. 181 

Quickstart #2a: The HTML ListView Essentials Sample .............................................................................................. 183 

Quickstart #2b: The ListView Grouping Sample .......................................................................................................... 186 

ListView in the Grid App Project Template .................................................................................................................... 191 

The Semantic Zoom Control ................................................................................................................................................... 195 

FlipView Features and Styling ................................................................................................................................................. 198 

Data Sources ................................................................................................................................................................................. 202 

A FlipView Using the Pictures Library .............................................................................................................................. 202 

Custom Data Sources ............................................................................................................................................................ 204 

How Templates Really Work ................................................................................................................................................... 205 

Referring to Templates ......................................................................................................................................................... 206 

Template Elements and Rendering .................................................................................................................................. 206 

Template Functions (Part 1): The Basics .......................................................................................................................... 207 

ListView Features and Styling.................................................................................................................................................. 210 

When Is ListView the Wrong Choice? .............................................................................................................................. 210 

Options, Selections, and Item Methods .......................................................................................................................... 212 

Styling ......................................................................................................................................................................................... 215 

Backdrops .................................................................................................................................................................................. 216 

Layouts and Cell Spanning .................................................................................................................................................. 216 

Optimizing ListView Performance ......................................................................................................................................... 223 

Random Access ........................................................................................................................................................................ 224 

Incremental Loading .............................................................................................................................................................. 225 

Template Functions (Part 2): Promises, Promises! ....................................................................................................... 225 

What We’ve Just Learned ......................................................................................................................................................... 232 

6



Chapter 6: Layout ..................................................................................................................... 233 

Principles of Windows Store App Layout ............................................................................................................................ 234 

Quickstart: Pannable Sections and Snap Points ............................................................................................................... 237 

Laying Out the Hub ............................................................................................................................................................... 238 

Laying Out the Sections ....................................................................................................................................................... 239 

Snap Points ............................................................................................................................................................................... 240 

The Many Faces of Your Display ............................................................................................................................................ 241 

View States ................................................................................................................................................................................ 242 

Handling View States ............................................................................................................................................................ 245 

Screen Size, Pixel Density, and Scaling ............................................................................................................................ 249 

Graphics That Scale Well ..................................................................................................................................................... 252 

Adaptive and Fixed Layouts for Display Size ..................................................................................................................... 253 

Fixed Layouts and the ViewBox Control ......................................................................................................................... 254 

Adaptive Layouts .................................................................................................................................................................... 256 

Using the CSS Grid ...................................................................................................................................................................... 258 

Overflowing a Grid Cell ........................................................................................................................................................ 260 

Centering Content Vertically .............................................................................................................................................. 260 

Scaling Font Size ..................................................................................................................................................................... 261 

Item Layout ................................................................................................................................................................................... 262 

CSS 2D and 3D Transforms ................................................................................................................................................. 263 

Flexbox ....................................................................................................................................................................................... 263 

Nested and Inline Grids ........................................................................................................................................................ 264 

Fonts and Text Overflow ...................................................................................................................................................... 266 

Multicolumn Elements and Regions ................................................................................................................................ 267 

What We’ve Just Learned ......................................................................................................................................................... 270 

Chapter 7: Commanding UI .................................................................................................... 271 

Where to Place Commands ..................................................................................................................................................... 272 

The App Bar .................................................................................................................................................................................. 276 

App Bar Basics and Standard Commands ...................................................................................................................... 278 

Command Events ................................................................................................................................................................... 281 

7



App Bar Events and Methods ............................................................................................................................................ 282 

Showing, Hiding, Enabling, and Updating Commands ............................................................................................ 284 

App Bar Styling ........................................................................................................................................................................ 287 

Custom Icons ........................................................................................................................................................................... 288 

Command Menus ................................................................................................................................................................... 290 

Custom App Bars and Navigation Bars ........................................................................................................................... 291 

Flyouts and Menus ...................................................................................................................................................................... 293 

WinJS.UI.Flyout Properties, Methods, and Events ....................................................................................................... 294 

Flyout Examples ...................................................................................................................................................................... 295 

Menus and Menu Commands ............................................................................................................................................ 299 

Context Menus ........................................................................................................................................................................ 301 

Message Dialogs .......................................................................................................................................................................... 303 

Improving Error Handling in Here My Am! ........................................................................................................................ 305 

What We’ve Just Learned ......................................................................................................................................................... 309 

Chapter 8: State, Settings, Files, and Documents ................................................................ 311 

The Story of State ........................................................................................................................................................................ 312 

Settings and State ................................................................................................................................................................... 314 

App Data Locations ................................................................................................................................................................ 315 

AppData APIs (WinRT and WinJS) .................................................................................................................................... 317 

Settings Containers ................................................................................................................................................................ 318 

Versioning App State ............................................................................................................................................................ 320 

Storage Folders and Storage Files .................................................................................................................................... 321 

The FileIO, PathIO, and WinJS helper classes (plus FileReader) ............................................................................. 325 

Encryption and Compression ............................................................................................................................................. 326 

Using App Data APIs for State Management ................................................................................................................ 327 

Session State ............................................................................................................................................................................ 327 

Local and Temporary State ................................................................................................................................................. 328 

IndexedDB and Other Database Options ...................................................................................................................... 329 

Roaming State ......................................................................................................................................................................... 331 

Settings Pane and UI .................................................................................................................................................................. 333 

8



Design Guidelines for Settings ........................................................................................................................................... 334 

Populating Commands ......................................................................................................................................................... 336 

Implementing Commands: Links and Settings Flyouts .............................................................................................. 338 

Programmatically Invoking Settings Flyouts ................................................................................................................ 341 

User Data: Libraries, File Pickers, and File Queries ........................................................................................................... 343 

Using the File Picker .............................................................................................................................................................. 344 

The File Picker UI .................................................................................................................................................................... 345 

The File Picker API (and a Few Friends) .......................................................................................................................... 348 

Media Libraries ........................................................................................................................................................................ 352 

Documents and Removable Storage ............................................................................................................................... 353 

Rich Enumeration with File Queries ................................................................................................................................. 354 

Here My Am! Update ................................................................................................................................................................. 360 

What We’ve Just Learned ......................................................................................................................................................... 361 

Chapter 9: Input and Sensors ................................................................................................. 363 

Touch, Mouse, and Stylus Input ............................................................................................................................................. 364 

The Touch Language, Its Translations, and Mouse/Keyboard Equivalents ........................................................ 366 

Edge Gestures .......................................................................................................................................................................... 370 

CSS Styles That Affect Input ............................................................................................................................................... 371 

What Input Capabilities Are Present? .............................................................................................................................. 372 

Unified Pointer Events ........................................................................................................................................................... 374 

Pointer Capture ....................................................................................................................................................................... 377 

Gesture Events ......................................................................................................................................................................... 378 

Multipoint Gestures ............................................................................................................................................................... 383 

The Input Instantiable Gesture Sample .......................................................................................................................... 384 

The Gesture Recognizer ....................................................................................................................................................... 386 

Keyboard Input and the Soft Keyboard .............................................................................................................................. 388 

Soft Keyboard Appearance and Configuration ............................................................................................................ 389 

Adjusting Layout for the Soft Keyboard ......................................................................................................................... 392 

Standard Keystrokes .............................................................................................................................................................. 395 

Inking ............................................................................................................................................................................................... 396 

9



Geolocation ................................................................................................................................................................................... 398 

Sensors ............................................................................................................................................................................................ 401 

What We’ve Just Learned ......................................................................................................................................................... 404 

Chapter 10: Media ................................................................................................................... 405 

Creating Media Elements ......................................................................................................................................................... 406 

Graphics Elements: Img, Svg, and Canvas (and a Little CSS) ........................................................................................ 408 

Additional Characteristics of Graphics Elements ......................................................................................................... 411 

Some Tips and Tricks ............................................................................................................................................................. 412 

Img Elements ........................................................................................................................................................................... 412 

Svg Elements ............................................................................................................................................................................ 413 

Canvas Elements ..................................................................................................................................................................... 413 

Video Playback and Deferred Loading ................................................................................................................................ 416 

Disabling Screen Savers and the Lock Screen During Playback ............................................................................. 418 

Video Element Extension APIs ............................................................................................................................................ 419 

Applying a Video Effect ........................................................................................................................................................ 420 

Browsing Media Servers ....................................................................................................................................................... 421 

Audio Playback and Mixing ..................................................................................................................................................... 421 

Audio Element Extension APIs ........................................................................................................................................... 423 

Playback Manager and Background Audio ................................................................................................................... 424 

The Media Control UI ............................................................................................................................................................ 428 

Playing Sequential Audio ..................................................................................................................................................... 429 

Playlists ............................................................................................................................................................................................ 431 

Loading and Manipulating Media ......................................................................................................................................... 433 

Media File Metadata .............................................................................................................................................................. 434 

Thumbnails ............................................................................................................................................................................... 435 

Common File Properties ...................................................................................................................................................... 435 

Media-Specific Properties ................................................................................................................................................... 436 

Media Properties in the Samples ...................................................................................................................................... 439 

Image Manipulation and Encoding .................................................................................................................................. 442 

Transcoding and Custom Image Formats...................................................................................................................... 447 

10



Manipulating Audio and Video ......................................................................................................................................... 448 

Transcoding .............................................................................................................................................................................. 448 

Custom Decoders/Encoders and Scheme Handlers ................................................................................................... 451 

Media Capture ............................................................................................................................................................................. 453 

Flexible Capture with the MediaCapture Object ......................................................................................................... 454 

Selecting a Media Capture Device .................................................................................................................................... 458 

Streaming Media and PlayTo .................................................................................................................................................. 460 

Streaming from a Server and Digital Rights Management (DRM) ........................................................................ 461 

Streaming from App to Network ...................................................................................................................................... 462 

PlayTo ......................................................................................................................................................................................... 463 

What We Have Learned ............................................................................................................................................................ 466 

Chapter 11: Purposeful Animations ...................................................................................... 468 

Systemwide Enabling and Disabling of Animations ........................................................................................................ 470 

The WinJS Animations Library ................................................................................................................................................ 471 

Animations in Action ............................................................................................................................................................. 474 

CSS Animations and Transitions ............................................................................................................................................. 479 

The Independent Animations Sample ............................................................................................................................. 483 

Rolling Your Own: Tips and Tricks ......................................................................................................................................... 485 

What We’ve Just Learned ......................................................................................................................................................... 490 

Chapter 12: Contracts .............................................................................................................. 491 

Share ................................................................................................................................................................................................ 493 

Source Apps .............................................................................................................................................................................. 495 

Sharing Multiple Data Formats ......................................................................................................................................... 499 

Custom Data Formats: schema.org .................................................................................................................................. 499 

Deferrals and Delayed Rendering .................................................................................................................................... 500 

Target Apps .............................................................................................................................................................................. 502 

Long-Running Operations .................................................................................................................................................. 508 

Quicklinks .................................................................................................................................................................................. 510 

The Clipboard .......................................................................................................................................................................... 512 

Search .............................................................................................................................................................................................. 514 

11



Search in the App Manifest and the Search Item Template .................................................................................... 516 

Basic Search and Search Activation .................................................................................................................................. 517 

Providing Query Suggestions ............................................................................................................................................. 520 

Providing Result Suggestions ............................................................................................................................................. 524 

Type to Search ......................................................................................................................................................................... 525 

Launching Apps: File Type and URI Scheme Associations ............................................................................................ 525 

File Activation .......................................................................................................................................................................... 527 

Protocol Activation................................................................................................................................................................. 529 

File Picker Providers ................................................................................................................................................................... 530 

Manifest Declarations ............................................................................................................................................................ 531 

Activation of a File Picker Provider ................................................................................................................................... 533 

File Open Provider: Local File ............................................................................................................................................. 535 

File Open Provider: URI ........................................................................................................................................................ 537 

File Save Provider: Save a File ............................................................................................................................................ 538 

File Save Provider: Failure Case ......................................................................................................................................... 539 

Cached File Updater ................................................................................................................................................................... 539 

Updating a Local File: UI ...................................................................................................................................................... 542 

Updating a Remote File: UI ................................................................................................................................................. 544 

Update Events .......................................................................................................................................................................... 545 

Contacts .......................................................................................................................................................................................... 548 

Using the Contact Picker ...................................................................................................................................................... 551 

Contact Picker Providers ...................................................................................................................................................... 553 

What We’ve Just Learned ......................................................................................................................................................... 556 

Chapter 13: Tiles, Notifications, the Lock Screen, and Background Tasks ....................... 557 

Alive with Activity: A Visual Tour ........................................................................................................................................... 558 

The Four Sources of Updates and Notifications ............................................................................................................... 568 

Tiles, Secondary Tiles, and Badges ........................................................................................................................................ 570 

Secondary Tiles ........................................................................................................................................................................ 571 

Creating Secondary Tiles ..................................................................................................................................................... 572 

App Activation From a Secondary Tile ........................................................................................................................... 574 

12



Managing Secondary Tiles .................................................................................................................................................. 575 

Basic Tile Updates ................................................................................................................................................................... 576 

Choosing a Tile Template .................................................................................................................................................... 577 

Creating the Payload, Method 1: Populating Template Content .......................................................................... 580 

Creating the Payload, Method 2: XML Strings ............................................................................................................. 581 

Creating the Payload, Method 3: The Notifications Extensions Library .............................................................. 581 

Using Local and Web Images ............................................................................................................................................. 582 

Branding .................................................................................................................................................................................... 584 

Cycling, Scheduled, and Expiring Updates .................................................................................................................... 585 

Badge Updates ........................................................................................................................................................................ 587 

Periodic Updates ......................................................................................................................................................................... 590 

Web Services for Updates .................................................................................................................................................... 592 

Using the Localhost................................................................................................................................................................ 595 

Windows Azure ....................................................................................................................................................................... 596 

Toast Notifications ...................................................................................................................................................................... 599 

Creating Basic Toasts ............................................................................................................................................................. 600 

Butter and Jam: Options for Your Toast ......................................................................................................................... 602 

Tea Time: Scheduled Toasts ................................................................................................................................................ 604 

Toast Events and Activation ................................................................................................................................................ 606 

Push Notifications and the Windows Push Notification Service ................................................................................. 606 

Requesting and Caching a Channel URI (App) ............................................................................................................. 608 

Managing Channel URIs (Service) ..................................................................................................................................... 610 

Sending Updates and Notifications (Service) ................................................................................................................ 610 

Raw Notifications (Service) .................................................................................................................................................. 612 

Receiving Notifications (App) ............................................................................................................................................. 612 

Debugging Tips ....................................................................................................................................................................... 614 

Windows Azure Toolkit and Windows Azure Mobile Services................................................................................ 614 

Background Tasks and Lock Screen Apps ........................................................................................................................... 615 

Background Tasks in the Manifest .................................................................................................................................... 616 

Building and Registering Background Task ................................................................................................................... 618 

13



Conditions ................................................................................................................................................................................. 619 

Tasks for Maintenance Triggers ......................................................................................................................................... 620 

Tasks for System Triggers (Non-Lock Screen) ............................................................................................................... 622 

Lock Screen–Dependent Tasks and Triggers ................................................................................................................. 624 

Debugging Background Tasks ........................................................................................................................................... 627 

What We’ve Just Learned (Whew!) ....................................................................................................................................... 628 

Chapter 14: Networking .......................................................................................................... 630 

Network Information and Connectivity ............................................................................................................................... 631 

Network Types in the Manifest .......................................................................................................................................... 631 

Network Information (the Network Object Roster) .................................................................................................... 632 

The ConnectionProfile Object ............................................................................................................................................ 634 

Connectivity Events ................................................................................................................................................................ 634 

Cost Awareness ........................................................................................................................................................................ 636 

Running Offline ....................................................................................................................................................................... 639 

XmlHttpRequest .......................................................................................................................................................................... 642 

Background Transfer .................................................................................................................................................................. 643 

Basic Downloads ..................................................................................................................................................................... 644 

Basic Uploads ........................................................................................................................................................................... 647 

Breaking Up Large Files ....................................................................................................................................................... 648 

Multipart Uploads .................................................................................................................................................................. 649 

Providing Headers and Credentials .................................................................................................................................. 652 

Setting Cost Policy .................................................................................................................................................................. 652 

Grouping Transfers ................................................................................................................................................................. 653 

Suspend, Resume, and Restart with Background Transfers ..................................................................................... 653 

Authentication, Credentials, and the User Profile ............................................................................................................ 655 

The Credential Picker UI ....................................................................................................................................................... 656 

The Credential Locker ........................................................................................................................................................... 659 

The Web Authentication Broker ........................................................................................................................................ 661 

Single Sign On ......................................................................................................................................................................... 665 

Single Sign On with Live Connect .................................................................................................................................... 667 

14



The User Profile (and the Lock Screen Image) ............................................................................................................. 668 

Encryption, Decryption, Data Protection, and Certificates ....................................................................................... 670 

Syndication .................................................................................................................................................................................... 671 

Reading RSS Feeds ................................................................................................................................................................. 671 

Using AtomPub ....................................................................................................................................................................... 674 

Sockets ............................................................................................................................................................................................ 675 

Datagram Sockets ................................................................................................................................................................... 676 

Stream Sockets ........................................................................................................................................................................ 680 

Web Sockets: MessageWebSocket and StreamWebSocket ..................................................................................... 683 

The ControlChannelTrigger Background Task ............................................................................................................. 687 

Loose Ends (or Some Samples To Go) .................................................................................................................................. 688 

What We’ve Just Learned ......................................................................................................................................................... 689 

Chapter 15: Devices and Printing .......................................................................................... 690 

Using Devices................................................................................................................................................................................ 691 

The XInput API and Game Controllers ............................................................................................................................ 692 

Enumerating Devices in a Class ......................................................................................................................................... 696 

Windows Portable Devices and Bluetooth Capabilities ............................................................................................ 698 

Near Field Communication and the Proximity API ......................................................................................................... 700 

Finding Your Peers (No Pressure!) .................................................................................................................................... 702 

Advertising a Connection .................................................................................................................................................... 703 

Making a Connection ........................................................................................................................................................... 704 

Tap to Connect and Tap to Activate ............................................................................................................................... 705 

Sending One-Shot Payloads: Tap to Share .................................................................................................................... 706 

Printing Made Easy ..................................................................................................................................................................... 707 

The Printing User Experience.............................................................................................................................................. 708 

Print Document Sources ....................................................................................................................................................... 711 

Providing Print Content and Configuring Options ..................................................................................................... 712 

What We’ve Just Learned ......................................................................................................................................................... 715 

  

15



Chapter 16: WinRT Components: An Introduction .............................................................. 716 

Choosing a Mixed Language Approach (and Web Workers) ...................................................................................... 718 

Quickstarts: Creating and Debugging Components ....................................................................................................... 720 

Quickstart #1: Creating a Component in C# ................................................................................................................. 721 

Quickstart #2: Creating a Component in C++ ............................................................................................................. 726 

Comparing the Results .......................................................................................................................................................... 729 

Key Concepts for WinRT Components ................................................................................................................................ 731 

Implementing Asynchronous Methods ........................................................................................................................... 733 

JavaScript Workers ................................................................................................................................................................. 734 

Async Basics in WinRT Components ................................................................................................................................ 737 

Arrays, Vectors, and Other Alternatives .......................................................................................................................... 742 

Projections into JavaScript ................................................................................................................................................... 746 

Scenarios for WinRT Components ......................................................................................................................................... 748 

Higher Performance .............................................................................................................................................................. 748 

Access to Additional APIs..................................................................................................................................................... 750 

Obfuscating Code and Protecting Intellectual Property ........................................................................................... 752 

Library Components .............................................................................................................................................................. 753 

Concurrency ............................................................................................................................................................................. 753 

What We’ve Just Learned ......................................................................................................................................................... 754 

Chapter 17: Apps for Everyone: Accessibility, World-Readiness,  
and the Windows Store ........................................................................................................... 755 

Your App, Your Business ........................................................................................................................................................... 757 

Side Loading ............................................................................................................................................................................. 758 

Planning: Can the App Be a Windows Store App? ...................................................................................................... 760 

Planning for Monetization (or Not) ................................................................................................................................. 761 

Free Apps .................................................................................................................................................................................. 762 

Ad-Supported Apps .............................................................................................................................................................. 763 

Paid Apps and Trial Versions .............................................................................................................................................. 764 

In-App Purchases ................................................................................................................................................................... 766 

Revenue Sharing and Custom Commerce for In-App Purchases .......................................................................... 767 

16



The Windows Store APIs ........................................................................................................................................................... 768 

The CurrentAppSimulator Object ..................................................................................................................................... 770 

Trial Versions and App Purchase ....................................................................................................................................... 774 

Listing and Purchasing In-App Products ........................................................................................................................ 776 

Receipts ...................................................................................................................................................................................... 780 

Accessibility ................................................................................................................................................................................... 781 

Screen Readers and Aria Attributes .................................................................................................................................. 784 

The ARIA Sample .................................................................................................................................................................... 785 

Handling Contrast Variations ............................................................................................................................................. 788 

CSS Styling for High Contrast ............................................................................................................................................ 790 

High Contrast Resources ..................................................................................................................................................... 793 

Scale + Contrast = Resource Qualifiers .......................................................................................................................... 794 

High Contrast Tile and Toast Images .............................................................................................................................. 795 

World Readiness and Localization......................................................................................................................................... 795 

Globalization ............................................................................................................................................................................ 797 

User Language and Other Settings .................................................................................................................................. 798 

Formatting Culture-Specific Data and Calendar Math ............................................................................................. 801 

Sorting and Grouping ........................................................................................................................................................... 803 

Fonts and Text Layout .......................................................................................................................................................... 803 

Preparing for Localization ................................................................................................................................................... 805 

Part 1: Separating String Resources ................................................................................................................................. 805 

Part 2: Structuring Resources for the Default Language .......................................................................................... 813 

Creating Localized Resources: The Multilingual App Toolkit .................................................................................. 816 

Testing with the Pseudo Language .................................................................................................................................. 821 

Localization Wrap-Up ........................................................................................................................................................... 823 

Releasing Your App to the World .......................................................................................................................................... 824 

Promotional Screenshots, Store Graphics, and Text Copy ....................................................................................... 824 

Testing and Pre-Certification Tools .................................................................................................................................. 825 

Onboarding and Working through Rejection .............................................................................................................. 827 

App Updates ............................................................................................................................................................................. 827 

17



Getting Known: Marketing, Discoverability, and the Web ....................................................................................... 828 

Connecting Your Website ................................................................................................................................................... 829 

Final Thoughts: Qualities of a Rock Star App ............................................................................................................... 829 

What We’ve Just Learned ......................................................................................................................................................... 831 

About the Author .................................................................................................................... 833 

Survey Page .............................................................................................................................. 834 

  

  

18



Introduction 
Welcome, my friends, to Windows 8! On behalf of the thousands of designers, program managers, 
developers, test engineers, and writers who have brought the product to life, I'm delighted to welcome 
you into a world of Windows Reimagined. 

This theme is no mere sentimental marketing ploy, intended to bestow an aura of newness to 
something that is essentially unchanged, like those household products that make a big splash on the 
idea of "New and Improved Packaging!" No, Microsoft Windows truly has been reborn—after more 
than a quarter-century, something genuinely new has emerged. 

I suspect—indeed expect—that you're already somewhat familiar with the reimagined user 
experience of Windows 8. You're probably reading this book, in fact, because you know that the ability 
of Windows 8 to reach across desktop, laptop, and tablet devices, along with the global reach of the 
Windows Store, will provide you with tremendous business opportunities, whether you're in business, as 
I like to say, for fame, fortune, fun, or philanthropy. 

We'll certainly see many facets of this new user experience throughout the course of this book. Our 
primary focus, however, will be on the reimagined developer experience. 

I don't say this lightly. When I first began giving presentations within Microsoft about building 
Windows Store apps, I liked to show a slide of what the world was like in the year 1985. It was the time 
of Ronald Reagan, Margaret Thatcher, and Cold War tensions. It was the time of VCRs and the discovery 
of AIDS. It was when Back to the Future was first released, Michael Jackson topped the charts with 
Thriller, and Steve Jobs was kicked out of Apple. And it was when software developers got their first 
taste of the original Windows API and the programming model for desktop applications. 

The longevity of that programming model has been impressive. It's been in place for over a 
quarter-century now and has grown to become the heart of the largest business ecosystem on the 
planet. The API itself, known today as Win32, has also grown to become the largest on the planet! What 
started out on the order of about 300 callable methods has expanded three orders of magnitude, well 
beyond the point that any one individual could even hope to understand a fraction of it. I'd certainly 
given up such futile efforts myself. 

So when I bumped into my old friend Kyle Marsh in the fall of 2009 just after Windows 7 had been 
released and heard from him that Microsoft was planning to reinvigorate native app development for 
Windows 8, my ears were keen to listen. In the months that followed I learned that Microsoft was 
introducing a completely new API called the Windows Runtime (or WinRT). This wasn't meant to replace 
Win32, mind you; desktop applications would still be supported. No, this was a programming model 
built from the ground up for a new breed of touch-centric, immersive apps that could compete with 
those emerging on various mobile platforms. It would be designed from the app developer's point of 
view, rather than the system's, so that key features would take only a few lines of code to implement 

19

www.SoftGozar.com



rather than hundreds or thousands. It would also enable direct native app development in multiple 
programming languages. This meant that new operating system capabilities would surface to those 
developers without having to wait for an update to some intermediate framework. It also meant that 
developers who had experience in any one of those language choices would find a natural home when 
writing apps for Windows 8. 

This was very exciting news to me because the last time that Microsoft did anything significant to the 
Windows programming model was in the early 1990s with a technology called the Component Object 
Model (COM), which is exactly what allowed the Win32 API to explode as it did. Ironically, it was my role 
at that time to introduce COM to the developer community, which I did through two editions of Inside 
OLE (Microsoft Press, 1993 and 1995) and seemingly endless travel to speak at conferences and visit 
partner companies. History, indeed, does tend to repeat itself, for here I am again! 

In December 2010, I was part of the small team who set out to write the very first Windows Store 
apps using what parts of the new WinRT API had become available. Notepad was the text editor of 
choice, we built and ran apps on the command line by using abstruse Powershell scripts that required us 
to manually type out ungodly hash strings, we had no documentation other than oft-incomplete 
functional specifications, and we basically had no debugger to speak of other than the tried and true 
window.alert and document.writeln. Indeed, we generally worked out as much HTML, CSS, and 
JavaScript as we could inside a browser with F12 debugging tools, only adding WinRT-specific code at 
the end because browsers couldn't resolve those APIs. You can imagine how we celebrated when we got 
anything to work at all! 

Fortunately, it wasn't long before tools like Visual Studio Express and Blend for Visual Studio became 
available. By the spring of 2011, when I was giving many training sessions to people inside Microsoft on 
building apps for Windows 8, the process was becoming far more enjoyable and exceedingly more 
productive. Indeed, while it took us some weeks in late 2010 to get even Hello World to show up on the 
screen, by the fall of 2011 we were working with partner companies who pulled together complete 
Store-ready apps in roughly the same amount of time. 

As we've seen—thankfully fulfilling our expectations—it's possible to build a great app in a matter of 
weeks. I'm hoping that this ebook, along with the extensive resources on http://dev.windows.com, will 
help you to accomplish exactly that and to reimagine your own designs. 

Who This Book Is For 

This book is about writing Windows Store apps using HTML5, CSS3, and JavaScript. Our primary focus 
will be on applying these web technologies within the Windows 8 platform, where there are unique 
considerations, and not on exploring the details of those web technologies themselves. For the most 
part, then, I'm assuming that you're already at least somewhat conversant with these standards. We will 
cover some of the more salient areas like the CSS grid, which is central to app layout, but otherwise I 
trust that you're capable of finding appropriate references for most everything else. 

20

http://dev.windows.com/


I'm also assuming that your interest in Windows 8 has at least two basic motivations. One, you 
probably want to come up to speed as quickly as you can, perhaps to carve out a foothold in the 
Windows Store sooner rather than later. Toward that end, I've front-loaded the early chapters with the 
most important aspects of app development along with "Quickstart" sections to give you immediate 
experience with the tools, the API, and some core platform features. On the other hand, you probably 
also want to make the best app you can, one that performs really well and that takes advantage of the 
full extent of the platform. Toward this end, I've also endeavored to make this book comprehensive, 
helping you at least be aware of what's possible and where optimizations can be made. (Note, though, 
that the Store itself is discussed in Chapter 17.) 

Many insights have come from working directly with real-world developers on their real-world apps. 
As part of the Windows Ecosystem team, myself and my teammates have been on the front lines 
bringing those first apps to the Windows Store. This has involved writing bits of code for those apps and 
investigating bugs, along with conducting design, code, and performance reviews with members of the 
Windows engineering team. As such, one of my goals with this book is to make that deep 
understanding available to many more developers, including you! 

What You'll Need (Can You Say “Samples”?) 

To work through this book, you should have Windows 8 installed on your development machine, along 
with the Windows SDK and tools. All the tools, along with a number of other resources, are listed on 
Developer Downloads for programming Windows Store Apps. You’ll specifically need Microsoft Visual 
Studio Express 2012 for Windows 8. We’ll also acquire other tools along the way as we need them in this 
ebook. (Note that for all the screenshots in this book, I switched Visual Studio from its default “dark” 
color theme to the “light” theme, as the latter works better against a white page.) 

Also be sure to download the “Sample app pack” listed on this page, or visit Windows 8 app samples 
and specifically download the SDK’s JavaScript samples. We'll be drawing from many—if not most—of 
these samples in the chapters ahead, pulling in bits of their source code to illustrate how many different 
tasks are accomplished. 

One of my secondary goals in this book, in fact, is to help you understand where and when to use the 
tremendous resources in what is clearly the best set of samples I’ve ever seen for any release of 
Windows. You’ll often be able to find a piece of code in one of the samples that does exactly what you 
need in your app or that is easily modified to suit your purpose. For this reason I’ve made it a point to 
personally look through every one of the JavaScript samples, understand what they demonstrate, and 
then refer to them in their proper context. This, I hope, will save you the trouble of having to do that 
level of research yourself and thus make you more productive in your development efforts. 

In some cases I’ve taken one of the SDK samples and made certain modifications, typically to 
demonstrate an additional feature but sometimes to fix certain bugs or demonstrate a better 
understanding that came about after the sample had to be finalized. I’ve included these modifications in  
 

21

http://msdn.microsoft.com/windows/apps/br229516
http://code.msdn.microsoft.com/windowsapps/Windows-8-Modern-Style-App-Samples


the companion content for this book, which you can download at 

http://go.microsoft.com/FWLink/?Linkid=270057 

That companion content also contains a few additional examples of my own, which I always refer to 
as “examples” to make it clear that they aren’t official SDK content. (I’ve also rebranded the modified 
samples to make it clear that they’re part of this book.) I’ve written these to fill gaps that the SDK 
samples don’t address, or to provide a simpler demonstration of a feature that a related sample shows 
in a more complex manner. You’ll also find many revisions of an app I call “Here My Am!” that we’ll start 
building in Chapter 2 and refine throughout the course of this book. This includes localizing it into a 
number of different languages by the time we reach the end. 

Beyond all this, you’ll find that the Windows 8 samples gallery as well as the Visual Studio sample 
gallery also lets you search and browse additional projects that have been contributed by other 
developers—perhaps also you! (On the Visual Studio site, by the way, be sure to filter on Windows Store 
apps as the gallery covers all Microsoft platforms.) And of course, there will be many more developers 
who share projects on their own. 

In this book I occasionally refer to posts on the Windows 8 App Developer blog, which is a good 
resource to follow. I also recommend following the Windows Store for Developers blog for any 
announcements related to what is effectively your place of business. And if you’re interested in the 
Windows 8 backstory—that is, how Microsoft approached this whole process of reimagining the 
operating system—check out the Building Windows 8 blog. 

A Formatting Note 

Throughout this book, identifiers that appear in code, such as variable names, property names, and API 
functions and namespaces, are formatted with a color and a fixed-point font. Here’s an example: 
Windows.Storage.ApplicationData.current. At times these fully qualified names—those that that 
include the entire namespace—can become quite long, so it’s necessary to occasionally hyphenate then 
across line breaks, as in Windows.Security.Cryptography.CryptographicBuffer.convertString-
ToBinary. Generally speaking, I’ve tried to hyphenate after a dot or between whole words but not 
within a word. In any case, these hyphens are never part of the identifier except in CSS where hyphens 
are allowed (as in -ms-high-contrast-adjust) and with HTML attributes like aria-label or 
data-win-options. 

Occasionally, you’ll also see identifiers that have a different color, as in datarequested. These 
specifically point out events that originate from Windows Runtime objects, for which there are a few 
special considerations for adding and removing event listeners in JavaScript, as discussed toward the 
end of Chapter 3. I make a few reminders about this point throughout the chapters, but the purpose of 
this special color is to give you a quick reminder that doesn’t break the flow of the discussion otherwise. 
 

22

http://go.microsoft.com/FWLink/?Linkid=270057
http://code.msdn.microsoft.com/windowsapps/
http://code.msdn.microsoft.com/vstudio
http://code.msdn.microsoft.com/vstudio
http://blogs.msdn.com/b/windowsappdev/
http://blogs.msdn.com/b/windowsstore/
http://blogs.msdn.com/b/b8/


Acknowledgements 

In many ways, this isn't my book—that is, it's not an account of my own experiences and opinions about 
writing apps for Windows 8. I'm serving more as a storyteller, where the story itself has been written by 
the thousands of people in the Windows team whose passion and dedication have been a constant 
source of inspiration. Writing a book like this wouldn't be possible without all the work that's gone into 
customer research; writing specs; implementing, testing, and documenting all the details; managing 
daily builds and public releases; and writing again the best set of samples I've ever seen for a platform. 
Indeed, the words in some sections come directly from conversations I've had with the people who 
designed and developed a particular feature. I'm grateful for their time, and I’m delighted to give them 
a voice through which they can share their passion for excellence with you. 

A number of individuals deserve special mention for their long-standing support of this project. First 
to Chris Sells, with whom I co-authored the earliest versions of this book and who is now leading 
development efforts at Telerik. To Mahesh Prakriya, Ian LeGrow, Anantha Kancherla, Keith Boyd and 
their respective teams, with whom I've worked closely, and to Keith Rowe, Dennis Flanagan, and Ulf 
Schoo, under whom I've had the pleasure of serving. 

Thanks also to Devon Musgrave at Microsoft Press, who put in many long hours editing my many 
long chapters, many times over. My direct teammates, Kyle Marsh, Todd Landstad, Shai Hinitz, Patrick 
Dengler, Lora Heiny, Leon Braginski, and Joseph Ngari have also been invaluable in sharing what they've 
learned in working with real-world partners. A special thanks goes to Kenichiro Tanaka of Microsoft 
Japan, for always being the first one to return a reviewed chapter to me and for joyfully researching 
different areas of the platform whenever I asked. Many bows to you, my friend! Nods also to others in 
our international Windows Ecosystem teams who helped with localizing the Here My Am! app for 
Chapter 17: Gilles Peingné, Sam Chang, Celia Pipó Garcia, Juergen Schwertl, Maaten Van De Dospoort, 
and Li-Qun Jia (plus Shai Hinitz on Hebrew). 

The following individuals all contributed to this book as well, with chapter reviews, answers to my 
questions, deep discussions of the details, and much more. I’m grateful to all of you for your time and 
support : 

Shakil Ahmed Scott Dickens Kishore Kotteri Daniel Oliver Sam Spencer 

Chris Anderson Tyler Donahue Victoria Kruse Jason Olson Ben Srour 

Erik Anderson Brendan Elliott Nathan Kuchta Elliot H Omiya Adam Stritzel 

Axel Andrejs Matt Esquivel Elmar Langholz Larry Osterman Shijun Sun 

Tarek Ayna David Fields Bonny Lau Rohit Pagariya Sou Suzuki 

Art Baker Erik Fortune Travis Leithead Ankur Patel Simon Tao 

Adam Barrus Jim Galasyn Chantal Leonard Harry Pierson Henry Tappen 

Megan Bates Gavin Gear Cameron Lerum* Steve Proteau Chris Tavares 

Tyler Beam Derek Gephard Brian LeVee Hari Pulapaka David Tepper 

23



Ben Betz Marcelo Garcia Gonzalez Jianfeng Lin Arun Rabinar Sara Thomas 

Johnny Bregar Sunil Gottumukkala Tian Luo Matt Rakow Ryan Thompson 

John Brezak Scott Graham Sean Lyndersay Ramu Ramanathan Bill Ticehurst 

John Bronskill Ben Grover David Machaj Ravi Rao Stephen Toub 

Jed Brown Paul Gusmorino Mike Mastrangelo Brent Rector Tonu Vanatalu 

Vincent Celie Rylan Hawkins Jordan Matthiesen Ruben Rios Jeremy Viegas 

Raymond Chen John Hazen Ian McBurnie Dale Rogerson Nick Waggoner 

Rian Chung Jerome Holman Jesse McGatha Nick Rotondo David Washington 

Arik Cohen Scott Hoogerwerf Matt Merry David Rousset Sarah Waskom 

Justin Cooperman Stephen Hufnagel Markus Mielke George Roussos Marc Wautier 

Michael Crider Sean Hume Pavel Minaev Jake Sabulsky Josh Williams 

Priya Dandawate Mathias Jourdain John Morrow Perumaal Shanmugam Lucian Wischik 

Darren Davis Damian Kedzierski Feras Moussa Edgar Ruiz Silva Kevin Michael Woley 

Jack Davis Suhail Khalid John Mullaly Karanbir Singh Charing Wong 

Ryan Demopoulos Daniel Kitchener Jan Nelson* Peter Smith Michael Ziller 

 

* For Jan and Cameron, a special acknowledgement for riding down from Redmond, Washington, to visit me in 
Portland, Oregon (where I was living at the time), and sharing an appropriately international Thai lunch while we 
discussed localization and multilingual apps. 

I would also like to bid adieu to the extra pounds that have accompanied my body while I’ve been 
sitting at a computer far more than I should! I’m sure you’re looking forward to a resumption in our 
more usual fitness routines as I am. 

Finally, special hugs to my wife Kristi and our young son Liam (now six), who have lovingly been 
there the whole time and who don't mind my traipsing through the house to my office either late at 
night or early in the morning. 

Errata & Book Support 

We’ve made every effort to ensure the accuracy of this ebook and its companion content. Any errors 
that are reported after the book’s publication will be listed on our Microsoft Press site at oreilly.com. At 
that point, you can search for the book at http://microsoftpress.oreilly.com and then click the 
“View/Submit Errata” link. If you find an error that is not already listed, you can report it to us through 
the same page. 

If you need additional support, email Microsoft Press Book Support at mspinput@microsoft.com. 

Please note that product support for Microsoft software is not offered through the addresses above. 

24

http://microsoftpress.oreilly.com/
mailto:mspinput@microsoft.com


Support for developers, however, can be found on the Windows Developer Center’s support section, 
especially in the Building Windows Store apps with HTML5/JavaScript forum. There is also an active 
community on Stack Overflow for the windows8 and winrt tags. 

We Want to Hear from You 

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable asset. 
Please tell us what you think of this book at  

http://aka.ms/tellpress  

The survey is short, and we read every one of your comments and ideas. Thanks in advance for your 
input! 

Stay in Touch 

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress. And you can 
keep up with Kraig here: http://www.kraigbrockschmidt.com. 

  

25

http://msdn.microsoft.com/en-US/windows/apps/hh690938
http://social.msdn.microsoft.com/Forums/en-US/winappswithhtml5/threads
http://stackoverflow.com/questions/tagged/windows-8
http://stackoverflow.com/questions/tagged/winrt
http://aka.ms/tellpress
http://twitter.com/MicrosoftPress
http://www.kraigbrockschmidt.com/


Chapter 1 

The Life Story of a Windows Store 
App: Platform Characteristics 
of Windows 8 

Paper or plastic? Fish or cut bait? To be or not to be? Standards-based or native? These are the 
questions of our time…. 

Well, OK, maybe most of these aren’t the grist for university-level philosophy courses, but certainly 
the last one has been increasingly important for app developers. Standards-based apps are great 
because they run on multiple platforms; your knowledge and experience with standards like HTML5 and 
CSS3 are likewise portable. Unfortunately, because standards generally take a long time to produce, 
they always lag behind the capabilities of the platforms themselves. After all, competing platform 
vendors will, by definition, always be trying to differentiate! For example, while HTML5 now has a 
standard for geolocation/GPS sensors and has started on working drafts for other forms of sensor input 
(like accelerometers, compasses, near-field proximity, and so on), native platforms already make these 
available. And by the time HTML’s standards are in place and widely supported, the native platforms will 
certainly have added another set of new capabilities. 

As a result, developers wanting to build apps around cutting-edge features—to differentiate from 
their own competitors!—must adopt the programming language and presentation technology imposed 
by each native platform or take a dependency on a third-party framework that tries to bridge the 
differences. 

Bottom line: it’s a hard choice. 

Fortunately, Windows 8 provides what I personally think is a brilliant solution for apps. Early on, the 
Windows team set out to solve the problem of making native capabilities—the system API, in other 
words—directly available to any number of programming languages, including JavaScript. This is what’s 
known as the Windows Runtime API, or just WinRT for short. 

WinRT APIs are implemented according to a certain low-level structure and then “projected” into 
different languages—namely C++, C#, Visual Basic, and JavaScript—in a way that looks and feels 
natural to developers familiar with those languages. This includes how objects are created, configured, 
and managed; how events, errors, and exceptions are handled; how asynchronous operations work (to 
keep the user experience fast and fluid); and even the casing of method, property, and event names. 

The Windows team also made it possible to write native apps that employ a variety of presentation 

26



technologies, including DirectX, XAML, and, in the case of apps written in JavaScript, HTML5 and CSS3.  

This means that Windows gives you—a developer already versed in HTML, CSS, and JavaScript 
standards—the ability to use what you know to write fully native Windows 8 apps using the WinRT API 
and still utilize web content! These apps will, of course, be specific to the Windows 8 platform, but the 
fact that you don’t have to learn a completely new programming paradigm is worthy of taking a week 
off to celebrate—especially because you won’t have to spend that week (or more) learning a complete 
new programming paradigm! 

It also means that you’ll be able to leverage existing investments in JavaScript libraries and CSS 
template repositories: writing a native app doesn’t force you to switch frameworks or engage in 
expensive porting work. 

That said, it is also possible to use multiple languages to write an app, leveraging the dynamic nature 
of JavaScript for app logic while leveraging languages like C# and C++ for more computationally 
intensive tasks. (See “Sidebar: Mixed Language Apps” later in this chapter.) 

Throughout this book we’ll explore how to leverage what you know of standards-based web 
technologies to build great Windows 8 apps. In the next chapter we’ll focus on the basics of a working 
app and the tools used to build it. Then we’ll look at fundamentals like the fuller anatomy of an app, 
controls, collections, layout, commanding, state management, and input, followed by chapters on 
media, animations, contracts through which apps work together, networking, devices, WinRT 
components (through which you can use other programming languages and the APIs they can access), 
and the Windows Store (a topic that includes localization and accessibility). There is much to learn. 

For starters, let’s talk about the environment in which apps run and the characteristics of the 
platform on which they are built—especially the terminology that we’ll depend on in the rest of the 
book (highlighted in italics). We’ll do this by following an app’s journey from the point when it first 
leaves your hands, through its various experiences with your customers, to where it comes back home 
for renewal and rebirth (that is, updates). For in many ways your app is like a child: you nurture it 
through all its formative stages, doing everything you can to prepare it for life in the great wide world. 
So it helps to understand the nature of that world!  

Terminology note What we refer to as Windows Store apps, or sometimes just Store apps, are those 
that are acquired from the Windows Store and for which all the platform characteristics in this chapter 
(and book) apply. These are distinctly different from traditional desktop applications that are acquired 
through regular retail channels and installed through their own installer programs. Unless noted, then, 
an “app” in this book refers to a Windows Store app. 

Leaving Home: Onboarding to the Windows Store 

For Windows Store apps, there’s really one port of entry into the world: customers always acquire, 
install, and update apps through the Windows Store. Developers and enterprise users can side-load  
 

27



apps, but for the vast majority of the people you care about, they go to the Windows Store and 
nowhere else. 

This obviously means that an app—the culmination of your development work—has to get into the 
Store in the first place. This happens when you take your pride and joy, package it up, and upload it to 
the Store by using the Store/Upload App Package command in Visual Studio.1 The package itself is an 
appx file (.appx)—see Figure 1-1—that contains your app’s code, resources, libraries, and a manifest. The 
manifest describes the app (names, logos, etc.), the capabilities it wants to access (such as areas of the 
file system or specific devices like cameras), and everything else that’s needed to make the app work 
(such as file associations, declaration of background tasks, and so on). Trust me, we’ll become great 
friends with the manifest! 

 
FIGURE 1-1  An appx package is simply a zip file that contains the app’s files and assets, the app manifest, a 
signature, and a sort of table-of-contents called the blockmap. When uploading an app, the initial signature is 
provided by Visual Studio; the Windows Store will re-sign the app once it’s certified. The blockmap, for its part, 
describes how the app’s files are broken up into 64K blocks. In addition to providing certain security functions (like 
detecting whether a package has been tampered with) and performance optimization, the blockmap is used to 
determine exactly what parts of an app have been updated between versions so the Windows Store only needs to 
download those specific blocks rather than the whole app anew. This greatly reduces the time and overhead that a 
user experiences when acquiring and installing updates. 

 

1 To do this you’ll need to create a developer account with the Store by using the Store > Open Developer Account command in 
Visual Studio Express. Visual Studio Express and Expression Blend, which we’ll be using as well, are free tools that you can obtain 
from http://dev.windows.com. This also works in Visual Studio Ultimate, the fuller, paid version of this flagship development 
environment. 

28

http://dev.windows.com/


 

The upload process will walk you through setting your app’s name (which you do ahead of time 
using the Store > Reserve App Name command in Visual Studio), choosing selling details (including 
price tier, in-app purchases, and trial periods), providing a description and graphics, and also providing 
notes to manual testers. After that, your app essentially goes through a series of job interviews, if you 
will: background checks (malware scans and GeoTrust certification) and manual testing by a human 
being who will read the notes you provide (so be courteous and kind!). Along the way you can check 
your app’s progress through the Windows Store Dashboard.2 

The overarching goal with these job interviews (or maybe it’s more like getting through airport 
security!) is to help users feel confident and secure in trying new apps, a level of confidence that isn’t 
generally found with apps acquired from the open web. As all apps in the Store are certified, signed, and 
subject to ratings and reviews, customers can trust all apps from the Store as they would trust those 
recommended by a reliable friend. Truly, this is wonderful news for most developers, especially those 
just getting started—it gives you the same access to the worldwide Windows market that has been 
previously enjoyed only by those companies with an established brand or reputation. 

It’s worth noting that because you set up pricing, trial versions, and in-app purchases during the 
on-boarding process, you’ll have already thought about your app’s relationship to the Store quite a bit! 
After all, the Store is where you’ll be doing business with your app, whether you’re in business for fame, 
fortune, fun, or philanthropy. 

As a developer, indeed, this relationship spans the entire lifecycle of an app—from planning and 
development to distribution, support, and servicing. This is, in fact, why I’ve started this life story of an 
app with the Windows Store, because you really want to understand that whole lifecycle from the very 
beginning of planning and design. If, for example, you’re looking to turn a profit from a paid app or 
in-app purchases, perhaps also offering a time-limited or feature-limited trial, you’ll want to engineer 
your app accordingly. If you want to have a free, ad-supported app, or if you want to use a third-party 
commerce solution for in-app purchases (bypassing revenue sharing with the Store), these choices also 
affect your design from the get-go. And even if you’re just going to give the app away to promote a 
cause or to just share your joy, understanding the relationship between the Store and your app is still 
important. For all these reasons, you might want to skip ahead and read the “Your App, Your Business” 
section of Chapter 17, "Apps for Everyone," before you start writing your app in earnest. Also, take a 
look at the Preparing your app for the Store topic on the Windows Developer Center. 

Anyway, if your app hits any bumps along the road to certification, you’ll get a report back with all 
the details, such as any violations of the Windows 8 app certification requirements (part of the Windows 
Store agreements section). Otherwise, congratulations—your app is ready for customers! 

2 All of the automated tests except the malware scans are incorporated into the Windows App Certification Kit, affectionately 
known as the WACK. This is part of the Windows SDK that is itself included with the Visual Studio Express/Expression Blend 
download. If you can successfully run the WACK during your development process, you shouldn’t have any problem passing the 
first stage of onboarding. 

29

https://appdev.microsoft.com/StorePortals
http://msdn.microsoft.com/library/windows/apps/hh694079.aspx
http://msdn.microsoft.com/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/library/windows/apps/hh694082.aspx
http://msdn.microsoft.com/library/windows/apps/hh694082.aspx


 

Sidebar: The Store API and Product Simulator 
The Windows.ApplicationModel.Store.CurrentApp class in WinRT provides the ability for apps to 
retrieve their product information from the store (including in-app purchases), check license 
status, and prompt the user to make purchases (such as upgrading a trial or making an in-app 
purchase).  

Of course, this begs a question: how can an app test such features before it’s even in the Store? 
The answer is that during development, you use these APIs through the Windows.-
ApplicationModel.Store.CurrentAppSimulator class instead. This is entirely identical to 
CurrentProduct except that it works against local data in an XML file rather than live Store data in 
the cloud. This allows you to simulate the various conditions that your app might encounter so 
that you can exercise all your code paths appropriately. Just before packaging your app and 
sending it to the Store, you just change CurrentAppSimulator to CurrentApp and you’re good to 
go. (If you forget, the simulator will simply fail on a non-developer machine, like those used by 
the Store testers.) 

Discovery, Acquisition, and Installation 

Now that your app is out in the world, its next job is to make itself known and attractive to potential 
customers. Simply said, while consumers can find your app in the Windows Store through browsing or 
search, you’ll still need to market your product as always. That’s one reality of publishing software that 
certainly hasn’t changed. That aside, even when your app is found in the Store it still needs to present 
itself well to its suitors. 

Each app in the Store has a product description page where people see your app description, screen 
shots, ratings and reviews, and the capabilities your app has declared in its manifest, as shown in Figure 
1-2. That last bit means you want to be judicious in declaring your capabilities. A music player app, for 
instance, will obviously declare its intent to access the user’s music library but usually doesn’t need to 
declare access to the pictures library unless it has a good justification. Similarly, a communications app 
would generally ask for access to the camera and microphone, but a news reader app probably 
wouldn’t. On the other hand, an ebook reader might declare access to the microphone if it had a 
feature to attach audio notes to specific bookmarks. 

30



 
FIGURE 1-2 A typical app page in the Windows Store, where the manifest in the app package determines what 
appears in the app permissions. Here, for example, PuzzleTouch’s manifest declares the Pictures Library, Webcam, 
and Internet (Client) capabilities. 

The point here is that what you declare needs to make sense to the user, and if there are any doubts 
you should clearly indicate the features related to those declarations in your app’s description. (Note 
how Puzzle Touch does that for the camera.) Otherwise the user might really wonder just what your 
news reader app is going to do with the microphone and might opt for another app that seems less 
intrusive.3 

The user will also see your app pricing, of course, and whether you offer a trial period. Whatever the 
case, if they choose to install the app (getting it for free, paying for it, or accepting a trial), your app now 
becomes fully incarnate on a real user’s device. The appx package is downloaded to the device and 
installed automatically along with any dependencies, such as the Windows Library for JavaScript (see 
“Sidebar: What is the Windows Library for JavaScript?”). As shown in Figure 1-3, the Windows 
deployment manager creates a folder for the app, extracts the package contents to that location, 
creates appdata folders (local, roaming, and temp, which the app can freely access, along with settings 
files for key-value pairs and some other system-managed folders), and does any necessary fiddling with 
the registry to install the app’s tile on the Start screen, create file associations, install libraries, and do all 
those other things that are again described in the manifest. There are no user prompts during this 
process—especially not those annoying dialogs about reading the licensing agreement! 

3 The user always has the ability to disallow access to sensitive resources at run time for those apps that have declared the intent, 
as we’ll see later. However, as those capabilities surface directly in the Windows Store, you want to be careful to not declare those 
that you don’t really need. 

31



 
FIGURE 1-3  The installation process for Windows Store apps; the exact sequence is unimportant. 

In fact, licensing terms are integrated into the Store; acquisition of an app implies acceptance of 
those terms. (However, it is perfectly allowable for apps to show their own license acceptance page on 
startup, as well as require an initial login to a service if applicable.) But here’s an interesting point: do 
you remember the real purpose of all those lengthy, annoyingly all-caps licensing agreements that we 
pretend to read? Almost all of them basically say that you can install the software on only one machine. 
Well, that changes with Windows Store apps: instead of being licensed to a machine, they are licensed 
to the user, giving that user the right to install the app on up to five different devices. 

In this way Store apps are a much more personal thing than desktop apps have traditionally been. 
They are less general-purpose tools that multiple users share and more like music tracks or other media 
that really personalize the overall Windows experience. So it makes sense that users can replicate their 
customized experiences across multiple devices, something that Windows supports through automatic 
roaming of app data and settings between those devices. (More on that later.) 

In any case, the end result of all this is that the app and its necessary structures are wholly ready to 
awaken on a device, as soon as the user taps a tile on the Start page or launches it through features like 
Search and Share. And because the system knows about everything that happened during installation, it 
can also completely reverse the process for a 100% clean uninstall—completely blowing away the 
appdata folders, for example, and cleaning up anything and everything that was put in the registry. This 
keeps the rest of the system entirely clean over time, even though the user may be installing and 
uninstalling hundreds or thousands of apps. We like to describe this like the difference between having 
guests in your house and guests in a hotel. In your house, guests might eat your food, rearrange the 
furniture, break a vase or two, feed leftovers to the pets, stash odds and ends in the backs of drawers, 
and otherwise leave any number of irreversible changes in their wake (and you know desktop apps that 

32



do this, I’m sure!). In a hotel, on the other hand, guests have access only to a very small part of the 
whole structure, and even if they trash their room, the hotel can clean it out and reset everything as if 
the guest was never there. 

Sidebar: What Is the Windows Library for JavaScript? 
The HTML, CSS, and JavaScript code in a Windows Store app is only parsed, compiled, and 
rendered at run time. (See the “Playing in Your Own Room: The App Container” section below.) As 
a result, a number of system-level features for apps written in JavaScript, like controls, resource 
management, and default styling are supplied through the Windows Library for JavaScript, or 
WinJS, rather than through the Windows Runtime API. This way, JavaScript developers see a 
natural integration of those features into the environment they already understand, rather than 
being forced to use different kinds of constructs. 

WinJS, for example, provides an HTML implementation of a number of controls such that they 
appear as part of the DOM and can be styled with CSS like other intrinsic HTML controls. This is 
much more natural for developers than having to create an instance of some WinRT class, bind it 
to an HTML element, and style it through code or some other proprietary markup scheme. 
Similarly, WinJS provides an animations library built on CSS that embodies the Windows 8 user 
experience so that apps don’t have to figure out how to re-create that experience themselves. 

Generally speaking, WinJS is a toolkit that contains a number of independent capabilities that 
can be used together or separately. So WinJS also provides helpers for common JavaScript coding 
patterns, simplifying the definition of namespaces and object classes, handling of asynchronous 
operations (that are all over WinRT) through promises, and providing structural models for apps, 
data binding, and page navigation. At the same time, it doesn’t attempt to wrap WinRT unless 
there is a compelling scenario where WinJS can provide real value. After all, the mechanism 
through which WinRT is projected into JavaScript already translates WinRT structures into those 
familiar to JavaScript developers. 

All in all, WinJS is essential for and shared between every Store app written in JavaScript, and 
it's automatically downloaded and updated as needed when dependent apps are installed. We’ll 
see many of its features throughout this book, though some won’t cross our path. In any case, you 
can always explore what’s available through the WinJS section of the Windows API reference. 

Sidebar: Third-Party Libraries 
WinJS is an example of a special shared library package that is automatically downloaded from 
the Windows Store for apps that depend on it. Microsoft maintains a few of these in the Store so 
that the package need be downloaded only once and then shared between apps. Shared 
third-party libraries are not currently supported. 

However, apps can freely use third-party libraries by bringing them into their own app 
package, provided of course that the libraries use only the APIs available to Windows Store apps. 

33

http://msdn.microsoft.com/library/windows/apps/br211377.aspx


For example, apps written in JavaScript can certainly use jQuery, Modernizer, Dojo, prototype.js, 
Box2D, and others, with the caveat that some functionality, especially UI and script injection, 
might not be supported. Apps can also use third-party binaries, known as WinRT components, 
that are again included in the app package. Also see "Sidebar: Mixed Language Apps" later in this 
chapter. 

Playing in Your Own Room: The App Container 

Now just as the needs of each day may be different when we wake up from our night’s rest, Store apps 
can wake up—be activated—for any number of reasons. The user can, of course, tap or click the app’s 
tile on the Start page. An app can also be launched in response to charms like Search and Share, 
through file or protocol associations, and a number of other mechanisms. We’ll explore these variants as 
we progress through this book. But whatever the case, there’s a little more to this part of the story for 
apps written in JavaScript. 

In the app’s hidden package folder are the same kind of source files that you see on the web: .html 
files, .css files, .js files, and so forth. These are not directly executable like .exe files for apps written in C#, 
Visual Basic, or C++, so something has to take those source files and produce a running app with them. 
When your app is activated, then, what actually gets launched is that something: a special app host 
process called wwahost.exe4, as shown in Figure 1-4. 

 
FIGURE 1-4  The app host is an executable (wwahost.exe) that loads, renders, and executes HTML, CSS, and 
JavaScript, in much the same way that a browser runs a web application. 

 

4 “wwa” is an old acronym for Windows Store apps written in JavaScript; some things just stick…. 

34



The app host is more or less Internet Explorer 10 without the browser chrome—more in that your 
app runs on top of the same HTML/CSS/JavaScript engines as Internet Explorer, less in that a number of 
things behave differently in the two environments. For example: 

• A number of methods in the DOM API are either modified or not available, depending on their 
design and system impact. For example, functions that display modal UI and block the UI thread 
are not available, like window.alert, window.open, and window.prompt. (Try Windows.-
UI.Popups.MessageDialog instead for some of these needs.) 

• The engines support additional methods, properties, and even CSS media queries that are 
specific to being a app as opposed to a website. For example, special media queries apply to the 
different Windows 8 view states (see the next section). Elements like audio, video, and canvas 
also have additional methods and properties. At the same time, objects like MSApp and methods 
like requestAnimationFrame that are available in Internet Explorer are also available to Store 
apps. 

• The default page of an app written in JavaScript runs in what’s called the local context wherein 
JavaScript code has access to WinRT, can make cross-domain XmlHttpRequests, and can access 
remote media (videos, images, etc.). However, you cannot load remote script (from http[s]:// 
sources, for example), and script is automatically filtered out of anything that might affect the 
DOM and open the app to injection attacks (e.g., document.write and innerHTML properties). 

• Other pages in the app, as well as individual iframe elements within a local context page, can 
run in the web context wherein you get web-like behavior (such as remote script) but don’t get 
WinRT access nor cross-domain XHR (though you can use much of WinJS). Web context iframes 
are generally used to host web content on a locally packaged page (like a map control), as we’ll 
see in Chapter 2, "Quickstart," or to load pages that are directly hosted on the web, while not 
allowing web pages to drive the app. Using such iframe elements, in short, allows you to build 
hybrid apps with both native and web content. 

For full details on all these behaviors, see HTML and DOM API changes list and HTML, CSS, and 
JavaScript features and differences on the Windows Developer Center, http://dev.windows.com. As with 
the app manifest, you should become good friends with the Developer Center. 

Now all Store apps, whether hosted or not, run inside an environment called the app container. This 
is an insulation layer, if you will, that blocks local interprocess communication and either blocks or 
brokers access to system resources. The key characteristics of the app container are described as follows 
and illustrated in Figure 1-5: 

• All Store apps (other than some that are built into Windows) run within a dedicated environment 
that cannot interfere with or be interfered with other apps, nor can apps interfere with the 
system. 

• Store apps, by default, get unrestricted read/write access only to their specific appdata folders 
on the hard drive (local, roaming, and temp). Access to everything else in the file system 

35

http://msdn.microsoft.com/library/windows/apps/hh700404.aspx
http://msdn.microsoft.com/library/windows/apps/hh465380.aspx
http://msdn.microsoft.com/library/windows/apps/hh465380.aspx
http://dev.windows.com/


(including removable storage) has to go through a broker. This gatekeeper provides access only 
if the app has declared the necessary capabilities in its manifest and/or the user has specifically 
allowed it. We’ll see the specific list of capabilities shortly. 

• Access to sensitive devices (like the camera, microphone, and GPS) is similarly controlled—the 
WinRT APIs that work with those devices will fail if the broker blocks those calls. And access to 
critical system resources, such as the registry, simply isn’t allowed at all. 

• Store apps cannot programmatically launch other apps by name or file path but can do so 
through file or URI scheme associations. Because these are ultimately under the user’s control, 
there’s no guarantee that such an operation will start a specific app. However, we do encourage 
app developers to use app-specific URI schemes that will effectively identify your specific app as 
a target. Technically speaking, another app could come along and register the same URI scheme 
(thereby giving the user a choice), but this is unlikely with a URI scheme that’s closely related to 
the app’s identity. 

• Store apps are isolated from one another to protect from various forms of attack. This also 
means that some legitimate uses (like a snipping tool to copy a region of the screen to the 
clipboard) cannot be written as a Windows Store app; they must be a desktop application. 

• Direct interprocess communication is blocked between Store apps (except in some debugging 
cases), between Store apps and desktop applications, and between Store apps and local services. 
Apps can still communicate through the cloud (web services, sockets, etc.), and many common 
tasks that require cooperation between apps—such as Search and Share—are handled through 
contracts in which those apps don’t need to know any details about each other. 

 
FIGURE 1-5  Process isolation for Windows Store apps. 

36



Sidebar: Mixed Language Apps 
Windows Store apps written in JavaScript can only access WinRT APIs directly; apps or libraries 
written in C#, Visual Basic, and C++ also have access to a subset of Win32 and .NET APIs, as 
documented on Win32 and COM for Windows Store apps. Unfair? Not entirely, because you can 
write a WinRT component in those other languages that make functionality built with those other 
APIs available in the JavaScript environment (through the same projection mechanism that WinRT 
itself uses). Because these components are compiled into binary dynamic-link libraries (DLLs), they 
will also typically run faster than the equivalent code written in JavaScript and also offer some 
degree of intellectual property protection (e.g., hiding algorithms). 

Such mixed language apps thus use HTML/CSS for their presentation layer and some app logic 
while placing the most performance critical or sensitive code in compiled DLLs. The dynamic 
nature of JavaScript, in fact, makes it a great language for gluing together multiple components. 
We’ll see more in Chapter 16, "WinRT Components." 

Note that mixed language apps are occasionally referred to as “hybrid” apps, but the latter 
term already has a meaning in the context of mobile and web development. In this book I use 
“mixed language apps” to avoid confusion. 

Different Views of Life: View States and Resolution Scaling 

So, the user has tapped on an app tile, the app host has been loaded into memory, and it’s ready to get 
everything up and running. What does the user see? 

The first thing that becomes immediately visible is the app’s splash screen, which is described in its 
manifest with an image and background color. This system-supplied screen guarantees that at least 
something shows up for the app when it’s activated, even if the app completely gags on its first line of 
code or never gets there at all. In fact, the app has 15 seconds to get its act together and display its 
main window, or Windows automatically gives it the boot (terminates it, that is) if the user switches 
away. This avoids having apps that hang during startup and just sit there like a zombie, where often the 
user can only kill it off by using that most consumer-friendly tool, Task Manager. (Yes, I’m being 
sarcastic—even though the Windows 8 Task Manager is in fact much more user-friendly.) Of course, 
some apps will need more time to load, in which case you create an extended splash screen. This just 
means making the initial view of your main window look the same as the splash screen so that you can 
then overlay progress indicators or other helpful messages like “Go get a snack, friend, ‘cause yer gonna 
be here a while!” Better yet, why not entertain your users so that they have fun with your app even 
during such a process? 

Now, when a normally launched app comes up, it has full command of the entire screen—well, not 
entirely. Windows reserves a one pixel space along every edge of the display through which it detects 
edge gestures, but the user doesn’t see that detail. Your app still gets to draw in those areas, mind you, 

37

http://msdn.microsoft.com/library/windows/apps/br205757.aspx


but it will not be able to detect pointer events therein. A small sacrifice for full-screen glory! 

The purpose of those edge gestures—swipes from the edge of the screen toward the center—is to 
keep both system chrome and app commands (like menus and other commanding UI) out of the way 
until needed—an aspect of the design principle we call “content before chrome.” This helps the user 
fully stay immersed in the app experience. To be more specific, the left and right edge gestures are 
reserved for the system, whereas the top and bottom are for the app. Swiping up from the top or 
bottom edges, as you’ve probably seen, brings up the app bar on the bottom of the screen where an app 
places most of its commands, and possibly also a navigation bar on the top. 

When running full-screen, the user’s device can be oriented in either portrait or landscape, and apps 
can process various events to handle those changes. An app can also specify a preferred startup 
orientation in the manifest and can also lock the orientation when appropriate. For example, a movie 
player will generally want to lock into landscape mode such that rotating the device doesn’t change the 
display. We’ll see these layout details in Chapter 6, "Layout." 

What’s also true is that your app might not always be running full-screen. In landscape mode, there 
are actually three distinct view states that you need to be ready for with every page in the app: 
full-screen, snapped, and filled. (See Figure 1-6.) The latter two view states allow the user to split the 
screen into two regions, one that’s 320 pixels wide along either the left or right side of the screen—the 
snapped region—and a second that occupies the rest—the filled region. In response to user actions, 
then, your app might be placed in either region and must suck in its gut, so to speak, and adjust its 
layout appropriately. Most of the time, running in “filled” is almost the same as running in full-screen 
landscape, except with slightly different dimensions and a different aspect ratio. Many apps will simply 
adjust their layout for those dimensions; in some cases, like movies, they’ll just add a letterbox or 
sidepillar region to preserve the aspect ratio of the content. Both approaches are just fine. 

 
FIGURE 1-6 The four view states for Windows Store apps; all pages within the app need to be prepared to show 
properly in all four view states, a process that generally just involves visibility of elements and layout that can often 
be handled entirely within CSS media queries. 

38



When snapped, on the other hand, apps will often change the view of their content or its level of 
detail. Horizontally oriented lists, for instance, are typically switched to a vertical orientation, with fewer 
details. But don’t be nonchalant about this: you really want to consciously design snap views for every 
page in your app and to design them well. After all, users like to look at things that are useful and 
beautiful, and the more an app does this with its snapped views, the more likely it is that users will keep 
that app visible even while they’re working in another. 

Another key point for snapping—and all the view states including portrait—is that they aren’t mode 
changes. The system is just saying something like, “Please stand over here in this doorway, or please lean 
sideways.” So the app should never change what it’s doing (like switching from a game board to a high 
score list) when it’s snapped; it should just present itself appropriately for that position. For snapped 
view in particular, if an app can’t really continue to run effectively in snap, it should present a message 
to that effect with an option to un-snap back to full screen. (There’s an API for that.) 

Beyond the view states, an app should also expect to show itself in many sizes. It will be run on many 
different displays, anywhere from 1024x768 (the minimum hardware requirement for Windows 8, which 
also happens to be filled view size on 1366x768), all the way up to resolutions like 2560x1440. The 
guidance here is that apps with fixed content (like a game board) will generally scale in size across 
different resolutions, whereas apps with variable content (like a news reader) will generally show more 
content. For more details, refer to Guidelines for scaling to screens and the Designing UX for apps topic. 

It might also be true that you’re running on a high-resolution device that also has a very small screen 
(high pixel density), like 10” screens with a 2560x1440 resolution. Fortunately, Windows does automatic 
scaling such that the app still sees a 1366x768 display through CSS, JavaScript, and the WinRT API. In 
other words, you almost don’t have to care. The only concern is bitmap (raster) graphics, which need to 
accommodate those scales, as we’ll see in Chapter 6. 

As a final note, when an app is activated in response to a contract like Search or Share, its initial view 
might not be the full window at all but rather its specific landing page for that contract that overlays the 
current foreground app. We’ll see these details in Chapter 12, "Contracts." 

Sidebar: Single-Page vs. Multipage Navigation 
When you write a web application with HTML, CSS, and JavaScript, you typically end up with a 
number of different HTML pages and navigate between them by using <a href> tags or by setting 
document.location. 

This is all well and good and works in a Windows Store app, but it has several drawbacks. One 
is that navigation between pages means reloading script, parsing a new HTML document, and 
parsing and applying CSS again. Besides obvious performance implications, this makes it difficult 
to share variables and other data between pages, as you need to either save that data in 
persistent storage or stringify the data and pass it on the URI. 

Furthermore, switching between pages is visually abrupt: the user sees a blank screen while the 
new page is being loaded. This makes it difficult to provide a smooth, animated transition 

39

http://msdn.microsoft.com/library/windows/apps/hh780612.aspx
http://msdn.microsoft.com/library/windows/apps/hh779072.aspx


between pages as generally seen within the Windows 8 personality—it’s the antithesis of “fast and 
fluid” and guaranteed to make designers cringe. 

To avoid these concerns, apps written in JavaScript are typically structured as a single HTML 
page (basically a container div) into which different bits of HTML content, called page controls in 
WinJS, are loaded into the DOM at run time, similar to how AJAX works. This has the benefit of 
preserving the script context and allows for transition animations through CSS and/or the WinJS 
animations library. We’ll see the details in Chapter 3, "App Anatomy and Page Navigation." 

Those Capabilities Again: Getting to Data and Devices 

At run time, now, even inside the app container, your app has plenty of room to play and to delight 
your customers. It can utilize many different controls, as we’ll see in Chapters 4 and 5, styling them 
however it likes from the prosaic to the outrageous and laying them out on a page according to your 
designer’s fancies (Chapter 6). It can work with commanding UI like the app bar (Chapter 7), manage 
state and user data (Chapter 8), and receive and process pointer events, which unify touch, mouse, and 
stylus (Chapter 9—with these input methods being unified, you can design for touch and get the others 
for free; input from the physical and on-screen keyboards are likewise unified). Apps can also work with 
sensors (Chapter 9), rich media (Chapter 10), animations (Chapter 11), contracts (Chapter 12), tiles and 
notifications (Chapter 13), network communication (Chapter 14), and various devices and printing 
(Chapter 15). They can optimize performance and extend their capabilities through WinRT components 
(Chapter 16), and they can adapt themselves to different markets, provide accessibility, and work with 
various monetization options like advertising, trial versions, and in-app purchases (Chapter 17). 

Many of these features and their associated APIs have no implications where user privacy is 
concerned, so apps have open access to them. These include controls, touch/mouse/stylus input, 
keyboard input, and sensors (like the accelerometer, inclinometer, and light sensor). The appdata folders 
(local, roaming, and temp) that were created for the app at installation are also openly accessible. Other 
features, however, are again under more strict control. As a person who works remotely from home, for 
example, I really don’t want my webcam turning on unless I specifically tell it to—I may be calling into a 
meeting before I’ve had a chance to wash up! Such devices and other protected system features, then, 
are again controlled by a broker layer that will deny access if (a) the capability is not declared in the 
manifest, or (b) the user specifically disallows that access at run time. Those capabilities are listed in the 
following table: 

 

 

 

 

40



Capability Description Prompts for user consent 
at run time 

Internet (Client) Outbound access to the Internet and public networks (which 
includes making requests to servers and receiving information in 
response).5 

No 

Internet (Client & Server) (superset of 
Internet (Client); only one needs to be 
declared) 

Outbound and inbound access to the Internet and public 
networks (inbound access to critical ports is always blocked). 

No 

Private Networks 
(Client & Server) 

Outbound and inbound access to home or work intranets 
(inbound access to critical ports is always blocked). 

No 

Documents Library Read/write access to the user’s Documents area on the file system 
for specifically declared file types. Requires a corporate account 
in the Windows Store. 

No 

Music Library 
Pictures Library 
Video Library 

Read/write access to the user’s Music/Pictures/Videos area on the 
file system (all files). 

No 

Removable Storage Read/write access to files on removable storage devices for 
specifically declared file types. 

No 

Microphone Access to microphone audio feeds (includes microphones on 
cameras). 

Yes 

Webcam Access to camera audio/video/image feeds. Yes 

Location Access to the user’s location via GPS. Yes 

Proximity The ability to connect to other devices through near-field 
communication (NFC). 

No 

Enterprise Authentication Access to intranet resources that require domain credentials; not 
typically needed for most apps. Requires a corporate account in 
the Windows Store. 

No 

Shared User Certificates Access to software and hardware (smart card) certificates. 
Requires a corporate account in the Windows Store. 

Yes, in that the user must take 
action to select a certificate, 
insert a smart card, etc. 

 

When user consent is involved, calling an API to access the resource in question will prompt for user 
consent, as shown in Figure 1-7. If the user accepts, the API call will proceed; if the user declines, the API 
call will return an error. Apps must accordingly be prepared for such APIs to fail, and they must then 
behave accordingly. 

 
FIGURE 1-7 A typical user consent dialog that’s automatically shown when an app first attempts to use a brokered 
capability. This will happen only once within an app, but the user can control their choice through the Settings 
charm’s Permissions command for that app. 

 

5 Note that network capabilities are not necessary to receive push notifications because those are received by the system and not 
the app. 

41



When you first start writing apps, really keep the manifest and these capabilities in mind—if you forget 
one, you’ll see APIs failing even though all your code is written perfectly (or was copied from a working 
sample). In the early days of building the first Windows Store apps at Microsoft, we routinely forgot to 
declare the Internet (Client) capability, so even things like getting to remote media with an img element 
or making a simple call to a web service would fail. The support for alerting you if you’ve forgotten a 
capability is much better now, but if you hit some mysterious problem with code that you’re sure should 
work, especially in the wee hours of the night, check the manifest! 

We’ll encounter many other sections of the manifest besides capabilities in this book. For example, 
the documents library and removable storage capabilities both require you to declare the specific file 
types for your app (otherwise access will generally be denied). The manifest also contains content URIs: 
specific rules that govern which URIs are known and trusted by your app and can thus act on the app’s 
behalf. The manifest is also where you declare things like your preferred orientation, background tasks 
(like playing audio or handling real-time communication), contract behaviors (such as which page in 
your app should be brought up in response to being invoked via a contract), custom protocols, and the 
appearance of tiles and notifications. You and your app will become bosom buddies with the manifest. 

The last note to make about capabilities is that while programmatic access to the file system is 
controlled by certain capabilities, the user can always point your app to other nonsystem areas of the 
file system—and any type of file—from within the file picker UI. (See Figure 1-8.) This explicit user 
action, in other words, is taken as consent for your app to access that particular file or folder (depending 
on what you’re asking for). Once you’re app is given this access, you can use certain APIs to record that 
permission so that you can get to those files and folders the next time your app is launched. 

In summary, the design of the manifest and the brokering layer is to ensure that the user is always in 
control where anything sensitive is concerned, and as your declared capabilities are listed on your app’s 
description page in the Windows Store, the user should never be surprised by your app’s behavior. 

  
FIGURE 1-8  Using the file picker UI to access other parts of the file system from within a Store app, such as folders 
on a drive root (but not protected system folders). This is done by tapping the down arrow next to “Files.”  

42



Taking a Break, Getting Some Rest: Process Lifecycle 
Management 

Whew! We’ve covered a lot of ground already in this first chapter—our apps have been busy, busy, 
busy, and we haven’t even started writing any code yet! In fact, apps can become really busy when they 
implement certain sides of contracts. If an app declares itself as a Search, Share, Contact, or File Picker 
target in its manifest (among other things), Windows will activate the app in response to the appropriate 
user actions. For example, if the user invokes the Share charm and picks your app as a Share target, 
Windows will activate the app with an indication of that purpose. In response, the app displays its 
specific share UI or view—not the whole app—and when that task is complete, Windows will shut your 
app down again (or send it to the background if it was already running) without the need for additional 
user input. 

This automatic shutdown or sending the app to the background are examples of automatic lifecycle 
management for Windows Store apps that helps conserve power and optimize battery life. One reality 
of traditional multitasking operating systems is that users typically leave a bunch of apps running, all of 
which consume power. This made sense with desktop apps because many of them can be at least 
partially visible at once. But for Store apps, the system is boldly taking on the job itself and using the 
full-screen nature of those apps to its advantage. 

Apps typically need to be busy and active only when the user can see them (in whatever view state). 
When most apps are no longer visible, there is really little need to keep them idling. It’s better to just 
turn them off, give them some rest, and let the visible apps utilize the system’s resources. 

So when an app goes to the background, Windows will automatically suspend it after about 5 
seconds (according to the wall clock). The app is notified of this event so that it can save whatever state 
it needs to (which I’ll describe more in the next section). At this point the app is still in memory, with all 
its in-memory structures intact, but it will simply not be scheduled for any CPU time. (See Figure 1-9.) 
This is very helpful for battery life because most desktop apps idle like a gasoline-powered car, still 
consuming a little CPU in case there’s a need, for instance, to repaint a portion of a window. Because a 
Windows Store app in the background is completely obscured, it doesn’t need to do such small bits of 
work and can be effectively frozen. In this sense it is much more like a modern electric vehicle that can 
be turned on and off as often as necessary to minimize power consumption. 

If the user then switches back to the app (in whatever view state, through whatever gesture), it will be 
scheduled for CPU time again and resume where it left off (adjusting its layout for the view state, of 
course). The app is also notified of this event in case it needs to re-sync with online services, update its 
layout, refresh a view of a file system library, or take a new sensor reading because any amount of time 
might have passed since it was suspended. Typically, though, an app will not need to reload any of its 
own state because it was in memory the whole time. 

43



 
FIGURE 1-9  Process lifetime states for Windows Store apps.  

There are a couple of exceptions to this. First, Windows provides a background transfer API—see 
Chapter 14, “Networking”—to offload downloads and uploads from app code, which means apps don’t 
have to be running for such transfers to happen. Apps can also ask the system to periodically update live 
tiles on the Start page with data obtained from a service, or they can employ push notifications (through 
the Windows Push Notification Service, WNS) so that they need not even be running for this 
purpose—see Chapter 13, “Tiles, Notifications, the Lock Screen, and Background Tasks.” Second, certain 
kinds of apps do useful things when they’re not visible, such as audio players, communications apps, or 
those that need to take action when specific system events occur (like a network change, user login, 
etc.). With audio, as we’ll see in Chapter 10, “Media,” an app specifies background audio in its manifest 
(where else!) and sets certain properties on the appropriate audio elements. This allows it to continue 
running in the background. With system events, as we’ll also see in Chapter 13, an app declares 
background tasks in its manifest that are tied to specific functions in their code. In this case, Windows 
will wake the app from the suspended state when an appropriate trigger occurs. This is shown at the 
bottom of Figure 1-9. 

Over time, of course, the user might have many apps in memory, and most of them will be 
suspended and consume very little power. Eventually there will come a time when the foreground 
app—especially one that’s just been launched—needs more memory than is available. In this case, 
Windows will automatically terminate one or more apps, dumping them from memory. (See Figure 1-9 
again.) 

But here’s the rub: unless a user explicitly closes an app—by using Alt+F4 or a top-to-bottom swipe, 
because Windows Store policy specifically disallows apps with their own close commands or 
gestures—she still rightly thinks that the app is running. If the user activates it again (as from its tile), she 
will expect to return to the same place she left off. For example, a game should be in the same place it 
was before (though automatically paused), a reader should be on the same page, and a video should be 
paused at the same time. Otherwise, imagine the kinds of ratings and reviews your app will be getting in 
the Windows Store! 

44



So you might say, “Well, I should just save my app’s state when I get terminated, right?” Actually, no: 
your app will not be notified when it’s terminated. Why? For one, it’s already suspended at that time, so 
no code will run. In addition, if apps need to be terminated in a low memory condition, the last thing 
you want is for apps to wake up and try to save state which might require even more memory! It’s 
imperative, as hinted before, that apps save their state when being suspended and ideally even at other 
checkpoints during normal execution. So let’s see how all that works. 

Remembering Yourself: App State and Roaming 

To step back for a moment, one of the key differences between traditional desktop applications and 
Windows Store apps is that the latter are inherently stateful. That is, once they’ve run the first time, they 
remember their state across invocations (unless explicitly closed by the user or unless they provide an 
affordance to reset the state explicitly). Some desktop applications work like this, but most suffer from a 
kind of identity crisis when they’re launched. Like Gilderoy Lockhart in Harry Potter and the Chamber of 
Secrets, they often start up asking themselves, “Who am I?”6 with no sense of where they’ve been or 
what they were doing before. 

Clearly this isn’t a good idea with Store apps whose lifetime is being managed automatically. From 
the user’s point of view, apps are always running even if they’re not. It’s therefore critical that apps first 
manage settings that are always in effect and then also save their session state when being suspended. 
This way, if the app is terminated and restarted, it can reload that session state to return to the exact 
place it was before. (An app receives a flag on startup to indicate its previous execution state, which 
determines what it should do with saved session state. Details are in Chapter 3.) 

There’s another dimension to statefulness too. Remember from earlier in this chapter that a user can 
install the same Windows Store app on up to five different devices? Well, that means that an app, 
depending on its design of course, can also be stateful between those devices. That is, if a user pauses a 
video or a game on one device or has made annotations to a book or magazine on one device, the user 
will naturally want to be able to go to another device and pick up at exactly the same place. 

Fortunately, Windows 8 makes this easy—really easy, in fact—by automatically roaming app settings 
and state, along with Windows settings, between devices on which the user is logged in with the same 
Microsoft account, as shown in Figure 1-10. 

6 For those readers who have not watched this movie all the way through the credits, there’s a short vignette at the very end. 
During the movie, Lockhart—a prolific, narcissistic, and generally untruthful autobiographer—loses his memory from a backfiring 
spell. So in the vignette he’s shown in a straitjacket on the cover of his newest book, Who am I? 

45



 
FIGURE 1-10  Automatic roaming of app roaming data (folder contents and settings) between devices. 

They key here is understanding how and where an app saves its state. (We already know when.) If 
you recall, there’s one place on the file system where an app has unrestricted access: its appdata folder. 
Within that folder, Windows automatically creates subfolders named LocalState, RoamingState, and 
TempState when the app is installed (I typically refer to them without the “State” appended.) The app 
can programmatically get to any of these folders at any time and can create in them all the files and 
subfolders to fulfill its heart’s desire. There are also APIs for managing individual Local and Roaming 
settings (key-value pairs), along with groups of settings called composites that are always written to, 
read from, and roamed as a unit. (These are useful when implementing the app’s Settings features for 
the Settings charm, as covered in Chapter 8, “State, Settings, Files, and Documents.”) 

Now, although the app can write as much as it wants to the appdata areas (up to the capacity of the 
file system), Windows will automatically roam the data in your Roaming sections only if you stay below 
an allowed quota (~100K, but there’s an API for that). If you exceed the limit, the data will still be there 
but none of it will be roamed. Also be aware that cloud storage has different limits on the length of 
filenames and file paths as well as the complexity of the folder structure. So keep your roaming state 
small and simple. If the app needs to roam larger amounts of data, use a secondary web service like 
SkyDrive (see the blog post Extending "Windows 8" apps to the cloud with SkyDrive). 

So the app really needs to decide what kind of state is local to a device and what should be roamed. 
Generally speaking, any kind of settings, data, or cached resources that are device-specific should 
always be local (and Temp is also local), whereas settings and data that represent the user’s interaction 
with the app are potential roaming candidates. For example, an email app that maintains a local cache 
of messages would keep those local but would roam account settings (sans passwords, see Tip below) so 

46

www.SoftGozar.com

http://blogs.msdn.com/b/b8/archive/2011/09/28/extending-quot-windows-8-quot-apps-to-the-cloud-with-skydrive.aspx


that the user has to configure the app on only one device. It would probably also maintain a per-device 
setting for how it downloads or updates emails so that the user can minimize network/radio traffic on a 
mobile device. A media player, similarly, would keep local caches that are dependent on the specific 
device’s display characteristics, and it would roam playlists, playback positions, favorites, and other such 
settings (should the user want that behavior, of course). 

Tip For passwords in particular, always store them in the Credential Locker (see Chapter 14). If the user 
allows password roaming (PC Settings > Sync Your Settings > Passwords), the locker’s contents will be 
roamed automatically. 

When state is roamed, know that there’s a simple “last writer wins” policy where collisions are 
concerned. So, if you run the same app on two devices at the same time, don’t expect there to be any 
fancy merging or swapping of state. After all kinds of tests and analysis, Microsoft’s engineers finally 
decided that simplicity was best! 

Along these same lines, I'm told that if a user installs an app, roams some settings, uninstalls the app, 
then within "a reasonable time" reinstalls the app, the user will find that those settings are still in place. 
This makes sense, because it would be too draconian to blow away roaming state in the cloud the 
moment a user just happened to uninstall an app on all their devices. There's no guarantee of this 
behavior, mind you, but Windows will apparently retain roaming state for an app for some time at least. 

Sidebar: Local vs. Temp Data 
For local caching purposes, an app can use either local or temp storage. The difference is that 
local data is always under the app’s control. Temp data, on the other hand, can be deleted if the 
user runs the Disk Cleanup utility. Local data is thus best used to support an app’s functionality, 
and temp data is used to support run-time optimization at the expense of disk space. 

For Windows Store apps written in HTML and JavaScript, you can also use existing caching 
mechanisms like HTML5 local storage, IndexedDB, app cache, and so forth. All of these will be 
stored within the app’s LocalState folder. 

Sidebar: The Opportunity of Per-User Licensing and Data Roaming 
Details aside, I personally find the cross-device roaming aspect of the platform very exciting, 
because it enables the developer to think about apps as something beyond a single-device or 
single-situation experience. As I mentioned earlier, a user’s collection of apps is highly personal 
and it personalizes the device; apps themselves are licensed to the user and not the device. In that 
way, we as developers can think about each app as something that projects itself appropriately 
onto whatever device and into whatever context it finds itself. On some devices it can be oriented 
for intensive data entry or production work, while on others it can be oriented for consumption or 
sharing. The end result is an overall app experience that is simply more present in the user’s life 
and appropriate to each context. 

47



An example scenario is illustrated in Figure 1-11, where an app can have different personalities 
or flavors depending on user context and how different devices might be used in that context. It 
might seem rather pedestrian to think about an app for meal planning, recipe management, and 
shopping lists, but that’s something that happens in a large number of households worldwide. 
Plus it’s something that my wife would like to see me implement if I wrote more code than text! 

This, to me, is the real manifestation of the next era of personal computing, an era in which 
personal computing expands well beyond, yet still includes, a single device experience. Devices 
are merely viewports for your apps and data, each viewport having a distinct role in the larger 
story of how your move through and interact with the world at large. 

 

Coming Back Home: Updates and New Opportunities 

If you’re one of those developers that can write a perfect app the first time, I have to ask why you’re 
actually reading this book! Fact of the matter is that no matter how hard we try to test our apps before 
they go out into the world, our efforts pale in comparison to the kinds of abuse that customers will heap 
on them. To be more succinct: expect problems. An app might crash under circumstances we never 
predicted, or there just might be usability problems because people are finding creative ways to use the 
app outside of its intended purpose. 

 

48



Fortunately, the Windows Store dashboard—go to http://dev.windows.com and click the Dashboard tab 
at the top—makes it easy for you get the kind of feedback that has traditionally been very difficult to 
obtain. For one, the Store maintains ratings and reviews for every app, which will be a source of valuable 
insight into how well your app fulfills its purpose in life and a source of ideas for your next release. And 
you might as well accept it now: you’re going to get praise (if you’ve done a decent job), and you’re 
going to get criticism, even a good dose of nastiness (even if you’ve done a decent job!). Don’t take it 
personally—see every critique as an opportunity to improve, and be grateful that people took the time 
to give feedback. As a wise man once said upon hearing of the death of his most vocal critic, “I’ve just 
lost my best friend!” 

The Store will also provide you with crash analytics so that you can specifically identify problem areas 
in your app that evaded your own testing. This is incredibly valuable—maybe you’re already clapping 
your hands in delight!—because if you’ve ever wanted this kind of data before, you’ve had to 
implement the entire mechanism yourself. No longer. This is one of the valuable services you get in 
exchange for your annual registration with the Store. (Of course, you can still implement your own too.) 

With this data in hand and all the other ideas you either had to postpone from your first release or 
dreamt up in the meantime, you’re all set to have your app come home for some new love before its 
next incarnation. 

Updates are onboarded to the Windows Store just like the app’s first version. You create and upload 
an app package (with the same package name as before but a new version number), and then you 
update your description, graphics, pricing, and other information. After that your updated package goes 
through the same certification and signing process as before, and when all that’s complete your new 
app will be available in the Store. Those customers who already have your app will also be notified that 
there’s an update, which they can choose to install or not. (And remember that with the blockmap 
business described earlier, only those parts of the app that have actually changed will be downloaded 
for an update. This means that issuing small fixes won’t force users to repeat potentially large 
downloads each time, bringing the update model closer to that of web applications.) 

When a user installs an update that has the same package name as an existing app, note that all the 
settings and appdata for the prior version remain intact. Your updated app should be prepared, then, to 
migrate a previous version of its state if and when it encounters such. 

This brings up an interesting question: what happens with roaming data when a user has different 
versions of the same app installed on multiple devices? The answer is twofold: first, roaming data has its 
own version number independent of the app, and second, Windows will transparently maintain multiple 
versions of the roaming state so long as there are apps installed on the user’s devices that reference 
those state versions. Once all the devices have updated apps and have converted their state, Windows 
will delete old versions. 

Another interesting question with updates is whether you can get a list of the customers who have 
acquired your app from the Store. The answer is no, because of privacy considerations. However, there is 
nothing wrong with including a registration feature in your app through which users can opt in to 
 

49

http://dev.windows.com/


receive additional information from you, such as more detailed update notifications. Your Settings panel 
is a great place to include this. 

The last thing to say about the Store is that in addition to analytics about your own app—which also 
includes data like sales figures, of course—it also provides you with marketwide analytics. These help 
you explore new opportunities to pursue—maybe taking an idea you had for a feature in one app and 
breaking that out into a new app in a different category. Here you can see what’s selling well (and 
what’s not) or where a particular category of app is underpopulated or generally has less than average 
reviews. For more details, again see the Dashboard at http://dev.windows.com. 

And, Oh Yes, Then There’s Design 

In this first chapter we’ve covered the nature of the world in which Windows Store apps live and 
operate. In this book, too, we’ll be focusing on the details of how to build such apps with HTML, CSS, 
and JavaScript. But what we haven’t talked about, and what we’ll only be treating minimally, is how you 
decide what your app does—its purpose in the world!—and how it clothes itself for that purpose. 

This is really the question of good design for Windows Store apps—all the work that goes into apps 
before we even start writing code. 

I said that we’ll be treating this minimally because I simply do not consider myself a designer. I 
encourage you to be honest about this yourself: if you don’t have a good designer working with you, 
get one. Sure, you can probably work out an OK design on your own, but the demands of a 
consumer-oriented market combined with a newer design language like that employed in Windows 
8—where the emphasis is on simplicity and tailored experiences—underscores the need for professional 
help. It’ll make the difference between a functional app and a great app, between a tool and a piece of 
art, between apps that consumers accept and those they love. 

With design, I do encourage developers to peruse the material on Designing UX for apps for a better 
understanding of design principles. But let’s be honest: as a developer, do you really want to ponder 
what “fast and fluid” means (and design not just static wireframes but also the dynamic aspects of an 
app like animations)? Do you want to spend your time in graphic design and artwork (which is essential 
for a great app)? Do you want to haggle over the exact pixel alignment of your layout in all four view 
states? If not, find someone who does, because the combination of their design sensibilities and your 
highly productive hacking will produce much better results than either of you working alone. As one of 
my co-workers puts it, a marriage of “freaks” and “geeks” often produces the most creative, attractive, 
and inspiring results. 

Let me add that design is neither a one-time nor a static process. Developers and designers will need 
to work together throughout the development experience, as design needs will arise in response to how 
well the implementation really works. For example, the real-world performance of an app might require 
the use of progress indicators when loading certain pages or might be better solved with a redesign of 
page navigation. It may also turn out, as we found with one of our early app partners, that the kinds of 

50

http://dev.windows.com/
http://msdn.microsoft.com/library/windows/apps/hh779072.aspx


graphics called for in the design simply weren’t available from the app’s back-end service. The design 
was lovely, in other words, but couldn’t actually be implemented, so a design change was necessary. So 
make sure that your ongoing relationship with your designers is a healthy and happy one. 

And on that note, let’s get into your part of the story: the coding! 

  

51



Chapter 2 

Quickstart 
This is a book about developing apps. So, to quote Paul Bettany’s portrayal of Geoffrey Chaucer in 
A Knight’s Tale, “without further gilding the lily, and with no more ado,” let’s create some! 

A Really Quick Quickstart: The Blank App Template 

We must begin, of course, by paying due homage to the quintessential “Hello World” app, which we can 
achieve without actually writing any code at all. We simply need to create a new app from a template in 
Visual Studio: 

1. Run Visual Studio Express. If this is your first time, you’ll be prompted to obtain a developer 
license. Do this, because you can’t go any further without it! 

2. Click New Project… in the Visual Studio window, or use the File > New Project menu command. 

3. In the dialog that appears (Figure 2-1), make sure you select JavaScript under Templates on the 
left side, and then select Blank Application in the middle. Give it a name (HelloWorld will do), a 
folder, and click OK. 

 
FIGURE 2-1  Visual Studio’s New Project dialog using the light UI theme. (See the Tools > Options menu 
command, and then change the theme in the Environment/General section). I use the light theme in this 
book because it looks best against a white page background. 

52



4. After Visual Studio churns for a bit to create the project, click the Start Debugging button (or 
press F5, or select the Debug > Start Debugging menu command). Assuming your installation is 
good, you should see something like Figure 2-2 on your screen. 

 
FIGURE 2-2  The only vaguely interesting portion of the Hello World app’s display. The message is at least a 
better invitation to write more code than the standard first-app greeting! 

By default, Visual Studio starts the debugger in local machine mode, which runs the app full screen 
on your present system. This has the unfortunate result of hiding the debugger unless you’re on a 
multimonitor system, in which case you can run Visual Studio on one monitor and your Windows Store 
app on the other. Very handy. See Running apps on the local machine for more on this. 

Visual Studio offers two other debugging modes available from the drop-down list on the toolbar 
(Figure 2-3) or the Debug/[Appname] Properties menu command (Figure 2-4): 

 
FIGURE 2-3  Visual Studio’s debugging options on the toolbar. 

 
FIGURE 2-4  Visual Studio’s debugging options in the app properties dialog. 

53

http://msdn.microsoft.com/library/windows/apps/hh441483.aspx


The Remote Machine option allows you to run the app on a separate device, which is absolutely 
essential for working with devices that can’t run desktop apps at all, such as ARM devices (and if you see 
only this option with a sample project, the build target is probably set to ARM). Setting this up is a 
straightforward process: see Running apps on a remote machine, and I do recommend that you get 
familiar with it. Also, when you don’t have a project loaded in Visual Studio, the Debug menu offers the 
Attach To Process command, which allows you to debug an already-running app. See How to start a 
debugging session (JavaScript). 

The Simulator is also very interesting, really the most interesting option in my mind and a place I 
imagine you’ll be spending plenty of time. It duplicates your environment inside a new login session and 
allows you to control device orientation, set various screen resolutions and scaling factors, simulate 
touch events, and control the data returned by geolocation APIs. Figure 2-5 shows Hello World in the 
simulator with the additional controls labeled. We’ll see more of the simulator as we go along, though 
you may also want to peruse the Running apps in the simulator topic. 

 
FIGURE 2-5  Hello World running in the simulator, with added labels on the right for the simulator controls. Truly, 
the “Blank App” template lives up to its name! 

Sidebar: How Does Visual Studio Run an App? 
Under the covers, Visual Studio is actually deploying the app similar to what would happen if you 
acquired it from the Store. The app will show up on the Start page, where you can also uninstall it. 
Uninstalling will clear out appdata folders and other state, which is very helpful when debugging. 

There’s really no magic involved: deployment can actually be done through the command line. 
To see the details, use the Store/Create App Package in Visual Studio, select No for a Store 
upload, and you’ll see a dialog in which you can save your package wherever you want. In that 
folder you’ll then find an appx package, a security certificate, and a batch file called 

54

http://msdn.microsoft.com/library/windows/apps/hh441469.aspx
http://msdn.microsoft.com/library/windows/apps/hh771032.aspx
http://msdn.microsoft.com/library/windows/apps/hh771032.aspx
http://msdn.microsoft.com/library/windows/apps/hh441475.aspx


Add-AppxDevPackage. That batch file contains PowerShell scripts that will deploy the app along 
with its dependencies. 

These same files are also what you can share with other developers who have a developer 
license, allowing them to side-load your app without needing your full source project. 

Blank App Project Structure 
While an app created with the Blank template doesn’t have much in the visual department, it provides 
much more where project structure is concerned. Here’s what you’ll find coming from the template, 
which is found in Visual Studio’s Solution Explorer (as shown in Figure 2-6): 

In the project root folder: 

• default.html The starting page for the app. 

• <Appname>_TemporaryKey.pfx A temporary signature created on first run. 

• package.appmanifest The manifest. Opening this file will show Visual Studio’s manifest editor 
(shown later in this chapter). I encourage you to browse around in this UI for a few minutes to 
familiarize yourself with what’s all here. For example, you’ll see references to the images noted 
below, a checkmark on the Internet (Client) capability, default.html selected as the start page, 
and all the places where you control different aspects of your app. We’ll be seeing these 
throughout this book; for a complete reference, see the App packages and deployment and 
Using the manifest designer topics. And if you want to explore the manifest XML directly, 
right-click this file and select View Code. 

The css folder contains a default.css file where you’ll see media query structures for the four view 
states that all apps should honor. We’ll see this in action in the next section, and I’ll discuss all the details 
in Chapter 6, “Layout.” 

The images folder contains four reference images, and unless you want to look like a real doofus 
developer, you’ll always want to customize these before sending your app to the Store (and you’ll want 
to provide scaled versions too, as we’ll see in Chapter 3, “App Anatomy and Page Navigation”): 

• logo.png A default 150x150 (100% scale) image for the Start page. 

• smalllogo.png A 30x30 image for the zoomed-out Start page and other places at run time. 

• splashscreen.png A 620x300 image that will be shown while the app is loading. 

• storelogo.png A 50x50 image that will be shown for the app in the Windows Store. This needs 
to be part of an app package but is not used within Windows at run time. 

The js folder contains a simple default.js. 

The References folder points to CSS and JS files for the WinJS library. You can open any of these to 

55

http://msdn.microsoft.com/library/windows/apps/hh464929.aspx
http://msdn.microsoft.com/library/windows/apps/br230259.aspx


see how WinJS itself is implemented. (Note: if you want to search within these files, you must open and 
search only within the specific file. These are not included in solution-wide or project-wide searches.) 

 
FIGURE 2-6  A Blank app project fully expanded in Solution Explorer. 

As you would expect, there’s not much app-specific code for this type of project. For example, the 
HTML has only a single paragraph element in the body, the one you can replace with “Hello World” if 
you’re really not feeling complete without doing so. What’s more important at present are the 
references to the WinJS components: a core stylesheet (ui-dark.css or ui-light.css), base.js, and ui.js: 

<!DOCTYPE html> 
<html> 
<head> 
    <meta charset="utf-8"> 
    <title>Hello World</title> 
 
    <!-- WinJS references --> 
    <link href="//Microsoft.WinJS.1.0/css/ui-dark.css" rel="stylesheet"> 
    <script src="//Microsoft.WinJS.1.0/js/base.js"></script> 
    <script src="//Microsoft.WinJS.1.0/js/ui.js"></script> 
 
    <!-- HelloWorld references --> 
    <link href="/css/default.css" rel="stylesheet"> 
    <script src="/js/default.js"></script> 
</head> 
<body> 
    <p>Content goes here</p> 
</body> 
</html> 

You will generally always have these references (perhaps using ui-light.css instead) in every HTML 
file of your project. The //’s in the WinJS paths refer to shared libraries rather than files in your app 

56



package, whereas a single / refers to the root of your package. Beyond that, everything else is standard 
HTML5, so feel free to play around with adding some additional HTML of your own and see the effects. 

Where the JavaScript is concerned, default.js just contains the basic WinJS activation code centered 
on the WinJS.Application.onactivated event along with a stub for an event called 
WinJS.Application.oncheckpoint: 

(function () { 
    "use strict"; 
 
    var app = WinJS.Application; 
    var activation = Windows.ApplicationModel.Activation; 
 
    app.onactivated = function (args) { 
        if (args.detail.kind === activation.ActivationKind.launch) { 
            if (args.detail.previousExecutionState !==  
                activation.ApplicationExecutionState.terminated) { 
                // TODO: This application has been newly launched. Initialize  
                // your application here. 
            } else { 
                // TODO: This application has been reactivated from suspension.  
                // Restore application state here. 
            } 
            args.setPromise(WinJS.UI.processAll()); 
        } 
    }; 
 
    app.oncheckpoint = function (args) { 
    }; 
 
    app.start(); 
})(); 

We’ll come back to checkpoint in Chapter 3. For now, remember from Chapter 1, “The Life Story of a 
Windows Store App,” that an app can be activated in many ways. These are indicated in the args.- 
detail.kind property whose values come from the Windows.ApplicationModel.Activation.- 
ActivationKind enumeration. 

When an app is launched directly from its tile on the Start screen (or in the debugger as we’ve been 
doing), the kind is just launch. As we’ll see later on, other values tell us when an app is activated to 
service requests like the search or share contracts, file-type associations, file pickers, protocols, and 
more. For the launch kind, another bit of information from the Windows.ApplicationMode.- 
Activation.ApplicationExecutionState enumeration tells the app how it was last running. Again, we’ll 
see more on this in Chapter 3, so the comments in the default code above should satisfy your curiosity 
for the time being. 

Now, what is that args.setPromise(WinJS.UI.processAll())for? As we’ll see many times, 
WinJS.UI.processAll instantiates any WinJS controls that are declared in HTML—that is, any element 
(commonly a div or span) that contains a data-win-control attribute whose value is the name of a 
constructor function. Of course, the Blank app template doesn’t include any such controls, but because 

57



just about every app based on this template will, it makes sense to include it by default.7 As for 
args.setPromise, that’s employing something called a deferral that we’ll defer to Chapter 3. 

As short as it is, that little app.start(); at the bottom is also a very important piece. It makes sure 
that various events that were queued during startup get processed. We’ll again see the details in 
Chapter 3. 

Finally, you may be asking, “What on earth is all that ceremonial (function () { … })(); business 
about?” It’s just a conventional way in JavaScript (called the module pattern) to keep the global 
namespace from becoming polluted, thereby propitiating the performance gods. The syntax defines an 
anonymous function that’s immediately executed, which creates a function scope for everything inside 
it. So variables like app along with all the function names are accessible throughout the module but 
don’t appear in the global namespace.8 

You can still introduce variables into the global namespace, of course, and to keep it all organized, 
WinJS offers a means to define your own namespaces and classes (see WinJS.Namespace.define and 
WinJS.Class.define), again helping to minimize additions to the global namespace. 

Now that we’ve seen the basic structure of an app, let’s build something more functional and get a 
taste of the WinRT APIs and a few other platform features. 

Get familiar with Visual Studio If you’re new to Visual Studio, the tool can be somewhat daunting at 
first because it supports many features, even in the Express edition. For a quick roughly 10-minute 
introduction, I’ve put together Video 2-1 in this chapter’s companion content to show you the basic 
workflows and other essentials. 

Sidebar: Writing Code in Debug Mode 
Because of the dynamic nature of JavaScript, it’s impressive that the Visual Studio team figured 
out how to make the IntelliSense feature work quite well in the Visual Studio editor. (If you’re 
unfamiliar with IntelliSense, it’s the productivity service that provides auto-completion for code as 
well as popping up API reference material directly inline; learn more at JavaScript IntelliSense). 
That said, a helpful trick to make IntelliSense work even better is to write code while Visual Studio 
is in debug mode. That is, set a breakpoint at an appropriate place in your code, and then run the 
app in the debugger. When you hit that breakpoint, you can then start writing and editing code, 
and because the script context is fully loaded, IntelliSense will be working against instantiated 
variables and not just what it can derive from the source code by itself. You can also use Visual 
Studio’s Immediate pane to execute code directly to see the results. (You will need to restart the 
app, however, to execute that new code in place.) 

7 There is a similar function WinJS.Binding.processAll that processes data-win-bind attributes (Chapter 4), and 
WinJS.Resources.processAll that does resource lookup on data-win-res attributes (Chapter 17). 

8 See Chapter 2 of Nicolas Zakas’s High Performance JavaScript (O’Reilly, 2010) for the performance implications of scoping. 

58

http://msdn.microsoft.com/library/bb385682.aspx


QuickStart #1: Here My Am! and an Introduction to Blend for 
Visual Studio 

When my son was three years old, he never—despite the fact that he was born to two engineers parents 
and two engineer grandfathers—peeked around corners or appeared in a room saying “Hello world!” 
No, his particular phrase was “Here my am!” Using that particular variation of announcing oneself to the 
universe, this next app can capture an image from a camera, locate your position on a map, and share 
that information through the Windows 8 Share charm. Does this sound complicated? Fortunately, the 
WinRT APIs actually make it quite straightforward! 

Sidebar: How Long Did It Take to Write This App? 
This app took me about three hours to write. “Oh sure,” you’re thinking, “you’ve already written a 
bunch of apps, so it was easy for you!” Well, yes and no. For one thing, I also wrote this part of the 
chapter at the same time, and endeavored to make some reusable code. But more importantly, it 
took a short amount of time because I learned how to use my tools—especially Blend—and I 
knew where I could find code that already did most of what I wanted, namely all the Windows 
SDK samples that you can download from http://code.msdn.microsoft.com/windowsapps/. 

As we’ll be drawing from many of these most excellent samples in this book, I encourage you 
to download the whole set—go to the URL above, and locate the link for “Windows 8 app 
samples”. This link will take you to a page where you can get a .zip file with all the JavaScript 
samples. Once you unzip these, get into the habit of searching that folder for any API or feature 
you’re interested in. For example, the code I use below to implement camera capture and 
sourcing data via share came directly from a couple of samples. (Again, if you open a sample that 
seems to support only the Remote Machine debugging option, the build target is probably set to 
ARM—change it to Any CPU for local debugging.) 

I also strongly encourage you to spend a half-day, even a full day, getting familiar with Visual 
Studio and Blend for Visual Studio and just perusing through the samples so that you know what’s 
there. Such small investments will pay huge productivity dividends even in the short term! 

Design Wireframes 
Before we start on the code, let’s first look at design wireframes for this app. Oooh…design? Yes! 
Perhaps for the first time in the history of Windows, there’s a real design philosophy to apply to apps. In 
the past, with desktop apps, it’s been more of an “anything goes” scene. There were some UI guidelines, 
sure, but developers could generally get away with making up whatever user experience that made 
sense to them, like burying essential checkbox options four levels deep in a series of modal dialog 
boxes. Yes, this kind of stuff does make sense to certain kinds of developers; whether it makes sense to 
anyone else is highly questionable! 

59

http://code.msdn.microsoft.com/windowsapps/


If you’ve ever pretended or contemplated pretending to be a designer, now is the time to surrender 
that hat to someone with real training or set development aside for a year or two and invest in that 
training yourself. Simply said, design matters for Windows Store apps, and it will make the difference 
between apps that succeed and apps that merely exist in the Windows Store and are largely ignored. 
And having a design in hand will just make it easier to implement because you won’t have to make 
those decisions when you’re writing code! (If you still intend on filling designer shoes and communing 
with apps like Adobe Illustrator, be sure to visit Designing UX for apps for the philosophy and details of 
Windows Store app design, plus design resources.) 

When I had the idea for this app, I drew up simple wireframes, let a few designers laugh at me 
behind my back (and offer adjustments), and landed on layouts for the full screen, portrait, snap, and fill 
view states as shown in Figure 2-7 and Figure 2-8. 

Note Traditional wireframes are great to show a static view of the app, but in the “fast and fluid” 
environment of Windows 8, the dynamic aspects of an app—animations and movement—are also very 
important. Great app design includes consideration of not just where content is placed but how and 
when it gets there in response to which user actions. Chapter 11, “Purposeful Animations,” discusses the 
different built-in animations that you can use for this purpose. 

 
FIGURE 2-7  Full-screen landscape and filled (landscape) wireframe. These view states typically use the same 
wireframe (the same margins), with the proportional parts of the grid simply becoming smaller with the reduced 
width. 

60

http://msdn.microsoft.com/library/windows/apps/hh779072


  
FIGURE 2-8  Snapped wireframe (left; landscape only) and full-screen portrait wireframe (right); these are not to 
scale. 

Sidebar: Design for All Four View States! 
Just as I thought about all four view states together for Here My Am!, I encourage you to do the 
same for one simple reason: your app will be put into every view state whether you design for it or 
not. Users, not the app, control the view states, so if you neglect to design for any given state, 
your app will probably look hideous in that state. You can, as we’ll see in Chapter 6, lock the 
landscape/portrait orientation for your app if you want, but that’s meant to enhance an app’s 
experience rather than being an excuse for indolence. So in the end, unless you have a very 
specific reason not to, every page in your app needs to anticipate all four view states. 

This might sound like a burden, but view states don’t affect function: they are simply different 
views of the same information. Remember that changing the view state never changes the mode 
of the app. Handling the view states, therefore, is primarily a matter of which elements are visible 
and how those elements are laid out on the page. It doesn’t have to be any more complicated 
than that, and for apps written in HTML and JavaScript the work can mostly, if not entirely, be 
handled through CSS media queries. 

One of the important aspects of Windows Store app design is understanding the layout silhouette: 
the size of the header fonts, their placement, the specific margins, grid layout, and all that (as marked in 
the previous figures). These recommendations encourage a high degree of consistency between apps so 
that users’ eyes literally develop muscle memory for common elements of the UI. Some of this can be 
found in Understanding the Windows 8 silhouette and is otherwise incorporated into the templates 
along with many other design aspects. It’s one reason why Microsoft generally recommends starting 
new apps with a template and going from there. What I show in the wireframes above reflects the 

61

http://msdn.microsoft.com/library/windows/apps/hh872191.aspx


layouts provided by one of the more complex templates. At the same time, the silhouette is a starting 
point and not a requirement—apps can and do depart from it when it makes sense. Absent a clear 
design, however, it’s best to stay with it. 

Enough said! Let’s just assume that we have a great design to work from and our designers are off 
sipping cappuccino, satisfied with a job well done. Our job is how to then execute on that great design. 

Create the Markup 
For the purposes of markup, layout, and styling, one of the most powerful tools you can add to your 
arsenal is Blend for Visual Studio. As you may know, Blend has been available (at a high price) to 
designers and developers working with XAML (the presentation framework that is used by apps written 
in C#, Visual Basic, and C++). Now Blend is free and also supports HTML, CSS, and JavaScript. I 
emphasize that latter point because it doesn’t just load markup and styles: it loads and executes your 
code, right in the “Artboard” (the design surface), because that code so often affects the DOM, styling, 
and so forth. Then there’s Interactive Mode…but I’m getting ahead of myself! 

Blend and Visual Studio are very much two sides of a coin: they share the same project file formats 
and have commands to easily switch between them, depending on whether you’re focusing on design 
or development. To demonstrate that, let’s actually start building Here My Am! in Blend. As we did 
before with Visual Studio, launch Blend, select New Project…, and select the Blank App template. This 
will create the same project structure as before. (Note: Video 2-2 shows all these steps together.) 

Following the practice of writing pure markup in HTML—with no styling and no code, and even 
leaving off a few classes we’ll need for styling—let’s drop the following markup into the body element of 
default.html (replacing the one line of <p>Content goes here</p>): 

<div id="mainContent"> 
    <header aria-label="Header content" role="banner"> 
        <h1 class="titlearea win-type-ellipsis"> 
            <span class="pagetitle">Here My Am!</span> 
        </h1> 
    </header> 
    <section aria-label="Main content" role="main"> 
        <div id="photoSection" aria-label="Photo section"> 
            <h2 class="group-title" role="heading">Photo</h2> 
            <img id="photo" src="images/taphere.png" 
                alt="Tap to capture image from camera" role="img" /> 
        </div> 
        <div id="locationSection" aria-label="Location section"> 
            <h2 class="group-title" role="heading">Location</h2> 
            <iframe id="map" src="ms-appx-web:///html/map.html" aria-label="Map"></iframe> 
        </div> 
    </section> 
</div> 

Here we see the five elements in the wireframe: a main header, two subheaders, a space for a photo 
(defaulting to an image with “tap here” instructions), and an iframe that specifically houses a page in 

62



which we’ll instantiate a Bing maps web control.9 

You’ll see that some elements have style classes assigned to them. Those that start with win come 
from the WinJS stylesheet.10 You can browse these in Blend by using the Style Rules tab, shown in 
Figure 2-9. Other styles like titlearea, pagetitle, and group-title are meant for you to define in your 
own stylesheet, thereby overriding the WinJS styles for particular elements. 

 
FIGURE 2-9  In Blend, the Style Rules tab lets you look into the WinJS stylesheet and see what each particular style 
contains. Take special notice of the search bar under the tabs. This is here so you don’t waste your time visually 
scanning for a particular style—just start typing in the box, and let the computer do the work! 

The page we’ll load into the iframe, map.html, is part of our app package that we’ll add in a 
moment, but note how we reference it. The ms-appx-web:/// protocol indicates that the iframe and its 
contents will run in the web context (introduced in Chapter 1), thereby allowing us to load the remote 
script for the Bing maps control. The triple slash, for its part—or more accurately the third slash—is 
shorthand for “the current app package” (a value that you can obtain from document.location.host), so 
we don’t need to create an absolute URI for in-package content. 

To indicate that a page should be loaded in the local context, the protocol is just ms-appx://. It’s 
important to remember that no script is shared between these contexts (including variables and 
functions), relative paths stay in the same context, and communication between the two goes through 
the HTML5 postMessage function, as we’ll see later. All of this prevents an arbitrary website from driving 

9 If you’re following the steps in Blend yourself, the taphere.png image should be added to the project in the images folder. 
Right-click that folder, select Add Existing Item, and then navigate to the complete sample’s images folder and select 
taphere.png. That will copy it into your current project. 

10 The two standard stylesheets are ui-dark.css and ui-light.css. Dark styles are recommended for apps that deal with 
media, where a dark background helps bring out the graphical elements. We’ll use this stylesheet because we’re doing 
photo capture. The light stylesheet is recommended for apps that work more with textual content. 

63



your app and accessing WinRT APIs. 

I’ve also included various aria-* attributes on these elements (as the templates do) that support 
accessibility. We’ll look at accessibility in detail in Chapter 17, “Apps for Everyone,” but it’s an important 
enough consideration that we should be conscious of it from the start: a majority of Windows users use 
accessibility features in some way. And although some aspects of accessibility are easy to add later on, 
adding aria-* attributes in markup is best done early. 

In Chapter 17 we’ll also see how to separate strings (including ARIA labels) from our markup, 
JavaScript, and even the manifest and place it in a resource file. This is something you might want to do 
from early on, so see the “Preparing for Localization” section in that chapter for the details. Note, 
however, that resource lookup doesn’t work well in Blend, so you might want to hold off on the effort 
until you’ve done most of your styling. 

Styling in Blend 
At this point, and assuming you were paying enough attention to read the footnotes, Blend’s real-time 
display of the app shows an obvious need for styling, just like raw markup should. See Figure 2-10. 

 
FIGURE 2-10  The app in Blend without styling, showing a view that is much like the Visual Studio simulator. If the 
taphere.png image doesn’t show after adding it, use the View/Refresh menu command. 

The tabs along the upper left in Blend give you access to your Project files, Assets like all the controls 
you can add to your UI, and a browser for all the Style Rules defined in the environment. On the lower 
left side, the Live DOM area lets you browse your element hierarchy and the Device tabs lets you set 

64



orientation, screen resolution, and view state. Clicking an element in the Live DOM here will highlight it 
in the designer, just like clicking an element in the designer will highlight it in the Live DOM section. 

Over on the right side you see what will become a very good friend: the section for HTML Attributes 
and CSS Properties. In the latter case, the list at the top shows all the sources for styles that are being 
applied to the currently selected element and where exactly those styles are coming from (often a 
headache with CSS). What’s selected in that box, mind you, will determine where changes in the 
properties pane below will be written, so be very conscious of your selection! 

Now to get our gauche, unstylish page to look like the wireframe, we need to go through the 
elements and create the necessary selectors and styles. First, I recommend creating a 1x1 grid in the 
body element as this makes Blend’s display in the artboard work better at present. So add display: 
-ms-grid; -ms-grid-rows: 1fr; -ms-grid-columns: 1fr; to default.css for that element. 

CSS grids also make this app’s layout fairly simple: we’ll just use a couple of nested grids to place the 
main sections and the subsections within them, following the general pattern of styling that works best 
in Blend: 

• Set the insertion point of the style rule with the orange-yellow line control within Blend’s Style 
Rules tab. This determines exactly where any new rule you create will be created: 

 
• Right-click the element you want to style in the Live DOM, and select Create Style Rule From 

Element Id or Create Style Rule From Element Class. 

Note If both of these items are disabled, go to the HTML Attributes pane (upper right) and 
add an id, class, or both. Otherwise you’ll be hand-editing the stylesheets later on to move 
styles around (especially inline style), so you might as well save yourself the trouble. 

This will create a new style rule in the app’s stylesheet (e.g., default.css). In the CSS properties 
pane on the right, then, find the rule that was created and add the necessary style properties in 
the pane below. 

• Repeat with every other element. 

65



So for the mainContent div, we create a rule from the Id and set it up with display: -ms-grid; 
-ms-grid-columns: 1fr; and -ms-grid-rows: 128px 1fr 60px;. (See Figure 2-11.) This creates the basic 
vertical areas for the wireframes. In general, you won’t want to put left or right margins directly in this 
grid because the lower section will often have horizontally scrolling content that should bleed off the 
left and right edges. In our case we could use one grid, but instead we’ll add those margins in a nested 
grid within the header and section elements. 

  
FIGURE 2-11  Setting the grid properties for the mainContent div. Notice how the View Set Properties Only 
checkbox (upper right) makes it easy to see what styles are set for the current rule. Also notice in the main “Artboard” 
how the grid rows and columns are indicated, including sliders (circled) to manipulate rows and columns directly in 
the artboard. 

Showing this and the rest of the styling—going down into each level of the markup and creating 
appropriate styles in the appropriate media queries for the view states—is best done in video. Video 2-2 
(available with this book’s downloadable companion content) shows this process starting with the 
creation of the project, styling the different view states, and switching to Visual Studio (right-click the 
project name in Blend and select Edit In Visual Studio) to run the app in the simulator as a verification. It 
also demonstrates the amount of time it takes to style such an app once you’re familiar with the tools. 

The result of all this in the simulator looks just like the wireframes—see Figures 2-12 through 
2-14—and all the styling is entirely contained within the appropriate media queries of default.css. Most 
importantly, the way Blend shows us the results in real time is an enormous time-saver over fiddling 
with the CSS and running the app all over again, a painful process that I’m sure you’re familiar with! 
(And the time savings are even greater with Interactive Mode; see Video 4-1 in the companion content 
created for Chapter 4, “Controls, Control Styling, and Data Binding.”) 

66



 
FIGURE 2-12  Full-screen landscape view. 

 
FIGURE 2-13  Filled view (landscape only). 

67



   
FIGURE 2-14  Snapped view (landscape only) and full-screen portrait view; these are to relative scale. 

Adding the Code 
Let’s complete the implementation now in Visual Studio. Again, right-click the project name in Blend’s 
Project tab and select Edit In Visual Studio if you haven’t already. Note that if your project is already 
loaded into Visual Studio when you switch to it, it will (by default) prompt you to reload changed files. 
Say yes.11 At this point, we have the layout and styles for all the necessary view states, and our code 
doesn’t need to care about any of it except to make some minor refinements, as we’ll see in a moment.  

11 On the flip side, note that Blend doesn’t automatically save files going in and out of Interactive Mode. If you make a 
change to the same file open in Visual Studio, switch to Blend, and reload the file, you can lose changes. 

68



What this means is that, for the most part, we can just write our app’s code against the markup and 
not against the markup plus styling, which is, of course, a best practice with HTML/CSS in general. Here 
are the features that we’ll now implement: 

• A Bing maps control in the Location section showing the user’s current location. We’ll just show 
this map automatically, so there’s no control to start this process. 

• Use the WinRT APIs for camera capture to get a photograph in response to a tap on the Photo 
img element. 

• Provide the photograph and the location data to the Share charm when the user invokes it. 

Figure 2-15 shows what the app will look like when we’re done. 

 
FIGURE 2-15  The completed Here My Am! app (though I zoomed out the map so you can’t quite tell exactly where I 
live!). 

Creating a Map with the Current Location 
For the map, we’re using a Bing maps web control instantiated through the map.html page that’s 
loaded into an iframe of the main page. This page loads the Bing Maps control script from a remote 
source and thus runs in the web context. Note that we could also employ the Bing Maps SDK, which 
provides script we can load into the local context. For the time being, I want to use the remote script 
approach because it gives us an opportunity to work with web content and the web context in general, 
something that I’m sure you’ll want to understand for your own apps. We’ll switch to the local control in 
Chapter 8, “State, Settings, Files, and Documents.” 

 

69

http://msdn.microsoft.com/library/hh846481.aspx


That said, let’s put map.html in an html folder. Right-click the project and select Add/New Folder 
(entering html to name it). Then right-click that folder, select Add/New Item…, and then select HTML 
Page. Once the new page appears, replace its contents with the following:12 

<!DOCTYPE html> 
<html> 
    <head> 
        <title>Map</title> 
        <script type="text/javascript"  
            src="http://ecn.dev.virtualearth.net/mapcontrol/mapcontrol.ashx?v=7.0"></script> 
         
        <script type="text/javascript"> 
            //Global variables here 
            var map = null; 
 
            document.addEventListener("DOMContentLoaded", init); 
            window.addEventListener("message", processMessage); 
 
            //Function to turn a string in the syntax { functionName: ..., args: [...] } 
            //into a call to the named function with those arguments. This constitutes a generic  
            //dispatcher that allows code in an iframe to be called through postMessage. 
            function processMessage(msg) { 
                //Verify data and origin (in this case the local context page) 
                if (!msg.data || msg.origin !== "ms-appx://" + document.location.host) { 
                    return; 
                } 
 
                var call = JSON.parse(msg.data); 
 
                if (!call.functionName) { 
                    throw "Message does not contain a valid function name."; 
                } 
 
                var target = this[call.functionName]; 
 
                if (typeof target != 'function') { 
                    throw "The function name does not resolve to an actual function"; 
                } 
                 
                return target.apply(this, call.args); 
            } 
 
 
            function notifyParent(event, args) { 
                //Add event name to the arguments object and stringify as the message 
                args["event"] = event; 
                window.parent.postMessage(JSON.stringify(args), 
                    "ms-appx://" + document.location.host); 
            } 
 

12 Note that you should replace the credentials inside the init function with your own key obtained from 
https://www.bingmapsportal.com/. 

70

https://www.bingmapsportal.com/


            //Create the map (though the namespace won't be defined without connectivity) 
            function init() { 
                if (typeof Microsoft == "undefined") { 
                    return; 
                } 
 
                map = new Microsoft.Maps.Map(document.getElementById("mapDiv"), { 
                    //NOTE: replace these credentials with your own obtained at 
                    //http://msdn.microsoft.com/en-us/library/ff428642.aspx 
                    credentials: "...", 
                    //zoom: 12, 
                    mapTypeId: Microsoft.Maps.MapTypeId.road 
                }); 
            } 
             
            function pinLocation(lat, long) { 
                if (map === null) { 
                    throw "No map has been created"; 
                } 
 
                var location = new Microsoft.Maps.Location(lat, long);  
                var pushpin = new Microsoft.Maps.Pushpin(location, { draggable: true }); 
 
                Microsoft.Maps.Events.addHandler(pushpin, "dragend", function (e) { 
                    var location = e.entity.getLocation(); 
                    notifyParent("locationChanged", 
                        { latitude: location.latitude, longitude: location.longitude }); 
                }); 
 
                map.entities.push(pushpin); 
                map.setView({ center: location, zoom: 12, }); 
                return; 
            } 
 
            function setZoom(zoom) { 
                if (map === null) { 
                    throw "No map has been created"; 
                } 
 
                map.setView({ zoom: zoom }); 
            } 
        </script> 
    </head> 
    <body> 
        <div id="mapDiv"></div> 
    </body> 
</html> 

Note that the JavaScript code here could be moved into a separate file and referenced with a relative 
path, no problem. I’ve chosen to leave it all together for simplicity. 

At the top of the page you’ll see a remote script reference to the Bing Maps control. We can 
reference remote script here because the page is loaded in the web context within the iframe 

71



(ms-appx-web:// in default.html). You can then see that the init function is called on DOMContent- 
Loaded and creates the map control. Then we have a couple of other methods, pinLocation and 
setZoom, which can be called from the main app as needed. 

Of course, because this page is loaded in an iframe in the web context, we cannot simply call those 
functions directly from our app code. We instead use the HTML5 postMessage function, which raises a 
message event within the iframe. This is an important point: the local and web contexts are kept 
separate so that arbitrary web content cannot drive an app or access WinRT APIs. The two contexts 
enforce a boundary between an app and the web that can only be crossed with postMessage. 

In the code above, you can see that we pick up such messages and pass them to the process- 
Message function, a little generic routine that turns a JSON string into a local function call, complete with 
arguments. 

To see how this works, let’s look at how we call pinLocation from within default.js. To make this call, 
we need some coordinates, which we can get from the WinRT Geolocation APIs. We’ll do this within the 
onactivated handler, so the user’s location is just set on startup (and saved in the lastPosition variable 
sharing later on): 

//Drop this after the line: var activation = Windows.ApplicationModel.Activation; 
var lastPosition = null; 
 
 
//Place this after args.setPromise(WinJS.UI.processAll()); 
var gl = new Windows.Devices.Geolocation.Geolocator(); 
 
gl.getGeopositionAsync().done(function (position) { 
    //Save for share 
    lastPosition = { latitude: position.coordinate.latitude, 
        longitude: position.coordinate.longitude }; 
 
    callFrameScript(document.frames["map"], "pinLocation", 
        [position.coordinate.latitude, position.coordinate.longitude]);  
    }); 

where callFrameScript is just a little helper function to turn the target element, function name, and 
arguments into an appropriate postMessage call: 

//Place this before app.start(); 
function callFrameScript(frame, targetFunction, args) { 
    var message = { functionName: targetFunction, args: args }; 
    frame.postMessage(JSON.stringify(message), "ms-appx-web://" + document.location.host); 
} 

A few points about this code. To obtain coordinates, you can use the WinRT geolocation API or the 
HTML5 geolocation API. The two are almost equivalent, with slight differences described in Chapter 9, 
“Input and Sensors,” in “Sidebar: HTML5 Geolocation.” The API exists in WinRT because other supported 
languages (C# and C++) don’t have access to the HTML5 geolocation APIs. We’re focused on WinRT 
APIs in this book, so we’ll just use functions in the Windows.Devices.Geolocation namespace. 

72



Next, in the second parameter to postMessage you see a combination of ms-appx[-web]:// with 
document.location.host. This essentially means “the current app from the local [or web] context,” which 
is the appropriate origin of the message. Notice that we use the same value to check the origin when 
receiving a message: the code in map.html verifies it’s coming from the app’s local context, whereas the 
code in default.js verifies that it’s coming from the app’s web context. Always make sure to check the 
origin appropriately; see Validate the origin of postMessage data in Developing secure apps. 

Finally, the call to getGeopositionAsync has an interesting construct, wherein we make the call and 
chain this function called done onto it, whose argument is another function. This is a very common 
pattern we’ll see while working with WinRT APIs, as any API that might take longer than 50ms to 
complete runs asynchronously. This conscious decision was made so that the API surface area led to fast 
and fluid apps by default. 

In JavaScript, such APIs return what’s called a promise object, which represents results to be delivered 
at some time in the future. Every promise object has a done method whose first argument is the function 
to be called upon completion, the completed handler. It can also take two optional functions to wire up 
error and progress handlers as well. We’ll see more about promises as we progress through this book, 
such as the then function that’s just like done but allows further chaining (Chapter 3), and how promises 
fit into async operations more generally (Chapter 16, “WinRT Components”). 

The argument passed to the completed handler contains the results of the async call, which in our 
example above is a Windows.Geolocation.Geoposition object containing the last reading. (When 
reading the docs for an async function, you’ll see that the return type is listed like IAsyncOperation-
<Geoposition>. The name within the <> indicates the actual data type of the results, so you’ll follow the 
link to that topic for the details.) The coordinates from this reading are what we then pass to the 
pinLocation function within the iframe, which in turn creates a pushpin on the map at those 
coordinates and then centers the map view at that same location.13 

One final note about async APIs. Within the WinRT API, all async functions have “Async” in their 
names. Because this isn’t common practice within JavaScript toolkits or the DOM API, async functions 
within WinJS don’t use that suffix. In other words, WinRT is designed to be language-neutral, but WinJS 
is designed to follow typical JavaScript conventions. 

Oh Wait, the Manifest! 
Now you may have tried the code above and found that you get an “Access is denied” exception when 
you try to call getGeopositionAsync. Why is this? Well, the exception says we neglected to set the 
Location capability in the manifest. Without that capability set, calls like this that depend on that 
capability will throw an exception. 

 

13 The pushpin itself is draggable, but to no effect at present. See the section “Extra Credit: Receiving Messages from the 
iframe” later in this chapter for how we can pick up location changes from the map. 

73

http://msdn.microsoft.com/library/windows/apps/hh849625.aspx#validate_the_origin_of_postmessage_data
http://msdn.microsoft.com/library/windows/apps/hh849625.aspx


If you were running in the debugger, that exception is kindly shown in a dialog box. If you run the 
app outside of the debugger—from the tile on your Start screen—you’ll see that the app just terminates 
without showing anything but the splash screen. This is the default behavior for an unhandled 
exception. To prevent that behavior, add an error-handling function as the second parameter to the 
async promise’s done method: 

gl.getGeopositionAsync().done(function (position) { 
    //... 
}, function(error) { 
    console.log("Unable to get location."); 
}); 

The console.log function writes a string to the JavaScript Console window in Visual Studio, which is 
obviously a good idea. Now run the app outside the debugger and you’ll see that it comes up, because 
the exception is now considered “handled.” In the debugger, set a breakpoint on the console.log line 
inside and you’ll hit that breakpoint after the exception appears and you press Continue. (This is all we’ll 
do with the error for now; in Chapter 7, “Commanding UI,” we’ll add a better message and a retry 
command.) 

If the exception dialog gets annoying, you can control which exceptions pop up like this in the 
Debug > Exceptions dialog box (shown in Figure 2-16), under JavaScript Runtime Exceptions. If you 
uncheck the box under User-unhandled, you won’t get a dialog when that particular exception occurs.  

  
FIGURE 2-16  JavaScript run-time exceptions in the Debug/Exceptions dialog of Visual Studio. 

Back to the capability: to get the proper behavior for this app, open package.appxmanifest in your 
project, select the Capabilities tab, and check Location, as shown in Figure 2-17. 

74

www.SoftGozar.com



 
FIGURE 2-17  Setting the Location capability in Visual Studio’s manifest editor. (Note that Blend supports editing the 
manifest only as XML.) 

Now, even when we declare the capability, geolocation is still subject to user consent, as mentioned 
in Chapter 1. When you first run the app with the capability set, then, you should see a popup like 
Figure 2-18. If the user blocks access here, the error handler will again be invoked as the API will throw 
an Access denied exception. 

 
FIGURE 2-18  A typical consent popup, reflecting the user’s color scheme, that appears when an app first tries to call 
a brokered API (geolocation in this case). If the user blocks access, the API will fail, but the user can later change 
consent in the Settings/Permissions panel. 

Sidebar: How Do I Reset User Consent for Testing? 
While debugging, you might notice that this popup appears only once, even across subsequent 
debugging sessions. To clear this state, invoke the Settings charm in the running app and select 
Permissions, and you’ll see toggle switches for all the relevant capabilities. If for some reason you 
can’t run the app at all, go to the Start screen and uninstall the app from its tile. You’ll then see 
the popup when you next run the app. 

Note that there isn’t a notification when the user changes these Permission settings. The app 
can detect a change only by attempting to use the API again. We’ll revisit this in Chapter 8. 

Capturing a Photo from the Camera 
In a slightly twisted way, I hope the idea of adding camera capture within a so-called “quickstart” 
chapter has raised serious doubts in your mind about this author’s sanity. Isn’t that going to take a 

75



whole lot of code? Well, it used to, but it doesn’t on Windows 8. All the complexities of camera capture 
have been nicely encapsulated within the Windows.Media.Capture API to such an extent that we can add 
this feature with only a few lines of code. It’s a good example of how a little dynamic code like 
JavaScript combined with well-designed WinRT components—both those in the system and those you 
can write yourself—make a very powerful combination! 

To implement this feature, we first need to remember that the camera, like geolocation, is a 
privacy-sensitive device and must also be declared in the manifest, as shown in Figure 2-19. 

 
FIGURE 2-19  The camera capability in Visual Studio’s manifest editor. 

On first use of the camera at run time, you’ll see another consent dialog like the one shown in Figure 
2-20. 

 
FIGURE 2-20  Popup for obtaining the user’s consent to use the camera. You can control these through the 
Settings/Permissions panel at any time. 

Next we need to wire up the img element to pick up a tap gesture. For this we simply need to add an 
event listener for click, which works for all forms of input (touch, mouse, and stylus), as we’ll see in 
Chapter 9: 

var image = document.getElementById("photo"); 
image.addEventListener("click", capturePhoto.bind(image)); 

 

76



Here we’re providing capturePhoto as the event handler, and using the function object’s bind 
method to make sure the this object inside capturePhoto is bound directly to the img element. The 
result is that the event handler can be used for any number of elements because it doesn’t make any 
references to the DOM itself: 

//Place this under var lastPosition = null; 
var lastCapture = null; 
 
 
//Place this after callFrameScript 
function capturePhoto() { 
    //Due to the .bind() call in addEventListener, "this" will be the image element, 
    //but we need a copy for the async completed handler below. 
    var that = this; 
 
    var captureUI = new Windows.Media.Capture.CameraCaptureUI(); 
 
    //Indicate that we want to capture a PNG that's no bigger than our target element -- 
    //the UI will automatically show a crop box of this size 
    captureUI.photoSettings.format = Windows.Media.Capture.CameraCaptureUIPhotoFormat.png; 
    captureUI.photoSettings.croppedSizeInPixels =  
        { width: this.clientWidth, height: this.clientHeight }; 
 
    captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo) 
        .done(function (capturedFile) { 
            //Be sure to check validity of the item returned; could be null if the user canceled. 
            if (capturedFile) { 
                lastCapture = capturedFile;  //Save for Share 
                that.src = URL.createObjectURL(capturedFile, {oneTimeOnly: true}); 
            } 
        }, function (error) { 
            console.log("Unable to invoke capture UI."); 
        }); 
} 

We do need to make a local copy of this within the click handler, though, because once we get 
inside the async completed function (see the function inside captureFileAsync.done) we’re in a new 
function scope and the this object will have changed. The convention for such a copy of this is to call it 
that. Got that? 

To invoke the camera UI, we only need create an instance of Windows.Media.Capture.- 
CameraCaptureUI with new (a typical step to instantiate dynamic WinRT objects), configure it with the 
desired format and size (among many other possibilities as discussed in Chapter 10, “Media”), and then 
call captureFileAsync. This will check the manifest capability and prompt the user for consent, if 
necessary. 

This is an async call, so we hook a .done on the end with a completed handler, which in this case will 
receive a Windows.Storage.StorageFile object. Through this object you can get to all the raw image 
data you want, but for our purpose we simply want to display it in the img element. That’s easy as  
 

77



well! You can hand a StorageFile object to the URL.createObjectURL method and get back an URI that 
can be directly assigned to the img.src attribute. The captured photo appears!14 

Note that captureFileAsync will call the completed handler if the UI was successfully invoked but the 
user hit the back button and didn’t actually capture anything. This is why the extra check is there for the 
validity of capturedFile. An error handler on the promise will, for its part, pick up failures to invoke the 
UI in the first place, but note that a denial of consent will show a message in the capture UI directly (see 
Figure 2-21), so it’s unnecessary to have an error handler for that purpose with this particular API. In 
most cases, however, you’ll want to have an error handler in place for async calls. 

  
FIGURE 2-21  The camera capture UI’s message when consent is denied (left); you can change permissions through 
the Settings Charm > Permissions pane (right). 

Sharing the Fun! 
Taking a goofy picture of oneself is fun, of course, but sharing the joy with the rest of the world is even 
better. Up to this point, however, sharing information through different social media apps has meant 
using the specific APIs of each service. Workable, but not scalable. 

Windows 8 has instead introduced the notion of the share contract, which is used to implement the 
Share charm with as many apps as participate in the contract. Whenever you’re in an app and invoke 
Share, Windows asks the app for its source data. It then examines that data, generates a list of target 
apps that understand the data formats involved (according to their manifests), and displays that list in 
the Share pane. When the user selects a target, that app is activated and given the source data. In short, 

14 The {oneTimeOnly: true} parameter indicates that the URI is not reusable and should be revoked via URL.- 
revokeObjectURL when it’s no longer used, as when we replace img.src with a new picture. Without this, we would leak 
memory with each new picture. If you’ve used URL.createObjectURL in the past, you’ll see that the second parameter is 
now a property bag, which aligns with the most recent W3C spec. 

78



the contract is an abstraction that sits between the two, so the source and target apps never need to 
know anything about each other. 

This makes the whole experience all the richer when the user installs more share-capable apps, and it 
doesn’t limit sharing to only well-known social media scenarios. What’s also beautiful in the overall 
experience is that the user never leaves the original app to do sharing—the share target app shows up 
in its own view as an overlay that only partially obscures the source app. This way, the user immediately 
returns to that source app when the sharing is completed, rather than having to switch back to that app 
manually. In addition, the source data is shared directly with the target app, so the user never needs to 
save data to intermediate files for this purpose. 

So instead of adding code to our app to share the photo and location to a particular target, like 
Facebook, we only need to package the data appropriately when Windows asks for it. 

That asking comes through the datarequested event sent to the Windows.ApplicationModel.- 
DataTransfer.DataTransferManager object.15 First we just need to set up an appropriate listener—place 
this code is in the activated event in default.js after setting up the click listener on the img element: 

var dataTransferManager =  
    Windows.ApplicationModel.DataTransfer.DataTransferManager.getForCurrentView(); 
dataTransferManager.addEventListener("datarequested", provideData); 

The idea of a current view is something that we’ll see pop up now and then. It reflects that an app 
can be launched for different reasons—such as servicing a contract—and thus presents different 
underlying pages or views to the user at those times. These views (unrelated to the snap/fill/etc. view 
states) can be active simultaneously. To thus make sure that your code is sensitive to these scenarios, 
certain APIs return objects appropriate for the current view of the app as we see here. 

For this event, the handler receives a Windows.ApplicationModel.DataTransfer.DataRequest object 
in the event args (e.request), which in turn holds a DataPackage object (e.request.data). To make data 
available for sharing, you populate this data package with the various formats you have available. 
(We’ve saved these in lastPosition and lastCapture.) In our case, we make sure we have position and a 
photo and then fill in text and image properties (if you want to obtain a map from Bing for sharing 
purposes, see Get a static map): 

//Drop this in after capturePhoto 
function provideData(e) {  
    var request = e.request; 
    var data = request.data; 
     
    if (!lastPosition || !lastCapture) { 
        //Nothing to share, so exit 
        return; 
    } 
 
    data.properties.title = "Here My Am!"; 

15 Because we’re always listening to datarequested while the app is running and add a listener only once, we don’t need to 
worry about calling removeEventListener. For details, see “WinRT Events and removeEventListener” in Chapter 3. 

79

http://msdn.microsoft.com/library/ff701724.aspx


    data.properties.description = "At (" 
        + lastPosition.latitude + ", " + lastPosition.longitude + ")";  
     
    //When sharing an image, include a thumbnail  
    var streamReference =  
        Windows.Storage.Streams.RandomAccessStreamReference.createFromFile(lastCapture); 
    data.properties.thumbnail = streamReference; 
 
    //It's recommended to always use both setBitmap and setStorageItems for sharing a single image  
    //since the target app may only support one or the other. 
 
    //Put the image file in an array and pass it to setStorageItems 
    data.setStorageItems([lastCapture]); 
 
    //The setBitmap method requires a RandomAccessStream.  
    data.setBitmap(streamReference); 
} 

The latter part of this code is pretty standard stuff for sharing a file-based image (which we have in 
lastCapture). I got most of this code, in fact, directly from the Share content source app sample, which 
we’ll look at more closely in Chapter 12, “Contracts.” 

With this last addition of code, and a suitable sharing target installed (such as the Share content 
target app sample, as shown in Figure 2-22), we now have a very functional app—in all of 35 lines of 
HTML, 125 lines of CSS, and less than 100 lines of JavaScript! 

 
FIGURE 2-22  Sharing (monkey-see, monkey-do!) to the Share target sample in the Windows SDK. Share targets 
appear as a partial overlay on top of the current app, so the user never leaves the app context. 

80

http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Source-App-d9bffd84
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Target-App-e2689782
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Target-App-e2689782


Extra Credit: Receiving Messages from the iframe 
There’s one more piece I’ve put into Here My Am! to complete the basic interaction between app and 
iframe content: the ability to post messages from the iframe back to the main app. In our case, we want 
to know when the location of the pushpin has changed so that we can update lastPosition. 

First, here’s a simple utility function I added to map.html to encapsulate the appropriate postMessage 
calls to the app from the iframe: 

function function notifyParent(event, args) { 
    //Add event name to the arguments object and stringify as the message 
    args["event"] = event; 
    window.parent.postMessage(JSON.stringify(args), "ms-appx://" + document.location.host); 
} 

This function basically takes an event name, adds it to whatever an object containing parameters, 
stringifies the whole thing, and then posts it back to the parent. 

When a pushpin is dragged, Bing maps raises a dragend event, which we’ll wire up and handle in the 
setLocation function just after the pushpin is created (also in map.html): 

var pushpin = new Microsoft.Maps.Pushpin(location, { draggable: true }); 
 
Microsoft.Maps.Events.addHandler(pushpin, "dragend", function (e) { 
    var location = e.entity.getLocation(); 
    notifyParent("locationChanged", 
        { latitude: location.latitude, longitude: location.longitude }); 
}); 

Back in default.js (the app), we add a listener for incoming messages inside app.onactivated: 

window.addEventListener("message", processFrameEvent); 

where the processFrameEvent handler looks at the event in the message and acts accordingly: 

function processFrameEvent (message) { 
    //Verify data and origin (in this case the web context page) 
    if (!message.data || message.origin !== "ms-appx-web://" + document.location.host) { 
        return; 
    } 
 
    if (!message.data) { 
        return; 
    } 
 
    var eventObj = JSON.parse(message.data); 
 
    switch (eventObj.event) { 
        case "locationChanged": 
            lastPosition = { latitude: eventObj.latitude, longitude: eventObj.longitude }; 
            break; 
 
        default: 

81



            break; 
    } 
}; 

Clearly, this is more code than we’d need to handle a single message or event from an iframe, but I 
wanted to give you something that could be applied more generically in your own apps. 

The Other Templates 

In this chapter we’ve worked only with the Blank App template so that we could understand the basics 
of writing a Windows Store app without any other distractions. In Chapter 3, we’ll look more deeply at 
the anatomy of apps through a few of the other templates, yet we won’t cover them all. We’ll close this 
chapter, then, with a short introduction to these very handy tools. 

Fixed Layout Template 
“A project for a Windows Store app that scales using a fixed aspect ratio layout.” (Blend/Visual Studio 
description) 

What we’ve seen so far are examples of apps that adapt themselves to changes in display area by 
adjusting the layout. In Here My Am!, we used CSS grids with self-adjusting areas (those 1fr’s in rows 
and columns). This works great for apps with content that is suitably resizable as well as apps that can 
show additional content when there’s more room, such as more news headlines or items from a search. 

As we’ll see in Chapter 6, other kinds of apps are not so flexible, such as games where the aspect ratio 
of the playing area needs to stay constant. (It would not be fair if players on larger screens got to see 
more of the game!) So, when the display area changes—either from view states or a change in display 
resolution—they do better to scale themselves up or down rather than adjust their layout. 

The Fixed Layout template provides the basic structure for such an app, just like the Blank template 
provides for a flexible app. The key piece is the WinJS.UI.ViewBox control, which automatically takes 
care of scaling its contents while maintaining the aspect ratio: 

<body> 
    <div data-win-control="WinJS.UI.ViewBox"> 
        <div class="fixedlayout"> 
            <p>Content goes here</p> 
        </div> 
    </div> 
</body> 

In default.css, you can see that the body element is styled as a CSS flexbox centered on the screen and 
the fixedLayout element is set to 1024x768 (the minimum size for the fullscreen-landscape and filled 
view states). Within the child div of the ViewBox, then, you can safely assume that you’ll always be 
working with these fixed dimensions. The ViewBox will scale everything up and provide letterboxing or 
sidepillars as necessary. 

82



Note that such apps might not be able to support an interactive snapped state; a game, for example, 
will not be playable when scaled down. In this case an app can simply pause the game and try to unsnap 
itself when the user taps it again. We’ll revisit this in Chapter 6. 

Navigation Template 
“A project for a Windows Store app that has predefined controls for navigation.” (Blend/Visual Studio 
description) 

The Navigation template builds on the Blank template by adding support for page navigation. As 
discussed in Chapter 1, Windows Store apps written in JavaScript are best implemented by having a 
single HTML page container into which other pages are dynamically loaded. This allows for smooth 
transitions (as well as animations) between those pages and preserves the script context. 

This template, and the others that remain, employ a Page Navigator control that facilitates loading 
(and unloading) pages in this way. You need only create a relatively simple structure to describe each 
page and its behavior. We’ll see this in Chapter 3. 

In this model, default.html is little more than a simple container, with everything else in the app 
coming through subsidiary pages. The Navigation template creates only one subsidiary page, yet it 
establishes the framework for how to work with multiple pages. 

Grid Template 
“A three-page project for a Windows Store app that navigates among grouped items arranged in a grid. 
Dedicated pages display group and item details.” (Blend/Visual Studio description) 

Building on the Navigation template, the Grid template provides the basis for apps that will navigate 
collections of data across multiple pages. The home page shows grouped items within the collection, 
from which you can then navigate into the details of an item or into the details of a group and its items 
(from which you can then go into item details as well). 

In addition to the navigation, the Grid template also shows how to manage collections of data 
through the WinJS.Binding.List class, a topic we’ll explore much further in Chapter 5, “Collections and 
Collection Controls.” It also provides the structure for an app bar and shows how to simplify the app’s 
behavior in snap view. 

The name of the template, by the way, derives from the particular grid layout used to display the 
collection, not from the CSS grid. 

Split Template 
“A two-page project for a Windows Store app that navigates among grouped items. The first page allows 
group selection while the second displays an item list alongside details for the selected item.” 
(Blend/Visual Studio description) 

83



This last template also builds on the Navigation template and works over a collection of data. Its 
home page displays a list of groups, rather than grouped items as with the Grid template. Tapping a 
group then navigates to a group detail page split into two (hence the template name). The left side 
contains a vertically panning list of items; the right side shows details for the currently selected item.  

Like the Grid template, the Split template provides an app bar structure and handles both snap and 
portrait views intelligently. That is, because vertically oriented views don’t lend well to splitting the 
display (contrary to the description above!), the template shows how to switch to a page navigation 
model within those view states to accomplish the same ends. 

What We’ve Just Learned 

• How to create a new Windows Store app from the Blank app template. 

• How to run an app inside the local debugger and within the simulator, as well as the role of 
remote machine debugging. 

• The features of the simulator that include the ability to simulate touch, set view states, and 
change resolutions and pixel densities. 

• The basic project structure for Windows Store apps, including WinJS references. 

• The core activation structure for an app through the WinJS.Application.onactivated event. 

• The role and utility of design wireframes in app development, including the importance of 
designing for all view states, where the work is really a matter of element visibility and layout. 

• The power of Blend for Visual Studio to quickly and efficiently add styling to an app’s markup. 
Blend also makes a great CSS debugging tool. 

• How to safely use web content (such as Bing maps) within a web context iframe and 
communicate between that page and the local context app by using the postMessage method. 

• How to use the WinRT APIs, especially async methods involving promises but also geolocation 
and camera capture. Async operations return a promise to which you provide a completed 
handler (and optional error and progress handlers) to the promise’s then or done method. 

• Manifest capabilities determine whether an app can use certain WinRT APIs. Exceptions will 
result if an app attempts to use an API without declaring the associated capability. 

• How to share data through the Share contract by responding to the datarequested event. 

• Kinds of apps supported through the other app templates: Fixed Layout, Navigation, Grid, and 
Split. 

  

84



Chapter 3 

App Anatomy and Page Navigation 
During the early stages of writing this book, I was also working closely with a contractor to build a house 
for my family. While I wasn’t on site every day managing the whole effort, I was certainly involved in 
most decision-making throughout the home’s many phases, and I occasionally participated in the 
construction itself. 

In the Sierra Nevada foothills of California, where I live, the frame of a house is built with the plentiful 
local wood, and all the plumbing and wiring has to be in the walls before installing insulation and 
wallboard (aka sheetrock). It amazed me how long it took to complete that infrastructure. The builders 
spent a lot of time adding little blocks of wood here and there to make it much easier for them to do 
the finish work later on (like hanging cabinets), and lots of time getting the wiring and plumbing put 
together properly. All of this became completely invisible to the eye once the wallboard went up and 
the finish work was in place. 

But then, imagine what the house would be like without such careful attention to structural details. 
Imagine having some light switches that just didn’t work or controlled the wrong fixtures. Imagine if the 
plumbing leaked inside the walls. Imagine if cabinets and trim started falling off the walls after a week or 
two of moving into the house. Even if the house managed to pass final inspection, such flaws would 
make it almost unlivable, no matter how beautiful it might appear at first sight. It would be like a few of 
the designs of the famous architect Frank Lloyd Wright: very interesting architecturally and aesthetically 
pleasing, yet thoroughly uncomfortable to actually live in. 

Apps are very much the same story—I’ve marveled, in fact, just how many similarities exist between 
the two endeavors! That is, an app might be visually beautiful, even stunning, but once you really start 
using it day to day, a lack of attention on the fundamentals will become painfully apparent. As a result, 
your customers will probably start looking for somewhere else to live, meaning someone else’s app! 

This chapter, then, is about those fundamentals: the core foundational structure of an app upon 
which you can build something that can look beautiful and really work well. We’ll first complete our 
understanding of the hosted environment and then look at activation (how apps get running) and 
lifecycle transitions. We’ll then look at page navigation within an app, and we’ll see a few other 
important considerations along the way, such as working with multiple async operations. 

Let me offer you advance warning that this is an admittedly longer and more intricate chapter than 
many that follow, since it specifically deals with the software equivalents of framing, plumbing, and 
wiring. With our house, I can completely attest that installing the lovely light fixtures my wife picked out 
seemed, in the moment, much more satisfying than the framing I’d done months earlier. But now, 
actually living in the house, I have a deep appreciation for all the nonglamorous work that went into it. 
It’s a place I want to be, a place in which my family and I are delighted, in fact, to spend the majority of 

85



our lives. And is that not how you want your customers to feel about your apps? Absolutely! Knowing 
the delight that a well-architected app can bring to your customers, let’s dive in and find our own 
delight in exploring the intricacies! 

Local and Web Contexts within the App Host 

As described in Chapter 1, “The Life Story of a Windows Store App,” apps written with HTML, CSS, and 
JavaScript are not directly executable like their compiled counterparts written in C#, Visual Basic, or 
C++. In our app packages, there are no EXEs, just .html, .css, and .js files (plus resources, of course) that 
are, plain and simple, nothing but text. So something has to turn all this text that defines an app into 
something that’s actually running in memory. That something is again the app host, wwahost.exe, which 
creates what we call the hosted environment for Store apps. 

Let’s review what we’ve already learned in Chapter 1 and Chapter 2, “Quickstart,” about the 
characteristics of the hosted environment: 

• The app host (and the apps in it) use brokered access to sensitive resources. 

• Though the app host provides an environment very similar to that of Internet Explorer 10, there 
are a number of changes to the DOM API, documented on HTML and DOM API changes list and 
HTML, CSS, and JavaScript features and differences. A related topic is Windows Store apps using 
JavaScript versus traditional web apps. 

• HTML content in the app package can be loaded into the local or web context, depending on the 
ms-appx:/// and ms-appx-web:/// scheme used to reference that content (the third / again 
means “in the app package”). Remote content (referred to with http[s]://) always runs in the 
web context. 

• The local context has access to the WinRT API, among other things, whereas the web context is 
allowed to load and execute remote script but cannot access WinRT. 

• ActiveX control plug-ins are generally not allowed in either context. 

• The HTML5 postMessage function can be used to communicate between an iframe and its 
containing parent across contexts. This can be useful to execute remote script within the web 
context and pass the results to the local context; script acquired in the web context should not 
be itself passed to the local context and executed there. (Windows Store policy actually disallows 
this, and apps submitted to the Store will be analyzed for such practices.) 

• Further specifics can be found on Features and restrictions by context, including which parts of 
WinJS don’t rely on WinRT and can thus be used in the web context. (WinJS, by the way, cannot 
be used on web pages outside of an app.) 

Now what we’re really after in this chapter is not so much these characteristics themselves but their 
impact on the structure of an app. (To explore the characteristics themselves, refer to the Integrating 

86

http://msdn.microsoft.com/library/windows/apps/hh700404.aspx
http://msdn.microsoft.com/library/windows/apps/hh465380.aspx
http://msdn.microsoft.com/library/windows/apps/hh465408.aspx
http://msdn.microsoft.com/library/windows/apps/hh465408.aspx
http://msdn.microsoft.com/library/windows/apps/hh465373.aspx
http://code.msdn.microsoft.com/windowsapps/Mashup-Sample-10689f5b


content and controls from web services sample.) First and foremost is that an app’s home page, the one 
you point to in the manifest in the Start page field of the Application UI tab16, always runs in the local 
context, and any page to which you navigate directly (<a href> or document.location) must also be in 
the local context.  

Next, a local context page can contain an iframe in either local or web context, provided that the src 
attribute refers to content in the app package (and by the way, programmatic read-only access to your 
package contents is obtained via Windows.ApplicationMode.Package.Current.InstalledLocation). 
Referring to any other location (http[s]:// or other protocols) will always place the iframe in the web 
context. 

<!-- iframe in local context with source in the app package --> 
<!-- this form is only allowed from inside the local context --> 
<iframe src="/frame-local.html"></iframe> 
<iframe src="ms-appx:///frame-local.html"></iframe> 
 
<!-- iframe in web context with source in the app package --> 
<iframe src="ms-appx-web:///frame-web.html"></iframe> 
 
<!-- iframe with an external source automatically assigns web context --> 
<iframe src="http://www.bing.com"></iframe> 

Also, if you use an <a href="..." target="..."> tag with target pointing to an iframe, the scheme 
in href determines the context. 

A web context page, for its part, can contain only a web context iframe ; for example, the last two 
iframe elements above are allowed, whereas the first two are not. You can also use ms-appx-web:/// 
within the web context to refer to other content within the app package, such as images. 

Although not commonly done within Windows Store apps for reasons we’ll see later in this chapter, 
similar rules apply with page-to-page navigation using <a href> or document.location. Since the whole 
scene here can begin to resemble overcooked spaghetti, the exact behavior for these variations and for 
iframes is described in the following table: 

Target Result in Local Context Page Result in Web Context Page 
<iframe src="ms-appx:///"> iframe in local context Not allowed 
<iframe src="ms-appx-web:///"> iframe in web context iframe in web context 
<iframe src="http[s]:// "> or other scheme iframe in web context iframe in web context 
<a href="[uri]" target="myFrame"> 
<iframe name="myFrame"> 

iframe in local or web context 
depending on [uri] 

iframe in web context; [uri] 
cannot begin with ms-appx. 

<a href="ms-appx:///"> Links to page in local context Not allowed unless explicitly 
specified (see below) 

<a href="ms-appx-web:///"> Not allowed Links to page in web context 
<a href="[uri]"> with any other protocol including 
http[s] 

Opens default browser with [uri] Opens default browser with [uri] 

 

 

16 The manifest names this the “Start page,” but I prefer “home page” to avoid confusion with the Windows Start screen. 

87

http://code.msdn.microsoft.com/windowsapps/Mashup-Sample-10689f5b


When an iframe is in the web context, note that its page can contain ms-appx-web references to 
in-package resources, even if the page is loaded from a remote source (http[s]). Such pages, of course, 
would not work in a browser. 

The last two items in the table really mean that a Windows Store app cannot navigate from its 
top-level page (in the local context) directly to a web context page of any kind (local or remote) and 
remain within the app: the browser will be launched instead. That’s just life in the app host! Such 
content must be placed in an iframe. 

Similarly, navigating from a web context page to a local context page is not allowed by default, but 
you can enable this by calling the super-secret function MSApp.addPublicLocalApplicationUri from 
code in a local page (and it actually is well-documented) for each specific URI you need: 

//This must be called from the local context 
MSApp.addPublicLocalApplicationUri("ms-appx:///frame-local.html"); 

The Direct Navigation example for this chapter gives a demonstration of this (as does Scenario 6 of 
the Integrating content and controls from web services sample). Do be careful when the URI contains 
query parameters, however. For example, you don’t want to allow a website to navigate to something 
like ms-appx:///delete.html?file=superimportant.doc! 

One other matter that arises here is the ability to grant a web context page access to specific 
functions like geolocation, writing to the clipboard, the app cache, and IndexedDB—things that web 
pages typically assume they can use. By default, the web context in a Store app has no access to such 
operating system capabilities. For example, create a new Blank project in Visual Studio with this one line 
of HTML in the body of default.html: 

<iframe src="http://maps.bing.com" style="width:1366px; height: 768px"></iframe> 

Then set the Location capability in the manifest (something I forgot on my first experiment with 
this!), and run the app. You’ll see the Bing page you expect.17 However, attempting to use geolocation 
from within that page—clicking the locator control to the left of “World,” for instance—will give you the 
kind of error shown in Figure 3-1. 

 
FIGURE 3-1 Use of brokered capabilities like geolocation from within a web context will generate an error. 

 

17 If the color scheme looks odd, it’s because the iframe is picking up styles from the default ui-dark.css of WinJS. Try 
changing that stylesheet to ui-light.css for something that looks more typical. 

88

http://msdn.microsoft.com/library/windows/apps/hh465759.aspx
http://code.msdn.microsoft.com/windowsapps/Mashup-Sample-10689f5b


Such capabilities are blocked because web content loaded into an iframe can easily provide the means 
to navigate to other arbitrary pages. From the Bing maps page above, for example, a user can go to the 
Bing home page, do a search, and end up on any number of untrusted and potentially malicious pages. 
Whatever the case, those pages might request access to sensitive resources, and if they just generated 
the same user consent prompts as an app, users could be tricked into granting such access. 

Fortunately, if you ask nicely, Windows will let you enable those capabilities for web pages that the 
app knows about. All it takes is an affidavit signed by you and sixteen witnesses, and…OK, I’m only 
joking! You simply need to add what are called application content URI rules to your manifest. Each rule 
says that content from some URI is known and trusted by your app and can thus act on the app’s behalf. 
You can also exclude URIs, which is typically done to exclude specific pages that would otherwise be 
included within another rule. 

Such rules are created in the Content Uri tab of Visual Studio’s manifest editor, as shown in Figure 
3-2. Each rule needs to be the exact URI that might be making a request, such as 
http://www.bing.com/maps/. Once we add that rule (as in the completed ContentUri example for this 
chapter), Bing maps is allowed to use geolocation. When it does so, a message dialog will appear (Figure 
3-3), just as if the app had made the request. (Note: When run inside the debugger, the ContentUri 
example might show a Permission Denied exception on startup. If so, press Continue within Visual 
Studio because this doesn’t affect the app running outside the debugger.) 

 
FIGURE 3-2 Adding a content URI to the app manifest; the contents of the text box is saved when the manifest is 
saved. Add New URI creates another set of controls in which to enter additional rules. 

 
FIGURE 3-3 With a content URI rule in place, web content in an iframe acts like part of the app, showing why 
content URI rules are necessary to protect the user from pages unknown to the app that could otherwise trick the 
user into granting access to sensitive resources. 

89



Sidebar: A Few iframe Tips and Cautions 
As we’re talking about iframe elements here, there are a couple extra tips you might find helpful 
when using them. First, to prevent selection, style the iframe with –ms-user-select: none or set 
its style.msUserSelect property to "none" in JavaScript. Second, some web pages contain 
frame-breaking code that prevents the page from being loaded into an iframe, in which case the 
page will be opened in the default browser and not the app. If that page is essential to your app, 
you’ll need to work with the owner to create an alternate page that will work for you. Third, just as 
plug-ins aren’t supported in Windows Store apps, they’ll also fail to load for web pages loaded 
into an iframe. In short, pulling web content that you don’t own into an app is a risky business! 

Furthermore, iframe support is not intended to let you just build an app out of remote web 
pages. Section 2.4 of the Windows 8 app certification requirements, in fact, specifically disallow 
apps that are just websites—the primary app experience must take place within the app, meaning 
that it doesn’t happen within websites hosted in iframe elements. A few key reasons for this are 
that websites typically aren’t set up well for touch interaction (which violates requirement 3.5) and 
often won’t work well in snapped view (violating requirement 3.6). In short, overuse of web 
content will likely mean that the app won’t be accepted by the Store. 

Referencing Content from App Data: ms-appdata 
As we’ve seen, the ms-appx[-web]:/// schema allow an app to navigate iframe elements to pages that 
exist inside the app package, or on the web. This begs a question: can an app point to content on the 
local file system that exists outside its package, such as a dynamically created file in an appdata folder? 
Can, perchance, an app use the file:// protocol to navigate and/or access that content? 

Well, as much as I’d love to tell you that this just works, the answer is somewhat mixed. First, the 
file:// protocol is wholly blocked by design for various security reasons, even for your appdata folders 
to which you otherwise have full access. (Custom protocols are also unsupported in iframe src URIs.) 
Fortunately there is a substitute, ms-appdata:///, that fulfills part of the need. Within the local context 
of an app, ms-appdata:/// is a shortcut to the appdata folder wherein exist local, roaming, and temp 
folders. So, if you created a picture called image65.png in your appdata local folder, you can refer to it 
by using ms-appdata:///local/image65.png, and similar forms with roaming and temp, wherever a URI 
can be used, including within a CSS style like background. 

Unfortunately, the caveat—there always seems to be one with the app container!—is that 
ms-appdata can be used only for resources, namely with the src attribute of img, video, and audio 
elements. It cannot be used to load HTML pages, CSS stylesheets, or JavaScript, nor can it be used for 
navigation purposes (iframe, hyperlinks, etc.). This is because it wasn’t feasible to create a sub-sandbox 
environment for such pages, without which it would be possible for a page loaded with ms-appdata:// 
to access everything in your app. 

 

90

http://msdn.microsoft.com/library/windows/apps/hh779846.aspx
http://msdn.microsoft.com/library/windows/apps/hh694083.aspx


Can you do any kind of dynamic page generation, then? Well, yes: you need to load file contents and 
process them manually, inserting them into the DOM through innerHTML properties and such. You can 
get to your appdata folders through the Windows.Storage.ApplicationData API and go from there. To 
load and render a full HTML page requires that you patch up all external references and play some 
magic with script, but it can be done if you really want. 

A similar question is whether you can generate and execute script on the fly. The answer is again 
qualified. Yes, you can take a JavaScript string and pass it to the eval or execScript functions. Be 
mindful, though, that the Windows Store certification requirements specifically disallow doing this with 
script obtained from a remote source in the local context (see section requirement 3.9). The other 
inevitable caveat here is that automatic filtering is applied to that code that prevents injection of script 
(and other risky markup) into the DOM via properties like innerHTML and outerHTML, and methods like 
document.write and DOMParser.parseFromString. Yet there are certainly situations where you, the 
developer, really know what you’re doing and enjoy juggling chainsaws and flaming swords and thus 
want to get around such restrictions, especially when using third-party libraries. (See the sidebar below.) 
Acknowledging that, Microsoft provides a mechanism to consciously circumvent all this: 
MSApp.execUnsafeLocalFunction. For all the details regarding this, refer to Developing secure apps, 
which covers this along with a few other obscure topics that I’m not including here. One such topic—the 
numerous variations of the sandbox attribute for iframes—is also demonstrated in the JavaScript iframe 
sandbox attribute sample. 

And curiously enough, WinJS actually makes it easier for you to juggle chainsaws and flaming 
swords! WinJS.Utilities.setInnerHTMLUnsafe, setOuterHTMLUnsafe, and insertAdjacentHTMLUnsafe are 
wrappers for calling DOM methods that would otherwise strip out risky content. 

All that said (don’t you love being aware of the details?), let’s look at an example of using 
ms-appdata, which will probably be much more common in your app-building efforts. 

Sidebar: Third-Party Libraries and the Hosted Environment 
In general, Windows Store apps can employ libraries like jQuery, Prototype, Dojo, and so forth, as 
noted in Chapter 1. However, there are some limitations and caveats. 

First, because local context pages in an app cannot load script from remote sources, apps 
typically need to include such libraries in their packages unless only being used from the web 
context. WinJS, mind you, doesn’t need bundling because it’s provided by the Windows Store, but 
such “framework packages” are not enabled for third parties in Windows 8. 

Second, DOM API changes and app container restrictions might affect the library. For example, 
library functions using window.alert won’t work. One library also cannot load another library 
from a remote source in the local context. Crucially, anything in the library that assumes a higher 
level of trust than the app container provides (such as open file system access) will have issues. 

The most common issue comes up when libraries inject elements or script into the DOM (as 
through innerHTML), a widespread practice for web applications that is not generally allowed 

91

http://msdn.microsoft.com/library/windows/apps/hh849625.aspx
http://code.msdn.microsoft.com/windowsapps/JavaScript-iframe-sandbox-0f077ece
http://code.msdn.microsoft.com/windowsapps/JavaScript-iframe-sandbox-0f077ece


within the app container. For example, trying to create a jQuery datepicker widget 
($("myCalendar").datepicker()) will hurl out this kind of error. You can get around this on the 
app level by wrapping the code above with MSApp.execUnsafeLocalFunction, but that doesn’t 
solve injections coming from deeper inside the library. In the jQuery example given here, the 
control can be created but clicking a date in that control generates another error. 

In short, you’re free to use third-party libraries so long as you’re aware that they were 
generally written with assumptions that don’t always apply within the app container. Over time, of 
course, fully Windows 8–compatible versions of such libraries will emerge. 

Here My Am! with ms-appdata 
OK! Having endured seven pages of esoterica, let’s play with some real code and return to the Here My 
Am! app we wrote in Chapter 2. Here My Am! used the convenient URL.createObjectURL method to 
display a picture taken through the camera capture UI in an img element: 

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo) 
    .done(function (capturedFile) { 
        if (capturedFile) { 
            that.src = URL.createObjectURL(capturedFile); 
        } 
    }); 

This is all well and good: we just take it on faith that the picture is stored somewhere so long as we 
get a URI. Truth is, pictures (and video) from the camera capture API are just stored in a temp file; if you 
set a breakpoint in the debugger and look at capturedFile, you’ll see that it has an ugly file path like 
C:\Users\kraigb\AppData\Local\Packages\ ProgrammingWin8-JS-CH3-
HereMyAm3a_5xchamk3agtd6\TempState\picture001.png. Egads. Not the friendliest of locations, and 
definitely not one that we’d want a typical consumer to ever see! 

With an app like this, let’s copy that temp file to a more manageable location, to allow the user, for 
example, to select from previously captured pictures (as we’ll do in Chapter 8, “State, Settings, Files, and 
Documents”). We’ll make a copy in the app’s local appdata folder and use ms-appdata to set the img src 
to that location. Let’s start with the call to captureUI.captureFileAsync as before: 

//For use across chained promises 
var capturedFile = null; 
 
captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo) 
    .then(function (capturedFileTemp) { 
        //Be sure to check validity of the item returned; could be null if the user canceled. 
        if (!capturedFileTemp) { throw ("no file captured"); } 

Notice that instead of calling done to get the results of the promise, we’re using then instead. This is 
because we need to chain a number of async operations together and then allows errors to propagate 
through the chain, as we’ll see in the next section. In any case, once we get a result in capturedFileTemp 
(which is in a gnarly-looking folder), we then open or create a “HereMyAm” folder within our local 

92



appdata. This happens via Windows.Storage.ApplicationData.current.localFolder, which gives us a 
Windows.Storage.StorageFolder object that provides a createFolderAsync method: 

        //As a demonstration of ms-appdata usage, copy the StorageFile to a folder called HereMyAm 
        //in the appdata/local folder, and use ms-appdata to point to that. 
        var local = Windows.Storage.ApplicationData.current.localFolder; 
        capturedFile = capturedFileTemp; 
        return local.createFolderAsync("HereMyAm", 
            Windows.Storage.CreationCollisionOption.openIfExists);  
    }) 
    .then(function (myFolder) { 
        //Again, check validity of the result operations 
        if (!myFolder) { throw ("could not create local appdata folder"); } 

Assuming the folder is created successfully, myFolder will contain another StorageFolder object. We 
then use this as a target parameter for the temp file’s copyAsync method, which also takes a new 
filename as its second parameter. For that name we’ll just use the original name with the date/time 
appended (replacing colons with hypens to make a valid filename): 

        //Append file creation time (should avoid collisions, but need to convert colons) 
        var newName = capturedFile.displayName + " - "  
            + capturedFile.dateCreated.toString().replace(/:/g, "-") + capturedFile.fileType; 
        return capturedFile.copyAsync(myFolder, newName); 
    }) 
    .done(function (newFile) { 
        if (!newFile) { throw ("could not copy file"); } 

Because this was the last async operating in the chain, we use the promise’s done method for reasons 
we’ll again see in a moment. In any case, if the copy succeeded, newFile contains a StorageFile object 
for the copy, and we can point to that using an ms-appdata URI: 

        lastCapture = newFile;  //Save for Share 
        that.src = "ms-appdata:///local/HereMyAm/" + newFile.name;  
    }, 
    function (error) { 
        console.log(error.message); 
    }); 

The completed code is in the HereMyAm3a example. 

Of course, we could still use URL.createObjectURL with newFile as before (making sure to provide 
the { oneTimeOnly=true } parameter to avoid memory leaks). While that would defeat the purpose of 
this exercise, it works perfectly (and the memory overhead is essentially the same since the picture has 
to be loaded either way). In fact, we’d need to use it if we copy images to the user’s pictures library 
instead. To do this, just replace Windows.Storage.ApplicationData.current.localFolder with 
Windows.Storage.KnownFolders.picturesLibrary and declare the Pictures Library capability in the 
manifest. Both APIs give us a StorageFolder, so the rest of the code is the same except that we’d use 
URL.createObjectURL because we can neither use ms-appdata:// nor file:// to refer to the pictures 
library. The HereMyAm3a example contains this code in comments. 

93



Sequential Async Operations: Chaining Promises 

In the previous code example, you might have noticed how we throw exceptions whenever we don’t get 
a good result back from any given async operation. Furthermore, we have only a single error handler at 
the end, and there’s this odd construct of returning the result (a promise) from each subsequent async 
operation instead of just processing the promise then and there. 

Though it may look odd at first, this is actually the most common pattern for dealing with sequential 
async operations because it works better than the more obvious approach of nesting. Nesting means to 
call the next async API within the completed handler of the previous one, fulfilling each with done. 
Here’s how the async calls in previous code would be placed with this approach (extraneous code 
removed for simplicity): 

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo) 
    .done(function (capturedFileTemp) { 
        //... 
        local.createFolderAsync("HereMyAm", ...) 
            .done(function (myFolder) { 
                //... 
                capturedFile.copyAsync(myFolder, newName) 
                    .done(function (newFile) { 
                    }) 
            }) 
      }); 

The one advantage to this approach is that each completed handler will have access to all the 
variables declared before it. Yet the disadvantages begin to pile up. For one, there is usually enough 
intervening code between the async calls that the overall structure becomes visually messy. More 
significantly, error handling becomes significantly more difficult. When promises are nested, error 
handling must be done at each level; if you throw an exception at the innermost level, for instance, it 
won’t be picked up by any of the outer error handlers. Each promise thus needs its own error handler, 
making real spaghetti of the basic code structure: 

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo) 
    .done(function (capturedFileTemp) { 
        //... 
        local.createFolderAsync("HereMyAm", ...) 
            .done(function (myFolder) { 
                //... 
                capturedFile.copyAsync(myFolder, newName) 
                    .done(function (newFile) { 
                    }, 
                    function (error) { 
                    }) 
            }, 
            function (error) { 
            }); 
      }, 

      function (error) { 
      }); 

94



I don’t know about you, but I really get lost in all the }’s and )’s (unless I try hard to remember my 
LISP class in college), and it’s hard to see which error function applies to which async call. 

Chaining promises solves all of this with the small tradeoff of needing to declare a few extra temp 
variables outside the chain. With chaining, you return the next promise out of each completed handler 
rather than fulfilling it with done. This allows you to indent all the async calls only once, and it has the 
effect of propagating errors down the chain. When an error happens within a promise, you see, what 
comes back is still a promise object, and if you call its then method (but not done—see the next section), 
it will again return another promise object with an error. As a result, any error along the chain will 
quickly propagate through to the first available error handler, thereby allowing you to have only a 
single error handler at the end: 

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo) 
    .then(function (capturedFileTemp) { 
        //... 
        return local.createFolderAsync("HereMyAm", ...); 
    }) 
    .then(function (myFolder) { 
        //... 
        return capturedFile.copyAsync(myFolder, newName); 
    }) 
    .done(function (newFile) { 
    }, 
    function (error) { 
    }) 

To my eyes (and my aging brain), this is a much cleaner code structure—and it’s therefore easier to 
debug and maintain. If you like, you can even end the chain with a done(null, errorHandler) call, 
replacing the previous done with then: 

captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo) 
    //... 
    .then(function (newFile) { 
    }) 
    .done(null, function (error) { 
    }) 
}) 

Finally, a word about debugging chained promises (or nested ones, for that matter). Each step 
involves an async operation, so you can’t just step through as you would with synchronous code 
(otherwise you’ll end up deep inside WinJS). Instead, set a breakpoint on the first line within each 
completed handler and on the first line of the error function at the end. As each breakpoint is hit, you 
can step through that completed handler. When you reach the next async call, click the Continue button 
in Visual Studio so that the async operation can run, after which you’ll hit the breakpoint in the next 
completed handler (or the breakpoint in the error handler). 

 

95



Error Handling Within Promises: then vs. done 
Although it’s common to handle errors at the end of a chain of promises, as demonstrated in the code 
above, you can still provide an error handler at any point in the chain—then and done both take the 
same arguments. If an exception occurs at that level, it will surface in the innermost error handler. 

This brings us to the difference between then and done. First, then returns another promise, thereby 
allowing chaining, whereas done returns undefined so it must be at the end of the chain. Second, if an 
exception occurs within one async operation’s then method and there’s no error handler at that level, 
the error gets stored in the promise returned by then. In contrast, if done sees an exception and there’s 
no error handler, it throws that exception to the app’s event loop. This will bypass any local 
(synchronous) try/catch block, though you can pick them up in either in WinJS.Application.onerror 
or window.onerror handlers. (The latter will get the error if the former doesn’t handle it.) If you don’t, 
the app will be terminated and an error report sent to the Windows Store dashboard. We actually 
recommend that you provide a WinJS.Application.onerror handler for this reason. 

In practical terms, this means that if you end a chain of promises with a then and not done, all 
exceptions in that chain will get swallowed and you’ll never know there was a problem! This can place 
an app in an indeterminate state and cause much larger problems later on. So, unless you’re going to 
pass the last promise in a chain to another piece of code that will itself call done (as you would do if 
you’re writing a library from which you return promises), always use done at the end of a chain even for 
a single async operation.18 

There is much more you can do with promises, by the way, like combining them, canceling them, and 
so forth. We’ll come back to all this at the end of this chapter. 

Debug Output, Error Reports, and the Event Viewer 
Speaking of exceptions and error handling, it’s sometimes heartbreaking to developers that 
window.prompt and window.alert are not available to Windows Store apps as quickie debugging aids. 
Fortunately, you have two other good options for that purpose. One is Windows.UI.Popups.Message- 
Dialog, which is actually what you use for real user prompts in general. The other is console.log, as 
shown earlier, which will send text to Visual Studio’s output pane. These messages can also be logged as 
Windows events, as we’ll see in a moment.19 

Another DOM API function to which you might be accustomed is window.close. You can still use this 
as a development tool, but in released apps Windows interprets this call as a crash and generates an 
error report in response. This report will appear in the Store dashboard for your app, with a message  
 

18 A number of samples in the Windows SDK use then instead of done, especially for single async operations. This came from 
the fact that done didn’t yet exist at one point, and those samples weren’t always updated. 

19 For readers who are seriously into logging, beyond the kind you do with chainsaws, check out the WinJS.Utilities 
functions startLog, stopLog, and formatLog, which provide additional functionality on top of console.log. I’ll leave you 
to commune with the documentation for these but wanted to bring them to your awareness. 

96

http://msdn.microsoft.com/en-us/library/windows/apps/br229783.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh701617.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh701626.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh701587.aspx


telling you to not use it! After all, Store apps should not provide their own close affordances, as 
described in requirement 3.6 of the Store certification policy. 

There might be situations, however, when a released app needs to close itself in response to 
unrecoverable conditions. Although you can use window.close for this, it’s better to use MSApp.- 
terminateApp because it allows you to also include information as to the exact nature of the error. These 
details show up in the Store dashboard, making it easier to diagnose the problem. 

In addition to the Store dashboard, you should make fast friends with the Windows Event Viewer.20 
This is where error reports, console logging, and unhandled exceptions (which again terminate the app 
without warning) can be recorded. 

To enable this, you need to first navigate to Application and Services Log and expand Microsoft/ 
Windows/AppHost, left-click to select Admin (this is important), right-click Admin, and then select View 
> Show Analytic and Debug Logs for full output, as shown in Figure 3-4. This will enable tracing for 
errors and exceptions. Then right-click AppTracing (also under AppHost) and select Enable Log. This will 
trace your calls to console.log as well as other diagnostic information coming from the app host. 

 
FIGURE 3-4 App host events, such as unhandled exceptions and load errors, can be found in Event Viewer. 

 
 
 

20 If you can’t find Event Viewer, press the Windows key to go to the Start page and then invoke the Settings charm. Select 
Tiles, and turn on Show Administrative Tools. You’ll then see a tile for Event Viewer on your Start page. 

97



We already introduced Visual Studio’s Exceptions dialog in Chapter 2; refer back to Figure 2-16. For 
each type of JavaScript exception, this dialog supplies two checkboxes labeled Thrown and 
User-unhandled. Checking Thrown will display a dialog box in the debugger (Figure 3-5) whenever an 
exception is thrown, regardless of whether it’s handled and before reaching any of your error handlers. 
If you have error handlers, you can safely click the Continue button in the dialog, and you’ll eventually 
see the exception surface in those error handlers. (Otherwise the app will terminate.) If you click Break 
instead, you can find the exception details in the debugger’s Locals pane, as shown in Figure 3-6. 

 
FIGURE 3-5 Visual Studio’s exception dialog. As the dialog indicates, it’s safe to press Continue if you have an error 
handler in the app; otherwise the app will terminate. Note that the checkbox in this dialog is a shortcut to toggle the 
Thrown checkbox for this exception type in the Exceptions dialog. 

 
FIGURE 3-6 Information in Visual Studio’s Locals pane when you Break on an exception. 

The User-unhandled option (enabled for all exceptions by default) will display a similar dialog 
whenever an exception is thrown to the event loop, indicating that it wasn’t handled by an app- 
provided error function (“user” code from the system’s perspective). 

You typically turn on Thrown only for those exceptions you care about; turning them all on can make 
it very difficult to step through your app! Still, you can try it as a test, and then leave checks only for 
those exceptions you expect to catch. Do leave User-unhandled checked for everything else; in fact, 
unless you have a specific reason not to, make sure that User-unhandled is checked next to JavaScript 
Runtime Exceptions here because this will include those exceptions not otherwise listed. This way you 
can catch (and fix) any exceptions that might abruptly terminate the app, which is something your 
customers should never experience. 

98



App Activation 

First, let me congratulate you for coming this far into a very detailed chapter! As a reward, let’s talk 
about something much more tangible and engaging: the actual activation of an app and its startup 
sequence. This can happen a variety of ways, such as via the Start screen tile, contracts, and file type and 
URI scheme associations. In all these activation cases, you’ll be writing plenty of code to initialize your 
data structures, reload previously saved state, and do everything to establish a great experience for your 
users. 

Branding Your App 101: The Splash Screen and Other Visuals 
With activation, we actually need to take a step back even before the app host gets loaded, back to the 
moment a user taps your tile on the Start screen or when your app is launched some other way. The 
very first thing that happens, before any app-specific code is loaded or run, is that Windows displays a 
splash screen composed of the image and background color you provide in your manifest. 

The splash screen—which shows for at least 0.75 seconds so that it’s not just a flash—gives users 
something interesting to look at while the app gets started (much better than an hourglass). It also 
occupies the whole view where the app is being launched, so it’s a much more directly engaging 
experience for your users. This view can be the filled view state, the overlay area from the share or 
search charm, or the snapped view if the app is immediately snapped. During this time, an instance of 
the app host gets launched to load, parse, and render your HTML/CSS, and load, parse, and execute 
your JavaScript, firing events along the way as we’ll see in the next section. When the app’s first page is 
ready, the system removes the splash screen. 

The splash screen, along with your app tile, is clearly one of the most important ways to uniquely 
brand your app, so make sure that you and your graphic artist(s) give full attention to these. There are 
additional graphics and settings in the manifest that also affect your branding and overall presence in 
the system, as shown in the table below. Be especially aware that the Visual Studio and Blend templates 
provide some default and thoroughly unattractive placeholder graphics. Thus, take a solemn vow right 
now that you truly, truly, cross-your-heart will not upload an app to the Windows Store with those 
defaults still in place! (For additional guidance, see Guidelines and checklist for splash screens.) 

You can see that the table lists multiple sizes for various images specified in the manifest to 
accommodate varying pixel densities: 100%, 140%, and 180% scale factors, and even a few at 80% 
(don’t neglect the latter: they are typically used for most desktop monitors). So while you can just 
provide a single 100% scale image for each of these, it’s almost guaranteed that scaled-up versions of 
that graphic are going to look bad. So why not make your app look its best? Take the time to create 
each individual graphic consciously. 

 

 

99

http://msdn.microsoft.com/library/windows/apps/hh465338.aspx


Manifest 
Tab 

Section Item Use Image Sizes 
100% 

140% 180% 

Packaging n/a Logo Tile/logo image used for the app on its 
product description page in the Windows 
Store. 

50x50 70x70 90x90 

Application 
UI 

n/a Display 
Name 

Appears in the “all apps” view on the Start 
screen, search results, the Settings charm, 
and in the Store. 

n/a n/a n/a 

  Tile Logo Square tile image. 150x150 
(+ 80% scale 
at 120x120) 

210x210 270x27
0 

    Wide 
logo 

Optional wide tile image. If provided, this 
is shown as the default, but user can use 
the square tile if desired. 

310x150 
(+80% scale 
at 248x120) 

434x210 558x27
0 

    Small 
logo 

Tile used in zoomed-out and “all apps” 
views of the Start screen, and in the 
Search and Share panes if the app 
supports those contracts as targets. Also 
used on the app tile if you elect to show a 
logo instead of the app name in the lower 
left corner of the tile. 

30x30 
(+80% scale 
at 24x24) 

42x42 54x54 

    Show 
name 

Specifies whether to show the app name 
on your app tile (both, neither, or the 
square or wide specifically). Set this to “no 
logo” if your tile images includes your app 
name. 

n/a n/a n/a 

    Short 
name 

Optional: if provided, is used for the name 
on the tile in place of the Display Name, 
as Display Name may be too long for a 
square tile. 

n/a n/a n/a 

    Fore- 
ground 
text 

Color of name text shown on the tile if 
applicable (see Show name). Options are 
Light and Dark. There must be a 1.5 
contrast ratio between this and the 
background color. 

n/a n/a n/a 

    Back- 
ground 
color 

Color used for transparent areas of any 
tile images, the default background for 
secondary tiles, notification backgrounds, 
buttons in app dialogs, borders when the 
app is a provider for file picker and 
contact picker contracts, headers in 
settings panes, and the app’s page in the 
Store. Also provides the splash screen 
background color unless that is set 
separately. 

n/a n/a n/a 

  Notifi- 
cations 

Badge 
logo 

Shown next to a badge notification to 
identify the app on the lock screen 
(uncommon, as this requires additional 
capabilities to be declared). 

24x24 33x33 43x43 

  Splash 
screen 

Splash 
screen 

When the app is launched, this image is 
shown in the center of the screen against 
the Background color. The image can 
utilize transparency if desired. 

620x300 868x420 1116x5
40 

    Back- 
ground 
color 

Color that will fill the majority of the 
splash screen; if not set, the App UI 
Background color is used. 

n/a n/a n/a 

100



In the table, note that 80% scale tile graphics are used in specific cases like low DPI modes (generally 
when the DPI is less than 130 and the resolution is less than 2560 x 1440) and should be provided with 
other scaled images. Note also that there are additional graphics besides the Packaging Logo (first item 
in the table) that you’ll need when uploading an app to the Windows Store. See the App images topic in 
the docs under “Promotional images” for full details.  

When saving these files, append .scale-80, .scale-100, .scale-140, and .scale-180 to the filenames, 
before the file extension, as in splashscreen.scale-140.png. This allows you, both in the manifest and 
elsewhere in the app, to refer to an image with just the base name, such as splashscreen.png, and 
Windows will automatically load the appropriate variant for the current scale. Otherwise it looks for one 
without the suffix. No code needed! This is demonstrated in the HereMyAm3b example, where I’ve 
added all the various branded graphics (with some additional text in each graphic to show the scale). To 
test these different graphics, use the set resolution/scaling button in the simulator—refer to Figure 2-5 
in Chapter 2—to choose different pixel densities on a 10.6” screen (1366 x 768 =100%, 1920 x 1080 = 
140%, and 2560 x 1440 = 180%). You’ll also see the 80% scale used on the other display choices, 
including the 23” and 27” settings. In all cases, the setting affects which images are used on the Start 
screen and the splash screen, but note that you might need to exit and restart the simulator to see the 
new scaling take effect. 

One thing you might also notice is that full-color photographic images don’t scale down very well to 
the smallest sizes (store logo and small logo). This is one reason why such logos are typically simpler 
with Windows Store app design, which also keeps them smaller when compressed. This is an excellent 
consideration to keep your package size smaller when you make more versions for different contrasts 
and languages. We’ll see more on this in Chapter 17, “Apps for Everyone.” 

Tip Two other branding-related resources you might be interested in are the Branding your Windows 
Store app topic in the documentation (covering design aspects) and the CSS styling and branding your 
app sample (covering CSS variations and dynamically changing the active stylesheet). 

Activation Event Sequence 
As the app host is built on the same parsing and rendering engines as Internet Explorer, the general 
sequence of activation events is more or less what a web application sees in a browser. Actually, it’s 
more rather than less! When you launch an app from its tile, here’s the process as Windows sees it: 

1. Windows displays a splash screen using information from the app manifest. 

2. Windows launches the app host, identifying the app to launch. 

3. The app host retrieves the app’s Start Page setting (see the Application UI tab in the manifest 
editor), which identifies the HTML page to load. 

4. The app host loads that page along with referenced stylesheets and script (deferring script 
loading if indicated in the markup). Here it’s important that all files are properly encoded for 
best startup performance. (See the sidebar below.) 

101

http://msdn.microsoft.com/library/windows/apps/hh846296.aspx
http://msdn.microsoft.com/library/windows/apps/hh465418.aspx
http://msdn.microsoft.com/library/windows/apps/hh465418.aspx
http://code.msdn.microsoft.com/windowsapps/App-Branding-sample-9f87b7a2
http://code.msdn.microsoft.com/windowsapps/App-Branding-sample-9f87b7a2


5. document.DOMContentLoaded fires. You can use this to do further initialization specifically related 
to the DOM, if desired (not common). 

6. Windows.UI.WebUI.WebUIApplication.onactivated fires. This is typically where you’ll do all 
your startup work, instantiate WinJS and custom controls, initialize state, and so on. 

7. The splash screen is hidden once the activated event handler returns (unless the app has 
requested a deferral as discussed later in the “Activation Deferrals” section). 

8. body.onload fires. This is typically not used in Windows Store apps, though it might be utilized 
by imported code or third party libraries. 

What’s also very different is that an app can again be activated for many different purposes, such as 
contracts and associations, even while it’s already running. As we’ll see in later chapters, the specific 
page that gets loaded (step 3) can vary by contract, and if a particular page is already running it will 
receive only the Windows.UI.WebUI.WebUIApplication.onactivated event and not the others. 

For the time being, though, let’s concentrate on how we work with this core launch process, and 
because you’ll generally do your initialization work within the activated event, let’s examine that 
structure more closely. 

Sidebar: File Encoding for Best Startup Performance 
To optimize bytecode generation when parsing HTML, CSS, and JavaScript, the Windows Store 
requires that all .html, .css, and .js files are saved with Unicode UTF-8 encoding. This is the default 
for all files created in Visual Studio or Blend. If you’re importing assets from other sources, check 
this encoding: in Visual Studio’s File Save As dialog (Blend doesn’t have this at present), select 
Save with Encoding and set that to Unicode (UTF-8 with signature) – Codepage 65001. The 
Windows App Certification Kit will issue warnings if it encounters files without this encoding. 

  
Along these same lines, minification of JavaScript isn’t particularly important for Windows 

Store apps. Because an app package is downloaded from the Windows Store as a unit and often 
contains other assets that are much larger than your code files, minification won’t make much 
difference there. Once the package is installed, bytecode generation means that the package’s 
JavaScript has already been processed and optimized, so minification won’t have any additional 
performance impact. 

102



Activation Code Paths 
As we saw in Chapter 2, new projects created in Visual Studio or Blend give you the following code in 
js/default.js (a few comments have been removed): 

(function () { 
    "use strict"; 
 
    var app = WinJS.Application; 
    var activation = Windows.ApplicationModel.Activation; 
 
    app.onactivated = function (args) { 
        if (args.detail.kind === activation.ActivationKind.launch) { 
            if (args.detail.previousExecutionState !==  
                activation.ApplicationExecutionState.terminated) { 
                // TODO: This application has been newly launched. Initialize  
                // your application here. 
            } else { 
                // TODO: This application has been reactivated from suspension.  
                // Restore application state here. 
            } 
            args.setPromise(WinJS.UI.processAll()); 
        } 
    }; 
 
    app.oncheckpoint = function (args) { 
    }; 
 
    app.start(); 
})(); 

Let’s go through this piece by piece to review what we already learned and complete our 
understanding of this essential code structure: 

• (function () { … })(); surrounding everything is again the JavaScript module pattern. 

• "use strict" instructs the JavaScript interpreter to apply Strict Mode, a feature of ECMAScript 5. 
This checks for sloppy programming practices, like using implicitly declared variables, so it’s a 
good idea to leave it in place. 

• var app = WinJS.Application; and var activation = Windows.ApplicationMode.Activation; 
both create substantially shortened aliases for commonly used namespaces. This is a common 
practice to simplify multiple references to the same part of WinJS or WinRT. 

• app.onactivated = function (args) {…} assigns a handler for the WinJS.UI.onactivated event, 
which is a wrapper for Windows.UI.WebUI.WebUIApplication.onactivated. In this handler: 

• args.detail.kind identifies the type of activation. 

• args.detail.previousExecutionState identifies the state of the app prior to this activation, 
which determines whether to reload session state. 

103

http://msdn.microsoft.com/library/br230269.aspx


• WinJS.UI.processAll instantiates WinJS controls—that is, elements that contain a 
data-win-control attribute, as we’ll cover in Chapter 4, “Controls, Control Styling, and 
Data Binding.” 

• args.setPromise instructs Windows to wait until WinJS.UI.processAll is complete 
before removing the splash screen. (See “Activation Deferrals” later in this chapter.) 

• app.oncheckpoint gets an empty handler in the template; we’ll cover this in the “App Lifecycle 
Transition Events” section later in this chapter. 

• app.start() (WinJS.Application.start()) initiates processing of events that WinJS queues 
during startup. 

Notice how we’re not directly handling any of the events that Windows is firing, like DOMContent-
Loaded or Windows.UI.WebUI.WebUIApplication.onactivated. Are we just ignoring those events? Not 
at all: one of the convenient services that WinJS offers through WinJS.UI.Application is a simplified 
structure for activation and other app lifetime events. Entirely optional, but very helpful. 

With start, for example, a couple of things are happening. First, the WinJS.Application object 
listens for a variety of events that come from different sources (the DOM, WinRT, etc.) and coalesces 
them into a single object with which you register your own handlers. Second, when WinJS.Appli- 
cation receives activation events, it doesn’t just pass them on to the app’s handlers, because your 
handlers might not, in fact, have been set up yet. So it queues those events until the app says it’s really 
ready by calling start. At that point WinJS goes through the queue and fires those events. That’s really 
all there is to it. 

As the template code shows, apps typically do most of their initialization work within the activated 
event, where there are a number of potential code paths depending on the values in args.details (an 
IActivatedEventArgs object). If you look at the documentation for WinJS.Application.onactivated, 
you’ll see that the exact contents of args.details depends on specific activation kind. All activations, 
however, share three common properties: 

args.details 
Property 

Type (in Windows.Application-
Model.Activation) 

Description 

Kind ActivationKind The reason for the activation. The possibilities are launch 
(most common); search, shareTarget, file, protocol, 
fileOpenPicker, fileSavePicker, contactPicker, and 
cachedFileUpdater (for servicing contracts); and device, 
printTask, Settings, and cameraSettings (generally 
used with device apps). For each supported activation 
kind, the app will have an appropriate initialization path. 

previousExecutionState ApplicationExecutionState The state of the app prior to this activation. Values are 
notRunning, running, suspended, terminated, and 
closedByUser. Handling the terminated case is most 
common because that’s the one where you want to 
restore previously saved session state (see “App Lifecycle 
Transition Events”). 

 

104

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.iactivatedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/br212679.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.activationkind.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.applicationexecutionstate.aspx


splashScreen SplashScreen Contains an ondismissed event for when the system 
splash screen is dismissed. This also contains an 
imageLocation property (Windows.Foundation.Rect) 
with coordinates where the splash screen image was 
displayed, as noted in “Extended Splash Screens.” 

 

Additional properties provide relevant data for the activation. For example, launch provides the 
tileId and arguments from secondary tiles. (See Chapter 13, “Tiles, Notifications, the Lock Screen, and 
Background Tasks”). The search kind (the next most commonly used) provides queryText and language, 
protocol provides a uri, and so on. We’ll see how to use many of these in their proper contexts, and 
sometimes they apply to altogether different pages than default.html. What’s contained in the 
templates (and what we’ve already used for an app like Here My Am!) is primarily to handle normal 
startup from the app tile (or within Visual Studio’s debugger). 

WinJS.Application Events 
WinJS.Application isn’t concerned only with activation—its purpose is to centralize events from several 
different sources and turn them into events of its own. Again, this enables the app to listen to events 
from a single source (either assigning handlers via addEventListener(<event>) or on<event> properties; 
both are supported). Here’s the full rundown on those events and when they’re fired (if queued, the 
event is fired within WinJS.Application.start): 

• activated Queued in the local context for Windows.UI.WebUI.WebUIApplication.-
onactivated. In the web context, where WinRT is not applicable, this is instead queued for 
DOMContentLoaded (where the launch kind will be launch and previousExecutionState is set to 
notRunning). 

• loaded Queued for DOMContentLoaded in all contexts;21 in the web context, will be queued prior 
to activated. 

• ready Queued after loaded and activated. This is the last one in the activation sequence. 

• error Fired if there’s an exception in dispatching another event. (If the error is not handled 
here, it’s passed onto window.onerror.) 

• checkpoint This tells the app when to save the session state it needs to restart from a previous 
state of terminated. It’s fired in response to both the document’s beforeunload event, as well as 
Windows.UI.WebUI.WebUIApplication.onsuspending. 

• unload Also fired for beforeunload after the checkpoint event is fired. 
 
 

21 There is also WinJS.Utilities.ready through which you can specifically set a callback for DOMContentLoaded. This is used 
within WinJS, in fact, to guarantee that any call to WinJS.UI.processAll is processed after DOMContentLoaded. 

105

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.splashscreen.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br211903.aspx


• settings Fired in response to Windows.UI.ApplicationSettings.SettingsPane.-
oncommandsrequested. (See Chapter 8.) 

With most of these events (except error and settings), the args you receive contains a method 
called setPromise. If you need to perform an async operation (like an XmlHttpRequest) within an event 
handler, you can obtain the promise for that work and hand it off to setPromise instead of calling its 
then or done yourself. WinJS will then not process the next event in the queue until that promise is 
fulfilled. Now to be honest, there’s no actual difference between this and just calling done on the 
promise yourself within the loaded, ready, and unload events. It does make a difference with activated 
and checkpoint (specifically the suspending case) because Windows will otherwise assume that you’ve 
done everything you need as soon as you return from the handler; more on this in the “Activation 
Deferrals” section. So, in general, if you have async work within these events handlers, it’s a good habit 
to use setPromise. Because WinJS.UI.processAll is itself an async operation, the templates wrap it with 
setPromise so that the splash screen isn’t removed until WinJS controls have been fully instantiated. 

I think you’ll generally find WinJS.Application to be a useful tool in your apps, and it also provides a 
few more features as documented on the WinJS.Application page. For example, it provides local, temp, 
roaming, and sessionState properties, which are helpful for managing state as we’ll see later on in this 
chapter and in Chapter 8. 

The other bits are the queueEvent and stop methods. The queueEvent method drops an event into 
the queue that will get dispatched, after any existing queue is clear, to whatever listeners you’ve set up 
on the WinJS.Application object. Events are simply identified with a string, so you can queue an event 
with any name you like, and call WinJS.Application.addEventListener with that same name anywhere 
else in the app. This can be useful for centralizing custom events that you might invoke both during 
startup and at other points during execution without creating a separate global function for that 
purpose. It’s also a powerful means through which separately defined, independent components can 
raise events that get aggregated into a single handler. (For an example of using queueEvent, see 
Scenario 2 of the App model sample.) 

As for stop, this is provided to help with unit testing so that you can simulate different activation 
sequences without having to relaunch the app and somehow simulate the right conditions when it 
restarts. When you call stop, WinJS removes its listeners, clears any existing event queue, and clears the 
sessionState object, but the app continues to run. You can then call queueEvent to populate the queue 
with whatever events you like and then call start again to process that queue. This process can be 
repeated as many times as needed. 

Extended Splash Screens 
Now, though the default splash screen helps keep the user engaged, they won’t stay engaged if that 
same splash screen stays up for a really long time. In fact, “a really long time” for the typical consumer 
amounts to all of 15 seconds, at which point they’ll pretty much start to assume that the app has hung 
and return to the Start screen to launch some other app that won’t waste their afternoon. 

106

http://msdn.microsoft.com/library/windows/apps/br229774.aspx
http://code.msdn.microsoft.com/windowsapps/ApplicationModel-Sample-4be6575d


In truth, so long as the user keeps your app in the foreground and doesn’t switch away, Windows will 
give you all the time you need. But if the user switches to the Start screen or another app, you’re subject 
to a 15-second timeout. If you’re not in the foreground, Windows will wait only 15 seconds for an app 
to get through app.start and the activated event, at which point your home page should be rendered. 
Otherwise, boom! Windows automatically terminates your app. 

The first consideration, of course, is to optimize your startup process to be as quick as possible. Still, 
sometimes an app really needs more than 15 seconds to get going, especially the first time it’s run after 
being installed, so it should let the user know that something is happening. For example, an app 
package might include a bunch of compressed data when downloaded from the Store, which it needs 
to expand onto the local file system on first run so that subsequent launches are much faster. Many 
games do this with graphics and other resources, optimizing the local storage for device characteristics; 
other apps might populate a local IndexedDB from data in a JSON file or download and cache a bunch 
of data from an online service. 

It’s also possible that the user is trying to launch your app shortly after rebooting the system, in 
which case there might be lots of disk activity going on. If you load data from disk in your activation 
path, your process could take much longer than usual. 

In all these cases, whenever an app is at risk of exceeding 15 seconds, you want to implement an 
extended splash screen. This means hiding your real home page behind another div that looks exactly 
like the system-provided splash screen but that is under the app’s control so that it can display progress 
indicators or other custom UI while initialization continues. 

In general, Microsoft recommends that the extended splash screen initially matches the system 
splash screen to avoid visual jumps. (See Guidelines and checklist for splash screens.) At this point many 
apps simply add a progress indicator with some kind of a “Please go grab a drink, do some jumping 
jacks, or enjoy a few minutes of meditation while we load everything” message. Matching the system 
splash screen, however, doesn’t mean that the extended splash screen has to stay that way. A number of 
apps start with a replica of the system splash screen and then animate the graphic to one side to make 
room for other elements. Other apps fade out the initial graphic and start a video. 

Making a smooth transition is the purpose of the args.detail.splashScreen object included with 
the activated event. This object—see Windows.ApplicationModel.Activation.-
SplashScreen—contains an imageLocation property (a Windows.Foundation.Rect) containing the 
placement and size of the splash screen image. Because your app can be run on a variety of different 
display sizes, this tells you where to place the same image on your own page, where to start an 
animation, and/or where to place things like messages and progress indicators relative to that image. 

The splashScreen object also provides an ondismissed event so that you can perform specific 
actions when the system-provided splash screen is dismissed and your first page comes up. Typically, 
this is useful to trigger the start of on-page animations, starting video playback, and so on. 

 
 

107

http://msdn.microsoft.com/library/windows/apps/hh465338.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.splashscreen.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.splashscreen.aspx


For an example of an extended splash screen, refer to the Splash screen sample. One more detail that’s 
worth mentioning is that because an extended splash screen is just a page in your app, it can be placed 
into the various view states such as snapped view. So, as with every other page in your app, make sure 
your extended splash screen handles those states! 

Activation Deferrals 
As mentioned earlier, once you return from the activated event, Windows assumes that you’ve done 
everything you need on startup. By default, then, Windows will remove its splash screen and make your 
home page visible. But what if you need to complete one or more async operations before that home 
page is really ready, such as completing WinJS.UI.processAll? 

This, again, is what the args.setPromise method inside the activated event is for. If you give your 
async operation’s promise to setPromise, Windows will wait until that promise is fulfilled before taking 
down the splash screen. The templates again use this to keep the system splash screen up until 
WinJS.UI.processAll is complete. 

As setPromise just waits for a single promise to complete, how do you handle multiple async 
operations? You can do this a couple of ways. First, if you need to control the sequencing of those 
operations, you can chain them together as we already know how to do—just be sure that the end of 
the chain is a promise that becomes the argument to setPromise—don’t call its done method (use then 
if needed)! If the sequence isn’t important but you need all of them to complete, you can combine 
those promises by using WinJS.Promise.join , passing the result to setPromise. If you need only one of 
the operations to complete, you can use WinJS.Promise.any instead—join and any are discussed in the 
last section of this chapter. 

The other means is to register more than one handler with WinJS.Application.onactivated; each 
handler will get its own event args and its own setPromise function, and WinJS will combine those 
returned promises together with WinJS.Promise.join. 

Now the setPromise method coming from WinJS is actually implemented using a more generic 
deferral mechanism from WinRT. The args given to Windows.UI.WebUI.WebUIApplication.-
onactivated (the WinRT event) contains a little method called getDeferral (technically Windows.-
UI.WebUI.ActivatedOperation.getDeferral). This function returns a deferral object that contains a 
complete method, and Windows will leave the system splash screen up until you call that method 
(although this doesn’t change the fact that users are impatient and your app is still subject to the 
15-second limit!). The code looks like this: 

//In the activated handler 
var activatedDeferral = Windows.UI.WebUI.ActivatedOperation.getDeferral(); 
 
someOperationAsync().done(function () { 
    //After initialization is complete  
    activatedDeferral.complete(); 
} 

 

108

http://code.msdn.microsoft.com/windowsapps/Splash-screen-sample-89c1dc78
http://msdn.microsoft.com/library/windows/apps/windows.ui.webui.activateddeferral.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.webui.activateddeferral.aspx


Of course, setPromise ultimately does exactly this, and if you add a handler for the WinRT activated 
event directly, you can use the deferral yourself. 

App Lifecycle Transition Events and Session State 

To an app—and the app’s publisher—a perfect world might be one in which consumers ran that app 
and stayed in that app forever (making many in-app purchases, no doubt!). Well, the hard reality is that 
this just isn’t reality. No matter how much you’d love it to be otherwise, yours is not the only app that 
the user will ever run. After all, what would be the point of features like sharing or snapping if you 
couldn’t have multiple apps running together? For better or for worse, users will be switching between 
apps, changing view states, and possibly closing your app. But what you can do is give energy to the 
“better” side of the equation by making sure your app behaves well under all these circumstances. 

The first consideration is focus, which applies to controls in your app as well as to the app itself. Here 
you can simply use the standard HTML blur and focus events. For example, an action game or one with 
a timer would typically pause itself on blur and perhaps restart again on focus. 

A similar but different condition is visibility. An app can be visible but not have the focus, as when it’s 
snapped. In such cases an app would continue things like animations or updating a feed, but it would 
stop such activities when visibility is lost (that is, when the app is actually in the background). For this, 
use the visibilitychange event in the DOM API, and then examine the visibilityState property of 
the window or document object, as well as the document.hidden property. (The event works for visibility of 
individual elements as well.) A change in visibility is also a good time to save user data like documents 
or game progress. 

For view state changes, an app can detect these in several ways. As shown in the Here My Am! 
example, an app typically uses media queries (in declarative CSS or in code through media query 
listeners) to reconfigure layout and visibility of elements, which is really all that view states should affect. 
(Again, view state changes never change the mode of the app, just layout and object visibility.) At any 
time, an app can also retrieve the current view state through Windows.UI.ViewManagement.-
ApplicationView.value. This returns one of the Windows.UI.ViewManagement.ApplicationViewState 
values: snapped, filled, fullScreenLandscape, and fullScreenPortrait; details in Chapter 6, “Layout.” 

When your app is closed (the user swipes top to bottom or presses Alt+F4), it’s important to note 
that the app is first moved off-screen (hidden), suspended, and then closed, so the typical DOM events 
like unload aren’t much use. A user might also kill your app in Task Manager, but this won’t generate 
any events in your code either. Remember also that apps should not close themselves, as discussed 
before, but they can use MSApp.terminateApp to close due to unrecoverable conditions. 

Suspend, Resume, and Terminate 
Beyond focus, visibility, and view states, there are three other critical moments in an app’s lifetime: 

109

http://msdn.microsoft.com/library/windows/apps/hh441213.aspx
http://msdn.microsoft.com/library/windows/apps/hh453385.aspx


• Suspending When an app is not visible in any view state, it will be suspended after five 
seconds (according to the wall clock) to conserve battery power. This means it remains wholly in 
memory but won’t be scheduled for CPU time and thus won’t have network or disk activity 
(except when using specifically allowed background tasks). When this happens, the app receives 
the Windows.UI.WebUI.WebUIApplication.onsuspending event, which is also exposed through 
WinJS.Application.oncheckpoint. Apps must return from this event within the five-second 
period, or Windows will assume the app is hung and terminate it (period!). During this time, apps 
save transient session state and should also release any exclusive resources acquired as well, like 
file streams or device access. (See How to suspend an app.) 

• Resuming If the user switches back to a suspended app, it receives the Windows.UI.WebUI.- 
WebUIApplication.onresuming event. (This is not surfaced through WinJS.Application because 
it’s not commonly used and WinJS has no value to add.) We’ll talk more about this in the “Data 
from Services and WinJS.xhr” section coming up soon, because the need for this event often 
arises when using services. In addition, if you’re tracking sensor input of any kind (like compass, 
geolocation, or orientation), resuming is a good time to get a fresh reading. You’ll also want to 
check license status for your app and in-app purchases if you’re using trials and/or expirations 
(see Chapter 17). There are also times when you might want to refresh your layout (as we’ll see in 
Chapter 6), because it’s possible for your app to resume directly into a different view state than 
when it was suspended or to a different screen resolution as when the device has been 
connected to an external monitor. The same goes for enabling/disabling clipboard commands. 

• Terminating When suspended, an app might be terminated if there’s a need for more 
memory. There is no event for this, because by definition the app is already suspended and no 
code can run. Nevertheless, this is important for the app lifecycle because it affects 
previousExecutionState when the app restarts. 

It’s very helpful to know that you can simulate these conditions in the Visual Studio debugger by 
using the toolbar drop-down shown in Figure 3-7. These commands will trigger the necessary events as 
well as set up the previousExecutionState value for the next launch of the app. (Be very grateful for 
these controls—there was a time when we didn’t have them, and it was painful to debug these 
conditions!) 

 
FIGURE 3-7 The Visual Studio toolbar drop-down to simulate suspend, resume, and terminate. 

We’ve briefly listed those previous states before, but let’s see how they relate to the events that get 
fired and the previousExecutionState value that shows up when the app is next launched. This can get 
a little tricky, so the transitions are illustrated in Figure 3-8 and the table below describes how the 

110

http://msdn.microsoft.com/library/windows/apps/hh465138.aspx


previousExecutionState values are determined. 

Value of previousExecutionState Scenarios 
notrunning First run after install from Store. 

First run after reboot or log off. 
App is launched within 10 seconds of being closed by user (about the time it 
takes to hide, suspend, and cleanly terminate the app; if the user relaunches 
quickly, Windows has to immediately terminate it without finishing the 
suspend operation). 
App was terminated in Task Manager while running or closed itself with 
MSApp.terminateApp. 

running App is currently running and then invoked in a way other than its app tile, 
such as Search, Share, secondary tiles, toast notifications, and all other 
contracts. When an app is running and the user taps the app tile, Windows 
just switches to the already-running app and without triggering activation 
events (though focus and visibilitychange will both be raised). 

suspended App is suspended and then invoked in a way other than the app tile (as above 
for running). In addition to focus/visibility events, the app will also receive the 
resuming event. 

terminated App was previously suspended and then terminated by Windows due to 
resource pressure. Note that this does not apply to MSApp.terminateApp 
because an app would have to be running to call that function. 

closedByUser App was closed by an uninterrupted close gesture (swipe down or Alt+F4). An 
“interrupted” close is when the user switches back to the app within 10 
seconds, in which case the previous state will be notrunning instead. 

 

 
FIGURE 3-8 Process lifecycle events and previousExecutionState values. 

The big question for the app, of course, is not so much what determines the value of previous-
ExecutionState as what it should actually do with this value during activation. Fortunately, that story is a 

111



bit simpler and one that we’ve already seen in the template code: 

• If the activation kind is launch and the previous state is notrunning or closedByUser, the app 
should start up with its default UI and apply any persistent state or settings. With closedByUser, 
there might be scenarios where the app should perform additional actions (such as updating 
cached data) after the user explicitly closed the app and left it closed for a while. 

• If the activation kind is launch and the previous state is terminated, the app should start up in 
the same state as when it was last suspended. 

• For launch and other activation kinds that include additional arguments or parameters (as with 
secondary tiles, toast notifications, and contracts), it should initialize itself to serve that purpose 
by using the additional parameters. The app might already be running, so it won’t necessarily 
initialize its default state again. 

The second requirement above is exactly why the templates provide a code structure for this case 
along with a checkpoint handler. We’ll see the full details of saving and reloading state in Chapter 8. 
The basic idea is that an app should, when being suspended if not sooner, save whatever transient 
session state it would need to rehydrate itself after being terminated. This includes unsubmitted form 
data, scroll positions, the navigation stack, and other variables. This is because although Windows might 
have suspended the app and dumped it from memory, it’s still running in the user’s mind. Thus, when 
users activate the app again for normal use (activation kind is launch, rather than through a contract), 
they expect that app to be right where it was before. By the time an app gets suspended, then, it needs 
to have saved whatever state is necessary to make this possible. It then restores that state when 
previousExecutionState is terminated. 

For more on app design where this is concerned, see Guidelines for app suspend and resume. Be 
clear that if the user directly closes the app with Alt+F4 or the swipe-down gesture, the suspending and 
checkpoint events will also be raised, so the app still saves session state. However, the app will be 
automatically terminated after being suspended, and it won’t be asked to reload session state when it’s 
restarted because previousExecutionState will be notRunning or closedByUser. 

It works out best, actually, to save session state as it changes during the app’s lifetime, thereby 
minimizing the work needed within the suspending event (where you have only five seconds). Mind 
you, this session state does not include data that is persistent across sessions like user files, high scores, 
and app settings, because an app would always reload or reapply such persistent data in each activation 
path. The only concern here is maintaining the illusion that the app was always running. 

You always save session state to your appdata folders or settings containers, which are provided by 
the Windows.Storage.ApplicationData API. Again, we’ll see all the details in Chapter 8. What I want to 
point out here are a few helpers that WinJS provides for all this. 

First is the WinJS.Application.checkpoint event, which provides a single convenient place to save 
both session state and any other persistent data you might have, if you haven’t already done so. 

Second is the WinJS.Application.sessionState object. On normal startup, this is just an empty 

112

http://msdn.microsoft.com/library/windows/apps/hh465088.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.applicationdata.aspx


object to which you can add whatever properties you like, including other objects. A typical strategy is 
to just use sessionState directly as a container for variables. Within the checkpoint event, WinJS 
automatically serializes the contents of this object (using JSON.stringify) into a file within your local 
appdata folder (meaning that variables in sessionState must have a string representation). Note that 
because the WinJS ensures that its own handler for checkpoint is always called after your app gets the 
event, you can be assured that WinJS will save whatever you write into sessionState at any time before 
your checkpoint handler returns. 

Then, when the app is activated with the previous state of terminated, WinJS automatically 
rehydrates the sessionState object so that everything you put there is once again available. If you’ve 
used this object for storing variables, you only need to avoid settings those values back to their defaults 
when reloading your state. 

Third, if you don’t want to use the sessionState object or have state that won’t work with it, the 
WinJS.Application object makes it easy to write your own files without having to use async WinRT APIs. 
Specifically, it provides (as shown in the documentation) local, temp, and roaming objects that each 
have methods called readText, writeText, exists, and remove. These objects each work within their 
respective appdata folders and provide a simplified API for file I/O, as shown in Scenario 1 of the App 
model sample. 

A final aid ties into a deferral mechanism like the one for activation. The deferral is important 
because Windows will suspend your app as soon as you return from the suspending event. If you need 
a deferral for async operations, the event args for WinJS.Application.oncheckpoint provides a 
setPromise method that ties into the underlying WinRT deferral. As before, you pass a promise for an 
async operation (or combined operations) to setPromise, which in turn calls the deferral’s complete 
method once the promise is fulfilled. 

On the WinRT level, the event args for suspending contains an instance of Windows.UI.WebUI.-
WebUIApplication.SuspendingOperation. This provides a getDeferral method that returns a deferral 
object with a complete method as with activation.  

Well, hey! That sounds pretty good—is this perhaps a sneaky way to circumvent the restriction on 
running Windows Store apps in the background? Will my app keep running indefinitely if I request a 
deferral by never calling complete? 

No such luck, amigo. Accept my apologies for giving you a fleeting moment of exhilaration! Deferral 
or not, five seconds is the most you’ll ever get. Still, you might want to take full advantage of that time, 
perhaps to first perform critical async operations (like flushing a cache) and then to attempt other 
noncritical operations (like a sync to a server) that might greatly improve the user experience. For such 
purposes, the suspendingOperation object also contains a deadline property, a Date value indicating the 
time in the future when Windows will forcibly suspend you regardless of any deferral. Once the first 
operation is complete, you can check if you have time to start another, and so on. 

A basic demonstration of using the suspending deferral, by the way, can be found in the App 
activated, resume, and suspend sample. This also provides an example of activation through a custom 

113

http://msdn.microsoft.com/library/windows/apps/br229774.aspx
http://code.msdn.microsoft.com/windowsapps/ApplicationModel-Sample-4be6575d
http://code.msdn.microsoft.com/windowsapps/ApplicationModel-Sample-4be6575d
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.suspendingoperation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.suspendingoperation.aspx
http://code.msdn.microsoft.com/windowsapps/App-activating-and-ec15b168
http://code.msdn.microsoft.com/windowsapps/App-activating-and-ec15b168


URI scheme, a subject that we’ll be covering later in Chapter 12, “Contracts.” An example of handling 
state, in addition to the updates we’ll make to Here My Am! in the next section, can be found in 
Scenario 3 of the App model sample. 

Basic Session State in Here My Am! 
To demonstrate some basic handling of session state, I’ve made a few changes to Here My Am! as given 
in the HereMyAm3c example. Here we have two pieces of information we care about: the variables 
lastCapture (a StorageFile with the image) and lastPosition (a set of coordinates). We want to make 
sure we save these when we get suspended so that we can properly apply those values when the app 
gets launched with the previous state of terminated. 

With lastPosition, we can just move this into the sessionState object (prepending app.- 
sessionState.) as in the completed handler for getGeopositionAsync: 

gl.getGeopositionAsync().done(function (position) { 
    app.sessionState.lastPosition = { 
        latitude: position.coordinate.latitude,  
        longitude: position.coordinate.longitude 
    }; 
 
    updatePosition(); 
    }, function (error) { 
        console.log("Unable to get location."); 
    }); 
} 

Because we’ll need to set the map location from here and from previously saved coordinates, I’ve 
moved that bit of code into a separate function that also makes sure a location exists in sessionState: 

function updatePosition() { 
    if (!app.sessionState.lastPosition) { 
        return; 
    } 
 
    callFrameScript(document.frames["map"], "pinLocation", 
        [app.sessionState.lastPosition.latitude, app.sessionState.lastPosition.longitude]); 
} 

Note also that app.sessionState is initialized to an empty object by default, { }, so lastPosition will 
be undefined until the geolocation call succeeds. This also works to our advantage when rehydrating 
the app. Here’s what the previousExecutionState conditions look like for this: 

if (args.detail.previousExecutionState !==  
    activation.ApplicationExecutionState.terminated) { 
    //Normal startup: initialize lastPosition through geolocation API 
} else { 
    //WinJS reloads the sessionState object here. So try to pin the map with the saved location 
    updatePosition(); 
} 

114

http://code.msdn.microsoft.com/windowsapps/ApplicationModel-Sample-4be6575d


Because we stored lastPosition in sessionState, it will have been automatically saved in 
WinJS.Application.checkpoint when the app ran previously. When we restart from terminated, WinJS 
automatically reloads sessionState; if we’d saved a value there previously, it’ll be there again and 
updatePosition just works. 

You can test this by running the app with these changes and then using the Suspend and shutdown 
option on the Visual Studio toolbar. Set a breakpoint on the updatePosition call above, and then restart 
the app in the debugger. You’ll see that sessionState.lastPosition is initialized at that point. 

With the last captured picture, we don’t need to save the StorageFile, just the pathname: we copied 
the file into our local appdata (so it persists across sessions already) and can just use the ms-appdata:// 
URI scheme to refer to it. When we capture an image, we just save that URI into sessionState.imageURL 
(the property name is arbitrary) at the end of the promise chain inside capturePhoto: 

app.sessionState.imageURL = "ms-appdata:///local/HereMyAm/" + newFile.name; 
that.src = app.sessionState.imageURL 

This value will also be reloaded when necessary during startup, so we can just initialize the img src 
accordingly: 

if (app.sessionState.imageURL) { 
    document.getElementById("photo").src = app.sessionState.imageURL; 
} 

This will initialize the image display from sessionState, but we also need to initialize lastCapture so 
that the same image is available through the Share contract. For this we need to also save the full file 
path so we can re-obtain the StorageFile through Windows.Storage.StorageFile.getFile- 
FromPathAsync (which doesn’t work with ms-appdata:// URIs). So, in capturePhoto: 

app.sessionState.imagePath = newFile.path; 

And during startup: 

if (app.sessionState.imagePath) { 
    Windows.Storage.StorageFile.getFileFromPathAsync(app.sessionState.imagePath) 
        .done(function (file) { 
            lastCapture = file; 
 
            if (app.sessionState.imageURL) { 
                document.getElementById("photo").src = app.sessionState.imageURL; 
            } 
        }); 

 

 
I’ve placed the code to set the img src inside the completed handler here because we want the image to 
appear only if we can also access its StorageFile again for sharing. Otherwise the two features of the 
app would be out of sync. 

115



In all of this, note again that we don’t need to explicitly reload these variables within the terminated 
case because WinJS reloads sessionState automatically. If we managed our state more directly, such as 
storing some variables in roaming settings within the checkpoint event, we would reload and apply 
those values at this time. 

Note Using ms-appdata:/// and getFileFromPathAsync works because the file exists in a location 
that we can access programmatically by default. It also works for libraries for which we declare a 
capability in the manifest. If, however, we obtained a StorageFile from the file picker, we’d need to 
save that in the Windows.Storage.AccessCache to preserve access permissions across sessions. 

Data from Services and WinJS.xhr 

Though we’ve seen examples of using data from an app’s package (via URIs or Windows.Appli- 
cationModel.Package.current.installedLocation) as well as in appdata, it’s very likely that your app 
will incorporate data from a web service and possibly send data to services as well. For this, the most 
common method is to employ XmlHttpRequest. You can use this in its raw (async) form, if you like, or 
you can save yourself a whole lot of trouble by using the WinJS.xhr function, which conveniently wraps 
the whole business inside a promise. 

Making the call is quite easy, as demonstrated in the SimpleXhr example for this chapter. Here we 
use WinJS.xhr to retrieve the RSS feed from the Windows 8 developer blog: 

WinJS.xhr({ url: "http://blogs.msdn.com/b/windowsappdev/rss.aspx" }) 
    .done(processPosts, processError, showProgress); 

That is, give WinJS.xhr a URI and it gives back a promise that delivers its results to your completed 
handler (in this case processPosts) and will even call a progress handler if provided. With the former, 
the result contains a responseXML property, which is a DomParser object. With the latter, the event object 
contains the current XML in its response property, which we can easily use to display a download count: 

function showProgress(e) { 
    var bytes = Math.floor(e.response.length / 1024); 
    document.getElementById("status").innerText = "Downloaded " + bytes + " KB"; 
} 

The rest of the app just chews on the response text looking for item elements and displaying the 
title, pubDate, and link fields. With a little styling (see default.css), and utilizing the WinJS typography 
style classes of win-type-x-large (for title), win-type-medium (for pubDate), and win-type-small (for 
link), we get a quick app that looks like Figure 3-9. You can look at the code to see the details.22 

22  WinRT has a specific API for dealing with RSS feeds in Windows.Web.Syndication, which we’ll see in Chapter 14. You can 
use this if you want a more structured means of dealing with such data sources. As it is, JavaScript has intrinsic APIs to 
work with XML, so it’s really your choice. In a case like this, the syndication API along with Windows.Web.AtomPub and 
Windows.Data.Xml are very much needed by Windows 8 apps written in other languages that don’t have the same built-in 
features as JavaScript. 

116

http://msdn.microsoft.com/library/windows/apps/br229787.aspx


 
FIGURE 3-9 The output of the SimpleXhr app. 

For a fuller demonstration of XHR and related matters, refer to the XHR, handling navigation errors, 
and URL schemes sample along with the tutorial called How to create a mashup in the docs. I don’t go 
into much detail with XHR in this book because it’s primarily a matter of retrieving and processing data 
that has little to do with the Windows 8 platform. Instead, what concerns us here are the implications of 
suspend and resume. 

In particular, an app cannot predict how long it will stay suspended before being resumed or before 
being terminated and restarted. 

In the first case, an app that gets resumed will have all its previous data still in memory. It very much 
needs to decide, then, whether that data has become stale since the app was suspended and whether 
sessions with other servers have exceeded their timeout periods. You can also think of it this way: after 
what period of time will users not remember nor care what was happening the last time they saw your 
app? If it’s a week or longer, it might be reasonable to resume or restart in a default state. Then again, if 
you pick up right back where they were, users gain increasing confidence that they can leave apps 
running for a long time and not lose anything. Or you can compromise and give the user options to 
choose from. You’ll have to think through your scenario, of course, but if there’s any doubt, resume 
where the app left off. 

 

 

 

 

117

http://code.msdn.microsoft.com/windowsapps/XHR-handling-navigation-50d03a7a
http://code.msdn.microsoft.com/windowsapps/XHR-handling-navigation-50d03a7a
http://msdn.microsoft.com/library/windows/apps/hh452745.aspx


To check elapsed time, save a timestamp on suspend (from new Date().getTime()), get another 
timestamp in the resuming event, take the difference, and compare that against your desired refresh 
period. A Stock app, for example, might have a very short period. With the Windows 8 developer blog, 
on the other hand, new posts don’t show up more than once a day, so a much longer period on the 
order of hours is sufficient to keep up-to-date and to catch new posts within a reasonable timeframe. 

This is implemented in SimpleXhr by first placing the WinJS.xhr call into a separate function called 
downloadPosts, which is called on startup. Then we register for the resuming event with WinRT: 

Windows.UI.WebUI.WebUIApplication.onresuming = function () { 
    app.queueEvent({ type: "resuming" }); 
} 

Remember how I said we could use WinJS.Application.queueEvent to raise our own events to the 
app object? Here’s a great example. WinJS.Application doesn’t automatically wrap the resuming event 
because it has nothing to add to that process. But the code below accomplishes exactly the same thing, 
allowing us to register an event listener right alongside other events like checkpoint: 

app.oncheckpoint = function (args) { 
    //Save in sessionState in case we want to use it with caching 
    app.sessionState.suspendTime = new Date().getTime(); 
}; 
 
app.addEventListener("resuming", function (args) { 
    //This is a typical shortcut to either get a variable value or a default 
    var suspendTime = app.sessionState.suspendTime || 0; 
 
    //Determine how much time has elapsed in seconds 
    var elapsed = ((new Date().getTime()) - suspendTime) / 1000; 
 
    //Refresh the feed if > 1 hour (or use a small number for testing) 
    if (elapsed > 3600) { 
        downloadPosts(); 
    } 
}); 

To test this code, run it in Visual Studio’s debugger and set breakpoints within these events. Then 
click the suspend button in the toolbar (refer back to Figure 3-7), and you should enter the checkpoint 
handler. Wait a few seconds and click the resume button (play icon), and you should be in the resuming 
handler. You can then step through the code and see that the elapsed variable will have the number of 
seconds that have passed, and if you modify that value (or change 3600 to a smaller number), you can 
see it call downloadPosts again to perform a refresh. 

 

 

 

 

118



What about launching from the previously terminated state? Well, if you didn’t cache any data from 
before, you’ll need to refresh it again anyway. If you do cache some of it, your saved state (such as the 
timestamp) helps you decide whether to use the cache or load data anew. 

It’s worth mentioning here that you can use HTML5 mechanisms like localStorage, IndexedDB, and 
the app cache for caching purposes; data for these is stored within your local appdata folder. And 
speaking of databases, you may be wondering what’s available for Windows Store apps other than 
IndexedDB. One option is SQLite, as described in Using SQLite in a Windows Store app (on the blog of 
Tim Heuer, one of the Windows 8 engineers). You can also use the OData Library for JavaScript that’s 
available from http://www.odata.org/libraries. It’s one of the easiest ways to communicate with an 
online SQL Server database (or any other with an OData service), because it just uses XmlHttpRequest 
under the covers.  

Handling Network Connectivity (in Brief) 
We’ll be covering network matters in Chapter 14, “Networking,” but there’s one important aspect that 
you should be aware of early in your development efforts. What does an app do with changes to 
network connectivity, such as disconnection, reconnection, and changes in bandwidth or cost (such as 
roaming into another provider area)? 

The Windows.Networking.Connectivity APIs supply the details. There are three main ways to respond 
to such events: 

• First, have a great offline story for when connectivity is lost: cache important data, queue work to 
be done later, and continue to provide as much functionality as you can without a connection. 
Clearly this is closely related to your overall state management strategy. For example, if network 
connectivity was lost while you were suspended, you might not be able to refresh your data at 
all, so be prepared for that circumstance! On the flip side, if you were offline when suspended, 
check for connectivity when resuming. 

• Second, listen for network changes to know when connectivity is restored, and then process your 
queues, recache data, and so forth. 

• Third, listen for network changes to be cost-aware on metered networks. Section 4.5 of the 
Windows 8 app certification requirements, in fact, deals with protecting consumers from “bill 
shock” caused by excessive data usage on such networks. The last thing you want, to be sure, are 
negative reviews in the Store on issues like this. 

On a simpler note, be sure to test your apps with and without network connectivity to catch little 
oversights in your code. In Here My Am!, for example, my first versions of the script in html/map.html 
didn’t bother to check whether the remote script for Bing Maps had actually been downloaded. Now it 
checks whether the Microsoft namespace (for the Microsoft.Maps.Map constructor) is valid. In 
SimpleXhr too, I made sure to provide an error handler to the WinJS.xhr promise so that I could at least 
display a simple message. There’s much more you can do here, of course, but try to at least cover the 
basics to avoid exceptions that will terminate the app. 

119

http://timheuer.com/blog/archive/2012/05/20/using-sqlite-in-metro-style-app.aspx
http://www.odata.org/libraries
http://msdn.microsoft.com/library/windows/apps/hh694083.aspx


Tips and Tricks for WinJS.xhr 
Without opening the whole can of worms that is XmlHttpRequest, it’s useful here to look at just a 
couple of additional points around WinJS.xhr. 

First, notice that the single argument to this function is an object that can contain a number of 
properties. The url property is the most common, of course, but you can also set the type (defaults to 
“GET”) and the responseType for other sorts of transactions, supply user and password credentials, set 
headers (such as "If-Modified-Since" with a date to control caching), and provide whatever other 
additional data is needed for the request (such as query parameters for XHR to a database). You can 
also supply a customRequestInitializer function that will be called with the XmlHttpRequest object just 
before it’s sent, allowing you to perform anything else you need at that moment. 

Second is setting a timeout on the request. You can use the customRequestInitializer for this 
purpose, setting the XmlHttpRequest.timeout property and possibly handling the ontimeout event. 
Alternately, as we’ll see in the “Completing the Promises Story” section at the end of this chapter, you 
can use the WinJS.Promise.timeout function, which allows you to set a timeout period after which the 
WinJS.xhr promise (and the async operation connected to it) will be canceled. Canceling is 
accomplished by simply calling a promise’s cancel method. 

You might have need to wrap WinJS.xhr in another promise, something that we’ll also see at the end 
of this chapter. You could do this to encapsulate other intermediate processing with the XHR call while 
the rest of your code just uses the returned promise as usual. In conjunction with a timeout, this can also 
be used to implement a multiple retry mechanism. 

Next, if you need to coordinate multiple XHR calls together, you can use WinJS.Promise.join, which 
we’ll again see later on. 

We also saw how to process transferred bytes within the progress handler. You can use other data in 
the response and request as well. For example, the event args object contains a readyState property. 

For Windows Store apps, using XHR with localhost: URI’s (local loopback) is blocked by design. 
During development, however, this is very useful to debug a service without deploying it. You can 
enable local loopback in Visual Studio by opening the project properties dialog (Project menu > 
<project> Properties…), selecting Debugging on the left side, and setting Allow Local Network 
Loopback to yes. We’ll see example of this in Chapter 13 where it’s very useful to debug services that 
issue tile updates and other notifications. 

Finally, it’s helpful to know that for security reasons cookies are automatically stripped out of XHR 
responses coming into the local context. One workaround to this is to make XHR calls from a web 
context iframe (in which you can use WinJS.xhr) and then to extract the cookie information you need 
and pass it to the local context via postMessage. Alternately, you might be able to solve the problem on 
the service side, such as implementing an API there that will directly provide the information you’re 
trying to extract from the cookies in the first place. 

 

120



For all other details on this function, refer to the WinJS.xhr documentation and its links to 
associated tutorials. 

Page Controls and Navigation 

Now we come to an aspect of Windows Store apps that very much separates them from typical web 
applications. In web applications, page-to-page navigation uses <a href> hyperlinks or setting 
document.location from JavaScript. This is all well and good; oftentimes there’s little or no state to pass 
between pages, and even when there is, there are well-established mechanisms for doing so, such as 
HTML5 sessionStorage and localStorage (which work just fine in Store apps). 

This type of navigation presents a few problems for Store apps, however. For one, navigating to a 
wholly new page means a wholly new script context—all the JavaScript variables from your previous 
page will be lost. Sure, you can pass state between those pages, but managing this across an entire app 
likely hurts performance and can quickly become your least favorite programming activity. It’s better 
and easier, in other words, for client apps to maintain a consistent in-memory state across pages. 

Also, the nature of the HTML/CSS rendering engine is such that a blank screen appears when 
switching pages with a hyperlink. Users of web applications are accustomed to waiting a bit for a 
browser to acquire a new page (I’ve found many things to do with an extra 15 seconds!), but this isn’t an 
appropriate user experience for a fast and fluid Windows Store app. Furthermore, such a transition 
doesn’t allow animation of various elements on and off the screen, which can help provide a sense of 
continuity between pages if that fits with your design. 

So, although you can use direct links, Store apps typically implement “pages” by dynamically 
replacing sections of the DOM within the context of a single page like default.html, akin to how 
AJAX-based apps work. By doing so, the script context is always preserved and individual elements or 
groups of elements can be transitioned however you like. In some cases, it even makes sense to simply 
show and hide pages so that you can switch back and forth quickly. Let’s look at the strategies and tools 
for accomplishing these goals. 

WinJS Tools for Pages and Page Navigation 
Windows itself, and the app host, provide no mechanism for dealing with pages—from the system’s 
perspective, this is merely an implementation detail for apps to worry about. Fortunately, the engineers 
who created WinJS and the templates in Visual Studio and Blend worried about this a lot! As a result, 
they’ve provided some marvelous tools for managing bits and pieces of HTML+CSS+JS in the context of 
a single container page: 

• WinJS.UI.Fragments contains a low-level “fragment-loading” API, the use of which is necessary 
only when you want close control over the process (such as which parts of the HTML fragment 
get which parent). We won’t cover it in this book; see the documentation and the Loading HTML 
fragments sample. 

121

http://msdn.microsoft.com/library/windows/apps/br229787.aspx
http://msdn.microsoft.com/library/windows/apps/br229781.aspx
http://code.msdn.microsoft.com/windowsapps/Fragments-91f66b07
http://code.msdn.microsoft.com/windowsapps/Fragments-91f66b07


• WinJS.UI.Pages is a higher-level API intended for general use and is employed by the 
templates. Think of this as a generic wrapper around the fragment loader that lets you easily 
define a “page control”—simply an arbitrary unit of HTML, CSS, and JS—that you can easily pull 
into the context of another page as you do other controls.23 They are, in fact, implemented like 
other controls in WinJS (as we’ll see in Chapter 4), so you can declare them in markup, instantiate 
them with WinJS.UI.process[All], use as many of them within a single host page as you like, 
and even nest them. See Scenario 1 of the HTML Page controls sample for examples. 

These APIs provide only the means to load and unload individual pages—they pull HTML in from 
other files (along with referenced CSS and JS) and attach the contents to an element in the DOM. That’s 
it. To actually implement a page-to-page navigation structure, we need two additional pieces: 
something that manages a navigation stack and something that hooks navigation events to the 
page-loading mechanism of WinJS.UI.Pages. 

For the first piece, you can turn to WinJS.Navigation, which through about 150 lines of CS101-level 
code supplies a basic navigation stack. This is all it does. The stack itself is just a list of URIs on top of 
which WinJS.Navigation exposes state, location, history, canGoBack, and canGoForward properties. The 
stack is manipulated through the forward, back, and navigate methods, and the WinJS.Navigation 
object raises a few events—beforenavigate, navigating, and navigated—to anyone who wants to listen 
(through addEventListener).24 

For the second piece, you can create your own linkage between WinJS.Navigation and 
WinJS.UI.Pages however you like. In fact, in the early stages of app development of Windows 8, even 
prior to the first public developer preview releases, people ended up writing just about the same 
boilerplate code over and over. In response, the team at Microsoft responsible for the templates 
magnanimously decided to supply a standard implementation that also adds some keyboard handling 
(for forward/back) and some convenience wrappers for layout matters. Hooray! 

This piece is called the PageControlNavigator. Because it’s just a piece of template-supplied code 
and not part of WinJS, it’s entirely under your control, so you can tweak, hack, or lobotomize it however 
you want.25 In any case, because it’s likely that you’ll often use the PageControlNavigator in your own 
apps, let’s look at how it all works in the context of the Navigation App template. 

Note Additional samples that demonstrate basic page controls and navigation, along with handling 
session state, can be found in the following SDK samples: App activate and suspend using WinJS (using 
the session state object in a page control), App activated, resume and suspend (described earlier; shows 
using the suspending deferral and restarting after termination), and Navigation and navigation history. 

23 If you are at all familiar with user controls in XAML, this is the same idea. 
24 The beforenavigate event can be used to cancel the navigation, if necessary. Either call args.preventDefault (args 

being the event object), return true, or call args.setPromise where the promise returns true. 
25 The Quickstart: using single-page navigation topic also shows a clever way to hijack HTML hyperlinks and hook them into 

WinJS.Navigation.navigate. This can be a useful tool, especially if you’re importing code from a web app. 

122

http://msdn.microsoft.com/library/windows/apps/hh770584.aspx
http://code.msdn.microsoft.com/windowsapps/Page-Controls-sample-568b10b4
http://msdn.microsoft.com/library/windows/apps/br229778.aspx
http://code.msdn.microsoft.com/windowsapps/App-activation-events-and-d39c53d5
http://code.msdn.microsoft.com/windowsapps/App-activating-and-ec15b168
http://code.msdn.microsoft.com/windowsapps/Navigation-sample-cf242faa
http://msdn.microsoft.com/en-us/library/windows/apps/hh452768.aspx


The Navigation App Template, PageControl Structure, and 
PageControlNavigator 
Taking one step beyond the Blank App template, the Navigation App template demonstrates the basic 
use of page controls. (The more complex templates build navigation out further.) If you create a new 
project with this template in Visual Studio or Blend, here’s what you’ll get: 

• default.html Contains a single container div with a PageControlNavigator control pointing to 
pages/home/home.html as the app’s home page. 

• js/default.js Contains basic activation and state checkpoint code for the app. 

• css/default.css Contains global styles. 

• pages/home Contains a page control for the “home page” contents, composed of 
home.html, home.js, and home.css. Every page control typically has its own markup, script, 
and style files. 

• js/navigator.js Contains the implementation of the PageControlNavigator class. 

To build upon this structure, add additional pages by using a page control template. I recommend 
first creating a new folder for the page under pages, like home in the default project structure. Then 
right-click that folder, select Add > New Item, and select Page Control. This will create suitably named 
.html, .js. and .css files in that folder. 

Now let’s look at the body of default.html (omitting the standard header and a commented-out 
AppBar control): 

<body> 
    <div id="contenthost" data-win-control="Application.PageControlNavigator" 
        data-win-options="{home: '/pages/home/home.html'}"></div> 
</body> 

All we have here is a single container div named contenthost (it can be whatever you want), in which 
we declare the Application.PageControlNavigator control. With this we specify a single option to 
identify the first page control it should load (/pages/home/home.html). The PageControlNavigator will 
be instantiated within our activated handler’s call to WinJS.UI.processAll. 

Within home.html we have the basic markup for a page control. This is what the Navigation App 
template provides as a home page by default, and it’s pretty much what you get whenever you add a 
new PageControl from the item template: 

<!DOCTYPE html> 
<html> 
<head> 
    <!--... typical HTML header and WinJS references omitted -->  
    <link href="/css/default.css" rel="stylesheet"> 
    <link href="/pages/home/home.css" rel="stylesheet"> 
    <script src="/pages/home/home.js"></script> 

123



</head> 
<body> 
    <!-- The content that will be loaded and displayed. --> 
    <div class="fragment homepage"> 
        <header aria-label="Header content" role="banner"> 
            <button class="win-backbutton" aria-label="Back" disabled></button> 
            <h1 class="titlearea win-type-ellipsis"> 
                <span class="pagetitle">Welcome to NavApp!</span> 
            </h1> 
        </header> 
        <section aria-label="Main content" role="main"> 
            <p>Content goes here.</p> 
        </section> 
    </div> 
</body> 
</html> 

The div with fragment and homepage CSS classes, along with the header, creates a page with a 
standard silhouette and a back button, which the PageControlNavigator automatically wires up for 
keyboard, mouse, and touch events. (Isn’t that considerate of it!) All you need to do is customize the 
text within the h1 element and the contents within section, or just replace the whole smash with the 
markup you want. (By the way, even though the WinJS files are referenced in each page control, they 
aren’t actually reloaded; they exist here to help you edit a page control in Blend.) 

The definition of the actual page control is in pages/home/home.js; by default, the templates just 
provide the bare minimum: 

(function () { 
    "use strict"; 
 
    WinJS.UI.Pages.define("/pages/home/home.html", { 
        // This function is called whenever a user navigates to this page. It 
        // populates the page elements with the app's data. 
        ready: function (element, options) { 
            // TODO: Initialize the page here. 
        } 
    }); 
})(); 

The most important part is WinJS.UI.Pages.define, which associates a relative URI (the page control 
identifier), with an object containing the page control’s methods. Note that the nature of define allows 
you to define different members of the page in multiple places; multiple calls to WinJS.UI.Pages.define 
with the same URI will simply add members to an existing definition, replacing those that already exist. 
Be mindful that if you have a typo in the URI, including a mismatch between the URI here and the actual 
path to the page, the page won’t load. This can be a subtle error to track down. 

For a page created with the Page Control item template, you get a couple more methods in the 
structure (some comments omitted): 

 

124



(function () { 
    "use strict"; 
 
    WinJS.UI.Pages.define("/page2.html", { 
        ready: function (element, options) { 
        }, 
 
        updateLayout: function (element, viewState, lastViewState) { 
            // TODO: Respond to changes in viewState. 
        }, 
 
        unload: function () { 
            // TODO: Respond to navigations away from this page. 
        } 
    }); 
})(); 

It’s good to note that once you’ve defined a page control in this way, you can instantiate it from 
JavaScript with new by first obtaining its constructor function from WinJS.UI.Pages.get(<page_uri>) 
and then calling that constructor with the parent element and an object containing its options. 

Although a basic structure for the ready method is provided by the templates, WinJS.UI.Pages and 
the PageControlNavigator will make use of the following if they are available: 

PageControl Method When Called 
init Called before elements from the page control have been created. 
processed Called after WinJS.UI.processAll is complete (that is, controls in the page have been instantiated, 

which is done automatically), but before page content itself has been added to the DOM. 
ready Called after the page have been added to the DOM. 
error Called if an error occurs in loading or rendering the page. 
unload Called when navigation has left the page. 
updateLayout Called in response to the window.onresize event, which signals changes between landscape, filled, 

snapped, and portrait view states. 

 

Note that WinJS.UI.Pages calls the first four methods; the unload and updateLayout methods, on the 
other hand, are used only by the PageControlNavigator. Of all of these, the ready method is the most 
common one to implement. It’s where you’ll do further initialization of control (e.g., populate lists), wire 
up other page-specific event handlers, and so on. The unload method is also where you’ll want to 
remove event listeners for WinRT objects, as described in “WinRT Events and removeEvent- Listener” 
later on. The updateLayout method is important when you need to adapt your page layout to new 
conditions, such as changing the layout of a ListView control (as we’ll see in Chapter 5, “Collections and 
Collection Controls”). 

As for the PageControlNavigator itself, the code in js/navigator.js shows how it’s defined and how it 
wires up a few events in its constructor: 

(function () { 
    "use strict"; 
 
    // [some bits omitted] 

125



    var nav = WinJS.Navigation; 
 
    WinJS.Namespace.define("Application", { 
        PageControlNavigator: WinJS.Class.define( 
        // Define the constructor function for the PageControlNavigator. 
            function PageControlNavigator (element, options) { 
                this.element = element || document.createElement("div"); 
                this.element.appendChild(this._createPageElement()); 
 
                this.home = options.home; 
                nav.onnavigated = this._navigated.bind(this); 
                window.onresize = this._resized.bind(this); 
 
                document.body.onkeyup = this._keyupHandler.bind(this); 
                document.body.onkeypress = this._keypressHandler.bind(this); 
                document.body.onmspointerup = this._mspointerupHandler.bind(this); 
            }, { 
    //... 

First we see the definition of the Application namespace as a container for the PageControl-
Navigator class. Its constructor receives the element that contains it (the contenthost div in 
default.html), or it creates a new one if none is given. The constructor also receives the options declared 
in the data-win-options attribute of that element. The page control then appends its contents to this 
root element, adds a listener for the WinJS.Navigation.onnavigated event, and sets up listeners for 
keyboard, mouse, and resizing events. It then waits for someone to call WinJS.Navigation.navigate, 
which happens in the activated handler of js/default.js, to navigate to either the home page or the last 
page viewed if previous session state was reloaded: 

if (app.sessionState.history) { 
    nav.history = app.sessionState.history; 
} 
args.setPromise(WinJS.UI.processAll().then(function () { 
    if (nav.location) { 
        nav.history.current.initialPlaceholder = true; 
        return nav.navigate(nav.location, nav.state); 
    } else { 
        return nav.navigate(Application.navigator.home); 
    } 
})); 

When that happens, the PageControlNavigator’s _navigated handler is invoked, which in turn calls 
WinJS.UI.Pages.render to do the loading, the contents of which are then appended as child elements 
to the navigator control: 

_navigated: function (args) { 
    var that = this; 
    var newElement = that._createPageElement(); 
    var parentedComplete; 
    var parented = new WinJS.Promise(function (c) { parentedComplete = c; }); 
 
    args.detail.setPromise( 
        WinJS.Promise.timeout().then(function () { 

126



            if (that.pageElement.winControl && that.pageElement.winControl.unload) { 
                that.pageElement.winControl.unload(); 
            } 
            return WinJS.UI.Pages.render(args.detail.location, newElement,  
                args.detail.state, parented); 
        }).then(function parentElement(control) { 
            that.element.appendChild(newElement); 
            that.element.removeChild(that.pageElement); 
            that.navigated(); 
            parentedComplete(); 
        }) 
    ); 
}, 

Here you can see how the PageControlNavigator calls the previous page’s unload event. After this, 
the new page’s content is added to the DOM, and then the old page’s contents are removed. The call to 
that.navigated will then reset this.element. 

Tip In a page control’s JavaScript code you can use this.element.querySelector rather than 
document.querySelector if you only want to look in the page control’s contents and have no need to 
traverse the entire DOM. Because this.element is just a node, however, it does not have other 
traversal methods like getElementById. 

And that, my friends, is how it works! In addition to the HTML Page controls sample, and to show a 
concrete example of doing this in a real app, the code in the HereMyAm3d sample has been converted 
to use this model for its single home page. To make this conversion, I started with a new project using 
the Navigation App template to get the page navigation structures set up. Then I copied or imported 
the relevant code and resources from HereMyAm3c, primarily into pages/home/home.html, home.js, 
and home.css. And remember how I said that you could open a page control directly in Blend (which is 
why pages have WinJS references)? As an exercise, open this project in Blend. You’ll first see that 
everything shows up in default.html, but you can also open home.html by itself and edit just that page. 

You should note that WinJS calls WinJS.UI.processAll in the process of loading a page control, so 
we don’t need to concern ourselves with that detail. On the other hand, reloading state when 
previousExecutionState==terminated needs some attention. Because this is picked up in the 
WinJS.Application.onactivated event before any page controls are loaded and before the 
PageControlNavigator is even instantiated, we need to remember that condition so that the home 
page’s ready method can later initialize itself accordingly from app.sessionState values. For this we 
simply write another flag into app.sessionState called initFromState (true if previous- 
ExecutionState is terminated, false otherwise.)  

 

 

127

http://code.msdn.microsoft.com/windowsapps/Page-Controls-sample-568b10b4


Sidebar: WinJS.Namespace.define and WinJS.Class.define 
WinJS.Namespace.define provides a shortcut for the JavaScript namespace pattern. This helps to 
minimize pollution of the global namespace as each app-defined namespace is just a single 
object in the global namespace but can provide access to any number of other objects, functions, 
and so on. This is used extensively in WinJS and is recommended for apps as well, where you 
define everything you need in a module—that is, within a (function() { ... })() block—and 
then export selective variables or functions through a namespace. In short, use a namespace 
anytime you’re tempted to add any global objects or functions! 

The syntax: var ns = WinJS.Namespace.define(<name>, <members>) where <name> is a string 
(dots are OK) and <members> is any object contained in { }’s. Also, WinJS.Namespace.-
defineWithParent(<parent>, <name>, <members>) defines one within the <parent> namespace. 

If you call WinJS.Namespace.define for the same <name> multiple times, the <members> are 
combined. Where collisions are concerned, the most recently added members win. For example: 

WinJS.Namespace.define("MyNamespace", { x: 10, y: 10 }); 
WinJS.Namespace.define("MyNamespace", { x: 20, z: 10 }); 
//MyNamespace == { x: 20, y: 10, z: 10} 

WinJS.Class.define is, for its part, a shortcut for the object pattern, defining a constructor so 
that objects can be instantiated with new. 

Syntax: var className = WinJS.Class.define(<constructor>, <instanceMembers>, 
<staticMembers>) where <constructor> is a function, <instanceMembers> is an object with the 
class’s properties and methods, and <staticMembers> is an object with properties and methods 
that can be directly accessed via <className>.<member> (without using new). 

Variants: WinJS.Class.derive(<baseClass>, ...) creates a subclass (... is the same arg list as 
with define) using prototypal inheritance, and WinJS.Class.mix(<constructor>, [<classes>]) 
defines a class that combines the instance (and static) members of one or more other <classes> 
and initializes the object with <constructor>. 

Finally, note that because class definitions just generate an object, WinJS.Class.define is 
typically used inside a module with the resulting object exported to the rest of the app as a 
namespace member. Then you can use new <namespace>.<class> anywhere in the app. 

 

 

 

 

128

http://msdn.microsoft.com/library/windows/apps/br212667.aspx
http://msdn.microsoft.com/library/windows/apps/br229813.aspx


Sidebar: Helping Out IntelliSense 
In Windows Store apps you might encounter certain markup structures within code comments, 
often starting with a triple slash, ///. These are used by Visual Studio and Blend to provide rich 
IntelliSense within the code editors. You’ll see, for example, /// <reference path…/> comments, 
which create a relationship between your current script file and other scripts to resolve externally 
defined functions and variables. This is explained on the JavaScript IntelliSense page in the 
documentation. For your own code, especially with namespaces and classes that you will use from 
other parts of your app, use these comment structures to describe your interfaces to IntelliSense. 
For details, see Extending JavaScript IntelliSense, and look around the WinJS JavaScript files for 
many examples. 

The Navigation Process and Navigation Styles 
Having seen how page controls, WinJS.UI.Pages, WinJS.Navigation, and the PageControlNavigator all 
relate, it’s straightforward to see how to navigate between multiple pages within the context of a single 
HTML page (e.g., default.html). With the PageControlNavigator instantiated and a page control defined 
via WinJS.UI.Pages, simply call WinJS.Navigation.navigate with the relative URI of that page control 
(its identifier). This loads that page and adds it to the DOM inside the element to which the 
PageControlNavigator is attached, unloading any previous page. This makes that page visible, thereby 
“navigating” to it so far as the user is concerned. You can also use the other methods of WinJS.-
Navigation to move forward and back in the nav stack, with its canGoBack and canGoForward properties 
allowing you to enable/disable navigation controls. Just remember that all the while, you’ll still be in the 
overall context of your host page where you created the PageControlNavigator control. 

As an example, create a new project using the Grid App template and look at these particular areas: 

• pages/groupedItems/groupedItems is the home or “hub” page. It contains a ListView control 
(see Chapter 5) with a bunch of default items. 

• Tapping a group header in the list navigates to section page (pages/groupDetail). This is done 
in pages/groupedItems/groupedItems.html, where an inline onclick handler event navigates to 
pages/groupDetail/groupDetail.html with an argument identifying the specific group to display. 
That argument comes into the ready function of pages/groupDetail/groupDetail.js. 

• Tapping an item on the hub page goes to detail page (pages/itemDetail). The itemInvoked 
handler for the items, the _itemInvoked function in pages/groupedItems/groupedItem.js, calls 
WinJS.Navigation.navigate("/pages/itemDetail/itemDetail.html") with an argument 
identifying the specific item to display. As with groups, that argument comes into the ready 
function of pages/itemDetail/itemDetail.js. 

• Tapping an item in the section page also goes to the details page through the same 
mechanism—see the _itemInvoked function in pages/groupDetail/groupDetail.js. 
 

129

http://msdn.microsoft.com/library/bb385682.aspx
http://msdn.microsoft.com/library/hh874692.aspx


• The back buttons on all pages are wired into WinJS.Navigation.back by virtue of code in the 
PageControlNavigator. 

For what it’s worth, the Split App template works similarly, where each list item on pages/items is 
wired to navigate to pages/split when invoked. 

In any case, the Grid App template also serves as an example of what we call the Hub-Section-Detail 
navigation style. Here the app’s home page is the hub where the user can explore the full extent of the 
app. Tapping a group header navigates to a section, the second level of organization where only items 
from that group are displayed. Tapping an item (in the hub or in the section) navigates to a details page 
for that item. You can, of course, implement this navigation style however you like; the Grid App 
template uses page controls, WinJS.Navigation, and the PageControlNavigator. (Semantic zoom, as 
we’ll see in Chapter 5, is also supported as a navigation tool to switch between hubs and sections.) 

An alternate navigation choice is the Flat style, which simply has one level of hierarchy. Here, 
navigation happens to any given page at any time through a navigation bar (swiped in along with the 
app bar, as we’ll see in Chapter 7, “Commanding UI”). When using page controls and PageControl- 
Navigator, navigation controls can just invoke WinJS.Naviation.navigate for this purpose. Note that in 
this style, there typically is no back button.  

These styles, along with many other UI aspects of navigation, can be found on Navigation design for 
Windows Store apps. This is an essential topic for designers. 

Sidebar: Initial Login and In-App Licensing Agreements (EULA) Pages 
Some apps might require either a login or acceptance of a license agreement to do anything, and 
thus it’s appropriate that such pages are the first to appear in an app after the splash screen. In 
these cases, if the user does not accept a license or doesn’t provide a login, the app should display 
a message describing the necessity of doing so, but it should always leave it to the user to close 
the app if desired. Do not close the app automatically. 

Typically, such pages appear only the first time the app is run. If the user provides a valid login, 
those credentials can be saved for later use via the Windows.Security.Credentials.-
PasswordVault API. If the user accepts a EULA, that fact should be saved in appdata and reloaded 
anytime the app needs to check. These settings (login and acceptance of a license) should then 
always be accessible through the app’s Settings charm. Legal notices, by the way, as well as license 
agreements, should always be accessible through Settings as well. See Guidelines and checklist for 
login controls. 

Optimizing Page Switching: Show-and-Hide 
Even with page controls, there is still a lot going on when navigating from page to page: one set of 
elements is removed from the DOM, and another is added in. Depending on the pages involved, this 
can be an expensive operation. For example, if you have a page that displays a list of hundreds or  
 

130

http://msdn.microsoft.com/library/windows/apps/hh761500.aspx
http://msdn.microsoft.com/library/windows/apps/hh761500.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.passwordvault.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.passwordvault.aspx
http://msdn.microsoft.com/library/windows/apps/hh965453.aspx
http://msdn.microsoft.com/library/windows/apps/hh965453.aspx


thousands of items, where tapping any item goes to a details page (as with the Grid App template), 
hitting the back button from a detail page will require reconstruction of the list. 

Showing progress indicators can help alleviate the user’s anxiety, and the recommendation is to 
show such indicators after two seconds and provide a means to cancel the operation after ten seconds. 
Even so, users are notoriously impatient and will likely want to quickly switch between a list of items and 
item details. In this case, page controls might not be the best design. 

You could use a split (master-detail) view, of course, but that means splitting the screen real estate. 
An alternative is to actually keep the list page fully loaded the whole time. Instead of navigating to the 
item details page in the way we’ve seen, simply render that details page (see WinJS.UI.Pages.render) 
into another div that occupies the whole screen and overlays the list, and then make that div visible. 
When you dismiss the details page, just hide the div and set innerHTML to "". This way you get the same 
effect as navigating between pages but the whole process is much quicker. You can also apply WinJS 
animations like enterContent and exitContent to make the transition more fluid. 

Note that because the PageControlNavigator is provided by the templates as part of your app, you 
can modify it however you like to provide this kind of capability in a more structured manner. 

WinRT Events and removeEventListener 

As we’ve already been doing in this book, typical practice within HTML and JavaScript, especially for 
websites, is to call addEventListener to specify event handlers or is to simply assign an event handler to 
an on<event> property of some object. Oftentimes these handlers are just declared as inline anonymous 
functions: 

var myNumber = 1; 
element.addEventListener(<event>, function (e) { myNumber++; } ); 

Because of JavaScript’s particular scoping rules, the scope of that anonymous function ends up being 
the same as its surrounding code, which allows the code within that function to refer to local variables 
like myNumber in the code above. 

To ensure that such variables are available to that anonymous function when it’s later invoked as an 
event handler, the JavaScript engine creates a closure, a data structure that describes the local variables 
available to that function. Usually the closure is a small bit of memory, but depending on the code 
inside that event handler, the closure could encompass the entire global namespace—a rather large 
allocation! 

Every such closure increases the memory footprint or working set of the app, so it’s a good practice 
to keep them at a minimum. For example, declaring a separate named function—which has its own 
scope—will reduce any necessary closure. 

 

131

http://msdn.microsoft.com/library/windows/apps/Hh701582.aspx
http://msdn.microsoft.com/library/windows/apps/hh701585.aspx


More important than minimizing closures is making sure that the event listeners themselves—and 
their associated closures—are properly cleaned up and their memory allocations released. 

Typically, this is not even something you need to think about. When object such as HTML elements 
are destroyed, such as when a page control is unloaded from the DOM, their associated listeners are 
automatically removed and closures are released. However, in a Windows Store app written in HTML 
and JavaScript, there are other sources of events for which the app might add event listeners, where 
those objects are never destroyed. These can be objects from WinJS, objects from WinRT, and window 
and document. Those listeners must be cleaned up properly, or else the app will have memory leaks 
(memory that is allocated but never freed because it’s never released for garbage collection). 

Of special concern are events that originate from WinRT objects. Because of the nature of the 
projection layer that makes WinRT available in JavaScript, WinRT ends up holding references to 
JavaScript event handlers (known also as delegates) while the JavaScript closures hold references to 
those WinRT objects. As a result of these cross-references, those closures might never be released. 

This is not a problem, mind you, if the app always listens to a particular event. For example, the 
suspending and resuming events are two that an app typically listens to for its entire lifetime, so any 
related allocations will be cleaned up when the app is terminated. The same is true for most listeners 
you might add for window and document events, which persist for the lifetime of the app.  

Memory leaks occur, however, when an app listens to a WinRT object event only temporarily and 
neglects to explicitly call removeEventListener, or when the app might call addEventListener for the 
same event multiple times (in which case you can end up duplicating closures). With page controls, as 
discussed in this chapter, it’s common to call addEventListener within the page’s ready method on 
some WinRT object. When you do this, be sure to match that call with removeEventListener in the page’s 
unload method to release the closures. I’ve done this in HereMyAm3d with datarequested in 
pages/home/home.js just to be clear. 

Throughout this book, the WinRT events with which you need to be concerned are highlighted with 
a special color, as in datarequested (except where the text is also a hyperlink). This is your cue to check 
whether an explicit call to removeEventListener is necessary. Again, if you’ll always be listening for the 
event, removing the listener isn’t needed, but if you add a listener when loading a page control, you 
almost certainly will need to make that extra call. Be especially aware that the samples don’t necessary 
pay attention to this detail, so don’t follow any examples of neglect there. Finally, note that events from 
WinJS objects don’t need this attention because the library already handles removal of event listeners. 

In the chapters that follow, I will remind you of what we’ve just discussed on our first meaningful 
encounter with a WinRT event. Keep your eyes open for the color coding in any case. 
 

132



Completing the Promises Story 

Whew! We’ve taken a long ride in this chapter through many, many fine details of how apps are built 
and how they run (or don’t run!). One consistent theme you may have noticed is that of promises— 
they’ve come up in just about every section! Indeed, async abounds within both WinJS and WinRT, and 
thus so do promises. 

I wanted to close this chapter, then, by flushing out the story of promises, for they provide richer 
functionality than we’ve utilized so far. Demonstrations of what we’ll cover here can be found in the 
WinJS Promise sample, and if you want the fuller async story, read Keeping apps fast and fluid with 
asynchrony in the Windows Runtime on the Windows 8 developer blog. 

In review, let’s step back for a moment to revisit what a promise really means. Simply said, it’s an 
object that returns a value, simple or complex, sometime in the future. The way you know when that 
value is available is by calling the promise’s then or done method with a completed handler. That handler 
will be called with the promised value (the result) when it is ready—which will be immediately if the 
value is already available! Furthermore, you can call then/done multiple times for the same promise, and 
you’ll just get the same result in each completed handler. This won’t cause the system to get confused 
or anything. 

If there’s an error along the way, the second parameter to then/done is an error handler that will be 
called instead of the completed handler. Otherwise exceptions are swallowed by then or thrown to the 
event loop by done, as we’ve discussed. 

A third parameter to then/done is a progress handler, which is called periodically by those async 
operations that support it.26 We’ve already seen, for instance, how WinJS.xhr operations will 
periodically call the progress function for “ready state” changes and as the response gets downloaded. 

Now there’s no requirement that a promise has to wrap an async operation or async anything. You 
can, in fact, wrap any value in a promise by using the static method WinJS.Promise.wrap. Such a 
wrapper on an already existing value (the future is now!) will just turn right around and call the 
completed handler with that value as soon as you call then or done. This allows you to use any value 
where a promise is expected, or return things like errors from functions that otherwise return promises 
for async operations. WinJS.Promise.wraperror exists for this specific purpose. 

WinJS.Promise also provides a host of useful static methods, called directly through WinJS.Promise 
rather than through a specific promise instance: 

• is determines whether an arbitrary value is a promise, It basically makes sure it’s an object with a 
function named “then”; it does not test for “done”. 

26 If you want to impress your friends while reading the documentation, know that if an async function shows it returns a 
value of type IAsync[Action | Operation]WithProgress, then it will utilize a progress function given to a promise. If it 
only lists IAsync[Action | Operation], progress is not supported. You can learn more about this in Chapter 16. 

133

http://code.msdn.microsoft.com/windowsapps/Promise-e1571015
http://blogs.msdn.com/b/windowsappdev/archive/2012/03/20/keeping-apps-fast-and-fluid-with-asynchrony-in-the-windows-runtime.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/03/20/keeping-apps-fast-and-fluid-with-asynchrony-in-the-windows-runtime.aspx
http://msdn.microsoft.com/library/windows/apps/br211867.aspx


• as works like wrap except that if you give it a promise, it just returns that promise. If you give a 
promise to wrap, it wraps it in another promise. 

• join aggregates promises into a single one that’s fulfilled when all the values given to it, 
including other promises, are fulfilled. This essentially groups promises with an AND operation 
(using then, so you’ll want to call the join’s done method to handle errors appropriately). 

• any is similar to join but groups with an OR (again using then). 

• cancel stops an async operation. If an error function is provided, it’s called with a value of 
Error("canceled"). 

• theneach applies completed, error, and progress handlers to a group of promises (using then), 
returning the results as another group of values inside a promise. 

• timeout has a dual nature. If you just give it a timeout value, it returns a promise wrapped 
around a call to setTimeout. If you also provide a promise as the second parameter, it will cancel 
that promise if it’s not fulfilled within the timeout period. This latter case is essentially a wrapper 
for the common pattern of adding a timeout to some other async operation that doesn’t have 
one already. 

• addEventListener/removeEventListener (and dispatchEvent) manage handlers for the error 
event that promises will fire on exceptions (but not for cancellation). Listening for this event does 
not affect use of error handlers. It’s an addition, not a replacement.27 

In addition to using functions like as and wrap, you can also create a promise from scratch by using 
new WinJS.Promise(<init> [, <oncancel>). Here <init> is a function that accepts completed, error, and 
progress dispatchers, and oncancel is an optional function that’s called in response to 
WinJS.Promise.cancel. The dispatchers are what you call to trigger any completed, error, or progress 
handlers given to the promise’s then or done methods, whereas oncancel is your own function that the 
promise will call if it’s canceled. Creating a new promise in this way is typically done when you create an 
async function of your own. For example, we’ll see how this is used to encapsulate an async web worker 
in Chapter 16, “WinRT Components.” 

Also, if WinJS.Promise.as doesn’t suffice, creating a promise like this is useful to wrap other 
operations (not just values) within the promise structure so that it can be chained or joined with other 
promises. For example, if you have a library that talks to a web service through raw async 
XmlHttpRequest, you can wrap each API of that library with promises. You might also use a new promise 
to combine multiple async operations (or other promises!) from different sources into a single promise, 
where join or any don’t give you the control you need. Another example is encapsulating specific 
completed, error, and progress functions within a promise, such as to implement a multiple retry  
 
 

27 Async operations from WinRT that get wrapped in promises do not fire this error event, which is why you typically use an 
error handler instead. 

134



mechanism on top of singular XHR operations, to hook into a generic progress updater UI, or to add 
under-the-covers logging or analytics with service calls so that the rest of your code never needs to 
know about them. 

What We’ve Just Learned 

• How the local and web contexts affect the structure of an app, for pages, page navigation, and 
iframe elements. 

• How to use application content URI rules to extend resource access to web content in an iframe. 

• Using ms-appdata URI scheme to reference media content from local, roaming, and temp 
appdata folders. 

• How to execute a series of async operations with chained promises. 

• How exceptions are handled within chained promises and the differences between then and 
done. 

• Methods for getting debug output and error reports for an app, within the debugger and the 
Windows Event Viewer. 

• How apps are activated (brought into memory) and the events that occur along the way. 

• The structure of app activation code, including activation kinds, previous execution states, and 
the WinJS.UI.Application object. 

• Using extended splash screens when an app needs more time to load, and deferrals when the 
app needs to use async operations on startup. 

• The important events that occur during an app’s lifetime, such as focus events, visibility changes, 
view state changes, and suspend/resume/terminate. 

• The basics of saving and restoring state to restart after being terminated, and the WinJS utilities 
for implementing this. 

• Using data from services through WinJS.xhr and how this relates to the resuming event. 

• How to achieve page-to-page navigation within a single page context by using page controls, 
WinJS.Navigation, and the PageControlNavigator from the Visual Studio/Blend templates, such 
as the Navigation App template. 

• All the details of promises that are common used with, but not limited to, async operations. 

  

135



Chapter 4 

Controls, Control Styling, and Data 
Binding 

Controls are one of those things you just can’t seem to get away from, especially within 
technology-addicted cultures like those that surround many of us. Even low-tech devices like bicycles 
and various gardening tools have controls. But this isn’t a problem—it’s actually a necessity. Controls are 
the means through which human intent is translated into the realm of mechanics and electronics, and 
they are entirely made to invite interaction. As I write this, in fact, I’m sitting on an airplane and noticing 
all the controls that are in my view. The young boy in the row ahead of me seems to be doing the same, 
and that big “call attendant” button above him is just begging to be pressed! 

Controls are certainly essential to Windows 8 apps, and they will invite consumers to poke, prod, 
touch, click, and swipe them. (They will also invite the oft-soiled hands of many small toddlers as well; 
has anyone made a dishwasher-safe tablet PC yet?) Windows 8, of course, provides a rich set of controls 
for apps written in HTML, CSS, and JavaScript. What’s most notable in this context is that from the 
earliest stages of design, Microsoft wanted to avoid forcing HTML/JavaScript developers to use controls 
that were incongruous with what those developers already know—namely, the use of HTML control 
elements like <button> that can be styled with CSS and wired up in JavaScript by using functions like 
addEventListener and on<event> properties. 

You can, of course, use those intrinsic HTML controls in a Windows 8 app because those apps run on 
top of the same HTML/CSS rendering engine as Internet Explorer. No problem. There are even special 
classes, pseudo-classes, and pseudo-elements that give you fine-grained styling capabilities, as we’ll see. 
But the real question was how to implement Windows 8-specific controls like the toggle switch and list 
view that would allow you to work with them in the same way—that is, declare them in markup, style 
them with CSS, and wire them up in JavaScript with addEventListener and on<event> properties. 

The result of all this is that for you, the HTML/JavaScript developer, you’ll be looking to WinJS for 
these controls rather than WinRT. Let me put it another way: if you’ve noticed the large collection of 
APIs in the Windows.UI.Xaml namespace (which constitutes about 40% of WinRT), guess what? You get 
to completely ignore all of it! Instead, you’ll use the WinJS controls that support declarative markup, 
styling with CSS, and so on, which means that Windows controls (and custom controls that follow the 
same model) ultimately show up in the DOM along with everything else, making them accessible in all 
the ways you already know and understand. 
 
 
 

136



The story of controls in Windows 8 is actually larger than a single chapter. Here we’ll be looking 
primarily at those controls that represent or work with simple data (single values) and that participate in 
page layout as elements in the DOM. Participating in the DOM, in fact, is exactly why you can style and 
manipulate all the controls (HTML and WinJS alike) through standard mechanisms, and a big part of this 
chapter is to just visually show the styling options you have available. In the latter part of this chapter 
we’ll also explore the related subject of data binding: creating relationships between properties of data 
objects and properties of controls (including styles) so that the controls reflect what’s happening in the 
data. 

The story will then continue in Chapter 5, “Collections and Collection Controls,” where we’ll look at 
collection controls—those that work with potentially large data sets—and the additional data-binding 
features that go with them. We’ll also give special attention to media elements (image, audio, and 
video) in Chapter 10, aptly titled “Media,” as they have a variety of unique considerations. Similarly, 
those elements that are primary for defining layout (like grid and flexbox) are the subject of Chapter 6, 
“Layout,” and we also have a number of UI elements that don’t participate in layout at all, like app bars 
and flyouts, as we’ll see in Chapter 7, “Commanding UI.” 

In short, having covered much of the wiring, framing, and plumbing of an app in Chapter 3, “App 
Anatomy and Page Navigation,” we’re ready to start enjoying the finish work like light switches, 
doorknobs, and faucets—the things that make an app really come to life and engage with human 
beings. 

Sidebar: Essential References for Controls 
Before we go on, you’ll want to know about two essential topics on the Windows Developer 
Center that you’ll likely refer to time and time again. First is the comprehensive Controls list that 
identifies all the controls that are available to you, as we’ll summarize later in this chapter. The 
second are comprehensive UX Guidelines for Windows 8 apps, which describes the best use cases 
for most controls and scenarios in which not to use them. This is a very helpful resource for both 
you and your designers. 

The Control Model for HTML, CSS, and JavaScript 

Again, when Microsoft designed the developer experience for Windows 8, we strove for a high degree 
of consistency between intrinsic HTML control elements, WinJS controls, and custom controls. I like to 
refer to all of these as “controls” because they all result in a similar user experience: some kind of widget 
with which the user interacts with an app. In this sense, every such control has three parts: 

• Declarative markup (producing elements in the DOM) 

• Applicable CSS (styles as well as special pseudo-class and pseudo-element selectors) 

• Methods, properties, and events accessible through JavaScript 

137

http://msdn.microsoft.com/library/windows/apps/hh465453.aspx
http://msdn.microsoft.com/library/windows/apps/hh465424#ui_controls


Standard HTML controls, of course, already have dedicated markup to declare them, like <button>, 
<input>, and <progress>. WinJS and custom controls, lacking the benefit of existing standards, are 
declared using some root element, typically a <div> or <span>, with two custom data-* attributes: 
data-win-control and data-win-options. The value of data-win-control specifies the fully qualified 
name of a public constructor function that creates the actual control as child elements of the root. The 
second, data-win-options, is a JSON string containing key-value pairs separated by commas: { <key1>: 
<value1>, <key1>: <value2>, ... }. 

Hint If you’ve just made changes to data-win-options and your app seems to terminate without 
reason (and without an exception) when you next launch it, check for syntax errors in the options string. 
Forgetting the closing }, for example, will cause this behavior. 

The constructor function itself takes two parameters: the root (parent) element and an options 
object. Conveniently, WinJS.Class.define produce functions that look exactly like this, making it very 
handy for defining controls (as WinJS does itself). Of course, because data-* attributes are, according to 
the HTML5 specifications, completely ignored by the HTML/CSS rendering engine, some additional 
processing is necessary to turn an element with these attributes into an actual control in the DOM. And 
this, as I’ve hinted at before, is exactly the life purpose of the WinJS.UI.process and 
WinJS.UI.processAll methods. As we’ll see shortly, these methods parse the options attribute and pass 
the resulting object and the root element to the constructor function identified in data-win-control. 

The result of this simple declarative markup plus WinJS.UI.process/processAll is that WinJS and 
custom controls are just elements in the DOM like any others. They can be referenced by DOM-traversal 
APIs and targeted for styling using the full extent of CSS selectors (as we’ll see in the styling gallery later 
on). They can listen for external events like other elements and can surface events of their own by 
implementing [add/remove]EventListener and on<event> properties. (WinJS again provides standard 
implementations of addEventListener, removeEventListener, and dispatchEvent for this purpose.) 

Let’s now look at the controls we have available for Windows 8 apps, starting with the HTML controls 
and then the WinJS controls. In both cases we’ll look at their basic appearance, how they’re instantiated, 
and the options you can apply to them. 

HTML Controls 

HTML controls, I hope, don’t need much explaining. They are described in HTML5 references, such as 
http://www.w3schools.com/html5/html5_reference.asp, and shown with default “light” styling in Figure 
4-1 and Figure 4-2. (See the next section for more on WinJS stylesheets.) It’s worth mentioning that 
most embedded objects are not supported, except for a specific ActiveX controls; see Migrating a web 
app. 

 
 

138

http://www.w3schools.com/html5/html5_reference.asp
http://msdn.microsoft.com/library/windows/apps/hh465143.aspx
http://msdn.microsoft.com/library/windows/apps/hh465143.aspx


Creating or instantiating HTML controls works as you would expect. You can declare them in markup by 
using attributes to specify options, the rundown of which is given in the table following Figure 4-2. You 
can also create them procedurally from JavaScript by calling new with the appropriate constructor, 
configuring properties and listeners as desired, and adding the element to the DOM wherever its 
needed. Nothing new here at all where Windows 8 apps are concerned. 

For examples of creating and using these controls, refer to the HTML essential controls sample in the 
Windows SDK, from which the images in Figure 4-1 and Figure 4-2 were obtained. 

 
FIGURE 4-1 Standard HTML5 controls with default “light” styles (the ui-light.css stylesheet of WinJS). 

 

139

http://code.msdn.microsoft.com/windowsapps/Common-HTML-controls-and-09a72a24


 
FIGURE 4-2 Standard HTML5 text input controls with default “light” styles (the ui-light.css stylesheet of WinJS). 

Control Markup Common Option Attributes Element Content (inner 
text/HTML) 

Button <button type="button"> (note that without type, the default 
is "submit") 

button text 

Button <input type="button"> 
<input type="submit"> 
<input type="reset"> 

value (button text) n/a 

Checkbox <input 
type=“checkbox”> 

value, checked n/a (use a label element 
around the input control to 
add clickable text) 

Drop Down List <select> size=“1” (default), multiple, 
selectedIndex 

multiple <option> elements  

Email <input type="email"> value (initial text) n/a 

File Upload <input type="file"> accept (mime types), mulitple n/a 

140



Hyperlink <a> href, target Link text 

ListBox <select> with size > 1 size (a number greater than 1), 
multiple, selectedIndex 

multiple <option> elements  

Multi-line Text <textarea> cols, rows, readonly, 
data-placeholder (because 
placeholder has a bug) 

initial text content 

Number <input type="number"> value (initial text) n/a 

Password <input 
type=“password"> 

value (initial text) n/a 

Phone Number <input type=“tel"> value (initial text) n/a 

Progress <progress> value (initial position), max (highest 
position; min is 0); no value makes it 
inderterminate 

n/a 

Radiobutton <input 
type="radiobutton"> 

value, checked, defaultChecked radiobutton label 

Rich Text <div> contentEditable=“true” HTML content 

Slider <input type="range"> min, max, value (initial position), 
step (increment) 

n/a 

URI <input type="url"> value (initial text) n/a 

 

Two areas that add something to HTML controls are the WinJS stylesheets and the additional 
methods, properties, and events that Microsoft’s rendering engine adds to most HTML elements. These 
are the subjects of the next two sections. 

WinJS stylesheets: ui-light.css, ui-dark.css, and win-* styles 
WinJS comes with two parallel stylesheets that provide many default styles and style classes for 
Windows Store apps: ui-light.css and ui-dark.css. You’ll always use one or the other, as they are mutually 
exclusive. The first is intended for apps that are oriented around text, because dark text on a light 
background is generally easier to read (so this theme is often used for news readers, books, magazines, 
etc., including figures in published books like this!). The dark theme, on the other hand, is intended for 
media-centric apps like picture and video viewers where you want the richness of the media to stand 
out. 

Both stylesheets define a number of win-* style classes, which I like to think of as style packages that 
effectively add styles and CSS-based behaviors (like the :hover pseudo-class) that turn standard HTML 
controls into a Windows 8-specific variant. These are win-backbutton for buttons, win-ring, win-medium, 
and win-large for circular progress controls, win-small for a rating control, win-vertical for a vertical 
slider (range) control, and win-textarea for a content editable div. If you want to see the details, search 
on their names in the Style Rules tab in Blend. 

141



Extensions to HTML Elements 
As you probably know already, there are many developing standards for HTML and CSS. Until these are 
brought to completion, implementations of those standards in various browsers are typically made 
available ahead of time with vendor-prefixed names. In addition, browser vendors sometimes add their 
own extensions to the DOM API for various elements. 

With Windows Store apps, of course, you don’t need to worry about the variances between browsers, 
but since these apps essentially run on top of the Internet Explorer engine, it helps to know about those 
extensions that still apply. These are summarized in the table below, and you can find the full Elements 
reference in the documentation for all the details your heart desires (and too much to spell out here). 

If you’ve been working with HTML5 and CSS3 in Internet Explorer already, you might be wondering 
why the table doesn’t show the various animation (msAnimation*), transition (msTransition*), and 
transform properties (msPerspective* and msTransformStyle), along with msBackfaceVisibility. This is 
because these standards are now far enough along that they no longer need vendor prefixes with 
Internet Explorer 10 or Store apps (though the ms* variants still work). 

Methods Description 

msMatchesSelector Determines if the control matches a selector. 

ms[Set | Get | Release]PointerCapture Captures, retrieves, and releases pointer capture for an element. 

Style properties (on element.style) Description 

msGrid*, msRow* Gets or sets placement of element within a CSS grid. 

Events (add “on” for event properties) Description 

mscontentzoom Fires when a user zooms an element (Ctrl+ +/-, Ctrl + 
mousewheel), pinch gestures. 

msgesture[change | end | hold | tap | 

pointercapture] 

Gesture input events (see Chapter 9, “Input and Sensors”). 

msinertiastart Gesture input events (see Chapter 9). 

mslostpointercapture Element lost capture (set previously with msSetPointerCapture. 

mspointer[cancel | down | hover | move | out | 

over | up] 

Pointer input events (see Chapter 9). 

msmanipulationstatechanged State of a manipulated element has changed. 

WinJS Controls 

Windows 8 defines a number of controls that help apps fulfill Windows app design guidelines. As noted 
before, these are implemented in WinJS for apps written in HTML, CSS, and JavaScript, rather than 
WinRT; this allows those controls to integrate naturally with other DOM elements. Each control is 

142

http://msdn.microsoft.com/library/windows/apps/hh767345.aspx


defined as part of the WinJS.UI namespace using WinJS.Class.define, where the constructor name 
matches the control name. So the full constructor name for a control like the Rating is WinJS.UI.Rating. 

The simpler controls that we’ll cover here in this chapter are DatePicker, Rating, ToggleSwitch, and 
Tooltip, the default styling for which are shown in Figure 4-3. The collection controls that we’ll cover in 
Chapter 5 are FlipView, ListView, and SemanticZoom. App bars, flyouts, and others that don’t participate 
in layout are again covered in later chapters. Apart from these, there is only one other, HtmlControl, 
which is simply an older (and essentially deprecated) alias for WinJS.UI.Pages. That is, the HtmlControl is 
the same thing as rendering a page control: it’s an arbitrary block of HTML, CSS, and JavaScript that you 
can declaratively incorporate anywhere in a page. We’ve already discussed all those details in Chapter 3, 
so there’s nothing more to add here. 

 
FIGURE 4-3 Default (light) styles on the simple WinJS controls. 

The WinJS.UI.Tooltip control, you should know, can utilize any HTML including other controls, so it 
goes well beyond the plain text tooltip that HTML provides automatically for the title attribute. We’ll 
see more examples later. 

So again, a WinJS control is declared in markup by attaching data-win-control and 
data-win-options attributes to some root element. That element is typically a div (block element) or 
span (inline element), because these don’t bring much other baggage, but any element can be used. 
These elements can, of course, have id and class attributes as needed. The available options for these 
controls are summarized in the table below, which includes those events that can be wired up through 
the data-win-options string, if desired. For full documentation on all these options, start with the 
Controls list in the documentation and go to the control-specific topics linked from there. 

 

 

143

http://msdn.microsoft.com/library/windows/apps/hh465453.aspx


Fully-qualified constructor name 
in data-win-control 

Options in data-win-options 
(note that event names use the ‘on’ prefix in the attribute syntax) 

WinJS.UI.DatePicker Properties: calendar, current, datePattern, disabled, maxYear, minYear, 
monthPattern, yearPattern 

Events: onchange 

WinJS.UI.Rating Properties: averageRating, disabled, enableClear, maxRating, tooltipStrings 
(an array of strings the size of maxRating), userRating 

Events: oncancel, onchange, onpreviewchange 
WinJS.UI.TimePicker Properties: clock, current, disabled, hourPattern, minuteIncrement, 

periodPattern. (Note that the date portion of current will always be July 15, 
2011 because there are no known daylight savings time transitions on this day.) 
Events: onchange 

WinJS.UI.ToggleSwitch Properties: checked, disabled, labelOff, labelOn, title 

Events: onchange 

WinJS.UI.Tooltip Properties: contentElement, innerHTML, infotip, extraClass, placement 

Events: onbeforeclose, onbeforeopen, onclosed, onopened 

Methods: open, close 

 

Again, the data-win-options string containing key-value pairs, one for each property or event, 
separated by commas, in the form { <key1>: <value1>, <key1>: <value2>, ... }. For events, whose 
names in the options string always start with on, the value is the name of the event handler you want to 
assign. 

In JavaScript code, you can also assign event handlers by using <element>.addEventListener 
("<event>", ...) where <element> is the element for which the control was declared and <event> drops 
the “on” as usual. To access the properties and events directly, use <element>.winControl.<property>. 
The winControl object is created when the WinJS control is instantiated and attached to the element, so 
that’s where these options are available. 

WinJS Control Instantiation 
As we’ve seen a number of times already, WinJS controls declared in markup with data-* attributes are 
not instantiated until you call WinJS.UI.process(<element>) for a single control or WinJS.UI.- 
processAll for all such elements in the DOM. To understand this process, here’s what WinJS.UI.- 
process does for a single element: 

1. Parse the data-win-options string into an options object. 

2. Extract the constructor specified in data-win-control and call new on that function passing the 
root element and the options object. 

3. The constructor creates whatever child elements it needs within the root element. 

4. The object returned from the constructor—the control object—is stored in the root element’s 
winControl property. 

144



Clearly, then, the bulk of the work really happens in the constructor. Once this takes place, other 
JavaScript code (as in your activated method) can call methods, manipulate properties, and add 
listeners for events on both the root element and the winControl object. The latter, clearly, must be 
used for WinJS control-specific methods, properties, and events. 

WinJS.UI.processAll, for its part, simply traverses the DOM looking for data-win-control attributes 
and does WinJS.UI.process for each. How you use both of these is really your choice: processAll goes 
through a whole page (or just a page control—whatever the document object refers to), whereas process 
lets you control the exact sequence or instantiate controls for which you dynamically insert markup. 
Note that in both cases the return value is a promise, so if you need to take additional steps after 
processing is complete, provide a completed handler to the promise’s done method. 

It’s also good to understand that process and processAll are really just helper functions. If you need 
to, you can just directly call new on a control constructor with an element and options object. This will 
create the control and attach it to the given element automatically. You can also pass null for the 
element, in which case the WinJS control constructors create a new div element to contain the control 
that is otherwise unattached to the DOM. This would allow you, for instance, to build up a control 
offscreen and attach it to the DOM only when needed. 

To see all this in action, we’ll look at some examples with both the Rating and Tooltip controls in a 
moment. First, however, we need to discuss a matter referred to as strict processing. 

Strict Processing and processAll Functions 
WinJS has three DOM-traversing functions: WinJS.UI.processAll, WinJS.Binding.processAll (which 
we’ll see later in this chapter), and WinJS.Resources.processAll (which we’ll see in Chapter 17, “Apps 
for Everyone”). Each of these looks for specific data-win-* attributes and then takes additional actions 
using those contents. Those actions, however, can involve calling a number of different types of 
functions: 

• Functions appearing in a “dot path” for control processing and binding sources 

• Functions appearing in the left-hand side for binding targets, resource targets, or control 
processing 

• Control constructors and event handlers 

• Binding initializers or functions used in a binding expression 

• Any custom layout used for a ListView control 

Such actions introduce a risk of injection attack if a processAll function is called on untrusted HTML, 
such as arbitrary markup obtained from the web. To mitigate this risk, WinJS has a notion of strict 
processing that is enforced within all HTML/JavaScript apps. The effect of strict processing is that any 
functions indicated in markup that processAll methods might encounter must be “marked for  
 

145



processing” or else processing will fail. The mark itself is simply a property named supportedFor- 
Processing on the function object that is set to true. 

Functions returned from WinJS.Class.define, WinJS.Class.derive, WinJS.UI.Pages.define, and 
WinJS.Binding.converter are automatically marked in this manner. For other functions, you can either 
set a supportedForProcessing property to true directly or use any of the following marking functions: 

WinJS.Utilities.markSupportedForProcessing(myfunction); 
WinJS.UI.eventHandler(myHandler); 
WinJS.Binding.initializer(myInitializer); 
 
//Also OK 
<namespace>.myfunction = WinJS.UI.eventHandler(function () { 
}); 

Note also that appropriate functions coming directly from WinJS, such as all WinJS.UI.* control 
constructors, as well as WinJS.Binding.* functions, are marked by default. 

So, if you reference custom functions from your markup, be sure to mark them accordingly. But this 
is only for references from markup: you don’t need to mark functions that you assign to on<event> 
properties in JavaScript or pass to addEventListener. 

Example: WinJS.UI.Rating Control 
OK, now that we got the strict processing stuff covered, let’s see some concrete examples of working 
with a WinJS control. 

For starters, here’s some markup for a WinJS.UI.Rating control, where the options specify two initial 
property values and an event handler: 

<div id="rating1" data-win-control="WinJS.UI.Rating" 
    data-win-options="{averageRating: 3.4, userRating: 4, onchange: changeRating}"> 
</div> 

To instantiate this control, we need either of the following calls: 

WinJS.UI.process(document.getElementById("rating1")); 
WinJS.UI.processAll(); 

Again, both of these functions return a promise, but it’s unnecessary to call done unless we need to 
do additional post-instantiation processing or handle exceptions that might have occurred (and that are 
otherwise swallowed). Also, note that the changeRating function specified in the markup must be 
globally visible and marked for processing, or else the control will fail to instantiate. 

Alternately, we can instantiate the control and set the options procedurally. In markup: 

<div id="rating1" data-win-control="WinJS.UI.Rating"></div> 

And in code: 
 

146



var element = document.getElementById("rating1"); 
WinJS.UI.process(element); 
element.winControl.averageRating = 3.4; 
element.winControl.userRating = 4; 
element.winControl.onchange = changeRating; 

The last three lines above could also be written as follows using the WinJS.UI.setOptions method, 
but this isn’t recommended because it’s harder to debug: 

var options = { averageRating: 3.4, userRating: 4, onchange: changeRating }; 
WinJS.UI.setOptions(element.winControl, options); 

We can also just instantiate the control directly. In this case the markup is nonspecific: 

<div id="rating1"></div> 

and we call new on the constructor ourselves: 

var newControl = new WinJS.UI.Rating(document.getElementById("rating1")); 
newControl.averageRating = 3.4; 
newControl.userRating = 4; 
newControl.onchange = changeRating; 

Or, as mentioned before, we can skip the markup entirely, have the constructor create an element for 
us (a div), and attach it to the DOM at our leisure: 

var newControl = new WinJS.UI.Rating(null, 
    { averageRating: 3.4, userRating: 4, onchange: changeRating }); 
newControl.element.id = "rating1"; 
document.body.appendChild(newControl.element); 

Hint If you see strange errors on instantiation with these latter two cases, check whether you forgot 
the new and are thus trying to directly invoke the constructor function. 

Note also in these last two cases that the rating1 element will have a winControl property that is the 
same as the newControl returned from the constructor. 

To see this control in action, please refer to the HTML Rating control sample. 

Example: WinJS.UI.Tooltip Control 
With most of the other simple controls—namely the DatePicker, TimePicker, and ToggleSwitch—you 
can work with them in the same ways as we just saw with Ratings. All that changes are the specifics of 
their properties and events; again, start with the Controls list page and navigate to any given control for 
all the specific details. Also, for working samples refer to the HTML DatePicker and TimePicker controls 
and the HTML ToggleSwitch control samples. 

The WinJS.UI.Tooltip control is a little different, however, so I’ll illustrate its specific usage. First, to 
attach a tooltip to a specific element, you can either add a data-win-control attribute to that element 
or place the element itself inside the control: 

147

http://code.msdn.microsoft.com/windowsapps/Rating-control-sample-4666c750
http://msdn.microsoft.com/library/windows/apps/hh465453.aspx
http://code.msdn.microsoft.com/windowsapps/Date-and-time-picker-sample-0424c7c2
http://code.msdn.microsoft.com/windowsapps/ToggleSwitch-control-sample-84c0aacb


<!-- Directly attach the Tooltip to its target element --> 
<targetElement data-win-control="WinJS.UI.Tooltip"> 
</targetElement> 
 
<!-- Place the element inside the Tooltip --> 
<span data-win-control="WinJS.UI.Tooltip"> 
    <!-- The element that gets the tooltip goes here --> 
</span> 
 
<div data-win-control="WinJS.UI.Tooltip"> 
    <!-- The element that gets the tooltip goes here --> 
</div> 

Second, the contentElement property of the tooltip control can name another element altogether, 
which will be displayed when the tooltip is invoked. For example, consider this piece of hidden HTML in 
our markup thatcontains other controls: 

<div style="display: none;"> 
    <!--Here is the content element. It's put inside a hidden container 
    so that it's invisible to the user until the tooltip takes it out.--> 
    <div id="myContentElement"> 
        <div id="myContentElement_rating"> 
            <div data-win-control="WinJS.UI.Rating" class="win-small movieRating" 
                data-win-options="{userRating: 3}"> 
            </div> 
        </div> 
        <div id="myContentElement_description"> 
            <p>You could provide any DOM element as content, even with WinJS controls inside. The tooltip control 
will re-parent the element to the tooltip container, and block interaction events on that element, since that's 
not the suggested interaction model.</p> 
        </div> 
        <div id="myContentElement_picture"> 
        </div> 
    </div> 
</div> 

We can reference it like so: 

<div data-win-control="WinJS.UI.Tooltip" 
   data-win-options="{infotip: true, contentElement: myContentElement}"> 
   <span>My piece of data</span> 
</div> 

When you hover over the text (with a mouse or hover-enabled touch hardware), this tooltip will 
appear: 

 

148



This example is taken directly from the HTML Tooltip control sample, so you can go there to see how 
all this works directly. 

Working with Controls in Blend 

Before we move onto the subject of control styling, it’s a good time to highlight a few additional 
features of Blend for Visual Studio where controls are concerned. As I mentioned in Video 2-2, the 
Assets tab in Blend gives you quick access to all the HTML elements and WinJS controls (among many 
other elements) that you can just drag and drop into whatever page is showing in the artboard. (See 
Figure 4-4.) This will create basic markup, such as a div with a data-win-control attribute for WinJS 
controls; then you can go to the HTML Attributes pane (on the right) to set options in the markup. (See 
Figure 4-5.) 

  
FIGURE 4-4 HTML elements (left) and WinJS control (right) as shown in Blend’s Assets tab. 

 
FIGURE 4-5 Blend’s HTML Attributes tab shows WinJS control options, and editing them will affect the 
data-win-options attribute in markup. 

149

http://code.msdn.microsoft.com/windowsapps/Tooltip-control-sample-cb24c2ce


Next, take a moment to load up the HTML essential controls sample into Blend. This is a great 
opportunity to try out Blend’s Interactive Mode to navigate to a particular page and explore the 
interaction between the artboard and the Live DOM. (See Figure 4-6.) Once you open the project, go 
into interactive mode by selecting View -> Interactive Mode on the menu, pressing Ctrl+Shift+I, or 
clicking the small leftmost button on the upper right corner of the artboard. Then select Scenario 5 
(Progress introduction) in the listbox, which will take you to the page shown in Figure 4-6. Then exit 
interactive mode (same commands), and you’ll be able to click around on that page. A short 
demonstration of using interactive mode in this way is given in Video 4-1 in this chapter’s companion 
content. 

 
FIGURE 4-6 Blend’s interaction between the artboard and the Live DOM. 

With the HTML essential controls sample, you’ll see that there’s just a single element in the Live DOM 
for intrinsic controls, as there should be, since all the internal details are part and parcel of the 
HTML/CSS rendering engine. On the other hand, load up the HTML Rating control sample instead and 
expand the div that contains one such control. There you’ll see all the additional child elements that 
make up this control (shown in Figure 4-7), and you can refer to the right-hand pane for HTML 
attributes and CSS properties. You can see something similar (with even more detailed information), in 
the DOM Explorer of Visual Studio when the app is running. (See Figure 4-8.) 

150

http://code.msdn.microsoft.com/windowsapps/Common-HTML-controls-and-09a72a24
http://code.msdn.microsoft.com/windowsapps/Rating-control-sample-4666c750


 
FIGURE 4-7 Expanding a WinJS control in Blend’s Live DOM reveals the elements that are used to build it. 

 
FIGURE 4-8 Expanding a WinJS control in Visual Studio’s DOM Explorer also shows complete details for a control. 

Control Styling 

Now we come to a topic where we’ll mostly get to look at lots of pretty pictures: the various ways in 
which HTML and WinJS controls can be styled. As we’ve discussed, this happens through CSS all the way, 
either in a stylesheet or by assigning style.* properties, meaning that apps have full control over the 
appearance of controls. In fact, absolutely everything that’s different between HTML controls in a Store 
app and the same controls on a web page is due to styling and styling alone. 

For both HTML and WinJS controls, CSS standards apply including pseudo-selectors like :hover, 
:active, :checked, and so forth, along with -ms-* prefixed styles for emerging standards. 

For HTML controls, there are also additional -ms-* styles—that aren’t part of CSS3—to isolate specific 
parts of those controls. That is, because the constituent parts of such controls don’t exist separately in 

151



the DOM, pseudo-selectors—like ::-ms-check to isolate a checkbox mark and ::-ms-fill-lower to 
isolate the left or bottom part of a slider—allow you to communicate styling to the depths of the 
rendering engine. In contrast, all such parts of WinJS controls are addressable in the DOM, so they are 
just styled with specific win-* classes defined in the WinJS stylesheets. That is, the controls are simply 
rendered with those style classes. Default styles are defined in the WinJS stylesheets, but apps can 
override any aspect of those to style the controls however you want. 

In a few cases, as already pointed out, certain win-* classes define style packages for use with HTML 
controls, such as win-backbutton, win-vertical (for a slider) and win-ring (for a progress control). 
These are intended to style standard controls to look like special system controls. 

There are also a few general purpose -ms-* styles (not selectors) that can be applied to many 
controls (and elements in general), along with some general WinJS win-* style classes. These are 
summarized in the following table. 

Style or Class Description 

-ms-user-select: none | inherit | element | text | 
auto 

Enables or disables selection for an element. Setting to none is 
particularly useful to prevent selection in text elements. 

-ms-zoom: <percentage> Optical zoom (magnification). 

-ms-touch-action: auto | none (and more) Allows specific tailoring of a control’s touch experience, 
enabling more advanced interaction models. 

win-interactive Prevents default behaviors for controls contained inside 
FlipView and ListView controls (see Chapter 5). 

win-swipeable Sets -ms-touch-action styles so a control within a ListView can 
be swiped (to select) in one direction without causing panning 
in the other. 

win-small, win-medium, win-large Size variations to some controls. 
win-textarea Sets typical text editing styles. 

 

For all of these and more, spend some time with these three reference topics: WinJS CSS classes for 
typography, WinJS CSS classes for HTML controls, and CSS classes for WinJS controls. I also wanted to 
provide you with a summary of all the other vendor-prefixed styles (or selectors) that are supported 
within the CSS engine for Store apps; see the next table. Vendor-prefixed styles for animations, 
transforms, and transitions are still supported, though no longer necessary, because these standards 
have recently been finalized. I made this list because the documentation here can be hard to penetrate: 
you have to click through the individual pages under the Cascading Style Sheets topic in the docs to see 
what little bits have been added to the CSS you already know. 

Area Styles 

Backgrounds and borders -ms-background-position-[x | y] 

Box model -ms-overflow-[x | y] 

Basic UI -ms-text-overflow (for ellipses rendering) 

-ms-user-select (sets or retrieves where users are able to select text within an element) 

-ms-zoom (optical zoom) 

152

http://msdn.microsoft.com/library/windows/apps/hh770582.aspx
http://msdn.microsoft.com/library/windows/apps/hh770582.aspx
http://msdn.microsoft.com/library/windows/apps/hh770562.aspx
http://msdn.microsoft.com/library/windows/apps/hh440966.aspx
http://msdn.microsoft.com/library/windows/apps/Hh996828.aspx


Flexbox -ms-[inline-]flexbox (values for display); -ms-flex and -ms-flex-[align | direction | 
order | pack | wrap] 

Gradients -ms-[repeating-]linear-gradient, -ms-[repeating-]radial-gradient 

Grid -ms-grid and -ms-grid-[column | column-align | columns | column-span | grid-layer | 
row | row-align | rows | row-span] 

High contrast -ms-high-contrast-adjust 

Regions -ms-flow-[from | into] along with the MSRangeCollection method 

Text -ms-block-progression, -ms-hyphens and –ms-hypenate-limit-[chars | lines | zone], 
-ms-text-align-last, -ms-word-break, -ms-word-wrap, -ms-ime-mode, -ms-layout-grid and 
–ms-layout-grid-[char | line | mode | type], and –ms-text-[autospace | 
kashida-space | overflow | underline-position] 

Other -ms-writing-mode 

Styling Gallery: HTML Controls 
Now we get to enjoy a visual tour of styling capabilities for Windows Store apps. Much can be done 
with standard styles, and then there are all the things you can do with special styles and classes as 
shown in the graphics in this section. The specifics of all these examples can be seen in the HTML 
essential controls sample. 

Also check out the very cool Applying app theme color (theme roller) sample. This beauty lets you 
configure the primary and secondary colors for an app, shows how those colors affect different controls, 
and produces about 200 lines of precise CSS that you can copy into your own stylesheet. This very much 
helps you create a color theme for your app, which we very much encourage to establish an app’s own 
personality within the overall Windows 8 design guidelines and not try to look like the system itself. (Do 
note that controls in system-provided UI, like the confirmation flyout when creating secondary tiles, will 
be styled with system colors. These cannot be controlled by the app.) 

 

153

www.SoftGozar.com

http://code.msdn.microsoft.com/windowsapps/Common-HTML-controls-and-09a72a24
http://code.msdn.microsoft.com/windowsapps/Common-HTML-controls-and-09a72a24
http://code.msdn.microsoft.com/windowsapps/Theme-roller-sample-64b679f2


 

 
 

 
 

154



 

 

Note Though not shown here, you can also use the -ms-scrollbar-* styles for scrollbars that appear 
on pannable content in your app. 

Styling Gallery: WinJS Controls 
Similarly, here is a visual rundown of styling for WinJS controls, drawing again from the samples in the 
SDK: HTML DatePicker and TimePicker controls, HTML Rating control, HTML ToggleSwitch control, and 
HTML Tooltip control. 

For the WinJS DatePicker and TimePicker, refer to styling for the HTML select element along with 
the ::-ms-value and ::-ms-expand pseudo-elements. I will note that the sample isn’t totally 
comprehensive, so the visuals below highlight the finer points: 

 
 

155

http://code.msdn.microsoft.com/windowsapps/Date-and-time-picker-sample-0424c7c2
http://code.msdn.microsoft.com/windowsapps/Rating-control-sample-4666c750
http://code.msdn.microsoft.com/windowsapps/ToggleSwitch-control-sample-84c0aacb
http://code.msdn.microsoft.com/windowsapps/Tooltip-control-sample-cb24c2ce


 
 

The Rating control has states that can be styled in addition to its stars and the overall control. win-* 
classes identify these individually; combinations style all the variations as in this table: 

Style Class Part 
win-rating Styles the entire control 
win-star Styles the control's stars generally 
win-empty Styles the control's empty stars 
win-full Styles the control's full stars 

.win-star Classes State 
win-average Control is displaying an average rating (user has not selected a rating and the 

averageRating property is non-zero) 
win-disabled Control is disabled 
win-tentative Control is displaying a tentative rating 
win-user Control is displaying user-chosen rating 

Variation Classes (selectors) 
Average empty stars .win-star.win-average.win-empty 

Average full stars .win-star.win-average.win-full 

Disabled empty stars .win-star.win-disabled.win-empty 

Disabled full stars .win-star.win-disabled.win-full 

Tentative empty stars .win-star.win-tentative.win-empty 

Tentative full stars .win-star.win-tentative.win-full 

User empty stars .win-star.win-user.win-empty 

User full stars .win-star.win-user.win-full 

 
 

156



For the ToggleSwitch, win-* classes identify parts of the control; states are implicit. Note that the 
win-switch part is just an HTML slider control (<input type="range">), so you can utilize all the 
pseudo-elements for its parts. 

 
 

And finally, for Tooltip, win-tooltip is a single class for the tooltip as a whole; the control can then 
contain any other HTML to which CSS applies using normal selectors: 

 

157



 

Some Tips and Tricks 
• In the current implementation, tooltips on a slider (<input type="range">) are always numerical 

values; there isn’t a means to display other forms of text, such as Low, Medium, and High. For 
something like this, you could consider a WinJS.UI.Rating control with three values, using the 
tooltipStrings property to customize the tooltips. 

• The ::-ms-tooltip pseudo-selector for the slider affects only visibility (with display: none); it 
cannot be used to style the tooltip generally. This is useful to hide the default tooltips if you want 
to implement custom UI of your own. 

• There are additional types of input controls (different values for the type attribute) that I haven’t 
mentioned. This is because those types have no special behaviors and just render as a text box. 
Those that have been specifically identified might also just render as a text box, but they can 
affect, for example, what on-screen keyboard configuration is displayed on a touch device (see 
Chapter 9) and also provide specific input validation (e.g., the number type only accepts digits). 

• The WinJS attribute, data-win-selectable, when set to true, specifies that an element is 
selectable in the same way that all input and contenteditable elements are. 

• If you don’t find width and height properties working for a control, try using style.width and 
style.height instead. 

• You’ll notice that there are two kinds of button controls: <button> and <input type="button">. 
They’re visually the same, but the former is a block tag and can display HTML inside itself, 
whereas the latter is an inline tag that displays only text. A button also defaults to <input 
type="submit">, which has its own semantics, so you generally want to use <button 
type="button"> to be sure. 

158

http://msdn.microsoft.com/library/windows/apps/hh440973.aspx


• If a WinJS.UI.Tooltip is getting clipped, you can override the max-width style in the win-tooltip 
class, which is set to 30em in the WinJS stylesheets. Again, peeking at the style in Blend’s Style 
Rules tab is a quick way to see the defaults. 

• The HTML5 meter element is not supported for Store apps. 

• There’s a default dotted outline for a control when it has the focus (tabbing to it with the 
keyboard or calling the focus method in JavaScript). To turn off this default rectangle for a 
control, use <selector>:focus { outline: none; } in CSS. 

• Store apps can use the window.getComputedStyle method to obtain a currentStyle object 
that contains the applied styles for an element, or for a pseudo-element. This is very helpful, 
especially for debugging, because pseudo-elements like ::-ms-thumb for an HTML slider control 
never appear in the DOM, so the styling is not accessible through the element’s style property 
nor does it surface in tools like Blend. Here’s an example of retrieving the background color style 
for a slider thumb: 

var styles = window.getComputedStyle(document.getElementById("slider1"), "::-ms-thumb"); 
styles.getPropertyValue("background-color"); 

Custom Controls 

As extensive as the HTML and WinJS controls are, there will always be something you wish the system 
provided but doesn’t. “Is there a calendar control?” is a question I’ve often heard. “What about charting 
controls?” These clearly aren’t included directly in Windows 8, and despite any wishing to the contrary, it 
means you or another third-party will need to create a custom control. 

Fortunately, everything we’ve learned so far, especially about WinJS controls, applies to custom 
controls. In fact, WinJS controls are entirely implemented using the same model that you can use 
directly, and since you can look at the WinJS source code anytime you like, you already have a bunch of 
reference implementations available. 

To go back to our earlier definition, a control is just declarative markup (creating elements in the 
DOM) plus applicable CSS, plus methods, properties, and events accessible from JavaScript. To create 
such a control in the WinJS model, follow this general pattern: 

1. Define a namespace for your control(s) by using WinJS.Namespace.define to both provide a 
naming scope and to keep excess identifiers out of the global namespace. (Do not add controls 
to the WinJS namespace.) Remember that you can call WinJS.Namespace.define many times to 
add new members, so typically an app will just have a single namespace for all its custom 
controls. 

2. Within that namespace, define the control constructor by using WinJS.Class.define (or derive), 
assigning the return value to the name you want to use in data-win-control attributes. That fully 
qualified name will be <namespace>.<constructor>. 

159

http://msdn.microsoft.com/library/windows/apps/Hh702516.aspx
http://msdn.microsoft.com/library/windows/apps/hh453398.aspx


3. Within the constructor (of the form <constructor>(element, options) ): 
a. You can recognize any set of options you want; these are arbitrary. Simply ignore any that 

you don’t recognize. 

b. If element is null or undefined, create a div to use in its place. 

c. Assuming element is the root element containing the control, be sure to set 
element.winControl=this and this.element=element to match the WinJS pattern. 

4. Within WinJS.Class.define, the second argument is an object containing your public methods 
and properties (those accessible through an instantiated control instance); the third argument is 
an object with static methods and properties (those accessible through the class name without 
needing to call new). 

5. For your events, mix (WinJS.Class.mix) your class with the results from WinJS.Utilities.- 
createEventProperties(<events>) where <events> is an array of your event names (without on 
prefixes). This will create on<event> properties in your class for each name in the list. 

6. Also mix your class with WinJS.UI.DOMEventMixin to add standard implementations of 
addEventListener, removeEventListener, dispatchEvent, and setOptions.28 

7. In your implementation (markup and code), refer to classes that you define in a default 
stylesheet but that can be overridden by consumers of the control. Consider using existing win-* 
classes to align with general styling. 

8. A typical best practice is to organize your custom controls in per-control folders that contain all 
the html, js, and css files for that control. Remember also that calls to WinJS.Namespace.define 
for the same namespace are additive, so you can populate a single namespace with controls that 
are defined in separate files. 

You might consider using WinJS.UI.Pages if what you need is mostly a reusable block of 
HTML/CSS/JavaScript for which you don’t necessarily need a bunch of methods, properties, and events. 
WinJS.UI.Pages is, in fact, implemented as a custom control. Along similar lines, if what you need is a 
reusable block of HTML in which you want to do run-time data binding, check out WinJS.Binding.- 
Template, which we’ll see toward the end of this chapter. This isn’t a control as we’ve been describing 
here—it doesn’t support events, for instance—but might be exactly what you need. 

It’s also worth reminding you that everything in WinJS, like WinJS.Class.define and WinJS.UI.- 
DOMEventMixin are just helpers for common patterns. You’re not in any way required to use these, 
because in the end, custom controls are just elements in the DOM like any others and you can create 
and manage them however you like. The WinJS utilities just make most jobs cleaner and easier. 

28 Note that there is also a WinJS.Utilities.eventMixin that is similar (without setOptions) that is useful for noncontrol 
objects that won’t be in the DOM but still want to fire events. The implementations here don’t participate in DOM event 
bubbling/tunneling. 

160



Custom Control Examples 
To see these recommendations in action, here are a couple of examples. First is what Chris Tavares, one 
of the WinJS engineers who has been a tremendous help with this book, described as the “dumbest 
control you can imagine.” Yet it certainly shows the most basic structures: 

WinJS.Namespace.define("AppControls", { 
    HelloControl: WinJS.Class.define(function (element, options) { 
        element.winControl = this; 
        this.element = element; 
 
        if (options.message) { 
            element.innerText = options.message; 
        } 
    }) 
}); 

With this, you can then use the following markup so that WinJS.UI.process/processAll will 
instantiate an instance of the control (as an inline element because we’re using span as the root): 

<span data-win-control="AppControls.HelloControl" 
    data-win-options="{ message: 'Hello, World'}"> 
</span> 

Note that the control definition code must be executed before WinJS.UI.process/processAll so that 
the constructor function named in data-win-control actually exists at that point. 

For a more complete control, you can take a look at the HTML SemanticZoom for custom controls 
sample. My friend Kenichiro Tanaka of Microsoft Tokyo also created the calendar control shown in 
Figure 4-9 and provided in the CalendarControl example for this chapter. (Note that this is example is 
only partly sensitive to localized calendar settings; it is not meant to be full-featured.) 

Following the guidelines given earlier, this control is defined using WinJS.Class.define within a 
Controls namespace (calendar.js lines 4–10 shown here [with a comment line omitted]): 

WinJS.Namespace.define("Controls", { 
    Calendar : WinJS.Class.define( 
        function (element, options) { 
            this.element = element || document.createElement("div"); 
            this.element.className = "control-calendar"; 
            this.element.winControl = this; 

 

 

 

 

 

161

http://code.msdn.microsoft.com/windowsapps/SemanticZoom-for-custom-4749edab
http://code.msdn.microsoft.com/windowsapps/SemanticZoom-for-custom-4749edab


The rest of the constructor (lines 12–63) builds up the child elements that define the control, making 
sure that each piece has a particular class name that, when scoped with the control-calendar class 
placed on the root element above, allows specific styling of the individual parts. The defaults for this are 
in calendar.css; specific overrides that differentiate the two controls in Figure 4-9 are in default.css. 

 
FIGURE 4-9 Output of the Calendar Control example. 

Within the constructor you can also see that the control wires up its own event handlers for its child 
elements, such as the previous/next buttons and each date cell. In the latter case, clicking a cell uses 
dispatchEvent to raise a dateselected event from the overall control itself. 

Lines 63–127 then define the members of the control. There are two internal methods, _setClass 
and _update, followed by two public methods, nextMonth and prevMonth, followed by three public 
properties, year, month, and date. Those properties can be set through the data-win-options string in 
markup or directly through the control object as we’ll see in a moment. 

At the end of calendar.js you’ll see the two calls to WinJS.Class.mix to add properties for the events 
(there’s only one here), and the standard DOM event methods like addEventListener, 
removeEventListener, and dispatchEvent, along with setOptions: 

WinJS.Class.mix(Controls.Calendar, WinJS.Utilities.createEventProperties("dateselected")); 
WinJS.Class.mix(Controls.Calendar, WinJS.UI.DOMEventMixin); 

Very nice that adding all these details is so simple—thank you, WinJS!29 

 

 

29 Technically speaking, WinJS.Class.mix accepts a variable number of arguments, so you can actually combine the two 
calls above into a single one. 

162



Between calendar.js and calendar.css we have the definition of the control. In default.html and 
default.js we can then see how the control is used. In Figure 4-9, the control on the left is declared in 
markup and instantiated through the call to WinJS.UI.processAll in default.js. 

<div id="calendar1" class="control-calendar" aria-label="Calendar 1" 
    data-win-control="Controls.Calendar" 
    data-win-options="{ year: 2012, month: 5, ondateselected: CalendarDemo.dateselected}"> 
</div> 

You can see how we use the fully qualified name of the constructor as well as the event handler we’re 
assigning to ondataselected. But remember that functions referenced in markup like this have to be 
marked for strict processing. The constructor is automatically marked through WinJS.Class.define, but 
the event handler needs extra treatment: we place the function in a namespace (to make it globally 
visible) and use WinJS.UI.eventHandler to do the marking: 

WinJS.Namespace.define("CalendarDemo", { 
    dateselected: WinJS.UI.eventHandler(function (e) { 
        document.getElementById("message").innerText = JSON.stringify(e.detail) + " selected"; 
    }) 
}); 

Again, if you forget to mark the function in this way, the control won’t be instantiated at all. (Remove 
the WinJS.UI.eventHandler wrapper to see this.) 

To demonstrate creating a control outside of markup, the control on the right of Figure 4-9 is 
created as follows, within the calendar2 div: 

//Since we're creating this calendar in code, we're independent of WinJS.UI.processAll. 
var element = document.getElementById("calendar2"); 
 
//Since we're providing an element, this will be automatically added to the DOM 
var calendar2 = new Controls.Calendar(element);  
 
//Since this handler is not part of markup processing, it doesn't need to be marked 
calendar2.ondateselected = function (e) { 
    document.getElementById("message").innerText = JSON.stringify(e.detail) + " selected"; 
} 

There you have it! 

Note For a control you really intend to share with others, you’ll want to include the necessary 
comments that provide metadata for IntelliSense. See the “Sidebar: Helping Out IntelliSense” in Chapter 
3 for more details. You’ll also want to make sure that the control fully supports considerations for 
accessibility and localization, as discussed in Chapter 17, “Apps for Everyone.” 

 

 

163



Custom Controls in Blend 
Blend is an excellent design tool for working with controls directly on the artboard, so you might be 
wondering how custom controls integrate into that story. 

First, since custom controls are just elements in the DOM, Blend works with them like all other parts 
of the DOM. Try loading the Calendar Control Demo into Blend to see for yourself. 

Next, a control can determine if it’s running inside Blend’s design mode if the 
Windows.ApplicationModel.DesignMode.designModeEnabled property is true. One place where this is 
very useful is when handling resource strings. We won’t cover resources in full until Chapter 17, but it’s 
important to know here that resource lookup, through 
Windows.ApplicationModel.Resources.ResourceLoader, doesn’t work in Blend’s design mode as it does 
when the app is actually running for real. To be blunt, it throws exceptions! So you can use the 
design-mode flag to just provide a suitable default instead of doing the lookup. 

For example, one of the early partners I worked with had a method to retrieve a localized URI to their 
back-end services, which was failing in design mode. Using the design mode flag, then, we just had to 
change the code to look like this: 

WinJS.Namespace.define("App.Localization", { 
    getBaseUri: function () { 
         if (Windows.ApplicationModel.DesignMode.designModeEnabled) { 
             return "www.default-base-service.com"; 
         } else { 
             var resources = new Windows.ApplicationModel.Resources.ResourceLoader(); 
             var baseUri = resources.getString("baseUrl"); 
             return baseUri; 
         } 
    } 
}); 

Finally, it is possible to have custom controls show up in the Assets tab alongside the HTML elements 
and the WinJS controls. For this you’ll first need an OpenAjax Metadata XML (OAM) file that provides all 
the necessary information for the control, and you already have plenty of references to draw from. To 
find them, search for *._oam.xml files within Program Files (x86). You should find some under the 
Microsoft Visual Studio 11.0 folder and deep down within Microsoft SDKs where WinJS metadata lives. In 
both places you’ll also find plenty of examples of the 12x12 and 16x16 icons you’ll want for your 
control. 

If you look in the controls/calendar folder of the CalendarControl example with this chapter, you’ll 
find calendar_oam.xml and two icons alongside the .js and .css files. The OAM file (that must have a 
filename ending in _oam.xml) tells Blend how to display the control in its Assets panel and what code it 
should insert when you drag and drop a control into an HTML file. Here are the contents of that file: 

 

 

164

http://www.openajax.org/member/wiki/OpenAjax_Metadata_1.0_Specification_Descriptive


<?xml version="1.0" encoding="utf-8"?> 
<!-- Use underscores or periods in the id and name, not spaces. --> 
<widget version="1.0"  
    spec="1.0"  
    id="http://www.kraigbrockschmidt.com/scehmas/ProgrammingWin8_JS/Controls/Calendar"  
    name="ProgWin8_JS.Controls.Calendar"  
    xmlns="http://openajax.org/metadata"> 
         
    <author name="Kenichiro Tanaka" /> 
 
    <!-- title provides the name that appears in Blend's Assets panel 
         (otherwise it uses the widget.name). --> 
    <title type="text/plain"><![CDATA[Calendar Control]]></title> 
 
    <!-- description provides the tooltip fir Assets panel. --> 
      <description type="text/plain"><![CDATA[A single month calendar]]></description> 
 
    <!-- icons (12x12 and 16x16 provide the small icon next to the control 
         in the Assets panel. --> 
    <icons> 
        <icon src="calendar.16x16.png" width="16" height="16" /> 
        <icon src="calendar.12x12.png" width="12" height="12" /> 
    </icons> 
 
    <!-- This element describes what gets inserted into the .html file; 
         comment out anything that's not needed --> 
    <requires> 
        <!-- The control's code --> 
        <require type="javascript" src="calendar.js" />  
 
        <!-- The control's stylesheet --> 
        <require type="css" src="calendar.css" />  
 
        <!-- Any inline script for the document head --> 
        <require type="javascript"><![CDATA[WinJS.UI.processAll();]]></require> 
 
        <!-- Inline CSS for the style block in the document head --> 
        <!--<require type="css"><![CDATA[.control-calendar{}]]></require>--> 
    </requires> 
 
    <!-- What to insert in the body for the control; be sure this is valid HTML 
         or Blend won't allow insertion --> 
    <content> 
        <![CDATA[ 
            <div class="control-calendar" data-win-control="Controls.Calendar" 
                data-win-options="{ year: 2012, month: 6 }"></div> 
        ]]> 
    </content> 
</widget> 

When you add all five files into a project in Blend, you’ll see the control’s icon and title in the Assets 
tab (and hovering over the control shows the tooltip): 

165



 
If you drag and drop that control onto an HTML page, you’ll then see the different bits added in: 

<!DOCTYPE html> 
<html> 
<head> 
    <!-- ... --> 
    <script src="calendar.js" type="text/javascript"></script> 
    <link href="calendar.css" rel="stylesheet" type="text/css"> 
</head> 
<body> 
    <div class="control-calendar" data-win-control="Controls.Calendar"  
        data-win-options="{month:6, year:2012}"></div> 
</body> 
</html> 

But wait! What happened to the WinJS.UI.processAll() call that the XML indicated a script tag in 
the header? It just so happens that Blend singles out this piece of code to check if it’s already being 
called somewhere in the loaded script. If it is (as is typical with the project templates), Blend doesn’t 
repeat it. If it does include it, or if you specify other code here, Blend will insert it in a <script> tag in the 
header. 

Also, errors in your OAM file will convince Blend that it shouldn’t insert the control at all, so you’ll 
need to fix those errors. When making changes, Blend won’t reload the metadata unless you reload the 
project or rename the OAM file (preserving the _oam.xml part). I found the latter is much easier, as 
Blend doesn’t care what the rest of the filename looks like. In this renaming process too, if you find that 
the control disappeared from the Assets panel, it means you have an error in the OAM XML structure 
itself, such as attribute values containing invalid characters. For this you’ll need to do some trial and 
error, and of course you can refer to all the OAM files already on your machine for details. 

You can also make your control available to all projects in Blend. To do this, go to Program Files 
(x86)\Microsoft Visual Studio 11.0\Blend, create a folder called Addins if one doesn’t exist, create a 
subfolder therein for your control (using a reasonably unique name), and copy all your control assets 
there. When you restart Blend, you’ll see the control listed under Addins in the Assets tab: 

166



 
This would be appropriate if you create custom controls for other developers to use; your desktop 

installation program would simply place your assets in the Addins folder. As for using such a control, 
when you drag and drop the control to an HTML file, its required assets (but not the icons nor the OAM 
file) are copied to the project into the root folder. You can then move them around however you like, 
patching up the file references, of course. 

Data Binding 

As I mentioned in the introduction to this chapter, the subject of data binding is closely related to 
controls because it’s how you create relationships between properties of data objects and properties of 
controls (including styles). This way, controls reflect what’s happening in the data, which is often exactly 
what you want to accomplish in your user experience. 

I want to start this discussion with a review of data binding in general, for you may be familiar with 
the concept to some extent, as I was, but unclear on a number of the details. At times, in fact, especially 
if you’re talking to someone who has been working with it for years, data binding seems to become 
shrouded in some kind of impenetrable mystique. I don’t at all count myself among such initiates, so I’ll 
try to express the concepts in prosaic terms. 

The general idea of data binding is again to connect or “bind” properties of two different objects 
together, typically a data object (or context) and a UI object, which we can generically refer to as a 
source and a target. A key here is that data binding generally happens between properties, not objects. 

The binding can also involve converting values from one type into another, such as converting a set 
of separate source properties into a single string as suitable for the target. It’s also possible to have 
multiple target objects bound to the same source object or one target bound to multiple source 
objects. This flexibility is exactly why the subject can become somewhat nebulous, because there are so 
many possibilities! Still, for most scenarios, we can keep the story simple. 

A common data-binding scenario is shown in Figure 4-10, where we have specific properties of two 
UI elements, a span and an img, bound to properties of a data object. There are three bindings here: (1) 
the span.innerText property is bound to the source.name property; (2) the img.src property is bound 
to the source.photoURL property; and (3) the span.style.color property is bound to the output of a 
converter function that changes the source.userType property into a color. 

167



 
FIGURE 4-10 A common data-binding scenario between a source data object and two target UI elements, involving 
two direct bindings and one binding with a conversion function. 

How these bindings actually behave at run time then depends on the particular direction of each 
binding, which can be one of the following: 

One-time: the value of the source property (possibly with conversion) is copied to the target 
property at some point, after which there is no further relationship. This is what you automatically do 
when passing variables to control constructors, for instance, or simply assigning target property values 
using source properties. What’s useful here is to have a declarative means to make such assignments 
directly in element attributes, as we’ll see. 

 
One-way: the target object listens for change events on bound source properties so that it can 

update itself with new values. This is typically used to update a UI element in response to underlying 
changes in the data. Changes within the target element (like a UI control), however, are not reflected 
back to the data itself (but can be sent elsewhere as with form submission, which could in turn update 
the data through another channel). 

168



 
 

Two-way: essentially one-way binding in both directions, as the source object also listens to change 
events from the target object. Changes made within a UI element like a text box are thus saved back in 
the bound source property, just as changes to the data source property update the UI element. 
Obviously, there must be some means to not get stuck in an infinite loop; typically, both objects avoid 
firing another change event if the new value is the same as the existing one. 

 

Data Binding in WinJS 
Now that we’ve seen what data binding is all about, we can see how it can be implemented within a 
Windows 8 app. If you like, you can create whatever scheme you want for data binding or use a 
third-party JavaScript library for the job: it’s just about connecting properties of source objects with 
properties of target objects. 

If you’re anything like a number of my paternal ancestors, who seemed to wholly despise relying on 
anyone to do anything they could do themselves (like drilling wells, mining coal, and manufacturing 
engine parts), you may very well be content with engineering your own data-binding solution. But if 
you have a more tempered nature like I do (thanks to my mother’s side), I’m delighted when someone is 
thoughtful enough to create a solution for me. Thus my gratitude goes out to the WinJS team who, 
knowing of the common need for data binding, created the WinJS.Binding API. This supports one-time 
and one-way binding, both declaratively and procedurally, along with converter functions. At present, 
WinJS does not provide for two-way binding, but such structures aren’t difficult to set up in code. 

 

169



Within the WinJS structures, multiple target elements can be bound to a single data source. 
WinJS.Binding, in fact, provides for what are called templates, basically collections of target elements 
that are together bound to the same data source. Though we don’t recommend it, it’s possible to bind a 
single target element to multiple sources, but this gets tricky to manage properly. A better approach in 
such cases is to wrap those separate sources into a single object and bind to that instead. 

The best way to understand WinJS.Binding is to first see look at how we’d write our own binding 
code and then see the solution that WinJS offers. For these examples, we’ll use the same scenario as 
shown in Figure 4-10, where we have a source object bound to two separate UI elements, with one 
converter that changes a source property into a color. 

One-Time Binding 
One-time binding, as mentioned before, is essentially what you do whenever you just assign values to 
properties of an element. So, given this HTML: 

<!-- Markup: the UI elements we'll bind to a data object --> 
<section id="loginDisplay1"> 
    <p>You are logged in as <span id="loginName1"></span></p> 
    <img id="photo1"></img> 
</section> 

and the following data source object: 

var login1 = { name: "liam", id: "12345678",  
    photoURL: "http://www.kraigbrockschmidt.com/images/Liam07.png", userType: "kid"}; 

we can bind as follows, also using a converter function in the process: 

//"Binding" is done one property at a time, with converter functions just called directly 
var name = document.getElementById("loginName1"); 
name.innerText = login1.name; 
name.style.color = userTypeToColor1(login1.userType); 
document.getElementById("photo1").src = login1.photoURL;  
 
 function userTypeToColor1(type) { 
     return type == "kid" ? "Orange" : "Black"; 
 } 

This gives the following result, in which I shamelessly publish a picture of my kid as a baby: 

 

170



The code for this can be found in Test 1 of the BindingTests example for this chapter. With WinJS we 
can accomplish the same thing by using a declarative syntax and a processing function. In markup, we 
use the attribute data-win-bind to map target properties of the containing element to properties of the 
source object that is given to the processing function, WinJS.Binding.processAll. 

The value of data-win-bind is a string of property pairs. Each pair’s syntax is <target property> : 
<source property> [<converter>] where the converter is optional. Each property identifier can use dot 
notation as needed, and property pairs are separated by a semicolon as shown in the HTML: 

<section id="loginDisplay2"> 
    <p>You are logged in as 
        <span id="loginName2" 
            data-win-bind="innerText: name; style.color: userType Tests.userTypeToColor"> 
        </span> 
    </p> 
    <img id="photo2" data-win-bind="src: photoURL"/> 
</section> 

Note that array lookup on the source property using [ ] is not supported, though a converter could 
do that. On the target, if that object has a JavaScript property that you want to refer to using a 
hyphenated identifier, you can use the following syntax: 

<span data-win-bind="this['funky-property']: source"></span> 

A similar syntax is necessary for data-binding target attributes, such as the aria-* attributes for 
accessibility. Because these are not JavaScript properties, a special converter (or initializer as it is more 
property called) named WinJS.Binding.setAttribute is needed: 

<label data-win-bind="this['aria-label']: title WinJS.Binding.setAttribute"></label> 

Also see WinJS.Binding.setAttributeOneTime for one-time binding for attributes. 

Anyway, assuming we have a data source as before: 

var login2 = { name: "liamb", id: "12345678",  
    photoURL: "http://www.kraigbrockschmidt.com/images/Liam07.png", userType: "kid"}; 

We convert the markup to actual bindings using WinJS.Binding.processAll: 

//processAll scans the element's tree for data-win-bind, using given object as data context 
WinJS.Binding.processAll(document.getElementById("loginDisplay2"), login2); 

This code, Test2 in the example, produces the same result as Test 1. The one added bit here is that we 
need to define the converter function so that it’s globally accessible and marked for processing. This can 
be accomplished with a namespace that contains a function (again, it’s called an initializer, as we’ll 
discuss in the “Binding Initializers” section near the end of this chapter) created by WinJS.Binding.- 
converter: 

//Use a namespace to export function from the current module so WinJS.Binding can find it 
WinJS.Namespace.define("Tests", { 
    userTypeToColor: WinJS.Binding.converter(function (type) { 
        return type == "kid" ? "Orange" : "Black"; 

171



    }) 
}); 

As with control constructors defined with WinJS.Class.define, WinJS.Binding.converter 
automatically marks the functions it returns as safe for processing. 

We could also put the data source object and applicable converters within the same namespace.30 
For example (in Test 3), we could place our login data object and the userTypeToColor function in a 
LoginData namespace, and markup and code would look like this: 

<span id="loginName3" 
    data-win-bind="innerText: name; style.color: userType LoginData.userTypeToColor"> 
</span> 
 
 
WinJS.Binding.processAll(document.getElementById("loginDisplay3"), LoginData.login); 
 
WinJS.Namespace.define("LoginData", { 
        login : { 
            name: "liamb", id: "12345678", 
            photoURL: "http://www.kraigbrockschmidt.com/images/Liam07.png", 
            userType: "kid" 
        }, 
 
        userTypeToColor: WinJS.Binding.converter(function (type) { 
            return type == "kid" ? "Orange" : "Black"; 
        }) 
    }); 

In summary, for one-time binding WinJS.Binding simply gives you a declarative syntax to do exactly 
what you’d do in code, with a lot less code. Because it’s all just some custom markup and a processing 
function, there’s no magic here, though such useful utilities are magical in their own way! In fact, the 
code here is really just one-way binding without having the source fire any change events. We’ll see 
how to do that with WinJS.Binding.as in a moment after a couple more notes. 

First, WinJS.Binding.processAll is actually an async function that returns a promise. Any completed 
handler given to its done method will be called when the processing is finished, if you have additional 
code that’s depending on that state. Second, you can call WinJS.Binding.processAll more than once 
on the same target element, specifying a different source object (data context) each time. This won’t 
replace any existing bindings, mind you—it just adds new ones, meaning that you could end up binding 
the same target property to more than one source, which could become a big mess. So again, a better 
approach is to combine those sources into a single object and bind to that, using dot notation to 
identify nested properties. 

30 More commonly, converters would be part of a namespace in which applicable UI elements are defined, because they’re 
more specific to the UI than to a data source. 

172



Sidebar: Data-Binding Properties of WinJS Controls 
When targeting properties on a WinJS control and not its root (containing) element, the target 
property names should begin with winControl. Otherwise you’ll be binding to nonexisting 
properties on the root element. When using winControl, the bound property serves the same 
purpose as specifying a fixed value in data-win-options. For example, the markup used earlier in 
the “Example: WinJS.UI.Rating Control” section could use data binding for its averageRating and 
userRating properties as follows (assuming myData is an appropriate source):  

<div id="rating1" data-win-control="WinJS.UI.Rating" 
    data-win-options="{onchange: changeRating}" 
    data-win-bind="{winControl.averageRating: myData.average,  
       winControl.userRating: myData.rating}"> 
</div> 

One-Way Binding 
The goal for one-way binding is, again, to update a target property, typically in a UI control, when the 
bound source property changes. That is, one-way binding means to effectively repeat the one-time 
binding process whenever the source property changes. 

In the code we saw above, if we changed login.name after calling WinJS.Binding.processAll, 
nothing will happen in the output controls. So how can we automatically update the output? 

Generally speaking, this requires that the data source maintains a list of bindings, where each binding 
could describe a source property, a target property, and a converter function. The data source would 
also need to provide methods to manage that list, like addBinding, removeBinding, and so forth. Thirdly, 
whenever one of its bindable (or observable) properties changes it goes through its list of bindings and 
updates any affected target property accordingly. 

These requirements are quite generic; you can imagine that their implementation would pretty much 
join the ranks of classic boilerplate code. So, of course, WinJS provides just such an implementation! In 
this context, sources are called observable objects, and the function WinJS.Binding.as wraps any 
arbitrary object with just such a structure. (It’s a no-op for nonobjects.) Conversely, WinJS.Binding.- 
unwrap removes that structure if there’s a need. Furthermore, WinJS.Binding.define creates a 
constructor for observable objects around a set of properties (described by a kind of empty object that 
just has property names). Such a constructor allows you to instantiate source objects dynamically, as 
when processing data retrieved from an online service. 

So let’s see some code. Going back to the last example above (Test 3), any time before or after 
WinJS.Binding.processAll we can take the LoginData.login object and make it observable as follows: 

var loginObservable = WinJS.Binding.as(LoginData.login) 

This is actually all we need to do—with everything else the same as before, we can now change a 
bound property within the loginObservable object: 

loginObservable.name = "liambro"; 

173



This will update the target property: 

 
Here’s how we’d then create and use a reusable class for an observable object (Test 4 in the 

BindingTests example). Notice the object we pass to WinJS.Binding.define contains property names, 
but no values (they’ll be ignored): 

WinJS.Namespace.define("LoginData", { 
    //... 
 
    //LoginClass becomes a constructor for bindable objects with the specified properties 
    LoginClass: WinJS.Binding.define({name: "", id: "", photoURL: "", userType: "" }), 
}); 

With that in place, we can create an instance of that class, initializing desired properties. In this 
example, we’re using a different picture and leading userType uninitialized: 

var login4 = new LoginData.LoginClass({ name: "liamb", 
    photoURL: "http://www.kraigbrockschmidt.com/images/Liam08.jpg" }); 

Binding to this login object, we’d see that the username initially comes out black. 

//Do the binding (initial color of name would be black) 
WinJS.Binding.processAll(document.getElementById("loginDisplay"), login4); 

Updating the userType property in the source (as below) would then cause an update the color of 
the target property, which happens through the converter automatically: 

login4.userType = "kid"; 

 

174



Implementing Two-Way Binding 
To implement two-way binding, the process is straightforward: 

1. Add listeners to the appropriate UI element events that relate to bound data source properties. 

2. Within those handlers, update the data source properties. 

The data source should be smart enough to know when the new value of the property is already the 
same as the target property, in which case it shouldn’t try to update the target lest you get caught in a 
loop. The observable object code that WinJS provides does this type of check for you. 

To see an example of this, refer to the Declarative binding sample in the SDK, which listens for the 
change event on text boxes and updates values in its source accordingly. 

Additional Binding Features 
If you take a look at the WinJS.Binding reference in the documentation, you’ll see a number of other 
goodies in the namespace. Let me briefly outline the purpose of these. (Also refer to the Programmatic 
binding sample for a few demonstrations.) 

If you already have a defined class (from WinJS.Class.define) and want to make it observable, use 
WinJS.Class.mix as follows: 

var MyObservableClass = WinJS.Class.mix(MyClass, WinJS.Binding.mixin,  
    WinJS.Binding.expandProperties(MyClass)); 

WinJS.Binding.mixin here contains a standard implementation of the binding functions that WinJS 
expects. WinJS.Binding.expandProperties creates an object whose properties match those in the given 
object (the same names), with each one wrapped in the proper structure for binding. Clearly, this type of 
operation is useful only when doing a mix, and it’s exactly what WinJS.Binding.define does with the 
oddball, no-values object we give to it. 

If you remember from earlier, one of the requirements for an observable object is that is contains 
methods to manage a list of bindings. An implementation of such methods is contained in the 
WinJS.Binding.observableMixin object. Its methods are: 

• bind Saves a binding (property name and a function to invoke on change). 

• unbind Removes a binding created by bind. 

• Notify  Goes through the bindings for a property and invokes the functions associated with it. 
This is where WinJS checks that the old and new values are actually different and where it also 
handles cases where an update for the same target is already in progress. 

Building on this is yet another mixin, WinJS.Binding.dynamicObservableMixin (which is what 
WinJS.Binding.mixin is), which adds methods for managing source properties as well: 

 

175

http://code.msdn.microsoft.com/windowsapps/DeclarativeBinding-bfcb42a5
http://msdn.microsoft.com/library/windows/apps/br229775.aspx
http://code.msdn.microsoft.com/windowsapps/ProgrammaticBinding-de038b64
http://code.msdn.microsoft.com/windowsapps/ProgrammaticBinding-de038b64


• setProperty Updates a property value and notifies listeners if the value changed. 

• updateProperty Like setProperty, but returns a promise that completes when all listeners have 
been notified (the result in the promise is the new property value). 

• getProperty Retrieves a property value as an observable object itself, which makes it possible 
to bind within nested object structures (obj1.obj2.prop3, etc.). 

• addProperty Adds a new property to the object that is automatically enabled for binding. 

• removeProperty Removes a property altogether from the object. 

Why would you want all of these? Well, there are some creative uses. You can call WinJS.- 
Binding.bind, for example, directly on any observable source when you want to hook up another 
function to a source property. This is like adding event listeners for source property changes, and you 
can have as many listeners as you like. This is helpful for wiring up two-way binding, and it doesn’t in 
any way have to be related to manipulating UI. The function just gets called on the property change. 
This could be used to autosync a back-end service with the source object. 

The Declarative binding sample also shows calling bind with an object as the second parameter, a 
form that allows for binding to nested members of the source. The syntax looks like this: 
bind(rootObject, { property: { sub-property: function(value) { ... } } })—whatever matches the 
source object. With such an object in the second parameter, bind will make sure to invoke all the 
functions assigned to the nested properties. In such a case, the return value of bind is an object with a 
cancel method that will clear out this complex binding. 

The notify method, for its part, is something you can call directly to trigger notifications. This is 
useful with additional bindings that don’t necessarily depend on the values themselves, just the fact that 
they changed. The major use case here is to implement computed properties—ones that change in 
response to another property value changing. 

WinJS.Binding also has some intelligent handling of multiple changes to the same source property. 
After the initial binding, further change notifications are asynchronous and multiple pending changes to 
the same property are coalesced. So, if in our example we made several changes to the name property 
in quick succession: 

login.name = "Kenichiro"; 
login.name = "Josh"; 
login.name = "Chris"; 

only one notification for the last value would be sent and that would be the value that shows up in 
bound targets. 

Finally, here are a few more functions hanging off WinJS.Binding: 

 

 

176

http://code.msdn.microsoft.com/windowsapps/DeclarativeBinding-bfcb42a5


• oneTime A function that just loops through the given target (destination) properties and sets 
them to the value of the associated source properties. This function can be used for true 
one-time bindings, as is necessary when binding to WinRT objects. It can also be used directly as 
an initializer within data-win-bind if the source is a WinRT object. 

• defaultBind A function that does the same as oneTime but establishes one-way binding 
between all the given properties. This also serves as the default initializer for all relationships in 
data-win-bind when specific initializer isn’t specified. 

• declarativeBind The actual implementation of processAll. (The two are identical.) In addition 
to the common parameters (the root target element and the data context), it also accepts a 
skipRoot parameter (if true, processing does not bind properties on the root element, only its 
children, which is useful for template objects) and bindingCache (an optimization for holding the 
results of parsing the data-win-bind expression when processing template objects). 

Binding Initializers 
In our earlier examples we saw some uses of converter functions that turn some bit of source data into 
whatever a target property expects. But the function you specify in data-win-bind is more properly 
called an initializer because in truth it’s only ever called once. 

Say what? Aren’t converters used whenever a bound source property gets copied to the target? Well, 
yes, but we’re actually talking about two different functions here. Look carefully at the code structure 
for the userTypeToColor function we used earlier: 

userTypeToColor: WinJS.Binding.converter(function (type) { 
    return type == "kid" ? "Orange" : "Black"; 
}) 

The userTypeToColor function itself is an initializer. When it’s called—once and only once—its return 
value from WinJS.Binding.converter is the converter that will then be used for each property update. 
That is, the real converter function is not userTypeToColor—it’s actually a structure that wraps the 
anonymous function given to WinJS.Binding.converter. 

Under the covers, WinJS.Binding.converter is actually using bind to set up relationships between 
source and target properties, and it inserts your anonymous conversion function into those 
relationships. Fortunately, you generally don’t have to deal with this complexity and can just provide 
that conversion function, as shown above. 

Still, if you want a raw example, check out the Declarative binding sample again, as it shows how to 
create a converter for complex objects directly in code without using WinJS.Binding.converter. In this 
case, that function needs to be marked as safe for processing if it’s referenced in markup. Another 
function, WinJS.Binding.initializer, exists for that exact purpose; the return value of 
WinJS.Binding.converter passes through that same method before it comes back to your app. 

177

http://code.msdn.microsoft.com/windowsapps/DeclarativeBinding-bfcb42a5


Binding Templates and Lists 
Did you think we’ve exhausted WinJS.Binding yet? Well, my friend, not quite! There are two more 
pieces to this rich API that lead us directly into the next chapter. (And now you know the real reason I 
put this entire section where I did!). The first is WinJS.Binding.List, a bindable collection data source 
that—not surprisingly—is very useful when working with collection controls. 

WinJS.Binding.Template is also a unique kind of custom control. In usage, as you can again see in 
the Declarative Binding sample, you declare an element (typically a div) with data-win-control = 
"WinJS.Binding.Template". In that same markup, you specify the template’s contents as child elements, 
any of which can have data-win-bind attributes. What’s unique is that when WinJS.UI.process or 
processAll hits this markup, it instantiates the template and actually pulls everything but the root 
element out of the DOM entirely. So what good is it then? 

Well, once that template exists, anyone can call its render method to create a copy of that template 
within some other element, using some data context to process any data-win-bind attributes therein 
(typically skipping the root element itself, hence that skipRoot parameter in the 
WinJS.Binding.declarativeBind method). Furthermore, rendering a template multiple times into the 
same element creates multiple siblings, each of which can have a different data source. 

Ah ha! Now you can start to see how this all makes perfect sense for collection controls and 
collection data sources. Given a collection data source and a template, you can iterate over that source 
and render a copy of the template for each individual item in that source into its own element. Add a 
little navigation or layout within that containing element and voila! You have the beginnings of what we 
know as the WinJS.UI.FlipView and WinJS.UI.ListView controls, as we’ll explore in the next chapter. 

What We’ve Just Learned 

• The overall control model for HTML and WinJS controls, where every control consists of 
declarative markup, applicable CSS, and methods, properties, and events accessible through 
JavaScript. 

• Standard HTML controls have dedicated markup; WinJS controls use data-win-control 
attributes, which are processed using WinJS.UI.process or WinJS.UI.processAll. 

• Both types of controls can also be instantiated programmatically using new and the appropriate 
constructor, such as Button or WinJS.UI.Rating. 

• All controls have various options that can be used to initialize them. These are given as specific 
attributes in HTML controls and within the data-win-options attribute for WinJS controls. 

• All controls have standard styling as defined in the WinJS stylesheets: ui-light.css and ui-dark.css. 
Those styles can be overridden as desired, and some style classes, like win-backbutton, are used 
to style a standard HTML control to look like a Windows-specific control. 

178

http://msdn.microsoft.com/library/windows/apps/hh700774.aspx
http://msdn.microsoft.com/library/windows/apps/br229723.aspx


• Windows 8 apps have rich styling capabilities for both HTML and WinJS controls alike. For HTML 
controls, -ms-*-prefixed pseudo-selectors allow you to target specific pieces of those controls. 
For WinJS controls, specific parts are styled using win-* classes that you can override. 

• Custom controls are implemented in the same way WinJS controls are, and WinJS provides 
standard implementations of methods like addEventListener. Custom controls can also be 
shown in Blend’s Assets panel either for a single project or for all projects. 

• WinJS provides declarative data-binding capabilities for one-time and one-way binding, which 
can employ conversion functions. It even provides the capability to create an observable 
(one-way bindable) data source from any other object. 

• WinJS also provides support for bindable collections and templates that can be repeatedly 
rendered for different source objects into the same containing element, which is the basis for 
collection controls. 

  

179



Chapter 5 

Collections and Collection Controls 
It’s a safe bet to say that wherever you are, right now, you’re probably surrounded by quite a number of 
collections. This book you’re reading is a collection of chapters, and chapters are a collection of pages. 
Those pages are collections of paragraphs, which are collections of words, which are collections of 
letters, which are (assuming you’re reading this electronically) collections of pixels. On and on…. 

Your body, too, has collections on many levels, which is very much what one studies in college-level 
anatomy courses. Looking around my office and my home, I see even more collections: a book shelf 
with books; scrapbooks with pages and pages with pictures; cabinets with cans, boxes, and bins of food; 
my son’s innumerable toys; the DVD case…even the forest outside is a collection of trees and bushes, 
which then have branches, which then have leaves. On and on…. 

We look at these things as collections because we’ve learned how to generalize specific instances of 
unique things—like leaves or pages or my son’s innumerable toys—into categories or groups. This gives 
us powerful means to organize and manage those things (except for the clothes in my closet, as my wife 
will attest). And just as the physical world around us is very much made of collections, the digital world 
that we use to represent the physical is naturally full of collections as well. Thus programming languages 
like JavaScript have constructs like arrays to organize and manage collection data, and environments 
like Windows 8 provide collection controls through which we can visualize and manipulate that data. 

In this chapter we’ll turn our attention to the two collection controls provided by WinJS: the FlipView, 
which shows one item from a collection at a time, and the ListView, which shows many items in different 
arrangements. As you might expect, the ListView is the richer of the two. As it’s really the centerpiece of 
many app designs, we’ll be spending the bulk of this chapter exploring its depths, along with the 
concept and implementation of semantic zoom (another control, in fact). 

As both collection controls can handle items of arbitrary complexity (both in terms of data and 
presentation, unlike the simple HTML listbox and combobox controls), as well as an arbitrary number of 
items, they naturally build on the foundations of data binding and template controls we just saw at the 
end of Chapter 4, “Controls, Control Styling, and Data Binding.” They also have a close relationship to 
collection data sources, which we’ll specifically examine as well, and their own styling and behavioral 
considerations.  

But let’s not exhaust our minds here at the outset of this chapter with theory or architectural 
intricacies! Instead, let’s just jump into some code to explore the core aspects of both controls. 

180



Collection Control Basics 

To seek the basics of the collection controls, we’ll first look at the FlipView which will introduce us to 
item templates and data sources. We’ll then see how these also apply to the ListView control, then look 
at grouping items within a ListView. 

Quickstart #1: The FlipView Control Sample 
As shown in Figure 5-1, the FlipView control sample is both a great piece of reference code for this 
control and a great visual tool through which to explore the control itself. (I’m also extremely grateful 
that I’ve not had to write such samples for this book!) For the purposes of this Quickstart, let’s just look 
at the first scenario of populating the control from a simple data source and using a template for 
rendering the items, as these mechanisms are shared with the ListView. We’ll come back to the other 
FlipView scenarios later in the chapter. 

 
FIGURE 5-1 The FlipView control sample; the FlipView is the control displaying the picture. 

As FlipView is a WinJS control, whose constructor is WinJS.UI.FlipView, we declare it in markup with 
data-win-control and data-win-options attributes (see html/simpleFlipview.html): 

<div id="simple_FlipView" class="flipView" data-win-control="WinJS.UI.FlipView" 
    data-win-options="{ itemDataSource: DefaultData.bindingList.dataSource, 
        itemTemplate: simple_ItemTemplate }"> 
</div> 

And of course, WinJS.UI.processAll is called in the page-loading process to instantiate the control. 
In the FlipView’s options we can immediately see the two critical pieces to make the control work: a data 
source that provides the goods for each item and a template to render them. 

181

http://code.msdn.microsoft.com/windowsapps/FlipView-control-sample-18e434b4


If you were paying attention at the end of Chapter 4, you’ve probably guessed that the template is 
an instance of WinJS.Binding.Template. And you’re right! That piece of markup, in fact, comes just 
before the control declaration in html/simpleFlipview.html. 

<div id="simple_ItemTemplate" data-win-control="WinJS.Binding.Template" style="display: none"> 
    <div class="overlaidItemTemplate"> 
        <img class="image" data-win-bind="src: picture; alt: title" /> 
        <div class="overlay"> 
            <h2 class="ItemTitle" data-win-bind="innerText: title"></h2> 
        </div> 
    </div> 
</div> 

Note that a template must always be declared in markup before any controls that reference them: 
WinJS.UI.processAll must instantiate the template first because the collection control will be asking 
the template to render its contents for each item in the data source. Also remember from Chapter 4 that 
instantiating a template removes its contents from the DOM so that it cannot be altered at run time. 
You can see this when running the sample: expand the nodes in Visual Studio’s DOM Explorer or Blend’s 
Live DOM pane, and you’ll see the root div of the template but none of its children. 

In the sample, the prosaically named ItemTemplate is made of an img element and another div 
containing an h2. The overlay class on that latter div, if you look at Figure 5-1 carefully, is clearly styled 
with a partially transparent background color (see css/default.css for the .overlaidItemTemplate 
.overlay selector). This shows that you can use any elements you want in a template, including other 
WinJS controls. In the latter case, these are picked up when WinJS.UI.process/ processAll is invoked 
on the template.31 

You can also see that the template uses WinJS data-binding attributes, where the img.src, img.alt, 
and h2.innerText properties are bound to data properties called picture and title. This shows how 
properties of two target elements can be bound to the same source property. (Remember that if you’re 
binding to properties of the WinJS control itself, rather than its child elements, those properties must 
begin with winControl.) 

For the data source, the FlipView’s itemDataSource option is assigned the value of 
DefaultData.bindingList.dataSource that you can find in js/DefaultData.js: 

var array = [ 
    { type: "item", title: "Cliff", picture: "images/Cliff.jpg" }, 
    { type: "item", title: "Grapes", picture: "images/Grapes.jpg" }, 
    { type: "item", title: "Rainier", picture: "images/Rainier.jpg" }, 
    { type: "item", title: "Sunset", picture: "images/Sunset.jpg" }, 
    { type: "item", title: "Valley", picture: "images/Valley.jpg" } 
]; 
var bindingList = new WinJS.Binding.List(array); 
 
WinJS.Namespace.define("DefaultData", { 

31 Note that for such controls to be fully interactive, assign the win-interactive class to them, otherwise the surrounding 
control (and this applies to ListView as well) will swallow input events before they reach those controls. 

182



    bindingList: bindingList, 
    array: array 
}); 

We briefly met WinJS.Binding.List at the end of Chapter 4; its purpose is to turn an in-memory 
array into an observable data source for one-way binding. The WinJS.Binding.List wrapper is also 
necessary because the FlipView and ListView controls cannot work directly against a simple array, even 
for one-time binding. They expect their data sources to provide the methods of the WinJS.UI.-
IListDataSource interface. The dataSource property of a WinJS.Binding.List, as in 
bindingList.dataSource, provides exactly this, and you’ll always use this property in conjunction with 
FlipView and ListView. (It exists for no other purpose, in fact.) If you forget and attempt to just bind to 
the WinJS.Binding.List directly, you’ll see an exception that says, “Object doesn’t support property or 
method ‘createListBinding’.” 

Suffice it to say that WinJS.Binding.List will become your intimate friend for in-memory data 
sources. Of course, you won’t typically be using hard-coded data like the sample. You’ll instead load 
array data from a file or obtain it from a web service, at which point WinJS.Binding.List makes it 
accessible to collection controls. 

Do note that WinJS.Binding.List fully supports dynamic data. If you look at its reference page in the 
documentation, you’ll see that it looks a whole lot like a JavaScript array, with a length property and the 
whole set of array methods from concat and indexOf to push, pop, and unshift. This is entirely 
intentional: no need to make you relearn the basics! 

It’s also important to note with FlipView, as well as ListView, that setting the control’s itemDataSource 
property automatically sets up one-way binding, so any changes to the list object or even the array on 
which it is built will trigger an automatic update in the bound control. 

Quickstart #2a: The HTML ListView Essentials Sample 
As I said before, the basic mechanisms for data sources and templates apply to the ListView control 
exactly as it does to FlipView, which we can now see in the HTML ListView essentials sample (shown in 
Figure 5-2), specifically its first two scenarios of creating the control and responding to item events. 

Because ListView can display multiple items at the same time, it needs one more piece in addition to 
the data source and the template: something to describe how those items visually relate to one another. 
This is the ListView’s layout property, which we see in the markup for Scenario 1 of this sample along 
with a few other behavioral options (html/scenario1.html): 

 

 

 

 
 

183

http://msdn.microsoft.com/library/windows/apps/hh700774.aspx
http://code.msdn.microsoft.com/windowsapps/ListView-basic-usage-sample-fcc451db


<div id="listView" data-win-control="WinJS.UI.ListView"  
    data-win-options="{ itemDataSource: myData.dataSource, 
      itemTemplate: smallListIconTextTemplate, selectionMode: 'none',  
      tapBehavior: 'none', swipeBehavior: 'none', layout: { type: WinJS.UI.GridLayout } }"> 
</div> 

 
FIGURE 5-2 The HTML ListView essentials sample. 

The ListView’s constructor, WinJS.UI.ListView, is, of course, called by the ubiquitous WinJS.- 
UI.processAll when the page control is loaded. The data source for this list is set to myData.dataSource 
where myData is again a WinJS.Binding.List (defined at the top of js/data.js over a simple array) and its 
dataSource property provides the needed interface. 

The control’s item template is defined earlier in default.html with the id of smallListIconTextTemplate 
and is essentially the same sort of thing we saw with the FlipView (an img and some text elements), so I 
won’t list it here. 

In the control options we see three behavioral properties: selectionMode, tapBehavior, and 
swipeBehavior. These are all set to 'none' in this sample to disable selection and click behaviors entirely, 
making the ListView a passive display. It can still be panned, but the items don’t respond to input. (Also 
see the “Item Hover Styling” sidebar.) 

As for the layout property, this is an object of its own, whose type property indicates which layout to 
use. WinJS.UI.GridLayout, as we’re using here, is a two-dimensional top-to-bottom then left-to-right 
algorithm, suitable for horizontal panning. WinJS provides another layout type called WinJS.UI.- 
ListLayout, a one-dimensional top-to-bottom organization that’s suitable for vertical panning, 
especially in snapped view. (We’ll see this with the Grid App project template shortly; the ListView 
essentials sample lacks a good snapped view.) 

 

184



Now while the ListView control in Scenario 1 only displays items, we often want those items to 
respond to a click or tap. Scenario 2 shows this, where the tapBehavior property is set to 'invoke' (see 
html/scenario2.html). This is the same as using tapBehavior: WinJS.UI.TapBehaviortoggleSelect, as 
that’s just defined in the enumeration as “invoke”. This behavior will select or deselect and item, 
depending on its state, and then invoke it. Other variations are directSelect, where an item is always 
selected and then invoked, and invokeOnly where the item is invoked without changing the selection 
state. You can also set the behavior to none so that clicks and taps are ignored. 

When an item is invoked, the ListView control fires an itemInvoked event. You can wire up a handler 
by using either addEventListener or the ListView’s oniteminvoked property. Here’s how Scenario 2 does 
it (slightly rearranged from js/scenario2.js): 

var listView = element.querySelector('#listView').winControl; 
listView.addEventListener("iteminvoked", itemInvokedHandler, false); 
 
function itemInvokedHandler(eventObject) { 
    eventObject.detail.itemPromise.done(function (invokedItem) { 
        // Act on the item 
    }); 
} 

Note that we’re listening for the event on the WinJS control, but it also works to listen for the event 
on the containing element thanks to bubbling. This can be helpful if you need to add listeners to a 
control before it’s instantiated, since the containing element will already be there in the DOM. 

In the code above, you could also assign a handler by using the listView.oniteminvoked property 
directly, or you can specify the handler in the iteminvoked property data-win-options (in which case it 
must be marked safe for processing). The event object you then receive in the handler contains a 
promise for the invoked item, not the item itself, so you need to call its done or then method to obtain 
the actual item data. It’s also good to know that you should never change the ListView’s data source 
properties directly within an iteminvoked handler, because you’ll probably cause an exception. If you 
have need to do that, wrap the change code inside a call to setImmediate so that you can yield back to 
the UI thread first. 

Sidebar: Item Hover Styling 
While disabling selection and tap behaviors on a ListView creates a passive control, hovering over 
items with the mouse (or suitable touch hardware) still highlights each item; refer back to Figure 
5-2. You can control this using the .win-container:hover pseudo-selector for the desired control. 
For example, the following style rule removes the hover effect entirely: 

#myListView .win-container:hover { 
    background-color: transparent; 
    outline: 0px; 
} 

185

http://msdn.microsoft.com/library/windows/apps/hh701303.aspx


Quickstart #2b: The ListView Grouping Sample 
Displaying a list of items is great, but more often than not, a collection really needs another level of 
organization—what we call grouping. This is readily apparently when I open the file drawer next to my 
desk, which contains a collection of various important and not so important papers. Right away, on the 
file folder tabs, I see my groups: Taxes, Financials, Community, Insurance, Cars, Writing Projects, and 
Miscellany (among others). Clearly, then, we need a grouping facility within a collection control and 
ListView is happy to oblige. 

A core demonstration of grouping can be found in the HTML ListView grouping and Semantic Zoom 
sample (shown in Figure 5-3). As with the Essentials sample, the code in js/groupedData.js contains a 
lengthy in-memory array around which we create a WinJS.Binding.List. Here’s a condensation to show 
the item structure (I’d show the whole array, but this is making me hungry for some dessert!): 

var myList = new WinJS.Binding.List([ 
    { title: "Banana Blast", text: "Low-fat frozen yogurt", picture: "images/60Banana.png" }, 
    { title: "Lavish Lemon Ice", text: "Sorbet", picture: "images/60Lemon.png" }, 
    { title: "Creamy Orange", text: "Sorbet", picture: "images/60Orange.png" }, 
    ... 

Here we have a bunch of items with title, text, and picture properties. We can group them any 
way we like and even change the groupings on the fly. As Figure 5-3 shows, the sample groups these by 
the first letter of the title. 

 
FIGURE 5-3 The HTML ListView grouping and Semantic Zoom sample. 

If you take a peek at the ListView reference, you’ll see that the control works with two templates and 
two collections: that is, alongside its itemTemplate and itemDataSource properties are ones called 
groupHeaderTemplate and groupDataSource. These are used with the ListView’s GridLayout (the default) 
to organize the groups and create the headers above the items. 

186

http://code.msdn.microsoft.com/windowsapps/ListView-grouping-and-6d032cc1
http://code.msdn.microsoft.com/windowsapps/ListView-grouping-and-6d032cc1
http://msdn.microsoft.com/library/windows/apps/br211833.aspx


The header template in html/scenario1.html is very simple (and the item template is like what we’ve 
already seen): 

<div id="headerTemplate" data-win-control="WinJS.Binding.Template"> 
    <div class="simpleHeaderItem"> 
        <h1 data-win-bind="innerText: title"></h1> 
    </div> 
</div> 

This is referenced in the control declaration (other options omitted): 

<div id="listView" data-win-control="WinJS.UI.ListView"  
    data-win-options="{ groupDataSource: myGroupedList.groups.dataSource, 
        groupHeaderTemplate: headerTemplate }"> 
</div> 

For the data sources, you can see that we’re now using a variable called myGroupedList with a 
property inside it called groups. What’s all this about? 

Well, let’s take a short conceptual detour. Although computers have no problem chewing on a 
bunch of raw data like the myList array, human beings like to view data with a little more organization. 
The three primary ways of doing this are grouping, sorting, and filtering. Grouping organizes items into 
groups, as shown in Figure 5-3; sorting orders items according to various rules; and filtering provides a 
subset of items that match certain criteria. In all three cases, however, you don’t want such operations to 
actually change the underlying data: a user might want to group, sort, or filter the same data in different 
ways from moment to moment. 

Grouping, sorting, and filtering, then, are thus referred to as projections of the data: they’re all 
connected to the same underlying data such that a change to an item in the projection will be 
propagated back to the source, just as changes in the source are reflected in the projection. 

The WinJS.Binding.List object provides methods to create these projections: createGrouped, 
createSorted, and createFiltered. Each method produces a special form of a WinJS.Binding.List: 
GroupedSortedListProjection, SortedListProjection, and FilteredListProjection, respectively. That 
is, each projection is a bindable list in itself, with a few extra methods and properties that are specific to 
the projection. You can even create a projection from a projection. For instance, 
createGrouped(...).createFiltered(...) will create a filtered projection on top of a grouped 
projection. (Note, however, that the list’s sort method does not create a projection. It applies the 
sorting in-place, just like the JavaScript array’s sort.) 

Now that we know about projections, we can see how myGroupedList is created: 

var myGroupedList = myList.createGrouped(getGroupKey, getGroupData, compareGroups); 

 

 

 

187

http://msdn.microsoft.com/library/windows/apps/Hh700742.aspx
http://msdn.microsoft.com/library/windows/apps/hh700743.aspx
http://msdn.microsoft.com/library/windows/apps/hh700741.aspx


This method takes three functions. The first, the group key function, associates an item with a group: 
it receives an item and returns the appropriate group string, known as the key. The key—which must be 
a string—can be something that’s directly included in an item or it can be derived from item properties. 
In the sample, the getGroupKey function returns the first character of the item’s title property (in upper 
case). Note, however, that the original sample just uses charAt to obtain the grouping character, but this 
won’t work for a large number of languages. Instead, use the Windows.Globalization.-
Collation.CharacterGroupings class and its lookup method as shown below, which will normalize 
casing automatically so that calling toLocaleUpperCase isn’t necessary: 

var cg = Windows.Globalization.Collation.CharacterGroupings(); 
 
function getGroupKey(dataItem) { 
    return cg.lookup(dataItem.title); 
} 

This code, and other changes made below, can be found in the modified version of this sample 
included with this chapter’s companion content. 

Be clear that this first function, referred to as the group key function, determines only the association 
between the item and a group, nothing more. It also gets called for every item in the collection when 
createGrouped is called, so it should be a quick operation. For this reason the creation of 
CharacterGroupings is done one outside of the function. 

Tip If deriving the group key from an item at run time required an involved process, you’ll improve 
overall performance by storing a prederived key in the item instead and just returning that from the 
group key function. 

The data for the groups themselves, which is the collection to which the header template is bound to, 
isn’t actually created until the group projection’s groups method is invoked, as happens when our 
ListView’s groupedDataSource option gets processed. At that point, the second function passed to 
createGrouped—the group data function—gets called only once per group with a representative item 
for that group. In response, your function returns an object for that group containing whatever 
properties you need for data binding. 

In the sample, the getGroupData function (passed to createGrouped) simply returns an object with a 
single groupTitle property that’s the same as the group key, but of course you can make that value 
anything you want. This code is also modified from the original sample to be attentive to globalization 
concerns, which we do by reusing getGroupKey: 

function getGroupData(dataItem) { 
    return { 
        groupTitle: getGroupKey(dataItem) 
    }; 
} 

 

188

http://msdn.microsoft.com/library/windows/apps/windows.globalization.collation.charactergroupings.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.collation.charactergroupings.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.collation.charactergroupings.lookup.aspx
http://msdn.microsoft.com/library/6t6xaca8.aspx


In the modified sample I changed name the title property of this group data object to a more 
distinct groupTitle to make it very clear that it has nothing whatsoever to do with the title property of 
the items. This meant changing the header templates in html/scenario1.html and html/scenario2.html 
to refer to groupTitle as well. This helps us be clear that the data contexts in the header and item 
templates are completely different. For the header template, it’s the collection generated by the return 
values of your group data function; for the item template, it’s the grouped projection from WinJS.-
Binding.List.createGrouped. Two different collections—remember that! 

So why do we have the group data function separated out at all? Why not just create that collection 
automatically from the group keys? It’s because you often want to include additional properties within 
the group data for use in the header template or in a zoomed-out view (with semantic zoom). Think of 
your group data function as providing summary information for each group. (The header text is really 
only the most basic such summary.) Since this function is only called once per group, rather than once 
per item, it’s the proper time to calculate or otherwise retrieve summary-level data. For example, to 
show an item count in the group headers, we just need to include that property in the objects returned 
by the group data function, then data-bind an element in the header template to that property. 

In the modified sample, I use WinJS.Binding.List.createFiltered to obtain a projection of the list 
filtered by the current key.32 The length property of this projection is then the number of items in the 
group: 

function getGroupData(dataItem) { 
    var key = getGroupKey(dataItem); 
     
    //Obtain a filtered projection of our list, checking for matching keys 
    var filteredList = myList.createFiltered(function (item) { 
        return key == getGroupKey(item); 
    }); 
 
    return { 
        title: key, 
        count: filteredList.length 
    }; 
} 

With this count property in the collection, we can use it in the header template: 

<div id="headerTemplate" data-win-control="WinJS.Binding.Template" style="display: none"> 
    <div class="simpleHeaderItem"> 
        <h1 data-win-bind="innerText: groupTitle"></h1> 
        <h6><span data-win-bind="innerText: count"></span> items</h6> 
    </div> 
</div> 

 

 

32 Creating a filtered projection is also useful to intentionally limit the number of items you want to display in a control, 
where you make sure that true is only returned for a fixed number of items. 

189



After a small tweak in css/scenario1.css—changing the simpleHeaderItem class height to 65px to 
make a little more room—the list will now appears as follows: 

 
 

Finally, back to WinJS.Binding.List.createGrouped, the third (and optional) function here is a group 
sorter function, which is called to sort the group data collection and therefore the order in which those 
groups appear in the ListView.33 This function receives two group keys and returns zero if they’re equal, 
a negative number if the first key sorts before the second, and a positive if the second sorts before the 
first. The compareGroups function in the sample does an alphabetical sort, which I’ve updated in the 
modified version to again use world-ready sort ordering: 

function compareGroups(left, right) { 
    return groupCompareGlobalized(left, right); 
} 
 
function groupCompareGlobalized(left, right) { 
    var charLeft = cg.lookup(left); 
    var charRight = cg.lookup(right); 
 
    // If both are under the same grouping character, treat as equal 
    if (charLeft.localeCompare(charRight) == 0) { 
        return 0; 
    } 
 
    // In different groups, we must rely on locale-sensitive sort order of items since the names 
    // of the groups don't sort the same as the groups themselves for some locales. 
    return left.localeCompare(right); 
} 

For a two-level sort, first by the descending item count and then by the first character, we could write 
the following (this is in the modified sample; refer to this in the call to myList.createGrouped to see it in 
action): 

function compareGroups2(left, right) { 
    var leftLen = filteredLengthFromKey(left); 
    var rightLen = filteredLengthFromKey(right); 
 
    if (leftLen != rightLen) { 
        return rightLen - leftLen; 
    } 

33 This is entirely separate from creating a sorted projection of the items, for which you’d use 
WinJS.Binding.List.createSorted. 

190



 
    return groupCompareGlobalized(left, right); 
} 
 
function filteredLengthFromKey(key) { 
    var filteredList = myList.createFiltered(function (item) { 
        return key == getGroupKey(item); 
    }); 
 
    return filteredList.length; 
} 

Debugging Your Grouping Functions 
If your various grouping functions don’t seem to be working right, you can set breakpoints and 
step through the code a few times, but this becomes tedious as the functions are called many, 
many times for even modest collections. Instead, try using console.log to emit the parameters 
sent to those functions and/or your return values, allowing you to review the overall results much 
more quickly. To see what’s coming into the group sorting function, for example, try this code: 

console.log("Comparing left = " + left + " to right = " + right); 

ListView in the Grid App Project Template 
Now that we’ve covered the details of the ListView control and in-memory data sources, we can finally 
understand the rest of the Grid App project template in Visual Studio and Blend. As we covered in the 
”The Navigation Process and Navigation Styles” section of Chapter 3, “App Anatomy and Page 
Navigation,” this project template provides an app structure built around page navigation: the home 
page (pages/groupedItems) displays a collection of sample data (see js/data.js) in a ListView control, 
where each item’s presentation is described by a WinJS.Binding.Template as are the group headings. 
Figure 5-4 shows the layout of the home page and identifies the relevant ListView elements. As we also 
discussed before, tapping an item navigates to the pages/itemDetail page and tapping a heading 
navigates to the pages/groupDetail page, and now we can see how that all works with the ListView 
control. 

The ListView in Figure 5-4 occupies the lower portion of the app’s contents. Because it can pan 
horizontally, it actually extends all the way across; various CSS margins are used to align the first items 
with the layout silhouette while allowing them to bleed to the left when the ListView is panned. 

191



 
FIGURE 5-4 ListView elements as shown in the Grid App template home page. (All colored items are added labels 
and lines.) 

There’s quite a bit going on with the ListView in this project, so we’ll take one part at a time. For 
starters, the control’s markup in pages/groupedItems/groupedItems.html is very basic, where the only 
option is to indicate that the items have no selection behavior: 

<div class="groupeditemslist win-selectionstylefilled" aria-label="List of groups" 
    data-win-control="WinJS.UI.ListView" data-win-options="{ selectionMode: 'none' }"> 
</div> 

Switching over to pages/groupedItems/groupedItems.js, the page’s ready method handles 
initialization: 

ready: function (element, options) { 
    var listView = element.querySelector(".groupeditemslist").winControl; 
    listView.groupHeaderTemplate = element.querySelector(".headerTemplate"); 
    listView.itemTemplate = element.querySelector(".itemtemplate"); 
    listView.oniteminvoked = this._itemInvoked.bind(this); 
 
    // (Keyboard handler initialization omitted)... 
 
    this.initializeLayout(listView, appView.value); 
    listView.element.focus(); 

}, 

Here you can see that the control’s templates can be set in code just as easily as from markup, and in 
this case we’re using a class to locate the template element instead of an id. Why does this work? It’s 
because we’ve actually been referring to elements the whole time: the app host automatically creates a 
variable for an element that’s named the same as its id. It’s the same thing. In code you can also provide 

192



a function instead of a declarative template, which allows you to dynamically render each item 
individually. More on this later. 

You can also see how this page assigns a handler to the itemInvoked events (above ready), calling 
WinJS.Navigation.navigate to go to the groupDetail or itemDetail pages as we saw in Chapter 3:  

_itemInvoked: function (args) { 
    if (appView.value === appViewState.snapped) { 
        // If the page is snapped, the user invoked a group. 
        var group = Data.groups.getAt(args.detail.itemIndex); 
        this.navigateToGroup(group.key); 
    } else { 
        // If the page is not snapped, the user invoked an item. 
        var item = Data.items.getAt(args.detail.itemIndex); 
        nav.navigate("/pages/itemDetail/itemDetail.html", {  
            item: Data.getItemReference(item) }); 
    } 
} 
 
navigateToGroup: function (key) { 
    nav.navigate("/pages/groupDetail/groupDetail.html", { groupKey: key }); 
}, 

In this case we retrieve item data from the underlying collection (the getAt methods) rather than 
using the item data itself. This is because the group information needed for the first case isn’t part of an 
item directly. We also see here that the page interprets item invocations differently depending on the 
view state. This is because it actually switches both its layout and its data source when the view state 
changes. This is handled in the page’s internal _initializeLayout method, called both on startup and 
from the page’s updateLayout function: 

initializeLayout: function (listView, viewState) { 
    if (viewState === appViewState.snapped) { 
        listView.itemDataSource = Data.groups.dataSource; 
        listView.groupDataSource = null; 
        listView.layout = new ui.ListLayout(); 
    } else { 
        listView.itemDataSource = Data.items.dataSource; 
        listView.groupDataSource = Data.groups.dataSource; 
        listView.layout = new ui.GridLayout({ groupHeaderPosition: "top" }); 
    } 
}, 

A ListView’s layout, in short, can be changed at any time by setting its layout property. When the 
view state is snapped, this is set to WinJS.UI.ListLayout, otherwise WinJS.UI.GridLayout (whose 
groupHeaderPosition property can be "top" or "left"). You can also see that you can change a 
ListView’s data source on the fly: in snapped state it’s a list of groups, otherwise it’s the list of items. 

I hope you can now see why I introduced page navigation well before we got to ListView, because 
this project gets quite complicated down in its depths! In any case, let’s now look at the templates for 
this page (pages/groupedItems/groupedItems.html): 

193



<div class="headertemplate" data-win-control="WinJS.Binding.Template"> 
    <button class="group-header win-type-x-large win-type-interactive"  
    data-win-bind="groupKey: key" role="link" tabindex="-1" type="button" 
    onclick="Application.navigator.pageControl.navigateToGroup(event.srcElement.groupKey)" > 
        <span class="group-title win-type-ellipsis" data-win-bind="textContent: title"></span> 
        <span class="group-chevron"></span> 
    </button> 
</div> 
 
<div class="itemtemplate" data-win-control="WinJS.Binding.Template"> 
    <div class="item"> 
        <img class="item-image" src="#" data-win-bind="src: backgroundImage; alt: title" /> 
        <div class="item-overlay"> 
            <h4 class="item-title" data-win-bind="textContent: title"></h4> 
            <h6 class="item-subtitle win-type-ellipsis" 
                data-win-bind="textContent: subtitle"></h6> 
        </div> 
    </div> 
</div> 

Again, we have the same use of WinJS.Binding.Template and various bits of data-binding syntax 
sprinkled around the markup, not to mention the click handler assigned to the header text itself, 
which, like an item in snapped view, navigates to the group detail page. 

As for the data itself (that you’ll likely replace), this is again defined in js/data.js as an in-memory 
array that feeds into WinJS.Binding.List. In the sampleItems array each item is populated with inline 
data or other variable values. Each item also has a group property that comes from the sampleGroups 
array. Unfortunately, this latter array has almost identical properties as the items array, which can get 
confusing. To help clarify that a bit, here’s the complete property structure of an item: 

{ 
    group : { 
        key, 
        title, 
        subtitle, 
        backgroundImage, 
        description 
    }, 
    title, 
    subtitle, 
    description, 
    content, 
    backgroundImage 
} 

As we saw with the ListView grouping sample earlier, the Grid App project template uses 
createGrouped to set up the data source. What’s interesting to see here is that it sets up an initially 
empty list, creates the grouped projection (omitting the optional sorter function), and then adds the 
items by using the list’s push method: 

 

194



var list = new WinJS.Binding.List(); 
var groupedItems = list.createGrouped( 
    function groupKeySelector(item) { return item.group.key; }, 
    function groupDataSelector(item) { return item.group; } 
); 
 
generateSampleData().forEach(function (item) { 
    list.push(item); 
}); 

This clearly shows the dynamic nature of lists and ListView: you can add and remove items from the 
data source, and one-way binding will make sure the ListView is updated accordingly. In such cases you 
do not need to refresh the ListView’s layout—that happens automatically. I say this because there’s been 
some confusion with the ListView’s forceLayout method, which you only need to call, as the 
documentation states, “when making the ListView visible again after its style.display property had 
been set to ‘none’.” You’ll find, in fact, that the Grid App code doesn’t use this method at all. 

In js/data.js there are also a number of other utility functions, such as getItemsFromGroup, which uses 
WinJS.Binding.List.createFiltered as we did earlier. Other functions provide for cross-referencing 
between groups and items, as is needed to navigate between the items list, group details (where that 
page shows only items in that group), and item details. All of these functions are wrapped up in a 
namespace called Data at the bottom of js/data.js, so references to anything from this file are prefixed 
elsewhere with Data.. 

And with that, I think you’ll be able to understand everything that’s going on in the Grid App project 
template to adapt it to your own needs. Just remember that all the sample data, like the default logo 
and splash screen images, is intended to be wholly replaced with real data that you obtain from other 
sources, like a file or WinJS.xhr, and that you can wrap with WinJS.Binding.List. Some further guidance 
on this can be found in the Create a blog reader tutorial on the Windows Dev Center, and although the 
tutorial uses the Split App project template, there’s enough in common with the Grid App project 
template that the discussion is really applicable to both. 

The Semantic Zoom Control 

Since we’ve already loaded up the HTML ListView grouping and Semantic Zoom sample, and have 
completed our first look at the collection controls, now is a good time to check out another very 
interesting WinJS control: Semantic Zoom. 

Semantic zoom lets users easily switch between two views of the same data: a zoomed-in view that 
provides details and a zoomed-out view that provides more summary-level information. The primary 
use case for semantic zoom is a long list of items (especially ungrouped items), where a user will likely 
get really bored of panning all the way from one end to the other, no matter how fun it is to swipe the  
 
 
 

195

http://msdn.microsoft.com/library/windows/apps/Hh974582.aspx
http://code.msdn.microsoft.com/windowsapps/ListView-grouping-and-6d032cc1
http://msdn.microsoft.com/library/windows/apps/br229690.aspx


screen with a finger. With semantic zoom, you can zoom out to see headers, categories, or some other 
condensation of the data, and then tap on one of those items to zoom back into its section or group. 
The design guidance recommends having the zoomed-out view fit on one to three screenfuls at most, 
making it very easy to see and comprehend the whole data set. 

Go ahead and try semantic zoom through Scenario 2 of the ListView grouping and Semantic Zoom 
sample. To switch between the views, use pinch-zoom touch gestures, Ctrl+/Ctrl- keystrokes, 
Ctrl+mouse wheel, and/or a small zoom button that automatically appears in the lower-right corner of 
the control, as shown in Figure 5-5. When you zoom out, you’ll see a display of the group headers, as 
also shown in the figure. 

 
FIGURE 5-5 Semantic zoom between the two views in the ListView grouping and Semantic Zoom sample. 

The control itself is quite straightforward to use. In markup, declare a WinJS control using the 
WinJS.UI.SemanticZoom constructor. Within that element you then declare two (and only two) child 
elements: the first defining the zoomed-in view, and the second defining the zoomed-out view—always 
in that order. Here’s how the sample does it with two ListView controls (plus the template used for the 
zoomed-out view; I’m showing the code in the modified sample included with this chapter’s copanion 
content): 

<div id="semanticZoomTemplate" data-win-control="WinJS.Binding.Template" > 
    <div class="semanticZoomItem"> 
        <h2 class="semanticZoomItem-Text" data-win-bind="innerText: groupTitle"></h2> 
    </div> 
</div> 
 
<div id="semanticZoomDiv" data-win-control="WinJS.UI.SemanticZoom"> 
    <div id="zoomedInListView" data-win-control="WinJS.UI.ListView"  

196



        data-win-options="{ itemDataSource: myGroupedList.dataSource,  
            itemTemplate: mediumListIconTextTemplate,  
            groupDataSource: myGroupedList.groups.dataSource,  
            groupHeaderTemplate: headerTemplate,  
            selectionMode: 'none', tapBehavior: 'none', swipeBehavior: 'none' }"> 
    </div> 
             
    <div id="zoomedOutListView" data-win-control="WinJS.UI.ListView" 
        data-win-options="{ itemDataSource: myGroupedList.groups.dataSource,  
            itemTemplate: semanticZoomTemplate,  
            selectionMode: 'none', tapBehavior: 'invoke', swipeBehavior: 'none' }" > 
    </div> 
</div> 

The first child, zoomedInListView, is just like the ListView for Scenario 1 with group headers and items; 
the second, zoomedOutListView, uses the groups as items and renders them with a different template. 
The semantic zoom control simply switches between the two views on the appropriate input gestures. 
When the zoom changes, the semantic zoom control fires a zoomchanged event where the args.detail 
value in the handler is true when zoomed out, false when zoomed in. You might use this event to 
make certain app bar commands available for the different views, such as commands in the zoomed-out 
view to change sorting or filtering, which would then affect how the zoomed-in view is displayed. We’ll 
see the app bar in Chapter 7, “Commanding UI.” 

The control has a few other properties, such as enableButton (a Boolean to control the visibility of 
the overlay button; default is true), locked (a Boolean that disables zooming in either direction and can 
be set dynamically to lock the current zoom state; default is false), and zoomedOut (a Boolean indicating 
if the control is zoomed out, so you can initialize it this way; default is false). There is also a forceLayout 
method that’s used in the same case as the ListView’s forceLayout: namely, when you remove a 
display: none style. 

The zoomFactor property is an interesting one that determines how the control animates between 
the two views. The animation is a combination of scaling and cross-fading that makes the zoomed-out 
view appear to drop down from or rise above the plane of the control, depending on the direction of 
the switch, while the zoomed-in view appears to sink below or come up to that plane. To be specific, the 
zoomed-in view scales between 1 and zoomFactor while transparency goes between 1 and 0, and the 
zoomed-out view scales between 1/zoomFactor and 1 while transparency goes between 0 and 1. The 
default value for zoomFactor is 0.65, which creates a moderate effect. Lower values (minimum is 0.2) 
emphasize the effect, and higher values (maximum is 0.8) minimize it. 

Where styling is concerned, you do most of what you need directly to the Semantic Zoom’s children. 
However, to style the Semantic Zoom control itself you can override styles in win-semanticzoom (for the 
whole control) and win-semanticzoomactive (for the active view). The win-semanticzoombutton stylealso 
lets you style the zoom control button if needed. 

 

 

197



It’s important to understand that semantic zoom is intended to switch between two views of the 
same data and not to switch between completely different data sets (see Guidelines and checklist for the 
Semantic Zoom control). Also, the control does not support nesting (that is, zooming out multiple times 
to different levels). Yet this doesn’t mean you have to use the same kind of control for both views: the 
zoomed-in view might be a list, and the zoomed-out view could be a chart, a calendar, or any other 
visualization that makes sense. The zoomed-out view, in other words, is a great place to show summary 
data that would be otherwise difficult to derive from the zoomed-in view. For example, using the same 
changes we made to include the item count with the group data for Scenario 1 (see “Quickstart #2b” 
above), we can just add a little more to the zoomed-out item template (as done in the modified sample 
in this chapter’s companion content): 

 
The other thing you need to know is that the semantic zoom control does not work with arbitrary 

child elements. An exception about a missing zoomableView property will tell you this! Each child control 
must provide an implementation of the WinJS.UI.IZoomableView interface through a property called 
zoomableView. Of all built-in HTML and WinJS controls, only ListView does this, which is why you 
typically see semantic zoom in that context. However, you can certainly provide this interface on a 
custom control, where the object returned by the constructor should contain a zoomableView property, 
which is an object containing the methods of the interface. Among these methods are beginZoom and 
endZoom for obvious purposes, and getCurrentItem and setCurrentItem that enable the semantic zoom 
control to zoom in to the right group when it’s tapped in the zoomed-out view. 

For more details, check out the HTML SemanticZoom for custom controls sample, which also serves 
as another example of a custom control. 

FlipView Features and Styling 

For all the glory that ListView merits as the richest and most sophisticated control in all of WinJS, we 
don’t want to forget the humble FlipView! Thus before we delve wholly into ListView, let’s spend a few 
pages covering FlipView and its features through the other scenarios in the FlipView control sample. It’s 
worth mentioning too that although this sample demonstrates the control’s capabilities in a relatively 
small area, a FlipView can be any size, even occupying most of the screen. A common use for the 
control, in fact, is to let users flip through full-sized images in a photo gallery. Of course, the control can 

198

http://msdn.microsoft.com/library/windows/apps/hh700396.aspx
http://msdn.microsoft.com/library/windows/apps/hh700396.aspx
http://msdn.microsoft.com/library/windows/apps/br229794.aspx
http://code.msdn.microsoft.com/windowsapps/SemanticZoom-for-custom-4749edab
http://code.msdn.microsoft.com/windowsapps/FlipView-control-sample-18e434b4


be used anywhere it’s appropriate, large or small. See Guidelines for FlipView controls for more on how 
best to use the control. 

Anyway, Scenario 2 in the sample (“Orientation and Item Spacing”) demonstrates the control’s 
orientation property. This determines the placement of the arrow controls: left and right (horizontal) 
or top and bottom (vertical) as shown below. It also determines the enter and exit animations of the 
items and whether the control uses the left/right or up/down arrow keys for keyboard navigation. This 
scenario also let you set the itemSpacing property, which determines the amount of space between 
items when you swipe items using touch (below right). Its effect is not visible when using the keyboard 
or mouse to flip; to see it, you may need to use touch emulation in the Visual Studio simulator to partly 
drag between items. 

  
Scenario 3 (“Using interactive content”) shows the use of a template function instead of a declarative 

template. We’ll talk more of such functions in “How Templates Really Work” later in this chapter, but put 
simply, a template function or renderer creates elements and sets their properties procedurally, which is 
essentially what WinJS.Binding.Template does from the markup you give it. This allows you to render an 
item differently (that is, create different elements or customize style classes) depending on its actual 
data. In Scenario 3, the data source contains a “table of contents” item at the beginning, for which the 
renderer (a function called mytemplate in js/interactiveContent.js) creates a completely different item: 

 
 

 

 

 

199

http://msdn.microsoft.com/library/windows/apps/hh850405


The scenario also sets up a listener for click events on the TOC entries, the handler for which flips to 
the appropriate item by setting the FlipView’s currentPage property. The picture items then have a back 
link to the TOC. See the clickHandler function in the code for both of these actions. 

Scenario 4 (“Creating a context control”) demonstrates adding a navigation control overlay to each 
item:  

 
The items themselves are again rendered using a declarative template, which in this case just 

contains a placeholder div called ContextContainer for the navigation control (html/context- 
Control.html): 

<div> 
    <div id="contextControl_FlipView" class="flipView" data-win-control="WinJS.UI.FlipView"  
        data-win-options="{ itemDataSource: DefaultData.bindingList.dataSource,  
            itemTemplate: contextControl_ItemTemplate }"> 
    </div> 
    <div id="ContextContainer"></div> 
</div> 

When the control is initialized in the processed method of js/contextControl.js, the sample calls the 
FlipView’s async count method. The completed handler, countRetrieved, then creates the navigation 
control using a row of styled radiobuttons. The onpropertychange handler for each radiobutton then 
sets the FlipView’s currentPage property. 

Scenario 4 also sets up listeners for the FlipView’s pageselected and pagevisibilitychanged events. 
The first is used to update the navigation radiobuttons when the user flips between pages. The other is 
used to prevent clicks on the navigation control while a flip is happening. (The event occurs when an 
item changes visibility and is fired twice for each flip, once for the previous item, and again for the new 
one.) 

Scenario 5 (“Styling Navigation Buttons”) demonstrates the styling features of the FlipView, which 
involves various win-* styles and pseudo-classes as shown here: 

200



 
If you were to provide your own navigation buttons in the template (wired to the next and previous 

methods), hide the default by adding display: none to the <control selector> .win-navbutton style 
rule. 

Finally, there are a few other methods and events for the FlipView that aren’t used in the sample, so 
here’s a quick rundown of those: 

• pageCompleted is an event that is raised when flipping to a new item is fully completed (that is, 
the new item has been rendered). In contrast, the aforementioned pageselected event will fire 
when a placeholder item (not fully rendered) has been animated in. See “Template Functions 
(Part 2)” at the end of this chapter. 

• datasourcecountchanged is an event raised for obvious purpose, which something like Scenario 4 
would use to refresh the navigation control if items could be added or removed from the data 
source. 

• next and previous are methods to flip between items (like currentPage), which would be useful 
if you provided your own navigation buttons. 

• forceLayout is a method to call specifically when you make a FlipView visible by removing a 
display: none style. (The FlipView sample actually calls this whenever you change scenarios, but 
it’s not necessary because it never changes the style.) 

• setCustomAnimations allows you to control the animations used when flipping forward, flipping 
backward, and jumping to a random item. 

For details on all of these, refer to the WinJS.UI.FlipView documentation. 

 

201

http://msdn.microsoft.com/library/windows/apps/br211711.aspx


Data Sources 

In all the examples we’ve seen thus far, we’ve been using an in-memory data source built on WinJS.-
Binding.List. Clearly, there are other types of data sources and it certainly doesn’t make sense to load 
everything into memory first. How, then, do we work with such sources? 

WinJS provides some help in this area. First is the WinJS.UI.StorageDataSource object that works 
with files in the file system, as the next section demonstrates with a FlipView and the Pictures Library. 
The other is WinJS.UI.VirtualizedDataSource, which is meant for you to use as a base class for a 
custom data source of your own, an advanced scenario that we’ll touch on only briefly. 

A FlipView Using the Pictures Library 
For everything we’ve seen in the FlipView sample already, it really begs for the ability to do something 
completely obvious: flip through pictures files in a folder. Using what we’ve learned so far, how would 
we implement something like that? We already have an item template containing an img tag, so 
perhaps we just need some URIs for those files. Perhaps we could make an array of these using an API 
like Windows.Storage.KnownFolders.picturesLibrary.getFilesAsync (declaring the Pictures Library 
capability in the manifest, of course!). This would give us a bunch of StorageFile objects for which we 
could call URL.createObjectURL. We could store those URIs in an array and then wrap it up with 
WinJS.Binding.List: 

var myFlipView = document.getElementById("pictures_FlipView").winControl; 
 
Windows.Storage.KnownFolders.picturesLibrary.getFilesAsync() 
    .done(function (files) { 
        var pixURLs = []; 
 
        files.forEach(function (item) { 
            var url = URL.createObjectURL(item, {oneTimeOnly: true }); 
 
            pixURLs.push({type: "item", title: item.name, picture: url }); 
        }); 
 
        var pixList = new WinJS.Binding.List(pixURLs); 
        myFlipView.itemDataSource = pixList.dataSource; 
    }); 

Although this approach works, it can consume quite a bit of memory with a larger number of 
high-resolution pictures because each picture has to be fully loaded to be displayed in the FlipView. This 
might be just fine for your scenario but in other cases would consume more resources than necessary. It 
also has the drawback that the images are just stretched or compressed to fit into the FlipView without 
any concern for aspect ratio, and this doesn’t produce the best results. 

A better approach is to use the WinJS.UI.StorageDataSource that again works directly with the file 
system instead of an in-memory array. I’ve implemented this as a Scenario 8 in the modified FlipView 

202

http://msdn.microsoft.com/library/windows/apps/br212650.aspx


sample code in this chapter’s companion content. (Another example can be found in the 
StorageDataSource and GetVirtualizedFilesVector sample.) Here we can use a shortcut to get a data 
source for the Pictures library: 

myFlipView.itemDataSource = new WinJS.UI.StorageDataSource("Pictures"); 

"Pictures" is a shortcut because the first argument to StorageDataSource is actually something 
called a file query that comes from the Windows.Storage.Search API, a subject we’ll see in more detail 
in Chapter 8, “State, Settings, Files, and Documents.” These queries, which feed into the powerful 
Windows.Storage.StorageFolder.createFileQueryWithOptions function, are ways to enumerate 
files in a folder along with metadata like album covers, track details, and thumbnails that are cropped to 
maintain the aspect ratio. Shortcuts like "Pictures" (also "Music", "Documents", and "Videos" that all 
require the associated capability in the manifest) just create typical queries for those document libraries. 

The caveat with StorageDataSource is that it’s doesn’t directly support one-way binding, so you’ll get 
an exception if you try to refer to item properties directly in a template. To work around this, you have 
to explicitly use WinJS.Binding.oneTime as the initializer function for each property: 

<div id="pictures_ItemTemplate" data-win-control="WinJS.Binding.Template"> 
    <div class="overlaidItemTemplate"> 
        <img class="image" data-win-bind="src: thumbnail InitFunctions.thumbURL;  
            alt: name WinJS.Binding.oneTime" /> 
        <div class="overlay"> 
            <h2 class="ItemTitle" data-win-bind="innerText: name WinJS.Binding.oneTime"></h2> 
        </div> 
    </div> 
</div> 

In the case of the img.src property, the file query gives us items of type Windows.Storage.-
BulkAccess.FileInformation (the source variable in the code below), which contains a thumbnail 
image, not a URI. To convert that image data into a URI, we need to use our own binding initializer: 

WinJS.Namespace.define("InitFunctions", { 
    thumbURL: WinJS.Binding.initializer(function (source, sourceProp, dest, destProp) { 
        if (source.thumbnail) { 
            dest.src = URL.createObjectURL(source.thumbnail, { oneTimeOnly: true }); 
        } 
    }) 
}); 

In this initializer, the src : thumbnail part of data-win-bind is actually ignored because we’re just 
setting the image’s src property directly to source.thumbnail. This is just a form of one-way binding. 

Note that thumbnails aren’t always immediately available in the FileInformation object, which is 
why we have to verify that we actually have one before creating a URI for it. This means that quickly 
flipping through the images might show some blanks. To solve this particular issue, we can listen for the 
FileInformation.onthumbnailupdated event and update the item at that time. The best way to 
accomplish this is to use the StorageDataSource.loadThumbnail helper, which makes sure to call 
removeEventListener for this WinRT event. (See “WinRT Events and removeEventListener” in Chapter 3.) 

203

http://code.msdn.microsoft.com/windowsapps/Data-source-adapter-sample-3d32e535
http://msdn.microsoft.com/library/windows/apps/br230579.aspx
http://msdn.microsoft.com/library/windows/apps/br211591.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.bulkaccess.fileinformation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.bulkaccess.fileinformation.aspx
http://msdn.microsoft.com/library/windows/apps/jj553712.aspx


You can use this method within a binding initializer, as demonstrated in Scenario 1 of the afore-
mentioned StorageDataSource and GetVirtualizedFilesVector sample, or within a rendering function 
that takes the place of the declarative template. We’ll do this for our FlipView sample later on, in “How 
Templates Really Work,” which also lets us avoid the one-time binding tricks. 

As a final note, Scenario 6 of the FlipView sample contains another example of a different data 
source, specifically one working with Bing Search. For that, let’s look at custom data sources. 

Custom Data Sources 
Now that we’ve seen a collection control like FlipView working against two different data sources, you’re 
probably starting to correctly guess that all data sources share some common characteristics and a 
common programmatic interface. This is demonstrated again in Scenario 6 of the FlipView sample as 
well as in the HTML ListView working with data sources sample shown in Figure 5-6, as we’ll see in this 
section. 

 
FIGURE 5-6 The HTML ListView working with data sources sample. 

Scenarios 2 and 3 of this sample both work against a WinJS.Binding.List data source, as we’ve 
already seen, and provide buttons to manipulate that data source. Those changes are reflected in the 
output. The difference between the two scenarios is that Scenario 2 manipulates the data through 
WinJS.Binding.List methods like move, whereas Scenario 3 manipulates the underlying data source 
directly through a more generic ListDataSource. API. 

 

 

 

204

http://code.msdn.microsoft.com/windowsapps/Data-source-adapter-sample-3d32e535
http://code.msdn.microsoft.com/windowsapps/ListView-custom-data-4dcfb128
http://msdn.microsoft.com/library/windows/apps/br211786.aspx


Because of data binding, changes to the data are reflected in the ListView control either way, but 
there are three important differences. First, the ListDataSource interface is common to all data sources, 
so any code you write against it will work for any kind of data source. Second, its methods are generally 
asynchronous because a data source might be connected to an online service or other such resource. 
Third, ListDataSource provides for batching changes together by calling beginEdits, which will defer 
any change notifications to any external bound objects until endEdits is called. This allows you to do 
bulk data editing in ways that can improve ListView performance. 

Scenarios 1 and 4 of the sample demonstrate how to create custom data sources. Scenario 1 creates 
a data source for Bing searches; Scenario 4 creates one for an in-memory array that you could adapt to 
work against a data feed that’s only brought down from a service a little at a time. What’s important for 
all these is that they implement something called a data adapter, which is an object with the methods of 
the WinJS.UI.IListDataAdapter interface. This provides for capabilities like caching, virtualization, 
change detection, and so forth. Fortunately, you get most of these methods by deriving your class from 
WinJS.UI.VirtualizedDataSource and then implementing those methods you need to customize. In 
the sample, for instance, the bingImageSearchDataSource is defined as follows (see 
js/BingImageSearchDataSource.js): 

bingImageSearchDataSource = WinJS.Class.derive(WinJS.UI.VirtualizedDataSource,  
    function (devkey, query) { 
        this._baseDataSourceConstructor(new bingImageSearchDataAdapter(devkey, query)); 
    }); 

where the bingImageSearchDataAdapter class implements only the getCount and itemsFromIndex 
methods directly. 

For a further deep-dive on this subject beyond the sample, I refer you to a session from the 2011 
//Build conference entitled APP210-T: Build data-driven collection and list apps in HTML5. Some of the 
details have since changed (like the ArrayDataSource is now WinJS.Binding.List), but on the whole it 
very much explains all the mechanisms. It’s also helpful to remember that you can use other languages 
like C# and C++ to write custom data sources as well. Such languages could offer much higher 
performance within the data source and have access to higher-performance APIs than JavaScript. 

How Templates Really Work 

Earlier, when we looked at the Grid App project template, I mentioned that you can use a function 
instead of a declarative template for properties like itemTemplate (FlipView and ListView) and 
groupHeaderTemplate (ListView). This is an important capability because it allows you to dynamically 
render items in a collection individually, using its particular contents to customize its view. It also allows 
you to initialize item elements in ways that can’t be done in the declarative form, such as cell spanning, 
delay-loading images, adding event handlers for specific parts of an item, and optimizing performance. 

We’ll return to some of these topics later on. For the time being, it’s helpful to understand exactly 
what’s going on with declarative templates and how that relates to custom template functions. 

205

http://msdn.microsoft.com/library/windows/apps/br212603.aspx
http://msdn.microsoft.com/library/windows/apps/hh701413.aspx
http://channel9.msdn.com/Events/BUILD/BUILD2011/APP-210T


Referring to Templates 
As I noted before, when you refer to a declarative template in the FlipView or ListView controls, what 
you’re actually referring to is an element, not an element id. The id works because the app host creates 
variables with those names for the elements they identify. However, we don’t actually recommend this 
approach, especially within page controls (which you’ll probably use often). The first concern is that only 
one element can have a particular id, which means you’ll get really strange behavior if you happen to 
render the page control twice in the same DOM.  

The second concern is a timing issue. The element id variable that the app host provides isn’t created 
until the chunk of HTML containing the element is added to the DOM. With page controls, WinJS.UI.-
processAll is called before this time, which means that element id variables for templates in that page 
won’t yet be available. As a result, any controls that use an id for a template will either throw an 
exception or just show up blank. Both conditions are guaranteed to be terribly, terribly confusing. 

To avoid this issue with a declarative template, place the template’s name in its class attribute: 

<div data-win-control="WinJS.Binding.Template" class="myItemTemplate" ...></div> 

Then in your control declaration, use the syntax select("<selector>") in the options record, where 
<selector> is anything supported by element.querySelector: 

<div data-win-control="WinJS.UI.ListView" 
        data-win-options="{ itemTemplate: select('.myItemTemplate') }"></div> 

There’s more to this, actually, than just a querySelector call. The select function within the options 
searches from the root of its containing page control. If no match is found, it looks for another page 
control higher in the DOM, then looks in there, continuing the process until a match is found. This lets 
you safely use two page controls at once that both contain the same class name for different templates, 
and each page will use the template that’s most local. 

You can also retrieve the template element using querySelector directly in code and assign the 
result to the itemTemplate property. This would typically be done in a page’s ready function, as 
demonstrated in the Grid App project, and doing so avoids both concerns identified here because 
querySelector will be scoped to the page contents and will happen after WinJS.UI.processAll. 

Template Elements and Rendering 
The next interesting question about templates is, what, exactly, do we get when instantiating a WinJS.- 
Binding.Template? This is more or less another WinJS control that turns into an element when you call 
WinJS.UI.processAll. But it’s different in that it removes all its child elements from the DOM, so it never 
shows up by itself. It doesn’t even set a winControl property on its containing element. 

 

 

 

206

http://msdn.microsoft.com/library/windows/apps/br229723.aspx
http://msdn.microsoft.com/library/windows/apps/br229723.aspx


What is does have, however, is this exceptionally useful function called render. Given a data context 
(an object with properties) and an element, render creates a full copy of the template inside the 
element, resolving any data-binding relationships in the template (in both data-win-bind and 
data-win-options attributes) using the data context. In short, think of a declarative template as a set of 
instructions that the render method uses to do all the necessary createElement calls along with setting 
properties and doing data binding. 

As shown on the How to use templates to bind data topic, you can just instantiate and render a 
template anywhere you want: 

var templateElement = document.getElementById("templateDiv"); 
var renderHere = document.getElementById("targetElement"); 
renderHere.innerHTML = ""; 
 
WinJS.UI.process(templateElement).then(function (templateControl) { 
    templateControl.render(myDataItem, renderHere); 
}); 

It should be wholly obvious that this is exactly what FlipView and ListView controls do for each item 
in a given data source. In the case of FlipView, it calls its item template’s render method each time you 
switch to a different item in the data source. ListView iterates over its itemDataSource and calls the item 
template’s render for each item, and does something similar for its groupDataSource and the 
groupHeaderTemplate. 

Template Functions (Part 1): The Basics 
Knowing now that a WinJS.Binding.Template control is basically just a set of declarative instructions for 
its render method, you can just create a custom function to do the same job directly. That is, in addition 
to an element, the FlipView/ListView itemTemplate properties and the ListView groupHeaderTemplate 
property can also accept a renderer function. The controls use typeof at run time to determine what 
you’ve assigned to these properties, so if you provide a template element, the controls will call its render 
method; if you provide a function, the controls will just call that function for each item that needs to be 
rendered. This provides a great deal of flexibility to customize the template based on individual item 
data. 

Indeed, a renderer allows you to individually control not only how the elements for each item are 
constructed but also when. As such, renderers are the primary means through which you can implement 
five progressive levels of optimization, especially for ListView. Warning! There be promises ahead! Well, 
I’ll save most of that discussion for the end of the chapter, because we need to look at other ListView 
features first. But here let’s at least look at the core structure of a renderer that applies to both FlipView 
and ListView, which you can see in the HTML ListView item templates and the HTML ListView optimizing 
performance samples. We’ll be drawing code from the latter. 

For starters, you can specify a renderer by name in data-win-options for both the FlipView and 
ListView controls. That function must be marked for processing as discussed in Chapter 4 since it 
definitely participates in WinJS.UI.processAll, so this is a great place to use WinJS.Utilities.-

207

http://msdn.microsoft.com/library/windows/apps/hh700356.aspx
http://code.msdn.microsoft.com/windowsapps/ListView-item-templates-7d74826f
http://code.msdn.microsoft.com/windowsapps/ListView-performance-39fb71f0
http://code.msdn.microsoft.com/windowsapps/ListView-performance-39fb71f0


markSupportForProcessing. Note that if you assign a function to an itemTemplate or 
groupHeaderTemplate property in JavaScript, it doesn’t need the mark. 

In its basic form, a template function receives an item promise as its first argument and returns a 
promise whose completed handler creates the elements for that item. Huh? Yeah, that confuses me too! 
So let’s look at the basic structure in terms of two functions: 

function basicRenderer(itemPromise) { 
    return itemPromise.then(buildElement); 
}; 
 
function buildElement (item) { 
    var result = document.createElement("div"); 
 
    //Build up the item, typically using innerHTML 
    return result; 
} 

The renderer is the first function above. It simply says, “When itemPromise is fulfilled, meaning the 
item is available, call the buildElement function with that item.” By returning the promise from 
itemPromise.then (not done, mind you!), we allow the collection control that’s using this renderer to 
chain the item promise and the element-building promise together. This is especially helpful when the 
item data is coming from a service or other potentially slow feed, and it’s very helpful with incremental 
page loading because it allows the control to cancel the promise chain if the page is scrolled away 
before those operations complete. In short, it’s a good idea! 

Just to show it, here’s how we’d make a renderer directly usable from markup, as in 
data-win-options = "{itemTemplate: Renderers.basic }": 

WinJS.Namespace.define("Renderers", { 
    basic: WinJS.Utilities.markSupportedForProcessing(function (itemPromise) { 
        return itemPromise.then(buildElement); 
    }) 
} 

It’s also common to just place the contents of a function like buildElement directly within the 
renderer itself, resulting in a more concise expression of the exact same structure: 

function basicRenderer(itemPromise) { 
    return itemPromise.then(function (item) { 
        var result = document.createElement("div"); 
 
        //Build up the item, typically using innerHTML 
 
        return result; 
    }) 
}; 

 

 

208



What you then do inside the element creation function (whether named or anonymous) defines the 
item’s layout and appearance. Returning to Scenario 8 that we’ve added to the FlipView sample, we can 
take the following declarative template, where we had to play some tricks to get data binding to work: 

<div id="pictures_ItemTemplate" data-win-control="WinJS.Binding.Template"> 
    <div class="overlaidItemTemplate"> 
        <img class="image" data-win-bind="src: thumbnail InitFunctions.thumbURL;  
            alt: name WinJS.Binding.oneTime" /> 
        <div class="overlay"> 
            <h2 class="ItemTitle" data-win-bind="innerText: name WinJS.Binding.oneTime"></h2> 
        </div> 
    </div> 
</div> 

and turn it into the following renderer, keeping the two functions here separate for the sake of clarity: 

//Earlier: assign the template in code 
myFlipView.itemTemplate = thumbFlipRenderer; 

 
 
//The renderer (see Template Functions (Part 2) later in the chapter for optimizations) 
function thumbFlipRenderer(itemPromise) { 
    return itemPromise.then(buildElement); 
}; 
 
//A function that builds the element tree 
function buildElement (item) { 
    var result = document.createElement("div"); 
    result.className = "overlaidItemTemplate"; 
 
    var innerHTML = "<img class='thumbImage'>"; 
    var innerHTML += "<div class='overlay'>"; 
    innerHTML += "<h2 class='ItemTitle'>" + item.data.name + "</h2>"; 
    innerHTML += "</div>"; 
 
    result.innerHTML = innerHTML; 
 
    //Set up a listener for thumbnailUpdated that will render to our img element 
    var img = result.querySelector("img"); 
    WinJS.UI.StorageDataSource.loadThumbnail(item, img).then(); 
 
    return result; 
} 

Because we have the individual item in hand already, we don’t need to quibble over the details of 
declarative data binding and converters: we can just directly use the properties we need from 
item.data. As before, remember that the thumbnail property of the FileInformation item might not be 
set yet. This is where we can use the StorageDataSource.loadThumbnail method to listen for the 
FileInformation.onthumbnailupdated event. This helper function will render the thumbnail into our 
img element when the thumbnail becomes available (with a little animation to boot!). 

 

209



Tip You might also notice that I’m building most of the element by using the root div.innerHTML 
property instead of calling createElement and appendChild and setting individual properties explicitly. 
Except for very simple structures, setting innerHTML on the root element is more efficient because we 
minimize the number of DOM API calls. This doesn’t matter so much for a FlipView control whose items 
are rendered one at a time, but it becomes very important for a ListView with potentially thousands of 
items. Indeed, when we start looking at performance optimizations, we’ll also want to render the item 
in various stages, such as delay-loading images. We’ll see all the details in the “Template Functions (Part 
2): Promises, Promises!” section at the end of this chapter. 

ListView Features and Styling 

Having already covered data sources and templates along with a number of ListView examples, we can 
now explore the additional features of the ListView control, such as layouts, styling, and cell spanning 
for multisize items. Optimizing performance then follows in the last section of this chapter. First, 
however, let me answer a very important question. 

When Is ListView the Wrong Choice? 
ListView is the hands-down richest control in all of Windows. It’s very powerful, very flexible, and, as 
we’re already learning, very deep and intricate. But for all that, sometimes it’s also just the wrong choice! 
Depending on the design, it might be easier to just use basic HTML/CSS layout. 

Conceptually, a ListView is defined by the relationship between three parts: a data source, templates, 
and layout. That is, items in a data source, which can be grouped, sorted, and filtered, are rendered 
using templates and organized with a layout (typically with groups and group headers). In such a 
definition, the ListView is intended to help visualize a collection of similar and/or related items, where 
their groupings also have a relationship of some kind. 

With this in mind, the following factors strongly suggest that a ListView is a good choice to display a 
particular collection: 

• The collection can contain a variable number of items to display, possibly a very large number, 
showing more when the app runs on a larger display. 

• It makes sense to organize and reorganize the items in various groups. 

• Group headers help to clarify the common properties of the items in those groups, and they can 
be used to navigate to a group-specific page. 

• It makes sense to sort and/or filter the items according to different criteria. 

• Different groupings of items and information about those groups suggest ways in which 
semantic zoom would be a valuable user experience. 
 

210



• The groups themselves are all similar in some way, meaning that they each refer to a similar kind 
of thing. Different place names, for example, are similar; a news feed, a list of friends, and a 
calendar of holidays are not similar. 

• Items might be selectable individually or in groups, such that app bar commands could act on 
them. 

On the flip side, opposite factors suggest that a ListView is not the right choice: 

• The collection contains a limited or fixed number of items, or it isn’t really a collection of related 
items at all. 

• It doesn’t make sense to reorganize the groupings or to filter or sort the items. 

• You don’t want group headers at all. 

• You don’t see how semantic zoom would apply. 

• The groups are highly dissimilar—that is, it wouldn’t make sense for the groups to sit 
side-by-side if the headers weren’t there. 

Let me be clear that I’m not talking about design choices here—your designers can hand you any 
sort of layout they want and as a developer it’s your job to implement it! What I’m speaking to is how 
you choose to approach that implementation, whether with controls like ListView or just with HTML/CSS 
layout. 

I say this because in working with the developers who created the very first apps for the Windows 
Store, we frequently saw them trying to use ListView in situations where it just wasn’t needed. An app’s 
hub page, for example, might combine a news feed, a list of friends, and a calendar. An item details 
page might display a picture, a textual description, and a media gallery. In both cases, the page contains 
a limited number of sections and the sections contain very different content, which is to say that there 
isn’t a similarity of items across the groups. Because of this, using a ListView is more complicated than 
just using a single pannable div with a CSS grid in which you can lay out whatever sections you need. 

Within those sections, of course, you might use ListView controls to display an item collection, but for 
the overall page, a simple div is all you need. I’ve illustrated these choices in Figure 5-7 using an image 
from the Navigation design for Windows Store apps topic, since you’ll probably receive similar images 
from your designers. Ignoring the navigation arrows, the hub and details pages typically use a div at the 
root, whereas a section page is often a ListView. Within the hub and details pages there might be some 
ListView controls, but where there is essentially fixed content (like a single item), the best choice is a div. 

211

http://msdn.microsoft.com/library/windows/apps/hh761500


 
FIGURE 5-7 Breaking down typical hub-section-detail page designs into div elements and ListView controls. 

A clue that you’re going down the wrong path, by the way, is if you find yourself trying to combine 
multiple collections of unrelated data into a single source, binding that source to a ListView, and 
implementing a renderer to tease all the data apart again so that everything renders properly! All that 
extra work could be avoided simply by using HTML/CSS layout. 

For more on ListView design, see Guidelines and checklist for ListView controls. 

Options, Selections, and Item Methods 
In previous sections we’ve already seen some of the options you can use when creating a ListView, 
options that correspond to the control’s properties that are accessible also from JavaScript. Let’s look 
now at the complete set of properties, methods, and events, which I’ve organized into a few groups— 
after all, those properties and methods form quite a collection in themselves! Since the details for the 
individual properties are found on the WinJS.UI.ListView reference page, what’s most useful here is to 
understand how the members of these groups relate: 

• Addressing items The currentItem property gets or sets the item with the focus, and the 
elementFromIndex and indexOfElement methods let you cross-reference between an item index 
and the DOM element for that item. The latter could be useful if you have other controls in your 
item template and need to determine the surrounding item in an event handler. 

• Item visibility The indexOfFirstVisible and indexOfLastVisible properties let you know 
what indices are visible, or they can be used to scroll the ListView appropriate for a given item. 
The ensureVisible method brings the specified item into view, if it’s been loaded. There is also 
the scrollPosition property that contains the distance in pixels between the first item in the list 

212

http://msdn.microsoft.com/library/windows/apps/hh465465.aspx
http://msdn.microsoft.com/library/windows/apps/br211837.aspx


and the current viewable area. Though you can set the scroll position of the ListView with this 
property, it’s reliable only if the control’s loadingState (see “Loading state” group below) is 
ready, otherwise the ListView may not yet know its actual dimensions. It’s thus recommended 
that you instead use ensureVisible or indexOfFirstVisible to control scroll position. 

• Item invocation The itemInvoked event, as we’ve seen, fires when an item is tapped, unless 
the tapBehavior property is not set to none, in which case no invocation happens. Other 
tapBehavior values from the WinJS.UI.TapBehavior enumeration will always fire this event but 
determine how the item selection is affected by the tap. Do note that you can override the 
selection behavior on a per-item basis using the selectionchanging event and suppress the 
animation if needed. See the “Tap/Click Behaviors” sidebar after this list. 

• Item selection The selectionMode property contains a value from the WinJS.UI.-
SelectionMode, enumeration, indicating single-, multi-, or no selection. At all times the 
selection property contains a ListViewItems object whose methods let you enumerate and 
manipulate the selected items (such as setting selected items through its set method). Changes 
to the selection fire the selectionchanging and selectionchanged events; with 
selectionchanging, its args.detail.newSelection property contains the newly selected items. 
For more on this, refer to the HTML ListView customizing interactivity sample. 

• Swiping Related to item selection is the swipeBehavior property that contains a value from the 
WinJS.UI.SwipeBehavior enumeration. “Swiping” or “cross-slide” is the touch gesture on an 
item to select it where the gesture moves perpendicular to the panning direction of the list. If 
this is set to none, swiping has no effect on the item and the gesture is bubbled up to the parent 
elements, allowing a vertically oriented ListView or its surround page to pan. If this is set to 
select, the gesture is processed by the item to select it. 

• Data sources and templates We’ve already seen the groupDataSource, groupHeaderTemplate, 
itemDataSource, and itemTemplate properties already. There are two related properties, 
resetGroupHeader and resetItem, that contain functions that the ListView will call when 
recycling elements. This is explained in “Template Functions (Part 2): Promises, Promises!” 
section. 

• Layout As we’ve also seen, the layout property (an object) describes how items are arranged 
in the ListView, which we’ll talk about more in “Layouts and Cell Spanning” below. We’ve also 
seen the forceLayout function that’s specifically used when a display: none style is removed 
from a ListView and it needs to re-render itself. 

• Loading behavior As explained in the “Optimizing ListView Performance” section later on, this 
group determines how the ListView loads pages of items (which is why ensureVisible doesn’t 
always work if a page hasn’t been loaded). When the loadingBehavior property is set to 
"randomaccess" (the default), the ListView’s scrollbar reflects the total number of items but only 
five total pages of items (to a maximum of 1000) are kept in memory at any given time as the 
user pans around. (The five pages are the current page, plus two buffer pages both ahead and 
behind.) The other value, "incremental", is meant for loading some number of pages initially 

213

http://msdn.microsoft.com/library/windows/apps/hh701303.aspx
http://msdn.microsoft.com/library/windows/apps/br229687.aspx
http://msdn.microsoft.com/library/windows/apps/br229687.aspx
http://msdn.microsoft.com/library/windows/apps/br211809.aspx
http://code.msdn.microsoft.com/windowsapps/ListView-selection-detail-95e06ade
http://msdn.microsoft.com/library/windows/apps/hh701287.aspx


and then loading additional pages when the user scrolls toward the end of the list (keeping all 
items in memory thereafter). Incremental loading works with the automaticallyLoadPages, 
pagesToLoad, and pagesToLoadThreshold properties, along with the loadMorePages method, as 
we’ll see. 

• Loading state The read-only loadingState property contains either "itemsLoading" (the list is 
requesting items and headers from the data source), "viewportLoaded" (all items and headers 
that are visible have been loaded), "itemsLoaded" (all remaining nonvisible buffered items have 
been loaded), or "complete" (all items are loaded, content in the templates is rendered, and 
animations have finished). Whenever this property changes, which is basically whenever the 
ListView needs to update its layout due to panning, the loadingStateChanged event fires. 

• Miscellany addEventListener, removeEventListener, and dispatchEvent are the standard DOM 
methods for handling and raising events. These can be used with any other event that the 

ListView supports, including contentanimating that fires when the control is about to run an 
item entrance or transition animation, allowing you to either prevent or delay those animations. 
The zoomableView property contains the IZoomableView implementation as required by semantic 
zoom (apps will never manipulate this property). 

Sidebar: Tap/Click Behavior 
When you tap or click an item in a ListView with the tapBehavior property set to something other 
than none, there’s a little ~97% scaling animation to acknowledge the tap. If you have some items 
in a list that can’t be invoked (like those in a particular group or ones that you show as disabled 
because backing data isn’t yet available), they’ll still show the animation because the tapBehavior 
setting applies to the whole control. To remove the animation for any specific item, you can add 
the win-interactive class to its element within a renderer function, which is a way of saying that 
the item internally handles tap/click events, even if it does nothing but eat them. If at some later 
time the item becomes invocable, you can, of course, remove that class. 

If you need to suppress selection for an item, add a handler for the ListVIew’s selection-
changing event and call its args.detail.preventTapBehavior method. This works for all selection 
methods, including swipe, mouse click, and the Enter key. 

 

 

 

 

214



Styling 
Following the precedent of Chapter 4 and the earlier section on ListView, styling is best understood 
visually as in Figure 5-8, where I’ve applied some garish CSS to some of the win-* styles so that they 
stand out. I highly recommend you look at the Styling the ListView and its items topic in the 
documentation, which details some additional styles that are not shown here. 

 
FIGURE 5-8 Style classes as utilized by the ListView control. 

A few notes about styling: 

• Remember that Blend is your best friend here! 

• As with styling the FlipView, a class like win-listview is most useful with styles like margins and 
padding, since a property like its background color won’t actually show through anywhere 
(unlike win-viewport and win-surface). 

• win-viewport styles the nonscrolling background of the ListView and is rarely used, perhaps for a 
nonscrolling background image. win-surface styles the scrolling background area. 

• win-container primarily exists for two things. One is to create space between items using margin 
styles, and the other is to override the default background color, often making its background 
transparent so that the win-surface or win-viewport background shows through. Note that if 
you set a padding style here instead of margin, you’ll create areas around what the user will 
perceive as the item that are still invoked as the item. Not good. So always use margin to create 
space between items. 
 

215

http://msdn.microsoft.com/library/windows/apps/hh850406.aspx


• Though win-item is listed as a style, it’s deprecated and may be removed in the future: just style 
the item template directly. 

• The documentation points out that styles like win-container and win-surface are used by 
multiple WinJS controls. (FlipView uses a few of them.) If you want to override styles for a 
ListView, be sure to scope your selectors them with other classes like .win-listview or a 
particular control’s id or class. 

• The default ListView height is 400px, and the control does not automatically adjust itself to its 
content. You’ll almost always want to override that style in CSS or set it from JavaScript when 
you know the space that the ListView should occupy, as we’ll cover in Chapter 6, “Layout.” 

• Styles not shown in the figure but described on Styling the ListView and its items include 
win-focusedoutline, win-selection, win-selected, win-selectionborder, 
win-selectionbackground, and win-selectionhint. There is also the win-selectionstylefilled 
class that you add to an item to use a filled selection style rather than the default bordered style, 
as shown here: 

 

Backdrops 
There is another ListView visual that is a bit like styling but not affected by styling. This is called the 
backdrop, an effect that’s turned on by default when you use the GridLayout. On low-end hardware, 
especially low-power mobile devices, panning around quickly in a ListView can very easily outpace 
the control’s ability to load and render items. To give the user a visual indication of what they’re 
doing, the GridLayout displays a simple backdrop of item outlines based on the default item size and 
pans that backdrop until such time as real items are rendered. As we’ll see in the next section, you 
can disable this feature with the GridLayout’s disableBackdrop property and override its default gray 
color with the backdropColor property. 

Layouts and Cell Spanning 
The ListView’s layout property, which you can set at any time, contains an object that’s used to organize 
the list’s items. WinJS provides two prebuilt layouts: WinJS.UI.GridLayout and WinJS.UI.ListLayout. 
The first, already described earlier in this chapter, provides a horizontally panning two-dimensional 
layout that places items in columns (top to bottom) and then rows (left to right). The second is a 
one-dimensional top-to-bottom layout, suitable for vertical lists (as in snapped view). These both follow 
the recommended design guidelines for presenting collections. 

 

216

http://msdn.microsoft.com/library/windows/apps/hh850406.aspx


Technically speaking, the layout property is an object in itself, containing some number of other 
properties along with a type property. Typically, you see the syntax layout: { type: <layout> } in a 
ListView’s data-win-options string, where <layout> is WinJS.UI.GridLayout or WinJS.UI.ListLayout 
(technically, the name of a constructor function). In the declarative usage, layout can also contain 
options that are specific to the type. For example, the following configures a GridLayout with headers 
on the left and four rows: 

layout: { type: WinJS.UI.GridLayout, groupHeaderPosition: 'left', maxRows: 4 } 

If you create the layout object in JavaScript by using new to call the constructor directly (and 
assigning it to the layout property), you can specify additional options with the constructor. This is done 
in the Grid App project template’s initializeLayout method in pages/groupedItems/groupedItems.js: 

listView.layout = new ui.GridLayout({ groupHeaderPosition: "top" }); 

You can also set properties on the ListView’s layout object in JavaScript once it’s been created, if you 
want to take that approach. Changing properties will generally update the layout. 

In any case, each layout has its own unique options. For GridLayout, we have these: 

• groupHeaderPosition controls the placement of headers in relation to their groups; can be set to 
"left" or "top". 

• maxRows controls the number of items the layout will place vertically before starting another 
column. 

• backdropColor provides for customizing the default backdrop color (see “Backdrops” in the 
previous section), and disableBackdrops turns off the effect entirely. 

• groupInfo identifies a function that returns an object whose properties indicate whether cell 
spanning should be used and the size of the cell (see below). This is called only once within a 
layout process. 

• itemInfo identifies a function for use with cell spanning that returns an object of properties 
describing the exact size for each item and whether the item should be placed in a new column 
(see below). 

The GridLayout also has a read-only property called horizontal that’s always true. As for the 
ListLayout, its horizontal property is always false and has no other configurable properties. 

Now, because the ListView’s layout property is just an object (or the name of a constructor for such 
an object), can you create a custom layout function of your own? Yes, you can: create a class that 
provides the same public methods as the built-in layouts, as described by the (currently under-
documented) WinJS.UI.Layout class. From there the layout object can provide whatever other options 
(properties and methods) are applicable to it. 

 

 

217

http://msdn.microsoft.com/library/windows/apps/br211781.aspx


Now before you start thinking that you might need a custom layout, the GridLayout provides for 
something called cell spanning that allows you to create variable-sized items (not an option for 
ListLayout). This is what its groupInfo and itemInfo properties are for, as demonstrated in Scenarios 4 
and 5 of the HTML ListView item templates sample and shown in Figure 5-9. 

  
FIGURE 5-9 The ListView item templates sample showing multisize items through cell spanning. 

The basic idea of cell spanning is to define a grid for the GridLayout based on the size of the smallest 
item (including padding and margin styles). For best performance, make the grid as coarse as possible, 
where every other element in the ListView is a multiple of that size. 

You turn on cell spanning through the GridLayout’s groupInfo property. This is a function that 
returns an object with three properties: enableCellSpanning, which should be set to true, and cellWidth 
and cellHeight, which contain the pixel dimensions of your minimum cell (which, by the way, is what 
the GridLayout’s backdrop feature will use for its effects in this case). In the sample (see js/data.js), this 
function is named groupInfo like the layout’s property. I’ve given it a different name here for clarity: 

function cellSpanningInfo() { 
    return { 
        enableCellSpanning: true, 
        cellWidth: 310, 
        cellHeight: 80 
    }; 
} 

You then specify this function as part of the layout property in data-win-options: 

layout: { type: WinJS.UI.GridLayout, groupInfo: cellSpanningInfo } 

 
 

218

http://code.msdn.microsoft.com/windowsapps/ListView-item-templates-7d74826f


or you can set layout.groupInfo from JavaScript. In any case, once you’ve announced your use of cell 
spanning, your item template should set each item’s style.width and style.height properties, plus 
applicable padding values, to multiples of your cellWidth and cellHeight according to the following 
formulae (which are two arrangements of the same formula): 

templateSize = ((cellSize + margin) x multiplier) - margin 
cellSize = ((templateSize + margin) / multiplier) - margin 

In the sample, these styles are set by assigning each item one of three class names: 
smallListIconTextItem, mediumListIconTextItem, and largeListIconTextItem, whose relevant CSS is as 
follows (from css/scenario4.css and css/scenario5.css): 

.smallListIconTextItem { 
    width: 300px; 
    height: 70px; 
    padding: 5px; 
} 
 
.mediumListIconTextItem { 
    width: 300px; 
    height: 160px; 
    padding: 5px; 
} 
 
.largeListIconTextItem { 
    width: 300px; 
    height: 250px; 
    padding: 5px; 
} 

Because each of these classes has padding, their actual sizes from CSS are 310x80, 310x170, and 
310x260. The margin to apply in the formula comes from the win-container style in the WinJS 
stylesheet, which is 5px. Thus: 

((80 + 10) * 1) – 10 = 80; minus 5px padding top and bottom = a height of 70px in CSS 
((80 + 10) * 2) – 10 = 170; minus 5px padding = height of 160px 
((80 + 10) * 3) – 10 = 260; minus 5px padding = height of 250px 

The only difference between Scenario 4 and Scenario 5 is that the former assigns class names to the 
items through a template function. The latter does it through a declarative template and data-binds the 
class name to an item data field containing those values. 

As for the itemInfo function, this is a way to optimize the performance of a ListView when using cell 
spanning. Without assigning a function to this property, the GridLayout has to manually determine the 
width and height of each item as it’s rendered, and this can get slow if you pan around quickly with a 
large number of items. Since you probably already know item sizes yourself, you can return that 
information through the itemInfo function. This function receives an item index and returns an object 
with the item’s width and height properties. (We’ll see a working example in a bit.) 

 

219



function itemInfo(itemIndex) { 
    //determine values for itemWidth and itemHeight given itemIndex 
    return { 
        newColumn: false, 
        itemWidth: itemWidth, 
        itemHeight: itemHeight 
    }; 
} 

Clearly, this function will be called for every item in the list but only if cell spanning has been turned 
on through the groupInfo function. Again, unless your list is relatively small, you’ll very much improve 
performance by providing item dimensions through this function, but be sure to return as quickly as 
you can. 

You probably also noticed that newColumn property in the return value. As you might guess, setting 
this to true instructs the GridLayout to start a new column with this item, allowing you to control that 
particular behavior. You can even use newColumn by itself, if you like, with a smallish list. 

Now you might be asking: what happens if I set different sizes in my item template but don’t actually 
announce cell spanning? Well, you’ll end up with overlapping (and rather confusing) items. This is 
because the GridLayout takes the first item in a group as the basic measure for the rest of the items (and 
the backdrop grid as well). It does not attempt to automatically size each item according to content. Try 
this with Scenarios 4 or 5: remove the layout.groupInfo property from the ListView’s data-winoptions 
in html/scenario4.html or html/scenario5.html and restart the app, and you’ll see the medium and large 
items bleeding into those that follow: 

 
Then go into js/data.js, set the first item’s style in the myCellSpanningData array to be 

largeListIconTextItem, and restart; the ListView then does layout with that as the basic item size: 

 
 

 

220



Using the first item’s dimension like this underscores the fact that a ListView with cell spanning will 
take more time to render because it must measure each item as it gets laid out, with or without the 
itemInfo function. For this reason, cell spanning is probably best avoided for large lists. 

Where all this gets a little more interesting, which the sample doesn’t show, is how the GridLayout 
deals with items that vary in width. Its basic algorithm is still to lay out columns from top to bottom and 
then left to right, but it will now infill empty spaces next to smaller items when larger ones create those 
gaps. To demonstrate this, let’s modify the sample so that the smallest item is 155x80 (half the original 
size), the medium item is 310x80, and the large item is 310x160. Here are the changes to make that 
happen: 

1. Undo any changes from the previous tests: in html/scenario4.html, add groupInfo back to 
data-win-options, and in js/data.js, change the class in the first item of myCellSpanningData 
back to smallListIconTextItem. 

2. In js/data.js, change the cellWidth in groupInfo to 155 (half of 310) and leave cellHeight at 80. 
For clarity, also insert an incrementing number at the start of each item’s text in 
myCellSpanningData array. 

3. In css/scenario4.css: 

a. Change the width of smallListIconTextItem to 145px. Applying the formula, ((145+10) * 1) 
– 10 = 145. Height is 70px. 

b. Change the width of mediumlListIconTextItem to 310px and the height to 70px. 

c. Change the width of largelListIconTextItem to 310px and the height to 160px. Applying 
the formula to the height, ((80+10) *2 ) – 10 = 170px. 

d. Set the width style in the #listview rule to 800px and the height to 600px (to make more 
space in which to see the layout). 

I recommend making these changes in Blend where your edits are reflected more immediately than 
running the app from Visual Studio. In any case, the results are shown in Figure 5-10 where the numbers 
show us the order in which the items are laid out (and apologies for clipping the text…experiments must 
make sacrifices at times!). A copy of the sample with these modifications is provided in the companion 
content for this chapter. 

221



 
FIGURE 5-10 Modifying the ListView item templates sample to show cell spanning more completely. 

In the modified sample I’ve also included an itemInfo function in js/data.js, as you may have already 
noticed. It returns the item dimensions according to the type specified for the item: 

function itemInfo(index) { 
    //getItem(index).data retrieves the array item from a WinJS.Binding.List 
    var item = myCellSpanningData.getItem(index).data; 
    var width, height; 
 
    switch (item.type) { 
        case "smallListIconTextItem": 
            width = 145; 
            height = 70; 
            break; 
 
        case "mediumListIconTextItem": 
            width = 310; 
            height = 70; 
            break; 
 
        case "largeListIconTextItem": 
            width = 310; 
            height = 160; 
            break; 
    } 
 
    return { 
        newColumn: false, 
        itemWidth: width, 
        itemHeight: height 
    }; 
} 

 

222



You can set a breakpoint in this function and verify that it’s being called for every item; you can also 
see that it produces the same results. Now change the return value of newColumn as follows, to force a 
column break before item #7 and #15 in Figure 5-10, because they oddly span columns: 

newColumn: (index == 6 || index == 14),   //Break on items 7 and 15 (index is 6 and 14) 

The result of this change is shown in Figure 5-11. 

 
FIGURE 5-11 Using new columns in cell spanning on items 7 and 15. 

One last thing I noticed while playing with this sample is that if the item size in a style rule like 
smallListIconTextItem ends up being smaller than the size of a child element, such as .regularList- 
IconTextItem (which includes margin and padding), the larger size wins in the layout. As you 
experiment, you might want to remove the default 5px margin that’s set for win-container. This is what 
creates the space between the items in Figure 5-10 but has to be added into the equations. The 
following rule will set that margin to 0px: 

#listView > .win-horizontal .win-container { 
    margin: 0px; 
} 

Optimizing ListView Performance 

I’ve often told people that there’s so much you can do and learn about ListView that it could be a book 
in itself! Indeed, it would have been easy for Microsoft to have just created a basic control that let you 
create templated items and have left it at that. However, knowing that the ListView would be utterly 
central to a large number of apps (perhaps the majority outside the gaming category), and expecting 
that the ListView would be called upon to host thousands or even tens of thousands of items, a highly 
skilled and passionate group of engineers has gone to great extremes to provide many levels of 
sophistication that will help your apps perform their best. 

223



One optimization is the ability to demand-load pages of items as determined by the ListView’s 
loadingBehavior property, as described in the next two sections. The other optimization is to use 
template functions to delay-load different parts of each item, such as images, as well as to defer actions 
like animations until an item actually becomes visible, which is covered in the third section below. In all 
cases, the whole point of these optimizations is to help the ListView display the most important items or 
parts of items as quickly as possible, deferring the loading and rendering of other items or less 
important item elements until they’re really needed. 

I did want to point out that the Using ListView topic in the documentation contains even more 
suggestions than I’m able to include here. (I do have other chapters to write!) I encourage you to study 
that topic as well, and who knows—maybe you’ll be the one to write the complete ListView book! 
Furthermore, additional guidance on appwide performance can be found on Performance best 
practices for Windows Store apps using JavaScript, which contains the Using ListView topic. 

Random Access 
If you’re like myself and others in my family, you probably have an ever-increasing stockpile of digital 
photographs that make you glad that 1TB+ hard drives keep dropping in price. In other words, it’s not 
uncommon for many consumers to have ready access to collections of tens of thousands of items that 
they will at some point want to pan through in a ListView. But just imagine the overhead of trying to 
load thumbnails for every one of those items into memory to display in a list. On low-level and 
low-power hardware, you’d probably be causing every suspended app to be quickly terminated, and 
the result will probably be anything but “fast and fluid”! The user might end up waiting a really long 
time for the control to become interactive and will certainly get tired of watching a progress ring. 

With this in mind, the default loadingBehavior property for a ListView is set to "randomaccess". In 
this mode, the ListView’s scrollbar will reflect the total extent of the list so that the user has some idea of 
its size, but the ListView keeps a total of only five pages or screenfuls of items in memory at any given 
time (with an overall limit of 1000 items). For most pages, this means the visible page (in the viewport) 
plus two buffer pages ahead and behind. (If you’re viewing the first page, the buffer extends four pages 
ahead; if you’re on the last page, the buffer extends four pages behind—you get the idea.) 

Whenever the user pans to a location in the list, any pages that fall out of the viewport or buffer zone 
are discarded (almost—we’ll come back to this in a moment), and loading of the new viewport page 
and its buffer pages begins. Thus the ListView’s loadingState property will start again at itemsLoading, 
then to viewportLoaded when the visible items are rendered, then itemsLoaded when the buffered pages 
are loaded, and then complete when everything is done. Again, at any given time, only five pages of 
items are loaded into memory. 

Now when I said that previously loaded items get discarded when they move out of the 
viewport/buffer range, what actually happens is that the items get recycled. One of the most expensive 
parts of rendering an item is creating its DOM elements, so the ListView actually takes those elements, 
moves them to a new place in the list, and fills them in with new content. This will become important 
when we look at optimization in template functions. 

224

http://msdn.microsoft.com/library/windows/apps/Hh781224.aspx
http://msdn.microsoft.com/library/windows/apps/hh465194.aspx
http://msdn.microsoft.com/library/windows/apps/hh465194.aspx


Incremental Loading 
Apart from potentially very large but known collections, other collections are, for all intents and 
purposes, essentially unbounded, like a news feed that might have millions of items stretching back to 
the Cenozoic Era (at least by Internet reckoning!). With such collections, you probably won’t know just 
how many items there are at all; the best you can really do is just load another chunk when the user 
wants them. 

This is what the loadingBehavior of "incremental" is for. In this mode, the ListView’s scrollbar will 
reflect only what’s loaded in the list, but if the user passes a particular threshold—for instance, they pan 
to the end of the list—the ListView will ask the data source for more pages of items and add them to the 
list, updating the scrollbar. In this case, all of the loaded items remain loaded, providing for very quick 
panning within the loaded list but with potentially more memory consumption than random access. 

The incremental loading behavior is demonstrated in Scenarios 2 and 3 of the ListView loading 
behaviors sample. (Scenario 1 covers random access, but it’s nothing different than we’ve already seen.) 
Incremental loading activates the following characteristics: 

• The ListView’s pagesToLoad property indicates how many pages or screenfuls of items get loaded 
at a time. The default value is five. 

• The automaticallyLoadPages property indicates whether the ListView should load new pages 
automatically as you pan through the list. If true (the default), as demonstrated in Scenario 2, as 
you pan toward the end of the list you’ll see the scrollbar change as new pages are loaded. If 
false, as demonstrated in Scenario 3, new pages are not loaded until you call the loadMorePages 
method directly. 

• When automaticallyLoadPages is true, the pagesToLoadThreshold property indicates how close 
the user can get to the current end of the list before new page loads are triggered. The default 
value is two. 

• When new pages start to load (either automatically or in response to loadMorePages), the 
ListView will start updating the loadingState property firing loadingstatechanged events as 
described already. 

Template Functions (Part 2): Promises, Promises! 
What we just discussed with the ListView’s loading behavior options pertains to the incremental loading 
of pages. It’s helpful now to combine this with incremental loading of items. For that, we need to look at 
what’s sometimes referred to as the rendering pipeline as implemented in template functions. 

When we first looked at template functions earlier (see “How Templates Really Work”), I noted that 
they give us control over both how and when items are constructed and that such functions—again, 
called renderers—are the means through which you can implement five progressive levels of 
optimization for ListView (and FlipView, though this is less common). Just using a renderer, as we  
 

225

http://code.msdn.microsoft.com/windowsapps/ListView-loading-behaviors-718a4673
http://code.msdn.microsoft.com/windowsapps/ListView-loading-behaviors-718a4673


already saw, is level 1; now we’re ready to see the other four levels. This is a fascinating subject, because 
it shows the kind of sophistication that the ListView has implemented for us! 

Our context for this discussion is the HTML ListView optimizing performance sample that 
demonstrates all these levels and allows you to see their respective effects. Here’s an overview: 

• A simple or basic renderer allows control over the rendering on a per-item basis. 

• A placeholder renderer separates creation of the item element into two stages. The first stage 
returns only those elements that define the shape of the item. This allows the ListView to quickly 
do its overall layout before all the details are filled in, especially when the data is coming from a 
potentially slow source. When item data is available, the second stage is then invoked to copy 
that data into the item elements and create additional elements that don’t contribute to the 
shape. 

• A recycling placeholder renderer adds the ability to reuse an existing chunk of DOM for the item, 
which is much faster that having to create it all from scratch. For this purpose, the ListView, 
knowing that it will be frequently paged around, holds onto some number of item elements 
when they go offscreen. In your renderer, you add a code path to clean up a recycled element if 
one is given to you, and return that as your placeholder. You then populate it with values in the 
second stage of rendering. 

• A multistage renderer extends the recycling renderer both to delay-load images and other 
media until the item element is fully built up in the ListView and also to delay any 
visibility-related actions, such as animations, until the item is actually on-screen. 

• Finally, a multistage batching renderer adds the ability to add images and other media as a 
batch, thereby rendering and possibly animating their entrance into the ListView as a group such 
that the system’s GPU can be employed more efficiently.  

With all of these renderers, you should strive to make them execute as fast as possible. Especially 
minimize the use of DOM API calls, which includes setting individual properties. Use an innerHTML string 
where you can to create elements rather than discrete calls, and minimize your use of getElementById, 
querySelector, and other DOM-traversal calls by caching the elements you refer to most often. This will 
make a big difference. 

To visualize the effect of these improvements, the following graphic shows an example of how 
unoptimized ListView rendering typically happens: 

 

 

 

226

http://code.msdn.microsoft.com/windowsapps/ListView-performance-39fb71f0


 
The yellow bars indicate execution of the app’s JavaScript—that is, time spent inside the renderer. 

The beige bars indicate the time spent in DOM layout, and aqua bars indicate actual rendering to the 
screen. As you can see, when elements are added one by one, there’s quite a bit of breakup in what 
code is executing when, and the kicker here is that most display hardware refreshes only every 10–20 
milliseconds (50–100Hz). As a result, there’s lots of choppiness in the visual rendering. 

After making improvements, the chart can look like the one below, where the app’s work is 
combined in one block, thereby significantly reducing the DOM layout process (the beige): 

 
As for all the other little bits in these graphics, they come from the performance tool called XPerf 

that’s part of the Windows SDK (see sidebar). Without studying the details, what ultimately matters is 
that we understand the steps you can take to achieve these ends—namely, the different forms of 
renderers that you can employ as demonstrated in the sample. 

Sidebar: XPerf and msWriteProfilerMark 
The XPerf tool in the Windows SDK, which is documented on Windows Performance Analysis 
Tools, can very much help you understand how your app really behaves on a particular system. 
Among other things, it logs calls you make to msWriteProfilerMark, as you’ll find sprinkled 
throughout the WinJS source code itself. For these to show up in xperf, however, you need to start 
logging with this command: 

xperf –start user –on PerfTrack+Microsoft-IE:0x1300 

and end logging with this one, where <trace_filename> is any path and filename of your 
choosing: 

xperf –stop user –d <trace_filename>.etl 

Launching the .etl file you save will run the Windows Performance Analyzer and show a graph 
of events. Right-click the graph, and then click “Summary Table”. In that table, expand 
Microsoft-IE and then look for and expand the Mshtml_DOM_CustomSiteEvent node. The Field3 
column should have the text you passed to msWriteProfilerMark, and the Time(s) column will 
help you determine how long actions took. 

 

227

http://msdn.microsoft.com/performance/cc825801.aspx
http://msdn.microsoft.com/performance/cc825801.aspx
http://msdn.microsoft.com/library/windows/apps/dd433074.aspx


As a baseline for our discussion, here is a simple renderer: 

function simpleRenderer(itemPromise) { 
    return itemPromise.then(function (item) { 
        var element = document.createElement("div"); 
        element.className = "itemTempl"; 
        element.innerHTML = "<img src='" + item.data.thumbnail + 
            "' alt='Databound image' /><div class='content'>" + item.data.title + "</div>"; 
        return element; 
    }); 
} 

Again, this structure waits for the item data to become available, and it returns a promise for the 
element that will be fulfilled at that time. 

A placeholder renderer separates building the element into two stages. The return value is an object 
that contains a minimal placeholder in the element property and a renderComplete promise that does 
the rest of the work when necessary: 

function placeholderRenderer(itemPromise) { 
    // create a basic template for the item which doesn't depend on the data 
    var element = document.createElement("div"); 
    element.className = "itemTempl"; 
    element.innerHTML = "<div class='content'>...</div>"; 
 
    // return the element as the placeholder, and a callback to update it when data is available 
    return { 
        element: element, 
 
        // specifies a promise that will be completed when rendering is complete 
        // itemPromise will complete when the data is available 
        renderComplete: itemPromise.then(function (item) { 
            // mutate the element to include the data 
            element.querySelector(".content").innerText = item.data.title; 
            element.insertAdjacentHTML("afterBegin", "<img src='" + 
                item.data.thumbnail + "' alt='Databound image' />"); 
        }) 
    }; 
} 

The element property, in short, defines the item’s shape and is returned immediately from the 
renderer. This lets the ListView do its layout, after which it will fulfill the renderComplete promise. You 
can see that renderComplete essentially contains the same sort of thing that a simple renderer returns, 
minus the already created placeholder elements. (For another example, the added Scenario 8 of the 
FlipView example in this chapter’s companion content has commented code that implements this 
approach.) 

A recycling placeholder renderer now adds awareness of a second parameter called recycled that the 
ListView (but not the FlipView) can provide to your rendering function when the ListView’s 
loadingBehavior is set to "randomaccess". If recycled is given, you can just clean out the element, 
return it as the placeholder, and then fill in the data values within the renderComplete promise as before. 

228



If it’s not provided (as when the ListView is first created or when loadingBehavior is "incremental"), 
you’ll create the element anew: 

function recyclingPlaceholderRenderer(itemPromise, recycled) { 
    var element, img, label; 
    if (!recycled) { 
        // create a basic template for the item which doesn't depend on the data 
        element = document.createElement("div"); 
        element.className = "itemTempl"; 
        element.innerHTML = "<img alt='Databound image' style='visibility:hidden;'/>" + 
            "<div class='content'>...</div>"; 
    } 
    else { 
        // clean up the recycled element so that we can re-use it  
        element = recycled; 
        label = element.querySelector(".content"); 
        label.innerHTML = "..."; 
        img = element.querySelector("img"); 
        img.style.visibility = "hidden"; 
    } 
    return { 
        element: element, 
        renderComplete: itemPromise.then(function (item) { 
            // mutate the element to include the data 
            if (!label) { 
                label = element.querySelector(".content"); 
                img = element.querySelector("img"); 
            } 
            label.innerText = item.data.title; 
            img.src = item.data.thumbnail; 
            img.style.visibility = "visible"; 
        }) 
    }; 
} 

In renderComplete, be sure to check for the existence of elements that you don’t create for a new 
placeholder, such as label, and create them here if needed. 

If you’d like to clean out recycled items, you can also provide a function to the ListView’s resetItem 
property that would contain the same code as shown above for that case. The same is true for the 
resetGroupHeader property, because you can use template functions for group headers as well as items. 
We haven’t spoken of these as much because group headers are far fewer and don’t typically have the 
same performance implications. Nevertheless, the capability is there. 

Next we have the multistage renderer, which extends the recycling placeholder renderer to 
delay-load images and other media until the rest of the item is wholly present in the DOM, and to 
further delay effects like animations until the item is truly on-screen. 

 

 

229



The hooks for this are three methods called ready, loadImage, and isOnScreen that are attached to 
the item provided by the itemPromise. The following code shows how these are used (where 
element.querySelector traverses only a small bit of the DOM, so it’s not a concern): 

        renderComplete: itemPromise.then(function (item) { 
            // mutate the element to update only the title 
            if (!label) { label = element.querySelector(".content"); } 
            label.innerText = item.data.title; 
 
            // use the item.ready promise to delay the more expensive work 
            return item.ready; 
            // use the ability to chain promises, to enable work to be cancelled 
        }).then(function (item) { 
            //use the image loader to queue the loading of the image 
            if (!img) { img = element.querySelector("img"); } 
            return item.loadImage(item.data.thumbnail, img).then(function () { 
                //once loaded check if the item is visible 
                return item.isOnScreen(); 
            }); 
        }).then(function (onscreen) { 
            if (!onscreen) { 
                //if the item is not visible, then don't animate its opacity 
                img.style.opacity = 1; 
            } else { 
                //if the item is visible then animate the opacity of the image 
                WinJS.UI.Animation.fadeIn(img); 
            } 
        }) 

I warned you that there would be promises aplenty in these performance optimizations! But all we 
have here is the basic structure of chained promises. The first async operation in the renderer updates 
simple parts of the item element, such as text. It then returns the promise in item.ready. When that 
promise is fulfilled—or, more accurately, if that promise is fulfilled—you can use the item’s async 
loadImage method to kick off an image download, returning the item.isOnScreen promise from that 
completed handler. When and if that isOnScreen promise is fulfilled, you can perform those operations 
that are relevant only to a visible item. 

I emphasize the if part of all this because it’s very likely that the user will be panning around within 
the ListView while all this is happening. Having all these promises chained together makes it possible for 
the ListView to cancel the async operations any time these items are scrolled out of view and/or off any 
buffered pages. Suffice it to say that the ListView control has gone through a lot of performance testing! 

Which brings us to the final multistage batching renderer, which combines the insertion of images in 
the DOM to minimize layout and repaint work. In the sample, this uses a function called createBatch 
that utilizes WinJS.Promise.timeout method with a 64-millisecond period to combine the 
image-loading promises of the multistage renderer. Honestly, you’ll have to trust me on this one, 
because you really have to be an expert in promises to understand how it works! 

 

230



//During initialization (outside the renderer) 
thumbnailBatch = createBatch(); 
 
//Within the renderComplete chain 
 
//... 
        }).then(function () { 
            return item.loadImage(item.data.thumbnail); 
        }).then(thumbnailBatch() 
        ).then(function (newimg) { 
            img = newimg; 
            element.insertBefore(img, element.firstElementChild); 
            return item.isOnScreen(); 
        }).then(function (onscreen) { 
//... 
 
//The implementation of createBatch 
 
function createBatch(waitPeriod) { 
    var batchTimeout = WinJS.Promise.as(); 
    var batchedItems = []; 
 
    function completeBatch() { 
        var callbacks = batchedItems; 
        batchedItems = []; 
 
        for (var i = 0; i < callbacks.length; i++) { 
            callbacks[i](); 
        } 
    } 
 
    return function () { 
        batchTimeout.cancel(); 
        batchTimeout = WinJS.Promise.timeout(waitPeriod || 64).then(completeBatch); 
 
        var delayedPromise = new WinJS.Promise(function (c) { 
            batchedItems.push(c); 
        }); 
        return function (v) { return delayedPromise.then(function () { return v; }); }; 
    }; 
} 

Did I warn you about there being promises in your future? Well, fortunately, we’ve now exhausted 
the subject of template functions, but it’s time well spent because optimizing ListView performance, as I 
said earlier, will greatly improve consumer perception of apps that use this control. 

 

 

231



What We’ve Just Learned 

• In-memory collection data is managed through WinJS.Binding.List, which integrates nicely 
with collection controls like FlipView and ListView. In-memory collections can come from sources 
like WinJS.xhr and data loaded from files. 

• The WinJS.UI.FlipView control displays one item at a time; WinJS.UI.ListView displays multiple 
items according to a specific layout. 

• Central to both controls is the idea that there is a data source and an item template used to 
render each item in that source. Templates can be either declarative or procedural. 

• ListView works with the added notion of layout. WinJS provides two built-in layouts. GridLayout 
is a two-dimensional, horizontally panning list; ListLayout is for a one-dimensional vertically 
panning list. It is also possible to implement custom layouts. 

• ListView provides the capability to display items in groups; WinJS.BindingList provides methods 
to created grouped, sorted, and filtered projections of items from a data source. 

• The Semantic Zoom control (WinJS.UI.SemanticZoom) provides an interface through which you 
can switch between two different views of a data source, a zoomed-in (details) view and a 
zoomed-out (summary) view. The two views can be very different in presentation but should 
display related data. The IZoomableView interface is required on each of the views so that the 
Semantic Zoom control can switch between them and scroll to the correct item. 

• WinJS provides a StorageDataSource to create a collection over StorageFile items. 

• It is possible to implement custom data sources, as shown by samples in the Windows SDK. 

• Procedural templates are implemented as template function, or renderers. These functions can 
implement progressive levels of optimization for delay-loading images and adding items to the 
DOM in batches. 

• Both FlipView and ListView controls provide a number of options and styling capabilities. 
ListView also provides for item selection and different selection behaviors. 

• The ListView control provides built-in support for optimizing random access of large data 
sources, as well as incremental access of effectively unbounded data sources. 

• The ListView control supports the notion of cell spanning in its GridLayout to support items of 
variable size, which should all be multiples of a basic cell size. 

  

232



Chapter 6 

Layout 
Compared to other members of my family, I seem to need the least amount of sleep and am often up 
late at night or up before dawn. To avoid waking the others, I generally avoid turning on lights and just 
move about in the darkness (and here in the rural Sierra Nevada foothills, it can get really dark!). Yet 
because I know the layout of the house and the furniture, I don’t need to see much. I only need a few 
reference points like a door frame, a corner on the walls, or the edge of the bed to know exactly where I 
am. What’s more, my body has developed a muscle memory for where doorknobs are located, how 
many stairs there are, how many steps it takes to get around the bed, and so on. It’s really helped me 
understand how visually impaired people “see” their own world. 

If you observe your own movements in your home and your workplace—probably when the spaces 
are lit!—you’ll probably find that you move in fairly regular patterns. This is actually one of the most 
important considerations in home design: a skilled architect looks carefully at how people in the home 
might move between primarily spaces like the kitchen, dining room, and living room, and even within a 
single workspace like the kitchen. Then they design the home’s layout so that the most common 
patterns of movement are easy and free from obstructions. If you’ve ever lived in a home where it 
wasn’t designed this way, you can very much appreciate what I’m talking about! 

There are two key points here: first, good layout makes a huge difference in the usability of any 
space, and second, human beings quickly form habits around how they move about within a space, 
habits that hopefully make their movement more efficient and productive. 

Good app design clearly follows the same principles, which is exactly why Microsoft recommends 
following consistent patterns with your apps, as described on Designing UX for apps and Design 
guidance for Windows Store apps. Those recommendations are not in any way whimsical or haphazard: 
they are the result of many years of research and investigation into what would really work best for apps 
and for Windows 8 as a whole. The placement of the charms, for instance, as well as commands on an 
app bar (as we’ll see in Chapter 7, Commanding UI”), arise from the reality of human anatomy, namely 
how far we can move our thumbs around the edges of the screen when holding a tablet device. 

With page layout, in particular, the recommendations on Laying out an app page—about where 
headers and body content are ideally placed, the spacing between items, and so forth—can seem rather 
limiting, if not draconian. The silhouette, however, is meant to be a good starting point, not a 
hard-and-fast rule. What’s most important is that the shape of an app’s layout helps users develop a 
visual and physical muscle memory that can be applied across many apps. Research has showed that 
users will actually develop such habits very quickly, even within a matter of minutes, but of course those 
habits are not exact to specific pixels! In other words, the silhouette represents a general shape that 
helps users immediately understand how an app works and where to go for certain functions, just like 
you can easily recognize the letter “S” in many different fonts. This is very efficient and productive. On 

233

http://msdn.microsoft.com/library/windows/apps/hh779072.aspx
http://msdn.microsoft.com/library/windows/apps/hh770552.aspx
http://msdn.microsoft.com/library/windows/apps/hh770552.aspx
http://msdn.microsoft.com/library/windows/apps/hh872191.aspx


the other hand, when presented with an app that used a completely different layout (or worse, a layout 
that was similar to the silhouette but behaves differently), users must expend much more energy just 
figuring out where to look and where to tap, just as I would have to be much more careful late at night 
if you moved all my furniture around!  

The bottom line is that there are very good reasons behind all the Windows Store app design 
recommendations, layout included. As I’ve said before, if you’re fulfilling the designer role for your app, 
study the guidelines referred to above. If someone else is fulfilling that role, make sure they study the 
guidelines! Either way, we’ll be reviewing the key principles in the first section of this chapter. 

After that, our focus will be on how we implement layout designs, not creating the designs 
themselves. (Although I apparently got the mix of my parent’s genes that bestowed an aptitude for 
technical communication, my brother got the most of the genes for artistry!) For example, how does an 
app respond to view state changes to show the correct page design (for full-screen landscape, filled, 
snapped, and portrait)? How does the app handle varying display sizes and varying pixel densities?  

We’ll also spend a little time with the CSS grid and a few other CSS layout features like flexbox and 
multicolumn text. Generally speaking, these are all CSS standards, so I expect that you already know 
quite a bit about them or can find full documentation elsewhere.34 We’ll thus cover the basics only 
briefly, spending more time understanding how these features are best applied within an app and those 
aspects that are unique to the Windows 8 environment (such as what are called snap points on a 
pannable/scrollable div). 

I’ll remind you again that there are other UI elements like the app bar and flyouts that don’t 
participate in layout; I’ll cover these in other chapters. There are also auxiliary app pages that service 
contracts (such as Search and Settings) and exist outside your main navigation flow. These will employ 
the same layout principles covered in this chapter, but how and when they appear will be covered later. 

Principles of Windows Store App Layout 

Layout is truly one of the most important considerations in Windows app design. The principle of 
“content before chrome” means that most of what you display on any given app page is content, with 
little in the way of commanding surfaces, persistent navigation tabs, and passive graphical elements like 
separators, blurs, and gradients that don’t in themselves mean anything. Another way of putting this is 
that content itself should be directly interactive rather than composed of passive elements that are 
acted upon when the user invokes some other command. Semantic zoom is a good example of such 
interactive content—instead of needing buttons or menus elsewhere in the app to switch between 
views, the capability is inherent in the control itself, with the small zoom button appearing only when 
needed for mouse users. Other app commands, for the most part, are similarly placed on UI surfaces 

34 The specifications can be found on http://www.w3c.org; specifically start with http://www.w3.org/standards/ 
webdesign/htmlcss for both. I also highly recommend the well-designed and curated resources from Smashing Magazine 
for learning the nuances of CSS, which I must admit still seems mysterious to me at times. 

234

www.SoftGozar.com

http://www.w3c.org/
http://www.w3.org/standards/%20webdesign/htmlcss
http://www.w3.org/standards/%20webdesign/htmlcss
http://www.smashingmagazine.com/


that appear when needed through app bars and other flyouts, as we’ll see in Chapter 7. 

In short, “content before chrome” means immersing the user in the experience of the content rather 
than distracting them with nonessentials. In Windows app design, then, emphasis is given to the space 
around and between content, which serves to organize and group content without the need for lines 
and boxes. These essentially transparent “space frames” help consumer’s eyes focus on the content that 
really matters. Windows app design also uses typography (font size, weight, color, etc.) to convey a 
sense of structure, hierarchy, and relative importance of different content. That is, because the text on a 
page is already content, why not use its characteristics—the typography—to communicate what is often 
done with extraneous chrome? (As with the layout silhouette, the general use of the Segoe UI font 
within app design is not a hard-and-fast requirement, but a starting point. Having a consistent type 
ramp for different headings is more important than the font.) 

As an example, Figure 6-1 shows a typical desktop or web application design for an RSS reader. 
Notice the persistent chrome along the top and bottom: search commands, navigation tabs, navigation 
controls, and so forth. This takes up perhaps 20% of the screen space. In what remains, nearly two-thirds 
is taken up by organizational elements, leaving 20–25% of the screen space for the content we actually 
care about: the article.  

Figure 6-2 shows a Windows Store app design for the same content. Notice how all the ancillary 
commands have been moved offscreen. Search would be accomplished through the Search charm; 
Settings through the Settings charm; adding feeds, refresh, and navigation through commands on to 
the app bar; and switching views through semantic zoom. Typography is used to convey the hierarchy 
instead of a folder control, which then leaves the bulk of the display—nearly 75%—for the content. As a 
result, we can see much more of that content than before, which creates a much more immersive and 
engaging experience, don’t you think? 

 
FIGURE 6-1 A typical desktop or web application design that emphasizes chrome at the expense of content. 

235



 
FIGURE 6-2 The same app as Figure 6-1 reimagined with one possible application of Windows app design, where 
most of the chrome has disappeared, leaving much more space for content. An alternate design could emphasize 
images much more than text. 

Even where typography is concerned, Windows app design encourages the use of distinct font sizes, 
again called the typographic ramp, to establish a sense of hierarchy. The default WinJS 
stylesheets—ui-light.css and ui-dark.css—provide four fixed sizes where each level is proportionally 
larger than the previous (42pt = 80px, 20pt = 40px, etc.), as shown in Figure 6-3. These proportions 
allow users to easily establish an understanding of content structure with just a glance. Again, it’s a 
matter of encouraging habit and muscle memory, and Microsoft’s research has shown that beyond this 
size granularity, users are generally unable to differentiate where a piece of content fits in a hierarchy. 

 
Figure 6-3 The typographic ramp of Windows Store app design, shown in both the ui-dark.css (left) and ui-light.css 
(right) stylesheets. 

236



Within the body of content, then, Windows app design encourages these layout principles: 

• Let content flow from edge to edge. 

• Keep ergonomics in mind: pan along the long edge of the view (primarily horizontal in 
landscape views, vertical in snapped view and possibly portrait). 

• Pan on a single axis only to create a sense of stability and to support swiping to select (as with 
the ListView controls), or employ rails to limit panning directions to a single axis. 

• Create visual alignment, structure, and clarity with the Windows 8 silhouette, aligning elements 
on a grid for consistency. Refer again to Laying out an app page. This shape is what allows a 
consumer’s eyes to recognize something as a Store app without having to think about it, which 
provides a feeling of familiarity and confidence.  

As I’ve mentioned before, the project templates in Visual Studio and Blend have these principles 
baked right in and thus provide a convenient starting point for apps. Even if you start with the Blank 
App template, the others like the Grid App will serve as a reference point. This is exactly what we did 
with the Here My Am! app in Chapter 2, “Quickstart.” 

The other important guiding principle that’s relevant to layout is “snap and scale beautifully.” This 
means making sure you design every page in your app to handle all four view states and to be 
appropriately adaptive across different display resolutions and pixel densities. We’ll look at this subject 
in the “View States and the Many Faces of Your Display” section below. First, however, let’s look at a 
little piece of core layout code. 

Quickstart: Pannable Sections and Snap Points 

In Chapter 5, “Collections and Collection Controls,” we spent a little time looking at when a ListView 
control was the right choice and when it wasn’t. One of the primary cases where developers have 
inappropriately attempted to use a ListView is to implement a home or hub page that contains a variety 
of distinct content groups arranged in columns, as shown in Figure 6-4 and explained on Navigation 
design for Windows Store apps. At first glance this might look like a ListView, but because the data it’s 
representing really isn’t a collection, just a layout of fixed content, it makes sense to use tried-and-true 
HTML and CSS for the job! 

I point this out because with all the great controls that WinJS provides, it’s easy to forget that 
everything you know about HTML and CSS still applies in Store apps. After all, those controls are in 
themselves just blocks of HTML and CSS with some additional methods, properties, and events. 

 

237

http://msdn.microsoft.com/library/windows/apps/hh872191.aspx
http://msdn.microsoft.com/library/windows/apps/hh761500.aspx
http://msdn.microsoft.com/library/windows/apps/hh761500.aspx


 
FIGURE 6-4 The layout of a typical home or hub page of a Store app with a fixed header (1), a horizontally pannable 
section (2), and content sections or categories (3). 

Laying Out the Hub 
Let’s see how we’d use straight HTML and CSS to implement the pannable section of the hub page in 
Figure 6-4. Referring first to Laying out an app page, we know that the padding between groups should 
be four units of 20px each, or 80px. Most of the groups themselves should be square, except for the 
second one which is only half the width. On a baseline 1366x768 display, the height of each section 
would be 768px minus 128px (for the header) minus the minimum 50px on the bottom, which leaves 
590px (if we added group headings for each section, we’d subtract another 40px). So a square group on 
the baseline display would be 590px wide (we’d set the actual height to 100% of its containing grid cell). 
The total width of the section will then be (590 * 4 full-size sections) + (295 * 1 half-width section) + (80 
* 4 for the separator gaps). This equals 2975px. To this we’ll add border columns of 120px on the left 
(according to the silhouette) and 80px on the right, for a total of 3175px. 

To create a section with exactly this layout, we can use a CSS grid within a block element. To 
demonstrate this, run Blend and create a new project with the Navigation App template (so we just get 
a basic page with the silhouette and not all the secondary pages). Within the the section element of 
pages/home/home.html, create another div element and give is a class of hubSections:  

<section aria-label="Main content" role="main"> 
    <div class="hubSections"> 
    </div> 
</section> 

In pages/home/home.css, add a few style riles. Give overflow-x: auto to the section element, and 
lay out the grid in the hubSections div, using added columns on the left and right for spacing (removing 
the margin-left: 120px from the section and adding it as the first column in the div):  

.homepage section[role=main] { 
    overflow-x: auto;     
} 
.homepage .hubSections { 
    width: 2975px; 
    height: 100%; 
    display: -ms-grid; 
    -ms-grid-rows: 1fr 50px; 

238

http://msdn.microsoft.com/library/windows/apps/hh872191.aspx


    -ms-grid-columns: 120px 2fr 80px 1fr 80px 2fr 80px 2fr 80px 2fr 80px; 
} 

With just these styles we can already see the hub page taking shape in Blend by zooming out in the 
artboard: 

 
Now let’s create the individual sections, each one starting as a div that we add in 

pages/home/home.html: 

<section aria-label="Main content" role="main"> 
    <div class="hubSections"> 
        <div class="hubSection1"></div> 
        <div class="hubSection2"></div> 
        <div class="hubSection3"></div> 
        <div class="hubSection4"></div> 
        <div class="hubSection5"></div> 
    </div> 
</section> 

and style them into their appropriate grid cells with 100% width and height. I’m showing hubSection1 
here as the others are the same with just a different column number (4, 6, 8, and 10, respectively): 

.homepage .hubSection1 { 
    -ms-grid-row: 1; 
    -ms-grid-column: 2; /* 4 for hubSection2, 6 for hubSection3, etc. */ 
    width: 100%; 
    height: 100%; 
} 

All of this is implemented in the HubPage example included with this chapter. 

Laying Out the Sections 
Now we can look at the contents of each section. Depending on what you want to display and how you 
want those sections to interact, you can again just use layout (CSS grids or perhaps flexbox) or use a 
control like ListView. hubSection3 and hubSection5 have gaps at the end, so they might be ListView 
controls with variable items. Note that if we created lists with more than 9 or 6 items, respectively, we’d 
want to adjust the column size in the overall grid and make the section element width larger, but let’s 
assume the design calls for a maximum of 9 and 6 items in those sections. 

239



Let’s also say that we want each section to be interactive, where tapping an item would navigate to a 
details page. (Not shown in this example are group headers to navigate to a group page.) We’ll just then 
use a ListView in each, where each ListView has a separate data source. For hubSection1 we’ll need to 
use cell spanning, but the rest of the groups can just use declarative templates. The key consideration 
with all of these is to style the items so that they fit nicely into the basic dimensions we’re using. And 
referring again back to the silhouette, the spacing between image items should be 10px and the 
spacing between columns of mixed content (hubSection4 and hubSection5) should be 40px (which can 
be set with appropriate CSS margins). 

Hint If you need to make certain areas of your content unselectable, use the -ms-user-select 
attribute in CSS for a div element. Refer to the Unselectable content areas with -ms-user-select CSS 
attribute sample. How’s that for a name? 

Snap Points 
If you run the HubPage example and pan around a bit using inertial touch gestures (that is, those that 
continue panning after you’ve released your finger, explained more in Chapter 9, “Input and Sensors”), 
you’ll notice that panning can stop in any position along the way. You or your designers might like this, 
but it also makes sense in many scenarios to automatically stop on a section or group boundary. This 
can be accomplished for touch interactions using CSS styles for snap points as described in the following 
table. These are styles that you add to a pannable element alongside overflow styles, otherwise they 
have no effect. Documentation for these (and some others) can be found on the CSS reference for 
Touch: Zooming and Panning. 

Style Description Value Syntax 

-ms-scroll-snap-points-x Defines snap points along the x-axis snapInterval(start<length>, step<length>) |  
snapList(list<lengths>) 

-ms-scroll-snap-points-y Defines snap points along the y-axis snapInterval(start<length>, step<length>) |  
snapList(list<lengths>) 

-ms-scroll-snap-type Defines what type of snap points should be used 
for the element: none turns off snap points, 
mandatory always adjusts panning to land on a 
snap-point (which includes ending inertial 
panning), and proximity changes the panning 
only if a panning motion naturally ends “close 
enough” to a snap point. Using mandatory, then, 
will enforce a one-section/item-at-a-time 
panning behavior, whereas proximity would pan 
past interim snap points if enough inertia is 
applied. Note also that dragging with a finger 
(not using an inertia gesture) will allow the user 
to pan directly past snap points. 

none | proximity | mandatory 

 

240

http://code.msdn.microsoft.com/windowsapps/Unselectable-content-areas-963eccd9
http://code.msdn.microsoft.com/windowsapps/Unselectable-content-areas-963eccd9
http://msdn.microsoft.com/en-us/library/windows/apps/hh453816.aspx


-ms-scroll-snap-x Shorthand to combine -ms-scroll-snap-type 
and -ms-scroll-snap-points-x 

<-ms-scroll-snap-type> 
<-ms-scroll-snap-points-x> 

-ms-scroll-snap-y Shorthand to combine -ms-scroll-snap-type 
and -ms-scroll-snap-points-y 

<-ms-scroll-snap-type> 
<-ms-scroll-snap-points-y> 

 

In the table, <length> is a floating-point number, followed by an absolute units designator (cm, mm, in, 
pt, or pc) or a relative units designator (em, ex, or px). 

To add snap points for each of our hub sections, then, we only need to add two snap points styles 
after overflow-x: 

.homepage section[role=main] { 
    overflow-x: auto; 
    -ms-scroll-snap-type: mandatory; 
    -ms-scroll-snap-points-x: snapList(0px, 670px, 1045px, 1715px, 1795px); 
} 

Note that the snap points indicated here include the 120px left border so that each one aligns the 
section underneath the header text. The 0px point thus snaps to the first section, 670px to the second 
(80px separator plus 590px width of the first section), and so on. The last snap point of 1795px, 
however, doesn’t follow this rule because the div can’t pan any further past that point. This means we’ll 
snap partway into the next-to-last section, but bring the last section and its 80px right border into view.  

With these changes you’ll now find that panning around stops nicely (with animations) on the 
section boundaries. Do note that for a hub page like this, proximity snapping is usually more 
appropriate. Mandatory snap points are intended more for items that can’t be interacted with or 
consumed without seeing their entirety, such as flipping between pictures, articles, and so on. (The 
FlipView control uses these.) 

For more on this topic, including some of the other -ms-scroll-* and -ms-content-zoom-* styles, 
such as scroll rails, refer to the HTML scrolling, panning, and zooming sample . Do note also that snap 
points are not presently supported on the ListView control, as they are intended for use with your own 
layout. 

Also be clear that snap points are a touch-only feature; if you want to provide the same kind of 
behavior with mouse and/or keyboard input, you’ll need to do such work manually along the lines of 
how the FlipView control handles transition between items. 

The Many Faces of Your Display 

If there’s one certainty about layout for a Windows Store app, it’s that its display space will likely change 
over the lifetime of an app and change frequently. For one, auto-rotation—especially on tablet and 
slate devices—makes it very quick and simple to switch between landscape and portrait orientations 

241

http://code.msdn.microsoft.com/windowsapps/Scrolling-panning-and-47d70d4c


(unlike having to configure a display driver). Second, a device may be connected to an external display, 
meaning that apps need to adjust themselves to different resolutions on the fly and possibly also 
different pixel densities. Third, users have the ability in landscape mode to “snap” apps to the left or 
right side of the screen, where the snapped app is shown in a 320px wide area and another in the 
“filled” area that occupies the remainder of the display. This is accomplished using touch or mouse 
gestures, or using the Windows+. (period) and Windows+> (shift+period) keystrokes. (Snapped view 
requires a display that’s at least 1366x768; otherwise it’s disabled.) 

You definitely want to test your app with all of these variances: view states, display sizes, and pixel 
densities. View states can be tested directly on any given machine, but for the latter two, the Visual 
Studio simulator and the Device tab of Blend let you simulate different conditions. Our question now is 
how an app handles them. 

View States 
We already got an introduction to the four view states in Chapter 1, “The Life Story of a Windows Store 
app” (see Figure 1-6). Let’s now add the next level of precision as described in the following table, which 
includes an image of the space occupied by the app, a description of the view state, and the identifiers 
for that state as found in both WinRT (in the Windows.UI.ViewManagement.-ApplicationViewState 
enumeration) and the -ms-view-state media feature for CSS media queries: 

Space Occupied by the App (Blue) Details 

 

App is in landscape mode occupying the entire screen. 

WinRT: fullScreenLandscape 

-ms-view-state: fullscreen-landscape 

 

App is occupying either left or right side of a landscape screen, in an 

area that is always 320 pixels wide. This means you do not need to 

design for all possible sizes between snapped, filled (see below), and 

full-screen states. 

WinRT: snapped 

-ms-view-state: snapped 

242

http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.applicationviewstate.aspx
http://msdn.microsoft.com/library/windows/apps/hh465826.aspx


 

WinRT: filled 

-ms-view-state: filled 

App is occupying the area of the screen next to a snapped app. The 

width will be the screen size minus 320px minus 22px for the splitter. 

 

WinRT: fullScreenPortrait 

-ms-view-state: fullscreen-portrait 

App is in portrait mode 

 

Remember again that every page of your app needs to be prepared for all four view states (with some 
exceptions as described in the sidebar below, “Preferred Orientation and Locking Orientation”). View 
states are always under the user’s control, so any page can be placed into any view state at any time, 
even on startup. Repeat this like a mantra, because many designers and developers forget this fact! 

Note  It’s possible that your app might be launched directly into snapped view, as through a user 
gesture that pulls the app from the left edge of the screen to a snapped state. So be prepared for this 
possibility. Remember also that any extended splash screen in your app is a page that is also subject to 
view states. In fact, it’s highly likely that a user will snap an app that’s taking a while to load! At the same 
time, you cannot programmatically control your app’s view state on activation, so it never needs to be 
saved or restored as part of session state. 

An app’s design should thus include all view states for each page, just like we did with the Here My 
Am! wireframes in Chapter 2. At the same time, handling view states for every page this does not mean 
four distinct implementations of the app. View states are just that: they are different views of the same 
page content as described on Guidelines for snapped and fill views. That is, switching between view 
states always maintains the state of the app and the page—it never changes modes or navigates to 
another page. The only exception to this rule is that if an app can’t reasonably operate in snap state (like 
a game that needs a certain amount of screen space to be playable), it can display a message to that 
effect along with instructions to “Tap here to resume,” which reflects the user’s goal in such a gesture. In 
response to such a tap, the app can call Windows.UI.ViewManagement.Application-View.tryUnsnap, 

243

http://msdn.microsoft.com/library/windows/apps/hh465371.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.applicationview.aspx


as demonstrated in the Snap sample.35 Don’t use this as an excuse to cut corners, however; try as much 
as possible to keep the app functional in the snapped state. 

Hint Think of the snapped view of a page as a kind of heads-up view in which the most essential 
information from a page is really highlighted. In other words, see snapped view as an opportunity 
rather than a burden. 

On the flip side, some apps should think about what to do with extra vertical space. A widescreen 
video in the snapped state will occupy only a small portion of that space, leaving room for, say, 
additional information about the video, recommendations, playlists, and so on, that wouldn’t normally 
be available when running full screen. In this way, users will find added value in switching to the 
snapped state. 

Sidebar: Preferred Orientation and Locking Orientation 
View states aside, it’s appropriate for some apps to start in a specific orientation and/or to lock 
the orientation, effectively ignoring portrait/landscape changes. A movie player, for instance, will 
generally want to stay in landscape mode, meaning that the fullscreen-landscape and 
fullscreen-portrait modes are identical—then you can watch videos while laying sideways with a 
tablet propped up on a chair. 

To be clear, the app must still honor the three landscape view states: fullscreen-landscape, 
filled, and snapped. Preferred orientation is specifically about portrait vs. landscape, and this 
affects the orientation of your splash screen and other pages in your app. It also enables 
automatic orientation switching when you switch between your app and others that don’t have 
the same preference. 

To tell Windows about your preferences, check the appropriate Supported Orientation boxes 
in the Application UI tab of the manifest designer: 

 
The many details about how all this works are found on the InitialRotationPreference 

page in the documentation. It will also tell you about the Windows.Graphics.Display.- 
DisplayProperties.autoRotationPreferences and currentOrientation properties to 
programmatically control orientation behaviors. For demonstrations, refer to the Device auto 
rotation preferences sample. 

35 tryUnsnap is the only programmatic API that can affect view states. View states are otherwise always user-initiated, and 
there are no APIs to set a view state and no way to specify a view state on startup. 

244

http://code.msdn.microsoft.com/windowsapps/Snap-Sample-2dc21ee3
http://msdn.microsoft.com/library/windows/apps/Hh700342.aspx
http://msdn.microsoft.com/library/windows/apps/Hh700342.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.display.displayproperties.autorotationpreferences.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.display.displayproperties.autorotationpreferences.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.display.displayproperties.currentorientation.aspx
http://code.msdn.microsoft.com/windowsapps/Auto-Rotation-Preferences-87ae2902
http://code.msdn.microsoft.com/windowsapps/Auto-Rotation-Preferences-87ae2902


Handling View States 
As I just mentioned, handling the different view states doesn’t mean changing the mode of an app nor 
reimplementing a page. Generally, you should try to have feature parity across the states, but in cases 
like snapped view, especially, the reduced screen real estate will necessitate simplifying the content. 

It’s best to think about view states simply in terms of the visibility of elements, the size of elements, 
and their layout on the page. In this way, most of what you need to do can be achieved through CSS 
media queries using the -ms-view-state feature. We saw this again in the Here My Am! app of Chapter 
2. The Grid App project template also demonstrates this. Here’s how those media queries appear in CSS: 

@media screen and (-ms-view-state: fullscreen-landscape) { 
   /* ... */ 
} 
 
@media screen and (-ms-view-state: filled) { 
   /* ... */ 
} 
 
@media screen and (-ms-view-state: snapped) { 
   /* ... */ 
} 
 
@media screen and (-ms-view-state: fullscreen-portrait) { 
   /* ... */ 
} 
 
/* Syntax for combining media queries (comma-separated) */ 
@media screen and (-ms-view-state: fullscreen-landscape),  
screen and (-ms-view-state: fullscreen-portrait), screen and (-ms-view-state: filled) { 
   /* ... */ 
} 

It’s also perfectly reasonable to add other clauses to these queries, such as and (min-width: 
"1600px"), as you might be making various other adjustments based on screen sizes. 

For Store apps, use the view state features in media queries instead of the CSS orientation states 
(landscape and portrait), which are simply derived from the relative width and height of the display and 
don’t distinguish states like snapped. In other words, the Windows view states are more specific to the 
platform and reflect states that the standard CSS does not, helping your app understand not only its 
available real estate but also the mode in which it’s running.36 

For example, according to the standard CSS algorithm, both the fullscreen-portrait and snapped 
states will appear as orientation: portrait because the aspect ratio is more vertical than horizontal. 
However, snapped view implies a different user intent than fullscreen-portrait: in snapped view you 
want to show the most essential parts of an app rather than trying to replicate your portrait layout in a 

36 That said, view states are not reported to pages loaded into a web context iframe. Such pages can use the standard CSS 
media queries to infer the view state, or the surrounding local context page can pass the view state to the iframe through 
postMessage. 

245



320-pixels-wide space. 

The general practice is to place all your full-screen landscape rules at the top of your CSS file and 
then make specific adjustments within the specific media queries. We did this with Here My Am! in 
Chapter 2, where the default styles worked for fullscreen-landscape and filled as-is, so we needed 
specific rules only for snapped and fullscreen-portrait. 

 

Tip When styling your app in Blend, there’s a visual affordance in the Style Rules pane that lets you 
control the exact insertion point of any new CSS styles in the given stylesheet. With this—the orange 
line shown in the graphic below and shown in Video 2-2 of the companion content—you can indicate 
where to insert styles for specific media queries and within that media query: 

 
 

In a few cases, handling media queries in declarative CSS alone won’t be sufficient. When the primary 
content display on a page is a horizontally panning ListView with GridLayout, you typically switch that 
control over to ListLayout in snapped view. You might also, as suggested on Guidelines for snapped and 
fill views, change a list of buttons to a single drop-down select element to offer the same functionality 
through a more compact UI. Such things require a little bit of JavaScript. 

For these purposes you can employ the standard Media Query Listener API in JavaScript. This 
interface (part of the W3C CSSOM View Module, see http://dev.w3.org/csswg/cssom-view/) allows you 
to add handlers for media query state changes. To listen for the snapped state, for instance, you can use 
code like this: 

246

http://msdn.microsoft.com/library/windows/apps/hh465371.aspx
http://msdn.microsoft.com/library/windows/apps/hh465371.aspx
http://dev.w3.org/csswg/cssom-view/


var mql = window.matchMedia("(-ms-view-state: snapped)"); 
mql.addListener(styleForSnapped); 
 
function styleForSnapped() { 
    if (mql.matches) { 
        //... 
    } 
} 
 
// Set up listeners for other view states: full-screen, fill, and device-portrait 
// or send all media queries to the same handler and check the current state therein. 

You can see that the media query strings you pass to window.matchMedia are the same as used in CSS 
directly, and in the handler you can, of course, perform whatever actions you need from JavaScript. 

Tip Be sure to test your view states on the resuming event, as display characteristics might have 
changed, such as plugging in a different monitor or going to the Settings charm > Change PC Settings 
> Ease of Access and toggling Make Everything on the Screen Bigger. That is, it’s possible to bring your 
app from the background (suspended state) directly into snapped view, and screen dimensions might 
also have changed while you’re suspended. So test your layout when resuming into snapped view and 
when resuming into different screen dimensions.  

When handling view states (or window.onresize events), you can obtain exact dimensions of your 
app window through the window.innerWidth and window.innerHeight properties. The document.body.-
clientWidth and document.body.clientHeight properties will be the same, as will be the clientWidth 
and clientHeight properties of any element (like a div) that occupies 100% of the document body. 
Within the resize event, the args.view.outerWidth and args.view.outerHeight properties are also 
available. 

In CSS there are also variables for the viewport height and viewport width: vh and vw. You can prefix 
these with a percentage number, such that 100vh is 100% of the viewport height, and 3.5vw is 3.5% of 
the viewport width. These variables can also be used in CSS calc expressions. 

The current view state is available through the Windows.UI.ViewManagement.Application-View.value 
property. This value comes from the Windows.UI.ViewManagement.Application-ViewState enumeration 
as shown in the earlier table. We’ve seen a few uses of this in earlier chapters. For instance, page 
controls (discussed in Chapter 3, “App Anatomy and Page Navigation”) typically check the view state 
within their ready method and directly receive those states within their updateLayout method. In fact, 
every method of the groupedItems page control in the Grid App project template is sensitive to the 
view state. Take a look at the code in pages/groupedItems/groupedItems.js: 

// A few lines and comments are omitted 
var appView = Windows.UI.ViewManagement.ApplicationView; 
var appViewState = Windows.UI.ViewManagement.ApplicationViewState; 
var nav = WinJS.Navigation; 
var ui = WinJS.UI; 
 
ui.Pages.define("/pages/groupedItems/groupedItems.html", { 

247



    initializeLayout: function (listView, viewState) { 
        if (viewState === appViewState.snapped) { 
            listView.itemDataSource = Data.groups.dataSource; 
            listView.groupDataSource = null; 
            listView.layout = new ui.ListLayout(); 
        } else { 
            listView.itemDataSource = Data.items.dataSource; 
            listView.groupDataSource = Data.groups.dataSource; 
            listView.layout = new ui.GridLayout({ groupHeaderPosition: "top" }); 
        } 
    }, 
 
    itemInvoked: function (args) { 
        if (appView.value === appViewState.snapped) { 
            // If the page is snapped, the user invoked a group. 
            var group = Data.groups.getAt(args.detail.itemIndex); 
            nav.navigate("/pages/groupDetail/groupDetail.html", { groupKey: group.key }); 
        } else { 
            // If the page is not snapped, the user invoked an item. 
            var item = Data.items.getAt(args.detail.itemIndex); 
            nav.navigate("/pages/itemDetail/itemDetail.html", 
                { item: Data.getItemReference(item) }); 
            } 
        }, 
 
        ready: function (element, options) { 
            // ... 
            this.initializeLayout(listView, appView.value); 
            // ... 
        }, 
 
    // This function updates the page layout in response to viewState changes. 
    updateLayout: function (element, viewState, lastViewState) { 
        var listView = element.querySelector(".groupeditemslist").winControl; 
        if (lastViewState !== viewState) { 
            if (lastViewState === appViewState.snapped ||  
                viewState === appViewState.snapped) { 
                var handler = function (e) { 
                    listView.removeEventListener("contentanimating", handler, false); 
                    e.preventDefault(); 
                } 
                listView.addEventListener("contentanimating", handler, false); 
                this.initializeLayout(listView, viewState); 
            } 
        } 
    } 
}); 

First, the initializeLayout method that’s called from both ready and updateLayout checks the 
current view state and adjusts the ListView control accordingly. If you remember from Chapter 5, it’s 
perfectly allowable to change a ListView’s layout and data source properties on the fly; here we use a 
ListLayout with a list of groups for snapped view and a GridLayout with grouped items in all others. 
This demonstrates how we’re showing the same content but in a more concise manner by hiding the 

248



individual items in snapped view. Because of this, itemInvoked also has to check the view state because 
the list items are groups in snapped view and should navigate to a group details page instead of an item 
page. 

As for updateLayout, this is invoked from a window.onresize event handler in the 
PageControlNavigator code (see js/navigator.js in the Grid App project template). That handler passes 
the new and previous view states to updateLayout. If that function detects that we’re switching to or 
from snapped state, it resets the ListView through initializeLayout. And because we’re changing  
the ListView’s data source, there’s no need to play entrance or transition animations. The little trick 
that’s played with the contentanimating event here simply suppresses those. 

Sidebar: Physical Display Orientations 
The fullscreen-landscape and fullscreen-portrait view states suggest something of how a device is 
actually oriented in physical space, but such information is more accurately derived from 
properties of the Windows.Graphics.Display.DisplayProperties object. Specifically, the 
currentOrientation property contains a value from 
Windows.Graphics.Display.DisplayOrientations that indicates how the device is rotated in 
relation to its nativeOrientation (and an orientationchanged event fires when needed). This 
can tell you, for example, whether the device is being held upside-down against the sky, which 
would be useful for any kind of augmented reality app such as a star chart. 

Similarly, the APIs in Windows.Devices.Sensors, specifically the SimpleOrientationSensor and 
OrientationSensor classes can provide more information from the hardware itself. These are 
covered in Chapter 9. 

Screen Size, Pixel Density, and Scaling 
I don’t know about you, but when I first read that the snapped area was always 320 pixels—real pixels, 
not a percentage of the screen width—it really set me wondering. Wouldn’t that give a significantly 
different user experience on different monitors? The answer is actually no. 320 pixels is about 25% of 
the baseline 1366x768 target display, which means that the remaining 75% of the screen is a familiar 
1024x768. And on a 10-inch screen, it means that snap area is about the 2.5 physical inches wide. So far 
so good. 

With a large monitor, on the other hand, let’s say a 2560x1440 monster, those 320 pixels would only 
be 12.5% of the width, so the layout of the whole screen looks quite different. However, given that such 
monitors are in the 24-inch range, those 320 pixels still end up being about 2.5 physical inches wide, 
meaning that the snapped area gives essentially the same visual experience as before, just now with 
much more vertical space to play with and much more remaining screen space. 

 

 

249

http://msdn.microsoft.com/library/windows/apps/windows.graphics.display.displayproperties.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.display.displayorientations.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.aspx


This now brings up the question of pixel density—what happens if your app ends up on a really small 
screen that also has a really high resolution? Obviously, 320 pixels on the latter display would be little 
more than an inch wide. Anyone got a magnifying glass? 

Fortunately, this isn’t anything a Store app has to worry about…almost. The main user benefit for 
such displays is greater sharpness, not greater density of information. Touch targets need to be the 
same size on any size display no matter how many pixels it occupies, because human fingers don’t 
change with technology! To accommodate this, Windows automatically scales down the effective 
resolution that’s reported to apps, which is to say that whatever coordinates you use within your app (in 
HTML, CSS, and JavaScript) are automatically scaled up to the necessary device resolution when the UI is 
actually rendered. This happens at within the low-level HTML/CSS rendering engine in the app host so 
that everything is drawn directly against native device pixels for maximum sharpness. 

As for the “almost” above, the one place where you do need to care about pixel density is with raster 
graphics, as we discussed in Chapter 3 for your splash screen and tiles. We’ll return to this shortly in the 
“Graphics that Scale Well” section below. 

Display sizes and pixel densities can both be tested again using the Visual Studio simulator or the 
Device tab in Blend. The latter, shown in Figure 6-5, indicates the applicable DPI and scaling factor. 
100% scale means the device resolution is reported directly to an app. 140% and 180%, on the other 
hand, indicate that scaling is taking place. With the 10.6” 2560x1440 setting with 180%, for example, the 
app will see dimensions of 1422x800 (2560/1.8 by 1440/1.8), which is very close to the standard 
1366x768 display; similarly, the 10.6: 1920x1080 setting with 140% scaling will appear to the app as 
1371x771 (1920/1.4 by 1080/1.4). In both cases, a layout designed for 1366x768 is completely sufficient 
though you can certainly be as precise as you want. 

Tip If you have an app with a fixed layout (see “Fixed Layouts and the ViewBox Control” later on), you 
can address pixel density issues by simply using graphical assets that are scaled to 200% of your 
standard design. This is because a fixed layout can be scaled to arbitrary dimensions, so a 200% image 
scales well in all cases. Such an app does not need to provide 100%, 140%, and 180% variants of its 
images. 

250



 
FIGURE 6-5 Options for display sizes and pixel densities in Blend’s Device tab. 

As noted earlier with view states, you can programmatically determine the exact size of your app 
window through the window.innerWidth and window.innerHeight properties, the document.body.- 
clientWidth and document.body.clientHeight properties, and the clientWidth and clientHeight 
properties of any element that occupies 100% of the body. Within window.onresize, you can use these 
(or the args.view.outerWidth and args.view.outerHeight properties) to adjust the app’s layout for 
changes in the overall display. Of course, if you’re using something like the CSS grid with fractional rows 
and columns to do your layout, much of that will be handled automatically. 

In all cases, these dimensions will already reflect automatic scaling for pixel densities, so they are the 
dimensions against which you want to determine layout. If you want to know the physical display 
dimensions, on the other hand, you’ll find these in the window.screen.width and window.- 
screen.height properties. Other aspects of the display can be found in the Windows.Graphics.- 
Display.DisplayProperties object, such as the logicalDPI and the current resolutionScale. The 
latter is a value from the Windows.Graphics.Display.ResolutionScale enumeration, one of 
scale100Percent, scale140Percent, and scale180Percent. The actual values of these identifiers are 100, 
140, and 180 so that you can use resolutionScale directly in calculations. 

Sidebar: A Good Opportunity for Remote Debugging 
Working with different device capabilities provides a great opportunity to work with remote 
debugging as described on Running apps on a remote machine. This will help you test your app 
on different displays without needing to set up Visual Studio on each one, and it also gives you 
the benefit of multimonitor debugging. You only need to install and run the remote debugging 
tools on the target machine and make sure it’s connected with a cable to the same network as 
your development machine. (You might need to buy a small USB-Ethernet adapter if your device 
doesn’t have a suitable port—remote debugging doesn’t work over the Internet, and it doesn’t 
work over wireless networks.) The Remote Debugging Monitor running on the remote machine 
will announce itself to Visual Studio running on your development machine. Note that the first 

251

http://msdn.microsoft.com/library/windows/apps/br226143.aspx
http://msdn.microsoft.com/library/windows/apps/br226143.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.display.resolutionscale.aspx
http://msdn.microsoft.com/library/windows/apps/hh441469.aspx


time you run the app remotely, you’ll be prompted to obtain a developer license for that 
machine, so it will need to be connected to the Internet during that time. 

Graphics That Scale Well 
Variable screen sizes and pixel densities can present a bit of a challenge to apps, not just in layout but 
also in making sure that graphical assets always look their best. You can certainly draw graphics directly 
with the HTML5 canvas; what I want to specifically address are predrawn assets. 

HTML5 scalable vector graphics (SVGs) are very handy here. You include inline SVGs in your HTML 
(including page fragments), or you can keep them in separate files and refer to them in an img.src 
attribute. One of the easiest ways to use an SVG is to place an img element inside a proportionally sized 
cell of a CSS grid and set the element’s width and height styles to 100%. The SVG will then automatically 
scale to fill the cell, and since the cell will resize with its container, everything is handled automatically. 

One caveat with this approach is that the SVG will be scaled to the aspect ratio of the containing grid 
cell, which isn’t always what you want. To control this behavior, make sure the SVG has viewBox and 
preserveAspectRatio attributes where the viewBox aspect ratio matches that defined by the SVG’s width 
and height properties: 

<svg 
    xmlns:svg="http://www.w3.org/2000/svg" 
    xmlns="http://www.w3.org/2000/svg" 
    xmlns:xlink="http://www.w3.org/1999/xlink" 
    version="1.0" 
    width="300" 
    height="150" 
    viewBox="0 0 300 150" 
    preserveAspectRatio="xMidYMid meet"> 

Of course, you don’t always have nice vector graphics. Bitmaps that you include in your app package, 
pictures you load from files, and raster images you obtain from a service won’t be so easily scalable. In 
these cases, you’ll need to be aware of and apply the current scaling factor appropriately. 

For assets in your app package, we already saw how to work with varying pixel densities in Chapter 3 
through the .scale-100, .scale-140, and .scale-180 file name suffixes. These work for any and all graphics 
in your app, just as they do for the splash screen, tile images, and the other graphics referenced by the 
manifest. So if you have a raster graphic named banner.png, you’ll create three graphics in your app 
package called banner.scale-100.png, banner.scale-140.png, and banner.scale-180.png. You can then 
just refer to the base name in an element or in CSS, as in <img src= "images/banner.png"> and 
background-image: url('images/banner.png'), and the Windows resource loader will magically load 
the appropriately scaled graphic automatically. (If files with .scale-* suffixes aren’t found, it will look for 
banner.png directly.) We’ll see even more such magic in Chapter 17, “Apps for Everyone,” when we also 
include variants for different languages and contrast settings that introduce additional suffixes of their 
own. 

252



If your developer sensibilities object to this file-naming scheme, know that you can also use similarly 
named folders instead. That is, create scale-100, scale-140, and scale-180 folders in your images folder 
and place appropriate files with unadorned names (like banner.png) therein. 

In CSS you can also use media queries with max-resolution and min-resolution settings to control 
which images get loaded. Remember, however, that CSS will see the logical DPI, not the physical DPI, so 
the cutoffs for each scaling factor are as follows (the DPI values here are slightly different from those 
given in documentation because they come from empirical tests; the docs suggest 134, 135, and 174 
dpi, respectively): 

@media all and (max-resolution: 133dpi) { 
    /* 100% scaling */ 
} 
 
@media all and (min-resolution: 134dpi) { 
    /* 140% scaling */ 
} 
 
@media all and (min-resolution: 172dpi) { 
    /* 180% scaling */ 
} 

As explained in the Guidelines for scaling to pixel density, such media queries are especially useful for 
images you obtain from a remote source, where you might need to amend the specific URI or the URI 
query string. See Chapter 13, “Tiles, Notifications, the Lock Screen, and Background Tasks,” in the 
section “Using Local and Web Images” for how tile updates handle this for scale, contrast, and language. 

Programmatically, you can again obtain logicalDpi and resolutionScale properties from the 
Windows.Graphics.Display.DisplayProperties object. Its logicaldpichanged event (a WinRT event) 
can also be used to check for changes in the resolutionScale, since the two are always coupled. Usage 
of these APIs is demonstrated in the Scaling according to DPI sample. 

If your app manages a cache of graphical assets, by the way, especially those downloaded from a 
service, organize them according to the resolutionScale for which that graphic was obtained. This way 
you can obtain a better image if and when necessary, or you can scale down a higher resolution image 
that you already obtained. It’s also something to be aware of with any app settings you might roam, 
because the pixel density and screen size may vary between a user’s devices. 

Adaptive and Fixed Layouts for Display Size 

Just as every page of your app needs to be prepared for different view states, it should also be prepared 
for different screen sizes. On this subject, I recommend you read the Guidelines for scaling to screens, 
which has good information on the kinds of display sizes your app might encounter. From this we can  
 
 

253

http://msdn.microsoft.com/library/windows/apps/hh465362.aspx
http://code.msdn.microsoft.com/windowsapps/Scaling-sample-cf072f4f
http://msdn.microsoft.com/library/windows/apps/hh780612.aspx


conclude that the smallest snapped view you’ll ever encounter is 320x768, the minimum filled view is 
1024x768, and the minimum full-screen views (portrait and landscape) are 1280x800 and 1366x768. 
These are your basic design targets. 

From there, displays only get larger, so the question becomes “What do you do with more space?” 
The first part of the answer is “Fill the screen!” Nothing looks more silly than an app running on a 27” 
monitor that was designed and implemented with only 1366x768 in mind, because it will only occupy a 
quarter to half of the screen at best. As I’ve said a number of times, imagine the kinds of reviews and 
ratings your app might be given in the Windows Store if you don’t pay attention to details like this! 

The second part of the answer depends on your app’s content. If you have only fixed content, which 
is common with games, then you’ll want to use a fixed layout that scales to fit. If you have variable 
content, meaning that you should show more when there’s more screen space, then you want to use an 
adaptive layout. Let’s look at both of these in turn. 

Sidebar: The Make Everything on Your Screen Bigger Setting 
In PC Settings (Settings charm > Change PC Settings in the lower-right corner), there is an option 
within Ease of Access to “Make everything on your screen bigger.” Turning this on effectively 
enlarges the display by about 40%, meaning that the system will report a screen size to the app 
that’s about 30% smaller than the current scaled resolution (similar to the 140% scaling level). 
Fortunately, this setting is disabled if it would mean reporting a size smaller than 1024x768, which 
always remains the minimum screen size your app will encounter. In any case, when this setting is 
changed it will trigger a Windows.Graphics.Display.DisplayProperties.-logicalDpiChanged 
event. 

Fixed Layouts and the ViewBox Control 
A fixed layout is the best choice for apps that aren’t oriented around variable content, because there 
isn’t more content to show on a larger screen. Such an app instead need to scale its output to fill the 
display as best it can, depending on whether it needs to maintain an aspect ratio. 

An app can certainly obtain the dimensions of its display window and redraw itself accordingly. Every 
coordinate in the app would be a variable in this case, and elements would be resized and laid out 
relative to one another. Such an approach is great when an app can adapt its aspect ratio to that of the 
screen, thereby filling 100% of the display. 

You can do the same thing with a fixed aspect ratio by placing limits on your coordinates, perhaps by 
using an absolute coordinate system to which you then apply your own scaling factor. 

Because this is the more common approach, WinJS provides a built-in layout control for exactly this 
purpose: WinJS.UI.ViewBox (not to be confused with the SVG viewBox attribute). Like all other WinJS 
controls, you can declare this using data-win-control in HTML as follows, where the ViewBox element 
can contain one and only one child element: 

254

http://msdn.microsoft.com/library/windows/apps/br229771.aspx


<div data-win-control="WinJS.UI.ViewBox"> 
    <div class="fixedlayout"> 
        <p>Content goes here</p> 
    </div> 
</div> 

This is really all you ever see with the ViewBox as it has no other options or properties, no methods, 
and no events—very simple! Note also that because the ViewBox is just a control, you can use it for any 
fixed aspect-ratio content in an otherwise adaptive layout; it’s not only for the layout of an entire page. 

To set the reference size of the ViewBox—the dimensions against which you’ll write the rest of your 
code—simply set the width and height styles of the child element in CSS. For example, to set a base size 
of 1024x768, we’d set those properties in the rule for the fixedlayout class: 

.fixedlayout { 
    width: 1024px; 
    height: 768px; 
} 

Once instantiated, the ViewBox simply listens for window.onresize events, and it then applies a CSS 
2D scaling transform to its child element based on the difference between the reference size and the 
actual size. This preserves the aspect ratio. This works to scale the contents up as well as down. 
Automatic letterboxing or sidepillars are also applied around the child element, and you can set the 
appearance of those areas (really any area not obscured by the child element) by using the win-viewbox 
class. As always, scope that selector to your specific control if you’re using more than one ViewBox in 
your app, unless you want styles to be applied everywhere. 

The basic structure above is what you get with a new app created from the Fixed Layout App project 
template in Visual Studio and Blend. As shown here, it creates a layout with a 1024x768 reference size, 
but you can use whatever dimensions you like. 

The CSS for this project template reveals that the whole page itself is actually styled as a CSS flexbox 
to make sure the ViewBox is centered, and that the fixedlayout element is given a default grid: 

html, body { 
    height: 100%; 
    margin: 0; 
    padding: 0; 
} 
 
body { 
    -ms-flex-align: center; 
    -ms-flex-direction: column; 
    -ms-flex-pack: center; 
    display: -ms-flexbox; 
} 
 
.fixedlayout { 
    -ms-grid-columns: 1fr; 
    -ms-grid-rows: 1fr; 
    display: -ms-grid; 

255



    height: 768px; 
    width: 1024px; 
} 

If you create a project with this template in Blend, add a border style to the fixedlayout rule (like 
border: 2px solid Red;), and fiddle with the view states and the display settings on the Device tab. Then 
you can see how the ViewBox provides all the scaling for free. To show this more obviously, the 
FixedLayout example for this chapter changes the child element of the ViewBox to a canvas on which it 
draws a 4x3 grid (to match the aspect ratio of 1024x768) of 256px squares containing circles. As shown 
in Figure 6-6 (after the sidebar), the squares and circles don’t turn into rectangles and ovals as we move 
between view states and display sizes, and letterboxing is handled automatically (applying a 
background-color style to the win-viewbox class). 

Sidebar: Raster Graphics and Fixed Layouts 
If you use raster graphics within a ViewBox, size them according to the maximum 2560x1440 
resolution so that they’ll look good on the largest screens and they’ll still scale down to smaller 
ones (rather than being stretched up). Alternately, you can use load different graphics (through 
different img.src URIs) that are better suited for the most common screen size. 

Note that resolution scaling will still be applicable. If you’re running on a high-density 10.6” 
2560x1440 display (180% scale), the app and thus the ViewBox will still see smaller screen 
dimensions. But if you’re supplying a graphic for the native device resolution, it will look sharp 
when rendered on the screen. 

 

  
FIGURE 6-6 Fixed layout scaling with the WinJS.UI.ViewBox controls, showing letterboxing on a full-screen 
1366x768 display (left) and in snapped view (right). 

Adaptive Layouts 
Adaptive layouts are those in which an app shows more content when more screen space is available. 

256



Such a layout is most easily achieved with a CSS grid where proportional rows and columns will 
auto-matically scale up and down; elements within grid cells will then find themselves resized 
accordingly. This is demonstrated in the Visual Studio/Blend project templates, especially the Grid App 
project template. On a typical 1366x768 display you’ll see a few items on a screen, as shown at the top 
of Figure 6-7. Switch over to a 27” 2560x1440 and you’ll see a lot more, as you can see at the bottom of 
the figure. 

 

 

FIGURE 6-7 Adaptive layout in the Grid App project template shown for a 1366x768 display (top) and a 2560x1440 
display (bottom). 

To be honest, the Grid App project template doesn’t do anything different for display size than it 
already does for view states. Because it uses CSS grids and proportional cell sizes, the cell containing the 
ListView control automatically becomes bigger. The ListView control is listening for window.onresize on 
its own, so we don’t need to separately instruct it to update its layout. 

The overall strategy for an adaptive layout, then, is straightforward: 

257



• Use a CSS grid where possible to handle adaptive layout automatically. 

• Listen for window.onresize as necessary to reposition and resize elements manually, such as an 
HTML canvas element. 

• Have controls listen to window.onresize to adapt themselves directly. This is especially important 
for collection controls like ListView. 

As another reference point, refer to the Adaptive layout with CSS sample, which really takes the same 
approach as the Grid App project template, relying on controls to resize themselves. In the sample, you 
will see that the app isn’t doing any direct calculations based on window size. 

Hint If you have an adaptive layout and want a background image specified in CSS to scale to its 
container (rather than being repeated), style background-size to either contain or 100% 100%. 

It should be also clear to you as a developer that how an app handles different screen sizes is also a 
design matter. The strategy above is what you use to implement a design, but the design still needs to 
think about how everything should look. The following considerations, which I only summarize here, are 
described on Guidelines for scaling to screens: 

• Which regions are fixed and which are adaptive? 

• How do adaptive regions makes use of available space, including the directions in which that 
region adapts? 

• How do adaptive and fixed regions relate in the wireframe? 

• How does the app’s layout overall makes use of space—that is, how does whitespace itself 
expand so that content doesn’t become too dense? 

• How does the app make use of multicolumn text? 

Answering these sorts of questions will help you understand how the layout should adapt. 

Using the CSS Grid 

Starting back in Chapter 2, we’ve already been employing CSS grids for many purposes. Personally, I 
love the grid model because it so effortlessly allows for relative placement of elements and scaling easily 
to different screen sizes. 

Because the focus of this book is on the specifics of Windows 8, I’ll leave it to the W3C specs on 
http://www.w3.org/TR/css3-grid-layout/ and http://dev.w3.org/csswg/css3-grid-align/ to explain all the 
details. These specs are essential references for understanding how rows and columns are sized, 
especially when some are declared with fixed sizes, some are sized to content, and others are declared 
such that they fill the remaining space. The nuances are many! 

258

http://code.msdn.microsoft.com/windowsapps/Adaptive-layout-with-sample-062e7fe2
http://msdn.microsoft.com/library/windows/apps/hh780612.aspx
http://www.w3.org/TR/css3-grid-layout/
http://dev.w3.org/csswg/css3-grid-align/


Because the specs themselves are still in the draft stages as of this writing, it’s good to know exactly 
which parts of those specs are actually supported by the HTML/CSS engine used for Store apps. 

For the element containing the grid, the supported styles are simple. First use the -ms-grid and 
-ms-inline-grid display models (the display: style). We’ll come back to -ms-inline-grid later. 

Second, use -ms-grid-columns and -ms-grid-rows on the grid element to define its arrangement. If 
left unspecified, the default is one column and one row. The repeat syntax such as 
-ms-grid-columns: (1fr)[3]; is supported, which is most useful when you have repeated series of rows 
or columns, which appear inside the parentheses. As examples, all the following are equivalent: 

-ms-grid-rows:10px 10px 10px 20px 10px 20px 10px; 
-ms-grid-rows:(10px)[3] (20px 10px)[2]; 
-ms-grid-rows:(10px)[3] (20px 10px) 20px 10px; 
-ms-grid-rows:(10px)[2] (10px 20px)[2] 10px; 

How you define your rows and columns is the really interesting part, because you can make some 
fixed, some flexible, and some sized to the content using the following values. Again, see the specs for 
the nuances involving max-content, min-content, minmax, auto, and fit-content specifiers, along with 
values specified in units of px, em, %, and fr. Windows Store apps can also use vh (viewport height) and 
vw (viewport width) as units. 

Within the grid now, child elements are placed in specific rows and columns, with specific alignment, 
spanning, and layering characteristics using the following styles: 

• -ms-grid-column identifies the 1-based column of the child in the grid. 

• -ms-grid-row identifies the 1-based row of the child in the grid. 

• -ms-grid-column-align and -ms-grid-row-align specify where the child is placed in the grid 
cell. Allowed values are start, end, center, and stretch (default). 

• -ms-grid-column-span and -ms-grid-row-span indicate that a child spans one or more 
rows/columns. 

• -ms-grid-layer controls how grid items overlap. This is similar to the z-index style as used for 
positional element. Since grid children are not positioned directly with CSS and are instead 
positioned according to the grid, -ms-grid-layer allows for separate control. 

Be very aware that row and column styles are 1-based, not 0-based. Really re-program your 
JavaScript-oriented mind to remember this, as you’ll need to do a little translation if you track child 
elements in a 0-based array. 

Also, when referring to any of these -ms-grid* styles as properties in JavaScript, drop the hyphens 
and switch to camel case, as in msGrid, msGridColumns, msGridRowAlign, msGridLayer, and so on. 

Overall, grids are fairly straightforward to work with, especially within Blend where you can 
immediately see how the grid is taking shape. Let’s now take a look at a few tips and tricks that you 
might find useful. 

259



Overflowing a Grid Cell 
One of the great features of the grid, depending on your point of view, is that overflowing content in a 
grid cell doesn’t break the layout at all—it just overflows. (This is very different from tables!) What this 
means is that you can, if necessary, offset a child element within a grid cell so that it overlaps an 
adjacent cell (or cells). Besides not breaking the layout, this makes it possible to animate elements 
moving between cells in the grid, if desired. 

A quick example of content that extends outside its containing grid cell can be found in the 
GridOverflow example with this chapter’s companion content. For the most part, it creates a 4x4 grid of 
rectangles, but this code at the end of the doLayout function (js/default.js), places the first rectangle well 
outside its cell: 

children[0].style.width = "350px"; 
children[0].style.marginLeft = "150px"; 
children[0].style.background = "#fbb"; 

This makes the first element in the grid wider and moves it to the right, thereby making it appear 
inside the second element’s cell (the background is changed to make this obvious). Yet the overall 
layout of the grid remains untouched. 

I’ll cast a little doubt on this being a great feature because you might not want this behavior at times, 
hoping instead that the grid would resize to the content. For that behavior, try using an HTML table. 

Centering Content Vertically 
Somewhere in your own experience with CSS, you’ve probably made the bittersweet acquaintance with 
the vertical-align style in an attempt to place a piece of text in the middle of a div, or at the bottom. 
Unfortunately, it doesn’t work: this particular style works only for table cells and for inline content (to 
determine how text and images, for instance, are aligned in that flow). 

As a result, various methods have been developed to do this, such as those discussed in 
http://blog.themeforest.net/tutorials/vertical-centering-with-css/. Unfortunately, just about every 
technique depends on fixed heights—something that can work for a website but doesn’t work well for 
the adaptive layout needs of a Store app. And the one method that doesn’t use fixed heights uses an 
embedded table. Urk. 

Fortunately, both the CSS grid and the flexbox (see “Item Layout” later on) easily solve this problem. 
With the grid, you can just create a parent div with a 1x1 grid and use the -ms-grid-row-align: center 
style for a child div (which defaults to cell 1, 1): 

 

<!-- In HTML --> 
<div id="divMain"> 
    <div id="divChild"> 
        <p>Centered Text</p> 
    </div> 

260

http://blog.themeforest.net/tutorials/vertical-centering-with-css/


</div> 
 
/* In CSS */ 
#divMain { 
    width: 100%; 
    height: 100%; 
    display: -ms-grid; 
    -ms-grid-rows: 1fr; 
    -ms-grid-columns: 1fr; 
} 
 
#divChild { 
    -ms-grid-row-align: center; 
    -ms-grid-column-align: center; 
 
    /* Horizontal alignment of text also work with the following */ 
    /* text-align: center; */ 
} 

 

The solution is even simpler with the flexbox layout, where flex-align: center handles vertical 
centering, flex-pack: center handles the horizontal, and a child div isn’t needed at all. This is the same 
styling that’s used in the Fixed Layout App project template to center the ViewBox: 

<!-- In HTML --> 
<div id="divMain"> 
    <p>Centered Text</p> 
</div> 
 
/* In CSS */ 
#divMain { 
    width: 100%; 
    height: 100%; 
    display: -ms-flexbox; 
    -ms-flex-align: center; 
    -ms-flex-direction: column; 
    -ms-flex-pack: center; 
} 

Code for both these methods can be found in the CenteredText example for this chapter. (This 
example is also used to demonstrate the use of ellipsis later on, so it’s not exactly as it appears above.) 

Scaling Font Size 
One particularly troublesome area with HTML is figuring out how to scale a font size with an adaptive 
layout. I’m not suggesting you do this with the standard typography recommended by Windows app 
design as we saw earlier in this chapter. It’s more a consideration when you need to use fonts in some 
other aspect of your app such as large letters on a tile in a game. 

With an adaptive layout, you typically want certain font sizes to be proportional to the dimensions of 
its parent element. (It’s not a concern if the parent element is a fixed size, because then you can fix the 

261



size of the font.) Unfortunately, percentage values used in the font-size style in CSS are based on the 
default font size (1em), not the size of the parent element as happens with height and width. What 
you’d love to be able to do is something like font-size: calc(height * .4), but, well, the value of other 
CSS styles on the same element are just not available to calc. 

One exception to this is the vh value (which can be used with calc). If you know, for instance, that the 
text you want to scale is contained within a grid cell that is always going to be 10% of the viewport 
height, and if you want the font size to be half of that, then you can just use font-size: 5vh (5% of 
viewport height). 

Another method is to use an SVG for the text, wherein you can set a viewBox attribute and a 
font-size relative to that viewBox. Then scaling the SVG to a grid cell will effectively scale the font: 

<svg viewBox="0 0 600 400" preserveAspectRatio="xMaxYMax"> 
    <text x="0" y="150" font-size="200" font-family="Verdana"> 
        Big SVG Text 
    </text> 
</svg> 

You can also use JavaScript to calculate the desired font size programmatically based on the 
clientHeight property of the parent element. If that element is in a grid cell, the font size (and line 
height) can be some percentage of that cell’s height, thereby allowing the font to scale with the cell. 

You can also try using the WinJS.UI.ViewBox control. If you want content like text to take up 50% of 
the containing element, wrap the ViewBox in a div that is styled to be 50% of the container and style 
the child element of the ViewBox with position: absolute. Try dropping the following code into 
default.html of a new Blank app project for a demonstration:  

<div style="height:50%;"> 
    <div data-win-control="WinJS.UI.ViewBox"> 
        <p style="position:absolute;">Big text!</p> 
    </div> 
</div> 

Item Layout 

So far in this chapter we’ve explored page-level layout, which is to say, how top-level items are 
positioned on a page, typically with a CSS grid. Of course, it’s all just HTML and CSS, so you can use 
tables, line breaks, and anything else supported by the rendering engine so long as you adapt well to 
view states and display sizes. 

It’s also important to work with item layout in the flexible areas of your page. That is, if you set up a 
top-level grid to have a number of fixed-size areas (for headings, title graphics, control bars, etc.), the 
remaining area can vary greatly in size as the window size changes. In this section, then, let’s look at 
some of the tools we have within those specific regions: CSS transforms, flexbox, nested and inline grids, 
multicolumn text, CSS figures, and CSS connected frames. A general reference for these and all other 

262



CSS styles that are supported for Windows Store apps (such as background, borders, and gradients) can 
be found on the Cascading Style Sheets topic. 

CSS 2D and 3D Transforms 
It’s really quite impossible to think about layout for elements without taking CSS transforms into 
consideration. Transforms are very powerful because they make it possible to change the display of an 
element without actually affecting the document flow or the overall layout. This is very useful for 
animations and transitions; transforms are used heavily in the WinJS animations library that provides the 
Windows 8 look and feel for all the built-in controls. As we’ll explore in Chapter 11, “Purposeful 
Animations,” you can make direct use of this library as well. 

CSS transforms can be used directly, of course, anytime you need to translate, scale, or rotate an 
element. Both 2D and 3D transforms (http://dev.w3.org/csswg/css3-2d-transforms/ and http:// 
www.w3.org/TR/css3-3d-transforms/) are supported for Windows Store apps, specifically these styles:37 

CSS Style JavaScript Property (element.style.) 
backface-visibility backfaceVisibility 

perspective, perspective-origin perspective, perspectiveOrigin 

transform, transform-origin, and 

transform-style 

transform, transformOrigin, and transformStyle 

Full details can be found on the Transforms reference. Know also that because the app host uses the 
same underlying engines as Internet Explorer, transforms enjoy all the performance benefits of 
hardware acceleration. 

Flexbox 
Just as the grid is magnificent for solving many long-standing problems with page layout, the CSS 
flexbox module, documented at http://www.w3.org/TR/css3-flexbox/, is excellent for handling 
variable-sized areas wherein the content wants to “flex” with the available space. To quote the W3C 
specification: 

In [this] box model, the children of a box are laid out either horizontally or vertically, and unused space 
can be assigned to a particular child or distributed among the children by assignment of ‘flex’ to the 
children that should expand. Nesting of these boxes (horizontal inside vertical, or vertical inside horizontal) 
can be used to build layouts in two dimensions. 

As the flexbox spec is presently in draft form, the specific display styles for Store apps are display: 
-ms-flexbox (block level) and display: -ms-inline-flexbox (inline).38 For a complete reference of the 

37 At the time of writing, the -ms-* prefixes on these styles were no longer needed but are still supported. 
38 If you’re accustomed to the -ms-box* styles for flexbox, Microsoft has since aligned to the W3C specifications that are 

expected to be the last major revision before the standard is finalized. As the new syntax replaces the old, the old will not 

263

http://msdn.microsoft.com/library/windows/apps/hh996828.aspx
http://dev.w3.org/csswg/css3-2d-transforms/
http://msdn.microsoft.com/library/windows/apps/hh453377.aspx
http://www.w3.org/TR/css3-flexbox/


other supported properties, see the Flexible Box (“Flexbox”) Layout documentation: 

CSS Style JavaScript Property 
(element.style.) 

Values 

-ms-flex-align msFlexAlign start | end | center | baseline | stretch 

-ms-flex-direction msFlexDirection row | column | row-reverse | column-reverse | inherit 

-ms-flex-flow msFlexFlow <direction> <pack> where <direction> is an 

-ms-flex-direction value and <pack> is an -ms-flex-pack 

value. 

-ms-flex-orient msFlexOrient horizontal | vertical | inline-axis | block-axis | inherit 

-ms-flex-item-align msFlexItemAlign auto | start | end | center | baseline | stretch 

-ms-flex-line-pack msFlexLinePack start | end | center | justify | distribute | stretch 

-ms-flex-order msFlexOrder <integer> (ordinal group) 

-ms-flex-pack msFlexPack start | end | center | justify 

-ms-flex-wrap msFlexWrap none | wrap | wrapreverse 

 

As with all styles, Blend is a great tool in which to experiment with different flexbox styles because 
you can see the effect immediately. It’s also helpful to know that flexbox is used in a number of places 
around WinJS and in the project templates, as we saw with the Fixed Layout template earlier. The 
ListView control in particular takes advantage of it, allowing more items to appear when there’s more 
space. The FlipView uses flexbox to center its items, and the Ratings, DatePicker, and TimePicker 
controls all arrange their inner elements using an inline flexbox. It’s likely that your own custom controls 
will do the same. 

Nested and Inline Grids 
Just as the flexbox has both block level and inline models, there is also an inline grid: display: 
-ms-inline-grid. Unlike the block level grid, the inline variant allows you to place several grids on the 
same line. This is shown in the InlineGrid example for this chapter, where we have three div elements in 
the HTML that can be toggled between inline (the default) and block level models: 

 

 

 

work in Windows Store apps nor Internet Explorer 10. 

264

http://msdn.microsoft.com/library/windows/apps/hh453474.aspx


//Within the activated handler 
document.getElementById("chkInline").addEventListener("click", function () { 
    setGridStyle(document.getElementById("chkInline").checked); 
}); 
 
setGridStyle(true); 
 
 
//Elsewhere in default.js 
function setGridStyle(inline) { 
    var gridClass = inline ? "inline" : "block"; 
 
    document.getElementById("grid1").className = gridClass; 
    document.getElementById("grid2").className = gridClass; 
    document.getElementById("grid3").className = gridClass; 
} 
 
 
/* default.css */ 
.inline { 
    display: -ms-inline-grid; 
} 
 
.block { 
    display: -ms-grid; 
} 

When using the inline grid, the elements appear as follows: 

 
When using the block level grid, we see this instead: 

265



 

Fonts and Text Overflow 
As discussed earlier, typography is an important design element for Store apps, and for the most part 
the standard font styles using Segoe UI are already defined in the default WinJS stylesheets. In the 
Windows SDK there is a very helpful CSS typography sample that compares the HTML header elements 
and the win-type-* styles, demonstrating font fallbacks and how to use bidirectional fonts (left to right 
and right to left directions). 

Speaking of fonts, custom font resources using the @font-face rule in CSS are allowed in Store apps. 
For local context pages, the src property for the rule must refer to an in-package font file (that is, a URI 
that begins with / or ms-appx:///). Pages running in the web context can load fonts from remote 
sources. 

Another piece of text and typography is dealing with text that overflows its assigned region. You can 
use the CSS text-overflow: ellipsis; style to crop the text with a …, and the WinJS stylesheets contain 
the win-type-ellipsis class for this purpose. In addition to setting text-overflow, this class also adds 
overflow: hidden (to suppress scrollbars) and white-space: nowrap. It’s basically a style you can add to 
any text element when you want the ellipsis behavior. 

The W3C specification on text overflow, http://dev.w3.org/csswg/css3-ui/#text-overflow, is a helpful 
reference as to what can and cannot be done here. One of the limitations of the current spec is that 
multiline wrapping text doesn’t work with ellipsis. That is, you can word-wrap with the word-wrap: 
break-word style, but it won’t cooperate with text-overflow: ellipsis (word-wrap wins). I also 
investigated whether flowing text from a multiline CSS region (see next section) into a single-line region 
with ellipsis would work, but text-overflow doesn’t apply to regions. So at present you’ll need to 
shorten the text and insert ellipsis manually if it spans multiple lines. 

For a demonstration of ellipsis and word-wrapping, see the CenteredText example for this chapter. 

266

http://code.msdn.microsoft.com/windowsapps/typography-JS-sample-e2df9eb4
http://dev.w3.org/csswg/css3-ui/#text-overflow


Multicolumn Elements and Regions 
Translating the multicolumn flow of content that we’re so accustomed to in print media has long been a 
difficult proposition for web developers. While it’s been easy enough to create elements for each 
column, there was no inherent relationship between the content in those columns. As a result, 
developers have had to programmatically determine what content could be placed in each element, 
accounting for variations like font size or changing the number of columns based on the screen width 
or changes in device orientation. 

CSS3 provides for doing multicolumn layout within an element (see 
http://www.w3.org/TR/css3-multicol). With this, you can instruct a single element to lay out its contents 
in multiple columns, with specific control over many aspects of that layout. The specific styles supported 
for Windows Store apps (with no pesky little vendor prefixes!) are as follows: 

CSS Styles JavaScript Property (element.style.) 
column-width and column-count (columns is the shorthand) columnWidth, columnCount, and columns 

column-gap, column-fill, and column-span columnGap, columnFill, and columnSpan 

column-rule-color, column-rule-style, and 

column-rule-width (column-rule is the shorthand for separators 

between columns) 

columnRuleColor, columnRuleStyle, and columnRuleWidth 

(columnRule is the shorthand) 

break-before, break-inside, and break-after breakBefore, breakInside, and breakAfter 

overflow: scroll (to display scrollbars in the container) overflow 

 

The reference documentation for these can be found on Multi-column layout. 

Again, Blend provides a great environment to explore how these different styles work. If you’re 
placing a multicolumn element within a variable-size grid cell, you can set column-width and let the 
layout engine add and remove columns as needed, or you can use media queries or JavaScript to set 
column-count directly. 

CSS3 multicolumn again only applies to the contents of a single element. While highly useful, it does 
impose the limitation of a rectangular element and rectangular columns (spans aside). Certain apps like 
magazines need something more flexible, such as the ability to flow content across multiple elements 
with more arbitrary shapes, and columns that are offset from one another. These relationships are 
illustrated in Figure 6-8, where the box in the upper left might be a title, the inset box might contain an 
image, and the text content flows across two irregular columns. 

267

http://www.w3.org/TR/css3-multicol/
http://msdn.microsoft.com/library/windows/apps/hh441204.aspx


 
FIGURE 6-8 Using CSS regions to achieve a more complex layout with irregular text columns. 

To support irregular columns, CSS Regions (see http://dev.w3.org/csswg/css3-regions/) are coming 
online and are supported in Store apps (see Regions reference). Regions allow arbitrarily (that is, 
absolutely) positioned elements to interact with inline content. In Figure 6-8, the image would be 
positioned absolutely on the page and the column content would flow around it. 

The key style for a positioned element is the float: -ms-positioned style which should accompany 
position: absolute. Basically that’s all you need to do: drop in the positioned element, and the layout 
engine does the rest. It should be noted that CSS Hyphenation, yet another module, relates closely to all 
this because doing dynamic layout on text immediately brings up such matters. Fortunately, Store apps 
support the –ms-hyphens and the -ms-hyphenation-* styles (and their equivalent JavaScript properties). 
The hyphenation spec is located at http://www.w3.org/TR/css3-text/; documentation for Store apps is 
found on the Text styles reference. 

The second part of the story consists of named flows and region chains (which are also part of the 
Regions spec). These provide the ability for content to flow across multiple container elements, as 
shown in Figure 6-9. Region chains can also allow the content to take on the styling of a particular 
container, rather than being defined at the source. Each container, in other words, gets to set its own 
styling and the content adapts to it, but commonly all the containers share similar styling for 
consistency. 

268

http://dev.w3.org/csswg/css3-regions/
http://msdn.microsoft.com/library/windows/apps/hh453722.aspx
http://www.w3.org/TR/css3-text/
http://msdn.microsoft.com/library/windows/apps/hh453722.aspx


 
FIGURE 6-9 CSS region chains to flow content across multiple elements. 

How this all works is that the source content is defined by an iframe that points to an HTML file (and 
the iframe can be in the web or local context, of course). It’s then styled with -ms-flow-into: <element> 
(msFlowInfo in JavaScript) where <element> is the id of the first container: 

<!-- HTML --> 
<iframe id="s1-content-source" src="/html/content.html"></iframe> 
<div class="s1-container"></div> 
<div class="s1-container"></div> 
<div class="s1-container"></div> 
 
/* CSS */ 
#s1-content-source { 
    -ms-flow-into: content; 
} 

Note that -ms-flow-into prevents the iframe content from displaying on its own. 

Container elements can be any nonreplaced element—that is, any element whose appearance and 
dimensions are not defined by an external resource, such as img—and can contain content between its 
opening and closing tabs, like a div (the most common) or p. Each container is styled with 
-ms-flow-from: <element> (msFlowFrom in JavaScript) where the <element> is the first container in the 
flow. The layout then happens in the order elements appear in the HTML (as above): 

.s1-container { 
    -ms-flow-from: content; 
    /* Other styles */ 
} 

This simple example was taken from the Static CSS regions sample, which also provides a few other 
scenarios. There are two other applicable projects here as well, the Dynamic CSS regions sample and the 
Dynamic CSS region templates sample, where the latter is the source for Figure 6-8 above. In all these 
cases, be aware that styling for regions is limited to properties that affect the container and not the  
 
 

269

http://code.msdn.microsoft.com/windowsapps/Static-Regions-sample-f2158049
http://code.msdn.microsoft.com/windowsapps/Dynamic-Regions-Sample-f600c0c1
http://code.msdn.microsoft.com/windowsapps/Dynamic-Region-Templates-94bc9c95


content—content styles are drawn from the iframe HTML source. This is why using text-overflow: 
ellipsis doesn’t work, nor will font-color and so forth. But styles like height and width, along with 
borders, margin, padding, and other properties that don’t affect the content can be applied. 

What We’ve Just Learned 

• Layout that is consistent with Windows 8 design principles—specifically the silhouette and 
typography—helps users focus immediately on content rather than having to figure out each 
specific app. 

• The principle of “content before chrome” allows content to use 75% or more of the display space 
rather than 25% as is common with chrome-heavy desktop or web applications. 

• In some cases, such as a home or hub page of an app with varied and content that does not 
come from a single collection, it’s best to just use plain HTML/CSS layout rather than using a 
control. 

• Pannable HTML sections can use snap points to automatically stop panning at particular 
intervals within the content. 

• The CSS grid is a highly useful mechanism for adaptive page-level layout, and it can also be used 
inline. The CSS flexbox is most useful for inline content, though it has uses at the page level as 
well, as for centering content vertically and horizontally. 

• Every page of an app (including the extended splash screen) can encounter all four view states, 
so an app design must show how those states are handled. Media queries and the Media Query 
Listener API can be used to handle the view states declaratively and programmatically. 

• Apps can specify a preferred orientation in their manifest and also lock the orientation at run 
time. 

• The window.onresize event is best for knowing when the window size has changed, due to view 
states and/or changes in screen size and pixel density. 

• Handling varying screen sizes is accomplished either through a grid-based adaptive layout or a 
fixed layout utilizing the WinJS.UI.ViewBox control that does automatic scaling of its content. 

• The chief concern with pixel density is providing graphics that scale well. This means either using 
vector graphics or providing scaled variants of each raster graphic. 

• Windows Store apps can take advantage of a wide range of CSS 3 options, including the grid, 
flexbox, transforms, multicolumn text, and regions. 

  

270



Chapter 7 

Commanding UI 
For consumers coming anew to Windows 8 and Windows Store apps, one of their first reactions might 
be “Where are the menus? Where is the ribbon? How do I tell this app to do something with the items I 
selected from a list?” This will be a natural response until users become more accustomed to where 
commands live, giving another meaning, albeit a mundane one, to the dictum “Blessed are those who 
have not seen, and yet believe!” 

With the design principle of “content before chrome,” UI elements that exist solely to invoke actions 
and don’t otherwise contain meaningful content fall into the category of “chrome.” As such, they are 
generally kept out of sight until needed, as are system-level commands like the Charms bar. The user 
indicates his or her desire for those commands through an appropriate gesture. A swipe on the top or 
bottom edge of the display, a right mouse button click, or the Win+Z key combination brings up 
app-specific commands at the top and bottom. A swipe on the left edge of the display, a mouse click on 
the upper left corner, or Win+Tab allows for switching between apps. And a swipe on the right edge of 
the display, a mouse click on the upper-right or lower-right corner, or Win+C reveals the Charms bar. 
(Win+Q, Win+H, and Win+i open the Search, Share, and Settings charms directly.) An app responds to 
the different charms through particular contracts, as we’ll see in a number of the chapters that follow. 

App-specific commands, for their part, are generally provided through an app bar control: 
WinJS.UI.AppBar. In many ways, the app bar is the equivalent of a menu and ribbon for Windows Store 
apps, because you can create all sorts of UI within it and even show menu elements. Menus, supplied by 
the WinJS.UI.Menu control, can also pop up from specific points on the app’s main display, such as a 
menu attached to a header. 

The app bar and menus are specific instances of the more generic WinJS.UI.Flyout control, which is 
used directly for messages or actions that the user can cancel or ignore; such flyouts are dismissed 
simply by clicking or tapping outside the flyout’s window. (This is like pressing a Cancel button.) For 
important messages that require action—that is, where the user must choose between a set of 
options—apps employ WinJS.UI.MessageDialog. Dialog boxes are a familiar concept from the world of 
desktop applications and have long been used for collecting all kinds of information and adjusting app 
settings. In Windows Store app design, however, dialog boxes are used only to ask a question and get a 
simple answer, or just to inform the user of some condition. Settings are specifically handled through 
the Settings charm, as we’ll see in Chapter 8, “State, Settings, Files, and Documents.” 

An important point with all of these command controls is that they don’t participate in page layout: 
they instead “fly out” and remain on top of the current page. This means we thankfully don’t need to 
worry about their impact on layout…with one small exception that I’ll keep secret for now. 

 

271



To begin with, though, let’s take a step back to think about an app’s commands as a whole and where 
those commands are ideally placed. 

Where to Place Commands 

The placement of commands is really quite central to app design. Unlike the guidelines—or lack 
thereof!—for desktop application commands, which has resulted in quite a jumble, the Windows 
Developer Center offers two rather extensive topics on this subject: Commanding design and Laying out 
your UI. These are must-reads for any designer working on an app, because they describe the different 
kinds of commanding UI and how to gain the best smiling accolades from Windows 8 design pundits. 
These are also good topics for developers because they can give you some idea of what you might 
expect from your designers. Let’s review that guidance, then, as an introductory tour to the various 
options: 

• The user should be able to complete their most important scenarios using just the app canvas, 
so commands that are essential to a workflow should appear directly on-screen. The overall 
purpose here is to minimize the distraction of unnecessary commands. Nonessential commands 
should be kept out of view, except for navigation options that can be placed in a drop-down 
header menu like this: 

 
• Always use Charms for common app commands where possible. That is, instead of supplying 

your own search control, use the Search charm (except when the app has a much richer search 
UI with additional criteria beyond keywords). Instead of supplying individual commands to share 
with specific targets such as email apps, your contacts, social network apps, and the like, use the 
Share charm. Instead of supplying your own Print commands, rely on the Device charm. And 
instead of creating pages within your navigation hierarchy for app settings, help, About, 
permissions, license agreements, privacy statements, and login/account management, simplify 
your life and use the Settings charm! (Refer also to “Sidebar: Logins and License Agreements.”) 
Examples of these are shown in the image below, which also illustrates that many app 
commands can leverage the Charms bar, which means less clutter in the rest of your 
commanding UI. Again, we’ll cover how to respond to Charms events in later chapters. 

272

http://msdn.microsoft.com/library/windows/apps/hh761499
http://msdn.microsoft.com/library/windows/apps/hh465304.aspx
http://msdn.microsoft.com/library/windows/apps/hh465304.aspx


 
 

• Commands that can’t be placed in Charms and don’t need to be on the app canvas are then 
placed within the app bar as shown below in the Travel app; this is the closest analogy to a 
traditional menu: 

• The top app bar is reserved for navigation commands. 

• The bottom app bar contains all other commands that are sensitive to the context or 
selection, as well as global (nonselection) commands. Context and global commands are 
placed on different sides of the app bar. 

• App bar commands can display menus to group related commands and not clutter the app 
bar itself. 

 

273



• Context menus can provide specific commands for particular content or a selection. For example, 
selected text typically provides a context menu for clipboard commands, as shown here in the 
Mail app. 

 
• Confirmations and other questions (including collecting information) that you need to display in 

response to a user action should use a flyout control; see Guidelines and checklist for Flyouts. 
Tapping or clicking outside the control (or pressing ESC) is the same as canceling. Here’s an 
example from the SkyDrive app: 

 
• For blocking events that are not related to a user command but that affect the whole app, use a 

message dialog. A message dialog effectively disables the rest of the app until you pay attention 
to it! A good example of this is a loss of network connectivity, where the user needs to be 
informed that some capabilities may not be available until connectivity is restored. User consent 
prompts for capabilities like geolocation, as shown below from the Maps app, is another place 
you see message dialogs. Note that a message dialog is used only when the app is in the 
foreground. Toast notifications, as we’ll see in Chapter 13, “Tiles, Notifications, the Lock Screen, 
and Background Tasks,” apply only to background apps. 

 
• Finally, other errors that don’t require user action can be displayed either inline (on the app 

canvas) or through flyouts. See Laying out your UI: errors for full details; we’ll see some examples 
later on as well. 

Where the bottom app bar is concerned, it’s also important to organize your commands into sets, as 
this streamlines implementation as we’ll see in the next section. For full guidance I recommend two 
additional topics in the documentation: Guidelines and checklist for app bars and Commanding Design,  
 

274

http://msdn.microsoft.com/library/windows/apps/hh465341
http://msdn.microsoft.com/library/windows/apps/hh465304.aspx#errors
http://msdn.microsoft.com/library/windows/apps/hh465302.aspx
http://msdn.microsoft.com/library/windows/apps/hh761499.aspx


which provide many specifics on placement, spacing, and grouping. That guidance can be summarized 
as follows: 

• First, make two groups of commands: one with those commands that appear throughout the 
entire app, regardless of context, and another with those that show only on certain pages. The 
app bar control is fairly simple to reconfigure at run time for different groups. 

• Next, create command sets, such as those that are functionally related, those that toggle view 
types, and those that apply to selections. Remember that an app bar command can display a 
popup menu, as shown below, to provide a list of options and/or additional controls, including 
longer labels, drop-down lists, checkboxes, radiobuttons, and toggle switches. In this way you 
can combine closely related commands into a single one that gets more room to play than its 
little space on the app bar proper. 

 
• For placement, put persistent commands on the right side of the app bar and the most common 

context-specific commands on the left. After that, begin to populate toward the middle. This 
recommendation comes from the ergonomic realities of human hands: fingers and 
thumbs—even on the largest hands of basketball players!—grow only so long and can reach 
only so far on the screen without having to move one’s hand. The most commonly used 
commands are best placed nearest to where a person’s thumbs will be when holding a device, as 
indicated in the image below (from the Windows 8 Touch Posture topic in the docs). Those spots 
are easier to reach (especially by those of us that can’t grip a large ball with one hand!) and thus 
make the whole user experience more comfortable. 

 
 

275

http://msdn.microsoft.com/library/windows/apps/hh465415.aspx#touch_posture


• The app bar is always available in all view states, including snapped. It’s recommended in 
snapped view (and sometimes portrait) to limit the commands to 10 so that they can fit into one 
or two rows. 

• Know too that the app bar is not limited to circular command buttons: you can create whatever 
custom layout you like, which is how top navigation bars are implemented. With any custom 
layout, make sure that your elements are appropriately sized for touch interaction. More on 
this—including a small graphic of the aforementioned finger of a basketball player—can again 
be found on  Guidelines and checklist for app bars as well as Touch interaction design under 
“Windows 8 Touch targets.” 

Sidebar: Logins and License Agreements 
As noted above, Microsoft recommends that login/account management and license 
agreements/terms-of-use pages are accessed through the Settings charm, where an app adds 
relevant commands to the Settings pane that first appears when the charm is invoked. These 
commands then invoke subsidiary pages with the necessary controls for each functions. Of course, 
sometimes logins and license agreements need some special handling. For example, if your app 
requires a login or license agreement on startup, such controls can be shown on the app’s first 
page or provided through the Credential Picker UI (see Chapter 14, “Networking”). If the user 
provides a login and/or agrees to the terms of service, the app can continue to run. Otherwise, the 
app should show a page that indicates that a login or agreement is necessary to do something 
more interesting than stare at error messages. 

If a login is recommended but not required, perhaps to enable additional features, you can 
place those controls directly on the canvas. When the user logs in, you can replace those controls 
with bits of profile information (user name and picture, for example, as on the Windows Start 
screen). If, on the other hand, a login is entirely optional, keep it within Settings. 

In all cases, commands to view the license agreement, manage one’s account or profile, and 
log in or out should still be available within Settings. Other app bar or on-canvas commands can 
invoke Settings programmatically, as we’ll see in Chapter 8. 

The App Bar 

After placing essential commands on the app canvas, most of your app’s commands will be placed in 
the app bar. Again, the app bar is automatically brought up in response to various user gestures, such as 
a top or bottom edge swipe, Win+Z, or a right mouse button click. Whenever you perform one of these 
gestures, Windows looks for app bar controls on the current page and invokes them—you don’t need to 
process any input events yourself. 

 

276

http://msdn.microsoft.com/library/windows/apps/hh465302.aspx
http://msdn.microsoft.com/library/windows/apps/hh465415.aspx


Tip To prevent the app bar from appearing, you can do one of two things. First, to prevent the appbar 
from appearing at all (for any gesture), set the app bar’s element’s winControl.disabled property to 
true. Second, if you want to prevent it for, say, a right-click on a particular element (such as a canvas), 
listen to the contextmenu (right click) event for that element and call eventArgs.preventDefault() 
within your handler. 

For apps written in HTML and JavaScript, the app bar control is implemented as a WinJS control: 
WinJS.UI.AppBar. As with all other WinJS controls, you declare an app bar in HTML and instantiate it 
with a call to WinJS.UI.process or WinJS.UI.processAll. For a first example, we don’t need to look any 
farther than some of the Visual Studio/Blend project templates like the Grid App project, where a 
placeholder app bar is included in default.html (initially commented out): 

<div id="appbar" data-win-control="WinJS.UI.AppBar"> 
    <button data-win-control="WinJS.UI.AppBarCommand"  
        data-win-options="{id:'cmd', label:'Command', icon:'placeholder'}"> 
    </button> 
</div> 

The super-exciting result of this markup, using the ui-dark.css stylesheet, is as follows: 

 
Because the app bar is declared in default.html, which is the container for all other page controls, this 

same app bar will apply to all the pages in the app. With this approach you can declare all your 
commands within a single app bar and assign different classes to the commands that allow you to easily 
show and hide command sets as appropriate for each page. This also centralizes those commands that 
appear on multiple pages, and you can wire up event handlers for them in your app’s primary activation 
code (such as that in default.js). 

Alternately, you can declare an app bar within the markup for individual page controls. Since an app 
bar will still be in the DOM, the Windows gestures will invoke it on each particular page. In the Grid App 
project, for example, you can move the markup above from default.html into groupedItems.html, 
groupDetail.html, and itemDetail.html with whatever modifications you like for each page. This might 
be especially useful if your app’s pages don’t share many commands in common. 

In these cases, each page’s ready method should take care of wiring up the commands on its 
particular app bar. Note also that you can add handlers within a page’s ready method even for a central 
app bar; it’s just a matter of calling addEventListener on the appropriate child element within that app 
bar. 

Let’s look now at how all this works through the HTML AppBar control sample. (This chapter’s 
companion content also has a modified version.) We’ll start with the basics and the standard 
command-oriented configuration for app bars, look at how to display menus for some of those 
commands, and then see how to create custom layouts as is used for a top navigation bar. 

 

277

http://msdn.microsoft.com/library/windows/apps/br229670.aspx
http://code.msdn.microsoft.com/windowsapps/App-bar-sample-a57eeae9


Hint Technically speaking, you can declare as many app bars as you want in whatever pages you want, 
and they’ll all be present in the DOM. However, the last one that gets processed in your markup will be 
the one that’s topmost in the z-index by default and therefore the one to receive events. Windows does 
not make any attempt to combine app bars, so because page controls are inserted into the middle of a 
host page like default.html, an app bar in default.html that’s declared after the page control host 
element will appear on top. At the same time, if the page control’s app bar is larger than that in 
default.html, a portion of it might be visible. The bottom line: declare app bars either in the host page 
or in a page control, but not both. 

App Bar Basics and Standard Commands 
As I just mentioned, an app bar can be declared once for an app in a container page like default.html or 
can be declared separately for each individual page control. The HTML AppBar control sample does the 
latter, because it provides very distinct app bars for its various scenarios. 

Scenario 1 of the sample (html/create-appbar.html) declares an app bar with four commands and a 
separator: 

<div id="createAppBar" data-win-control="WinJS.UI.AppBar" data-win-options=""> 
    <button data-win-control="WinJS.UI.AppBarCommand" data-win-options="{id:'cmdAdd', 
        label:'Add', icon:'add', section:'global', tooltip:'Add item'}"> 
    </button> 
    <button data-win-control="WinJS.UI.AppBarCommand" data-win-options="{id:'cmdRemove',  
        label:'Remove', icon:'remove', section:'global', tooltip:'Remove item'}"> 
    </button> 
    <hr data-win-control="WinJS.UI.AppBarCommand" data-win-options="{type:'separator',  
        section:'global'}" /> 
    <button data-win-control="WinJS.UI.AppBarCommand" data-win-options="{id:'cmdDelete',  
        label:'Delete', icon:'delete', section:'global', tooltip:'Delete item'}"> 
    </button> 
    <button data-win-control="WinJS.UI.AppBarCommand" data-win-options="{id:'cmdCamera',  
        label:'Camera', icon:'camera', section:'selection', tooltip:'Take a picture'}"> 
    </button> 
</div> 

This appears in the app as follows, using the ui-light.css stylesheet, in which we can also see a tooltip, 
a focus rectangle, and a hover effect on the Add command (I placed my mouse over the command to 
see all this): 

 
In the markup, the app bar control is declared like any other WinJS control (this is becoming a habit!) 

using some containing element (a div) with data-win-control="WinJS.UI.AppBar". Each page in this 
sample is loaded with WinJS.UI.Pages.render that conveniently calls WinJS.UI.processAll to 
instantiate the app bar. (It is also allowable, as with other controls, to create an app bar 
programmatically using the new operator.) 

 

278



This example doesn’t provide any specific options for the app bar in its data-win-options, but there 
are a number of possibilities: 

• disabled, if set to true, creates an initially disabled app bar; the default is false. 

• layout can be "commands" (the default) or "custom", as we’ll see in the “Custom App Bars and 
Navigation Bars” section later. 

• placement can be either "top" or "bottom" (the default). We’ll use "top" for a navigation bar 
later. 

• sticky changes the light-dismiss behavior of the app bar. With the default of false, the app bar 
will be dismissed when you click or tap outside of it. If this is set to true, the app bar will stay on 
the screen until either you change sticky to false and tap outside or you programmatically 
relieve the control from its duties with its hide method. 

So, if you wanted a sticky navigation bar with a custom layout to appear at the top of the screen, 
you’d use markup like this: 

<div id="navBar" data-win-control="WinJS.UI.AppBar"  
    data-win-options="{layout:'custom', placement:'top', sticky: true}"> 

Note that having two app bars in a page with different placement values will not interfere with each 
other. Also, the sticky property for each placement operates independently. So if you want to 
implement an appwide top navigation bar, you could declare that within default.html (or whatever your 
top-level page happens to be), and declare bottom app bars in each page control. Again, they’re all just 
elements in the DOM! 

As you can see, an app bar control can contain any number of child elements for its commands, each 
of which must be a WinJS.UI.AppBarCommand control within a button or hr element or the app bar 
won’t instantiate. 

The properties and options of an app bar command are as follows: 

• id The element identifier, which you can use with document.getElementById or the app bar’s 
getCommandById method to wire up click handlers. 

• type One of "button" (the default), "separator" (which creates a vertical bar), "flyout" (which 
triggers a popup specified with the flyout property; see “Command Menus” later), and "toggle" 
(which creates a button with on/off states). In the latter case, the selected property of a 
command can also be used to set the initial value and to retrieve the state at run time. 

• label The text shown below for the command button. You always want to use this instead of 
providing text for the button element itself, because such text won’t be aligned properly in the 
control. (Try it and you’ll see!) Also, note that this property, along with tooltip below, is often 
localized using data-win-res attributes. We’ll cover this in Chapter 17, “Apps for Everyone,” but 
for the time being you can look at the html/localize-appbar.html file in the sample (Scenario 8) 
to see how it works. 

279

http://msdn.microsoft.com/library/windows/apps/hh700497.aspx


• tooltip The (typically localized) tooltip text for the command, using the value of label 
as the default. Note that this is just text; using a full HTML-based WinJS.UI.Tooltip 

control here is not supported. 

• icon Specifies the glyph that’s shown in the command. Typically, this is one of the strings 
from the WinJS.UI.AppBarIcon enumeration, which contains 150 different options from the 
Segoe UI Symbol font. If you look in the ui.strings.js resource file of WinJS you can see how these 
are defined using codes like \uE109—the enumeration, in fact, simply provides friendly names 
for character codes \uE100 through \uE1E9. But you’re not limited by these. For one thing, you 
can use any other Unicode escape value '\uXXXX' you want from the Segoe UI Symbol font. 
(Note the single quotes.) You can also use a different font or use your own graphics as described 
in “Custom Icons” later.39 

• section Controls the placement of the command. For left-to-right languages (such as 
English), the default value of "selection" places the command on the left side of the app bar 
and "global" places it on the right. For right-to-left languages (such as Hebrew and Arabic), the 
sides are swapped. These simple choices encourage consistent placement of these two 
categories of commands (and using any other random value here defaults to "selection"). This 
trains users’ eyes to look for the most constant commands on one side and selection-specific 
commands on the other. Note that the commands in each section are laid out left-to-right (or 
right-to-left) in the order they appear in your markup. 

• onclick Can be used to declaratively specify a click handler; remember that any function 
named here in markup must be marked safe for processing. (See Chapter 4, “Controls, Control 

Styling, and Data Binding” in the “Strict Processing and processAll Functions” section.) Click 
handlers can also be assigned programmatically with addEventListener, in which case the mark 
is not needed. 

• disabled Sets the disabled state of a command if true; the default is false. 

• extraClass Specifies one or more CSS classes that are attached to the command. These can be 
used to individually style command controls as well as to create sets that you can easily show 
and hide, as explained in the “Showing, Hiding, Enabling, and Updating Commands” section 
later. 

If you want to generate commands at run time, you can do so by setting the app bar’s commands 
property with an array of JSON AppBarCommand descriptors any time the app bar isn’t visible (that is, when 
its hidden property is true). An array of such descriptors for the Scenario 1 app bar in the sample would 
be as follows (this is provided in the modified sample included with this chapter; see js/create_appbar.js): 

 

39 Three notes: First, within data-win-options the Unicode escape sequence can also be in the HTML form of &#xNNNN; I 
prefer the JSON form because it has much less ceremony and is less prone to error. Second, you can use the Character 
Map desktop applet (charmap.exe) to examine all the symbols within any particular font. Third, if you need to localize an 
icon, you can specify the icon property in the data-win-res string since the icon property ultimately resolves to a string. 

280

http://msdn.microsoft.com/library/windows/apps/hh770557.aspx


var appbar = document.getElementById("createAppBar").winControl; 
 
//Set the app bar commands property to populate it 
var commands = [ 
    { id: 'cmdAdd', label: 'Add', icon: 'add', section: 'global', tooltip: 'Add item' }, 
    { id: 'cmdRemove', label: 'Remove', icon: 'remove', section: 'global', 
        tooltip: 'Remove item' }, 
    { type: 'separator', section: 'global' }, 
    { id: 'cmdDelete', label: 'Delete', icon: 'delete', section: 'global', 
        tooltip: 'Delete item' }, 
    { id: 'cmdCamera', label: 'Camera', icon: 'camera', section: 'selection', 
        tooltip: 'Take a picture' } 
]; 
 
appbar.commands = commands; 

When the app bar is created, it will iterate through the commands array and create WinJS.UI.AppBar-
Command controls for each item. If type isn’t specified or if it’s set to "button", "flyout", or "toggle", then 
the command is a button element. A type of "separator" creates an hr element. Note that you should 
localize the label, tooltip, and possibly icon fields in each command declaration rather than using 
explicit text as shown here. 

You can also use such an array directly within declarative markup, but this form cannot be localized 
and is thus discouraged (though I include comments that show how in the modified sample). At the 
same time, because the value of commands in markup is just a string, you can assign its value through 
data binding with an attribute like this in the app bar element: 

data-win-bind="{ winControl.commands: myData.commands }" 

where myData.commands can refer to a localized data source. However, this does not work with the 
data-win-res attribute (as we’ll see in Chapter 17 and which is also shown in Scenario 8 of the sample) 
because the resource string won’t be converted to JSON as part of the resource lookup. Attempting to 
play such a trick would be more trouble than it’s worth anyway, so it’s best to use either the HTML 
declarative form or a localized commands array at run time. 

Also, be aware that commands is a rare example of a write-only property: you can set it, but you cannot 
retrieve the array from an app bar. The app bar uses this array only to configure itself and the array is 
discarded once all the elements are created in the DOM. At run time, however, you can use the app 
bar’s getCommandById method to retrieve a particular command element. 

Command Events 
Speaking of the command elements, an app bar’s AppBarCommand controls (other than separators) are all 
just button elements and thus respond to the usual events. Because each command element is assigned 
the id you specify, you can use getElementById as usual as a prelude to addEventListener. In Scenario 1 
of the HTML App Bar control sample, for instance, this code appears in the page’s ready method: 

 

281



document.getElementById("cmdAdd").addEventListener("click", doClickAdd, false); 
document.getElementById("cmdRemove").addEventListener("click", doClickRemove, false); 
document.getElementById("cmdDelete").addEventListener("click", doClickDelete, false); 
document.getElementById("cmdCamera").addEventListener("click", doClickCamera, false); 

Although this works, each call to document.getElementById traverses the entire DOM and is relatively 
inefficient. I would recommend that you use the app bar’s getCommandById method instead, a change 
I’ve made throughout the modified sample included with this chapter: 

//Using the app bar's getCommandById avoids traversing the entire DOM for each button 
var appbar = document.getElementById("createAppBar").winControl; 
appbar.getCommandById("cmdAdd").addEventListener("click", doClickAdd, false); 
appbar.getCommandById("cmdRemove").addEventListener("click", doClickRemove, false); 
appbar.getCommandById("cmdDelete").addEventListener("click", doClickDelete, false); 
appbar.getCommandById("cmdCamera").addEventListener("click", doClickCamera, false); 

Of course, if you specify a handler for each command’s onclick property in your markup (with each 
one having its supportedForProcessing property true), you can avoid all of this entirely! 

It should also be obvious that you can wire up events like this from anywhere in your app, and you 
can certainly listen to any other events you want to, especially when doing custom layouts with other UI. 
Also, know that the click event conveniently handles touch, mouse, and keyboard input alike, so you 
don’t need to do any extra work there. In the case of the keyboard, by the way, the app bar lets you 
move between commands with the Tab key; Enter or Spacebar will invoke the click handler. 

App Bar Events and Methods 
In addition to the app bar’s getCommandById method we just saw, the app bar has several other methods 
and a handful of events. First, the methods: 

• show displays an app bar if its disabled property is false; otherwise, the call is ignored. 

• hide dismisses the app bar. 

• showCommands, hideCommands, and showOnlyCommands are used to manage command sets as 
described in the next section, “Showing, Hiding, Enabling, and Updating Commands.” 

As for events, there are a total of four that are common to the overlay-style UI controls in WinJS (that 
is, those that don’t participate in layout): 

• beforeshow occurs before a flyout becomes visible. For an app bar, this is a time when you could 
set the commands property depending on the state of the app at the moment or enable/disable 
specific commands. 

• aftershow occurs immediately after a flyout becomes visible. For an app bar, if its sticky 
property is true, you can use this event to adjust the app’s layout if you have a scrolling element 
that might be partially covered otherwise—see below. 

• beforehide occurs before a flyout is hidden. For an app bar, you’d use this event to hide any 
supplemental UI created with the app bar and to readjust layout around a sticky app bar. 

282



• afterhide occurs immediately after a flyout is hidden. For an app bar, this again could be a time 
to readjust the app’s layout if necessary. 

You can find an example of using the show method along with the aftershow and beforehide events 
in Scenario 4 of the HTML AppBar control sample. 

The matter with app layout identified above (and what I kept secret in the introduction to this 
chapter) arises because an app bar overlays and obscures the bottom portion of the page. If that page 
contains a scrolling element, an app bar with sticky set to true will, for mouse users, partly cover a 
vertical scrollbar and will make a horizontal scrollbar wholly inaccessible. If you’re using a sticky app bar 
with such a page, then—and because Windows Store policy does not look kindly upon discrimination 
against mouse users!— you should use aftershow to reduce the scrolling element’s height by the 
offsetHeight or clientHeight value of the app bar control, thereby keeping the scrollbars accessible. 
When the app bar is hidden and afterhide fires, you can then readjust the layout. Always use a runtime 
value like clientHeight in these calculations as well, because it accommodates different resolution 
scales and because the height of an app bar can vary with commands and with view states. 

To show this, Scenario 6 of the sample has a horizontally panning ListView control that normally 
occupies most of the page; a scrollbar will appear along the very bottom when the mouse is used. If you 
select an item, the app bar is made sticky and then shown (see the doSelectItem function in 
js/appbar-listview.js): 

appBar.sticky = true; 
appBar.show(); 

The show method triggers both beforeshow and aftershow events. To adjust the layout, the 
appropriate event to use is aftershow, which makes sure the height of the app bar is valid. The sample 
handles this event in function called doAppBarShow (also in js/appbar-listview.js): 

function doAppBarShow() { 
    var listView = document.getElementById("scenarioListView"); 
    var appBar = document.getElementById("scenarioAppBar"); 
    var appBarHeight = appBar.offsetHeight; 
    // Move the scrollbar into view if appbar is sticky 
    if (appBar.winControl.sticky) { 
        var listViewTargetHeight = "calc(100% - " + appBarHeight + "px)"; 
        var transition = { 
            property: 'height', 
            duration: 367, 
            timing: "cubic-bezier(0.1, 0.9, 0.2, 0.1)", 
            to: listViewTargetHeight 
        }; 
        WinJS.UI.executeTransition(listView, transition); 
    } 
} 

 

 

283



Note The sample on the Windows Developer Center uses beforeshow instead of aftershow, with the 
result that sometimes the app bar still has a zero height and the layout is not adjusted properly. To 
guarantee that the app bar has its proper height for such calculations, use the aftershow event as 
demonstrated in the modified sample included with this chapter’s companion content. 

Here you can see that the appBar.offsetHeight value is simply subtracted from the ListView’s height 
with an animated transition. (See Chapter 11, “Purposeful Animations.”) The operation is reversed in 
doAppBarHide where the ListView height is simply reset to 100% with a similar animation. In this case, the 
event handler doesn’t depend on the app bar’s height at all, so it can use either beforehide or 
afterhide events. If, on the other hand, you need to know the size of the app bar for your own layout, 
use the beforehide event. 

As an exercise, run Scenario 7 of the SDK sample. Notice how the bottom part of the text region’s 
vertical scrollbar is obscured by the sticky app bar. Try taking the code from Scenario 6 to handle 
aftershow and beforehide to adjust the text area’s height to accommodate the app bar and keep the 
scrollbar completely visible. And no, I won’t be grading you on this quiz: the solution is provided in the 
modified sample with this chapter. 

Showing, Hiding, Enabling, and Updating Commands 
In the previous section I mentioned using the beforeshow event to configure an app bar’s commands 
property such that it contains those commands appropriate to the current page and the page state. This 
might include setting the disabled property for specific commands that are, for example, dependent on 
selection state. This can be done through the commands array, in markup, or again by using the app bar’s 
getCommandById method: 

appbar.getCommandById("cmdAdd").disabled = true; 

Let me reiterate that the commands that appear on an app bar are specific to each page; it’s not 
necessary to try to maintain a consistent app bar structure across pages. That is, if a command would 
always be disabled for a particular page, don’t bother showing it at all. What’s more important is that 
the app bar for a page is consistent, because it’s a really bad idea to have commands appear and 
disappear depending on the state of the page. That would leave users guessing at how to get the page 
in the right state for certain commands to appear! 

Speaking of changes, it is entirely allowable to modify or update a command at run time, which can 
eliminate the need to create multiple commands that your alternately show or hide. Since each 
command on the app bar is just a DOM element, you can really make any changes you want at any 
time. An example of this is shown in Scenario 3 of the sample where the app bar is initially created with 
a Play button (html/custom-icons.html): 

<button data-win-control="WinJS.UI.AppBarCommand"  
    data-win-options="{id:'cmdPlay', label:'Play', icon:'play', tooltip:'Play this song'}"> 
</button> 

 

284



This button’s click handler uses the doClickPlay function in js/custom-icons.js to toggle between 
states: 

var isPaused = true; 
 
function doClickPlay() { 
    var cmd = document.getElementById('cmdPlay'); 
 
    if (!isPaused) { 
        isPaused = true; // paused 
        cmd.winControl.icon = 'play'; 
        cmd.winControl.label = 'Play'; 
        cmd.winControl.tooltip = 'Play this song'; 
    } else { 
        isPaused = false; // playing 
        cmd.winControl.icon = 'pause'; 
        cmd.winControl.label = 'Pause'; 
        cmd.winControl.tooltip = 'Pause this song'; 
    } 
} 

You can use something similar with a command to pin and unpin a secondary tile, as we’ll see in 
Chapter 13. And again, the button is just an element in the DOM and updating any of its properties, 
including styles, will update the element on the screen once you return control to the UI thread. 

Now using beforeshow for the purpose of adjusting your commands is certainly effective, but you 
can accomplish the same goal in other ways. The strategy you use depends on the architecture of your 
app as well as personal preference. From the user’s point of view, so long as the appropriate commands 
are available at the right time, it doesn’t really matter how the app gets them there! 

Thinking through your approach is especially important when dealing with snapped view, because 
the recommendation is that you have ten commands or fewer so that the app bar fits on one or two 
rows. This means that you will want to think through how to adjust the app bar for different view states, 
perhaps combining multiple commands into a popup menu on a single button. 

One approach is to have each page in the app declare and handle its own app bar, which includes 
pages that create app bars on the fly within their ready methods. This makes the relationship between 
the page content and the app bar very clear and local to the page. The downside is that common 
commands—those that appear on more than one page—end up being declared multiple times, making 
them more difficult to maintain and certainly inviting small inconsistencies like ants to sugar. 
Nevertheless, if you have very distinct content in your various pages and few common commands, this 
approach might be the right choice. It is also necessary if your app uses multiple top-level pages rather 
than one page with page controls, as we discussed in Chapter 3, “App Anatomy and Page Navigation,” 
because each top-level HTML page has to declare its own app bar anyway. 

For apps using page controls, another approach is to declare a single app bar in the top-level page 
and set its commands property within each page control’s ready method. The drawback here is that 
because commands is a write-only property, you can’t declare your common commands in HTML and 

285



append your page-specific commands later on, unless you go through the trouble of creating each 
individual AppBarCommand child element within each ready method. This kind of code is both tedious to 
write and to maintain. 

Fortunately, there is a third approach that allows you to define a single app bar in your top-level 
page that contains all of your commands, for all of your pages, and then selectively show certain sets of 
those commands within each page’s ready method. This is the purpose of the app bar’s showCommands, 
hideCommands, and showOnlyCommands methods. 

All three of these methods accept an array of commands, which can be either AppBarCommand objects 
or command id’s. showCommands makes those commands visible and can be called multiple times with 
different sets for a cumulative result. On the opposite side, hideCommands hides the specified commands 
in the app bar, again with cumulative effects. The basic usage of these methods is demonstrated in 
Scenario 4 of the sample. 

showOnlyCommands then combines the two, making specific commands visible while hiding all others. 
If you declare an app bar with all your commands, you can use showOnlyCommands within each page’s 
ready method to quickly and easily adjust what’s visible. The trick is obtaining the appropriate array to 
pass to the method. You can, of course, hard-code commands into specific arrays, as Scenario 4 of the 
sample does for showCommands and hideCommands. However, if you’re thinking that this is A Classic Bad 
Idea, you’re thinking like I’m thinking! Such arrays mean that any changes you make to app bar must 
happen in both HTML and JavaScript file, meaning that anyone having to maintain your code in the 
future will surely curse your name! 

A better path to happiness and long life is thus to programmatically obtain the necessary arrays from 
the DOM, using the extraClass property on each command to effectively define command sets. This 
enables you to call querySelectorAll to retrieve those commands that belong to a particular set. 

Consider the following app bar definition, where for the sake of brevity I’ve omitted properties like 
label, icon, and section, as well as any other styling classes: 

<div id="appbar" data-win-control="WinJS.UI.AppBar" data-win-options="{ 
   commands:[ 
        {id:'home', extraClass: 'menuView gameView scoreView'}, 
        {id:'play', extraClass: 'menuView gameView scoreView'}, 
        {id:'rules', extraClass: 'menuView gameView scoreView'}, 
        {id:'scores', extraClass: 'menuView gameView scoreView'}, 
        {id:'newgame', extraClass: 'gameView gameSnapView'}, 
        {id:'resetgame', extraClass: 'gameView gameSnapView'}, 
        {id:'loadgame', extraClass: 'gameView gameSnapView'}, 
        {id:'savegame', extraClass: 'gameView gameSnapView'}, 
        {id:'hint', extraClass: 'gameView gameSnapView'}, 
        {id:'timer', extraClass: 'gameView gameSnapView'}, 
        {id:'pause', extraClass: 'gameView gameSnapView'}, 
        {id:'home2', extraClass: 'gameSnapView'}, 
        {id:'replaygame', extraClass: 'scoreView'}, 
        {id:'resetscores', extraClass: 'scoreView'} 
    ]}"> 
</div> 

286



In the extraClass properties we’ve defined four distinct sets: menuView, gameView, gameSnapView, 
and scoreView. With these in place, a simple call to querySelectorAll provides exactly the array we 
need for showOnlyCommands. A generic function like the following can then be used from within each 
page’s ready method (or elsewhere) to activate commands for a particular view: 

function updateAppBar(view) { 
    var appbar = document.getElementById("appbar").winControl; 
    var commands = appbar.element.querySelectorAll(view); 
    appbar.showOnlyCommands(commands); 
} 

With this approach, credit for which belongs to my colleague Jesse McGatha, the app bar is wholly 
defined in a single location, making it very easy to manage and maintain. 

App Bar Styling 
The extraClass property for commands can, of course, be used for styling purposes as well as managing 
command sets. It’s very simple: whatever classes you specify in extraClass are added to the 
AppBarCommand controls created for the app bar. 

There are also seven WinJS style classes utilized by the app bar, as described in the following table, 
where the first two apply to the app bar as a whole and the other five to the individual commands: 

CSS class (app bar) Description 
win-appbar Styles the app bar container; typically this style is used as a root for more 

specific selectors. 
win-commandlayout Styles the app bar commands layout; apps generally don’t modify this style at 

all. 
CSS class (commands) Description 
win-command Styles the entire AppBarCommand. 
win-commandicon Styles the icon box for the AppBarCommand. 
win-commandimage Styles the image for the AppBarCommand. 
win-commandring Styles the icon ring for the AppBarCommand. 
win-label Styles the label for the AppBarCommand. 

Hint To help yourself styling an app bar in Blend, make it sticky or add a call to show in your page’s 
ready method or your app’s activated event. This makes sure that the app bar is visible and navigable 
in Blend; it can otherwise be difficult to get the app bar to show within the tool. 

Generally speaking, you don’t need to override the win-appbar or win-commandlayout styles directly; 
instead, you should create selectors for a custom class related to these and then style the particular 
pieces you need. This can include pseudo-selectors like button:hover, button:active, and so forth. 

 

 

 

287



Scenario 2 of the HTML Appbar Control sample shows many such selectors in action, in this case to 
set the background of the app bar and its commands to blue and the foreground color to green (a 
somewhat hideous combination, but demonstrative nonetheless). 

As a basis, Scenario 2 (html/custom-color.html) adds a CSS class customColor to the app bar: 

<div id="customColorAppBar" data-win-control="WinJS.UI.AppBar" class="customColor" ...> 

In css/custom-color.css it then styles selectors based on .win-appbar.customColor. The following 
rules, for instance, set the overall background color, the label text color, and the color of the circle 
around the commands for the :hover and :active states: 

.win-appbar.customColor { 
    background-color: rgb(20, 20, 90); 
} 
.win-appbar.customColor .win-label { 
    color: rgb(90, 200, 90); 
} 
.win-appbar.customColor button:hover .win-commandring,  
.win-appbar.customColor button:active .win-commandring { 
    background-color: rgba(90, 200, 90, 0.13); 
    border-color: rgb(90, 200, 90); 
} 

All of this styling, by the way, applies only to the standard command-oriented layout. If you’re using 
a custom layout, the app bar just contains whatever elements you want with whatever style classes you 
want, so you just handle styling as you would any other HTML. 

Custom Icons 
Earlier we saw that the icon property of an AppBarCommand typically comes from the Segoe UI Symbol 
font. Although this is suitable for most needs, you might want at times to use a character from a 
different font (some of us just can’t get away from Wingdings!) or to provide custom graphics. The app 
bar supports both. 

To use a different font for the whole app bar, simply add a class to the app bar and create a rule 
based on win-appbar: 

win-appbar.customFont { 
    font-family: "Wingdings"; 
} 

To change the font of a specific command button, add a class to its extraClass property (such as 
customButtonFont) and create a rule with the following selector (as used in Scenario 1 of the modified 
sample): 

button.customButtonFont .win-commandimage { 
    font-family: "Wingdings"; 
} 

 

288



To provide graphics of your own, do the following for a 100% resolution scale: 

• Create a 160x80 pixel png sprite image with a transparent background, saving the file with the 
.scale-100 suffix in the filename. 

• This sprite is divided into two rows of four columns—that is, 40x40 pixel cells. The top row is for 
the light styling theme, and the bottom is for the dark theme. 

• Each row has four icons for the following button states, in this order from left to right: default 
(rest), hover, pressed (active), and disabled. 

• Each image is centered in its respective 40x40 cell, but remember that a ring will be drawn 
around the icon, so generally keep the image in the 20–30 pixel range vertically and horizontally. 
It can be wider or taller in the middle areas, of course, where the ring is widest. 

For other resolution scales, multiple the sizes by 1.4 (140%) and 1.8 (180%) and use the .scale-140 
and .scale-180 suffixes in the image filename. 

To use the custom icon, point the command’s icon property to the base image URI (without the 
.scale-1x0 suffixes)—for instance, icon: 'url(images/icon.png)'. 

Scenario 3 of the HTML Appbar Control sample demonstrates custom icon graphics for an Accept 
button: 

 
The icon comes from a file called accept.png, which appears something like this—I’ve adjusted the 

brightness and contrast and added a border so that you can see each cell clearly: 

 
The declaration for the app bar button then appears as follows (some properties omitted for brevity): 

<button data-win-control="WinJS.UI.AppBarCommand"  
    data-win-options="{id:'cmdAccept', label:'Accept', icon:'url(images/accept.png)' }"> 

Note that although the sample doesn’t have variations of the icon for resolution scales, it does 
provide variants for high contrast themes, an important accessibility consideration that we’ll come back 
to in Chapter 17. For this reason, the button element includes style="-ms-high-contrast-adjust:none" 
to override automatic adjustments for high contrast. 

289



Command Menus 
The next aspect of an app bar we need to explore in a little more depth are those commands whose 
type property is set to flyout. In this case the command’s flyout property must identify a 
WinJS.UI.Flyout object or a WinJS.UI.Menu control (which is a flyout). As noted before, flyout or popup 
menus like this are used when there are too many related commands cluttering up the basic app bar, or 
when you need other types of controls that aren’t quite appropriate on the app bar itself. It’s said, 
though, that if you’re tempted to use a button labeled “More”, “Advanced”, or “Other Stuff” because 
you can’t figure out how to organize the commands otherwise, it’s a good sign that the app itself is too 
complex! Seek ways to simplify the app’s purpose so that the app bar doesn’t just become a repository 
for randomness. 

We’ll be covering flyouts more fully a little later in this chapter, but let’s see how to use one in an app 
bar, as demonstrated in Scenario 6 of the HTML flyout control sample (not the app bar sample, mind 
you!): 

 
In html/appbar-flyout.html of this sample we see the app bar button declared as follows: 

<button data-win-control="WinJS.UI.AppBarCommand"  
    data-win-options="{id:'respondButton', label:'Respond', icon:'edit', type:'flyout',  
    flyout:'respondFlyout'}"> 

The respondFlyout element identified here is defined earlier in html/appbar-flyout.html; note that 
such an element must be declared prior to the app bar to make sure it’s instantiated before the app bar 
is created: 

<div id="respondFlyout" data-win-control="WinJS.UI.Menu"> 
    <button data-win-control="WinJS.UI.MenuCommand" 
        data-win-options="{id:'alwaysSaveMenuItem', 
            label:'Always save drafts', type:'toggle', selected:'true'}"> 
    </button> 
    <hr data-win-control="WinJS.UI.MenuCommand"  
        data-win-options="{id:'separator', type:'separator'}" /> 
    <button data-win-control="WinJS.UI.MenuCommand" 
        data-win-options="{id:'replyMenuItem', label:'Reply'}"> 
    </button> 
    <button data-win-control="WinJS.UI.MenuCommand" 
        data-win-options="{id:'replyAllMenuItem', label:'Reply All'}"> 

290

http://code.msdn.microsoft.com/windowsapps/Flyout-sample-258757b3


    </button> 
    <button data-win-control="WinJS.UI.MenuCommand" 
       data-win-options="{id:'forwardMenuItem', label:'Forward'}"> 
    </button> 
</div> 

It should come as no surprise by now that the menu is just another WinJS control, WinJS.UI.Menu, 
where its child elements define the menu’s contents. As all these elements are, once again, just elements 
in the DOM; their click events are wired up in js/appbar-flyout.js with the ever-present 
addEventListener. (Again, the sample uses document.getElementById to obtain the elements in order to 
call addEventListener; it would be more efficient to use the app bar’s getCommandById method instead 
as in the modified app bar sample.) 

Each menu item, as you can see, is a WinJS.UI.MenuCommand object, and we’ll come back to the details 
later—for the time being, you can see that those items have an id, a label, and a type, very similar to 
WinJS.UI.AppBarCommand objects. 

That’s pretty much all there is to it—the one added bit is that when a menu item is selected, you’ll 
want to dismiss the menu and perhaps also the app bar (if it’s not sticky). This is shown in the sample 
within js/appbar-flyout.js in a function called hideFlyoutAndAppBar: 

function hideFlyoutAndAppBar() { 
    document.getElementById("respondFlyout").winControl.hide(); 
    document.getElementById("appBar").winControl.hide(); 
} 

Custom App Bars and Navigation Bars 
All this time we’ve been looking at the standard commands layout of the app bar, which is of course the 
simplest way to use the control. There will be times, however, when the standard commands layout isn’t 
sufficient. Perhaps you want to place more interesting controls on the app bar, especially custom 
controls (like a color selector). For this you set the app bar’s layout property to 'custom' and place 
whatever HTML you want within the app bar control, styling it with CSS, and wiring up whatever events 
you need in JavaScript. 

A custom layout is also typically used to implement a top navigation bar—that is, the app bar with 
placement set to 'top'—because command buttons aren’t usually the UI you want. We saw an example 
earlier in the Weather app, and the navigation bar of Internet Explorer provides another: 

 
 

 

291



Our good friend the HTML AppBar control sample again delivers an example of custom layout, in 
Scenario 5. In html/custom-layout.html we see the markup for a custom top app bar containing 
arbitrary elements: 

<div id="customLayoutAppBar" data-win-control="WinJS.UI.AppBar" aria-label="Navigation Bar" 
    data-win-options="{layout:'custom', placement:'top'}"> 
    <header aria-label="Navigation bar" role="banner"> 
        <button id="cmdBack" class="win-backbutton" aria-label="Back"> 
        </button> 
        <div class="titleArea"> 
            <h1 class="win-type-xx-large" tabindex="0"> 
                Page Title</h1> 
        </div> 
    </header> 
</div> 

Admittedly, the result of this example is a little odd—it creates a navigation bar with a typical page 
header with a back button where each control might have a focus rectangle. I don’t recommend 
following this design! 

 
As mentioned in the “Tips and Tricks” section in Chapter 4 (under “Control Styling”), you can 

suppress the focus rectangle with a <selector>:focus { outline: none; } rule in CSS. To remove it from 
the back button, for example, you can add the style to the following rule in css/custom-layout.css: 

.win-appbar header .win-backbutton { 
    margin-left: 39px; 
    margin-top: 59px; 
    outline: none; 
} 

Notice again how this rule and the others in css/custom-layout.css all use the win-appbar class as a 
base selector but only because it’s styling other generic classes like header and win-backbutton. If you 
use specific classes in your app bar or navigation bar, you really don’t need the win-appbar selector at 
all. 

To implement a navigation bar like that of Internet Explorer or the Weather app, you can certainly 
use a ListView control along with item templates or custom item rendering functions, where you’d wire 
up itemInvoked events to WinJS.Navigation.navigate and so forth. Again, there’s nothing particularly 
special or complicated here: with a custom layout, the app bar is really just a flyout container for other 
HTML elements. 

292

http://code.msdn.microsoft.com/windowsapps/App-bar-sample-a57eeae9


Flyouts and Menus 

Going back to our earlier discussion about where to place commands, a flyout control— WinJS.UI.- 
Flyout—is used for confirmations, collecting information, and otherwise answering questions in 
response to a user action. The menu control—WinJS.UI.Menu—is then a particular kind of flyout that 
contains WinJS.UI.MenuCommand controls rather than arbitrary HTML. In fact, WinJS.UI.Menu is directly 
derived from WinJS.UI.Flyout using WinJS.Class.define, so they share much in common. As flyouts, 
they also share some feature in common with the app bar. (Both the app bar and the flyout classes are 
themselves derived from a WinJS.UI._Overlay base class that is internal to WinJS.) 

Tip In addition to the WinJS.UI.Flyout object that you’ll employ from an app, there is also a system 
flyout that appears in response to some API calls, such as creating or removing a secondary tile (see 
Chapter 13, specifically Figure 13-5 and the “Secondary Tiles” section). Although visually the same, the 
system flyout will trigger a blur event to the app whereas the WinJS flyout, being part of the app, does 
not. As a result, a system flyout will cause a non-sticky app bar to be dismissed. To prevent this, it’s 
necessary to set the appbar’s sticky property to true before calling APIs with system flyouts. This is 
demonstrated in Scenario 7 of the Secondary tiles sample. 

Before we look at the details, let’s see a number of visual examples from the HTML flyout control 
sample in which we already saw a popup menu on an app bar command. The WinJS.UI.Flyout controls 
used in Scenarios 1–4 are shown in Figure 7-1 (on the next page). Notice the variance of content in the 
flyout itself and how the flyout is always positioned near the control that invoked it, such as the Buy, 
Login, and Format output text buttons and the Lorem ipsum hyperlink text. These examples illustrate 
that a flyout can contain a simple message with a button (Scenario 1, for warnings and confirmations), 
can contain fields for entering information or changing settings (Scenarios 2 and 3), and can have a title 
(Scenario 4). Scenario 5, for its part, contains the example of a popup header menu with WinJS.UI.Menu 
that we’ll see a little later. 

There are two key characteristics of flyout controls, including menus. One is that flyouts can be 
dismissed programmatically, like an app bar, when an appropriate control within the flyout is invoked. 
This is the case with the Complete Order button of Scenario 1 and the Login button of Scenario 2. 

The second characteristic, also shared with the app bar, is the light dismiss behavior: clicking or 
tapping outside the control dismisses it, as does the ESC key, which means light dismiss is the equivalent 
of pressing a Cancel or Close button in a traditional dialog box. The benefit here is that we don’t need a 
visible button for this purpose, which helps simplify the UI. At the same time, notice in Scenario 3 of 
Figure 7-1 that there is no OK button or other control to confirm changes you might make in the flyout. 
With this particular design, changes are immediately applied such that dismissing the flyout does not 
reverse or cancel them. If you don’t want that kind of behavior, you can place something like an Apply 
button on the flyout and not make changes until that button is pressed. In this case, dismissing the 
flyout would cancel the changes. 

293

http://code.msdn.microsoft.com/windowsapps/Secondary-Tiles-Sample-edf2a178
http://code.msdn.microsoft.com/windowsapps/Flyout-sample-258757b3
http://code.msdn.microsoft.com/windowsapps/Flyout-sample-258757b3


 
Figure 7-1 Examples of flyout controls from the HTML flyout control sample. 

I’ll again encourage you to read the Guidelines and checklist for Flyouts topic that goes into detail 
about how and when to use the different designs that are possible with this control. It also outlines 
when not to use the control: for example, to surface errors not related to user action (use a message 
dialog instead), for primary commands (use the app bar), for text selection context menus, and for UI 
that is part of a workflow and should be directly on the app canvas. These guidelines also suggest 
keeping a flyout small and focused (omitting unnecessary controls) and making sure a flyout is 
positioned close to the object that invoked it. Let’s now see how that works in the code. 

Note In addition to apps that display a WinJS.UI.Flyout on their own, some system APIs (such as that 
to create a secondary tile) create a system flyout. In these cases, the app will receive a blur event, which 
will cause any light dismiss app bars to be dismissed. To prevent this, set the app bar to sticky when 
using those APIs. 

WinJS.UI.Flyout Properties, Methods, and Events 
Most of the properties, methods, and events of the WinJS.UI.Flyout control are exactly the same as 
we’ve already seen for the app bar. The show and hide methods control its visibility, a hidden property 
indicates its visible state, and same the beforeshow, aftershow, beforehide, and afterhide events fire as 
appropriate. The afterhide event is typically used to detect dismissal of the flyout. 

Like the app bar, the flyout also has a placement property, but it has different values that are only 
meaningful in the context of the flyout’s alignment and anchor properties. In fact, all three properties 
are optional parameters to the show method because they determine where, exactly, the flyout appears 
on the screen; the default placement and alignment can also be set on the control itself because these 

294

http://msdn.microsoft.com/library/windows/apps/hh465341.aspx
http://msdn.microsoft.com/library/windows/apps/br211726.aspx


are optional with show. (Note also that if you don’t specify an anchor in the show method; the anchor 
property must already be set on the control or show will throw an exception.) 

The anchor property identifies the control that invokes the flyout or whatever other operation might 
bring up a flyout (as for confirmation). The placement property then indicates how the flyout should 
appear in relation to the anchor: 'top', 'bottom', 'left', 'right', or 'auto' (the default). Typically, you 
use a specific placement only if you don’t want the flyout to possibly obscure important content. 
Otherwise, you run the risk of the flyout element being shrunk down to fit the available space. The 
flyout’s content will remain the same size, mind you, so it means that—ick!—you’ll get scrollbars! So, 
unless you have a really good reason and a note from your doctor, stick with 'auto' placement so that 
the control will be placed where it can be shown full size. Along these same lines, remember that in 
snapped view you have only 320 horizontal pixels to work with, meaning that flyouts you show in that 
view state should be that size or smaller. 

The alignment property, for its part, when used with a placement of 'top' or 'bottom', determines 
how the flyout aligns to the edge of the anchor: 'left', 'right', or 'center' (the default). The content 
of the flyout itself is aligned through CSS as with any other HTML. 

If you need to style the flyout control itself, you can set styles in the win-flyout class, like fonts, 
default alignments, margins, and so on. As with other WinJS style classes like this, use win-flyout as a 
basis for more specific selectors unless you really want to style every flyout in the app. Typically, in fact, 
you also exclude win-menu from the rule so that menu flyouts aren’t affected by such styling. For 
example, most of the scenarios in the HTML flyout control sample, which we’ll be looking at next, have 
rules like this: 

.win-flyout:not(.win-menu) button, 

.win-flyout:not(.win-menu) input[type="button"] { 
    margin-top: 16px; 
    margin-left: 20px; 
    float: right; 
} 

Finally, if for some reason you need to know when a flyout is loaded, listen to the DOMNodeInserted 
method on document.body: 

document.body.addEventListener("DOMNodeInserted", insertionHandler, false); 

Flyout Examples 
A flyout control is created like any other WinJS control with data-win-control and data-win-options 
attributes and processed by WinJS.UI.process/processAll. Flyouts with relatively fixed content will 
typically be declared in markup where you can use data binding on specific properties of the elements 
within the flyout. Flyouts that are very dynamic, on the other hand, can be created directly from code by 
using new WinJS.UI.Flyout(<element>, <options>), and you can certainly change its child elements at 
any time. It’s all just part of the DOM! (Am I repeating myself?) 

 

295



Like I said before (apparently I am repeating myself), a WinJS.UI.Flyout control can contain arbitrary 
HTML, styled as always with CSS. The flyout for Scenario 1 in the sample appears as follows in 
html/confirm-action.html (condensed slightly): 

<div id="confirmFlyout" data-win-control="WinJS.UI.Flyout" aria-label="{Confirm purchase flyout}"> 
    <div>Your account will be charged $252.</div> 
    <button id="confirmButton">Complete Order</button> 
</div> 

The login flyout in Scenario 2 is similar, and it even employs an HTML form to attach the Login 
button to the Enter key (html/collect-information.html): 

<div id="loginFlyout" data-win-control="WinJS.UI.Flyout" aria-label="{Login flyout}"> 
    <form onsubmit="return false;"> 
        <p> 
            <label for="username">Username <br /></label> 
            <span id="usernameError" class="error"></span> 
            <input type="text" id="username" /> 
        </p> 
        <p> 
            <label for="password">Password<br /></label> 
            <span id="passwordError" class="error"></span> 
            <input type="password" id="password" /> 
        </p> 
        <button id="submitLoginButton">Login</button> 
    </form> 
</div> 

The flyout is displayed by calling its show method. In Scenario 1, for instance, the button’s click 
event is wired to the showConfirmFlyout function (js/confirm-action.js), where the Buy button is given as 
the anchor element. Handling the Complete Order button just happens through a click handler 
attached to that element, and here we want to make sure to call hide to programmatically dismiss the 
flyout. Finally, the afterhide event is used to detect dismissal: 

var bought; 
 
var page = WinJS.UI.Pages.define("/html/confirm-action.html", { 
    ready: function (element, options) { 
        document.getElementById("buyButton").addEventListener("click", 
            showConfirmFlyout, false); 
        document.getElementById("confirmButton").addEventListener("click", 
            confirmOrder, false); 
        document.getElementById("confirmFlyout").addEventListener("afterhide", 
            onDismiss, false); 
    } 
 
function showConfirmFlyout() { 
    bought = false; 
    var buyButton = document.getElementById("buyButton"); 
    document.getElementById("confirmFlyout").winControl.show(buyButton); 
} 
 
// When the Buy button is pressed, hide the flyout since the user is done with it. 

296



function confirmOrder() { 
    bought = true; 
    document.getElementById("confirmFlyout").winControl.hide(); 
} 
 
// On dismiss of the flyout, determine if it closed because the user pressed the buy button. 
// If not, then the flyout was light dismissed. 
function onDismiss() { 
    if (!bought) { 
        // (Sample displays a dismissal message on the canvas) 
    } 
} 

Handling the login controls in Scenario 2 is pretty much the same, with some added code to make 
sure that both a username and password have been given. If not, the Login button handler displays an 
inline error and sets the focus to the appropriate input field: 

 
As the flyout of Scenario 2 is a little larger, the default placement of 'auto' on a 1366x768 display (as 

in the simulator) makes it appear below the button that invokes it. There isn’t quite enough room above 
that button. So try setting placement to 'top' in the call to show: 

function showLoginFlyout() { 
    // ... 
    document.getElementById("loginFlyout").winControl.show(loginButton, "top"); 
} 

Then you can see how the flyout gets scrollbars because the overall control element is too short: 

297



 
What was that word I used before? “Ick”? 

To move on, Scenario 3 again declares a flyout in markup, where it contains some label, select, and 
input controls. In JavaScript, though, it listens for change events on the latter and applies those new 
values to the output element on the app canvas: 

var page = WinJS.UI.Pages.define("/html/change-settings.html", { 
    ready: function (element, options) { 
        // ... 
        document.getElementById("textColor").addEventListener("change", changeColor, false); 
        document.getElementById("textSize").addEventListener("change", changeSize, false); 
        } 
    }); 
 
// Change the text color 
function changeColor() { 
    document.getElementById("outputText").style.color =  
        document.getElementById("textColor").value; 
} 
 
// Change the text size 
function changeSize() { 
    document.getElementById("outputText").style.fontSize =  
        document.getElementById("textSize").value + "pt"; 
} 

If this flyout had an Apply button rather than applying the changes immediately, its click handler 
would obtain the current selection and slider values and use them like changeColor and changeSize do. 

Finally, in Scenario 4 we see a flyout with a title, which is just a piece of larger text in the markup; the 
flyout control itself doesn’t have a separate notion of a header: 

<div id="moreInfoFlyout" data-win-control="WinJS.UI.Flyout" aria-label="{More info flyout}"> 
    <div class="win-type-x-large">Lorem Ipsum</div> 
    <div> 
        Lorem Ipsum is text used as a placeholder by designers...  
    </div> 
</div> 

 

298



The point of this last example is to show that unlike traditional desktop dialog boxes, flyouts don’t 
often need a title because they already have context within the app itself. Dialog boxes in desktop 
applications need titles because that’s what appears in task-switching UI alongside other apps. 

Hint If you find that beforeshow, aftershow, beforehide, or afterhide events triggered from a flyout 
are getting propagated to a containing app bar, which shares the same event names, include a call to 
eventArgs.stopPropagation() inside your flyout’s handler. 

Menus and Menu Commands 
What distinguishes a WinJS.UI.Menu control from a more generic WinJS.UI.Flyout is that a menu 
expects that all its child elements are WinJS.UI.MenuCommand objects, similar to how the standard 
command layout of the app bar expects AppBarCommand objects (and won’t instantiate if you declare 
something else). In fact, the menu control shares other characteristics with the app bar as well as the 
flyout, such as: 

• show and hide methods. 

• getCommandById, showCommands, hideCommands, and showOnlyCommands, along with the commands 
property, meaning that you can use the same strategies to manage commands as discussed in 
“Showing, Hiding, Enabling, and Updating Commands” in the app bar section, including 
specifying commands using a JSON array rather than discrete elements. 

• beforeshow, aftershow, beforehide, and afterhide events. 

• anchor, alignment, and placement properties. 

The menu also has two styles for its appearance—win-menu and win-command—that you use to create 
more specific selectors, as we’ve seen, for the entire menu and for the individual text commands. 

MenuCommand objects are also very similar to AppBarCommand objects. Both share many of the same 
properties: id, label, type ('button', 'toggle', 'flyout', and 'separator'), disabled, extraClass, 
flyout, hidden, onclick, and selected. Menu commands do not have icons, sections, and tooltips but 
you can see from type that menu items can be buttons (including just text items), checkable items, 
separators, and also another flyout. In the latter case, the secondary menu will replace the first rather 
than show up alongside, and to be honest, I’ve yet to see secondary menus used in a real app. Still, it’s 
supported in the control! 

We’ve already seen how to use a flyout menu from an app bar command, which is covered in 
Scenario 6 of the HTML flyout control sample (see the earlier “Command Menus” section). Another 
primary use case is to provide what looks like drop-down menu from a header element, covered 
Scenario 5. Here (see html/header-menu.html), the standard design is to place a down chevron symbol 
(&#xe099) at the end of the header: 

<header aria-label="Header content" role="banner"> 
    <button class="win-backbutton" aria-label="Back"></button> 
    <div class="titlearea win-type-ellipsis"> 

299

http://msdn.microsoft.com/library/windows/apps/hh700879.aspx


        <button class="titlecontainer"> 
            <h1> 
                <span class="pagetitle">Music</span> 
                <span class="chevron win-type-x-large">&#xe099</span> 
            </h1> 
        </button> 
    </div> 
</header> 

Notice that the whole header is wrapped in a button, so its click handler can display the menu with 
show: 

document.querySelector(".titlearea").addEventListener("click", showHeaderMenu, false); 
 
function showHeaderMenu() { 
    var title = document.querySelector("header .titlearea"); 
    var menu = document.getElementById("headerMenu").winControl; 
    menu.anchor = title; 
    menu.placement = "bottom"; 
    menu.alignment = "left"; 
    menu.show(); 
} 

The flyout (defined as headerMenu in html/header-menu.html) appears when you click anywhere on 
the header (not just the chevron, as that’s just a character in the header text): 

 
The individual menu commands are just button elements themselves, so you can attach click 

handlers to them as you need. As with the app bar, it’s best to use the menu control’s getCommandById to 
locate these elements because it’s much more efficient than document.getElementById (as the SDK 
sample uses…sigh). 

To see a secondary menu in action, try adding the following secondaryMenu element in 
html/header-menu.html before the headerMenu element and adding a button within headerMenu 
whose flyout property refers to secondaryMenu: 

<div id="secondaryMenu" data-win-control="WinJS.UI.Menu"> 
    <button data-win-control="WinJS.UI.MenuCommand"  
        data-win-options="{id:'command1', label:'Command 1'}"></button> 
    <button data-win-control="WinJS.UI.MenuCommand" 
        data-win-options="{id:'command2', label:'Command 2'}"></button> 
    <button data-win-control="WinJS.UI.MenuCommand" 
        data-win-options="{id:'command3', label:'Command 3'}"></button> 
</div> 

300



 
<div id="headerMenu" data-win-control="WinJS.UI.Menu"> 
    <!-- ... --> 
    <button data-win-control="WinJS.UI.MenuCommand"  
        data-win-options="{id:'showFlyout', label:'Show secondary menu',  
            type:'flyout', flyout:'secondaryMenu'}"> 
    </button> 
</div> 

Also, go into css/header-menu.css and adjust the width style of #headerMenu to 200px. With these 
changes, the first menu will appear as follows where the color change in the header is the hover effect: 

 
When you select Show secondary menu, the first menu will be dismissed and the secondary one will 

appear in its place: 

 
Another example of a header flyout menu can be found in the Adaptive layout with CSS sample we 

saw in Chapter 6, “Layout.” It’s implemented the same way we see above, with the added detail that it 
actually changes the page contents in response to a selection. 

Context Menus 
Besides the flyout menu that we’ve seen so far, there are also context menus as described in Guidelines 
and checklist for context menus. These are specifically used for commands that are directly relevant to a 
selection of some kind, like clipboard commands for text, and are invoked with a right mouse click on 
that selection, a tap, or the context menu key on the keyboard. Text and hyperlink controls already 
provide these by default. Context menus are also good for providing commands on objects that cannot 
be selected (like parts of an instant messaging conversation), as app bar commands can’t be 
context-ually sensitive to such items. They’re also recommended for actions that cannot be 
accomplished with a direct interaction of some kind. However, don’t use them on page 
backgrounds—that’s what the app bar is for because the app bar will automatically appear with a 
right-click gesture. 

301

http://code.msdn.microsoft.com/windowsapps/Adaptive-layout-with-sample-062e7fe2
http://msdn.microsoft.com/library/windows/apps/hh465308.aspx
http://msdn.microsoft.com/library/windows/apps/hh465308.aspx


Hint If you process the right mouse button click event for an element, be aware that the default 
behavior to show the app bar will be suppressed over that element. Therefore, use the right-click event 
judiciously, because users will become accustomed to right-clicking around the app to bring up the app 
bar. Note also that you can programmatically invoke the app bar yourself using its show method. 

The Context menu sample gives us some context here—I know, it’s a bad pun! In all cases, you need 
only listen to the HTML contextmenu event on the appropriate element; you don’t need to worry about 
mouse, touch, and keyboard separately. Scenario 1 of the sample, for instance, has a nonselectable 
attachment element on which it listens for the event (html/scenario1.html): 

document.getElementById("attachment").addEventListener("contextmenu", 
    attachmentHandler, false); 

In the event handler, you then create a Windows.UI.Popups.PopupMenu object (which comes from 
WinRT, not WinJS!), populate it with Windows.UI.Popups.UICommand objects (that contain an item label 
and click handler) or UICommandSeparator objects, and then call the menu’s showAsync method 
(js/scenario1.js): 

function attachmentHandler(e) { 
    var menu = new Windows.UI.Popups.PopupMenu(); 
    menu.commands.append(new Windows.UI.Popups.UICommand("Open with", onOpenWith)); 
    menu.commands.append(new Windows.UI.Popups.UICommand("Save attachment", 
        onSaveAttachment)); 
 
    menu.showAsync({ x: e.clientX, y: e.clientY }).done(function (invokedCommand) { 
        if (invokedCommand === null) { 
            // The command is null if no command was invoked. 
        } 
    }); 
} 

Notice that the results of the showAsync method40 is the UICommand object that was invoked; you can 
examine its id property to take further action. Also, the parameter you give to showAsync is a 
Windows.Foundation.Point object that indicates where the menu should appear relative to the mouse 
pointer or the touch point. The menu is placed above and centered on this point. 

The PopupMenu object also supports a method called showForSelectionAsync, whose first argument is 
a Windows.Foundation.Rect that describes the applicable selection. Again, the menu is placed above 
and centered on this rectangle. This is demonstrated in Scenario 2 of the sample in js/scenario2.js: 

 

 

40 The sample actually calls then and not done here. If you’re wondering why such consistencies exist, it’s because the done 
method was introduced mid-way during the production of Windows 8 when it became clear that we needed a better 
mechanism for surfacing exceptions within chained promises. As a result, numerous SDK samples and code in the 
documentation still use then instead of done when handling the last promise in a chain. It still works; it’s just that 
exceptions in the chain will be swallowed, thus hiding possible errors. 

302

http://code.msdn.microsoft.com/windowsapps/Context-menu-sample-40840351
http://msdn.microsoft.com/library/windows/apps/windows.ui.popups.popupmenu.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.popups.uicommand.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.popups.uicommandseparator.aspx
http://msdn.microsoft.com/library/windows/apps/windows.foundation.point.aspx
http://msdn.microsoft.com/library/windows/apps/windows.foundation.rect.aspx


//In the contextmenu handler 
menu.showForSelectionAsync(getSelectionRect()).then(function (invokedCommand) { //... } 
//... 
 
function getSelectionRect() { 
    var selectionRect = document.selection.createRange().getBoundingClientRect(); 
 
    var rect = { 
        x: getClientCoordinates(selectionRect.left), 
        y: getClientCoordinates(selectionRect.top), 
        width: getClientCoordinates(selectionRect.width), 
        height: getClientCoordinates(selectionRect.height) 
    }; 
    return rect; 
}; 

This scenario also demonstrates that you can use a contextmenu event handler on text to override the 
default commands that such controls otherwise provide. 

A final note for context menus: because these are created with WinRT APIs and are not WinJS 
controls, the menus don’t exist in the DOM and are not DOM-aware, which explains the use of other 
WinRT constructs like Point and Rect. Such is also true of message dialogs, which is our final subject for 
this chapter. 

Message Dialogs 

Our last piece of commanding UI for this chapter is the message dialog. Like the context menu, this 
flyout element comes not from WinJS but from WinRT via the Windows.UI.Popups.MessageDialog API. 
Again, this means that the message dialog simply appears on top of the current page and doesn’t 
participate in the DOM. Message dialogs automatically dim the app’s current page and block input 
events from the app until the user responds to the dialog. 

The Guidelines and checklist for message dialogs topic explains the use cases for this UI: 

• To display urgent information that the user must acknowledge to continue, especially conditions 
that are not related to a user command of some kind. 

• Errors that apply to the overall app, as opposed to a workflow where the error is better surfaced 
inline on the app canvas. Loss of network connectivity is a good example of this. 

• Questions that require user input and cannot be light dismissed like a flyout. That is, use a 
message dialog to block progress when user input is essential to continue. 

The interface for message dialogs is very straightforward. You create the dialog object with a new 
Windows.UI.Popups.MessageDialog. The constructor accepts a required string with the message content 
and an optional second string containing a title. The dialog also has content and title properties that 
you can use independently. In all cases the strings support only plain text. 

303

http://msdn.microsoft.com/library/windows/apps/windows.ui.popups.messagedialog.aspx
http://msdn.microsoft.com/library/windows/apps/hh738363.aspx


You then configure the dialog through its commands, options, defaultCommandIndex (the command 
tied to the Enter key), and cancelCommandIndex (the command tied to the ESC key). 

The options come from the Windows.UI.Popups.MessageDialogOptions enumeration where there are 
only two members: none (the default, for no special behavior) and acceptUserInputAfterDelay (which 
causes the message dialog to ignore user input for a short time to prevent possible clickjacking; this 
exists primarily for Internet browsers loading arbitrary web content and isn’t typically needed for most 
apps). 

The commands property then contains up to three Windows.UI.Popups.UICommand objects, the same 
ones used in context menus. Each command again contains an id, a label, and an invoked property to 
which you assign the handler for the command. Note that the defaultCommandIndex and 
cancelCommandIndex properties work on the indices of the commands array, not the id properties of those 
commands. Also, if you don’t add any commands of your own, the message dialog will default to a 
single Close command. 

Finally, once the dialog is configured, you display it with a call to its showAsync method. Like the 
context menu, the result is the selected UICommand object that’s given to the completed handler you 
provide to the promise’s done method. Typically, you don’t need to obtain that result because the 
selected command will have triggered its associated invoked handler where you process those 
commands. 

Note If the Search, Share, Devices, or Settings charm is invoked while a message dialog is active, or if 
an app is activated to service a contract, a message dialog will be dismissed without any command 
being selected. The completed handler for showAsync will be called, however, with the result set to the 
default command. Be aware of his if you’re using the completed handler to process such commands. 

The Message dialog sample—one of the simplest samples in the whole Windows 
SDK!—demonstrates various uses of this API. Scenario 1 displays a message dialog with a title and two 
command buttons, setting the second command (index 1) as the default. This appears as follows: 

 
Scenario 2 shows the default Close command with a message and no title: 

 
 

304

http://msdn.microsoft.com/library/windows/apps/windows.ui.popups.uicommand.aspx
http://code.msdn.microsoft.com/windowsapps/Message-dialog-sample-00c928f5


Scenario 3 is identical to Scenario 1 but uses the completed handler of the showAsync().done 
method to process the selected command. You can use this to see the effect of invoking a charm while 
the dialog is shown. 

Finally, Scenario 4 assigns the first command to be the default and marks the second as the cancel 
command, so the message is dismissed with that command or the ESC key: 

 
And that’s really all there is to it! 

Improving Error Handling in Here My Am! 

To complete this chapter and bring together much of what we’ve discussed, let’s make some changes to 
Here My Am!, last seen in Chapter 3, to improve its handling of various error conditions. As it stands 
right now, Here My Am! doesn’t behave very well in a few areas: 

• If the Bing Maps control script fails to load from a remote source, the code in html/map.html just 
throws an exception and the app terminates. 

• If we’re using the app on a mobile device and have changed our location, there isn’t a way to 
refresh the location on the map other than dragging the pin; that is, the geolocation API is used 
only on startup. 

• When WinRT’s geolocation API is trying to obtain a location without a network connection, a 
several-second timeout period occurs, during which the user doesn’t have any idea what’s 
happening. 

• If our attempt to use WinRT’s geolocation API fails, typically due to timeout or network 
connectivity problems, but also possibly due to a denial of user consent, there isn’t any way to 
try again. 

The Here My Am! (7) app for this chapter addresses these concerns. First, I’ve added an error image 
to the html/map.html file (the image is in html/maperror.png) so that a failure to load the Bing maps 
script will display a message in place of the map (the display style of none is removed in that case): 

<img id="errorImage" style="display: none; width: 100%; height: 100%;" src="maperror.png" /> 

I’ve also added a click handler to the image that reloads the iframe contents with document.-
location.reload(true). With this in place, I can remove the exceptions that were previously raised 
when the map couldn’t be created, preventing the app from being terminated. Here’s how it looks if the 
map can’t be created: 

305



 
To test this, you need to disconnect from the Internet, uninstall the app (to clear any cached map 

script; otherwise, it will continue to load!), and run the app again. It should hit the error case at the 
beginning of the init method in html/map.html, which shows the error image by removing the default 
display: none style and wiring up the click handler. Then reconnect the Internet and click the image, 
and the map should reload, but if there are continued issues the error message will again appear. 

The second problem—adding the ability to refresh our location—is easily done with an app bar. I’ve 
added such a control to default.html with one command: 

<div id="appbar" data-win-control="WinJS.UI.AppBar" data-win-options=""> 
    <button data-win-control="WinJS.UI.AppBarCommand" 
        data-win-options="{id:'cmdRefreshLocation', label:'Refresh location', 
            icon:'globe', section:'global', tooltip:'Refresh your location'}"> 
    </button> 
</div> 

This command is wired up within pages/home/home.js in the page control’s ready method: 

var appbar = document.getElementById("appbar").winControl; 
appbar.getCommandById("cmdRefreshLocation").addEventListener("click", this.tryRefresh.bind(this)); 

where the tryRefresh handler, also in the page control, hides the app bar and calls another new 
method, refreshPosition, where I moved the code that obtains the geolocation and updates the map: 

tryRefresh: function () { 
    //Hide the app bar and retry 
    var appbar = document.getElementById("appbar").winControl.hide(); 
    this.refreshPosition(); 
}, 

I also needed to tweak the pinLocation function within html/map.html. Without a location refresh 
command, this function was only ever called once on app startup. Since it can now be called multiple 
times, we need to remove any existing pin on the map before adding one for the new location. This is 
done with a call to map.entities.pop prior to the existing call to map.entities.push that pins the new 
location. 

306



The app bar now appears as follows, and we can refresh the location as needed. (If you aren’t on a 
mobile device in your car, try dragging the first pin to another location and then refreshing to see the 
pin return to your current location.) 

 
For the third problem—letting the user know that geolocation is trying to happen—we can show a 

small flyout message just before attempting to call the WinRT geolocator’s getGeopositionAsync call. 
The flyout is defined in pages/home/home.html (our page control) to be centered along the bottom of 
the map area itself: 

<div id="retryFlyout" data-win-control="WinJS.UI.Flyout" aria-label="{Trying geolocation}" 
    data-win-options="{anchor: 'map', placement: 'bottom', alignment: 'center'}"> 
    <div class="win-type-large">Attempting to obtain geolocation...</div> 
</div> 

The refreshPosition function that we just added to pages/home/home.js makes a great place to 
display the flyout just before calling getGeopositionAsync: 

refreshPosition: function () { 
    document.getElementById("retryFlyout").winControl.show(); 
    var gl = new Windows.Devices.Geolocation.Geolocator(); 
 
    gl.getGeopositionAsync().done(function (position) { 
        //... 
 
        //Always hide the flyout 
        document.getElementById("retryFlyout").winControl.hide(); 
 
        //... 
    }, function (error) { 
        //... 
 
        //Always hide the flyout 
        document.getElementById("retryFlyout").winControl.hide(); 
    }); 
}, 

Note that we want to hide the flyout inside the completed and error handlers so that the message 
stays visible while the async operation is happening. If we placed a single call to hide outside these 
handlers, the message would flash only very briefly before being dismissed, which isn’t what we want. As 
we’ve written it, the user will have enough time to see the notice along the bottom of the map (subject 
to light dismiss): 

 

307



 
The last piece is to notify the user when obtaining geolocation fails. We could do this with another 

flyout with a Retry button, or with an inline message as below. We would not use a message dialog in 
this case, however, because the message could appear in response to a user-initiated refresh action. A 
message dialog might be allowable on startup, but with an inline message combined with the flyout we 
already added we have all the bases covered. 

For an inline message, I’ve added a floating div that’s positioned about a third of the way down on 
top of the map. It’s defined in pages/home/home.html as follows, as a sibling of the map iframe: 

<div id="locationSection" class="subsection" aria-label="Location section"> 
    <h2 class="group-title" role="heading">Location</h2>             
    <iframe id="map" class="graphic" src="ms-appx-web:///html/map.html" 
        aria-label="Map"></iframe> 
    <div id="floatingError" class="win-type-x-large">Unable to obtain geolocation;<br /> 
        use the app bar to try again.</div> 
</div> 

The styles for the #floatingError rule in pages/home/home.css provide for its placement and 
appearance: 

#floatingError { 
    display: none; 
    float: left; 
    -ms-grid-column: 1; 
    -ms-grid-row: 2; 
    -ms-grid-row-align: start; 
    width: 100%; 
    text-align: center; 
    background-color: rgba(128, 0, 0, 0.5); 
    margin-top: 20%; 
} 

Because this is placed in the same grid cell as the map with float style, it appears as a nice overlay: 

 

308



This message will appear if the user denies geolocation consent at startup or allows it but later uses 
the Settings charm to deny the capability. You can use these variations to test the appearance of the 
message. It’s also possible, if you run the app the first time without network connectivity, for this 
message to appear on top of the map error image; this is why I’ve positioned the geolocation error 
toward the top so that it doesn’t obscure the message in the image. But if you’ve successfully run the 
app once and then lose connectivity, the map should still get created because the Bing maps script will 
have been cached. 

With display: none in the CSS, the error message is initially hidden, as it should be. If we get to the 
error handler for getGeolocationAsync, we set style.display to block, which reveals the element: 

document.getElementById("floatingError").style.display = "block"; 

We again hide the message within the tryRefresh function, which is again invoked from the app bar 
command, so that the message stays hidden unless the error persists: 

tryRefresh: function () { 
    document.getElementById("floatingError").style.display = "none"; 
    //... 
}, 

One more piece we could add is a message dialog if we detect that we lost connectivity and thus 
couldn’t update our position. As we’ll see in Chapter 14, this could be done with the Windows.-
Networking.NetworkInformation.onnetworkstatuschanged event. This is a case where a message 
dialog is appropriate because such a condition does not arise from direct user action. 

Also, it’s worth noting that if we used the Bing Maps SDK control in this app, the script we’re 
normally loading from a remote source would instead exist in our app package, thereby eliminating the 
first error case altogether. We’ll make this change in the next revision of the app. 

What We’ve Just Learned 

• In Windows Store app design, commands that are essential to a workflow should appear on the 
app canvas or on a popup menu from an element like a header. Those that can be placed on the 
Setting charm should also go there; doing so greatly simplifies the overall app implementation. 
Those commands that remain typically appear on an app bar or navigation bar, which can 
contain flyout menus for some commands. Context menus (Windows.UI.Popups.PopupMenu) can 
also be used for specific commands on content. 

• The WinJS.UI.Flyout control is used for confirmations and other questions in response to user 
action; they can also just display a message, collect additional information, or provide controls to 
change settings for some part of the page. Flyouts are light-dismissed, meaning that clicking 
outside the control or pressing ESC will dismiss it, which is the equivalent of canceling the 
question. 

309

http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkinformation.networkstatuschanged.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkinformation.networkstatuschanged.aspx


• Message dialogs (Windows.UI.Popups.MessageDialog) are used to ask questions that the user 
must answer or acknowledge before the app can proceed; a message dialog disables the rest of 
the app. Message dialogs are best used for errors or conditions that affect the whole app; error 
messages that are specific to page content should appear inline. 

• The app bar is a WinJS control on which you can place standard commands, using the 
commands layout, or any HTML of your choice, using the custom layout. Custom icons are also 
possible, using different fonts or custom graphics. An app can have both a top and a bottom app 
bar, where the top is typically used for navigation and employs a custom layout. App bars can be 
sticky to keep them visible instead of being light-dismissed. 

• The app bar’s showCommands, hideCommands, and showOnlyCommands methods, along with the 
extraClass property of commands, make it easy to define an app bar in a single location in the 
app and to selectively show specific command sets by using querySelectorAll with a class that 
represents that set. 

• Command menus, as appear from an app bar command or an on-canvas control of some kind, 
are implemented with the WinJS.UI.Menu control. 

• As an example of using many of these features, the Here My Am! app is updated in this chapter 
to greatly improve its handling of various error conditions. 

  

310



Chapter 8 

State, Settings, Files, and Documents 
It would be very interesting when you travel if every hotel room you stayed in was automatically 
configured exactly as how you like it—the right pillows and sheets, the right chairs, the right food in the 
minibar rather than atrociously expensive and obscenely small snack tins. If you’re sufficiently wealthy, 
of course, you can send people ahead of you to arrange such things, but such luxury remains naught 
but a dream for most of us. 

Software isn’t bound by such limitations, fortunately. Sending agents on ahead doesn’t involve 
booking airfare for them, providing for their income and healthcare, and contributing to their 
retirement plans. All it takes is a little connectivity, some cloud services, and voila! All of your settings 
can automatically travel with you—that is, between the different devices you’re using. 

This roaming experience, as it’s called, is built right into Windows 8 for systemwide settings such as 
your profile picture, start screen preferences, Internet favorites, your desktop theme, saved credentials, 
and so forth. When you use a Microsoft account to log into Windows on a trusted PC, these settings are 
securely stored in the cloud and automatically transferred to other trusted Windows 8 devices where 
you use the same account. I was pleasantly surprised during the development of Windows 8 that I no 
longer needed to manually transfer all this data when I updated my machine from one release preview 
to another! 

With such an experience in place for system settings, users will expect similar behavior from apps: 
they will expect that app-specific settings on one device will appropriately roam to the same app 
installed on other devices. I say “appropriately” because some settings don’t make sense to roam, 
especially those that are particular to the hardware in the device. On the other hand, if I configure email 
accounts in an app on one machine, I would certainly hope those show up on others! (I can’t tell you 
how many times I’ve had to set up my four active email accounts in Outlook.) In short, as a user I’ll 
expect that my transition between devices—on the system level and the app level—is both transparent 
and seamless. 

This means, then, that each app must do its part to manage its state, deciding what information is 
local to a device, what data roams between devices (including roaming documents and other user data 
through services like SkyDrive), and even what kinds of caching can help improve performance and 
provide an good offline experience. As I’ve said with many such functional aspects, the effort you invest 
in these can make a real difference in how users perceive your app and the ratings and reviews they’ll 
give it in the Windows Store. 

Many such settings will be completely internal to an app, but others can and should be directly 
configurable by the user. In the past, this has given rise to an oft-bewildering array of nested dialog 
boxes with multiple tabs, each of which is adorned with buttons, popup menus, and long hierarchies of 

311



check boxes and radio buttons. As a result, there’s been little consistency in how apps are configured. 
Even a simple matter of where such options are located has varied between Tools/Options, 
Edit/Preferences, and File/Info commands, among others! 

Fortunately, the designers of Windows 8 recognized that most apps have settings of some kind, so 
they included Settings on the Charms bar alongside the other near-ubiquitous search, share, and device 
functions. For one thing, this eliminates the need for users to remember where a particular app’s 
settings are located, and apps don’t need to wonder how, exactly, to integrate settings into their overall 
content flow and navigation hierarchy. That is, by being placed in the Settings charm, settings are 
effectively removed from an app’s content structure, thereby simplifying the app’s overall design. The 
app needs only to provide distinct pages that are displayed when the user invokes the charm. 

Clearly, then, an app’s state and its Settings UI are intimately connected, as we will see in this chapter. 
We’ll also have the opportunity to look at the storage and file APIs in WinRT, along with some of the 
WinJS file I/O helpers and other storage options like IndexedDB. 

Of course, app data—settings and internal state—is only one part of the story. User data—such as 
documents, pictures, music/audio, and videos—is equally important. For these we’ll look at the various 
capabilities in the manifest that allow an app to work with document and media libraries, as well as 
removable storage, how to enumerate folder contents with queries, and how the file picker lets the user 
give consent to other safe areas of the file system (but not system areas and the app data folders of 
other apps). 

Here, too, Windows 8 actually takes us beyond the local file system. The vast majority of data to 
which a user has access today is not local to their machine but lives online. The problem here has been 
that such data is typically buried behind the API of a web service, meaning that the user has to manually 
use a web app to browse data, download and save it to the local file system, and then import it into 
another app. Seeing this pattern, the Windows 8 designers found another opportunity to introduce a 
new level of integration and consistency, allowing apps to surface back-end data such that it appears as 
part of the local file system to other apps. This happens through the file picker contracts, bringing users 
a seamless experience across local and online data. Here we’ll see the consumer side of the story, saving 
the provider side for Chapter 12, “Contracts.” 

In short, managing state and providing access to user data, wherever it’s located, is one of the most 
valuable features that apps can provide, and it goes a long way to helping consumers feel that your app 
is treating them like they truly matter. 

The Story of State 

To continue the analogy started in this chapter’s introduction, when we travel to new places and stay in 
hotels, most of us accept that we’ll spend a little time upon arrival unpacking our things and setting up 
the room to our tastes. On the other hand, we expect the complete opposite from our homes: we 
expect continuity or statefulness. Having moved twice in the last year myself (once to a temporary home 

312



while our permanent home was being completed), I can very much appreciate the virtues of 
statefulness. Imagine that everything in your home got repacked into boxes every time you left, such 
that you had to spend hours, days, or weeks unpacking it all again! No, home is the place where we 
expect things to stay put, even if we do leave for a time. I think this exactly why many people enjoy 
traveling in a motor home! 

Windows Store apps are intended to be similarly stateful, meaning that they maintain a sense of 
continuity between sessions, even if the app is suspended and terminated along the way. In this way, 
apps feel more like a home than a temporary resting place; they become a place where users come to 
relax with the content they care about. So, the less work they need to do to start enjoying that 
experience, the better. 

An app’s state is central to this experience because it has a much longer lifetime than the app itself. 
State persists, as it should, when an app isn’t running and can also persist between different versions of 
the app. The state version is, in fact, managed separately from the app version. 

To clearly understand app state, let’s first briefly revisit user data again. User data like documents, 
pictures, music, videos, playlists, and other such data are created and consumed by an app but not 
dependent on the app itself. User data implies that any number of apps might be able to load and 
manipulate such data, and such data always remains on a system irrespective of the existence of apps. 
For this reason, user data itself isn’t really part of an app’s state. That is, while the paths of documents 
and other files might be remembered as the current file, in the user’s favorites, or in a recently used list, 
the actual contents of those files aren’t part of that state. User data, then, doesn’t have a strong 
relationship to app lifecycle events either. It’s either saved explicitly through a user-invoked command 
or implicitly on events like visibilitychange rather than suspending. Again, the app might remember 
which file is currently loaded as part of its session state during suspending, but the file contents itself 
should be saved outside of this event since you have only five seconds to complete whatever work is 
necessary. 

In contrast to user data, app data is comprised of everything an app needs to run and maintain its 
statefulness. App data is also maintained on a per-user basis, is completely tied to the existence of a 
specific app, and is accessible by that app exclusively. As we’ve seen earlier in this book, app data is 
stored in user-specific folders that are wholly removed from the file system when an app is uninstalled. 
For this reason, never store anything in app data that the user might want outside your app. It also 
makes sense to avoid using document and media libraries to store state that wouldn’t continue to be 
meaningful to the user if the app is uninstalled. 

App data is used to manage the following kinds of state: 

• Session state The state that an app saves when being suspended to restore it after a possible 
termination. This includes form data, the page navigation history, and so forth. As we saw in 
Chapter 3, “App Anatomy and Page Navigation,” being restarted after being suspended and 
terminated is the only case in which an app restores session state. Session state is typically saved 
incrementally (as the state changes) or within the suspending or checkpoint event. 

313



• Local app state Those settings that are typically loaded when an app is launched. App state 
includes cached data, saved searches, lists of recently viewed items, and various behavioral 
settings that appear in the Settings panel like display units, preferred video formats, 
device-specific configurations, and so on. Local app state is typically saved when it’s changed 
since it’s not directly tied to lifecycle events. 

• Roaming app state App state that is shared between the same app running on multiple 
Windows 8 devices where the same user is logged in, such as favorites, viewing position within 
videos, account configurations, URIs for important files on cloud storage locations, perhaps 
some saved searches or queries, etc. Like local app state, these might be manipulated through 
the Settings panel. Roaming state is also best saved when values are changed; we’ll see more 
details on how this works later. 

There are two other components of app state that are actually managed separately from app data 
folders and settings containers. One is the list of those files originally obtained through file pickers to 
which the app would like to have programmatic access in the future. For these files you cannot just save 
the pathname—you must also save the fact that the user granted permission through the file picker. 
This is the purpose of the Windows.Storage.AccessCache APIs, and is essentially part of local state. 

The other part is credentials that you’ve collected from a user and would like to retrieve in the future. 
Because this is a critical security concern, an app should never directly save credentials in its own app 
data. Instead, use the credential locker API in Windows.Security.Credentials.PasswordVault. The contents 
of the locker will be roamed between a user’s trusted PCs, so this constitutes part of roaming app state. 
We’ll see more of this API in Chapter 14, “Networking.” 

Settings and State 
App state may or may not be surfaced directly to the user. Many bits of state are tracked internally 
within the app or, like a navigation history, might reflect user activity but aren’t otherwise presented 
directly to the user. Other pieces of state, like preferences, accounts, profile pictures, and so forth, can 
and should be directly exposed to the user, which is the purpose of the Settings charm. 

What appears in the Settings charm for an app should be those settings that affect behavior of the 
app as a whole and are adjusted only occasionally. State that applies only to particular pages or 
workflows should not appear in Settings: they should be placed directly on the page (the app canvas) or 
in the app bar, as we’ve seen in Chapter 7, “Commanding UI.” All of these things still comprise app state 
and are managed as such, but not everything is appropriate for Settings. 

Some examples of good candidates for the Settings charm are as follows: 

• Display preferences like units, color themes, alignment grids, and defaults. 

• Roaming preferences that allow the user to customize the app’s overall roaming experience, 
such as to keep configurations for personal and work machines separate. 
 

314

http://msdn.microsoft.com/library/windows/apps/windows.storage.accesscache.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.passwordvault.aspx


• Account and profile configurations, along with commands to log in, log out, and otherwise 
manage those accounts and profiles. Passwords should never be stored directly or roamed, 
however; use the Credential Locker instead. 

• Behavioral settings like online/offline mode, auto-refresh, refresh intervals, preferred 
video/audio streaming quality, whether to transfer data over metered network connections, the 
location from which the app should draw data, and so forth. 

• A feedback link where you can gather specific information from the user. 

• Additional information about the app, such as Help, About, a copyright page, a privacy 
statement, license agreements, and terms of use. Oftentimes these commands will take the user 
to a separate website, which is perfectly fine. 

I highly recommend that you run the apps that are built into Windows and explore their use of the 
Settings charm. You’re welcome to explore how Settings are used by other apps in the Store as well, but 
those might not always follows the design guidelines as consistently—and consistency is essential to 
settings! 

Speaking of which, Windows automatically provides commands called Permissions and Rate and 
Review for all apps. Rate and Review takes the user to the product page in the Windows Store where he 
or she can, of course, provide a rating and write a review. Permissions, for its part, allows the user to 
control the app’s access to sensitive capabilities like geolocation, the camera, the microphone, and so 
forth. What appears here is driven by the capabilities declared in the app manifest, and it’s where the 
user can go to revoke or grant consent for those capabilities. Of course, if the app uses no such 
capabilities, Permissions doesn’t appear. 

You might have noticed that I’ve made no mention of showing app updates within Settings. This is 
specifically discouraged because update notices are provided through the Windows Store directly. This 
is another way of reducing the kinds of noise with which users have had to contend with in the past, 
with each app presenting its updates in different ways (and sometimes far too often!).  

App Data Locations 
Now that we understand what kinds of information make up app state, the next question is, Where is it 
stored? You might remember from Chapter 1, “The Life Story of an App,” that when Windows installs an 
app for a user (and all Windows Store apps are accessible to only the user who installed them), it 
automatically creates LocalState, TempState, and RoamingState folders within the current user’s 
AppData folder, which are the same ones that get deleted when you uninstall an app. On the file 
system, if you point Windows Explorer to %localappdata%\packages, you’ll see a bunch of folders for 
the different apps on your system. If you navigate to any of these, you’ll see these folders along with 
one called “Settings,” as shown in Figure 8-1 for the built-in Sports app. The figure also shows the varied 
contents of these folders.  

315



 
FIGURE 8-1 The Sports app’s AppData folders and their contents. 

In the LocalState folder of Figure 8-1 you can see a file named _sessionState.json. This is the file 
where WinJS saves and loads the contents of the WinJS.Application.sessionState object as we saw in 
Chapter 3. Since it’s just a text file in JSON format, you can easily open it in Notepad or some other 
JSON viewer to examine its contents. In fact, if you look open this file for the Sports app, as is shown in 
the figure, you’ll see a value like {"lastSuspendTime":1340057531501}. The Sports app (along with News, 
Weather, etc.) show time-sensitive content, so they save when they were suspended and check elapsed 
time when they’re resumed. If that time exceeds their refresh intervals, they can go get new data from 
their associated service. In the case of the Sports app, one of its Settings specifically lets the user set the 
refresh period. 

If your app uses any of the HTML5 storage APIs, like local storage, IndexedDB, and app cache, their 
data will also appear within the LocalState folder. 

Note If you look carefully at Figure 8-1, you’ll see that all the app data–related folders, including 
roaming, are in the user’s overall AppData/Local folder. There is also a sibling AppData/Roaming folder, 
but this applies only to roaming user account settings on intranets, such as when a domain-joined user 
logs in to another machine on a corporate network. This AppData/Roaming folder has no relationship 
to the AppData/Local…/RoamingState folder for Windows Store apps. 

Programmatically, you can refer to these locations in several ways. First, you can use the 
ms-appdata:/// URI scheme as we saw in Chapter 3, where ms-appdata:///local, 
ms-appdata:///roaming, and ms-appdata:///temp refer to the individual folders and their contents. 
(Note the triple slashes, which is a shorthand allowing you to omit the package name.) You can also use 
the object returned from the Windows.Storage.ApplicationData.current method, which contains all 
the APIs you need to work with state. 

316



By the way, you might have some read-only state directly in your app package. With URIs, you can 
just use relative paths that start with /. If you want to open and read file contents directly, you can use 
the StorageFolder object from the Windows.ApplicationModel.Package.current.installedLocation 
property. We’ll come back to the StorageFolder class shortly. 

AppData APIs (WinRT and WinJS) 
When you ask Windows for the Windows.Storage.ApplicationData.current property, what you get is a 
Windows.Storage.ApplicationData object that is completely configured for your particular app. This 
object contains the following: 

• localFolder, temporaryFolder, and roamingFolder Each of these properties is a 
Windows.Storage.StorageFolder object that allows you to create whatever files and additional 
folder structures you want in these locations (but note the roamingStorageQuota below). 

• localSettings and roamingSettings These properties are 
Windows.Storage.Appli-cationDataContainer objects that provide for managing a hierarchy 
of key-value settings pairs or composite groups of such pairs. All these settings are stored in the 
appdata Settings folder in the settings.dat file. 

• roamingStorageQuota This property contains the number of kilobytes that Windows will 
automatically roam for the app (typically 100); if the total data stored in roamingFolder and 
roamingSettings exceeds this amount, roaming will be suspended until the amount falls below 
the quota. You have to track how much data you store yourself if you think you’re near the limit. 

• dataChanged An event indicating the contents of the roamingFolder or roaming-Settings 
have been synchronized from the cloud; an app should re-read roaming state in this case. This is 
a WinRT event for which you need to use removeEventListener as described in Chapter 3 in the 
“WinRT Events and removeEventListener” section. 

• signalDataChanged A method that triggers a dataChanged event. This allows you to 
consolidate local and roaming updates in a single handler for the dataChanged event. 

• version property and setVersionAsync method These provide for managing the version 
stamp on your app data. This version applies to the whole of your app data, local, temp, and 
roaming together; there are not separate versions for each. 

• clearAsync A method that clears out the contents of all AppData folders and settings 
containers. Use this when you want to reinitialize your default state, which can be especially 
helpful if you’ve restarted the app because of corrupt state. 

 

 

 

317

http://msdn.microsoft.com/library/windows/apps/br241587.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.applicationdatacontainer.aspx


• clearAsync(<locality>) A variant of clearAsync that is limited to one locality (local, temp, 
and roaming). The locality is identified with a value from Windows.Storage.Application- 
DataLocality, such as Windows.Storage.ApplicationDataLocality.local. In the case of local 
and roaming, the contents of both the folders and settings containers are cleared; temp affects 
only the TempState folder. 

Let’s now see how to use the API here to manage the different kinds of app data, which includes a 
number of WinJS helpers for the same purpose. 

Hint The APIs that work with app state will generate events in the Event Viewer if you’ve enabled the 
channel as described in Chapter 3 in the “Debug Output, Error Reports, and the Event Viewer” section. 
Again, make sure that View > Show Analytics and Debug Logs is checked on the menu. Then navigate 
to Application and Services Log, and expand Microsoft/Windows/AppModel-State, where you’ll find 
Debug and Diagnostic groups. 

Settings Containers 
For starters, let’s look at the localSettings and roamingSettings properties, which are typically referred 
to as settings containers. You work with these through the ApplicationDataContainer API, which is 
relatively simple. Each container has four read-only properties: a name (a string), a locality (again from 
Windows.Storage.ApplicationDataLocality, with local and roaming being the only values here), and 
collections called values and containers. 

The top-level settings containers have empty names; the property will be set for child containers that 
you create with the createContainer method (and remove with deleteContainer). Those child 
containers can have other containers as well, allowing you to create a whole settings hierarchy. That 
said, these settings containers are intended to be used for small amounts of data, typically user settings; 
any individual setting is limited to 8K and any composite setting (see below) to 64K. With these limits, 
going beyond about a megabyte of settings implies a somewhat complex hierarchy, which will be 
difficult to manage and will certainly slow to access. So don’t be tempted to think of app data settings 
as a kind of database; other mechanisms like IndexedDB and SQLite are much better suited for that 
purpose, and you can write however much data you like as files in the various AppData folders 
(remembering the roaming limit when you write to roamingFolder). 

For whatever container you have in hand, its containers collection is an IMapView object through 
which you can enumerate its contents. The values collection, on the other hand, is just an array 
(technically an IPropertySet object in WinRT, which is projected into JavaScript as an array with 
IPropertySet methods). So, although the values property in any container is itself read-only, meaning 
that you can’t assign some other arbitrary array to it, you can manipulate the contents of the array 
however you like. 

We can see this in the Application data sample, which is a good reference for many of the core app 
data operations. Scenario 2, for example (js/settings.js), shows the simply use of the 
localSettings.values array:  

318

http://msdn.microsoft.com/library/windows/apps/br226037.aspx
http://code.msdn.microsoft.com/windowsapps/ApplicationData-sample-fb043eb2


var localSettings = Windows.Storage.ApplicationData.current.localSettings; 
var settingName = "exampleSetting"; 
var settingValue = "Hello World"; 
 
function settingsWriteSetting() { 
    localSettings.values[settingName] = settingValue; 
} 
 
function settingsDeleteSetting() { 
    localSettings.values.remove(settingName); 
} 

Many settings, like that shown above, are just simple key-value pairs, but other settings will be 
objects with multiple properties. This presents a particular challenge: although you can certainly write 
and read the individual properties of that object within the values array, what happens if a failure 
occurs with one of them? That would cause your state to become corrupt. 

To guard against this, the app data APIs provide for composite settings, which are groups of 
individual properties that are guaranteed to be managed as a single unit. (Again, each composite has a 
64K limit.) It’s like the perfect group consciousness: either we all succeed or we all fail, with nothing in 
between! That is, if there’s an error reading or writing any part of the composite, the whole composite 
fails; with roaming, either the whole composite roams or none of it roams. 

A composite object is created using Windows.Storage.ApplicationDataCompositeValue, as shown 
in Scenario 4 of the Application data sample (js/compositeSettings.js): 

var roamingSettings = Windows.Storage.ApplicationData.current.roamingSettings; 
var settingName = "exampleCompositeSetting"; 
var settingName1 = "one"; 
var settingName2 = "hello"; 
 
function compositeSettingsWriteCompositeSetting() { 
    var composite = new Windows.Storage.ApplicationDataCompositeValue(); 
    composite[settingName1] = 1; // example value 
    composite[settingName2] = "world"; // example value 
    roamingSettings.values[settingName] = composite; 
    } 
 
function compositeSettingsDeleteCompositeSetting() { 
    roamingSettings.values.remove(settingName); 
} 
 
function compositeSettingsDisplayOutput() { 
    var composite = roamingSettings.values[settingName]; 
    // ... 
} 

The ApplicationDataCompositeValue object has, as you can see in the documentation, some 
additional methods and events to help you manage it such as clear, insert, and mapchanged. 

 

319

http://msdn.microsoft.com/library/windows/apps/windows.storage.applicationdatacompositevalue.aspx


Composites are, in many ways, like their own kind of settings container, just that they cannot contain 
additional containers. It’s important to not confuse the two. Child containers within settings are used 
only to create a hierarchy (refer to Scenario 3 in the sample). Composites, on the other hand, specifically 
exist to create more complex groups of settings that act like a single unit, a behavior that is not 
guaranteed for settings containers themselves. 

As noted earlier, these settings are all written to the settings.dat file in your app data Settings folder. 
It’s also good to know that changes you make to settings containers are automatically saved, though 
there is some built-in batching to prevent excessive disk activity when you change a number of values 
all in a row. In any case, you really don’t need to worry about when you save settings; the system will 
manage those details. 

Versioning App State 
From Windows’ point of view, local, temp, and roaming state are all parts of the same whole and all 
share the same version. That version number is set with 
Windows.Storage.ApplicationData.-setVersionAsync, the value of which you can retrieve through 
Windows.Storage.Application-Data.version (a read-only property). If you like, you can maintain your 
own versioning system within particular files or settings. I would recommend, however, that you avoid 
doing this with roaming data because it’s hard to predict how Windows will manage synchronizing 
slightly different structures. Even with local state, trying to play complex versioning games is, well, rather 
complex, and probably best avoided altogether. 

The version of your app data is also a different matter than the version of your app; in fact, there is 
really no inherent relationship between the two. While the app data version is set with 
setVersion-Async, the app version is managed through the Packaging section of the app manifest. You 
can have versions 1.0.0.0 through 4.3.9.3 of the app use version 1.0.0.0 of app data, or maybe version 
1.2.1.9 of the app shifts to version 1.0.1.0 of the app data, and version 2.1.1.3 moves to 1.2.0.0 of the app 
data. It doesn’t really matter, so long as you keep it all straight and can migrate old versions of the app 
data to new versions! 

Migration happens as part of the setVersionAsync call, whose second parameter is a function to 
handle the conversion. That function receives a SetVersionRequest object that contains 
currentVersion and desiredVersion properties, thereby instructing your function as to what kind of 
conversion is actually needed. In response, you should go through all your app data and migrate the 
individual settings and files accordingly. Once you return from the conversion handler, Windows will 
assume the migration is complete. Of course, because the process will often involve asynchronous file 
I/O operations, you can use a deferral mechanism like that we’ve seen with activation. Call the 
SetVersionRequest.getDeferral method to obtain the deferral object (a SetVersionDeferral), and call 
its complete method when all your async operations are done. Examples of this can be found in Scenario 
9 of the Application data sample. 

 

 

320

http://msdn.microsoft.com/library/windows/apps/windows.storage.applicationdata.setversionasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.setversionrequest.aspx
http://code.msdn.microsoft.com/windowsapps/ApplicationData-sample-fb043eb2


It is also possible to migrate app data when a new app update has been installed. For this you use a 
background task for the servicingComplete trigger. See Chapter 13, “Tiles, Notifications, the Lock 
Screen, and Background Tasks,” specifically the “Background Tasks and Lock Screen Apps” section 
toward the end. 

Storage Folders and Storage Files 
As it is often highly convenient to save app data directly in file, it’s high time we start looking more 
closely at the File I/O APIs for Windows Store apps. 

First, however, other APIs like URL.createObjectURL—working with what are known as blobs—make 
it possible to do many things in an app without having descend to the level of file I/O at all! We’ve 
already seen how to use this to set the src of an img element, and the same works for other elements 
like audio, video, and iframe. The file I/O operations involved with such elements is encapsulated within 
createObjectURL. There are other ways to use a blob as well, such as converting a canvas element with 
canvas.msToBlob into something you can assign to an img element, and obtaining a binary blob from 
WinJS.xhr, saving it to a file, and then sourcing an img from that. We’ll see some more of this in Chapter 
10, “Media,” and you can refer to the Using a blob to save and load content sample for more. 

For working directly with files, now, let’s get a bearing on what we have at our disposal, with 
concrete examples supplied by the File access sample.  

The core WinRT APIs for files live within the Windows.Storage namespace. The key players are the 
StorageFolder and StorageFile classes. These are sometimes referred to generically as “storage items” 
because they are both derived from IStorageItem and share properties like name, path, dateCreated, 
and attributes properties along with the methods deleteAsync and renameAsync. 

File I/O in WinRT almost always starts by obtaining a StorageFolder object through one of the 
methods below. In a few cases you can also get to a StorageFile directly: 

• Windows.ApplicationModel.Package.current.installedLocation gets a StorageFolder 
through which you can load data from files in your package (all files therein are read-only). 

• Windows.Storage.ApplicationData.current.localFolder, roamingFolder, or temporaryFolder 
provides StorageFolder objects for your app data locations (read-write). 

• An app can allow the user to select a folder or file directly using the file pickers invoked through 
Windows.Storage.Pickers.FolderPicker plus FileOpenPicker and FileSavePicker. This is 
the preferred way for apps that don’t need to enumerate contents of a library (see next bullet). 
This is also the only means through which app can access safe (nonsystem) areas of the file 
system without additional declarations in the manifest. 

• Windows.Storage.KnownFolders provides StorageFolder objects for the Pictures, Music, Videos, 
and Documents libraries, as well as Removable Storage. Given the appropriate capabilities in 
your manifest, you can work with the contents of these folders. (Attempting to obtain a folder 
without the correct capability with throw an Access Denied exception.)  

321

http://code.msdn.microsoft.com/windowsapps/Blob-Sample-0e35889e
http://code.msdn.microsoft.com/windowsapps/File-access-sample-d723e597
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefolder.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefile.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.istorageitem.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.package.installedlocation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.folderpicker.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.fileopenpicker.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.filesavepicker.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.knownfolders.aspx


• The Windows.Storage.DownloadsFolder object provides a createFolderAsync method through 
which you can obtain a StorageFolder in that location. It also provides a createFileAsync 
method to create a StorageFile directly. You would use this API if your app manages 
downloaded files directly. Note that DownloadsFolder itself provides only these two methods; it 
is not a StorageFolder in its own right. 

• The static method Windows.Storage.StorageFolder.getFolderFromPathAsync returns a 
StorageFolder for a given pathname if and only if your app already has permissions to access it; 
otherwise, you’ll get an Access Denied exception. A similar static method exists for files called 
Windows.Storage.StorageFile.getFileFromPathAsync, with the same restrictions; 
Windows.Storage.StorageFile.getFileFromApplicationUriAsync opens files with 
ms-appx:// (package) and ms-appdata:/// URIs. Other schemas are not supported. 

• Once a folder or file object is obtained, it can be stored in the Windows.Storage.-AccessCache 
that allows an app to retrieve it sometime in the future with the same programmatic 
permissions. This is primarily needed for folders or files selected through the pickers because 
permission to access the storage item is granted only for the lifetime of that in-memory object. 
You should always use this API, as demonstrated in Scenario 6 of the File access sample, where 
you’d normally think to save a file path. Again, StorageFolder.getFolder-FromPathAsync and 
StorageFile.getFileFromPathAsync will throw Access Denied exceptions if they refer to any 
locations where you don’t already have permissions. Pathnames also will not work for files 
provided by another app through the file picker, because the StorageFile object might not, in 
fact, refer to anything that actually exists on the file system. 

Once you have a StorageFolder in hand, you can do the kinds of operations you’d expect: obtain 
folder properties (including a thumbnail), create and/or open files and folders, and enumerate the 
folder’s contents. With the latter, the API provides for obtaining a list folder contents, of course (see the 
getItemsAsync method), but what you want more often is a partial list of those contents according to 
certain criteria, along with thumbnails and other indexed file metadata (music album and track info, 
picture titles and tags, etc.) that you can use to group and organize the files. This is the purpose of file, 
folder, and item (file + folder) queries, which you manage through the methods 
createFileQuery-[WithOptions], createFolderQuery[WithOptions], and 
createItemQuery[WithOptions]. We already saw a little of this with the FlipView app we built using the 
Pictures Library in Chapter 5, “Collection and Collection Controls” and we’ll return to the subject in the 
context of user data, the primary scenario for queries, at the end of this chapter.41 

 

 

41 Obtaining folder properties happens through a storage item’s getBasicPropertiesAsync method (linked here for 
StorageFolder but also available on StorageFile.) This provides a 
Windows.Storage.FileProperties.-BasicPropertiesClass, which then has a retrievePropertiesAsync method. 
Through this you can retrieve any number of Windows properties. A property like System.FreeSpace will actually give you 
the free space on the drive where the StorageFolder lives. 

322

http://msdn.microsoft.com/library/windows/apps/windows.storage.downloadsfolder.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefolder.getfolderfrompathasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefile.getfilefrompathasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefile.getfilefromapplicationuriasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.accesscache.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.storagefolder.getbasicpropertiesasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.fileproperties.basicproperties.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br212124.aspx
http://msdn.microsoft.com/library/windows/desktop/dd561977.aspx


Tip There are some file extensions that are reserved by the system and won’t be enumerated, such as 
.lnk, .url, and others; a complete list is found on the How to handle file activation topic. Also note that 
the ability to access UNC pathnames requires the Private Networks (Client & Server) and Enterprise 
Authentication capabilities in the manifest along with declarations of the file types you wish to access. 

With any given StorageFolder, especially for your app data locations, you can create whatever folder 
structures you like through its createFolderAsync/getFolderAsync methods, which give you more 
StorageFolder objects. Within any of those folders you then use the createFileAsync/getFileAsync 
methods to access individual files, each of which you again see as a StorageFile object. 

Each StorageFile provides relevant properties like name, path, dateCreated, fileType, contentType, 
and attributes, of course, along with methods like getThumbnailAsync, copyAsync, deleteAsync, 
moveAsync, moveAndReplaceAsync, and renameAsync for file management purposes. A file can be opened 
in a number of ways depending on the kind of access you need, using these methods: 

• openAsync and openReadAsync provide random-access byte-reader/writer streams. The streams 
are IRandomAccessStream and IRandomAccessStreamWithContentType objects, respectively, 
both in the Windows.Storage.Streams namespace. The first of these works with a pure binary 
stream; the second works with data+type information, as would be needed with an http 
response that prepends a content type to a data stream. 

• openSequentialReadAsync provides a read-only Windows.Storage.Streams.-IInputStream 
object through which you can read file contents in blocks of bytes but cannot skip back to 
previous locations. You should always use this method when you simply need to consume the 
stream as it has better performance than a random access stream (the source can optimize for 
sequential reads). 

• openTransactedWriteAsync provides a Windows.Storage.StorageStreamTransaction that’s 
basically a helper object around an IRandomAccessStream with commitAsync and close methods 
to handle the transactioning. This is necessary when saving complex data to make sure that the 
whole write operation happens atomically and won’t result in corrupted files if interrupted. 
Scenario 4 of the File access sample shows this. 

The StorageFile class also provides two static methods, createStreamedFileAsync and 
createStreamedFileFromUriAsync. These provide a StorageFile that you typically pass to other apps 
through contracts as we’ll see more of in Chapter 12. The utility of these methods is that the underlying 
file isn’t accessed at all until data is first requested from it, if such a request ever happens at all. 

Pulling all this together now, here’s a little piece of code using the raw API we’ve seen thus far to 
create and open a “data.tmp” file in our temporary AppData folder, and write a given string to it. This bit 
of code is in the RawFileWrite example for this chapter. Let me be clear that what’s shown here utilizes 
the lowest-level API in WinRT for this purpose and isn’t what you typically use, as we’ll see in the next 
section. It’s instructive nonetheless as there are times you need to use something similar: 

 

323

http://msdn.microsoft.com/library/windows/apps/hh452684.aspx
http://msdn.microsoft.com/library/windows/apps/br227171.aspx
http://msdn.microsoft.com/library/windows/apps/hh438400.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.irandomaccessstreamwithcontenttype.aspx
http://msdn.microsoft.com/library/windows/apps/br241718.aspx
http://msdn.microsoft.com/library/windows/apps/hh996767.aspx


var fileContents = "Congratulations, you're written data to a temp file!"; 
writeTempFileRaw("data.tmp", fileContents); 
 
 
function writeTempFileRaw(filename, contents) { 
    var tempFolder = Windows.Storage.ApplicationData.current.temporaryFolder; 
    var outputStream; 
 
    //Egads! 
    tempFolder.createFileAsync(filename, 
        Windows.Storage.CreationCollisionOption.replaceExisting) 
    .then(function (file) { 
        return file.openAsync(Windows.Storage.FileAccessMode.readWrite); 
    }).then(function (stream) { 
        outputStream = stream.getOutputStreamAt(0); 
        var writer = new Windows.Storage.Streams.DataWriter(outputStream); 
        writer.writeString(contents); 
        return writer.storeAsync(); 
    }).done(); 
} 

Good thing we learned about chained async operations a while back! First we create or open the 
specified file in our app data’s temporaryFolder (createFileAsync), and then we obtain an output 
stream for that file (openAsync and getOutputStreamAt). We then create a DataWriter around that 
stream, write our contents into it (writeString), and make sure it’s stored in the file (storeAsync). 

But, you’re saying, “You’ve got to be kidding me! Four chained async operations just to write a 
simple string to a file! Who designed this API?” Indeed, when we started building the very first Store 
apps within Microsoft, this is all we had, and we asked these questions ourselves! After all, doing some 
hopefully simple file I/O is typically the first thing you add to a Hello World app, and this was anything 
but simple. To make matters worse, at that time we didn’t yet have promises for async operations in 
JavaScript, so we had to write the whole thing with raw nested operations. Such were the days. 

Fortunately, simpler APIs were already available and more came along shortly thereafter. These are 
the APIs you’ll typically use when working with files as we’ll see in the next section. It is nevertheless 
important to understand the structure of the low-level code above because the 
Window.Storage.-Streams.DataWriter class shown in that code, along with its DataReader sibling, are 
very important mechanisms for working with a variety of different I/O streams and are essential for data 
encoding processes. Having control over the fine details also supports scenarios such as having different 
components in your app that are all contributing to the file structure. So it’s good to take a look at their 
reference documentation along with the Reading and writing data sample just so that you’re familiar 
with the capabilities. 
 

324

http://msdn.microsoft.com/library/windows/apps/br208154.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.datareader.aspx
http://code.msdn.microsoft.com/windowsapps/Reading-and-writing-data-75ea10a3


Sidebar: Closing Streams vs. Closing Files 
Developers who have worked with file I/O APIs in the past sometimes ask why the StorageFile 
object doesn’t have some kind of close method on it. The reason for this is because the 
StorageFile itself represents a file entity, not a data stream through which you can access its 
contents. It’s when you call methods like StorageFile.openAsync to obtain a stream that the file is 
actually open, and the file is only closed when you close the stream through its particular close 
method. 

You don’t see a call to that method in the code above, however, because the DataReader and 
DataWriter classes both take care of that detail for you when they are discarded. However, if you 
separate a stream from these objects through their detachStream methods, you’re responsible for 
calling the stream’s close method. 

When developing apps that write to files, if you see errors indicating that the file is still open, 
check whether you’ve properly closed the streams involved. 

The FileIO, PathIO, and WinJS helper classes (plus FileReader) 
Simplicity is a good thing where File I/O is concerned, and the designers of WinRT made sure that the 
most common scenarios didn’t require a long chain of async operations like we saw in the previous 
section. The Windows.Storage.FileIO and PathIO classes provide such a streamlined interface, with 
the only difference between the two being that the FileIO methods take a StorageFile parameter 
whereas the PathIO methods take a filename string. Otherwise they offer the same methods called 
[read | write]BufferAsync (these work with byte arrays), [append | read | write]LinesAsync (these 
work with arrays of strings), and [append | read | write]TextAsync (these work with singular strings). In 
the latter case the WinJS.IOHelper class provides an even simpler interface through its readText and 
writeText methods. 

Let’s see how those work, starting with a few examples from the File access sample. Scenario 2 shows 
writing a text string from a control to a file (this code is simplified from the sample for clarity): 

var userContent = textArea.innerText; 
 
//sampleFile created on startup from Windows.Storage.KnownFolders.documentsLibrary.getFileAsync 
Windows.Storage.FileIO.writeTextAsync(sampleFile, userContent).done(function () { 
    outputDiv.innerHTML = "The following text was written to '" + sampleFile.name  
        + "':<br /><br />" + userContent; 
    }); 

To compare to the example in the previous section, we can replace all the business with streams and 
DataWriters with one line of code: 

tempFolder.createFileAsync(filename, Windows.Storage.CreationCollisionOption.replaceExisting) 
.then(function (file) { 
    Windows.Storage.FileIO.writeTextAsync(file, contents).done(); 
}) 

 

325

http://msdn.microsoft.com/library/windows/apps/windows.storage.fileio.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pathio.aspx
http://code.msdn.microsoft.com/windowsapps/File-access-sample-d723e597


To make it even simpler, the WinJS.Application.temp object (WinJS.Application.IOHelper) 
reduces even this down to a single line (which is an async call and returns a promise): 

WinJS.Application.temp.writeText(file, contents); 

Reading text through the async readText method is equally simple, and WinJS provides the same 
interface for the local and roaming folders along with two other methods, exists and remove.42 That 
said, these WinJS helpers are available only for your AppData folders and not for the file system more 
broadly; for that you should be using the FileIO and PathIO classes.  

You also have the HTML5 FileReader class available for use in Windows Store apps, which is part of 
the W3C File API specification. As its name implies, it’s suited only for reading files and cannot write 
them, but one of its strengths is that it can work both with files and blobs. Some examples of this are 
found in the Using a blob to save and load content sample. 

Encryption and Compression 
WinRT provides two capabilities that might be very helpful to your state management: encryption and 
compression. 

Encryption is provided through the Windows.Security.Cryptography and 
Windows.-Security.Cryptography.Core API. The former contains methods for basic encoding and 
decoding (base64, hex, and text formats); the latter handles actual encryption according to various 
algorithms. As demonstrated in the Secret saver encryption sample, you typically encode data in some 
manner with the Windows.Security.Cryptography.CryptographicBuffer.convertStringToBinary 
method and then create or obtain an algorithm and pass that with the data buffer to Windows.- 
Security.Cryptography.Core.CryptographicEngine.encrypt. Methods like decrypt and 
convertBinaryToString perform the reverse. 

Compression is a little simpler in that its only purpose is to provide a built-in API through which you 
can make your data smaller (say, to decrease the size of your roaming data). The API for this in 
Windows.Storage.Compression is composed of Compressor and Decompressor classes, both of which 
are demonstrated in the Compression sample. Although this API can employ different compression 
algorithms, including one called MSZIP, it does not provide a means to manage .ZIP files and the 
contents therein. For this purpose you’ll need to employ either a third-party JavaScript library or you 
can write a WinRT component in C# or Visual Basic that can use the System.IO.Compression APIs (see 
Chapter 16, “WinRT Components.”) 

 

42 If you’re curious as to why async methods like readText and writeText don’t have Async in their names, this was a 
conscious choice on the part of the WinJS designers to follow existing JavaScript conventions where such a suffix isn’t 
typically used. The WinRT API, on the other hand, is language-independent and thus has its own convention with the 
Async suffix. 

326

http://msdn.microsoft.com/library/windows/apps/br211764.aspx
http://www.w3.org/TR/FileAPI/#dfn-filereader
http://code.msdn.microsoft.com/windowsapps/Blob-Sample-0e35889e
http://msdn.microsoft.com/library/windows/apps/br241404.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.cryptography.core.aspx
http://code.msdn.microsoft.com/windowsapps/Secret-Saver-f8a69623
http://msdn.microsoft.com/library/windows/apps/windows.storage.compression.aspx
http://code.msdn.microsoft.com/windowsapps/Compression-sample-9d57900f


Using App Data APIs for State Management 
Now that we’ve seen the nature of the APIs, let’s see how they’re used for different kinds of app data 
and any special considerations that come into play. 

Session State 
As described before, session state is whatever an app saves when being suspended so that it can restore 
itself to that state if it’s terminated by the system and later restarted. Being terminated by the system is 
again the only time this happens, so what you include in session state should always be scoped to giving 
the user the illusion that the app was running the whole time. In some cases, as described in Chapter 3, 
you might not in fact restore this state, especially if it’s been a long time since the app was suspended 
and it’s unlikely the user would really remember where they left off. That’s a decision you need to make 
for your own app and the experience you want to provide for your customers. 

Session state should be saved within the appdata localFolder or the localSettings object. It should 
not be saved in a temp area since the user could run the disk cleanup tool while your app is suspended 
or terminated in which case session state would be deleted (see next section). 

The WinJS sessionState object internally creates a file called _sessionState.json within the 
localFolder. The file is just JSON text, so you can examine it any time. You can and should write session 
state variables to the sessionState object whenever they change, using sessionState essentially as a 
namespace for those session variables. This way those values get saved and reloaded automatically 
without needing to manage variables somewhere else. 

If you need to store additional values within sessionState before its written, do that in your handler 
for WinJS.Application.oncheckpoint. A good example of such data is the navigation stack for your 
page controls, which is available in WinJS.Navigation.history; you could also copy this data to 
sessionState within the PageControlNavigator.navigated method (in navigator.js as provided by the 
project templates). In any case, WinJS has its own checkpoint handler that is always called last (after 
your handler) to make sure that any changes you make to sessionState in response to that event are 
saved. 

If you don’t use the WinJS sessionState object and just use the WinRT appdata APIs directly, you can 
write your session state whenever you like (including within checkpoint), and you’ll need to restore it 
directly within your activated event for previousExecutionState == terminated. 

It’s also a good practice to build some resilience into your handling of session state: if what gets 
loaded doesn’t seem consistent or has some other problem, revert to default session values. Remember 
too that you can use the localSettings container with composite settings to guarantee that groups of 
values will be stored and retrieved as a unit. You might also find it helpful during development to give 
yourself a simple command to clear your app state in case things get really fouled up, but just 
uninstalling your app will clear all that out as well. At the same time, it’s not necessary to provide your 
users with a command to clear session state: if your app fails to launch after being terminated, the 
previousExecutionState flag will be notRunning the next time the user tries, in which case you won’t 
attempt to restore the state. 

327



Similarly, it’s not necessary to include a version number in session state. If the user installs an update 
during the time your app has been suspended and terminated, and the appdata version changes, the 
previousExecutionState value will be reset. If for some reason you don’t actually change the appdata 
version—for instance, if your update is only very minor—then your session state can carry forward. But 
in this case it’s essentially the same app, so versioning the state isn’t an issue. 

Sidebar: Using HTML5 sessionStorage and localStorage 
If you prefer, you can use HTML5 localStorage object for both session and other local app data; 
its contents get persisted to the app data localFolder. The contents of localStorage are not 
loaded until first accessed and are limited to 10MB per app; the WinRT and WinJS APIs, on the 
other hand, are limited only by the capacity of the file system. 

As for the HTML5 sessionStorage object, it’s not really needed when you’re using page 
controls and maintaining your script context between app pages—your in-memory variables 
already do the job. However, if you’re actually changing page contexts by using <a> links or 
setting document.location, sessionStorage can still be useful. You can also encode information 
into URIs as commonly done with web apps. 

Both sessionStorage and localStorage are also useful within iframe pages running in the web 
context, since the WinRT APIs are not available. At the same time, you can load WinJS into a web 
context page (this is supported) and the WinJS.Application.local, roaming, and temp objects still 
work using in-memory buffers instead of the file system. 

Local and Temporary State 
Unlike session state that is restored only in particular circumstances, local app state is composed of 
those settings and other values that are always applied when an app is launched. Anything that the user 
can set directly falls into this category, unless it’s also part of the roaming experience in which case it is 
still loaded on app startup. Any other cached data, saved searches, recently used items, display units, 
preferred media formats, and device-specific configurations also fall into this bucket. In short, if it’s not 
pure session state and not part of your app’s roaming experience, it’s local or temporary state. 
(Remember again that credentials should be stored in the Credential Locker instead of your appdata.) 

All the same APIs we’ve seen work for this form of state, including all the WinRT APIs, the 
WinJS.Application.local and temp objects, and HTML localStorage. You can also use the HTML5 
IndexedDB APIs, SQLite, and the HTML App Cache—these are just other forms of local app data. 

It’s very important to version-stamp your local and temp app data because it will always be 
preserved across an app update (unless temp state has been cleaned up in the meantime). With any app 
update, be prepared to load old versions of your state and make the necessary updates, or simply 
decide that a version is too old and purge it (Windows.Storage.ApplicationData.current.clearAsync)  
 
 

328



before setting up new defaults. As mentioned before, it’s also possible to migrate state from a 
background task. (See Chapter 13.) 

Generally speaking, local and temp app data are the same—they have the same APIs and are stored 
in parallel folders. Temp, however, doesn’t support settings and settings containers. The other difference 
is that the contents of your temp folder (along with the HTML5 app cache) are subject to the Windows 
Disk Cleanup tool. This means that your temp data could disappear at any time when the user wants to 
free up some disk space. You could also employ a background task with a maintenance trigger for 
doing cleanup on your own (again see Chapter 13, in the section “Tasks for Maintenance Triggers.”) 

For these reasons, temp should be used for storage that optimizes your apps performance but not 
for anything that’s critical to its operation. For example, if you have a JSON file in your package that you 
parse or decompress on first startup such that the app runs more quickly afterwards, and you don’t 
make any changes to that data from the app, you might elect to store that in temp. The same is true for 
graphical resources that you might have fine-tuned for the specific device you’re running on; you can 
always repeat that process from the original resources, so it’s another good candidate for temp data. 
Similarly, if you’ve acquired data from an online service as an optimization (that is, so that you can just 
update the local copy incrementally), you can always reacquire it. This is especially helpful for providing 
an offline experience for your app, though in some cases you might want to let the user choose to save 
it in local instead of temp (an option that would appear in Settings along with the ability to clear the 
cache). 

Sidebar: HTML5 App Cache 
Store apps can employ the HTML 5 app cache as part of an offline/caching strategy. It is most 
useful in iframe web context elements where it can be used for any kind of content. For example, 
an app that reads online books can show such content in an iframe, and if those pages include 
app cache tags, they’ll be saved and available offline. In the local context, the app cache works for 
nonexecutable resources like images, audio, and video, but not for HTML or JavaScript. 

IndexedDB and Other Database Options 
Many forms of local app data are well suited to being managed in a database. In Windows Store apps, 
the IndexedDB API is available through the window.indexedDB and worker.indexedDB objects. For 
complete details on using this feature, I’ll refer you to the W3C specifications, the Indexed Database API 
reference for Store apps, and the IndexedDB sample. 

Although an IndexedDB database is stored within your app’s local app data, be aware that there are 
some limitations because there isn’t a means through which the app or the system can shrink a database 
file and reclaim unused space: 

 

 

329

http://dvcs.w3.org/hg/IndexedDB/
http://msdn.microsoft.com/library/windows/apps/hh466139.aspx
http://msdn.microsoft.com/library/windows/apps/hh466139.aspx
http://code.msdn.microsoft.com/windowsapps/IndexedDB-sample-eb1e95af
http://code.msdn.microsoft.com/windowsapps/IndexedDB-sample-eb1e95af


• IndexedDB has a 250MB limit per app and an overall system limit of 375MB on drives smaller 
than 32GB, or 4% (to a maximum 20GB) for drives over 32GB. So it could be true that your app 
might not have much room to work with anyway, in which case you need to make sure you have 
a fallback mechanism. (When the limit is exceeded the APIs will throw a Quota Exceeded 
exception.) 

• IndexedDB on Windows 8 has no complex key paths—that is, it does not presently support 
multiple values for a key or index (multientry). 

• By default, access to IndexedDB is given only to HTML pages that are part of the app package 
and those declared as content URIs. (See the “Local and Web Contexts within the App Host” 
section at the beginning of Chapter 3.) Random web pages you might host in an iframe will not 
be given access, primarily to preserve space within the 250MB limit for those pages you really 
care about in your app. However, you can grant access to arbitrary pages by including the 
following tag in your home page and not setting the iframe src attribute until the 
DOMContentLoaded or activated event has fired: 

<meta name="ms-enable-external-database-usage" content="true"/> 

Beyond IndexedDB there are a few other database options for Store apps. For a local relational 
database, try SQLite. This is an API that’s suited well for apps written in a language like C#, as described 
in Tim Heuer’s blog on the subject, but fortunately, there is a version called SQL.js, which is SQLite 
compiled to JavaScript via Emscripten. Very cool! There might also be other JavaScript solutions 
available in the community. 

If the storage limits for IndexedDB are a concern, you might use the Win32 “Jet” or Extensible 
Storage Engine (ESE) APIs (on which the IndexedDB implementation is built). For this you’ll need to write 
a WinRT Component wrapper in C# or C++ (the general process for which is in Chapter 16, “WinRT 
Components”), since JavaScript cannot get to those APIs directly. 

The same is true for other third-party database APIs. So long as that engine uses only the Win32 APIs 
allowable for Store apps (listed on the Win32 and COM for Windows Store apps page), they’ll work just 
fine. 

It’s also worth noting that the OData Library for JavaScript also works great for Store apps to access 
online SQL Servers, because the OData protocol itself just works via REST. 

Finally, another option for searchable file-backed data is to use the system index by creating a folder 
named “indexed” in your local AppData folder. The contents of the files in this folder will be indexed by 
the system indexer and can be queried using Advanced Query Syntax (AQS) with the APIs explained 
later in “Rich Enumeration with File Queries.” You can also do property-based searched for Windows 
properties, making this approach a simple alternative to database solutions. 

 

330

http://timheuer.com/blog/archive/2012/08/07/updated-how-to-using-sqlite-from-windows-store-apps.aspx
http://badassjs.com/post/18857332551/sql-js-sqlite-compiled-to-javascript-via-emscriptenhttp:/badassjs.com/post/18857332551/sql-js-sqlite-compiled-to-javascript-via-emscripten
http://badassjs.com/post/18857332551/sql-js-sqlite-compiled-to-javascript-via-emscriptenhttp:/badassjs.com/post/18857332551/sql-js-sqlite-compiled-to-javascript-via-emscripten
http://msdn.microsoft.com/library/windows/apps/br205753.aspx
http://msdn.microsoft.com/library/windows/apps/br205753.aspx
http://msdn.microsoft.com/library/windows/apps/br205757.aspx
http://www.odata.org/libraries#JavaScript
http://msdn.microsoft.com/library/windows/desktop/dd561977.aspx
http://msdn.microsoft.com/library/windows/desktop/dd561977.aspx


Roaming State 
The automatic roaming of app state between a user’s devices is one of the most interesting and 
enabling features of Windows 8. There are few areas where a small piece of technology like this has so 
greatly reduced the burden on app developers! 

It works very simply. First, your app data roamingFolder and your roamingSettings container behave 
exactly like their local counterparts. So long as their combined size is less than Windows.Storage.- 
ApplicationData.current.roamingStorageQuota, Windows will copy that data to other devices where 
the same user is logged in has the same app installed; in fact, when an app is installed, Windows 
attempts to copy roaming data so that it’s there when the app is first launched. 

If the app is running simultaneously on multiple devices, the last writer of any particular file or setting 
always wins. When data has been roamed the other apps will receive the 
Windows.Storage.-ApplicationData.ondatachanged event. So your app will always read the 
appropriate roaming state on startup and refresh that state as needed within datachanged. You should 
always employ this strategy too in case Windows cannot bring down roaming state for a newly installed 
app right away (such as when the user installed the app and lost connectivity). As soon as the roaming 
state appears, you’ll receive the datachanged event. Scenario 5 of the Application data sample provides 
a basic demonstration of this. 

Deciding what your roaming experience really looks like is really a design question more than a 
development question. It’s a matter of taking all app settings that are not specific to the device 
hardware (such as settings that are related to screen size, video capabilities, or the presence of particular 
peripherals or sensors), and thinking through whether it makes sense for each setting to be roamed. A 
user’s favorites, for example, are appropriate to roam if they refer to data that isn’t local to the device. 
That is, favorite URIs or locations on a cloud storage service like SkyDrive, FaceBook, or Flickr are 
appropriate to roam; favorites and recently used files in a user’s local libraries are not. The viewing 
position within a cloud-based video, like a streaming movie, would be appropriate to roam, as would be 
the last reading position in a magazine or book. But again, if that content is local, then maybe not. 
Account configurations like email settings are often good candidates, so the user doesn’t have to 
configure the app again on other devices. 

At the same time, you might not be able to predict whether the user will really want to roam certain 
settings. In this case, the right choice is to give the user a choice! That is, include options in your Settings 
UI to allow the user to customize the roaming experience to their liking, especially as a user might have 
devices for both home and work where they want the same app to behave differently. For instance, with 
an RSS Reader the user might not want notifications on their work machine whenever new articles 
arrive, but would want real-time updates at home. The set of feeds itself, on the other hand, would 
probably always be roamed, but then again the user might want to keep separate lists. 

To minimize the size of your roaming state and stay below the quota, you might employ the 
Windows.Storage.Compression API for file-based data. For this same reason, never use roaming state for 
user data. Instead, use an online service like SkyDrive to store user data in the cloud, and then roam URIs 
to those files as part of the roaming experience. More details on using SkyDrive through its REST API can 

331

http://code.msdn.microsoft.com/windowsapps/ApplicationData-sample-fb043eb2


be found on the SkyDrive reference, on the Skydrive core reference (which includes a list of supported 
file types), and in the PhotoSky sample. A backgrounder on this and other Windows Live services can 
also be found on the Building Windows 8 blog post entitled Extending "Windows 8" apps to the cloud 
with SkyDrive. 

By now you probably have a number of other questions forming in your mind about how roaming 
actually works: “How often is data synchronized?” “How do I manage different versions?” “What else 
should I know?” These are good questions, and fortunately there are good answers! 

• Assuming there’s network connectivity, an app’s roaming state is roamed within 30 minutes on 
an active machine. It’s also roamed immediately when the user logs on or locks the machine. 
Locking the machine is always the best way to force a sync to the cloud. Note that if the cloud 
service is only aware of the user (that is, a Microsoft account) having only one device, 
synchronization with the cloud service happens only about once per day. When the service is 
aware that the user has multiple machines, it begins synchronizing within the 30-minute period; 
if the app is uninstalled on all but one machine, synchronization reverts to the longer period. 

• When saving roaming state, you can write values whenever you like, such as when those settings 
are changed. You don’t need to worry about writing settings as a group because Windows has a 
built-in debounce period to combine changes together and reduce overall network traffic. 

• If you have a group of settings that really must be roamed together, manage these as a 
composite setting in your roamingSettings container. 

• With files you create within the roamingFolder, these will not be roamed so long as you have the 
file open for writing (that is, as long as you have an open stream). It’s a good idea to make sure 
that all streams are closed when the app is suspended. 

• Windows allows each app to have up to 8K worth of “high priority” settings that will be roamed 
within one minute, thereby allowing apps on multiple devices to stay much more closely in sync. 
To use this, create a single or composite setting in the root of your roamingSettings with the 
name HighPriority—that is, roamingSettings.values["HighPriority"] (a container with this 
name will roam normally). So long as you keep the size of this setting below 8K, it will be roamed 
within a minute of being changed; if you exceed that size, it will be roamed with normal priority. 
See Scenario 6 of the Application data sample for a demonstration. 

• On a trusted PC, systemwide user settings like the Start page configuration are automatically 
roamed independent of app. This also includes encrypted credentials saved by apps in the 
credential locker; apps should never attempt to roam passwords. Apps that create secondary 
tiles (as we’ll see in Chapter 13) can indicate whether such tiles should be copied to a new device 
when the app is installed. 

• When there are multiple app data versions in use by the same app (with multiple app versions, of 
course), Windows will manage each version of the app data separately, meaning that newer app 
data won’t be roamed to devices with apps that use older app data versions. In light of this, it’s a 

332

http://msdn.microsoft.com/library/live/hh826531
http://msdn.microsoft.com/library/live/hh826545.aspx
http://code.msdn.microsoft.com/Live-SDK-Windows-Developer-8ad35141/
http://blogs.msdn.com/b/b8/archive/2011/09/28/extending-quot-windows-8-quot-apps-to-the-cloud-with-skydrive.aspx
http://blogs.msdn.com/b/b8/archive/2011/09/28/extending-quot-windows-8-quot-apps-to-the-cloud-with-skydrive.aspx


good idea to not be too aggressive in versioning your app data since it will break the roaming 
connection between apps. 

• The cloud service will retain multiple versions of roaming app data so long as there are multiple 
versions in use by the same Microsoft account. Only when all instances of the app have been 
updated will older versions of the roaming state be eligible for deletion. 

• When an updated app encounters an older version of roaming state, it should load it according 
to the old version but save it as the new version and call setVersionAsync. 

• Avoid using secondary versioning schemes within roaming state such that you introduce 
structural differences without changing the appdata version through setVersionAsync. Because 
the cloud service is managing the roaming state by this version number, and because the last 
writer always wins, some version of an app that expects to see some extra bit of data, and in fact 
saved it there, might find that it’s been removed because a slightly older version of the app 
didn’t write it. 

• Even if all apps are uninstalled from a user’s devices, the cloud service retains roaming data for “a 
reasonable time” (maybe 30 days) so that if a user reinstalls the app within that time period 
they’ll find that their settings are still intact. To avoid this retention and explicitly clear roaming 
state from the cloud, use the clearAsync method. 

Settings Pane and UI 

We’ve now seen all the different APIs that an app can use to manage its state where storage is 
concerned. This is all you need for settings and other app data that are managed internally within the 
app. The question now is how to manage user-configurable settings, and for that we turn to the 
Settings charm. 

When the user invokes the Settings charm (which can also be done directly with the Win+i key), 
Windows displays the Settings pane, a piece of UI that is populated with various settings commands as 
well as system functions along the bottom. Apps can add their own commands but are not obligated to 
do so. Windows guarantees that something always shows up for the app in this pane: it automatically 
displays the app name and publisher, a Rate and Review command that takes you to the Windows Store 
page for the app, an Update command if an update is available from the Store, and a Permissions 
command if the app has declared any capabilities in its manifest. (Note that Rate and Review won’t 
appear for apps you run from Visual Studio since they weren’t acquired from the Store.) 

The Settings charm is always available no matter where you are in the app, so you don’t need to 
think about having such a command on your app bar, nor do you ever need a settings command on 
your app canvas. That said, you can invoke the Settings charm programmatically, such as when you 
detect that a certain capability is turned off and you prompt the user about that condition. You might 
ask something like “Do you want to turn on geolocation for this app?” and if the user says Yes, you can 

333



invoke the Settings charm. This is done through the settings pane object returned from 
Windows.UI.ApplicationSettings.SettingPane.getForCurrentView, whose show method display 
the UI (or throws a kindly exception if the app is in snapped view or doesn’t have the focus, so don’t 
invoke it under those conditions!). The edge property of the settings pane object also tells you if it’s on 
the left or right side of the screen, depending on the left-to-right or right-to-left orientation of the 
system as a whole (a regional variance). 

And with that we’ve covered all the methods and properties of this object! Yet the most interesting 
part is how we add our own commands to the settings pane. But let’s first look at the guidelines for 
using Settings. 

Design Guidelines for Settings 
Beyond the commands that Windows automatically adds to the settings pane, the app can provide up 
to eight others, typically around four; anything more than eight will throw an exception. Because 
settings are global to an app, the commands you add are always the same: they are not sensitive to 
context. To say it another way, the only commands that should appear on the settings pane are those 
that are global to the app; commands that apply only to certain pages or contexts within a page should 
appear on the app bar or on the app canvas. Some examples of commands on the top-level settings 
pane are shown in Figure 8-2. 

 
FIGURE 8-2 Examples of commands on the top-level settings pane. Notice that the lower section of the pane always 
has system settings and the app name and publisher always appear at the top. Permissions and Rate and Review are 
added automatically. 

 

 

334

http://msdn.microsoft.com/library/windows/apps/windows.ui.applicationsettings.settingspane.getforcurrentview.aspx


Each app-supplied command can do one of two things. First, a command can simply be a hyperlink 
to a web page. Some apps use links for their Help, Privacy Statement, Terms of Use, License Agreements, 
and so on, which will open the linked pages in a browser. The other option is to have the command 
invoke a secondary flyout panel with more specific settings controls or simply an iframe to display 
web-based content. You can provide Help, Terms of Use, and other textual content in both these ways 
rather than switch to the browser. 

Note As stated in the Windows 8 app certification requirements, section 4.1, apps that collect personal 
information in any way must have a privacy policy or statement. This must be included on the app’s 
product description page in the Store as a minimum. Though not required, it is suggested that you also 
include a command for this in your Settings pane. 

Secondary flyouts are created with the WinJS.UI.SettingsFlyout control; some examples are shown 
in Figure 8-3. Notice that the secondary settings panes come in two sizes: narrow (346px) and wide 
(646px). The design guidelines suggest that all secondary panes for an app are the same size—that is, 
don’t make some narrow and some wide. You’ll only have a couple of these panes anyway, so that 
shouldn’t be a problem. Also note that the Permissions flyout, shown on the left of Figure 8-3, is 
provided by Windows automatically and is configured according to capabilities declared in your 
manifest. Some capabilities like geolocation are controlled in this pane; other capabilities like Internet 
and library access are simply listed because the user is not allowed to turn them on or off. 

 
FIGURE 8-3 Examples of secondary settings panes in the Travel, Weather, News, and Music apps of Windows 8. The 
first three are the narrow size; the fourth is wide. Notice that each app-provided pane is appropriately branded and 
provides a back button to return to the main Settings pane. The Permissions pane is provided by the system and thus 
reflects the system theme; it cannot be customized. 

 

335

http://msdn.microsoft.com/library/windows/apps/hh694083.aspx


A common group of settings are those that allow the user to configure their roaming 
experience—that is, a group of settings that determine what state is roamed (you see this on PC Settings 
> Sync Your Settings). It is also recommended that you include account/profile management 
commands within Settings, as well as login/logout functionality. As noted in Chapter 7, logins and 
license agreements that are necessary to run the app at all should be shown upon launch. For ongoing 
login-related functions, and to review license agreements and such, create the necessary commands 
and panes within Settings. Refer to Guidelines and checklist for login controls for more information on 
this subject. Guidelines for a Help command can also be found on Adding app help. 

Behaviorally, settings panes are light-dismiss but also have a header with a back button to return to 
the primary settings pane with all the commands. Because of the light-dismiss behavior, changing a 
setting on a pane applies the setting immediately: there is no OK or Apply button or other such UI. If the 
user wants to revert a change, she should just restore the original setting. 

For this reason it’s a good idea to use simple controls that are easy to switch back, rather than 
complex sets of controls that would be difficult to undo. The recommendation is to use toggle switches 
for on/off values (rather than check boxes), a button to apply an action (but without closing the settings 
UI), hyperlinks (to open the browser), text input boxes (which should be set to the appropriate type such 
as email address, password, etc.), radio buttons for groups of up to five mutually exclusive items, and a 
listbox (select) control for four to six text-only items. 

In all your settings, think in terms of “less is more.” Avoid having all kinds of different settings, 
because if the user is never going to find them, you probably don’t need to surface them in the first 
place! Also, while a settings pane can scroll vertically, try to limit the overall size such that the user has to 
pan down only once or twice, if at all. 

Some other things to avoid with Settings: 

• Don’t use Settings for workflow-related commands. Those belong on the app bar or on the app 
canvas, as discussed in Chapter 7. 

• Don’t use a top-level command in the Settings pane to perform an action other than linking to 
another app (like the browser). That is, top-level commands should never execute an action 
within the app. 

• Don’t use settings commands to navigate within the app. 

• Don’t use WinJS.UI.SettingsFlyout as a general-purpose control. 

And on that note, let’s now look at the steps to use Settings and the SettingsFlyout properly! 

Populating Commands 
The first part of working with Settings is to provide your specific commands when the Settings charm is 
invoked. Unlike app bar commands, these should always be the same no matter the state of the app; if 
you have context-sensitive settings, place commands for those in the app bar. 

336

http://msdn.microsoft.com/library/windows/apps/hh965453.aspx
http://msdn.microsoft.com/library/windows/apps/hh465043.aspx


There are two ways to implement this process in an app written in HTML and JavaScript: using WinRT 
directly, or using the helpers in WinJS. Let’s look at these in turn for a simple Help command. 

To know when the charm is invoked through WinRT, obtain the settings pane object through 
Windows.UI.ApplicationSettings.SettingsPane.getForCurrentView and add a listener for its 
commandsrequested event (this is a WinRT event, so be sure to remove the listener if necessary): 

// The n variable here is a convenient shorthand 
var n = Windows.UI.ApplicationSettings; 
var settingsPane = n.SettingsPane.getForCurrentView(); 
settingsPane.addEventListener("commandsrequested", onCommandsRequested); 

Within your event handler, create Windows.UI.ApplicationSettings.SettingsCommand objects for 
each command, where each command has an id, a label, and an invoked function that’s called when 
the command is tapped or clicked. These can all be specified in the constructor as shown below: 

function onCommandsRequested(e) { 
    // n is still the shortcut variable to Windows.UI.ApplicationSettings 
    var commandHelp = new n.SettingsCommand("help", "Help", helpCommandInvoked); 
    e.request.applicationCommands.append(commandHelp); 
} 

The second line of code is where you then add these commands to the settings pane itself. You do 
this by appending them to the e.request.applicationCommands object. This object is a WinRT 
construct called a vector that manages a collection with commands like append and insertAt. In this 
case we have a vector of SettingsCommand objects, and as you can see above, it’s easy enough to 
append a command. You’d make such a call for each command, or you can pass an array of such 
commands to the replaceAll method instead of append. What then happens within the invoked handler 
for each command is the interesting part, and we’ll come back to that in the next section. 

You can also prepopulate the applicationCommands vector outside of the commandsrequested event; 
this is perfectly fine because your settings commands should be constant for the app. The Quickstart: 
add app help topic shows an example of this, which I’ve modified here to show the use of replaceAll: 

var n = Windows.UI.ApplicationSettings; 
var settingsPane = n.SettingsPane.getForCurrentView(); 
var vector = settingsPane.applicationCommands; 
 
//Ensure no settings commands are currently specified in the settings charm 
vector.clear(); 
 
var commands = [ new settingsSample.SettingsCommand("Custom.Help", "Help", OnHelp), 
                 new n.SettingsCommand("Custom.Parameters", "Parameters", OnParameters)]; 
vector.replaceAll(commands); 

This way, you don’t actually need to register for or handle commandsrequested directly. 

 

 

337

http://msdn.microsoft.com/library/windows/apps/windows.ui.applicationsettings.settingspane.getforcurrentview.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.applicationsettings.settingscommand.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.applicationsettings.settingspanecommandsrequest.applicationcommands.aspx
http://msdn.microsoft.com/library/windows/apps/hh465062.aspx
http://msdn.microsoft.com/library/windows/apps/hh465062.aspx


Now because most apps will likely use settings in some capacity, WinJS provides some shortcuts to 
this whole process. First, instead of listening for the WinRT event, simply assign a handler to 
WinJS.Application.onsettings (which is a wrapper for commandsrequested): 

WinJS.Application.onsettings = function (e) { 
    // ... 
}; 

In your handler, create a JSON object describing your commands and store that object in 
e.detail.applicationcommands. Mind you, this is different from the WinRT object—just setting this 
property accomplishes nothing. What comes next is passing the now-modified event object to 
WinJS.UI.SettingsFlyout.populateSettings as follows (taken from Scenario 2 of the App settings 
sample): 

WinJS.Application.onsettings = function (e) { 
    e.detail.applicationcommands =  
        { "help": { title: "Help", href: "/html/2-SettingsFlyout-Help.html" } }; 
    WinJS.UI.SettingsFlyout.populateSettings(e); 
}; 

The populateSettings method traverses the e.details.applicationcommands object and calls the 
WinRT applicationCommands.append method for each item. This gives you a more compact method to 
accomplish what you’d do with WinRT, and it also simplifies the implementation of settings commands, 
as we’ll see next. 

Note The WinJS helpers are specifically designed for invoking SettingsFlyout controls that are 
populated with the HTML file you indicate in the href property. That property must refer to in-package 
contents; it cannot be used to create settings commands that launch a URI (commonly used for Terms 
of Service and Privacy Statement commands). In such cases you must use the WinRT API directly 
alongside WinJS.UI.SettingsFlyout.populateSettings. Then again, it’s a simple matter to bring web 
content directly into a settings flyout with an iframe, which keeps the Settings experience within the 
app. 

Implementing Commands: Links and Settings Flyouts 
Technically speaking, within the invoked function for a settings command you can really do anything. 
Truly! Of course, as described in the design guidelines earlier, there are recommendations for how to 
use settings and how not to use them. For example, settings commands shouldn’t act like app bar 
commands that affect content, nor should they navigate within the app itself. Ideally, a settings 
command does one of two things: either launch a hyperlink (to open a browser) or display a secondary 
settings pane. 

In the base WinRT model for settings, launching a hyperlink uses the 
Windows.System.-Launcher.launchUriAsync API as follows: 
 
 

338

http://code.msdn.microsoft.com/windowsapps/App-settings-sample-1f762f49
http://code.msdn.microsoft.com/windowsapps/App-settings-sample-1f762f49
http://msdn.microsoft.com/library/windows/apps/hh701480.aspx


function helpCommandInvoked(e) { 
    var uri = new Windows.Foundation.Uri("http://example.domain.com/help.html"); 
    Windows.System.Launcher.launchUriAsync(uri).done(); 
} 

In the second case, secondary panes are implemented with the WinJS.UI.SettingsFlyout control. 
Again, technically speaking, you’re not required to use this control: you can display any UI you want 
within the invoked handler. The SettingsFlyout control, however, provides for the recommended 
narrow and wide sizes, supplies enter and exit animations, fires events like [before | after][show | 
hide]43 and other such features. And since you can place any HTML you want within the control, 
including other controls, and the flyout will automatically handle vertical scrolling, there’s really no 
reason not to use it. 

As a WinJS control, you can declare a SettingsFlyout for each one of your commands in markup 
(making sure WinJS.UI.process/processAll is called, which handles any other controls in the flyout). 
For example, Scenario 2 of the App settings sample has the following flyout for help (omitting the text 
content and reformatting a bit), the result of which is shown in Figure 8-4: 

<div data-win-control="WinJS.UI.SettingsFlyout" aria-label="Help settings flyout" 
    data-win-options="{settingsCommandId:'help', width:'wide'}"> 
    <!-- Use either 'win-ui-light' or 'win-ui-dark' depending on the contrast between  
         the header title and background color; background color reflects app's 
         personality --> 
    <div class="win-ui-dark win-header" style="background-color:#00b2f0">  
       <button type="button" onclick="WinJS.UI.SettingsFlyout.show()" 
           class="win-backbutton"></button> 
       <div class="win-label">Help</div> 
       <img src="../images/smallTile-sdk.png" style="position: absolute; right: 40px;"/> 
    </div> 
    <div class="win-content "> 
        <div class="win-settings-section"> 
            <h3>Settings charm usage guidelines summary</h3> 
            <!-- Other content omitted --> 
            <li>For more in-depth usage guidance, refer to the 
                <a href="http://msdn.microsoft.com/en-us/library/windows/apps/hh770544"> 
                App settings UX guide</a>.</li> 
        </div> 
    </div> 
</div> 

As always, there are options for this control as well as a few applicable win-* style classes. The only two 
options are settingsCommandId, for obvious purpose, and width, which can be 'narrow' or 'wide'. We see 
these both in the example above. The styles that apply here are win-settingsflyout, which styles the 
whole control (typically not used except for scoping other style rules), and win-ui-light and 
win-ui-dark, which apply a light or dark theme to the parts of the flyout. In this example, we use the dark 
theme for the header while the rest of the flyout uses the default light theme. 

43 How’s that for a terse combination of four event names? It’s also worth noting that the 
document.body.-DOMNodeInserted event will also fire when a flyout appears. 

339

http://msdn.microsoft.com/library/windows/apps/hh701253.aspx
http://code.msdn.microsoft.com/windowsapps/App-settings-sample-1f762f49


 
FIGURE 8-4 The Help settings flyout (truncated vertically) from Scenario 2 of the App settings sample. Notice the 
hyperlink on the lower right. 

In any case, you can see that everything within the control is just markup for the flyout contents, 
nothing more, and you can wire up events to controls in the markup or in code. You’re free to use 
hyperlinks here, such as to launch the browser to open a fuller Help page. You can also use an iframe to 
directly host web content within a settings flyout, as demonstrated in Scenario 3 of the same sample. 

So how do we get this flyout to show when a command is invoked on the top-level settings pane? 
The easy way is to let WinJS take care of the details using the information you provide to WinJS.UI.- 
SettingsFlyout.populateSettings. Here’s the example again from Scenario 2, as we saw in the previous 
section: 

WinJS.Application.onsettings = function (e) { 
    e.detail.applicationcommands =  
        { "help": { title: "Help", href: "/html/2-SettingsFlyout-Help.html" } }; 
    WinJS.UI.SettingsFlyout.populateSettings(e); 
}; 

In the JSON you assign to applicationCommands, each object identifies both a command and its 
associated flyout. The name of the object is the flyout id (“help”), its title property provides the 
command label for the top-level settings pane (“Help” in the above), and its href property identifies the 
HTML page where the flyout with that id is declared (“/html/2-SettingsFlyout-Help.html”). 

With this information, WinJS can both populate the top-level settings pane and provide automatic 
invocation of the desired flyout (calling WinJS.UI.process all along the way) without you having to 
write any other code. This is why in most of the scenarios of the sample you don’t see any explicit calls 
to showSettings, just a call to populateSettings. 

340



Programmatically Invoking Settings Flyouts 
Let’s now see what’s going on under the covers. In addition to being a control that you use to define a 
specific flyout, WinJS.UI.SettingsFlyout has a couple of other static methods besides 
populateSettings: show and showSettings. The show method specifically brings out the top-level 
Windows settings pane—that is, Windows.UI.ApplicationSettings.SettingsPane. This is why you see 
the back button’s click event in the above markup wired directly to show, because the back button 
should return to that top-level UI. 

Note While it’s possible to programmatically invoke your own settings panes, you cannot do so with 
system-provided commands like Permissions and Rate and Review. If you have a condition for which 
you need the user to change a permission, such as enabling geolocation, the recommendation is to 
display an error message that instructs the user to do so. 

The showSettings method, on the other hand, shows a specific settings flyout that you define 
somewhere in your app. The signature of the method is showSettings(<id> [, <page>]) where <id> 
identifies the flyout you’re looking for and the optional <page> parameter identifies an HTML document 
to look in if a flyout with <id> isn’t found in the current document. That is, showSettings will always start 
by looking in the current document for a WinJS.UI.SettingsFlyout element that has a matching 
settingsCommandId property or a matching HTML id attribute. If such a flyout is found, that UI is shown. 

If the markup in the previous section (with Figure 8-4) was contained in the same HTML page that’s 
currently loaded in the app, the following line of code will show that flyout: 

WinJS.UI.SettingsFlyout.showSettings("help"); 

In this case you could also omit the href part of the JSON object passed to populateCommands, but 
only again if the flyout is contained within the current HTML document already. 

The <page> parameter, for its part, allows you to separate your settings flyouts from the rest of your 
markup; its value is a relative URI within your app package. The App settings sample uses this to place 
the flyout for each scenario into a separate HTML file. You can also place all your flyouts in one HTML 
file, so long as they have unique ids. Either way, if you provide a <page>, showSettings will load that 
HTML into the current page using WinJS.UI.Pages.load (which calls WinJS.UI.processAll), scans that 
DOM tree for a matching flyout with the given <id>, and shows it. Failure to locate the flyout will cause 
an exception. 

Scenario 5 of the sample shows this form of programmatic invocation. This is also a good example 
(see Figure 8-5) of a vertically scrolling flyout: 

WinJS.UI.SettingsFlyout.showSettings("defaults", "/html/5-SettingsFlyout-Settings.html"); 

341

http://msdn.microsoft.com/library/windows/apps/hh701277.aspx
http://msdn.microsoft.com/library/windows/apps/hh770581.aspx


 
FIGURE 8-5 The settings flyout from Scenario 5 of the App settings sample, showing how a flyout supports vertical 
scrolling; note the scrollbar positions for the top portion (left) and the bottom portion (right). 

A call to showSettings is thus exactly what you use within any particular command’s invoked handler 
and is what WinJS sets up within populateCommands. But it also means you can call showSettings from 
anywhere else in your code when you want to display a particular settings pane. For example, if you 
encounter an error condition in the app that could be rectified by changing an app setting, you can 
provide a button in the message dialog of notification flyout that calls showSettings to open that 
particular pane. And for what it’s worth, the hide method of that flyout will dismiss it; it doesn’t affect 
the top-level settings pane for which you must use 
Windows.UI.Application-Settings.SettingsPane.getForCurrentView.hide. 

You might use showSettings and hide together, in fact, if you need to navigate to a third-level 
settings pane. That is, one of your own settings flyouts could contain a command that calls hide on the 
current flyout and then calls showSettings to invoke another. The back button of that subsidiary flyout 
(and it should always have a back button) would similarly call hide on the current flyout and 
showSettings to make its second-level parent reappear. That said, we don’t recommend making your 
settings so complex that third-level flyouts are necessary, but the capability is there if you have a 
particular scenario that demands it. 

Knowing how showSettings tries to find a flyout is also helpful if you want to create a WinJS.- 
UI.SettingsFlyout programmatically. So long as such a control is in the DOM when you call 
showSettings with its id, WinJS will be able to find it and display it like any other. It would also work, 
though I haven’t tried this and it’s not in the sample, to use a kind of hybrid approach. Because 
showSettings loads the HTML page you specify as a page control with WinJS.UI.Pages.load, that page 
can also include its own script wherein you define a page control object with methods like processed 
and ready. Within those methods you could then make specific customizations to the settings flyout 
defined in the markup. 

342



Sidebar: Changes to Permissions 
A common question along these lines is whether an app can receive events when the user 
changes settings within the Permissions pane. The answer is no, which means that you discover 
whether access is disallowed only by handling Access Denied exceptions when you try to use the 
capability. To be fair, though, you always have to handle denial of a capability gracefully because 
the user can always deny access the first time you use the API. When that happens, you again 
display a message about the disabled permission (as shown with the Here My Am! app from 
Chapter 7) and provide some UI to reattempt the operation. But the user still needs to invoke the 
Permissions settings manually. Refer also to the Guidelines for devices that access personal data 
for more details. 

User Data: Libraries, File Pickers, and File Queries 

Now that we’ve thoroughly explored app data and app settings, we’re ready to look at the other part of 
state: user data. User data, again, is all the good stuff an app might use or generate that isn’t specifically 
tied to the app. Multiple apps might be able to work with the same files, such as pictures and music, and 
user data always stays on a device regardless of what apps are present. 

Our first concern with user data is where to put it and where to access it, which involves the various 
user data libraries, removable storage, and the file pickers. Using the access cache is also important to 
remember the fact that a user once granted access to a file or folder that we’re normally not allowed to 
touch programmatically. The good thing about all such files and folders is that working with them 
happens through the same StorageFolder and StorageFile classes we’ve already seen. The other main 
topic we’ll explore is that of file queries, a richer way to enumerate the contents of folders and libraries 
that lend very well to visual representations within controls like a ListView. 

As we’ve seen, a Windows Store app, by default, has access only to its package and its AppData 
folders. This means that, by default, it doesn’t actually have any access to typical locations for user data! 
There are then two ways that such access is acquired: 

• Declare a library capability in the manifest. 

• Let the user choose a location through the File Picker. 

We’ll look first at the File Picker, because in many cases it’s all you really need in an app! But there 
are other scenarios—such as gallery-style apps—where you need direct access, so there are five 
capabilities in the manifest for this purpose, as shown in Figure 8-6 (left side). Three of them—Music 
Library, Pictures Library, and Videos Library—grant full read-write access to the user’s Music, Pictures, 
and Videos folders. These appear on the app’s product page in the Windows Store and on the 
Permissions settings pane, but they are not subject to user consent at run time. Of course, if it’s not 
obvious why you’re declaring these capabilities, be sure to explain yourself on your product page. And  
 
 

343

http://msdn.microsoft.com/library/windows/apps/Hh768223.aspx


as for Documents Library and Removable Storage, simply declaring the capability isn’t sufficient: you also 
need to declare specific file type associations to which you’re then limited. (The Documents Library 
capability is intended only for apps that need to open embedded content in another document.) 

  
FIGURE 8-6 Capabilities related to user data in the manifest editor (left) and the file type association editor (right). 
Notice that the red X appears on Capabilities when additional declarations are needed in conjunction with this 
capability. The red X on Declarations indicates that the information is not yet complete. 

Sidebar: The Background Transfer API 
A topic that’s relevant to user data, but one that we won’t cover in detail until Chapter 14 is the 
Windows.Networking.BackgroundTransfer API of WinRT. This API allows you to run downloads 
and uploads independently of app lifetime—that is, while the app is running, suspended, or not 
running at all. This API is provided because transfer of large files to and from online resources is a 
common need for apps but one that doesn’t really need the apps themselves to run in the 
background and consume power. Instead, apps set up transfer operations with the system that 
will continue if the app is shut down. When the app is relaunched, it can then check on the status 
of those transfers. 

Using the File Picker 
Although the File Picker doesn’t sound all that glamorous, it’s actually, to my mind, one of the coolest 
features in Windows 8. “Wait a minute!” you say, “How can a UI to pick a file or folder be, well, cool!” The 
reason is that this is the place where the users can browse and select from their entire world of data. 
That world includes not only what’s on their local file system or the local network, but also any data 
that’s made available by what are called file picker providers. These are apps that specifically take a 
library of data that’s otherwise buried behind a web service, within an app’s own database, or even 
generated on the fly, and makes it appear as if it’s part of the local file system. 

344

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.aspx


Think about this for a moment (as I invited you to do way back in Chapter 1). When you want to 
work with an image from a photo service like Flickr or Picasa, for example, what do you typically have to 
do? First step is to download that file to the local file system within some app that gives you an interface 
to that service (which might be a web app). Then you can make whatever edits and modifi-cations you 
want, after which you typically need to upload the file back to the service. Well, that’s not so bad, except 
that it’s time consuming, forces you to switch between multiple apps, and eventually litters your system 
with a bunch of temporary files, the relationship of which to your online files is quickly forgotten. 

Having a file picker provider that can surface such data directly, both for reading and writing, 
eliminates all those intermediate steps, and eliminates the need to switch apps. This means that a 
provider for a photo service makes it possible for other apps to load, edit, and save online content as if it 
all existed on the local file system. Consuming apps don’t need to know anything about those other 
services, and they automatically have access to more services as more provider apps are installed. 
What’s more, providers can also make data that isn’t normally stored as files appear as though they are. 
For example, the Windows 8 Camera app is a file picker provider that lets you can activate your camera, 
take a picture, and have it returned as if you loaded it from the file system. All of this gives users a very 
natural means to flow in and out of data no matter where it’s stored. Like I said, I think this is a very cool 
feature! 

We’ll look more at the question of providers in Chapter 12. Our more immediate concern is how we 
make use of these file pickers to obtain a StorageFile or StorageFolder object.  

The File Picker UI 
Before looking at the code, let’s familiarize ourselves with the file picker UI itself. When invoked, you’ll 
see a full-screen view like that in Figure 8-7, which shows the picker in single-selection mode with a 
“thumbnail” view. In such a view, items are shown as images in a ListView with a rich tooltip control 
appearing when you hover over an item. In a way, the file picker itself is like an app that’s invoked for 
this purpose, and it’s designed to be beautiful and immersive just like other Windows Store apps. 

In Figure 8-7, the Pictures heading shows the current location of the picker. The Sort By Name 
drop-down list lets you choose other sorting criteria, and the drop-down list next to the Files header lets 
you choose other locations, as shown in Figure 8-8. These locations include other areas of the file 
system (though never protected areas like the Windows folder or Program Files), network locations, and 
other provider apps.  

 

345



 
FIGURE 8-7 A single-selection file picker on the Pictures library in thumbnail view mode, with a hover tooltip 
showing for one of the items (the head of the Sphinx) and the selection frame showing on another (the Taj Mahal). 

 
FIGURE 8-8 Selecting other locations in which to browse files; notice that apps are listed along with file system 
locations. 

Choosing another file system location navigates there, of course, from which you can browse into 
other folders. Selecting an app, on the other hand, launches that app through the file picker provider 
contract. In this case it appears within a system-provided (but app-branded) UI like that shown in Figure 
8-9. Here the drop-down list next to the heading lets you switch back to other picker locations, and the 
Open and Cancel buttons act as they do for other picker selections. In short, a provider app really is just 
an extension to the File Picker UI, but a very powerful one at that. And ultimately such an app just 

346



returns an appropriate StorageFile object that makes its way back to the original app. It’s quite a lot 
happening with just a single call to the file picker API! 

 
FIGURE 8-9 The camera app invoked through the file picker provider contract. Where did that nuthatch come from? 

The file picker has a couple of other modes. One is the ability to select multiple files—even from 
different apps!—as shown in Figure 8-10, where all the selections are placed into what’s called the 
basket on the bottom of the screen. The picker can also be used to select a folder, as shown in Figure 
8-11 (provider apps aren’t shown in this case), or a save location and filename, as shown in Figure 8-12. 

 
FIGURE 8-10 The file picker in multiselect mode with the selection basket at the bottom. What shown here is also the 
“list” view mode that’s set independently from the selection mode. 

347



 
FIGURE 8-11 The file picker used to select a folder—notice that the button text changed and a preview of the folder 
contents appear on the right. 

 
FIGURE 8-12 The file picker used to select a save location and filename. 

The File Picker API (and a Few Friends) 
Now that we’ve seen the visual results of the file picker, let’s see how we invoke it from our app code 
through the API in Windows.Storage.Pickers. All the images we just saw came from the File picker 
sample, so we’ll also use that as the source of our code. 

For starters, Scenario 1 in its pickSinglePhoto function (js/scenario1.js) uses the picker to obtain a single 
StorageFile for opening (reading and writing): 

348

http://msdn.microsoft.com/library/windows/apps/br207928.aspx
http://code.msdn.microsoft.com/windowsapps/File-picker-sample-9f294cba
http://code.msdn.microsoft.com/windowsapps/File-picker-sample-9f294cba


function pickSinglePhoto() { 
    // Verify that we are currently not snapped, or that we can unsnap to open the picker 
    var currentState = Windows.UI.ViewManagement.ApplicationView.value; 
    if (currentState === Windows.UI.ViewManagement.ApplicationViewState.snapped && 
        !Windows.UI.ViewManagement.ApplicationView.tryUnsnap()) { 
        // Fail silently if we can't unsnap 
        return; 
    } 
 
    // Create the picker object and set options 
    var openPicker = new Windows.Storage.Pickers.FileOpenPicker(); 
    openPicker.viewMode = Windows.Storage.Pickers.PickerViewMode.thumbnail; 
    openPicker.suggestedStartLocation =  
        Windows.Storage.Pickers.PickerLocationId.picturesLibrary; 
 
    // Users expect to have a filtered view of their folders depending on the scenario. 
    // For example, when choosing a documents folder, restrict the filetypes to documents  
    // for your application. 
    openPicker.fileTypeFilter.replaceAll([".png", ".jpg", ".jpeg"]); 
 
    // Open the picker for the user to pick a file 
    openPicker.pickSingleFileAsync().done(function (file) { 
        if (file) { 
            // Application now has read/write access to the picked file 
        } else { 
            // The picker was dismissed with no selected file 
        } 
    }); 
} 

As you can see, you should not try to invoke the File Picker when in snapped view; this will, like the 
Settings Pane, cause an exception. You can check for such a condition ahead of time, as shown here, or 
you can add an error handler within the done at the end.44 In any case, to invoke the picker we create 
an instance of Windows.Storage.Pickers.FileOpenPicker, configure it, and then call its 
pick-SingleFileAsync method. The result of pickSingleFileAsync is the file argument given to the 
completed handler, which will be either a StorageFile object for the selected file or null if the user 
canceled. This is why you must always check that the picker’s result is not null. 

With the configuration, here we’re setting the picker’s viewMode to thumbnail (from the enumeration 
Windows.Storage.Pickers.PickerViewMode), resulting in the view of Figure 8-7. The other possibility 
here is list, which gives a view like Figure 8-10. 

We also set the suggestedStartLocation to the picturesLibrary, which is a value from the 
Windows.Storage.Pickers.PickerLocationId enumeration; other possibilities are documentsLibrary, 
computerFolder, desktop, downloads, homeGroup, musicLibrary, and videosLibrary, basically all the other 
locations you see in Figure 8-8. Note that using these locations does not require you to declare 
capabilities in your manifest because by using the picker, the user is giving consent for you to access 

44 The sample, it should be noted, uses then instead of done on that last async call; while then works, it should actually be 
done especially if you’re going to handle exceptions there. 

349

http://msdn.microsoft.com/library/windows/apps/br207847.aspx


those files. If you check the manifest in this sample, you’ll see that no capabilities are declared at all. 

The one other property we set is the fileTypeFilter (a FileExtensionVector object) to indicate the 
type of files we’re interested in (PNG and JPEG). Beyond that, the FileOpenPicker also has a 
commitButtonText property that sets the label of the primary button in the UI (the one that’s not 
Cancel), and settingsIdentifier, a means to essentially remember different contexts of the file picker. 
For example, an app might use one identifier for selecting pictures, where the starting location is set to 
the pictures library and the view mode to thumbnails, and another id for selecting documents with a 
different location and perhaps a list view mode. 

This sample, as you can also see, doesn’t actually do anything with the file once it’s obtained, but it’s 
quite easy to see what we might do. We can, for instance, simply pass the StorageFile to 
URL.createObjectURL and assign the result to an img.src property for display. The same thing could be 
done with audio and video, possibilities that are all demonstrated in Scenario 1 of the Using a blob to 
save and load content sample I mentioned earlier in this chapter. That sample also shows reading the 
file contents through the HTML FileReader API alongside the other WinRT and WinJS APIs we’ve seen. 
You could also transcode an image (or other media) in the StorageFile to another format (as we’ll see 
in Chapter 10), retrieve thumbnails as shown in the File and folder thumbnail sample, or use the 
StorageFile methods to make a copy in another location, rename the file, and so forth. But from the file 
picker’s point of view, its particular job was well done! 

Returning now to the file picker sample, picking multiple files is pretty much the same story as shown 
in the pickMultipleFiles function of js/scenario2.js. Here we’re using the list view mode and starting 
off in the documentsLibrary. Again, these start locations don’t require capability declarations in the 
manifest: 

function pickMultipleFiles() { 
    // Verify that we are currently not snapped, etc... (some code omitted) 
 
    // Create the picker object and set options 
    var openPicker = new Windows.Storage.Pickers.FileOpenPicker(); 
    openPicker.viewMode = Windows.Storage.Pickers.PickerViewMode.list; 
    openPicker.suggestedStartLocation = 
        Windows.Storage.Pickers.PickerLocationId.documentsLibrary; 
    openPicker.fileTypeFilter.replaceAll(["*"]); 
 
    // Open the picker for the user to pick a file 
    openPicker.pickMultipleFilesAsync().done(function (files) { 
        if (files.size > 0) { 
            // Application now has read/write access to the picked file(s) 
        } else { 
            // The picker was dismissed with no selected file 
        } 
    }); 
} 

 

 

350

http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.fileextensionvector.aspx
http://code.msdn.microsoft.com/windowsapps/Blob-Sample-0e35889e
http://code.msdn.microsoft.com/windowsapps/Blob-Sample-0e35889e
http://code.msdn.microsoft.com/windowsapps/File-thumbnails-sample-17575959


When picking multiple files, the result of pickMultipleFilesAsync is a FilePickerSelected- 
FilesArray object, which you can access like any other array using [ ] (though it has limited methods 
otherwise). 

Scenario 3 of the sample shows a call to pickSingleFolderAsync, where the result of the operation is 
a StorageFolder. Here you must indicate a fileTypeFilter that helps users pick an appropriate location 
where some files of that type exist, or where they can create a new one (js/scneario3.js): 

function pickFolder() { 
    // Verify that we are currently not snapped... (some code omitted)  
 
    // Create the picker object and set options 
    var folderPicker = new Windows.Storage.Pickers.FolderPicker; 
    folderPicker.suggestedStartLocation = Windows.Storage.Pickers.PickerLocationId.desktop; 
    folderPicker.fileTypeFilter.replaceAll([".docx", ".xlsx", ".pptx"]); 
 
    folderPicker.pickSingleFolderAsync().then(function (folder) { 
        if (folder) { 
            // Cache folder so the contents can be accessed at a later time 
            Windows.Storage.AccessCache.StorageApplicationPermissions.futureAccessList 
                .addOrReplace("PickedFolderToken", folder); 
        } else { 
            // The picker was dismissed with no selected file 
        } 
    }); 
} 

In this example we also see how to save that selected StorageFolder in the 
Windows.Storage.-AccessCache for future use. Again, by selecting this folder the user has granted the 
app programmatic access to its contents, but only for the current session. To maintain that access, the 
app must save the storage item in the futureAccessList of the cache, where it can be later retrieved 
using the futureAccessList.getFolderAsync, getItemAsync, or getFileAsync methods. As before, refer 
to Scenario 6 of the File access sample for more on this feature, and note that the AccessCache API also 
provides for recently used items as well. The key thing to remember here is that for any location outside 
of your package, app data, or libraries for which you’ve declared access, you must use the AccessCache 
to maintain access in the future. It won’t work to save a pathname to such locations and attempt to 
open files again later. 

For the final file picker use case, Scenario 4 of the file picker sample creates a FileSavePicker object 
and calls its pickSaveFileAsync method, resulting in the UI of Figure 8-12: 

function saveFile() { 
    // Verify that we are currently not snapped... (some code omitted)  
 
    // Create the picker object and set options 
    var savePicker = new Windows.Storage.Pickers.FileSavePicker(); 
    savePicker.suggestedStartLocation =  
        Windows.Storage.Pickers.PickerLocationId.documentsLibrary; 
    // Dropdown of file types the user can save the file as 
    savePicker.fileTypeChoices.insert("Plain Text", [".txt"]); 

351

http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.filepickerselectedfilesarray.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.filepickerselectedfilesarray.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.accesscache.aspx
http://code.msdn.microsoft.com/windowsapps/File-access-sample-d723e597
http://msdn.microsoft.com/library/windows/apps/br207871.aspx


    // Default file name if the user does not type one in or select a file to replace 
    savePicker.suggestedFileName = "New Document"; 
 
    savePicker.pickSaveFileAsync().done(function (file) { 
        if (file) { 
            // Prevent updates to the remote version of the file until we finish making 
            // changes and call CompleteUpdatesAsync. 
            Windows.Storage.CachedFileManager.deferUpdates(file); 
 
            // write to file 
            Windows.Storage.FileIO.writeTextAsync(file, file.name).done(function () { 
                // Let Windows know that we're finished changing the file so the other app 
                // can update the remote version of the file. 
                // Completing updates might require Windows to ask for user input. 
                Windows.Storage.CachedFileManager.completeUpdatesAsync(file) 
                    .done(function (updateStatus) { 
                        if (updateStatus ===  
                            Windows.Storage.Provider.FileUpdateStatus.complete) { 
                        } else { 
                            // ...  
                        } 
                    } 
                }); 
            }); 
        } else { 
            // The picker was dismissed  
        } 
    }); 
} 

The FileSavePicker has many of the same properties as the FileOpenPicker, but it replaces 
fileTypeFilter with fileTypeChoices (to populate the drop-down list) and includes a suggested- 
FileName (a string), suggestedSaveFile (a StorageFile), and defaultFileExtension (a string). What’s 
interesting in the code above are the interactions with the Windows.Storage.CachedFileManager. This 
object helps file picker providers know when they should synchronize local and remote files, which 
would be necessary when a file consumer saves new content as we see here. From the consumer side, 
what we see here is a typical pattern for files obtained from the file picker (or the access cache if saved 
there in a previous session): we simply need to let the CachedFileManager know that we’re writing to 
the file and tell it when we’re done. Of course, this isn’t needed when working with files that you know 
are local, such as those in your AppData folders. We’ll learn more about this mechanism in Chapter 12 
when we look at the provider side.  

Media Libraries 
Now that we’ve seen understood the capabilities of the file picker, we can turn our attention to the 
other libraries. But before you start checking off capabilities in your manifest, pause for a moment to ask 
this: are those capabilities actually needed? The file pickers provide very extensive access to all these 
libraries without needing any capabilities at all. Through the pickers you can have the user select one or 
more files to open, manipulate, and save; the user can give you access to a folder; and the user can 

352

http://msdn.microsoft.com/library/windows/apps/windows.storage.cachedfilemanager.aspx


indicate a new filename in which to save user data. 

You only need specific library access if you’re going to work within any of these libraries outside of 
the file picker. For example, if you want to enumerate the contents of the Pictures or Music folder to 
display a list in a ListView or FlipView control, as we did in Chapter 5, you do need to declare a 
capability. 

To be even more specific, without going through the file picker there is only one way to gain 
programmatic access to a media library: obtaining a StorageFolder from the Windows.- 
Storage.KnownFolders object. For media, the applicable properties here are picturesLibrary, 
musicLibrary, and videosLibrary. Without the appropriate capability, trying to retrieve one of these 
will throw an access denied exception. 

If you don’t need to access KnownFolders, then, you don’t need to declare the capabilities! And 
remember that since all your declared capabilities are listed for your app in the Windows Store and 
might make consumers think twice about installing your app, fewer is definitely better. 

That said, if you do decide to access media libraries directly, your work there involves StorageFolder 
and StorageFile objects pretty much like any other storage location. One difference, however, is that 
you can work with the metadata often included with media files; we’ll see a little more of this in Chapter 
10. 

Documents and Removable Storage 
As with the media libraries, programmatic access to the user’s documents folder as well as removable 
storage devices are controlled by capability declarations. It’s important once again to understand that 
both of these capabilities also require you to declare file type associations, meaning that you cannot 
simply enumerate the contents of these folders directly or write whatever files you want therein. Put 
another way, going directly to these folders—through Windows.Storage.KnownFolders.- 
documentsLibrary and removableDevices, both of which are StorageFolder objects—just for a limited 
set of file types is useful only in very particular scenarios. For the documents library, in fact, the 
documentation states that “the only acceptable use of the [capability] is to support the opening of 
embedded content within another document.” The Windows Store will also ask you to justify your 
declaration of the capability directly and also requires that you have a “company account” on the 
Windows Store, not just an individual account. 

It’s more likely that you simply want to allow the user to open or save a file in these locations, or 
enumerate their contents, in which case all you need is the file picker. This way you don’t need to 
associate your app with specific tile types, which also says that your app is available to service such files 
at any time. 

For example, the Removable storage sample, in order to demonstrate access to removable devices, 
declares associations with .gif, .jpg, and .png files. As a result, it shows up in Open With lists like the 
context menu of Windows Explorer on the desktop and the default program selector: 

353

http://msdn.microsoft.com/library/windows/apps/windows.storage.knownfolders.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.knownfolders.aspx
http://code.msdn.microsoft.com/windowsapps/Removable-Storage-52cc49f0


  
The same is also true for documents (see the File access sample again), so unless your app is again 

positioned to service those file types, you probably don’t need these capabilities.  

How exactly to declare file type associations is a form of contracts, so we’ll cover the details in 
Chapter 12. 

Rich Enumeration with File Queries 
To enumerate files within a particular location (capabilities aside), you employ what’s called a file query 
or, simply, a search. A file query is exactly what Windows Explorer on the desktop uses to search the file 
system and can involve file contents as well as any number of other properties/metadata. These queries 
involve what are known as Advanced Query Syntax (AQS) strings that are capable of identifying and 
describing as many specific criteria you desire. As such, the whole topic is somewhat beyond the scope 
of this book, but we can at least touch on how WinRT makes the power of file queries available to apps 
through the Windows.Storage.Search. One foot in the deep rabbit hole will be enough! 

Indeed, there are literally thousands of options you can use in an AQS string, because they are built 
from any number of Windows properties such as System.ItemDate, System.Author, System.Keywords, 
System.Photo.LightSource, and so on.45 Each property can contain a target value such as 
System.-Author(Patrick or Bob) and System.ItemType: "mp3", and terms can be combined with AND, OR, 
and NOT operators. We’ll see many more examples in Chapter 10, where we can use queries to retrieve 
collections of files in many different “shapes” such as a flat list, a hierarchy, and various sort orders, 
including those oriented around media properties. In addition, file queries also provide for obtaining 
thumbnails as well as automatic retrieval of album art for music. 

Here, let’s concentrate on understanding how file queries work, starting with the basics that are 
demonstrated in the FileQuery example included with this chapter’s companion content. This example is 
a copy of the Programmatic file search sample in the Windows SDK, which itself has only one  
 

45 Contrary to any examples in the docs, queries should always use the full name of Windows properties such as 
System.ItemDate: rather than the user-friendly shorthand date: because the latter will not work on localized builds of 
Windows. 

354

http://code.msdn.microsoft.com/windowsapps/Folder-enumeration-sample-33ebd000
http://msdn.microsoft.com/library/windows/desktop/bb266512.aspx
http://msdn.microsoft.com/library/windows/apps/br208106.aspx
http://msdn.microsoft.com/library/windows/desktop/dd561977.aspx
http://code.msdn.microsoft.com/windowsapps/Programmatically-searching-25e1a56b


scenario oriented on the music library that lets you enter in an AQS string directly. However, this isn’t 
always what you’ll be using in an app, so I wanted to show many other variations. 

Queries always start with a StorageFolder, whose createFileQuery[WithOptions], 
createFolderQuery[WithOptions], and createItemQuery[WithOptions] methods (6 total) provide for 
enumerating files, folders, or both, within whatever folder the StorageFolder is attached to. The 
simplest queries are created with the base StorageFolder.create* methods and no parameters: 

folder.createFileQuery(); 
folder.createFolderQuery(); 
folder.createItemQuery(); 

The first two methods here are actually just shortcuts for the one-parameter variants with the same 
names, where that parameter is a value from the Windows.Storage.Search.CommonFileQuery or 
CommonFolderQuery enumerations. These shortcut versions just use the defaultQuery value for a simple 
alphabetical, shallow enumeration of the folder contents. createItemQuery, for its part, has only this one 
form. 

Creating a query itself doesn’t actually enumerate anything until you ask it to through an async 
method: for file queries the method is getFilesAsync, for folders it’s getFoldersAsync, and for items it’s 
getItemsAsync. (See a pattern here?) So, in Scenario 2 of the FileQuery example, I have these three 
functions attached to buttons: 

function fileQuery() { 
    var query = picturesLibrary.createFileQuery(); 
    SdkSample.showResults(query.getFilesAsync()); 
} 
 
function folderQuery() { 
    var query = picturesLibrary.createFolderQuery(); 
    SdkSample.showResults(query.getFoldersAsync()); 
} 
 
function itemQuery() { 
    var query = picturesLibrary.createItemQuery(); 
    SdkSample.showResults(query.getItemsAsync()); 
} 

where the SdkSample.showResults function in js/default.js just creates a listing of the items in the 
collection. Running this sample, you’ll see a list of those files and/or folders in your Pictures library. 

Tip The actual object types returned by these create*Query APIs are StorageFileQueryResult, 
StorageFolderQueryResult, and StorageItemQueryResult, all in the Windows.Storage.Search 
namespace. These all provide some additional properties like folder, methods like 
findStartIndexAsync and getItemCountAsync, and events like optionschanged and 
contentschanged (both WinRT events). The latter event especially is something you can use to monitor 
changes to the file system that affect query results. 

 

355

www.SoftGozar.com

http://msdn.microsoft.com/library/windows/apps/br227230.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.search.commonfilequery.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.search.commonfolderquery.aspx


Beyond this shallow default behavior, file and folder queries have many other possibilities as 
expressed in the CommonFileQuery and CommonFolderQuery enumerations: 

• CommonFileQuery: orderByName, orderByTitle, orderByDate, orderByMusic-Properties, and 
orderBySearchRank. 

• CommonFolderQuery: groupByType, groupByTag, groupByAuthor, groupByYear, groupByMonth, 
groupByArtist, groupByComposer, groupByGenre, groupByPublishedYear, and groupByRating. 

Clearly, the effect of these choices depends on the queried items actually containing metadata that 
supports the ordering or grouping, but it is allowable to query all folders for all types of files and folders. 
To demonstrate this, Scenario 3 of the FileQuery example lets you choose the music, pictures, or videos 
library. Then you can choose whether to query files or folders, choose the common query to apply, and 
run a search to see the results. Note that using orderBySearchRank with files isn’t really meaningful in 
this context because it’s meant to work with AQS-based searches. We’ll see this a little later. (Also—call 
me a slacker!—the results of a grouped folder query isn’t very interesting when one doesn’t group the 
display output, but for an example of that you can refer to Scenario 2 of the Folder enumeration 
sample.) 

The code in js/scenario3.js is pretty much just the mechanics of mapping your UI selections to either 
createFileQuery or createFolderQuery with the right parameters, so there’s no need to look at most of 
it here. One important piece is the use of the isCommonFileQuerySupported and 
isCommonFolderQuerySupported methods of StorageFolder. These are used to test whether the current 
folder will actually support the particular query you want to try: 

if (folder.isCommonFileQuerySupported(selectedQuery)) { 
    query = folder.createFileQuery(selectedQuery); 
    if (query) { 
        promise = query.getFilesAsync(); 
    } 
} 

You’ll find that when running the sample in the media libraries, at least, all the common file and 
folder queries are supported, but that might not be true for all StorageFolder objects you might 
encounter. Remember, for example, that the folder picker might give you a StorageFolder from a 
provider whose data is off in some online service or a database, in which case certain queries might not 
work. 

A similar method, StorageFolder.areQueryOptionsSupported, also exists to tests support for custom 
queries beyond the common ones. A custom query is described by a 
Windows.Storage.-Search.QueryOptions object (the common queries are just prepopulated instances 
of these) and is created by passing such an object to the createFileQueryWithOptions, 
createFolderQuery-WithOptions, and createItemQueryWithOptions. 

 

 

356

http://code.msdn.microsoft.com/windowsapps/Folder-enumeration-sample-33ebd000
http://code.msdn.microsoft.com/windowsapps/Folder-enumeration-sample-33ebd000
http://msdn.microsoft.com/library/windows/apps/windows.storage.search.queryoptions.aspx


A QueryOptions is generally created from scratch using the new operator, after which you populate its 
properties. You can also use new QueryOptions(<CommonFolderQuery>) to retrieve the object for one of 
the common folder queries, and new QueryOptions(<CommonFileQuery> [, <file type filter>]) to do 
the same for common file queries. In this latter case, an optional array of file types can also be given; this 
is a shortcut to quickly customize a common query with a specific set of file types. Without it, the filter is 
set to "*" by default. That is, if you wanted to just find .mp3 files in your music library ordered by title, 
you would use this kind of code (see js/scenario4.js in the FileQuery example): 

var musicLibrary = Windows.Storage.KnownFolders.musicLibrary; 
var options = new Windows.Storage.Search.QueryOptions( 
    Windows.Storage.Search.CommonFileQuery.orderByTitle, [".mp3"]); 
 
if (musicLibrary.areQueryOptionsSupported(options)) { 
    var query = musicLibrary.createFileQueryWithOptions(options); 
    SdkSample.showResults(query.getFilesAsync()); 
} 

If you create a QueryOptions from scratch, you can set a number of options. The more general or 
basic ones are as follows:46 

• fileTypeFilter An vector of strings that describe the desired file type extensions, as 
in ".mp3". The default is an empty list (no filtering). 

• folderDepth Either Windows.Storage.Search.FolderDepth.shallow (the default) or deep. 

• indexerOption A value from Windows.Storage.Search.IndexerOption, which is one of 
useIndexerWhenAvailable, onlyUseIndexer (limit the search to indexed content only), and 
doNotUseIndexer (query the file system directly bypassing the indexer). As the latter is the 
default, you’ll typically want to explicitly set this property to useIndexerWhenAvailable. 

• sortOrder A vector of Windows.Storage.Search.SortEntry structures that each contain a 
Boolean named ascendingOrder (false for descending order) and a propertyName string. Each 
entry in the vector defines a sort criterion; these are applied in the order they appear in the 
vector. An example of this will be given a little later. 

Three of the QueryOptions properties then apply to searches with AQS strings: 

• applicationSearchFilter An AQS string. 

• userSearchFilter Another AQS string. 

• language A string containing the BCP-47 language tag associated with the AQS strings. 

 

 

46 Another property, dateStackOption (a value from Windows.Storage.Search.DateStackOption), is read-only within 
this structure but can be set when creating a QueryOptions from a CommonFolderQuery. 

357



When the query is built through a method like createFileQueryWithOptions, the application and 
user filter strings here are combined. What this means is that you can separately manage any filter you 
want to apply generally for your app (applicationSearchFilter) from user-supplied search terms 
(userSearchFilter). This way you can enforce some search filters without requiring the user to type 
them in, and without always having to combine strings yourself. 

As noted before, the CommonFileQuery.orderBySearchRank query is meaningful only when combined 
with an AQS string, which is to say that keyword-based searches return ranked results for which this 
common file query would apply. Returning to Scenario 1 of the Programmatic file search sample, then, 
we see how it uses this ordering along with the userSearchFilter property: 

var musicLibrary = Windows.Storage.KnownFolders.musicLibrary; 
var options = new Windows.Storage.Search.QueryOptions( 
    Windows.Storage.Search.CommonFileQuery.orderBySearchRank, ["*"]); 
options.userSearchFilter = searchFilter; 
var fileQuery = musicLibrary.createFileQueryWithOptions(options); 

On my machine, where I have a number of songs with “Nightingale” in the title, as well as an album 
called “Nightingale Lullaby,” a search using the string "Nightingale" System.ItemType: "mp3" in the 
above code gives me results that look like this in the sample: 

 
This shows that the search ranking favors songs with “Nightingale” directly in the title, but also 

includes those from an album with that name. 

My search string here, by the way, shows how you might use the applicationSearchFilter and 
userSearchFilter properties together. If my app was capable of working only with mp3 or some other 
formats, I could store "System.Item.Type: 'mp3'" in applicationSearchFilter and store user-provided 
terms like "Nightingale" in userSearchFilter. This way I avoid having to join them manually in my 
code. 

Beyond the properties that you set within a QueryOptions object, it also has some information and 
capabilities of its own. The groupPropertyName, for one, is a string property that indicates the type of 
property that the query is being grouped by. You can also retrieve the query options as a string using 
the saveToString method and recreate the object from a string using loadFromString (that is, the 
analog of JSON.stringify and JSON.parse). 

 

358



The setPropertyPrefetch method goes even deeper still, allowing you to indicate a group of file 
properties that you want to optimize for fast retrieval—they’re accessed through the same APIs as file 
properties in general, but they come back faster, meaning that if you’re displaying a collection of files in 
a ListView using a custom data source with certain properties from enumerated files, you’d want to set 
those up for prefetch so that the control renders faster. (The WinJS.UI.StorageDataSource does this 
already.) Similarly, setThumbnailPrefetch tells Windows what kinds of thumbnails you want to include 
in the enumeration—again, you can ask for these without setting the prefetch, but they come back 
faster when you do. This helps you optimize the display of a file collection.47 

We briefly saw similar usage of thumbnail properties back in Chapter 5, when we took advantage of 
a shortcut to the pictures library with WinJS.UI.StorageDataSource and could specify a thumbnail size 
option: 

myFlipView.itemDataSource = new WinJS.UI.StorageDataSource("Pictures", 
    { requestedThumbnailSize: 480 }); 

A more general example that also includes the QueryOptions.sortOrder vector can be found in the 
StorageDataSource and GetVirtualizedFilesVector sample, which got a footnote in Chapter 5. In its 
js/scenario2.js we see the creation of a QueryOptions from scratch, setting up two sortOrder criteria, and 
setting up thumbnail options in the data source: 

function loadListViewControl() { 
    // Build datasource from the pictures library 
    var library = Windows.Storage.KnownFolders.picturesLibrary; 
    var queryOptions = new Windows.Storage.Search.QueryOptions; 
    // Shallow query to get the file hierarchy 
    queryOptions.folderDepth = Windows.Storage.Search.FolderDepth.shallow; 
    queryOptions.sortOrder.clear(); 
    // Order items by type so folders come first 
    queryOptions.sortOrder.append({ascendingOrder: false, propertyName: "System.IsFolder"}); 
    queryOptions.sortOrder.append({ascendingOrder: true, propertyName: "System.ItemName"}); 
    queryOptions.indexerOption =  
        Windows.Storage.Search.IndexerOption.useIndexerWhenAvailable; 
 
    var fileQuery = library.createItemQueryWithOptions(queryOptions); 
    var dataSourceOptions = { 
        mode: Windows.Storage.FileProperties.ThumbnailMode.picturesView, 
        requestedThumbnailSize: 190, 
        thumbnailOptions: Windows.Storage.FileProperties.ThumbnailOptions.none 
    }; 
 
    var dataSource = new WinJS.UI.StorageDataSource(fileQuery, dataSourceOptions); 
 
    // Create the ListView... 
}; 

If you’re really interested in digging deeper here, you can look at how StorageDataSource sets up file 

47 See What’s Changed for App Developers since the Consumer Preview on the Windows 8 Developer Blog for a few more 
details on these. 

359

http://code.msdn.microsoft.com/windowsapps/Data-source-adapter-sample-3d32e535
http://blogs.msdn.com/b/windowsappdev/archive/2012/05/31/what-s-changed-for-app-developers-since-the-consumer-preview.aspx


queries; just search for this class in the ui.js file of WinJS and you’ll find it. Along the way, you’ll run into 
one more set of WinRT APIs—perhaps the bottom of the hole!—that I wanted to mention before 
wrapping up this subject: Windows.Storage.BulkAccess. These actually exist solely for use by 
StorageDataSource and are not intended for direct use in apps. Even if you create your own data source 
or collection control, it’s best to just use the enumeration and prefetch APIs we’ve already discussed, as 
they give identical performance. 

Here My Am! Update 

To bring together some of the topics we’ve covered in this chapter, the companion content includes 
another revision of the Here My Am! app with the following changes and additions (mostly to 
pages/home/home.js unless noted): 

• It now incorporates the Bing Maps SDK so that the control is part of the package rather than 
loaded from a remote source. This eliminates the iframe we’ve been using to host the map, so all 
the code from html/map.html can move into js/default.js. Note that to run this sample in Visual 
Studio you need to download and install the SDK yourself. 

• Instead of copying pictures taken with the camera to app data, those are now copied to a 
HereMyAm folder in the Pictures library. The Pictures Library capability has been declared. 

• Instead of saving a pathname to the last captured image file, which is used when the app is 
terminated and restarted, the StorageFile is saved in Windows.Storage.AccessCache to 
guarantee future programmatic access. 

• An added appbar command allows you to use the File Picker to select an image to load instead 
of relying solely on the camera. This also allows you to use a camera app, if desired. Note that we 
use a particular settingsIdentifier with the picker in this case to distinguish from the picker for 
recent images. 

• Another appbar command allows you to choose from recent pictures from the camera. This 
defaults to our folder in the Pictures library and uses a different settingsIdentifier. 

• Additional commands for About, Help, and a Privacy Statement are included on the Settings 
pane using the WinJS.Application.onsettings event (see js/default.js). The first two display 
content from within the app whereas the third pulls down web content in an iframe; all the 
settings pages are found in the html folder of the project. 
 
 

360

http://msdn.microsoft.com/library/hh846481.aspx


What We’ve Just Learned 

• Statefulness is important to Windows Store apps, to maintain a sense of continuity between 
sessions even if the app is suspended and terminated. 

• App data is session, local, temporary, and roaming state that is tied to the existence of an app; it 
is accessible only by that app. 

• User data is stored in locations other than app data (such as the user’s music, pictures, videos, 
and documents libraries, along with removable storage) and persists independent of any given 
app, and multiple apps might be able to open and manipulate user files. 

• App data is accessed through the Windows.Storage.ApplicationData API and accommodates 
both structured settings containers as well as file-based data. Additional APIs like IndexedDB and 
HTML5 localStorage are also available.  

• It is important to version app state, especially where roaming is concerned, as versioning is how 
the roaming service manages what app state gets roamed to which devices based on what 
version apps are looking for. 

• The size of roaming state is limited to a quota (provided by an API), otherwise Windows will not 
roam the data. Services like SkyDrive can be used to roam larger files, including user data. 

• The typical roaming period is 30 minutes or less. A single setting or composite named 
“HighPriority,” so long as it’s under 8K, will be roamed within a minute. 

• The StorageFolder and StorageFile classes in WinRT are the core objects for working with 
folders and files. All programmatic access to the file system begins, in fact, with a StorageFolder. 
Otherwise, the user can point to files and folders through the file picker API, which is really the 
first choice for file access. 

• Blobs are useful aids in working with files, as are the WinRT APIs in the Windows.Storage.- 
FileIO and PathIO classes. WinJS offers some simplified methods for reading and writing text 
files (especially in conjunction with app state), and the HTML5 FileReader is supported. 

• WinRT offers encryption services through Windows.Security.Cryptography, as well as a built-in 
compression mechanism in Windows.Storage.Compression. 

• To use the Settings pane, an app populates the top-level pane provided by Windows with 
specific commands. Those commands map to handlers that either open a hyperlink (in a 
browser) or display a settings flyout using the WinJS.UI.SettingsFlyout control. Those flyouts 
can contain any HTML desired, including iframe elements that load remote content. 

• Access to user data folders, such as media libraries, documents, and removable storage, is 
controlled by manifest capabilities. Such capabilities need be declared only if the app needs to 
access the file system in some way other than using the file picker. 

361



• The file picker is the way that users can select files from any safe location in the file system, as 
well as files that are provided by other apps (where those files might be remote, stored in a 
database, or otherwise not present as file entities on the local file system). The ability to select 
files directly from other apps—including files that another app might generate on demand—is 
one of the most convenient and powerful features of Windows Store apps. 

• StorageFolder objects provide a very rich and extensive capability to query and search its 
contents through file queries. These queries can be simple to complex and can employ 
Advanced Query Syntax (AQS) search strings. 

  

362



Chapter 9 

Input and Sensors 
Touch is clearly one of the most exciting means of interacting with a computer that has finally come of 
age. Sure, we’ve had touch-sensitive devices for many years: I remember working with a touch-enabled 
screen in my college days, which I have to admit is almost an embarrassingly long time ago now! In that 
case, the touch sensor was a series of transparent wires embedded in a plastic sheet over the screen, 
with an overall touch resolution of around 60 wide by 40 high…and, to really date myself, the monitor 
itself was only a text terminal! 

Fortunately, touch screens have progressed tremendously in recent years. They are responsive 
enough for general purpose use (that is, you don’t have to stab them to register a point), are built into 
high-resolution displays, are relatively inexpensive, and are capable of doing something more than 
replicating the mouse—namely, supporting multitouch and sophisticated gestures. 

Great touch interaction is thus now a fundamental feature of great apps, and designing for touch 
means in many ways thinking through UI concerns anew. In your layout, for example, it means making 
hit targets a size that’s suitable for a variety of fingers. In your content navigation, it means utilizing 
direct gestures such as swipes and pinches rather than relying on only item selection and navigation 
controls. Similarly, designing for touch means thinking though how gestures might enrich the user 
experience—and also how to provide for discoverability and user feedback that has generally relied on 
mouse-only events like hover. 

All in all, approach your design as if touch was the only means of interaction that your users might 
have. At the same time, it’s very important to remember that new methods of input seldom obsolete 
existing ones. Sure, punch cards did eventually disappear, but the introduction of the mouse did not 
obsolete keyboards. The availability of speech recognition or handwriting has obsoleted neither mouse 
nor keyboard. I think the same is true for touch: it’s really a complementary input method that has its 
own particular virtues but is unlikely to wholly supplant the others. As Bill Buxton of Microsoft Research 
has said, “Every modality, including touch, is best for something and worst for something else.” I expect, 
in time, we’ll see ourselves using keyboard, mouse, and touch together, just as we learned to integrate 
the mouse in what was once a keyboard-only reality. 

Windows is designed to work well with all forms of input—to work great with touch, to work great 
with mice, to work great with keyboards, and, well, to just work great on diverse hardware! (And 
Windows Store certification requires this for apps as well.) For this reason, Windows provides a unified 
pointer-based input model wherein you can differentiate the different inputs if you really need to but 
can otherwise treat them equally. You can also focus more on higher-level gestures as well, which can 
arise from any input source, and not worry about raw pointer events at all. Indeed, the very fact that we 
haven’t even brought this subject up until now, midway through this book, gives testimony to just how 
natural it is to work with all kinds of pointer input without having to think about it: the controls and 

363



other UI elements we’ve been using have done all that work for us. Handling such events ourselves thus 
arises primarily when creating your own controls or otherwise doing direct manipulation of noncontrol 
objects. 

The keyboard also remains an important consideration, and this means both hardware keyboards 
and the on-screen “soft” keyboard. The latter has gotten more attention in recent years for touch-only 
devices but actually has been around for some time for accessibility purposes. In Windows, too, the soft 
keyboard includes a handwriting recognizer—something apps just get for free. And when an app wants 
to work more closely with raw handwriting input—known as ink—those capabilities are present as well. 

The other topic we’ll cover in this chapter is sensors. It might seem an incongruous subject to place 
alongside input until you come to see that sensors, like touch screens themselves, are another form of 
input! Sensors tell an app what’s happening to the device in its relationship to the physical world: how 
its positioned in space (relative to a number of reference points), how it’s moving through space, how 
it’s being held relative to its “normal” orientation, and even how much light is shining on it. Thinking of 
sensors in this light (pun intended), we begin to see opportunities for apps to directly integrate with the 
world around a device rather than requiring users to tell the app about those relationships in some 
more abstract way. And just to warn you, once you see just how easy it is to use the WinRT APIs for 
sensors, you might be shopping for a new piece of well-equipped hardware! 

Touch, Mouse, and Stylus Input 

Where pointer-based input is concerned—which includes touch, mouse, and pen/stylus input—the 
singular message from Microsoft has been and remains, “Design for touch and get mouse and stylus for 
free.” This is very much the case, as we shall see, but we’ve also found that a phrase like “touch-first 
design” that sounds great to a consumer can be a terrifying proposition for developers! With all the 
attention around touch, consumer expectations are often very demanding, and meeting such 
expectations seems like it will take a lot of work. 

Fortunately, Windows 8 provides a unified framework for handling pointer input—from all 
sources—such that you don’t actually need to think about the differences until there’s a specific reason 
to do so. In this way, touch-first design really is a design issue more than an implementation issue. 

We’ll talk more about designing for touch in the next section. What I wanted to discuss first is how 
you as a developer should approach implementing those designs once you have them so that you don’t 
make any distinctions between the types of pointer input until it’s necessary: 

• First, use templates and standard controls and you get lots of touch support for free, along with 
mouse, pen, stylus, and keyboard support. If you build up your UI with standard controls, set 
appropriate tabindex attributes for keyboard users, and handle standard DOM events like click, 
you’re pretty much covered. Controls like semantic zoom already handle different kinds of input 
(as we saw in Chapter 5, “Collections and Collection Controls”), and other CSS styles like snap 
points and content zooming automatically handle various interaction gestures. 

364



• Second, when you need to handle gestures yourself, as with custom controls or other elements 
with which the user will interact directly, use the gesture events like MSGestureTap and 
MSGestureHold along with event sequences for inertial gestures (MSGestureStart, 
MSGestureChange, and MSGestureEnd). The benefit here is that gestures are essentially 
higher-order interpretations of lower-level pointer events, meaning that you don’t have to do 
such interpretation yourself. For example, a pointer down followed by a pointer up within a 
certain movement threshold (to account for wiggling fingers) becomes a single tap gesture. A 
pointer down followed by a short drag followed by a pointer up becomes a swipe that triggers a 
series of events, possibly including inertial events (ones that continue to fire even after the 
pointer, like a touch point, is physically released). Note that if you want to capture and save 
pointer input directly without concern for gestures, there is also built-in support for inking, as 
we’ll see later on. 

• Third, if you need to handle pointer events directly, use the unified pointer events like 
MSPointerDown, MSPointerMove, and so forth. These are lower-level events than gestures, and 
they are primarily appropriate for apps that don’t necessarily need gesture interpretation. For 
example, a drawing app simply needs to trace different pointers with on-screen feedback, where 
concepts like swipe and inertia aren’t meaningful. Pointer events also provide more specialized 
device data such as pressure, rotation, and tilt, which is surfaced through the pointer events. Still, 
it is possible to implement gestures directly with pointer events, as a number of the built-in 
controls do. 

• Finally, an app can work directly with the gesture recognizer to provide its own interpretations of 
pointer events into gestures. 

So, what about legacy DOM events that we already know and love, beyond click? Can you still work 
with the likes of mousedown, mouseup, mouseover, mousemove, mouseout, and mousewheel? The answer is yes, 
because pointer events from all input sources will be automatically translated into these legacy events. 
This can be useful when you’re porting code from a web app into a Windows Store app, for example. 
This translation takes a little extra processing time, however, so for new code you’ll generally realize 
better responsiveness by using the gesture and pointer events directly. Legacy mouse events also 
assume a single pointer and will be generated only for the primary touch point (the one with the 
isPrimary property). As much as possible, use the gesture and pointer events in your code. 

Note Visual feedback for touch input is one of the Windows 8 app certification requirements (section 
3.5) and applies to everything in your app as well as any web content you might display in an iframe 
element. Providing feedback means executing small animations that acknowledge the touch. For this 
you can use the WinJS animations library or straight CSS animations and transitions, as discussed in 
Chapter 11, “Purposeful Animations.” 

365

http://msdn.microsoft.com/library/windows/apps/Hh972358.aspx
http://msdn.microsoft.com/library/windows/apps/hh694083.aspx


The Touch Language, Its Translations, and Mouse/Keyboard 
Equivalents 
On the Windows Developer Center, the rather extensive article on Touch interaction design is helpful for 
designers and developers alike. It discusses various ergonomic considerations, has some great diagrams 
on the sizes of human fingers, provides clear guidance on the proper size for touch targets given that 
human reality, and outlines key design principles such as providing direct feedback for touch interaction 
(animation) and having content follow your finger. 

Most importantly, the design guidance also describes the Windows 8 Touch Language, which 
contains the eight core gestures that are baked into the system and the controls. The table below shows 
and describes the gestures and indicates what events appear in the app for them. 

 

Gesture Meaning and Gesture Events Description 
One finger touches the screen and lifts up. 

 

Tap for primary action 
(commanding); appears as click and 
MSGestureTap events on the element. 

Tapping on an element invokes its 
primary action, typically executing a 
command, checking a box, setting a 
rating, positioning a cursor, etc. 

One finger touches the screen and stays in place. 

 

Press and hold to learn; appears as 
contextmenu and MSGestureHold 
events on the element. 

This touch interaction displays 
detailed information or teaching 
visuals (for example, a tooltip or 
context menu) without a 
commitment to an action. Anything 
displayed this way should not 
prevent users from panning if they 
begin sliding their finger. 

 
One or more fingers touch the screen and move in 
the same direction. 

 

Slide to pan (can be horizontal or 
vertical); appears as scrolling events 
as well as a gesture series 
(MSGestureStart, MSGestureChange, 
MSGestureEnd, possibly with inertial 
gesture events signaled by 
MSInertiaStart, plus MSPointer* 
events). 

Slide is used primarily for panning 
interactions but can also be used 
for moving, drawing, or writing. 
Slide can also be used to target 
small, densely packed elements by 
scrubbing (sliding the finger over 
related objects such as radio 
buttons). 

  

366

http://msdn.microsoft.com/library/windows/apps/hh465415.aspx


One or more fingers touch the screen and move a 
short distance in the same direction. 

 

Swipe to select, command, and move 
(can be horizontal or vertical)—also 
called cross-slide; appears as a gesture 
series (MSGestureStart, 
MSGestureChange, MSGestureEnd, as well 
as MSPointer* events). The gesture 
recognizer doesn’t distinguish this from 
vertical panning, however, so an app or 
control needs to implement that 
interpretation directly (a good reason to 
use controls like the ListView!). 

Sliding the finger a short 
distance, perpendicular to the 
panning direction, selects 
objects in a list or grid; also 
implies displaying commands in 
an app bar relevant to the 
selection. 

Two or more fingers touch the screen and move 
closer together or farther apart. 

 

Pinch and stretch to zoom; appears as a 
gesture series (MSGestureStart, 
MSGestureChange, MSGestureEnd), but 
apps can use the -ms-content-zooming: 
zoom and -ms-touch-action: 
pinch-zoom CSS styles to enable touch 
zooming automatically. 

Can be used for optical zoom or 
resizing, as well as for semantic 
zoom where applicable. 

Two or more fingers touch the screen and move in a 
clockwise or counter-clockwise arc. 

 

Turn to rotate; appears as a gesture 
series (MSGestureStart, 
MSGestureChange, MSGestureEnd). 

Rotates an object or a view. 

 

Swipe from top or bottom edge for app 
commands; handled automatically 
through the AppBar control, though an 
app can also detect these events directly 
through 
Windows.UI.Input.EdgeGesture. 

The bottom app bar contains 
app commands for the current 
page context; the top app bar 
provides for navigation, if 
applicable. 

 

Swipe from edge for system commands; 
handled automatically by the system 
with the app receiving events related to 
the selected charm, when applicable, as 
well as focus and blur events if the 
foreground app is changed when 
swiping from the left edge. 

Swiping from the right displays 
the Charms bar; swiping from 
the left cycles through currently 
running apps; swiping from the 
top edge to the bottom closes 
the current app; swiping from 
the top edge to the left or right 
snaps the current app to one 
side of the screen. 

Additional details and guidelines for designing around this touch language can be found on the 
Gestures, manipulations, and interactions topic. 

367

http://msdn.microsoft.com/library/windows/apps/hh761498.aspx


You might notice in the table above that many of the gestures in the touch language don’t actually 
have a single event associated with them (like pinch or rotate) but are instead represented by a series of 
gesture or pointer events. The reason for this is that these gestures, when used with touch, typically 
involve animation of the affected content while the gesture is happening. Swipes, for example, show 
linear movement of the object being panned or selected. A pinch or stretch movement will often be 
actively zooming the content. (Semantic Zoom is an exception, but then you just let the control handle 
the details.) And a rotate gesture should definitely give visual feedback. In short, handling these 
gestures with touch, in particular, means dealing with a series of events rather than just a single one. 

This is one reason that it’s so helpful (and time-saving!) to use the built-in controls as much as 
possible, because they already handle all the gesture details for you. The ListView control, for example, 
contains all the pointer/gesture logic to handling pans and swipes, along with taps. The Semantic Zoom 
control, like I said, implements pinch and stretch by watching MSPointer* events. If you look at the 
source code for these controls within WinJS, you’ll start to appreciate just how much they do for you 
(and what it will look like to implement a rich custom control of your own, using the gesture 
recognizer!). 

You can also save yourself a lot of trouble with the -ms-touch-action CSS properties described under 
“CSS Styles That Affect Input.” Using this has the added benefit of processing the touch input on a 
non-UI thread, thereby providing much smoother manipulation than could be achieved by handling 
pointer or gesture events. 

On the theme of “write for touch and get other input for free,” all of these gestures also have mouse 
and keyboard equivalents, which the built-in controls also implement for you. It’s also helpful to know 
what those equivalents are, as shown in the table below. The “Standard Keystrokes” section later in this 
chapter also lists many other command-related keystrokes. 

Touch  Keyboard Mouse Pen/Stylus 

Press and hold (or 
tap on text selection) 

Right-click button Right button click Press and hold 

Tap Enter Left button click Tap 

Slide (short distance) Arrow keys Left button click and drag, click on 
scrollbar arrows, drag the scrollbar 
thumb, use the mouse wheel 

Tap on scrollbar arrows, drag 
scrollbar thumb, tap and drag 

Slide + inertia 
(long distance) 

Page Up/Page Down Left button click and drag, click on 
scrollbar track, drag the scrollbar 
thumb, use the mouse wheel 

Tap on scrollbar track, drag 
scrollbar thumb, tap and drag 

Swipe to select Right-click button or spacebar Right button click Tap and drag 

Pinch/Stretch Ctrl+ and Ctrl- Ctrl+mouse wheel or UI command UI command or other 
hardware feature 

Swipe from edge Win+Z, Win+Tab, Win+C or 
Win+Shift+C 

Clicking on corners of the screen; 
right-click shows app bar 

Drag in from edge 

Rotate Ctrl+, and Ctrl+. Ctrl+Shift+mouse wheel UI command or other 
hardware feature 

 
 

368



You might notice a conspicuous absence of double-click and/or double-tap gestures in this list. Does 
that surprise you? In early builds of Windows 8 we actually did have a double-tap gesture, but it turned 
out to not be all that useful, conflicted with the zoom gesture, and sometimes very difficult for users to 
perform. I can say from watching friends over the years that double-clicking with the mouse isn’t even 
all it’s cracked up to be. People with not-entirely-stable hands will often move the mouse quite a ways 
between clicks, just as they might move their finger between taps. As a result, the reliability of a 
double-tap ends up being pretty low, and since it wasn’t really needed in the touch language, it was 
simply dropped altogether. 

Sidebar: Creating Completely New Gestures? 
While the Windows 8 touch language provides a simple yet fairly comprehensive set of gestures, 
it’s not too hard to imagine other possibilities. The question is, when is it appropriate to introduce 
a new kind of gesture or manipulation? 

First, it makes sense that apps don’t generally introduce new ways to do the same things, such 
as additional gestures that just swipe, zoom, etc. It’s better to simply get more creative in how the 
app interprets an existing gesture. For example, a swipe gesture might pan a scrollable region but 
can also just move an object on the screen—no need to invent a new gesture.  

Second, if you have controls placed on the screen where you want the user to give input, 
there’s no need to think in terms of gestures at all: just apply the input from those controls 
appropriately. 

Third, even when you do think a custom gesture is needed, the bottom-line recommendation 
is to make those interactions feel natural, rather than something you just invent for the sake of 
invention. We also recommend that gestures behave consistently with the number of pointers, 
velocity/time, and so on. For example, separating an element into three pieces with a three-finger 
stretch and into two pieces with a two-finger stretch is fine; having a three-finger stretch enlarge 
an element while a two-finger stretch zooms the canvas is a bad idea, because it’s not very 
discoverable. Similarly, the speed of a horizontal or vertical flick can affect the velocity of an 
element’s movement, but having a fast flick switch to another page while a slow flick highlights 
text is a bad idea. In this case, having different functions based on speed creates a difficult UI for 
your customers because they’ll all have different ideas about what “fast” and “slow” mean and 
might be limited by their physical abilities.  

Finally, with any custom gesture, recognize that you are potentially introducing an 
inconsistency between apps. When a user starts interacting with a certain kind of app in a new 
way, he or she might start to expect that of other apps and might become confused (or upset) 
when those apps don’t behave in the same way, especially if those apps use a similar gesture for a 
completely different purpose! Complex gestures, too, might be difficult for some, if not many, 
people to perform; might be limited by the kind of hardware in the device (number of touch 
points, responsiveness, etc.); and are generally not very discoverable. In most cases it’s probably 
simpler to add an appbar command on a button on your app canvas to achieve the same goal. 

369



Edge Gestures 
As we saw in Chapter 7, “Commanding UI,” you don’t need to do anything special for commands on the 
app bar or navigation bar to appear: Windows automatically handles the edge swipe from the top and 
bottom of your app, along with right-click, Win+Z, and the context menu key on the keyboard. That 
said, you can detect when these events happen directly by listening for the starting, completed, and 
canceled events on the Windows.UI.Input.EdgeGesture object:48 

var edgeGesture = Windows.UI.Input.EdgeGesture.getForCurrentView(); 
edgeGesture.addEventListener("starting", onStarting); 
edgeGesture.addEventListener("completed", onCompleted); 
edgeGesture.addEventListener("canceled", onCanceled); 

With these, completed fires for all input types; the starting and canceled events occur only for 
touch. Within these events, the eventArgs.kind property contains a value from the EdgeGesture-Kind 
enumeration that indicates the kind of input that invoked the event. The starting and canceled events 
will always have the kind of touch, obviously, whereas completed can be any touch, keyboard, or mouse: 

function onCompleted(e) { 
    // Determine whether it was touch or keyboard invocation 
    if (e.kind === Windows.UI.Input.EdgeGestureKind.touch) { 
        id("ScenarioOutput").innerText = "Invoked with touch."; 
    } 
    else if (e.kind === Windows.UI.Input.EdgeGestureKind.mouse) { 
        id("ScenarioOutput").innerText = "Invoked with right-click."; 
    } 
    else if (e.kind === Windows.UI.Input.EdgeGestureKind.keyboard) { 
        id("ScenarioOutput").innerText = "Invoked with keyboard."; 
    } 
} 

The code above is taken from Scenario 1 of the Edge gesture invocation sample. In Scenario 2, the 
sample also shows that you can prevent the edge gesture event from occurring for a particular element 
if you handle the contextmenu event for that element and call eventArgs.preventDefault in your 
handler. It does this for one element on the screen, such that right-clicking that element with the mouse 
or pressing the context menu key when that element has the focus will prevent the edge gesture events: 

document.getElementById("handleContextMenuDiv").addEventListener("contextmenu", onContextMenu); 
 
function onContextMenu(e) { 
    e.preventDefault(); 
    id("ScenarioOutput").innerText =  
        "The ContextMenu event was handled. The EdgeGesture event will not fire."; 
} 
 

 

 

48 As WinRT object events, these are subject to the considerations in “WinRT Events and removeEventListener” in Chapter 3. 

370

http://msdn.microsoft.com/library/windows/apps/windows.ui.input.edgegesture.aspx
http://code.msdn.microsoft.com/windowsapps/Edge-gesture-invocation-76a474dd


Note that this method has no effect on edge gestures via touch and does not affect the Win+Z key 
combination that normally invokes the app bar. It’s primarily to show that if you need to handle the 
contextmenu event specifically, you usually want to prevent the edge gesture. 

CSS Styles That Affect Input 
While we’re on the subject of input, it’s a good time to mention a number of CSS styles that affect the 
input an app might receive. 

One style is –ms-user-select, which we’ve encountered a few times already in Chapter 3, “App 
Anatomy and Page Navigation,” and Chapter 4, “Controls, Control Styling, and Data Binding.” This style 
can be set to one of the following: 

• none disables direct selection, though the element as a whole can be selected if it’s parent is 
selectable. 

• inherit sets the selection behavior of an element to match its parent. 

• text will enable selection for text even if the parent is set to none. 

• element enables selection for an arbitrary element. 

• auto (the default) may or may not enable selection depending on the control type and the 
styling of the parent. For an element that is not a text control and does not have 
contenteditable="true", it won’t be selectable unless it’s contained within a selectable parent. 

If you want to play around with the variations, refer to the Unselectable content areas with 
-ms-user-select CSS attribute sample, which wins the prize for the longest JavaScript sample name in 
the entire Windows SDK! 

A related style, but one not shown in the sample, is -ms-touch-select, which can be either none or 
grippers, the latter being the style that enables the selection control circles for touch: 

 
Selectable text elements automatically get this style, as do other textual elements with 

contenteditable = "true"—you can thus use -ms-touch-select to turn them off. To see the effect, try 
this with some of the elements in Scenario 1 of the aforementioned sample with the really long name! 

In Chapter 6, “Layout,” we introduced the idea of snap points for panning, with the 
-ms-scroll-snap* styles. Along these same lines, listed on the Touch: Zooming and Panning styles 
reference, are others for content zooming, such as -ms-content-zooming and the -ms-content-zoom* 
styles that provide snap points for zoom operations as well. The important thing is that 
-ms-content-zooming: zoom (as opposed to the default, none) enables automatic zooming with touch 
and the mouse wheel, provided that the element in question allows for overflow in both x and y 
dimensions. There are quite a number of variations here for panning and zooming, and how those 

371

http://code.msdn.microsoft.com/windowsapps/Unselectable-content-areas-963eccd9
http://code.msdn.microsoft.com/windowsapps/Unselectable-content-areas-963eccd9
http://msdn.microsoft.com/library/windows/apps/hh453816.aspx


gestures interact with WinJS controls. I’ll leave it to the HTML scrolling, panning, and zooming sample to 
explain the details. 

Finally, the -ms-touch-action style provides for a number of options on an element:49 

• none Disables touch on the element. 

• auto Enables usual touch behaviors. 

• pan-x/pan-y The element permits horizontal/vertical touch panning, which is performed on the 
nearest ancestor that is horizontally/vertically scrollable, such as a parent div. 

• pinch-zoom Enables pinch-zoom on the element, performed on the nearest ancestor that has 
-ms-content-zooming: zoom and overflow capability. For example, an img element by itself won’t 
respond to the gesture with this style, but if you place it in a parent div with overflow set, it will. 

• manipulation Shorthand equivalent of pan-x pan-y pinch-zoom. 

For an example of panning and zooming, try creating a simple app with markup like this (use 
whatever image you’d like): 

<div id="imageContainer"> 
    <img id="image1" src="/images/flowers.jpg" /> 
</div> 

and style the container as follows: 

#imageContainer {     
    overflow: auto; 
    -ms-content-zooming:zoom; 
    -ms-touch-action: manipulation; 
} 

What Input Capabilities Are Present? 
The WinRT API in the Windows.Devices.Input namespace provides all the information you need about 
the input capabilities that are available on the current device, specifically through these three objects: 

• MouseCapabilities Properties are mousePresent (0 or 1), horizontalWheelPresent (0 or 1), 
verticalWheelPresent (0 or 1), numberOfButtons (a number), and swapButtons (0 or 1). 

• KeyboardCapabilities Contains only a single property: keyboardPresent (0 or 1). Note that 
this does not indicate the presence of the on-screen keyboard, which is always available; 
keyboardPresent specifically indicates a physical keyboard device. 
 
 
 

49 double-tap-zoom is not supported for Windows Store apps. 

372

http://code.msdn.microsoft.com/windowsapps/Scrolling-panning-and-47d70d4c
http://msdn.microsoft.com/library/windows/apps/br225648.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.input.mousecapabilities.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.input.keyboardcapabilities.aspx


• TouchCapabilities Properties are touchPresent (0 or 1) and contacts (a number). Note that 
where touch is concerned, you might also be interested in the Windows.UI.-ViewManagement.-
UISettings.handPreference property, which indicates the user’s right- or left-handedness. 

To check whether touch is available, then, you can use a bit of code like this: 

var tc = new Windows.Devices.Input.TouchCapabilities(); 
var touchPoints = 0; 
 
if (tc.touchPresent) { 
    touchPoints = tc.contacts; 
} 

Note In the web context where WinRT is not available, some information about capabilities can be 
obtained through the msPointerEnabled, msManipulationViewsEnabled, and msMax-TouchPoints 
properties that are hanging off DOM elements. These also work in the local context. 

You’ll notice that the capabilities above don’t say anything about a stylus or pen. For these and for 
more extensive information about all pointer devices, including touch and mouse, we have the 
Windows.Devices.Input.PointerDevice.getPointerDevices method. This returns an array of 
PointerDevice objects, each of which has these properties: 

• pointerDeviceType A value from Windows.Devices.Input.PointerDeviceType that can be 
touch, pen, or mouse. 

• maxContacts The maximum number of contact points that the device can support—typically 1 
for mouse and stylus and any other number for touch. 

• isIntegrated true indicates that the device is built into the machine so that its presence can 
be depended upon; false indicates a peripheral that the user could disconnect. 

• physicalDeviceRect This Windows.Foundation.Rect object provides the bounding rectangle as 
the device sees itself. Oftentimes, a touch screen’s input resolution won’t actually match the 
screen pixels, meaning that the input device isn’t capable of hitting exactly one pixel. On one of 
my touch-capable laptops, for example, this resolution is reported as 968x548 for a 1366x768 
pixel screen (as reported in screenRect below). A mouse, on the other hand, typically does match 
screen pixels one-for-one. This could be important for a drawing app that works with a stylus, 
where an input resolution smaller than the screen would mean there will be some inaccuracy 
when translating input coordinates to screen pixels. 

• screenRect This Windows.Foundation.Rect object provides the bounding rectangle for the 
device on the screen, which is to say, the minimum and maximum coordinates that you should 
encounter with events from the device. This rectangle will take multimonitor systems into 
account, and it’s adjusted for resolution scaling. 
 
 

373

http://msdn.microsoft.com/library/windows/apps/windows.devices.input.touchcapabilities.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.uisettings.handpreference.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.uisettings.handpreference.aspx
http://msdn.microsoft.com/library/windows/apps/Hh972607.aspx
http://msdn.microsoft.com/library/windows/apps/hh972606.aspx
http://msdn.microsoft.com/library/windows/apps/hh779855.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.input.pointerdevice.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.input.pointerdevicetype.aspx


• supportedUsages An array of Windows.Devices.Input.PointerDeviceUsage structures that 
supply what’s called HID (human interface device) usage information. This subject is beyond the 
scope of this book, so I’ll refer you to the HID Usages page on MSDN for starters. 

The Input Device capabilities sample in the Windows SDK retrieves this information and displays it to 
the screen through the code in js/pointer.js. I won’t show that code here because it’s just a matter of 
iterating through the array and building a big HTML string to dump into the DOM. In the simulator, the 
output appears as follows—notice that the simulator reports the presence of touch and mouse both in 
this case. 

 
 

Curious Forge?  Interestingly, I ran this same sample in Visual Studio’s Local Machine debugger on a 
laptop that is definitely not touch-enabled, and yet a touch device was still reported as in the image 
above! Why was that? It’s because I still had the Visual Studio simulator running, which adds a virtual 
touch device to the hardware profile. After closing the simulator completely (not just minimizing it), I 
got an accurate report for my laptop’s capabilities. So be mindful of this if you’re writing code to test 
for specific capabilities. 

Tried remote debugging yet?  Speaking of debugging, as mentioned in a sidebar in Chapter 6, 
“Layout,” testing an app against different device capabilities is a great opportunity to use remote 
debugging in Visual Studio. If you haven’t done so already, it takes only a few minutes to set up and 
makes it far easier to test apps on multiple machines. For details, see Running Windows 8 apps on a 
remote machine. 
 

Unified Pointer Events 
For any situation where you want to directly work with touch, mouse, and stylus input, perhaps to 
implement parts of the touch language in this way, use the MSPointer* events. Most art/drawing apps, 
for example, will use these events to track and respond to screen interaction. Remember again that 
pointers are a lower-level way of looking at input than gestures, which we’ll see in the next section. 
Which input model you use depends on the kind of events you’re really looking to work with. 
 

374

http://msdn.microsoft.com/library/windows/apps/windows.devices.input.pointerdeviceusage.aspx
http://msdn.microsoft.com/library/windows/hardware/ff539946.aspx
http://code.msdn.microsoft.com/windowsapps/Input-device-capabilities-31b67745
http://code.msdn.microsoft.com/windowsapps/Input-device-capabilities-31b67745
http://msdn.microsoft.com/library/windows/apps/hh441469(v=vs.110).aspx
http://msdn.microsoft.com/library/windows/apps/hh441469(v=vs.110).aspx


Tip Pointer events won’t fire if the system is trying to do a manipulation like panning or zooming. To 
disable manipulations on an element, set the -ms-content-zooming: none or -ms-touch-action: 
none, and avoid using -ms-touch-action styles of pan-x, pan-y, pinch-zoom, and manipulation. 

As with other events, you can listen to MSPointer* events on whatever elements are relevant to you, 
remembering again that these are translated into legacy mouse events, so you should not listen to both. 
The specific events are described as follows, given in the order of their typical sequencing: 

• MSPointerOver Pointer moved into the bounds of the element from outside. 

• MSPointerHover A pointer is hovering over the element (generally only for pen or mouse). 

• MSPointerDown Pointer down occurred on the element. 

• MSPointerMove Pointer moved across the element. 

• MSPointerUp Pointer was released over the element. (If an element previously captured the 
touch, msReleasePointerCapture is called automatically.) Note that if a pointer is moved outside 
of an element and released, it will receive MSPointerOut but not MSPointerUp. 

• MSPointerCancel The system canceled a pointer event. 

• MSPointerOut Pointer moved out of the bounds of the element, which also occurs with an up 
event. This is the last pointer event an element will receive. 

• MSGotPointerCapture The pointer is captured by the element. 

• MSLostPointerCapture The pointer capture has been lost for the element. 

These are the names you use with addEventListener; the equivalent property names are of the form 
onmspointerdown, as usual. It should be obvious that some of these events might not occur with all 
pointer types—touch screens, for instance, generally don’t provide hover events, though some that can 
detect the proximity of a finger are so capable. 
 

Tip If for some reason you want to prevent the translation of an MSPointer* event into a legacy mouse 
event, call the eventArgs.preventDefault method within the appropriate event handler. 

The PointerEvents example provided with this chapter’s companion content and shown in Figure 9-1 
lets you see what’s going on with all the mouse, pointer, and gesture events, selectively showing groups 
of events in the display. 

 

375

http://msdn.microsoft.com/library/windows/apps/hh465907.aspx
http://msdn.microsoft.com/library/windows/apps/hh465895.aspx
http://msdn.microsoft.com/library/windows/apps/hh465891.aspx
http://msdn.microsoft.com/library/windows/apps/hh465899.aspx
http://msdn.microsoft.com/library/windows/apps/hh465912.aspx
http://msdn.microsoft.com/library/windows/apps/hh868516.aspx
http://msdn.microsoft.com/library/windows/apps/hh465904.aspx
http://msdn.microsoft.com/library/windows/apps/hh465875.aspx
http://msdn.microsoft.com/library/windows/apps/hh465883.aspx


 
FIGURE 9-1  The PointerEvents example display (screen shot cropped a bit to show detail). 

Within the handlers for all of the MSPointer* events, the eventArgs object contains a whole roster of 
properties. One of them, pointerType, identifies the type of input: touch (2), pen (3), and mouse (4). This 
property lets you implement different behaviors for different input methods, if desired. Each event 
object also contains a unique pointerId value that identifies a stroke or a path for a specific contact 
point, allowing you to correlate an initial MSPointerDown event with subsequent events. When we look at 
gestures in the next section, we’ll also see how we use the pointerId of MSPointerDown to associate a 
gesture with a pointer. 

The complete roster of properties that come with the event is actually far too much to show here, as 
it contains many of the usual DOM properties along with many pointer-related ones from an object 
type called MSPointerEvent. The best way to see what shows up is to run some code like the Input 
DOM pointer event handling sample (a canvas drawing app), set a breakpoint within a handler for one 
of the events, and examine the event object. The table on the following page describes some of the 
properties (and a few methods) relevant to our discussion here. 
 
 
 
 
 
 

 

376

http://msdn.microsoft.com/library/windows/apps/hh831236.aspx
http://msdn.microsoft.com/library/windows/apps/hh441233.aspx
http://code.msdn.microsoft.com/windowsapps/Input-DOM-pointer-and-2e5697ed
http://code.msdn.microsoft.com/windowsapps/Input-DOM-pointer-and-2e5697ed


Properties Description 
currentPoint A Windows.UI.Input.PointerPoint object. This contains many other properties such as pointerDevice (a 

Windows.Input.Device.PointerDevice object, as described in “What Input Capabilities Are Present” earlier 
in this chapter) and one just called properties, which is a Windows.UI.Input.PointerPointProperties. 

pointerType The source of the event could be touch or pen or mouse: MSPOINTER_TYPE_TOUCH (2), 
MSPOINTER_TYPE_PEN (3), and MSPOINTER_TYPE_MOUSE (4). You can use this to make adjustments 
according to input type, if necessary. 

pointerId The unique identifier of the contact. This remains the same throughout the lifetime of the pointer. If 
desired, you can call Windows.Devices.Input.getPointerDevice with this id to obtain a PointerDevice 
that describes the input device’s capabilities, as described earlier in “What Input Capabilities are 
Present?” 

type The name of the event, as in "MSPointerDown". 
x, screenX, y, screenY The x- and y-coordinates of the pointer’s center point position relative to the screen. 
clientX, clientY The x- and y-coordinates of the pointer’s center point position relative to the client area of the app. 
offsetX, offsetY The x- and y-coordinates of the pointer’s center point position relative to the element. 
button Determines the button pressed by the user (on mice and other input devices with buttons). The left is 0, 

middle is 1, and right is 2; these values can be combined with bitwise the OR operator for chord presses 
(multiple buttons). 

ctrlKey, altKey, shiftKey Indicates whether certain keys were depressed when the pointer event occurred. 
hwTimestamp The timestamp (in microseconds) at which the event was received from the hardware. 
relatedTarget Provides the element related to the current event, e.g., the MSPointerOut event will provide the element to 

which the touch is moving. This can be null. 
isPrimary Indicates if this pointer is the primary one in a multitouch scenario (such as the pointer that the mouse 

would control). 

  

Properties surfaced depending on hardware support (if not supported, these values will be 0) 
width, height The contact width and height of the touch point specified by pointerId. 
pressure Pen pressure normalized in a range of 0 to 255. 
rotation Clockwise rotation of the cursor around its own major axis in a range of 0 to 359. 
tiltX The left-right tilt away from the normal of a transducer (typically perpendicular to the surface) in a range of 

-90 (left) to 90 (right). 
tiltY The forward-back tilt away from the normal of a transducer (typically perpendicular to the surface) in a 

range of -90 (forward/away from user) to 90 (back/toward user). 

  

Methods  
currentPoint 
getCurrentPoint 

Providers the Windows.UI.Input.PointerPoint object for the current pointer relevant to the target element 
(currentPoint) or a given element (getCurrentPoint) 

intermediatePoints 
getIntermediatPoints 

Provides the PointerPoint history for the current pointer relative to the target element 
(intermediatePoint) or a given element (getIntermediatePoints) 

 

It’s very instructive to run the Input DOM pointer event handling sample on a multitouch device, 
because it tracks each pointerId separately allowing you to draw with multiple fingers simultaneously. 

Pointer Capture 
It’s common with down and up events for an element to set and release a capture on the pointer. To 
support these operations, the following methods are available on each element in the DOM and apply 
to each pointerId separately: 

377

http://msdn.microsoft.com/library/windows/apps/windows.ui.input.pointerpoint.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.input.pointerdevice.getpointerdevice.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.input.pointerdevice.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.input.pointerpoint.aspx


Method Description 
msSetPointerCapture Captures the pointerId for the element so that pointer events come to it and are not 

raised for other elements (even if you move outside the first element and into another). 
MSGotPointerCapture will be fired on the element as well. 
 

msReleasePointerCapture Ends capture, triggering an MSLostPointerCapture event. 
 

msGetPointerCapture Returns the element with the capture, if any (otherwise null). 
 

 
We see this in the Input DOM pointer event handling sample, where it sets capture within its 
MSPointerDown handler and releases it in MSPointerUp: 

this.MSPointerDown = function (evt) { 
    canvas.msSetPointerCapture(evt.pointerId); 
    // ... 
}; 
 
this.MSPointerUp = function (evt) { 
    canvas.msReleasePointerCapture(evt.pointerId); 
    // ... 
}; 

Gesture Events 
The first thing to know about all MSGesture* events is that they don’t just fire automatically like click 
and MSPointer* events, and you don’t just add a listener and be done with it (that’s what click is for!). 
Instead, you need to do a little bit of configuration first to tell the system how exactly you want gestures 
to occur, and you need to use MSPointerDown to associate the gesture configurations with a particular 
pointerId. This small added bit of complexity makes it possible for apps to work with multiple 
concurrent gestures and keep them all independent just as you can do with pointer events. Imagine, for 
example, a jigsaw puzzle app (as presented in a small way in one of the samples in “The Gesture 
Samples” below) that allows multiple people sitting around a table-size touch screen to work with 
individual pieces as they will. Using gestures, each person can be manipu-lating an individual piece (or 
two!), moving it around, rotating it, perhaps zooming in to see a larger view, and, of course, testing out 
placement. For Windows Store apps written in JavaScript, it’s also helpful that manipulation deltas for 
configured elements—which include translation, rotation, and scaling—are given in the coordinate 
space of the parent element, meaning that it’s fairly straightforward to translate the manipulation into 
CSS transforms and such to make the manipulation visible. In short, there is a great deal of flexibility 
here when you need it; if you don’t, you can use gestures in a simple manner as well. Let’s see how it all 
works. 

Tip If you’re observant, you’ll notice that everything in this section has no dependency on WinRT APIs. 
As a result, the gesture events described here work in both the local and web contexts. 

 

378



The first step to receiving gesture events is to create an MSGesture object and associate it with the 
element for which you’re interested in receiving events. In the PointerEvents example, that element is 
named divElement; you need to store that element in the gesture’s target property and store the 
gesture object in the element’s gestureObject property for use by MSPointerDown: 

var gestureObject = new MSGesture(); 
gestureObject.target = divElement; 
divElement.gestureObject = gestureObject; 

With this association, you can then just add event listeners as usual. The example shows the full roster 
of the six gesture events: 

divElement.addEventListener("MSGestureTap", gestureTap); 
divElement.addEventListener("MSGestureHold", gestureHold); 
 
divElement.addEventListener("MSGestureStart", gestureStart); 
divElement.addEventListener("MSGestureChange", gestureChange); 
divElement.addEventListener("MSGestureEnd", gestureEnd); 
divElement.addEventListener("MSInertiaStart", inertiaStart); 
 

We’re not quite done yet, however. If this is all you do in your code, you still won’t receive any of the 
events because each gesture has to be associated with a pointer. You do this within the MSPointerDown 
event handler: 

 

function pointerDown(e) { 
    //Associate this pointer with the target's gesture 
    e.target.gestureObject.addPointer(e.pointerId); 
} 

To enable rotation and pinch-stretch gestures with the mouse wheel (which you should do), add an 
event handler for the wheel event, set the pointerId for that event to 1 (a fixed value for the mouse 
wheel), and send it on to your MSPointerDown handler: 

divElement.addEventListener("wheel", function (e) { 
    e.pointerId = 1;   // Fixed pointerId for MouseWheel 
    pointerDown(e); 
}); 

Now gesture events will start to come in for that element. (Remember that mouse wheel by itself is 
translate, Ctrl+wheel is zoom, and Shift+Ctrl+wheel is rotate.) What’s more, if additional MSPointerDown 
events occur for the same element with different pointerId values, the addPointer method will include 
that new pointer in the gesture. This automatically enables pinch-stretch and rotation gestures that rely 
on multiple points. 

If you run the PointerEvents example (checking Ignore Mouse Events and Ignore Pointer Events) and 
start doing taps, tap-holds, and short drags (with touch or mouse), you’ll see output like that shown in 
Figure 9-2.  

379

http://msdn.microsoft.com/en-us/library/windows/apps/hh968035.aspx


  
FIGURE 9-2  The PointerEvents example output for gesture events (screen shot cropped a bit to emphasize detail). 

Again, gesture events are fired in response to a series of pointer events, offering higher-level 
interpretations of the lower-level pointer events. It’s the process of interpretation that differentiates the 
tap/hold events from the start/change/end events, how and when the MSInertiaStart event kicks off, 
and what the gesture recognizer does when the MSGesture object is given multiple points. 

Starting with a single pointer gesture, the first aspect of differentiation is a pointer movement 
threshold. When the gesture recognizer sees an MSPointerDown event, it starts to watch the 
MSPointerMove events to see whether they stay inside that threshold, which is the effective boundary for 
tap and hold events. This accounts for and effectively ignores small amounts of jiggle in a mouse or a 
touch point as illustrated (or shall I say, exaggerated!) below, where a pointer down, a little movement, 
and a pointer up generates an MSGestureTap: 

 
What then differentiates MSGestureTap and MSGestureHold is a time threshold: 

• MSGestureTap occurs when MSPointerDown is followed by MSPointerUp within the time threshold. 

380



• MSGestureHold occurs when MSPointerDown is followed by MSPointerUp outside the time 
threshold. MSGestureHold then fires once when the time threshold is passed with 
eventArgs.detail set to 1 (MSGESTURE_FLAG_BEGIN). Provided that the pointer is still within 
the movement threshold, MSGestureHold fires then again when MSPointerUp occurs, with 
eventArgs.detail set to 2 (MSGESTURE_FLAG_END). You can see this detail included in the first 
two events of Figure 9-2 above. 

The gesture flags in eventArgs.detail value is accompanied by many other positional and 
movement properties in the eventArgs object as shown in the following table: 

Properties Description 
screenX, screenY The x- and y-coordinates of the gesture center point relative to the screen. 
clientX, clientY The x- and y-coordinates of the gesture center point relative to the client area of the app. 
offsetX, offsetY The x- and y-coordinates of the gesture center point relative to the element. 
translationX, 
translationY 

Translation along the x- and y-axes. 

velocityX, 
velocityY 

Velocity of movement along x- and y-axes. 

scale Scale factor for zoom (percentage change in the scale). 
expansion Diameter of the manipulation area (absolute change in size, in pixels). 
velocityExpansion Velocity of expanding manipulation area. 
rotation Rotation angle in radians. 
velocityAngular Angular velocity in radians. 
detail Contains the gesture flags that describe the gesture state of the event; these flags are defined as values 

in eventArgs itself: 
 
eventArgs.MSGESTURE_FLAG_NONE (0): Indicates ongoing gesture such as MSGestureChange where there 
is change in the coordinates. 
 
eventArgs.MSGESTURE_FLAG_BEGIN (1): The beginning of the gesture sequence. If the interaction 
contains single event such as MSGestureTap, both MSGESTURE_FLAG_BEGIN and MSGESTURE_FLAG_END 
flags will be set (detail will be 3). 
 
eventArgs.MSGESTURE_FLAG_END (2): The end of the gesture sequence. Again, if the interaction 
contains single event such as MSGestureTap, both MSGESTURE_FLAG_BEGIN and MSGESTURE_FLAG_END 
flags will be set (detail will be 3). 
 
eventArgs.MSGESTURE_FLAG_CANCEL (4): The gesture was cancelled. Always comes paired with 
MSGESTURE_FLAG_END, (detail will be 6). 
 
eventArgs.MSGESTURE_FLAG_INERTIA (8): The gesture is in an inertia state. The MSGestureChange event 
can be distinguished from direct interaction and timer driven inertia through this flag. 

hwTimestamp The timestamp of the pointer assigned by the system when the input was received from the hardware. 

 

Many of these properties become much more interesting when a pointer moves outside the 
movement threshold, after which time you’ll no longer see the tap or hold events. Instead, as soon as 
the pointer leaves the threshold area, MSGestureStart is fired, followed by zero or more 
MSGestureChange events (typically many more!), and completed with a single MSGestureEnd event: 

381



 
Note that if a pointer has been held within the movement threshold long enough for the first 

MSGestureHold to fire with MSGESTURE_FLAG_BEGIN, but then the pointer is moved out of the threshold 
area, MSGestureHold will be fired a second time with MSGESTURE_FLAG_CANCEL | MSGESTURE_FLAG_END in 
eventArgs.detail (a value of 6), followed by MSGestureStart with MSGESTURE_FLAG_BEGIN. This series is 
how you differentiate a hold from a slide or drag gesture even if the user holds the item in place for a 
while. 

Together, the MSGestureStart, MSGestureChange, and MSGestureEnd events define a manipulation of 
the element to which the gesture is attached, where the pointer remains in contact with the element 
throughout the manipulation. Technically this means that the pointer was no longer moving when it 
was released. 

If the pointer was moving when released, then we switch from a manipulation to an inertial motion. 
In this case, an MSInertiaStart event gets fired in to indicate that the pointer effectively continues to 
move even though contact was released or lifted. That is, you’ll continue to receive MSGestureChange 
events until the movement is complete: 

 
Conceptually, you can see the difference between a manipulation and an inertial motion as 

illustrated in Figure 9-3; the curves shown here are not necessarily representative of actual changes 
between messages. If the pointer is moved along the green line such that it’s no longer moving when 
released, we see the series of gesture that define a manipulation. If the pointer is released while moving, 
we see MSInertiaStart in the midst of MSGestureChange events and the event sequence follows the 
orange line. 

382



 
FIGURE 9-3  A conceptual representation of manipulation (green) and inertial (orange) motions. 

Referring back to Figure 9-2, when the Show drop-down list (as shown!) is set to Velocity, the output 
for MSGestureChange events includes the eventArgs.velocity* values. During a manipulation, the 
velocity can change at any rate depending on how the pointer is moving. Once an inertial motion 
begins, however, the velocity will gradually diminish down to zero at which point MSGestureEnd occurs. 
The number of change events depends on how long it takes for the movement to slow down and come 
to a stop, of course, but if you’re just moving an element on the display with these change events, the 
user will see a nice fluid animation. You can play with this in the PointerEvents example, using the Show 
drop-down list to also look at how the other positional properties are affected by different 
manipulations and inertial gestures. 

Multipoint Gestures 
What we’ve discussed so far has focused on a single point gesture, but the same is also true for 
multi-point gestures. When an MSGesture object is given multiple pointers through its addPointer event, 
it will also fire MSGestureStart, MSGestureChange, MSGestureEnd for rotations and pinch-stretch gestures, 
along with MSInertiaStart. In these cases, the scale, rotation, velocityAngular, expansion, and 
velocity-Expansion properties in the eventArgs object become meaningful. 

You can selectively view these properties for MSGestureChange events through the upper-right 
drop-down list in the PointerEvents example. One thing you might notice is that if you do multipoint 
gestures in the Visual Studio simulator, you’ll never see MSGestureTap events for the individual points. 
This is because the gesture recognizer can see that multiple MSPointerDown events are happening  
almost simultaneously (which is where the hwTimestamp property comes into play) and combines them 
into an MSGestureStart right away (for example, starting a pinch-stretch or rotation gesture). 

383



Now I’m sure you’re asking some important questions. While I’ve been speaking of pinch-stretch, 
rotation, and translation gestures as different things, how does one, in fact, differentiate these gestures 
when they’re all coming into the app through the same MSGestureChange event? Doesn’t that just make 
everything confusing? What’s the strategy for translation, rotation, and scaling gestures? 

Well, the answer is—you don’t have to separate them! If you think about it for a moment, how you 
handle MSGestureChange events and the data each one contains depends on the kinds of manipulations 
you actually support in your UI: 

• If you’re supporting only translation of an element, you’ll simply never pay any attention to 
properties like scale and rotation and apply only those like translationX and translationY. 
This would be the expected behavior for selecting an item in a collection control, for example (or 
a control that allowed drag-and-drop of items to rearrange them). 

• If you support only zooming, you’ll ignore all the positional properties and work with scale, 
expansion, and/or velocityExpansion. This would be the sort of behavior you’d expect for a 
control that supported optical or semantic zoom. 

• If you’re interested in only rotation, the rotation and velocityAngular properties are your 
friends.  

Of course, if you want to support multiple kinds of manipulations, you can simply apply all of these 
properties together, feeding them into CSS transforms, for instance. This would be expected of an app 
that allowed arbitrary manipulation of on-screen objects, and it’s exactly what one of the gesture 
samples of the Windows SDK demonstrates. 

The Input Instantiable Gesture Sample 
While the PointerEvents example included with this chapter gives us a raw view of pointer and gesture 
events, what really matters to apps is how to apply these events to real manipulation of on-screen 
objects, which is to say, implementing parts of touch language such as pinch/stretch and rotation. For 
these we can turn to the Input Instantiable gestures sample. 

This sample primarily demonstrates how to use gesture events on multiple elements simultaneously. 
In Scenarios 1 and 2, the app simulates a simple example of a puzzle app, as mentioned earlier. Each 
colored box can be manipulated separately, using drag to move (with or without inertia), pinch-stretch 
gestures to zoom, and rotation gestures to rotate, as shown in Figure 9-4. 

384

http://code.msdn.microsoft.com/windowsapps/Input-Instantiable-deda69ca


 
FIGURE 9-4  The Input Instantiable Gestures Sample after playing around a bit. The “instantiable” word comes from 
the need to instantiate an MSGesture object to receive gesture events. 

In Scenario 1 (js/instantiableGesture.js), an MSGesture object is created for each screen element along 
with one for the black background “table top” element during initialization (the initialize function). 
This is the same as we’ve already seen. Similarly, the MSPointerDown handler (onPointerDown) adds 
pointers to the gesture object for each element, adding a little more processing to manage z-index. This 
avoids having simultaneous touch, mouse and stylus pointers working on the same element (which 
would be odd!): 

function onPointerDown(e) {         
    if (e.target.gesture.pointerType === null) {    // First contact 
        e.target.gesture.addPointer(e.pointerId);   // Attaches pointer to element 
        e.target.gesture.pointerType = e.pointerType; 
    } 
    else if (e.target.gesture.pointerType === e.pointerType) { // Contacts of similar type 
        e.target.gesture.addPointer(e.pointerId);              // Attaches pointer to element 
    } 
 
    // ZIndex Changes on pointer down. Element on which pointer comes down becomes topmost 
    var zOrderCurr = e.target.style.zIndex; 
    var elts = document.getElementsByClassName("GestureElement"); 
    for (var i = 0; i < elts.length; i++) { 
        if (elts[i].style.zIndex === 3) { 
            elts[i].style.zIndex = zOrderCurr; 
        } 
        e.target.style.zIndex = 3; 
    } 
} 
 
 

385



The MSGestureChange handler for each individual piece (onGestureChange) then takes all the 
translation, rotation, and scaling data in the eventArgs object and applies them with CSS. This shows 
how convenient it is that all those properties are already reported in the coordinate space we need: 

function onGestureChange(e) { 
    var elt = e.target; 
    var m = new MSCSSMatrix(elt.style.msTransform); 
 
    elt.style.msTransform = m. 
        translate(e.offsetX, e.offsetY). 
        translate(e.translationX, e.translationY). 
        rotate(e.rotation * 180 / Math.PI). 
        scale(e.scale). 
        translate(-e.offsetX, -e.offsetY); 
} 

There’s a little more going on in the sample, but what we’ve shown here are the important parts. 
Clearly, if you didn’t want to support certain kinds of manipulations, you’d again simply ignore certain 
properties in the event args object. 

Scenario 2 of this sample has the same output but is implemented a little differently. As you can see 
in its initialize function (js/gesture.js), the only events that are initially registered apply to the entire 
“table top” that contains the black background and a surrounding border. Gesture objects for the 
individual pieces are created and attached to a pointer within the MSPointerDown event 
(onTableTopPointerDown). This approach is much more efficient and scalable to a puzzle app that has 
hundreds or even thousands of pieces, as gesture objects are held only for as long as a particular piece 
is being manipulated. Those manipulations are also like those of Scenario 1, where all the 
MSGestureChange properties are applied through a CSS transform. For further details, refer to the code 
comments in js/gesture.js, as they are quite extensive. 

Scenario 3 of this sample provides another demonstration of performing translate, pinch-stretch, and 
rotate gestures using the mouse wheel. As shown in the PointerEvents example, the only thing you need 
to do here is process the wheel event, set eventArgs.pointerId to 1, and pass that onto your 
MSPointerDown handler that then adds the pointer to the gesture object: 

elt.addEventListener("wheel", onMouseWheel, false); 
 
function onMouseWheel(e) { 
    e.pointerId = 1;  // Fixed pointerId for MouseWheel 
    onPointerDown(e); 
} 

Again, that’s all there is to it. (I love it when it’s so simple!) As an exercise, you might try adding this 
little bit of code to Scenarios 1 and 2 as well. 

The Gesture Recognizer 
With inertial gestures, which continue to send some number of MSGestureChange events after pointers 
are released, you might be asking this question: What, exactly, controls those events? That is, there is 

386



obviously a specific deceleration model built into those events, namely the one around which the 
Windows look and feel is built. But what if you want a different behavior? And what if you want to 
interpret pointer events in different way altogether? 

The agent that interprets pointer events into gesture events is called the gesture recognizer, which 
you can get to directly through the Windows.UI.Input.GestureRecognizer object. After instantiating 
this object with new, you then set its gestureSettings properties for the kinds of manipulations and 
gestures you’re interested in. The documentation for Windows.UI.Input.GestureSettings gives all the 
options here, which include tap, doubleTap, hold, holdWithMouse, rightTap, drag, translations, rotations, 
scaling, inertia motions, and crossSlide (swipe). For example, in the Input manipulations and gestures 
sample (ballineight.js) we can see how it configures a recognizer for tap, rotate, translate, and scale (with 
inertia): 

gr = new Windows.UI.Input.GestureRecognizer(); 
 
// Configuring GestureRecognizer to detect manipulation rotation, translation, scaling, 
// + inertia for those three components of manipulation + the tap gesture 
gr.gestureSettings = 
    Windows.UI.Input.GestureSettings.manipulationRotate | 
    Windows.UI.Input.GestureSettings.manipulationTranslateX | 
    Windows.UI.Input.GestureSettings.manipulationTranslateY | 
    Windows.UI.Input.GestureSettings.manipulationScale | 
    Windows.UI.Input.GestureSettings.manipulationRotateInertia | 
    Windows.UI.Input.GestureSettings.manipulationScaleInertia | 
    Windows.UI.Input.GestureSettings.manipulationTranslateInertia | 
    Windows.UI.Input.GestureSettings.tap; 
 
// Turn off UI feedback for gestures (we'll still see UI feedback for PointerPoints) 
gr.showGestureFeedback = false; 

The GestureRecognizer also has a number of properties to configure those specific events. With 
cross-slides, for example, you can set the crossSlideThresholds, crossSlideExact, and 
crossSlideHorizontally properties. You can set the deceleration rates (in pixels/ms2) through 
inertiaExpansionDeceleration, inertiaRotationDeceleration, and inertiaTranslation-Deceleration. 

Once configured, you then start passing MSPointer* events to the recognizer object, specific to its 
methods named processDownEvent, processMoveEvents, and processUpEvent (also 
processMouseWheelEvent, and processInertia, if needed). In response, depending on the configuration, 
the recognizer will then fire a number of its own events. First, there are discrete events like 
crossSliding, dragging, holding, rightTapped, and tapped. For all others it will fire a series of 
manipuationStarted, manipulationUpdated, manipulationInertiaStarting, and 
manipulationCompleted events. Note that all of these come from WinRT to be sure to call 
removeEventListener as needed. 

When you’re using the recognizer directly, in other words, you’ll be listening for MSPointer* events, 
feeding them to the recognizer, and then listening for and acting on the recognizer’s specific events as 
above rather than the MSGesture* events that come out of the default recognizer configured by the 
MSGesture object. 

387

http://msdn.microsoft.com/library/windows/apps/windows.ui.input.gesturerecognizer.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.input.gesturerecognizer.gesturesettings.aspx
http://code.msdn.microsoft.com/windowsapps/Manipulations-and-gestures-26918bb3
http://code.msdn.microsoft.com/windowsapps/Manipulations-and-gestures-26918bb3


Again, refer to the documentation on Windows.UI.Input.GestureRecognizer for all the details and 
refer to the sample for some bits of code. As one extra example, here’s a snippet to capture a small 
horizontal motion using the manipuationTranslateX setting: 

var recognizer = new Windows.UI.Input.GestureRecognizer(); 
recognizer.gestureSettings = Windows.UI.Input.GestureSettings.manipulationTranslateX; 
var DELTA = 10; 
 
myElement.addEventListener('MSPointerDown', function (e) { 
    recognizer.processDownEvent(e.getCurrentPoint(e.pointerId)); 
}); 
myElement.addEventListener('MSPointerUp', function (e) { 
    recognizer.processUpEvent(e.getCurrentPoint(e.pointerId)); 
}); 
myElement.addEventListener('MSPointerMove', function (e) { 
    recognizer.processMoveEvents(e.getIntermediatePoints(e.pointerId)); 
}); 
 
// Remember removeEventListener as needed for this event 
recognizer.addEventListener('manipulationcompleted', function (args) { 
    var pt = args.cumulative.translation; 
    if (pt.x < -DELTA) { 
        // move right 
    } 
    else if (pt.x > DELTA) { 
            // move left 
    } 
}); 

Beyond the recognizer, do note that you can always go the low-level route and do your own 
processing of MSPointer* events however you want, completely bypassing the gesture recognizer. This 
would be necessary if the configurations allowed by the recognizer object don’t accommodate your 
specific need. At the same time, now is a good opportunity to re-read “Sidebar: Creating Completely 
New Gesture?” at the end of the earlier section on the touch language. It addresses a few of the 
questions about when and if custom gestures are really needed. 

Keyboard Input and the Soft Keyboard 

After everything to do with touch and other forms of input, it seems almost anticlimactic to consider the 
humble keyboard. Yet of course the keyboard remains utterly important for textual input, whether it’s a 
physical key-board or the on-screen “soft” keyboard. It is especially important for accessibility as well, as 
some users are physically unable to use a mouse or other devices. In fact, the Windows 8 app 
certification requirements (section 3.5) make keyboard input mandatory. 

Fortunately, there is nothing special about handling keyboard input in a Windows Store app, but a 
little goes a long way. Drawing from Implementing keyboard accessibility, here’s a summary: 
 

388

http://msdn.microsoft.com/library/windows/apps/windows.ui.input.gesturerecognizer.aspx
http://msdn.microsoft.com/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/library/windows/apps/hh700327.aspx


• Process keydown, keyup, and keypress events as you already know how to do, especially for 
imple-menting special key combinations. See “Standard Keystrokes” later in this section for a 
quick run-down of typical mappings. 

• Have tabindex attributes on interactive elements that should be tab stops. Avoid adding 
tabindex to noninteractive elements as this will interfere with screen readers. 

• Have accesskey attributes on those elements that should have keyboard shortcuts. 

• Call the DOM focus API on whatever element should be the default. 

• Take advantage of the keyboard support that already exists in built-in controls, such as the App 
Bar. 

As an example, the Here My Am! we’ve been working with in this book has been updated in this 
chapter’s companion content with full keyboard support. This was mostly a matter of adding tabindex 
to a few elements, setting focus to the image area, and picking up keydown events on the img elements 
for the Enter key and spacebar where we’ve already been handling click. Within those keydown events, 
note that it’s helpful to use the WinJS.Utilities.Key enumeration for comparing key codes: 

var Key = WinJS.Utilities.Key; 
var image = document.getElementById("photo"); 
 
image.addEventListener("keydown", function (e) { 
    if (e.keyCode == Key.enter || e.keyCode==Key.space) { 
        image.click(); 
    } 
}); 

All this works for both the physical keyboard as well as the soft keyboard. Case closed? Well, not 
entirely. There are two special concerns with the soft keyboard: how to make it appear, and the effect of 
its appearance on app layout. At the end of this section I’ll also provide a quick run-down of standard 
keystrokes for app commands. 

Soft Keyboard Appearance and Configuration 
The appearance of the soft keyboard happens for one reason and one reason only: the user touches a 
text input element or an element with the contenteditable="true" attribute (such as a div or canvas). 
There isn’t an API to make the keyboard appear, nor will it appear when you click in such an element 
with the mouse or a stylus, or tab to it with a physical keyboard. 

The configuration of the keyboard is also sensitive to the type of input control. We can see this 
through Scenario 2 of the Input Touch keyboard text input sample, where html/ScopedViews.html 
contains a bunch of input controls (surrounding table markup omitted), which appear as shown in 
Figure 9-5: 
 

 

389

http://msdn.microsoft.com/library/windows/apps/br211775.aspx
http://code.msdn.microsoft.com/windowsapps/Input-Touch-keyboard-text-f86e9bd9


<input type="url" name="url" id="url" size="50" /> 
<input type="email" name="email" id="email" size="50" /> 
<input type="password" name="password" id="password" size="50" /> 
<input type="text" name="text" id="text" size="50" /> 
<input type="number" name="number" id="number" /> 
<input type="search" name="search" id="search" size="50" /> 
<input type="tel" name="tel" id="tel" size="50" /> 

 
FIGURE 9-5  The soft keyboard appears when you touch an input field, as shown in the Input Touch keyboard text 
input sample. 

What’s shown in Figure 9-5 is the default keyboard. If you tap in the Search field, you get pretty 
much the same view except the Enter key turns into Search. For the Email field, it’s much like the default 
view except you get @ and .com keys to either side of the spacebar: 

 
 

The URL keyboard is the same except the @ key is dropped and Enter turns into Go: 

 
 

390



For passwords you get a key to hide keypresses, which prevents a visible animation from happening 
on the screen—a very important feature if you’re recording videos! 

 
And finally, the Number and Telephone fields bring up a number-oriented view: 

 
In all of these cases, the key on the lower right (whose icon looks a bit like a keyboard), lets you 

switch to other keyboard layouts: 

 
The options here are the normal (wide) keyboard, the split keyboard, a handwriting recognition 

panel, and a key to dismiss the soft keyboard entirely. Here’s what the default split keyboard and 
handwriting panels look like: 

 

 

This handwriting panel for input is simply another mode of the soft keyboard: you can switch 
between the two, and your selection sticks across invocations. (For this reason, Windows does not 
automatically invoke the handwriting panel for a pen pointer, because the user may prefer to use the 
soft keyboard even with the stylus.) 

391



The keyboard will also adjust its appearance with text input controls to provide text suggestions; 
specifically, a highlighted Insert key appears. This is demonstrated in Scenario 1 of the sample and 
shown below: 

 

Adjusting Layout for the Soft Keyboard 
The second concern with the soft keyboard (no, I didn’t forget!) is handling layout when the keyboard 
might obscure the input field with the focus. 

When the soft keyboard or handwriting panel appears, the system will try to make sure the input 
field is visible by scrolling the page content if it can. This means that it just sets a negative vertical offset 
to your entire page equal to the height of the soft keyboard. For example, if I add (as a total hack!) a 
bunch of <br/> elements at the top of html/ScopedView.html in the sample, such that the input controls 
are at the bottom of the page, and then I touch one of them, the whole page is slid up, as shown in 
Figure 9-6. 

 
FIGURE 9-6  When the soft keyboard appears, Windows will automatically slide the app page up to make sure the 
input field isn’t obscured. 

Although this can be the easiest solution to this particular concern, it’s not always ideal. Fortunately, 
you can do something more intelligent if you’d like by listening to the hiding and showing events of 
the Windows.UI.ViewManagement.InputPane object and adjust your layout directly. Code for doing this 
can be found in the—are you ready for this one?—Responding to the appearance of the on-screen 

392

http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.inputpane.aspx
http://code.msdn.microsoft.com/windowsapps/Keyboard-Events-Sample-866ba41c


keyboard sample.50 Adding listeners for these events is simple (see the bottom of js/keyboardPage.js, 
which also removes the listeners properly): 

var inputPane = Windows.UI.ViewManagement.InputPane.getForCurrentView(); 
inputPane.addEventListener("showing", showingHandler, false); 
inputPane.addEventListener("hiding", hidingHandler, false); 

Within the showing event handler, the eventArgs.occludedRect object (a Windows.- 
Foundation.Rect) gives you the coordinates and dimensions of the area that the soft keyboard is 
covering. In response, you can adjust whatever layout properties are applicable and set the 
eventArgs.ensuredFocusedElementInView property to true. This tells Windows to bypass its automatic 
offset behavior: 

function showingHandler(e) { 
    if (document.activeElement.id === "customHandling") { 
        keyboardShowing(e.occludedRect); 
 
        // Be careful with this property. Once it has been set, the framework will 
        // do nothing to help you keep the focused element in view. 
        e.ensuredFocusedElementInView = true; 
    } 
} 

The sample shows both cases. If you tap on the aqua-colored defaultHandling element on the 
bottom left of the app, as shown in Figure 9-7, this showingHandler does nothing, so the default 
behavior occurs. 

 
FIGURE 9-7  Tapping on the left defaultHanding element at the bottom shows the default behavior when the 
keyboard appears, which offsets other page content vertically. 

If you tap the customHandling element (on the right), it calls its keyboardShowing routine to do layout 
adjustment: 

function keyboardShowing(keyboardRect) { 
    // Some code omitted... 
 

50 And while you might think this is the second longest JavaScript sample name in the Windows SDK, it actually gets only the 
bronze medal. The Unselectable content areas with -ms-user-select CSS attribute sample, as we’ve seen, gets the gold by 
seven characters. Using requestAnimationFrame for power efficient animations sample wins the silver by 4. I don’t mind 
such long names, however—I’m delighted that there we have such an extensive set of great samples to draw from! 

393

http://code.msdn.microsoft.com/windowsapps/Keyboard-Events-Sample-866ba41c
http://code.msdn.microsoft.com/windowsapps/Unselectable-content-areas-963eccd9
http://code.msdn.microsoft.com/windowsapps/Using-requestAnimationFrame-924b039a


    var elementToAnimate = document.getElementById("middleContainer"); 
    var elementToResize = document.getElementById("appView"); 
    var elementToScroll = document.getElementById("middleList"); 
 
    // Cache the amount things are moved by. It makes the math easier 
    displacement = keyboardRect.height; 
    var displacementString = -displacement + "px"; 
 
    // Figure out what the last visible things in the list are 
    var bottomOfList = elementToScroll.scrollTop + elementToScroll.clientHeight; 
 
    // Animate 
    showingAnimation = KeyboardEventsSample.Animations.inputPaneShowing(elementToAnimate, 
        { top: displacementString, left: "0px" }).then(function () { 
 
        // After animation, layout in a smaller viewport above the keyboard 
        elementToResize.style.height = keyboardRect.y + "px"; 
 
        // Scroll the list into the right spot so that the list does not appear to scroll 
        elementToScroll.scrollTop = bottomOfList - elementToScroll.clientHeight; 
        showingAnimation = null; 
    }); 
} 

The code here is a little involved because it’s animating the movement of the various page elements. 
The short of it is that the layout of affected elements—namely the one that is tapped—is adjusted to 
make space for the keyboard. Other elements on the page are otherwise unaffected. The result is shown 
in Figure 9-8. 

 
FIGURE 9-8  Tapping the gray customHanding element on the right shows custom handling for the keyboard’s 
appearance. 

394



Standard Keystrokes 
The last piece I wanted to include on the subject of the keyboard is a table of command keystrokes you 
might support in your app. These are in addition to the touch language equivalents, and you’re 
probably accustomed to using many of them already. They’re good to review because again, apps 
should be fully usable with just the keyboard, and implementing keystrokes like these goes a long way 
toward fulfilling that requirement and enabling more efficient use of your app by keyboard users. 

Action or Command Keystroke 

Move focus Tab 

Back (navigation) Back button on special keyboards; backspace if not in a text field; Alt+left arrow 

Forward (navigation Alt+right arrow 

Up Alt+up arrow 

Cancel/Escape from mode ESC 

Walk through items in a list Arrow keys (plus Tab) 

Jump through items in a list to next group if 
selection doesn’t automatically follow focus 

Ctrl+arrow keys 

Zoom (semantic and optical) Ctrl+ and Ctrl- 

Jump to something in a named collection Start typing 

Jump far Page up/down (should work in panning UI, in either horizontal or vertical 
directions) 

Next tab or group Ctrl+Tab 

Previous tab or group Ctrl+Shift+Tab 

Nth tab or group Ctrl+N (1-9) 

Open app bar (Windows handles this 
automatically) 

Win+Z 

Context menu Context menu key 

Open additional flyout/select menu item Enter 

Navigate into/activate Enter (on a selection) 

Select Space 

Select contiguous Shift+arrow keys 

Pin this Ctrl+Shift+! 

Save Ctrl+S 

Find Ctrl+F 

Print Ctrl+P (call Windows.Graphics.Printing.PrintManager.showPrintUIAsync) 

Copy Ctrl+C 

Cut Ctrl+X 

Paste Ctrl+V 

New Item Ctrl+N 

Open address Ctrl+L or Alt+D 

Rotate Ctrl+, and Ctrl+. 

Play/Pause Ctrl+P (media apps only) 

Next item Ctrl+F (conflict with Find) 

Previous item Ctrl+B 

Rewind Ctrl+Shift+B 

Fast forward Ctrl+Shift+F 

395



Inking 

Beyond the built-in soft keyboard/handwriting pane, an app might also want to provide a surface on 
which it can directly accept pointer input as ink. By this I mean more than just having a canvas element 
and processing MSPointer* events to draw on it to produce a raster bitmap. Ink is a data structure that 
maintains the actual input data (including pressure, angle, and velocity if the hardware supports it) 
which allows for handwriting recognition and other higher-level processing that isn’t possible with 
raster data. Ink, in other words, remembers how an image was drawn, not just the final image itself, and 
it works with all types of pointer input. 

Ink support in WinRT is found in the Windows.UI.Input.Inking namespace. This API doesn’t 
depend on any particular presentation framework, nor does it provide for rendering: it deals only with 
the managing data structures that an app can then render itself to a drawing surface such as a canvas. 
Here’s its basic function: 

• Create an instance of the manager object with new Windows.UI.Input.Inking.InkManager(). 

• Assign any drawing attributes by creating a Windows.UI.Input.Inking.InkDrawing-Attributes 
object and settings attributes like the ink color, fitToCurve (as opposed to the default straight 
lines), ignorePressure, penTip (Windows.UI.Input.Inking.PenTipShape.circle or rectangle), 
and size (a Windows.Foundation.Size object with height and width). 

• For the input element, listen for the MSPointerDown, MSPointerMove, and MSPointerUp events, 
which you generally need to handle for display purposes already. The eventArgs.currentPoint is 
a Windows.UI.Input.PointerPoint object that contains a pointer id, point coordinates, and 
properties like pressure, tilt, and twist. 

• Pass that PointerPoint object to the ink manager’s processPointerDown, 
process-PointerUpdate, and processPointerUp methods, respectively. 

• After processPointerUp, the ink manager will create a Windows.UI.Input.Inking.InkStroke 
object for that path. Those strokes can then be obtained through the ink manager’s getStrokes 
method and rendered as desired. 

• Higher-order gestures can be also converted into InkStroke objects directly and given to the 
manager through its addStroke method. Stroke objects can also be deleted with deleteStroke. 

The ink manager also provides methods for performing handwriting recognition with its contained 
strokes, saving and loading the data, and handling different modes like draw and erase. For a complete 
demonstration, check out the Input Ink sample that is shown in Figure 9-9. This sample lets you see the 
full extent of inking capabilities, including handwriting recognition. 

396

http://msdn.microsoft.com/library/windows/apps/windows.ui.input.inking.aspx
http://code.msdn.microsoft.com/windowsapps/Ink-App-sample-61abaec3


 
FIGURE 9-9  The Input Ink sample with many commands on its app bar. The green “Hello” text in the upper left was 
generated by selecting the Hello ink and tapping the Recognition command. 

The SDK also includes the Input Simplified ink sample to demonstrate a more focused handwriting 
recognition scenario, as shown in Figure 9-10. You should know that this is one sample that doesn’t 
support touch at all—it’s strictly mouse and stylus and uses keystrokes for various commands instead of 
an app bar. Look at the keydown function in simpleink.js for a list of the Ctrl+key commands; the 
spacebar performs recognition of your strokes and the backspace key clears the canvas. As you can see 
in the figure, I think the handwriting recognition is quite good! (It tells me that the handwriting samples 
I gave to an engineering team at Microsoft somewhere in the mid-1990s must have made a valuable 
contribution.) 

 
FIGURE 9-10  The Input Simplified Ink sample doing a great job recognizing my sloppy mouse-based handwriting. 

397

http://code.msdn.microsoft.com/windowsapps/Input-simplified-ink-sample-11614bbf


Geolocation 

Before we explore sensors more generally, I’ll call out the geolocation capabilities for Windows Store 
apps separately because its API is structured differently from other sensors. We’ve already used this 
since Chapter 2, “Quickstart” in the Here My Am! app, but we need the more complete story of this 
highly useful capability. 

Unlike all other sensors, in fact, geolocation is the only one that has an associated capability you 
must declare in the manifest. Where you are on the earth is an absolute measure, if you will, and is 
therefore classified as a piece of personal information. So, users must give their consent before an app 
can obtain that information, and your app must also provide a Privacy Statement in the Windows Store. 
Other sensor data, in contrast, is relative—you cannot, for example, really know anything about a person 
from how a device is tilted, how it’s moving, or how much light is shining on it. Accordingly, you can use 
those others sensors without declaring any specific capabilities. 

As you might know, geolocation can be obtained in two different ways. The primary and most 
precise way, of course, is to get a reading from an actual GPS radio that is talking to geosynchronous 
satellites some hundreds of miles up in orbit. The other reasonably useful means, though not always 
accurate, is to attempt to find one’s position through the IP address of a wired network connection or to 
triangulate from the position of available WiFi hotspots. Whatever the case, WinRT will do its best to 
give you a decent reading. 

To access geolocation readings, you must first create an instance of the WinRT geolocator, 
Windows.Devices.Geolocation.Geolocator. With that in hand, you can then call its 
getGeopositionAsync method, whose results (delivered to your completed handler) is a Geoposition 
object (in the same Windows.Devices.Geolocation namespace, as everything here is unless noted). 
Here’s the code as it appears in Here My Am!: 

var gl = new Windows.Devices.Geolocation.Geolocator(); 
 
gl.getGeopositionAsync().done(function (position) { 
    //Save for share 
    lastPosition = { latitude: position.coordinate.latitude, 
        longitude: position.coordinate.longitude }; 
} 

The getGeopositionAsync method also has a variation where you can specify two parameters: a 
maximum age for a cached reading (which is to say, how stale you can allow a reading to be) and a 
timeout value for how long you’re willing to wait for a response. Both values are in milliseconds. 

A Geoposition contains two properties. First, its coordinate property is a Geocoodinate object that 
provides accuracy (meters), altitude (meters), altitudeAccuracy (meters), heading (degrees relative to 
true north), latitude (degrees), longitude (degrees), speed (meters/sec), and a timestamp (Date). The 
second part of a Geoposition is a CivicAddress object named—what else!—civicAddress, which might 
contain city (string), country (string, a two-letter ISO-3166 country code), postalCode (string), state 

398

http://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.geolocator.aspx
http://msdn.microsoft.com/library/windows/apps/hh973537.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.geoposition.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.geocoordinate.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.civicaddress.aspx


(string), and timestamp (Date) properties, if the geolocation provider supplies such data.51 

You can indicate the accuracy you’re looking for through the Geolocator’s desiredAccuracy 
property, which is either PositionAccuracy.default or PositionAccuracy.high. The latter, mind you, 
will be much more radio or network intensive. This might incur higher costs on metered broadband 
connections and can shorten battery life, so set this to high only if it’s essential to your user experience. 

The Geolocator also provides a locationStatus property, which is a PositionStatus object 
containing ready, initializing, noData, disabled, notInitialized, and notAvailable. It should be 
obvious that you can’t get data from a Geolocator that’s in any state other than ready. To track this, you 
can listen to the Geolocator’s statusChanged event, where eventArgs.status property in your handler 
will contain a PositionStatus; this is helpful when you find that a GPS device might take a couple 
seconds to provide a reading. For an example of using this event, see Scenario 1 of the Geolocation 
sample in the Windows SDK: 

geolocator = new Windows.Devices.Geolocation.Geolocator(); 
geolocator.addEventListener("statuschanged", onStatusChanged);  //Remember to remove later 
 
function onStatusChanged(e) { 
    switch (e.status) { 
    // ... 
    } 
} 

Note that PositionStatus and statusChanged reflect the readiness of the GPS device, and that 
readiness is not affected by the Location permission in the app’s Settings pane. As demonstrated in Here 
My Am!, an app needs to check permissions by trying to obtain a setting, which is a different concern 
from device readiness. 

The other two interesting properties of the Geolocator are movementThreshold, a distance in meters 
that the device can move before another reading is triggered (which can be used for geo-fencing 
scenarios), and reportInterval, which is the number of milliseconds between attempted readings. Be 
conservative with the latter, setting it to what you really need, because you again want to minimize 
network or radio activity. In any case, when the Geolocator takes and other reading and finds that the 
device has moved beyond the movement-Threshold, it will fire a positionChanged event, where the 
eventArgs.position property is a new Geoposition object. This is also shown in Scenario 1 of the 
Geolocation sample: 

geolocator.addEventListener("positionchanged", onPositionChanged); 
 
function onPositionChanged(e) { 
    var coord = e.position.coordinate; 
 
    document.getElementById("latitude").innerHTML = coord.latitude; 
    document.getElementById("longitude").innerHTML = coord.longitude; 
 

51 That is, the civicAddress property might not be available or might be empty. An alternate means to obtain it is to use the 
Bing Maps API, specifically the MapAddress class, to convert coordinates into an address. 

399

http://msdn.microsoft.com/library/windows/apps/windows.devices.geolocation.positionstatus.aspx
http://code.msdn.microsoft.com/windowsapps/Geolocation-2483de66
http://code.msdn.microsoft.com/windowsapps/Geolocation-2483de66
http://www.microsoft.com/maps/developers/web.aspx
http://msdn.microsoft.com/library/jj663670.aspx


    document.getElementById("accuracy").innerHTML = coord.accuracy; 
} 

With movementThreadhold and reportInterval, really think through what your app needs based on 
the accuracy and/or refresh intervals of the data you’re using in relation to the location. For example, 
weather data is regional and might be updated only hourly. Therefore, movementThreshold might be set 
on the scale of miles or kilometers and reportInterval at 15, 30, 60 minutes, or longer. A mapping or 
real-time traffic app, on the other hand, works with data that is very location-sensitive and will thus have 
a much smaller threshold and a much shorter interval. 

Where battery life is concerned, it’s best to simply take a reading when the user wants one, rather 
than following the position at regular intervals. But this again depends on the app scenario, and you 
could also provide a setting that lets the user control geolocation activity. 

It’s also very important to note that apps won’t get positionChanged or statusChanged events while 
suspended unless you register a time trigger background task for this purpose and the user adds the 
app to the lock screen. We’ll talk more of this in Chapter 13, “Tiles, Notifications, the Lock Screen, and 
Background Tasks,” and you can also see how this works in Scenario 3 of the Geolocation sample. If, 
however, you don’t use a background task or the user doesn’t place you on the lock screen and you still 
want to track the user’s position, be sure to handle the resuming event and refresh the position there. 

On the flip side, some geolocation scenarios, such as providing navigation, need to also keep the 
display active (preventing automatic screen shutoff) even when there’s no user activity. For this purpose 
you can use the Windows.System.Display.DisplayRequest class, namely its requestActive and 
releaseRelease methods that you would call when starting and ending a navigation session. Of course, 
since keeping the display active consumes more battery power, only use this capability when 
necessary—as when specifically providing navigation—and avoid simply making the request when your 
app starts. Otherwise your app will probably gain a reputation in the Windows Store as being power 
hungry! 

Sidebar: HTML5 Geolocation 
An experienced HTML/JavaScript developer might wonder why WinRT provides a Geolocation API 
when HTML5 already has one: window.navigator.geolocation and its getCurrent-Position 
method that returns an object with coordinates. The reason for the overlap is that other 
languages like C#, Visual Basic, and C++ don’t have another API to draw from, which leaves 
HTML/JavaScript developers a choice. Under the covers, the HTML5 API hooks into the same data 
as the WinRT API, requires the same manifest capability, Location, and is subject to the same user 
consent, so for the most part the two APIs are almost equivalent. I would give WinRT a slight edge 
due to the movementThreshold option, which helps an app cooperate with power management 
and enables easier geo-fencing. Doing the same with the HTML5 API would require more 
frequent polling and battery consumption. For many scenarios, however, you can use either one 
with equal results. 

 

400

http://msdn.microsoft.com/library/windows/apps/windows.system.display.displayrequest.aspx


Like all other WinRT APIs, however, Windows.Devices.Geolocation is available only in local 
context pages in a Windows Store app. In web context pages you can use the HTML5 API. 

Sensors 

As I wrote in the chapter’s introduction, I like to think of sensors as another form of input. It makes a lot 
of sense because every device that is now wholly integrated into our computer systems—such that we 
take them for granted—was at one point a kind of human-interface peripheral. In time, I suspect that 
many of the sensors that are new to us today will be standard equipment just about everywhere. 

Sensors, again, are a way of understanding the relationship of a device to the physical world around 
it, and this constitutes input because you, as a human being, can affect that relationship primarily by 
moving the device around in physical space or otherwise changing its environment. Sensors can also be 
used as direct input to cause motion on the screen rather than relying on some form of abstract input 
like the keyboard or mouse. For example, instead of using keystrokes to abstractly tilt a game board, 
you can, with sensors, just tilt the device. Shaking, in fact, is becoming a well-known physical gesture 
that can be wired to a command of some kind like Retry Now, darn you! Why aren’t you doing what I 
want? Haven’t we for years been shaking or smacking our computers when they aren’t behaving 
properly? Well, with sensors the computer can now actually respond! 

Here, then, is what the various sensors tell us: 

• Location The device’s position on the earth (as we covered in the previous section). 

• Compass and orientation The direction the device is pointing, relative to the earth’s magnetic 
poles or relative to the device’s inherent sense of position (both simple and complex 
orientation). 

• Inclinometer The static pitch, roll, and yaw of the device in 3D space. 

• Gyrometer The angular velocity/rotational motion of the device in 3D space. 

• Accelerometer The linear G-force acceleration of the device within 3D space (x, y, z). 

• Ambient light The amount of light surrounding the device. 

These are the sensors that are represented in the WinRT API,52 some of which are created in software 
through sensor fusion. This means taking raw data from one or more hardware sensors and combining, 
interpreting, and presenting it all in a form that’s more directly useful to apps. Just as with pointers, you 
can still get to raw data if you want it, but oftentimes it’s unnecessary. For example, the Simple 

52 There is also the proximity sensor for near-field communications (NFC) that tells us when devices are near one another or 
make contact, but this is more a networking handshake than a sensor like the others. We’ll see this in Chapter 15, “Devices 
and Printing.” 

 

401



Orientation sensor provides a simple interpretation of how the device is oriented in relation to its 
default position, rounding everything off, as it were, to the nearest 90-degree quadrant. The full 
Orientation sensor, on the other hand, combines gyrometer, accelerometer, and compass data to 
provide an exact 3D orientation matrix that is much more precise but much more oriented (if I might 
make the pun!) to advanced scenarios than simply needing to know whether the device is upside-down 
or rightside-up. 

Because all of these sensors are very similar in how they work (which is intentional, with the 
exception of the Simple Orientation sensor, which is intentionally dissimilar!), I want to show the general 
pattern of the sensor APIs rather than explicit examples for each. Such examples are readily available in 
these SDK samples: Accelerometer, Compass, Gyrometer, Inclinometer, Light Sensor, and 
OrientationSensor. 

The usage pattern is as follows, with the particulars summarized in the table that follows: 

• Obtain a sensor object via Windows.Devices.Sensors.<sensor>.getDefault(). 

• Call that object’s getCurrentReading to obtain a one-time reading. 

• For ongoing readings, configure the object’s minimumReportInterval and reportInterval 
properties (both in milliseconds) and listen to the object’s readingchanged event. Your handler 
will receive a reading object of an appropriate type in response. As with geolocation, setting 
these values wisely will help optimize battery life by avoiding excess electrons flying through the 
sensors! 

Sensor Name 
(Windows.Devices.Sensors.) 

Added Members Reading Type 
(Windows.Devices.Sensors) 

Reading Properties (timestamp 
is a Date; all others are Numbers 
unless noted) 

Accelerometer Event: shaken (event 
args contains only a 
timestamp property) 

AccelerometerReading accelerationX (G’s), accelerationY, 
accelerationZ, timestamp 

Compass n/a CompassReading headingMagneticNorth (degrees), 
headingTrueNorth, timestamp 

Gyrometer n/a GyrometerReading angularVelocityX (degrees/sec), 
angularVelocityY, 
angularVelocityZ, timestamp 

Inclinometer n/a InclinometerReading pitchDegrees (degrees), 
rollDegrees (degrees), yawDegrees 
(degrees), timestamp 

LightSensor n/a LightSensorReading illuminenceInLux (lux), timestamp 
OrientationSensor n/a OrientationSensorReading quaternion, (SensorQuaternion 

containing w, x, y, and z properties) 
rotationMatrix 
(Sensor-RotationMatrix containing 
m11, m12, m13, m21, m22, m23, 
m31, m32, m33 properties), 
timestamp 

 

402

http://code.msdn.microsoft.com/windowsapps/Accelerometer-Sensor-Sample-22982671
http://code.msdn.microsoft.com/windowsapps/Compass-Sensor-Sample-0ed09c55
http://code.msdn.microsoft.com/windowsapps/Gyrometer-Sensor-Sample-4fe891d9
http://code.msdn.microsoft.com/windowsapps/Inclinometer-Sensor-Sample-0cd0bf84
http://code.msdn.microsoft.com/windowsapps/LightSensor-Sample-4477824c
http://code.msdn.microsoft.com/windowsapps/OrientationSensor-sample-0b1732be
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.accelerometer.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.accelerometerreading.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.compass.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.compassreading.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.gyrometer.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.gyrometerreading.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.inclinometer.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.inclinometerreading.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.lightsensor.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.lightsensorreading.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.orientationsensor.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.orientationsensorreading.aspx


Here’s an example of such code from the Gyrometer sample (js/scenario1.js): 

gyrometer = Windows.Devices.Sensors.Gyrometer.getDefault(); 
 
var minimumReportInterval = gyrometer.minimumReportInterval; 
var reportInterval = minimumReportInterval > 16 ? minimumReportInterval : 16; 
gyrometer.reportInterval = reportInterval; 
 
gyrometer.addEventListener("readingchanged", onDataChanged);    // Remember to remove as needed 
 
function onDataChanged(e) { 
    var reading = e.reading; 
 
    document.getElementById("eventOutputX").innerHTML = reading.angularVelocityX.toFixed(2); 
    document.getElementById("eventOutputY").innerHTML = reading.angularVelocityY.toFixed(2); 
    document.getElementById("eventOutputZ").innerHTML = reading.angularVelocityZ.toFixed(2); 
} 

With the Orientation Sensor, a quaternion can be most easily understood as a rotation of a point 
[x,y,z] about a single arbitrary axis. This is different from a rotation matrix, which represents rotations 
around three axes. The mathematics behind quaternions is fairly exotic because it involves the 
geometric properties of complex numbers and mathematical properties of imaginary numbers, but 
working with them is simple and frameworks like DirectX support them. See the OrientationSensor 
sample for more. 

Speaking of orientation, I mentioned that the SimpleOrientationSensor works a little differently. Its 
purpose is to supply quadrant orientation rather than exact orientation, which is perhaps all you need. 
For example, a star chart app would need to know if a slate device is upside-down so that it can adjust 
its display (along with a compass reading) to match the sky itself. 

To summarize this sensor’s usage: 

• Call Windows.Devices.Sensors.SimpleOrientation.getDefault to obtain the object. 

• Call the getCurrentOrientation to obtain a reading. 

• The orientationChanged event provides for ongoing readings, where eventArgs contains 
orientation (a reading) and timestamp properties. 

• The reading is a SimpleOrientation object that contains these properties: 

o notRotated (“portrait up”), rotated90DegreesCounterclockwise (“portrait left”), rotated90-
DegreesCounterclockwise (“portrait down”), rotated270Degrees-Counterclockwise 
(“landscape right”) Note that these are entirely different from view states like 
fullscreen-landscape and fullscreen-portrait. 

o faceup, facedown (slate devices only). 

For a demonstration, see the SimpleOrientationSensor sample. 

403

http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.simpleorientationsensor.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.sensors.simpleorientation.aspx
http://code.msdn.microsoft.com/windowsapps/SimpleOrientationSensor-d948ac62


What We’ve Just Learned 

• “Design for touch, get mouse and stylus for free” is a message that holds true, because working 
with pointer and gesture input from a variety of input devices doesn’t require you to 
differentiate between the forms of input. 

• Using built-in controls is the easiest way to handle input, but you can also handle MSPointer* 
events and MSGesture* events directly, when needed. You can also feed MSPointer* events into a 
custom gesture recognizer (that issues its own events). 

• The Windows 8 touch language includes tap, press and hold, slide/pan, cross-slide (to select), 
pinch-stretch, rotate, and edge gestures (from top/bottom and from the sides). A tap is typically 
handled with a click event, whereas the others require the creation of an MSGesture object, 
association of that object with a pointer, and handling of MSGesture* event sequences which 
provide for maniplations and inertial motions together. 

• The touch language also has mouse, stylus, and keyboard equivalents. For mouse and stylus, 
there is very little work an app needs to do (such as sending mouse wheel events to the gesture 
object). Keyboard support must be implemented separately, but simply uses the standard 
HTML/JavaScript events. 

• Keyboard support also includes accommodating the soft (on-screen) keyboard, which appears 
automatically for text input fields and other content-editable elements. It automatically adjusts 
its appearance according to input type, and will slide the app contents up if necessary to avoid 
having the keyboard overlap the input control. An app can also handle visibility events directly 
to provide a better experience than the default. 

• The Inking API provides apps with the means to record, save, and render an entire series of 
pointer activities, where the strokes can also be fed into a handwriting recognizer. 

• The Geolocation API in WinRT, similar to the HTML5 geolocation API, provides apps with access 
to GPS data as well as events when the device has moved past a specified threshold. 

• The WinRT API represents a number of sensors that can also be used as input to an app. In 
addition to geolocation, the sensors are compass, orientation, simple orientation 
(quadrant-based), inclinometer, gyrometer, accelerometer, and ambient light. 

• Most sensors follow the same usage pattern: acquire the sensor object, get a current reading, 
and possibly listen to the readingchanged event. They are very easy to work with, leaving much 
of your energy to apply them creatively! 

  

404



Chapter 10 

Media 
To say that media is important to apps—and to culture in general—is a gross understatement. Ever 
since the likes of Edison made it possible to record a performance for later enjoyment, and the likes of 
Marconi made it possible to widely broadcast and distribute such performances, humanity’s worldwide 
appetite for media—graphics, audio, and video—has probably outpaced the appetite for automobiles, 
electricity, and even junk food. In the early days of the Internet, graphics and images easily accounted 
for the bulk of network traffic. Today, streaming video even from a single source like Netflix holds top 
honors for pushing the capabilities of our broadband infrastructure! (It certainly holds true in my own 
household with my young son’s love of Curious George, Bob the Builder, Dinosaur Train, and other such 
shows.) 

Incorporating some form of media is likely a central concern for most Windows Store apps. Simple 
ones, even, probably use at least a few graphics to brand the app and present an attractive UI, as we’ve 
already seen on a number of occasions. Many others, especially games, will certainly use graphics, video, 
and audio together. In the context of this book, all of this means using the img, svg (Scalable Vector 
Graphics), canvas, audio, and video elements of HTML5. 

Of course, working with media goes well beyond just presentation because apps might also provide 
any of the following capabilities: 

• Organize and edit media files, including those in the pictures, music, and videos media libraries. 

• Transcode (convert) media files, possibly applying various filters and custom codecs. 

• Organize and edit playlists. 

• Capture audio and video from available devices. 

• Stream media from a server to a device, or from a device to a PlayTo target, perhaps also 
applying DRM. 

These capabilities, for which many WinRT APIs exist, along with the media elements of HTML5 and 
their particular capabilities within the Windows 8 environment, will be our focus for this chapter. 

Note As is relevant to this chapter, a complete list of audio and video formats that are supported for 
WinRT  apps can be found on Supported audio and video formats. 

Sidebar: Performance Tricks for Faster Apps 
Some of the recommendations in this chapter come from a great talk by Jason Weber, the 
Performance Lead for Internet Explorer, called 50 Performance Tricks to Make Your Windows 8 

405

http://msdn.microsoft.com/library/windows/apps/hh986969.aspx
http://go.microsoft.com/fwlink/?LinkID=261988


Apps Using HTML5 Faster. While some of these tricks are specifically for web applications running 
in a browser, many of them are wholly applicable to Windows Store apps written in JavaScript as 
they run on top of the same infrastructure as Internet Explorer. 

Creating Media Elements 

Certainly the easiest means to incorporate media into an app is what we’ve already been doing for 
years: simply use the appropriate HTML element in your layout and voila! there you have it. With img, 
audio, and video elements, in fact, you’re completely free to use content from just about any location. 
That is, the src attributes of these elements can be assigned URIs that point to in-package content 
(using relative paths, ms-appx:/// URIs, or paths based on Windows.ApplicationModel.Package.- 
current.installedLocation that you then pass to URL.createObjectURL), files in your app data folders 
(using ms-appdata:/// URIs or paths based on Windows.Storage.ApplicationData.current again using 
URL.createObjectURL) , and remote files with http:// and other URIs. With the img element, this 
includes using SVG files as the source. 

There are three ways to create a media element in a page or page control. 

First is to include the element directly in declarative HTML. Here it’s often useful to use the 
preload="auto" attribute for remote audio and video to increase the responsiveness of controls and 
other UI that depend on those elements. (Doing so isn’t really important for local media files since they 
are, well, already local!) Oftentimes, media elements are placed near the top of the HTML file, in order of 
priority, so that downloading can begin while the rest of the document is being parsed. 

On the flip side, if the user can wait a short time to start a video, use a preview image in place of the 
video and don’t start the download until it’s actually necessary. Code for this is shown later in this 
chapter in the “Video Playback and Deferred Loading” section. 

Playback for a declarative element can be automatically started with the autoplay attribute, through 
the built-in UI if the element has the controls attribute, or by calling <element>.play() from JavaScript. 

The second method is to create an HTML element in JavaScript via document.createElement and add 
it to the DOM with <parent>.appendChild and similar methods. Here’s an example using media files in 
this chapter’s companion content, though you’ll need to drop the code into a new project of your own: 

//Create elements and add to DOM, which will trigger layout 
var picture = document.createElement("img"); 
picture.src = "media/wildflowers.jpg"; 
picture.width = 300; 
picture.height = 450; 
document.getElementById("divShow").appendChild(picture); 
 
var movie = document.createElement("video"); 
movie.src = "media/ModelRocket1.mp4"; 
movie.autoplay = false; 

406

http://go.microsoft.com/fwlink/?LinkID=261988


movie.controls = true; 
document.getElementById("divShow").appendChild(movie); 
 
var sound = document.createElement("audio"); 
sound.src = "media/SpringyBoing.mp3"; 
sound.autoplay = true;  //Play as soon as element is added to DOM 
sound.controls = true;  //If false, audio plays but does not affect layout 
 
document.getElementById("divShow").appendChild(sound); 

Unless otherwise hidden by styles, image and video elements, plus audio elements with the controls 
attribute, will trigger re-rendering of the document layout. An audio element without that attribute will 
not cause re-rendering. As with declarative HTML, setting autoplay to true will cause video and audio 
to start playing as soon as the element is added to the DOM. 

Finally, for audio, apps can create an Audio object in JavaScript to play sounds or music without any 
effect on UI. More on this later. JavaScript also has the Image class, and the Audio class can be used to 
load video: 

//Create objects (pre-loading), then set other DOM object sources accordingly 
var picture = new Image(300, 450); 
picture.src = "http://www.kraigbrockschmidt.com/downloads/media/wildflowers.jpg"; 
document.getElementById("image1").src = picture.src; 
 
//Audio object can be used to pre-load (but not render) video 
var movie = new Audio("http://www.kraigbrockschmidt.com/downloads/media/ModelRocket1.mp4"); 
document.getElementById("video1").src = movie.src; 
 
var sound = new Audio("http://www.kraigbrockschmidt.com/downloads/media/SpringyBoing.mp3"); 
document.getElementById("audio1").src = sound.src; 

Creating an Image or Audio object from code does not create elements in the DOM, which can be a 
useful trait. The Image object, for instance, has been used for years to preload an array of image sources 
for use with things like image rotators and popup menus. Preloading in this case only means that the 
images have been downloaded and cached. This way, assigning the same URI to the src attribute of an 
element that is in the DOM, as shown above, will have that image appear immediately. The same is true 
for preloading video and audio, but again, this is primarily helpful with remote media as files on the 
local file system will load relatively quickly as-is. Still, if you have large local images and want them to 
appear quickly when needed, preloading them into memory is a useful strategy. 

Of course, you might want to load media only when it’s needed, in which case the same type of code 
can be used with existing elements, or you can just create an element and add it to the DOM as shown 
earlier. 

 

407



Graphics Elements: Img, Svg, and Canvas (and a Little CSS) 

I know you’re probably excited to get to sections of this chapter on video and audio, but we cannot 
forget that images have been the backbone of web applications since the beginning and remain a huge 
part of any app’s user experience. Indeed, it’s helpful to remember that video itself is conceptually just a 
series of static images sequenced over time! Fortunately, HTML5 has greatly expanded an app’s ability 
to incorporate image data by adding SVG support and the canvas element to the tried-and-true img 
element. Furthermore, applying CSS animations and transitions (covered in detail in Chapter 11, 
“Purposeful Animations”) to otherwise static image elements can make them appear very dynamic. 

Speaking of CSS, it’s worth noting that many graphical effects that once required the use of static 
images can be achieved with just CSS, especially CSS3: 

• Borders, background colors, and background images 

• Folder tabs, menus, and toolbars 

• Rounded border corners, multiple backgrounds/borders, and image borders 

• Transparency 

• Embeddable fonts 

• Box shadows 

• Text shadows 

• Gradients 

In short, if you’ve ever used img elements to create small visual effects, create gradient backgrounds, 
use a nonstandard font, or provide some kind of graphical navigation structure, there’s probably a way 
to do it in pure CSS. For details, see the great overview of CSS3 by Smashing Magazine as well as the 
CSS specs at http://w3.org/. CSS also provides the ability to declaratively handle some events and visual 
states using pseudo-selectors of hover, visited, active, focus, target, enabled, disabled, and checked. 
For more, see http://css-tricks.com/ as well as another Smashing Magazine tutorial on pseudo-classes. 

That said, let’s review the three primary HTML5 elements for graphics: 

• img is used for raster data. The PNG format generally preferred over other formats, especially for 
text and line art, though JPEG makes smaller files for photographs. GIF is generally considered 
outdated, as the primary scenarios where GIF produced a smaller file size can probably be 
achieved with CSS directly. Where scaling is concerned, Windows Store apps need to consider 
pixel density, as we saw in Chapter 6, “Layout,” and provide separate image files for each scale 
the app might encounter. This is where the smaller size of JPEGs can reduce the overall size of 
your app package in the Windows Store. 

• SVGs are best used for smooth scaling across display sizes and pixel densities. SVGs can be 

408

http://coding.smashingmagazine.com/2009/01/08/push-your-web-design-into-the-future-with-css3/
http://w3.org/
http://css-tricks.com/
http://www.smashingmagazine.com/2011/03/30/how-to-use-css3-pseudo-classes/


declared inline, created dynamically in the DOM, or maintained as separate files and used as a 
source for an img element (in which case all the scaling characteristics are maintained). An svg 
file can also be used for an iframe source, which has the added benefit that the SVG’s child 
elements are accessible in the DOM. As we saw in Chapter 6, preserving the aspect ratio of an 
SVG is often important, for which you employ the viewBox and preserveAspectRatio attributes 
of the svg tag. 

• The canvas element provides a drawing surface and API for creating graphics with lines, 
rectangles, arcs, text, and so forth. The canvas ultimately generates raster data, which means that 
once created, a canvas scales like a bitmap. (An app, of course, will typically redraw a canvas with 
scaled coordinates when necessary to avoid pixelation.) The canvas is also very useful for 
performing pixel manipulation, even on individual frames of a video while it’s playing. 

Apps often use all three of these elements, drawing on their various strengths. I say this because 
when canvas first became available, developers seemed so enamored with it that they seemed to forget 
how to use img elements, and they ignored the fact that SVGs are often a better choice altogether! (And 
did I already say that CSS can accomplish a great deal by itself as well?) 

In the end, it’s helpful to think of all the HTML5 graphics elements as ultimately producing a bitmap 
that the app host simply renders to the display. You can, of course, programmatically animate the 
internal contents of these elements in JavaScript, as we’ll see in Chapter 11, but for our purposes here 
it’s helpful to simply think of these as essentially static. 

What differs between the elements is how image data gets into the element to begin with. Img 
elements are loaded from a source file, svg’s are defined in markup, and canvas elements are filled 
through procedural code. But in the end, as demonstrated in Scenario 1 in the HTML Graphics example 
for this chapter and shown in Figure 10-1, each can produce identical results. 

 
FIGURE 10-1 Image, canvas, and svg elements showing identical results. 

In short, there are no fundamental differences as to what can be rendered through each type of 
element. However, they do have differences that become apparent when we begin to manipulate those 
elements as with CSS. Because each element is just a node in the DOM, plain and simple, and they are 
treated like all other nongraphic elements: CSS doesn’t affect the internals of the element, just how it 
ultimately appears on the page. Individual parts of SVGs declared in markup can, in fact, be separately 
styled so long as they can be identified with a CSS selector. In any case, such styling only affects 

409



presentation, so if new styles are applied, they are applied to the original contents of the element. 

What’s also true is that graphics elements can overlap with each other and with nongraphic elements 
(as well as video), and the rendering engine automatically manages transparency according to the 
z-index of those elements. Each graphic element can have clear or transparent areas, as is built into 
image formats like PNG. In a canvas, any areas cleared with the clearRect method that aren’t otherwise 
affected by other API calls will be transparent. Similarly, any area in an SVG’s rectangle that’s not 
affected by its individual parts will be transparent. 

Scenario 2 in the HTML Graphics example allows you to toggle a few styles (with a check box) on the 
same elements shown earlier. In this case, I’ve left the background of the canvas element transparent so 
that we can see areas that show through. When the styles are applied, the img element gets is rotated 
and transformed, the canvas gets scaled, and individual parts of the svg are styled with new colors, as 
shown in Figure 10-2. 

 
FIGURE 10-2 Styles applied to graphic elements; individual parts of the SVG can be styled if they are accessible 
through the DOM. 

The styles in css/scenario2.css are simple: 

.transformImage { 
    transform: rotate(30deg) translateX(120px); 
} 
 
.scaleCanvas { 
    transform: scale(1.5, 2); 
} 

as is the code in js/scenario2.js that applies them: 

function toggleStyles() { 
    var applyStyles = document.getElementById("check1").checked; 
 
    document.getElementById("image1").className = applyStyles ? "transformImage" : ""; 
    document.getElementById("canvas1").className = applyStyles ? "scaleCanvas" : ""; 

410



 
    document.getElementById("r").style.fill = applyStyles ? "purple" : ""; 
    document.getElementById("l").style.stroke = applyStyles ? "green" : ""; 
    document.getElementById("c").style.fill = applyStyles ? "red" : ""; 
    document.getElementById("t").style.fontStyle = applyStyles ? "normal" : ""; 
    document.getElementById("t").style.textDecoration = applyStyles ? "underline" : ""; 
} 

The other thing you might have noticed when the styles are applied is that the scaled-up canvas 
looks rasterized, like a bitmap would typically be. This is expected behavior, as shown in the following 
table of scaling characteristics. These are demonstrated in Scenarios 3 and 4 of the HTML Graphics 
example. 

Element Scaling Handling layout changes for best appearance 
img rasterized Change src attribute for different scales (or just use an SVG file as a source). 
canvas rasterized Redraw canvas using scaled dimensions; this is often best done by calling <context>.scale 

according to the needed display size instead of changing the coordinates used in the code. 
svg smooth Not needed. Use viewBox and preseveAspectRatio for proportional scaling. 

 

Additional Characteristics of Graphics Elements 
There are a few additional characteristics to be aware of with graphics elements. First, different kinds of 
operations will trigger a re-rendering of the element in the document. Second is the mode of operation 
of each element. Third are the relative strengths of each element. These are summarized in the 
following table: 

Element Trigger for re-rendering Mode Strengths 
img Change src attribute 

Change of styling via JavaScript 
Pixel Fast to render and transform 

Great for static elements and static/repeating 
backgrounds 

Sprite animation by changing src attribute 

canvas Calls to context API 
Change of styling via JavaScript 
 
Note: re-rendering happens only when 
code returns control to the host and 
unblocks the UI thread; there are no 
visible changes while the code is 
manipulating the canvas. 

Immediate: API calls are 
rendered to pixels and 
forgotten 

Fine-grained dynamic content 

Fast to render after being drawn 

Pixel-level manipulation 

Excellent for fine-grained dynamic/interactive 
content with frequent computation 

svg Change to element structure 
Change of styling via JavaScript 

Retained: all shapes 
exist as DOM elements 
(unless used as img src) 

Smooth scaling 

Fine-grained control over individual (retained) 
elements 

Shape-level manipulation 

Excellent for interactive graphics, detailed and 
scalable styling, and dynamic per-shape attributes 

411



Sidebar: Using Media Queries to Show and Hide SVG Elements 
Because SVGs generate elements in the DOM, those elements can be individually styled. You can 
use this fact with media queries to hide different parts of the SVG depending on its size. To do 
this, add different classes to those SVG elements. Then, in CSS, add or remove the display: none 
style for those classes within media queries like @media (min-width:300px) and (max-width:499px). 
You may need to account for the size of the SVG relative to the app window, but it means that 
you can effectively remove detail from an SVG rather than allowing those parts to be rendered 
with too few pixels to be useful. 

In the end, the reason why HTML5 has all three of these elements is because all three are really 
needed. All of them benefit from full hardware acceleration, just as they do in Internet Explorer, since 
apps written in HTML and JavaScript run on the same rendering engine as the browser. 

The best practice in app design is to really explore the appropriate use of each type of elements. 
Each element can have transparent areas, so you can easily achieve some very fun effects. For example, 
if you have data that maps video timings to caption or other text, you can simply use an interval handler 
(with the interval set to the necessary granularity like a half-second) to take the video’s currentTime 
property, retrieve the appropriate text for that segment, and render the text to an otherwise transparent 
canvas that sits on top of the video. Titles and credits can be done in a similar manner, eliminating the 
need to reencode the video. 

Some Tips and Tricks 
Working with the HTML graphics elements is generally straightforward, but knowing some details can 
help when working with them inside a Windows Store app. 

Img Elements 
• Use the title attribute of img for tooltips, not the alt attribute. You can also use a WinJS.- 

UI.Tooltip control as described in Chapter 4, “Controls, Control Styling, and Data Binding.” 

• To create an image from an in-memory stream, see MSApp.createBlobFromRandom- 
AccessStream, the result of which can be then given to URL.createObjectURL to create an 
appropriate URI for a src attribute. We’ll encounter this elsewhere in this chapter, and we’ll need 
it when working with the Share contract in Chapter 12, “Contracts.” The same technique also 
works for audio and video streams. 

• When loading images from http:// or other remote sources, you run the risk of having the 
element show a red X placeholder image. To prevent this, catch the img.onerror event and 
supply your own placeholder: 

var myImage = document.getElementById('image'); 
myImage.onerror = function () { onImageError(this);} 
 

412

http://msdn.microsoft.com/library/windows/apps/Hh767329.aspx
http://msdn.microsoft.com/library/windows/apps/Hh767329.aspx


function onImageError(source) { 
    source.src = "placeholder.png"; 
    source.onerror = ""; 
} 

Svg Elements 
• <script> tags are not supported within <svg>. 

• If you have an SVG file, you can load it into an img element by pointing at the file with the src 
attribute, but this doesn’t let you traverse the SVG in the DOM. If you want the latter behavior, 
load the SVG in an iframe instead. The SVG contents will then be within that element’s 
contentDocument.documentElement property: 

<!-- in HTML--> 
<iframe id="Mysvg" src="myFolder/mySVGFile.svg" /> 
 
// in JavaScript 
var svg = document.getElementById("Mysvg").contentDocument.documentElement; 

• PNGs and JPEGs generally perform better than SVGs, so if you don’t technically need an SVG or 
have a high-performance scenario, consider using scaled raster graphics. Or you can dynamically 
create a scaled static image from an SVG so as to use the image for faster rendering later: 

<!-- in HTML--> 
<img id="svg" src="somesvg.svg" style="display: none;" /> 
<canvas id="canvas" style="display: none;" /> 
 
// in JavaScript 
var c = document.getElementById("canvas").getContext("2d"); 
c.drawImage(document.getElementById("svg"),0,0); 
var imageURLToUse = document.getElementById("canvas").toDataURL(); 

• Two helpful SVG references (JavaScript examples): http://www.carto.net/papers/svg/samples/ 
and http://srufaculty.sru.edu/david.dailey/svg/. 

Canvas Elements 
All the function names mentioned here are methods of a canvas’s context object: 

• Remember that a canvas element needs specific width and height attributes (in JavaScript, 
canvas.width and canvas.height), not styles. It does not accept px, em, %, or other units. 

• Despite its name, the closePath method is not a direct complement to beginPath. beginPath is 
used to start a new path that can be stroked, clearing any previous path. closePath, on the other 
hand, simply connects the two endpoints of the current path, as if you did a lineTo between 
those points. It does not clear the path or start a new one. This seems to confuse programmers 
quite often, which is why you sometimes see a circle drawn with a line to the center! 

• A call to stroke is necessary to render a path; until that time, think of paths as a pencil sketch of 

413

http://www.carto.net/papers/svg/samples/
http://srufaculty.sru.edu/david.dailey/svg/


something that’s not been inked in. Note also that stroking implies a call to beginPath. 

• When animating on a canvas, doing clearRect on the entire canvas and redrawing every frame 
is generally easier to work with than clearing many small areas and redrawing individual parts of 
the canvas. The app host eventually has to render the entire canvas in its entirety with every 
frame anyway to manage transparency, so trying to optimize performance by clearing small 
rectangles isn’t an effective strategy except when you’re only doing a small number of API calls 
for each frame. 

• Rendering canvas API calls is accomplished by converting them to the equivalent Direct2D calls 
in the GPU. This draws shapes with automatic antialiasing. As a result, drawing a shape like a 
circle in a color and drawing the same circle with the background color does not erase every 
pixel. To effectively erase a shape, use clearRect on an area that’s slightly larger than the shape 
itself. This is one reason why clearing the entire canvas and redrawing every frame often ends up 
being easier. 

• To set a background image in a canvas (so you don’t have to draw each time), you can use the 
canvas.style.backgroundImage property with an appropriate URI to the image. 

• Use the msToBlob method on a canvas object to obtain a blob for the canvas contents. 

• When using drawImage, you may need to wait for the source image to load using code such as 

var img = new Image(); 
img.onload = function () { myContext.drawImage(myImg, 0, 0); } 
myImg.src = "myImageFile.png"; 

• Although other graphics APIs see a circle as a special case of an ellipse (with x and y radii being 
the same), the canvas arc function works with circles only. Fortunately, a little use of scaling 
makes it easy to draw ellipses, as shown in the utility function below. Note that we use save and 
restore so that the scale call applies only to the arc; it does not affect the stroke that’s used 
from main. This is important, because if the scaling factors are still in effect when you call stroke, 
the line width will vary instead of remaining constant. 

function arcEllipse(ctx, x, y, radiusX, radiusY, startAngle, endAngle, anticlockwise) { 
    //Use the smaller radius as the basis and stretch the other 
    var radius = Math.min(radiusX, radiusY); 
    var scaleX = radiusX / radius; 
    var scaleY = radiusY / radius; 
 
    ctx.save(); 
    ctx.scale(scaleX, scaleY); 
 
    //Note that centerpoint must take the scale into account 
    ctx.arc(x / scaleX, y / scaleY, radius, startAngle, endAngle, anticlockwise); 
    ctx.restore(); 
} 
 
 

414

http://msdn.microsoft.com/library/windows/apps/hh465735.aspx
http://msdn.microsoft.com/library/windows/apps/hh453178.aspx


• By copying pixel data from a video, it’s possible with the canvas to dynamically manipulate a 
video (without affecting the source, of course). This is a useful technique, even if it’s 
processor-intensive; for this latter reason, though, it might not work well on low-power devices. 

Here’s an example of frame-by-frame video manipulation, the technique for which is nicely outlined 
in a Windows team blog post, Canvas Direct Pixel Manipulation.53 In the VideoEdit example for this 
chapter, default.html contains a video and canvas element in its main body: 

<video id="video1" src="ModelRocket1.mp4" muted style="display: none"></video> 
<canvas id="canvas1" width="640" height="480"></canvas> 

In code (js/default.js), we call startVideo from within the activated handler. This function starts the 
video and uses requestAnimationFrame to do the pixel manipulation for every video frame: 

var video1, canvas1, ctx; 
var colorOffset = { red: 0, green: 1, blue: 2, alpha: 3 }; 
 
function startVideo() { 
    video1 = document.getElementById("video1"); 
    canvas1 = document.getElementById("canvas1"); 
    ctx = canvas1.getContext("2d"); 
 
    video1.play(); 
    requestAnimationFrame(renderVideo); 
} 
 
function renderVideo() { 
    //Copy a frame from the video to the canvas 
    ctx.drawImage(video1, 0, 0, canvas1.width, canvas1.height); 
 
    //Retrieve that frame as pixel data 
    var imgData = ctx.getImageData(0, 0, canvas1.width, canvas1.height); 
    var pixels = imgData.data; 
 
    //Loop through the pixels, manipulate as needed 
    var r, g, b; 
 
    for (var i = 0; i < pixels.length; i += 4) { 
        r = pixels[i + colorOffset.red]; 
        g = pixels[i + colorOffset.green]; 
        b = pixels[i + colorOffset.blue]; 
 
        //This creates a negative image 
        pixels[i + colorOffset.red] = 255 - r; 
        pixels[i + colorOffset.green] = 255 - g; 
        pixels[i + colorOffset.blue] = 255 - b; 
    } 
 
    //Copy the manipulated pixels to the canvas 
    ctx.putImageData(imgData, 0, 0); 
 

53 See also http://beej.us/blog/2010/02/html5s-canvas-part-ii-pixel-manipulation/.  

415

http://windowsteamblog.com/windows/b/developers/archive/2011/02/15/canvas-direct-pixel-manipulation.aspx
http://beej.us/blog/2010/02/html5s-canvas-part-ii-pixel-manipulation/


    //Request the next frame 
    requestAnimationFrame(renderVideo); 
} 

Here the page contains a hidden video element (style="display: none") that is told to start playing 
once the document is loaded (video1.play()). In a requestAnimationFrame loop, the current frame of 
the video is copied to the canvas (drawImage) and the pixels for the frame are copied (getImageData) into 
the imgData buffer. We then go through that buffer and negate the color values, thereby producing a 
photographically negative image (an alternate formula to change to grayscale is also shown in the code 
comments, omitted above). We then copy those pixels back to the canvas (putImageData) so that when 
we return, those negated pixels are rendered to the display. 

Again, this is processor-intensive as it’s not generally a GPU-accelerated process and might perform 
poorly on lower-power devices (be sure, however, to run a Release build outside the debugger when 
evaluating erformance). It’s much better to write a video effect DLL where possible as discussed in 
“Applying a Video Effect” later on. Nevertheless, it is a useful technique to know. What’s really 
happening is that instead of drawing each frame with API calls, we’re simply using the video as a data 
source. So we could, if we like, embellish the canvas in any other way we want before returning from the 
renderVideo function. An example of this that I really enjoy is shown in Manipulating video using canvas 
on Mozilla’s developer site, which dynamically makes green-screen background pixels transparent so 
that an img element placed underneath the video shows through as a background. The same could even 
be used to layer two videos so that a background video is used instead of a static image. Again, be 
mindful of performance on low-power devices; you might consider providing a setting through which 
the user can disable such extra effects. 

Video Playback and Deferred Loading 

Let’s now talk a little more about video playback itself. As we’ve already seen, simply including a video 
element in your HTML or creating an element on the fly, gives you playback ability. In the code below, 
the video is sourced from a local file, starts playing by itself, loops continually, and provides controls: 

<video src="media/ModelRocket1.mp4" controls loop autoplay></video> 

As we’ve been doing in this book, we’re not going to rehash the details that are available in the W3C 
spec for the video and audio tags, found on http://www.w3.org/TR/html5/video.html. This spec will give 
you all the properties, methods, and events for these elements; especially note the event summary in 
section 4.8.10.15, and that most of the properties and methods for both are found in Media elements 
section 4.8.10. Note that the track element is supported for both video and audio; you can find an 
example of using it in Scenario 4 (demonstrating subtitles) of the HTML media playback sample. We 
won’t be covering it more here. 

 

 

416

https://developer.mozilla.org/En/Manipulating_video_using_canvas
http://www.w3.org/TR/html5/video.html
http://www.w3.org/TR/html5/media-elements.html#event-definitions
http://www.w3.org/TR/html5/media-elements.html
http://www.w3.org/TR/html5/media-elements.html
http://code.msdn.microsoft.com/windowsapps/Media-Playback-Sample-3bdbe7c9


It’s also helpful to understand that video and audio are closely related, since they’re part of the same 
spec. In fact, if you want to just play the audio portion of a video, you can use the Audio object in 
JavaScript: 

//Play just the audio of a video 
var movieAudio = new Audio("http://www.kraigbrockschmidt.com/downloads/media/ModelRocket1.mp4"); 
movieAudio.load(); 
movieAudio.play(); 

For any given video element, you can set the width and height to control the playback size (as to 
100% for full-screen). This is important when your app switches between view states, and you’ll likely 
have CSS styles for video elements in your various media queries. Also, if you have a control to play full 
screen, simply make the video the size of the viewport (after also calling 
Windows.UI.ViewManage-ment.ApplicationView.tryUnsnap if you’re in the snapped view). In 
addition, when you create a video element with the controls attribute, it will automatically have a 
full-screen control on the far right that does exactly what you expect within a Windows Store app: 

 
In short, you don’t need to do anything special to make this work. When the video is full screen, a 

similar button (or the ESC key) returns to the normal app view. 

Note In case you’re wondering, the audio and video elements don’t provide any CSS pseudo-selectors 
for styling the controls bar. As my son’s preschool teacher would say (in reference to handing out 
popsicles, but it works here too), “You get what you get and you don’t throw a fit and you’re happy 
with it.” If you’d like to do something different with these controls, you’ll need to turn off the defaults 
and provide controls of your own that would call the element methods appropriately. 

When implementing your own controls, be sure to set a timeout to make the controls disappear (either 
hiding them or changing the z-index) when they’re not being used. This is especially important if you 
have a full-screen button for video like the built-in controls, where you would basically resize the 
element to match the screen dimensions. When you do this, Windows will automatically detect this 
full-screen video state and do some performance optimizations, but not if any other element is front of 
the video. It’s also a good idea to disable any animations you might be running and disable 
unnecessary background processes like web workers. 

You can use the various events of the video element to know when the video is played and paused 
through the controls, among other things (though there is not an event for going full-screen), but you 
should also respond appropriately when hardware buttons for media control are used. For this purpose, 
listen for events coming from the Windows.Media.MediaControl object, such as playpressed, 
pausepressed, and so on. (These are WinRT object events, so call removeEventListener as needed.) 
Refer to the Configure keys for media sample for a demonstration, but adding the listeners generally 
looks like this: 
 

 

417

http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.applicationview.tryunsnap.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.mediacontrol.aspx
http://code.msdn.microsoft.com/windowsapps/Media-Buttons-ea57d8e2


mediaControl = Windows.Media.MediaControl; 
mediaControl.addEventListener("soundlevelchanged", soundLevelChanged, false); 
mediaControl.addEventListener("playpausetogglepressed", playpause, false); 
mediaControl.addEventListener("playpressed", play, false); 
mediaControl.addEventListener("stoppressed", stop, false); 
mediaControl.addEventListener("pausepressed", pause, false); 

I also mentioned that you might want to defer loading a video until it’s needed and show a preview 
image in its place. This is accomplished with the poster attribute, whose value is the image to use: 

<video id="video1" poster="media/rocket.png" width="640" height="480"></video> 
 
 
var video1 = document.getElementById("video1"); 
var clickListener = video1.addEventListener("click", function () { 
    video1.src = "http://www.kraigbrockschmidt.com/downloads/media/ModelRocket1.mp4"; 
    video1.load(); 
 
    //Remove listener to prevent interference with video controls 
    video1.removeEventListener("click", clickListener); 
 
    video1.addEventListener("click", function () { 
        video1.controls = true; 
        video1.play(); 
    }); 
}); 

In this case I’m not using preload="true" or even providing a src value so that nothing is transferred 
until the video is tapped. When a tap occurs, that listener is removed, the video’s own controls are 
turned on, and playback is started. This, of course, is a more roundabout method; often you’ll use 
preload="true" controls src="..." directly in the video element, as the poster attribute will handle the 
preview image. 

Disabling Screen Savers and the Lock Screen During Playback 
When playing video, especially full-screen, it’s important to disable any automatic timeouts that would 
blank the display or lock the device. This is done through the 
Windows.System.Display.Display-Request object. Before starting playback, create an instance of this 
object and call its requestActive method. 

var displayRequest = new Windows.System.Display.DisplayRequest(); 
displayRequest.requestActive(); 

If this call succeeds, you’ll be guaranteed that the screen will stay active despite user inactivity. When 
the video is complete, be sure to call requestRelease. Note that Windows will automatically deactivate 
such requests when your app is moved to the background, and it will reactivate them when the user 
switches back. 

418

http://msdn.microsoft.com/library/windows/apps/windows.system.display.displayrequest.aspx


Video Element Extension APIs 
Beyond the HTML5 standards for video elements, some additional properties and methods are added to 
them in Windows 8, as shown in the following table and documented on the video element page. Also 
note the references to the HTML media playback sample where you can find some examples of using 
these. 

Properties Description 
msHorizontalMirror A Boolean that controls whether the playback is flipped horizontally. This is particularly useful 

when sourcing the video element from a camera to make sure the user sees the proper 
orientation. See the notes on the enclosureLocation property in “Selecting a Media Capture 
Device” later on. 

msZoom A Boolean that indicates whether to allow the video element to fit inside its display space by 
trimming the top/bottom or left/right (when true). This allows apps to give users control 
over videos whose aspect ratio differs from that of its given display area—that is, to remove 
letterboxing or sidepillars. For a demonstration, refer to Scenario 3 of the HTML media 
playback sample. 

msIsLayoutOptimalForPlayback 
(onMSVideoOptimalLayoutChanged) 

A Boolean that indicates whether a video will have the best playback based on its layout. 
When this changes the onMSVideoOptimalLayoutChanged event fires. For details, see How to 
optimize video rendering and Audio and Video Performance. 

msIsStereo3D A Boolean that indicates whether the system considers the video element’s source to be 3D 
(based on metadata in the video itself). Whether the system it itself capable can be 
determined through Windows.Graphics.Display.DisplayProperties.stereo-Enabled. 
Apps can also listen for Windows.Graphics.Display.DisplayProperties.- 
stereoEnabledChanged (a WinRT event) to know when the capabilities change. 

For details on this and other Stereo 3D concerns, refer to How to enable stereo video 
playback and Scenario 5 of the HTML media playback sample. 

msStereo3DRenderMode Can be mono (the default) or stereo so that apps can control playback. (See above for 
references.) 

msStereo3DPackingMode Can be none (2D default), topbottom, or sidebyside; this is an adjustment available to apps 
when the video metadata doesn’t clearly indicate which orientation to use. (See above for 
references.) 

msRealtime Enables the media to reduce initial latency as much as possible for playback. This is important 
for two-way communication apps, for example, as well as gaming chat, but should be used 
carefully. For details, refer to How to enable low-latency playback and the Real-time 
communications sample. 

msPlayToDisabled 
msPlayToPrimary 
msPlayToSource 

Properties related to Windows’ PlayTo feature. See the “PlayTo” section at the end of this 
chapter. Note that these are available on img and audio elements as well. 

msAudioTracks An array of audio track descriptions to support additional languages or other tracks (e.g., 
commentary). Set msAudioTracks.selectedTrack to the desired index to change the 
playback audio. For details, refer to How to select audio tracks in different languages as well 
as Scenario 2 of the HTML media playback sample. 

msAudioCategory Identifies the kind of audio being played in the video; see “Playback Manager and 
Background Audio” later for the specific values. Note that setting this to "Communications" 
will also set the device type to "Communications" and force msRealtime to true. 

msAudioDeviceType Specified the output devices that audio will be sent to; see “Audio Element Extension APIs.” 

Methods Description 
msFrameStep 
(onMSVideoFrameStepCompleted) 

Steps the video by one frame forward or backward. The onMSVideoFrameStepCompleted 
event fires when the step is complete. 

 

419

http://msdn.microsoft.com/library/windows/apps/hh465962.aspx
http://code.msdn.microsoft.com/windowsapps/Media-Playback-Sample-3bdbe7c9
http://code.msdn.microsoft.com/windowsapps/Media-Playback-Sample-3bdbe7c9
http://code.msdn.microsoft.com/windowsapps/Media-Playback-Sample-3bdbe7c9
http://msdn.microsoft.com/library/windows/apps/hh452785.aspx
http://msdn.microsoft.com/library/windows/apps/hh452785.aspx
http://msdn.microsoft.com/library/windows/apps/hh848311.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.display.displayproperties.stereoenabled.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.display.displayproperties.stereoenabledchanged.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.display.displayproperties.stereoenabledchanged.aspx
http://msdn.microsoft.com/library/windows/apps/hh452749.aspx
http://msdn.microsoft.com/library/windows/apps/hh452749.aspx
http://code.msdn.microsoft.com/windowsapps/Media-Playback-Sample-3bdbe7c9
http://msdn.microsoft.com/library/windows/apps/hh452742.aspx
http://code.msdn.microsoft.com/Simple-Communication-Sample-eac73290
http://code.msdn.microsoft.com/Simple-Communication-Sample-eac73290
http://msdn.microsoft.com/library/windows/apps/hh452774.aspx
http://code.msdn.microsoft.com/windowsapps/Media-Playback-Sample-3bdbe7c9


msInsertVideoEffect 
msInsertAudioEffect 
msClearEffects 

Adds or removes effects during playback (see below). All are available on video; 
msInsertVideoEffect is not available on audio elements. 

msSetMediaProtectionManager Used for DRM with both audio and video; see “Streaming from a Server and Digital Rights 
Management (DRM)” toward the end of this chapter. 

msSetVideoRectangle Sets the dimension of a subrectangle within a video. 

onMSVideoFrameStepCompleted (event) Occurs when the video format changes. 

The Source Attribute and Custom Codecs 
Video (and audio) elements can use the HTML5 source attribute. In web applications, multiple 
source elements are used to provide alternate video formats in case a client system doesn’t have 
the necessary codec for the primary source. Given that the list of supported formats in Windows is 
well known (refer again to Supported audio and video formats), this isn’t much of a concern for 
Windows Store apps. However, source is still useful because it can identify the specific codecs for 
the source: 

<video controls loop autoplay> 
    <source src="video1.vp8" type="video/webm" /> 
</video> 

This is important when you need to provide a custom codec for your app through 
Windows.Media.MediaExtensionManager, outlined in the “Custom Decoders/Encovers and Scheme 
Handlers” section later in this chapter, as the codec identifies the extension to load for decoding. I 
show WebM as an example here because it’s not directly available to Store apps (though it is in 
Internet Explorer). When the app host running a Store app encounters the video element above, it 
will look for a matching decoder for the specified type. 

Applying a Video Effect 
The earlier table shows that video elements have msInsertVideoEffect and msInsertAudio-Effect 
methods on them. WinRT provides a built-in video stabilization effect that is easily applied to an 
element. This is demonstrated in Scenario 3 of the Media extensions sample, which plays the same video 
with and without the effect, so the stabilized one is muted: 

vidStab.msClearEffects(); 
vidStab.muted = true; 
vidStab.msInsertVideoEffect(Windows.Media.VideoEffects.videoStabilization, true, null); 

Custom effects, as demonstrated in Scenario 4 of the sample, are implemented as separate 
dynamic-link libraries (DLLs), typically written in C++ for best performance, and are included in the app 
package because a Store app can install a DLL only for its own use and not for systemwide access. With 
the sample you’ll find DLL projects for a grayscale, invert, and geometric effects, where the latter has 
three options for fisheye, pinch, and warp. In the js/CustomEffect.js file you can see how these are 
applied, with the first parameter to msInsertVideoEffect being a string that identifies the effect as 
exported by the DLL (see, for instance, the InvertTransform.idl file in the InvertTransform project): 

420

http://msdn.microsoft.com/library/windows/apps/hh986969.aspx
http://code.msdn.microsoft.com/windowsapps/Media-extensions-sample-7b466096


vid.msInsertVideoEffect("GrayscaleTransform.GrayscaleEffect", true, null); 
 
vid.msInsertVideoEffect("InvertTransform.InvertEffect", true, null); 

The second parameter to msInsertVideoEffect, by the way, indicates whether the effect is required, 
so it’s typically true. The third is a parameter called config, which just contains additional information to 
pass to the effect. In the case of the geometric effects in the sample, this parameter specifies the 
particular variation: 

var effect = new Windows.Foundation.Collections.PropertySet(); 
effect["effect"] = effectName; 
vid.msClearEffects(); 
vid.msInsertVideoEffect("PolarTransform.PolarEffect", true, effect); 

where effectName will be either “Fisheye”, “Pinch”, or “Warp”. 

Audio effects, not shown in the sample, are applied the same way with msInsertAudioEffect (with 
the same parameters). Do note that each element can have at most two effects per media stream. A 
video element can have two video effects and two audio effects; an audio element can have two audio 
effects. If you try to add more, the methods will throw an exception. This is why it’s a good idea to call 
msClearEffects before inserting any others. 

For additional discussion on effects and other media extensions, see Using media extensions. 

Browsing Media Servers 
Many households, including my own, have one or more media servers available on the local network 
from which apps can play media. Getting to these servers is the purpose of the one other property in 
Windows.Storage.KnownFolders that we haven’t mentioned yet: mediaServerDevices. As with other 
known folders, this is simply a StorageFolder object through which you can then enumerate or query 
additional folders and files. In this case, if you call its getFoldersAsync, you’ll receive back a list of 
available servers, each of which is represented by another StorageFolder. From there you can use file 
queries, as discussed in Chapter 8, “State, Settings, Libraries, and Documents,” to search for the types of 
media you’re interested in or apply user-provided search criteria. An example of this can be found in the 
Media Server client sample. 

Audio Playback and Mixing 

As with video, the audio element provides its own playback abilities, including controls, looping, and 
autoplay: 

<audio src="media/SpringyBoing.mp3" controls loop autoplay></audio> 

Again, as described earlier, the same W3C spec applies to both video and audio elements. The same 
code to play just the audio portion of a video is exactly what we use to play an audio file: 

 

421

http://msdn.microsoft.com/library/windows/apps/hh700365.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.knownfolders.mediaserverdevices.aspx
http://code.msdn.microsoft.com/windowsapps/Media-Server-sample-fffbe490


var sound = new Audio("media/SpringyBoing.mp3"); 
sound1.msAudioCategory = "SoundEffect"; 
sound1.load();  //For pre-loading media 
sound1.play();  //At any later time 

As also mentioned before, creating an Audio object without controls and playing it has no effect on 
layout, so this is what’s generally used for sound effects in games and other apps. 

As with video, it’s important for apps that do audio playback to respond appropriately to the events 
coming from the Windows.Media.MediaControl object, especially playpressed, pausepressed, 
stoppressed, and playpausetogglepressed. This lets the user control audio playback with hardware 
buttons, which you would use when playing music tracks, for instance. However, you would not apply 
these events to audio, such as game sounds. 

Speaking of which, an interesting aspect of audio is how to mix multiple sounds together, as games 
generally require. Here it’s important to understand that each audio element can be playing one sound: 
it only has one source file and one source file alone. However, multiple audio elements can be playing at 
the same time with automatic intermixing depending on their assigned categories. (See “Playback 
Manager and Background Audio” below.) In this example, some background music plays continually 
(loop is set to true, and the volume is halved) while another sound is played in response to taps (see the 
AudioPlayback example with this chapter’s content):54 

var sound1 = new Audio("media/SpringyBoing.mp3"); 
sound1.load();  //For pre-loading media 
 
//Background music 
var sound2 = new Audio(); 
sound2.msAudioCategory = "ForegroundOnlyMedia";  //Set this before setting src 
sound2.src = "http://www.kraigbrockschmidt.com/mp3/WhoIsSylvia_PortlandOR_5-06.mp3"; 
sound2.loop = true; 
sound2.volume = 0.5; //50%; 
sound2.play(); 
 
document.getElementById("btnSound").addEventListener("click", function () { 
    //Reset position in case we're already playing 
    sound1.currentTime = 0; 
    sound1.play(); 
}); 

By loading the tap sound when the object is created, we know we can play it at any time. When 
initiating playback, it’s a good idea to set the currentTime to 0 so that the sound always plays from the 
beginning. 

The question with mixing, especially in games, really becomes how to manage many different sounds 
without knowing ahead of time how they will be combined. You may need, for instance, to overlap 
playback of the same sound with different starting times, but it’s impractical to declare three audio 

54 And yes, I am playing the guitar and singing the lead part in this live recording, along with my friend Ted Cutler. The song, 
Who is Sylvia?, was composed by another friend, J. Donald Walters, using lyrics of Shakespeare. 

422

http://msdn.microsoft.com/library/windows/apps/windows.media.mediacontrol.aspx


elements with the same source. The technique that’s emerged is to use “rotating channels” as described 
on the Ajaxian website. To summarize: 

1. Declare audio elements for each sound (with preload="auto"). 

2. Create a pool (array) of Audio objects for however many simultaneous channels you need. 

3. To play a sound: 

a. Obtain an available Audio object from the pool. 

b. Set its src attribute to one that matches a preloaded audio element. 

c. Call that pool object’s play method. 

As sound designers in the movies have discovered, it is possible to have too much sound going on at 
the same time, because it gets really muddied. So you may not need more than a couple dozen 
channels at most. 

Hint Need some sounds for your app? Check out http://www.freesound.org. 

Audio Element Extension APIs 
As with the video element, a few extensions are available on audio elements as well, namely those to do 
with effects (msInsertAudioEffect), DRM (msSetMediaProtectionManager), PlayTo (msPlayToSource, etc.), 
msRealtime, and msAudioTracks, as listed earlier in “Video Element Extension APIs.“ In fact, every 
extension API for audio exists on video, but two of them have primary importance for audio: 

• msAudioDeviceType Allows an app to determine which output device audio will render to: 
"Console" (the default) and "Communications". This way an app that knows it’s doing 
communication (like chat) doesn’t interfere with media audio. 

• msAudioCategory Identifies the type of audio being played (see table in the next section). This is 
very important for identifying whether audio should continue to play in the background 
(thereby preventing the app from being suspended), as described in the next section. Note that 
you should always set this property before setting the audio’s src and that setting this to 
"Communications" will also set the device type to "Communications" and force msRealtime to 
true. 

Do note that despite the similarities between the values in these properties, msAudioDeviceType is for 
selecting an output device whereas msAudioCategory identifies the type of audio that’s being played 
through whatever device. A communications category audio could be playing through the console 
device, for instance, or a media category could be playing through the communications device. The two 
are separate concepts. 

423

http://ajaxian.com/archives/html5-audio-tutorial-rotating-channels
http://ajaxian.com/archives/html5-audio-tutorial-rotating-channels
http://www.freesound.org/


Playback Manager and Background Audio 
To explore different kinds of audio playback, let’s turn our attention to the Playback Manager 
msAudioCategory sample. I won’t show a screen shot of this because, doing nothing but audio, there 
isn’t much to show! Instead, let me outline the behaviors of its different scenarios in the following table, 
as well as list those categories that aren’t represented in the sample but that can be used in your own 
app. In each scenario you need to first select an audio file through the file picker. 

Scenario msAudioCategory Description 

1 BackgroundCapableMedia Plays the selected audio when the app is both visible and in the background, 
including when the user is on the desktop, the Start screen, and the lock screen. The 
app will not be suspended when in the background, which you can confirm 
through Task Manager. This is typically used for playing local playlists, local or 
streaming media files, music videos, etc. Using this requires a declaration in the 
manifest and handlers for media control buttons. 

2 Communications Like BackgroundCapableMedia, this will also continue to play the selected audio 
when the app is in the background. Use this for peer-to-peer chat, VoIP, etc. 

3 Other (the default for audio 
elements) 

Plays the selected audio when the app is in the foreground, mixing with 
background audio; the audio is paused when the app is in the background. 

4 ForegroundOnlyMedia Plays the selected audio when the app is in the foreground; the audio is paused 
when the app is in the background. When audio of this category is played, 
background audio will be muted. 

5 Alert Plays the selected audio when the app is in the foreground and attenuates 
background audio. This is used for app notifications like ringtones as well as system 
alerts. 

n/a GameMedia Used for ambient music in a game. 

n/a GameEffects Used for game sound effects intended to mix with existing audio (all nonmusic 
sounds). 

n/a SoundEffects Other sound effects (outside of games) intended to mix in with existing audio, such 
as brief dings, beeps, boinks, and blurps that indicate activity but don’t otherwise 
qualify as alerts. 

 

Where a single audio stream is concerned, there isn’t always a lot of difference between some of 
these categories. Yet as the table indicates, different categories have different effects on other 
simultaneous audio streams. For this purpose, the Windows SDK does an odd thing by providing a 
second identical sample to the first, the Playback Manager companion sample. This allows you run these 
apps at the same time (one in snapped view, the other in filled view, or one or both in the background) 
and play audio with different category settings to see how they combine. 

How different audio streams combine is a subject that’s discussed in the Audio Playback in a 
Windows 8 App whitepaper. However, what’s most important is that you assign the most appropriate 
category to any particular audio stream. These categories help the playback manager perform the right 
level of mixing between audio streams according to user expectations, both with multiple streams in the 
same app, and streams coming from multiple apps (with limits on how many background audio apps 
can be going at once). For example, users will expect that alarms, being an important form of 
notification, will temporarily attenuate other audio streams. Similarly, users will expect that an audio 
stream of a foreground app will takes precedence over a stream of the same category of audio playing 

424

http://code.msdn.microsoft.com/windowsapps/Playback-Manager-e6526e67
http://code.msdn.microsoft.com/windowsapps/Playback-Manager-e6526e67
http://code.msdn.microsoft.com/windowsapps/Playback-Manager2-55c5b86d
http://msdn.microsoft.com/library/windows/hardware/hh770517.aspx
http://msdn.microsoft.com/library/windows/hardware/hh770517.aspx


in the background. As a developer, then, avoid playing games with the categories. Just assign the most 
appropriate category to your audio stream so that the playback manager can do its job with audio from 
all sources and deliver a consistent experience for the entire system. 

Setting an audio category for any given audio element is a simple matter of settings its 
msAudio-Category attribute. Every scenario in the sample does the same thing for this, making sure to 
set the category before setting the src attribute (shown here from js/backgroundcapablemedia.js): 

audtag = document.createElement('audio'); 
audtag.setAttribute("msAudioCategory", "BackgroundCapableMedia"); 
audtag.setAttribute("src", fileLocation); 

You could accomplish the same thing in markup, of course. Some examples: 

<audio id="audio1" src="song.mp3" msAudioCategory="BackgroundCapableMedia"></audio> 
<audio id="audio2" src="voip.mp3" msAudioCategory="Communications"></audio> 
<audio id="audio3" src="lecture.mp3" msAudioCategory="Other"></audio> 

With BackgroundCapableMedia and Communcations, however, simply setting the category isn’t 
sufficient: you also need to declare an audio background task extension in your manifest. This is easily 
accomplished by going to the Declarations tab in the manifest designer: 

 
First, select Background Tasks from the Available Declarations drop-down list. Then check Audio 

under Supported Task Types, and identify a Start page under App Settings. The start page isn’t really 
essential for background audio (because you’ll never be launched for this purpose), but you need to 
provide something to make the manifest editor happy. 

425



These declarations appear as follows in the manifest XML, should you care to look: 

<Application Id="App" StartPage="default.html"> 
  <!-- ... --> 
  <Extensions> 
    <Extension Category="windows.backgroundTasks" StartPage="default.html"> 
      <BackgroundTasks> 
        <Task Type="audio" /> 
      </BackgroundTasks> 
    </Extension> 
  </Extensions> 
</Application> 

Furthermore, background audio apps must also add listeners for the Windows.Media.-MediaControl 
events that we’ve already mentioned so that the user can control background audio playback through 
the media control UI (see the next section). They’re also required because they make it possible for the 
playback manager to control the audio streams as the user switches between apps. If you fail to provide 
these listeners, your audio will always be paused and muted when the app goes into the background. 

How to do this is shown in the Playback Manager sample for all its scenarios; the following is from 
js/communications.js (some code omitted): 

mediaControl = Windows.Media.MediaControl; 
 
mediaControl.addEventListener("soundlevelchanged", soundLevelChanged, false); 
mediaControl.addEventListener("playpausetogglepressed", playpause, false); 
mediaControl.addEventListener("playpressed", play, false); 
mediaControl.addEventListener("stoppressed", stop, false); 
mediaControl.addEventListener("pausepressed", pause, false); 
 
 
// audtag variable is the global audio element for the page 
 
function playpause() { 
    if (!audtag.paused) { 
        audtag.pause(); 
    } else { 
        audtag.play(); 
    } 
} 
 
function play() { 
    audtag.play(); 
} 
 
function stop() { 
    // Nothing to do here 
} 
 
function pause() { 
    audtag.pause(); 
} 
 

426

http://msdn.microsoft.com/library/windows/apps/windows.media.mediacontrol.aspx


function soundLevelChanged() { 
    //Catch SoundLevel notifications and determine SoundLevel state. 
    //If it's muted, we'll pause the player. 
    var soundLevel = Windows.Media.MediaControl.soundLevel; 
 
    //No actions are shown here, but the options are spelled out to show the enumeration 
    switch (soundLevel) { 
        case Windows.Media.SoundLevel.muted: 
            break; 
        case Windows.Media.SoundLevel.low: 
            break; 
        case Windows.Media.SoundLevel.full: 
            break; 
    } 
 
    appMuted(); 
} 
 
function appMuted() { 
    if (audtag) { 
        if (!audtag.paused) { 
            audtag.pause(); 
        } 
    } 
} 

Technically speaking, a handler for soundlevelchanged is not required here, but the other four are. 
Such a minimum implementation is part of the AudioPlayback example with this chapter, where the 
code also uses the MediaControl.isPlaying flag to set the play/pause button in the media control UI 
(see next section). 

A few additional notes about background audio: 

• The reason for distinct playpressed, pausepressed, and playpausepressed events is to 
support a variety of hardware where some devices have separate play and pause buttons 
and others have a single button for both.  

• If the audio is paused, a background audio app will be suspended like any other, but if 
the user presses a play button, the app will be resumed and audio will then continue 
playback. 

• The use of background audio is carefully evaluated with apps submitted to the Windows 
Store. If you attempt to play an inaudible track as a means to avoid being suspended, 
the app will fail Store certification. 

• A background audio app should be careful about how it uses the network for streaming 
media to support the low power state called connected standby. For details, refer to 
Writing a power savvy background media app. 

Now let’s see the other important reason why you must implement the media control events: the UI 
that Windows displays in response to hardware buttons. 

427

http://msdn.microsoft.com/library/windows/desktop/jj247568.aspx


The Media Control UI 
As mentioned in the previous section, providing handlers for the MediaControl object events is required 
for background audio so that the user can control the audio through hardware buttons (built into many 
devices, including keyboards and remote controls) without needing to switch to the app. This is 
especially important because background audio continues to play not only when the user switches to 
another app, but also when they switch to the Start screen switch to the desktop, or lock the device. 

The default media control UI appears as shown in Figure 10-3 in the upper left of the screen, 
regardless of what is on the screen at the time. Tapping the app name will switch to the app. 

  
FIGURE 10-3 The media control UI appearing above the Start screen (left) and the desktop (right) 

You can see in these images that the app’s Display Name from the manifest is what’s shown by 
default in the UI. Although this is an acceptable fallback, audio apps should ideally provide richer audio 
metadata to the MediaControl, specifically it’s albumArt, trackName, and artistName properties (the 
latter two of which must be less than 128 characters). This is done in the Configure keys for media 
sample, which demonstrates how to obtain album art for a track, a subject we’ll return to later. 

With such metadata the media control UI will appear as follows; tapping the album art, track name 
or artist name will switch back to the audio app. 

 
You’ll notice in the images above that the forward and backward buttons are disabled. This is 

because the app does not have listeners for the nexttrackpressed and previoustrackpressed events 
of the MediaControl object; we’ll see how to use these in the next section. There are other events as well, 
such as channeldownpressed, channeluppressed, fastforwardpressed, rewindpressed, 
recordpressed, and stoppressed, though these aren’t represented in the media control UI. 

428

http://code.msdn.microsoft.com/windowsapps/Media-Buttons-ea57d8e2
http://code.msdn.microsoft.com/windowsapps/Media-Buttons-ea57d8e2


Playing Sequential Audio 
An app that’s playing audio tracks (such as music, an audio book, or recorded lectures) will often have a 
list of tracks to play sequentially, especially while the app is running in the background. In this case it’s 
important to start the next track quickly because Windows will otherwise suspend the app in 10 seconds 
after the current audio is finished. For this purpose, listen for the audio element’s ended event and set 
audio.src to the next track. A good optimization in this case is to create a second Audio object and set 
its src attribute after the first track starts to play. This way that second track will be preloaded and ready 
to go immediately, thereby avoiding potential delays in playback between tracks. This is shown in the 
AudioPlayback example for this chapter, where I’ve split the one complete song into four segments for 
continuous playback. I’ve also shown here how to handle the next and previous button events, along 
with setting the segment number as the track name: 

var mediaControl = Windows.Media.MediaControl; 
var playlist = ["media/segment1.mp3", "media/segment2.mp3", "media/segment3.mp3", 
     "media/segment4.mp3"]; 
var curSong = 0; 
var audio1 = null; 
var preload = null; 
 
document.getElementById("btnSegments").addEventListener("click", playSegments); 
audio1 = document.getElementById("audioSegments"); 
preload = document.createElement("audio"); 
 
function playSegments() { 
    //Always reset WinRT object event listeners to prevent duplication and leaks         
    mediaControl.removeEventListener("nexttrackpressed", nextHandler); 
    mediaControl.removeEventListener("previoustrackpressed", prevHandler); 
         
    curSong = 0; 
 
    //Pause the other music 
    document.getElementById("musicPlayback").pause(); 
               
    //Set up media control listeners 
    setMediaControl(audio1);  
         
    //Show the element (initially hidden) and start playback 
    audio1.style.display = ""; 
    audio1.volume = 0.5; //50%; 
    playCurrent(); 
         
    //Preload the next track in readiness for the switch 
    var preload = document.createElement("audio"); 
    preload.setAttribute("preload", "auto"); 
    preload.src = playlist[1]; 
 
    //Switch to the next track as soon as one had ended or next button is pressed 
    audio1.addEventListener("ended", nextHandler); 
    mediaControl.addEventListener("nexttrackpressed", nextHandler); 
} 
     

429



function nextHandler () { 
    curSong++; 
 
    //Enable previous button if we have at least one previous track 
    if (curSong > 0) { 
        mediaControl.addEventListener("previoustrackpressed", prevHandler); 
    } 
 
    if (curSong < playlist.length) { 
        //playlist[curSong] should already be loaded 
        playCurrent(); 
 
        //Set up the next preload 
        var nextTrack = curSong + 1; 
 
        if (nextTrack < playlist.length) { 
            preload.src = playlist[nextTrack]; 
        } else { 
            preload.src = null; 
            mediaControl.removeEventListener("nexttrackpressed", nextHandler); 
        } 
    } 
} 
 
function prevHandler() { 
    //If we're already playing the last song, add the next button handler again 
    if (curSong == playlist.length - 1) { 
        mediaControl.addEventListener("nexttrackpressed", nextHandler); 
    } 
 
    curSong--; 
 
    if (curSong == 0) { 
        mediaControl.removeEventListener("previoustrackpressed", prevHandler); 
    } 
 
    playCurrent(); 
    preload.src = playlist[curSong + 1]; //This should always work 
} 
 
function playCurrent() { 
    audio1.src = playlist[curSong]; 
    audio1.play(); 
    mediaControl.trackName = "Segment " + (curSong + 1); 
} 

When playing sequential tracks like this from an app written in JavaScript and HTML, you might 
notice brief gaps between the tracks, especially if the first track flows directly into the second. This is a 
present limitation of the platform given the layers that exist between the HTML audio element and the 
low-level XAudio2 APIs that are ultimately doing the real work. You can mitigate the effects to some 
extent—for example, you can crossfade the two tracks or crossfade a third overlay track that contains a 
little of the first and a little of the second track. You can also use a negative time offset to start playing 
the next track slightly before the previous one ends. But if want you a truly seamless transition, you’ll 

430



need to bypass the audio element and use the XAudio2 APIs from a WinRT component for direct 
playback. How to do this is discussed in the Building your own Windows Runtime components to deliver 
great apps post on the Windows 8 developer blog. 

Playlists 

The multisegment playback example in the previous section is clearly contrived because an app 
wouldn’t typically have an in-memory playlist. More likely an app would load an existing playlist or 
create one from files that a user has selected. 

WinRT supports these actions through a simple API in Windows.Media.Playlists namespace, using 
the WPL (Windows Media Player), ZPL (Zune), and M3U formats. The Playlist sample in the Windows 
SDK (which almost wins the prize for the shortest sample name!) shows how to perform various tasks 
with the API. In Scenario 1 it lets you choose multiple files by using the file picker, creates a new 
Windows.Media.Playlists.Playlist object, adds those files to its files list (a vector of StorageFile 
objects), and saves the playlist with its saveAsAsync method (this code from create.js is simplified and 
reformatted a bit): 

function pickAudio() { 
    var picker = new Windows.Storage.Pickers.FileOpenPicker(); 
    picker.suggestedStartLocation = Windows.Storage.Pickers.PickerLocationId.musicLibrary; 
    picker.fileTypeFilter.replaceAll(SdkSample.audioExtensions); 
 
    picker.pickMultipleFilesAsync().done(function (files) { 
        if (files.size > 0) { 
            SdkSample.playlist = new Windows.Media.Playlists.Playlist(); 
 
            files.forEach(function (file) { 
                SdkSample.playlist.files.append(file); 
            }); 
 
            SdkSample.playlist.saveAsAsync(Windows.Storage.KnownFolders.musicLibrary, 
                "Sample", Windows.Storage.NameCollisionOption.replaceExisting, 
                Windows.Media.Playlists.PlaylistFormat.windowsMedia) 
                .done(); 
        } 
} 

Notice that saveAsAsync takes a StorageFolder and a name for the file (along with an optional 
format parameter). This accommodates a common use pattern for playlists where a music app has a 
single folder where it stores playlists and provides users with a simple means to name them and/or 
select them. In this way, playlists aren’t typically managed like other user data files where one always 
goes through a file picker to do a Save As into an arbitrary folder. You could use FileSavePicker, get a 
StorageFile, and use its path property to get to the appropriate StorageFolder, but more likely you’ll 
save playlists in one place and present them as entities that appear only within the app itself. 

 

431

http://blogs.msdn.com/b/windowsappdev/archive/2012/08/06/building-your-own-windows-runtime-components-to-deliver-great-metro-style-apps.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/08/06/building-your-own-windows-runtime-components-to-deliver-great-metro-style-apps.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br206938.aspx
http://code.msdn.microsoft.com/windowsapps/Playlist-sample-3d80daee
http://msdn.microsoft.com/en-us/library/windows/apps/windows.media.playlists.playlist.aspx


For example, the Music app that comes with Windows 8 allows you create a new playlist when you’re 
viewing tracks of some album. The following commands appear on the app bar (left), and when you 
select New Playlist, a flyout appears (middle) requesting the name, after which the flyout appears on the 
app bar (right): 

   
The playlist then appears within the app as another album. In other words, though playlists might be 

saved in discrete files, they aren’t necessarily presented that way to the user, and the API reflects that 
usage pattern. 

Loading a playlist uses the Playlist.loadAsync method given a StorageFile for the playlist. This 
might be a StorageFile obtained from a file picker or from the enumeration of the app’s private playlist 
folder. Scenario 2 of the Playlist sample (display.js) demonstrates the former, where it then goes through 
each file and requests their music properties: 

function displayPlaylist() { 
    var picker = new Windows.Storage.Pickers.FileOpenPicker(); 
    picker.suggestedStartLocation = Windows.Storage.Pickers.PickerLocationId.musicLibrary; 
    picker.fileTypeFilter.replaceAll(SdkSample.playlistExtensions); 
 
    var promiseCount = 0; 
 
    picker.pickSingleFileAsync() 
        .then(function (item) { 
            if (item) { 
                return Windows.Media.Playlists.Playlist.loadAsync(item); 
            } 
            return WinJS.Promise.wrapError("No file picked."); 
        }) 
        .then(function (playlist) { 
            SdkSample.playlist = playlist; 
            var promises = {}; 
 
            // Request music properties for each file in the playlist. 
            playlist.files.forEach(function (file) { 
                promises[promiseCount++] = file.properties.getMusicPropertiesAsync(); 
            }); 
 
            // Print the music properties for each file. Due to the asynchronous 
            // nature of the call to retrieve music properties, the data may appear 
            // in an order different than the one specified in the original playlist. 

432



            // To guarantee the ordering we use Promise.join with an associative array 
            // passed as a parameter, containing an index for each individual promise. 
            return WinJS.Promise.join(promises); 
        }) 
        .done(function (results) { 
            var output = "Playlist content:\n\n"; 
 
            var musicProperties; 
            for (var resultIndex = 0; resultIndex < promiseCount; resultIndex++) { 
                musicProperties = results[resultIndex]; 
                output += "Title: " + musicProperties.title + "\n"; 
                output += "Album: " + musicProperties.album + "\n"; 
                output += "Artist: " + musicProperties.artist + "\n\n"; 
            } 
 
            if (resultIndex === 0) { 
                output += "(playlist is empty)"; 
            } 
 
        }, function (error) { 
            // ... 
        }); 
} 

We’ll come back to working with these special properties in the next section, as the process also 
applies to other types of media. 

The other method for managing a playlist is PlayList.saveAsync, which takes a single StorageFile. 
This is what you’d use if you’ve loaded and modified a playlist and simply want to save those changes 
(typically done automatically when the user adds or removes items from the playlist). This is 
demonstrated in Scenarios 3, 4, and 5 of the sample (add.js, js/remove.js, and js/clear.js), which just use 
methods of the Playlist.files vector like append, removeAtEnd, and clear, respectively. 

Playback of a playlist depends, of course, on the type of media involved, but typically you’d load a 
playlist and sequentially take the next StorageFile object from its files vector, pass it to URL.- 
createObjectURL, and then assign that URI to the src attribute of an audio or video element. You could 
also use playlists to manage lists of images for specific slide shows as well. 

Loading and Manipulating Media 

A user might store media files anywhere, but images, music, and videos are typically stored in the user’s 
Pictures, Music, and Videos libraries specifically. Simply said, these are the folders that media apps 
should use by default until the user indicates otherwise through a folder picker. As we saw in Chapter 8, 
apps can declare programmatic access to the pictures, music, and videos libraries in their manifests and 
acquire the StorageFolder objects for these through Windows.Storage.KnownFolders: 
 
 

433



var picsLib = Windows.Storage.KnownFolders.picturesLibrary; 
var musicLib = Windows.Storage.KnownFolders.musicLibrary; 
var vidsLib = Windows.Storage.KnownFolders.videosLibrary; 

A photos app will typically declare the capability for the Pictures Library and display those contents in 
a ListView. A music and videos app will do the same for their respective libraries, as you can see in the 
built-in Photos, Music, and Videos apps in Windows 8. Remember too that if you forget to declare the 
appropriate capabilities, the lines of code above will throw access denied exceptions. You’ll know right 
away if you forgot these important details. 

I should warn you ahead of time that working with media can become very complicated and 
intricate. For that reason you’ll probably find it helpful to refer to some of the topics in the 
documentation, such as Processing image files, Transcoding, and Using media extensions. 

Media File Metadata 
With a StorageFolder in hand for some media library or subset thereof, you can use, as we also saw in 
Chapter 8, its getItemsAsync method to retrieve its contents. You can also use file queries to enumerate 
those files that match specific criteria. Whatever the case, you end up with a collection of StorageFile 
objects that you can work with however you want. 

Now comes the interesting part. As I mentioned in Chapter 8, you can retrieve additional metadata 
for those files. This has a number of layers that you discover when you start opening some of the secrets 
doors of the StorageFile class, as illustrated in Figure 10-4. The following sections discuss these areas in 
turn. 

 
FIGURE 10-4 Relationships between the StorageFile object and others obtainable through it. 

434

http://msdn.microsoft.com/library/windows/apps/hh465103.aspx
http://msdn.microsoft.com/library/windows/apps/hh452806.aspx
http://msdn.microsoft.com/library/windows/apps/Hh700365.aspx


Thumbnails 
First, StorageFile.getThumbnailAsync provides a thumbnail image appropriate for a particular “mode” 
from the Windows.Storage.FileProperties.ThumbnailMode enumeration. Options here are 
picturesView, videosView, musicView, documentsView, listView, and singleItem. What you receive in 
your completed handler is a StorageItemThumbnail object that provides thumbnail data as a stream . 
You can conveniently pass to our old friend URL.createObjectURL for display in an img element and 
whatnot. 

Examples of this are found throughout the File and folder thumbnail sample. Scenario 1, for instance 
(js/scenario1.js), obtains the thumbnail and displays it in an img element: 

file.getThumbnailAsync(thumbnailMode, requestedSize, thumbnailOptions).done(function (thumbnail) { 
    if (thumbnail) { 
        outputResult(file, thumbnail, modeNames[modeSelected], requestedSize); 
    } 
    // ... 
}); 

function outputResult(item, thumbnailImage, thumbnailMode, requestedSize) { 
    document.getElementById("picture-thumb-imageHolder").src = URL.createObjectURL(thumbnailImage, 
        { oneTimeOnly: true }); 
    // ... 
} 

Common File Properties 
Common file properties—those that exist on all files—are found in a number of different places. Very 
common properties are found on the StorageFile object directly, like attributes, contentType, 
dateCreated, displayName, displayType, fileType, name, and path. 

The next group is obtained through StorageFile.getBasicPropertiesAsync. This gives you a 
Windows.Storage.FileProperties.BasicProperties object that contains dateModified, itemDate, 
and size properties. “That’s a snoozer!” you’re saying to yourself. Well, this object also has an additional 
method called retrievePropertiesAsync that gives you an array of name-value pairs for all kinds of 
other stuff.  

The trick to understand here is that you have to take an array of the property names you want and 
pass it to retrievePropertiesAsync where each name is a string that comes from a very extensive list of 
Windows Properties, such as System.FileOwner and System.FileAttributes. An example of this is given in 
Scenario 5 of the Folder enumeration sample we saw in Chapter 8: 

var dateAccessedProperty = "System.DateAccessed"; 
var fileOwnerProperty    = "System.FileOwner"; 
 
SdkSample.sampleFile.getBasicPropertiesAsync().then(function (basicProperties) { 
    outputDiv.innerHTML += "Size: " + basicProperties.size + " bytes<br />"; 
    outputDiv.innerHTML += "Date modified: " + basicProperties.dateModified + "<br />"; 
 
    // Get extra properties 

435

http://msdn.microsoft.com/library/windows/apps/windows.storage.fileproperties.thumbnailmode.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.fileproperties.storageitemthumbnail.aspx
http://code.msdn.microsoft.com/windowsapps/File-thumbnails-sample-17575959
http://msdn.microsoft.com/library/windows/apps/windows.storage.fileproperties.basicproperties.aspx
http://msdn.microsoft.com/library/windows/desktop/dd561977.aspx
http://code.msdn.microsoft.com/windowsapps/Folder-enumeration-sample-33ebd000


    return SdkSample.sampleFile.properties.retrievePropertiesAsync([fileOwnerProperty, 
        dateAccessedProperty]); 
}).done(function (extraProperties) { 
    var propValue = extraProperties[dateAccessedProperty]; 
    if (propValue !== null) { 
        outputDiv.innerHTML += "Date accessed: " + propValue + "<br />"; 
    } 
    propValue = extraProperties[fileOwnerProperty]; 
    if (propValue !== null) { 
        outputDiv.innerHTML += "File owner: " + propValue; 
    } 
}); 

What’s very useful about this is that you can get to just about any property you want (the list of 
properties has hundreds of options) and then modify the array and call BasicProperties.save-
PropertiesAsync. Voila! You’ve just updated those properties on the file. A variation of 
savePropertiesAsync also lets you pass a specific array of name-value pairs if you only want to change 
specific ones. 

The third set of properties is found by going through the secret door of StorageFile.properties. 
This contains a StorageItemContentProperties object whose retrievePropertiesAsync and 
savePropertiesAsync methods are like those we just saw for BasicProperties. What’s more interesting 
is that it also has four other methods—getDocumentPropertiesAsync, getImagePropertiesAsync, 
getMusicPropertiesAsync, and getVideoPropertiesAsync—which are how you get to the really specific 
stuff for individual file types, as we’ll see next. 

Media-Specific Properties 
Alongside the BasicProperties class in the Windows.Storage.FileProperties namespace we also find 
those returned by the StorageFile.properties.get*PropertiesAsync methods: ImageProperties, 
VideoProperties, MusicProperties, and DocumentProperties. Though we’ve had to dig deep to find 
these, they each contain deeper treasure troves of information—and I do mean deep! The tables below 
summarize each of these in turn. Note that each object type contains a retrievePropertiesAsync 
method, like that of BasicProperties, that lets you request additional properties by name that aren’t 
already included in the main properties object. Refer to the links at the top of the table for the 
references that identify the most relevant Windows properties. 

ImageProperties from StorageFile.properties.getImagePropertiesAsync 
Additional properties System.Image, System.Photo, System.Media 
   

Property DataType Applicable Windows Property 
title String System.Title 
dateTaken Date System.Photo.DateTaken 
latitude Double (see below) System.GPS.LatitudeDecimal, 

or combination of System.GPS.Latitude,  
System.GPS.LatitudeDenominator,  
System.GPS.LatitudeNumerator, and 
System.GPS.LatitudeRef 

longitude Double (see below) System.GPS.LongitudeDecimal, 

436

http://msdn.microsoft.com/library/windows/apps/windows.storage.fileproperties.storageitemcontentproperties.aspx
http://msdn.microsoft.com/library/windows/desktop/ff521691.aspx
http://msdn.microsoft.com/library/windows/desktop/ff521709.aspx
http://msdn.microsoft.com/library/windows/desktop/ff521702.aspx


or combination of System.GPS.Longitude, 
System.GPS.LongitudeDenominator, 
System.GPS.LongitudeNumerator, and 
System.GPS.LongitudeRef 

cameraManufacturer String System.Photo.CameraManufacturer 
cameraModel String System.Photo.CameraModel 
width Number in pixels System.Image.HorizontalSize 
height Number in pixels System.Image.VerticalSize 
orientation Windows.Storage.FileProperties.-

PhotoOrientation containing unspecified, 
normal, flipHorizontal, flipVertical, 
transpose, transverse, rotate90, rotate180, 
rotate270 

System.Photo.Orientation 

peopleNames String vector System.Photo.PeopleNames 
keywords String vector System.Keywords 
rating Number (1-99 with 0 meaning “no rating”) System.Rating 

 

VideoProperties from StorageFile.properties.getVideoPropertiesAsync 
Additional properties System.Video, System.Media, System.Image, System.Photo 
   
Property DataType Applicable Windows Property 
title String System.Title 
subtitle String System.Media.SubTitle 
year Number System.Media.Year 
publisher String System.Media.Publisher 
rating Number System.Rating 
width Number in pixels System.Video.FrameWidth 
height Number in pixels System.Video.FrameHeight 
orientation Windows.Storage.FileProperties.-

VideoOrientation containing normal, rotate90, 
rotate180, rotate270 

System.Photo.Orientation 

duration Number (in 100ns units, i.e. 1/10th milliseconds) System.Media.Duration 
bitrate Number (in bits/second) System.Video.TotalBitrate, 

System.Video.EncodingBitrate 
directors String vector System.Video.Director 
producers String vector System.Media.Producer 
writers String vector System.Media.Writer 
keywords String vector System.Keywords 
latitude Double (see below) System.GPS.LatitudeDecimal, 

or combination of System.GPS.Latitude,  
System.GPS.LatitudeDenominator,  
System.GPS.LatitudeNumerator, and 
System.GPS.LatitudeRef 

longitude Double (see below) System.GPS.LongitudeDecimal, 
or combination of System.GPS.Longitude, 
System.GPS.LongitudeDenominator, 
System.GPS.LongitudeNumerator, and 
System.GPS.LongitudeRef 

 

MusicProperties from StorageFile.properties.getMusicPropertiesAsync 
Additional properties System.Music, System.Media 
   
Property DataType Applicable Windows Property 

437

http://msdn.microsoft.com/library/windows/desktop/ff521738.aspx
http://msdn.microsoft.com/library/windows/desktop/ff521702.aspx
http://msdn.microsoft.com/library/windows/desktop/ff521691.aspx
http://msdn.microsoft.com/library/windows/desktop/ff521709.aspx
http://msdn.microsoft.com/library/windows/desktop/ff521705.aspx
http://msdn.microsoft.com/library/windows/desktop/ff521702.aspx


title String System.Title, System.Music.AlbumTitle 
subtitle String System.Media.SubTitle 
trackNumber Number System.Music.TrackNumber 
year Number System.Media.Year 
publisher String System.Media.Publisher 
artist String System.Music.Artist, System.Music.DisplayArtist 
albumArtist String System.Music.DisplayArtist (read), 

System.Music.AlbumArtist (write) 
genre String vector System.Music.Genre 
composers String vector System.Music.Composer 
conductors String vector System.Music.Conductor 
rating Number (1-99 with 0 meaning “no rating”) System.Rating 
duration Number (in 100ns units, i.e. 1/10th milliseconds) System.Media.Duration 
bitrate Number (in bits/second) System.Video.TotalBitrate, 

System.Video.EncodingBitrate 
producers String vector System.Media.Producer 
writers String vector System.Media.Writer 

 

DocumentProperties from StorageFile.properties.getDocumentPropertiesAsync 
Additional properties System  
   
Property DataType Applicable Windows Property 
title String System.Title 
Author String vector System.Author 
keywords String vector System.Keywords 
Comments String System.Comment 

 

Two notes about all this. First, the string vectors are, as we’ve seen before, instances of IVector that 
provide manipulation methods like append, insertAt, removeAt, and so forth. In JavaScript you can 
access members of the vector like an array with [ ]’s; just remember that the available methods are 
more specific. 

Second, the latitude and longitude properties for images and video are double types but contain 
degrees, minutes, seconds, and a directional reference. The Simple imaging sample (in js/default.js) 
contains a helper function to extract the components of these values and convert them into a string: 

"convertLatLongToString": function (latLong, isLatitude) { 
    var reference; 
 
    if (isLatitude) { 
        reference = (latLong >= 0) ? "N" : "S"; 
    } else { 
        reference = (latLong >= 0) ? "E" : "W"; 
    } 
 
    latLong = Math.abs(latLong); 
    var degrees = Math.floor(latLong); 
    var minutes = Math.floor((latLong - degrees) * 60); 
    var seconds = ((latLong - degrees - minutes / 60) * 3600).toFixed(2); 
 
 

438

http://msdn.microsoft.com/library/windows/desktop/ff521735.aspx
http://msdn.microsoft.com/library/windows/apps/br206631.aspx
http://code.msdn.microsoft.com/windowsapps/Simple-Imaging-Sample-a2dec2b0


    return degrees + "°" + minutes + "\'" + seconds + "\"" + reference; 
} 

To summarize, the sign of the value indicates direction. A positive value for latitude means North, 
negative means South; for longitude, positive means East, negative means West. The whole number 
portion of the value provides the degrees, and the fractional part contains the number of minutes 
expressed in base 60. Multiplying this value by 60 gives the whole minutes, with the remainder then 
containing the seconds. It’s odd, but that’s the kind of raw data you get from a GPS device that 
geolocation APIs normally convert for you directly. 

Media Properties in the Samples 
A few of the samples in the Windows SDK show you how to work with some of the properties described 
in the last section and how to work with those properties more generally. The Simple imaging sample, in 
Scenario 1 (js/scenario1.js), provides the most complete demonstration because you can choose an 
image file and it will load and display various properties, as shown in Figure 10-5 (I’ve scrolled down to 
see all the properties). I can verify that the date, camera make/model, and exposure information are all 
accurate. 

 
FIGURE 10-5 Image file properties in the Simple imaging sample. 

The sample’s openHandler method is what retrieves these properties from the file, specifically 
showing a call to StorageFile.properties.getImagePropertiesAsync and the use of 
ImageProperties.retrievePropertiesAsync for a couple of additional properties not already in 
ImageProperties. Then getImagePropertiesForDisplay coalesces these into a single object used by the 
sample’s UI. Some lines are omitted in the code shown here: 
 

439

http://code.msdn.microsoft.com/windowsapps/Simple-Imaging-Sample-a2dec2b0


var ImageProperties = {}; 
 
function openHandler() { 
    // Keep data in-scope across multiple asynchronous methods. 
    var file = {}; 
 
    Helpers.getFileFromOpenPickerAsync().then(function (_file) { 
        file = _file; 
        return file.properties.getImagePropertiesAsync(); 
    }).then(function (imageProps) { 
        ImageProperties = imageProps; 
 
        var requests = [ 
            "System.Photo.ExposureTime",        // In seconds 
            "System.Photo.FNumber"              // F-stop values defined by EXIF spec 
        ]; 
 
        return ImageProperties.retrievePropertiesAsync(requests); 
    }).done(function (retrievedProps) { 
        // Format the properties into text to display in the UI. 
        displayImageUI(file, getImagePropertiesForDisplay(retrievedProps)); 
    }); 
} 
 
function getImagePropertiesForDisplay(retrievedProps) { 
    // If the specified property doesn't exist, its value will be null. 
    var orientationText = Helpers.getOrientationString(ImageProperties.orientation); 
 
    var exposureText = retrievedProps.lookup("System.Photo.ExposureTime") ? 
        retrievedProps.lookup("System.Photo.ExposureTime") * 1000 + " ms" : ""; 
 
    var fNumberText = retrievedProps.lookup("System.Photo.FNumber") ? 
        retrievedProps.lookup("System.Photo.FNumber").toFixed(1) : ""; 
 
    // Omitted: Code to convert ImageProperties.latitude and ImageProperties.longitude to 
    // degrees, minutes, seconds, and direction 
 
    return { 
        "title": ImageProperties.title, 
        "keywords": ImageProperties.keywords, // array of strings 
        "rating": ImageProperties.rating, // number 
        "dateTaken": ImageProperties.dateTaken, 
        "make": ImageProperties.cameraManufacturer, 
        "model": ImageProperties.cameraModel, 
        "orientation": orientationText, 
        // Omitted: lat/long properties 
        "exposure": exposureText, 
        "fNumber": fNumberText 
    }; 
} 

 

 

440



Most of the displayImageUI function to which these properties are passed just copies the data into 
various controls. It’s good to note again, though, that displaying the picture itself is easily accomplished 
with our good friend, URL.createObjectURL: 

function displayImageUI(file, propertyText) { 
    id("outputImage").src = window.URL.createObjectURL(file, { oneTimeOnly: true }); 

For MusicProperties a small example can be found in the Playlist sample, as we already saw earlier in 
“Playlists.” You might go back now and look at the code listed in that section, as you should be able to 
understand what’s going on. And while the SDK lacks samples that use VideoProperties and 
DocumentProperties, working with these follows the same pattern as shown above for ImageProperties, 
so it should be straightforward to write the necessary code. 

Also take a look again at the Configure keys for media sample, as we saw earlier in “The Media 
Control UI.” It shows how to use the music properties to obtain album art. 

As for saving properties, the Simple Imaging sample delivers there as well, also in Scenario 1. As the 
fields shown earlier in Figure 10-5 are editable, the sample provides an Apply butting that invokes the 
applyHandler function below to write them back to the file: 

function applyHandler() { 
    ImageProperties.title = id("propertiesTitle").value; 
 
    // Keywords are stored as an array of strings. Split the textarea text by newlines. 
    ImageProperties.keywords.clear(); 
    if (id("propertiesKeywords").value !== "") { 
        var keywordsArray = id("propertiesKeywords").value.split("\n"); 
 
        keywordsArray.forEach(function (keyword) { 
            ImageProperties.keywords.append(keyword); 
        }); 
    } 
 
    var properties = new Windows.Foundation.Collections.PropertySet(); 
 
    // When writing the rating, use the "System.Rating" property key. 
    // ImageProperties.rating does not handle setting the value to 0 (no stars/unrated). 
    properties.insert("System.Rating", Helpers.convertStarsToSystemRating( 
        id("propertiesRatingControl").winControl.userRating 
        )); 
 
    // Code omitted: convert discrete latitude/longitude values from the UI into the 
    // appropriate forms needed for the properties, and do some validation; the end result 
    // is to store these in the properties list 
    properties.insert("System.GPS.LatitudeRef", latitudeRef); 
    properties.insert("System.GPS.LongitudeRef", longitudeRef); 
    properties.insert("System.GPS.LatitudeNumerator", latNum); 
    properties.insert("System.GPS.LongitudeNumerator", longNum); 
    properties.insert("System.GPS.LatitudeDenominator", latDen); 
    properties.insert("System.GPS.LongitudeDenominator", longDen); 
 
    // Write the properties array to the file 

441

http://code.msdn.microsoft.com/windowsapps/Playlist-sample-3d80daee
http://code.msdn.microsoft.com/windowsapps/Media-Buttons-ea57d8e2


    ImageProperties.savePropertiesAsync(properties).done(function () { 
        // ... 
    }, function (error) { 
        // Some error handling as some properties may not be supported by all image formats. 
    }); 
} 

A few noteworthy features of this code include the following: 

• It separates keywords in the UI control and separately appends each to the keywords property 
vector. 

• It creates a new collection of properties of type Windows.Foundation.Collections.PropertySet 
and uses its insert method to add properties to the list. This property set is what’s expected by 
the savePropertiesAsync method. 

• The Helpers.convertStartsToSystemRating method (see js/default.js) converts between 1–5 
stars, as used in the WinJS.UI.Rating control, to the System.Rating value that uses a 1–99 range. 
The documentation for System.Rating specifically indicates this mapping. 

In general, all the detailed information you want for any particular Windows property can be found 
on the reference page for that property. Again start at the Windows Properties and drill down from 
there. 

Image Manipulation and Encoding 
To do something more with an image than just loading and displaying it (where again you can apply 
various CSS transforms for effect), you need to get to the actual pixels by means of a decoder. This 
already happens under the covers when you assign a URI to an img.src., but to have direct access to 
pixels means decoding manually. On the flip side, saving pixels back out to an image file means using an 
encoder. 

WinRT provides APIs for both in the Windows.Graphics.Imaging namespace, namely in the 
BitmapDecoder, BitmapTransform, and BitmapEncoder classes. Loading, manipulating, and saving an 
image file often involves these three classes in turn, though the BitmapTransform object is focused on 
rotation and scaling so you won’t use it if you’re doing other manipulations. 

One demonstration of this API can be found in Scenario 2 of the Simple imaging sample. I’ll leave it 
to you to look at the code directly, however, because it gets fairly involved—up to 11 chained promises 
to save a file! It also does all decoding, manipulation, and encoding within a single function such as 
saveHandler (js/scenario2.js). Here’s the process it follows: 

• Open a file with StorageFile.openAsync, which provides a stream. 

• Pass that stream to the static method BitmapDecoder.createAsync which provides a specific 
instance of BitmapDecoder for the stream. 

• Pass that decoder to the static method BitmapEncoder.createForTranscodingAsync, which 

442

http://msdn.microsoft.com/library/bb787554.aspx
http://msdn.microsoft.com/library/windows/desktop/dd561977.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.imaging.aspx
http://code.msdn.microsoft.com/windowsapps/Simple-Imaging-Sample-a2dec2b0


provides a specific BitmapEncoder instance. This encoder is created with an 
InMemoryRandomAccessStream. 

• Set properties in the encoder’s bitmapTransform property (a BitmapTransform object) to 
configure scaling and rotation. This creates the transformed graphic in the in-memory stream. 

• Create a property set (Windows.Graphics.Imaging.BitmapPropertySet) that includes 
System.Photo.Orientation and use the encoder’s bitmapProperties.setPropertiesAsync to save 
it. 

• Copy the in-memory stream to the output file stream by using 
Windows.Storage.Stream.RandomAccessStream.copyAsync. 

• Close both streams with their respective close methods (this is what closes the file). 

As comprehensive as this scenario is, it’s helpful to look at different stages of the process separately, 
for which purpose we have the ImageManipulation example in this chapter’s companion content. This 
lets you pick and load an image, convert it to grayscale, and save that converted image to a new file. Its 
output is shown in Figure 10-6. It also gives us an opportunity to see how we can send decoded image 
data to an HTML canvas element and save that canvas’s contents to a file. 

 
FIGURE 10-6 Output of the ImageManipulation example in the chapter’s companion content. 

The handler for the Load Image button (loadImage in js/default.js) provides the initial display. It lets 
you select an image with the file picker, displays the full-size image in an img element with 
URL.createObjectURL, calls StorageFile.properties.getImagePropertiesAsync to retrieve the title 
and dateTaken properties, and uses StorageFile.getThumbnailAsync to provide the thumbnail at the 
top. We’ve seen all of these APIs in action already. 

443



When we click Grayscale we enter the setGrayscale handler where the interesting work happens. We 
call StorageFile.openReadAsync to get a stream, call BitmapDecoder.createAsync with that to obtain a 
decoder, cache some details from the decoder in a local object (encoding), and call BitmapDecoder.-
getPixelDataAsync and copy those pixels to a canvas (and only three chained async operations here!): 

var Imaging = Windows.Graphics.Imaging;  //Shortcut 
var imageFile;                           //Saved from the file picker 
var decoder;                             //Saved from BitmapDecoder.createAsync 
var encoding = {};                       //To cache some details from the decoder 
 
function setGrayscale() { 
    //Decode the image file into pixel data for a canvas 
 
    //Get an input stream for the file (StorageFile object saved from opening) 
    imageFile.openReadAsync().then(function (stream) { 
        //Create a decoder using static createAsync method and the file stream 
        return Imaging.BitmapDecoder.createAsync(stream); 
    }).then(function (decoderArg) { 
        decoder = decoderArg; 
 
        //Configure the decoder if desired. Default is BitmapPixelFormat.rgba8 and 
        //BitmapAlphaMode.ignore. The parameterized version of getPixelDataAsync can also 
        //control transform, ExifOrientationMode, and ColorManagementMode if needed. 
 
        //Cache these settings for encoding later 
        encoding.dpiX = decoder.dpiX; 
        encoding.dpiY = decoder.dpiY; 
        encoding.pixelFormat = decoder.bitmapPixelFormat; 
        encoding.alphaMode = decoder.bitmapAlphaMode; 
        encoding.width = decoder.pixelWidth; 
        encoding.height = decoder.pixelHeight; 
 
        return decoder.getPixelDataAsync(); 
    }).done(function (pixelProvider) { 
        //detachPixelData gets the actual bits (array can't be returned from 
        //an async operation) 
        copyGrayscaleToCanvas(pixelProvider.detachPixelData(), 
                decoder.pixelWidth, decoder.pixelHeight); 
    }); 
} 

The decoder’s getPixelDataAsync method comes in two forms. The simple form, shown here, 
decodes using defaults. The full-control version lets you specify other parameters, as explained in the 
code comments above. A common use of this is doing a transform using a Windows.Graphics.- 
Imaging.BitmapTransform object (as mentioned before), which accommodates scaling (with different 
interpolation modes), rotation (90-degree increments), cropping, and flipping. 

Either way, what you get back from the getPixelDataAsync is not the actual pixel array, because of a 
limitation in the WinRT language projection mechanism whereby an asynchronous operation cannot 
return an array. Instead, the operation returns a PixelDataProvider object whose singular 
super-exciting synchronous method called detachPixelData gives you the array you want. (And that 

444

http://msdn.microsoft.com/library/windows/apps/windows.graphics.imaging.bitmapdecoder.getpixeldataasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.imaging.pixeldataprovider.aspx


method can be called only once and will fail on subsequent calls, hence the “detach” name.) In the end, 
though, what we have is exactly the data we need to manipulate the pixels and display the result on a 
canvas, as the copyGrayscaleToCanvas function demonstrates. You can, of course, replace this kind of 
function with any other manipulation routine: 

function copyGrayscaleToCanvas(pixels, width, height) { 
    //Set up the canvas context and get its pixel array 
    var canvas = document.getElementById("canvas1"); 
    canvas.width = width; 
    canvas.height = height; 
    var ctx = canvas.getContext("2d"); 
 
    //Loop through and copy pixel values into the canvas after converting to grayscale 
    var imgData = ctx.createImageData(canvas.width, canvas.height); 
    var colorOffset = { red: 0, green: 1, blue: 2, alpha: 3 }; 
    var r, g, b, gray; 
    var data = imgData.data;  //Makes a huge perf difference! 
 
    for (var i = 0; i < pixels.length; i += 4) { 
        r = pixels[i + colorOffset.red]; 
        g = pixels[i + colorOffset.green]; 
        b = pixels[i + colorOffset.blue]; 
 
        //Assign each rgb value to brightness for 
        gray = Math.floor(.3 * r + .55 * g + .11 * b); 
 
        data[i + colorOffset.red] = gray; 
        data[i + colorOffset.green] = gray; 
        data[i + colorOffset.blue] = gray; 
        data[i + colorOffset.alpha] = pixels[i + colorOffset.alpha]; 
    } 
 
    //Show it on the canvas 
    ctx.putImageData(imgData, 0, 0); 
 
    //Enable save button 
    document.getElementById("btnSave").disabled = false; 
} 

This is a great place to point out that JavaScript isn’t necessarily the best language for working over a 
pile of pixels like this, though in this case the performance of a Release build running outside the 
debugger is actually quite good. Such routines may be better implemented as a WinRT component in a 
language like C# or C++ and made callable by JavaScript. We’ll take the opportunity to do exactly this 
in Chapter 16, “WinRT Components,” where we’ll also see limitations of the canvas element that require 
us to take a slightly different approach. 

Saving this canvas data to a file then happens in the saveGrayscale function, where we use the file 
picker to get a StorageFile, open a stream, acquire the canvas pixel data, and hand it off to a 
BitmapEncoder: 

 

445



function saveGrayscale() { 
    var picker = new Windows.Storage.Pickers.FileSavePicker(); 
    picker.suggestedStartLocation =  
        Windows.Storage.Pickers.PickerLocationId.picturesLibrary; 
    picker.suggestedFileName = imageFile.name + " - grayscale"; 
    picker.fileTypeChoices.insert("PNG file", [".png"]); 
 
    var imgData, fileStream = null; 
 
    picker.pickSaveFileAsync().then(function (file) { 
        if (file) { 
            return file.openAsync(Windows.Storage.FileAccessMode.readWrite);  
        } else { 
            return WinJS.Promise.wrapError("No file selected"); 
        } 
    }).then(function (stream) { 
        fileStream = stream; 
        var canvas = document.getElementById("canvas1"); 
        var ctx = canvas.getContext("2d"); 
        imgData = ctx.getImageData(0, 0, canvas.width, canvas.height); 
             
        return Imaging.BitmapEncoder.createAsync( 
            Imaging.BitmapEncoder.pngEncoderId, stream); 
    }).then(function (encoder) { 
        //Set the pixel data--assume "encoding" object has options from elsewhere. 
        //Conversion from canvas data to Uint8Array is necessary because the array type 
        //from the canvas doesn't match what WinRT needs here. 
        encoder.setPixelData(encoding.pixelFormat, encoding.alphaMode, 
            encoding.width, encoding.height, encoding.dpiX, encoding.dpiY, 
            new Uint8Array(imgData.data)); 
 
        //Go do the encoding 
        return encoder.flushAsync(); 
    }).done(function () { 
        fileStream.close(); 
    }, function () { 
        //Empty error handler (do nothing if the user canceled the picker) 
    }); 
} 

Note how the BitmapEncoder takes a codec identifier in its first parameter. We’re using pngEncoderId, 
which is, as you can see, defined as a static property of the Windows.Graphics.Imaging.BitmapEncoder 
class; other values are bmpEncoderId, gifEncoderId, jpegEncoderId, jpegXREncoderId, and 
tiffEncoderId. These are the formats supported by the API. You can set additional properties of the 
BitmapEncoder before setting pixel data, such as its BitmapTransform, which will then be applied during 
encoding. 

One gotcha to be aware of here is that the pixel array obtained from a canvas element (a DOM 
CanvasPixelArray) is not directly compatible with the WinRT byte array required by the encoder. This 
is the reason for the new Uint8Array call down there in the last parameter. 

446

http://msdn.microsoft.com/library/windows/apps/hh465731.aspx


Transcoding and Custom Image Formats 
In the previous section we mostly saw the use of a BitmapEncoder created with that class’s static 
createAsync method to write a new file. That’s all well and good, but you might want to know about a 
few of the encoder’s other capabilities. 

First is the BitmapEncoder.createForTranscodingAsync method that was mentioned briefly in the 
context of the Simple imaging sample. This specifically creates a new encoder that is initialized from an 
existing BitmapDecoder. This is primarily used to manipulate some aspects of the source image file while 
leaving the rest of the data intact. To be more specific, you can first change those aspects that are 
expressed through the encoder’s setPixelData method: the pixel format (rgba8, rgba16, and bgra8, see 
BitmapPixelFormat), the alpha mode (premultiplied, straight, or ignore, see BitmapAlphaMode), the 
image dimensions, the image DPI, and, of course, the pixel data itself. Beyond that, you can change 
other properties through the encoder’s bitmapProperties.setProperties-Async method. In fact, if all 
you need to do is change a few properties and you don’t want to affect the pixel data, you can use 
BitmapEncoder.createForInPlacePropertyEncodingAsync instead (how’s that for a method name!). 
This encoder allows calls to only bitmapProperties.setPropertiesAsync, bitmapProperties.- 
getPropertiesAsync, and flushAsync, and since it can assume that the underlying data in the file will 
remain unchanged, it executes much faster than its more flexible counterparts and has less memory 
overhead. 

An encoder from createForTranscodingAsync does not accommodate a change of image file format 
(e.g., JPEG to PNG); for that you need to use createAsync wherein you can specify the specific kind of 
encoding. As we’ve already seen, the first argument to createAsync is a codec identifier, for which you 
normally pass one of the static properties on Windows.Graphics.Imaging.BitmapEncoder. What I haven’t 
mentioned is that you can also specify custom codecs in this first parameter and that the createAsync 
call also supports an optional third argument in which you can provide options for the particular codec 
in question. However, there are complications and restrictions here.  

Let me address options first. The present documentation for the BitmapEncoder codec values (like 
pngEncoderId) lacks any details about available options. For that you need to instead refer to the docs 
for the Windows Imaging Component (WIC), specifically the Native WIC Codecs that are what WinRT is 
surfacing to Store apps. If you go into the page for a specific codec, you’ll then see a section on 
“Encoder Options” that tells you what you can use. For example, the JPEG codec supports properties like 
ImageQuality (a value between 0.0 and 1.0), as well as built-in rotations. The PNG codec supports 
properties like FilterOption for various compression optimizations. 

To provide these properties, you need to create a new BitmapPropertySet and insert an entry in that 
set for each desired options. If, for example, you have a variable named quality that you want to apply 
to a JPEG encoding, you’d create the encoder like this: 

var options = new Windows.Graphics.Imaging.BitmapPropertySet(); 
options.insert("ImageQuality", quality); 
var encoderPromise = Imaging.BitmapEncoder.createAsync(Imaging.BitmapEncoder.jpegEncoderId, 
     stream, options); 

447

http://msdn.microsoft.com/library/windows/apps/windows.graphics.imaging.bitmapencoder.createfortranscodingasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.imaging.bitmappixelformat.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.imaging.bitmapalphamode.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.imaging.bitmapencoder.createforinplacepropertyencodingasync.aspx
http://msdn.microsoft.com/library/windows/desktop/gg430027.aspx
http://msdn.microsoft.com/library/windows/desktop/gg430026.aspx
http://msdn.microsoft.com/library/windows/desktop/gg430028.aspx


You use the same BitmapPropertySet for any properties you might pass to an encoder’s bitmap-
Properties.setPropertiesAsync call. Here’s we’re just using the same mechanism for encoder options. 

As for custom codecs, this simply means that the first argument to BitmapEncoder.createAsync (as 
well as BitmapDecoder.createAsync) is the GUID (a class identifier or CLSID) for that codec, the 
implementation of which must be provided by a DLL. Details on how to write one of these is provided in 
How to Write a WIC-Enabled Codec. The catch is that including custom image codecs in your package is 
not presently supported. If the codec is already on the system (that is, installed via the desktop), it will 
work. However, the Windows Store policies do not allow apps to be dependent on other apps, so it’s 
unlikely that you can even ship such an app unless it’s preinstalled on some specific OEM device and the 
DLL is part of the system image. (An app written in C++ can do more here, but that’s beyond the scope 
of this book.) 

In short, for apps written in JavaScript and HTML, you’re really limited, for all practical purposes, to 
image formats that are inherently supported in the system.  

Do note that these restrictions do not exist for custom audio and video codecs. The Media extensions 
sample shows how to do this with a custom video codec, as we’ll see in the next section. 

Manipulating Audio and Video 
As with images, if all we want to do is load the contents of a StorageFile into an audio or video 
element, we can just pass that StorageFile to URL.createObjectUrl and assign the result to a src 
attribute. Similarly, if we want to get at the raw data, we can just use the StorageFile.openAsync or 
openReadAsync methods to obtain a file stream. 

To be honest, opening the file is probably the farthest you’d ever go in JavaScript with raw audio or 
video, if even that. While chewing on an image is a marginally acceptable process in the JavaScript 
environment, churning on audio and especially video is really best done in a highly performant C++ 
DLL. In fact, many third-party, platform-neutral C/C++ libraries for such manipulations are readily 
available that you should be able to directly incorporate into such a DLL. In this case you might as well 
just let the DLL open the file itself!  

That said, WinRT does provide for transcoding (converting) between different media formats and 
provides an extensibility model for custom codecs, effects, and scheme handlers. In fact, we’ve already 
seen how to apply custom video effects through the Media extensions sample, and the same DLLs can 
also be used within an encoding process, where all that the JavaScript code really does is glue the right 
components together (which it’s very good at doing). Let’s see how this works with transcoding video 
first and then with custom codecs. 

Transcoding 
Transcoding both audio and video is accomplished through the Windows.Media.Transcoding.-
MediaTranscoder class, which supports output formats of mp3 and wma for audio, and mp4, wmv, and 
m4a for video. The transcoding process also allows you to apply effects and to trim start and end times. 

448

http://msdn.microsoft.com/library/windows/desktop/ee719883.aspx
http://code.msdn.microsoft.com/windowsapps/Media-extensions-sample-7b466096
http://code.msdn.microsoft.com/windowsapps/Media-extensions-sample-7b466096
http://code.msdn.microsoft.com/windowsapps/Media-extensions-sample-7b466096
http://msdn.microsoft.com/library/windows/apps/windows.media.transcoding.mediatranscoder.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.transcoding.mediatranscoder.aspx


Transcoding happens either from one StorageFile to another or one RandomAccessStream to 
another, and in each case happens according to a MediaEncodingProfile. To set up a transcoding 
operation you call the MediaTranscoder prepareFileTranscodeAsync or prepareStream- 
TranscodeAsync method, which returns back a PrepareTranscodeResult object. This represents the 
operation that’s ready to go, but it won’t happen until you call that result’s transcodeAsync method. In 
JavaScript, each result is a promise, allowing you to provide completed and progress handlers for a 
single operation but also allowing you to combine operations with WinJS.Promise.join. This allows 
them to be set up and started later, which is useful for batch processing and doing automatic uploads to 
a service like YouTube while you’re sleeping! (And at times like these I’ve actually pulled ice packs from 
my freezer and placed them under my laptop as a poor-man’s cooling system….) 

The Transcoding media sample provides us with a couple of transcoding scenarios. In Scenario 1 
(js/presets.js) we can pick a video file, pick a target format, select a transcoding profile, and turn the 
machine loose to do the job (with progress being reported), as shown in Figure 10-7. 

 
FIGURE 10-7 The Transcoding media sample cranking away on a video of my then two-year-old son discovering the 
joys of a tape measure. 

The code that’s executed when you press the Transcode button is as follows (some bits omitted; this 
sample happens to use nested promises, which again isn’t recommended for proper error handling 
unless you want, as this code would show, to eat any exceptions that occur prior to the transcode-Async 
call): 

function onTranscode() { 
    // Create transcode object. 
    var transcoder = null; 
    transcoder = new Windows.Media.Transcoding.MediaTranscoder(); 
 
    // Get transcode profile. 

449

http://msdn.microsoft.com/library/windows/apps/windows.media.mediaproperties.mediaencodingprofile.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.transcoding.mediatranscoder.preparefiletranscodeasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.transcoding.mediatranscoder.preparestreamtranscodeasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.transcoding.mediatranscoder.preparestreamtranscodeasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.transcoding.preparetranscoderesult.aspx
http://code.msdn.microsoft.com/windowsapps/Media-Transcode-Sample-f7ba5269


    getPresetProfile(id("profileSelect")); 
 
    // Create output file and transcode. 
    var videoLib = Windows.Storage.KnownFolders.videosLibrary; 
    var createFileOp = videoLib.createFileAsync(g_outputFileName, 
        Windows.Storage.CreationCollisionOption.generateUniqueName); 
 
    createFileOp.done(function (ofile) { 
        g_outputFile = ofile; 
        g_transcodeOp = null; 
        var prepareOp = transcoder.prepareFileTranscodeAsync(g_inputFile, g_outputFile, 
            g_profile); 
 
        prepareOp.done(function (result) { 
            if (result.canTranscode) { 
                g_transcodeOp = result.transcodeAsync(); 
                g_transcodeOp.done(transcodeComplete, transcoderErrorHandler, 
                    transcodeProgress); 
            } else { 
                transcodeFailure(result.failureReason); 
            } 
        }); // prepareOp.done 
        id("cancel").disabled = false; 
    }); // createFileOp.done 
} 

The getPresetProfile method retrieves the appropriate profile object according to the option 
selected in the app. For the selections shown in Figure 10-7 (WMV and WVGA), we’d use these parts of 
that function: 

function getPresetProfile(profileSelect) { 
    g_profile = null; 
    var mediaProperties = Windows.Media.MediaProperties; 
    var videoEncodingProfile; 
 
    switch (profileSelect.selectedIndex) { 
        // other cases omitted 
        case 2: 
            videoEncodingProfile = mediaProperties.VideoEncodingQuality.wvga; 
            break; 
    } 
    if (g_useMp4) { 
        g_profile = mediaProperties.MediaEncodingProfile.createMp4(videoEncodingProfile); 
    } else { 
        g_profile = mediaProperties.MediaEncodingProfile.createWmv(videoEncodingProfile); 
    } 
} 
 
 

 

 

450



In Scenario 2, the sample always uses the WVGA encoding but allows you to set specific values for 
the video dimensions, the frame rate, the audio and video bitrates, audio channels, and audio sampling. 
It applies these settings in getCustomProfile (js/custom.js) simply by configuring the profile properties 
after the profile is created: 

function getCustomProfile() { 
    if (g_useMp4) { 
        g_profile = Windows.Media.MediaProperties.MediaEncodingProfile.createMp4( 
            Windows.Media.MediaProperties.VideoEncodingQuality.wvga); 
    } else { 
        g_profile = Windows.Media.MediaProperties.MediaEncodingProfile.createWmv( 
            Windows.Media.MediaProperties.VideoEncodingQuality.wvga); 
    } 
 
    // Pull configuration values from the UI controls 
    g_profile.audio.bitsPerSample = id("AudioBPS").value; 
    g_profile.audio.channelCount = id("AudioCC").value; 
    g_profile.audio.bitrate = id("AudioBR").value; 
    g_profile.audio.sampleRate = id("AudioSR").value; 
    g_profile.video.width = id("VideoW").value; 
    g_profile.video.height = id("VideoH").value; 
    g_profile.video.bitrate = id("VideoBR").value; 
    g_profile.video.frameRate.numerator = id("VideoFR").value; 
    g_profile.video.frameRate.denominator = 1; 
} 

And to finish off, Scenario 3 is like Scenario 1, but it lets you set start and end times that are then 
saved in the transcoder’s trimStartTime and trimStopTime properties (see js/trim.js): 

transcoder = new Windows.Media.Transcoding.MediaTranscoder(); 
transcoder.trimStartTime = g_start; 
transcoder.trimStopTime = g_stop; 

Through not shown in the sample, you can apply effects to a transcoding operation by using the 
transcoder’s addAudioEffect and addVideoEffect methods. 

Custom Decoders/Encoders and Scheme Handlers 
Clearly, there are many more audio and video formats in the world than Windows can support in-box, 
so an extensibility mechanism is provided in WinRT to allow for custom bytestream objects, custom 
media sources, and custom codecs and effects. It’s important to note again that all such extensions are 
available only to the app itself and are not available to other apps on the system. Furthermore, Windows 
will always prefer in-box components over a custom one, which means don’t bother wasting your time 
creating a new mp3 decoder or such since it will never actually be used. 

As suggested earlier with custom image formats, this subject will certainly take you into some pretty 
vast territory around the entire Windows Media Foundation (WMF) SDK. What’s in WinRT is really just a 
wrapper, so knowledge of WMF is essential and not for the faint of heart! 

Audio and video extensions are declared in the app manifest where you’ll need to edit the XML 

451

http://msdn.microsoft.com/library/ms694197.aspx


directly. As seen in the Media extensions sample for all the DLLs in its overall solution, each declaration 
looks like this: 

<Extension Category="windows.activatableClass.inProcessServer"> 
    <InProcessServer> 
        <Path>MPEG1Decoder.dll</Path> 
        <ActivatableClass ActivatableClassId="MPEG1Decoder.MPEG1Decoder" 
            ThreadingModel="both" /> 
    </InProcessServer> 
</Extension> 

The ActivatableClassId is how an extension is identified when calling the WinRT APIs, which is 
clearly mapped in the manifest to the specific DLL that needs to be loaded. 

Depending, then, on the use of the extension, you might need to register it with WinRT through the 
methods of Windows.Media.MediaExtensionManager: registerAudio[Decoder | Encoder], 
registerByteStreamHandler (media sinks), registerSchemeHandler (media sources/file containers), and 
registerVideo[Decoder | Encoder]. In Scenario 1 of the Media extensions sample (js/LocalDecoder.js), 
we can see how to set up a custom decoder for video playback: 

var page = WinJS.UI.Pages.define("/html/LocalDecoder.html", { 
    extensions: null, 
    MFVideoFormat_MPG1: { value: "{3147504d-0000-0010-8000-00aa00389b71}" }, 
    NULL_GUID: { value: "{00000000-0000-0000-0000-000000000000}" }, 
 
    ready: function (element, options) { 
        if (!this.extensions) { 
            // Add any initialization code here 
            this.extensions = new Windows.Media.MediaExtensionManager(); 
            // Register custom ByteStreamHandler and custom decoder. 
            this.extensions.registerByteStreamHandler("MPEG1Source.MPEG1ByteStreamHandler", 
                ".mpg", null); 
            this.extensions.registerVideoDecoder("MPEG1Decoder.MPEG1Decoder", 
                this.MFVideoFormat_MPG1, this.NULL_GUID); 
        } 
 
    // ... 

where the MPEG1Source.MPEG1ByteStreamHandler CLSID is implemented in one DLL (see the 
MPEG1Source C++ project in the sample’s solution) and the MPEG1Decoder.MPEG1.Decoder CLSID is 
implemented in another (the MPEG1Decoder C++ project). 

Scenario 2, for its part, shows the use of a custom scheme handler, where the handler (in the 
GeometricSource C++ project) generates video frames on the fly. Fascinating stuff, but again beyond 
the scope of this book. 

Effects, as we’ve seen, are quite simple to use once you have one implemented: just pass their CLSID 
to methods like msInsertVideoEffect and msInsertAudioEffect on video and audio elements. You can 
also apply effects during the transcoding process in the MediaTranscoder class’s addAudio-Effect and 
addVideoEffect methods. The same is also true for media capture, as we’ll see shortly. 

452

http://code.msdn.microsoft.com/windowsapps/Media-extensions-sample-7b466096
http://msdn.microsoft.com/library/windows/apps/windows.media.mediaextensionmanager.aspx


Media Capture 

There are times when we can really appreciate the work that people have done to protect individual 
privacy, such as making sure I know when my computer’s camera is being used since I am often using it 
in the late evening, sitting in bed, or in the early pre-shower mornings when I have, in the words of my 
father-in-law, “pineapple head.” 

And there are times when we want to turn on a camera or a microphone and record something: a 
picture, a video, or audio. Of course, an app cannot know ahead of time what exact camera and 
microphones might be on a system. A key step in capturing media, then, is determining which device to 
use—something that the Windows.Media.Capture APIs provide for nicely, along with the process of 
doing the capture itself into a file, a stream, or some other custom “sink” depending on how an app 
wants to manipulate or process the capture. 

Back in Chapter 2, “Quickstart,” we learned how to use WinRT to easily capture a photograph in the 
Here My Am! app. To quickly review, we only needed to declare the Webcam capability in the manifest 
and add a few lines of code: 

function capturePhoto() { 
    var that = this; 
 
    var captureUI = new Windows.Media.Capture.CameraCaptureUI(); 
 
    //Indicate that we want to capture a PNG that's no bigger than our target element -- 
    //the UI will automatically show a crop box of this size 
    captureUI.photoSettings.format = Windows.Media.Capture.CameraCaptureUIPhotoFormat.png; 
    captureUI.photoSettings.croppedSizeInPixels =  
        { width: this.clientWidth, height: this.clientHeight }; 
 
    captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo) 
        .done(function (capturedFile) { 
            //Be sure to check validity of the item returned; could be null 
            //if the user canceled. 
            if (capturedFile) { 
                lastCapture = capturedFile;  //Save for Share 
                that.src = URL.createObjectURL(capturedFile, {oneTimeOnly: true}); 
            } 
        }, function (error) { 
            console.log("Unable to invoke capture UI."); 
        }); 
} 

The UI that Windows brings up through this API provides for cropping, retakes, and adjusting camera 
settings. Another example of taking a photo can also be found in Scenario 1 of the CameraCaptureUI 
Sample, along with an example of capturing video in Scenario 2. In this latter case (js/capturevideo.js) 
we configure the capture UI object for a video format and indicate a video mode in the call to 
captureFileAsync: 
 

453

http://code.msdn.microsoft.com/windowsapps/CameraCaptureUI-Sample-845a53ac
http://code.msdn.microsoft.com/windowsapps/CameraCaptureUI-Sample-845a53ac


function captureVideo() { 
    var dialog = new Windows.Media.Capture.CameraCaptureUI(); 
    dialog.videoSettings.format = Windows.Media.Capture.CameraCaptureUIVideoFormat.mp4; 
 
    dialog.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.video) 
        .done(function (file) { 
            if (file) { 
                var videoBlobUrl = URL.createObjectURL(file, {oneTimeOnly: true}); 
            } else { 
                //... 
            } 
        }, function (err) { 
            //... 
        }); 
} 

It should be noted that the Webcam capability in the manifest applies only to the image or video 
side of camera capture. If you want to capture audio, be sure to also select the Microphone capability on 
the Capabilities tab of the manifest editor. 

If you look in the Windows.Media.Capture.CameraCaptureUI object, you’ll also see many other 
options you can configure. Its photoSettings property, a CameraCaptureUIPhotoCapture-Settings 
object, lets you indicate cropping size and aspect ratio, format, and maximum resolution. Its 
videoSettings property, a CameraCaptureUIVideoCaptureSettings object, lets you set the format, set 
the maximum duration and resolution, and indicate whether the UI should allow for trimming. All useful 
stuff! You can find discussions of some of these in the docs on Capturing or rendering audio, video, and 
images, including coverage of managing calls on a Bluetooth device. 

Flexible Capture with the MediaCapture Object 
Of course, the default capture UI won’t necessarily suffice in every use case. For one, it always sends 
output to a file, but if you’re writing a communications app, for example, you’d rather send captured 
video to a stream or send it over a network without any files involved at all. You might also want to 
preview a video before any capture actually happens. Furthermore, you may want to add effects during 
the capture, apply rotation, and perhaps apply a custom encoding. 

All of these capabilities are available through the Windows.Media.Capture.MediaCapture class: 

Properties Description (classes are in the Windows.Media.Capture namespace unless note) 
audioController An AudioDeviceController that controls volume and provides the ability to manage other 

arbitrary properties that affect the audio stream. 
mediaCaptureSettings A MediaCaptureSettings that contains device IDs and mode settings, and lets you set the source 

(audio, videoPreview, photo). 
videoController A VideoDeviceController that controls picture properties (brightness, hue, pan/tilt, zoom, etc.). 

provides adjustments for backlight and AC power frequency, and provides the ability to manage 
other arbitrary properties that affect the video stream. 

  
Events Description 

failed Fired when an error occurs during capture. 

454

http://msdn.microsoft.com/library/windows/apps/hh465156.aspx
http://msdn.microsoft.com/library/windows/apps/hh465156.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.capture.mediacapture.aspx


recordLimitationExceeded Fired when the user tried to record video or audio past the allowable duration. 
  
Methods Description 
initializeAsync Initialize the MediaCapture object (with defaults or with a 

MediaCaptureInitialization-Settings object that contains the same stuff as 
MediaCaptureSettings). 

  
addEffectAsync Applies an effect. 
clearEffectsAsync Clears all current effects. 
  
capturePhotoToStorageFileAsync 
capturePhotoToStreamAsync 

Captures an image to a storage file or a random access stream. Both take an instance of 
ImageEncodingProperties to control format (JPEG or PNG), type, dimensions, and other 
arbitrary Windows Properties as described earlier in the section “Common File Properties.” 

  
getEncoderProperty 
setEncoderProperty 

Manages specific encoder properties. 

  
startRecordToStorageFileAsync 
startRecordToStreamAsync 
stopRecordAsync 

Starts and stops recording to a storage file or random access stream, a MediaEncodingProfile 
that determines the audio/video format, along with bitrate, quality, video dimensions, etc. 

getRecordRotation 
setRecordRotation 

For videos, these manage a VideoRotation value (90-degree increments) to apply to the 
recording. These do not affect audio. 

startRecordToCustomSinkAsync Starts recording into a custom sink that’s described either by an implementation of 
Windows.Media.IMediaExtension or by an ID plus a property set of settings. 

  
startPreviewAsync 
startPreviewToCustomSinkAsync 
stopPreviewAsync 
getPreviewRotation 
setPreviewRotation 

Same as recording but works for previews. In this case, if you call URL.createObjectURL and pass 
the MediaCapture object as the first parameter, the result can be assigned to the src attribute of 
a video element and the preview shows in that element when you call the video.play method. 

getPreviewMirroring 
setPreviewMirroring 

Controls preview mirroring, which means to flip the preview horizontally; this accounts for 
differences in camera direction which can be in the same direction as the user (rear-mounted 
camera as on a tablet computer), or the opposite direction (camera mounted on a monitor or 
built into a laptop display). See the next section, “Selecting a Media Capture Device.” 

 

For a very simple demonstration of previewing video in a video element we can look at the 
CameraOptionsUI sample in js/showoptionsui.js. When you tap the Start Preview button, it creates an 
initializes a MediaCapture object as follows: 

function initializeMediaCapture() { 
    mediaCaptureMgr = new Windows.Media.Capture.MediaCapture(); 
    mediaCaptureMgr.initializeAsync().done(initializeComplete, initializeError); 
} 

where the initializeComplete handler calls into startPreview: 

function startPreview() { 
    document.getElementById("previewTag").src = URL.createObjectURL(mediaCaptureMgr); 
    document.getElementById("previewTag").play(); 
    startPreviewButton.disabled = true; 
    showSettingsButton.style.visibility = "visible"; 

455

http://msdn.microsoft.com/library/windows/desktop/dd561977(v=vs.85).aspx
http://code.msdn.microsoft.com/windowsapps/CameraOptionsUI-Sample-44c06873


    previewStarted = true; 
} 

The other little bit shown in this sample is invoking the Windows.Media.Capture.Camera-OptionsUI, 
which happens when you tap its Show Settings button; see Figure 10-8. This is just a system-provided 
flyout with options that are relevant to the current media stream being captured: 

function showSettings() { 
    if (mediaCaptureMgr) { 
        Windows.Media.Capture.CameraOptionsUI.show(mediaCaptureMgr); 
    } 
} 

By the way, if you have trouble running a sample like this in the Visual Studio simulator—specifically, 
you see exceptions when trying to turn on the camera—try running on the local machine or a remote 
machine instead. 

 
FIGURE 10-8 The Camera Options UI, as shown in the CameraOptionsUI sample (empty bottom is cropped). 

More complex scenarios involving the MediaCapture class (and a few others) can be found now in the 
Media capture using capture device sample, such as previewing and capturing video, changing 
properties dynamically (Scenario 1), selecting a specific media device (Scenario 2), and recording just 
audio (Scenario 3). 

Starting with Scenario 3 (js/AudioCapture.js, the simplest), here’s the core code to create and 
initialize the MediaCapture object for an audio stream (see the streamingCaptureMode property in the 
initialization settings), where that stream is directed to a file in the music library via 
startRecordToStorageFileAsync (some code omitted for brevity): 

var mediaCaptureMgr = null; 
var captureInitSettings = null; 
var encodingProfile = null; 
var storageFile = null; 
 
// This is called when the page is loaded 
function initCaptureSettings() { 
    captureInitSettings = new Windows.Media.Capture.MediaCaptureInitializationSettings(); 
    captureInitSettings.audioDeviceId = ""; 

456

http://code.msdn.microsoft.com/windowsapps/Media-Capture-Sample-adf87622


    captureInitSettings.videoDeviceId = ""; 
    captureInitSettings.streamingCaptureMode =  
        Windows.Media.Capture.StreamingCaptureMode.audio; 
} 
 
function startDevice() { 
    mediaCaptureMgr = new Windows.Media.Capture.MediaCapture(); 
 
    mediaCaptureMgr.initializeAsync(captureInitSettings).done(function (result) { 
        // ... 
    }); 
} 
 
function startRecord() { 
    // ... 
    // Start recording. 
    Windows.Storage.KnownFolders.videosLibrary.createFileAsync("cameraCapture.m4a", 
        Windows.Storage.CreationCollisionOption.generateUniqueName) 
        .done(function (newFile) { 
            storageFile = newFile; 
            encodingProfile = Windows.Media.MediaProperties 
                .MediaEncodingProfile.createM4a(Windows.Media.MediaProperties 
                .AudioEncodingQuality.auto); 
            mediaCaptureMgr.startRecordToStorageFileAsync(encodingProfile, 
                storageFile).done(function (result) { 
                    // ... 
                }); 
        }); 
} 
 
function stopRecord() { 
    mediaCaptureMgr.stopRecordAsync().done(function (result) { 
        displayStatus("Record Stopped.  File " + storageFile.path + "  "); 
 
        // Playback the recorded audio 
        var audio = id("capturePlayback" + scenarioId); 
        audio.src = URL.createObjectURL(storageFile, { oneTimeOnly: true }); 
        audio.play(); 
    }); 
} 

Scenario 1 is essentially the same code but captures a video stream as well as photos, with results 
shown in Figure 10-9. This variation is enabled through these properties in the initialization settings (see 
js/BasicCapture.js within initCaptureSettings): 

captureInitSettings.photoCaptureSource =  
    Windows.Media.Capture.PhotoCaptureSource.videoPreview; 
captureInitSettings.streamingCaptureMode =  
    Windows.Media.Capture.StreamingCaptureMode.audioAndVideo; 

457



 
FIGURE 10-9 Previewing and recording video with the default device in the Media capture sample, Scenario 1. (The 
output is cropped because I needed to run the app using the Local Machine option in Visual Studio, and I didn’t 
think you needed to see a 1920x1200 screenshot with lots of whitespace!). 

Notice the Contrast and Brightness controls in Figure 10-9. Changing these will change the preview 
video, along with the recorded video. The sample does this through the MediaCapture.video- 
DeviceController object’s contrast and brightness properties, showing that these (and any others in 
the controller) can be adjusted dynamically. Refer to the getCameraSettings function in 
js/BasicCapture.js that basically wires the slider change events into a generic anonymous function to 
update the desired property. 

Selecting a Media Capture Device 
Looking now at Scenario 2 (js/AdvancedCapture.js), it’s more or less like Scenario 1 but it allows you to 
select the specific input device. Until now, everything we’ve done has simply used the default device, 
but you’re not limited to that, of course. You can use the Windows.Devices.Enumeration API to retrieve 
a list of devices within a particular device interface class; the sample uses the predefined videoCapture 
class: 

function enumerateCameras() { 
    var cameraSelect = id("cameraSelect"); 
    deviceList = null; 
    deviceList = new Array(); 
    while (cameraSelect.length > 0) { 
        cameraSelect.remove(0); 
    } 
    //Enumerate webcams and add them to the list 
    var deviceInfo = Windows.Devices.Enumeration.DeviceInformation; 
    deviceInfo.findAllAsync(Windows.Devices.Enumeration.DeviceClass.videoCapture) 
        .done(function (devices) { 

458

http://msdn.microsoft.com/library/windows/apps/windows.devices.enumeration.aspx


            // Add the devices to deviceList 
            if (devices.length > 0) { 
                for (var i = 0; i < devices.length; i++) { 
                    deviceList.push(devices[i]); 
                    cameraSelect.add(new Option(deviceList[i].name), i); 
                } 
                //Select the first webcam 
                cameraSelect.selectedIndex = 0; 
                initCaptureSettings(); 
            } else { 
                // disable buttons. 
            } 
        }, errorHandler); 
} 

The selected device’s ID is then copied within initCaptureSettings to the MediaCapture-
InitializationSetting.videoDeviceId property: 

var selectedIndex = id("cameraSelect").selectedIndex; 
var deviceInfo = deviceList[selectedIndex]; 
captureInitSettings.videoDeviceId = deviceInfo.id; 

By the way, you can retrieve the default device ID at any time through the methods of the 
Windows.Media.Devices.MediaDevice object and listen to its events for changes in the default devices. 
It’s also important to note that DeviceInformation (in the deviceInfo variable above) includes a 
property called enclosureLocation. This tells you whether a camera is forward or back-ward facing, 
which you can use to rotate the video or photo as appropriate for the user’s perspective: 

var cameraLocation = null; 
 
if (deviceInfo.enclosureLocation) { 
    cameraLocation = deviceInfo.enclosureLocation.panel; 
} 
 
if (cameraLocation === Windows.Devices.Enumeration.Panel.back) { 
    rotateVideoOnOrientationChange = true; 
    reverseVideoRotation = false; 
} else if (cameraLocation === Windows.Devices.Enumeration.Panel.front) { 
    rotateVideoOnOrientationChange = true; 
    reverseVideoRotation = true; 
} else { 
    rotateVideoOnOrientationChange = false; 
} 

The other bit that Scenario 2 demonstrates is using the MediaCapture.addEffectAsync with a 
grayscale effect, shown in Figure 10-10, that’s implemented in a DLL (the GrayscaleTransform project in 
the sample’s solution). This works exactly as it did with transcoding, and you can refer to the 
addRemoveEffect and addEffectToImageStream functions in js/AdvancedCapture.js for the details. You’ll 
notice there that these functions do a number of checks using the MediaCaptureSettings.- 
videoDeviceCharacteristic value to make sure that the effect is added in the right place. 

459

http://msdn.microsoft.com/library/windows/apps/br226802.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.enumeration.deviceinformation.aspx


 
FIGURE 10-10 Scenario 2 of the Media capture sample in which one can select a specific device and apply an effect. 
(The output here is again cropped from a larger screen shot.) Were you also paying attention enough to notice that I 
switched guitars? 

Streaming Media and PlayTo 

To say that streaming media is popular is certainly a gross understatement. As mentioned in this 
chapter’s introduction, Netflix alone consumes for a large percentage of today’s Internet bandwidth 
(including that of my own home). YouTube certainly does its part as well—so your app might as well 
contribute to the cause! 

Streaming media from a server to your app is easily the most common case, and it happens 
automatically when you set an audio or video src attribute to a remote URI. To improve on this, 
Microsoft also has a Smooth Streaming SDK for Windows 8 Apps (in beta at the time of writing) that 
helps you build media apps with a number of rich features including live playback and PlayReady 
content protection. I won’t be covering that SDK in this book, so I wanted to make sure you were aware 
of it. 

What we’ll focus on here, in the few pages we have left before my editors at Microsoft Press pull the 
plug on this chapter, are considerations for digital rights management (DRM) and streaming not from a 
network but to a network, for example, audio/video capture in a communications app, as well as 
streaming media from an app to a PlayTo device. 
 

460

http://visualstudiogallery.msdn.microsoft.com/04423d13-3b3e-4741-a01c-1ae29e84fea6?SRC=Home


Streaming from a Server and Digital Rights Management (DRM) 
Again, streaming media from a server is what you already do whenever you’re using an audio or video 
element with a remote URI. The details just happen for you. Indeed, much of what a great media client 
app does is talking to web services, retrieving metadata and the catalog, helping the user navigate all of 
that information, and ultimately getting to a URI that can be dropped in the src attribute of a video or 
audio element. Then, once the app receives the canplay event, you can call the element’s play method 
to get everything going. 

Of course, media is often protected with DRM, otherwise the content on paid services wouldn’t be 
generating much income for the owners of those rights! So there needs to be a mechanism to acquire 
and verify rights somewhere between setting the element’s src and receiving canplay. Fortunately, 
there’s a simple means to do exactly that: 

• Before setting the src attribute, create an instance of Windows.Media.Protection.Media-
ProtectionManager and configure its properties. 

• Listen to this object’s serviceRequested event, the handler for which performs the appropriate 
rights checks and sets a completed flag when all is well. (Two other events, just to mention them, 
are componentloadfailed and rebootneeded.) 

• Assign the protection manager to the audio/video element with the 
msSetMediaProtectionManager extension method. 

• Set the src attribute. This will trigger the serviceRequested event to start the DRM process 
which will prevent canplay until DRM checks are completed successfully. 

• In the event of an error, the media element’s error event will be fired. The element’s error 
property will then contain an msExtendedCode with more details. 

You can refer to How to use pluggable DRM and How to handle DRM errors for additional details, 
but here’s a minimal and hypothetical example of all this in code: 

var video1 = document.getElementById("video1"); 
 
video1.addEventListener('error', function () { 
    var error = video1.error.msExtendedCode; 
    //... 
}, false); 
 
video1.addEventListener('canplay', function () { 
    video1.play(); 
}, false); 
 
var cpm = new Windows.Media.Protection.MediaProtectionManager(); 
cpm.addEventListener('servicerequested', enableContent, false);  //Remove this later 
video1.msSetContentProtectionManager(cpm); 
video1.src = "http://some.content.server.url/protected.wmv"; 
 
function enableContent(e) { 

461

http://msdn.microsoft.com/library/windows/apps/windows.media.protection.mediaprotectionmanager.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.protection.mediaprotectionmanager.aspx
http://msdn.microsoft.com/library/windows/apps/hh465953.aspx
http://msdn.microsoft.com/library/windows/apps/hh452779.aspx
http://msdn.microsoft.com/library/windows/apps/hh452767.aspx


    if (typeof (e.request) != 'undefined') { 
        var req = e.request; 
        var system = req.protectionSystem; 
        var type = req.type; 
 
        //Take necessary actions based on the system and type 
    } 
 
    if (typeof (e.completion) != 'undefined') { 
        //Requested action completed 
        var comp = e.completion; 
        comp.complete(true); 
    } 
} 

How you specifically check for rights, of course, is particular to the service you’re drawing from—and 
not something you’d want to publish in any case! 

For a more complete demonstration of handling DRM, check out the Simple PlayReady sample, 
which will require that you download and install the Microsoft PlayReady Client SDK. PlayReady, if you 
aren’t familiar with it yet, is a license service that Microsoft provides so that you don’t have to create one 
from scratch. The PlayReady client SDK  provides additional tools and framework support for apps 
wanting to implement both online and offline media scenarios, such as progressive download, 
download to own, rentals, and subscriptions. Plus, with the SDK you don’t need to submit your app for  
 
DRM Conformance testing. In any case, here’s how the Simple PlayReady sample sets up its content 
protection manager, just to give an idea of how the WinRT APIs are used with specific DRM service 
identifiers: 

mediaProtectionManager = new Windows.Media.Protection.MediaProtectionManager(); 
mediaProtectionManager.properties["Windows.Media.Protection.MediaProtectionSystemId"] = 
     '{F4637010-03C3-42CD-B932-B48ADF3A6A54}' 
 
var cpsystems = new Windows.Foundation.Collections.PropertySet(); 
cpsystems["{F4637010-03C3-42CD-B932-B48ADF3A6A54}"] = 
   "Microsoft.Media.PlayReadyClient.PlayReadyWinRTTrustedInput"; 
mediaProtectionManager.properties[ 
    "Windows.Media.Protection.MediaProtectionSystemIdMapping"] = cpsystems; 

Streaming from App to Network 
The next case to consider is when an app is the source of streaming media rather than the consumer, 
which means that client apps elsewhere are acting in that capacity. In reality, in this scenario—audio or 
video communications and conferencing—it’s usually the case that the app plays both roles, streaming 
media to other clients and consuming media from them. This is the case with Windows Live Messenger, 
Skype, and other such utilities, along with apps like games that include chat capabilities. 

 

 

462

http://code.msdn.microsoft.com/windowsapps/Simple-PlayReady-sample-5c1aefaf
http://visualstudiogallery.msdn.microsoft.com/e02ccac7-f3eb-4b53-b11a-c657d5631483


Here’s how such apps generally work: 

• Set up the necessary communication channels over the network, which could be a peer-to-peer 
system or could involve a central service of some kind. 

• Capture audio or video to a stream using the WinRT APIs we’ve seen (specifically 
Media-Capture.startRecordToStreamAsync) or capturing to a custom sink. 

• Do any additional processing to the stream data. Note, however, that effects are plugged into 
the capture mechanism (MediaCapture.addEffectAsync) rather than something you do in 
post-processing. 

• Encode the stream for transmission however you need. 

• Transmit the stream over the network channel. 

• Receive transmissions from other connected apps. 

• Decode transmitted streams and convert to a blob by using MSApp.createBlobFromRandom-
AccessStream. 

• Use URL.createObjectURL to hook an audio or video element to the stream. 

To see such features in action, check out the Real-time communications sample that implements 
video chat in Scenario 2 and demonstrates working with different latency modes in Scenario 1. The 
latter two steps in the list above are also shown in the PlayToReceiver sample that is set up to receive a 
media stream from another source. 

PlayTo 
The final case of streaming is centered on the PlayTo capabilities that were introduced in Windows 7. 
Simply said, PlayTo is a means through which an app can connect local playback/display for audio, 
video, and img elements to a remote device. 

The details happen through the Windows.Media.PlayTo APIs along with the extension methods 
added to media elements. If, for example, you want to specifically start a process of streaming to a 
PlayTo device, invoking the selection UI directly, you’d do the following: 

• Windows.Media.PlayTo.PlayToManager: 

o getForCurrentView returns the object. 

o showPlayToUI invokes the flyout UI where the user selects a receiver. 

o sourceRequested event is fired when user selects a receiver. 

• In sourceRequested 

o Get PlayToSource object from audio, video, or img element (msPlayToSource property) and 
pass to e.setSource. 

463

http://code.msdn.microsoft.com/Simple-Communication-Sample-eac73290
http://code.msdn.microsoft.com/windowsapps/PlayToReceiver-sample-607f00ed
http://msdn.microsoft.com/library/windows/apps/windows.media.playto.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.playto.playtomanager.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.playto.playtosource.aspx


o Set PlayToSource.next property to the msPlayToSource of another element for continual 
playing. 

• Pick up the media element’s ended event to stage additional media 

Another approach, as demonstrated in the Media Play To sample, is to go ahead and play media 
locally and then let the user choose a PlayTo device on the fly from the Devices charm. In this case you 
don’t need to do anything because Windows will pick up the current playback element and direct it 
accordingly. But the app can listen to the statechanged event of the element’s msPlayToSource.- 
connection object (a PlayToConnection) that will fire when the user selects a PlayTo device and when 
other changes happen. 

Generally speaking, PlayTo is primarily intended for streaming to a media receiver device that’s 
probably connected to a TV or other large screen. This way you can select local content on a Windows 8 
device and send it straight to that receiver. But it’s also possible to make a software receiver—that is, an 
app that can receive streamed content from a PlayTo source. The PlayToReceiver sample does exactly 
this, and when you run it on another device on your local network, it will show up in the Devices charms 
as follows: 

 
You can even run the app from your primarily machine using the remote debugging tools of Visual 

Studio, allowing you to step through the code of both source and receiver apps at the same time! 
(Another option is to run Windows Media Player on one machine and check its Stream > Allow Remote 
Control of My Player menu option. This should make that machine appear in the PlayTo target list.) 

To be a receiver, an app will generally want to declare some additional networking capabilities in the 
manifest—namely, Internet (Client & Server) and Private Networks (Client & Server)—otherwise it won’t 
see much action! It then creates an instance of Windows.Media.PlayTo.PlayToReceiver, as shown in the 
PlayTo Receiver sample’s startPlayToReceiver function (js/audiovideoptr.js): 

function startPlayToReceiver() { 
    if (!g_receiver) { 
        g_receiver = new Windows.Media.PlayTo.PlayToReceiver(); 
    } 
 

 

464

http://code.msdn.microsoft.com/windowsapps/Media-PlayTo-Sample-fedcb0f9
http://msdn.microsoft.com/library/windows/apps/windows.media.playto.playtoconnection.aspx
http://code.msdn.microsoft.com/windowsapps/PlayToReceiver-sample-607f00ed


Next you’ll want to wire up handlers for the element that will play the media stream: 

var dmrVideo = id("dmrVideo"); 
dmrVideo.addEventListener("volumechange", g_elementHandler.volumechange, false); 
dmrVideo.addEventListener("ratechange", g_elementHandler.ratechange, false); 
dmrVideo.addEventListener("loadedmetadata", g_elementHandler.loadedmetadata, false); 
dmrVideo.addEventListener("durationchange", g_elementHandler.durationchange, false); 
dmrVideo.addEventListener("seeking", g_elementHandler.seeking, false); 
dmrVideo.addEventListener("seeked", g_elementHandler.seeked, false); 
dmrVideo.addEventListener("playing", g_elementHandler.playing, false); 
dmrVideo.addEventListener("pause", g_elementHandler.pause, false); 
dmrVideo.addEventListener("ended", g_elementHandler.ended, false); 
dmrVideo.addEventListener("error", g_elementHandler.error, false); 

along with handlers for events that the receiver object will fire: 

g_receiver.addEventListener("playrequested", g_receiverHandler.playrequested, false); 
g_receiver.addEventListener("pauserequested", g_receiverHandler.pauserequested, false); 
g_receiver.addEventListener("sourcechangerequested", g_receiverHandler.sourcechangerequested, false); 
g_receiver.addEventListener("playbackratechangerequested", g_receiverHandler.playbackratechangerequested, 
false); 
g_receiver.addEventListener("currenttimechangerequested", g_receiverHandler.currenttimechangerequested, 
false); 
g_receiver.addEventListener("mutechangerequested", 
     g_receiverHandler.mutedchangerequested, false); 
g_receiver.addEventListener("volumechangerequested", g_receiverHandler.volumechangerequested, false); 
g_receiver.addEventListener("timeupdaterequested", 
     g_receiverHandler.timeupdaterequested, false); 
g_receiver.addEventListeer("stoprequested", g_receiverHandler.stoprequested, false); 
g_receiver.supportsVideo = true; 
g_receiver.supportsAudio = true; 
g_receiver.supportsImage = false; 
g_receiver.friendlyName = 'SDK JS Sample PlayToReceiver'; 

The last line above, as you can tell from the earlier image, is the string that will show in the Devices 
charm for this receiver once it’s made available on the network. This is done by calling startAsync: 

// Advertise the receiver on the local network and start receiving commands 
g_receiver.startAsync().then(function () { 
    g_receiverStarted = true; 
 
    // Prevent the screen from locking 
    if (!g_displayRequest) { 
        g_displayRequest = new Windows.System.Display.DisplayRequest(); 
    } 
    g_displayRequest.requestActive(); 
}); 

Of all the receiver object’s events, the critical one is sourcechangerequested where 
eventArgs.stream contains the media we want to play in whatever element we choose. This is easily 
accomplished by creating a blob from the stream and then a URI from the blob that we can assign to an 
element’s src attribute: 

 

465



sourcechangerequested: function (eventIn) { 
    if (!eventIn.stream) { 
        id("dmrVideo").src = ""; 
    } else { 
        var blob = MSApp.createBlobFromRandomAccessStream(eventIn.stream.contentType, 
            eventIn.stream); 
        id("dmrVideo").src = URL.createObjectURL(blob, {oneTimeOnly: true}); 
    } 
} 

All the other events, as you can imagine, are primarily for wiring together the source’s media controls 
to the receiver such that pressing a pause button, switching tracks, or acting on the media in some other 
way at the source will be reflected in the receiver. There may be a lot of events, but handling them is 
quite simple as you can see in the sample. 

 

What We Have Learned 

• Creating media elements can be done in markup or code by using the standard img, svg, canvas, 
audio, and video elements. 

• The three graphics elements—img, svg, and canvas—can all produce essentially the same output, 
only with different characteristics as to how they are generated and how they scale. All of them 
can be styled with CSS, however. 

• The Windows.System.Display.DisplayRequest object allows for disabling screen savers and the 
lock screen during video playback (or any other appropriate scenario). 

• Both the audio and video elements provide a number of extension APIs (properties, methods, 
and events) for working with various platform-specific capabilities in Windows 8, such as 
horizontal mirroring, zooming, playback optimization, 3D video, low-latency rendering, PlayTo, 
playback management of different audio types or categories, effects (generally provided as DLLs 
in the appp package), and digital rights management. 

• Background audio is supported for several categories given the necessary declarations in the 
manifest and handlers for media control events (so the audio can be appropriately paused and 
played). Media control events are important to also support the media control UI. 

• Through the WinRT APIs, apps can manage very rich metadata and properties for media files, 
including thumbnails, album art, and properties specific to the media type, including access to a 
very extensive list of Windows Properties. 

• The WinRT APIs provide for decoding and encoding of media files and streams, through which 
the media can be converted or properties changed. This includes support for custom codecs. 
 

466

http://msdn.microsoft.com/library/windows/desktop/dd561977(v=vs.85).aspx


• WinRT provides a rich API for media capture (photo, video, and audio), including a built-in 
capture UI, along with the ability to provide your own and yet still easily enumerate and access 
available devices. 

• Streaming media is supported from a server (with and without digital rights management, 
including PlayReady), between apps (inbound and outbound), and from apps to PlayTo devices. 
An app can also be configured as a PlayTo receiver. 

  

467

www.SoftGozar.com



Chapter 11 

Purposeful Animations 
In the early 1990s, the wonderful world of multimedia first became prevalent on Windows PCs. Before 
that time it was difficult for such machines to play audio and video, access compact discs (remember 
those?), and otherwise provide the rich experience we take for granted today. The multimedia 
experience was new and exciting, and many people jumped in wholeheartedly, including the group of 
developer support engineers at Microsoft specializing in this area. Though my team (specializing in UI) 
sat more than 100 feet away from their area, we could clearly hear—for most of the day!—the various 
chirps and bleeps emitting from their speakers, against the background of a soft Amazon basin rainfall. 

At that time too, many consumers of Windows were having fun attaching all kinds of crazy sounds to 
every mouse click, window transition, email arrival, and every other system event they could think of. 
Yet after a month or two of this sensual overload—not unlike being at a busy carnival—most people 
started to remove quite a few of those sounds, if not disable them altogether. I, for one, eventually 
turned off all my sounds. Simply said, I got tired of the extra noise. 

Along these same lines, you may remember that when DVDs first appeared in their full glory, just 
about every title had fancy menus with clever transitions. No more: most consumers, I think, got tired of 
waiting for all this to happen and just want to get on with the business of watching the movie as quickly 
as possible. 

Today we’re reliving this same experience with fluid animations. Now that most systems have highly 
responsive touch screens and GPUs capable of providing very smooth graphical transitions, it’s tempting 
to use animations superfluously. However, unless the animations actually add meaning and function to 
an app, consumers will likely tire of them like they did with DVD menus, especially if they end up 
interfering with a workflow by making one constantly wait for the animations to finish. I’ll bet that every 
reader of this book has, at least once, repeatedly hit the Menu button on a DVD remote to no avail…. 

This is why Windows Store app design speaks of purposeful animations: if there’s no real purpose 
behind an animation in your app, ask yourself, “Why am I wanting to use this?” Take a moment, in fact, 
to use Windows 8 and some of the built-in apps to explore how animations are both used and not used. 
Notice how many animations are specifically to track or otherwise give immediate feedback for touch 
interactions, which purposefully help users know that their input is being registered by the system (and 
is, in fact, a Store certification requirement). Other animations, such as when items are added or 
removed from a list, are intended to draw attention to the change, soften its visual impact, and give it a 
sense of fluidity. In other cases, you may find apps that perhaps overuse animations, simply using 
animations because they’re available or trying too hard to emulate physical motion where it’s simply not  
 
 
 

468



necessary. In this way, excessive animations constitute a kind of “chrome” with the same effect as other 
chrome: distracting the user from the content they really care about. (If you can’t resist the temptation 
to add little effects that are like this, consider at least providing a setting to turn them off.) 

Let me put it another way. When thinking about animations, ask yourself, “What do they 
communicate?” Animations are a form of communication, a kind of visual language. I would even 
venture to say (as I am venturing now) that animations really only say one or a combination of three 
things: 

• “Thanks, I heard you,” as when something on the screen moves naturally in response to a user 
gesture. Without this communication, the user might think that their gesture didn’t register and 
will almost certainly poke at the app again. 

• “Hello” and “Goodbye,” as when items appear or disappear from view, or transition one to 
another. Without this communication, changes that happen to on-screen elements can be as 
jarring as Bilbo Baggins in Lord of the Rings slipping on the Ring of Power and instantly 
vanishing. This is not to say that most consumers are incredulous hobbits, of course, but you get 
the idea. 

• “Hey, look at me!” as when something moves to only gain attention or look cute. 

If I were to assign percentages to these categories to represent how often they would or should be 
used, I’d probably put them at 80%, 15%, and 5%, respectively (although some animations will serve 
multiple purposes). Put another way, the first bit of communication is really about listening and 
responding, which is what an app should be doing most of the time. The second bit is about courtesy, 
which is another good quality to express within reason—courtesy can, like handshakes, hugs, bows, and 
salutes, be overused to the point of annoyance. The third bit, for its part, can be helpful when there’s a 
real and sincere reason to raise your hand or offer a friendly wave, but otherwise can easily become just 
another means of showing off. 

There’s another good reason to be judicious about the use of animations and really make them 
count: power consumption. No matter how it’s accomplished, via GPU or CPU, animation is an 
expensive process. Every watt of juice in a consumer’s batteries should be directed toward fulfilling their 
goals with their device rather than scattered to the wind. Again, this is why this chapter is called 
“Purposeful Animations” and not just “Animations”! 

In any case, you and your designers are the ultimate arbiters of how and when you’ll use animations. 
Let me emphasize here that animations should be part of an app’s design, not just an implementation 
detail. Animations are very much part of the overall user experience of an app. Oftentimes app designs 
focus on static wireframes and static mockups, neither of which indicate dynamic elements like 
animations and transitions. Animations are also tightly coupled to the app’s layout and should be 
designed alongside that layout from the earliest stages of design. 
 
 

469



In this uncommonly short chapter, then, we’ll first look at what’s provided for you in the WinJS 
Animations Library, a collection of animations built on CSS that already embody the Windows 8 look 
and feel for many common operations. After that we’ll review the underlying CSS capabilities that you 
can, of course, use directly. In fact, aside from games and other apps whose primary content consists of 
animated objects, you can probably use CSS for most other animation needs. This is a good idea 
because the CSS engine is very much optimized to take advantage of hardware acceleration, something 
that isn’t true when doing frame-by-frame animations in JavaScript yourself. Nevertheless, we’ll end this 
chapter on that latter subject, as there are some tips and tricks for doing it well within Windows Store 
apps. 

Systemwide Enabling and Disabling of Animations 

Before we go any further, there’s a setting buried deep inside the desktop Control Panel’s Ease of Access 
Center that you need to know about because it affects how the WinJS Animations Library behaves and 
should affect whether you do animations of your own. From the desktop, invoke the Settings Charms 
and select Control Panel. Then navigate to Ease of Access > Ease of Access Center > Make The 
Computer Easier To See. Scroll down close to the bottom and you’ll see the item “Turn off all 
unnecessary animations (when possible),” as shown in Figure 11-1. 

 
FIGURE 11-1 A very important setting for animation in the desktop control panel. 

The idea behind this check box is that for some users, animations are a real distraction that can make 
the entire machine more difficult to use. For medical reasons too, some users might elect to minimize 
on-screen movement just to keep the whole experience more calm. So when this option is checked, the 
WinJS animations don’t actually do anything, and it’s recommended that apps also disable many if not 
all of their own custom animations as well. 

 

470



The Control Panel setting can be obtained through the Windows.UI.ViewManagement.-UISettings 
class in its animationsEnabled property: 

var settings = new Windows.UI.ViewManagement.UISettings(); 
var enabled = settings.animationsEnabled; 

You can also just call the WinJS.UI.isAnimationEnabled method that will return true or false 
depending on this property. WinJS obviously uses this internally to manage its own animation behavior. 

WinJS also adds an enablement count that you can use to temporarily enable or disable animations 
in conjunction with the animationsEnabled value. You change this count by calling WinJS.UI.enable-
Animations and WinJS.UI.disableAnimations, the effects of which are cumulative, and the 
animationsEnabled property counts as 0 if the Control Panel option is checked and 1 if it’s unchecked. 

When implementing your own animations either with CSS or with mechanisms like setInterval or 
requestAnimationFrame, it’s a good idea to be sensitive to the animationsEnabled setting where 
appropriate. I add this condition because if an animation is essential to the actual content of an app, like 
a game, then it’s not appropriate to apply this setting. The same goes for animating something like a 
clock within a clock app. It’s really about animations that add a fast-and-fluid effect to the content, but 
it can be turned off without ill effect. 

The WinJS Animations Library 

When considering animations for your app, the first place you should turn is the Animations Library in 
WinJS, found in the WinJS.UI.Animation namespace. Each animation is basically a function within this 
namespace that you call when you want a certain kind of animation or transition to happen. The benefit 
of using these is that they directly embody the Windows 8 look and feel and, in fact, are what WinJS 
itself uses to animate its own controls, flyouts, and so forth to match the user interface design 
guidelines. What’s more, because they are built with CSS transitions and animations, they aren’t 
dependent on WinRT and are fully functional within web context pages that have loaded WinJS (but 
they do again pay attention to whether animations are enabled as described in the previous section). 

All of the animations, as listed in the table below, have guidance as to when and how they should be 
applied. These are again really design questions more than implementation questions, as stated earlier. 
By being aware of what’s in the animations library, designers can more readily see where animations are 
appropriately applied and include them early on in their app design, which makes your life as a 
developer all the more predictable. 

You can find full guidance in the Animating Your UI and Animating UI Surfaces topics in the 
documentation, which will also contain specific guidelines for the individual animations below. I will 
only summarize here. 

 

471

http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.uisettings.aspx
http://msdn.microsoft.com/library/windows/apps/br229780.aspx
http://msdn.microsoft.com/library/windows/apps/hh465165.aspx
http://msdn.microsoft.com/library/windows/apps/hh465259.aspx


Key Point Built-in controls and other UI elements like those we’ve worked with in previous chapters 
already make use of the appropriate animations. For example, you don’t need to animate a button tap 
in the button element nor animate the appearance or disappearance of controls like WinJS.UI.Appbar. 
You’ll primarily use them when implementing UI directly with HTML layout or when building custom 
controls. 

Animation Name WinJS.UI.Animation methods Description and Usage 
Page Transition enterPage, exitPage Animates a whole page into or out of view, such as 

when bringing in the first page of an app after the 
splash screen or when switching between app pages. 
Avoid using enterPage when content is already on 
screen—that is, use it only when changing the entirety 
of the content. 
 

Content Transition enterContent, exitContent Animates one or more elements into or out of view, 
specifically used for content that wasn’t ready when a 
page was loaded or when a section of a page is 
changing within a container. If other content needs to 
move in response to the container change, such as if it 
is resizing, you can move those other elements by 
using expand/collapse or reposition animations. 
 

Fade In/Out fadeIn, fadeOut Used to show or hide transient UI or controls, as is done 
with scrollbars or when a placeholder is replaced with a 
loaded item. These are also good default animations 
for situations where other specific animations don’t 
apply. 
 

Crossfade crossFade Softens the transition between different states of an 
item. This is also used in refresh scenarios, such as when 
a news app updates all of its content at once. 
 

Pointer Up/Down pointerUp, pointerDown Provides immediate feedback for a successful tap or 
click on an item or tile-like elements. Note that built-in 
controls like the button and ListView already 
incorporate these animations.  
 

Expand/Collapse createExpandAnimation, 
createCollapseAnimation 

Adds or removes extra space within content, such as 
making room for error messages or hiding an option 
that isn’t needed. 
 

Reposition createRepositionAnimation Used when moving an element to a new position. 
 

Show/Hide Popup showPopup, hidePopup Used to show and hide popup UI like menus, flyouts, 
tooltips, and other contextual UI that appears above an 
app canvas (dialogs, however, use Fade In). Avoid using 
for elements that are part of that canvas directly—use 
Content Transition and Fade In/Out animations instead. 
You also don’t need to use these directly when using 
built-in controls, as those controls already apply the 
animations. 
 

Show/Hide Edge UI 
Show/Hide Panel UI 

showEdgeUI, hideEdgeUI, 
showPanel, hidePanel 

Used to show and hide edge-oriented UI like app bars 
and the soft keyboard. The Edge UI animations are for 
elements that only move a short distance onto the 

472



screen; the Panel animations are for those that move 
longer distances. 
 
These should not be used for UI that’s not moving from 
or toward an edge; use the Reposition animation 
instead. Crossfade is also typically applied after 
showing and simultaneous with hiding. The built-in 
edge controls like the app bar and settings pane 
already apply these animations. 
 

Peek (for tiles) createPeekAnimation Animates a tile update when alternating between 
image and text areas; see Chapter 13, “Tiles, 
Notifications, the Lock Screen, and Background Tasks.” 
Can also be used to cycle through tile updates. This is 
the animation used for live tiles on the Windows Start 
screen. 
 

Badge Update updateBadge Used to update the number on a tile badge. 
 

Swipe Hint swipeReveal Used in response to a tap-and-hold event to indicate 
that an item can be selected with a swipe. 
 

Swipe Select/Deselect swipeSelect, swipeDeselect Animates an item when swiped to select or deselect it. 
 

Add/Delete from List createAddToListAnimation, 
createDeleteFromListAnimation 

Animates the insertion of deletion of items from a list, 
as used by the ListView control. The add animation 
repositions existing items to make space for the new 
items and then brings them; the delete animation pulls 
items out and repositions those that remain. Avoid 
using these to display or remove a container or to add 
or remove the entire contents of the collection; use 
Content Transitions instead.  
 

Add/Delete from Search 
List 

createAddToSearchListAnimation, 
createDeleteFromSearchListAnimation 

These animations are similar to those for adding and 
removing from a list, but they are designed for much 
more rapid changes as happens when populating a list 
of search results. Simply said, they have shorter 
durations. 
 

Start/End Drag-Drop dragSourceStart, dragSourceEnd, 
dragBetweenEnter, dragBetweenLeave 

Provides visual feedback during drag-and-drop 
operations as seen on the Start screen when you move 
tiles around. The start and end animations are for the 
item being moved and should always be used together; 
the enter and leave animations are for rearranging the 
area around a potential drop point, which helps to 
show how the content will appear if the drop happens. 
For this purpose you’ll need to define the size of 
potential target areas (rectangles) so that you can track 
pointer movement in and out of those areas.  

 

If you want to see what these animations are actually doing, you can find all of that in the WinJS 
source code’s ui.js file. Just search for the method, and you’ll see how they’re set up. The Crossfade 
animation, for example, animates the incoming element’s opacity property from 0 to 1 over 167ms with 
a linear timing function, while animating the outgoing element’s opacity from 1 to 0 in the same way. 

473



The Pointer Down animation changes the element’s scale from 100% to 97.5% over 167ms according to 
a cubic-bezier curve, while Pointer Up does the opposite. 

Knowing these characteristics or animation metrics can be important when creating web-based 
content to integrate with your app. As noted before the Windows 8 app certification requirements, 
specifically section 4.5, indicates that touch targets must provide visual feedback. Because you cannot 
use WinJS on a remote web page, knowing how these animations work will help you emulate that 
behavior on such pages. 

Within your app, though, you should acquire these animation metrics programmatically through the 
API in Windows.Core.UI.AnimationMetrics, rather than hardcoding any values. You can find a 
demonstration of using this API in the Animation metrics sample. 

As interesting as such details might be, of course, they are always subject to change. And in the end, 
what’s important is that you choose animations not for their visual effects but for their semantic 
meaning, using the right animations at the right times in the right places. So let’s see how we do that. 

Tip #1 All of the WinJS animations are implemented using the WinJS.UI.executeAnimation and 
WinJS.UI.executeTransition functions, which you can use for custom animations as well. 

Tip #2 While an animation is running always avoid changing an element’s contents and its CSS styles 
that affect the same properties. The results are unpredictable and unreliable and can cause 
performance problems. 

Animations in Action 
To see all of the WinJS animations in action, run the HTML animation library sample. There are many 
different animations to illustrate, and this sample most certainly earns the award for the largest number 
of scenarios: twenty-two! In fact, the first thing you should do is go to Scenario 22 and see whether 
animations are enabled, as that will most certainly affect your experience with the rest of the same. The 
output of that scenario will show you whether the UISettings.animationsEnabled flag is set and allow 
you to increment or decrement the WinJS enablement count. So go check that now, because if you’re 
like me (I dislike waiting for my task bar to animate up and down), you might have turned off system 
animations a long time ago for a snappier desktop experience. I didn’t realize at first that it affected 
WinJS in this way! 

Clearly, with 22 scenarios in the sample I won’t be showing code for all of them here; indeed, doing 
so isn’t necessary because many operate in the same way. The only real distinction is between those 
whose methods start with create and those that don’t, as we’ll see in a bit. 

All the animation methods return a promise that you can use to take additional action when the 
animation is complete (at which point your completed handler will be called). If you already know 
something about CSS transitions and animations, you’ll rightly guess that these promises encapsulate 
events like transitionend and animationend, so you won’t need to listen for those events directly if you 

474

http://msdn.microsoft.com/library/windows/apps/br241916.aspx
http://code.msdn.microsoft.com/windowsapps/animation-metrics-sample-acb0220c
http://msdn.microsoft.com/library/windows/apps/hh779762.aspx
http://msdn.microsoft.com/library/windows/apps/hh779763.aspx
http://code.msdn.microsoft.com/windowsapps/Using-the-Animation-787f3720


want to chain or synchronize animations. For chaining, you can just chain the promises; for 
synchronization, you can obtain the promises for multiple animations and wait for their completion 
using methods like WinJS.Promise.join or WinJS.Promise.any. 

Animation promises also support the cancel method, which removes the animation from the 
element. This immediately sets the affected property values to their final states, causing an immediate 
visual jump to that end state. And whether you cancel an animation or it ends on its own, the promise is 
considered to have completed successfully; canceling an animation, in other words, will call the 
promise’s completed handler and not its error handler. 

Do be aware that because all of the WinJS animations are implemented with CSS, they won’t actually 
start until you give control back to the UI thread. This means that you can set up multiple animations 
knowing that they’ll more or less start together once you return from the function. So even though the 
animation methods return promises, they are not like other asynchronous operations in WinRT that start 
running on another thread altogether. 

Anyway, let’s look at some code! In the simplest case, all you need to do is call one of the animation 
methods and the animation will execute when you yield. Scenario 6 of the sample, for instance, just 
adds these handlers to the MSPointerDown and MSPointerUp events of three different elements 
(js/pointerFeedback.js): 

function onPointerDown(evt) { 
    WinJS.UI.Animation.pointerDown(evt.srcElement); 
} 
 
function onPointerUp(evt) { 
    WinJS.UI.Animation.pointerUp(evt.srcElement); 
} 

We typically don’t need to do anything when the animations complete, so there’s no need for us to 
call done or provide a completed function. Truly, using many of these animations is just this simple. 

The crossFade animation, for its part (Scenario 10), takes two elements: the incoming element and 
the outgoing element (all of which must be visible and part of the DOM throughout the animation, 
mind you!). Calling it then looks like this (js/crossfade.js): 

WinJS.UI.Animation.crossFade(incoming, outgoing); 

Yet this isn’t the whole story. A common feature among the animations is that you can provide an 
array of elements on which to execute the same animation or, in the case of crossFade, two arrays of 
elements. While this isn’t useful for animations like pointerDown and pointerUp (each pointer event 
should be handled independently), it’s certainly handy for most others. 

Consider the enterPage animation. In its singular form it accepts an element to animate and an 
optional initial offset where the element begins relative to its final position. (Generally speaking, you 
should omit this offset if you don’t need it, because it will give result in better performance—the sample 
passes null here, which I’ve omitted in the code below.) enterPage can also accept a collection of 
elements, such as the result of a querySelectorAll. Scenario 1 (html/enterPage.html and 

475



js/enterPage.js) provides a choice of how many elements are animated separately: 

switch (pageSections) { 
    case "1": 
        // Animate the whole page together 
        enterPage = WinJS.UI.Animation.enterPage(rootGrid); 
        break; 
    case "2": 
        // Stagger the header and body 
        enterPage = WinJS.UI.Animation.enterPage([[header, featureLabel], [contentHost, 
            footer]]); 
        break; 
    case "3": 
        // Stagger the header, input, and output areas 
        enterPage = WinJS.UI.Animation.enterPage([[header, featureLabel], 
        [inputLabel, input], [outputLabel, output, footer]]); 
        break; 
} 

When the element argument is an array, the offset argument, if provided, can be either a single 
offset that is applied to all elements, or an array to indicate individual offsets for each element. Each 
offset is an object whose properties that define the offset. See js/dragBetween.js for Scenario 13 where 
this is used with the dragBetweenEnter animation: 

WinJS.UI.Animation.dragBetweenEnter([box1, box2], 
    [{ top: "-40px", left: "0px" }, { top: "40px", left: "0px" }]); 

Here’s a modification showing a single offset that’s applied to both elements: 

WinJS.UI.Animation.dragBetweenEnter([box1, box2], { top: "0px", left: "40px" }); 

Scenario 4 (js/transitioncontent.js) shows how you can chain a couple of promises together to 
transition between two different blocks of content:55 

WinJS.UI.Animation.exitContent(outgoing, null).done( function () { 
    outgoing.style.display = "none"; 
    incoming.style.display = "block"; 
    return WinJS.UI.Animation.enterContent(incoming, null); 
}); 

Things get a little more interesting when we look at the create* animation methods, together 
referred to as the layout animations, which are for adding and removing items from lists, expanding and 
collapsing content, and so forth. Each of these has a three-step process where you create the animation, 
manipulate the DOM, and then execute the animation, as shown in Scenario 7 
(js/addAndDeleteFromList.js): 

 

 

55 Note that the actual sample passes a variable output as the first parameter to exitContent and enterContent; the code 
should appear as shown here, with outgoing being passed to exitContent and incoming passed to enterContent. 

476



// Create addToList animation. 
var addToList = WinJS.UI.Animation.createAddToListAnimation(newItem, affectedItems); 
 
// Insert new item into DOM tree. This causes the affected items to change position. 
list.insertBefore(newItem, list.firstChild); 
 
// Execute the animation. 
addToList.execute(); 

The reason for the three-step process is that in order to carry out the animation on newly added 
items, or items that are being removed, they all need to be in the DOM when the animation executes. 
The process here lets you create the animation with the initial state of everything, manipulate the DOM 
(or just set styles and so forth) to create the ending state, and then execute the animation to “let ‘er rip.” 
You can then use the done method on the promise returned from execute to perform any final cleanup. 
Scenario 5 (js/expandAndCollapse.js) makes this point clear: 

// Create collapse animation. 
var collapseAnimation = WinJS.UI.Animation.createCollapseAnimation(element, affected); 
 
// Remove collapsing item from document flow so that affected items reflow to their new  
// position. Do not remove collapsing item from DOM or display at this point, otherwise the  
// animation on the collapsing item will not display. 
element.style.position = "absolute"; 
element.style.opacity = "0"; 
 
// Execute collapse animation. 
collapseAnimation.execute().done( 
    // After animation is complete (or on error), remove from display. 
    function () { element.style.display = "none"; }, 
    function () { element.style.display = "none"; } 
); 

As a final example—because I know you’re smart enough to look at most of the other cases on your 
own—Scenario 21 (js/customAnimation.js) shows how to use the WinJS.UI.executeAnimation and 
WinJS.UI.executeTransition methods. 

function runCustomShowAnimation() { 
    var showAnimation = WinJS.UI.executeAnimation( 
        target, 
        { 
            // Note: this keyframe refers to a keyframe defined in customAnimation.css. 
            // If it's not defined in CSS, the animation won't work. 
            keyframe: "custom-opacity-in",  
            property: "opacity", 
            delay: 0, 
            duration: 500, 
            timing: "linear", 
            from: 0, 
            to: 1 
        } 
    ); 
} 
 

477



function runCustomShowTransition() { 
    var showTransition = WinJS.UI.executeTransition( 
        target, 
        { 
            property: "opacity", 
            delay: 0, 
            duration: 500, 
            timing: "linear", 
            to: 1 
        } 
    ); 
} 

If you want to combine multiple animations (as many of the WinJS animations do), note that both of 
these functions return promises so that you can combine multiple results with WinJS.Promise.join and 
have a single completed handler in which to do post-processing. This is exactly what WinJS does 
internally. 

And if you know anything about CSS animations and transitions already, you can probably tell that 
the objects you pass to executeAnimation and executeTransition are simply shorthand expressions of 
the CSS styles you would use otherwise. In short, these methods give you an easy way to set up your 
own custom animations and transitions through the capabilities of CSS. Let’s now look at those 
capabilities directly. 

Sidebar: Parallax/Panorama Animations 
Developers have often asked how to create a parallax or panorama background animation as 
seen on the Windows Start screen. If you’re not familiar with this concept, go to the start screen 
and pan around a little, noticing how the background pans as well but slower than the tiles. This 
creates a sense of the tiles floating above the background. 

While it is possible to implement this effect in JavaScript (see the KidsBook example on the 
Internet Explorer TestDrive site), we don’t recommend it or at least recommend providing a 
setting to turn the effect off. At issue is the fact that the threading and rendering model of 
JavaScript results in choppy movement except on high-power devices; the effect will be very 
pronounced on low-power and especially ARM devices. In addition, such animations can be costly 
in terms of CPU and battery utilization. 

This is one case in which using C++ and DirectX (or event C#/VB and XAML) has a clear 
advantage over JavaScript, and would be a consideration if you absolutely must have this effect in 
your app. 

 

478

http://ie.microsoft.com/testdrive/HTML5/KidsBook/Default.html


CSS Animations and Transitions 

As noted before, many animation needs can be achieved through CSS rather than with JavaScript code 
running on intervals or animation frames. The WinJS Animations Library, as we’ve just seen, is entirely 
built on CSS. Using CSS relieves us from writing a bunch of code that worries about how much to move 
every element in every frame based on elapsed time and synchronized to the refresh rate. Instead, we 
can simply declare what we want to happen (perhaps using the WinJS.UI.executeAnimation and 
WinJS.UI.executeTransition helpers) and let the app host take care of the details. Delegation at its 
best! In this section, then, let’s take a closer look at the capabilities of CSS for Windows Store apps. 

Another huge benefit of performing animations and transitions through CSS—specifically those that 
affect only transform and opacity properties—is that they can be used to create what are called 
independent animations that run on a GPU thread rather than the UI thread. This makes them smoother 
and more power-efficient than dependent animations that are using the UI thread. Dependent 
animations happen when you create animations in JavaScript using intervals, use CSS animations and 
transitions with properties other than transform and opacity, or run animations on elements that are 
partly or wholly obscured by other elements. 

We’ll come back to this subject in a bit when we look at sample code. As I assume that you’re already 
at least a little familiar with the subject, let’s first review how CSS animations and transitions work. I say 
animations and transitions both because there are, in fact, two separate CSS specifications: CSS 
animations and CSS transitions. So what’s the difference? 

Normally when a CSS property changes, its value jumps immediately from the old value to the new 
value, resulting in a sudden visual change. Transitions instruct the app host how to change one or more 
property values gradually, according to specific delay, duration, and timing curve parameters. All of this 
is declared within a specific style rule for an element (as well as :before and :after pseudo-elements) 
using four individual styles: 

• transition-property (transitionProperty in JavaScript)  Identifies the CSS properties affected 
by the transition (the transitionable properties are listed in section 7 of the transitions spec). 

• transition-duration (transitionDuration in JavaScript)  Defines the duration of the transition 
in seconds (fractional seconds are supported, as in .125s; negative values are normalized to 0s). 

• transition-delay (transitionDelay in JavaScript)  Defines the delayed start of the transitions 
relative to the moment the property is changed, in seconds. If a negative value is given, the 
transition will appear to have started earlier but the effect will not have been visible. 

• transition-timing-function (transitionTimingFunction in JavaScript)  Defines how the 
property values change over time. The functions are ease, linear, ease-in, ease-out, 
ease-in-out, cubic-bezier, step-start, and step-end. The W3C spec has some helpful diagrams 
that explain these, but the best way to see the difference is to try them out in running code. 

 

479

http://msdn.microsoft.com/library/windows/apps/hh779762.aspx
http://msdn.microsoft.com/library/windows/apps/hh779763.aspx
http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-transitions/


For example, a transition for a single property appears as so: 

#div1 { 
    transition-property: left; 
    transition-duration: 2s; 
    transition-delay: .5s; 
    transition-timing-function: linear; 
 
} 

When defining transitions for multiple properties, each value in each style is separated by a comma: 

.class2 { 
    transition-property: opacity, left; 
    transition-duration: 1s, 0.25s; 
} 

Again, transitions don’t specify any actual beginning or ending property values—they define how the 
change actually happens whenever a new property is set through another CSS rule or through 
JavaScript. So, in the first case above, if left is initially 100px and it’s set to 300px through a :hover rule, 
it will transition after 0.5 seconds from 100px to 300px over a period of 2 seconds. Doing the math, the 
visual movement with a linear timing function will run at 100px/second. Other timing functions will 
show different rates of movement at different points along the 2-second duration. 

If a bit of JavaScript then sets the value to -200px—ideally after the first transition completes and 
fires its transitionend event—the value will again transition over the same amount of time but now 
from 300px to -200px (a total of 500px). As a result, the element will move at a higher speed 
(250px/second, again with the linear timing function) because it has more ground to cover for the 
same transition duration. 

What’s also true for transitions is that if you assign a style (e.g., class2 above) to an element, nothing 
will happen until an affected property changes value. Changing a style like this also has no effect if a 
transition is already in progress. The exception is if you change the transition-property value, in which 
case that transition will stop. With this, it’s important to note that the default value of this property is 
all, so clearing it (setting it to "") doesn’t stop all transitions…it enables them! You instead need to set 
the property to none. 

Note Elements with display: none do not run CSS animations and transitions at all, for obvious 
reasons. The same cannot be said about elements with display: hidden, visibility: hidden, 
visibility: collapsed, or opacity: 0, which means that hiding elements with some means other 
than display: none might end up running animations on nonvisible elements, which is a complete 
waste of resources. In short, use display: none. 

 

 

 

480



Animations work in an opposite manner to transitions. Animations are defined separately from any 
CSS style rules but are then attached to rules. Assigning that style to an element then triggers the 
animation immediately. Furthermore, groups of affected properties are defined together in keyframes 
and are thus animated together. 

A CSS animation, in other words, is an instruction to progressively update one or more CSS property 
values over a period of time. The values change from an initial state to a final state through various 
intermediate states defined by a set of keyframes. Here’s an example (from Scenario 1 of the HTML 
independent animations sample we’ll be referring to): 

@keyframes move { 
    from { transform: translateX(0px); } 
    50% { transform: translateX(400px); } 
    to { transform: translateX(800px); } 
} 

More generally: 

• Start with @keyframes <identifier> where <identifier> is whatever name you want to assign to 
the keyframe (like move above). You’ll refer to this identifier elsewhere in style rules. 

• Within this keyframe, you create any number of rule sets, each of which represents a different 
snapshot of the animated element at different stages in the overall animation, demarked by 
percentages. The from and to keywords, as shown above, are simply aliases for 0% and 100%, 
respectively. 

• Within each rule set you then define the desired value of any number of style properties (just 
transform in the example above), with each separated by a semicolon as with CSS styles. If a 
value for a property is the same as in the previous rule set, no animation will occur for that 
property. If the value is different, the rendering engine will animate the change between the two 
values of that property across the amount of time equivalent to <overall animation time> * 
(<toPercentage> <fromPercentage>)/100. A timing function can also be specified for each rule 
set using the animation-timing-function style. For example: 

50% { transform: translateX(400px); animation-timing-function: ease-in;} 

One thing you’ll notice here is that while the keyframe can indicate a timing function, it doesn’t say 
anything about actual timings. This is left for the specific style rules that refer to the keyframe. In 
Scenario 1 of the sample, for instance: 

.ball { 
    animation-name: move; 
    animation-duration: 2s; 
    animation-timing-function: linear; 
    animation-delay: 0s; 
    animation-iteration-count: infinite; 
    animation-play-state: running; 
} 

481

http://code.msdn.microsoft.com/windowsapps/Independent-animations-app-c00b2962
http://code.msdn.microsoft.com/windowsapps/Independent-animations-app-c00b2962


Here, the animation-name style (animationName in JavaScript) identifies the keyframe to apply. The 
other animation-* styles then describe how the keyframe should execute: 

• animation-duration (animationDuration in JavaScript)  The duration of the animation in 
seconds (fractions allowed, of course). Negatives are the same as 0s. 

• animation-timing-function (animationTimingFunction in JavaScript)  Defines, as with 
transitions, how the property values are interpolated over time—ease (the default), linear, 
ease-in, ease-out, ease-in-out, cubic-bezier, step-start, and step-end. 

• animation-delay (animationDelay in JavaScript)  Defines the number of seconds after which 
the animation will start when the style is applied. This can be negative, as with transitions, which 
will start the animation partway through its cycle. 

• animation-iteration-count (animationIterationCount in JavaScript)  Indicates how many 
times the animation will repeat (default is 1). This can be a number or infinite, as shown above. 

• animation-direction (animationDirection in JavaScript)  Indicates whether the animation 
should play normal (forward), reverse, alternate (back and forth), or alternate-reverse (back 
and forth starting with reverse). The default is normal. 

• animation-play-state (animationPlayState in JavaScript)  Allows you to play or pause an 
animation. The default state of running plays the animation; setting this to paused will pause it 
until you set the style back to running. 

• animation-fill-mode (animationFillMode in JavaScript)  Defines which property values of the 
named keyframe will be applied when the animation is not executing, such as during the initial 
delay or after it is completed. The default value of none applies the values of the 0% or from rule 
set if the direction is forward and alternate directions; it applies those of the 100% or to rule set 
if the direction is reverse or alternate-reverse. A fill mode of backwards flips this around. A fill 
mode of forwards always applies the 100% or to values (unless the iteration count is zero, in 
which case it acts like backwards). The other option, both, is the same as indicating both 
forwards and backwards. 

• animation (animation in JavaScript)  The shorthand style for all of the above (except for 
play-state) in the order of name, duration, timing function, delay, iteration count, direction, and 
fill mode. 

Applying a style that contains animation-name will trigger the animation for that element. This can 
happen automatically if the animation is named in a style that’s applied by default. It can also happen 
on demand if the style is assigned to an element in JavaScript or if you set the animation property for an 
element. 

 

 

482

http://dev.w3.org/csswg/css3-animations/#the-animation-duration-property-
http://dev.w3.org/csswg/css3-animations/#animation-timing-function_tag
http://dev.w3.org/csswg/css3-animations/#the-animation-delay-property-
http://dev.w3.org/csswg/css3-animations/#the-animation-iteration-count-property-"
http://dev.w3.org/csswg/css3-animations/#the-animation-direction-property-
http://dev.w3.org/csswg/css3-animations/#the-animation-play-state-property-
http://dev.w3.org/csswg/css3-animations/#the-animation-fill-mode-property-
http://dev.w3.org/csswg/css3-animations/#the-animation-shorthand-property-


Keyframes, while typically defined in CSS, can also be defined in JavaScript. The first step is to build 
up a string that matches what you’d write in CSS, and then you insert that string to the stylesheet. This is 
shown in Scenario 7 of the HTML independent animations sample (js/scenario7.js): 

var styleSheet = document.styleSheets[1]; 
var element1 = document.getElementById("ballcontainer"); 
var animationString = '@keyframes bounce1 {' 
    // ... 
    + '}'; 
 
styleSheet.insertRule(animationString, 0); 
 
window.setImmediate(function () { 
    element1.style.animationName = 'bounce1'; 
}); 

Note how this code uses setImmediate to yield to the UI thread before setting the animationName 
property that will trigger the animation. This makes sure that other code that follows (not shown here) 
will execute first, as it does some other work the sample wants to complete before the animation begins. 

More generally, it’s good to again remember that CSS animations and transitions start only when you 
return from whatever function is setting them up. That is, nothing happens visually until you yield back 
to the UI thread and the rendering engine kicks in again, just like when you change nonanimated 
properties. This means you can set up however many animations and transitions as desired, and they’ll 
all execute simultaneously. Using a callback with setImmediate, as shown above, is a simple way to say, 
“Run this code as soon as there is no pending work on the UI thread.”56 Such a pattern is typically for 
triggering one or more animations once everything else is set up. 

As a final note for this section, you might be interested in The Guide to CSS Animation: Principles and 
Examples from Smashing Magazine. This will tell you a lot about animation design beyond just how CSS 
animations are set up in your code. 

The Independent Animations Sample 
Turning now to the HTML independent animations sample, Scenario 1 gives a demonstration of an 
independent versus a dependent animation by eating some time on the UI thread (that is, blocking that 
thread) according to a slider. As a result, the top red ball (see image below) moves choppily, especially 
as you increase the work on the UI thread by moving the slider. The green ball on the bottom, on the 
other hand, continues to move smoothly the whole time. 

56 For more on this topic, see http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/setImmediate/Overview.html. 

483

http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://code.msdn.microsoft.com/windowsapps/Independent-animations-app-c00b2962
http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/setImmediate/Overview.html


 
What’s tricky to understand about this sample is that both balls use the same CSS style rule named 

ball that we saw in the previous section. In fact, just about everything about the two elements is exactly 
the same. So why does the movement of the red ball get choppy when additional work is happening on 
the UI thread? 

The secret is in the z-index: -1; style on the red ball in css/scenario1.css (and a corresponding lack 
of position: static which negates z-index). For animations to run independently, they must be free of 
obstruction. This really gets into the subject of how layout is being composed within the HTML/CSS 
rendering engine of the app host, as an animating element that’s somewhere in the middle of the 
z-order might end up being independent or dependent. The short of it is that the z-index style is the 
only lever that’s available for you to pull here. 

As I noted before, independent animations are limited to those that affect only the transform and 
opacity properties for an element. If you animate any property that affects layout, like width or left, 
the animation will run as dependent (and similar results can be achieved with a scaling and translation 
transform anyway). Other factors also affect independent animations, as described on the Animating 
topic in the documentation. For example, if the system lacks a GPU, if you overload the GPU with too 
many independent animations, or if the elements are too large, some of the animations will revert to 
dependent. This is another good reason to be purposeful in your use of animations—overusing them 
will produce a terrible user experience on lower-end devices, thereby defeating the whole point of using 
animations to enhance the user experience! 

The other scenarios of the HTML Independent Animations sample lets you play with CSS transitions 
and animations by setting values within various controls and then running the animation. Scenarios 2 
and 3 work with CSS transitions for 2D and 3D transforms, respectively, with an effect of the latter 
shown in Figure 11-2. As you can see, the element that the sample animates is the container for all the 
input controls! Scenarios 5 and 6 then let you do similar things with CSS animations. In all these cases, 
the necessary styles are set directly in JavaScript rather than using declarative CSS, so look in the .js files 
and not the .css files for the details. 

484

http://msdn.microsoft.com/library/windows/apps/hh849087.aspx


 
FIGURE 11-2 Output of Scenario 3 of the HTML independent animations sample. 

Scenarios 4 and 7 then show something we haven’t talked about yet, which are the few simple events 
that are raised for transitions and animations (and actually have nothing to do with independent versus 
dependent animations). In the former case, any element on which you execute a CSS transition will fire 
transitionstart and transitionend events. You can use these to chain transitions together. 

With animations, there are three events: animationstart (which comes after any delay has passed), 
animationend (when the animation finished), and animationiteration (at the end of each iteration, 
unless animationend also fires are the same time). As with transitions, all of these can be used to chain 
animations or otherwise synchronize them. The animationiteration event is also helpful if you need to 
run a little code every time an animation finishes a cycle. In such a handler you might check conditions 
that would cause you to stop an animation, in which case you can set the animationPlayState to 
paused when needed. 

Rolling Your Own: Tips and Tricks 

If you’re anything like me, I imagine that one of the first things you did when you started playing with 
JavaScript is to do some kind of animation: set up some initial conditions, create an timer with 
setInterval, do some calculations in the handler and update elements (or draw on a canvas), and keep 
looping until you’re done. After all, this sort of thing is at the heart of many of our favorite games! (For 
an introductory discussion on this, just in case you haven’t done this on your own yet, see How to 
animate canvas graphics.) 

As such, there is considerable wisdom available in the community on this subject if you decide to go 
this route. I put it this way because by now, having looked at the WinJS animations library and the 
capabilities of CSS, you should be in a good position to decide whether you actually need to go this 
route at all. Some people have estimated that a vast majority of animations needed by most apps can 

485

http://msdn.microsoft.com/library/windows/apps/hh465053.aspx
http://msdn.microsoft.com/library/windows/apps/hh465053.aspx


be handled entirely through CSS: just set a style and let the app host do the rest. But if you decide that 
you still need to do low-level animation, the first thing you should do is ask yourself this question: 

What is the appropriate animation interval? 

This is a very important question because oftentimes developers have no idea what kind of interval 
to use for animation. It’s not so much of an issue for long intervals, like 500ms or 1s, but developers 
often just use 10ms because it seems “fast enough.” 

To be honest, 10ms is overkill for a number of reasons. 60 frames per second (fps)—an animation 
interval of 16.7ms—is about the best that human beings can even discern and is also the best that most 
displays can even handle in the first place. In fact, the best results are obtained when your animation 
frames are synchronized with the screen refresh rate. 

Let’s explore this a little more. Have you ever looked at a screen while eating something really 
crunchy, and noticed how the pixels seem to dance all over the place? This is because display devices 
aren’t typically just passive viewports onto the graphics memory. Instead, displays (even LCD and LED 
displays) typically cycle through graphics memory at a set refresh rate, which is most commonly 60Hz or 
60fps (but can also be as low as 50Hz or as high as 100Hz). 

This means that trying to draw animations at an interval faster than the refresh rate is a waste of time, 
is a waste of power (it has been shown to reduce battery life by as much as 25%!), and results in 
dropped frames. The latter point is illustrated below, where the red dots are frames that get drawn on 
something like a canvas but never make it to the screen because another frame is drawn before the 
screen refreshes: 

 
This is why it’s common to animate on multiples of 16.7ms using setInterval. However, using 16.7 

assumes a 60Hz display refresh, which isn’t always the case. The right solution, then, for Windows Store 
apps in JavaScript and web apps both, is to use requestAnimationFrame. This API simply takes a function 
to call for each frame: 

requestAnimationFrame(renderLoop); 

You’ll notice that there’s not an interval parameter; the function rather gives you a way to align your 
frame updates with display refreshes so that you draw only when the system is ready to display 
something: 

486



 
What’s more, requestAnimationFrame also takes page visibility into account, meaning that if you’re 

not visible (and animations are thus wasteful), you won’t be asked to render the frame at all. This means 
you don’t need to handle page visibility events yourself to turn animations on and off: you can just rely 
on the behavior of requestAnimationFrame directly. 

Tip If you really want an optimized display, consider doing all drawing work of your app (not just 
animations) within a requestAnimationFrame callback. That is, when processing a change, as in 
response to an input event, update your data and call requestAnimationFrame with your rendering 
function rather than doing the rendering immediately. And always be mindful to redraw only when you 
need to redraw, as we’ll see in a moment, to make the best use of CPU and battery power. 

It’s also good to know that attempting to animate a canvas that’s partly obscured by an element with 
display: inline-block has been found to result in very poor performance and large gaps between 
frames because of excessive region invalidation. Using a different display model such as table-cell 
avoids this issue. 

Calling this method once will invoke your callback for a single frame. To keep up a continuous 
animation, your handler should call requestAnimationFrame again. This is shown in the Using 
requestAnimationFrame for power efficient animations sample (this wins second place for long sample 
names!), which draws and animates a clock with a second hand: 

 
The first call to requestAnimationFrame happens in the page’s ready method, and then the callback 

refreshes the request (js/scenario1.js): 

window.requestAnimationFrame(renderLoopRAF); 
 
function renderLoopRAF() { 
    drawClock(); 
    window.requestAnimationFrame(renderLoopRAF); 
} 

487

http://code.msdn.microsoft.com/windowsapps/Using-requestAnimationFrame-924b039a
http://code.msdn.microsoft.com/windowsapps/Using-requestAnimationFrame-924b039a


where the drawClock function gets the current time and calculates the angle at which to draw the clock 
hands: 

function drawClock() { 
    // ... 
 
    // Note: this is modified from the sample to only create a Date once, not each time 
    var date = new Date(); 
    var hour = date.getHours(); 
    var minute = date.getMinutes(); 
    var second = date.getSeconds(); 
 
    // ... 
 
    var sDegree = second / 60 * 360 - 180; 
    var mDegree = minute / 60 * 360 - 180; 
    var hDegree = ((hour + (minute / 60)) / 12) * 360 - 180; 
 
    // Code to use the context's translate, rotate, and drawImage methods 
    // to render each clock hand 
} 

Here’s a challenge for you: What’s wrong with this code? Run the sample and look at the second 
hand. Then think about how requestAnimationFrame aligns to screen refresh cycles with an interval like 
16.7ms. What’s wrong with this picture? 

What’s wrong is that even though the second hand is moving visibly only once per second, the 
drawClock code is actually executing nearly 50, 60, or 100 times more frequently than that! Thus the 
“Efficient and Smooth Animations” title that the sample shows on screen is anything but! Indeed, if you 
run Task Manager, you can see that this simple “efficient” clock is ironically consuming 15–20% of the 
CPU. Yikes!  

 
Remember that an interval aligned with ~16.7ms screen refreshes (on a 60Hz display) implies 60fps 

rendering; if you don’t need that much, you should skip frames yourself according to elapsed time, 
thereby saving power, and not blindly redraw as this sample is doing. In fact, if all we need is a 
once-per-second movement in a clock like this, repeated calls to requestAnimationFrame is sheer 
overkill. We could instead use setInterval(function () { requestAnimationFrame(drawClock) }, 1000) 
to coordinate  1s intervals with screen refreshes. If you make this change in the ready method, for 
example, the CPU usage will drop precipitously: 

 
But let’s say we actually want to put 60fps animation and 20% of the CPU to good use—in that case, 

we should at least make the clock’s second hand move smoothly, which can be done by simply adding 
milliseconds into the angle calculation: 

var second = date.getSeconds() + date.getMilliseconds() / 1000; 

488



Still, 20% is a lot of CPU power to spend on something so simple and 60fps is still serious overkill. 
~10fps is probably sufficient for good effect. In this case we can calculate elapsed time within 
renderLoopRAF to call drawClock only when 0.1 seconds have passed: 

var lastTime = 0; 
 
function renderLoopRAF() { 
    var fps = 10;  // Target frames per second 
    var interval = 1000 / fps; 
    var curTime = Math.floor(Date.now() / interval); 
 
    if (lastTime != curTime) { 
        lastTime = curTime; 
        drawClock(); 
    } 
 
    requestAnimationFrame(renderLoopRAF); 
} 

That’s not quite as smooth—10fps creates the sense of a slight mechanical movement—but it 
certainly has much less impact on the CPU: 

 
I encourage you to play around with variations on this theme to see what kind of interval you can 

actually discern with your eyes. 10fps and 15fps give a sense of mechanical movement; at 20fps I don’t 
see much difference from 60fps at all, and the CPU is running at about 7–10%. You might also try 
something like 4fps (quarter-second intervals) to see the effect. In this chapter’s companion content I’ve 
included a variation of the original sample where you can select from various target rendering rates. 

The other thing you can do in the modified sample is draw the hour and minute hand at fractional 
angles. In the original code, the minute hand will move suddenly when the second hand comes around 
to the top. Many analog clocks don’t actually work this way: their complex gearing moves both the hour 
and the minute hand ever so slightly with every tick. To simulate that same behavior, we just need to 
include the seconds in the minutes calculation, and the resulting minutes in the hours, like so: 

var second = date.getSeconds() + date.getMilliseconds() / 1000; 
var minute = date.getMinutes() + second / 60; 
var hour   = date.getHours() + minute / 60;    

In real practice, like a game, you’d generally want to avoid just running a continuous animation loop 
like this: if there’s nothing moving on the screen that needs animating (for which you might be using 
setInterval as a timer) and there are no input events to respond to, there’s no reason to call 
requestAnimationFrame. Also, be sure when the app is paused that you stop calling requestAnimation- 
Frame until the animation starts up again. (You can also use cancelAnimationFrame to stop one you’ve 
already requested.) The same is true for setTimeout and setInterval: don’t generate unnecessary calls 
to your callback functions unless you really need to do the animation. For this, use the 
visibilitychange event to know if your app is visible on screen. While requestAnimationFrame takes 
visibility into account (the sample’s CPU use will drop to 0% before it is suspended), you need to do this 

489

http://msdn.microsoft.com/library/windows/apps/hh441213.aspx


on your own with setTimeout and setInterval. 

In the end, the whole point here is that really understanding the animation interval you need (that is, 
your frame rate) will help you make the best use of requestAnimationFrame, if that’s needed, or 
setInterval/setTimeout. They all have their valid uses to deliver the right user experience with the right 
level of consumption of system resources. 

Did you know?  One change for Windows 8 and Internet Explorer 10 is that setTimeout and 
setInterval, along with setImmediate, all support including parameters you can pass to the callback 
functions? 

What We’ve Just Learned 

• In the desktop control panel, users can elect to disable most (that is, nonessential) animations. 
Apps should honor this, as does WinJS, by checking the 
Windows.UI.ViewManagement.UISettings.animationsEnabled property. 

• The WinJS animations library has many built-in animations that embody the Windows 8 
personality. These are highly recommended for apps to use for the scenarios they support, such 
as content and page transitions, selections, list manipulation, and others. 

• All WinJS animations are built using CSS and thus benefit from hardware acceleration. When the 
right conditions are met, such animations run in the GPU and are thus not affected by activity on 
the UI thread. 

• Apps can also use CSS animations and transitions directly, according to the W3C specifications. 

• Apart from WinJS and CSS, apps can also use functions like setInterval and requestAnimation-
Frame to implement direct frame-by-frame animation. The requestAnimationFrame method 
aligns frames with the display refresh rate, leading to the best overall performance. 

  

490



Chapter 12 

Contracts 
Recently I discovered a delightfully quirky comedy called Interstate 60 that is full of delightfully quirky 
characters. One of them, played by Chris Cooper, is a former advertising executive who, having 
discovered he was terminally ill with lung cancer, decided to make up for a career built on lies by 
encouraging others to be more truthful. As such, he was very particular about agreements and 
contracts, especially those in writing. 

We really get to see the character’s quirkiness in a scene at a gas station. He’s approached by a 
beggar with a sign, “Will work for food.” Seeing this, he offers the man an apple in exchange for 
cleaning his car’s windshield. But when the man refuses to honor the written contract on his sign, 
Cooper’s character gets increasingly upset over the breach…to the point where he announces his 
terminal illness, rips open his shirt, and reveals the dynamite wrapped around his body and the 
10-second timer that’s already counting down! 

In the end, he drives away with a clean windshield and the satisfaction of having helped 
someone—in his delightfully quirky way—to fulfill their part of a written contract. And he reappears 
later in the movie in a town that’s 100% populated with lawyers; I’ll leave it to you to imagine the result, 
or at least enjoy the film. 

Setting the dynamite aside, agreements between two parties are exceptionally important in a civil 
society as they are in a well-running computer system. Agreements are especially important where apps 
provide extensions to the system and where apps written by different people at different points in time 
cooperate to fulfill certain tasks. 

Such is the nature of various contracts within Windows 8, which as a whole is perhaps one of the 
most powerful features of the entire system. The overarching purpose of contracts has been describes as 
“launching apps for a purpose and with context.” That is, instead of just starting apps in isolation, 
contracts make it possible to start them in relationship to other apps and in the context of those other 
apps. Information can then be shared directly between those apps for a real purpose, rather than 
through the generic intermediary of the file system where such context is lost. 

With any given contract, one party is the consumer or receiver of information that’s managed 
through the contract. The other party is then the source or provider of that information. The contract 
itself is then generic: neither party needs any specific knowledge of the other, just knowledge of their 
side of the contract. It might not sound like much, but what this allows is a degree of extensibility that 
gets richer and richer as more apps that support those contracts are added to the system. I figure that 
when users really start to experience what these contracts provide, they’ll more and more look for and 
choose apps from the Windows Store that use contracts to enrich their system and create increasingly 
powerful user experiences. 

491



Within the apps themselves, consuming contracts typically happens through an API call, such as the 
file pickers, or is already built into the system through UI like the Charms bar. Providing information for 
a contract is often the more interesting part, because an app needs to respond to specific events (when 
running), or announce the capability through its manifest and then handle different contract activations. 

The table below summarizes all the contracts and other extensions in Windows 8 (in alphabetical 
order), some of which serve to allow apps to work together while others serve to allow apps to extend 
system functionality. Full descriptions can be found on App contracts and extensions. Those that are 
covered in this chapter are colored in green: share, search, file type and URI scheme associations, file 
pickers, cached file updater, and contacts (people). Others contracts have been or will be covered in the 
chapters indicated, and a few I’ve simply left for you to explore through the linked documentation and 
samples. 

Tip For a comparison of the different options for exchanging data—the share contract, the clipboard, 
and the file save picker contract—see Sharing and exchanging data on the Windows Developer Center. 
It outlines different scenarios for each option and when you might implement more than one in the 
same app. 

Also note that there are many WinRT events involved in these different contracts, so be mindful of the 
need to call removeEventListener as described in Chapter 3, “App Anatomy and Page Navigation,” in 
the section “WinRT Events and removeEventListener.” 

Contract/Extension Provider Consumer Description, Documentation, and Samples 

Account picture 
provider (Chapter 14) 

Apps that can take a 
picture 

Windows (account 
picture) 

When user changes an account picture, they can 
either select an existing one or acquire a new one 
from a provider; see Account picture name sample. 

AutoPlay (Chapter 15) Apps that want to be 
listed as an AutoPlay 
option 

Windows See Auto-launching with AutoPlay and the 
Removable storage sample. 

Background tasks 
(Chapters 13 and 14) 

Apps that have 
background tasks 

Windows Allows apps to run small tasks in the background 
(that is, when otherwise suspended or not running) 
without user interaction. See Introduction to 
background tasks as well as Chapter 13. Background 
file transfers are a special case supported by specific 
APIs; see Transferring data in the background and 
Chapter 14. 

Cached file updater Apps that provide access 
to their data through file 
pickers and want to 
synchronize updates 

Apps using the file 
picker API and the file 
APIs to manage them 

Provider apps can allow the consumer to maintain a 
cached copy of a file. Through this contract, the 
provider can manage updates between the local 
copy and the source copy. See Integrating with file 
picker contracts. 

Camera settings  Apps with custom 
camera UI 

Windows Camera 
Capture UI  

See Developing Windows 8 device apps for cameras. 

Contact picker Apps that manage 
contact data (like an 
address book) 

Apps that use the 
contact picker API (like 
email) 

Launches an app to provide a list of possible contacts 
to select. See Managing user contacts. 

  

492

http://msdn.microsoft.com/library/windows/apps/hh464906.aspx
http://msdn.microsoft.com/library/windows/apps/hh464923.aspx
http://go.microsoft.com/fwlink/?LinkId=231579
http://msdn.microsoft.com/library/windows/apps/hh452731.aspx
http://code.msdn.microsoft.com/windowsapps/Removable-Storage-52cc49f0
http://www.microsoft.com/download/en/details.aspx?id=27411
http://www.microsoft.com/download/en/details.aspx?id=27411
http://msdn.microsoft.com/library/windows/apps/hh452979.aspx
http://msdn.microsoft.com/library/windows/apps/hh465174.aspx
http://msdn.microsoft.com/library/windows/apps/hh465174.aspx
http://msdn.microsoft.com/library/windows/hardware/hh454870
http://msdn.microsoft.com/library/windows/apps/hh464939.aspx


File activation (file 
type association) 

Apps that can open files 
of a particular type 

Windows Explorer and 
apps that use the 
launcher API 

Launches an app to open/service a file when needed. 
See How to handle file activation and Auto-launching 
with file and URI associations. 

File open picker/file 
save picker 

App with data that can 
appear as files to other 
apps for opening and/or 
saving (two separate 
contracts). 

Apps using the file 
picker API (also certain 
Windows features) 

Makes data that is otherwise hidden inside and 
managed by apps appear as if they were part of the 
file system. See Integrating with file picker contracts. 

Game explorer Game apps with a Game 
Definition File 

Windows (parental 
controls) 

Manages age ratings for games. See Creating a GDF 
file. 

Play To (Chapter 10) Apps that can play 
media to a DLNA device 

Windows (Devices 
charm > Connect) 

See Streaming media to devices using Play To. 

Print task settings Printer device apps Windows (Device 
charm > Print) 

See Developing Windows 8 device apps for printers. 

Protocol activation 
(URI scheme 
association) 

Apps that can open URIs 
that begin with a 
particular URI scheme 

Windows Explorer and 
apps that use the 
launcher API 

Launches an app to open/service a URI when needed. 
See How to handle protocol activation and 
Auto-launching with file and URI associations. 

Search Apps with searchable 
data 

Windows (Search 
charm) 

Provides the ubiquitous ability to search any app 
from anywhere. See Adding search to an app. 

Settings (Chapter 8) Apps with settings Windows (Settings 
charm) 

Provides a standard place for app settings. See 
Adding app settings. 

Share Apps with sharable data Apps that can receive 
data to incorporate 
into itself or share to a 
service 

Provides a linkage of data transfer between apps so 
that source apps don’t need to be particularly aware 
of individual targets like Facebook, Twitter, etc. See 
Adding share. 

SSL/certificates Apps that need to install 
a certificate 

Apps needing to supply 
a certificate to another 
service 

See Encrypting data and working with certificates. 

Share 

Though Search appears at the top of the Charms bar, the first contract I want to look at in depth is 
Share—after all, it’s one of the first things you learn as a child! In truth, I’m starting with Share because 
we’ve already seen the source side of the story starting back in Chapter 2, “Quickstart,” with the Here My 
Am! app, and our coverage here will also include a brief look at the age-old clipboard at the end of this 
section. 

Here’s what we’ve already learned about Share, with the more complete process illustrated in Figure 
12-1: 

• An app with sharable content listens for the datarequested event from the object returned by 
Windows.ApplicationModel.DataTransfer.DataTransferManager.getForCurrent-View(). This 
WinRT event (for which you should be mindful of using removeEventListener) is fired whenever 
the user invokes the Share charm. Note that if an app doesn’t listen for this event at all, the Share 
charm will show a default “unable to share” message (one that is certain to be disappointing to 
users!). 
 

493

http://msdn.microsoft.com/library/windows/apps/hh452684.aspx
http://msdn.microsoft.com/library/windows/apps/hh452691.aspx
http://msdn.microsoft.com/library/windows/apps/hh452691.aspx
http://msdn.microsoft.com/library/windows/apps/hh465174.aspx
http://msdn.microsoft.com/library/windows/apps/hh465153.aspx
http://msdn.microsoft.com/library/windows/apps/hh465153.aspx
http://msdn.microsoft.com/library/windows/apps/hh465176.aspx
http://msdn.microsoft.com/library/windows/hardware/br259129
http://msdn.microsoft.com/library/windows/apps/hh452686.aspx
http://msdn.microsoft.com/library/windows/apps/hh452691.aspx
http://msdn.microsoft.com/library/windows/apps/hh465231.aspx
http://msdn.microsoft.com/library/windows/apps/hh770540.aspx
http://msdn.microsoft.com/library/windows/apps/hh758314.aspx
http://msdn.microsoft.com/library/windows/apps/hh465012.aspx


• In its event handler, the app determines whether it has anything to share in its current state. If it 
does, it populates the Windows.ApplicationModel.DataTransfer.DataPackage provided in the 
event. (This can vary with the selection or lack thereof; if the user needs to make a selection for 
share to work, the app can display a message to that effect.) 

• Based on the data formats in the package, Windows—that is, the share broker who manages the 
contract—determines the share target apps to display to the user. The user can also control 
which apps are shown through Change PC Settings > Share. 

• When the user picks a target, the associated app is activated and receives the data package to 
process however it wants. 

 

FIGURE 12-1  Processing the Share contract as initiated by the user’s selection of the Share charm. 

This whole process provides a very convenient shortcut for users to take something they love in one 
app and get it into another app with a simple edge gesture and target app selection. It’s like a 
semantically rich clipboard in which you don’t have to figure out how to get connected to other apps. 
What’s very cool about the Share contract, in other words, is that the source doesn’t have to care what 
happens to the data—its only role is to provide whatever data is appropriate for sharing at the moment 
the user invokes the Share charm (if, in fact, there is appropriate data—sometimes there isn’t). This 
liberates source apps from the burden of having to predict, anticipate, or second-guess what users 
might want to do with the data. Perhaps they want to email it, share it via social networking, drop it into 
a content management app…who knows? 

Well, only the user knows, so what the share broker does with that data is let the user decide! Given 
the data package from the source, the broker matches the formats in that package to target apps that 
have indicated support for those formats in their manifests. The broker then displays that list to the user. 
That list can contain apps, for one, but also something called a quicklink (a Windows.ApplicationModel.- 
DataTransfer.ShareTarget.Quicklink object, to be precise), which is serviced by some app but is much 

494



more specific. For instance, when an email app is shown as an option for sharing, the best it can do is 
create a new message with no particular recipients. A quicklink, however, can identify specific email 
addresses, say, for a person or persons you email frequently. The quicklink, then, is essentially an app 
plus specific configuration information. 

Whatever the case, some app is launched when the user selects a target. With the Share contract, the 
app is launched with an activation kind of shareTarget. This tells it to not bring up its default UI but to 
rather show a specific share pane (with light-dismiss behavior) in which the user can refine exactly what 
is being shared and how. A share target for a social network, for instance, will often provide a place to 
add a comment on the shared data before posting it. An email app would provide a means to edit the 
message before sending it. A front-end app for a photo service could allow for adding a caption, 
specifying a location, identifying people, and so on. You get the idea. All of this combines together to 
provide a smooth flow from having something to share to an app that facilitates the sharing and allows 
the user to add customizations. 

Overall, then, the Share contract gets apps connected to one another for this common purpose 
without either one having to know anything about the other. This creates a very extensible and scalable 
experience: since all the potential target choices appear only in the Share charm pane, they never need 
to clutter a source app as we see happening on many web pages. This is the “content before chrome” 
design principle in action. 

Source apps also don’t need to update themselves when a new target becomes popular (e.g., a new 
kind of social network): all that’s needed is a single target app. As for those target apps, they don’t have 
to evangelize themselves to the world: through the contract, source apps are automatically able to use 
any target apps that come along in the future. And from the end user’s point of view, their experience of 
the Share charm gets better and better as they acquire more Share-capable apps. 

At the same time, it is possible for the source app to know something about how its shared data is 
being used. Alongside the datarequested event, the DataTransferManager also fires a 
targetApplicationChosen event to those sources who are listening. The eventArgs in this case contain 
only a single property: applicationName. This isn’t really useful for any other WinRT APIs, mind you, but 
is something you can tally within your own analytics. Such data can help you understand whether you’d 
provide a better user experience by sharing richer data formats, for example, or, if common target apps 
also support custom formats that you can supportin future updates. 

Source Apps 
Let’s complete our understanding of source apps now by looking at a number of details we haven’t fully 
explored yet, primarily around how the source populates the data package and the options it has for 
handling the request. For this purpose, I suggest you obtain and run both the Sharing content source 
app sample and the Sharing content target app sample. We’ll be looking at both of these, and the latter 
provides a helpful way to see how a target app will consume the data package created in the source. 

 

495

http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Source-App-d9bffd84
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Source-App-d9bffd84
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Target-App-e2689782


The source app sample provides a number of scenarios that demonstrate how to share different 
types of data. They also show how to programmatically invoke the Share charm. This isn’t typically 
recommended, but it is possible. If it really fits in your app scenario, here’s how: 

Windows.ApplicationModel.DataTransfer.DataTransferManager.showShareUI(); 

Calling this will, as when the user invokes the charm, trigger the datarequested event where 
eventArgs.request object is a Windows.ApplicationModel.DataTransfer.DataRequest object. This 
request object contains two properties and two methods: 

• data is the DataPackage to populate. It contains methods to make various data formats available, 
though it’s important to note that not all formats will be immediately rendered. Instead, they’re 
rendered only when a share target asks for them. 

• deadline is a Date property indicating the time in the future when the data you’re making 
available will no  longer be valid (that is, will not render). This recognizes that there might be an 
indeterminate amount of time between when the source app is asked for data and when the 
target actually tries to use it. With delayed rendering, as noted above for the data property, it’s 
possible that some transient source data might disappear after some time. By indicating that 
time in deadline, rendering requests that occur past the deadline will be ignored. 

• failWithDisplayText is a method to tell the share broker that sharing isn’t possible right now, 
along with a string that will tell the user why (perhaps the lack of a usable selection). You call this 
when you don’t have appropriate data formats or an appropriate selection to share, or if there’s 
an error in populating the data package for whatever reason. The text you provide will then be 
displayed in the Share charm (and thus should be localized). Scenario 8 of the source app sample 
shows the use of this in the simple case when don’t provide data in response to the 
datarequested event.. 

• getDeferral provides for async operations you might need to perform while populating the data 
package (just like other deferrals elsewhere in the WinRT API). Do note that datarequested has 
a 200ms timout period, after which time the Share charm will display “can’t share right now”. 
Requesting a deferral does not change that timeout; it only prevents datarequested from 
assuming that the data package is ready once you return from your handler. 

The basic structure of a datarequested handler, then, will attempt to populate the minimal 
properties of eventArgs.request.data and call eventArgs.request.failWithDisplayText when errors 
occur. We see this structure in most of the scenarios in the sample: 

var dataTransferManager =  
    Windows.ApplicationModel.DataTransfer.DataTransferManager.getForCurrentView(); 
// Remove this listener as required 
dataTransferManager.addEventListener("datarequested", dataRequested); 
 
function dataRequested(e) { 
    var request = e.request; 
 
    // Title is required 

496

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datarequest.aspx


    var dataPackageTitle = document.getElementById("titleInputBox").value; 
 
    if ( /* Check if there is appropriate data to share */ ) { 
        request.data.properties.title = dataPackageTitle;  
 
        // The description is optional. 
        var dataPackageDescription = document.getElementById("descriptionInputBox").value; 
        request.data.properties.description = dataPackageDescription; 
 
        // Call request.data.setText, setUri, setBitmap, setData, etc. 
    } else { 
        request.failWithDisplayText(/* Error message */ ); 
    } 
} 

As we see here, the request.data.properties object (of type DataPackagePropertySet) is where 
you set things like a title and description for the data package. Other properties are as follows: 

• applicationListingUri The URI of your app’s page in the Windows Store, which should be set 
to the return value of Windows.ApplicationModel.Store.CurrentApp.linkUri57) 

• applicationName A string, which helps share targets gather the same kind of information that 
the source can obtain from the targetApplicationChosen event 

• fileTypes A string vector, where strings should come from the StandardDataFormats 
enumeration but can also be custom formats 

• size The number of items when the data in the package is a collection, e.g., files 

• thumbnail A stream containing a thumbnail image; obtaining this image is typically why you’d 
use the DataRequest.getDeferral method). 

Beyond this the data.properties object also supports custom properties through its insert, remove, 
and other methods. This makes is possible for the source app to pass custom properties along with 
custom formats, making all of this extensible if new data formats are widely adopted in the future. 

Within this code structure above, the primary job of the source app is to populate the data package 
by calling the package’s various set* methods. For standard formats, which are again those described in 
the StandardDataFormats enumeration, there are discrete methods: setText, setUri, setHtmlFormat, 
setRtf (rich text format, a comparably ancient precursor to HTML), setBitmap, and setStorageItems (for 
files and folders). All of these except for setRtf are represented in the source app sample as follows. 

 

 

57 This URI along the applicationName would allow a target to indicate where the data originally came from, especially for 
scenarios where the data goes to a social network, in an email message, or elsewhere off the device with the source app. 
This way, recipients can be invited to acquire the source app themselves, so source apps will probably want to include it. 
You always want to use the Windows.ApplicationModel.Store.CurrentApp.linkUri property to populate this field 
because you won’t know your URI until your completed app is uploaded to the Store the first time. 

497

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datapackagepropertyset.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.currentapp.linkuri.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.standarddataformats.aspx


Sharing text—Scenario 1 (js/text.js): 

var dataPackageText = document.getElementById("textInputBox").value; 
request.data.setText(dataPackageText); 

Sharing a link—Scenario 2 (js/link.js), which can be used for local and remote content alike: 

request.data.setUri(new Windows.Foundation.Uri(document.getElementById("linkInputBox").value)); 

Sharing an image and a storage item—Scenario 3 (js/image.js): 

var imageFile; // A StorageFile obtained through the file picker 
 
// In the data requested event 
var streamReference =  
    Windows.Storage.Streams.RandomAccessStreamReference.createFromFile(imageFile); 
request.data.properties.thumbnail = streamReference; 
 
// It's recommended to always use both setBitmap and setStorageItems for sharing a 
// single image since the Target app may only support one or the other 
 
// Put the image file in an array and pass it to setStorageItems 
request.data.setStorageItems([imageFile]); 
 
// The setBitmap method requires a RandomAccessStreamReference 
request.data.setBitmap(streamReference); 

Sharing files—Scenario 4 (js/file.js): 

var selectedFiles; // A collection of StorageFile objects obtained through the file picker 
 
// In the data requested event  
request.data.setStorageItems(selectedFiles); 

As for sharing HTML, this can be quite simple if you just have HTML in a string: 

request.data.setHtmlFormat(someHtml); 

For this purpose you might find the Windows.ApplicationModel.DataTransfer.- 
HtmlFormatHelper object, well, helpful, as it provide methods to build properly formatted markup. 
What’s also true with HTML is that it often refers to other content like images that aren’t directly 
contained in the markup. So how do you handle that? Fortunately, the designers of this API thought 
through this need: you employ the data package’s resourceMap property to associate relative URIs in the 
HTML with an image stream. We see this in Scenario 6 of the sample (js/html.js): 

var path = document.getElementById("htmlFragmentImage").getAttribute("src"); 
var imageUri = new Windows.Foundation.Uri(path); 
var streamReference =  
    Windows.Storage.Streams.RandomAccessStreamReference.createFromUri(imageUri); 
request.data.resourceMap[path] = streamReference; 

 

 

498

http://msdn.microsoft.com/library/windows/apps/hh738437.aspx
http://msdn.microsoft.com/library/windows/apps/hh738437.aspx


The other interesting part of Scenario 6 is that it actually replaces the data package in the eventArgs 
with a new one that it creates as follows: 
 

var range = document.createRange(); 
range.selectNode(document.getElementById("htmlFragment")); 
request.data = MSApp.createDataPackage(range); 

As you can see, the MSApp.createDataPackage method takes a DOM range (in this case a portion of 
the current page) and creates a data package from it, where the package’s setHtmlFormat method is 
called in the process (which is why you don’t see that method called explicitly in Scenario 6). For what 
it’s worth, there is also MSApp.createDataPackageFromSelection that does the same job with whatever 
is currently selected in the DOM. You would obviously use this if you have editable elements on your 
page from which you’d like to share. 

Sharing Multiple Data Formats 
As shown in Scenario 3, it is certainly allowable—and encouraged!—to share data in as many formats as 
makes sense, thereby enabling more potential targets. All this means is that you call all the set* 
methods that make sense within your datarequested handler. This includes calling setData for custom 
formats and setDataProvider for deferred rendering, as described in the next two sections. 

Custom Data Formats: schema.org 
Long ago, I imagine, API designers decided it was an exercise in futility to try to predict every data 
format that apps might want to exchange in the future. The WinRT API is no different, so alongside the 
format-specific set* methods of the DataPackage we find the generic setData method. This takes a 
format identifier (a string) and the data to share. This is illustrated in Scenario 7 of the sample using the 
format “http://schema.org/Book” and data in a JSON string (js/custom.js): 

request.data.setData(dataFormat, JSON.stringify(book)); 

Since the custom format identifier is just a string, you can literally use anything you want here; a very 
specific format string might be useful, for example, in a sharing scenario where you want to target a 
very specific app, perhaps one that you authored yourself. However, unless you’re very good at 
evangelizing your custom formats to the rest of the developer community (and have a budget for 
such!), chances are that other share targets won’t have any clue what you’re talking about. 

Fortunately, there is a growing body of conventions for custom data formats maintained by 
http://schema.org. This site is the point of agreement where custom formats are concerned, so we 
highly recommend that you draw formats from it. See http://schema.org/docs/schemas.html for a 
complete list. 

Here’s the JSON book data used in the sample: 

var book = { 
    type: "http://schema.org/Book", 
    properties: { 

499

http://msdn.microsoft.com/library/windows/apps/Hh831247.aspx
http://msdn.microsoft.com/library/windows/apps/hh831248.aspx
http://schema.org/
http://schema.org/docs/schemas.html


        image: "http://sourceuri.com/catcher-in-the-rye-book-cover.jpg", 
        name: "The Catcher in the Rye", 
        bookFormat: "http://schema.org/Paperback", 
        author: "http://sourceuri.com/author/jd_salinger.html", 
        numberOfPages: 224, 
        publisher: "Little, Brown, and Company", 
        datePublished: "1991-05-01", 
        inLanguage: "English", 
        isbn: "0316769487" 
    } 
}; 

You can easily express this same data as plain text, as HTML (or RTF), as a link (perhaps to a page with 
this information), and an image (of the book cover). This way you can populate the data package with 
all the standard formats alongside specific custom formats. 

Deferrals and Delayed Rendering 
Deferrals, as mentioned before, are a simple mechanism to delay completion of the datarequested 
event until the deferral’s complete method is called within an async operation’s completed handler. The 
documentation for DataRequest.getDeferral shows an example of using this when loading an image 
file: 

var deferral = request.getDeferral(); 
 
Windows.ApplicationModel.Package.current.installedLocation.getFileAsync( 
    "images\\smalllogo.png") 
    .then(function (thumbnailFile) { 
        request.data.properties.thumbnail = Windows.Storage.Streams. 
            RandomAccessStreamReference.createFromFile(thumbnailFile); 
        return Windows.ApplicationModel.Package.current.installedLocation.getFileAsync( 
            "images\\logo.png"); 
    }) 
    .done(function (imageFile) { 
        request.data.setBitmap( 
            Windows.Storage.Streams.RandomAccessStreamReference.createFromFile(imageFile)); 
        deferral.complete(); 
    }); 

Delayed rendering is a different matter, though the process typically employs the deferral. The 
purpose here is to avoid rendering the shared data until a target actually requires it, sometimes referred 
to as a pull operation. The set* methods that we’ve seen so far all copy the full data into the package. 
Delayed rendering means calling the data package’s setDataProvider method with a data format 
identifier and a function to call when the data is needed. Here’s how it’s done in Scenario 5 of the source 
app sample where imageFile is selected with a file picker (js/image.js): 
 
 
 
 
 

500

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datarequest.getdeferral.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datapackage.setdataprovider.aspx


// When sharing an image, don't forget to set the thumbnail for the DataPackage 
var streamReference =  
    Windows.Storage.Streams.RandomAccessStreamReference.createFromFile(imageFile); 
request.data.properties.thumbnail = streamReference; 
request.data.setDataProvider( 
    Windows.ApplicationModel.DataTransfer.StandardDataFormats.bitmap, 
    onDeferredImageRequested); 

As indicated in the comments, it’s a really good idea to provide a thumbnail with delayed rendering 
so the target app has something to show the user. Then, when the target needs the full data, the data 
provider function gets called—in this case, onDeferredImageRequsted: 

function onDeferredImageRequested(request) { 
    if (imageFile) { 
        // Here we provide updated Bitmap data using delayed rendering 
        var deferral = request.getDeferral(); 
 
        var imageDecoder, inMemoryStream; 
 
        imageFile.openAsync(Windows.Storage.FileAccessMode.read).then(function (stream) { 
            // Decode the image 
            return Windows.Graphics.Imaging.BitmapDecoder.createAsync(stream); 
        }).then(function (decoder) { 
            // Re-encode the image at 50% width and height 
            inMemoryStream = new Windows.Storage.Streams.InMemoryRandomAccessStream(); 
            imageDecoder = decoder; 
            return Windows.Graphics.Imaging.BitmapEncoder.createForTranscodingAsync( 
                inMemoryStream, decoder); 
        }).then(function (encoder) { 
            encoder.bitmapTransform.scaledWidth = imageDecoder.orientedPixelWidth * 0.5; 
            encoder.bitmapTransform.scaledHeight = imageDecoder.orientedPixelHeight * 0.5; 
            return encoder.flushAsync(); 
        }).done(function () { 
            var streamReference = Windows.Storage.Streams.RandomAccessStreamReference 
                .createFromStream(inMemoryStream); 
            request.setData(streamReference); 
            deferral.complete(); 
        }, function (e) { 
            // didn't succeed, but we still need to release the deferral to avoid 
            //a hang in the target app 
            deferral.complete(); 
        }); 
    } 
} 

Note that this function receives a simplified hybrid of the DataRequest and DataPackage objects: a 
DataProviderRequest that contains deadline and formatId properties, a getDeferral method, and a 
setData method through which you provide the data that matched formatId. The deadline property, as 
you can guess, is the same as what the datarequested handler might have stored in the DataRequest 
object. 

501

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.dataproviderrequest.aspx


Target Apps 
Looking back to Figure 12-1, we can see that while the interaction between a source app and the share 
broker is driven by the single datarequested event, the interaction between the broker and a target 
app is a little more involved. For one, the broker needs to determine which apps can potentially handle 
a particular data package, for which purpose each target app includes appropriate details in its manifest. 
When an app is selected, it gets launched with an activation kind of shareTarget, in response to which it 
should show a specific share UI rather than the full app experience. 

Let’s see how all this works with the Sharing content target app sample whose appearance is shown 
in Figure 12-2 (borrowing from Figure 2-22 we saw ages ago). Be sure to run this app once in Visual 
Studio so that it’s effectively installed and it will appear on the list of apps when we invoke the Share 
charm. 

 
FIGURE 12-2  The appearance of the Sharing content target app sample (the right-hand nonfaded part). 

The first step for a share target is to declare the data formats it can accept in the Declarations section 
of its manifest, along with the page that will be invoked when the app is selected as a target. As shown 
in Figure 12-3, the target app sample declares it can handle text, URI, bitmap, html, and the 
http://schema.org/Book formats, and it also declares it can handle whatever files might be in a data 
package (you can indicate specific file types here). Way down at the bottom it then points to target.html 
as its Share target page. 

502

http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Target-App-e2689782
http://schema.org/Book


 

 
FIGURE 12-3  The Share content target app sample’s manifest declarations. 

The Share start page, target.html, is just a typical HTML page with whatever layout you require for 
performing the share task. This page typically operates independently of your main app: when your app 
is chosen through Share, this page is loaded and activated by itself and thus has an entirely separate 
script context. This page should not provide navigation to other parts of the app and should thus load 
only whatever code is necessary for the sharing task. (The Executable and Entry Point options are not 
used for apps written in HTML and JavaScript; those exist for apps written in other languages.) 

 

503



Much of this structure is built for you automatically through the Share Target Contract item 
tem-plate provided by Visual Studio and Blend, as shown in Figure 12-4; the dialog appears when you 
right-click your project and select Add > New Item or select the Project > Add New Item menu 
command. 

 
FIGURE 12-4  The Share Target Contract item template in Visual Studio and Blend. 

This item template will give you HTML, JS, and CSS files for the share target page and will add that 
page to your manifest declarations along with text and URI formats. So you’ll want to update those as 
appropriate. 

Before we jump into the code, a few notes about the design of a share target page, summarized 
from Guidelines for sharing content: 

• Maintain the app’s identity and its look and feel, consistent with the primary app experience. 

• Keep interactions simple to quickly complete the share flow: avoid text formatting, tagging, and 
setup tasks, but do consider providing editing capabilities especially if posting to social networks 
or sending a a message. (See Figure 12-5 from the Mail app for an example.) A social networking 
target app would generally want to include the ability to add comment; a photo-sharing target 
would probably include the ability to add captions. 

• Avoid navigation: sharing is a specific task flow, so use inline controls and inline errors instead of 
switching to other pages. Another reason to avoid this is that the share page of the target app 
runs in its own script context, so being able to navigate elsewhere in the app within a separate 
context could be very confusing to users. 

• Avoid links that would distract from or take the user away from the sharing experience. 
Remember that sharing is a way to shortcut the oft-tedious process of getting data from one 
app to another, so keep the target app focused on that purpose. 

• Avoid light-dismiss flyouts since the Share charm already works that way. 

504

http://msdn.microsoft.com/library/windows/apps/hh465251.aspx


• Acknowledge user actions when you start sending the data off (to an online service, for example) 
so that users know something is actually happening. 

• Put important buttons within reach of the thumbs on a touch device; refer to Windows 8 Touch 
Posture topic in the documentation for placement guidance. 

• Make previews match the actual content—in other words, don’t play tricks on the user! 

With this page design, it’s good to know that you do not need to worry about different view 
states—this page really just has one state (and as a flyout, it cannot be snapped). It does need to adapt 
itself well to varying dimensions, mind you, but not different view states. Basing the layout on a CSS grid 
with fractional rows and columns is a good approach here. 

Caution Because a target app can receive data from any source app, it should treat all such content as 
untrusted and potentially malicious, especially with HTML, URIs, and files. The target app should avoid 
adding such HTML or file contents to the DOM, executing code from URIs, navigating to the URI or 
some other page based on the URI, modifying database records, using eval with the data, and so on. 

 
FIGURE 12-5  The sharing UI of the Windows Mail app (the bottom blank portion has been cropped); this UI allows 
editing of the recipient, subject, and message body, and sending an image as an attachment or as a link to SkyDrive. 

Let’s now look at the contents of the template’s JavaScript file as a whole, because it shows us the 
basics of being a target. First, as you can see, we have the same structure as a typical default.js for the 
app, using the WinJS.Application object’s methods and events. 

(function () { 
    "use strict"; 
 
    var app = WinJS.Application; 
    var share; 
 
    function onShareSubmit() { 
        document.querySelector(".progressindicators").style.visibility = "visible"; 

505

http://msdn.microsoft.com/library/windows/apps/hh465415.aspx#touch_posture
http://msdn.microsoft.com/library/windows/apps/hh465415.aspx#touch_posture


        document.querySelector(".commentbox").disabled = true; 
        document.querySelector(".submitbutton").disabled = true; 
 
        // TODO: Do something with the shared data stored in the 'share' var. 
 
        share.reportCompleted(); 
    } 
 
    // This function responds to all application activations. 
    app.onactivated = function (args) { 
        var thumbnail; 
 
        if (args.detail.kind ===  
            Windows.ApplicationModel.Activation.ActivationKind.shareTarget) { 
            document.querySelector(".submitbutton").onclick = onShareSubmit; 
            share = args.detail.shareOperation; 
 
            document.querySelector(".shared-title").textContent = 
                share.data.properties.title; 
            document.querySelector(".shared-description").textContent = 
                share.data.properties.description; 
 
            thumbnail = share.data.properties.thumbnail; 
            if (thumbnail) { 
                // If the share data includes a thumbnail, display it. 
                args.setPromise(thumbnail.openReadAsync().then( 
                    function displayThumbnail(stream) { 
                        document.querySelector(".shared-thumbnail").src = 
                            window.URL.createObjectURL(stream, { oneTimeOnly: true }); 
                    })); 
            } else { 
                // If no thumbnail is present, expand the description  and 
                // title elements to fill the unused space. 
                document.querySelector("section[role=main] header").style 
                   .setProperty("-ms-grid-columns", "0px 0px 1fr"); 
                document.querySelector(".shared-thumbnail").style.visibility = "hidden"; 
            } 
        } 
    }; 
 
    app.start(); 
})(); 
 

When this page is loaded and activated, during which time the app’s splash screen will appear, its 
WinJS.Application.onactivated event will fire—again independently of your app’s main activated 
handler that’s typically in default.js. As a share target you just want to make sure that the activation kind 
is shareTarget, after which your primary responsibility is to provide a preview of the data you’ll be 
sharing along with whatever UI you have to edit it, comment on it, and so forth. Typically, you’ll also 
have a button to complete or submit the sharing, on which you tell the share broker that you’ve 
completed the process. 

 

506



The key here is the args.detail.shareOperation object provided to the activated handler. This is a 
Windows.ApplicationModel.DataTransfer.ShareTarget.ShareOperation object, whose data 
property contains a read-only package called a DataPackageView from which you obtain all the goods: 

• To check whether the package has formats you can consume, use the contains method or the 
availableFormats collection. 

• To obtain data from the package, use its get* methods such as getTextAsync, getBitmap-Async, 
and getDataAsync (for custom formats). When pasting HTML you can also use the 
getResourceMapAsync method to get relative resource URIs. The view’s properties like the 
thumbnail are also useful to provide a preview of the data. 

As you can see, the Share target item template code above doesn’t do anything with shared data 
other than display the title, description, and thumbnail; clearly your app will do something more by 
requesting data from the package, like the examples we see in the share target sample. Its js/target.js  
file contains an activated handler for the target.html page (in the project root), and it also displays the 
thumbnail in the data package by default. It then looks for different data formats and displays those 
contents if they exist: 

if (shareOperation.data.contains(Windows.ApplicationModel.DataTransfer.StandardDataFormats. 
    text)) { 
    shareOperation.data.getTextAsync().done(function (text) { 
        displayContent("Text: ", text, false); 
    }); 
} 

The same kind of code appears for the simpler formats. Consuming a bitmap is a little more work but 
straightforward: 

if (shareOperation.data.contains(Windows.ApplicationModel.DataTransfer.StandardDataFormats. 
    bitmap)) { 
    shareOperation.data.getBitmapAsync().done(function (bitmapStreamReference) { 
        bitmapStreamReference.openReadAsync().done(function (bitmapStream) { 
            if (bitmapStream) { 
                var blob = MSApp.createBlobFromRandomAccessStream(bitmapStream.contentType, 
                    bitmapStream); 
                document.getElementById("imageHolder").src = URL.createObjectURL(blob, 
                    { oneTimeOnly: true }); 
                document.getElementById("imageArea").className = "unhidden"; 
            } 
        }); 
    }); 
} 

For HTML, it looks through the markup for img elements and then sets up their src attributes from 
the resource map (the iframe already has the HTML content from the package by this time): 
 
 
 

507

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.sharetarget.shareoperation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datapackageview.aspx


var images = iFrame.contentDocument.documentElement.getElementsByTagName("img"); 
if (images.length > 0) { 
    shareOperation.data.getResourceMapAsync().done(function (resourceMap) { 
        if (resourceMap.size > 0) { 
            for (var i = 0, len = images.length; i < len; i++) { 
                var streamReference = resourceMap[images[i].getAttribute("src")]; 
                if (streamReference) { 
                    // Call a helper function to map the image element's src 
                    // to a corresponding blob URL generated from the streamReference 
                    setResourceMapURL(streamReference, images[i]); 
                } 
            } 
        } 
    }); 
} 

The setResourceMapURL helper function does pretty much what the bitmap-specific code did, which 
is call openReadAsync on the stream, call MSApp.createBlobFromRandomAccessStream, pass that blob to 
URL.createObjectURL, set the img.src with the result, and close the stream. 

After the target app has completed a sharing operation, it should call the ShareOperation.report-
Completed method, as shown earlier with the template code. This lets the system know that the data 
package has been consumed, the share flow is complete, and all related resources can be released. The 
share target sample does this when you explicitly click a button for this purpose, but normally you 
automatically call the method whenever you’ve completed the share. Do be aware that calling 
reportCompleted will close the target app’s sharing UI, so avoid calling it as soon as the target activates: 
you want the user to feel confident that the operation was carried out. 

Long-Running Operations 
When you run the share target sample and invoke the Share charm from a suitable source app, there’s a 
little expansion control near the bottom labeled “Long-running Share support.” If you expand that, 
you’ll see some additional controls and a bunch of descriptive text, as shown in Figure 12-6. The buttons 
shown here tie into a number of other methods on the ShareOperation object alongside 
reportCompleted. These help Windows understand exactly how the share operation is happening within 
the target: reportStarted, reportDataRetrieved, reportSubmittedBackgroundTask, and reportError. As 
you can see from the descriptions in Figure 12-6, these generally relate to telling Windows when the 
target app has finished cooking its meal, so to speak, and the system can clean the dishes and put away 
the utensils: 

• reportStarted informs Windows that your sharing operation might take a while, as if you’re 
uploading the data from the package to another place, or just sending an email attachment with 
what ends up being large images and such. This specific method indicates that you’ve obtained 
all necessary user input and that the share pane can be dismissed. 

• reportDataRetrieved informs Windows that you’ve extracted what you need from the data 
package such that it can be released. If you’ve called MSApp.createBlobFromRandomAccessStream 
for an image stream, for example, the blob now contains a copy of the image that’s local to the 

508



target app. If you’re using images from the package’s resourceMap, on the other hand, you’ll not 
want to call reportDataRetrieved unless you explicitly make a copy of those references whose 
URIs refer to bits inside the data package. In any case, if you need to hold onto the package 
throughout the operation, you don’t need to call this method as you’ll later call reportCompleted 
to release the package. 

• reportSubmittedBackgroundTask tells Windows that you’ve started a background transfer using 
the Windows.Networking.BackgroundTransfer.BackgroundUploader class. As the sample 
description in Figure 12-6 indicates, this lets Windows know that it can suspend the target app 
and not disturb the sharing operation. If you call this method with a local copy of the data being 
uploaded, go ahead and call reportCompleted method so that Windows can clean up the 
package; otherwise wait until the transfer is complete. 

• reportError lets Windows know if there’s been an error during the sharing operation. 

 
FIGURE 12-6  Expanded controls in the Sharing content target app sample for Long-Running Share Support. The 
Report Completed button is always shown and isn’t specific to long-running tasks despite its placement in the 
sample’s UI. Don’t let that confuse you! 

509

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounduploader.aspx


Quicklinks 
The last aspect of the Share contract for us to explore is something we mentioned early on in this 
section: quicklinks. These serve to streamline the Share process such that users don’t need to re-enter 
information in a target app. For example, if a user commonly shares data with particular people through 
email, each contact can be a quicklink for the email app. If a user commonly shares with different 
people or groups through a social networking app, those people and/or groups can be represented 
with quicklinks. And as these targets are much more user-specific than target apps in general, the Share 
charm UI shows these at the top of its list (see Figure 12-7 below). 

Each quicklink is associated with and serviced by a particular target app and simply provides an 
identifier to that target. When the target is invoked through a quicklink, it then uses that identifier to 
retrieve whatever data is associated with that quicklink and prepopulates or otherwise configures its UI. 
It’s important to understand that quicklinks contain only an identifier, so the target app must store and 
retrieve the associated data from some other source, typically local app data where the identifier is a 
filename, the name of a settings container, etc. The target app could also use roaming app data or the 
cloud for this purpose, but quicklinks themselves do not roam to another device—they are strictly local. 
Thus, it makes the most sense to store the associated data locally. 

A quicklink itself is just an instance of the Windows.ApplicationModel.DataTransfer.-Quicklink 
class. You create one with the new operator and then populate its title, thumbnail, 
supportedDataFormats, supportedFileTypes, and id properties. The data formats and file types are what 
Windows uses to determine if this quicklink should be shown in the list of targets for whatever data is 
being shared from a source app (independent of the app’s manifest declarations). The title and 
thumbnail are used to display that choice in the Share charm, and the id is what gets passed to the 
target app when the quicklink is chosen. 

Tip For the thumbnail, use an image that’s more specifically representative of the quicklink (such as a 
contact photo) rather than just the target app. This helps distinguish the quicklink from the general use 
of the target app. 

An app then registers a quicklink with the system by passing it to the 
ShareOperation.report-Completed method. As this is the only way in which a quicklink is registered, it 
tells us that creating a quicklink always happens as part of another sharing operation. It’s a way to 
create a specific target that might save the user some time and encourage her to choose your target 
app again in the future. 

Let’s follow the process within the Sharing content target app sample to see how this all works. First, 
when you invoke the Share charm and choose the sample, you’ll see that it provides a check box for 
creating a quicklink (Figure 12-7). When you check this, it provide fields in which you can enter an id 
and a title (the thumbnail just uses a default image). When you press the Report Completed button, it 
calls reportCompleted and the quicklink is registered. On subsequent invocations of the Share charm 
with the appropriate data formats from the source app, this quicklink will then appear in the list, as 
shown in Figure 12-8 where the app servicing the quicklink is always indicated under the provided title. 

510

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.sharetarget.quicklink.aspx


  
FIGURE 12-7  Controls to create a quicklink in the Sharing content target app sample. 

  
FIGURE 12-8  A quicklink from the Sharing content target app sample as it appears in the Share charm target list. 

Here’s how the share target sample creates the quicklink within the function reportCompleted 
(js/target.js) that’s attached to the Report Completed button (some error checking omitted): 

if (addQuickLink) { 
    var quickLink = new Windows.ApplicationModel.DataTransfer.ShareTarget.QuickLink(); 
 
    var quickLinkId = document.getElementById("quickLinkId").value; 
    quickLink.id = quickLinkId; 
 
    var quickLinkTitle = document.getElementById("quickLinkTitle").value; 
    quickLink.title = quickLinkTitle; 
 
    // For quicklinks, the supported FileTypes and DataFormats are set independently 

511



    // from the manifest 
    var dataFormats = Windows.ApplicationModel.DataTransfer.StandardDataFormats; 
    quickLink.supportedFileTypes.replaceAll(["*"]); 
    quickLink.supportedDataFormats.replaceAll([dataFormats.text, dataFormats.uri, 
        dataFormats.bitmap, 
        dataFormats.storageItems, dataFormats.html, customFormatName]); 
 
    // Prepare the icon for a QuickLink 
    Windows.ApplicationModel.Package.current.installedLocation.getFileAsync( 
    "images\\user.png").done(function (iconFile) { 
        quickLink.thumbnail = Windows.Storage.Streams.RandomAccessStreamReference 
            .createFromFile(iconFile); 
        shareOperation.reportCompleted(quickLink); 
    }); 

Again, the process just creates the Quicklink object, sets its properties (perhaps settings a more 
specific thumbnail such as a contact person’s picture), and passes it to reportCompleted. In the share 
target sample, you can see that it doesn’t actually store any other local app data; for its purposes the 
properties in the quicklink are sufficient. Most target apps, however, will likely save some app data for 
the quicklink that’s associated with the quicklink.id property and reload that data when activated later 
on through the quicklink. 

When the app is activated in this way, the eventArgs.detail.shareOperation object within the 
activated event handler will contain the quicklinkId. The Source target app simply displays this id, but 
your would certainly use it to load app data and prepopulate your share UI:  

// If this app was activated via a QuickLink, display the QuickLinkId 
if (shareOperation.quickLinkId !== "") { 
    document.getElementById("selectedQuickLinkId").innerText = shareOperation.quickLinkId; 
    document.getElementById("quickLinkArea").className = "hidden"; 
} 

Note that when the target app is invoked through a quicklink, it doesn’t display the same UI to create 
a quicklink, because doing so would be redundant. However, if the user edited the information related 
to the quicklink, you might provide the ability to update the quicklink, which means to update the data 
you save related to the id, or to create a new quicklink with a new id. 

The Clipboard 
Before the Share contract was ever conceived, the mechanism we know as the Clipboard was once the 
poster child of app-to-app cooperation. And while it may not garner any media attention nowadays, it’s 
still a tried-and-true means for apps to share and consume data. 

For Windows Store apps, clipboard interactions build on the same DataPackage mechanisms we’ve 
already seen for sharing, so everything we’ve learned about populating that package, using custom 
formats, and using delayed rendering still apply. Indeed, if you make data available on the clipboard, 
you should make sure the same data is available for the Share contract! 
 

512



The question is how to wire up commands like copy, cut, and paste—from the app bar, a context 
menu, or keystrokes—should an app provide them for its own content (many controls handle the 
clipboard automatically). For this we turn to the Windows.ApplicationMode.DataTransfer.- 
Clipboard class. 

As shown in the Clipboard app sample, the processes here are straightforward. For copy and cut: 

• Create a new Windows.ApplicationModel.DataTransfer.DataPackage (or use MSApp.- 
createDataPackage or MSApp.createDataPackageFromSelection), and populate it with the 
desired data. 

var dataPackage = new Windows.ApplicationModel.DataTransfer.DataPackage(); 
dataPackage.setText(textValue); 
//... 

• (Optional) Set the package’s requestedOperation property to values from 
DataPackageOperation: copy, move, link, or none (the latter is used with delayed rendering). 
Note that these values can be combined using the bitwise OR operator, as in: 

var dpo = Windows.ApplicationModel.DataTransfer.DataPackageOperation; 
dataPackage.requestedOperation = dpo.copy | dpo.move | dpo.link; 

• Pass the data package to Windows.ApplicationMode.DataTransfer.Clipboard.setContent: 

Windows.ApplicationModel.DataTransfer.Clipboard.setContent(dataPackage); 

To perform a paste: 

• Call Windows.ApplicationMode.DataTransfer.Clipboard.getContent to obtain a read-only data 
package called a DataPackageView: 

var dataView = Windows.ApplicationModel.DataTransfer.Clipboard.getContent(); 

• Check whether it contains formats you can consume with the contains method (alternately, you 
can check the contents of the availableFormats vector): 

if (dataView.contains(Windows.ApplicationModel.DataTransfer.StandardDataFormats. 
    text)) { 
    //... 
} 

• Obtain data using the view’s get* methods such as getTextAsync, getBitmapAsync, and 
getDataAsync (for custom formats). When pasting HTML, you can also use the getResource- 
MapAsync method to get relative resource URIs. The view’s properties like the thumbnail are also 
useful, along with the requestedOperation value or values. 

dataView.getTextAsync().done(function (text) { 
    // Consume the data 
} 
 

 

513

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.clipboard.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.clipboard.aspx
http://go.microsoft.com/fwlink/?LinkId=231653
http://go.microsoft.com/fwlink/?LinkId=231653
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datapackageoperation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.datatransfer.datapackageview.aspx


If at any time you want to clear the clipboard contents, call the Clipboard class’s clear method. You 
can also make sure data is available to other apps even if yours is shut down by calling the flush 
method (which will trigger any deferred rendering you might have set up). 

Apps that use the clipboard also need to know when to enable or disable a paste command 
depending on available formats. At any time you can get the data package view from the clipboard and 
use its contains method or availableFormats property and decide accordingly. You should also then 
listen to the Clipboard object’s contentChanged event (a WinRT event), which will be fired when you or 
some other app calls the clipboard’s setContent method. At time time you’d again enable or disable the 
commands. Of course, you won’t receive this event when your app is suspended, so you should refresh 
the state of those commands within your resuming handler. 

Again, the Clipboard app sample provides examples of these various scenarios, including copy/paste 
of text and HTML (Scenario 1); copy and paste of an image (Scenario 2); copy and paste of files (Scenario 
3); and clearing the clipboard, enumerating formats, and handling contentChanged (Scenario 4). 

Note, finally, that pasted data can come from anywhere. Apps that consume data from the clipboard 
should, like a share target, treat the content they receive as potentially malicious and take appropriate 
precautions. 

Search 

Search has become such a ubiquitous feature for apps that the designers of Windows 8 decided to 
provide a system-level keyword search UI (with built-in Input Method Editor support) directly alongside 
Share, Devices, and Settings in the Charms bar, as shown in Figure 12-9. This means that apps don’t 
need to (and generally shouldn’t) provide their own UI controls for search, and, by participating in this 
contract, the user can not only easily search the app that’s in the foreground but also quickly and easily 
search within other apps without having to go off and start those apps separately. And because those 
other apps can be searching content that doesn’t necessarily exist on your machine, the Search charm 
fills the middle ground between material on your file system and the rest of the world. It’s quite 
powerful in this way! 

The Search charm also means that users never need to explicitly start your app to search within it. 
Simply by changing the search target within the search pane, that target app is launched and asked to 
perform a search with the current keywords. This is also what makes Search work even if the current 
foreground app doesn’t support the contract at all—the search target just defaults to the first app in the 
list. 
 

Tip If you need to know which side of the screen the Search pane appears on, so you can place controls 
on your results page so they won’t be obscured, check the 
Windows.UI.Application-Settings.SettingsPane.edge property. 

514

http://msdn.microsoft.com/library/windows/apps/windows.ui.applicationsettings.settingspane.edge.aspx


The Search contract that makes this happen is composed of a set of interactions between the 
Windows-provided Search UI and the search target app. (In this section, when I refer to a target app, I’m 
referring now to search, not share.) This interaction communicates the keywords (even if empty) to the 
app when the user presses Enter, clicks the icon to the right of the entry field, or changes apps. The 
interaction also allows the target app to provide suggested search terms, as well as suggested results 
(with result-specific graphics) that appear in the search pane directly, as shown in Figure 12-10. 

 

 
FIGURE 12-9  The Search pane invoked through the Search charm, with results shown in the Games app and the 
Photos app. As with Share, the user can control which apps are shown through Change PC Settings > Search. That 
same settings panel also allows the user to clear search history and control a few other aspects of the UI. 

Designwise, Search should work with whatever data the app manages, whether local or online (or 
both); it’s really the primary means to search within everything that the app can access. For this reason, 
Microsoft highly recommends that apps don’t provide their own search UI (which otherwise distracts 
from the app’s content) unless it’s really all the app does and where it would need additional search 
criteria up-front. Otherwise, it’s best to let the user first search through the charm and then filter, sort, 
and otherwise organize the results within the app through on-canvas or app bar commands. On the  
 
 
 
 

515



flip side, the Search charm is not intended for finding data within a page; that is, it is expected that apps 
provide their own controls for essentially scanning and highlighting results that are already in view (like 
the find function in browsers). Many details on such design questions can be found on Guidelines for 
search. 

  
FIGURE 12-10  Suggested searches (left) and search results (right) from a target app appear directly in the search 
pane. 

Searching within an app effectively navigates the app to its search results page, as we see in Figure 
12-9, and thus activates the app in the same script context as when it’s run normally. Again, if the app 
needs to be launched to service the search contract, it will be launched directly into that page (we’ll see 
this mechanism shortly). Tapping on a result then navigates the app directly to the details for that result. 
Of course, if the app was already running when invoked via Search, the result page’s back button should 
navigate to whatever page the user was on before. Even if the app is launched to service the Search 
charm, it’s helpful to provide the user with a means to navigate to its home page, especially when there 
are no results through which to navigate elsewhere. 

Let’s now look at the basic search contract interaction, after which we’ll explore the richer aspects of 
search suggestions, suggested results, and type to search. 

Search in the App Manifest and the Search Item Template 
An app’s life as a search target begins, as with other contracts, in the app manifest on the Declarations 
tab, as shown in Figure 12-11.  

516

http://msdn.microsoft.com/library/windows/apps/hh465233.aspx
http://msdn.microsoft.com/library/windows/apps/hh465233.aspx


 
FIGURE 12-11  The Search declarations page within Visual Studio; typically, the App Settings properties are left 
blanks in an HTML/JavaScript app. 

Since search is not tied to any particular data format (like share is), all you really need to specify here 
is a Start page, if in fact you want it to be separate from the rest of your app at all. Unlike the share 
contract, search is much more integrated with in-app navigation: when the user taps a result on your 
results page, you want to navigate to that page directly as if they’d tapped on the same item in some 
other list. Similarly, if the user taps the back button in your results page, they should navigate to 
whatever page they were on when the charm was first invoked. For this reason, then, activation via 
search typically gets handled by through the app’s main activated event. We’ll get to that in the next 
section. 

An easy way to add the Search contract is through the Search contract item template in Visual Studio 
and Blend. (You can see this listed back in Figure 12-4 just above the Share target contract.) If you 
right-click your project and select Add > New Item, or use the Project > Add New Item… menu 
command, you can choose the Search Contract item in from the list of templates. This will add the 
Search declaration in your app manifest and add three page control files (.html, .js. and .css) for a search 
results page. There’s not much exciting to show here visually because the template code very much 
relies on there being some real data to work with. Nevertheless, the template gives you a great structure 
to work from, including the recommended UI for providing filters and so forth. Some further details can 
be found on Adding a Search Contract item template. 

Basic Search and Search Activation 
The most basic interaction with the Search contract is receiving a query when the app is already 
running. This is a great example of how search really just triggers navigation in the app. To receive such 
a query, you need only listen to the querysubmitted event of the Windows.ApplicationModel.- 
Search.SearchPane object. The exact code looks something like this where searchPageURI identifies 
the results page:  

var searchPane = Windows.ApplicationModel.Search.SearchPane.getForCurrentView(); 
searchPane.onquerysubmitted = function (eventArgs) { 
    WinJS.Navigation.navigate(searchPageURI, eventArgs); 
}; 

517

http://msdn.microsoft.com/library/windows/apps/hh923025.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.search.searchpane.querysubmitted.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.search.searchpane.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.search.searchpane.aspx


The eventArgs object here will be a SearchPaneQuerySubmittedEventArgs that contains just two 
properties: queryText (the contents of the text box in the search pane) and language (the BCP 47 
language tag currently in used). In the code above, these are just passed to the WinJS.- 
Navigation.navigate method that passes them onto to the results page (whatever searchPageURI 
contains). From there, that page will just process queryText appropriate to language and populate the 
page contents with appropriate items. For this purpose an app typically uses a ListView control, as you 
might expect for a variable-length results collection. 

Through the same SearchPane object you can also set the placeholderText property with whatever 
should appear in the initial search box. Its show method allows you to show the pane programmatically, 
its visible property and visibilitychanged event will tell you its status, and its queryText property 
will give you the current contents of the input control. 

You can also listen for its querychanged event. This is a precursor to querySubmitted and is 
appropriate if you have logic you need to run outside of providing suggestions, such as previewing 
results (the behavior you see on the start screen when searching for apps, also known as word 
wheeling). Its eventArgs will contain queryText and language properties, as with query-submitted, 
along with a linguisticDetails property that provides details about text entered through an Input 
Method Editor (IME), specifically linguistic alternatives. If you expect to have Japanese or Chinese users, 
it’s highly recommended to also search for these alternatives in response to querychanged and 
suggestionsrequested (see the next section) 

Let’s see how search affects app activation, which again typically comesthrough your default 
activated handler in the same script context as when the app is run normally. 

In this case the activation kind value will be search, a case that you want to handle separately from 
launch. To see this in action, let’s turn to the Search contract sample. Its activation code is found in 
js/default.js—code that’s applicable to the entire app: 

function activated(eventObject) { 
    if (eventObject.detail.kind ===  
        Windows.ApplicationModel.Activation.ActivationKind.launch) { 
        eventObject.setPromise(WinJS.UI.processAll().then(function () { 
            var url = WinJS.Application.sessionState.lastUrl || scenarios[0].url; 
            return WinJS.Navigation.navigate(url); 
        })); 
    } else if (eventObject.detail.kind ===  
        Windows.ApplicationModel.Activation.ActivationKind.search) { 
        eventObject.setPromise(WinJS.UI.processAll().then(function () { 
            if (eventObject.detail.queryText === "") { 
                // Navigate to your landing page since the user is pre-scoping to your app. 
            } else { 
                // Display results in UI for eventObject.detail.queryText and  
                // eventObject.detail.language (that represents user's locale). 
            } 
 
            // Navigate to the first scenario since it handles search activation. 
            var url = scenarios[0].url; 
            return WinJS.Navigation.navigate(url, { searchDetails: eventObject.detail }); 

518

http://msdn.microsoft.com/library/windows/apps/br225067.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.search.searchpanequerychangedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.search.searchpanequerychangedeventargs.linguisticdetails.aspx
http://code.msdn.microsoft.com/windowsapps/Search-app-contract-sample-118a92f5


        })); 
    } 
} 

In the search activation path, it’s clearly good to avoid any processing that isn’t needed by the search 
page itself, but you still need to be prepared to navigate to other parts of the app when a result is 
chosen. Also, if the app is being launched in response to a search, be sure to reload both general 
settings as you would with a normal launch as well as session state when previousExecutionState is 
terminated. This means, in fact, that the state of a results page is part of the app’s session state; you’ll 
normally want to save the last search term as part of that state so that you can rehydrate the results 
page when needed. 

The sample doesn’t actually search any real data—it just outputs messages when certain events 
happen. But you can test this activation path in a couple of ways. First, if the app isn’t running, invoke 
the search charm, enter some query text, and then select the search sample. You’ll find that it ends up 
on the page for Scenario 1 and shows the search term right away. This tells you that it processed the 
activation and picked up the search term from eventObject.detail.queryText, as you can see in the 
code above. (Look also at js/scenario1.js where it outputs the term in the page’s processed method.) 

To step through the same code, set a breakpoint within the searchTarget case of the activated 
handler and run the app in the Visual Studio debugger. Invoke the search charm, enter a query, select 
some other app (which will do a search), and then switch back to the sample. You should hit your 
breakpoint as the activated handler will be called with the activation kind of search. 

When activated through search, be sure that the page gets fully processed with calls like WinJS.UI-
.processAll. (You don’t need to worry if the app is already running; processAll won’t do redundant 
work.) 

It is important when your app is activated—as with handling querysubmitted and/or querychanged 
events—to note that the queryText might be empty. In this case you can show default results or 
navigate to your home page if that’s more appropriate. See “Sidebar: Testing Search.” 

Sidebar: Testing Search 
A number of variations with the Search charm can affect how a search target app is launched and 
with what parameters. To be sure that you’ve exercised all applicable code paths, be sure to test 
these conditions: 

• App is running and search is invoked with no query text, query text with known results, and 
query text that returns no results. 

• App is not running and is invoked from the search charm, with all the variations on text 
listed above. 
 
 

519



• App is in the snapped state and is invoked as above, in which case Search will go to the Start 
screen. 

• App is suspended and is invoked as above. 

You should also be mindful of how you present results, taking care that the primary results are 
not hidden by the Search pane, which will remain visible until the user dismisses it. 

Sidebar: Synchronizing In-App Search with the Search Pane 
Some types of apps will still maintain their own in-app search UI in addition to using the search 
pane, or in other ways they might have some kind of search term that would be good to keep in 
sync with the term shown in the search pane. To do this, the app can ask the search pane for its 
queryText value and can attempt to set that value through the SearchPane.trySet-QueryText 
method. This call will fail, mind you, if the app isn’t itself visible or if the search pane is already 
visible or becoming visible. 

Providing Query Suggestions 
Using querysubmitted and the activation sequence in the previous section gives you the basic level of 
search interaction, and Windows will automatically provide a history of the user’s recent searches. Still, 
with just a little more work you can make the experience much richer. Because writing the code to 
actually perform the search, process the results, and display them beautifully is the bulk of the work with 
the Search contract anyway, adding support for query suggestions (this section) and result sugges-tions 
(next section) is a relatively small investment with a huge impact on the overall user experience. 

To go beyond the default search history and provide as-the-user-is-typing query suggestions, which 
appear to the user as shown on the left side of Figure 12-10, you have two options. Which one you use 
depends on what you want to suggest and the data that you’re searching. 

First, to provide suggestions from folders on the file system, such as the music, pictures, and videos 
libraries, the search pane provides a built-in implementation through its 
setLocalContent-SuggestionsSettings method with results like those in Figure 12-12. As shown in 
Scenario 4 of the sample, you first create a 
Windows.ApplicationModel.Search.LocalContentSuggestion-Settings object, populate its 
properties, and then pass that object to setLocalContent-SuggestionsSettings (js/scenario4.js): 

var page = WinJS.UI.Pages.define("/html/scenario4.html", { 
    ready: function (element, options) { 
        var localSuggestionSettings = new  
            Windows.ApplicationModel.Search.LocalContentSuggestionSettings(); 
        localSuggestionSettings.enabled = true; 
        localSuggestionSettings.locations.append(Windows.Storage.KnownFolders.musicLibrary); 
        localSuggestionSettings.aqsFilter = "kind:=music"; 
 

520

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.search.searchpane.trysetquerytext.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.search.searchpane.setlocalcontentsuggestionsettings.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.search.localcontentsuggestionsettings.aspx


        Windows.ApplicationModel.Search.SearchPane.getForCurrentView() 
           .setLocalContentSuggestionSettings(localSuggestionSettings); 
    } 
}); 

 
FIGURE 12-12  Suggestions from local folders as automatically provided by the search pane. 

In populating the LocalContentSuggestionSettings properties, be sure first to set enabled to true. 
The locations collection (a vector) contains one or more StorageFolder objects to indicate where the 
search should take place. Because enumerating files to provide suggestions requires programmatic 
access to those folders, you need to make sure your app has the appropriate capabilities set in its 
manifest, retrieves the folder from the AccessCache,  or has obtained programmatic access through the 
folder picker. In the latter case, the app would provide UI elsewhere to configure the search locations 
(perhaps through the Settings pane, for instance). 

You can also specify an Advanced Query Syntax (AQS) string in the aqsFilter property and/or some 
number of Windows Properties (like System.Title) within propertiesToMatch (a string vector). This is 
typically used to filter file types, as when searching a folder, but it can be as specific as you need. For 
more on AQS, refer to “Rich Enumeration with File Queries” in Chapter 8, “State, Settings, Files, and 
Documents”; for more on Windows properties, refer to “Media File Metadata” in Chapter 10, “Media.” 

As for the second option, LocalContentSuggestionSettings can do a lot for you, but clearly many 
apps will be searching on some other data source (whether local or online) and will thus need to supply 
suggestions from those sources. In these cases, listen for and handle the search pane’s 
suggestionsrequested event. Its eventArgs will contain the queryText, language, and linquistic- 
Details as always, and in response you populate a collection of up to five suggestions in the 
eventArgs.request.searchSuggestionCollection (again including the alternatives in the linguistic- 
Details object if needed). Ideally this takes half a second or less, and it’s important to know that all the 
results need to be in the collection once you return from your event handler. 
 
 

521

http://msdn.microsoft.com/library/windows/apps/aa965711.aspx
http://msdn.microsoft.com/library/windows/desktop/dd561977(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.search.searchpanesuggestionsrequestedeventargs.aspx


Here’s how it’s done in Scenario 2 of the Search contract sample (where suggestionList is just a 
hard-coded list of city names): 

Windows.ApplicationModel.Search.SearchPane.getForCurrentView().onsuggestionsrequested = 
    function (eventObject) { 
        var queryText = eventObject.queryText; 
        var suggestionRequest = eventObject.request; 
        var query = queryText.toLowerCase(); 
        var maxNumberOfSuggestions = 5; 
        for (var i = 0, len = suggestionList.length; i < len; i++) { 
            if (suggestionList[i].substr(0, query.length).toLowerCase() === query) { 
                suggestionRequest.searchSuggestionCollection.appendQuerySuggestion( 
                    suggestionList[i]); 
                if (suggestionRequest.searchSuggestionCollection.size === 
                    maxNumberOfSuggestions) { 
                    break; 
                } 
            } 
    } 
}; 

So if query contains “ba” as it would in Figure 12-10, the first 5 names in suggestionList will be 
Bangkok, Bangalore, Baghdad, Baltimore, and Bakersfield. Of course, a real app will be drawing 
suggestions from its own database or from a service (simulated in Scenarios 5 and 6, by the way), but 
you get the idea. With a service, though, you should also check the suggestionResult.isCanceled 
property before starting a new request: this flag indicates that the search query hasn’t actually changed 
from a previous query and it’s not necessary to create new suggestions. 

Note When the SearchPane.searchHistoryEnabled property is true (the default), a user’s search 
history will be automatically tracked with prior searches appearing as suggestions when the search 
charm is first invoked (before the user types any other characters). Setting this property to false will 
disable the behavior, in which case an app can maintain its own history of previous queryText values. If 
an app does this, we recommend providing a means to clear the history through the app’s Settings. 

Apps can also use the SearchPane.searchHistoryContext property to create different histories 
depending on different contexts. When this value is set prior to the search charm being invoked, 
automatically managed search terms (searchHistoryEnabled is true) will be saved for that context. 
This has no effect when an app manages its own history, in which case it can manage different histories 
directly. 

Now the eventArgs.request property, a SearchPaneSuggestionsRequest object, has a few features 
you want to know about. Its searchSuggestedCollection property is unique—it’s not an array or other 
generic vector but a SearchSuggestionCollection object with a size property and four methods: 
appendQuerySuggestion (to add a single item to the list, as shown above), appendQuerySuggestions (to 
add an array of items at once, as you might receive from a query to a service), appendResultSuggestion 
(see next section) and appendSearchSeparator (which is used to group suggestions). In the latter case, a 
separator is given a label and appears as follows: 

522

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.search.searchpanesuggestionsrequest.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.search.searchsuggestioncollection.aspx


 
The request object also has a getDeferral method if you need to perform an asynchronous 

operation to retrieve your suggestions. It works like all other deferral’s we’ve seen: before starting the 
async operation (like WinJS.xhr), call getDeferral to retrieve the deferral object, start the operation, 
return from the suggestionsrequested method, and call the deferral’s complete method inside the 
async completed handler. This is demonstrated again in Scenarios 5 and 6 of the sample since this 
would clearly be needed when querying a service for this purpose (code here derived from 
js/scenario5.js): 

Windows.ApplicationModel.Search.SearchPane.getForCurrentView().onsuggestionsrequested =  
function (eventObject) { 
    var queryText = eventObject.queryText; 
    var suggestionRequest = eventObject.request; 
 
    var deferral = suggestionRequest.getDeferral(); 
 
    // Create request to obtain suggestions from service and supply them to the Search Pane. 
    // Depending on design of the service, you might vary URL based on eventObject.language. 
    // You might also compose queryText in the URL to let the service do the filtering. 
    xhrRequest = WinJS.xhr({ url: /* URL to suggestion service */ }); 
    xhrRequest.done( 
        function (request) { 
            if (request.responseText /* or responseXML */) { 
                // Populate suggestionRequest.searchSuggestionCollection based on response 
            } 
 
            deferral.complete(); // Indicate we're done supplying suggestions. 
        }, 
        function (error) { 
            // Call complete on the deferral when there is an error. 
            deferral.complete(); 
        }); 
}; 

You can use any JSON or XML response format you want, but since your app is doing the parsing, 
there are existing standards for returning search suggestions. For JSON, refer to the OpenSearch 
Suggestions specification and Scenario 5 in the sample where a JSON response can be directly parsed 
into an array and passed in one call to appendQuerySuggestions. For XML, refer to the XML Search 
Suggestions Format Specification and Scenario 6. In the latter case, a function named 
generate-Suggestions provides a generic parser routine for such a response, and although the sample 
doesn’t demonstrate using separators, URIs, and images in those suggestions, the generateSuggestions 
function shows how to parse them and send them onto appendQuerySuggestion[s] as well as 
appendResultSuggestion, which we’ll see next. 

523

www.SoftGozar.comwww.SoftGozar.com

http://www.opensearch.org/Specifications/OpenSearch/Extensions/Suggestions/1.1
http://www.opensearch.org/Specifications/OpenSearch/Extensions/Suggestions/1.1
http://msdn.microsoft.com/library/cc891508.aspx
http://msdn.microsoft.com/library/cc891508.aspx


Providing Result Suggestions 
As shown in Figure 12-10 (on the right side), a search target app can provide suggested results and not 
just suggested queries. This is also accomplished by handling the search pane’s 
suggestions-requested event as described in the previous section, only make sure you use 
suggestion-Request.searchSuggestionCollection.appendResultSuggestion to populate the results 
and not appendQuerySuggestion[s] (appendSearchSeparator can still be used). You also then need to 
handle the search pane’s resultSuggestionChosen event to handle the user’s selection as a result and 
not as a query. 

In other words, handling the querysubmitted event means that you’re taking the query text and 
populating a list of results in your own page. Because of this, you’ll be handling click or tap events for 
those items directly, navigating to the appropriate details page. The resultSuggestionChosen event 
tells you that the same thing has happened in the system-owned search pane with results that are 
shown there from your suggestions. You thus process the resultSuggestionChosen event in the same 
way that you would handle an item invocation in your own page. The eventArgs.tag property in this 
case will contain the tag you provide for the suggested result in the appendResultSuggestion call. 

This method takes five arguments in this order, and be mindful of any necessary localization here: 

• text The first line text to show in the search pane (as in Figure 12-10). 

• detailText The second line of text for a search result (as in Figure 12-10) that is also used for 
tooltips. 

• tag The string you want to receive in the resultSuggestionChosen event. 

• image An IRandomAccessStreamReference for the image to display. The base size of this 
image is 40x40 for 100% scale, 56x56 for 140%, and 72x72 for 180%. Take these sizes into 
account if you dynamically generate images for the result suggestions. 

• imageAlternateText The alt attribute for the image. 

As noted in the previous section, the generateSuggestions function found in js/scenario6.js of the 
sample provides a generic parser that turns XML search suggestions into the appropriate 
appendResultSuggestion calls, including the use of 
Windows.Storage.Streams.RandomAccess-StreamReference.createFromUri to convert an image URI to 
the appropriate stream reference. Typically, such URIs point to a remote source where ideally you’d be 
able to ask your service for different sized images based on the resolution scaling. 

Local ms-appx:// and ms-appdata:// URIs are also allowable using the appropriate .scale-1x0 naming 
convention. You should always, in fact, have a default image for suggested results in your package 
(using an ms-appx:// URI to refer to it when necessary); the system will not provide one for you. 
 

524

www.SoftGozar.com

http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.irandomaccessstreamreference.aspx


Type to Search 
The final feature of Search is the ability to emulate the “type to search” behavior of the Windows Start 
screen, where the user doesn’t explicitly invoke the Search charm. If you haven’t done it before and you 
have a computer with a physical keyboard, press the Windows key to return to the Start screen, and 
start typing some app name without invoking the search charm first. Voila! The search charm appears 
automatically with results immediately filtered and displayed. This is essentially the same behavior that 
the Start button provided in previous versions of Windows, but it’s now much more visually engaging! 

To enable this in your own app, simply set the SearchPane.showOnKeyboardInput property to true. 
You can enable or disable the behavior at any time through this property. Generally speaking, we 
recommend providing this behavior on your app’s main page(s) and on search results pages, but not on 
other subsidiary pages where there can be other input controls, nor on details pages showing content 
for a single item, nor on pages that support an in-page find capability. For details, see Guidelines for 
Enabling Type to Search. 

Launching Apps: File Type and URI Scheme Associations 

Developers of Windows 8 apps have often asked whether it’s possible for one app to launch another. 
The answer is yes, with some restrictions (aren’t you surprised!). First, apps can be launched only 
through a file type or URI scheme association, not directly by name or path. To be specific, the only way 
for a Windows 8 app to launch another app—including desktop applications—is through the 
Windows.System.Launcher API that provides you with two choices: 

• launchFileAsync Launches another app associated with a given StorageFile. An optional 
LauncherOptions object lets you specify a number of details (see below). 

• launchUriAsync Launches another app associated with a given URI scheme, again with or 
without LauncherOptions. 

Note With both launchFileAsync and launchUriAsync, Windows 8 specifically blocks apps from 
launching any file or URI scheme that is handled by a system component and for which there is no 
legitimate scenario for a Windows 8 app to insert itself into that process. The How to handle file 
activation and How to handle protocol activation topics lists the specific file types and URI schemes in 
question. The file:// URI scheme is allowed in launchUriAsync, but only for intranet URIs when you 
have declared the Private Networks (Client & Server) capability in the manifest. 

The result of both these async methods, as passed to your completed handler, is a Boolean: true if 
the launch succeeded, false if not. That is, barring a catastrophic failure such as a low memory 
condition where the async operation will outright fail, these operations normally report success to your 
completed handler with a Boolean indicating the outcome. You’ll get a false result, for example, if you 
try to launch a file that itself contains executable code or other files that are blocked for security 
reasons. 

525

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.search.searchpane.showonkeyboardinput.aspx
http://msdn.microsoft.com/library/windows/apps/hh465233.aspx#user_experience_guidelines__enabling_type_to_search
http://msdn.microsoft.com/library/windows/apps/hh465233.aspx#user_experience_guidelines__enabling_type_to_search
http://msdn.microsoft.com/library/windows/apps/windows.system.launcher.aspx
http://msdn.microsoft.com/library/windows/apps/hh452684.aspx
http://msdn.microsoft.com/library/windows/apps/hh452684.aspx
http://msdn.microsoft.com/library/windows/apps/hh452686.aspx


However, you cannot know ahead of time what the result will be. This is the reason for the 
LauncherOptions parameter, through which you can provide fallback mechanisms: 

• The treatAsUntrusted option (a Boolean, default is false) will display a warning to the user that 
they’ll be switching apps if they proceed (see image below). This is good to use when you’re 
unsure about the source of the association, such as launching a URI found inside a PDF or other 
document, and want to prevent the user from experiencing a classic bait-and-switch! 

 
• displayApplicationPicker (a Boolean, default is false) will let the use choose which app to 

launch as part of the process (see image below). Note that the UI allows the user to change the 
default app for subsequent invocations. Also, the LauncherOptions.ui property can be used to 
control the placement of the app picker. 

 
• preferredApplicationDisplayName and preferredApplicationPackageFamilyName provide a 

suggestion to the user to acquire a specific app from the Windows Store if no other app is 
available to service the request. This is very useful with a particular URI scheme or file type for 
which you provide an app yourself. 

• Similarly, fallbackUri specifies a URI to which the user will be taken if no app can be found to 
handle the request and you don’t have a specific suggestion in the Windows Store. 

• Finally, for launchUriAsync, the contentType option identifies the content type associated with a 
URI that controls which app is launched. This is primarily useful when the URI doesn’t contain a 
specific scheme but simply refers to a file on a network using a scheme such as http or file that 
would normally launch a browser for file download. With contentType, the default app that’s 

526

http://msdn.microsoft.com/library/windows/apps/windows.system.launcheroptions.aspx


registered for that type, rather than the scheme, will be launched. That app, of course, must be 
able to them use the URI to access the file. In other words, this option is a way to pass a URI, 
rather than a whole file, to a handler app that you know can work with that URI. 

Scenarios 1 and 2 of the Association launching sample provide a demonstration of using these 
methods with some of the options so you can see their effects.  

On the flip side, as demonstrated in Scenarios 3 and 4 of the same sample, is the question of how an 
app associates itself with a file type or URI scheme so that it can be launched in these ways. These 
associations constitute the File Activation contract and the Protocol Activation contract. In both cases 
the target app must declare the file types and/or URI schemes it wishes to service in its manifest and 
must then provide for those activation kinds, as we’ll see in the following sections. 

Again, file or URI scheme association is the only means through which a Windows 8 app can launch 
another, so there’s no guarantee that you’ll actually launch a specific app. Of course, the more unique 
and specific the file type or URI scheme, the less likely it is that a consumer would have multiple apps to 
handle the association or even that there would be many such apps in the Windows Store. Indeed, 
designing a unique URI scheme interface, where the scheme is fairly app-specific, is really the best way 
to have one Windows 8 app launch and delegate a task to another, since all kinds of data can be passed 
in the URI string itself. The Maps app in Windows 8, for example, supports a bingmaps scheme for 
accomplishing mapping tasks from other apps. You can imagine the same for a stocks app, a calendar 
app, an email app (beyond mailto), and so forth. If you create such a scheme and want other apps to use 
it, you’ll certainly need to provide documentation for its usage details, which means that another app 
can implement the same scheme and thus offer itself as another choice in the Windows Store. So, 
there’s no guarantee even with a very specific scheme that you can know for certain that you’ll be 
launching another known app, but this is about as close as you can get to that capability.58 

File Activation 
To declare file activation capability, first go to the Declarations section of the manifest and add a “File 
Type Associations” declaration, the Visual Studio UI for which is shown in Figure 12-13. Each file type 
can have multiple specific types (notice the Add New button under Supported File Types), such as a 
JPEG having .jpg and .jpeg file extensions. Note that some file types are disallowed for apps; see How to 
handle file activation for the complete list. 

Under Properties, the Display Name is the overall name for a group of file types (this is optional; not 
needed if you have only one type). The Name, on the other hand, is required—it’s the internal identity 
for the file group and one that should remain consistent for the entire lifetime of your app across all 
updates. In a way, the Name/Display Name properties for the whole group of file types is like your real 
name, and all the individual file types are nicknames—any of them ultimately refer to the core file type 
and your app. 

58 In any case, it’s a good idea to register your URI scheme with the Internet Assigned Numbers Authority (IANA). RFC 4395 
is the particular specification for defining new URI schemes. 

527

http://code.msdn.microsoft.com/windowsapps/Association-Launching-535d2cec
http://msdn.microsoft.com/library/windows/apps/hh452684.aspx
http://msdn.microsoft.com/library/windows/apps/hh452684.aspx
http://www.iana.org/
http://tools.ietf.org/html/rfc4395#section-5


Info Tip is tooltip text for when the user hovers over a file of this type and the app is the primary 
association. The Logo is a little tricky; in Visual Studio here, you simply refer to a base name for an 
image file, like you do with other images in the manifest. In your actual project, however, you should 
have multiple files for the same image in different target sizes (not resolution scales): 16x16, 32x32, 
48x48, and 256x256. The Association launching sample uses such images with targetsize-* suffixes in the 
filenames.59 These various sizes help Windows provide the best user experience across many different 
types of devices. 

 

 
FIGURE 12-13  The Declarations > File Type Associations UI in the Visual Studio manifest designer. 

Under Edit Flags, these options control whether an “Open” verb is available for a downloaded file of 
this type: checking Open Is Safe will enable the verb in various parts of the Windows UI; checking Always 
Unsafe disables the verb. Leaving both blank might enable the verb, depending on where the file is 
coming from and other settings within the system. 
 

 

 

59 Ignore, however, the sample’s use of targetsize-* naming conventions for the app’s tile images; target sizes apply only to 
file and URI scheme associations. 

528

http://code.msdn.microsoft.com/windowsapps/Association-Launching-535d2cec


At the very bottom of this UI you can also set a discrete start page for handling activations, but 
typically you’ll use your main activation handler, as shown in js/default.js of the Association launching 
sample (leading into js/scenario3.js). 

There you’ll receive the activation kind of file, in which case eventArgs.detail is a WebUIFile-
ActivatedEventArgs: its files property contains the array of StorageFile objects from Windows.-
System.Launcher.launchFileAsync, and its verb property will be "open". You respond, of course, by 
opening and presenting the file contents in whatever way is appropriate to the app. 

Of course, since the file might have come from anywhere, treat it as untrusted content, as we 
mentioned earlier for share targets. Avoid taking permanent actions based on those the file contents. 

As with the Search contract, too, be sure to test file activation when the app is already running and 
when it must be started anew. In all cases be sure to load app settings and restore session state if 
eventArgs.detail.previousExecutionState is terminated. 

Protocol Activation 
Creating a URI scheme association for an app is much like a file type association. In the Declarations 
section of the manifest, add a Protocol declaration, as shown in Figure 12-14. 

 
FIGURE 12-14  The Declarations > Protocol UI in the Visual Studio manifest designer. 

Under Properties, the Logo, Display Name, and Name all have the same meaning as with file type 
associations (see the previous section). Similarly, while you can specify a discrete start page, you’ll 
typically handle activation in your main activation handler, as demonstrated in again in js/default.js of 
the Association launching sample (leading into js/scenario4.js). 

There you’ll receive the activation kind of protocol, in which case eventArgs.detail is a 
WebUIProtocolActivatedEventArgs: its uri property contains the URI from Windows.System.-
Launcher.launchUriAsync. 

529

http://msdn.microsoft.com/library/windows/apps/windows.ui.webui.webuifileactivatedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.webui.webuifileactivatedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.webui.webuiprotocolactivatedeventargs.aspxhttp:/msdn.microsoft.com/en-us/library/windows/apps/br224716.aspx


Once again be warned that URIs with some unique scheme can come from anywhere, including 
potentially malicious sources. Be wary of any data or queries in the URI, and avoid taking permanent 
actions with it. For instance, you can perhaps navigate to a new pagebut don’t modify database records 
to try to eval anything in the URI.  

Nevertheless, protocol associations are a primary way that an app can provide valuable services to 
others when appropriate. The built-in Maps app, for example, supports a bingmaps:// URI scheme and 
association, so you can just launch a URI with the appropriate format to show the user a fully interactive 
map instead of trying to implement such capabilities yourself. This is similar to how you rely on an email 
client with the mailto: scheme; other kinds of apps can easily create a URI scheme interface for other 
services and workflows. 

Tip To debug protocol activation you need to be able to have the app start directly within the 
debugger when it’s activated. To do this, open the project’s properties (Project > Properties menu 
command in Visual Studio), and then under Configuration Properties > Debugging set Launch 
Application to No. 

File Picker Providers 

Back in Chapter 8 we looked at how the file/folder picker can be used to reference not only locations on 
the file system but also content that’s managed by other apps or even created on-the-fly within other 
apps. Let’s be clear on this point: the app that’s using the file picker is doing so to obtain a StorageFile 
or StorageFolder for some purpose. But this does not mean that provider apps that can be invoked 
through the file picker necessary manage their data as files or folders. Their role is to take whatever kind 
of data they manage and package it up so that it looks like a file/folder to the picker. 

In the “Using the File Picker” section of Chapter 8, for instance, we saw how the Windows 8 Camera 
app can be used to take a photo and return it through the file picker. Such a photo did not exist at the 
time the target app was invoked; instead, it displayed its UI through which the user could essentially 
create a file that was then passed back through the file picker. In this way, the Camera app shortcuts the 
whole process of creating a new picture, providing that function exactly when the user is trying to select 
a picture file. Otherwise the user would have to start the Camera app separately, take a photo, store it 
locally, and switch to the original app to invoke the file picker and relocate that new picture. 

The file picker is not limited to pictures, of course: it works with any file type, depending on what the 
caller indicates it wants. One app might let the user go into a music library, purchase and download a 
track, and then return that file to the file picker. Another app might perform some kind of database 
query and return the results as a file, and still others might allow the user to browse online databases of 
file-type entities, again hiding the details of downloading and packaging that data as a file such that the 
user’s experience of the file picker is seamless across the local file system, online resources, and apps 
that just create data dynamically. It’s also possible to create an app that generates or acquires file-like 
data on the fly, such as the Camera app that allows you to take a picture or an audio app that could 

530



record a new sound. In such cases, however, note that the file picker contracts are designed for relatively 
quick in-and-out experiences. For this reason an app should provide only basic editing capabilities (like 
cropping a photo or trimming the audio) in this context. 

As with the Search and Share target contracts, Visual Studio and Blend provide an item template for 
file picker providers, specifically the File Open Picker contract item in the Add > New Item dialog as 
we’ve seen before (it’s hiding off the top of the list in Figure 12-4). This gives you a basic selection 
structure built around a Listview control, but not much else. For our purposes here we won’t be using 
this template; we’ll draw on samples instead. Generally speaking, when servicing the file picker 
contracts, an app should use the same views and UI as it does when launched normally, thereby keeping 
the app experience consistent in both scenarios. 

Manifest Declarations 
To be a provider for the file picker, an app starts by—what else!—adding the appropriate declaration to 
its manifest. In this case there are actually three declarations: File Open Picker, File Save Picker, and 
Cached File Updater, as shown below in Visual Studio’s manifest designer. Each of these declarations 
can be made once within any given app. 

 
The File Open Picker and File Save Picker declarations are what make a provider app available in the 

dialogs invoked through the Windows.Storage.Pickers.FileOpenPicker and FileSavePicker API. The 
calling app in both cases is completely unaware that another app might be invoked—all the interaction 
is between the picker and the provider app through the contract, with the contract broker being 
responsible for first displaying a UI through which to select an object and second for returning a 
StorageFile object for that item. 

With both the File Open Picker and File Save Picker contracts, the provider app indicates in its 
manifest those file types that it can service. This is done through the Add New button in the image 
below; the file picker will then make that app available as a choice only when the calling app indicates a 
matching file type. The Supports Any File Type option that you see here will make the app always 
appear in the list, but this is appropriate only for apps like SkyDrive that provide a general storage 

531



location. Apps that work only with specific file types should indicate only those types. 

  
The provider app indicates a Start Page for the open and save provider contracts separately—the 

operations are distinct and independent. In both cases, as we’ve seen for other contracts, these are the 
pages that the file picker will load when the user selects this particular provider app. As with Share 
targets, these pages are typically independent of the main app and will have their own script contexts 
and activation handlers, as we’ll see in the next section. (Again, the Executable and Entry Point options 
are there for other languages.) 

You might be asking: why are the open and save contracts separate? Won’t most apps generally 
provide both? Well, not necessarily. If you’re creating a provider app for a web service that is effectively 
read-only (like the image results from a search engine), you can serve only the file open case. If the 
service supports the creation of new files and updating existing files, such as a photo or document 
management service would, then you can also serve the file save case. There might also be scenarios 
where the provider would serve only the save case, such as writing to a sharing service. In short, 
Windows cannot presume the nature of the data sources that provider apps will work with, so the two 
contracts are kept separate. 

While the next main section in this chapter covers the Cached File Updater contract, it’s good to 
know how it relates to the others here. This contract allows a provider app to synchronize local and 
remote copies of a file, essentially to subscribe to and manage change/access notifications for provided 
files. This is primarily of use to apps that represent a file repository where the user will frequently open 
and save files, like SkyDrive or a database app. It’s essentially a two-way binding service for files when 
either local or remote copies can be updated independently. As such, it’s always implemented in 
conjunction with the file picker provider contracts. 
 

Tip As noted earlier in this chapter, the Sharing and exchanging data topic on the Windows Developer 
Center has some helpful guidance as to when you might choose to be a provider for the file save picker 
contract and when being a share target is more appropriate. 
 

532

http://msdn.microsoft.com/library/windows/apps/hh464923.aspx


Activation of a File Picker Provider 
Demonstrations of the file picker provider contracts—for open and save—are found in the  File picker 
contracts sample, which I’ll refer to as the provider sample for clarity. Declarations for both are included 
in the manifest with Supports Any File Type, so the sample will be listed with other apps in all file 
pickers, as shown here: 

 
When invoked, the Start page listed in the manifest for the appropriate contract (open or save) is 

loaded. These are fileOpenPicker.html and fileSavePicker.html, found in the root of the project. Both of 
these pages are again loaded independently of the main app and appear as shown in Figures 12-15 and 
12-16. Note that the title of the app and the color scheme is determined by the Application UI settings 
in the provider app’s manifest. In particularly, the text comes from the Display Name field and the colors 
come from the Foreground Text and Background Color settings under Tile, as shown in Figure 12-17. 
Note that the system automatically adds the down chevron (⌄) next to the title in Figures 12-15 and 
12-16 through which the user can select a different picker location or provider app. 

 
FIGURE 12-15  The Open UI as displayed by the sample. 

533

http://code.msdn.microsoft.com/windowsapps/File-picker-app-extension-0cb95155
http://code.msdn.microsoft.com/windowsapps/File-picker-app-extension-0cb95155


 
FIGURE 12-16  The Save UI as displayed by the sample. 

 
FIGURE 12-17  Application UI settings in the manifest that affect the appearance of the open and save picker UI for a 
provider app. The gray bars in this image represent other fields that I’ve omitted for brevity. 

When you first run this sample, you won’t see either of these pages. Instead you’ll see a page 
through which you can invoke the file open or save pickers and then choose this app as a provider. You 
can do this if you like, but I recommend using a different app to invoke the pickers, just so we’re clear 
on which app is playing which role. For this purpose you can use the sample we used in Chapter 8, the 
File picker sample (this is the consumer side). You can even use something like the Windows 8 Music 
app where the Open File command on its app bar will invoke a picker wherein the provider sample will 
be listed. 

Whatever your choice, the important parts of the provider sample are its separate pages for servicing 
its contracts, which are again fileOpenPicker.html and fileSavePicker.html. In the first case, the code is 
contained in js/fileOpenPicker.js where we can see the activated event handler with the activation kind 
of fileOpenPicker: 

function activated(eventObject) { 
    if (eventObject.detail.kind ===  

534

http://code.msdn.microsoft.com/windowsapps/File-picker-sample-9f294cba


        Windows.ApplicationModel.Activation.ActivationKind.fileOpenPicker) { 
        fileOpenPickerUI = eventObject.detail.fileOpenPickerUI; 
 
        eventObject.setPromise(WinJS.UI.processAll().then(function () { 
            // Navigate to a scenario page... 
        })); 
    } 
} 

Here eventObject.detail is a WebUIFileOpenPickerActivatedEventArgs object, whose 
fileOpenPickerUI property (a Windows.Storage.Pickers.Providers.FileOpenPickerUI object) 
provides the means to fulfill the provider’s responsibilities with the contract. 

In the second case, the code is in js/fileSavePicker.js where the activation kind is fileSavePicker: 

function activated(eventObject) { 
    if (eventObject.detail.kind ===  
        Windows.ApplicationModel.Activation.ActivationKind.fileSavePicker) { 
        fileSavePickerUI = eventObject.detail.fileSavePickerUI; 
 
        eventObject.setPromise(WinJS.UI.processAll().then(function () { 
            // Navigate to a scenario page 
        })); 
    } 
} 

where eventObject.detail is a WebUIFileSavePickerActivatedEventArgs object. As with the open 
contract, the fileSavePickerUI property of this (a Windows.Storage.Pickers.Providers.- 
FileSavePickerUI object) provides the means to fulfill the provider’s side of the contract. 

In both open and save cases, the contents of the contract’s Start page is displayed within the 
letterboxed area between the system-provided top and bottom bands. If that content overflows the 
provided space, scrollbars would be provided only within that area—the top and bottom bands always 
remain in place. In both cases, WinRT also provides the usual features for activation, such as the 
splashScreen and previousExecutionState properties, just as we saw in Chapter 3, “App Anatomy and 
Page Navigation,” meaning that you should reload necessary session state and use extended splash 
screens as needed. 

What’s most interesting, though, are the contract-specific interactions that are represented in the 
different scenarios for these pages (as you can see in Figures 12-15 and 12-16). Let’s look at each. 

Note For specific details on designing a file picker experience, see Guidelines for file pickers. 

File Open Provider: Local File 
The provider for file open works through the FileOpenPickerUI object supplied with the 
fileOpen-Picker activation kind. Simply said, whatever kind of UI the provider offers to select some file 
or data will be wired to the various methods, properties, and events of this object. 

535

http://msdn.microsoft.com/library/windows/apps/windows.ui.webui.webuifileopenpickeractivatedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.provider.fileopenpickerui.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.webui.webuifilesavepickeractivatedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.provider.filesavepickerui.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.provider.filesavepickerui.aspx
http://msdn.microsoft.com/library/windows/apps/hh465182.aspx


First, the UI will use the allowedFileTypes property to filter what it displays for selection—clearly, the 
provider should not display items that don’t match what the file picker is being asked to pick! Next, the 
UI can use the selectionMode property (a FileSelectionMode value) to determine if the file picker was 
invoked for single or multiple selection. 

When the user selects an item within the UI, the provider calls the addFile method with the 
StorageFile object as appropriate for that item. Clearly, the provider has to somehow create that 
StorageFile object. In the sample’s open picker > Scenario 1, this is accomplished with a 
StorageFolder.getFileAsync (where the StorageFolder is the package location). 

Windows.ApplicationModel.Package.current.installedLocation 
    .getFileAsync("images\\squareTile-sdk.png").then(function (fileToAdd) { 
    addFileToBasket(localFileId, fileToAdd); 
} 

where addFileToBasket just calls FileOpenPickerUI.addFile and displays messages for the result. That 
result is a value from Windows.Storage.Pickers.Provider.AddFileResult: added (success), alreadyAdded 
(redundant operations, so the file is already there), notAllowed (adding is denied due to a mismatched 
file type), and unavailable (app is not visible). These really just help you report the result to users in 
your UI. Note also that the canAddFile method might be helpful for enabling or disabling add 
commands in your UI as well, which will prevent some of these error cases from ever arising in the first 
place. 

The provider app must also respond to requests to remove a previously added item, as when the user 
removes a selection from the “basket” in the multi-select file picker UI. To do this, listen for the 
FileOpenPickerUI object’s fileRemoved event, which provides a file ID as an argument. You pass this ID 
to containsFile followed by removeFile as in the sample (js/fileOpenPickerScenario1.js): 

// Wire up the event in the page's initialization code 
fileOpenPickerUI.addEventListener("fileremoved", onFileRemovedFromBasket, false); 
 
function removeFileFromBasket(fileId) { 
    if (fileOpenPickerUI.containsFile(fileId)) { 
        fileOpenPickerUI.removeFile(fileId); 
    } 
} 

If you need to know when the file picker UI is closing your page (such as the user pressing the Open 
or Cancel buttons as shown in Figure 12-15), listen for the closing event. This gives you a chance to 
close any sessions you might have opened with an online service and otherwise perform any necessary 
cleanup tasks. In the eventArgs you’ll find an isCanceled property that indicates whether the file picker 
is being canceled (true) or if it’s being closed due to the Open button (false). The 
eventArgs.closingOperation object also contains a getDeferral method and a deadline property that 
allows you to carry out async operations as well, similar to what we saw in Chapter 3 for the suspending 
event. 
 

 

536

http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.provider.fileselectionmode.aspx


A final note is that a file picker provider should respect the FileOpenPickerUI.settings-Identifier 
to relaunch the provider to a previous state (that is, a previous picker session). If you remember from the 
other side of this story, an app that’s using the file picker can use the settings-Identifier to 
distinguish different use cases within itself—perhaps to differentiate certain file types or feature 
contexts. The identifier can also differ between different apps that invoke the file picker. By honoring 
this property, then, a provider app can maintain a case-specific context each time it’s invoked (basically 
using settingsIdentifier in its appdata filenames and the names of settings containers), which is how 
the built-in file pickers for the file system works. 

It’s also possible for the provider app to be suspended while displaying its UI and could possibly be 
shut down if the calling app is closed. However, if you manage picker state based on 
settings-Identifier values, you don’t need to save or manage any other session state where your 
picker functionality is concerned. 

File Open Provider: URI 
For the most part, Scenario 2 of the open file picker case in the provider sample is just like we’ve seen in 
the previous section. The only difference is that it shows how to create a StorageFile from a nonfile 
source, such as an image that’s obtained from a remote URI. In this situation we need to obtain a data 
stream for the remote URI and convert that stream into a StorageFile. Fortunately, a few WinRT APIs 
make this very simple, as shown in js/fileOpenPickerScenario2.js within its onAddFileUri method: 

function onAddUriFile() { 
    // Respond to the "Add" button being clicked 
    var imageSrcInput = document.getElementById("imageSrcInput"); 
 
    if (imageSrcInput.value !== "") { 
        var uri = new Windows.Foundation.Uri(imageSrcInput.value); 
        var thumbnail =  
            Windows.Storage.Streams.RandomAccessStreamReference.createFromUri(uri); 
 
        // Retrieve a file from a URI to be added to the picker basket 
        Windows.Storage.StorageFile.createStreamedFileFromUriAsync("URI.png", uri, 
            thumbnail).then(function (fileToAdd) { 
            addFileToBasket(uriFileId, fileToAdd); 
        }, 
        function (error) { 
            // ... 
        }); 
    } else { 
        // ... 
    } 
} 

Here Windows.Storage.StorageFile.createStreamedFileFromUriAsync does the honors to give us a 
StorageFile for a URI, and addFileToBasket is again an internal method that just calls the addFile 
method of the FileOpenPickerUI object. 

 

537



Note that if you need to perform authentication or take any other special steps to obtain content 
from a web service, you’ll generally want to use the Windows.Netwoking.BackgroundTransfer API to 
acquire the content (where you can provide credentials), followed by StorageFile.create- 
StreamedFile to then serve that file up through the contract. StorageFile.createStreamed- 
FileFromUriAsync does exactly this but doesn’t provide for authentication. 

File Save Provider: Save a File 
Similar to how the file open provider interacts with a FileOpenPickerUI object, a provider app for saving 
files works with the specific methods, properties, and events FileSavePickerUI class. Again, the open 
and save contracts are separate concerns because the data source for which you might create a provider 
app might or might not support save operations independently of open. If you do support both, you 
will likely reuse the same UI and would thus use the same Start page and activation path. 

Within the FileSavePickerUI class, we first have the allowedFileTypes as provided by the app that 
invoked the file save picker UI in the first place. As with open, you’ll use this to filter what you show in 
your own UI so that users can clearly see what items for these types already exist. You’ll also typically 
want to populate a file type drop-down list with these types as well. 

For restoring the provider’s save UI for the specific calling app from a previous session, there is again 
the settingsIdentifier property. 

Referring back to Figure 12-16, notice the controls along the bottom of the screen, the ones that are 
automatically provided by the file picker UI when the provider app is invoked. When the user changes 
the filename field, the provider app can listen for and handle the FileSavePickerUI object’s 
filenameChanged event; in your handler you can get the new value from the fileName property. If the 
provider app has UI for setting the filename, it cannot write to this property, however. It must instead 
call trySetFileName, whose return value from the SetFileNameResult enumeration is either succeeded, 
notAllowed (typically a mismatched file type), or unavailable. This is typically used when the user taps 
an item in your list, where the expected behavior is to set the filename to the name of that item. 

The most important event, of course, happens when the user finally taps the Save button. This will 
fire the FileSavePickerUI object’s targetFileRequested event. You must provide a handler for this 
event, in which you must create an empty StorageFile object in which the app that invoked the file 
picker UI can save its data. The name of this StorageFile must match the fileName property. 

The eventArgs for this event is a Windows.Storage.Pickers.Providers.TargetFile-Requested-
EventArgs object. This contains a single property named request, which is a TargetFileRequest. Its 
targetFile property is where you place the StorageFile you create (or null if there’s an error). You 
must set this property before returning from the event handler, but of course you might need to 
perform asynchronous operations to do this at all. For this purpose, as we’ve seen many times, the 
request also contains a getDeferral method. This is used in Scenario 1 of the provider sample’s save 
case (js/fileSavePickerScenario1.js): 

function onTargetFileRequested(e) { 
    var deferral = e.request.getDeferral(); 

538

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.provider.setfilenameresult.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.provider.filesavepickerui.targetfilerequested.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.provider.targetfilerequestedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.provider.targetfilerequestedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.pickers.provider.targetfilerequest.aspx


 
    // Create a file to provide back to the Picker 
    Windows.Storage.ApplicationData.current.localFolder.createFileAsync( 
        fileSavePickerUI.fileName).done(function (file) { 
        // Assign the resulting file to the targetFile property and complete the deferral  
        e.request.targetFile = file; 
        deferral.complete(); 
    }, function () { 
        // Set the targetFile property to null and complete the deferral to indicate failure 
        e.request.targetFile = null; 
        deferral.complete(); 
    }); 
}; 

In your own app you will, of course, replace the createFileAsync call in the local folder with 
whatever steps are necessary to create a file or data object. Where remote files are concerned, on the 
other hand, you’ll need to employ the Cached File Updater contract (see “Cached File Updater” below).  

File Save Provider: Failure Case 
Scenario 2 of the provider sample’s save UI just shows one other aspect of the process: displaying errors 
in case there is a real failure to create the necessary StorageFile. Generally speaking, you can use 
whatever UI you feel is best and consistent with the app in general, to let the user know what they need 
to do. The sample uses a MessageDialog like so: 

function onTargetFileRequestedFail(e) { 
    var deferral = e.request.getDeferral(); 
 
    var messageDialog = new Windows.UI.Popups.MessageDialog("If the app needs the user to 
correct a problem before the app can save the file, the app can use a message like this to 
tell the user about the problem and how to correct it."); 
 
    messageDialog.showAsync().done(function () { 
        // Set the targetFile property to null and complete the deferral to indicate failure  
        // once the user has closed the dialog.  This will allow the user to take any 
        // necessary corrective action and click the Save button once again. 
        e.request.targetFile = null; 
        deferral.complete(); 
    }); 
}; 

Cached File Updater 

Using the cached file updater contract provides for keeping a local copy of a file in sync with one 
managed by a provider app on some remote resources. This contract is specifically meant for apps that 
provide access to a storage location where users regularly save, access, and update files. The SkyDrive 
app in Windows is a good example of this. In other cases where the user is generally going to pick a file 
and use it some scenario but not otherwise come back to it, using the file picker contracts is entirely 
sufficient. 

539



Back in Chapter 8, we saw some of the method calls that are made by an app that uses the file picker: 
Windows.Storage.CachedFileManager.deferUpdates and Windows.Storage.CachedFileManager.-
completeUpdatesAsync. This usage is shown in Scenarios 4 and 6 of the File picker sample we worked 
with in that chapter. Simply said, these are the calls that a file-consuming app makes if and when it 
writes to a file that it obtained from a file picker. It does this because it won’t know (and shouldn’t care) 
whether the file provider has another copy in database, web service, etc., that needs to be kept in sync. 
If the provider needs to handle synchronization, the consuming app’s calls to these methods will trigger 
the necessary cached file updater UI of the provider app, which might or might not be shown, 
depending on the need. Even if the consuming app doesn’t call these methods, the provider app will 
still be notified of changes but won’t be able to show any UI. 

There are two directions with which this contract works, depending on whether it’s needed to update 
a local (cached) copy of a file or the remote (source) copy. In the first case, the provider is asked to 
update the local copy, typically when the consuming app attempts to access that file (pulling it from the 
FutureAccessList or MostRecentlyUsed list of Windows.Storage.AccessCache; it does not explicitly ask 
for an update). In the second case, the consuming app has modified the file such that the provider 
needs to propagate those changes to its source copy. 

From a provider app’s point of view, the need for such updates comes into play whenever it supplies 
a file to another app. This can happen through the file picker contracts, as we’ve seen in the previous 
section, but also through file type associations as well as the share contract. In the latter case a share 
source app is, in a sense, a file provider and might make use of the cached file updater contract as well. 
In short, if you want your file-providing app to be able to track and synchronize updates between local 
and remote copies of a file, this is the contract to use. 

Supporting the contract begins with a manifest declaration as shown below, where the Start page 
indicates the page implementing the cached file updater UI. That page will handle the necessary events 
to update files and might or might not actually be displayed to the user, as we’ll see later. 

 
 
 
 
 
 
 

540

http://code.msdn.microsoft.com/windowsapps/File-picker-sample-9f294cba
http://msdn.microsoft.com/library/windows/apps/br230566.aspx


The next step for the provider is to indicate when a given StorageFile should be hooked up with this 
contract. It does so by calling Windows.Storage.Provider.CachedFileUpdater.- 
setUpdateInformation on a provided file as shown in Scenario 3 of the  File picker contracts sample, 
which I’ll again refer to as the provider sample for simplicity (js/fileOpenPickerScenario3.js): 

function onAddFile() { 
    // Respond to the "Add" button being clicked 
 
    Windows.Storage.ApplicationData.current.localFolder.createFileAsync("CachedFile.txt", 
        Windows.Storage.CreationCollisionOption.replaceExisting).then(function (file) { 
        Windows.Storage.FileIO.writeTextAsync(file, "Cached file created...").then( 
            function () { 
                Windows.Storage.Provider.CachedFileUpdater.setUpdateInformation( 
                    file, "CachedFile", 
                    Windows.Storage.Provider.ReadActivationMode.beforeAccess, 
                    Windows.Storage.Provider.WriteActivationMode.notNeeded, 
                    Windows.Storage.Provider.CachedFileOptions.requireUpdateOnAccess); 
                addFileToBasket(localFileId, file); 
            }, onError); 
    }, onError); 
}; 
 

Note setUpdateInformation is within the Windows.Storage.Provider namespace and is different 
from the Windows.Storage.CachedFileManager object that’s used on the other side of the contract; be 
careful to not confuse the two. 

The setUpdateInformation method takes the following arguments: 

• A StorageFile for the file in question. 

• A content identifier string that identifies the remote resource to keep in sync. 

• A ReadActivationMode indicating whether the calling app can read its local file without 
updating it; values are notNeeded and beforeAccess. 

• A WriteActivationMode indicating whether the calling app can write to the local file and 
whether writing triggers an update; values are notNeeded, readOnly, and afterWrite. 

• One or more values from CachedFileOptions (that can be combined with bitwise-OR) that 
describes the ways in which the local file can be accessed without triggering an update; values 
are none (no update), requireUpdateAccess (update on accessing the local file), 
useCachedFileWhenOffline (will update on access if the calling app desires, and access is allowed 
if there’s no network connection), and denyAccessWhenOnline (triggers an update on access and 
requires a network connection). 
 
 
 

541

http://msdn.microsoft.com/library/windows/apps/windows.storage.provider.cachedfileupdater.setupdateinformation.aspx
http://code.msdn.microsoft.com/windowsapps/File-picker-app-extension-0cb95155
http://msdn.microsoft.com/library/windows/apps/windows.storage.provider.readactivationmode.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.provider.writeactivationmode.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.provider.cachedfileoptions.aspx


It’s through this call, in other words, that the provider specifically controls how and when it should be 
activated to handle updates when a local file is accessed. 

So, together we have two cases where the provider app will be invoked and might be asked to show 
its UI: one where the calling app updates the file, and another when the calling app attempts to access 
the file but needs an update before reading its contents. 

Before going into the technical details, let’s see how these interactions appear to the user. To see the 
cached file updater in action using the sample, invoke it by using the file picker from another app. First, 
then, run the provider sample to make sure its contracts are registered. Then run the aforementioned 
File picker sample. In the latter, Scenarios 4, 5, and 6 cause interactions with the cached file updater 
contract. Scenarios 4 and 6 write to a file to trigger an update to the remote copy; Scenario 5 accesses a 
local file that will trigger a local update as part of the process. 

Updating a Local File: UI 
In Scenario 5 (updating a local file), start by tapping the Pick Cached File button in the UI shown here: 

 
This will launch the provider sample. In that view, select Scenario 3 so that you see the UI shown in 

Figure 12-18. This is the mode of the provider sample that is just a file picker provider, 
(js/fileOpenPickerScenario3.js) where it calls setUpdateInformation. This is not the UI for the cached file 
updater yet. Click the Add File to Basket button, and tap the Open button. This will return you to the 
first app (the picker sample in the above graphic) where the Output Latest Version button will now be 
enabled. Tapping that button will then invoke the provider sample through the cached file updater 
contract, as shown in Figure 12-19. This is what appears when there’s a need to update the local copy of 
the cached file. 

542

http://code.msdn.microsoft.com/windowsapps/File-picker-sample-9f294cba


 
FIGURE 12-18  The provider sample’s UI for picking a file; the setUpdateInfomation method is called on the 
provided file to set up the cached file updater relationship. 

 
FIGURE 12-19  The provider sample’s UI for the cached file updater contract on a local file. 

Take careful note of the description in the sample. While the sample shows this UI by default, a 
cached file updater app will not show it unless it’s necessary to resolve conflicts or collect credentials. 
Oftentimes no such interaction is necessary and the provider silently provides an update to the local file 
or indicated that the file is current. The sample’s UI here is simply providing both those options as 
explicit choices (and be sure to choose one of them because selecting Cancel will throw an exception). 

543



Updating a Remote File: UI 
In Scenario 6 (updating a remote file) of the file picker sample, we can see the interactions that take 
place when the consuming app writes changes to its local copy, thereby triggering an update to the 
remote copy. Start by tapping the Get Save File button in the UI shown next: 

 
In the picker, select the provider sample as the picker source, which invokes the UI of Figure 12-20 

through the file save picker contract, implemented through html/fileSavePickerScenario3.html and 
js/fileSavePickerScenaro3.js. If you look in the JavaScript file, you’ll again see a call to 
setUpdateInformation that’s called when you enter a file name and tap Save. Doing so also returns you 
to the picker sample above where Write To File should now be enabled. Tapping Write To File then 
reinvokes the provider sample through the cached file updater contract with the UI shown in Figure 
12-21. This UI is intended to demonstrate how such a provider app would accommodate overwriting or 
renaming the remote file. 

 
FIGURE 12-20  The provider sample’s UI for saving a file; the setUpdateInfomation method is again called on the 
provided file to set up the cached file updater relationship. 

544



 
FIGURE 12-21  The provider sample’s UI for the cached file updater contract on a remote file. 

Update Events 
Let’s see how the cached file updater contract looks in code. As you will by now expect, the provider 
app is launched, the Start page (cachedFileUpdater.html in the project root) is loaded, and the activated 
handler is called with the activation kind of cachedFileUpdater. This will happen for both local and 
remote cases, and as we’ll see here, you use the same activation code for both. Here 
eventObject.detail is a WebUICachedFileUpdaterActivatedEventArgs that contains a 
cachedFileUpdaterUI property (a CachedFileUpdaterUI) along with the usual roster of kind, 
previousExecutionState, and splashScreen. Here’s how it looks in js/cachedFileUpdater.js of the 
provider sample: 

function activated(eventObject) { 
    if (eventObject.detail.kind === 
        Windows.ApplicationModel.Activation.ActivationKind.cachedFileUpdater) { 
        cachedFileUpdaterUI = eventObject.detail.cachedFileUpdaterUI; 
 
        cachedFileUpdaterUI.addEventListener("fileupdaterequested", onFileUpdateRequest); 
        cachedFileUpdaterUI.addEventListener("uirequested", onUIRequested); 
 
        switch (cachedFileUpdaterUI.updateTarget) { 
            case Windows.Storage.Provider.CachedFileTarget.local: 
                // Code omitted: configures sample to show cachedFileUpdaterScenario1 
                // if needed. 
                break; 
 
            case Windows.Storage.Provider.CachedFileTarget.remote: 
                // Code omitted: configures sample to show cachedFileUpdaterScenario2 
                // if needed. 
                break; 

545

http://msdn.microsoft.com/library/windows/apps/hh701752.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.provider.cachedfileupdaterui.aspx


        } 
    } 
} 

When the provider app is invoked to update a local file from the remote source, the cachedFile-
UpdaterUI.updateTarget property will be local, as you can see above. When the app is being asked to 
update a remote file with local changes, the target is remote. All the sample does in these cases is point 
to either html/cachedFileUpdaterScenario1.html (Figure 12-19) or 
html/cachedFile-UpdaterScenario2.html (Figure 12-21) as the update UI. 

The UI is not actually shown initially. What happens first is that the CachedFileUpdaterUI object fires 
its fileUpdateRequested event to attempt a silent update. Here the eventArgs is a 
File-UpdateRequestedEventArgs object with a single request property (FileUpdateRequest), an object 
that you’ll want to save in a variable that’s accessible from your update UI. 

If it’s possible to silently update a local file, follow these steps: 

• Because you’ll likely be doing async operations to perform the update, obtain a deferral from 
request.getDeferral. 

• To update the contents of the local file, use one of these options: 

• If you already have a StorageFile with the new contents, just call 
request.update-LocalFile. This is a synchronous call, in which case you do not need to 
obtain a deferral. 

• The local file’s StorageFile object will be in request.file. You can open this file and write 
whatever contents you need within it. This will typically start an async operation, after which 
you return from the event handler. 

• To update the contents of a remote file, copy the contents from request.file to the remote 
source. 

• Depending on the outcome of the update, set request.status to a value from 
FileUpdate-Status: complete (the copies are sync’d), incomplete (sync didn’t work but the local 
copy is still available), userInputNeeded (the update failed for need of credentials or conflict 
reso-lution), currentlyUnavailable (source can’t be reached, and the local file is inaccessible), 
failed (sync cannot happen now or ever, as when the source file has been deleted), and 
completeAndRenamed (the source version has been renamed, generally to resolve conflicts). 

• If you asked for a deferral and processed the outcome within completed and error handlers, call 
the deferral’s complete method to finalize the update. 

Now the provider might know ahead of time that it can’t do a silent update at all—a user might not 
be logged into the back-end service (or credentials are needed each time), there might be a conflict to 
resolve, and so forth. In these cases the event handler here should check the value of 
cachedFile-UpdaterUI.uiStatus (a UIStatus) and set the request.status property accordingly: 

546

http://msdn.microsoft.com/library/windows/apps/windows.storage.provider.cachedfileupdaterui.fileupdaterequested.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.provider.fileupdaterequest.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.provider.fileupdaterequest.updatelocalfile.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.provider.fileupdatestatus.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.provider.uistatus.aspx


• If the UI status is visible, switch to that UI and return from the event handler. Complete the 
deferral when the user has responded through the UI. 

• If UI status is hidden, set request.status to userInputNeeded and return. This will trigger the 
CachedFileUpdaterUI.onuiRequested event followed by another fileUpdate-Requested 
event where uiStatus will be visible, in which case you’ll switch to your UI. 

• If the UI status is unavailable, set request.status to currentlyUnavailable. 

You can see some of this in the sample’s onFileUpdateRequest handler; it really handles only the 
uiStatus check because it doesn’t attempt silent updates at all (as described in the comments below): 

function onFileUpdateRequest(e) { 
    fileUpdateRequest = e.request; 
    fileUpdateRequestDeferral = fileUpdateRequest.getDeferral(); 
 
    // Attempt a silent update using fileUpdateRequest.file silently, or call  
    // fileUpdateRequest.updateLocalFile in the local case, setting fileUpdateRequest.status 
    // accordingly, then calling  fileUpdateRequestDeferral.complete(). Otherwise, if you 
    // know that user action will be required, execute the following code. 
 
    switch (cachedFileUpdaterUI.uiStatus) { 
        case Windows.Storage.Provider.UIStatus.hidden: 
            fileUpdateRequest.status = 
                Windows.Storage.Provider.FileUpdateStatus.userInputNeeded; 
            fileUpdateRequestDeferral.complete(); 
            break; 
 
        case Windows.Storage.Provider.UIStatus.visible: 
            // Switch to the update UI (configured in the activated event) 
            var url = scenarios[0].url; 
            WinJS.Navigation.navigate(url, cachedFileUpdaterUI); 
            break; 
 
        case Windows.Storage.Provider.UIStatus.unavailable: 
            fileUpdateRequest.status = Windows.Storage.Provider.FileUpdateStatus.failed; 
            fileUpdateRequestDeferral.complete(); 
            break; 
    } 
} 

Again, if a silent update succeeds, the provider app’s UI never appears to the user. In the case of the 
provider sample, since it never attempts to do a silent update, it always does the check on uiStatus. 
When the app was just launched to service the contract, we’ll end up in the hidden case and return 
userInputNeeded, as would happen if you attempted a silent update but returned the same status. Either 
way, the CachedFileUpdateUI object will fire its uiRequested event, telling the provider app that the 
system is making the UI visible. The app, in fact, can defer initializing its UI until this event occurs 
because there’s no need to do so for a silent update. 

After this, the fileUpdateRequested event will fire again with uiStatus now set to visible. Notice 
how the code above will have called request.getDeferral in this case but has not called its complete. 

547

http://msdn.microsoft.com/library/windows/apps/windows.storage.provider.cachedfileupdaterui.uirequested.aspx


We save that step for when the UI has done what it needs to do (and, in fact, we save both the request 
and the deferral for use from the UI code). 

The update UI is responsible for gathering whatever user input is necessary to accomplish the task: 
collecting credentials, choosing which copy of a file to keep (the local or remote version), allowing for 
renaming a conflicting file (when updating a remote file), and so forth. When updating a local file, it 
writes to the StorageFile within request.file or calls request.updateLocalFile; in the remote case it 
copies data from the local copy in request.file. 

To complete the update, the UI code then sets request.status to complete (or any other appropriate 
code if there’s a failure) and calls the deferral’s complete method. This will change the status of the 
system-provided buttons along the bottom of the screen, as you can see in Figure 12-19 and Figure 
12-21—enabling the OK button and disabling Cancel. In the provider sample, both buttons just execute 
these two lines for this purpose: 

fileUpdateRequest.status = Windows.Storage.Provider.FileUpdateStatus.complete; 
fileUpdateRequestDeferral.complete(); 

All in all, the interactions between the system and the app for the cached file updater contract are 
simple and straightforward in themselves: handle the events, copy data around as needed, and update 
the request status. The real work with this contract is first deciding when to call setUpdateInfor-mation 
and then providing the UI to support updates of local and remote files under the necessary 
circumstances. This will, of course, involve more interactions with your backend storage system. 

Contacts 

The last contract we’ll explore in this chapter (whew!) is that of the contact picker. We haven’t seen this 
feature of Windows 8 in action yet. Let’s take a look at it first and then explore how the picker is used 
from one side of the contract and how an provider app fulfills the other side. 

A contact, as you probably expect, is information about a person that includes details like name, 
phone numbers, email addresses, and so forth. An obvious place you’d need a contact is to compose an 
email, as shown in Figure 12-22. Here, tapping the + controls to the right of the To and Cc fields will 
open the contact picker, which defaults to the Windows 8 People app, as shown in Figure 12-23 (its 
splash screen) and Figure 12-24 (its multiselect picker view, where I have blurred my friends’ identities 
so that they don’t start blaming me for unwanted attention!). As we saw with the File Picker UI, the 
provider app supplies the UI for the middle portion of the screen while Windows supplies the top and 
bottom bars, the header, and the down-arrow menu control using information from the provider app’s 
manifest. (Refer back to Figure 12-17.) Figure 12-25 shows the appearance of the Contact Picker app 
sample in its provider mode, as well as the menu that allows you to select a different provider (those 
who have declared themselves as a contact provider). 

When I select one or more contacts in any provider app and press the Select button along the 
bottom of the screen, those contacts are then brought directly back to the first app—Mail in this case. 

548

http://code.msdn.microsoft.com/windowsapps/Contact-Picker-App-sample-fc6677a1
http://code.msdn.microsoft.com/windowsapps/Contact-Picker-App-sample-fc6677a1


Just as the file picker contract allowed the user to navigate into data surfaced as files by any other app, 
the contact contract (say that ten times fast!) lets the user easily navigate to people you might select 
from any other source. 

 
FIGURE 12-22  The Mail app uses the contact picker to choose a recipient. 

 
FIGURE 12-23  The People app on startup when launched as a contact provider. 

549



 
FIGURE 12-24  The picker UI within the People app, shown for multiple selection (with my friends blurred because 
they’re generally not looking for fame amongst developers). The selections are gathered along the bottom in the 
basket. 

 
FIGURE 12-25  The Contact Picker sample’s UI when used as a provider, along with the header flyout menu allowing 
selection of a picker provider. 
 
 

550



Using the Contact Picker 
Contacts as a whole work with the API in the Windows.ApplicationModel.Contacts namespace. An app 
that consumes contacts sees each one represented by an instance of the Contact-Information class, 
whose properties like name, phoneNumbers, locations, emails, instant-Messages, and customFields give 
you the contact information, along with the getThumbnailAsync and queryCustomFields methods. 

Choosing a contract happens through a picker UI much like the file picker, invoked through 
Windows.ApplicationModel.Contacts.ContactPicker. After creating an instance of this object, you 
can set the commitButtonText for the first (left) button in the picker UI (as with “Select” in the earlier 
figures). You can also set the selectionMode property to a value from the Contact-SelectionMode 
enumeration: either contact (the default) or fields. In the former case, the whole contact information is 
returned; in the latter, the picker works against the contents of the picker’s desiredFields. Refer to the 
documentation on that property for details. 

When you’re ready to show the UI, call the picker’s pickSingleContactAsync or pickMultiple-
ContactsAsync methods. These provide your completed handler with a single ContactInformation 
object or a vector of them, respectively. As with the file picker, note that these APIs will throw an 
exception if called when the app is in snapped view, so you’ll want to avoid this case. 

Picking a single contact and displaying its information is demonstrated in Scenario 1 of the Contact 
Picker app sample (js/scenarioSingle.js): 
 

var picker = new Windows.ApplicationModel.Contacts.ContactPicker(); 
picker.commitButtonText = "Select"; 
 
// Open the picker for the user to select a contact 
picker.pickSingleContactAsync().done(function (contact) { 
    if (contact !== null) { 
        // Consume the contact information... 
    } 
}); 

Choosing multiple contacts (Scenario 2, js/scenarioMultiple.js) works the same way, just using 
pickMultipleContactsAsync. In either case, the calling app then applies the Contact-Information data 
however it sees fit, such as populating a To or Cc field like the Mail app. However, other than the name 
property in that object, which is just a string, its properties have a little more structure, as shown in the 
following table. 
 
 
 
 
 
 
 

551

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contactinformation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contactpicker.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contactpicker.desiredfields.aspx
http://code.msdn.microsoft.com/windowsapps/Contact-Picker-App-sample-fc6677a1
http://code.msdn.microsoft.com/windowsapps/Contact-Picker-App-sample-fc6677a1


Property Type Field Properties and Types 
emails 
phoneNumbers 
customFields 

Vector of ContactField  category (ContactFieldCategory), name (string), type (a 
ContactFieldType), value (string) 

instantMessages Vector of ContactInstant- 
MessageField  

Same as ContactField above plus displayText, launchUri, 
service, and userName (all strings) 

locations Vector of ContactLocationField  Same as ContactField above plus city, country, postalCode, 
region, street, and unstructuredAddress (all strings) 

 

Accordingly, the sample consumes a ContactInformation object as follows, first extracting the 
individual vector properties: 

appendFields("Emails:", contact.emails, contactElement); 
appendFields("Phone Numbers:", contact.phoneNumbers, contactElement); 
appendFields("Addresses:", contact.locations, contactElement); 

and then enumerating the contents of those vectors and in this case creating elements with their 
contents. Other apps will, of course, transfer the values to appropriate fields or other parts of the app 
UI—what’s shown here demonstrates processing of the different categories: 

function appendFields(title, fields, container) { 
    // Creates UI for a list of contact fields of the same type, e.g. emails or phones 
    fields.forEach(function (field) { 
        if (field.value) { 
            // Append the title once we have a non-empty contact field 
            if (title) { 
                container.appendChild(createTextElement("h4", title)); 
                title = ""; 
            } 
 
            // Display the category next to the field value 
            switch (field.category) { 
                case Windows.ApplicationModel.Contacts.ContactFieldCategory.home: 
                    container.appendChild(createTextElement("div", 
                        field.value + " (home)")); 
                    break; 
                case Windows.ApplicationModel.Contacts.ContactFieldCategory.work: 
                    container.appendChild(createTextElement("div", 
                        field.value + " (work)")); 
                    break; 
                case Windows.ApplicationModel.Contacts.ContactFieldCategory.mobile: 
                    container.appendChild(createTextElement("div", 
                        field.value + " (mobile)")); 
                    break; 
                case Windows.ApplicationModel.Contacts.ContactFieldCategory.other: 
                    container.appendChild(createTextElement("div", 
                        field.value + " (other)")); 
                    break; 
                case Windows.ApplicationModel.Contacts.ContactFieldCategory.none: 
                default: 
                    container.appendChild(createTextElement("div", field.value)); 
                    break; 
            } 

552

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contactfield.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contactfield.category.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contactfieldtype.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contactinstantmessagefield.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contactinstantmessagefield.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.contactlocationfield.aspx


        } 
    }); 
} 

Contact Picker Providers 
On the provider side, which is also demonstrated in the Contact Picker app sample, we see the same 
pattern as for file picker providers. First, a provider app needs to declare the Contact Picker contract in 
its manifest, where it indicates the Start page to load within the context of the picker. In the sample, the 
Start page is contactPicker.html that in turn loads html/contactPickerScenario.html (with their 
associated JavaScript files): 

 
As with the file picker, having a separate Start page means having a separate activated handler, and 

in this case it looks for the activation kind of contactPicker (js/contactPicker.js): 

function activated(eventObject) { 
    if (eventObject.detail.kind ===  
        Windows.ApplicationModel.Activation.ActivationKind.contactPicker) { 
        contactPickerUI = eventObject.detail.contactPickerUI; 
        eventObject.setPromise(WinJS.UI.processAll().then(function () { 
            // ... 
        })); 
    } 
} 

The eventObject.detail here is a ContactPickerActivatedEventArgs (these names are long, but at 
least they’re predictable!). As with all activations, it contains kind, previous-ExecutionState, and 
splashScreen properties for the usual purposes. Its contactPickerUI property, a ContactPickerUI, then 
contains the information specific for the contact picker contract: 

• The selectionMode and desiredFields properties as supplied by the calling app. 

• Three methods—addContact, removeContact, and containsContact—for managing what’s 
returned to the calling app. These methods correspond to the actions of a typical selection UI. 

• One event, contactsRemoved, which informs the provider when the user removes an item from 
the basket along the bottom of the screen. (Refer back to Figure 12-24.) 
 

 

553

http://code.msdn.microsoft.com/windowsapps/Contact-Picker-App-sample-fc6677a1
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.activation.contactpickeractivatedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.contacts.provider.contactpickerui.aspxContactPickerUI


Within a provider, each contact is represented by a Windows.ApplicationModel.Contacts.Contact 
object. A provider will create an object for each contact it supplies. In the sample 
(js/contactPickerScenario.js), there’s an array called sampleContacts that simulates what would more 
typically come from a database. That array just contains JSON records like this: 

{ 
    name: "David Jaffe", 
    homeEmail: "david@contoso.com", 
    workEmail: "david@cpandl.com", 
    workPhone: "", 
    homePhone: "248-555-0150", 
    mobilePhone: "", 
    address: { 
        full: "3456 Broadway Ln, Los Angeles, CA", 
        street: "", 
        city: "", 
        state: "", 
        zipCode: "" 
    }, 
    id: "761cb6fb-0270-451e-8725-bb575eeb24d5" 
}, 

Each record is shown as a check box in the sample’s UI (generated in the createContactUI function), 
which is a quick and easy way to show a selectable list of items! Of course, your own provider app will 
likely use a ListView for this purpose; the sample is just trying to keep things simple so that you can see 
what’s happening with the contract itself. 

When a contact is selected, the sample’s addContactToBasket function is called. This is the point at 
which we create the actual Contact object and call ContactPickerUI.addContact. The process here for 
each field follows a chain of other function calls, so let’s see how it works for the single homeEmail field 
in the source record, starting with addContactToBasket (again in js/contactPicker-Scenario.js). The rest of 
the field values are handled pretty much the same way: 

function addContactToBasket(sampleContact) { 
    var contact = new Windows.ApplicationModel.Contacts.Contact(); 
    contact.name = sampleContact.name; 
 
    appendEmail(contact.fields, sampleContact.homeEmail, 
        Windows.ApplicationModel.Contacts.ContactFieldCategory.home); 
 
    // Add other fields... 
 
    // Add the contact to the basket 
    switch (contactPickerUI.addContact(sampleContact.id, contact)) { 
        // Show various messages based on the result, which is of type 
        // Windows.ApplicationModel.Contacts.Provider.AddContactResult 
    } 
} 
 
 

 

554



As you can see, the homeEmail field is passed to a function called appendEmail, where the first 
argument is the vector (Contact.fields) in which to add the field and the third parameter is the 
category (home). These are then passed through to another generic function, appendField, where the 
type of the field has been thrown into the mix, all of which is used to create a ContactField object and 
add it to the contact: 
 

function appendEmail(fields, email, category) { 
    // Adds a new email to the contact fields vector 
    appendField(fields, email, 
        Windows.ApplicationModel.Contacts.ContactFieldType.email, category); 
} 
 
function appendField(fields, value, type, category) { 
    // Adds a new field of the desired type, either email or phone number 
    if (value) { 
        fields.append(new Windows.ApplicationModel.Contacts.ContactField(value, 
            type, category)); 
    } 
} 

In short, this is essentially how all the fields in a contact are assembled, one bit at a time. 

Now, when an item is unselected in the list, it needs to be removed from the basket: 

function removeContactFromBasket(sampleContact) { 
    // Programmatically remove the contact from the basket 
    if (contactPickerUI.containsContact(sampleContact.id)) { 
        contactPickerUI.removeContact(sampleContact.id); 
    } 
} 

Similarly, when the user removes an item from the basket, the contact provider needs to update its 
selection UI by handling the contactremoved event: 

contactPickerUI.addEventListener("contactremoved", onContactRemoved, false); 
 
function onContactRemoved(e) { 
    // Add any code to be called when a contact is removed from the basket by the user 
    var contactElement = document.getElementById(e.id); 
    var sampleContact = sampleContacts[contactElement.value]; 
    contactElement.checked = false; 
} 

You’ll notice that we haven’t said anything about closing the UI, and in fact the ContactPickerUI 
object does not have an event for this. Simply said, when the user selects the commit button (with 
whatever text the caller provided), it gets back whatever the provider has added to the basket. If the 
user taps the cancel button, the operation returns a null contact. In both cases, the provider app will be 
suspended and, if it wasn’t running prior to being activated for the contact,close automatically. 
 

555



Do note that as with file picker providers, a contact provider needs to be ready to save its session 
state when suspended such that it can restore that state when relaunched with 
previousExecution-State set to terminated. Although not demonstrated in the sample, a real provider 
app should save its current selections and viewing position within its list, along with whatever else, to 
session state and restore that in its activated handler when necessary. 

What We’ve Just Learned 

• Contracts in Windows 8 provide the ability for any number of apps to extend system 
functionality as well as extend the functionality of other apps. Through contracts, installing more 
apps that support them creates a richer overall environment for users. 

• The Share contract provides a shortcut means through which data from one app can be sent to 
another, eliminating many intermediate steps and keeping the user in the context of the same 
app. A source app packages data it can share when the Share charm is invoked; target apps 
consume that data, often copying it elsewhere as in an email message, text message, social 
networking service, and so forth. 

• The Share target provides for delayed rendering of items (such as graphics), for long-running 
operations (such as when it’s necessary to upload large data files to a service), and for providing 
quicklinks to specific targets within the same app (such as frequent email recipients). 

• The Search contract provides integration between an app and the Search charm. From the 
charm users can search the current app as well as any others that support the contract, easily 
viewing results from other apps without having to manually launch them or switch to them. The 
search contract allows apps to also provide query suggestions and result suggestions. 

• File type and URI scheme associations are how apps can launch other apps. an app’s 
associa-tions are declared in its manifest allowing it to be launched to service those associations. 
URI scheme associations are an excellent means for an app to provide workflow services to 
others. 

• Apps that implement the provider side of the file picker contract appear as choices within the file 
picker UI. This is how apps can present data sources they manage as if they were part of the local 
file system, even though they might exist in databases, online services, or other such locations. 
To the user, the necessary transport considerations are transparent, and through the cached file 
updater contract a provider app can also handle synchronization of local and remote copies of 
the file. 

• The contract for Contacts works similarly to the file picker but with information about people. A 
consuming app can easily invoke the contact picker UI and any number of provider apps can 
implement the other side of the contract to surface an address book, database, or other source 
through that UI. 

556



Chapter 13 

Tiles, Notifications, the Lock Screen, 
and Background Tasks 

At the risk of seriously dating myself once again, I can still remember how a friend and I marveled when 
we first acquired modems that allowed us to do an online chat. At that time the modems ran at a 
whopping 300 baud (not Kb, not Mb—just b) and we connected by one of us calling the other’s phone 
number directly. It would have been far more efficient for us to just talk over the phone lines we were 
tying up with our bitstreams! Such was the early days of the kind of connectivity we enjoy today, where 
millions of services are ready to provide us with just about any kind of information we seek with transfer 
speeds that once challenged the limits of believability. 

Even so, almost from the genesis of online services it’s been necessary to enter some kind of app, be 
it a client app or a web app, to view that information and get updates. When computers could run only 
a single app at a time (like the one I was using with that 300 baud modem60), this could become quite 
cumbersome, and it made it difficult, if not impossible, to take data from one program and transfer it to 
another. With the advent of multitasking operating systems like Windows, you could run such apps 
side-by-side and transfer information between them, a model that has stuck with us for several decades 
now. Even many web apps, for the most part, still operate this way. There have been innovations in this 
space, certainly, such as mashups that bring disparate information together into a more convenient 
place, but such an experience is still hidden within an app. 

That changes with Windows 8. As one columnist recently put it, “Using Windows 8 is like living in a 
house made out of Internet…The Start screen is a brilliant innovation, [a] huge improvement on the 
folder-littered desktops on every other OS, which serve exactly no purpose except to show a 
background photo. The Start screen makes it possible to check a dozen things”—if not more, I might 
add!—“in five seconds—from any app, just tap the Windows key and you can check to see if you have a 
new email, an upcoming appointment, inclement weather, or any breaking news. Tap the Windows key 
again and you’re back to your original app.”61 He goes on to suggest how long this would take if you 
had to go into individual apps to check the same information, even with high-speed broadband! 

What makes the Start screen come alive in this way are what we call live tiles, Microsoft’s answer to 
the need to bring information from many sources together at the core of the user experience, an 
experience that “is constantly changing and updating,” as the same writer puts it, “because its every 
fiber is connected to the Internet.” With live tiles, each one is a small window onto whatever wealth of 

60 If you want the actual make and model, you’ll have to look for it in the footnotes of Chapter 1 of my book Mystic 
Microsoft, found on mysticmicrosoft.com or through my website, kraigbrockschmidt.com. 

61 From This is my next: Windows 8 by David Pierce. 

557

http://mysticmicrosoft.com/
http://www.kraigbrockschmidt.com/
http://www.theverge.com/2012/8/16/3246185/this-is-my-next-windows-8


information an app is built around; the app is essentially extracting the most important pieces of that 
information according to each user’s particular interests. And as the user adds more apps to the 
system—which adds more tiles to the Start screen that the user can rearrange and group however he or 
she likes—the whole information experience becomes richer. 

Even so, live tiles and the Start screen are just the beginning of the story. It’s ironic that this chapter 
has one of the longest titles in the entire book, listing off four things that do not, at first glance, appear 
to be related: tiles, notifications, the lock screen, and background tasks. Maybe you’re just thinking that I 
couldn’t figure out where else to put them all! In truth, however, they together form what is essentially a 
single topic: how apps work with Windows 8 to create an environment that is alive with activity while 
those apps are often not actually running or are allowed to run just a little bit. 

Let’s begin, then, by exploring those relationships and the general means through which apps wire 
their tiles and other notifications to their information sources. 
 

Before going further Refer back to the section named “Systemwide Enabling and Disabling of 
Animations” early in Chapter 11, “Purposeful Animations,” and check your Control Panel setting. If 
“unnecessary” animations are turned off, live tiles won’t be animated and you won’t see the complete 
experience they can provide. 

Second, because all the topics of this chapter are related to one another, various aspects that I’ll discuss 
in one section of this chapter—in the context of tiles, for example—also apply to other sections—such 
as toast notifications. For this reason it is best to read this chapter from start to finish. 

Third, many aspects of what we cover in this chapter are not enabled within the Windows Simulator, 
such as live tiles, toast notifications, and the lock screen. When running some of the samples within 
Visual Studio, be sure to use the Local Machine or Remote Machine debugging options. 

Finally, the tile and notifications API is generally found within Windows.UI.Notifications, which is a 
lot to spell out every time. Unless noted, assume that the WinRT APIs we’re talking about come from 
that namespace. 
 

Alive with Activity: A Visual Tour 

When an app is first acquired from the Windows Store and installed on a device, its primary app tile is, as 
we know well already, added to the Start screen. These tiles can be square or wide, depending on what 
graphics the app provides in its package. If an app provides both a square and wide graphic, the user 
can, as shown in Figure 13-1, use an app bar command to change the width. 

558



 
FIGURE 13-1 The typical default Start screen with the built-in apps and the app bar showing the command (third 
from left) to make a wide tile smaller, into a square tile. The same command on a square tile might appear as Larger 
(see overlay) if the app supports wide tiles. 

When you first installed Windows 8 on a device, you might not have noticed that the Start screen 
was somewhat quiet, tiles for a few built-in apps (like Weather, News, and Bing) were updating, but 
most of them were static. But as soon as you ran some of those apps—which I imagine you did within a 
couple of seconds!—the Start screen suddenly lit up much more, with many tiles changing every few 
seconds as I attempt to show in Figures 13-2 and 13-3. This is because apps need to be run once to 
make their initial connections to their associated web services and enable their live tiles62. 

62 This is assuming two things. First is that you have Internet connectivity, which I mention with great irony because at this 
very moment there’s a fiber optic breakdown between Sacramento and Oakland, California, that has myself and many 
thousands of others completely offline! Second, I’m assuming that you’ve acquired and installed a copy of Windows 8 on a 
development machine where the only preinstalled apps are those built into Windows. If you have a machine that came 
with Windows 8 already on it, chances are you have some additional preinstalled third-party apps. These and the built-in 
apps are effectively allowed to have live tiles from the get-go because the apps can be initially run prior to the system 
image being placed on the machine. 

559



 
FIGURE 13-2 A Start screen after running most of the built-in apps and taking some initial configuration steps, such 
as connecting the People app to my Facebook account. 

 
FIGURE 13-3 The same Start screen a few seconds later after a number of apps have updated their tiles. 

What can appear on any given tile is quite extensive and varied. As you can see in the previous 
figures, square and wide tiles can display text, images, an app name or logo (at the lower left), and other 
small glyphs or numbers called badges at the lower right (on the Mail and Store tiles in Figure 13-3, for 
example). 

560



Selecting an item on the Start screen also invokes the app bar, shown in Figure 13-4, which offers 
commands to unpin a tile from the Start screen, uninstall the app, change the tile size (as we’ve seen), 
and turn off updates for a particular live tile. 

 
FIGURE 13-4 The app bar for the Start screen when a tile is selected. The Turn Live Tile Off command will disable 
updates for a given tile, so be careful not to annoy your customers with too much noise! 

Tiles can receive updates even when the app isn’t running, as we’ll see in the next section, “The Four 
Sources of Updates and Notifications.” Tiles can also cycle through up to five updates, an important 
feature that reduces the overall number of updates that actually need to be retrieved from the Internet 
(thus using less power). That is, by cycling through different updates a tile will continue to appear alive 
even though it is only receiving new updates in a timeframe of 5–15 minutes instead of 5–15 seconds. 
 

Tip Even though live tiles can be updated frequently through push notifications, be careful not to 
abuse that right. Think of live tiles as views into app content rather than gadgets: avoid trying to make a 
live tile an app experience unto itself (like a clock) because you cannot rely on high-frequency updates. 
Furthermore, a tile update consists only of XML that defines the tile content—updates cannot trigger 
the execution of any code. In the end, think about the real experience you want to deliver through your 
live tile and use the longest update period you can that will still achieve that goal. 

In the introduction I mentioned how acquiring more apps from the Windows Store is a way that the 
Start screen becomes increasingly richer. But new apps are not the only way that more tiles might 
appear. Apps can also create secondary tiles with all the capabilities of the app tile. Secondary tiles are 
essentially ways to create bookmarks into views of an app. A secondary tile is typically created through a 
Pin command on the app bar. Upon the app’s request to create the tile, Windows automatically 
prompts the user for confirmation as shown for the Weather app in Figure 13-5, thus always keeping 
the user in control of their Start screen (that is, apps cannot become litterbugs on that real estate!). In 
this case the Weather app lets you pin secondary tiles for each location you’ve configured; the 
secondary tile always includes specific information that is given back to the app when it’s launched, 
allowing it to navigate to the appropriate page.  

561



 
FIGURE 13-5 Pinning a secondary tile in the Weather app by using a Pin To Start app bar command, shown here 
with the automatic confirmation prompt. 

In the People app, similarly, you can pin—that is, create secondary tiles for—specific individuals. In 
the Mail app you can pin different accounts and folders. In Internet Explorer you can pin your favorite 
websites. You get the idea: secondary tiles let you populate the Start screen with very personalized views 
into different apps. The user can also unpin any app tile at any time (including the primary app tile, as 
can happen when one has created a number of secondary tiles for more specific views). An app can ask 
to unpin a tile as well, in response to which Windows will again prompt the user for confirmation. 
 

User tip You probably know that you can drag and drop tiles around on the Start screen into different 
sections. But did you also know that you can create group headers for those sections? To do this, do a 
semantic zoom out on the Start screen (a pinch gesture, Ctrl+mouse wheel down, or the Ctrl+minus 
key), select a group, and then invoke the Name Group command on the app bar: 
 

 

562



In many ways, live tiles might reduce the need for a user to ever launch the app that’s associated with a 
tile. Yet this isn’t really the case. Because tiles are limited in size and must adhere to predefined 
configurations (templates), they simultaneously provide essential details while serving as teasers. They 
give you enough useful information for an at-a-glance view but not so much that your appetite for details 
is fully satisfied. Instead of being a deterrent to starting apps, they’re actually an invitation: they both 
inform and engage. For this reason, I suspect that live tiles will be considered an essential app feature 
where they are appropriate and that apps that should provide them but don’t will see lower ratings in the 
Windows Store. 

I encourage you to be creative in thinking about what kinds of interesting information you might 
surface on a tile, even if your app doesn’t have anything to do with the Internet. Games, for example, can 
cycle through tile updates that show progress on various levels, high scores, new challenges, and so 
forth—all of which invite the user to re-engage with that app. Do remember, though, that the user can 
always disable updates for any given tile, so don’t give them a reason to defeat your purpose altogether! 

As additional background on live tiles, check out the Updating live tiles without draining your battery 
post on the Building Windows 8 blog. It’s good background on the system’s view of efficiently 
managing tiles. 

Now, for all the excellence of live tiles, the Start screen isn’t actually where users will be spending the 
majority of their time—we expect them, of course, to mostly be engaged in apps themselves. Even so, 
users may want to be notified when important events occur, such as the arrival of an email, the 
triggering of an alarm, or perhaps a change in traffic conditions that indicates a good time to head 
home for the day (or a change in weather conditions that indicates a great time to go out skiing!). 

For this purpose—surfacing typically time-sensitive information from apps that aren’t in the 
foreground—Windows 8 provides toast notifications. These transient messages pop up (like real toast 
but without the bread crumbs) in the upper right corner of the screen (upper left in right-to-left 
languages). They appear on top of the foreground app as shown in Figure 13-6, as well as the Start 
screen and the desktop. Up to three toasts can appear at any one time, and each can be accompanied 
by a predefined sound, if desired. 

Toasts are, like tile updates, created using predefined templates and can be composed of images, 
text, and logos; they always use the originating app’s color scheme, as defined in that app’s manifest 
(the foreground text and Background color settings in the Application UI section).  

The purpose of toasts is, again, to give the user alerts and other time-sensitive information, but by 
default they appear only for a short time before disappearing. The default toast duration is five seconds, 
but this can be set to as long as five minutes in PC Settings > Ease of Access, as shown in Figure 13-7. 
Apps can create long-duration toasts that remain visible for 25 seconds or the Ease of Access setting, 
whichever is longer. Furthermore, apps can create a looping toast for events like a phone call or other 
situation where another human being might be waiting on the other end and it’s appropriate to keep 
the notification active for some time. 

563

http://blogs.msdn.com/b/b8/archive/2011/11/02/updating-live-tiles-without-draining-your-battery.aspx
http://blogs.msdn.com/b/b8/archive/2011/11/02/updating-live-tiles-without-draining-your-battery.aspx


 
FIGURE 13-6 Up to three toast notifications can appear on top of the foreground app (including the desktop and 
the Start screen). Each notification can also play one of a small number of predefined sounds. 

 
FIGURE 13-7 Toast duration settings (a drop-down list) in PC Settings > Ease of Access. 

As with tile updates, the user has complete control over toast notifications: for the entire system, for 
the lock screen, and for individual apps. Users do this through PC Settings > Notifications, as shown in 
Figure 13-8. This ultimately means that you want to make your notifications valuable to the user; if you 

564



toss up lots of superfluous toast, chances are that the user will turn them off for your app or for the 
whole system (and give you bad reviews in the Windows Store). 

 
FIGURE 13-8 The user can exercise fine control over notifications in PC Settings > Notifications. 

As with secondary tiles, each toast notification contains specific data that is given to its associated 
app when it’s activated. If the app is suspended, of course, Windows switches to that app and fires its 
activated event with the notification data. If the app isn’t running, Windows will launch it. (The Win+V 
key, by the way, will cycle the keyboard focus through active toasts, such that pressing Enter will activate 
it.) 

This brings up the point that toast notifications, like tile updates, can originate from sources other 
than a running app—which should be obvious because nonforeground apps will typically be 
suspended! Again, we’ll talk about those sources in the next section. At the same time, you might be 
wondering if the last item in this chapter’s title—background tasks—comes into play here. 

Indeed it does! As we’ve already seen with background audio apps in Chapter 10, “Media,” it’s not a 
hard-and-fast rule that apps are always suspended in the background.63 It’s just that Windows, on its 
quest to optimize battery life, doesn’t allow arbitrary apps to keep themselves running for arbitrary 
reasons. Instead, Windows allows apps to run focused background tasks for specific purposes—called 

63 There are also APIs to configure background data transfers while an app isn’t running, as we’ll see in Chapter 14, 
“Networking.” 

565



triggers—subject to specific quotas on CPU time and network I/O. As you might expect, an app declares 
such background tasks in its manifest. 

Triggers include a change in network connectivity, a time zone change, an update of an app, the 
expiration of a timer (with a 15-minute resolution), or the arrival of a push notification from an online 
source (that is, a notification sent in response to a condition that’s completely external to the device 
itself). Each trigger can also be configured with conditions such as whether there is Internet connectivity 
or not. Whatever the case, the whole purpose of background tasks is not to launch an app—in fact, 
background tasks cannot display arbitrary UI. It is rather to allow them to update their internal state 
and, when needed, issue tile updates or toast notifications through which the user can make the choice 
to activate the app for further action. 

One additional aspect of background tasks is that Windows also places a limit on the total number of 
apps that can handle certain kinds of triggers: timers, receipt of push notifications, and receipt of 
network traffic on a control channel as used by real-time communications apps. The limit is imposed by 
the fact that such apps must be added to the lock screen for their tasks to run at all. 

The lock screen, as you certainly know by now and as shown in Figure 13-9, is what’s displayed 
anytime the user must log into the device. A device will be locked directly by the user or after a period 
of inactivity. An exception is made when an app has disabled auto-locking through the Windows.- 
System.Display.DisplayRequest API, as discussed in Chapter 10 in the “Disabling Screen Savers and the 
Lock Screen During Playback” section.  

 
FIGURE 13-9 A typical lock screen. Up to seven apps can display badges along the bottom of the screen; one app 
can display text next to the clock. 

566



Yet Windows doesn’t want to force the user to log in just to see the most important information from 
their most important apps. Through PC Settings, as shown in Figure 13-10, the user can add up to seven 
apps to the lock screen (provided those apps have requested access, which is subject to user consent). 
These apps must be registered for lock screen–related background tasks during which they can issue 
badge updates to the lock screen—these are what you see above along the bottom of Figure 13-9, 
where each badge glyph (the numbers) is also accompanied by a monochrome graphic, referred to as 
the Badge Logo in the app manifest. This graphic is 24x24 at 100%, 33x33 at 140%, and 43x43 at 180%, 
and it must contain only white or transparent pixels. 

In addition, the user can indicate a single app that can display a piece of text (but not an image) next 
to the clock. Note that toast notifications raised by these apps will surface on the lock screen; if tapped, 
the lock screen will bounce and the app will be activated once the user signs in. 

 
FIGURE 13-10 Configuring the lock screen and lock screen apps in PC Settings. 

Thus we complete the story of how Windows 8 works with apps to be alive with activity—on the Start 
screen, on the lock screen, and while the user is engaged in other apps—while yet conserving battery 
power by intelligently managing how and when apps can issue their various updates. Let’s now see 
exactly how that’s accomplished, ideally without needing apps to run at all. 

567



The Four Sources of Updates and Notifications 

When an app is active in the foreground, it can clearly issue whatever notifications it wants: updates to 
any of its tiles, badge updates, and toast notifications. Together these are simply referred to as local 
updates because they originate from the running app and are applied immediately, as shown in Figure 
13-11.64 A running news app, as an example, might issue up to five updates to its tiles so that recent 
headlines continue to cycle when the user switches to another app. Such updates can also be set to 
expire at some date and time in the future so that they’ll disappear automatically (perhaps fulfilling the 
adage, “No news is good news”!). With toasts, note that a foreground app should use inline messages, 
flyouts, and message dialogs for errors that pertain to the currently visible content; toasts are only 
appropriate for alerts about content in some other part of the app. 

 
FIGURE 13-11 Local updates from a running app are applied immediately. 

The second source of updates are scheduled notifications that apply to tile updates and toasts. A 
running app issues these to the system with the date and time when the update or notification should 
appear, regardless of whether the app will be running, suspended, or not running at that future time. 
This is illustrated in Figure 13-12. A calendar app, for example, would typically use scheduled 
notifications for appointment reminders.  

 
FIGURE 13-12 Scheduled notifications are managed by the system and will appear at the requested time irrespective 
of the state of the originating app. 

64 Background tasks, as discussed in this chapter, are not a concern for the foreground app as it can run whatever 
background processes it wants using web workers or WinRT components (see Chapter 16). 

568



The third way an app can issue updates—in this case for tiles and badges only—is through a periodic 
update. As illustrated in Figure 13-13, a running app configures the system’s tile and badge updaters to 
request an update from a specific web service URI at certain low-frequency intervals (the minimum is 30 
minutes) beginning at a specified time, if desired. The web service responds to this HTTP request with an 
XML payload that’s equivalent to what a running app would provide in a local update, and updates can 
be set with an expiration date/time so that they’re automatically removed from the update cycle when 
appropriate. With all these capabilities, periodic updates are wholly sufficient for many apps to create 
very dynamic live tiles with relatively little effort. 
 

 
FIGURE 13-13 Periodic updates for tiles and badges are registered with the system’s tile updater, which will request 
an update from a web service at regular intervals. 

Of course, a 30-minute minimum interval is simply not fast enough when an app wants to notify a 
user as soon as possible. Thus we have the fourth means for updates—push notifications—and this 
method applies across tiles and toasts, as well as non-UI (raw) notifications. 

Push notifications are, as the name implies, sent directly to a device not at the request of an app but 
at the request of some associated web service that is typically monitoring information or other 
conditions around the clock. As illustrated in Figure 13-14, that web service employs the free Windows 
Push Notification Service (WNS for short) to send notifications to those apps that have created a 
channel for this purpose. Each channel is specific to a user and the device. As with other updates, this 
requires the app to be run at least once, because it’s during that first launch that the app establishes a 
WNS channel for the given device. 

A push notification can contain an XML payload as with other tile updates and toast notifications, but 
it can also be used to send a non-UI raw notification that contains arbitrary data. A raw notification must 
be received by a running app or a by lock screen app with a background task for with the push 
notification trigger—otherwise the system clearly won’t know what to do with it! 

569



 
FIGURE 13-14 Push notifications originate with an always-running web service and are then sent to the Windows 
Push Notification Service for delivery to specific clients (a specific app on a specific user device) through their 
registered WNS channels. 

A helpful summary of these different update mechanisms can be found on Choosing a notification 
delivery method in the documentation, a topic that includes various examples of when you might use 
each method. Whatever the case, we’re now ready to see the details of how we employ all of them in an 
app to help keep a system alive with activity. 

Tiles, Secondary Tiles, and Badges 

The very first thing you should know about your app tile is that if you want to enable live wide tiles 
(including secondary ones), you must include a wide logo image in the Application UI section of your 
manifest as shown below. Without it, you can still have live square tiles, but wide tile updates will be 
ignored. 

 
At this point I encourage you to go back to Chapter 3, “App Anatomy and Page Navigation,” and 

review the “Branding Your App 101” section where we discuss how different bits in the manifest affect 
your tiles, such as the Short Name and Show Name settings. As also covered in that section, remember 
to provide different scaled versions of your logo and wide logo images. Even though you might issue 
tile updates as soon as your app is run, your static tiles will be essential to the user’s first impression of 
your app after it’s acquired from the Windows Store. The static tiles are also what the user will see if he 
or she turns your live tiles off or if all your updates expire. So, even if you plan for live tiles, be sure to 
still invest in great static tile designs as well. 
 

570

http://msdn.microsoft.com/library/windows/apps/Hh779721.aspx
http://msdn.microsoft.com/library/windows/apps/Hh779721.aspx


Providing both square and wide static tiles enables you to issue live tile updates to both, including 
square and wide secondary tiles. In both cases, try to think through what the user would most want to 
see. When users select a wide tile, which is to say they’re electing to have your tile occupy more prime 
real estate on the Start screen, it’s likely that they’re looking for details that add value to the Start 
screen. If users choose a square tile, on the other hand, they’re probably more interested in only the 
most essential information: the number of new email messages (as expressed through a badge), for 
example, rather than the first line of those messages, or the current temperature in a location rather 
than a more extended forecast. 

The Guidelines and checklist for tiles and badges provides rather extensive guidance on this 
particular topic along with appropriate use of logos, names, badges, and updates. There is also a helpful 
post on the Windows 8 Developer Blog called Creating a great tile experience. Here we’ll concern 
ourselves with how such updates and badges are sent to a tile, a process that involves what are called 
tile XML templates, predefined XML configurations that you populate with text, images, and other 
properties. These templates apply to all forms of tiles and update methods, which we’ll examine in a 
moment. First, however, let’s see how secondary tiles are managed because everything we talk about 
thereafter applies equally to all tiles for the app. 
 

Note The tile and notifications API is generally found within Windows.UI.Notifications, except those 
for creating secondary tiles that come from Windows.UI.StartScreen. Unless otherwise noted, assume 
that the APIs we’re talking about come from that namespace. That way we don’t have to spell it out 
every time! 

Secondary Tiles 
A secondary tile is a kind of bookmark into an app, to achieve what’s also called deep linking: a way to 
launch an app into a particular state or to a particular page. Secondary tiles allow the user to personalize 
the Start screen with more specific views of an app. As suggested on Guidelines and checklist for 
secondary tiles (a topic I highly recommend you read), offering the ability to create a secondary tile is a 
good idea whenever you have app state that could be a useful target or destination unto itself. Don’t 
create secondary tiles, however, for static content or use them as virtual command buttons—that would 
only educate your customers that they shouldn’t bother to pin tiles from your app! 

An app creates a secondary tile in response to a Pin command that it typically includes on its app bar 
(using the WinJS.UI.AppBarIcon.pin icon). Offer this command when the app is displaying pinnable 
content or the user has made an appropriately pinnable selection; hide or disable the command if the 
content or selection is not pinnable. In addition, change it to an Unpin command if the content is 
already pinned. For details on managing commands in the app bar, refer to Chapter 7, “Commanding 
UI.” 

When the Pin command is invoked, the app makes the request to create the tile. Windows then 
prompts the user for their consent, as shown earlier in Figure 13-5. 

571

http://msdn.microsoft.com/library/windows/apps/hh465403.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/04/16/creating-a-great-tile-experience-part-1.aspx
http://msdn.microsoft.com/library/windows/apps/hh465398.aspx
http://msdn.microsoft.com/library/windows/apps/hh465398.aspx


Once created, a secondary tile has all the same capabilities as your app tile, including the ability to 
receive updates from any source. They key difference between the app tile and secondary tiles is that 
the former launches the app into its default (or current) state, whereas the latter launches the app with 
specific arguments that your activation handler uses to launch (or activate) the app into a specific state. 
Let’s see how it all works. 

Creating Secondary Tiles 
The process for creating a secondary tile in response to a pin command is quite simple: first create an 
instance of Windows.UI.StartScreen.SecondaryTile with the desired options, and then call either its 
requestCreateAsync or requestCreateForSelectionAsync method. If the user confirms the creation of 
the tile, it will be added to the Start screen and your completed handler will receive a result argument of 
true. If the user dismisses the flyout (by tapping outside it), the comple-ted handler will be called with a 
result argument of false. The error handler for these methods will be called if there is an exception, as if 
you fail to provide required properties in the SecondaryTile. 

When creating a SecondaryTile object, you can use four different constructors: 

• SecondaryTile() Creates a SecondaryTile with default properties. 

• SecondaryTile(tileId)  Initializes the SecondaryTile with a specific ID, typically used when 
creating an object before an update or when unpinning the file. 

• SecondaryTile(tileId, shortName, displayName, arguments, tileOptions, logo)  Creates a 
SecondaryTile with all the required properties for a square tile. 

• SecondaryTile(tileId, shortName, displayName, arguments, tileOptions, logo, wideLogo)  
Creates a SecondaryTile with all the required properties for a wide tile. 

These options clearly correspond to the following SecondaryTile properties, all of which are required 
when you call a requestCreate* method (except wideLogo that is only required for a wide tile): 

• tileId A unique string (a maximum of 64 alphanumeric characters including . and _) that 
identifies the tile within the package. You need this when you want to update or delete a tile, 
and it should always be set. This value is typically derived from the content related to the file. If 
you create secondary tiles with a tileId that already exists, the new one will takes its place. 

• shortName The text string (40 characters max) that initializes the contents of the tile name 
control, as shown earlier in Figure 13-5. This is displayed directly on the tile but can be modified 
by the user before the tile is actually created. Once the tile is created, this value will contain the 
string as it appears on the tile. 

• displayName The tile’s display name that will be shown in the tile’s tooltip, next to the app in 
the Start screen’s All Tiles list, and a few other areas within Windows. This can be whatever 
length you want and can contain any characters. 
 

572

http://msdn.microsoft.com/library/windows/apps/windows.ui.startscreen.secondarytile.aspx


• arguments A string that’s passed to the apps activation handler when the secondary tile is 
invoked. 

• tileOptions One or more values from the TileOptions enumeration, combined with the | 
(bitwise OR) operator. Options include none (the default), showNameOnLogo (displays shortName on 
the square tile), showNameOnWideLogo (displays shortName on the wide tile), and copyOnDeployment 
(indicates that the secondary tile is roamed to the cloud and replicated on other devices where 
the same user installs the same app). 

• logo A URI for the square tile image. This can use either the ms-appx:/// or 
ms-appdata:///local schema. Be sure to avoid storing a dynamically generated image in 
temporary storage, and avoid deleting it unless all secondary tiles that reference it are deleted. 

• wideLogo A URI for the wide tile image, again with either the ms-appx:/// or 
ms-appdata:///local schema. 

You can, of course, modify any of these properties after creating the SecondaryTile object along 
with the remaining properties that let you override the defaults defined in the app manifest: 
backgroundColor (a Windows.UI.Color value), foregroundText (a ForegroundText value, either dark or 
light), and smallLogo (a URI again with ms-appx:/// or ms-appdata:///local). Two other properties, 
lockScreenBadgeLogo and lockScreenDisplayBadgeAndTileText, relate to secondary tiles on the lock 
screen. We’ll come back to these later in “Background Tasks and Lock Screen Apps,” specifically the 
subsection “Lock Screen Dependent Tasks and Triggers.” 

At runtime, you can also retrieve any of these properties to check the state of the secondary tile if 
needed. If you modify any properties for a SecondaryTile that has already been pinned, be sure to call 
its udpateAsync method to propagate those changes. 

The requestCreate* methods also have a couple of variations that allow you to control the 
place-ment of the user consent flyout (again see Figure 13-5). Calling requestCreateAsync by itself 
results in a default placement in a lower corner of the display. It’s usually better, however, for that flyout 
to appear close to the command that invoked it. For this purpose requestCreateAsync accepts an 
optional Windows.Foundation.Point, specifying where to place the lower right corner of the flyout. 

With requestCreateForSelectionAsync there are also two variations. The first takes a 
Windows.Foundation.Rect describing the selection. The flyout will appear above that rectangle if 
possible. If you expect that this default placement will obscure the secondary tile’s content, you can also 
pass an optional value from Windows.Popup.Placement to indicate where the flyout should appear 
relative to that rectangle: above, below, left, and right. 

You can play around with all of these options in the Secondary tiles sample. Scenarios 1 and 2 pin 
and unpin a secondary tile using on-canvas buttons, respectively, with Scenario 7 doing the same 
through the app bar. We’ll see some of the other scenarios in the sections that follow. For the moment, 
the pinning function in Scenario 1 (js/pintile.js) shows the creation process using 
requestCreateForSelectionAsync: 

573

http://msdn.microsoft.com/library/windows/apps/windows.ui.startscreen.tileoptions.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.color.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.startscreen.foregroundtext.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.startscreen.secondarytile.updateasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.popups.placement.aspx
http://code.msdn.microsoft.com/windowsapps/Secondary-Tiles-Sample-edf2a178


function pinSecondaryTile() { 
    var Scenario1TileId = "SecondaryTile.Logo"; 
    var uriLogo = new Windows.Foundation.Uri( 
        "ms-appx:///images/SecondaryTileDefault-sdk.png"); 
    var uriSmallLogo = new Windows.Foundation.Uri( 
        "ms-appx:///images/smallLogoSecondaryTile-sdk.png"); 
 
    // Create activation arguments... 
    var currentTime = new Date(); 
    var newTileActivationArguments = Scenario1TileId  + " WasPinnedAt=" + currentTime; 
 
    var tile = new Windows.UI.StartScreen.SecondaryTile(Scenario1TileId, 
        "Title text shown on the tile", 
        "Name of the tile the user sees when searching for the tile", 
        newTileActivationArguments, 
        Windows.UI.StartScreen.TileOptions.showNameOnLogo, uriLogo); 
 
    // Setting other options 
    tile.foregroundText = Windows.UI.StartScreen.ForegroundText.dark; 
    tile.smallLogo = uriSmallLogo; 
 
    var selectionRect = document.getElementById("pinButton").getBoundingClientRect(); 
 
    tile.requestCreateForSelectionAsync( 
        { x: selectionRect.left, y: selectionRect.top, width: selectionRect.width,  
          height: selectionRect.height }, 
        Windows.UI.Popups.Placement.below) 
    .done(function (isCreated) { 
        if (isCreated) { 
            // The tile was successfully created  
        } else { 
            // The tile was not created  
        } 
    }); 
} 

Note As mentioned in Chapter 7, the system flyout displayed when creating a secondary tile (and when 
removing it, see “Managing Secondary Tiles” below), will cause the app to lose focus and will dismiss a 
nonsticky app bar as a result. For this reason, Scenario 7 of the Secondary tiles sample keeps the app 
bar visible by setting its sticky property to true before calling the secondary tile API. 

App Activation From a Secondary Tile 
Secondary tiles provide a way to activate an app to something other than its default state, similar to 
how command-line arguments work with desktop or console apps. This process depends entirely on the 
contents of the secondary tile’s arguments property. When a secondary tile is tapped or clicked, the 
app’s activated event is fired with an activation kind of launch and the tile’s arguments value in 
eventArgs.detail.arguments. The app then takes whatever action is appropriate for that data, such as 
navigating to a particular page of content, retrieving a piece of content from an online source, and so 
on. In the Secondary tiles sample, the activation code in js/default.js navigates to its Scenario 5 page, 
where we pass arguments as the options parameter of WinJS.Navigation.navigate: 

574



function activated(eventObject) { 
    if (eventObject.detail.kind === 
        Windows.ApplicationModel.Activation.ActivationKind.launch) { 
            if (eventObject.detail.arguments !== "") { 
                // Activation arguments are present (declared when the 
                // secondary tile was pinned) 
                eventObject.setPromise(WinJS.UI.processAll().done(function () { 
                    // Navigate to Scenario 5, where the user will be shown 
                    // the activation arguments 
                    return WinJS.Navigation.navigate(scenarios[4].url, 
                     eventObject.detail.arguments); 
                })); 
        } else { 
            // Activate in default state 
        } 
    } 
} 

The page control (js/LaunchedFromSecondaryTile.js) receives the arguments string in the options 
parameter of both the processed and ready methods. In the case of the sample it just copies that string 
to the display: 

var page = WinJS.UI.Pages.define("/html/LaunchedFromSecondaryTile.html", { 
    processed: function (element, options) { 
        if (options) { 
            document.getElementById("launchedFromSecondaryTileOutput").innerHTML += "<p>" +  
                "App was activated from a secondary tile with the following activation" + 
                "arguments : " + options + "</p>"; 
        } 
    }, 
 
    ready: function (element, options) { 
    } 
}); 

Your own app, of course, will do something much more interesting with arguments! 

Managing Secondary Tiles 
In addition to the methods and properties to create secondary tiles, the SecondaryTile class has two 
static methods to generally manage your app’s secondary tiles: 

• exists Returns a Boolean indicating whether a secondary tile, identified with its tileId, is 
present on the Start screen. This tells you whether calling a requestCreate* method for a tile 
with that same tileId will replace an existing one. This is demonstrated in Scenario 4 of the 
Secondary tiles sample. 

• findAllAsync Retrieves a vector of SecondaryTile objects that have been created by the app. 
This will include any tiles roamed from another device (those created with the copyOnDeployment 

575

http://msdn.microsoft.com/library/windows/apps/windows.ui.startscreen.secondarytile.exists.aspx
http://msdn.microsoft.com/library/windows/apps/br242208.aspx


option).65 This is demonstrated in Scenario 3 of the sample. 

In addition, there are a few other methods to work with a specific SecondaryTile instance: 

• requestDeleteAsync and requestDeleteForSelectionAsync Direct analogs, with the same 
placement variations, to the requestCreate* methods, as deletion of a secondary tile (unpinning) 
is also subject to user consent. This is demonstrated again in Scenario 2 and 7 of the sample. 

• updateAsync Propagates any changes made to the SecondaryTile properties since it was added 
to the Start screen. This is demonstrated in Scenario 8 of the sample. 

If you’ve been keep score throughout this section, you might have noticed that I’ve yet to mention 
Scenario 6 of the sample. That’s because it shows how to make a secondary tile into a live tile with 
updates. To understand that, we need to look at updates more generally because the mechanisms 
involved apply to all tiles alike. This just so happens to be the next topic in this chapter—yes, I planned it 
that way! 

Basic Tile Updates 
A local update for a tile, as described earlier in this chapter, is one that an app issues while it’s running. 
Clearly, this is one of the best times to issue updates because it’s highly likely that the app already has 
the information it needs for those updates to any of its tiles. In a number of cases—especially when an 
app is not related to a web service—the information needed for the app’s live tiles is available only while 
it’s running. A game, for example, can send updates showing best scores, new challenges, progress 
toward achievements, and other kinds of compelling invitations to re-engage with the app. (I must 
personally admit that this works quite well with the Fruit Ninja game.) 

The process of sending a local tile update is very straightforward using the APIs in the 
Windows.UI.Notifications namespace: 

• Create the XML payload, as it’s called, that describes the update within an XmlDocument object. 
The XML must always match one of the predefined tile templates. You can start with a 
system-provided XmlDocument, create it from scratch, or use the Notifications Extensions Library 
that provides an object model and IntelliSense for this. 

• Create a TileNotification object with that XML. The XML becomes the TileNotification 
object’s content property and can be set separately. 

• Optionally set the expirationTime and tag properties of the TileNotification. By default, a 
locally issued update does not expire and is removed only if it’s evicted by a newer update or 
explicitly cleared. Setting expirationDate will automatically remove it at that particular time. 
(Cloud-issued notifications automatically expire after three days.) The tag property is a string of 

65 The SecondaryTile class also has a variant of findAllAsync that takes a different app name along with 
findAllFor-PackageAsync that’s described as enumerating secondary tiles for all apps in the same package. These were 
meant for packages that contain multiple apps, a feature that is not currently supported through the Windows Store. 

576

http://msdn.microsoft.com/library/windows/apps/windows.data.xml.dom.xmldocument.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tilenotification.aspx


16 or fewer characters that is used to manage the stack of updates that are cycled on the tile. 
More on this a little later. 

• Call TileUpdateManager.createTileUpdaterForApplication to obtain a TileUpdater object 
that’s linked to your app tile; call TileUpdateManager.createTileUpdater-ForSecondaryTile 
(chew on that name!) to obtain a TileUpdater object for a secondary tile with a given tileId. 

• Call TileUpdater.update with your TileNotification object. (The animation used to bring the 
update into view is similar to WinJS.UI.Animation.createPeekAnimation, as described in Chapter 
11.) 

Tip If you issue tile updates or other notifications when your app is running, think about whether it’s 
also appropriate to issue updates within a resuming event handler if you aren’t going to use other 
means like periodic updates or push notifications to refresh the tile. It may have been a while since you 
were suspended, so being resumed is a good opportunity to send updates. 

Let’s turn now to the App tiles and badges sample for how updates appear in code. Because the 
Visual Studio simulator doesn’t enable live tiles and toast notifications, remember to run the sample 
with the Local Machine or Remote Machine options. 

Assuming that we have our update XMLDocument in a variable named tileXml, sending the update 
just takes two lines of code (see js/sendTextTile.js): 

var tileNotification = new Windows.UI.Notifications.TileNotification(tileXml); 
Windows.UI.Notifications.TileUpdateManager.createTileUpdaterForApplication() 
    .update(tileNotification); 

and similarly for secondary tiles in Scenario 6 of the Secondary tiles sample 
(js/SecondaryTileNotification.js): 

var tileNotification = new Windows.UI.Notifications.TileNotification(tileXml); 
Windows.UI.Notifications.TileUpdateManager.createTileUpdaterForSecondaryTile( 
    "SecondaryTile.LiveTile").update(tileNotification); 

The more interesting question is how we create that tileXml payload in the first place. This involves 
choosing one of the predefined visual tile templates and then choosing a method to create the 
XMLDocument. Then we’ll see how to use images with the updates along with considerations for branding. 
Localization and accessibility are additional concerns for tile updates, but we’ll return to that subject 
later in Chapter 17, “Apps for Everyone.” 

Choosing a Tile Template 
The first step in creating a tile update is to select an appropriate template from the Tile template 
catalog. Here you will find descriptions, images, and the exact XML for the 10 available square templates 
and the 36 available wide templates—yes, 46 different templates in all (so I hope you understand why 
I’m not showing them all here!). Some are text only, some are image only, some are text and image 
(wide tiles only), and then there are a number referred to as peek templates. These, if you look at them 

577

http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tileupdatemanager.createtileupdaterforapplication.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tileupdater.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tileupdatemanager.createtileupdaterforsecondarytile.aspx
http://code.msdn.microsoft.com/windowsapps/App-tiles-and-badges-sample-5fc49148
http://msdn.microsoft.com/library/windows/apps/hh761491.aspx
http://msdn.microsoft.com/library/windows/apps/hh761491.aspx


in the topic linked to above,66 are really composed of two sections that are each the size of the whole 
tile, as shown below for square tiles (left) and wide tiles (right): 

  
With peek templates you effectively get to show twice the content as the other templates. When a 

peek update is shown on a live tile, the upper portion will appear first and then the tile will flip or give 
you a “peek” at the lower portion, and then it will switch back to the upper portion, after which the live 
tile will switch to the next update in the cycle, if one exists. (The Travel app uses peek templates if you 
want an example; and the animation that’s employed here is again similar to WinJS.UI.Animation.- 
createPeekAnimation.) Of course, both sections should contain related content because they are part of 
the same singular update. 

There are several important notes with the template layouts. First, in many of the templates at 
present, the last line of text will not display if you’re also showing a logo or a short name on the tile (to 
avoid overlaps). This will likely be changed in the future, but it’s the reality for Windows 8. 

Second, images are limited to 1024x1024 and 200KB maximum; if any image exceeds these limits, 
the entire update will not appear at all. Clearly, it’s better to avoid large images if you can help it 
because such images just increase memory consumption and possibly network usage (if the image is 
being downloaded). It’s also good to take the 80%, 100%, 140%, and 180% scale factors into account 
for tile images. However, if you don’t want to deal with individual scaling factors, size your tile images 
for 180% and let the system scale them down (which uses a high-quality algorithm so that images will 
look as good as if you scaled them down with photo-editing software). Also, for photograph, consider 
using JPEG instead of PNG as the former has better compression for such images. 
 
 
 
 
 

66 A more succinct list of templates is also found on the reference page for TileTemplateType. This includes the name of the 
template and a representative image, but doesn’t include the XML. 

578

http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tiletemplatetype.aspx


Third, if you supply an image that doesn’t match the final aspect ratio, the image will be scaled for 
width and cropped on the top and bottom. Note too that a wide tile is not exactly a 2:1 aspect ratio; at 
100% the wide tile is 310x150 pixels, meaning that an image occupying half of it will be 155x150 pixels 
(not quite square) and those in a collection view (the upper right portion of the rightmost image above) 
will be 77.5x75.  

Fourth, if you want a tile with images and text that doesn’t fit any of the templates, you can always 
use an image-only template (TileSquareImage and TileWideImage) with a graphic you generate at run 
time. However, don’t make the tile appear to have separate buttons or other clickable areas: the whole 
tile always acts as a single unit to invoke the app, so such a design would be misleading. 
 

Hint If you see any apps using tile updates that don’t seem to match any of the templates, they are 
likely just using the TileWideImage template and drawing all the text and graphics directly. 

Scenario 5 of the App tiles and badges sample also provides a very helpful design and 
experimen-tation tool for tiles, as shown in Figure 13-15. This part of the sample is intended as a tool 
rather than being code you duplicate in an app. It’s meant to let you easily play around with all the 
templates and their contents, including images referenced from local and remote sources, without 
having to write specific code every time. It also lets you exercise the various options for branding the 
app and sending the result as an update to the sample’s tile on the Start screen. 

 
FIGURE 13-15 Scenario 5 of the App tiles and badges sample is a tool for testing out all the different tile templates. 

579



Creating the Payload, Method 1: Populating Template Content 
The first way to create the XML payload for a given template is to use the 
TileUpdateManager.-getTemplateContent method, to which you pass the name of a template (a value 
from TileTemplateType). This is shown in Scenario 1 of the sample (js/sendTextTile.js): 

function sendTileTextNotificationWithXmlManipulation() { 
    var tileXml = Windows.UI.Notifications.TileUpdateManager.getTemplateContent( 
        Windows.UI.Notifications.TileTemplateType.tileWideText03); 

This method returns an XmlDocument object that contains the structure of the XML for the template 
but not any specific content. If you run the sample and examine tileXml just after the call above, it will 
contain only the following—elements but no real data values: 

<tile> 
  <visual> 
    <binding template="TileWideText03"> 
      <text id="1"></text> 
    </binding> 
  </visual> 
</tile> 

The next step, then, is to fill in the blanks (primarily attributes) by using the XmlDocument methods 
you probably already know (and may or may not love): 

    var tileAttributes = tileXml.getElementsByTagName("text"); 
    tileAttributes[0].appendChild(tileXml.createTextNode( 
        "Hello World! My very own tile notification")); 

In general, if your tile supports a wide format, include XML for both square and wide formats in the 
payload, because the user can change the size of the tile at any time. The sample does it this way: 

    var squareTileXml = Windows.UI.Notifications.TileUpdateManager.getTemplateContent( 
        Windows.UI.Notifications.TileTemplateType.tileSquareText04); 
    var squareTileTextAttributes = squareTileXml.getElementsByTagName("text"); 
    squareTileTextAttributes[0].appendChild(squareTileXml.createTextNode( 
        "Hello World! My very own tile notification")); 
 
    var node = tileXml.importNode(squareTileXml.getElementsByTagName("binding").item(0), true); 
    tileXml.getElementsByTagName("visual").item(0).appendChild(node); 

We’re then ready to send the update to the tile: 

    // send the notification to the app's application tile 
    Windows.UI.Notifications.TileUpdateManager.createTileUpdaterForApplication() 
    .update(tileNotification); 
    } 

Note that the visual element in the XML supports a version attribute whose default value is 1. This 
will help accommodate future changes where elements added in newer versions of the XML that  
 
 

580

http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tileupdatemanager.gettemplatecontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tiletemplatetype.aspx


arrive on a Windows 8 machine will simply be ignored. The exact tile schema, should be you interested, 
can be found on the Tile schema reference page. 

Creating the Payload, Method 2: XML Strings 
Instead of calling TileUpdateManager.getTemplateContent to obtain an XmlDocument with the tile 
template contents, you can just create that XmlDocument directly from a string. This is just like creating 
elements in the DOM by using innerHTML instead of the DOM API—it takes fewer overall function calls 
to create the payload you need and lends itself well to predefining a bunch of mostly populated tile 
updates ahead of time. 

This method is simple: define an XML string with the update contents, create a new XmlDocument, and 
use its loadXml method to turn the string into the payload. In Scenario 1 we see how this is done to 
create the exact same payload as in the previous section: 

function sendTileTextNotificationWithStringManipulation() { 
    // create a string with the tile template xml 
    var tileXmlString = "<tile>" 
                        + "<visual>" 
                        + "<binding template='TileWideText03'>" 
                        + "<text id='1'>Hello World! My very own tile notification</text>" 
                        + "</binding>" 
                        + "<binding template='TileSquareText04'>" 
                        + "<text id='1'>Hello World! My very own tile notification</text>" 
                        + "</binding>" 
                        + "</visual>" 
                        + "</tile>"; 
 
    var tileDOM = new Windows.Data.Xml.Dom.XmlDocument(); 
    tileDOM.loadXml(tileXmlString);  // Good idea to put this in a try/catch block 
 
    var tile = new Windows.UI.Notifications.TileNotification(tileDOM); 
    Windows.UI.Notifications.TileUpdateManager.createTileUpdaterForApplication() 
        .update(tile); 
} 

Clearly, this method is very simple but has the drawback of requiring you to do manual escaping. It is 
also more difficult to debug. (Looking for tiny errors in strings in not my favorite pastime!) Fortunately, 
there is a third available method: the Notifications Extensions Library, which offers the simplicity of 
using strings with a high degree of reliability. 

Creating the Payload, Method 3: The Notifications Extensions Library 
The third means of creating the necessary XmlDocument for a tile update is to use what’s called the 
Notifications Extensions Library. (Yes, it’s a double plural.) This is a WinRT component written in C# 
that’s included with a number of the SDK samples, including the App tiles and badges sample we’re 
looking at here. (Notice that it’s included in the project’s References.) We’ll be looking at the structure of 
such components in Chapter 16, “WinRT Components.” It’s likely that this library will become part of the 
Windows API in the future, so we do encourage developers to leverage it. 

581

http://msdn.microsoft.com/library/windows/apps/br212859.aspx


The library makes it easier to populate a template through object properties rather than XmlDocument 
methods, and because it’s been very well-tested within Microsoft it’s a more robust approach than 
creating an XmlDocument directly from strings. Here’s how it’s used in Scenario 1 to create, once again, 
the same payload we’ve already seen: 

function sendTileTextNotification() { 
    var tileContent =  
        NotificationsExtensions.TileContent.TileContentFactory.createTileWideText03(); 
    tileContent.textHeadingWrap.text = "Hello World! My very own tile notification"; 
 
    var squareTileContent = NotificationsExtensions.TileContent.TileContentFactory 
        .createTileSquareText04(); 
    squareTileContent.textBodyWrap.text = "Hello World! My very own tile notification"; 
    tileContent.squareContent = squareTileContent; 
 
    Windows.UI.Notifications.TileUpdateManager.createTileUpdaterForApplication() 
        .update(tileContent.createNotification()); 
} 

Simply said, the library’s TileContentFactory object provides methods to create objects equivalent 
to the XML documents provided by TileUpdateManager.getTemplateContent. As shown in the code 
above, those objects have properties equivalent to each field in the template, and when you’re ready to 
pass it to TileUpdater.update, you just call its createNotification method. 

The other reason this library exists is to simplify the process of creating an ASP.NET web service for 
periodic updates and push notifications (where the latter can send tile updates, badge updates, and 
toast notifications). Instead of creating the XML payloads manually—a fragile and highly error-prone 
practice at best—the service can use the Notifications Extensions Library to easily and consistently 
create the XML for all these notifications. 

Because the object model in the library clearly describes the XML, it’s fairly easy to use. There is also a 
topic in the documentation for it called Quickstart: Using the NotificationsExtensions library in your 
code. The samples we look at in this chapter also show most use cases. 

Using Local and Web Images 
Scenario 1 of the sample, as we’ve seen, shows tile updates using text, but the more interesting ones 
include graphics as well. These can come either from the app package, local app data, or the web, using 
ms-appx:///, ms-appdata:///local, and http:// URIs, respectively. These URIs are simply assigned to 
the src attributes of image elements within the tile templates. (These are image, not img as in HTML.) 
Note again that the first two URIs typically have three slashes at the beginning to denote “the current 
app”; http:// URIs also require that the Internet (Client) capability be declared in the app’s manifest. 

Scenario 2 of the sample (js/sendLocalImage.js) shows the use of ms-appx:/// for images within the 
app package, with variants for all three methods we’ve just seen to create the payload. When using 
XmlDocument methods, setting an image source looks like this: 

var tileImageAttributes = tileXml.getElementsByTagName("image"); 
tileImageAttributes[0].setAttribute("src", "ms-appx:///images/redWide.png"); 

582

http://msdn.microsoft.com/library/windows/apps/hh969156.aspx
http://msdn.microsoft.com/library/windows/apps/hh969156.aspx


The Notifications Extensions Library gives us properties to which we can assign a URI: 

var tileContent = NotificationsExtensions.TileContent.TileContentFactory 
    .createTileWideImageAndText01(); 
tileContent.textCaptionWrap.text = "This tile notification uses ms-appx images"; 
tileContent.image.src = "ms-appx:///images/redWide.png"; 

And when using XML strings, you can just include the URI directly in the image element. 

Scenario 3 (js/sendWebImage.js) shows the same things except you can enter an http:// URI of your 
choice. This is a good way to see the effects of pointing to images that have varying aspect ratios as well 
as those that exceed the allowable 1024px dimensions and 200KB file size. As you’ll see, the updates 
simply aren’t shown in those cases. 

As for ms-appdata:///local URIs (roaming and temp are not allowed), their use is demonstrated in 
Scenario 8 where you choose an image with the file picker and the sample copies it to the local app data 
folder. It then references that file with an ms-appdata:///local URI in the update payload 
(js/imageprotocols.js): 

tileContent = NotificationsExtensions.TileContent.TileContentFactory.createTileWideImage(); 
tileContent.image.src = "ms-appdata:///local/" + imageRelativePath; 

The same scenario lets you play with in-package and remote URIs as well, as does the tile update 
designer in Scenario 5. I also updated the Here My Am! app for this chapter (in the companion content) 
with a peek tile update containing the most recent image and the location; see “Sidebar: PNG vs. JPEG 
Image Sizes” below. 

Speaking of tools and images, also check out Scenario 10 in the SDK sample. This gives you another 
helpful tool for tile updates where you can crop and adjust images according to varying pixel densities 
so that they’ll work well with a selected tile template. You can save the images you adjust for inclusion in 
your app package, and the code for the scenario can also be used to adjust images at run time. Like I 
said, very helpful! 

A final capability with images is an option to have Windows automatically append a query string to 
http:// URIs. This query string will describe the current scaling factor, contrast setting (for accessibility), 
and language. This enables web services to adjust images accordingly, avoiding the need to handle such 
concerns in the app itself. As described in the Tile schema reference, specifically for the image element, 
you indicate this option by setting the addImageQuery attribute of image to true (also supported on the 
visual and binding elements): 

// XmlDocument form 
var tileImageAttributes = tileXml.getElementsByTagName("image"); 
tileImageAttributes[0].setAttribute("addImageQuery", "true"); 
 
// XML string form (other lines omitted) 
var tileXmlString = /* ... */  "<image id='1' addImageQuery="true" 
    src='ms-appx:///images/redWide.png'/>" /* ... */  
 
// If using Notifications Extensions Library (see Scenario 9 in the sample) 

583

http://msdn.microsoft.com/library/windows/apps/br212859.aspx
http://msdn.microsoft.com/library/windows/apps/br230844.aspx


var tileContent = NotificationsExtensions.TileContent.TileContentFactory 
    .createTileWideImageAndText01(); 
tileContent.image.src = "ms-appx:///images/redWide.png"; 
tileContent.image.addImageQuery = true; 

In all of these cases, the appended string will be of the form 

?ms-scale=<scale>&ms-contrast=<contrast>&ms-lang=<language> 

where <scale> is 80, 100, 140, or 180, <contrast> is standard, black, or white, and <language> is a 
BCP-47 language tag such as en-US, jp-JP, de-DE, and so forth. All of these are described on the 
Globalization and accessibility for tile and toast notifications in the documentation, including how to 
localize update text. 

Sidebar: PNG vs. JPEG Image Sizes 
When considering tile images for the larger 140% and 180% scales, the encoding you use for your 
images can make a big difference and keep them below the 200K size limit. As we saw in 
“Branding Your App 101” in Chapter 3, a wide tile at 180% is 558x270 pixels and a square is 
270x270 pixels. With the wide tile, a typical photographic PNG at this size will easily exceed 200K. 

I encountered this when adding tile support to Here My Am! in this chapter, where it makes a 
smaller version of the current photo in the local appdata folder and uses ms-appdata:///-local 
URIs in the tile XML payload. At first, I borrowed code from Scenario 10 of the App tiles and 
badges sample, as we’ve been working with here, to create a PNG from the img element using a 
temporary canvas and the blob APIs. This worked fine for a 270x270 tile image (a 180% scale that 
can be downsized), but for a 558x270 the file was too large. So I borrowed code from Scenario 3 
of the Simple Imaging sample to directly transcode the StorageFile for the current image into a 
JPEG, where the compression is much better and we don’t need to use the canvas. This code is in 
the transcodeImageFile function in pages/home/home.js, a routine that we’ll also rewrite in 
Chapter 17 using C# in a WinRT component. 

Such considerations are certainly important for services that handle the addImageQuery 
parameters for scale. For larger image sizes, it’s probably wise to stick with the JPEG format to 
avoid going over the 200K limit. 

Branding 
If you’re the kind of person who likes to read XML schema specs (like the Tile schema reference I 
pointed to a few moments ago), you might have noticed another attribute of the visual and binding 
elements called branding. This can be set to none, logo (the default), or name to indicate whether to 
include the app’s small logo or short name on the tile, both of which are provided in the app’s manifest. 
Scenario 5 of the App tiles and badges sample lets you play with these variations. 

 

584

http://msdn.microsoft.com/library/windows/apps/Hh831183.aspx
http://code.msdn.microsoft.com/windowsapps/Simple-Imaging-Sample-a2dec2b0
http://msdn.microsoft.com/library/windows/apps/br212859.aspx


The other bits of the manifest that affect a tile update are the Foreground Text and Background 
Color settings in the Application UI section. These define how tile text appears for all tile updates (and 
toasts for that matter), and they cannot be altered in the tile payload. This keeps the branding of the 
app consistent between updates; users would certainly find it confusing if multiple tiles from the same 
app showed up in different colors. 

As a quick example, the SDK sample we’ve been working with here uses Light foreground text and a 
background color of #00b2f0. If I go to Scenario 5, choose the TileWideText09 template, add some text, 
and select Logo for the branding (where the small logo contains a block with “SDK” in it), the result is as 
follows: 

 

Cycling, Scheduled, and Expiring Updates 
Although you might read the heading for this section and think it’s just going to be a grab bag of 
randomness, all it really means is that we’re looking at additional methods of the TileUpdater object 
and revisiting the two properties of the TileNotification object that we already mentioned. Simply 
said, now that we’ve seen how to do all the basic tile updates we’re ready to start exploring the 
additional capabilities. Again, everything here applies to all tiles in the app. 

First is the ability to programmatically clear all updates and reset the tile to its default state as 
defined in the manifest. This happens with a simple call to TileUpdater.clear (shown in Scenario 1): 

Windows.UI.Notifications.TileUpdateManager.createTileUpdaterForApplication().clear(); 

The next capability, as already mentioned, is to set the TileNotification.expirationTime property 
before sending that notification to TileUpdater.update. This ensures that a locally issued notification 
will be automatically removed, and it lets you override the default three-day expiration period for 
cloud-issued updates. The update will appear immediately (at the next tile refresh, that is) and will then 
be removed from the tile after it expires. This is demonstrated in Scenario 7 of the sample—sending an 
update with an expiration date will display an update as on the left below. When it expires, it’s removed, 
which in this case causes the tile to revert to its default state, as shown on the right (and yeah, I’m 
working on this book on a Sunday night!): 
 

585

http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tileupdater.aspx


  
To delay the appearance of an update until a specified time, with or without an expiration, you do 

something a little different at the beginning: instead of creating a TileNotification object to send to 
the updater, create a ScheduledTileNotification and send it to TileUpdater.-addToSchedule. 

A ScheduledTileNotification is exactly the same as a TileNotification (including the expiration 
time) except that it contains an extra property called deliveryTime that indicates when—in UTC time, 
not local time!—the tile should first appear. For an example of this we have to take a brief detour to 
Scenario 1 of the Scheduled notifications sample. But all that’s really different is that we take whatever 
XmlDocument we’ve created with the payload—through any of the methods covered earlier—and create 
the notification with the delivery time. Here’s a condensation of the code in the sample’s js/scenario1.js 
file: 

// Namespace variable 
var Notifications = Windows.UI.Notifications; 
 
// The delay in delivery time from the sample's control 
var dueTimeInSeconds = parseInt(document.getElementById("futureTimeBox").value); 
 
// The actual delivery date and time 
var currentTime = new Date(); 
var dueTime = new Date(currentTime.getTime() + dueTimeInSeconds * 1000); 
 
// In here we create the XmlDocument in the variable tileDOM 
 
// Now create the update with the delivery date 
var futureTile = new Notifications.ScheduledTileNotification(tileDOM, dueTime); 
Notifications.TileUpdateManager.createTileUpdaterForApplication().addToSchedule(futureTile); 

Other than these small changes, everything else about the tile update is the same as before. 

It’s certainly possible, as you can guess, to queue up many scheduled updates. At any time you can 
call TileUpdater.getScheduledTileNotifications to obtain a vector of active 
Scheduled-TileNotification objects. You can also remove any of those updates with 
TileUpdater.-removeFromSchedule. 

What happens if you schedule a series of updates that will end up being active at the same time? In 
the Scheduled notifications sample, for instance, issue a series of tile updates for 10 seconds from now, 
and then quickly switch to the Start screen to see the results. Those updates will appear in sequence, 
and one of them might actually be dropped if another update is scheduled right on its heels. And once 
you reach the last update, it just stays there until it expires, the tile is cleared, or some new update 
comes along. 

586

http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.scheduledtilenotification.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tileupdater.addtoschedule.aspx
http://code.msdn.microsoft.com/windowsapps/Scheduled-notifications-da477093
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tileupdater.getscheduledtilenotifications.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tileupdater.removefromschedule.aspx


In such cases it would be better to have the tile cycle through a series of tiles, thereby keeping the 
tile active with the more than just the last update. 

Live tiles support cycling through up to five updates, where the duration of each is controlled by the 
system so that the whole Start screen has a consistent look and feel. To enable this you must first call 
TileUpdater.enableNotificationQueue(true), and you can call it with false to disable cycling. The 
queue itself is first in, first out (FIFO; you cannot control the order otherwise), so the oldest notification is 
removed if a new one is added when the queue is already at maximum. In other words, if you enable the 
queue and issue updates as we’ve been doing, the five most recent updates will cycle. 

You might want to selectively replace existing updates already in the queue rather than rely on the 
FIFO behavior (or calling TileUpdater.clear and reissuing the update you want to retain). This is the 
purpose of the tag property in TileNotification and ScheduledTileNotification. The tag is again just 
a maximum 16-character string that simply identifies a particular update. If the queue is enabled, a new 
update with any given tag will replace any update already in the queue with the same tag. If that tag 
doesn’t exist, the update will replace the oldest in the queue. So, for example, a news app might have 
five tags for different categories of headlines such as world, local, politics, business, and health; a stock 
app would obviously use tags for different ticker symbols. Similarly, a weather app might tag updates 
with a zip code or other location identifier. 

You can play with all this in Scenario 6 of the App tile and badges sample. In the process you might 
note that when activating an app from a cycling live tile, it does not receive an indication as to which 
update is currently shown. For this reason, it’s currently recommended that activating a cycling live tile 
opens the app on a hub page that displays relevant content for all the updates together. 

Badge Updates 
The last bit you can use to update a live tile is a badge. I’ve kept this topic separate because it works 
through a separate API and is not part of the tile update XML payloads we’ve been using. 

To review, badges are simply small glyphs—a one- or two-digit number, or one of a small number of 
symbols—that appear on a tile regardless of any other update activity. They are meant to indicate the 
status of the app rather than a piece of content, so like a logo or name they are not animated with other 
updates. However, badge changes are separately animated using WinJS.UI.Animations.updateBadge, as 
briefly noted in Chapter 11. 

How you send badges to your tile is structurally similar to a tile update. Start by creating an 
XmlDocument payload for the badge update by using a template from the Badge image catalog or using 
the Notifications Extensions Library, which contains full support for badges. In the case of badges, it’s 
really overkill to speak of an XML “document” because it contains only one element, badge, with one 
attribute, value, for which you can indicate a number from 1–99 (anything over that will display 99+) or 
one of 11 specific glyphs, as shown below. Note that although the glyphs are shown here against a blue 
background, the actual color will be the Background Color in your manifest: 
 

587

http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tileupdater.enablenotificationqueue.aspx
http://msdn.microsoft.com/library/windows/apps/hh761458.aspx


Value Glyph XML 
(none) n/a <badge value="none"/> 
(number 1-99) 

 

<badge value="1"/> 

(number over 99) 

 

<badge value="123456"/> 

activity 

 

<badge value="activity"/> 

alert 

 

<badge value="alert"/> 

available 

 

<badge value="available"/> 

away 

 

<badge value="away"/> 

busy 

 

<badge value="busy"/> 

newMessage 

 

<badge value="newMessage"/> 

paused 

 

<badge value="paused"/> 

playing 

 

<badge value="playing"/> 

unavailable 

 

<badge value="unavailable"/> 

error 

 

<badge value="error"/> 

attention 

 

<badge value="attention"/> 

 

If you like, you can use the BadgeUpdateManager.getTemplateContent function to obtain an 
XmlDocument with such contents; there’s a bit of sample code on this method’s reference page that 
shows how. But because the XML is so simple, it’s just as easy to create the object from a string by using 
new Windows.Data.Xml.Dom.XmlDocument followed by a call to its loadXml method, as we’ve seen with 
tiles. The Notifications Extensions Library also has methods for this and doing updates. Both of these 
approaches are demonstrated in Scenario 6 of the App tiles and badges sample. 

However you create it, the next step is to instantiate a BadgeNotification with that XmlDocument: 

var badge = new Windows.UI.Notifications.BadgeNotification(badgeDOM); 

This notification object also supports an expirationTime property just like tiles do. That aside, the last 
step is to call BadgeUpdateManager.createBadgeUpdaterForApplication to obtain a BadgeUpdater 
for your app tile or—you can predict this one—BadgeUpdateManager.create- BadgeUpdater- 
ForSecondaryTile to obtain a BadgeUpdater for a secondary tile with a given tileId. After you obtain 
your BadgeNotification (and again, the Notifications Extensions Library can help here), you then call 
BadgeUpdate.update: 

588

http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.badgeupdatemanager.gettemplatecontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.badgenotification.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.badgeupdatemanager.createbadgeupdaterforapplication.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.badgeupdater.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.badgeupdatemanager.createbadgeupdaterforsecondarytile.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.badgeupdatemanager.createbadgeupdaterforsecondarytile.aspx


Windows.UI.Notifications.BadgeUpdateManager.createBadgeUpdaterForApplication() 
    .update(badge); 

or: 

Windows.UI.Notifications.BadgeUpdateManager.createBadgeUpdaterForSecondaryTile( 
    "SecondaryTile.LiveTile").update(badge); 

And as with tiles, BadgeUpdater.clear removes the badge entirely, which is equivalent to sending an 
update with the value of none. That’s it. 

Beyond that, the BadgeUpdater class has just two additional methods, startPeriodicUpdate and 
stopPeriodicUpdate, which are also found on the TileUpdater class. And wouldn’t you know it? Periodic 
updates just so happen to be our next topic—yes, I planned it this way too! 

Sidebar: How Much Network Traffic for Tiles? 
Included with the many improvements to Task Manager for Windows 8 is the ability to track your 
app’s network traffic for tile updates. Run Task Manager, make sure you click More Details in the 
lower left, and then click the App History tab. Network traffic for tile updates is shown on the 
rightmost column. This number will typically be small, but it’s a metric you can monitor to see 
whether updates become excessive. 

 
 
 

589



Periodic Updates 

As described earlier in this chapter, periodic updates configure the system to automatically request 
updates from a web service on behalf of an app. Provided that the app has declared the Internet (Client) 
capability, this enables the app to continually keep its live tiles fresh without needing to run at all. 

Periodic updates are great proof that Microsoft really does listen to developer feedback. When the 
first Developer Preview of Windows 8 was released in September 2011, many developers were very 
interested in implementing live tiles but it could only be done with push notifications and the Windows 
Push Notification Service, even if the tiles only needed low-frequency updates. In other words, push 
notifications were total overkill for apps that needed to get only a bit of data from a web service every 
once in a while to create their updates. So developers asked, “Is it possible to have my app just run in 
the background, periodically request data from my service, and then issue tile or badge updates?” 

It was a completely legitimate request, but as described earlier, background tasks are very carefully 
controlled and allowed only for very specific scenarios. Hearing this feedback, the tiles and notifications 
team at Microsoft studied the problem and found that creating a new class of background task would 
also be overkill for low-frequency tile updates. Furthermore, they found that even if apps could use a 
background task for this purpose, they’d all pretty much do the same thing: poll data from a service and 
populate a tile or badge template. So instead of adding a background task, they added a new API for 
system-managed periodic updates. 

This API consists of the following methods of the TileUpdater and BadgeUpdater classes: 

• TileUpdater.startPeriodicUpdate and BadgeUpdater.startPeriodicUpdate Configure 
Windows to request an update from a given URI with a specified period (see below). These calls 
remove any previous URIs registered for the tile. An app can specify an optional date and time 
around which regular polling should begin, and in all cases the first request will happen 
immediately (very helpful for debugging!). A good time to call these is when the app is 
launched, when it’s resumed, and when a configuration changes that might alter the URI. 

• TileUpdater.stopPeriodicUpdate and BadgeUpdater.stopPeriodicUpdate Cancels the current 
periodic update process but does not clear the tile of existing updates. 

• TileUpdater.startPeriodicUpdateBatch For tile updates only, is identical to 
startPeriodicUpdate but accepts an array of up to five URIs, automatically creating an update 
queue with the results (replacing any previous URIs). Note that 
TileUpdater.enableNotificationQueue must be set to true prior to using this method, as 
described earlier in the “Cycling, Scheduled, and Expiring Updates” section. 

In all these cases, each URI is represented by a Windows.Foundation.Uri object and the polling 
period is set with a value from the PeriodicUpdateRecurrence enumeration. Values are halfHour, hour, 
sixHours, twelveHours, and daily giving a clear indication that periodic updates are meant for content 
that changes relatively infrequently, like the weather, daily offers from local retailers (in which case 

590

http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.tileupdater.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.badgeupdater.aspx
http://msdn.microsoft.com/library/windows/apps/windows.foundation.uri.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.periodicupdaterecurrence.aspx


you’d use start time), or the phases of the moon. For anything that requires more timely delivery, like 
appointment reminders, traffic conditions, current sports scores, or online auction status, you’ll need to 
use push notifications. 

In addition, all these updates can employ tags and expiration times as with local updates. One detail 
is that at any given polling interval, a web service can return only a single update payload—hence the 
need for startPeriodicUpdateBatch. That said, if the notification queue is enabled and the updates 
from a single web service contain different tags, the live tile will behave the same as if those updates 
were issued locally: the most recent update for each tag (up to five) will be cycled through in the queue. 
 

Hint The periodic update API does not directly provide a means to authenticate with the service. This 
typically isn’t necessary because periodic updates are not designed to be user-specific. However, you 
can certainly include encrypted credentials in the URI with a query string. You might also be able to use 
the Enterprise Authentication capability if the app is running on a domain-joined system. 

The app side of the periodic update scene is demonstrated in the Push and periodic notifications 
client-side sample. Specifically, see scenarios 4 and 5, which are somewhat general tools to employ the 
TileUpdater and BadgeUpdater methods with a given service URI just as I’ve just described. A few lines of 
that code (condensed from js/scenario4.js) appear as follows: 

var notifications = Windows.UI.Notifications; 
var updater = notifications.TileUpdateManager.createTileUpdaterForApplication(); 
 
updater.enableNotificationQueue(true); 
updater.startPeriodicUpdate(urisToPoll[0], recurrence); 
updater.startPeriodicUpdateBatch(urisToPoll, recurrence); 

The real work of periodic updates, however, lies in the service itself, whose responsibility it is to 
return the appropriate XML from which Windows can create an update. Being able to even run the 
client-side sample requires some service to which we can make requests, and unfortunately the 
Windows SDK does not provide one. So let’s remedy that situation with a service of our own. 

Because you’ll likely use the client-side sample to play around with your own update service, though, 
there are two changes you should make, specifically to clear existing updates in the functions that stop 
polling. In js/scenario4.js, change the stopTilePolling function to read as follows: 

function stopTilePolling() { 
    var updater = notifications.TileUpdateManager.createTileUpdaterForApplication(); 
    updater.clear(); 
    updater.stopPeriodicUpdate(); 
    WinJS.log && WinJS.log("Stopped polling.", "sample", "status"); 
} 
 
 

 

591

http://code.msdn.microsoft.com/windowsapps/Push-and-periodic-de225603
http://code.msdn.microsoft.com/windowsapps/Push-and-periodic-de225603


Similarly, change stopBadgePolling in js/scenario5.js to read as follows: 

function stopBadgePolling() { 
    var updater = notifications.BadgeUpdateManager.createBadgeUpdaterForApplication(); 
    updater.clear(); 
    updater.stopPeriodicUpdate(); 
    WinJS.log && WinJS.log("Stopped polling.", "sample", "status"); 
} 

Without these changes, old updates will persist on the tile even after you stop the updates. If you 
then change your web service but it has an error in the XML, you won’t see any change on the tile and 
might think that the update worked when it really didn’t. Trust me: making these small changes will 
simplify your life! 

Web Services for Updates 
Creating a web service for periodic updates means creating a web page at some given URI whose sole 
purpose is to respond to an XmlHttpRequest with XML content for a TileNotification or 
BadgeNotification object. Ideally, such a page also handles the scaling, accessibility, and localization 
parameters provided in the query string described earlier in “Using Local and Web Images.” 

The page can be implemented using whatever language and tools you want, such as PHP or 
ASP.NET. In fact, unless you really enjoy programming in Notepad, you’ll certainly want to utilize a good 
web development tool! Visual Studio Express for Windows 8 is not actually equipped for this task; the 
full version of Visual Studio 2012 is. You might also look into Visual Studio Express 2012 for Web as 
another option; more on this in a moment. If you use ASP.NET, remember again that you can again 
employ the Notifications Extensions Library for easily creating the tile XML. 

Some examples of pages that provide tile updates are given in the Creating a great tile experience 
(Part 2) post on the Windows Developers Blog. Based on those examples, here is a trivial (but functional) 
one-liner PHP page that will post XML for a badge update with the current day of the month: 

<?php echo "<badge value='".date("j")."'/>"; ?> 

For proper XML we should also include a header element, which also works: 

<?php echo '<?xml version="1.0" encoding="utf-8"?>'; 
      echo "<badge value='".date("j")."'/>"; ?> 

Drop this code into a .php file (see HelloTiles/dayofmonthservice.php in the companion content for 
this chapter) on whatever web server you might have access to and voila! There’s a very basic service 
that delivers badge updates. You can use this in Scenario 5 of the Push and periodic notifications 
client-side sample—enter your page’s URI in the box, press the button to start polling, and then check 
the sample’s tile on the Start screen tile. In a few seconds you should see the day of the month appear as 
a badge. (Of course, with this ultrasimplistic example the date will reflect the local time on the web 
server rather than the device, which could be completely mismatched. A real service would be sensitive 
to time zone and other locale-specific considerations.) 

592

http://msdn.microsoft.com/library/windows/apps/hh969156.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/04/18/creating-a-great-tile-experience-part-2.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/04/18/creating-a-great-tile-experience-part-2.aspx


 

Tip The tile and badge updaters are very sensitive to properly formed XML. In the PHP code above, 
leaving off the closing / for the badge element will make the update fail to appear. Avoiding such trivial 
errors is again why the Notifications Extensions Library was created, at least for ASP.NET. I’m hoping 
that some enterprising reader might consider a similar project for PHP and other server-side languages! 

Going back to the Windows Developer Blog post mentioned earlier, I want to point out that the 
ASP.NET example given there—the one that begins with @{—is using the ASP.NET Razor syntax 
(typically in a .cshtml file), introduced with Microsoft WebMatrix. Razor/WebMatrix, along with tools 
such as Visual Studio Express 2012 for Web and a whole lot else, can be installed through the Web 
platform installer. To familiarize yourself with Razor, which works much in the same way as PHP, start 
with Walkthrough: Creating a Web Site using Razor Syntax in Visual Studio. 

To make that long story short, here are the steps in Visual Studio Express 2012 for Web to create a 
simple tile update service based on the Razor code in the blog post: 

• Select File > New Web Site from the menu. 

• In the New Web Site dialog, select ASP.NET Web Site (Razor v1), give it a project name and 
folder, and press OK. Call this site HelloTiles. 

• Once the project is created, you should see the Default.cshtml file opened. 

• Copy and paste the following Razor code into that file, replacing the default contents. The little 
piece of C# code at the top for the weekDay variable is something we’ll use in the next section to 
demonstrate debugging; it’s not used in generating the XML. Here, note that I tested and 
generated the XML contents by using the tile designer in Scenario 5 of the App tiles and badges 
sample (see Figure 13-15); this saved me lots of time wondering whether my XML was correct. 

@{ 
  // 
  // This is where any other code would be placed to acquire the dynamic content 
  // needed for the tile update. In this case we'll just return static XML to show 
  // the structure of the service itself. 
  //  
  var weekDay = DateTime.Now.DayOfWeek; 
} 
<?xml version="1.0" encoding="utf-8" ?> 
<tile> 
    <visual lang="en-US"> 
        <binding template="TileSquarePeekImageAndText02" branding="none"> 
            <image id="1" src="http://www.kraigbrockschmidt.com/images/Liam07.png"/> 
            <text id="1">Liam--</text> 

593

http://go.microsoft.com/fwlink/?LinkId=196115
http://www.microsoft.com/web/downloads/platform.aspx
http://www.microsoft.com/web/downloads/platform.aspx
http://msdn.microsoft.com/library/gg606533.aspx
http://code.msdn.microsoft.com/windowsapps/App-tiles-and-badges-sample-5fc49148
http://code.msdn.microsoft.com/windowsapps/App-tiles-and-badges-sample-5fc49148


            <text id="2">Giddy on the day he learned to sit up!</text> 
        </binding> 
        <binding template="TileWideSmallImageAndText04" branding="none"> 
            <image id="1" src="http://www.kraigbrockschmidt.com/images/Liam08.png"/> 
            <text id="1">This is Liam</text> 
            <text id="2">Exploring the great outdoors!</text> 
        </binding> 
    </visual> 
</tile> 

• Run the website in Internet Explorer using the Debug > Start Debugging command or the 
Internet Explorer toolbar button (where you’d find the Local Machine or Simulator options in 
Visual Studio Express 2012 for Windows 8). This will launch Internet Explorer with a URI like 
http://localhost:52568/HelloTiles/Default.cshtml where the port number is what routes the URI to 
the site running in the debugger. If you need to set up your localhost server, see the next 
section, “Using the Localhost.” 

• Run the Push notifications app sample, switch to Scenario 4, paste the URI into the URI1 field, 
and press the Start periodic updates. 

• If all is well, you should see the wide tile update as follows. (OK, so it’s another shameless picture 
of my kid…what can I say? You have to give us fathers a break!) 

 
• If you use the Start screen’s app bar command to make the tile smaller, thereby using the square 

tile payload in the XML, you should see it switch between to another gratuitous picture of my kid 
and peek text: 

  
The complete website code for all this can be found in the HelloTiles example in this chapter’s 

companion content. As simple as it is, it provides the basic framework in which you can add code to 
generate more dynamic results. In the top part of the file, within the @{ }, you can write whatever code 
you need by using C#. 

Generally speaking, a real service that provides tile and badge updates would probably be connected 
on the server side to some other useful source of information, perhaps to an always-running process 
that can monitor other sites, extract the desired data, and generate updates. Those updates can be 

594



returned from page requests, as we’ve seen here, or fed directly to WNS so that they can be pushed 
directly to specific clients. We’ll come back to this subject in “Push Notifications and the Windows Push 
Notification Service” later in this chapter. 

For now, a more pressing question is this: how does one actually debug such a service? Fortunately, 
the Visual Studio tools make this very straightforward through the localhost. 

Using the Localhost 
Debugging a tile and badge update service with periodic notifications can be a difficult proposition. You 
can just enter your service’s URI in a browser and use its View Source command to examine the XML, 
but how do you step through that server-side code to isolate problems? 

The solution is to run your service on your local machine, as we just did in the previous section, 
where the URI references your localhost server, however you want to set it up. You can install a server 
like Apache, of course, or you can use the solution that’s built into Windows and integrated with the 
Visual Studio tools: Internet Information Services (IIS). 

To turn on IIS in Windows, go to Control Panel > Turn Windows Features On Or Off. Check the 
Internet Information Services box at the top level, as shown below, to install the core features: 

 
Once IIS is installed, the local site addressed by http://localhost/ is found in the folder 

c:\inetpub\wwwroot. That’s where you drop something like the PHP page described in the last section so 
that you can use a URI like http://localhost/dayofmonthservice.php in the Push notifications sample 
(Scenario 5, in this case, for badge updates). 

With the web page running on the local machine, you can hook it into whatever tools you have 
available for server-side debugging. Here it’s good to know that access to localhost URIs—also known 
as local loopback—is normally blocked for Windows Store apps unless you’re on a machine with a 
developer license, which you are if you’re been running Visual Studio or Blend. This won’t be true for 
your customer’s machines, though! In fact, the Windows Store will reject apps that attempt to do so.67 

67 Visual Studio enables local loopback by default for a project. To change it, right-click the project in Solution Explorer, 
select Properties, select Configuration Properties > Debugging on the left side of the dialog, and set Allow Local Network 
Loopback to No. For more on the subject of loopback, see How to enable loopback and troubleshoot network isolation. 

595

http://msdn.microsoft.com/library/windows/apps/Hh780593.aspx


To use PHP with IIS, you might need to install it through Microsoft’s Web platform installer or the 
server-side code won’t execute properly. After PHP installation, try entering the URI for the PHP page in 
your browser. If you get an error message that says “Handler PHP53_via_FastCGI has a bad module” 
(yeah, that’s really helpful!), return to the Turn Windows Features On Or Off dialog shown earlier, 
navigate to Internet Information Services > World Wide Web Services > Application Development 
Features, check the box for CGI, and press OK. Once the CGI engine is installed, your PHP page should 
work. 

If you plan to work in ASP.NET or Razor, I highly recommend you also install Visual Studio Express 
2012 for Web through Web platform installer. When you run a website in its debugger, it assigns a port 
on localhost such as http://localhost:53528 and launches Internet Explorer with that URI. The port links 
the browser to the debugger, so if you set a breakpoint in the page code, the debugger will stop at that 
point whenever there’s a page request, allowing you to step through the code with the same features 
we’ve been enjoying in writing Windows Store apps. 

For example, load up the HelloTiles example site with this chapter in Visual Studio Express 2012 for 
Web, set a breakpoint on the var weekDay line at the top, and start debugging. Once Internet Explorer 
has loaded default.cshtml, copy and paste its URI into Scenario 4 of the Push notifications sample. Press 
the Stop Periodic Updates button followed by the Start Periodic Update button to force a new request 
to the URI and—magic!—you should hit the breakpoint in the service: 

 

Windows Azure 
When you’re ready to upload an app to the Windows Store and have real customers using your web 
service, you’ll need to consider where, exactly, you’ll host that service so that it can scale to what 
hopefully becomes a very large customer base! During your development and testing process, of 
course, you can host the service anywhere you want because only a few instances of your app will ever 
call upon it. But if your app is acquired by many customers and each instance of that app starts banging 
on the host server for tile and badge updates, that host might soon become overloaded! 

For this reason you should investigate services like Windows Azure, where more server power can be 
added when it’s necessary and scaled back when it’s not (and you pay only for what is actually used). To 
get started, visit http://www.windowsazure.com where you can set up a free 90-day trial for a hosted 
site. The Windows Azure site also provide direct support and SDKs for .NET, node.js, PHP, Java, and 
Python, along with Visual Studio Express 2012 with Web for Windows Azure SDK—all available again 

596

http://www.microsoft.com/web/downloads/platform.aspx
http://www.windowsazure.com/


through the Web platform installer. You might also be interested in the Windows Azure Toolkit that 
provides project templates, samples, and other resources for creating services on Windows Azure. 

Tip As of this writing, Windows Azure has support for .NET Framework 4.0 but not .NET Framework 4.5, 
so be sure to check the target framework in your project’s Build settings before deployment. 
(Right-click your project in Visual Studio Web, select Property Pages, and click Build—see image below). 
When I deployed my service targeting version 4.5, pages like Default.cshtml produced errors. 

 
 

As a brief walkthrough to get you started, I started my Windows Azure trial, installed the Windows 
Azure SDK for .NET, and deployed the HelloTiles example service with these steps: 

• Go to the Windows Azure Management Portal, and sign in with your account. 

• Create a new website with some URI. I used ProgrammingWin8-JS-CH13-HelloTiles, making the 
full site URI http://programmingwin8-js-ch13-hellotiles.azurewebsites.net/. After this step, my 
portal looks like this: 

 
• To upload the site, you first need to set up FTP credentials. Click the site in the list, which takes 

you to its specific dashboard. Under Publish Your App, click Set Up Deployment Credentials and 
enter a username and password. 

• Click Dashboard along the top of the window, and scroll down the right side to find the FTP 
hostname: 

597

http://watwindows8.codeplex.com/
http://manage.windowsazure.com/
http://programmingwin8-js-ch13-hellotiles.azurewebsites.net/


 
• In Visual Studio Express 2012 for Web, right-click the project and select Copy Web Site. In the 

dialog that appears, click Connect along the top to open the Open Web Site dialog (below). 
Select FTP site on the left, enter the FTP hostname on the top, enter site/wwwroot in Directory, 
and then enter your credentials at the bottom. Make sure to prefix your username with the site 
name and a backslash (for example, ProgrammingWin8-JS-CH13-HelloTiles\JohnQUser) or you’ll 
be very confused by Azure’s refusal to let you through the door! Finish by clicking Open. 

 
• Once Visual Studio Express 2012 for Web is connected to the Azure site, you can upload your 

files. 

• Once that’s complete, you should be able to use the site URI plus Default.cshtml as the URI for 
the tile update service. For instance, try 
http://programmingwin8-js-ch13-hellotiles.azurewebsites.net/dayofmonthservice.php with the 
Push notifications sample, Scenario 5, and 
http://ProgrammingWin8-JS-CH13-HelloTiles.azurewebsites.net/Default.cshtml with Scenario 4 
and you’ll see the same results as when we used localhost. You can also just visit these URIs 
directly to see the XML they’re producing. 

With this, you now have the ability to scale up your Windows Azure hosting, with your app supplying 
the hosted URI to the periodic update API. This also puts you in a good position to use push 
notifications, as we’ll see later, but because those are also often used with toasts, let’s see how toasts 
work next. 

598



Toast Notifications 

So far in this chapter we’ve exhausted the subject of tiles and tile updates, which is actually a great 
prelude to our next topic, toast notifications. This is because the process of creating and issuing toasts is 
quite similar to that for tiles and is simplified by the fact that there are no periodic updates for toasts: 
they either come from the running app, from background tasks, or through push notifications, as we’ll 
see in “Push Notifications and the Windows Push Notification Service” below. Fortunately, the topic of 
toasts is considerably shorter than that of tiles. Here are the salient aspects of toasts: 

• Toasts always use the app’s Background Color and Foreground Text settings in the manifest for 
branding, along with the small logo. There are no means to override this; the branding attribute 
in the XML is ignored for toasts. 

• An app must set the Toast Capable setting in its manifest for any toasts to appear on its behalf. 
This is found in the Application UI > Notifications area: 

 
• As shown long ago in Figure 13-8, the user can disable toasts for a particular app or disable 

them globally (which I find helpful when recording a screencast!). System administrators can also 
disable toasts by policy. To check this status programmatically, look at the Toast- 
Notifier.setting property, a value from the NotificationSetting enumeration that will be 
enabled, disabledForApplication, disabledForUser, or disabledByGroupPolicy. 

• When enabled, toasts always appear in the upper right corner of the screen (left-to-right 
languages) or the upper left corner (right-to-left languages). This is not configurable. 

• Toasts are managed through instances of the Windows.UI.Notifications.ToastNotification 
or Windows.UI.Notifications.ScheduledToastNotification classes. The first supports an 
expirationTime property; the scheduled toast supports deliveryTime, snoozeInterval, and 
maximumSnoozeCount properties. 

• As with tiles, the content of toasts are created with an XML payload from one of four text-only 
and four image-plus-text templates, as shown on the Toast template catalog. Toast templates 
are acquired from the ToastNotificationManager object’s getTemplateContent method, can be 
created from strings, or can be created through the Notifications Extensions Library. Various 
options can be set in the XML: 
 
 

599

http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toastnotifier.setting.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toastnotifier.setting.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toastnotification.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.scheduledtoastnotification.aspx
http://msdn.microsoft.com/library/windows/apps/hh761494.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toastnotificationmanager.aspx


• Toasts can include text and an image, where the image can come from the app package, 
app data, or a remote source (given Internet Client capability). Images have the same 
limits as with tiles: 1024x1024 maximum resolution and 200KB maximum file size. Unlike 
tiles, however, if the image exceeds the limits, the notification will still show but with a 
gray placeholder image instead. 

• Toasts can specify a predefined sound to play when the toast appears, with a looping 
option. Custom sounds are not supported. 

• By default, toasts appear for seven seconds (five seconds opaque plus a two-second 
fade) or until activated or dismissed. (The opaque duration is available through the 
Windows.UI.ViewManagement.UISettings.messageDuration property.) You can issue 
long-duration toasts, looping toasts, and recurring toasts that appear a given number of 
times with some interval in between.  

• A toast is issued through the ToastNotifier class, namely the show and addToSchedule methods 
for immediate and scheduled toasts, respectively. The ToastNotifier also provides methods to 
manage previously scheduled toasts. 

• Like secondary tiles, toast notifications can (and generally should) be created with specific 
arguments in the XML payload that will be passed to the app’s activated event handler with the 
activation kind of launch. Without such arguments, no activated event is raised, but otherwise 
an app handles toast notifications exactly as it would a secondary tile. Alternately, an app can 
listen to specific events that the toast itself will raise when it’s activated or dismissed. 

The following sections provide details on a number of these steps, using the Toast notifications 
sample and Scheduled notifications sample for reference. We also recommend you review the 
Guidelines and checklist for toast notifications. 
 

Tip As noted before, toasts are not enabled within the Visual Studio simulator; you must run these 
samples on the Local Machine or a Remote Machine to see the toasts. 

Creating Basic Toasts 
Let’s start with Scenarios 1, 2 and 3 of the Toast notifications sample, which shows how to issue toasts 
from a running app using the text and text+image templates. As shown in Figure 13-16 and Figure 
13-17 (for text-only and text+image toasts, respectively), up to three toasts can be visible at one time. 
Remember that you must have Toast Capable set to Yes in the app manifest for any of this to work. 

600

http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.uisettings.messageduration.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toastnotifier.aspx
http://code.msdn.microsoft.com/windowsapps/toast-notifications-sample-52eeba29
http://code.msdn.microsoft.com/windowsapps/toast-notifications-sample-52eeba29
http://code.msdn.microsoft.com/windowsapps/Scheduled-notifications-da477093
http://msdn.microsoft.com/library/windows/apps/hh465391.aspx


 
FIGURE 13-16 Issuing text toasts through Scenario 1 of the Toast notifications sample. (The bottom of the app is 
cropped.) 

 
FIGURE 13-17 Issuing text+image toasts through Scenario 3 of the sample. (The bottom of the app is again 
cropped.) Scenario 2 does the same thing with in-package images that aren’t nearly as interesting, in my paternal 
opnion, as my cute kid! 

Just as we saw earlier with tiles, the sample shows how to create the XML payloads for toasts by using 
template content from ToastNotificationManager.getTemplateContent, the Notifications Extensions 
Library, or XML strings. The resulting XmlDocument is then used to create a ToastNotification object 
that is then passed to the ToastNotifier.show method. 

For example, here’s how Scenario 1 (js/scenario1.js) issues a toast using the toastText01 template (a 
value from the ToastTemplateType enumeration) through getTemplateContent: 

var Notifications = Windows.UI.Notifications; 
 
function displayToastUsingXmlManipulation(e) { 
    // toastTemplateName is set according to the button you click 
 
    var notificationManager = Notifications.ToastNotificationManager; 
    var toastXml = notificationManager.getTemplateContent( 
        Notifications.ToastTemplateType[toastTemplateName]); 
 

601

http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toastnotificationmanager.gettemplatecontent.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toasttemplatetype.aspx


    // Populate the XmlDocument in toastXml (code omitted) 
 
    var toast = new Notifications.ToastNotification(toastXml); 
    notificationManager.createToastNotifier().show(toast); 
} 

The following code from Scenario 3 (js/scenario3.js) demonstrates creating a toast with XML strings 
(toastImageAndText01). As with tiles, you can use ms-appx:///, ms-appdata:///local, or http:// URIs to 
refer to images (in-package, app data, and remote images, respectively): 

function displayWebImageToastWithStringManipulation(e) { 
    // toastTemplateName is set according to the button you click 
 
    var notificationManager = Notifications.ToastNotificationManager; 
    var toastXmlString; 
 
    if (templateName === "toastImageAndText01") { 
        toastXmlString = "<toast>" 
                        + "<visual version='1'>" 
                        + "<binding template='toastImageAndText01'>" 
                        + "<text id='1'>Body text that wraps over three lines</text>" 
                        + "<image id='1' src='" + urlBox.value + "' alt='" + altText + "'/>" 
                        + "</binding>" 
                        + "</visual>" 
                        + "</toast>"; 
    } else { 
        // Other cases omitted 
    } 
 
    var toastDOM = new Windows.Data.Xml.Dom.XmlDocument(); 
    toastDOM.loadXml(toastXmlString); 
    var toast = new Notifications.ToastNotification(toastDOM); 
    notificationManager.createToastNotifier().show(toast); 
} 

Butter and Jam: Options for Your Toast 
Beyond the properties you can assign when creating a ToastNotification object (or a 
ScheduledToastNotification), there are additional bits you can include within the XML, as described in 
the Toast schema: 

• The root toast element in the XML has optional launch and duration attributes. The launch 
attribute can be assigned a string that will be passed to the app’s activated handler as 
eventArgs.detail.arguments, exactly as happens with a secondary tile. (See “App Activation 
From a Secondary Tile” earlier in this chapter.) The duration attribute can have values of short 
(five seconds or the value from PC Settings > Ease of Access) or long (25 seconds or the value 
from PC Settings > Easy of Access, whichever is longer; refer back to Figure 13-7). 

• The visual and binding elements in the XML can have branding and addImageQuery attributes 
that act exactly like their counterparts for tiles. Refer back to the “Branding” and “Using Local 
and Web Images” sections under “Tiles, Secondary Tiles, and Badges.” The image element also 

602

http://msdn.microsoft.com/library/windows/apps/br230849.aspx


supports addImageQuery for scale, language, and contrast settings. 

• The visual, binding, and text elements support a lang attribute to identify the current app 
language. 

The toast element can also have a child audio element through which you can add a sound to a 
toast notification provided that the user has not disabled notification sounds altogether in PC Settings > 
Notifications. (Refer to Figure 13-8.) The particular sound is set with the src attribute and must be a one 
of the following string values as described in the Toast audio options catalog:68 

• ms-winsoundevent:Notification.Default 

• ms-winsoundevent:Notification.IM 

• ms-winsoundevent:Notification.Mail 

• ms-winsoundevent:Notification.Reminder 

• ms-winsoundevent:Notification.SMS 

• ms-winsoundevent:Notification.Looping.Alarm 

• ms-winsoundevent:Notification.Looping.Alarm2 

• ms-winsoundevent:Notification.Looping.Call 

• ms-winsoundevent:Notification.Looping.Call2 

Separately, the audio.silent attribute controls whether audio plays at all (false, the default) or is 
muted (true). If the toast.duration attribute is set and you set audio.src to one of the latter four 
“Looping” sounds above, you can also set audio.loop to true (to repeat the sound) or false (to play the 
sound only once, the default). 

Scenario 4 in the Toast notifications sample lets you play with the different notification 
sounds—different buttons choose different sounds. The text of each button (in a variable named 
toast-SoundSource) is appended to the ms-winsoundevent:Notification. as in this XML used to create 
the notification: 

"<audio src='ms-winsoundevent:Notification." + toastSoundSource + "'/>" 

Scenario 6 shows the use of the loop attribute in the XML as well: 

"<audio loop='true' src='ms-winsoundevent:Notification.Looping.Alarm'/>" 

 
 

68 With all the catalogs we’ve seen in this chapter, it feels like we’ve been shopping! More seriously, the fact that you must 
use audio from this list means that custom audio is not supported. 

603

http://msdn.microsoft.com/library/windows/apps/br230842.aspx
http://msdn.microsoft.com/library/windows/apps/Hh761492.aspx


Did you actually hear any sounds?  When I first ran these samples, I sure didn’t! It took me a while to 
figure out why, so let me save you the trouble. 

The values in the audio.src attribute simply map to various system sounds that are assigned in Control 
Panel > Hardware and Sounds > Change System Sounds, which displays the dialog box below. Having 
tired of all the beeps, boings, and dingalings that were once all the rage on personal computers, I 
routinely select the “No Sounds” option under Sound Scheme. As a result, there were no sounds 
assigned to anything in the Program Events list, so there were no sounds whatsoever for toast 
notifications. When I selected the Windows Default scheme, I then heard sounds with the toasts. 

In short, the user does have ultimate control over the sounds, both generally in PC Settings and 
specifically in the dialog box below. So, if it’s appropriate to use a sound at all, just choose the one 
that’s closest to the nature of your toast and leave it at that. 
 

 
 
 

Tea Time: Scheduled Toasts 
Issuing toasts from a running app is all well and good, but it’s not actually a common scenario because 
the user is already looking at the very same app. What’s more interesting are cases where the app isn’t 
necessarily running when a notification appears. This is why toasts are often used with push 
notifica-tions as well as background tasks, as we’ll see in the last two sections of this chapter, but the 
other means is a scheduled toast that will simply appear at some later time regardless of whether the 
app is running. This is a great way to invite the user to activate the app again. 

604



A scheduled toast is created using Windows.UI.Notifications.ScheduledToast-Notification 
instead of the usual ToastNotification as we’ve been using. There are two forms of scheduled 
notification, as indicated by its pair of constructors: 

• ScheduledToastNotification(content, deliveryTime)  Creates a one-time scheduled toast 
with the toast’s XmlDocument in content and the UTC DateTime when it should appear in 
deliveryTime. 

• ScheduledToastNotification(content, deliveryTime, snoozeInterval, maximumSnoozeCount)  
Creates a recurring scheduled toast whose content will appear at deliveryTime. If the toast is 
dismissed either explicitly or by letting it disappear on its own, it will continue to appear a total 
of maximumSnoozeCount times at intervals defined by the number of milliseconds in 
snoozeInterval. The snoozeInterval must be set between 60 seconds and 60 minutes; for 
longer intervals it’s best to just schedule separate toasts altogether. 

A ScheduledToastNotification also has an id property, a maximum 16-character string that’s used 
to identify that toast. If you schedule a toast with the same id as an existing one, the new one will 
replace the old. 

In all cases, the toast is scheduled by calling the ToastUpdater.addToSchedule method passing in the 
notification object. Here’s the process in code, as found Scenario 1 of the Scheduled notifications 
sample (js/scenario1.js), where toastDOM is the XmlDocument containing the content and dueTime is 
determined by a UI control in the sample. First, for a one-time notification: 

var Notifications = Windows.UI.Notifications; 
 
toast = new Notifications.ScheduledToastNotification(toastDOM, dueTime); 
Notifications.ToastNotificationManager.createToastNotifier().addToSchedule(toast); 

Second, for a notification that will repeat five times at 60-second intervals (the option that’s exercised 
if you check the Repeat checkbox in the sample’s UI): 

var Notifications = Windows.UI.Notifications; 
 
toast = new Notifications.ScheduledToastNotification(toastDOM, dueTime, 60 * 1000, 5); 
Notifications.ToastNotificationManager.createToastNotifier().addToSchedule(toast); 
 
 

To enumerate currently scheduled toasts, call ToastNotifier.getScheduledToast-Notifications. 
This returns a vector of ScheduledToastNotification objects, any of which can be canceled through 
ToastNotifier.removeFromSchedule. These methods are demonstrated in Scenario 2 of the Scheduled 
notifications sample that I will leave you to examine more closely. Also, there are some debugging tips 
on the Guidelines and checklist for scheduled notifications topic in the documentation, mostly to note 
that the system has a limit of 4096 total notifications and to make sure you’ve set Toast Capable in the 
manifest to Yes. 

605

http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.scheduledtoastnotification.aspx
http://code.msdn.microsoft.com/windowsapps/Scheduled-notifications-da477093
http://code.msdn.microsoft.com/windowsapps/Scheduled-notifications-da477093
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toastnotifier.getscheduledtoastnotifications.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toastnotifier.removefromschedule.aspx
http://msdn.microsoft.com/library/windows/apps/hh761464.aspx


Toast Events and Activation 
As far as toasts are concerned, we have perhaps saved the best topic for last! The whole purpose of a 
toast is to get the user’s attention and have them activate your app to take some kind of action. An app 
will commonly navigate to an appropriate page for whatever the content of the toast implies. 

The most straightforward case of activation is with a scheduled toast or one that has been put up by 
a background task or through a push notification. In all of these cases the app won’t be running, so 
Windows will start it with the activation kind of launch, where the value of the toast.launch attribute 
will be in the activated event’s eventArgs.detail.arguments property. This is, once again, identical to 
the way secondary tiles work and you can process the arguments value however you wish. 

If the app is not running when the toast is activated, it will still be launched even if the toast.launch 
attribute is empty. That is, toasts that occur under nonrunning conditions can be used to just launch the 
app, if desired. On the other hand, if a running app issues a toast with no toast.launch value, its 
activated event will not be fired at all. This is a way of saying that activation through a toast with no 
additional information would never cause the app to navigate in the first place, so what’s the point of 
firing the activated event? None whatsoever. Thus, if a running app issues a toast with the intent that 
activating that toast will switch to a different part of the app, a launch value is essential. (Of all the 
scenarios in the Toast notifications sample, only Scenario 5 provides a launch value; set a breakpoint in 
the activated event of js/default.js, and you’ll see that Scenario 5 is the only time that event will fire 
when you tap a toast.) 

Still, a running app might want to know when the user interacts with a toast, launch arguments aside. 
For this purpose it can listen to a ToastNotification object’s activated, dismissed, and failed events, 
a few of which are demonstrated in Scenario 5 of the sample. The activated event has no specific 
eventArgs, but dismissed comes with a ToastDismissalReason in eventArgs.reason (values are 
userCanceled, applicationHidden, and timedOut), and the failed event comes with an error code in 
eventArgs.errorCode. (These are all events from a WinRT object, so be sure to manage them with 
removeEventListener as appropriate. See the section “WinRT Events and removeEventListener” in 
Chapter 3.) 

Note that a ScheduledToastNotification does not support any of these events because the 
assumption is that the app probably won’t be running by that time anyway. 

Push Notifications and the Windows Push Notification Service 

We’ve now finally arrived in this chapter where we can leave running apps behind and look at more of 
the fun things that can happen behind the scenes. Earlier, in “Periodic Updates,” we learned that the 
shortest interval you can use with that method is pretty darn long by a computer’s reckoning: 30 
minutes. That’s even long by many human standards, especially those of a user who really wants to 
know what’s happening with whatever information source your app is connected to. 

606

http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toastnotification.activated.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toastnotification.dismissed.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.notifications.toastnotification.failed.aspx


To update a tile, set a badge, or issue a toast as quickly as the system allows, and to personalize the 
content (as with calendar reminders and email alerts), it’s necessary to be a little pushy and use push 
notifications. These are notifications that come to a system from an outside agent, typically a service that 
is monitoring some other source of information and detects a condition for which a notification is 
appropriate. We saw the mechanism in the “The Four Sources of Updates and Notifications” section and 
Figure 13-14 early in this chapter. To summarize: 

• When launched, an app requests a channel URI for each of its live tiles and then sends those URIs 
to its associated web service. An app should do this each time it’s launched, as the expiration 
period for a WNS channel is 30 days.69 Each channel URI is unique for the user, the tile, and the 
device. 

• The web service stores the channel URI and associates it with a user to customize their 
notification content (as again with email and calendar alerts, notifications from friends’ activities, 
etc.). 

• When needed, the web service issues updates (XML payloads) to that channel. 

• WNS then send the notification to the client devices where the app acquired the channel URI. 
Those notifications can update tiles, update badges, issue toasts, and update the lock screen 
(with appropriate lock screen apps and background tasks). 

It’s also possible for the service and WNS to send what is called a raw notification, which can contain 
any payload you want: there just needs to be someone listening as Windows won’t know what to do 
with the data. A foreground app can listen through the 
PushNotificationChannel.onpush-notificationreceived event; a lock screen app can listen with a 
background task. In the latter case, raw notifications are generally used to deliver information to the 
background task and issues other notifications in response or updates app data. 

Before you do anything in your app, however, you need to follow the instructions on How to 
authenticate with the Windows Push Notification Service (WNS) on the Windows Developer Center 
(which is part of a whole series on Sending push notifications). This will walk you through the steps on 
the Windows Store Dashboard to obtain a Package Security Identifier (SID) and a secret key that your 
web service must use to authenticate itself with WNS. 

That done, let’s go through each of the steps in turn, using Scenarios 1–3 of the same Push and 
periodic notifications client-side sample we used earlier for periodic updates. 
 

Note Because channel URIs are unique for an app+user+device, using push notifications can become 
an expensive proposition for your web service, which must record and maintain a channel for every 
unique tile on every user’s device and then figure out when to send which notifications to which 
channels. If your app becomes popular, this will require scaling up your service to potentially manage  

69 Usage of the app is also a pretty good indicator to the service as to whether it needs to continue supporting a particular 
user. 

607

http://msdn.microsoft.com/library/windows/apps/hh465407.aspx
http://msdn.microsoft.com/library/windows/apps/hh465407.aspx
http://msdn.microsoft.com/library/windows/apps/hh465460.aspx
http://code.msdn.microsoft.com/windowsapps/Push-and-periodic-de225603
http://code.msdn.microsoft.com/windowsapps/Push-and-periodic-de225603


thousands or even millions of channel URIs. For this reason, seriously evaluate whether periodic 
notifications will be sufficient for your scenario, especially for updates that aren’t user specific, because 
they will be much simpler on the service side of the picture. 

Requesting and Caching a Channel URI (App) 
Requesting a channel URI is done through the 
Windows.Networking.PushNotifications.PushNotificationChannelManager object. This manager has 
only two methods: createPushNotificationChannelForApplicationAsync and 
createPushNotificationChannelForSecondaryTileAsync. The first is clearly linked to the app tile as well 
as toast notifications; the second is clearly for use with secondary tiles and takes a tileId argument to 
identify the specific one. 

The result of both async operations is a PushNotificationChannel object that will be passed to your 
completed handler, as shown in Scenario 1 of the sample (start in js/scenario1.js, then go into 
js/notifications.js): 

var channelOperation; 
 
// Channel for the app tile  
if (isPrimaryTile) { 
    channelOperation = Windows.Networking.PushNotifications.PushNotificationChannelManager 
        .createPushNotificationChannelForApplicationAsync(); 
} else { 
    // Channel for a secondary tile 
    channelOperation = Windows.Networking.PushNotifications.PushNotificationChannelManager 
        .createPushNotificationChannelForSecondaryTileAsync(itemId); 
} 
 
channelOperation.done(function (newChannel) { 
    // Send channel to web service 
},  /* error handler */ 
); 

The PushNotificationChannel object (newChannel in the code above) is a simple object with just a 
few members, but they are important ones: 

• expirationTime A read-only property indicating when the channel expires—notifications sent 
to this channel after expiration will be rejected. Apps must be sure to refresh their channels when 
needed to avoid an interruption in notifications. 

• uri A read-only URI to which the app’s web service sends notifications to WNS. 

• close A method that explicitly invalidates the channel.  

• pushnotificationreceived An event that’s fired when a notification is received on the client 
device from this notification channel. This will be fired only for apps that are in the foreground. 

 

608



Your app should go through this short process to obtain the necessary channel URIs whenever it’s 
launched as well as when it’s resumed (especially if any channel’s expirationTime has passed). It’s 
unlikely that an app would stay suspended for that long, but it’s still possible! Furthermore, if you’re 
concerned that your app might not run for more than 30 days, you can implement a background task 
on a maintenance trigger for this purpose. See “Tasks for Maintenance Triggers” later in this chapter and 
Scenario 2 of the sample. 

Again note that you may have more than one channel URI if you’re also using push notifications for 
secondary tiles as well as your app tile. In this case you’ll be managing a separate channel URIs for each 
tile. 

Each time through the process, save the channel URI for each tile in your local app state. This is so 
that you can check on subsequent runs if the URI is the same as one you’ve already obtained and sent to 
your web service, in which case you can avoid unnecessary network traffic. 

Sending the URI to your web service can be done with a simple call to WinJS.xhr, as in the sample 
(inside channelOperation.done). Here we also see the checks for whether the URI is the same as before: 

channelOperation.done(function (newChannel) { 
    // _urls[] is an array of channel ids for primary and secondary tiles 
    var tileData = that._urls[itemId]; 
 
    // Upload the channel URI if the client hasn't recorded sending the same 
    // uri to the server 
    if (tileData && newChannel.uri === tileData.channelUri) { 
        // This saves the URI to local app data 
        that._updateUrl(url, newChannel.uri, itemId, isPrimaryTile); 
        completed(newChannel); 
    } else { 
        WinJS.xhr({ 
            type: "POST", 
            url: url, 
            headers: { "Content-Type": "application/x-www-form-urlencoded" }, 
            data: "channelUri=" + encodeURIComponent(newChannel.uri) + 
                "&itemId=" + encodeURIComponent(itemId) 
        }).done(function (request) { 
 
            // Only update the data on the client if uploading the channel URI succeeds. 
            // If it fails, you may considered setting another background task, trying 
            // again, etc. (An exception will be thrown if it fails, ending up in the  
            // error hander instead.) 
            that._updateUrl(url, newChannel.uri, itemId, isPrimaryTile); 
            completed(newChannel); 
        }, failed); 
    } 
}, failed); 
 
 
 

609



Managing Channel URIs (Service) 
If you use the code in the previous section, your web service that generates push notifications will 
receive HTTP POST requests with unique channel URIs for each and every tile. This isn’t the only way to 
transport channel URIs, of course; in fact, because a channel URI might be used to transmit personal 
information through notifications, it should ideally be encrypted with a private key before it’s sent to 
the server. Otherwise someone could possibly intercept that URI and use it to redirect user-specific 
notifications. 

In any case, the service must expect to receive—and then manage—a unique URI for each 
app/user/device combination. This underscores the fact that push notifications are best used for 
user-specific notifications rather than broadcast notifications. In the latter case, setting up a service for 
periodic updates is a much easier solution. 

Once the service receives a channel URI along with any data to identify the user and the purpose of 
the channel, it should securely save that information in persistent storage of some kind, such as a SQL 
Server database (for an ASP.NET service) or a MySQL (for a PHP service). 

It’s important that the service also removes obsolete channel URIs. If it receives a new URI for the 
same user and the same purpose, it should replace the old with the new. It should also remove any URIs 
from its data store if it receives an HTTP 404 or 410 error back from WNS, indicating an obsolete 
channel. 

A simple ASP.NET service page that can receive a post from Scenario 1 of the Push and periodic 
notifications client-side sample can be found in the HelloTiles website project in this chapter’s 
companion content, specifically receiveuri.aspx. To run this service, make sure you have the localhost 
established, as described earlier in the “Using the localhost” section for periodic updates. You may also 
need to install ASP.NET on your localhost. An easy way to do this is to obtain the Background transfer 
sample, go into its Server folder, and then from an administrator command prompt run powershell 
-ExecutionPolicy unrestricted -file serversetup.ps1. If you then run the site in Visual Studio Express 
2012 for Web as we did before, you should have a localhost port for the service (for instance, 
http://localhost:52568/HelloTiles/receiveuri.aspx). 

You can then set a breakpoint in the service code, paste the service URI into Scenario 1 of the Push 
notifications sample, and press its Reopen Channel And Send To Server button. This should hit the 
breakpoint in the service and allow you to step through the code that processes the request. Here you’ll 
find that the request contains channelUri and itemId values (along with LOGON_USER), which can be 
saved for when the service needs to send a notification to WNS. Something similar can be written in 
other server-side languages, of course, and a great place to find tools to help with writing services is the 
Windows Azure Toolkit. 

Sending Updates and Notifications (Service) 
Before a service can send updates, it must to authenticate itself with WNS by sending the Package 
Security Identifier (SID) and client secret as obtained through the Windows Store Dashboard. This is a 

610

http://code.msdn.microsoft.com/windowsapps/Push-and-periodic-de225603
http://code.msdn.microsoft.com/windowsapps/Push-and-periodic-de225603
http://code.msdn.microsoft.com/windowsapps/Background-Transfer-Sample-d7833f61
http://code.msdn.microsoft.com/windowsapps/Background-Transfer-Sample-d7833f61
http://watwindows8.codeplex.com/


matter of sending an XmlHttpRequest to WNS (via HTTPS) that looks like this: 

POST /accesstoken.srf HTTP/1.1 
Content-Type: application/x-www-form-urlencoded 
Host: https://login.live.com 
Content-Length: 211 
grant_type=client_credentials&client_id=ms-app%3a%2f%2fS-1-15-2-2972962901-2322836549-3722629029-13452385
79-3987825745-2155616079-650196962&client_secret=Vex8L9WOFZuj95euaLrvSH7XyoDhLJc7&scope=notify.windows.co
m 

where you must make sure the values of client_id and client_secret match the package SID and 
client secret. If the authentication works, you’ll receive a 200 OK response with the access token you 
need for sending notifications: 

HTTP/1.1 200 OK 
Cache-Control: no-store 
Content-Length: 422 
Content-Type: application/json 
{ 
    "access_token":"EgAcAQMAAAAALYAAY/c+Huwi3Fv4Ck10UrKNmtxRO6Njk2MgA=",  
    "token_type":"bearer" 

} 

Code that accomplishes these steps for a service written in C# can be found on How to authenticate 
with the Windows Push Notification Service, where your service would use the GetAccessToken method 
shown there to obtain an OAuthToken object with the information from the response. Services written in 
other languages will obviously need to use the appropriate means to send the request and receive the 
response. 

Whatever the case, once you have the access token you’re ready to start sending updates and 
notifications via XmlHttpRequests to the channel URIs maintained by the service. 

For tile updates, badge updates, and toast notifications, sending a notification means generating the 
XML payload as for any other update or notification, and then sending it to WNS with the previously 
acquired access token. The only real difference between these requests, besides the specific XML, is the 
value of X-WNS-Type in the request header: wns/badge, wns/tile, wns/toast, or wns/raw (see the next 
section). Otherwise the code is the same. 

Generic code for a C# service can be found on Quickstart: Sending a tile push notification and 
Quickstart: Sending a toast push notification. I’ve included a badge update version in 
sendBadgeToWNS.aspx in the Hello Tiles example site with this chapter, where the SID and client secret 
are ones I obtained for the Push notifications sample. (You may need to re-create those yourself.) To 
test all this, run the Hello Tiles website in Visual Studio Express 2012 for Web and set a breakpoint at the 
beginning of sendBadgeToWNS.aspx. Assuming you’re running Scenario 1 of the Push notifications 
sample in Visual Studio Express 2012 for Windows 8 to upload a channel URI to receiveuri.aspx, there 
should be a file called channeluri_aspx.txt in the website project that contains the uploaded data. 

Now switch to Scenario 3 of the Push Notifications sample and press the button to start listening to 
the pushnotificationreceived event. In js/scenario3.js of that sample, set a breakpoint within the 

611

http://msdn.microsoft.com/library/windows/apps/hh465407.aspx
http://msdn.microsoft.com/library/windows/apps/hh465407.aspx
http://msdn.microsoft.com/library/windows/apps/xaml/hh868252.aspx
http://msdn.microsoft.com/library/windows/apps/xaml/hh868255.aspx


pushNotificationReceivedHandler function. With all this in place, open a browser and enter the address 
of sendBadgeToWNS.aspx on the localhost: http://localhost:52568/HelloTiles/ sendBadgeToWNS.aspx, 
for example. This should hit the breakpoint in Visual Studio Express 2012 for Web, where you can walk 
through that page’s code and see it loading the channel URI from channeluri_aspx.txt, to which it then 
sends a badge update. When that happens, you should hit the breakpoint in the Push notifications app 
where you can walk through that code. Note that when you get to the line e.cancel=true, skip over 
it—right-click the line below it and select Set Next Statement. This will allow Windows to process the 
notification and update the badge for the Push notifications sample, which should now look like the 
following with a * badge on the lower right: 

 
Note again that if you receive an HTTP 404 or 410 error back from WNS, the channel URI is no longer 

valid and you should remove it from your list. It’s also good for the app to notify your service whenever 
it no longer needs updates for a particular channel (no point in paying for unproductive bandwidth). 
And if WNS returns an error, avoid posting the update again unless it makes sense for your scenario. 

A 404 or 410 error is different, by the way, from an inability to deliver to notification because the 
client is offline. In this case WNS will cache the tile, badge, or raw notification until the client reconnects. 
In other words, it’s not a condition that your service has to worry about. Send notifications as you always 
would, and let WNS handle the delivery details. 

Raw Notifications (Service) 
If you use wns/raw as the push notification type, the payload included with the push notification can be 
anything you want, not just XML, as long as it’s under 5KB. Of course, Windows cannot do anything with 
this payload directly, so an app has to provide a handler for receipt of the notification, as the next 
section explains. 

Receiving Notifications (App) 
A running app receives push notifications through the 
PushNotificationChannel.onpush-notificationreceived event. This is again required to process 
wns/raw payloads but can be used for any type. If the app is not running, of course, it won’t receive this 
event. Instead, the app must be on the lock screen with a PushNotificationTrigger background task for 
this purpose. (See “Lock Screen Dependent Tasks and Triggers” later in this chapter.) That piece of code 
will then receive the XML payload, process it, and issue whatever tile updates, badge updates, or toast 
notifications are necessary. Besides saving some state to the app data folders, this is really all that the 
background task can do, but it’s enough to keep that sense of aliveness going as well as invite the user 
to launch the app in response. 

612



In the running app, the pushnotificationreceived event is fired for the other notification types as 
well. Scenario 3 of the sample shows this in its event handler—I’ve modified this code a little bit for 
simplicity: 

function startListening() { 
    // Assume channel has been obtained and validated 
    channel.addEventListener("pushnotificationreceived", pushNotificationReceivedHandler); 
} 
 
function pushNotificationReceivedHandler(e) { 
    // Extract notification payload for each notification type 
 
    var notificationPayload; 
    switch (e.notificationType) { 
        case pushNotifications.PushNotificationType.toast: 
            notificationPayload = e.toastNotification.content.getXml(); 
            break; 
 
        case pushNotifications.PushNotificationType.tile: 
            notificationPayload = e.tileNotification.content.getXml(); 
            break; 
 
        case pushNotifications.PushNotificationType.badge: 
            notificationPayload = e.badgeNotification.content.getXml(); 
            break; 
 
        case pushNotifications.PushNotificationType.raw: 
            notificationPayload = e.rawNotification.content; 
            break; 
    } 
 
    // Process the notification: set e.cancel to true to suppress automatic handling. 
} 

The last bit in the comment above is important. When you receive this event in a running app, it 
wouldn’t be necessary to display a toast unless it pertains to some other part of the app that isn’t visible. 
For example, if you have an app that handles both email and a calendar, you might want to show email 
toasts when the user is looking at the calendar and calendar toasts when the user is looking at email. In 
this case, setting e.cancel to true will suppress the toast. 

With the pushnotificationreceived event, the running apps gets first crack at raw notifications. If 
the app doesn’t process it, the notification will be sent to any lock screen background task configured 
for the PushNotificationTrigger. In either case, refer to the Raw notifications sample for more details. 
 
 
 

 

613

http://watwindows8.codeplex.com/wikipage?title=Raw%20Notifications%20Sample


Debugging Tips 
When using push notifications, experience shows that if notifications aren’t getting through, it’s typically 
not a problem with WNS. Here’s a list of things to check (thanks to Hans Andersen for this list): 

• Check the return status of your HTTP POSTs to WNS. If it’s returning an HTTP 200 response, 
check the X-WNS-NotificationStatus and other headers you get back. Look particularly for the 
status of “Received,” which indicates that a notification has gone to the client. 

• Lacking anything conclusive in the headers, run Event Viewer and check the events under 
Application And Services Logs > Microsoft > Windows > Push Notifications Platform > 
Operational to see the activity. 

• Also look under Application And Services Logs > Microsoft > Windows > Immersive-Shell > 
Microsoft-Windows-TWinUI > Operational to see if there are error messages related to XML 
parsing about the same time you expected to receive a notification. 

• Even if the XML is well-formed, an update might not show up if a referenced image is either too 
large (pixel dimensions or file size), if the image is the wrong format (for example, TIF), if the 
image is corrupt, if the server handling the image request can’t handle the query parameters for 
the tile (scaling, contrast, language), or if the server is encountering other errors as might be 
revealed in its own logs. 

• If updates appear but after a considerable delay, it could just mean internal timeouts or other 
network latency within the tile and notification infrastructure. If this happens, just accept that the 
world isn’t always perfect and operations must sometimes be retried! 

Windows Azure Toolkit and Windows Azure Mobile Services 
Clearly, plenty of work is involved to create a service capable of receiving channel URIs and sending 
notifications through WNS. Recognizing this, the Windows Azure Toolkit once again provides some 
solutions. Going into all the details is beyond the scope of this book, but the link above will get you 
started. More specifically, check out the Azure Notifications Samples and the Raw Notifications Sample, 
as well as the Push Notification Worker sample. There is also a helpful video on the Channel 9 site: 
Episode 73 – Nick Harris on Push Notifications for Windows 8. Additional resources have likely been 
published since this chapter was written, so a quick Internet search will likely turn up more. 

Also check out Windows Azure Mobile Services, which helps you create a scalable backend for an 
app, including structured cloud data, authentication, and push notifications. This is quite new as of the 
time of writing, so I don’t have links to other resources, but it’s certainly worth looking into. 
 

614

http://watwindows8.codeplex.com/
http://watwindows8.codeplex.com/wikipage?title=Notifications%20Sample%20%e2%80%93%20C%23%20and%20JavaScript
http://watwindows8.codeplex.com/wikipage?title=Raw%20Notifications%20Sample
http://watwindows8.codeplex.com/wikipage?title=Push%20Notification%20Worker%20Sample&referringTitle=Documentation
http://channel9.msdn.com/Shows/Cloud+Cover/Episode-73-Nick-Harris-on-Push-Notifications-for-Windows-8
http://www.windowsazure.com/en-us/develop/mobile/


Background Tasks and Lock Screen Apps 

At the end of the introduction to this chapter, I described how everything we’ve talked about so far 
helps to “create an environment that is alive with activity while those apps are often not actually 
running or are allowed to run just a little bit.” It’s that last phrase—being allowed to run just a little bit 
through background tasks—that is our last topic for this chapter. And as described earlier as well, 
background tasks are related to the lock screen because the apps that are allowed to work on the lock 
screen must also employ certain background tasks. 

Let me reiterate here that we’ve already seen a number of scenarios in which the user can experience 
app-related activity without the app having to run. Periodic tile updates, push notifications, scheduled 
toasts, and even sharing data through the Share contract all provide for activity when an app is 
suspended or not running. Apps can also configure background data transfers to occur while the app 
isn’t running, as we’ll see in Chapter 14, “Networking.” And background audio provides for that specific 
class of apps that need to continue running to maintain VoIP sessions, audio playback, online meetings, 
and so forth. 

What’s left in the story are those little pieces of app code that Windows can run in response to 
specific triggers. Triggers in some cases can be further refined with optional conditions so that the 
background task runs only when it really needs to. This is all to minimize the amount of background 
activity that can drain a device’s battery. Some types of triggers, in fact, require that the user has placed 
the app on the lock screen to specifically limit the number of apps that can respond to those triggers. 
Furthermore, Windows also limits the amount of CPU time that background tasks can consume: 

• Lock screen background tasks Two seconds of cumulative CPU time per 15 minutes. 

• Other background tasks One second of cumulative CPU time every two hours. 

Consumption of network bandwidth is also limited on battery power. What that limit is, exactly, I 
cannot say, because the system analyzes energy usage more so than bytes transferred. A means of 
estimating the limit can be found on Supporting your app with background tasks. (While we’re at it, you 
might also be interested in Guidelines and checklists for background tasks, the Introduction to 
background tasks whitepaper, and Being productive in the background – background tasks on the 
Windows Blog.) 

“Whoa!” you’re probably saying, “Is Windows 8 really that restrictive?” 

The short answer is yes, because Windows not only wants to save battery power for the foreground 
app with which a user is engaged, but also wants to make sure the foreground app delivers the best 
user experience. This means it isn’t having to complete with background apps that would, if allowed, 
take up as many resources as they possibly can. (Developers of background services will always find a 
justification for hogging up resources!) 

It’s likely that you’ve experienced situations like this directly, where you’ve started an app but it takes 
for-EV-er to start up because some other dark and mysterious services is chewing on the hard drive, 

615

http://msdn.microsoft.com/library/windows/apps/hh977046.aspx
http://msdn.microsoft.com/library/windows/apps/Hh977043.aspx
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=27411
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=27411
http://blogs.msdn.com/b/windowsappdev/archive/2012/04/16/creating-a-great-tile-experience-part-1.aspx


pounding the network, flaring up the CPU, and so forth. I, for one, have dug through Task Manager and 
the Resource Monitor to figure out—and kill off—whatever process is pouring molasses on my system, 
let come what will. This is the kind of user experience that Windows 8 is trying to avoid. 

“OK,” you say (assuming that I’ve actually convinced you to some small degree), “does that mean 
that there isn’t any way to do some background work like indexing data, creating picture thumbnails, 
processing video, and so on?” 

Actually, there are ways to do this. For one, when an app is in the foreground, it can do however 
much it wants of all these things because it’s ultimately responsible for its own user experience. (An app 
written in JavaScript can, for such purposes, employ web workers to move such work off the UI thread, 
as well as delegate tasks to WinRT components that do their work on other threads and return results 
asynchronously. We’ll look at this in Chapter 16.) 

Second, when a device is on AC power instead of battery, Windows allows apps to run background 
tasks in response to maintenance triggers on 15-minute or longer intervals (whatever is appropriate for 
the app). These are still limited in the total amount of CPU time they can consume, but tasks that don’t 
involve UI—which background tasks are not allowed—can burn through a few billion instructions in one 
or two seconds on a gigahertz CPU! 

What we have in this whole story, then, are three distinct classes of background tasks and their 
associated triggers: 

• Tasks for maintenance triggers that run on AC power only 

• Tasks for potentially conditioned system triggers that run on AC or battery and don’t require 
being on the lock screen 

• Tasks for those privileged apps that the user had added to the lock screen 

We’ll look at each of these in detail in the sections that follow, but first there are a few aspects that 
are shared by them all: declaring background tasks in the manifest, the general process of building the 
task with the WinRT API, and conditions. 

Background Tasks in the Manifest 
All background tasks for an app are declared in the manifest, where each declaration indicates the type 
of task as well as the code to execute for that task, as shown in Figure 13-18. We’ve seen this section of 
the manifest before in Chapter 10 where we checked Audio for a background audio app. As for the 
other options, System Event is used for the first two classes of background tasks in the list above, and 
Control Channel, Timer, and Push Notification are specifically for tasks reserved for lock screen apps. 

616



 
FIGURE 13-18 The manifest editor for declaring background tasks, showing the option for Background Tasks in the 
drop-down list of Available Declarations (left), the background task types (center), and the Start Page field to indicate 
the JavaScript code to run for the task (bottom). Background tasks can also be written in other languages, in which 
case the Executable and Entry Point fields are used. 

In all cases, the Start Page field is where you indicate the JavaScript file to execute for the task, but do 
note that because background tasks execute independently of the app itself, sharing state only through 
app data, you can really choose whatever language you want. Given the quotas on CPU time, writing a 
background task in a language like C++ or C# will allow you to do some tasks more efficiently, in which 
case you’ll use the Entry Point field (if the task is in a DLL in the package) and perhaps the Executable 
field (if the task is an another EXE in the package) to identify the code module and specific function to 
call. 

It’s also good to note that even though the Start Page field for JavaScript suggests a page, it’s really 
just code that you use for a background task—you’ll get an error if you try to specify an HTML file here. 
(To be more specific, a background task in JavaScript is a web worker, plain and simple.) Such is why you 
can’t do UI from a background task: you can’t have Windows load any HTML or CSS, just JavaScript! 
Thus, issuing tile updates, badge updates, and toasts is as much UI work as a task is allowed. For 
anything else, the background task must write values to app data that the main app can pick up within 
its handlers for background task events, as we’ll see shortly. 
 

617



You might also notice that the System Event option in the manifest editor doesn’t offer another field 
in which you indicate the task’s specific trigger—this is done in code when we build the task, as we’ll see 
next. 

Building and Registering Background Task 
The declaration of a background task in the manifest is only that—a declaration that tells the system 
that the app intends to use a background task. The app must still register the background task from 
code in order for it to execute at all, which is accomplished using the Windows.ApplicationModel.- 
Background.BackgroundTaskBuilder (whose parent namespace contains everything we’ll be referring 
to in the context of background tasks). Simply said, you create an instance of the builder, set its name 
and taskEntryPoint properties, call its setTrigger and addCondition methods to specify exactly when 
the task should run, and then call register. 

Generic code for this is found in the Background task sample within js/global.js. This module declares 
a global object BackgroundTaskSample that contains a number of properties and methods. The one that 
concerns us here is a method called registerBackgroundTask that registers a given entry point (the 
name of a JavaScript file or the name of a class in C#, Visual Basic, or C++), with a given name, and 
applying some trigger and condition: 

var BackgroundTaskSample = { 
    // Properties with names and entry points of the sample's tasks are omitted 
 
    // 
    // Register a background task with the specified taskEntryPoint, taskName, trigger, 
    // and condition (optional). 
    // 
    "registerBackgroundTask": function (taskEntryPoint, taskName, trigger, condition) { 
        var builder = new Windows.ApplicationModel.Background.BackgroundTaskBuilder(); 
 
        builder.name = taskName; 
        builder.taskEntryPoint = taskEntryPoint; 
        builder.setTrigger(trigger); 
 
        if (condition !== null) { 
            builder.addCondition(condition); 
        } 
 
        var task = builder.register(); 
        BackgroundTaskSample.attachProgressAndCompletedHandlers(task); 
 
        // [Sample-specific code omitted] 
 
        // Remove previous completion status from local settings. 
        var settings = Windows.Storage.ApplicationData.current.localSettings; 
        settings.values.remove(taskName); 
    }, 
 
 

618

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.backgroundtaskbuilder.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.backgroundtaskbuilder.aspx
http://code.msdn.microsoft.com/windowsapps/Background-Task-Sample-9209ade9


In this code, the BackgroundTaskBuilder.register method returns a BackgroundTask- 
Registration object through which you manage a registered task. A registered task will have a name 
property and a system-assigned taskId property, the latter of which you can use to store app data that’s 
unique to the task. It also has an unregister method, which you would call for obvious purpose, and 
two events: completed and progress. Handlers for those events are assigned in the usual manner with 
addEventListener, as seen within the BackgroundTaskSample.attach-ProgressAndCompletedHandlers 
function in the sample: 

    "attachProgressAndCompletedHandlers": function (task) { 
        task.addEventListener("progress",  
            new BackgroundTaskSample.progressHandler(task).onProgress); 
        task.addEventListener("completed", 
            new BackgroundTaskSample.completeHandler(task).onCompleted); 
    }, 

One of the key uses of these handlers is to perform UI update tasks in response to data left behind by 
the background tasks. Those tasks themselves cannot work with UI, but they can save data to the app 
data areas that they share with the main app. The completed and progress events, then, are how the 
main app—the one that can work with the UI—can pick up those events from the background task to 
read values from app data and do the necessary updates. The Background task sample does this in each 
of its scenarios. 

There is also one static property, BackgroundTaskRegistration.allTasks, an IMapView through which 
you can retrieve your registered tasks and obtain the specific BackgroundTask-Registration object for 
each. 

It’s very important to note that Windows allows you to register the same background task twice and 
will assign unique taskId values to both, so be careful to avoid duplicate tasks. Notice too how the 
registerBackgroundTask code above makes a little use of the local settings container in app data. This is 
how the app communicates with each of its independent tasks because app data is the only means for 
such data exchange. 

With this structure, the question now becomes: what do we provide for the triggers and the 
conditions? The answer is what differentiates the various kinds of background tasks. 

Conditions 
The specific conditions you can specify through BackgroundTaskBuilder.addCondition are instances 
of the SystemCondition class. A background task registered with one or more conditions—each call to 
addCondition is cumulative—will run only if the conditions are met. Each instance  
can be one of the following types as defined in the SystemConditionType enumeration: 
internetAvailable, internetNotAvailable, sessionConnected (the user is logged in), 
sessionDisconnected (the user is logged out), userPresent (the user has been recently active), and 
userNotPresent (the user has not been active for a time). 
 

619

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.backgroundtaskregistration.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.backgroundtaskregistration.aspx
http://code.msdn.microsoft.com/windowsapps/Background-Task-Sample-9209ade9
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.backgroundtaskbuilder.addcondition.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.systemcondition.aspx


Clearly, each pair of these conditions is mutually exclusive: if you register a task with internet- 
Available and internetNotAvailable, Windows will recognize that you never really wanted to run the 
task in the first place, so it will let it sit on the roadside, forever undisturbed! Otherwise, you can use 
these to make sure that your task is run only when needed. If you want to execute a background task 
that renews push notification channels, for example, there’s no point in trying if there’s no connectivity. 
(We’ll see an example in the next section, “Tasks for Maintenance Triggers.”) On the other hand, if you 
have a background task that you want to make sure never interferes with the overall user experience, 
you can add the userNotPresent condition. 

Note that because the sessionDisconnected condition implies that the user has logged out, it’s 
useful only for background tasks that require the lock screen. 

Tasks for Maintenance Triggers 
Background tasks that use a maintenance trigger are probably the most generic kind of task—they’re 
really just any kind of code you want to run every now and then when the system is on AC power.70 
Such tasks are best for “checking up on something” or other activity that you want to run periodically 
but don’t really care when. As such, maintenance triggers aren’t appropriate for something like 
synchronizing data with a server because that should happen in a more timely manner and is best done 
with the background transfer API that we’ll see in Chapter 14. 

A maintenance trigger—what you pass to BackgroundTaskBuilder.setTrigger—is an instance of the 
MaintenanceTrigger class. When creating the instance, you provide two parameters. The first is 
basically the refresh period you need (the freshnessTime property, in minutes), and you should always 
use the longest period that’s reasonable for your scenario; the system will always wait at least this long 
before first running the task. The second parameter is a flag that indicates if the task needs to be run 
only once (the oneShot property). 

Scenario 2 of the Push and periodic notifications client-side sample demonstrates using a 
maintenance trigger to periodically refresh its WNS channels, as described earlier in “Requesting and 
Caching a Channel URI.” The code here is condensed from js/scenario2.js, some of which is in an internal 
function called registerTask: 

var background = Windows.ApplicationModel.Background; 
var pushNotificationsTaskName = "UpdateChannels"; 
var maintenanceInterval = 10 * 24 * 60; // 10 days 
 
var taskBuilder = new background.BackgroundTaskBuilder(); 
var trigger = new background.MaintenanceTrigger(maintenanceInterval, false); 
taskBuilder.setTrigger(trigger); 
taskBuilder.taskEntryPoint = "js\\backgroundTask.js"; 
taskBuilder.name = pushNotificationsTaskName; 

70 This is about the only API for which a clear distinction is made for battery vs. AC power; WinRT does not offer a specific 
API to detect the power source. What this means is that apps should design for running on the battery but assign AC-only 
tasks to maintenance triggers. It’s another way that Windows 8 apps let the system manage power on a systemwide basis 
and not on a per-app basis. 

620

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.maintenancetrigger.aspx
http://code.msdn.microsoft.com/windowsapps/Push-and-periodic-de225603


 
var internetCondition = new  
    background.SystemCondition(background.SystemConditionType.internetAvailable); 
taskBuilder.addCondition(internetCondition); 
 
taskBuilder.register(); 

Because the expiration period for channel URIs is 30 days, the sample creates a trigger on a recurring 
10-day interval (10 days * 24 hours/day * 60 minutes/hour). It also wisely adds the internetAvailable 
condition because it’s again pointless to attempt to renew channel URIs when there’s no connectivity. 

The task itself can be found in the js/backgroundTask.js file of the sample, as indicated in the 
taskEntryPoint property: 

(function () { 
    // Import the Notifier helper object 
    importScripts("//Microsoft.WinJS.1.0/js/base.js"); 
    importScripts("notifications.js"); 
 
    var closeFunction = function () { 
        close(); 
    }; 
 
    var notifier = new SampleNotifications.Notifier(); 
    notifier.renewAllAsync().done(closeFunction, closeFunction); 
})(); 

This task code pulls in a couple of other script files using importScripts, the second of which, 
notifications.js, is the sample’s set of helper functions for notifications where renewAllAsync refreshes 
the app’s list of previously saved channel URIs. 

Important You’ll also notice that the completed and error handlers given to the promise from 
renewAllAsync both go to closeFunction, which makes this mysterious call to close. What close is 
this? Well, it’s not window.close (as you might guess) but rather WorkerGlobalScope.-close. 
Background tasks in an app written in JavaScript run within the scope of a web worker, so the global 
scope within the code is WorkerGlobalScope rather than window. Calling this makes sure the 
independently running background task is shut down and guarantees that the resources that were 
allocated for the task are properly released.  

Sidebar: The Task Instance and Background Task Deferrals 
Within a JavaScript background task, the 
Windows.UI.WebUI.WebUIBackgroundTask-Instance.current contains a 
WebUIBackgroundTaskInstanceRuntimeClass object that provides additional details about the 
running task: its instanceId, its associated Background-TaskRegistration object in the task 
property, a progress property in which the task can store a percentage value, a succeeded flag to 
indicate that the task has completed, a suspended count (when the task is suspended due to the 
resource quota being exceeded), and a canceled event that informs the task that the app as a 
whole has been terminated. 

621

http://www.w3.org/TR/workers/#workerglobalscope
http://msdn.microsoft.com/library/windows/apps/windows.ui.webui.webuibackgroundtaskinstanceruntimeclass.aspx


This object also provides a getDeferral method that, once again, returns a deferral object 
whose completed method you call when the task is complete. As always, you employ the deferral 
if you need to perform asynchronous operations within the background task. Just be sure to 
always call close when everything is finished. 

Tasks for System Triggers (Non-Lock Screen) 
The next class of background tasks contains those tied to a variety of system triggers, specifically 
instances of the SystemTrigger class. You again create the trigger object with new and pass two 
parameters: a SystemTriggerType value (available afterwards as the triggerType property) and a 
oneShot Boolean flag. The triggers that operate independently of the lock screen are described in the 
following table: 

SystemTriggerType71 When Triggered and Usage Scenarios 
internetAvailable Internet becomes available. This is typically used for apps that need to start a 

synchronization process when connectivity is restored from an offline state. Note that this 
trigger is different from the condition with the same name. 
 

lockScreenApplicationAdded User has added the app to the lock screen, signaling that lock screen–dependent 
background tasks will now be executed. 
 

lockScreenApplicationRemoved User has removed the app from the lock screen, signaling that lock screen–dependent 
background tasks will no longer run. 
 

networkStateChange Change in network (cost, connectivity, etc.). A running app can detect the same event 
through 
Windows.Networking.Connectivity.NetworkInformation.onnetwor
kstatuschanged, and this provides a means for apps to execute a small piece of code 
when the app is suspended or otherwise not running. This trigger combined with the 
internetAvailable or internetNotAvailable conditions offers the app full awareness 
of connectivity states. We’ll talk more of connectivity in Chapter 14; for now you can refer 
to the Network status background sample. 
 

onlineIdConnectedStateChange The user’s Microsoft account has changed. This is a relatively rare occurrence, but the 
trigger is essential for any app that caches any part of the Microsoft account for its own 
user identity. 
 

servicingComplete App has been updated from the Windows Store. This trigger could be used, for example, to 
migrate app data from one version to another as soon as the update happens. Refer to 
Chapter 8, “State, Settings, Files, and Documents,” for more on versioning app data. 
 

timeZoneChange A time zone or daylight savings time change has occurred. An app might refresh its locale 
settings at such a time, as well as adjust any internal timekeeping. This can be important to 
adjust scheduled notifications. 
 

 
 
 

71 There is an additional trigger called SmsReceived that is only for apps provided by mobile operators. 

622

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.systemtrigger.aspx
http://code.msdn.microsoft.com/windowsapps/Network-status-background-957eb3eb


The Background task sample provides a few examples of these triggers. In Scenario 1, 
js/sample-background-task-with-condition.js, we can see the use of timeZoneChange along with the 
userPresent condition (where BackgroundTaskSample is again a helper object in global.js): 

BackgroundTaskSample.registerBackgroundTask(BackgroundTaskSample.sampleBackgroundTaskEntryPoint, 
    BackgroundTaskSample.sampleBackgroundTaskWithConditionName, 
    new Windows.ApplicationModel.Background.SystemTrigger( 
        Windows.ApplicationModel.Background.SystemTriggerType.timeZoneChange, false), 
    new Windows.ApplicationModel.Background.SystemCondition( 
        Windows.ApplicationModel.Background.SystemConditionType.userPresent)); 

This is clearly a case where I’d use another variable to not type the Windows.Application- 
Model.Background namespace out every time, but at least you can’t make a mistake in reading this code! 
In any case, the same sample, in Scenario 4 and js/global.js, also shows use of the servicing-Complete 
trigger within a helper function registerServicingCompleteTask, which also checks if the task is already 
registered: 

"registerServicingCompleteTask": function () { 
    // Check whether the servicing-complete background task is already registered. 
    var iter = 
        Windows.ApplicationModel.Background.BackgroundTaskRegistration.allTasks.first(); 
    var hascur = iter.hasCurrent; 
    while (hascur) { 
        var cur = iter.current.value; 
        if (cur.name === BackgroundTaskSample.servicingCompleteTaskName) { 
            BackgroundTaskSample.updateBackgroundTaskStatus( 
                BackgroundTaskSample.servicingCompleteTaskName, true); 
            return; 
        } 
        hascur = iter.moveNext(); 
    } 
 
    // The servicing-complete background task is not already registered. 
    BackgroundTaskSample.registerBackgroundTask( 
        BackgroundTaskSample.servicingCompleteTaskEntryPoint, 
        BackgroundTaskSample.servicingCompleteTaskName, 
        new Windows.ApplicationModel.Background.SystemTrigger( 
            Windows.ApplicationModel.Background.SystemTriggerType.servicingComplete, false), 
        null); 
}, 

In the sample, the tasks associated with these triggers are implemented in C#, within a WinRT 
component found in the Tasks project of the sample’s solution. I won’t show the code here because 
we’ll be looking at the general structure of WinRT components in Chapter 16. What it does 
demonstrate, though, is that you can use a mixed-language approach for background tasks. In these 
cases, the Entry Point field for the tasks in the manifest point to the C# class/method that implements 
the background task, such as Tasks.ServicingComplete. If you go to the Background task sample page, 
you can also download the C# and C++ versions of the sample to see even more structural variants. 

623

http://code.msdn.microsoft.com/windowsapps/Background-Task-Sample-9209ade9
http://code.msdn.microsoft.com/windowsapps/Background-Task-Sample-9209ade9


Lock Screen–Dependent Tasks and Triggers 
The last group of background tasks are those that require the app is also added to the lock screen. For 
this there are four applicable SystemTrigger options from SystemTriggerType, along with the three 
other distinct types that are represented in the manifest editor: TimeTrigger, and 
PushNotificationTrigger, and Windows.Networking.Sockets.ControlChannelTrigger. These are 
described in the following table along with pointers to available samples that demonstrate their usage: 

SystemTriggerType When Triggered, Scenarios, and Samples 
SystemTriggerType.controlChannelReset See ControlChannelTrigger below. 

 
SystemTriggerType.sessionConnected User has logged in from the lock screen. 

 
SystemTriggerType.userAway Device has become inactive (e.g., blank screen) due to user inactivity. 

 
SystemTriggerType.userPresent User becomes present from an inactive state. 

 
Windows.Networking.Sockets.ControlChannelTrigger Real-time notifications have been received through the control 

channel—that is, a networking channel typically using sockets or 
another networking transport, if it’s not possible to use WNS and raw 
notifications for the same purpose. This trigger is used for real-time 
communication apps such as VoIP, IM, and Mail so that they are 
“always reachable” if the user places them on the lock screen. We’ll 
look at the networking transports themselves in Chapter 14, but the 
whole of this subject is beyond the scope of this book. Please refer to 
the How to set background connectivity options in the 
documentation along with the following samples, all of which 
employ C# or C++ and are not available in JavaScript: 

• ControlChannelTrigger StreamSocket sample 
• ControlChannelTrigger XmlHttpRequest sample 
• ControlChannelTrigger StreamWebSocket sample 
• ControlChannelTrigger HTTP client sample 

 
The SystemTriggerType.controlChannelReset is used to 
manage a background task for changes in the control channel rather 
than events on the channel itself. 
 

TimeTrigger A period of time as configured in the trigger has elapsed. Scenario 5 
of the Background task sample demonstrates this (see below). 
 

PushNotificationTrigger A raw push notification for the app has arrived from WNS; because 
Windows cannot handle a raw notification directly, this kind of 
background task is necessary to take action on a raw notification 
when the app isn’t running. A running app, on the other hand, can 
use the pushnotificationreceived event, as described 
earlier in “Receiving Notifications (App).” For an example, refer to the 
Raw notifications sample. 
 

 

 

 

624

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.timetrigger.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.pushnotificationtrigger.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.controlchanneltrigger.aspx
http://msdn.microsoft.com/library/windows/apps/Hh771189.aspx
http://code.msdn.microsoft.com/windowsapps/ControlChannelTrigger-TCP-20c56711
http://code.msdn.microsoft.com/windowsapps/ControlChannelTrigger-6aedf1bc
http://code.msdn.microsoft.com/windowsapps/ControlChannelTrigger-91f6bed8
http://code.msdn.microsoft.com/windowsapps/ControlChannelTrigger-HTTP-9d7a6b3d
http://code.msdn.microsoft.com/windowsapps/Background-Task-Sample-9209ade9
http://code.msdn.microsoft.com/windowsapps/Raw-notifications-sample-3bc28c5d


Note Working with the lock screen is not supported in the Visual Studio simulator. To debug lock 
screen apps and background tasks, you’ll need to use the Local Machine or Remote Machine 
debugging options. 

Background tasks for these triggers are created and registered as we’ve already seen. A TimeTrigger, 
for example, is created with its freshnessTime interval (in minutes) and a oneShot flag, as seen in 
Scenario 5 of the Background tasks sample (js/time-trigger-background-task.js): 

BackgroundTaskSample.registerBackgroundTask( 
    BackgroundTaskSample.sampleBackgroundTaskEntryPoint, 
    BackgroundTaskSample.timeTriggerTaskName, 
    new Windows.ApplicationModel.Background.TimeTrigger(15, false), null); 

A TimeTrigger is also used in Scenario 3 of the Geolocation sample to allow the user to add a 
navigation app to the lock screen for more continuous tracking. Generally speaking, though, a 
navigation app isn’t particularly useful on the lock screen in the first place, since it wouldn’t be able to 
show a map! Better, then, to again use the Windows.System.Display.DisplayRequest API to prevent 
going to the lock screen at all. 

Creating a PushNotificationTrigger is even simpler as there are no parameters. This can be seen in 
the Raw notifications sample, Scenario 1 (js/scenario1.js): 

function registerBackgroundTask() { 
    // Register the background task for raw notifications 
    var taskBuilder = new background.BackgroundTaskBuilder(); 
    var trigger = new background.PushNotificationTrigger(); 
    taskBuilder.setTrigger(trigger); 
    taskBuilder.taskEntryPoint = sampleTaskEntryPoint; 
    taskBuilder.name = sampleTaskName; 
 
    var task = taskBuilder.register(); 
    task.addEventListener("completed", backgroundTaskComplete); 
} 

Although the call to BackgroundTaskBuilder.register might succeed, the task itself will not execute 
until the user add the app to the lock screen, as we saw earlier in Figure 13-10. This latter action is never 
under the app’s control—all it can do is make sure it’s available for the user to select on that section of 
PC Settings, which is what asking for access is all about. 

The request is made through the method Windows.ApplicationModel.Background.- 
BackgroundExecutionManager.requestAccessAsync; this call should be made prior to registering the 
background task (see Scenario 5 of the Background task sample again): 

Windows.ApplicationModel.Background.BackgroundExecutionManager.requestAccessAsync(); 

When this is called the first time in an app, it will generate a user consent prompt, as shown in Figure 
13-19. If the user chooses Allow, the app will appear in PC Settings as an option for the lock screen, 
otherwise it won’t. As with other permissions, users can change their minds later on through the 
Permissions settings, as shown in Figure 13-20. 

625

http://code.msdn.microsoft.com/windowsapps/Geolocation-2483de66
http://code.msdn.microsoft.com/windowsapps/Raw-notifications-sample-3bc28c5d


 
FIGURE 13-19 The user consent prompt when an app requests lock screen access. 

 
FIGURE 13-20 The lock screen option on the Permissions settings panel for apps that request access. 

For a complete demonstration, refer to the Lock screen apps sample. In Scenario 1 it shows how to 
again request access to the lock screen and check the result, which is a value from the Background- 
AccessStatus enumeration. It also shows querying for and removing that access with the 
getAccessStatus and removeAccess methods of BackgroundExecutionManager. 

Scenario 2 then demonstrates sending badge updates to the lock screen, along with a text tile 
update if the app happens to be the single one selected for that privilege. There is nothing particular in 
this process where the lock screen is concerned, however: such updates happen exactly as they do for 
the primary app tile. It’s just that those updates are also reflected on the lock screen. In the case of 
badges, the badge glyph will appear along with the app’s Badge Logo in the Application UI > 
Notifications section of the manifest. (Refer back to Figure 13-10.) To repeat from earlier, this graphic 
must have white or transparent pixels, and the three scale sizes are 24x24 (100%), 33x33 (140%), and 
43x43 (180%). 

Scenario 3, finally, demonstrates that secondary tiles can be added to the lock screen as well, 
irrespective of the app tile. To make a secondary tile available for the lock screen, assuming that the app 
has requested lock screen access already, you need to set those two properties of Windows.UI.- 
StartScreen.SecondaryTile that we mentioned long ago: lockScreenBadgeLogo and 
lockScreenDisplayBadgeAndTileText. If the secondary tile is on the Start screen, these properties will 
also make it available on the PC Settings page for the lock screen. 

626

http://code.msdn.microsoft.com/windowsapps/Lock-screen-apps-sample-9843dc3a
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.backgroundaccessstatus.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.backgroundaccessstatus.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.startscreen.secondarytile.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.startscreen.secondarytile.aspx


Debugging Background Tasks 
By this time you might have run the TimeTrigger background task in Scenario 5 of the Background tasks 
sample, and unless it’s been more than 15 minutes since that time (maybe up to 30 minutes if you just 
missed the 15-minute window when timers are coalesced), you might still be waiting for that period to 
elapse. Is this, then, your destiny for debugging background tasks: to wait, wait, wait? 

Fortunately, the answer is no, no, and maybe! That is, Visual Studio’s debugger is mostly aware of 
registered background tasks and provides a list of them on the Suspend drop-down menu on the 
toolbar: 

 
Selecting one of these will immediately trigger the background task, so you won’t have to wait or 

otherwise attempt to activate the trigger for real. One caveat is that if the trigger had oneShot set to 
true and already fired, it won’t fire again. A second caveat with this is that if you’re running a JavaScript 
app with background tasks written in other languages, you’ll need to change the debugger type for the 
main app project from Script Only to one that supports Managed or Native as shown here, otherwise 
you can’t set breakpoints in those other modules: 

 

627



A third caveat is that background tasks using ControlChannelTrigger, PushNotificatio-nTrigger, 
and the SystemTriggerType.SmsReceived will not appear on the Visual Studio drop-down menu. 

So you might need to rely on the tried-and-true methods of outputting diagnostic information to 
figure out what’s going on with your task and checking events in the Event Viewer for activation failures. 
More on these methods can be found on How to debug a background task. 

Finally, note one more time that background tasks are not supported in the Visual Studio simulator, 
as is also true of live tiles, notifications, and much else that we’ve covered in this chapter. You’ll need to 
use the Local Machine or Remote Machine options instead. 

 

What We’ve Just Learned (Whew!) 

• Tile updates, on both the app’s primary and secondary tile, along with badges, toast 
notifications, and background tasks—from which an app can issue tile updates and 
notifications—are how an app contributes to the overall aliveness of the system even while the 
app isn’t running. 

• Tile updates and notifications can be sent from a running app, of course, but there are other 
methods to deliver those updates when the app isn’t running. Updates can be scheduled to 
appear at a later time, and the app can configure the system to periodically ask a service for 
tile/badge updates. Apps can also configure push notifications that are raised from a web service 
and sent to clients through the Windows Push Notification Service (WNS). 

• Tile updates are issued using an XML payload based on predefined templates. Typical payloads 
include both square and wide tile updates so that the user can choose how the tile is displayed. 
The XML can reference images from both local and remote sources, so long as the images are 
1024x1024 pixels or smaller and less than 200KB in size. 

• A tile can cycle through up to five updates at any given time, each of which can be replaced 
separately. 

• Apps that have specific content that is interesting to bookmark as secondary tiles to the Start 
screen provide Pin and Unpin commands to the user for that purpose. Secondary tiles, which 
launch the app with specific startup arguments, can also receive live tile updates. 

• Badges are small glyphs or numbers that can appear on any given tile. Badge updates are sent 
through the same mechanism as tile updates, but they operate independently. 

• Toasts are popup notifications that appear for a time to alert the user of new information, 
reminders, and so on. They can be configured to play sounds, set to recur on a given interval, 
and scheduled to appear in the future. Like secondary tiles, activating a toast launches the app 
with specific startup arguments. 

628

http://msdn.microsoft.com/library/windows/apps/jj542415.aspx


• Periodic updates for tiles and badges means providing Windows the URIs of web services to call 
at selected intervals between 30 minutes and 24 hours. Periodic updates are the easiest and 
lower-cost means to update a tile from a running web service. 

• Push notifications for tiles, badges, toast notifications, and raw notifications (whatever data an 
app wants to manage) can be used for higher-frequency, user-specific updates. This involves 
creating web services that communicate with WNS to issue those notifications to specific 
channel URIs, a process that is much more involved and expensive than periodic updates. 

• Background tasks are small pieces of code that an app configures to run when certain triggers 
occur, such as changes in connectivity, timers, receipt of push notifications, and app updates. 
Apps should never depend on background tasks, however, because they are always under the 
user’s control. 

• Background task triggers can be refined through specific conditions to avoid running tasks when 
it’s not necessary (such as when there is no connectivity). 

• Some triggers require that the app has also been added to the lock screen. Such apps must first 
request access, which is subject to user consent, and the user must specifically add the app 
through PC Settings. Given that privilege, apps can issue badge updates and tile text to the lock 
screen. 

• Through maintenance triggers, apps can also set up tasks to run periodically when a device is on 
AC power. 

  

629



Chapter 14 

Networking 
Having moved twice with my family in the last year, I’ve been struck by the similarities between that 
process and how data moves around on our networks. Packing a truck for the first move—from Oregon 
to California—was certainly an exercise in compression! At times I didn’t think we’d manage to get 
everything into our van and the 20-foot truck we’d rented, but somehow it all fit with just inches to 
spare. Then we had the long drive south before decompressing the data, so to speak, into a house 
where we lived for a time while the builders were finishing up our permanent home. 

Moving into the new house was a different experience, mainly because it was only about 200 meters 
away and we were able to move bits and pieces at different times. When the final inspection was signed 
off and we could (legally) move all the furniture and boxes, the task was accomplished with the help of 
many friends and many random vehicles, with very little compression of our stuff along the way! 

These two moves illustrate, in some loose way, the character of different networking transports, such 
as datagram sockets and stream sockets, one of the topics we’ll visit here. In the first case we see a large 
(compressed) data packet moving in toto from one endpoint to another. In the second we instead have 
more of a data streaming experience, with some compression to optimize each trip between the 
endpoints but very different in nature from the first experience. 

Along these same lines, consider how you might hire movers to do all this work—you show them 
your stuff, give them the destination address, write them a large check, and magically all that stuff 
shows up in another location. Such a process is reminiscent of the background transfer APIs in WinRT 
that will be one of the first subjects of this chapter. In moving one’s household, there is also the concept 
of renting and packing “pods,” in which case you do the packing yourself but the transportation (and 
possibly storage) is handled separately. But whether this has anything whatsoever to do with writing a 
Windows 8 app, I’m not so sure! 

Lest I dig too deep a hole with such analogies, let’s just say that networking is a rich and varied topic, 
all of which is based on the need to get data from one place to another in a variety of ways. The goal of 
this chapter, then, is to provide at least an overview of the networking capabilities in Windows 8. Topics 
will range from XmlHttpRequests, background transfers, authentication and credentials, and 
syndication, to connectivity and network information, offline functionality, and sockets. We’ll focus most 
on areas of common concern for most apps, touching briefly on other areas that are more specific to 
certain scenarios and for which there are many additional resources to draw upon. One such resource is 
Developing connected apps, which serves as a good overview of networking in general. 

In any case, we’ll begin here with the subject of connectivity, because without it, there isn’t much to 
speak about with networking at all. 

630

http://msdn.microsoft.com/library/windows/apps/hh465399.aspx


Network Information and Connectivity 

In the previous chapter, I mentioned in a footnote how at the very time I was writing on the subject of 
live tiles and all the connections that Windows 8 apps can have to the Internet, my home and many 
thousands of others in Northern California were completely disconnected due to a fiber optic 
breakdown. The outage lasted for what seemed like an eternity by present standards—36 hours! 
Although I wasn’t personally at a loss for how to keep myself busy, there was a time when I opened one 
of my laptops, found that our service was still down, and wondered for a moment just what the 
computer was really good for without connectivity! Clearly I’ve grown, as I suspect you have too, to take 
constant connectivity completely for granted. 

As developers of great apps, however, we cannot afford to be so complacent. It’s always important to 
handle errors when trying to make connections and draw from online resources, because any number of 
problems can arise within the span of a single operation. But it goes much deeper than that. It’s our job 
to make our apps as useful as they can be when connectivity is lost, perhaps just because our customers 
got on an airplane and switched on airplane mode. That is, don’t give customers a reason to wonder 
about the usefulness of their device in such situations! A great app will prove its worth through a great 
user experience even if it lacks connectivity. 

Connectivity can also vary throughout an app session, where an app can often be suspended and 
resumed, or suspended for a long time. With mobile devices especially, one might switch between any 
number of networks without necessarily knowing about it. Windows 8, in fact, tries to make the 
transition between networks as transparent as possible, except where it’s important to inform the user 
that there may be costs associated with the current network. It’s required by Window Store policy, in 
fact, for apps to be aware of data transfer costs on metered networks and to prevent “bill shock” from 
not-always-generous mobile broadband providers. Just as there are certain things an app can’t always 
do when the device is offline, the characteristics of the current network might also cause it to defer or 
avoid certain operations as well. 

Let’s now see how to retrieve and work with connectivity details, starting with the different types of 
networks represented in the manifest, followed by obtaining network information, dealing with metered 
networks, and providing for an offline experience. 

Network Types in the Manifest 
Nearly every sample we’ve worked with so far in this book has had the Internet (Client) capability 
declared in its manifest, thanks to Visual Studio turning that on by default. Once before I mentioned 
how this wasn’t always the case: early app builders within Microsoft would occasionally scratch their 
heads wondering just why something really obvious—like making a simple XmlHttpRequest to a 
blog—failed outright. Without this capability, there just isn’t any Internet! 

Still, Internet (Client) isn’t the only player in the capabilities game. Some networking apps will also 
want to act as a server to receive incoming traffic from the Internet, and not just make requests to other 

631



servers. In those cases—such as file sharing, media servers, VoIP, chat, multiplayer/multicast games, and 
other bi-directional scenarios involving incoming network traffic, as with sockets—the app must declare 
the Internet (Client & Server) capability, as shown in Figure 14-1. This lets such traffic through the 
inbound firewall, though critical ports are always blocked. 

There is also network traffic that occurs on a private network, as in a home or business, where the 
Internet isn’t involved at all. For this there is also the Private Networks (Client & Server) capability, also 
shown in Figure 14-1, which is good for file or media sharing, line-of-business apps, HTTP client apps, 
multiplayer games on a LAN, and so on. What makes any given IP address part of this private network 
depends on many factors, all of which are described on How to configure network isolation capabilities. 
For example, IPv4 addresses in the ranges of 10.0.0.0–10.255.255.255, 172.16.0.0–172.31.255.255, and 
192.168.0.0–192.168.255.255 are considered private. Users can flag a network as trusted, and the 
presence of a domain controller makes the network private as well. Whatever the case, if a device’s 
network endpoint falls into this category, the behavior of apps on that device is governed by this 
capability rather than those related to the Internet. 

 
FIGURE 14-1 Additional network capabilities in the manifest. 

Sidebar: Localhost Loopback 
Regardless of the capabilities declared in the manifest, local loopback—that is, using 
http://localhost URIs—is blocked for Windows Store apps. An exception is made for machines on 
which a developer license has been installed, as described in Chapter 13, “Tiles, Notifications, the 
Lock Screen, and Background Tasks,” in the section “Using the Localhost.” This exception exists 
only to simplify debugging apps and services together, because they can all be running on a 
single machine during development. 

Network Information (the Network Object Roster) 
Regardless of the network involved, everything you want to know about that network is available 
through the Windows.Networking.Connectivity.NetworkInformation object. Besides a single 

632

http://msdn.microsoft.com/library/windows/apps/Hh770532.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkinformation.aspx


networkstatuschanged event that we’ll discuss in “Connectivity Events” a little later, the interface of this 
object is made up of methods to retrieve more specific details in other objects. 

Fulfilling my earlier promise to just touch on some specifics, below is the roster of the methods in 
NetworkInformation and the contents of the objects obtained through them. You can exercise the most 
common of these APIs through the indicated scenarios of the Network information sample: 

• getHostNames Returns a vector of Windows.Networking.HostName objects, one for each 
connection, that provides various name strings (displayName, canonicalName, and rawName), the 
name’s type (from HostNameType, with values of domainName, ipv4, ipv6, and bluetooth), and an 
ipinformation property (of type IPInformation) containing prefixLength and networkAdapter 
properties for IPV4 and IPV6 hosts. (The latter is a NetworkAdapter object with various low-level 
details.) The HostName class is used in various networking APIs to identify a server or some other 
endpoint. 

• getConnectionProfiles (Scenario 3)  Returns a vector of ConnectionProfile objects, one for 
each connection, among which will be the active Internet connection as returned by 
getInternetConnectionProfile. Also included are any wireless connections you’ve made in the 
past for which you indicated Connect Automatically. (In this way the sample will show you some 
details of where you’ve been recently!) See the next section for more on ConnectionProfile. 

• getInternetConnectionProfile (Scenario 1)  Returns a single ConnectionProfile object for 
the currently active Internet connection. If there is more than one connection, this method 
returns the profile of the preferred one that is most likely to be used for Internet traffic. 

• getLanIdentifiers (Scenario 4)  Returns a vector of LanIdentifier objects, each of which 
contains an infrastructureId (LanIdentifierData containing a type and value), a 
networkAdapterId (a GUID), and a portId (LanIdentifierData). 

• getProxyConfigurationAsync Returns a ProxyConfiguration object for a given URI and the 
current user. The properties of this object are canConnectDirectly (a Boolean) and proxyUris (a 
vector of Windows.Foundation.Uri objects for the configuration). 

• getSortedEndpointPairs Sorts an array of EndpointPair objects according to 
HostNameSortOptions. An EndpointPair contains a host and service name for local and remote 
endpoints, typically obtained when you set up specific connections like sockets. The two sort 
options are none and optimizeForLongConnections, which vary connection behaviors based on 
whether the app is making short or long duration connection. See the documentation for 
EndpointPair and HostNameSortOptions for more details. 
 
 

 

633

http://code.msdn.microsoft.com/windowsapps/Network-Information-Sample-63aaa201
http://msdn.microsoft.com/library/windows/apps/windows.networking.hostname.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.hostnametype.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.ipinformation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkadapter.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectionprofile.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectionprofile.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.lanidentifier.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.proxyconfiguration.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.endpointpair.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.hostnamesortoptions.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.endpointpair.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.hostnamesortoptions.aspx


The ConnectionProfile Object 
Of all the information available through the NetworkInformation object, the most important for apps is 
found in ConnectionProfile, most frequently that returned by getInternetConnection-Profile 
because that’s the one through which an app’s Internet traffic will flow. The profile is what contains all 
the information you need to make decisions about how you’re using the network, especially for cost 
awareness. It’s also what you’ll typically check when there’s a change in network status. Scenarios 1 and 
3 of the Network information sample retrieve and display most of these details. 

Each profile has a profileName property (a string), such as “Ethernet” or the SSID of your wireless 
access point, plus a getNetworkNames method that returns a vector of friendly names for the endpoint. 
The networkAdapter property contains a NetworkAdapter object for low-level details, should you want 
them, and the networkSecuritySettings property contains a NetworkSecurity-Settings object 
properties describing authentication and encryption types.  

More generally interesting is the getNetworkConnectivityLevel, which returns a value from the 
NetworkConnectivityLevel enumeration: none (no connectivity), localAccess (the level you hate to 
see when you’re trying to get a good connection!), constrainedInternetAccess (captive portal 
connectivity, typically requiring further credentials as is often encountered in hotels, airports, etc.), and 
internetAccess (the state you’re almost always trying to achieve). The connectivity level is often a factor 
in your app logic and something you typically watch with network status changes. 

To track the inbound and outbound traffic on a connection, the getLocalUsage method returns a 
DataUsage object that contains bytesReceived and bytesSent, either for the lifetime of the connection 
or for a specific time period. Similarly, the getConnectionCost and getDataPlanStatus provide the 
information an app needs to be aware of how much network traffic is happening and how much it 
might cost the user. We’ll come back to this in “Cost Awareness” shortly, including how to see per-app 
usage in Task Manager. 

Connectivity Events 
It is very common for a running app to want to know when connectivity changes. This way it can take 
appropriate steps to disable or enable certain functionality, alert the user, synchronize data after being 
offline, and so on. For this, apps need only watch the NetworkInformation.onnetworkstatus-changed 
event, which is fired whenever there’s a significant change within the hierarchy of objects we’ve just 
seen (and be mindful that this event comes from a WinRT object). For example, the event will be fired if 
the connectivity level of a profile changes. It will also be fired if the Internet profile itself changes, as 
when a device roams between different networks, or when a metered data plan is approaching or has 
exceeded its limit, at which point the user will start worrying about every megabyte of traffic. In short, 
you’ll generally want to listen for this event to refresh any internal state of your app that’s dependent on 
network characteristics and set whatever flags you use to configure the app’s networking behavior. This 
is especially important for transitioning between online and offline and between unlimited and metered 
networks; Windows, for its part, also watches this event to adjust its own behavior, as with the 
Background Transfer APIs. 

634

http://msdn.microsoft.com/library/windows/apps/br207249.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networksecuritysettings.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkconnectivitylevel.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.datausage.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkinformation.networkstatuschanged.aspx


Note Windows Store apps written in JavaScript can also use the basic window.nagivator.ononline 
and window.navigator.onoffline events to track connectivity. The window.navigator.onLine 
property is also true or false accordingly. These events, however, will not alert you to changes in 
connection profiles, cost, or other aspects that aren’t related to the basic availability of an Internet 
connection. 

You can play with networkstatuschanged in Scenario 5 of the Network information sample. As you 
connect and disconnect networks or make other changes, the sample will update its details output for 
the current Internet profile if one is available (code condensed from js/network-status-change.js): 

var networkInfo = Windows.Networking.Connectivity.NetworkInformation; 
// Remember to removeEventListener for this event from WinRT as needed 
networkInfo.addEventListener("networkstatuschanged", onNetworkStatusChange); 
 
function onNetworkStatusChange(sender) { 
    internetProfileInfo = "Network Status Changed: \n\r"; 
    var internetProfile = networkInfo.getInternetConnectionProfile(); 
 
    if (internetProfile === null) { 
        // Error message 
    } else { 
        internetProfileInfo += getConnectionProfileInfo(internetProfile) + "\n\r"; 
        // display info 
    } 
 
    internetProfileInfo = ""; 
} 

Of course, listening for this event is useful only if the app is actually running, but what if it isn’t? In 
that case an app needs to register a background task, as discussed at the end of Chapter 13, for the 
networkStateChange trigger, typically applying the internetAvailable or internetNot-Available 
conditions as needed. The Network status background sample provides a demonstration of this, 
declaring a background task in its manifest with a C# entry point of NetworkStatusTask.- 
NetworkStatusBackgroundTask. The task is registered in js/network-status-with-internet-present.js (using 
helpers in js/global.js as typical for the background task samples): 

BackgroundTaskSample.registerBackgroundTask(BackgroundTaskSample.sampleBackgroundTaskEntryPoint, 
    BackgroundTaskSample.sampleBackgroundTaskWithConditionName, 
    new Windows.ApplicationModel.Background.SystemTrigger( 
        Windows.ApplicationModel.Background.SystemTriggerType.networkStateChange, false), 
    new Windows.ApplicationModel.Background.SystemCondition( 
        Windows.ApplicationModel.Background.SystemConditionType.internetAvailable)); 

The background task in BackgroundTask.cs simply writes the Internet profile name and network 
adapter id to local app data in response to the trigger. These values are output to the display within the 
completeHandler in js/global.js. A real app would clearly take more meaningful action, such as activating 
background transfers for data synchronization when connectivity is restored. The basic structure is there 
in the sample nonetheless. 

635

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.systemtriggertype.aspx
http://code.msdn.microsoft.com/windowsapps/Network-status-background-957eb3eb


It’s also very important to remember that network status might have changed while the app was 
suspended. Apps that watch the networkstatuschanged event should also refresh their 
connectivity-related state within their resuming handler. 

As a final note, check out the Troubleshooting and debugging network connections topic in the 
documentation, which has a little more guidance on responding to network changes as well as network 
errors. 

Cost Awareness 
If you ever crossed between 3G roaming territories with a smartphone that’s set to automatically 
download email, you probably learned the hard way to disable syncing in such circumstances. I once 
drove from Washington State into Canada without realizing that I would suddenly be paying 
$15/megabyte for the privilege of downloading large email attachments. Of course, since I’m a 
law-abiding citizen I did not look at my phone while driving (wink-wink!) to notice the roaming 
network. Well, a few weeks later I knew what “bill shock” was all about! 

The point here is that if users conclude that your app is responsible for similar behavior, regardless of 
whether it’s actually true, the kinds of rating and reviews you’ll receive in the Windows Store won’t be 
good! It’s vital, then, to pay attention to changes in the cost of the connection profiles you’re using, 
typically the Internet profile. Always check these details on startup, within your networkstatuschanged 
event handler, and within your resuming handler. 

You—and all of your customers, I might add—can track your app’s network usage in the App History 
tab of Task Manager, as shown below. Make sure you’ve expanded the view by tapping More Details on 
the bottom left if you don’t see this view. You can see that it shows Network and Metered Network 
usage along with the traffic due to tile updates: 

 

636

http://msdn.microsoft.com/library/windows/apps/hh770534.aspx


Programmatically, as noted before, the profile provides usage information through its 
get-ConnectionCost and getDataPlanStatus methods. The first method returns a ConnectionCost 
object with four properties: 

• networkCostType A NetworkCostType value, one of unknown, unrestricted (no extra charges), 
fixed (unrestricted up to a limit), and variable (charged on a per-byte or per-megabyte basis). 

• roaming A Boolean indicating whether the connection is to a network outside of your 
provider’s normal coverage area, meaning that extra costs are likely involved. An app should be 
very conservative with network activity when this is true. 

• approachingDataLimit A Boolean that indicates that data usage on a fixed type network (see 
networkCostType) is getting close to the limit of the data plan. 

• overDataLimit A Boolean indicating that a fixed data plan’s limit has been exceeded and 
overage charges are definitely in effect. When this is true, an app should be very conservative 
with network activity, as when roaming is true. 

The second method, getDataPlanStatus, returns a DataPlanStatus object with these properties: 

• dataPlanLimitInMegabytes The maximum data transfer allowed for the connection in each 
billing cycle. 

• dataPlanUsage A DataPlanUsage object with an all-important megabytesUsed property and a 
lastSyncTime (UTC) indicating when megabytesUsed was last updated. 

• maxTransferSizeInMegabytes The maximum recommended size of a single network operation. 
This property reflects not so much the capacities of the metered network itself (as its 
documentation suggests), but rather an appropriate upper limit to transfers on that network. 

• nextBillingCycle The UTC date and time when the next billing cycle on the plan kicks in and 
resets dataPlanUsage to zero. 

• inboundBitsPerSecond and outboundBitsPerSecond Indicate the nominal transfer speed of the 
connection. 

With all these properties you can make intelligent decisions about your app’s network activity and/or 
warn the user about possible overage charges. Clearly, when the networkCostType is unrestricted, you 
can really do whatever you want. On the other hand, when the type is variable and the user is paying 
for every byte, especially when roaming is true, you’ll want to inform the user of that status and provide 
settings through which the user can limit the app’s network activity, if not halt that activity entirely. After 
all, the user might decide that certain kinds of data are worth having. For example, they should be able 
to set the quality of a streaming movie, indicate whether to download email messages or just headers, 
indicate whether to download images, specify whether caching of online data should occur, turn off 
background streaming audio, and so on.  

 

637

http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.connectioncost.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.networkcosttype.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.dataplanstatus.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.connectivity.dataplanusage.aspx


Such settings, by the way, might include tile, badge, and other notification activities that you might 
have established, as those can generate network traffic. If you’re also using background transfers, you 
can set the cost policies for downloads and uploads as well. 

An app can, of course, ask the user’s permission for any given network operation. It’s up to you and 
your designers to decide when to ask and how often. Windows Store policy, for its part (section 4.5), 
requires that you ask the user for any transfer exceeding one megabyte when roaming and 
overDataLimit are both true, and when performing any transfer over maxTransferSizeInMegabytes. 

On a fixed type network, where data is unrestricted up to dataPlanLimitInMegabytes, we find cases 
where a number of the other properties become interesting. For example, if overDataLimit is already 
true, you can ask the user to confirm additional network traffic or just defer certain operations until the 
nextBillingCycle. Or, if approachingDataLimit is true (or even when it’s not), you can determine 
whether a given operation might exceed that limit. This is where the connection profile’s getLocalUsage 
method comes in handy to obtain a DataUsage object for a given period (see How to retrieve 
connection usage information for a specific time period). Call getLocalUsage with the time period 
between lastSyncTime and DateTime.now(). Then add that value to megabytesUsed and subtract the 
result from dataPlanLimitInMegabytes. This tells you how much more data you can transfer before 
incurring extra costs, thereby providing the basis for asking the user, “Downloading this file will exceed 
your data plan limit. Do you want to proceed?” 

For simplicity’s sake, you can think of cost awareness in terms of three behaviors: normal, 
conservative, and opt-in, which are described on Managing connections on metered networks and, 
more broadly, on Developing connected apps. Both topics provide additional guidance on making the 
kinds of decisions described here already. In the end, saving the user from bill shock—and designing a 
great user experience around network costs—is definitely an essential investment. 
 

Sidebar: Simulating Metered Networks 
You may be thinking, “OK, so I get the need for my app to behave properly with metered 
networks, but how do I test such conditions without signing up with some provider and paying 
them a bunch of money (including roaming fees) while I’m doing my testing?” The simple answer 
is that you can simulate the behavior of metered networks with any Wi-Fi connection. First, invoke 
the Settings charm and tap on your network connection near the bottom (see below left, 
specifically the upper left icon, shown here as “Nuthatch”). In the Networks pane that then opens 
up (below right), right-click a wireless connection to open the menu and then select Set As 
Metered Connection: 

638

http://msdn.microsoft.com/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/library/windows/apps/hh465162.aspx
http://msdn.microsoft.com/library/windows/apps/hh465162.aspx
http://msdn.microsoft.com/library/windows/apps/hh750310.aspx
http://msdn.microsoft.com/library/windows/apps/hh465399.aspx


  
Although this option will not set up DataUsage properties and all that a real metered network 

might provide, it will return a networkCostType of fixed, which allows you to see how your app 
responds. You can also use the Show Estimated Data Usage menu item to watch how much traffic 
your app generates during its normal operation, and you can reset the counter so that you can 
take some accurate readings: 

 

Running Offline 
The other user experience that is sure to earn your app a better reputation is how it behaves when there 
is no connectivity or when there’s a change in connectivity. Ask yourself the following questions: 

• What happens if your app starts without connectivity, both from tiles (primary and secondary) 
and through contracts such as search, share, and the file picker? 

• What happens if your app runs the first time without connectivity? 

• What happens if connectivity is lost while the app is running? 

• What happens when connectivity comes back? 

As described above in the “Connectivity Awareness” section, you can use the 
networkstatus-changed event to handle these situations while running and your resuming handler to 
check if connection status changed while the app was suspended. If you have a background task tied to 
the networkStateChange trigger, it would primarily save state that your resuming handler would 
then check. 

639



It’s perfectly understood that some apps just can’t run without connectivity, in which case it’s 
appropriate to inform the user of that situation when the app is launched or when connectivity is lost 
while the app is running. In other situations, an app might be partially usable, in which case you should 
inform the user more on a case-by-case basis, allowing them to use unaffected parts of the app. Better 
still is to cache data that might make the app even more useful when connectivity is lost. Such data 
might even be built into the app package so that it’s always available on first launch. 

Consider the case of an ebook reader app that would generally acquire new titles from an online 
catalog. For offline use it would do well to cache copies of the user’s titles locally, rather than rely solely 
on having a good Internet connection. The app’s publisher might also include a number of popular free 
titles directly in the app package such that a user could install the app while waiting to board a plane 
and have at least those books ready to go when the app is first launched at 30,000 feet. Other apps 
might include some set of preinstalled data at first and then add to that data over time (perhaps 
through in-app purchases) when unrestricted networks are available. By following network costs closely, 
such an app might defer downloading a large data set until either the user confirms the action or a 
different connection is available. 

How and when to cache data from online resources is probably one of the fine arts of software 
development. When do you download it? How much do you acquire? Where do you store it? Should 
you place an upper limit on the cache? Do you allow changes to cached data that would need to be 
synchronized with a service when connectivity is restored? These are all good questions ask, and 
certainly there are others to ask as well. Let me at least offer a few thoughts and suggestions. 

First, you can use any network transport to acquire data to cache such as WinJS.xhr, the background 
transfer API, as well as the HTML5 AppCache mechanism, which works well for web content you load up 
in iframe elements. Note that using the AppCache requires that the URIs in question are declared in the 
manifest as ApplicationContentUris (see Chapter 3, “App Anatomy and Page Navigation”). Separately, 
other content acquired from remote resources, such as images, are also cached automatically like 
typical temporary Internet files. Even remote script downloaded within a web context iframe is cached 
this way. Both caching mechanisms are subject to the storage limits defined by Internet Explorer. 

How much data you cache depends, certainly, on the type of connection you have and the relative 
importance of the data. On an unrestricted network, feel free to acquire everything you feel the user 
might want offline, but it would be a good idea to provide settings to control that behavior, such as 
overall cache size or the amount of data to acquire per day. I mention the latter because even though 
my own Internet connection appears to the system as unrestricted, I’m charged more as my usage 
reaches certain tiers (on the order of gigabytes). As a user, I would appreciate having a say in matters 
that involve significant network traffic. 

Even so, if caching specific data will greatly enhance the user experience, separate that option to give 
the user control over the decision. For example, an ebook reader might automatically download a whole 
title while the reader is perhaps just browsing the first few pages. Of course, this would also mean 
consuming more storage space. Letting users control this behavior as a setting, or even on a per-book 
basis, lets them decide what’s best. For smaller data, on the other hand—say, in the range of several 

640

http://msdn.microsoft.com/library/ie/hh673545.aspx


hundred kilobytes—if you know from analytics that a user that views one set of data is highly likely to 
view another, automatically acquiring and caching those additional data sets could be the right design. 

The best place to store cached data is your app data folders, specifically the LocalFolder and 
TemporaryFolder. Avoid using the RoamingFolder to cache data acquired from online sources: besides 
running the risk of exceeding the roaming quota (see Chapter 8, “State, Settings, Files, and Documents”), 
it’s also quite pointless. Because the system would have to roam such data over the network anyway, it’s 
better to just have the app re-acquire it when it needs to. The same applies to in-app purchases: 
because the user can easily acquire those purchases through the Windows Store on another machine 
(where the app on that machine would find that those purchases are already paid for), they need not be 
roamed. 

Whether you use the LocalFolder or TemporaryFolder depends on how essential the data is to the 
operation of the app. If the app cannot run without the cache—such as the cookbook app I mentioned 
earlier—use local app data. If the cache is just an optimization such that the user could reclaim that 
space with the Disk Cleanup tool, store the cache in the TemporaryFolder and rebuild it again later on. 
(Be aware once again that IndexedDB, as described in Chapter 8, has a per-app limit and an overall 
system limit. If this is a potential problem, you might want to choose a different storage mechanism.) 

In all of this, also consider that what you’re caching really might be user data that you’d want to store 
outside of your app data folders. That is, be sure to think through the distinction between app data and 
user data! 

Finally, you might again have the kind of app that allows offline activity (like processing email) where 
you will have been caching the results of that activity for later synchronization with an online resource. 
When connectivity is restored, then, check if the network cost is suitable before starting your sync 
process. 

Sidebar: Connectivity and Remote Images in Live Tiles and Toasts 
In Chapter 13 we looked at how an app appears “alive with activity” through features such as live 
tiles and notifications. Clearly, periodic updates and push notifications are completely dependent 
on connectivity and will not operate without it; a running app, on the other hand, can still issue 
updates when the device is offline. Under such a circumstance, the app must avoid referencing 
remote images in the update, because these will not be resolved without connectivity and the tile 
and toast systems do not presently support the use of local fallback images. An app should thus 
check connectivity status before issuing an update and should make sure to use local 
(ms-appx:/// or ms-appdata:///) images instead of remote ones or opt for text-only tile and toast 
templates. 

641



XmlHttpRequest 

As we’ve seen a number of times already in this book, transferring data to and from web services with 
XmlHttpRequest is a common activity for Windows Store apps, especially those written in JavaScript for 
which handling XML and/or JSON is simple and straightforward. This is especially true when using the 
WinJS.xhr wrapper that turns the whole process into a simple promise. 

To build on what we already covered in Chapter 3, in the section “Data from Services and WinJS.xhr,” 
there are a few other points to make where such requests are concerned, most of which come from the 
section in the documentation entitled Connecting to a web service. 

First, Downloading different types of content provides the details of the different content types 
supported by XHR for Windows Store apps. These are summarized here: 

Type Use responseText responseXML 

arraybuffer Binary content as an array of Int8 or Int64, or another integer or float 
type. 

undefined undefined 

Blob Binary content represented as a single entity. undefined undefined 

document An XML DOM object representing XML content (MIME type of 
text/XML). 

undefined The XML content 

json JSON strings. The JSON string undefined 

ms-stream Streaming data; see XmlHttpRequest enhancements. undefined undefined 

Text Text (the default). The text string undefined 

 

Second, know that XHR responses can be automatically cached, meaning that later requests to the 
same URI might return old data. To resend the request despite the cache, add an If-Modified-Since HTTP 
header as shown on How to ensure that WinJS.xhr resends requests. 

Along similar lines, you can wrap a WinJS.xhr operation in another promise to encapsulate 
automatic retries if there is an error in any given request. That is, build your retry logic around the core 
XHR operation, with the result stored in some variable. Then place that whole block of code within 
WinJS.Promise.wrap (or a new WinJS.Promise) and use that elsewhere in the app. 

In each XHR attempt, remember that you can also use WinJS.Promise.timeout in conjunction with 
WinJS.Xhr as described on Setting timeout values with WinJS.xhr., because WinJS.xhr doesn’t have a 
timeout notion directly. You can, of course, set a timeout in the raw request, but that would mean 
rebuilding everything that WinJS.xhr already does. 

Generally speaking, XHR headers are accessible to the app with the exception of cookies (the 
set-cookie and set-cookie2 headers), as these are filtered out by design for XHR done from a local 
context. They are not filtered for XHR from the web context, so if you need cookies, try acquiring them 
in a web context iframe and pass them to a local context using postMessage. 
 
 

642

http://msdn.microsoft.com/library/windows/apps/hh761502.aspx
http://msdn.microsoft.com/library/windows/apps/hh868280.aspx
http://msdn.microsoft.com/library/windows/apps/hh673569.aspx
http://msdn.microsoft.com/library/windows/apps/hh868281.aspx
http://msdn.microsoft.com/library/windows/apps/hh868283.aspx


Finally, avoid using XHR for large file transfers because such operations will be suspended when the 
app is suspended. Use the Background Transfer API instead (see the next section), which uses XHR under 
the covers, so your web services won’t know the difference anyway! 

And on that note, let’s now look at that Background Transfer API in detail. 

Sidebar: Debugging Network Traffic with Fiddler 
If you’re interested in watching the HTTP(S) traffic between your computer and the 
Internet—something that can be invaluable when working with XmlHttpRequests—check out the 
freeware tool known as Fiddler (http://www.fiddler2.com/fiddler2/). In addition to inspecting 
traffic, you can also set breakpoints on various events and fiddle with (that is, modify) incoming 
and outgoing data. It supports traffic from any app or browser, including Windows Store apps. 

Background Transfer 

One need with user data, especially, is to transfer potentially large files to and from an online repository. 
For even moderately sized files, however, this presents a challenge: very few users typically want to stare 
at their display to watch file transfer progress, so it’s highly likely that they’ll switch to another app to do 
something far more interesting while the transfer is taking place. In doing so, the app that’s doing the 
transfer will be suspended in the background and possibly even terminated. This does not bode well for 
trying to complete such operations using a mechanism like WinJS.xhr! 

One solution would be to provide a background task for this purpose, which was a common request 
with early previews of Windows 8 before this API was ready. However, there’s little need to run app code 
for this common purpose. WinRT thus provides a specific background transfer API, 
Windows.Networking.BackgroundTransfer, supporting up to 500 scheduled transfers systemwide. It 
offers built-in cost awareness and resiliency to changes in connectivity, reliving apps from needing to 
worry about such concerns themselves. Transfers continue when an app is suspended and will be 
paused if the app is terminated. When the app is resumed or launched again, it can then check the 
status of background transfers it previously initiated and take further action as necessary—processing 
downloaded information, noting successful uploads in its UI, and enumerating pending transfers, which 
will restart any that were paused or otherwise interrupted. On the other hand, if the user directly closes 
the app (through a gesture, Alt+F4, or Task Manager), all pending transfers for that app are canceled. 
This is also true if you stop debugging an app in Visual Studio. 

Generally speaking, then, it’s highly recommended that you use the background transfer API 
whenever you expect the operation to exceed your customer’s tolerance for waiting. This clearly 
depends on the network’s connection speed, and whether you think the user will switch away from your 
app while such a transfer is taking place. For example, if you initiate a transfer operation but the user 
can continue to be productive (or entertained) in your app while that’s happening, then using WinJS.xhr 
with HTTP GET and POST/PUT might be a possibility, though you’ll still be responsible for cost 

643

http://www.fiddler2.com/fiddler2/
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.aspx


awareness and handling connectivity. If, on the other hand, the user cannot do anything more until the 
transfer is complete, you might choose to use background transfer for perhaps any data larger than 10K 
or some other amount based on the current network speed. 

In any case, when you’re ready to employ background transfer in your app, the 
BackgroundDown-loader and BackgroundUploader objects in the 
Windows.Networking.BackgroundTransfer namespace will become your fast friends. Both objects have 
methods and properties through which you can enumerate pending transfers as well as perform general 
configuration of credentials, HTTP request headers, transfer method, cost policy (for metered networks), 
and grouping. Each individual operation is then represented by a DownloadOperation or 
UploadOperation object, through which you can control the operation (pause, cancel, etc.) and retrieve 
status. With each operation you can also set its particular credentials, cost policy, and so forth, 
overriding the general settings in the BackgroundDownloader and BackgroundUploader classes. 

Note In both download and upload cases, the connection request will be aborted if a new connection 
is not established within five minutes. After that, any other HTTP request involved with the transfer 
times out after two minutes. Background transfer will retry an operation up to three times if there’s 
connectivity. 

To see the basics of this API in action, let’s start by looking at the Background transfer sample. To run 
this sample you must first set up a localhost server along with a data file and an upload target page. So 
make sure you have Internet Information Services installed on your machine, as described in Chapter 13 
in the section “Using the Localhost.” Then, from an administrator command prompt, navigate to the 
sample’s Server folder and run the command powershell –file serversetup.ps1. This will install the 
necessary server-side files for the sample on the localhost, and allow you to run an additional example 
in this chapter’s companion content. 

Basic Downloads 
Scenario 1 of the Background transfer sample (js/downloadFile.js) lets you download an image file from 
the localhost server and save it to the Pictures library. By default the URI entry field is set to a specific 
localhost URI and the control is disabled. This is because the sample doesn’t perform any validation on 
the URI, a process that you should always perform in your own app. If you’d like to enter other URIs in 
the same, of course, just remove disabled="disabled" from the serverAddressField element in 
html/downloadFile.html. To see the downloader in action, it’s also helpful to locate some large image 
files that will take a while to transfer; your favorite search engine can help you out, or you can copy one 
of your own to the localhost server. 

The sample’s UI also provides a handful of buttons to start, cancel, pause, and resume the async 
operation, an essential feature for apps with background transfers. Within its progress handler, which 
the transfer operations support, the sample demonstrates how to display as much of the image has 
been transferred. You can also start multiple transfers to observe how they are all managed 
simultaneously. 

644

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounddownloader.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounduploader.aspx
http://code.msdn.microsoft.com/windowsapps/Background-Transfer-Sample-d7833f61


Starting a download transfer happens as follows. First create a StorageFile to receive the data 
(though this is not required as we’ll see later in this section). Then create a DownloadOperation object 
for the transfer using BackgroundDownloader.createDownload, at which point you can set its method, 
costPolicy, and group properties to override the defaults supplied by the Background-Downloader. The 
method is a string that identifies the type transfer being used (normally GET for HTTP or RETR for FTP). 
We’ll come back to the other two properties later in the “Setting Cost Policy” and “Grouping Multiple 
Transfers” sections. 

Once the operation is configured as needed, the last step is to call its startAsync method with your 
completed, error, and progress handlers:72 

// Asynchronously create the file in the pictures folder (capability declaration required). 
Windows.Storage.KnownFolders.picturesLibrary.createFileAsync(fileName, 
    Windows.Storage.CreationCollisionOption.generateUniqueName) 
    .done(function (newFile) { 
        // Assume uriString is the text URI of the file to download 
        var uri = Windows.Foundation.Uri(uriString); 
        var downloader = new Windows.Networking.BackgroundTransfer.BackgroundDownloader(); 
 
        // Create a new download operation. 
        var download = downloader.createDownload(uri, newFile); 
 
        // Start the download 
        download.startAsync().then(complete, error, progress); 
    } 

While the operation underway, the following properties provide additional information on the 
transfer: 

• requestedUri and resultFile The same as those passed to createDownload. 

• guid A unique identifier assigned to the operation. 

• progress A BackgroundDownloadProgress structure with bytesReceived, 
total-BytesToReceive, hasResponseChanged (a Boolean, see the getResponseInformation 
method below), hasRestarted (a Boolean set to true if the download had to be restarted), and 
status (a BackgroundTransferStatus value: idle, running, pausedByApplication, 
pausedCostedNetwork, pausedNoNetwork, canceled, error, and completed). 

A few methods of DownloadOperation can also be used with the transfer: 

• pause and resume Control the download in progress. We’ll talk more of these in the “Suspend, 
Resume, and Restart with Background Transfers” section below. 

• getResponseInformation Returns a ResponseInformation object with properties named 
headers (a collection of response headers from the server), actualUri, isResumable, and 

72 The code in the sample has more structure than shown here. It defines its own DownloadOperation class that 
unfortunately has the same name as the WinRT class, so I’m electing to omit mention of it. 

645

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.downloadoperation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounddownloadprogress.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgroundtransferstatus.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.responseinformation.aspx


statusCode (from the server). Repeated calls to this method will return the same information 
until the hasResponseChanged property is set to true. 

• getResultStreamAt Returns an IInputStream for the content downloaded so far or the whole 
of the data once the operation is complete. 

In Scenario 1 of the sample, the progress function—which is given to the promise returned by 
startAsync—uses getResponseInformation and getResultStreamAt to show a partially downloaded 
image: 

var currentProgress = download.progress; 
 
// ... 
 
// Get Content-Type response header. 
var contentType = download.getResponseInformation().headers.lookup("Content-Type"); 
 
// Check the stream is an image. 
if (contentType.indexOf("image/") === 0) { 
    // Get the stream starting from byte 0. 
    imageStream = download.getResultStreamAt(0); 
 
    // Convert the stream to a WinRT type 
    var msStream = MSApp.createStreamFromInputStream(contentType, imageStream); 
    var imageUrl = URL.createObjectURL(msStream); 
 
    // Pass the stream URL to the HTML image tag. 
    id("imageHolder").src = imageUrl; 
 
    // Close the stream once the image is displayed. 
    id("imageHolder").onload = function () { 
        if (imageStream) { 
            imageStream.close(); 
            imageStream = null; 
        } 
    }; 
} 

All of this works because the background transfer API is saving the downloaded data into a 
temporary tile and providing a stream on top of that, hence a function like URL.createObjectURL does 
the same job as if we provided it with a StorageFile object directly. Once the DownloadOperation object 
goes out of scope and is garbage collected, however, that temporary file will be deleted. 

The existence of this temporary file is also why, as I noted earlier, it’s not actually necessary to 
provide a StorageFile object in which to place the downloaded data. That is, you can pass null as the 
second argument to createDownload and work with the data through 
DownloadOperation.getResultStreamAt. This is entirely appropriate if the ultimate destination of the 
data in your app isn’t a separate file. 
 

 

646



There is also a variation of createDownload that takes a second StorageFile argument whose 
contents provide the body of the HTTP GET or FTP RETR request that will be sent to the server URI 
before the download is started. This accommodates some web sites that require you to fill out a form to 
start the download. 

Sidebar: Where Is Cancel? 
You might have already noticed that neither DownloadOperation nor UploadOperation has a 
cancellation method. So how is this accomplished? You cancel the transfer by canceling the 
startAsync operation—that is, call the cancel method of the promise returned by startAsync. 
This means that you need to hold onto the promises for each transfers you initiate. 

Basic Uploads 
Scenario 2 of the Background transfer sample (js/uploadFile.js) exercises the background upload 
capability, specifically sending some file (chosen through the file picker) to a URI that can receive it. By 
default the URI points to http://localhost/BackgroundTransferSample/upload.aspx, a page installed with 
the PowerShell script that sets up the server. As with Scenario 1, the URI entry control is disabled 
because the sample performs no validation, as you would again always want to do if you accepted any 
URI from an untrusted source (user input in this case). For testing purposes, of course, you can remove 
disabled="disabled" from the serverAddressField element in html/uploadFile.html and enter other URIs 
that will exercise your own upload services. This is especially handy if you run the server part of the 
sample in Visual Studio 2012 Express for Web where the URI will need a localhost port number as 
assigned by the debugger. 

In addition to a button to start an upload and to cancel it, the sample provides another button to 
start a multipart upload; we’ll talk more of this in the “Multipart Uploads” section below. 

In code, an upload happens very much like a download. Assuming you have a StorageFile with the 
contents to upload, create an UploadOperation object for the transfer with 
BackgroundUploader.createUpload. If, on the other hand, you have data in a stream (IInputStream), 
create the operation object with BackgroundUploader.createUploadFromStreamAsync instead. This 
can also be used to break up a large file into discrete chunks, if the server can accommodate it; see 
“Breaking Up Large Files” below. 

With the operation object in hand you can customize a few properties of the transfer, overriding the 
defaults provided by the BackgroundUploader. These are method (HTTP POST or PUT, or FTP STOR), 
costPolicy, and group. For the latter, again see “Setting Cost Policy” and “Grouping Multiple Transfers” 
below. 

Once you’re ready, then, calling the operation’s startAsync will proceed with the upload:73 

73 As with downloads, the code in the sample has more structure than shown here and again defines its own 

647

http://msdn.microsoft.com/library/windows/apps/hh943065.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.uploadoperation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounduploader.createuploadfromstreamasync.aspx


// Assume uri is a Windows.Foundation.Uri object and file is the StorageFile to upload  
var uploader = new Windows.Networking.BackgroundTransfer.BackgroundUploader(); 
var upload = uploader.createUpload(uri, file); 
promise = upload.startAsync().then(complete, error, progress); 

While the operation is underway, the following properties provide additional information on the 
transfer: 

• requestedUri and sourceFile The same as those passed to createUpload (an operation created 
with createUploadFromStreamAsync supports only requestedUri). 

• guid A unique identifier assigned to the operation. 

• progress A BackgroundUploadProgress structure with bytesReceived, totalBytesToReceive, 
bytesSent, totalBytesToSend, hasResponseChanged (a Boolean, see the getResponseInformation 
method below), hasRestarted (a Boolean set to true if the upload had to be restarted), and 
status (a BackgroundTransferStatus value, again with values of idle, running, 
pausedByApplication, pausedCostedNetwork, pausedNoNetwork, canceled, error, and completed). 

Unlike a download, an UploadOperation does not have pause or resume methods but does have the 
same getResponseInformation and getResultStreamAt methods. In the upload case, the response from 
the server is less interesting because it doesn’t contain the transferred data, just headers, status, and 
whatever body contents the upload page cares to return. If that page returns some interesting HTML, 
though, you might use the results as part of your app’s output for the upload. 

As noted before, to cancel an UploadOperation, call the cancel method of the promise returned from 
startAsync. 

Breaking Up Large Files 
Because the outbound (upload) transfer rates of most broadband connections is significantly slower 
than the inbound (download) rates and might have other limitations, uploading a large file to a server is 
typically a riskier business than a large download. If an error occurs during the upload, it can invalidate 
the entire transfer—a very frustrating occurrence if you’ve already been waiting an hour for that upload 
to complete! 

For this reason, a cloud service might allow a large file to be transferred in discrete chunks, each of 
which is sent as a separate HTTP request with the server reassembling the single file from those 
requests. This minimizes or at least reduces the overall impact of connectivity hiccups. 

From the client’s point of view, each piece would be transferred with an individual Upload-Operation; 
that much is obvious. The tricky part is breaking up a large file in the first place. With a lot of elbow 
grease—and what would likely end up being a complex chain of nested async  
 
 

UploadOperation class with the same name as the one in WinRT, so I’m omitting mention of it. 

648

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgrounduploadprogress.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgroundtransferstatus.aspx


operations—it is possible to create a bunch of temporary files from the single source. If you’re up to a 
challenge, I invite to you write such a routine and post it somewhere for the rest of us to see! 

But there is an easier path using createUploadFromStreamAsync, through which you can create 
separate UploadOperation objects for different segments of the stream. Given a StorageFile for the 
source, start by calling its openReadAsync method, the result of which is an 
Irandom-AccessStreamWithContentType object. Through its getInputStreamAt method you then 
obtain an IInputStream for each starting point in the stream (that is, at each offset depending on your 
segment size). You then create an UploadOperation with each input stream by using 
create-UploadFromStreamAsync. The last requirement is to tell that operation to consume only some 
portion of that stream. You do this by calling its setRequestHeader("content-length", <length>) where 
<length> is the size of the segment plus the size of other data in the request; you’ll also want to add a 
header to identify the segment for that particular upload. After all this, call each operation’s startAsync 
method to begin its transfer. 

Multipart Uploads 
In addition to the createUpload and createUploadFromStreamAsync methods, the BackgroundUploader 
provides another method called createUploadAsync (with three variants) that handles what are called 
multipart uploads. 

From the server’s point of view, a multipart upload is a single HTTP request that contains various 
pieces of information (the parts), such as app identifiers, authorization tokens, and so forth, along with 
file content, where each part is possibly separated by a specific boundary string. Such uploads are used 
by online services like Flickr and YouTube, each of which accepts a request with a multipart 
Content-Type. (See Content-type: multipart for a reference.) For example, as shown on Uploading 
Photos – POST Example, Flickr wants a request with the content type of multipart/form-data, followed 
by parts for api_key, auth_token, api_sig, photo, and finally the file contents. With YouTube, as 
described on YouTube API v2.0 – Direct Uploading, it wants a content type of multipart/related with 
parts containing the XML request data, the video content type, and then the binary file data. 

The background uploader supports all this through the BackgroundUploader.create-UploadAsync 
method. (Note the Async suffix that separates these from the synchronous createUpload.) There are 
three variants of this method. The first takes the server URI to receive the upload and an array of 
BackgroundTransferContentPart objects, each of which represents one part of the upload. The 
resulting operation will send a request with a content type of multipart/form-data with a random GUID 
for a boundary string. The second variation of createUploadAsync allows you to specify the content type 
directly (through the sub-type, such as related), and the third variation then adds the boundary string. 
That is, assuming parts is the array of parts, the methods look like this: 

var uploadOpPromise1 = uploader.createUploadAsync(uri, parts); 
var uploadOpPromise2 = uploader.createUploadAsync(uri, parts, "related"); 
var uploadOpPromise3 = uploader.createUploadAsync(uri, parts, "form-data", "-------123456"); 

 

649

http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.irandomaccessstreamwithcontenttype.aspx
http://msdn.microsoft.com/library/ms527355.aspx
http://www.flickr.com/services/api/upload.example.html
http://www.flickr.com/services/api/upload.example.html
https://developers.google.com/youtube/2.0/developers_guide_protocol_direct_uploading
http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgroundtransfercontentpart.aspx


To create each part, first create a BackgroundTransferContentPart using one of its three constructors: 

• new BackgroundContentPart() Creates a default part. 

• new BackgroundContentPart(<name>) Creates a part with a given name. 

• new BackgroundContentPart(<name>, <file>) Creates a part with a given name and a local 
filename. 

In each case you further initialize the part with a call to its setText, setHeader, and setFile methods. 
The first, setText, assigns a value to that part. The second, setHeader, can be called multiple times to 
supply header values for the part. The third, setFile, is how you provide the StorageFile to a part 
created with the third variant above. 

Now, Scenario 2 of the original Background transfer sample shows the latter using an array of 
selected files, but probably few services would accept a request of this nature. Let’s instead look at how 
we’d create the multipart request shown on Uploading Photos – POST Example. For this purpose I’ve 
created the Multipart Upload example in this chapter’s companion content. Here’s the code from 
js/uploadMultipart.js that creates all the necessary parts using the tinyimage.jpg file in the app package: 

// The file and uri variables are already set by this time. bt is a namespace shortcut 
var bt = Windows.Networking.BackgroundTransfer; 
var uploader = new bt.BackgroundUploader(); 
var contentParts = []; 
 
// Instead of sending multiple files (as in the original sample), we'll create those parts that 
// match the POST example for Flickr on http://www.flickr.com/services/api/upload.example.html 
var part; 
 
part = new bt.BackgroundTransferContentPart(); 
part.setHeader("Content-Disposition", "form-data; name=\"api_key\""); 
part.setText("3632623532453245"); 
contentParts.push(part); 
 
part = new bt.BackgroundTransferContentPart(); 
part.setHeader("Content-Disposition", "form-data; name=\"auth_token\""); 
part.setText("436436545"); 
contentParts.push(part); 
 
part = new bt.BackgroundTransferContentPart(); 
part.setHeader("Content-Disposition", "form-data; name=\"api_sig\""); 
part.setText("43732850932746573245"); 
contentParts.push(part); 
 
part = new bt.BackgroundTransferContentPart(); 
part.setHeader("Content-Disposition", "form-data; name=\"photo\"; filename=\"" + file.name + "\""); 
part.setHeader("Content-Type", "image/jpeg"); 
part.setFile(file); 
contentParts.push(part); 
 
// Create a new upload operation specifying a boundary string. 
uploader.createUploadAsync(uri, contentParts, 

650

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgroundtransfercontentpart.backgroundtransfercontentpart.aspx
http://www.flickr.com/services/api/upload.example.html


     "form-data", "-----------------------------7d44e178b0434") 
    .then(function (uploadOperation) { 
        // Start the upload and persist the promise  
        upload = uploadOperation; 
        promise = uploadOperation.startAsync().then(complete, error, progress);  
    } 
); 

The resulting request will look like this, very similar to what’s shown on the Flickr page (just with 
some extra headers): 

POST /website/multipartupload.aspx HTTP/1.1 
Cache-Control=no-cache 
Connection=Keep-Alive 
Content-Length=1328 
Content-Type=multipart/form-data; boundary="-----------------------------7d44e178b0434" 
Accept=*/* 
Accept-Encoding=gzip, deflate 
Host=localhost:60355 
User-Agent=Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.2; Win64; x64; Trident/6.0; Touch) 
UA-CPU=AMD64 
-------------------------------7d44e178b0434 
Content-Disposition: form-data; name="api_key" 
 
3632623532453245 
-------------------------------7d44e178b0434 
Content-Disposition: form-data; name="auth_token" 
 
436436545 
-------------------------------7d44e178b0434 
Content-Disposition: form-data; name="api_sig" 
 
43732850932746573245 
-------------------------------7d44e178b0434 
Content-Disposition: form-data; name="photo"; filename="tinysquare.jpg" 
Content-Type: image/jpeg 
 
{RAW JFIF DATA} 
-------------------------------7d44e178b0434-- 

To run the sample and also see how this request is received, go to the MultipartUploadServer folder 
in this chapter’s companion content. Load website.sln into Visual Studio 2012 Express for Web, open 
MultipartUploadServer.aspx, and set a breakpoint on the first if statement inside the Page_Load 
method. Then start the site in Internet Explorer to open that page on a localhost debugging port. Copy 
that page’s URI for the next step. 

In the Multipart Upload example, paste that URI into the URI field and click the Start Multipart 
Transfer. When the upload operation’s startAsync is called, you should hit the server page breakpoint 
in Visual Studio for Web. You can step through that code if you want and examine the Request object; 
in the end, the code will copy the request into a file named multipart-request.txt on that server. This will 
contain the request contents as above, where you can see the relationship between how you set up the 
parts in the client and how they are received by the server. 

651



Providing Headers and Credentials 
Within the BackgroundDownloader and BackgroundDownloader you have the ability to set values for 
individual HTTP headers by using their setRequestHeader methods. Both take a header name and a 
value, and you call them multiple times if you have more than one header to set. 

Similarly, both the downloader and uploader objects have two properties for credentials: 
serverCredential and proxyCredential, depending on the needs of your server URI. Both properties 
are Windows.Security.Credentials.PasswordCredential objects. As the purpose in a background 
transfer operation is to provide credentials to the server, you’d typically create a PasswordCredential as 
follows: 

var cred = new Windows.Security.Credentials.PasswordCredential(resource, userName, password); 

where the resource in this case is just a string that identifies the resource to which the credentials 
applies. This is used to manage credentials in the credential locker, as we’ll see in the “Authentication, 
Credentials, and the User Profile” section later. For now, just creating a credential in this way is all you 
need to authenticate with your server when doing a transfer. 

Note At present, setting the serverCredential property doesn’t work with URIs that specify an FTP 
server. To work around this, include the credentials directly in the URI with the form ftp://<user>: 
<password>@server.com/file.ext (for example, ftp://admin:password1@server.com/file.bin). 

Setting Cost Policy 
As mentioned earlier in the section “Cost Awareness,” the Windows Store policy requires that apps are 
careful about performing large data transfers on metered networks. The Background Transfer API takes 
this into account, based on values from the BackgroundTransferCostPolicy enumeration: 

• default Allow transfers on costed networks. 

• unrestrictedOnly Do not allow transfers on costed networks. 

• always Always download regardless of network cost. 

To apply a policy to subsequent transfers, set the value of BackgroundDownloader.costPolicy and/or 
BackgroundUploader.costPolicy. The policy for individual operations can be set through the 
DownloadOperation.costPolicy and UploadOperation.costPolicy properties. 
 
 
 
 
 
 
 

652

http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.passwordcredential.aspx


Basically, you would change the policy if you’ve prompted the user accordingly or allow them to set 
behavior through your settings. For example, if the user has a setting to disallow downloads or uploads 
on a metered network, your apps would set the general costPolicy to unrestrictedOnly. If you know 
you’re on a network where roaming charges would apply and the user has consented to a transfer, 
you’d want to change the costPolicy of that individual operation to always. Otherwise the API would 
not perform the transfer because doing so on a roaming network is disallowed by default. 

When a transfer is blocked by policy, the operation’s progress.status property will contain 
BackgroundTransferStatus.pausedCostedNetwork. 

Grouping Transfers 
The group property that’s found in BackgroundDownloader, BackgroundUploader, DownloadOperation, and 
UploadOperation is a simple string that tags a transfer as belonging to a particular group. The property 
can be set only through BackgroundDownloader and BackgroundUploader; you would set this prior to 
creating a series of individual operations. In those operations, the group property is available but 
read-only. 

The purpose of grouping is so that you can selectively enumerate and control related transfers, as 
we’ll see in the next section. For example, a photo app that organizes pictures into albums or album 
pages can present a UI through which the user can pause, resume, or cancel the transfer of an entire 
album, rather than working on the level of individual files. The group property makes the 
implementation of this kind of experience much easier, as the app doesn’t need to maintain its own 
grouping structures. 

The group has no bearing on the transfers themselves; it is not communicated to the server upload 
page. 

Suspend, Resume, and Restart with Background Transfers 
At the beginning of this section I mentioned that background transfers will continue while an app is 
suspended and paused if the app is terminated by the system. Because apps will be terminated only in 
low-memory conditions, it’s appropriate to also pause background transfers. 

When an app is resumed from the suspended state, it can check on the status of pending transfers by 
using the BackgroundDownloader.getCurrentDownloadsAsync and 
BackgroundUploader.getCurrent-UploadsAsync methods. In both cases two variants of the methods 
exist: one that enumerates all transfers, and one that enumerates those belonging to a specific group (as 
matches the group properties in the operations). 

The list that comes back from these methods is a vector of DownloadOperation and UploadOperation 
objects, and, as always, the vector can be addressed as an array. Code to iterate over the list looks like 
this: 
 

653



Windows.Networking.BackgroundTransfer.BackgroundDownloader.getCurrentDownloadsAsync() 
    .done(function (downloads) { 
        for (var i = 0; i < downloads.size; i++) { 
            var download = downloads[i]; 
        } 
    }); 
 
Windows.Networking.BackgroundTransfer.BackgroundUploader.getCurrentUploadsAsync() 
    .done(function (uploads) { 
         for (var i = 0; i < uploads.size; i++) { 
             var upload = uploads[i]; 
         } 
    }); 

In each case, the progress property of each operation will tell you how far the transfer has come 
along. The progress.status property is especially important. Again, status is a 
Background-TransferStatus value and will be one of idle, running, pausedByApplication, 
pausedCosted-Network, pausedNoNetwork, canceled, error, and completed). These are clearly necessary to 
inform the user, as appropriate, and to give her the ability to restart transfers that are paused or 
experienced an error, to pause running transfers, and to act on completed transfers. 

Speaking of which, when using the background transfer API, an app should always give the user 
control over pending transfers. Downloads can be paused through the DownloadOperation.pause 
method and resumed through DownloadOperation.resume. (There are no equivalents for uploads.) 
Download and upload operations are canceled by canceling the promises returned from startAsync. 

This brings up an interesting situation: if your app has been terminated and later restarted, how do 
you restart transfers that were paused? The answer is quite simple. By enumerating transfers through 
getCurrentDownloadsAsync and getCurrentUploadsAsync, incomplete transfers are automatically 
restarted. But then how do you get back to the promises originally returned by the startAsync 
methods? Those are not values that you can save in your app state and reload on startup, and yet you 
need them to be able to cancel those operations, if necessary, and also to attach your completed, error, 
and progress handlers. 

For this reason, both DownloadOperation and UploadOperation provide a method called attachAsync, 
which returns a promise for the operation just like startAsync did originally. You can then call the 
promise’s then or done methods to provide your handlers: 

promise = download.attachAsync().then(complete, error, progress); 

and call promise.cancel() if needed. In short, when Windows restarts a background transfer and 
essentially calls startAsync on your app’s behalf, it holds that promise internally. The attachAsync 
methods simply return that new promise. 

A final question is whether a suspended app can be notified when a transfer is complete, perhaps to 
issue a toast to inform the user. Such a feature isn’t supported in Windows 8 as there is no background 
task available for this purpose. At present, then, the user needs to switch back to the app to check on 
transfer progress. 

654

http://msdn.microsoft.com/library/windows/apps/windows.networking.backgroundtransfer.backgroundtransferstatus.aspx


Authentication, Credentials, and the User Profile 

If you think about it, just about every online resource in the world has some kind of credentials or 
authentication associated with it. Sure, we can read many of those resources without credentials, but 
having permission to upload data to a website is more tightly controlled, as is access to one’s account or 
profile in a database managed by a website. In many scenarios, then, apps need to manage credentials 
and handle other authentication processes, perhaps for accounts that you manage but perhaps also 
when using accounts from other sources such as Facebook, Twitter, and so on. 

There are two basic approaches for dealing with credentials. First, you can collect credentials directly 
through the Credential Picker UI or a UI of your own. In either case, though, the next question is how to 
store those credentials securely, for which we have the Credential Locker API. The locker allows an app 
to retrieve those credentials in subsequent sessions such that it doesn’t need to ask the user to enter 
those credentials again (which gets tiresome, as I’m sure you know). 

It’s very important to understand here that whenever an app acquires credentials as plain text, either 
from its own UI or from the Credential Picker with certain options, the app is fully responsible for 
protecting those credentials. For one thing, the app must always store and transmit those credentials 
with full encryption, but there are many subtleties here that are typically far more complicated than 
apps should worry about themselves. 

For this reason it’s a good idea to delegate those details to others. For example, the Credential Picker 
UI will, by default, encrypt passwords before they ever get back to your app. Or you can use the second 
approach to credentials where the app authenticates users through another provider altogether, such as 
Microsoft Live Connect, Facebook, Flickr, Yahoo, and so forth. In doing so, the provider does the heavy 
lifting of authentication and the app needs only to store the appropriate tokens or other access keys for 
these services. A primary benefit to this kind of integrated authorization is that the app never touches 
those credentials itself and thus does not need to concern itself with their security. (An should still 
encrypt tokens or access keys if it stores them. The credential locker can also be used for this purpose.) 

In most cases this process involves an agent called the Web Authentication Broker, which specifically 
works with OAuth/OpenID protocols and providers as generally found on the web. Microsoft Live 
Connect is a special case because the Microsoft account used with it might also be the one used to log 
into Windows itself. (Authenticating through Live Connect also gives an app access to other data from 
Live services including Calendar, Messenger, and SkyDrive.) 

One of the other significant benefits of this second approach is the ability to provide a single sign on 
experience. This means that once a user has signed in through a particular OAuth provider in one app, 
they often don’t need to sign into other apps that use the same provider (unless the app deems it 
necessary). In the case of Live Connect, apps might never need to request credentials at all if that same 
Microsoft account is used to log in to Windows or is linked to the user’s domain login. 
 

 

655



In this section we’ll also take a brief look—which is all that’s needed—at the user profile information 
available through WinRT APIs, along with the API for encryption and decryption. Beyond this, I’ll 
mention two other resources on the subject. The first is How to secure connections and authenticate 
requests; the second is the Banking with strong authentication sample, which demonstrates secure 
authentication and communication over the Internet. A full writeup on this sample is found on Tailored 
banking app code walkthrough, so we won’t be specifically looking at it here. 
 

Design tip There are a number of design guidelines for different login scenarios, such as when an app 
requires a login to be useful and when a login is simply optional. These topics as well as where to place 
login and account/profile management UI are discussed in Guidelines and checklist for login controls. 

The Credential Picker UI 
Just as WinRT provides a built-in UI for picking files, it also has a built-in UI for entering credentials: 
Windows.Security.Credentials.UI.CredentialsPicker. This is provided as a convenience; again, 
you’re free to implement your own UI if that works better for your app, but many features make the 
credential picker attractive. 

When you instantiate this object and call its pickAsync method, as with the Credential Picker sample, 
you’ll see the UI shown in Figure 14-2. This UI provides for domain logins, supports, smart cards (as you 
can see—I have two smart card readers on my machine), and it allows for various options such as 
authentication protocols and automatic saving of the credential (see the next section). 

  
FIGURE 14-2 The credential picker UI appears like a message dialog over the app. 
 
 

656

http://msdn.microsoft.com/library/windows/apps/hh986970.aspx
http://msdn.microsoft.com/library/windows/apps/hh986970.aspx
http://code.msdn.microsoft.com/windowsapps/Metro-style-banking-app-7d963c00
http://msdn.microsoft.com/library/windows/apps/Hh464943
http://msdn.microsoft.com/library/windows/apps/Hh464943
http://msdn.microsoft.com/library/windows/apps/hh965453.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.credentialpicker.aspx
http://code.msdn.microsoft.com/windowsapps/Credential-picker-sample-30fcba2e


The result from pickAsync, as given to your completed handler, is a CredentialPickerResults 
object with the following properties—when you enter some credentials in the sample here, you’ll see 
these values reflected in the sample’s output: 

• credentialuserName A string containing the entered username. 

• credentialPassword A string containing the password (typically encrypted depending on the 
authentication protocol option). 

• credentialDomainName A string containing a domain if entered with the username (as in 
<domain>\<username>). 

• credentialSaved A Boolean indicating whether the credential was saved automatically; this 
depends on picker options, as discussed below. 

• credentialSavedOption A CredentialSavedOption value indicating the state of the 
Remember My Credentals check box: unselected, selected, or hidden. We’ll see how to handle 
this shortly as well. 

• errorCode Contains zero if there is no error, otherwise an error code. 

• credential An IBuffer containing the credential as an opaque byte array. This is what you can 
save in your own persistent state if needs be and passed back to the picker at a later time; we’ll 
see how shortly. 

The three scenarios in the sample demonstrate the different options you can use to invoke the 
credential picker. For this there are three separate variants of pickAsync. The first variant accepts a 
target name (ignored) and a message string that appears in the place of “Please enter your credentials” 
in Figure 14-2: 

Windows.Security.Credentials.UI.CredentialPicker.pickAsync(targetName, message) 
    .done(function (results) { 
    } 

The second variant accepts the same arguments plus a caption string that appears in the place of 
“Credential Picker Sample” in Figure 14-2: 

Windows.Security.Credentials.UI.CredentialPicker.pickAsync(targetName, message, caption) 
    .done(function (results) { 
    } 

The third variant accepts a CredentialPickerOptions object that has properties for the same 
targetName, message, and caption strings along with the following: 

• previousCredential An IBuffer with the opaque credential information as provided by a 
previous invocation of the picker (see CredentialPickerResults.credential above). 

• alwaysDisplayDialog A Boolean indicating whether the dialog box is displayed. The default 
value is false, but this applies only if you also populate previousCredential (with an exception 

657

http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.credentialpickerresults.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.credentialsaveoption.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.credentialpickeroptions.aspx


for domain-joined machines—see table below). The purpose here is to show the dialog when a 
stored credential might be incorrect and the user is expected to provide a new one. 

• errorCode The numerical value of a Win32 error code (default is ERROR_SUCCESS) that will be 
formatted and displayed in the dialog box. You would use this when you obtain credentials from 
the picker initially but find that those credentials don’t work and need to invoke the dialog 
again. Instead of providing your own message, you just choose an error code and let the system 
do the rest. The most common values for this are 1326 (login failure), 1330 (password expired), 
2202 (bad username), 1907 or 1938 (password must change/password change required), 1351 
(can’t access domain info), and 1355 (no such domain). There are, in fact, over 15,000 Win32 
error codes, but that means you’ll have to search the reference linked here (or search within the 
winerror.h file typically found in your Program Files (x86)\Windows Kits\8.0\Include\shared 
folder). Happy hunting! 

• callerSavesCredential A Boolean indicating that the app will save the credential and that the 
picker should not. The default value is false. When set to true, credentials are saved to a secure 
system location (not the credential locker) if the app has the Enterprise Authentication capability 
(see below). 

• credentialSaveOption A value from the  CredentialSaveOption enumeration indica-ting the 
initial state of the Remember My Credentials check box: unselected, selected, or hidden. 

• authenticationProtocol A value from the AuthenticationProtocol enumeration: basic, 
digest, ntlm, kerberos, negotiate (the default), credSsp, and custom (in which case you must 
supply a string in the customAuthenticationProcotol property). Note that with basic and 
digest, the CredentialPickerResults.credentialPassword will not be encrypted and is subject 
to the same security needs as a plain text password you collect from your own UI. 

Here’s an example of invoking the picker with an errorCode indicating a previous failed login: 

var options = new Windows.Security.Credentials.UI.CredentialPickerOptions(); 
options.message = "Please enter your credentials"; 
options.caption = "Sample App"; 
options.targetName = "Target"; 
options.alwaysDisplayDialog = true; 
options.errorCode = 1326;  // Shows "The username or password is incorrect." 
options.callerSavesCredential = true; 
options.authenticationProtocol =  
    Windows.Security.Credentials.UI.AuthenticationProtocol.negotiate; 
options.credentialSaveOption = Windows.Security.Credentials.UI.CredentialSaveOption.selected; 
 
Windows.Security.Credentials.UI.CredentialPicker.pickAsync(options) 
    .done(function (results) { 
    } 

 

 

658

http://msdn.microsoft.com/library/windows/desktop/ms681381(v=vs.85).aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.credentialsaveoption.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.ui.authenticationprotocol.aspx


To clarify the relationship between the callerSavesCredential, credentialSaveOption, and the 
credentialSaved properties, the following table enumerates the possibilities: 
 

Enterprise 
Auth 
capability 

callerSavesCredential credentialSaveOption Credential Picker saves 
credentials 

Apps saves 
credentials to 
credential locker 

No true Selected No Yes 
unselected or hidden No No 

false Selected No Yes 
unselected or hidden No No 

Yes true Selected No Yes 
unselected or hidden No No 

false Selected Yes (credentialSaved will 
be true) 

Optional 

unselected or hidden No No 

 

The first column refers to the Enterprise Authentication capability in the app’s manifest, which 
indicates that the app can work with Intranet resources that require domain credentials (assuming that 
the app is running on the Enterprise Edition of Windows 8 as well). In such cases the credential picker 
has a separate secure location (apart from the credential locker) in which to store credentials, so the app 
need not save them itself. Furthermore, if the picker saves a credential and the app invokes the picker 
with alwaysDisplayDialog set to false, previousCredential can be empty because the credential will 
be loaded automatically. But without a domain-joined machine and this capability, the app must supply 
a previousCredential to avoid having the picker appear. 

The Credential Locker 
One of the reasons that apps might repeatedly ask a user for credentials is simply because they don’t 
have a truly secure place to store and retrieve those credentials that’s also isolated from all other apps. 
This is entirely the purpose of the credential locker, a function that’s also immediately clear from the 
name of this particular API: Windows.Security.Credentials.PasswordVault. 

With the locker, any given credential itself is represented by a 
Windows.Security.-Credentials.PasswordCredential object, as we saw briefly with the background 
transfer API. You can create an initialized credential as follows: 

var cred = new Windows.Security.Credentials.PasswordCredential(resource, userName, password); 

Another option is to create an uninitialized credential and populate its properties individually: 

var cred = new Windows.Security.Credentials.PasswordCredential(); 
cred.resource = "userLogin" 
cred.userName = "username"; 
cred.password = "password"; 
 
 

659

http://msdn.microsoft.com/library/windows/apps/br227081.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.credentials.passwordcredential.aspx


A credential object also contains an IPropertySet value named properties, through which the same 
information can be managed. 

In any case, when you collect credentials from a user and want to save them, create a 
Password-Credential and pass it to PasswordVault.add: 

var vault = new Windows.Security.Credentials.PasswordVault(); 
vault.add(cred); 

Note that if you add a credential to the locker with a resource and userName that already exist, the 
new credential will replace the old. And if at any point you want to delete a credential from the locker, 
call the PasswordVault.remove method with that credential. 

Furthermore, even though a PasswordCredential object sees the world in terms of usernames and 
passwords, that password can be anything else you need to store securely, such as an access token. As 
we’ll see in the next section, authentication through OAuth providers might return such a token, in 
which case you might store something like “Facebook_Token” in the credential’s resource property, 
your app name in userName, and the token in password. This is a perfectly legitimate and expected use. 

Once a credential is in the locker, it will remain there for subsequent launches of the app until you 
call the remove method or the user explicitly deletes it through Control Panel > User Accounts and 
Family Safety >Credential Manager. On a trusted PC (which requires sign-in with a Microsoft account), 
Windows will also automatically and securely roam the contents of the locker to the user’s other devices 
(which can be turned off in PC Settings > Sync Your Settings > Passwords). This help to create a 
seamless experience with your app as the user moves between devices.74 

So, when you launch an app—even when launching it for the first time—always check if the locker 
contains saved credentials. There are several methods of the PasswordVault class for doing this: 

• findAllByResource Returns an array (vector) of credential objects for a given resource 
identifier. This is how you can obtain the username and password that’s been roamed from 
another device, because the app would have stored those credentials in the locker on the other 
machine under the same resource. 

• findAllByUserName Returns an array (vector) of credential objects for a given username. This is 
useful if you know the username and want to retrieve all the credentials for multiple resources 
that the app connects to. 

• retrieve Returns a single credential given a resource identifier and a username. Again, there 
will only ever be a single credential in the locker for any given resource and username. 

• retrieveAll Returns a vector of all credentials in the locker for this app. The vector contains a 
snapshot of the locker and will not be updated with later changes to credentials in the locker. 

 

74 Such roaming will not happen, however, if a credential is first stored in the locker on a domain joined machine. This 
protects domain credentials from leaking to the cloud. 

660

http://msdn.microsoft.com/library/windows/apps/windows.foundation.collections.ipropertyset.aspx


There is one subtle difference between the findAll and retrieve methods in the list above. The 
retrieve method will provide you with fully populated credentials objects. The findAll methods, on the 
other hand, will give you objects in which the password properties are still empty. This avoids 
performing password decryption on what is potentially a large number of credentials. To populate that 
property for any individual credential, call the PasswordCredential.retievePassword method. 

For further demonstrations of the credential locker—the code is very straightfoward—refer to the 
Credential locker sample. This shows variations for single user/single resource (Scenario 1), single 
user/multiple resources (Scenario 2), multiple users/multiple resources (Scenario 3), and clearing out the 
locker entirely (Scenario 4). 

The Web Authentication Broker 
Although apps can acquire and manage user credentials of their own, supplying users perhaps with the 
ability to create app-specific or service-specific accounts (typically through the Settings charm, as 
discussed in Chapter 8 and also on Guidelines and checklist for login controls), you might want to 
simply leverage an account that the user has already created through another OAuth provider, 
especially when you want to use that provider’s resources. You’ve likely experienced this on many 
websites already, where you log in through another site like Facebook. Of course, that typically means 
navigating away from the original website to the provider’s site—a process that flows well enough in a 
web browser but isn’t quite so attractive in the context of an app! 

For this purpose, Windows provides the Web Authentication Broker, which essentially does the same 
job without leaving the context of the app itself. An app provides the URI of the authenticating page of 
the external site (which must use the https:// URI scheme, otherwise you get an invalid parameter 
error). The broker then creates a new web host process in its own app container, into which it loads the 
indicated web page. The UI for that process is displayed as an overlay dialog on the app, as shown in 
Figure 14-3, for which I’m using Scenario 1 of the Web authentication broker sample. 

 
FIGURE 14-3 The Web authentication broker sample using a Facebook login page. 

661

http://code.msdn.microsoft.com/windowsapps/PasswordVault-f01be74a
http://msdn.microsoft.com/library/windows/apps/hh965453.aspx
http://code.msdn.microsoft.com/windowsapps/Web-Authentication-d0485122


Note To run the sample you’ll need an app ID for each of the authentication providers in the various 
scenarios. For Facebook in Scenario 1, visit http://developers.facebook.com/setup and create an App 
ID/API Key for a test app. 

In the case of Facebook, the authentication process involves more than just checking the user’s 
credentials. It also needs to obtain permission for other capabilities that the app wants to use (which the 
user might have independently revoked directly through Facebook). As a result, the authentication 
process might navigate to additional pages, each of which still appears within the web authentication 
broker, as shown in Figure 14-4. In this case the app identity, ProgrammingWin8_AuthTest, is just one 
that I created through the Facebook developer setup page for the purposes of this demonstration. 

    

 
FIGURE 14-4 Additional authentication steps for Facebook within the web authentication broker. 

662

http://developers.facebook.com/setup


Within the web authentication broker UI, the user might be taken through multiple pages on the 
provider’s site (but note that the back button next to the “Connecting to a service” title dismisses the 
dialog entirely). But this begs a question: how does the broker know when authentication is actually 
complete? On the right side of Figure 14-4, clicking the Allow button is the last step in the process, after 
which Facebook would normally show a login success page. In the context of an app, however, we don’t 
need that page to appear—we’d rather have the broker’s UI taken down so that we return to the app 
with the results of the authentication. What’s more, many OAuth providers don’t even have such a 
page—so what do we do? 

Fortunately, the broker takes this into account. As we’ll see in a moment, the app simply provides the 
URI of that final page of the provider’s process. When the broker detects that it’s navigated to that 
page, it removes its UI and gives the response to the app. 

As part of this process, Facebook saves these various permissions in its own back end for each 
particular user, so even if the app started the authentication process again, the user would not see the 
same pages shown in Figure 14-4. The user can, of course, manage these permissions when visiting 
Facebook through a web browser; if the user deletes the app information there, these additional 
authentication steps would reappear. 

In WinRT, the broker is represented by the 
Windows.Security.Authentication.Web.-WebAuthenticationBroker class. Authentication happens 
through its authenticateAsync methods. I say “methods” here because there are two variations. We’ll 
look at one here and return to the second in the next section, “Single Sign On.” 

This first variant of authenticateAsync method takes three arguments: 

• options Any combination of values from the WebAuthenticationOptions enumeration 
(combined with bitwise OR). Values are none (the default), silentMode (no UI is shown), useTitle 
(returns the window title of the webpage in the results), useHttpPost (returns the body of the 
page with the results), and useCorporateNetwork (to render the web page in an app container 
with the Private Networks (Client & Server), Enterprise Authentication, and Shared User 
Certificates capabilities; the app must have also declared these). 

• requestUri The URI (Windows.Foundation.Uri) for the provider’s authentication page along 
with the parameters required by the service; again, this must use the https:// URI scheme. 

• callbackUri The URI (Windows.Foundation.Uri) of the provider’s final page in its 
authentication process. The broker again uses this to determine when to take down its UI.75 
 
 

 

75 As described on How the web authentication broker works, requestUri and callbackUri “correspond to an Authorization 
Endpoint URI and Redirection URI in the OAuth 2.0 protocol. The OpenID protocol and earlier versions of OAuth have 
similar concepts.” 

663

http://msdn.microsoft.com/library/windows/apps/windows.security.authentication.web.webauthenticationbroker.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.authentication.web.webauthenticationoptions.aspx
http://msdn.microsoft.com/library/windows/apps/Hh750286.aspx


The results given to the completed handler for authenticateAsync is a WebAuthentication-Result 
object. This contains properties named responseStatus (a WebAuthenticationStatus with either 
success, userCancel, or errorHttp), responseData (a string that will contain the page title and body if 
the useTitle and useHttpPost options are set, respectively), and response-ErrorDetail (an HTTP 
response number). 

Generally speaking, the app is most interested in the contents of responseData, because it will 
contain whatever tokens or other keys that might be necessary later on. Let’s look at this again in the 
context of Scenario 1 of the Web authentication broker sample. Set a breakpoint within the completed 
handler of authenticateAsync (line 59 or thereabouts), and then run the sample, enter an app ID you 
created earlier, and click Launch. (Note that the callbackUri parameter is set to https:// 
www.facebook.com/connect/login_success.html, which is where the authentication process finishes up.) 

In the case of Facebook, the responseData contains a string in this format: 

https://www.facebook.com/connect/login_success.html#access_token=<token>&expires_in=<timeout> 

where <token> is a bunch of alphanumeric gobbledygook and <timeout> is some period defined by 
Facebook. If you’re calling any Facebook APIs—which is likely because that’s why you’re authenticating 
through Facebook in the first place—the <token> is the real treasure you’re after because it’s how you 
authenticate the user when making later calls to that API. 

This token is what you then save in the credential locker for later use when the app is relaunched 
after being closed or terminated. (With Facebook, you don’t need to worry about the expiration of that 
token because the API generally reports that as an error and has a built-in renewal process.) You’d do 
something similar with other authentication providers, referring, of course, to their particular 
documentation on what information you’ll receive with the response and how to use and/or renew keys 
or tokens when necessary. 

All in all, a key benefit to web authentication is that the user never actually gives credentials to an 
app—the user gives them only to a much more trusted provider. From the app’s point of view as well, it 
never needs to ask for or manage those credentials, only the tokens returned by the provider. For this 
same reason, invoking the broker as we’ve seen here will always show the login page with blank fields, 
irrespective of the Keep Me Logged In check box, because the calling app doesn’t retain any of that 
information, and any cookies and session state created within the broker’s hosting environment will 
have been discarded. So, if the app wants to have the user log in again with different credentials, it 
would just invoke the broker as before and replace whatever tokens or keys it saved from the last 
authentication. 

Speaking of providers, the OAuth page on Wikipedia lists current authentication providers. The Web 
authentication broker sample, for its part, shows how to work specifically with Facebook (Scenario 1), 
Twitter (Scenario 2), Flickr (Scenario 3), and Google/Picasa (Scenario 4), and it also provides a generic 
interface for any other service (Scenario 5). 

It’s instructive to look through these various scenarios. Because Facebook and Google use the OAuth 
2.0 protocol, the requestUri for each is relatively simple (ignore the word wrapping): 

664

www.SoftGozar.com

http://msdn.microsoft.com/library/windows/apps/windows.security.authentication.web.webauthenticationresult.aspx
http://msdn.microsoft.com/library/windows/apps/windows.security.authentication.web.webauthenticationstatus.aspx
http://code.msdn.microsoft.com/windowsapps/Web-Authentication-d0485122
http://en.wikipedia.org/wiki/OAuth


https://www.facebook.com/dialog/oauth?client_id=<client_id>&redirect_uri=<redirectUri>& 
scope-read_stream&display=popup&response_type=token 
 
https://accounts.google.com/o/oauth2/auth?client_id=<client_id>&redirect_uri=<redirectUri>& 
response_type=code&scope=http://picasaweb.google.com/data 

where <client_id> and <redirectUri> are replaced with whatever is specific to the app. Twitter and 
Flickr, for their parts, use OAuth 1.0a protocol instead, so much more ceremony goes into creating the 
lengthy OAuth token to include with the requestUri argument to authenticateAsync. I’ll leave it to the 
sample code to show those details. 

Tip Web authentication events are visible in the Event Viewer under Application and Services Logs > 
Microsoft > Windows > WebAuth > Operational. This can be helpful for debugging because it brings 
out information that is otherwise hidden behind the opaque layer of the broker. 

Single Sign On 
What we’ve seen so far with the credential locker and the web authentication broker works very well to 
minimize how often the app needs to pester the user for credentials. Where a single app is concerned, it 
would ideally only ask for credentials once until such time as the user explicitly logs out. But what about 
multiple apps? Imagine over time that you acquire some dozens, or even hundreds, of apps from the 
Windows Store that use external authentication providers. It could mean that you’d have to enter your 
Facebook, Twitter, Google, LinkedIn, Tumblr, Yahoo, or Yammer credentials in each app that uses them. 
Sure, you might need to do that only once in each individual app, but the compound effect is still 
tedious and annoying! 

From the user’s point of view, once they’ve authenticated through a given provider in one app, it 
makes sense that other apps should benefit from that authentication if possible. Yes, some apps might 
need to prompt for additional permissions and some providers may not support the process, but the 
ideal is again to minimize the fuss and bother where we can. 

The concept of single sign on is exactly this: authenticating the user in one app (or the system in the 
case of a Microsoft account) effectively logs the user in to other apps that use the same provider. At the 
same time, each app must often acquire its own access keys or tokens, because these should not be 
shared between apps. So the real trick is to effectively perform the same kind of authentication we’ve 
already seen, only to do it without showing any UI unless it’s really necessary. 

This is provided for in the web authentication broker through the variation of authenticateAsync 
that takes only the options and requestUri arguments. In this case options is often set to 
Web-AuthenticationOptions.silentMode to prevent the broker’s UI from appearing (but this isn’t 
required). 

To make silentMode work  the broker still needs to know when the process is complete. So what 
callbackUri does it use for comparison, and how does the provider know that itself? It sounds like a 
situation where the broker would just sit there, forever hidden, while the provider patiently waits for 
input to a web page that’s equally invisible! What actually happens is that authenticateAsync watches 

665



for the provider to navigate to a special callbackUri that looks something like ms-app:// 
<app_package>/<secret_sauce>, at which point it will pass the provider’s response data as the async 
result. 

Of course, that URI won’t mean a thing to the provider…unless it’s told about it beforehand and is 
expecting such a URI to appear in its midst. 

This brings us to the fact that single sign on will work only if a provider has a means (an API or such) 
through which an app can communicate its intent along these lines. To understand this, let’s follow the 
entire flow of the silent authentication process: 

1. An app that wants to use single sign on obtains its particular ms-app:// URI—also called an SID 
URI—through one of two means. First is by calling the static method WebAuthentication- 
Broker.getCurrentApplicationCallbackUri. This returns a Windows.Foundation.Uri object 
whose absoluteUri property is the string you need. The second means is through the Windows 
Store Dashboard > Manage Your Cloud Services > Advanced Features > Application 
Authentication page, where you should see a string that looks like this: 
ms-app://s-1-15-2-477157379-2961032073-432767880-3229792171-202870256-1369967874-
2241987394/. 

2. If necessary, the app then calls the provider’s API to register the SID URI (typically a provider will 
have a page to define an app where you’d enter this). 

3. When constructing the requestUri argument for authenticateAsync, the app inserts its SID URI 
as the value of the &redirect_uri= parameter. 

4. The app calls authenticateAsync with the silentMode option. 

5. When the provider processes the requestUri parameters, it checks whether the redirect_uri value 
has been registered, responding with a failure if it hasn’t. 

6. Having validated the app, the provider then silently authenticates (if possible) and navigates to 
the redirect_uri, making sure to include things like access keys and tokens in the response data. 

7. The web authentication broker will detect this navigation and match it to its special callbackUri. 
Finding a match, the broker can complete the async operation and provide the response data to 
the app. 

Again, the provider must have a way for the developer or app to register its SID URI, must check that 
SID URI when it appears in an authentication request, and must write appropriate response data to that 
page when authentication is complete. The developer or app is then responsible for registering that SID 
URI in the first place and including it in the requestUri. (Whew, that’s a lot of URIs!) 

With all of this, it’s still possible that the authentication might fail for some other reason. For 
example, if the user has not set up permissions for the app in question (as with Facebook), it’s not 
possible to silently authenticate. So, an app attempting to use single sign on would call this form of 
authenticateAsync first and, failing that, would then revert to calling its longer form (with UI), as 
described in the previous section. 

666



Single Sign On with Live Connect 
Because various Microsoft services, such as Hotmail, are OAuth providers, it is possible to use the web 
authentication broker with a Microsoft account (such as Hotmail, Live, and MSN accounts). (I still have 
the same @msn.com email account I’ve had since 1996!) Details can be found on the OAuth 2.0 page 
on the Live Connect Developer Center. 

However, Live Connect accounts are in a somewhat more privileged position because they can also 
be used to sign in to Windows or can be connected to a domain account used for the same purpose. 
Many of the built-in apps such as Mail, Calendar, SkyDrive, People, and for that matter the Windows 
Store itself work with this same account. Thus, it’s something that many other apps might want to take 
advantage of as well, because such authentication provides access to the same Live services data that 
those built-in apps draw from themselves. 

The Live Services API for signing in this way is called WL.login, which is available when you install the 
Live SDK and add the appropriate references to your project. To get started with that process, visit the 
Live Connect documentation and check out the following references: 

• Live Connect (Windows Store apps) home page 

• Live Connect Developer Center (Windows Store Apps) 

• Guidelines for single sign-on and connected accounts 

• Guidelines for the Microsoft account sign-in experience 

• Single sign-on with Microsoft accounts 

• Quickstart: Accessing Live services data 

• Windows account authorization sample 

• Bring single sign-on and SkyDrive to your Windows 8 apps with the Live SDK and Best Practices 
when adding single sign-on to your app with the Live SDK on the Windows 8 Developer Blog. 

As you can imagine, working with Live Services is an extensive topic, so I’ll defer to the resources 
above. One key point, though, is that it’s possible for a user to log in to Windows with a domain account 
that has not been connected to a Microsoft account through PC Settings > Users. In this case, the first 
call to WL.login from any app will display the Microsoft account login dialog, as shown in Figure 14-5. 
Once the user enters credentials here, they’re logged in to all other apps that use the Microsoft account. 

667

http://msdn.microsoft.com/library/live/hh243647.aspx
http://msdn.microsoft.com/library/live/hh826521
http://msdn.microsoft.com/library/windows/apps/hh770845.aspx
http://msdn.microsoft.com/library/live/hh826551.aspx
http://msdn.microsoft.com/library/windows/apps/jj193591.aspx
http://msdn.microsoft.com/library/windows/apps/hh968443.aspx
http://msdn.microsoft.com/library/windows/apps/hh465097.aspx
http://msdn.microsoft.com/library/windows/apps/hh920269.aspx
http://code.msdn.microsoft.com/windowsapps/Windows-account-authorizati-7c95e284
http://blogs.msdn.com/b/windowsappdev/archive/2012/03/14/bring-single-sign-on-and-skydrive-to-your-windows-8-apps-with-the-live-sdk.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/06/26/best-practices-when-adding-single-sign-on-to-your-app-with-the-live-sdk.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/06/26/best-practices-when-adding-single-sign-on-to-your-app-with-the-live-sdk.aspx


 
FIGURE 14-5 The Microsoft account login dialog. 

The User Profile (and the Lock Screen Image) 
Any discussion about user credentials brings up the question of accessing additional user information. 
What is available to Windows Store apps is provided through the Windows.System.UserProfile API, 
where we find three classes of interest. 

The first is the LockScreen class through which you can get or set the lock screen image (and 
nothing more). The image is available through the originalImageFile property (returning a 
StorageFile) and the getImageStream method (returning an IRandomAccessStream). Setting the image 
can be accomplished through setImageFileAsync (using a StorageFile) and setImage-StreamAsync 
(using an IRandomAccessStream). This would be utilized in a photo app that has a command to use a 
picture for the lock screen. See the Lock screen personalization sample for a demonstration. 

The second is the GlobalizationPreferences object, which we’ll return to in Chapter 17, “Apps for 
Everyone.” 

Third is the UserInformation class, whose capabilities are clearly exercised within PC Settings > 
Personalize > Account picture: 

• User name If the nameAccessAllowed property is true, an app can then call 
getDispla-yNameAsync, getFirstNameAsync, and getLastNameAsync, all of which provide a string 
to your completed handler. If nameAccessAllowed is false, these methods will complete but 
provide an empty result. Also note that the first and last names are available only from a 
Microsoft account. 

• User picture Retrieved through getAccountPicture, which returns a StorageFile for the image. 
The method takes a value from AccountPictureKind:  smallImage, largeImage, and video. 

• If the accountPictureChangeEnabled property is true, you can use one of four methods to set the 
image(s): setAccountPictureAsync (for providing one image from a StorageFile), 

668

http://msdn.microsoft.com/library/windows/apps/windows.system.userprofile.aspx
http://msdn.microsoft.com/library/windows/apps/windows.system.userprofile.lockscreen.aspx
http://code.msdn.microsoft.com/windowsapps/Personalization-App-sample-9ebfe147
http://msdn.microsoft.com/library/windows/apps/windows.system.userprofile.globalizationpreferences.aspx
http://msdn.microsoft.com/library/windows/apps/windows.system.userprofile.userinformation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.system.userprofile.accountpicturekind.aspx


setAccountPicturesAsync (for providing small and large images as well as a video from 
StorageFile objects), and setAccountPictureFromStreamAsync and 
setAccount-PicturesFromStreamAsync (which do the same given IRandomAccessStream objects 
instead). In each case the async result is a SetAccountPictureResult value: success, failure, 
changeDisabled (accountPictureChangeEnabled is false), large-OrDynamicError (the picture is 
too large), fileSizeError (file is too large), or video-FrameSizeError (video frame size is too 
large),  

• The accountpicturechanged event signals when the user picture(s) have been altered. 
Remember that because this event originates within WinRT you should call 
removeEvent-Listener if you aren’t listening for this event for the lifetime of the app. 

These features are demonstrated in the Account picture name sample. Scenario 1 retrieves the 
display name, Scenario 2 retrieves the first and last name (if available), Scenario 3 retrieves the account 
pictures and video, and Scenario 4 changes the account pictures and video and listens for picture 
changes. 

Tip To obtain the profile picture from Live Connect, the exact API call is as follows: 
https://apis.live.net/v5.0/me/picture?access_token=<ACCESS_TOKEN>. 

One other bit that this sample demonstrates is the Account Picture Provider declaration in its 
manifest, which causes the app to appear within PC Settings > Personalize under Create an Account 
Picture: 

 
In this case the sample doesn’t actually provide a picture directly but activates into Scenario 4. A real 

app, like the Camera app that’s also in PC Settings by default, will automatically set the account picture 
when one is acquired through its UI. How does it know to do this? The answer lies in a special URI 
scheme through which the app is activated. That is, when you declare the Account Picture Provider 
declaration in the manifest, the app will be activated with the activation kind of protocol (see Chapter 
12, “Contracts”), where the URI scheme specifically starts with ms-accountpictureprovider. You can see 
how this is handled in the sample’s js/default.js file: 

if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.protocol) { 
    // Check if the protocol matches the "ms-accountpictureprovider" scheme 
    if (eventObject.detail.uri.schemeName === "ms-accountpictureprovider") { 
 
 
 

669

http://msdn.microsoft.com/library/windows/apps/windows.system.userprofile.setaccountpictureresult.aspx
http://code.msdn.microsoft.com/windowsapps/Account-picture-name-sample-912baff1


        // This app was activated via the Account picture apps section in PC Settings. 
        // Here you would do app-specific logic for providing the user with account  
        // picture selection UX 
    } 

Returning to the UserInformation class, it also provides a few more details for domain accounts 
provided that the app has declared the Enterprise Authentication capability in its manifest: 

• getDomainNameAsync Provides the user’s fully qualified domain name as a string in the form of 
<domain>\<user> where <domain> is the full name of the domain controller, such as 
mydomain.corp.ourcompany.com. 

• getPrincipalNameAsync Provides the principal name as a string. In Active Directory parlance, 
this is an Internet-style login name (known as a user principal name or UPN) that is shorter and 
simpler than the domain name, consolidating the email and login namespaces. Typically, this is 
an email address like user@ourcompany.com. 

• getSessionInitiationProtocolUriAsync Provides a session initiation protocol URI that will 
connect with this user; for background, see Session Initiation Protocol (Wikipedia). 

The use of these methods is demonstrated in the User domain name sample. 

Encryption, Decryption, Data Protection, and Certificates 
Authorization and credentials are a security matter, so it’s appropriate to end this section with a quick 
rundown of the other APIs grouped under the Windows.Security namespace, where we found the web 
authentication broker already. 

First is Windows.Security.Cryptography. Here you’ll find the CryptographicBuffer class that can 
encode and decode strings in hexadecimal and base64 (UTF-8 or UTF-16) and also provide random 
numbers and a byte array full of such randomness. Refer to Scenario 1 of the CryptoWinRT sample for 
some demonstrations, as well as Scenarios 2 and 3 of the Web authentication broker sample. WinRT’s 
base64 encoding is fully compatible with the JavaScript atob and btoa functions. 

Next is Windows.Security.Cryptography.Core, which is truly about encryption and decryption 
according to various algorithms. See the Encryption topic, Scenarios 2-8 of the CryptoWinRT sample, 
and again Scenarios 2 and 3 of the Web authentication broker sample. 

Third is Windows.Security.Cryptography.DataProtection, whose single class, 
Data-ProtectionProvider, deals with protecting and unprotecting both static data and a data stream. 
This applies only to apps that declare the Enterprise Authentication capability. For details, refer to Data 
protection API along with Scenarios 9 and 10 of the CryptoWinRT sample. 

Fourth, Windows.Security.Cryptography.Certificates provides several classes through which 
you can create certificate requests and install certificate responses. Refer to Working with certificates 
and the Certificate enrollment sample for more. 
 

670

http://en.wikipedia.org/wiki/Session_Initiation_Protocol
http://code.msdn.microsoft.com/windowsapps/User-domain-name-sample-85ce3e49
http://msdn.microsoft.com/library/windows/apps/windows.security.cryptography.aspx
http://code.msdn.microsoft.com/windowsapps/CryptoWinRT-54ff3d9f
http://msdn.microsoft.com/library/windows/apps/windows.security.cryptography.core.aspx
http://msdn.microsoft.com/library/windows/apps/hh464976.aspx
http://code.msdn.microsoft.com/windowsapps/CryptoWinRT-54ff3d9f
http://msdn.microsoft.com/library/windows/apps/windows.security.cryptography.dataprotection.aspx
http://msdn.microsoft.com/library/windows/apps/hh464970.aspx
http://msdn.microsoft.com/library/windows/apps/hh464970.aspx
http://code.msdn.microsoft.com/windowsapps/CryptoWinRT-54ff3d9f
http://msdn.microsoft.com/library/windows/apps/windows.security.cryptography.certificates.aspx
http://msdn.microsoft.com/library/windows/apps/hh465044.aspx
http://code.msdn.microsoft.com/windowsapps/Certificate-Enrollment-SDK-7ecf4976


And lastly it’s worth at least listing the API under 
Windows.Security.ExchangeActive-SyncProvisioning for which there is the EAS policies for mail 
clients sample. I’m assuming that if you know why you’d want to look into this, well, you’ll know! 

Syndication 

When we first looked at doing XmlHttpRequests with WinJS.XHR in Chapter 3, we grabbed the RSS feed 
from the Windows 8 Developer Blog with the URI http://blogs.msdn.com/b/windowsappdev/ rss.aspx. 
We learned then that WinJS.xhr returned a promise, the result of which contained a responseXML 
property, which is itself a DomParser through which you can traverse the DOM structure and so forth. 

Working with syndicated feeds like this is completely supported for Windows Store apps. In fact, the 
How to create a mashup topic in the documentation describes exactly this process, components of 
which are demonstrated in the Integrating content and controls from web services sample. 

That said, WinRT offers additional APIs for dealing with syndicated content. One, Windows.Web.- 
Syndication, offers a more structured way to work with RSS feeds. The other, Windows.Web.AtomPub, 
provides a means to publish and manage feed entries. Both are provided in WinRT for languages that 
don’t have another means of accomplishing the same ends, but as a developer working JavaScript, you 
have the choice. 

Reading RSS Feeds 
The primary class within Windows.Web.Syndication is the SyndicationClient. To work with any given 
feed, you create an instance of this class and set any necessary properties. These are serverCredential 
(a PasswordCredential), proxyCredential (another PasswordCredential), timeout (in millisceonds, 
default is 30000 or 30 seconds), maxResponseBufferSize (a means to protect from potentially malicious 
servers), and bypassCacheOnRetrieve (a Boolean to indicate whether to always obtain new data from the 
server). You can also make as many calls to its setRequestHeader method (passing a name and value) to 
configure the XmlHttpRequest header. 

The final step is to then call the SyndicationClient.retrieveFeedAsync method with the URI of the 
desired RSS feed (a Windows.Foundation.Uri). Here’s an example derived from the Syndication sample, 
which retrieves the RSS feed for the Building Windows 8 blog: 

uri = new Windows.Foundation.Uri("http://blogs.msdn.com/b/b8/rss.aspx"); 
var client = new Windows.Web.Syndication.SyndicationClient(); 
client.bypassCacheOnRetrieve = true; 
client.setRequestHeader("User-Agent",  
    "Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.2; WOW64; Trident/6.0)"); 
 
client.retrieveFeedAsync(uri).done(function (feed) { 
    // feed is a SyndicationFeed object 
 
} 

671

http://msdn.microsoft.com/library/windows/apps/windows.security.exchangeactivesyncprovisioning.aspx
http://code.msdn.microsoft.com/windowsapps/Web-authentication-for-b9b8ed1a
http://code.msdn.microsoft.com/windowsapps/Web-authentication-for-b9b8ed1a
http://blogs.msdn.com/b/windowsappdev/%20rss.aspx
http://msdn.microsoft.com/library/windows/apps/hh452745.aspx
http://code.msdn.microsoft.com/windowsapps/Mashup-Sample-10689f5b
http://msdn.microsoft.com/library/windows/apps/br244529.aspx
http://msdn.microsoft.com/library/windows/apps/windows.web.syndication.syndicationclient.aspx
http://code.msdn.microsoft.com/windowsapps/Syndication-sample-07ef6b0d
http://blogs.msdn.com/b/b8/rss.aspx


The result of retrieveFeedAsync is a Windows.Web.Syndication.SyndicationFeed object; that is, 
the SyndicationClient is what you use to talk to the service, and when you retrieve the feed you get an 
object though which you can then process the feed itself. If you take a look at SyndicationFeed using 
the link above, you’ll see that it’s wholly stocked with properties that represent all the parts of the feed, 
such as authors, categories, items, title, and so forth. Some of these are represented themselves by 
other classes in Windows.Web.Syndication, or collections of them, where simpler types aren’t sufficient: 
SyndicationAttribute, SyndicationCategory, SyndicationContent, SyndicationGenerator, 
SyndicationItem, SyndicationLink, SyndicationNode, SyndicationPerson, and SyndicationText. I’ll 
leave the many details to the documentation. 

We can see some of this in the sample, picking up from inside the completed handler for 
retrieveFeedAsync. Let me offer a more annotated version of that code: 

client.retrieveFeedAsync(uri).done(function (feed) { 
    currentFeed = feed; 
 
    var title = "(no title)"; 
 
    // currentFeed.title is a SyndicationText object 
    if (currentFeed.title) { 
        title = currentFeed.title.text; 
    } 
 
    // currentFeed.items is a SyndicationItem collection (array) 
    currentItemIndex = 0; 
    if (currentFeed.items.size > 0) { 
        displayCurrentItem(); 
    } 
} 
 
// ... 
 
function displayCurrentItem() { 
    // item will be a SyndicationItem 
 
    var item = currentFeed.items[currentItemIndex]; 
 
    // Display item number. 
    document.getElementById("scenario1Index").innerText = (currentItemIndex + 1) + " of " 
        + currentFeed.items.size; 
 
    // Display title (item.title is another SyndicationText). 
    var title = "(no title)"; 
    if (item.title) { 
        title = item.title.text; 
    } 
    document.getElementById("scenario1ItemTitle").innerText = title; 
 
    // Display the main link (item.links is a collection of SyndicationLink objects). 
    var link = ""; 
    if (item.links.size > 0) { 
        link = item.links[0].uri.absoluteUri; 

672

http://msdn.microsoft.com/library/windows/apps/windows.web.syndication.syndicationfeed.aspx


    } 
 
    var scenario1Link = document.getElementById("scenario1Link"); 
    scenario1Link.innerText = link; 
    scenario1Link.href = link; 
 
    // Display the body as HTML (item.content is a SyndicationContent object, item.summary is  
    // a SyndicationText object). 
    var content = "(no content)"; 
    if (item.content) { 
        content = item.content.text; 
    } 
    else if (item.summary) { 
        content = item.summary.text; 
    } 
    document.getElementById("scenario1WebView").innerHTML = window.toStaticHTML(content); 
 
    // Display element extensions. The elementExtensions collection contains all the additional 
    // child elements within the current element that do not belong to the Atom or RSS standards 
    // (e.g., Dublin Core extension elements). By creating an array of these, we can create a 
    // WinJS.Binding.List that's easily displayed in a ListView. 
    var bindableNodes = []; 
    for (var i = 0; i < item.elementExtensions.size; i++) { 
        var bindableNode = { 
            nodeName: item.elementExtensions[i].nodeName, 
            nodeNamespace: item.elementExtensions[i].nodeNamespace, 
            nodeValue: item.elementExtensions[i].nodeValue, 
        }; 
        bindableNodes.push(bindableNode); 
    } 
    var dataList = new WinJS.Binding.List(bindableNodes); 
    var listView = document.getElementById("extensionsListView").winControl; 
    WinJS.UI.setOptions(listView, { itemDataSource: dataList.dataSource }); 
} 

It’s probably obvious that the API, under the covers, is probably just using the XmlDocument API to 
retrieve all the feed these properties. In fact, its getXmlDocument returns that XmlDocument if you want to 
access it yourself. 

You can also create a SyndicationFeed object around the XML for a feed you might already have. For 
example, if you obtain the feed contents by using WinJS.xhr, you can create a new SyndicationFeed 
object and call its load method with the XHR responseXML. Then you can work with the feed through the 
class hierarchy. When using the Windows.Web.AtomPub API to manage a feed, you also create a new or 
updated SyndicationItem to send across the wire, settings its values through the other objects in its 
hierarchy. We’ll see this shortly. 

One last note: if retrieveFeedAsync throws an exception, which would be picked up by an error 
handler you provide to the promise’s done method, you can turn the error code into a 
SyndicationErrorStatus value. Here’s how it’s used in the sample’s error handler: 
 
 

673



function onError(err) { 
    // Match error number with a SyndicationErrorStatus value. Use 
    // Windows.Web.WebErrorStatus.getStatus() to retrieve HTTP error status codes. 
    var errorStatus = Windows.Web.Syndication.SyndicationError.getStatus(err.number); 
    if (errorStatus === Windows.Web.Syndication.SyndicationErrorStatus.invalidXml) { 
        displayLog("An invalid XML exception was thrown. Please make sure to use a URI that" 
            + "points to a RSS or Atom feed."); 
    } 
} 

Using AtomPub 
On the flip side of reading an RSS feed, as we’ve just seen, is the need to possibly manage entries on a 
feed: adding, removing, and editing entries. This would be used for an app that lets the user maintain a 
specific blog, not just read entries from others. 

The API for this is found in Windows.Web.AtomPub and demonstrated in the AtomPub sample. The 
main class is the AtomPubClient that encapsulates all the operations of the AtomPub protocol. It has 
methods like createResourceAsync, retrieveResourceAsync, updateResourceAsync, and 
deleteResourceAsync for working with those entries, where each resource is identified with a URI and a 
SyndicationItem object, as appropriate. Media resources for entries are managed through 
createMediaResourceAsync and similarly named methods, where the resource is provided as an 
IInputStream. 

The AtomPubClient also has retrieveFeedAsync and setRequestHeader methods that do the same as 
the SyndicationClient methods of the same names, along with a few similar properties like 
serverCredential, timeout, and bypassCacheOnRetrieve. Another method, 
retrieve-ServiceDocumentAsync, provides the workspaces/service documents for the feed (in the form 
of a Windows.Web.AtomPub.ServiceDocument object). 

Again, the AtomPub sample demonstrates the different operations: retrieve (Scenario 1), create 
(Scenario 2), delete (Scenario 3), and update (Scenario 4). Here’s how it first creates the AtomPub-Client 
object (see js/common.js), assuming there are credentials: 

function createClient() { 
    client = new Windows.Web.AtomPub.AtomPubClient(); 
    client.bypassCacheOnRetrieve = true; 
 
    var credential = new Windows.Security.Credentials.PasswordCredential(); 
    credential.userName = document.getElementById("userNameField").value; 
    credential.password = document.getElementById("passwordField").value; 
    client.serverCredential = credential; 
} 
 

Updating an entry (js/update.js) then looks like this, where the update is represented by a newly 
created SyndicationItem: 

function getCurrentItem() { 
    if (currentFeed) { 

674

http://msdn.microsoft.com/library/windows/apps/windows.web.atompub.aspx
http://code.msdn.microsoft.com/windowsapps/AtomPub-sample-c1fcdc8e
http://msdn.microsoft.com/library/windows/apps/br243412.aspx
http://code.msdn.microsoft.com/windowsapps/AtomPub-sample-c1fcdc8e


        return currentFeed.items[currentItemIndex]; 
    } 
    return null; 
} 
 
var resourceUri = new Windows.Foundation.Uri( /* service address */ );  
createClient(); 
 
var currentItem = getCurrentItem(); 
 
if (!currentItem) { 
    return; 
} 
 
// Update the item 
var updatedItem = new Windows.Web.Syndication.SyndicationItem(); 
var title = document.getElementById("titleField").value; 
updatedItem.title = new Windows.Web.Syndication.SyndicationText(title, 
    Windows.Web.Syndication.SyndicationTextType.text); 
var content = document.getElementById("bodyField").value; 
updatedItem.content = new Windows.Web.Syndication.SyndicationContent(content,  
    Windows.Web.Syndication.SyndicationTextType.html); 
 
client.updateResourceAsync(currentItem.editUri, updatedItem).done(function () { 
    displayStatus("Updating item completed."); 
}, onError); 

Error handling in this case works with the Window.Web.WebError class (see js/common.js): 

function onError(err) { 
    displayError(err); 
 
    // Match error number with a WebErrorStatus value, in order to deal with a specific error. 
    var errorStatus = Windows.Web.WebError.getStatus(err.number); 
    if (errorStatus === Windows.Web.WebErrorStatus.unauthorized) { 
        displayLog("Wrong username or password!"); 
    } 
} 

Sockets 

Sockets are a fundamental network transport. Unlike HTTP requests, where a client sends a request to a 
server and the server responds—essentially an isolated transaction—sockets are a connection between 
client and server IP ports such that either one can send information to the other at any time. Certainly 
we’ve seen a mechanism like this earlier—namely, using the Windows Push Notification Service (WNS). 
WNS, however, is limited to notifications and is specifically designed to issue tile updates or notifications 
for apps that aren’t running. Sockets, on the other hand, are for data exchange between a server and a 
running client. 

 

675

http://msdn.microsoft.com/library/windows/apps/windows.web.weberror.aspx


Sockets are generally used when there isn’t a higher-level API or other abstraction for your particular 
scenario, when there’s a custom protocol involved, when you need two-way communication, or when it 
makes sense to minimize the overhead of each exchange. Consider HTTP, a protocol that is itself built 
on lower-level sockets. A single HTTP request generally includes headers and lots of other information 
beyond just the bit of data involved, so it’s an inefficient transport when you need to send lots of little 
bits. It’s better to connect directly with the server and exchange data with a minimized custom protocol. 
VoIP is another example where sockets work well, as are multicast scenarios like multiplayer games. In 
the latter, one player’s machine, acting as a server within a local subnet, can broadcast a message to all 
the other players, and vice versa, again with minimal overhead. 

In the world of sockets, exchanging data can happen two ways: as discrete packets/messages (like 
water balloons) or as a continuous stream (like water running through a hose). These are called 
datagram and stream sockets, respectively, and both are supported through the WinRT API. WinRT also 
supports both forms of exchange through the WebSocket protocol, a technology originally created for 
web browsers and web servers that has become increasingly interesting for general purpose use within 
apps. All of the applicable classes can be found in the Windows.Networking.Sockets API, as we’ll see in 
the following sections. Note that because there is some overlap between the different types of sockets, 
these sections are meant to be read in sequence so that I don’t have to repeat myself too much! 

Datagram Sockets 
In the language of sockets, a water balloon is called a datagram, a bundle of information sent from one 
end of the socket to the other—even without a prior connection—according to the User Datagram 
Protocol (UDP) standard. UDP, as I summarize here from its description on Wikipedia, is simple, 
stateless, unidirectional, and transaction-oriented. It has minimal overhead and lacks retransmission 
delays, and for these reasons it cannot guarantee that a datagram will actually be delivered. Thus, it’s 
used where error checking and correction isn’t necessary or is done by the apps involved rather than at 
the network interface level. In a VoIP scenario, for example, this allows data packets to just be dropped if 
they cannot be delivered, rather than having everything involved wait for a delayed packet. As a result, 
the quality of the audio might suffer, but it won’t start stuttering or make your friends and colleagues 
sound like they’re from another galaxy. In short, UDP might be unreliable, but it minimizes latency. 
Higher-level protocols like the Real-time Transport Protocol (RTP) and the Real Time Streaming Protocol 
(RTSP) are built on UDP. 

A Windows Store app works with this transport—either as a client or a server—using the 
Windows.Networking.Sockets.DatagramSocket class, an object that you need to instantiate with the 
new operator to set up a specific connection and listen for messages: 

var listener = new Windows.Networking.Sockets.DatagramSocket(); 

On either side of the conversation, the next step is to listen for the object’s messagereceived event: 

// Event from WinRT: remember to call removeEventListener as needed 
listener.addEventListener("messagereceived", onMessageReceived); 

676

http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.aspx
http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.datagramsocket.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.datagramsocket.messagereceived.aspx


When data arrives, the handler receives a—wait for 
it!—DatagramSocketMessageReceived-EventArgs object (that’s a mouthful). This contains 
localAddress and remoteAddress properties, both of which are a Windows.Networking.HostName that 
contains the IP address, a display name, and a few other bits. See the “Network Information (the 
Network Object Roster)” section earlier in this chapter for details. The event args also contains a 
remotePort string. More importantly, though, are the two methods through which you extract the data. 
One is getDataStream, which returns an IInputStream through which you can read sequential bytes. 
The other is getDataReader, which returns a Windows.Storage.Streams.DataReader object, a 
higher-level abstraction built on top of the IInputStream that helps you read specific data types directly. 
Clearly, if you know the data structure you expect to receive in the message, using the DataReader will 
relieve you from doing type conversions yourself. 

Of course, to get any kind of data from a socket, you need to connect it to something. For this 
purpose there are a few methods in DatagramSocket for establishing and managing a connection: 

• connectAsync Starts a connection operation given a HostName object and a service name (or 
UDP port, a string) of the remote network destination. This is used to create a one-way client to 
server connection. 

• Another form of connectAsync takes a Windows.Networking.EndpointPair object that specifies 
host and service names for both local and remote endpoints. This is used to create a two-way 
client/server connection, as the local endpoint implies a call to bindEndpointAsync as below. 

• bindEndpointAsync For a one-way server connection—that is, to only listen to but not send 
data on the socket—this method just binds a local endpoint given a HostName and a service 
name/port. Binding the service name by itself can be done with bindServiceNameAsync. 

• joinMulticastGroup Given a HostName, connects the Datagram socket to a multicast group. 

• close Terminates the connection and aborts any pending operations. 
 

Tip To open a socket to a localhost port for debugging purposes, use connectAsync as follows: 
var socket = new Windows.Networking.Sockets.DatagramSocket(); 
socket.connectAsync(new Windows.Networking.Sockets.DatagramSocket("localhost", 
    "12345", Windows.Networking.Sockets.SocketProtectionLevel.plainSocket) 
    .done(function () { 
        // ... 
    }, onError); 

 

Note that any given socket can be connected to any number of endpoints—you can call 
connect-Async multiple times, join multiple multicast groups, and bind multiple local endpoints with 
bindEnd-pointAsync and bindServiceNameAsync. The close method, mind you, closes everything at 
once! 

 

677

http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.datagramsocketmessagereceivedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.hostname.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.datagramsocketmessagereceivedeventargs.getdatastream.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.datagramsocketmessagereceivedeventargs.getdatareader.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.datareader.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.endpointpair.aspx


Once the socket has one or more connections, connection information can be retrieved with the 
DatagramSocket.information property (a DatagramSocketInformation). Also, note that the static 
DatagramSocket.getEndpointPairsAsync method provides (as the async result) a vector of available 
EndpointPair objects for a given remote hostname and service name. You can optionally indicate that 
you’d like the endpoints sorted according to the optimizeForLongConnections flag. See the 
documentation page linked here for details, but it basically lets you control which endpoint is preferred 
over others based on whether you want to optimize for a high-quality and long-duration connection 
that might take longer to connect to initially (as for video streaming) or for connections that are easiest 
to acquire (the default). 

Control data can also be set through the DatagramSocket.control property, a 
Datagram-SocketControl object with qualityOfService and outputUnicastHopLimit properties. 

All this work, of course, is just a preamble to sending data on the socket connection. This is done 
through the DatagramSocket.outputStream property, an IOutputStream to which you can write 
whatever data you need using its writeAsync and flushAsync methods. This will send the data on every 
connection within the socket. Alternately, you can use one of the variations of getOutput-StreamAsync 
to specify a specific EndpointPair or HostName/port to which to send the data. The result of both of 
these async operations is again an IOutputStream. And in all cases you can create a higher-level 
DataWriter object around that stream: 

var dataWriter = new Windows.Storage.Streams.DataWriter(socket.outputStream) 

Here’s how it’s all demonstrated in the DatagramSocket sample, a little app in which you need to run 
each of the scenarios in turn. Scenario 1, for starters, sets up the server-side listener of the relationship 
on the localhost, using port number 22112 (the service name) by default. To do this, it creates the 
sockets, adds the listener, and calls bindServiceNameAsync (js/startListener.js): 

socketsSample.listener = new Windows.Networking.Sockets.DatagramSocket(); 
// Reminder: call removeEventListener as needed; this can be common with socket relationships 
// that can come and go through the lifetime of the app. 
socketsSample.listener.addEventListener("messagereceived", onServerMessageReceived); 
 
socketsSample.listener.bindServiceNameAsync(serviceName).done(function () { 
    // ... 
}, onError); 

When a message is received, this server-side component takes the contents of the message and 
writes it to the socket’s output stream so that it’s reflected in the client side. This looks a little confusing 
in the code, so I’ll show the core code path of this process with added comments: 

function onServerMessageReceived(eventArgument) { 
    // [Code here checks if we already got an output stream] 
 
    socketsSample.listener.getOutputStreamAsync(eventArgument.remoteAddress, 
        eventArgument.remotePort).done(function (outputStream) { 
            // [Save the output stream with some other info, omitted] 
            socketsSample.listenerOutputStream = outputStream; 
        } 

678

http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.datagramsocketinformation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.datagramsocket.getendpointpairsasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.hostnamesortoptions.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.datagramsocketcontrol.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.datagramsocketcontrol.qualityofservice.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.datagramsocketcontrol.outboundunicasthoplimit.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.datagramsocket.outputstream.aspx
http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.ioutputstream.aspx
http://code.msdn.microsoft.com/windowsapps/DatagramSocket-sample-76a7d82b


 
        // This is a helper function 
        echoMessage(socketsSample.listenerOutputStream, eventArgument); 
    }); 
} 
 
// eventArgument here is a DatagramSocketMessageReceivedEventArgs with a getDataReader method function 
echoMessage(outputStream, eventArgument) { 
    // [Some display code omitted] 
 
    // Get the message stream from the DataReader and send it to the output stream 
    outputStream.writeAsync(eventArgument.getDataReader().detachBuffer()).done(function () { 
        // Do nothing - client will print out a message when data is received. 
    }); 
} 

In most apps using sockets, the server side would do something more creative with the data than just 
send it back to the client! But this just changes what you do with the data in the input stream. 

Scenario 2 sets up a listener to the localhost on the same port. On this side, we also create a 
DatagramSocket and set up a listener for messagereceived. Those messages—such as the one written to 
the output stream on the server side, as we’ve just seen—are picked up in the event handler below 
(js/connectToListener.js), which uses the DataReader to extract and display the message: 

function onMessageReceived(eventArgument) { 
    try { 
        var messageLength = eventArgument.getDataReader().unconsumedBufferLength; 
        var message = eventArgument.getDataReader().readString(messageLength); 
        socketsSample.displayStatus("Client: receive message from server \"" + message + "\""); 
    } catch (exception) { 
        status = Windows.Networking.Sockets.SocketError.getStatus(exception.number); 
        // [Display error details] 
    } 
} 

Note in the code above that when an error occurs on a socket connection, you can pass the error 
number to the getStatus method of the Windows.Networking.Sockets.SocketError object and get 
back a more actionable SocketErrorStatus value. There are many possible errors here, so see its 
reference page for details. 

Even with all the work we’ve done so far, nothing has yet happened because we’ve sent no data! So 
switching to Scenario 3, pressing its Send ‘Hello’ Now button does the honors from the client side 
(js/sendData.js): 

// [This comes after a check on the socket's validity] 
socketsSample.clientDataWriter =  
    new Windows.Storage.Streams.DataWriter(socketsSample.clientSocket.outputStream); 
 
var string = "Hello World"; 
socketsSample.clientDataWriter.writeString(string); 
 
socketsSample.clientDataWriter.storeAsync().done(function () { 

679

http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.socketerror.getstatus.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.socketerrorstatus.aspx


    socketsSample.displayStatus("Client sent: " + string + "."); 
}, onError); 

The DataWriter.storeAsync call is what actually writes the data to the stream in the socket. If you set 
a breakpoint here and on both messagereceived event handlers, you’ll then see that storeAsync 
generates a message to the server side, hitting onServerMessageReceived in js/startListener.js. This will 
then write the message back to the socket, which will hit onMessage-Received in js/connectToListener.js, 
which displays the message. (And to complete the process, Scenario 4 gives you a button to call the 
socket’s close method.) 

The sample does everything with the same app on localhost to make it easier to see how the process 
works. Typically, of course, the server will be running on another machine entirely, but the steps of 
setting up a listener apply just the same. As noted in Chapter 13, localhost connections work only on a 
machine with a developer license and will not work for apps acquired through the Windows Store. 

Stream Sockets 
In contrast to datagram sockets, streaming data over sockets uses the Transmission Control Protocol 
(TCP). The hallmark of TCP is accurate and reliable delivery—it guarantees that the bytes received are 
the same as the bytes that were sent: when a packet is sent across the network, TCP will attempt to 
retransmit the packet if there are problems along the way. This is why it’s part of TCP/IP, which gives us 
the World Wide Web, email, file transfers, and lots more. HTTP, SMTP, and the Session Initiation 
Protocol (SIP) are also built on TCP. In all cases, clients and servers just see a nice reliable stream of data 
flowing from one end to the other. 

Unlike datagram sockets, for which we have a single class in WinRT for both sides of the relationship, 
stream sockets are more distinctive to match the unique needs of the client and server roles. On the 
client side is Windows.Networking.Sockets.StreamSocket; on the server it’s StreamSocketListener. 

Starting with the latter, the StreamSocketListener object looks quite similar to the DatagramSocket 
we’ve just covered in the previous section, with these methods, properties, and events: 

• information Provides a StreamSocketListenerInformation object containing a localPort 
string. 

• control Provides a StreamSocketListenerControl object with a qualityOfService property. 

• connectionreceived An event that’s fired when a connection is made to the listener. Its event 
arguments are a StreamSocketListenerConnectionReceivedEventArgs that contains a single 
property, socket. This is the StreamSocket for the client, in which is an outputStream property 
where the listener can obtain the data stream. 

• bindEndpointAsync and bindServiceNameAsync Binds the listener to a HostName and service 
name, or binds just a service name. 
close Terminates connections and aborts pending operations. 

 

680

http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.streamsocket.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.streamsocketlistener.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.streamsocketlistenerinformation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.streamsocketlistenercontrol.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.streamsocketlistenerconnectionreceivedeventargs.aspx


On the client side, StreamSocket again looks like parts of the DatagramSocket. In addition to the 
control (StreamSocketControl) and information properties (StreamSocketInformation) and the 
ubiquitous close method, we find a few other usual suspects and one unusual one: 

• connectAsync Connects to a HostName/service name or to an EndpointPair. In each case you 
can also provide an optional SocketProtectionLevel object that can be plainSocket, ssl, or 
sslAllowNullEncryption. There are, in other words, four variations of this method. 

• inputStream The IInputStream that’s being received over the connection. 

• outputStream The IOutputStream into which data is written. 

• upgradeToSslAsync Upgrades a plainSocket connection (created through connectAsync) to 
use SSL as specified by either SocketProtectionLevel.ssl or sslAllowNullEncryption. This 
method also required a HostName that validates the connection. 

For more details on using SSL, see How to secure socket connections with TLS/SSL. 

In any case, you can see that for one-way communications over TCP, an app creates either a 
StreamSocket or a StreamSocketListener, depending on its role. For two-way communications an app 
will create both. 

The StreamSocket sample, like the DatagramSocket sample, has four scenarios that are meant to be 
run in sequence on the localhost: first to create a listener (to receive a message from a client, Scenario 
1), then to create the StreamSocket (Scenario 2) and send a message (Scenario 3), and then to close the 
socket (Scenario 4). With streamed data, the app implements a custom protocol for how the data should 
appear, as we’ll see. 

Starting in Scenario 1 (js/startListener.js), here’s how we create the listener and event handler. 
Processing the incoming stream data is trickier than with a datagram because we need to make sure the 
data we need is all there. This code shows a good pattern of waiting for one async operation to finish 
before the function calls itself recursively. Also note how it creates a DataReader on the input stream for 
convenience: 

socketsSample.listener = new Windows.Networking.Sockets.StreamSocketListener(serviceName); 
// Match with removeEventListener as needed 
socketsSample.listener.addEventListener("connectionreceived", onServerAccept); 
 
socketsSample.listener.bindServiceNameAsync(serviceName).done(function () { 
    // ... 
    }, onError); 
} 
 
// This has to be a real function; it will "loop" back on itself with the call to 
// acceptAsync at the very end. 
function onServerAccept(eventArgument) { 
    socketsSample.serverSocket = eventArgument.socket; 
    socketsSample.serverReader = 
         new Windows.Storage.Streams.DataReader(socketsSample.serverSocket.inputStream); 
    startServerRead(); 

681

http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.streamsocketcontrol.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.streamsocketinformation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.socketprotectionlevel.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.streamsocket.upgradetosslasync.aspx
http://msdn.microsoft.com/library/windows/apps/hh780595.aspx
http://code.msdn.microsoft.com/windowsapps/StreamSocket-Sample-8c573931


} 
 
// The protocol here is simple: a four-byte 'network byte order' (big-endian) integer that  
// says how long a string is, and then a string that is that long. We wait for exactly 4 bytes, 
// read in the count value, and then wait for count bytes, and then display them. 
function startServerRead() { 
    socketsSample.serverReader.loadAsync(4).done(function (sizeBytesRead) { 
        // Make sure 4 bytes were read. 
        if (sizeBytesRead !== 4) { /* [Show message] */ } 
 
        // Read in the 4 bytes count and then read in that many bytes. 
        var count = socketsSample.serverReader.readInt32(); 
        return socketsSample.serverReader.loadAsync(count).then(function (stringBytesRead) { 
            // Make sure the whole string was read. 
            if (stringBytesRead !== count) { /* [Show message] */ } 
 
            // Read in the string. 
            var string = socketsSample.serverReader.readString(count); 
            socketsSample.displayOutput("Server read: " + string); 
 
            // Restart the read for more bytes. We could just call startServerRead() but in 
            // the case subsequent read operations complete synchronously we start building 
            // up the stack and potentially crash. We use WinJS.Promise.timeout() to invoke 
            // this function after the stack for current call unwinds. 
            WinJS.Promise.timeout().done(function () { return startServerRead(); }); 
        }); // End of "read in rest of string" function. 
    }, onError); 
} 

This code is structured to wait for incoming data that isn’t ready yet, but you might have situations in 
which you want to know if there’s more data available that you haven’t read. This value can be obtained 
through the DataReader.unconsumedBufferLength property. 

In Scenario 2, the data-sending side of the relationship is simple: create a StreamSocket and call 
connectAsync (js/connectToListener.js; note that onError uses StreamSocketError.getStatus again): 

socketsSample.clientSocket = new Windows.Networking.Sockets.StreamSocket(); 
socketsSample.clientSocket.connectAsync(hostName, serviceName).done(function () { 
    // ... 
}, onError); 

Sending data in Scenario 3 takes advantage of a DataWriter built on the socket’s output stream 
(js/sendData.js): 

var writer = new Windows.Storage.Streams.DataWriter(socketsSample.clientSocket.outputStream); 
var string = "Hello World"; 
var len = writer.measureString(string); // Gets the UTF-8 string length. 
writer.writeInt32(len); 
writer.writeString(string); 
 
writer.storeAsync().done(function () { 
    writer.detachStream(); 
}, onError); 

682

http://msdn.microsoft.com/library/windows/apps/windows.storage.streams.datareader.unconsumedbufferlength.aspx


And closing the socket in Scenario 4 is again just a call to StreamSocket.close. 

As with the DatagramSocket sample, setting breakpoints within openClient 
(js/connectTo-Listener.js), onServerAccept (js/startListener.js), and sendHello (js/sendData.js) will let you 
see what’s happening at each step of the process. 

Web Sockets: MessageWebSocket and StreamWebSocket 
Having now seen both Datagram and Stream sockets in action, we can look at their equivalents on the 
WebSocket side. As you might already know, WebSockets is a standard created to use HTTP (and thus 
TCP) to set up an initial connection after which the data exchange happens through sockets over TCP. 
This provides the simplicity of using HTTP requests for the first stages of communication and the 
efficiency of sockets afterwards. 

As with regular sockets, the WebSocket side of WinRT supports both water balloons and water hoses: 
the MessageWebSocket class provides for discrete packets as with datagram sockets (though it uses TCP 
and not UDP), and StreamWebSocket clearly provides for stream sockets. Both classes are very similar to 
their respective DatagramSocket and StreamSocket counterparts, so much so that their interfaces are 
very much the same (with distinct secondary types like MessageWebSocket-Control): 

• Like DatagramSocket, MessageWebSocket has control, information, and outputStream 
properties, a messagereceived event, and methods of connectAsync and close. It adds a 
closed event along with a setRequestHeader method. 

• Like StreamSocket, StreamWebSocket has control, information, inputStream, and 
outputStream properties, and methods of connectAsync and close. It adds a closed 
event and a setRequestHeader method. 

You’ll notice that there isn’t an equivalent to StreamSocketListener here. This is because the process 
of establishing that connection is handled through HTTP requests, so such a distinct listener class isn’t 
necessary. This is also why we have setRequestHeader methods on the classes above: so that you can 
configure those HTTP requests. Along these same lines, you’ll find that the connectAsync methods take a 
Windows.Foundation.Uri rather than hostnames and service names. But otherwise we see the same kind 
of activity going on once the connection is established, with streams, Data-Reader, and DataWriter. 

683

http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.messagewebsocket.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.streamwebsocket.aspx


Sidebar: Comparing W3C and WinRT APIs for WebSockets 
Standard WebSockets, as they’re defined in the W3C API, are entirely supported for Windows 
Store apps. However, they support only a transaction-based UDP model like DatagramSocket and 
only text content. The MessageWebSocket in WinRT, however, supports both text and binary, plus 
you can use the StreamWebSocket for a streaming TCP model as well. The WinRT APIs also emit 
more detailed error information and so are generally preferred over the W3C API. 

Let’s look more closely at these in the context of the Connecting with WebSockets sample. This 
sample is dependent upon an ASP.NET server page running in the localhost, so you must first go into its 
Server folder and run powershell.exe -ExecutionPolicy unrestricted -file setupserver.ps1 from an 
Administrator command prompt. (For more on setting up Internet Information Services and the 
localhost, refer to the “Using the localhost” section in Chapter 13.) If the script succeeds, you’ll see a 
WebSocketSample folder in c:\inetpub\wwwroot that contains an EchoWebService.ashx file. Also, as 
suggested in Chapter 13, you can run the Web platform installer to install Visual Studio 2012 Express for 
Web that will allow you to run the server page in a debugger. Always a handy capability! 

Within EchoWebService.ashx you’ll find an EchoWebSocket class written in C#. It basically has one 
method, ProcessRequest, that handles the initial HTTP request from the web socket client. With this 
request it acquires the socket, writes an announcement message to the socket’s stream when the socket 
is opened, and then waits to receive other messages. If it receives a text message, it echoes that text 
back through the socket with “You said” prepended. If it receives a binary message, it echoes back a 
message indicating the amount of data received. 

Going to Scenario 1 of the Connecting with WebSockets sample, we can send a message to that 
ser-ver page, using MessageWebSocket, and get back a message of our own; see Figure 14-6. In this case 
the output in the sample reflects information known to the app and nothing from the service itself. 

 
FIGURE 14-6 Output of Scenario 1 of the Connecting with WebSockets sample. 

684

http://code.msdn.microsoft.com/windowsapps/Connecting-with-WebSockets-643b10ab
http://www.microsoft.com/web/downloads/platform.aspx


In the sample, we first create a MessageWebSocket, call its connectAsync, and then use a DataWriter to 
write some data to the socket. It also listens for the messagereceived event to output the result of the 
send, and it listens to the closed event from the server so that it can do the close from its end. The 
code here is simplified from js/scenario1.js: 

var messageWebSocket; 
var messageWriter; 
 
var webSocket = new Windows.Networking.Sockets.MessageWebSocket(); 
webSocket.control.messageType = Windows.Networking.Sockets.SocketMessageType.utf8; 
webSocket.onmessagereceived = onMessageReceived; 
webSocket.onclosed = onClosed; 
 
// The server URI is obtained and validated here, and stored in a variable named uri. 
 
webSocket.connectAsync(uri).done(function () { 
    messageWebSocket = webSocket; 
    // The default DataWriter encoding is utf8. 
    messageWriter = new Windows.Storage.Streams.DataWriter(webSocket.outputStream); 
    sendMessage();    // Helper function, see below 
}, function (error) { 
    var errorStatus = Windows.Networking.Sockets.WebSocketError.getStatus(error.number); 
    // [Output error message] 
}); 
 
function onMessageReceived(args) { 
    var dataReader = args.getDataReader(); 
    // [Output message contents] 
} 
 
function sendMessage() { 
    // Write message in the input field to the socket 
    messageWriter.writeString(document.getElementById("inputField").value); 
    messageWriter.storeAsync().done("", sendError); 
} 
 
function onClosed(args) { 
    // Close our socket if the server closes [simplified from actual sample; it also closes 
    // the DataWriter it might have opened.] 
    messageWebSocket.close(); 
} 

Similar to what we saw in previous sections, when an error occurs you can turn the error number into 
a SocketErrorStatus value. In the case of WebSockets you do this with the getStatus method of 
Windows.Networking.Sockets.WebSocketError. Again, see its reference page for details. 

Scenario 2, for its part, uses a StreamWebSocket to send a continuous stream of data packets, a 
process that will continue until you close the connection; see Figure 14-7. 

685

http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.socketerrorstatus.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.websocketerror.aspx


 
FIGURE 14-7 Output of Scenario 2 of the Connecting with WebSockets sample (cropped). 

Here’s the process in code, simplified from js/scenario2.js, where we see a similar pattern to what we 
just saw for MessageWebSocket, only sending a continuous stream of data: 

var streamWebSocket; 
var dataWriter; 
var dataReader; 
var data = "Hello World"; 
var countOfDataSent; 
var countOfDataReceived; 
 
var webSocket = new Windows.Networking.Sockets.StreamWebSocket(); 
webSocket.onclosed = onClosed; 
 
// The server URI is obtained and validated here, and stored in a variable named uri. 
 
webSocket.connectAsync(uri).done(function () { 
    streamWebSocket = webSocket; 
    dataWriter = new Windows.Storage.Streams.DataWriter(webSocket.outputStream); 
    dataReader = new Windows.Storage.Streams.DataReader(webSocket.inputStream); 
    // When buffering, return as soon as any data is available. 
    dataReader.inputStreamOptions = Windows.Storage.Streams.InputStreamOptions.partial; 
    countOfDataSent = 0; 
    countOfDataReceived = 0; 
 
    // Continuously send data to the server 
    writeOutgoing(); 
 
    // Continuously listen for a response 
    readIncoming(); 
}, function (error) { 
    var errorStatus = Windows.Networking.Sockets.WebSocketError.getStatus(error.number); 
    // [Output error message] 
}); 
 
function writeOutgoing() { 

686



    try { 
        var size = dataWriter.measureString(data); 
        countOfDataSent += size; 
        } 
        dataWriter.writeString(data); 
        dataWriter.storeAsync().done(function () { 
            // Add a 1 second delay so the user can see what's going on. 
            setTimeout(writeOutgoing, 1000); 
        }, writeError); 
    } 
    catch (error) { 
        // [Output error message] 
    } 
} 
 
function readIncoming(args) { 
    // Buffer as much data as you require for your protocol. 
    dataReader.loadAsync(100).done(function (sizeBytesRead) { 
        countOfDataReceived += sizeBytesRead; 
        // [Output count] 
 
        var incomingBytes = new Array(sizeBytesRead); 
        dataReader.readBytes(incomingBytes); 
 
        // Do something with the data. Alternatively you can use DataReader to 
        // read out individual booleans, ints, strings, etc. 
 
        // Start another read. 
        readIncoming(); 
    }, readError); 
} 
 
function onClosed(args) { 
    // [Other code omitted, including closure of DataReader and DataWriter] 
    streamWebSocket.close(); 
} 

As with regular sockets, you can exercise additional controls with WebSockets, including setting 
credentials and indicating supported protocols through the control property of both MessageWeb-Socket 
and StreamWebSocket. For details, see How to use advanced WebSocket controls in the documentation. 
Similarly, you can set up a secure/encrypted connection by using the wss:// URI scheme instead of 
ws:// as used in the sample. For more, see How to secure WebSocket connections with TLS/SSL. 

The ControlChannelTrigger Background Task 
In Chapter 13, in the “Lock Screen Dependent Tasks and Triggers” section we took a brief look at the 
Windows.Networking.Sockets.ControlChannelTrigger class that can be used to set up a background 
task for real-time notifications as would be used by VoIP, IM, email, and other “always reachable” 
scenarios. To repeat, working with the control channel is not something that can be done  
from JavaScript, so refer to How to set background connectivity options in the documentation along 
with the following C#/C++ samples: 

687

http://msdn.microsoft.com/library/windows/apps/hh761447.aspx
http://msdn.microsoft.com/library/windows/apps/hh761446.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.sockets.controlchanneltrigger.aspx
http://msdn.microsoft.com/library/windows/apps/Hh771189.aspx


• ControlChannelTrigger StreamSocket sample 

• ControlChannelTrigger XmlHttpRequest sample 

• ControlChannelTrigger StreamWebSocket sample 

• ControlChannelTrigger HTTP client sample 

Loose Ends (or Some Samples To Go) 

Although we’ve covered quite a bit of territory in this chapter, you might find some additional samples 
helpful in your networking efforts. I won’t address these topics further in this book, but this list will at 
least help you be aware of their existence. 
 

Sample Description (from the Windows Developer Center) 

Check if current session is remote 
sample 

This sample demonstrates the use of Windows.System.RemoteDesktop API. Specifically, 
this sample demonstrates how to use the InteractiveSession.IsRemote property to 
determine if the current session is a remote session. 

HomeGroup app sample Demonstrates how to use a HomeGroup to open, search, and share files. This sample uses 
some of the HomeGroup options. In particular, it uses Windows.Storage.- 
Pickers.PickerLocationId enumeration and the Windows.Storage.- 
KnownFolders.homeGroup property to select files contained in a HomeGroup. 

Remote desktop app container client 
sample 

Demonstrates how to use the Remote Desktop app container client objects in an app. 

RemoteApp and desktop connections 
workspace API sample 

Demonstrates how to use the WorkspaceBrokerAx object in a Windows 8 app. 

SMS message send, receive, and SIM 
management sample 

Demonstrates how to use the Windows 8 Mobile Broadband SMS API 
(Windows.Devices.Sms). This API can be used only from mobile broadband device apps 
and is not available to apps generally. 

SMS background task sample Demonstrates how to use the Windows 8 Mobile Broadband SMS API 
(Windows.-Devices.Sms) with the Background Task API 
(Windows.ApplicationModel.-Background) to send and receive SMS text messages. This 
API can be used only from mobile broadband device apps and is not available to apps 
generally. 

USSD message management sample Demonstrates network account management using the USSD protocol with GSM-capable 
mobile broadband devices. USSD is typically used for account management of a mobile 
broadband profile by the Mobile Network Operator (MNO). USSD messages are specific 
to the MNO and must be chosen accordingly when used on a live network. [That sample 
is applicable only to those building mobile broadband device apps; it draws on the API in 
Windows.Networking.NetworkOperators.]  

 
 

 

688

http://code.msdn.microsoft.com/windowsapps/ControlChannelTrigger-TCP-20c56711
http://code.msdn.microsoft.com/windowsapps/ControlChannelTrigger-6aedf1bc
http://code.msdn.microsoft.com/windowsapps/ControlChannelTrigger-91f6bed8
http://code.msdn.microsoft.com/windowsapps/ControlChannelTrigger-HTTP-9d7a6b3d
http://code.msdn.microsoft.com/windowsapps/Check-if-current-session-7cd31c4e
http://code.msdn.microsoft.com/windowsapps/Check-if-current-session-7cd31c4e
http://msdn.microsoft.com/library/windows/apps/Hh770630
http://msdn.microsoft.com/library/windows/apps/Hh770629
http://code.msdn.microsoft.com/windowsapps/HomeGroup-App-sample-d4da5cb2
http://msdn.microsoft.com/library/windows/apps/BR207890
http://msdn.microsoft.com/library/windows/apps/BR207890
http://msdn.microsoft.com/library/windows/apps/BR227153
http://msdn.microsoft.com/library/windows/apps/BR227153
http://code.msdn.microsoft.com/windowsapps/Remote-Desktop-app-461567af
http://code.msdn.microsoft.com/windowsapps/Remote-Desktop-app-461567af
http://msdn.microsoft.com/library/windows/apps/Hh994983
http://code.msdn.microsoft.com/windowsapps/RemoteApp-and-Desktop-cb639443
http://code.msdn.microsoft.com/windowsapps/RemoteApp-and-Desktop-cb639443
http://msdn.microsoft.com/library/windows/apps/Hh974747
http://code.msdn.microsoft.com/windowsapps/Sms-SendReceive-fa02e55e
http://code.msdn.microsoft.com/windowsapps/Sms-SendReceive-fa02e55e
http://msdn.microsoft.com/library/windows/apps/BR206567
http://code.msdn.microsoft.com/windowsapps/SMS-background-task-sample-513576cb
http://msdn.microsoft.com/library/windows/apps/BR206567
http://msdn.microsoft.com/library/windows/apps/BR224847
http://code.msdn.microsoft.com/windowsapps/USSD-API-SDK-Sample-b0259f6c
http://msdn.microsoft.com/library/windows/apps/BR241148


What We’ve Just Learned 

• Networks come in a number of different forms, and separate capabilities in the manifest 
specifically call out Internet (Client), Internet (Client & Server), and Private Networks (Client & 
Server). Local loopback within these is normally blocked for apps but may be used for 
debugging purposes on machines with a developer license. 

• Rich network information is available through the Windows.Networking.Connectivity.- 
NetworkInformation API, including the ability to track connectivity, be aware of network costs, 
and obtain connection profile details. 

• Connectivity can be monitored from a background task by using the networkStateChange trigger 
and conditions such as internetAvailable and internetNotAvailable. 

• The ability to run offline can be an important consideration that can make an app much more 
attractive to customers. Apps need to design and implement such features themselves, using 
local or temporary app data folders to store the necessary caches. 

• Windows.Networking.BackgroundTransfer provides for cost-aware downloads and up-loads that 
continue to run while an app is suspended and that are easy to resume if an app is restarted after 
termination. Using this API is highly recommended over doing the same with XmlHttpRequests; 
the API supports credentials, multipart uploads, cost policy, and grouping. 

• The Credential Picker UI provides a built-in UI for collecting credentials, and the credential locker 
provides a secure means for storing and retrieving those credentials (that can also be roamed to 
the user’s other trusted devices if they allow it). 

• Apps can authenticate through OAuth providers using the web authentication broker API. This 
allows apps to obtain necessary access keys and tokens to work with those providers while never 
having to manage user credentials directly. 

• For authentication providers that support it, apps can use single sign on so that authenticating 
the user in one app will authenticate them in all others using the same provider. The Live 
SDK/Live Connect provides for this with the user’s Microsoft account. 

• Apps can obtain and manage some of the user’s profile data, including the user image and the 
lock screen image. 

• WinRT provides APIs for encryption and decryption, along with certificates. 

• The Windows.Web.Syndication API provides a structured way to consume RSS feeds, and 
Windows.Web.AtomPub provides a structured way to post, edit, and manage entries. 

• Socket support in WinRT includes datagram and stream sockets, as well as message and stream 
WebSockets. The capabilities of the latter expand on the capabilities of W3C WebSockets by 
supporting both a streaming (TCP) model and binary content. 

689



Chapter 15 

Devices and Printing 
I sometimes marvel at all the stuff that’s hanging off the humble laptop with which I’ve been writing this 
book. Besides the docking station that is currently also serving well as a monitor stand and rather 
efficient dust collector, there’s a mouse (wired), a keyboard (wireless), two large monitors, speakers, a 
USB thumb drive, a headset, an Xbox game controller, and the occasional external hard drive. Add to 
that a couple of printers and media receivers hanging off my home network and, well, I probably don’t 
come close to what the majority of my readers probably have around their home and workplace! 

For all that might be going on within one computer itself, and for all the information it might be 
obtaining from online sources, the world of external devices is another great realm, especially those that 
apps can work with directly. Indeed, we’ve spent most of our time in this book talking about what’s 
going on in the app and its host system and about using networks and services to gather data. It’s time, 
then, that we take an introductory look at the other hardware we can draw on to make a great app 
experience. 

We’ve already encountered a few of these areas that I’ll just mention again here: 

• In Chapter 8, “State, Settings, Files, and Documents,” we learned about the Removable Storage 
capability (in the manifest) that enables an app to work with files on USB sticks and other 
pluggable media. When a device is connected, those folders become available through 
Windows.Storage.KnownFolders.removableDevices, which is just a StorageFolder object 
whose subfolders are each connected to a particular storage device. See the Removable storage 
sample. 

• In Chapter 2, “Quickstart,” along with Chapter 10, “Media,” we took full advantage of the 
Windows.Media.Capture API to effortlessly obtain audio, images, and video from an attached 
camera (see the CameraCaptureUI Sample). This included the ability to select a specific capture 
device through Scenario 2 of the Media capture using capture device sample, for which we used 
the API in Windows.Devices.Enumeration. 

• Also in Chapter 10 we looked at the Windows.Media.PlayTo API to connect media to a PlayTo 
capable receiver, as demonstrated in the Media Play To sample. 

Beyond these there is much more, far more than this book and chapter will allow—hardware truly is 
a world unto itself! But at least we’ll understand where some of the resources are and spend a little time 
on those areas that are likely to be interesting to apps themselves. These are: 

• Using devices through an API not directly available to JavaScript, such as Win32. Apps can also 
enumerate additional devices with a certain class interface. (The ability to interact with those 
devices is limited, at present, for Windows Store apps.) 

690

http://msdn.microsoft.com/library/windows/apps/windows.storage.knownfolders.removabledevices.aspx
http://code.msdn.microsoft.com/windowsapps/Removable-Storage-52cc49f0
http://code.msdn.microsoft.com/windowsapps/Removable-Storage-52cc49f0
http://msdn.microsoft.com/library/windows/apps/windows.media.capture.aspx
http://code.msdn.microsoft.com/windowsapps/CameraCaptureUI-Sample-845a53ac
http://code.msdn.microsoft.com/windowsapps/Media-Capture-Sample-adf87622
http://msdn.microsoft.com/library/windows/apps/windows.devices.enumeration.aspx
http://msdn.microsoft.com/library/windows/apps/windows.media.playto.aspx
http://code.msdn.microsoft.com/windowsapps/Media-PlayTo-Sample-fedcb0f9


• Connecting with devices in the vicinity of the one your app is running on through means such as 
WiFi Direct, Bluetooth, and near-field communications (NFC). In the latter case, NFC can connect 
apps running on devices or be used to acquire information from an inexpensive RFID tag. 

• Last but not least is printing, which is an easy feature to add to a Windows Store app. 

With that, let me also mention a class of apps that we won’t be dealing with in this book: Windows 
Store Device Apps, as they’re called. These are the ones that can be automatically acquired from the 
Windows Store when their associated devices are plugged into a Windows machine. The variety in this 
space is quite amazing, as we see everything from the most prosaic headsets, monitors, printers, 
cameras, mice, and keyboards to the newest smart TVs, remotes, home audio systems, health sensors, 
scientific devices, toys, point of sale systems, musical instruments, and more. It’s the responsibility of 
device apps—the ones you always used to get on a CD that you then employed as a coaster—to light 
up the functionality of the device, and at present they are the only apps that can actually do so. 
Windows Store apps in general are not able to work with specialized devices unless there is some other 
public API that allows for it, as we’ll see in the first section below. 

Writing device apps is well beyond the scope of this book, but if you’re interested you can refer to 
the Windows Store Device App Workshop (Channel 9 videos), along with Windows 8 Device Experience: 
Windows Store Device Apps, along with Windows Store device Apps for Specialized Connected Devices. 
There are also a few samples to draw on, such as the Windows 8 device app for camera sample and the 
Device apps for printers sample. A much more specific one is the Custom driver access sample, which 
works with a piece of hardware called FX2 in the OSR USB FX2 Learning Kit (from Open System 
Resources). This is a piece of hardware meant for people learning how to develop device drivers to use 
to understand the intricacies. 

Using Devices 

As mentioned earlier, Windows Store apps are not generally given access to specialized hardware and 
whatever interfaces exist in device drivers: this is the special privilege of device apps. However, if the 
device and its driver happen to plug into a system API of some kind, then there are ways for other apps 
to work with them, as illustrated in Figure 15-1. 

The system APIs that are available to Windows Store apps are somewhat varied. As we’ve seen in 
previous chapters, WinRT itself enables access to cameras, PlayTo receivers, storage devices (including 
USB drives, cameras, and media players), and input devices, where in the latter case the hardware is 
hidden behind abstraction layers like pointers. WinRT also provides an abstraction through which an 
app can work with any number of printers, as we’ll see in “Printing Made Easy” later on. 

691

http://channel9.msdn.com/Events/Windows-Store-Device-Apps-Workshop/Windows-Store-Device-Apps-Workshop-2012?t=charms
http://msdn.microsoft.com/library/windows/hardware/br259108.aspx
http://msdn.microsoft.com/library/windows/hardware/br259108.aspx
http://msdn.microsoft.com/library/windows/hardware/jj552525
http://code.msdn.microsoft.com/windowsapps/Metro-style-device-app-for-4f39b7bf
http://code.msdn.microsoft.com/windowsapps/Device-app-for-printers-91f363a9
http://code.msdn.microsoft.com/windowsapps/Custom-device-access-sample-43bde679
https://www.osronline.com/custom.cfm?name=index_fullframeset.cfm&pageURL=https://www.osronline.com/store/index.cfm


 
FIGURE 15-1  Store apps in Windows 8 can work only with devices that have a representative system API; Windows 
Store device apps have the privilege of working directly with a specific device through its driver. 

In some cases, as we’ll see in our first example of an Xbox controller, there are APIs in Win32/COM 
that are built on a certain device interface. In the case of the controller, the XInput API (part of DirectX) 
does exactly that. XInput isn’t directly available to an app written in JavaScript, but a WinRT component 
can perform that job on the app’s behalf. Such a component, as we’ll cover in more depth in Chapter 16, 
“WinRT Components,” extends the WinRT API for those apps that include it in their package. The APIs 
provided by such components look and feel like those in WinRT. They just start with some namespace 
other than Windows! 

Another capability that WinRT does provide for is enumerating devices with a particular device 
interface class (a GUID). This is useful for building and displaying a list of devices when more than one 
exists, and works for common devices (like cameras) and uncommon devices alike. 

The other class of devices that apps can work with is called Windows Portable Devices, which 
includes removable storage as well as a host of Bluetooth gizmos. This is one place where being able to 
enumerate the devices is helpful, because there’s an ActiveX control, of all things—which is essentially a 
COM API—through which you can talk to such devices. 

The XInput API and Game Controllers 
The XInput API, part of DirectX, is a Win32 API that specifically works with game controllers and is on 
the list of Win32/COM APIs that can be used from a Windows Store app. The most commonly used 
function within this group is probably XInputGetState, which returns an XINPUT_STATE structure that 
describes the position of the various thumb controllers, how far throttle or other triggers are depressed, 
and the on/off states of all the buttons. It’s basically meant to be polled with every animation frame in 
something like a game; the API doesn’t itself raise events when the controller state changes. 

 

692

http://msdn.microsoft.com/library/windows/apps/ee417007.aspx
http://msdn.microsoft.com/library/windows/apps/microsoft.directx_sdk.reference.xinputgetstate.aspx
http://msdn.microsoft.com/library/windows/apps/microsoft.directx_sdk.reference.xinput_state.aspx


The XInput and JavaScript controller sketch sample in the Windows SDK demonstrates exactly this. 
Because the XInput API is not accessible directly through JavaScript, it’s necessary to create a WinRT 
component for this purpose. Put simply, you create a component with public classes inside a namespace 
that matches the component’s filename, and then you add a reference to that component to the 
JavaScript app’s project in Visual Studio. This imports the namespace and makes it available within 
JavaScript. We’ll see more details on this in Chapter 16, but basically the component’s C++ code looks 
like the following—first in the header (Controller.h) file within the GameController project: 

namespace GameController 
{ 
    public value struct State 
    { 
    // [Omitted--just contains the same values as the Win32 XINPUT_STATE structure 
    }; 
 
    public ref class Controller sealed 
    { 
        ~Controller(); 
 
        uint32               m_index; 
        bool                 m_isControllerConnected;  // Do we have a controller connected 
        XINPUT_CAPABILITIES  m_xinputCaps;             // Capabilites of the controller 
        XINPUT_STATE         m_xinputState;      // The current state of the controller 
        uint64               m_lastEnumTime;     // Last time a new controller connection 
                                                 // was checked 
 
    public: 
        Controller(uint32 index); 
 
        void SetState(uint16 leftSpeed, uint16 rightSpeed); 
        State GetState(); 
    }; 
} 

The implementation of GetState in Controller.cpp then just calls XInputGetState and copies its 
properties to an instance of the component’s public State structure: 

State Controller::GetState() 
{ 
    // defaults to return controllerState that indicates controller is not connected 
    State controllerState; 
    controllerState.connected = false; 
 
    // An app should avoid calling XInput functions every frame if there are 
    // no known devices connected as initial device enumeration can slow down 
    // app performance. 
    uint64 currentTime = ::GetTickCount64(); 
    if (!m_isControllerConnected && currentTime - m_lastEnumTime < EnumerateTimeout) 
    { 
        return controllerState; 
    } 
 
    m_lastEnumTime = currentTime; 

693

http://code.msdn.microsoft.com/windowsapps/XInput-and-JavaScript-c72fe535


 
    auto stateResult = XInputGetState(m_index, &m_xinputState); 
 
    if (stateResult == ERROR_SUCCESS) 
    { 
        m_isControllerConnected = true; 
        controllerState.connected = true; 
        controllerState.controllerId = m_index; 
        controllerState.packetNumber = m_xinputState.dwPacketNumber; 
        controllerState.LeftTrigger = m_xinputState.Gamepad.bLeftTrigger; 
        controllerState.RightTrigger = m_xinputState.Gamepad.bRightTrigger; 
 
    // And so on [copying all the other properties omitted.] 
    } 
    else 
    { 
        m_isControllerConnected = false; 
    } 
 
    return controllerState; 
} 

The constructor for a Controller object is also very simple: 

Controller::Controller(uint32 index) 
{ 
    m_index = index; 
    m_lastEnumTime = ::GetTickCount64() - EnumerateTimeout; 
} 

In a JavaScript app—once the reference to the component has been added—the GameController 
namespace contains the component’s public API, and we can utilize it as if it were built right into 
Windows. In the case of the sample, it first instantiates a Controller object (with index of zero) and then 
kicks off animation frames (program.js): 

app.onactivated = function (eventObj) { 
    if (eventObj.detail.kind ===  
        Windows.ApplicationModel.Activation.ActivationKind.launch) { 
        // [Other setup omitted] 
 
        // Instantiate the Controller object from the WinRT component 
        controller = new GameController.Controller(0); 
 
        // Start rendering loop 
        requestAnimationFrame(renderLoop); 
    }; 
}; 

The renderLoop function then just calls the component’s getState method and applies the results to a canvas 
drawing before repeating the loop (also in program.js, though much code omitted): 
 
 
 
 

694



function renderLoop() { 
    var state = controller.getState(); 
 
    if (state.connected) { 
        controllerPresent.style.visibility = "hidden"; 
 
        // Code added to the sample to extend its functionality 
        if (state.leftTrigger) { 
            context.clearRect(0, 0, sketchSurface.width, sketchSurface.height); 
            requestAnimationFrame(renderLoop); 
            return; 
        } 
 
        if (state.a) { 
            context.strokeStyle = "green"; 
        } else if (state.b) { 
            context.strokeStyle = "red"; 
        } else if (state.x) { 
            context.strokeStyle = "blue"; 
        } else if (state.y) { 
            context.strokeStyle = "orange"; 
        } 
 
        // Process state and draw the canvas [code omitted] 
    }; 
 
    // Repeat with the next frame 
    requestAnimationFrame(renderLoop); 
}; 

The output of this sample is shown in Figure 15-2, reflecting the features I added to the sample 
within the code above to make it more interesting to my young son: changing colors with the A/B/X/Y 
buttons and clearing the canvas with the left trigger. As you can see, my own artwork with this app isn’t 
a whole lot different from his! 

In the end, even though WinRT doesn’t surface APIs like XInput, an app can do this for itself with a 
simple component implementation. Note that various aspects of the component’s interface, like the 
casing of method names, will change when it’s projected into JavaScript. Again, we’ll see more details in 
Chapter 16. For now, it shows that getting access to such specialized devices is a straightforward task. 

695



 
FIGURE 15-2 The XInput and JavaScript controller sketch sample with some modifications to change colors. The 
varying line width is controlled by the position of the right trigger. 

Enumerating Devices in a Class 
If you happen to know the device class interface GUID for a certain group of devices, you can use the 
static Windows.Devices.Enumeration.DeviceInformation.findAllAsync method to retrieve detailed 
information about those devices. Many details can be found in the Enumerating Devices topic in the 
documentation, but let me give a quick overview. 

What you give to findAllAsync is something called a selector, specifically an Advanced Query Syntax 
(AQS) string, as we encountered in Chapter 8 in the section “Rich Enumeration with File Queries.” A 
device selector typically looks something like this: 

System.Devices.InterfaceClassGuid:="{E5323777-F976-4F5B-9B55-B94699C46E44}" AND 
System.Devices.InterfaceEnabled:=System.StructuredQueryType.Boolean#True 

where the interface class GUID shown here is the particular one for webcams. 

The result of findAllAsync is a DeviceInformationCollection, which in JavaScript can basically be 
treated as an array of DeviceInformation objects. In Scenario 1 of the as Device enumeration sample 
we see how to use this array to display details for each device: 

Windows.Devices.Enumeration.DeviceInformation.findAllAsync(selector, null).done( 
    function(devinfoCollection) { 
        var numDevices = devinfoCollection.length; 
        for (var i = 0; i < numDevices; i++) { 
            displayDeviceInterface(devinfoCollection[i], id("scenario1Output"), i); 
        } 
    }); 

Some results from this are shown in Figure 15-3 and Figure 15-4. 

696

http://msdn.microsoft.com/library/windows/apps/br225435.aspx
http://msdn.microsoft.com/library/windows/apps/hh464977.aspx
http://msdn.microsoft.com/library/windows/desktop/bb266512.aspx
http://msdn.microsoft.com/library/windows/desktop/bb266512.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.enumeration.deviceinformationcollection.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.enumeration.deviceinformation.aspx
http://code.msdn.microsoft.com/windowsapps/Device-Enumeration-Sample-a6e45169


 
FIGURE 15-3 Sample device enumeration output for a webcam—which perfectly represents the one attached to my 
monitor. 

 
FIGURE 15-4 Sample device enumeration output for a printer—which also looks exactly like the one sitting next to 
my desk. 

Scenario 2 of the sample executes the same process (with plain text output) for Plug and Play (PnP) 
object types using Windows.Devices.Enumeration.Pnp.PnpObject.findAllAsync. This API lets you 
enumerate devices by interface, interface class, and container (the visible and localized aspects of a 
piece of hardware, like manufacturer and model name): 

Windows.Devices.Enumeration.Pnp.PnpObject.findAllAsync(deviceContainerType, 
    propertiesToRetrieve).done(function (containerCollection) { 
        var numContainers = containerCollection.length; 
        for (var i = 0; i < numContainers; i++) { 
            displayDeviceContainer(containerCollection[i], id("scenario2Output")); 
        } 
    }); 

In the call above, the propertiesToRetrieve variable contains an array of strings that identify the 
Windows properties you’re interested in. The sample uses these: 

var propertiesToRetrieve = ["System.ItemNameDisplay", "System.Devices.ModelName", 
    "System.Devices.Connected"]; 

697

http://msdn.microsoft.com/library/windows/apps/br225511.aspx
http://msdn.microsoft.com/library/windows/desktop/dd561977.aspx


The result of the enumeration—the containerCollection variable in the code above—is a 
PnpObjectCollection that contains PnpObject instances. The sample just takes the information from 
these and displays a text output for each. 

Note that there is a variant of findAllAsync that accepts an AQS string as a filter. This is a string that 
you obtain from APIs like Windows.Devices.Portable.StorageDevice.getDeviceSelector that 
makes enumeration of those particular devices easier. 

Windows Portable Devices and Bluetooth Capabilities 
In addition to enumerating printers and webcams (because they have standard interface class GUIDs), 
Scenario 1 of the Device enumeration sample also works with portable devices, as does the Portable 
device service sample. This opens the doors to the subject of Windows Portable Devices or WPD, a 
driver technology that supports things like phones, digital cameras, portable media players, and so on 
but also a growing array of Bluetooth devices, where the need is primarily to transfer data between the 
device and the system. WPD supplies an infrastructure for this. 

In WinRT, Windows.Devices.Portable API provides direct interaction with WPD. Here you’ll find the 
ServiceDevice and StorageDevice classes. Both of which simply provide methods that return selector 
strings and id properties. In the former case, such information is meaningful only to the device app 
associated with the hardware. In the latter case, however, the StorageDevice.fromId method provides a 
Windows.Storage.StorageFolder through which you can enumerate its contents. This is demonstrated in 
Scenario 3 of the Removable storage sample that we noted in Chapter 8, where it will create a list of 
removable storage devices to choose from and then display the first image found on the one you select: 

 
 
 

 

698

http://msdn.microsoft.com/library/windows/apps/windows.devices.enumeration.pnp.pnpobjectcollection.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.enumeration.pnp.pnpobject.aspx
http://msdn.microsoft.com/library/windows/apps/br225512.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.portable.storagedevice.getdeviceselector.aspx
http://code.msdn.microsoft.com/windowsapps/Device-Enumeration-Sample-a6e45169
http://code.msdn.microsoft.com/windowsapps/Portable-Device-f97089b5
http://code.msdn.microsoft.com/windowsapps/Portable-Device-f97089b5
http://msdn.microsoft.com/library/windows/hardware/gg463541.aspx
http://msdn.microsoft.com/library/windows/apps/windows.devices.portable.aspx
http://code.msdn.microsoft.com/windowsapps/Removable-Storage-52cc49f0


The Removable Storage sample, in Scenario 4, also demonstrates how to use AutoPlay to 
automatically launch the app when you plug in a suitable device. This involves declarations in the 
manifest for AutoPlay Content (inserting a storage medium) and/or AutoPlay Device (inserting a 
device). See Auto-launching with AutoPlay for details. 

As for Bluetooth devices, the Windows.Media.Devices.CallControl API gives you the ability to 
work with a telephony-related device. See How to manage calls on the default Bluetooth 
communi-cations device for more along with the Bluetooth call control sample. 

Another group of Bluetooth devices includes those that collect information about one’s physical 
health, such as heart rate, blood pressure, and temperature. See Bluetooth low energy on Wikipedia to 
learn more; working with these is demonstrated in the Bluetooth low energy health profiles sample as 
we’ll briefly see below, but I’m told that access to these is presently limited to device apps. 

Another specific sample is the Bluetooth simple key service sample, which works with the CC2540 
Mini Development Kit controller. This little gizmo is something Texas Instruments created to assist 
development around their CC2540 chip; in the case of the sample, the buttons on the device control 
buttons in the app. 

What’s interesting in these latter two samples is how the app connects with the particular device 
using an ActiveX control called PortableDeviceAutomation.Factory (one of the few such ActiveX objects 
available). For example, to connect with a thermometer we first enumerate devices with its particular 
class GUID, {00001809-0000-1000-8000-00805f9b34fb} (see js/thermometer.js in the Bluetooth low 
energy health profiles sample): 

Windows.Devices.Enumeration.DeviceInformation.findAllAsync( 
    "System.Devices.InterfaceClassGuid:=\"{00001809-0000-1000-8000-00805f9b34fb}\"", null) 

With the results from this async operation in a variable called devices, here’s how it gets to a specific 
device and sets up a listener for its particular events: 

// Use WPD Automation to initialize the device objects 
var deviceFactory = new ActiveXObject("PortableDeviceAutomation.Factory"); 
 
// For the purpose of this sample we will initialize the first device 
deviceFactory.getDeviceFromIdAsync(devices[0].id, function (device) { 
    // The 'device' variable will have the device object. 
    // Initialize the temperature service and listen for measurements 
    tempService = device.services[0]; 
    tempService.onTemperatureMeasurement =  
        function (timestamp, thermometerMeasurementValue) { 
            // ... 
        }; 
}); 
 

699

http://msdn.microsoft.com/library/windows/apps/hh452731.aspx
http://msdn.microsoft.com/library/windows/apps/BR226746
http://msdn.microsoft.com/library/windows/apps/hh452727.aspx
http://msdn.microsoft.com/library/windows/apps/hh452727.aspx
http://code.msdn.microsoft.com/windowsapps/Call-Control-b52ad696
http://en.wikipedia.org/wiki/Bluetooth_low_energy
http://code.msdn.microsoft.com/windowsapps/Bluetooth-LE-Metro-sample-a2ba1b5b
http://code.msdn.microsoft.com/windowsapps/Bluetooth-Simple-Key-e29ea456
http://www.ti.com/tool/cc2540dk-mini
http://www.ti.com/tool/cc2540dk-mini


Near Field Communication and the Proximity API 

Connecting with devices that are near to the one on which your app is running is one area that I suspect 
will see much creative innovation in the coming years as PCs are increasing equipped with the requisite 
hardware. In this case we’re really speaking of “devices” more generally than we have been. In some 
cases there will be a separate discrete device, most notably Bluetooth devices or RFID tags. But then 
we’re also speaking of an app running on one machine connecting with itself or another that’s running 
on a different machine. In this sense, apps can communicate with each other as if they were themselves 
separate “devices.” 
 

Caveat Though it is possible for different apps to know about each other and communicate, the Store 
certification requirements do not allow them to be interdependent. Approach such communication 
scenarios as a way to extend the functionality of the app, but be sure to provide value when the app is 
run in isolation. 

Near Field Communication (NFC) is one of the key ways for apps to connect to devices and across 
devices. NFC works with electromagnetic sensors (including unpowered RFID tags) that resonate with 
each other when they get close, within 3–4 centimeters. Practically speaking, this means that the devices 
actually make physical contact, a tap that effectively initiates a digital handshake that opens the 
conversation. When this happens between the same app running on both devices, a process known as 
pairing, those apps can have an ongoing conversation. 

When you think about “devices” in this context, though, they can vary tremendously. That is, the 
devices that are making the connection don’t need to be at all similar. One device might be your tablet 
PC, for example, and the other might by anything from a large all-in-one PC display to a simple RFID 
tag mounted in a poster or a name badge. 

Apps can also learn about each other on different devices through WiFi Direct (if the wireless adapter 
supports it) and Bluetooth. In these cases it’s possible for one app to browse for available (advertised) 
connections on other devices, which might or might not be coming from the same app. 

Whatever the case, working with proximity—as all of this is collectively referred to—is useful for 
many scenarios such as sharing content, setting up multiplayer experience, broadcasting activity, and 
really anything else where some kind of exchange might happen, including both one-time data 
transfers and setting up more persistent connections. 

There are three main conditions for using proximity (see Guidelines for developing using proximity): 

• The app must declare the Proximity capability in its manifest. 

700

http://msdn.microsoft.com/library/windows/apps/hh465215.aspx


 
• Communications are supported only for foreground apps (there are no background tasks to 

maintain a conversation). 

• The app must ask for user consent to enter into a multiuser relationship. An app should show 
waiting connections, connections being established, and connections that are active, and it 
should allow the user to disconnect at any time. Note that using the APIs to make a connection 
will automatically prompt the user. 

The API for working with proximity is in the appropriately named Windows.Networking.-Proximity 
namespace, as is the Proximity sample that we’ll be working with here. It almost goes without saying 
that doing any deep exploration of proximity will require two machines that are suitably equipped 
(unless you’re just working with RFID tags). For NFC between two machines there is also a driver sample 
in the Windows Driver Kit that simulates NFC over a network connection. To use it, note that you’ll also 
need Visual Studio 2012 Ultimate Edition; the Express version does not support driver development. It 
might make more sense to just acquire some NFC-capable tablets! 

Anyway, to install the Windows Driver Kit, follow the instructions on How to get the WDK after 
installing Visual Studio 2012 Ultimate. When you start the download, don’t be put off by the indicated 
1GB size—start the installer (it’s a 937 K download), and then select the option to acquire the kit for use 
on another computer (which is actually a 307 MB download). Then, according to the Proximity sample’s 
description page: 

After you have installed the WDK and samples, you can find the proximity driver sample in 
the src\nfp directory in the location where you installed the WDK samples. See the 
NetNfpProvider.html file in the src\nfp\net directory for instructions on building and running the 
simulator. [Note: be sure to specify a Windows 8 target when you build.] After you start the 
simulator, it runs in the background while your proximity app is running in the foreground. Your 
app must be in the foreground for the tap simulation to work. 
 

Assuming, then, that you have an environment in which proximity can at least be simulated, let’s look 
at the two mainline scenarios in the following sections. The first is using the PeerFinder class to create a 

701

http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.aspx
http://code.msdn.microsoft.com/windowsapps/Proximity-Sample-88129731
http://msdn.microsoft.com/windows/hardware/gg487463


socket connection between two peer apps for ongoing communication. The second uses the 
ProximityDevice class to send data packets between two devices. 

Finding Your Peers (No Pressure!) 
To find peers, an app on one machine can advertise its availability such that apps on other devices can 
browse advertised peers and initiate a connection over WiFi Direct or Bluetooth. The second way to find 
a peer is through a direct NFC tap. Both methods are shown in Scenario 1 of the Proximity sample, but 
these three distinct functions—advertise, browse, and tap to connect—are somewhat intermixed, 
because they each use some distinct parts of the Windows.Networking.Proximity.PeerFinder class 
and some parts in common. 

One commonality is the static property PeerFinder.supportedDiscoveryTypes, which indicates how 
connections can be made. This contains a combination of values from the PeerDiscoveryTypes 
enumeration and depends on the available hardware in the device. Those values are browse (WiFi Direct 
is available), triggered (NFC tapping is available), and none (PeerFinder can’t be used). You can use 
these values to selectively enable or disable certain capabilities in your app as needed. Scenario 1 of the 
Proximity sample, for instance, checks the discovery types to set some flags and enable buttons for NFC 
activities. Otherwise, it just shows disappointing messages (this code is condensed somewhat from 
js/PeerFinder.js, and note the namespace variable at the top): 

var ProxNS = Windows.Networking.Proximity; 
 
var supportedDiscoveryTypes = ProxNS.PeerFinder.supportedDiscoveryTypes; 
 
// Enable triggered (tap) related UI only if the hardware support is present 
if (supportedDiscoveryTypes & ProxNS.PeerDiscoveryTypes.triggered) { 
    triggeredConnectSupported = true; 
} else { 
    peerFinderErrorMsg = "Tap based discovery of peers not supported \n"; 
} 
 
// Enable browse related buttons only if the hardware support is present 
if (supportedDiscoveryTypes & ProxNS.PeerDiscoveryTypes.browse) { 
    browseConnectSupported = true; 
    // [Add listeners to buttons, code omitted] 
    } else { 
    // [Show messages, code omitted] 
    } 
 
if (triggeredConnectSupported || browseConnectSupported) { 
    // [Set up additional UI] 
} 
 
// ... 
} 

Now let’s tease apart the distinct areas. 

702

http://code.msdn.microsoft.com/windowsapps/Proximity-Sample-88129731
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.peerfinder.aspx


Advertising a Connection 
Making yourself available to others through advertising has two parts: putting out the word and 
listening for connections that are made. 

Assuming that some form of communication is possible, the first step in all of this is to configure the 
PeerFinder with the displayName that will appear to other devices when you advertise and to set 
allowBluetooth, allowInfrastructure, and allowWiFiDirect as desired to allow discovery over 
additional networks (infrastructure refers to TCP/IP). Setting none of these flags will still enable 
connections through NFC tapping, which is always enabled. 

Next, set up a handler for the PeerFinder.onconnectionrequested event, followed by a call to the 
static method PeerFinder.start (again, ProxNS is a namespace variable): 

ProxNS.PeerFinder.onconnectionrequested = connectionRequestedEventHandler; 
ProxNS.PeerFinder.start(); 

Note connectionrequested is an event that originates within WinRT. Because this is perhaps an event 
you might only listen to temporarily, be sure to call removeEventListener or assign null to the event 
property to prevent memory leaks. See the “WinRT Events and removeEventListener” section in Chapter 
3, “App Anatomy and Page Navigation.” 

The connectionrequested event is triggered when other devices pick up your advertisement and 
call your toll-free hotline, so to speak, specifically over WiFi Direct or Bluetooth. The event receives a 
ConnectionRequestedEventArgs object that contains a single property, peerInformation, which is an 
instance of—not surprisingly—the PeerInformation class. This object too is simple, containing nothing 
but a displayName, but that is enough to make a connection. 

function connectionRequestedEventHandler(e) { 
    requestingPeer = e.peerInformation; 
    ProximityHelpers.displayStatus("Connection Requested from peer: "  
        + requestingPeer.displayName); 
    // Enable Accept button (and hide Send and Message) [some code omitted] 
    ProximityHelpers.id("peerFinder_AcceptRequest").style.display = "inline"; 
} 

A connection is established by passing that PeerInformation object to PeerFinder.-connectAsync. 
This will prompt the user for consent, and given that consent, your completed handler will receive a 
Windows.Networking.Sockets.StreamSocket, which we’ve already encountered in Chapter 14, 
“Networking.” 

function peerFinder_AcceptRequest() { 
    ProxNS.PeerFinder.connectAsync(requestingPeer).done(function (proximitySocket) { 
        startSendReceive(proximitySocket); 
    }); 
} 
 
 

703

http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.peerfinder.connectionrequested.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.connectionrequestedeventargs.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.peerinformation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.peerfinder.connectasync.aspx


From this point on, you’re free to send whatever data with whatever protocols you’d like, on the 
assumption, of course, that the app on the other end will understand what you’re sending. This is clearly 
not a problem when it’s the same app on both ends of the connection; different apps, of course, will 
need to share a common protocol. In the sample, the “protocol” exchanges only some basic values, but 
the process is all there. 

If at any time you want to stop advertising, call PeerFinder.stop. To close a specific connection, call 
the socket’s close method. 

Making a Connection 
On the other side of a proximity relationship, an app can look for peers that are advertising themselves 
over WiFi Direct or Bluetooth. In the Proximity sample, a Browse Peers button is enabled if the browse 
discovery type is available. This button triggers a call to the following function (js/PeerFinder.js) that 
uses PeerFinder.findAllPeersAsync to populate a list of possible connections, including those from 
different apps: 

function peerFinder_BrowsePeers() { 
    // Empty the current option list [code omitted] 
 
    ProxNS.PeerFinder.findAllPeersAsync().done(function (peerInfoCollection) { 
        // Add newly found peers into the drop down list. 
        for (i = 0; i < peerInfoCollection.size; i++) { 
            var peerInformation = peerInfoCollection[i]; 
            // Create and append option element using peerInformation.displayName  
            // to the peerFinder_FoundPeersList control [code omitted] 
        } 
    }); 
} 

When you select a peer to connect to, the sample takes its PeerInformation object and calls 
PeerFinder.connectAsync as before (during which the user is prompted for consent): 

function peerFinder_Connect() { 
    var foundPeersList = ProximityHelpers.id("peerFinder_FoundPeersList"); 
    var peerToConnect = discoveredPeers[foundPeersList.selectedIndex]; 
 
    ProxNS.PeerFinder.connectAsync(peerToConnect).done( 
        function (proximitySocket) { 
            startSendReceive(proximitySocket); 
        }); 
} 

Once again, this provides a StreamSocket as a result, which you can use as you will. To terminate the 
connection, call the socket’s close method. 
 
 

704

http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.peerfinder.findallpeersasync.aspx


Tap to Connect and Tap to Activate 
To detect a direct NFC tap—which again works to connect apps running on two devices—listen to the 
PeerFinder.ontriggeredConnectionStateChanged (a WinRT event that I spell out in camel casing so 
that it’s readable!). In response, start the PeerFinder: 

ProxNS.PeerFinder.ontriggeredconnectionstatechanged = triggeredConnectionStateChangedEventHandler; 
ProxNS.PeerFinder.start(); 

The process of connecting through tapping will go through a series of state changes (including user 
consent), where those states are described in the TriggeredConnectState enumeration: listening, 
connecting, peerFound, completed, canceled, and failed. Each state is included in the event args sent to 
the event (a TriggeredConnectionStateChangedEventArgs…some of these names sure get long!), and 
when that state reaches completed, the socket property in the event args will contain the StreamSocket 
for the connection: 

function triggeredConnectionStateChangedEventHandler(e) { 
    // [Other cases omitted] 
 
    if (e.state === ProxNS.TriggeredConnectState.completed) { 
        startSendReceive(e.socket); 
    } 
} 

Again, from this point on, it’s a matter of what data is being exchanged through the socket—the NFC 
tap is just a means to create the connection. And once again, call the socket’s close when you’re done 
with it. 

When tapping connects the same app across devices, it’s possible to have the tap launch an app on 
one of those devices. That is, when the app is running on one of the devices and has started the 
PeerFinder, Windows will know the app’s identity and can look for it on the other device. If it finds that 
app, it will launch it (or activate it if it’s already running). The app’s activated handler is then called with 
an activation kind of launch, where eventArgs.detail.arguments will contain the string 
“Windows.Networking.Proximity.PeerFinder:StreamSocket” (see js/default.js): 

var tapLaunch = ((eventObject.detail.kind ===  
    Windows.ApplicationModel.Activation.ActivationKind.launch) && 
    (eventObject.detail.arguments ===  
    "Windows.Networking.Proximity.PeerFinder:StreamSocket")); 
if (tapLaunch) { 
    url = scenarios[0].url; // Force scenario 0 if launched by tap to start the PeerFinder. 
} 
return WinJS.Navigation.navigate(url, tapLaunch); 

The code in Scenario 1 picks up this condition (the tapLaunch parameter to WinJS.- 
Navigation.Navigate is true) and calls PeerFinder.start automatically instead of waiting for a button 
press. In the process of startup, the app also registers its own triggeredConnection-StateChanged 
handler so that it will also receive a socket when the connection is complete. 

705

http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.peerfinder.triggeredconnectionstatechanged.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.triggeredconnectstate.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.triggeredconnectionstatechangedeventargs.aspx


Sending One-Shot Payloads: Tap to Share 
Although the PeerFinder sets up a StreamSocket and is good for scenarios involving ongoing 
communication, other scenarios—like sharing a photo, a link, or really any kind of information including 
data from an RFID tag—need only send some data from one device to another and be done with it. For 
such purposes we have the Windows.Networking.Proximity.ProximityDevice class, which you obtain 
as follows: 

var proximityDevice = Windows.Networking.Proximity.ProximityDevice.getDefault(); 

An app that has something to share “publishes” that something as a message in the form of a string, 
a URI, or a binary buffer. RFID tags publish their messages passively; an app, on the other hand, uses the 
ProximityDevice class and its publishMessage, publishUriMessage, and publish-BinaryMessage 
methods (and a matching stopPublishing method). For example, drawing from Scenario 2 of the 
Proximity sample (js/ProximityDevice.js, there publishText contains the contents of an edit control): 

var publishedMessageId = proximityDevice.publishMessage("Windows.SampleMessageType", 
    publishText); 

On the other side, an app that would like to receive such a message calls 
ProximityDevice.-subscribeForMessage, passing the name of the message it expects along with a 
handler for when messages arrive: 

var subscribedMessageId = proximityDevice.subscribeForMessage("Windows.SampleMessageType", 
    messageReceived); 
 
function messageReceived(receivingDevice, message) { 
    // Process the message 
} 

If the app is no longer interested in messages, it calls stopSubscribingForMessage. 

With this simple protocol, you can see that an app that supports “tap to share” (as it’s called) would 
probably publish messages whenever it has appropriate content in hand. It can also use the 
ProximityDevice object’s devicearrived and devicedeparted events to know when other tap-to-share 
peers are in proximity such that it’s appropriate to publish (these are WinRT events). The devicearrived 
event is also what you use to discover that an RFID tag has come into proximity (see below). 

What’s interesting to think about, though, is what kind of data you might share. Consider a travel 
app in which you can book flights, hotels, rental cars, and perhaps much more. It can, of course, publish 
messages with basic details but could also publish richer binary messages that would allow it to transfer 
an entire itinerary to the same app running on another device, typically to another user. This would 
enable one person to set up such an itinerary and then share it with a second person, who could then 
just tap a Book It button and be done! This would be far more efficient than emailing that itinerary as 
text and having the second person re-enter everything by hand. 

 

 

706

http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.proximitydevice.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.proximitydevice.publishmessage.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.proximitydevice.publishurimessage.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.proximitydevice.publishbinarymessage.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.proximitydevice.subscribeformessage.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.proximitydevice.stopsubscribingformessage.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.proximitydevice.devicearrived.aspx
http://msdn.microsoft.com/library/windows/apps/windows.networking.proximity.proximitydevice.devicedeparted.aspx


On a simpler note, publishing a URI makes it super-simple for one person to tap-and-share whatever 
they’re looking at with another person, again avoiding the circuitous email route or other forms of 
sharing. A quick tap, and you’re seeing what I’m seeing. Again, though, there’s so much more than can 
be shared that it’s a great thing to consider in your design, especially if you’re targeting mobile devices. 
“What do people near each other typically do together?” That’s the question to ask—and to answer in 
the form of a great proximity app. 

Do note that the URIs you share don’t have to be http:// references to websites but can contain any 
URI scheme. If there’s an app associated with that URI scheme, tap-to-share also becomes 
tap-to-activate, because Windows will launch the default app for that association. And if there’s no 
association, Windows will ask if you want to acquire a suitable app from the Store. You can also consider 
using a Windows Store URI that will lead a user to directly install an app. Those URIs are described on 
Creating links with the Windows Store protocol. 

Such URIs make it possible for RFID tags, whose messages are basically hardcoded into the device, to 
support tap-to-share and tap-to-activate scenarios. When you tap an RFID tag to an NFC-capable 
device, the ProximityDevice object will fire a devicearrived event. An app can then receive the tag’s 
message through ProximityDevice.subscribeForMessage. This means that the app will need to know 
what type of message might be sent from that tag—it might be a standard type, or the app might be 
written specifically for tags with specific programming. For example, an art gallery could place tags near 
every piece it displays and then make an app available in the Windows Store for that gallery (or any 
other galleries that work in cooperation) that knows what messages those tags will send. If the message 
has an appropriate URI scheme in it, tapping on an RFID tag can help the user acquire an app and enjoy 
a rich experience. 

For more on this topic, look for an NFC-related post on the Windows Developer Blog. (One was in 
the publishing queue at the time of writing but not yet available.) 

Printing Made Easy 

An embarrassingly long time ago, when I was first working in the computer industry, I remember 
hearing excited talk about the “paperless office” and how very soon now we wouldn’t need things like 
printers because everything would be shuttled around digitally. 

Decades later, we do find ourselves shuttling around plenty of digital content, and yet printing still 
seems alive and well (except for this present book, of course, where early on we decided on an ebook 
format so that we could use extensive hyperlinks and color!). Maybe we still like paper for how it feels, 
how it uses our eyes differently, how it’s cheap and disposable (unlike your Windows 8 tablet), how it 
can be used to start fires in a pinch or make airplanes, and how it makes good use of all the small trees 
that get thinned out of commercial tree farms (at least here in the western United States). Maybe too it’s 
just part of the human experience—after all, as much as we play with our computers, we do still live in a 
physical world with physical objects, so it makes total sense that we continue to appreciate placing 
information onto physical media. 

707

http://msdn.microsoft.com/library/windows/apps/hh974767.aspx
http://blogs.msdn.com/b/windowsappdev/


Sometimes I wonder whether the idea of the paperless office wasn’t fueled in part by the fact that 
many apps didn’t implement printing very well, an artifact of it being a difficult task to begin with. (And 
then there were printer drivers of dubious quality, connection difficulties, and many other challenges.) 
But gradually the whole world of printing has improved, both for consumers and for developers. 

Of course, printing isn’t always about going to paper either. I frequently use a PDF “printer” to create 
read-only copies of documents that are more suitable to sharing in many cases than my originals. 
Occasionally I print to a fax machine (which sends a fax), and more occasionally I’ll print an email or web 
page directly to Microsoft OneNote for filing. In fact, I highly recommend setting your default printer to 
a digital target of some kind when working on printing features in your own app. That way you’ll avoid 
producing copious amounts of scratch paper in the process, unless you happen to own a tree farm that 
you’ll be thinning in a couple of years! 

Get the backstory If you want to know more about how printing as a whole has been reimagined, 
check out Simplifying printing in Windows 8 on the Building Windows 8 Blog, a post that provides deep 
soul satisfaction knowing that there are fewer drivers in your printing future. 

To understand how to implement printing in an app, let’s first see what it looks like to the user. Then 
we’ll see how to ready content for printing and how to handle the printing-related events from 
Windows. 

Note A Windows Store app written in JavaScript can use the window.print method to print with 
default settings. It’s not recommended, however, because it doesn’t work with the print UI and doesn’t 
always produce the best output. Windows Store apps should give the user the full Windows 8 
experience as described here. 

The Printing User Experience 
Printing typically starts in an app where the user is looking at something they want to print and invokes 
an appropriate command. In Scenario 2 of the Print sample, for instance, whose code we’ll be looking at 
in the next section, we see a big block of content along with a Print button, as shown in Figure 15-5. 
Note that such a Print button would normally be on the app bar and not on the app canvas, but this is a 
sample. 

To start printing, the user can either tap this Print button or open the Charms bar and select Devices. 
Either way, if the app is registered for printing—that is, it’s listening for the event that’s raised from the 
Devices charm and provides suitable content—the user will see a list of print targets, as shown on the 
left side of Figure 15-6. If the app doesn’t have printable content (that is, it doesn’t listen for the event 
or provides no content in response), the user will see a panel like that on the right side of Figure 15-6. 
This is very much the same experience that a user sees with the Share charm depending on whether the 
app provides data for that feature. You’ve likely seen the epic fail message of “This app can’t share.” 
Printing supplies a similar disappointment for apps that lack the capability. Don’t let your app be one of 
them. 

708

http://blogs.msdn.com/b/b8/archive/2012/07/25/simplifying-printing-in-windows-8.aspx
http://code.msdn.microsoft.com/windowsapps/Print-Sample-c544cce6


 
FIGURE 15-5 Scenario 2 of the Print sample shows a typical app with something ready to print. 

 

  
FIGURE 15-6 The Devices charm when an app has available print content (left) and when it doesn’t (right). 

 

 

 

709



From this point on, the system is really just taking whatever content the app provides and displays UI 
based on the capabilities of the printer driver, as shown in Figure 15-7. From the app’s point of view, it 
thankfully gets all of this for free! The app can also indicate additional options to customize the UI, such 
as paper size and duplex printing, as shown in Figure 15-8, which comes from Scenario 3 of the sample. 

  
FIGURE 15-7 Print preview and printer options are shown once the user selects a printer. The More Settings link on 
the left is what opens the options pane on the right. 

 
FIGURE 15-8 The Print pane reflecting customization options indicated by the app. 

710



Print Document Sources 
No matter where the user might want to print content, the important thing is to make that content 
ready for printing. The key function you need to know about here is not found in WinRT but in the 
MSApp object: MSApp.getHtmlPrintDocumentSource. I like the way the documentation put it: “This 
method is used as the bridge between HTML and [Windows 8 app] style printing. In other words, this is 
how an app dev says ‘give me some stuff to print’.” What you give it is an HTML document that contains 
your content. 

I emphasize the word document here because what you pass to getHtmlPrintDocumentSource cannot 
be any arbitrary element in the DOM. It must be the same kind of thing that the document variable 
always points to, or else you’ll see a run-time exception with “no such interface supported.” 

So where do you get such an object? 

If what your app is showing on the screen is exactly what you want to print, you can just use the 
document object directly. This is what Scenarios 1–3 of the Print sample do: 

MSApp.getHtmlPrintDocumentSource(document); 

Of course, you don’t necessarily want to print everything on the screen; you can see that what’s on 
the screen in Figure 15-4 and what appears in the print preview of Figure 15-6 and Figure 15-7 is 
different. This is where the print media query in CSS comes into play: 

@media print { 
    /* Print-only styles */ 
} 

Simply said, if there’s anything you don’t want to show up in the printed output, set the display: 
none style within this media query. An alternate strategy, one that the sample employs, is to create a 
separate CSS file, such as css/print.css, and link it in your HTML file with the media attribute set to print 
(see html/scenario1.html): 

<link rel="stylesheet" type="text/css" href="/css/print.css" media="print" /> 

Print styles need not be limited to visibility of content: you can also use it however you like to 
arrange that content for more printer-friendly output. In a way, printing is like another view state where 
you’re not adding to or changing the content; you’re simply changing the visibility and layout. There are 
also some events you can use to do more specific formatting before and after printing has happened, as 
we’ll see later. 

But what if the content you want to print isn’t your document object at all? How do you create 
another? There are several options here: 

• In the document.body.onbeforeprint event handler, append additional child elements to the 
document and use the document.body.onafterprint event to remove them (the structure of 
such handlers is shown in Scenario 2 of the Print sample). If your print CSS leaves only those 
newly added elements visible, that’s all that gets printed. This very effectively controls the entire 

711

http://msdn.microsoft.com/library/windows/apps/Hh831251.aspx
http://code.msdn.microsoft.com/windowsapps/Print-Sample-c544cce6


print output, such as adding additional headers and footers that aren’t visible in the app. You 
might have a place in the app, in fact, where the user can configure those headers and footers. 

• Call document.createDocumentFragment to obtain a document fragment and then populate it 
with whatever elements you want to print. getHtmlPrintDocumentSource accepts such a 
fragment. 

• If you have an iframe whose src is set to an SVG document (one of the tips we discussed for 
SVG’s in Chapter 10), obtain that SVG document directly through the iframe element’s 
contentDocument property. This too can be passed directly to getHtmlPrintDocument-Source and 
will print just that SVG, for example: 

<!-- in HTML --> 
<iframe id="diagram" src="/images/diagram.svg"></iframe> 
 
//In JavaScript 
var frame = document.getElementById("diagram"); 
args.setSource(MSApp.getHtmlPrintDocumentSource(frame.contentDocument)); 

• If you want to print the contents of an altogether different HTML page, create a link element in 
the document head that points to that other page for print media (see below). This will redirect 
getHtmlPrintDocumentSource to process that page’s content instead. 

The latter is demonstrated in Scenario 4 of the Print sample, where a link element is added to the 
document with the following code (js/scenario4.js): 

var alternateLink = document.createElement("link"); 
alternateLink.setAttribute("id", "alternateContent"); 
alternateLink.setAttribute("rel", "alternate"); 
alternateLink.setAttribute("href", "http://go.microsoft.com/fwlink/?LinkId=240076"); 
alternateLink.setAttribute("media", "print"); 
document.getElementsByTagName("head")[0].appendChild(alternateLink); 

Here the rel attribute indicates that this is alternate content, the media attribute indicates that it’s 
only for print, and href points to the alternate content (id is optional). Note that if the target page has 
any print-specific media queries, those are certainly applied when creating the print source. 

Providing Print Content and Configuring Options 
Now that we know how to get a source for print content, it’s very straightforward to provide that 
content to Windows for printing. 

First, obtain the Windows.Graphics.Printing.PrintManager object as follows: 

var printManager = Windows.Graphics.Printing.PrintManager.getForCurrentView(); 

and then listen for its printtaskrequested event (a WinRT event), either through addEvent-Listener or 
by assigning a handler as done in the sample: 

printManager.onprinttaskrequested = onPrintTaskRequested; 

712

http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printmanager.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printmanager.printtaskrequested.aspx


If you don’t add a handler for this event, the user will see the message on the right side of Figure 
15-5 when invoking the Devices charm unless you’ve also registered for other device-related events 
such as Windows.Media.PlayTo.PlayToManager.sourceRequested, as we saw at the end of Chapter 10. 

If you want to directly invoke printing from an app command, such as the Print button in Scenario 2 
of the sample, call the PrintManager.showPrintUIAsync method. This is equivalent to the user 
invoking the Devices charm when the app has registered for the printtaskrequested event. 

The printtaskrequested event is fired when the Devices charm is invoked. In response, your 
handler creates a PrintTask object with a callback function that will provide the content document 
when needed. Here’s how that works. First, your handler receives a PrintTaskRequest object that has 
just three members: 

• deadline The date and time that indicates how long you have to fulfill the request. 

• getDeferral Returns a PrintTaskRequestedDeferral object in case you need to perform any 
async operations to fulfill the request. As with all deferrals, you call its complete method when 
the async operation has finished. 

• createPrintTask Creates a PrintTask with a given title and a function that provides the source 
document when requested. 

The structure of createPrintTask is slightly tricky. While it returns a PrintTask object through which 
you can set options and listen to task-related events, as we’ll see shortly, its source property is 
read-only. So, instead of creating a task and storing your content document in this property, you 
instead provide a callback function that does the job when requested. The function itself is simple: it just 
receives a PrintTaskSourceRequestedArgs object whose setSource method you call with what you get 
back from MSApp.getHtmlDocumentPrintSource. 

This is typically where you can also do other work to configure the task, so let’s take an example from 
Scenario 3 of the Print sample (where I’ve added a namespace variable for brevity): 

function onPrintTaskRequested(printEvent) { 
    var printTask = printEvent.request.createPrintTask("Print Sample", function (args) { 
        args.setSource(MSApp.getHtmlPrintDocumentSource(document)); 
 
        // Choose the printer options to be shown. The order in which the options are 
        // appended determines the order in which they appear in the UI 
        var options = Windows.Graphics.Printing.StandardPrintTaskOptions; 
        printTask.options.displayedOptions.clear(); 
        printTask.options.displayedOptions.append(options.copies); 
        printTask.options.displayedOptions.append(options.mediaSize); 
        printTask.options.displayedOptions.append(options.orientation); 
        printTask.options.displayedOptions.append(options.duplex); 
 
        // Preset the default value of the printer option 
        printTask.options.mediaSize =  
            Windows.Graphics.Printing.PrintMediaSize.northAmericaLegal; 
 
        // Register the handler for print task completion event 

713

http://msdn.microsoft.com/library/windows/apps/windows.media.playto.playtomanager.sourcerequested.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printmanager.showprintuiasync.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printtask.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printtaskrequest.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printtaskrequesteddeferral.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printtasksourcerequestedargs.aspx


        printTask.oncompleted = onPrintTaskCompleted; 
    }); 
} 

Note that PrintTaskSourceRequestedArgs also contains a getDeferral method, should you need it, 
along with a deadline. 
 

Tip If you step through the code in your printtaskrequested handler but you pass the deadline, the 
print UI will time out and say there’s nothing available to print. This might not be an error in the app at 
all—take off the breakpoints and run again to check. 

You can exercise some control over the appearance of the print UI through PrintTask.options, in 
which context you should review Guidelines for print-capable Windows Store apps. The options object 
here, of type PrintTaskOptions, has a number of properties. A few obvious numerical ones are 
maxCopies, minCopies, and numberOfCopies. You can also call getPageDescription with a page number 
to obtain a PrintPageDescription with resolution information for that page. 

Then there is a host of properties whose values come from various printing enumerations: 

PrintTaskOptions Property Windows.Graphics.Printing Enumeration 
binding PrintBinding 
collation PrintCollation 
colorMode PrintColorMode 
duplex PrintDuplex 
holePunch PrintHolePunch 
mediaSize PrintMediaSize 
mediaType PrintMediaType 
orientation PrintOrientation 
printQuality PrintQuality 
staple PrintStaple 

 

PrintTaskOptions.displayedOptions, for its part, is a vector of strings that must come from the 
StandardPrintOptions class, as shown in the code above. Each of these controls the visibility of the 
option in the print UI if, of course, the printer supports it (otherwise the option will not be shown). The 
full list of options is binding, collation, colorMode, copies, duplex, holePunch, inputBin, mediaSize, 
mediaType, nUp, orientation, printQuality, and staple. 

Take special note of the mediaSize property, for which there are literally 172 different values in the 
PrintMediaSize enumeration that reflect all the sizes of paper, envelopes, and so forth that we find 
around the world. When you intend to market a print-capable Windows Store app in different regions, 
you might want to include mediaSize in displayedOptions and set its value to something that’s 
applicable to the region (as the code above is doing for legal size paper). Even so, the media size is 
typically available in the More Settings panel in the print UI, depending on what the printer in question 
supports, so users will have access to it. 

714

http://msdn.microsoft.com/library/windows/apps/hh868178.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printtaskoptions.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printbinding.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printcollation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printcolormode.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printduplex.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printholepunch.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printmediasize.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printmediatype.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printorientation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printquality.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printstaple.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.printtaskoptions.displayedoptions.aspx
http://msdn.microsoft.com/library/windows/apps/windows.graphics.printing.standardprinttaskoptions.aspx


The final bit to mention in the code above is that a PrintTask has a completed event, along with 
previewing, progressing, and submitting. You can use these to reflect the status of print tasks in your 
app should you choose to do so. More information about the task itself is also available through its 
properties, which will typically contain the title you gave to the print job along with a unique ID. In all 
of this, however, you might have noticed a conspicuous absence of any method in PrintTask that would 
cancel a print job—in fact, there is none. This is because the HTML print model, as presently used by 
Windows Store apps written in JavaScript, is an all-or-nothing affair: once the job gets into the print 
engine, there’s no programmatic means to stop it. The user can still go to the printer control panel on 
the desktop and cancel the job there, or revert to the old-school method of yanking out the paper tray, 
but at present an app isn’t able to provide such management functions itself. 

What We’ve Just Learned 

• Although Windows Store apps in Windows 8 cannot access arbitrary hardware, they do have 
access to a fair number of devices through both the WinRT API and Win32 APIs like Xinput and 
those supporting Windows Portable Devices (WPD). In cases of Win32 APIs, a WinRT component 
provides a bridge to apps written in JavaScript. 

• The Windows.Devices.Enumeration API allows an app to discover what hardware is installed on a 
machine. If an app can access specific types of devices, such as Bluetooth devices, it can use the 
enumeration to present a list from which the user can select a device to use. 

• The Windows.Networking.Proximity API supports peer browsing (over WiFi Direct and 
Bluetooth) as well as tap-to-connect and tap-to-share scenarios with near field communication 
(NFC)–capable machines. 

• Proximity connections can employ sockets for ongoing communication (like a multiplayer game) 
or can simply send messages from one device to another through a publish-and-subscribe 
mechanism, as is typical with tap-to-share scenarios, including RFID tags. 

• Printing, having been reimagined for Windows 8 as a whole, is relatively easy to implement in a 
Windows Store app. It involves listening for the printing event when the Devices charm is 
invoked and providing HTML content to Windows. 

• Printable content can come from the app’s document, a document fragment, an SVG document, 
or a remote source. Such content can be customized using a CSS media query for print, and 
Windows takes care of the layout and flow of the information on the target printer. 

  

715



Chapter 16 

WinRT Components: An 
Introduction 

At the very beginning of this book, in the first two pages of Chapter 1, “The Life Story of a Windows 
Store App,” we learned that apps can be written in a variety of languages and presentation 
technologies. For the better part of this book we’ve spoken of this as a somewhat singular choice: you 
choose the model that best suits your experience and the needs of your app and go from there. 

At the same time, we’ve occasionally encountered situations where some sort of mixed language 
approach is possible, even necessary. In Chapter 1, in “Sidebar: Mixed Language Apps,” I introduced the 
idea that an app can actually be written in multiple languages. In Chapter 8, “State, Settings, Files, and 
Documents,” I mentioned that gaining access to database APIs beyond IndexedDB could be 
accomplished with a WinRT component. In Chapter 10, “Media,” we saw that JavaScript might not 
necessarily the best language in which to implement a pixel crunching routine. And in Chapter 13, “Tiles, 
Notifications, the Lock Screen, and Background Tasks” we encountered the Notifications Extensions 
Library, a very useful piece of code written in C# that made the job of constructing an XML payload 
much easier from JavaScript. We also saw that background tasks can be written in languages that differ 
from that of the main app. 

With the primary restriction that an app that uses HTML and CSS for its presentation layer cannot 
share a drawing surface with WinRT components written in other languages, the design of WinRT really 
makes the mixed language approach possible. As discussed in Chapter 1, WinRT components written in 
any language are made available to other languages through a projection layer that translates the 
component’s interface into what’s natural in the target language. All of WinRT is written this way, and 
custom WinRT components take advantage of the same mechanism. (We’ll see the core characteristics 
of the JavaScript projection later in this chapter.) 

What this means for you—writing an app with HTML, CSS, and JavaScript—is that you can 
implement various parts of your app in a language that’s best suited to the task or technically necessary. 
As a dynamic language, JavaScript shows its strength in easily gluing together functionality provided by 
other components that do the heavy lifting for certain kinds of tasks (like camera capture, background 
transfers, etc.). Those heavy-lifting components are often best written in other language such as C++, 
where the compiled code runs straight on the CPU instead of going through runtime layers like 
JavaScript. 
 

716



Indeed, when we speak of mixed language apps, you truly can use a diverse mix.76 You can write a 
C# component that’s called from JavaScript, but that C# component might then turn right around and 
invoke a component written in C++. Again, it always means that you can use the language for any 
particular job, including those where you need to create your own asynchronous operations (that is, to 
run code on concurrent threads that don’t block the UI thread). In this context it’s helpful to also think 
through what this means in relationship to web workers, something a Windows Store app can employ if 
desired. 

In this penultimate chapter we’ll first look at the different reasons why you might want to take a 
mixed language approach in your app. We’ll then go through a couple of quickstarts for C# and C++ so 
that we understand the structure of these components, how they appear in JavaScript, and the core 
concepts and terminology. The rest of the chapter will then primarily give examples of those different 
scenarios, which means we won’t necessarily be going deep into the many the mechanical details. I’ve 
chosen to do this because there is very good documentation on those mechanics, especially the 
following: 

• Creating Windows Runtime Components in C++ 

• Walkthrough: Creating a basic Windows Runtime component in C++ 

• Creating Windows Runtime Components in C# and Visual Basic (and its subsidiary topics) 

• Walkthrough: creating a basic Windows Runtime component in C# or Visual Basic 

Don’t let the word “basic” in the walkthrough titles deter you: all these topics are comprehensive 
cookbooks that cover the fine details of working with data types like vectors, maps, and property sets; 
declaring events; creating async operations; and how all this shows up in JavaScript. We’ll see some of 
these things in the course of this introduction, but with great topics covering the what, we’ll be 
spending our time here on why we’d want to use such components in the first place and the problems 
they can help solve. Plus, I want you to save some energy for the book’s finale in the next chapter (a 
rather healthy one, by all reckoning), where we’ll talk about getting your app out to the world once you 
solve those problems! 
 

Note By necessity I have to assume in this chapter that you have a little understanding of the C# and 
C++ languages, as this is not the place to cover the basics. If these languages are entirely new to you, 
spending a few hours familiarizing yourself with them will improve your mileage with this chapter. 
 

76 The documentation on the Windows Developer Center along with samples in the Windows SDK sometimes refer to mixed 
language apps as “hybrid apps.” I’ve chosen to avoid the latter term because it already has a meaning in the context of 
other client platforms, namely apps that employ a fair amount of web content as you can do with Windows Store apps and 
iframe elements. 

717

http://msdn.microsoft.com/library/windows/apps/hh441569.aspx
http://msdn.microsoft.com/library/windows/apps/hh755833.aspx
http://msdn.microsoft.com/library/windows/apps/br230301.aspx
http://msdn.microsoft.com/library/windows/apps/hh779077.aspx


Choosing a Mixed Language Approach (and Web Workers) 

There are many reasons to take a mixed language approach in your app, which can again include any 
number of WinRT components written in C#, Visual Basic (hereinafter just VB), and/or C++: 

• You can accomplish certain tasks faster with higher performance code. This can reduce memory 
overhead and also consume less CPU cycles and power, an important consideration for 
background tasks for which a CPU quota is enforced—you might get much more done in 2 CPU 
seconds in C++ than with JavaScript, because there’s no language engine involved. 

• C#, Visual Basic, and C++ have access to a sizable collection of additional APIs that are not 
available to JavaScript. These include .NET, Win32, and COM (Component Object Model) APIs, 
including the non-UI features of DirectX such as XAudio and Xinput. We’ll see a number of 
examples in the “Access to Additional APIs” section later in this chapter. 

• Access to other APIs might also be necessary for utilizing third-party .NET/Win32/COM libraries 
and also gives you the ability to reuse existing code that you might have in C#, VB, or C++. The 
Developing Bing Maps Trip Optimizer, a Windows Store app in JavaScript and C++ topic shows a 
complete scenario along these lines, specifically that of migrating an ActiveX control to a WinRT 
component so that it can be used from an app, because ActiveX isn’t directly supported. (We 
won’t cover this scenario further in this chapter.) 

• It can be easier to work with routines involving many async operations by using the await 
keyword in C# and Visual Basic, because the structure is much cleaner than with promises. An 
example of this can be found in the Here My Am! app of Chapter 17, “Apps for Everyone,” where 
the transcodeImage function written in JavaScript for Chapter 13 is rewritten in C# (see 
Utilities.ImageConverter.TranscodeImageAsync in the Utilities project). 

• A WinRT component written in C++ is more effective at obfuscating sensitive code than 
JavaScript and .NET languages. Although it won’t obfuscate the interface to that component, its 
internal workings are more painstaking to reverse-engineer. 

• A WinRT component is the best way to write a non-UI library that other developers can use in 
their chosen language or that you can just use in a variety of your own projects, like the 
Notifications Extensions library we saw in earlier chapters. In this context, see How to: Create a 
software development kit, which includes details how the component should be structured to 
integrate with Visual Studio. 

• Although you can use web workers in JavaScript to execute code on different threads, a WinRT 
component can be much more efficient for custom asynchronous APIs. Other languages can also 
make certain tasks more productive, such as using language-integrated queries (LINQ) from 
C#/VB, creating parallel loops in C#/C++, using C++ Accelerated Massive Parallelism (AMP) to 
take advantage of the GPU, and so on. 
 

718

http://msdn.microsoft.com/library/windows/apps/hh699893.aspx
http://msdn.microsoft.com/library/windows/apps/hh768146.aspx
http://msdn.microsoft.com/library/windows/apps/hh768146.aspx
http://msdn.microsoft.com/library/windows/apps/hh767434.aspx
http://msdn.microsoft.com/library/hh265136.aspx


Again, components can also make use of one another—the component system has no problem with 
that. I reiterate this point because it becomes relevant in the context of the last bullet above—web 
workers—and running code off the UI thread. 

You are again wholly free to use web workers (or just workers) in a Windows Store app. In fact, Visual 
Studio provides an item template for exactly this purpose: right-click your project in Visual Studio’s 
solution explorer, select Add > New Item, and then choose Dedicated Worker. I’ll also show an example 
later on in the section “JavaScript Workers.” The real drawback here, compared with WinRT 
components, is that communication between the worker and the main app thread is handled entirely 
through the singular postMessage mechanism; data transferred between the app and the worker must 
be expressed as properties of a message. In other words, workers are set up for a client-server 
architecture more so than one of objects with properties, methods, and events, though you can 
certainly create structures for such things through messages. 

What this means is that using workers with multiple asynchronous operations can get messy. By 
comparison, the methods we’ve seen for working with async WinRT operations—WinJS promises—is 
much richer, especially when you need to chain or nest async operations, raise exceptions, and report 
progress. Fortunately, there is a way to wrap a worker within a promise, as we’ll see again in the 
“JavaScript Workers” section. 

What also interesting to think about is how you might use a worker written in JavaScript to act as an 
agent that delegates work to WinRT components. The JavaScript worker then serves as the glue to bring 
all the results from those components together, reporting a combined result to the main app through 
postMessage. 

Along these same lines, if you have some experience in .NET languages like C# and Visual Basic along 
with C++, you’ll know that their respective programming models have their own strengths and 
weaknesses. Just as you can take advantage of JavaScript’s dynamic nature where it serves best, you can 
use the managed nature of .NET where it relieves you from various burdens like managing memory and 
reference counts and then use C++ where you really want the most performant code. 

In short, you can have your main app’s UI thread in JavaScript delegate a task to a worker in 
JavaScript, which then delegates some tasks to a WinRT component written in C#, which might then 
delegate its most intensive tasks to still other components written in C++. Truly, the combination of 
workers with WinRT components gives you a great deal of flexibility in your implementation. 
 

Note One potential disadvantage to using WinRT components in C++ in your app is that while 
JavaScript and .NET languages (C#/VB) are architecture-neutral and can target any CPU, C++ 
components must be separately compiled for x86, x64, and ARM. This means that your app will 
potentially have three separate packages in the Windows Store. However, a package for x86 will also 
work on x64, which would eliminate one of the specific targets if creating a specific x64 package 
doesn’t really buy you any performance gains. 

719



Quickstarts: Creating and Debugging Components 

When you set out to add a WinRT component to your project, the easiest place to start is with a Visual 
Studio item template. Right-click your solution (not your project) in Visual Studio’s solution explorer, 
select Add > New Project, and then choose the Windows Runtime Component item listed under the 
Visual Basic, Visual C#, or Visual C++ > Windows Store nodes as shown in Figure 16-1 (for a C# project).  

In the sections below, we’ll look at both the C# and C++ options here as we fulfill a promise made in 
Chapter 10 to improve the performance of the Image Manipulation example in this book’s companion 
content. That earlier sample performed a grayscale conversion on the contents of an image file and 
displayed the results on a canvas. We did the conversion in a piece of JavaScript code that performs 
quite well, actually, but it’s good to ask if we can make it better. Our first two WinRT components, then, 
are equivalent implementations written in C# and C++. Together, all three give us the opportunity to 
compare relative performance, as we’ll do in “Comparing the Results.” 
 

 
FIGURE 16-1 Visual Studio’s option for creating a C# WinRT Component project; similar options appear under Visual 
Basic > Windows Store and Visual C++ > Windows Store. 

One problem with all these implementations is that they still run on the UI thread, so we’ll want to 
look at making the operations asynchronous. We’ll come back to that later, however, in the “Key 
Concepts and Details” section so as to avoid making these quickstarts less than quick! 

I’ve written the C# and C++ sections below assuming that you’re read through them both in order. I 
will specifically be introducing terminology and tooling considerations in the first section that apply to 
the second. 

720



Sidebar: WinRT Components vs. Class Libraries (C#/VB) and Dynamic-Link 
Libraries 
In the Add New Project dialog of Visual Studio, you’ll notice that an option for a Class Library is 
shown for Visual C# and Visual Basic and an option for a DLL (dynamic-link library) is shown for 
C++. These effectively compile into assemblies and DLLs, respectively, which bear resemblances 
to WinRT components. The difference, however, is that these types of components can be used 
only from those same languages: a Class Library (.NET assembly) can be used by apps written in 
.NET languages but not from JavaScript. Similarly, a DLL can be called from C++ and .NET 
languages (the latter only through a mechanism called P/Invoke) but is not available to JavaScript. 
A WinRT component is the only choice for this purpose. 

Sometimes a simple DLL is required, as with media extensions that provide custom 
audio/video effects or a codecs. These are not WinRT components because they lack metadata 
that would project them into other languages, nor is such metadata needed. Details on DLLs for 
the media platform can be found in Using media extensions and Media extensions sample. 

Quickstart #1: Creating a Component in C# 
As shown in Figure 16-1, I’ve added a WinRT Component in C# to the Image Manipulation example, 
calling it PixelCruncherCS. Once this project has been added to the solution, we’ll have a file called 
class1.cs in that project that contains a namespace PixelCruncherCS with one class: 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using System.Threading.Tasks; 
 
namespace PixelCruncherCS 
{ 
    public sealed class Class1 
    { 
    } 
} 

Not particularly exciting code at this point but enough to get us going. You can see that the class is 
marked public, meaning it will be visible to apps using the component. It is also marked sealed to 
indicate that other classes cannot be derived from it (due to current technical constraints). Both 
keywords are required for WinRT components in Windows 8. (These two keywords are Public and 
NotInheritable in Visual Basic.) 

To test the interaction with JavaScript, I’ll give the class and its file a more suitable name (Tests and 
grayscale.cs, since we’ll be adding more to it) and create a test method and a test property:: 
 
 
 

721

http://msdn.microsoft.com/library/windows/apps/hh700365.aspx
http://code.msdn.microsoft.com/windowsapps/Media-extensions-sample-7b466096


public sealed class Tests 
{ 
    public static string TestMethod(Boolean throwAnException) 
    { 
        if (throwAnException) 
        { 
            throw new System.Exception("Tests.TestMethod was asked to throw an exception."); 
        } 
 
        return "Tests.TestMethod succeeded"; 
    } 
 
    public int TestProperty { get; set; } 
} 

If you build the solution at this point (Build > Build Solution), you’ll see that the result of the 
PixelCruncherCS project is a file called PixelCruncher.winmd. The .winmd extension stands for Windows 
Metadata: a WinRT Component written in C# is a .NET assembly that includes extra metadata referred 
to as the component’s Application Binary Interface or ABI. This is what tells Windows about everything 
the component makes available to other languages (those public classes), and it’s also what provides 
IntelliSense for that component in Visual Studio and Blend. 

In the app you must add a reference to the component so that it becomes available in the JavaScript 
namespace, just like the WinRT APIs. To do this, right-click References within the JavaScript app project 
and select Add Reference. In the dialog that appears, select Solution on the side and then check the box 
for the WinRT component project as shown in Figure 16-2. 

 
FIGURE 16-2 Adding a reference to a WinRT component within the same solution as the app. 

When writing code that refers to the component, you always start with the namespace, 
PixelCruncherCS in our case. As soon as you enter that name and a dot, IntelliSense will appear for 
available classes in that namespace: 

722



 
Once you add the name of a class and type another dot, IntelliSense appears for its methods and 

properties: 

 
 

Note If you’ve made changes to namespace, class, and other names in your WinRT component project, 
you’ll need to run Build > Build Solution to see the updated names within IntelliSense. 

Here you can see that although the method name in the C# code is TestMethod, it’s projected into 
JavaScript as testMethod, matching typical JavaScript conventions. This casing conversion is done 
automatically through the JavaScript projection layer for all WinRT components, including those in your 
own app. 

Notice also that IntelliSense is showing only testMethod here but not testProperty (whose casing is 
also converted). Why is that? It’s because in C#, TestMethod is declared as static, meaning that it can be 
executed without first instantiating an object of that class: 

var result = PixelCruncherCS.Tests.testMethod(false); 

On the other hand, testProperty, but not testMethod, is available on a specific instance: 

 

723



I’ve set up TestMethod, by the way, to throw an exception when asked so that we can see how it’s 
handled in JavaScript with a try/catch block: 

try { 
    result = PixelCruncherCS.Tests.testMethod(true); 
} catch (e) { 
    console.log("PixelCruncherCS.Tests.testMethod threw: '" + e.description + "'."); 
} 

Let’s try this code. Attaching it to some button (see the testComponentCS function in the example’s 
js/default.js file), set a breakpoint at the top and run the app in the debugger. When you hit that 
breakpoint, step through the code using Visual Studio’s Step Into feature (F11 or Debug > Step Into). 
Notice that you do not step into the C# code, an effect of the fact that Visual Studio can debug either 
script or managed (C#)/native (C++) code in one debugging session but unfortunately not both. 
Clearly, using some console output will be your friend with such a limitation. 

To set the debug mode, right-click your app project in solution explorer, select Debugging on the 
left, and then choose a Debugger Type on the right as shown in Figure 16-3. For debugging C#, select 
Managed Only or Mixed (Managed and Native). Then set breakpoints in your component code and 
restart the app (you have to restart for this change to take effect). When you trigger calls to the 
component from JavaScript, you’ll hit those component breakpoints. 

 
FIGURE 16-3 Debugger types in Visual Studio. 
 

724



With the basic mechanics worked out, we’re now ready to add our real functionality. The first step is 
to understand how to get the canvas pixel data arrays in and out of the WinRT component. In the 
JavaScript code (within the copyGrayscaleToCanvas method) we have an array named pixels with the 
original pixel data and another empty one in imgData.data, where imgData is obtained as follows: 

var imgData = ctx.createImageData(canvas.width, canvas.height); 

We can pass both these arrays into a component directly. A limitation here is that arrays passed to a 
WinRT component can be used for input or output, but not both—a component cannot just manipulate 
an array in place. The topic Passing arrays to a Windows Runtime component has the fine details. To 
make the story short, we fortunately already have an input array, pixels, and an output array, 
imgData.data, that we can pass to a method in the component: 

var pc = new PixelCruncherCS.Grayscale(); 
pc.convert(pixels, imageData.data);    //Note casing on method name 

Note The techniques shown here and in the article linked above apply only to synchronous methods in 
the WinRT component; arrays cannot be used with asynchronous operations. See “Key Concepts for 
WinRT Components” below for more on this topic. 

To receive this array in C#, both parameters must to be appropriately marked with their directions. 
Such marks in C# are called attributes, not to be confused with those in HTML, and they appear in [ ]’s 
before the parameter name. In this particular case, the attributes appear as [ReadOnlyArray()] and 
[WriteOnlyArray()] preceding the parameters (the ReadOnlyArray and WriteOnlyArray methods are 
found in the System.Runtime.InteropServices.WindowsRuntime namespace). So the declaration of the 
method in the component, which again must be public, looks like this, just using a Boolean as a return 
type for the time being: 

public Boolean Convert([ReadOnlyArray()] Byte[] imageDataIn, 
    [WriteOnlyArray()] Byte[] imageDataOut) 

With this in place, it’s a simple matter to convert the JavaScript grayscale code to C#: 

public Boolean Convert([ReadOnlyArray()] Byte[] imageDataIn, 
    [WriteOnlyArray()] Byte[] imageDataOut) 
{ 
    int i; 
    int length = imageDataIn.Length; 
    const int colorOffsetRed = 0; 
    const int colorOffsetGreen = 1; 
    const int colorOffsetBlue = 2; 
    const int colorOffsetAlpha = 3; 
 
    Byte r, g, b, gray; 
                 
    for (i = 0; i < length; i += 4) 
    { 
        r = imageDataIn[i + colorOffsetRed]; 
        g = imageDataIn[i + colorOffsetGreen]; 

725

http://msdn.microsoft.com/library/windows/apps/hh975353.aspx


        b = imageDataIn[i + colorOffsetBlue]; 
 
        //Assign each rgb value to brightness for grayscale 
        gray = (Byte)(.3 * r + .55 * g + .11 * b); 
 
        imageDataOut[i + colorOffsetRed] = gray; 
        imageDataOut[i + colorOffsetGreen] = gray; 
        imageDataOut[i + colorOffsetBlue] = gray; 
        imageDataOut[i + colorOffsetAlpha] = imageDataIn[i + colorOffsetAlpha]; 
    } 
             
    return true; 
} 

Sidebar: Back and Forth Debugging 
Despite the fact that you can debug only one side of the JavaScript-component relationship 
within any given debugging session, it’s not something you’ll spend too long lamenting. After all, 
there’s much work to be done; one must accept the state of affairs as they are and still be 
productive in those constraints. 

When I was working on the examples in this chapter, I found that I developed a pattern 
wherein I set breakpoints in both the JavaScript and C# sources, after which I would routinely 
switch debugging modes and run the app again. That is, I’d run the app with script debugging 
and step through the JavaScript as far as I could (restarting when I found and corrected errors), 
until I clearly saw a problem in the component. Then I switched debugger mode to Managed and 
re-ran the app. With all my breakpoints set in the component, I could exercise the app in the 
same way and then step through the component’s code, fixing errors, and restarting to repeat the 
process. At some later point, then, I’d find another problem in the JavaScript side, so I’d switch 
debug modes again and restart. It’s not as convenient as being able to step from one piece of 
code into the other, but in the end it seemed to work reasonably well. 

One suggestion that might speed things along is to write some bits of test code in C# or VB 
that will allow you to step from there into the component code directly. You might just build such 
test routines directly into the component, such that you can easily wire a button or two in 
JavaScript to those methods. This way you can probably tighten your iterations on the 
component code, being reasonably sure it works properly before invoking it from JavaScript with 
your real data. 

Quickstart #2: Creating a Component in C++ 
To demonstrate a WinRT component written in C++, I’ve also added a project to the Image 
Manipulation example, calling it PixelCruncherCPP. The core code is the same as the C# 
example—manipulating pixels is a rather universal experience! The necessary code structure for the 
component, on the other hand, is unique to the language—C++ has ceremony all its own. 

726



As we did with C#, let’s start by adding a new project using the Visual C++ > Windows Runtime 
Component template, using the PixelCruncherCPP name. After renaming Class1 to Tests in the code 
and renaming the files, we’ll have the following code in the header (which I call grayscale.h, and 
omitting a compiler directive): 

namespace PixelCruncherCPP 
{ 
    public ref class Tests sealed 
    { 
    public: 
        Tests(); 
    }; 
} 

where we see that the class must be public ref and sealed, with a public constructor. These together 
make the object instantiable as a WinRT component. In Tests.cpp we have the following: 

#include "pch.h" 
#include "Grayscale.h" 
 
using namespace PixelCruncherCPP; 
using namespace Platform; 
 
Tests::Tests() 
{ 
} 

Again, not too much to go on, but enough. (Documentation for the Platform namespace, by the way, 
is part of the Visual C++ Language Reference.) To follow the same process we did for C#, let’s add a 
static test method and a test property. The class definition is now: 

public ref class Tests sealed 
{ 
public: 
    Tests(); 
 
    static Platform::String^ TestMethod(bool throwAnException); 
    property int TestProperty; 
}; 

and the code for TestMethod is this: 

String^ Tests::TestMethod(bool throwAnException) 
{ 
    if (throwAnException) 
    { 
        throw ref new InvalidArgumentException; 
    } 
 
    return ref new String(L"Tests.TestMethod succeeded"); 
} 
 

727

http://msdn.microsoft.com/library/windows/apps/hh710417.aspx


When you build this project (Build > Build Solution) you’ll see that we now get PixelCruncherCPP.dll 
and PixelCruncherCPP.winmd files. Whereas a C# assembly can contain both the code and the 
metadata, a C++ component compiles into separate code and metadata files. The metadata is again 
used to project the component’s ABI into other languages and provides IntelliSense data for Visual 
Studio and Blend. If you now add a reference to this component in your app project—right-click the 
project > Add Reference > Solution, and then choose PixelCruncherCPP, as in Figure 16-2—you’ll find 
that IntelliSense works on the class when writing JavaScript code. 

You’ll also find that the casing of the component’s property and method names have also been 
changed. In fact, with the exception of the namespace, PixelCruncherCPP, everything we did to use the 
C# component in JavaScript looks exactly the same, as it should be: the app consuming a WinRT 
component does not need to concern itself with the language used to implement that component. The 
debugging experience, moreover, is also the same, except that you need to choose Native Only or 
Mixed (Managed And Native) in the debugger types dialog shown earlier in Figure 16-3. 

Now we need to do the same work to accept arrays into the component, for which we can use Array 
and WriteOnlyArray as a reference. In C++, an input array is declared with Platform::Array<T>^ and an 
output array as Platform::WriteOnlyArray<T>^, where we use uint8 as the type here instead of Byte in 
C#: 

bool Grayscale::Convert(Platform::Array<uint8>^ imageDataIn,  
    Platform::WriteOnlyArray<uint8>^ imageDataOut) 

The rest of the code is identical except for this one type change and for how we obtain the length of 
the input array, so we don’t need to spell it out here. The code to invoke this class from JavaScript is also 
the same as for C#: 

var pc2 = new PixelCruncherCPP.Grayscale(); 
pc2.convert(pixels, imgData.data); 
 

Sidebar: The Windows Runtime C++ Template Library (WRL) 
Visual Studio includes what is called the Windows Runtime C++ Template Library, or WRL, that 
helps you write low-level WinRT components in C++. It’s really a bridge between the raw COM 
level and what are called the C++/CX component extensions that we’ve actually been using in 
this section. If you have any experience with the Active Template Library (ATL) for COM, you’ll find 
yourself right at home with WRL. For more information, see the documentation linked above 
along with the Windows Runtime Component using WRL sample. 
 
 
 
 

728

http://msdn.microsoft.com/library/windows/apps/hh700131.aspx
http://msdn.microsoft.com/library/windows/apps/hh700131.aspx
http://msdn.microsoft.com/library/hh438466(v=vs.110).aspx
http://code.msdn.microsoft.com/windowsapps/Windows-Runtime-Component-e3e1e38d


Comparing the Results 
The Image Manipulation example in this chapter’s companion content contains equivalent code in 
JavaScript, C#, and C++ to perform a grayscale conversion on image pixels. Taking a timestamp with 
new Date() around the code of each routine, I’ve compiled a table of performance numbers below.77 

 Average Milliseconds (five samples; dual-core 2.5GHz processor) 
Image Size JavaScript C# C++ 
14.8K 8.4 7.2 6.4 
231K 45.2 40 33.8 
656K 76.6 65.8 54.4 
1.98MB 798 728 598 
4.57MB 796 750 637 

 

A couple of notes and observations about these numbers and measuring them: 

• When doing performance tests like this, be sure to set the build target to Release instead of 
Debug. This makes a tremendous difference in the performance of C++ code, because the 
compiler inserts all kinds of extra run-time checks in a debug build. 

• When taking measurements, also be sure to run the Release app outside of the debugger (in 
Visual Studio select Debug > Start Without Debugging). If you’ve enabled script debugging, 
JavaScript will run considerably slower even with a Release build and could lead you to think that 
the language is far less efficient than it really is. 

• If you run similar tests in the app itself, you’ll notice that the time reported for the conversion is 
considerably shorter than the time it takes for the app to become responsive again. This is 
because the canvas element’s putImageData method takes a long time to copy the converted 
pixels. Indeed, the majority of the time for the whole process is spent in putImageData and not 
the grayscale conversion. 

• Assuming the CPU load for the grayscale conversion is roughly identical between the 
implementations, you can see that a higher performance component reduces the amount of 
time that the CPU is carrying that load. Over many invocations of such routines, this can add up 
to considerable power savings. 

• The first time you use a WinRT component for any reason, it will take a little extra time to load 
the component and its metadata. The numbers above do not include first-run timings. Thus, if 
you’re trying to optimize a startup process in particular, this extra overhead could mean that it’s 
best to just do the job in JavaScript. 

With these numbers we can see that C# runs between 6–21% faster than the equivalent JavaScript 
and C++ 25–46% faster. C++ also runs 13–22% faster than C#. This shows that for noncritical code, 

77 You might be interested in a series of blog posts by David Rousset about building a camera app using HTML and 
JavaScript. In Part 4 of that series he offers much more in-depth performance analysis for a variety of devices, using pixel 
manipulation components much like we’ve been working with here. 

729

http://blogs.msdn.com/b/davrous/archive/2012/09/05/tutorial-series-using-winjs-amp-winrt-to-build-a-fun-html5-camera-application.aspx
http://blogs.msdn.com/b/davrous/archive/2012/10/02/tutorial-series-using-winjs-amp-winrt-to-build-a-fun-html5-camera-application-for-windows-8-4-4.aspx


writing a component won’t necessarily give you a good return on the time you invest; it will be more 
productive to just stay in JavaScript. But using a component in a few places where performance really 
matters might pay off handsomely. 

Tip There is much more to measuring and improving app performance than just offloading 
computationally intensive routines to a WinRT component. The Analyzing the performance of Windows 
Store apps and Analyzing the code quality of Windows Store apps with Visual Studio code analysis 
topics in the documentation will help you make a more thorough assessment of your app. 

I also want to add that when I first ran these tests with the example program, I was seeing something 
like 100% improvements in C#/C++ over JavaScript. The reason for that had more to do with the nature 
of the canvas element’s ImageData object (as returned by the canvas’s createImageData method) than 
with JavaScript. In my original JavaScript code (since corrected in Chapter 10 as well), I was 
dereferencing the ImageData.data array to set every r, g, b, and a value for each pixel. When I learned 
how dreadfully slow that dereference operation actually is, I changed the code to cache the array 
reference in another variable and suddenly the JavaScript version became amazingly faster. Indeed, 
minimizing identifier references is generally a good practice for better performance in JavaScript. For 
more on this and other performance aspects, check out High Performance JavaScript, by Nicholas C. 
Zakas (O’Reilly, 2010). 

Sidebar: Managed vs. Native 
As shown in the previous section, going from JavaScript to C# buys you one level of performance 
gain, and going from C# to C++ buys another. Given that C++ is often more complex to work 
with, it’s good to ask whether the extra effort will be worth it. In very critical situations where that 
extra 13–22% really matters, the answer is clearly yes. But there is another factor to consider: the 
difference between the managed environment of .NET languages (along with JavaScript, for that 
matter) and the native environment of C++. 

Put simply, the reason why C#/VB code is often easier to write than C++ is that the .NET 
Common Language Runtime (CLR) provides a host of services like garbage collection so that you 
don’t have to worry about every little memory allocation. What this means, however, is that your 
activities in C#/VB can also trigger extra processing within that runtime that could change the 
performance characteristics of your components. 

For example, in the Image Manipulation example with this chapter—which really expanded 
into a test app for components!—I added a simple counting function in JavaScript, C#, and C++ 
(they all look about the same): 

function countFromZero(max, increment) { 
    var sum = 0; 
 
    for (var x = 0; x < max; x += increment) { 
        sum += x; 
    } 

730

http://msdn.microsoft.com/library/windows/apps/hh696636
http://msdn.microsoft.com/library/windows/apps/hh696636
http://msdn.microsoft.com/library/windows/apps/hh441471


 
    return sum; 
} 

Running a count with a max of 1000 and an increment of 0.000001 (only use this increment 
outside the debugger—otherwise you might be waiting a while!), the timings I got averaged 
2112ms for JavaScript, 1568ms for C#, and 1534ms for C++. Again, the difference between 
JavaScript and the other languages is significant (35–38% gain), but it’s hardly significant between 
C# and C++. 

However, I’ve occasionally found that after loading a number of images and running the 
grayscale tests that counting in JavaScript and/or C# can take considerably longer than before, 
most likely due to garbage collection, which can impact the performance of the JavaScript 
runtime and the CLR. This does not happen with C++, though of course high CPU demands 
elsewhere will slow down any process. 

Be clear, though, that I said occasionally. You want to be aware of this, but I don’t think you 
need worry about it for anything but the most critical pieces of code. 

Key Concepts for WinRT Components 

The WinRT components we’ve just seen in the “Quickstarts” section demonstrate the basic structure and 
operation of such components, but clearly there is much more to the subject. Again, because exploring 
all the nuances is beyond the scope of this chapter, I’ll refer you again to the references given at the end 
of this chapter’s introduction. Here I simply want to offer a summary of the most relevant points, 
followed by separate sections on asynchronous methods and the projection of WinRT into JavaScript. 
 

Component Structure 

• The output of a C#/VB component project is a .NET assembly with Windows metadata in a 
.winmd file; the output of a C++ component is a DLL with the code and a .winmd file with the 
metadata.  

• Apps that use components must include the .winmd/DLL files in their projects and add a 
reference to them; it’s not necessary to include the component source. 

• Component classes that can be used by other languages are known as activatable classes. In C# 
these must be marked as public sealed, in Visual Basic as Public NotInheritable, and in C++ as 
public ref sealed. A component must have one activatable class to be usable from other 
languages. 

• Classes can have static members (methods and properties) that can be used without 
instantiating an object of that class. 

731



• A component can contain multiple public activatable classes as well as additional classes that are 
internal only. All public classes must reside in the same root namespace, which has the same 
name as the component metadata file. 

• By default, all public classes in a component are visible to all other languages. A class can be 
hidden from JavaScript by applying the WebHostHiddenAttribute (that is, prefix the class 
declaration with [Windows.Foundation.Metadata.WebHostHidden] in C# or 
[Windows::Foundation::Metadata::WebHostHidden] in C++. This is appropriate for classes that 
work with UI (that cannot be shared with JavaScript, such as the whole of the Windows.Xaml 
namespace in WinRT) or others that are redundant with JavaScript instrinsics (such as 
Windows.Data.Json). 

• For some additional structural options, see the following samples in the Windows SDK (all of 
which use the WRL; see “Sidebar: The Windows Runtime C++ Template Library” under 
“Quickstart #2”): 

• Creating a Windows Runtime in-process component sample (C++/CX) 

• Creating a Windows Runtime in-process component sample (C#) 

• Creating a Windows Runtime EXE component with C++ sample 

• Creating a Windows Runtime DLL component with C++ sample 
 

Types 

• Within a component, you can use native language types (that is, .NET types and C++ runtime 
types). At the level of the component interface (the Application Binary Interface, or ABI), you 
must use WinRT types or native types that are actually implemented with WinRT types. 
Otherwise those values cannot be projected into other languages. In C++, WinRT types exist in 
the Platform namespace, and see Type System (C++/CX); in C#/VB, they exist in the System 
namespace, and see .NET Framework mappings of Windows Runtime types. 

• A component can use structures created with WinRT types, which are projected into JavaScript 
as objects with properties that match the struct members. 

• Collections must use specific WinRT types found in Windows.Foundation.Collections, such as 
IVector, IMap (and IMapView), and IPropertySet. This is why we’ve often encountered vectors 
throughout this book. 

• Arrays are a special consideration because they can be passed only in one direction as we saw in 
the quickstarts; each must therefore be marked as read-only or write-only. See Passing arrays to 
a Windows Runtime component. Arrays also have a limitation in that they cannot be effectively 
used with async methods, because an output array will not be transferred back to the caller 
when the async operation is complete. We’ll talk more of this in “Implementing Asynchronous 
Methods” below. 

732

http://msdn.microsoft.com/library/windows/apps/br206720.aspx
http://code.msdn.microsoft.com/windowsapps/Creating-a-Windows-Runtime-460a535f
http://code.msdn.microsoft.com/windowsapps/Creating-a-Windows-Runtime-ed84af9d
http://code.msdn.microsoft.com/windowsapps/Creating-a-Windows-Runtime-6c399797
http://msdn.microsoft.com/library/windows/apps/hh710417.aspx
http://msdn.microsoft.com/library/windows/apps/hh755822.aspx
http://msdn.microsoft.com/library/windows/apps/hh995050.aspx
http://msdn.microsoft.com/library/windows/apps/windows.foundation.collections.aspx
http://msdn.microsoft.com/library/windows/apps/hh975353.aspx
http://msdn.microsoft.com/library/windows/apps/hh975353.aspx


Component Implementation 

• When creating method overloads, make sure the arity (the number of arguments) is different for 
each one because JavaScript cannot resolve overloads only by type. If you do create multiple 
overloads with the same arity, one of them must be marked with the 
DefaultOverloadAttribute so that the JavaScript projection knows which one to use. 

• A delegate (an anonymous function in JavaScript parlance) is a function object. Delegates are 
used for events, callbacks, and asynchronous methods. Declaring a delegate defines a function 
signature. 

• The event keyword marks a public member of a specific delegate type as an event. Event 
delegates—the signature for a handler—can be typed (that is, EventHandler<T>), which means 
that the eventArgs to that handler will be an object of that type. Do note that typed event 
handlers like this, to support projection into JavaScript, require a COM proxy/stub 
implementation; see the four samples linked to above in the “Component Structure” section. 
Also see the topic Custom events and event accessors in Windows Runtime Components for 
.NET languages. 

• Throwing exception: use the throw keyword in C#, VB, and C++. In C#/VB, you throw a new 
instance of an exception type in the System namespace. In C++, you use throw ref new with one 
of the exception types within the Platform namespace, such as 
Platform::InvalidArgumentException. These appear in JavaScript with a stack trace in the 
message field of the exception; the actual message from the component will appear in Visual 
Studio’s exception dialog. 

Implementing Asynchronous Methods 
For as fast as the C# and C++ routines that we saw in the quickstarts might be, fact of the matter is that 
they still take more than 50ms to complete while running on the UI thread. This is the recommended 
threshold at which you should consider making an operation asynchronous. This means running that 
code on other threads such that the UI thread isn’t blocked at all. To see the basics, the following 
sections show how to implement asynchronous versions of the simple countFromZero function we saw 
earlier in the “Sidebar: Managed vs. Native” section. We’ll do it first with a worker and then in C# and 
C++. 

For C#/VB and C++ there is quite extensive documentation on creating async methods. The 
cookbook topics we’ve referred to already cover this in the subsections called Asynchronous operations 
and Exposing asynchronous operations for C#, and the “Adding asynchronous public methods to the 
class” section in the C++ walkthrough. There is also Creating Asynchronous Operations in C++ for 
Windows Store apps, along with a series of comprehensive posts on the Windows 8 Developer Blog 
covering both app and component sides of the story: Keeping apps fast and fluid with asynchrony in 
the Windows Runtime, Diving Deep with Await and WinRT, and Exposing .NET tasks as WinRT 
asynchronous operations. Matching the depth of these topics would be a pointless exercise in 

733

http://msdn.microsoft.com/library/windows/apps/windows.foundation.metadata.defaultoverloadattribute.aspx
http://msdn.microsoft.com/library/windows/apps/hh972883.aspx
http://msdn.microsoft.com/library/windows/apps/hh454070.aspx
http://msdn.microsoft.com/library/windows/apps/hh755794.aspx
http://msdn.microsoft.com/library/windows/apps/br230301.aspx#AsyncOps
http://msdn.microsoft.com/library/windows/apps/hh779077.aspx#AsyncOps
http://msdn.microsoft.com/library/windows/apps/hh755833.aspx
http://msdn.microsoft.com/library/hh750082.aspx
http://msdn.microsoft.com/library/hh750082.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/03/20/keeping-apps-fast-and-fluid-with-asynchrony-in-the-windows-runtime.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/03/20/keeping-apps-fast-and-fluid-with-asynchrony-in-the-windows-runtime.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/04/24/diving-deep-with-winrt-and-await.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/06/14/exposing-net-tasks-as-winrt-asynchronous-operations.aspx
http://blogs.msdn.com/b/windowsappdev/archive/2012/06/14/exposing-net-tasks-as-winrt-asynchronous-operations.aspx


repetition, so the sections that follow focus on creating async versions of the pixel-crunching methods 
from the quickstarts and the lessons we can glean from that experience. 

This turns out to be a fortuitous choice. The particular scenario that we’ve worked with—performing 
a grayscale conversion on pixel data and sending the result to a canvas—just so happens to reveal a 
number of complications that are instructive to work through and are not addressed directly in the 
other documentation. These include troubles with passing arrays between the app and a component, 
which introduces an interesting design pattern that is employed by some WinRT APIs. Even so, the 
solution brings us to something of a stalemate because of the limitations of the HTML canvas element 
itself. This forces us to think through some alternatives, which is a good exercise because you’ll probably 
encounter other difficulties in your own component work. 

JavaScript Workers 
For pure JavaScript, workers are the way you offload code execution to other threads. A key point to 
understand here is that communication between the main app (the UI thread) and workers happens 
through the singular postMessage method and the associated message events. That is, workers are not 
like components in which you can just call methods and get results back. If you want to invoke methods 
inside that worker with specific arguments, you must make those calls through postMessage with a 
message that contains the desired values. On the return side, a function that’s invoked inside the worker 
sends its results to the main app through its own call to postMessage. 

For example, in the Image Manipulation example in this chapter—which is growing beyond its 
original intent for sure!—I placed the countFromZero function into js/worker_count.js along with a 
message handler that serves as a simple method dispatcher: 

onmessage = function (e) { 
    switch (e.data.method) { 
        case "countFromZero": 
            countFromZero(e.data.max, e.data.increment); 
            break; 
 
        default: 
            break; 
    } 
}; 
 
function countFromZero(max, increment) { 
    var sum = 0; 
    max = 10; 
 
    for (var x = 0; x < max; x += increment) { 
        sum += x; 
    } 
 
    postMessage({ method: "countFromZero", sum: sum }); 
} 

 

734



When this worker is started, the only code that executes is the onmessage assignment. When that 
handler receives the appropriate message, it then invokes countFromZero, which in turn posts its results. 
In other words, setting up a worker just means converting method calls and results into messages. 

Invoking this method from the app now looks like this: 

var worker = new Worker('worker_count.js'); 
worker.onmessage = function (e) { //e.data.sum is the result } 
 
//Call the method  
worker.postMessage({ method: "countFromZero", max: 1000, increment: .00005 }); 

Keep in mind with all of this that postMessage is itself an asynchronous operation—there’s no 
particular guarantee about how quickly those messages will be dispatched to the worker or the app. 
Furthermore, when a worker is created, it won’t start executing until script execution yields (as when you 
call setImmediate). This means that workers are not particularly well suited for async operations that you 
want to start as soon as possible or for those where you want to get the results as soon as they are 
available. For this reason, workers are better for relatively large operations and ongoing processing; 
small, responsive, and high-performance routines are better placed within WinRT components. 

The postMessage mechanism is also not the best for chaining multiple async operations together, as 
we’re easily able to do with promises that come back from WinRT APIs. To be honest, I don’t even want 
to start thinking about that kind of code! I prefer instead of ask whether there’s a way that we can 
effectively wrap a worker’s messaging mechanism within a promise, such that we can treat async 
operations the same regardless of their implementation. 

To do this, we somehow need a way to get the result from within the worker.onmessage handler and 
send it to a promise’s completed handler. To do that, we use a bit of code in the main app that’s 
essentially what the JavaScript projection layer uses to turn an async WinRT API into a promise itself: 

// This is the function variable we're wiring up. 
var workerCompleteDispatcher = null; 
 
var promiseJS = new WinJS.Promise(function (completeDispatcher, errorDispatcher, 
    progressDispatcher) { 
    workerCompleteDispatcher = completeDispatcher; 
}); 
 
// Worker would be created here and stored in the 'worker' variable 
 
// Listen for worker events 
worker.onmessage = function (e) { 
    if (workerCompleteDispatcher != null) { 
        workerCompleteDispatcher(e.data.sum); 
    } 
} 
 
promiseJS.done(function (sum) { 
    // Output for JS worker 
}); 

735



The first things to understand here are what a promise actually does and how the promise is separate 
from the async operation itself. (It has to be, because WinRT APIs and components know nothing of 
promises.) A promise is really just a tool to manage a bunch of listener functions on behalf of an async 
operation, like our worker here. That is, when an async operation detects certain events—namely, 
completed, error, and progress—it wants to notify whomever has expressed an interest in those events. 
Those whomevers have done so by calling a promise’s then or done methods and providing one or more 
handlers. 

Within then or done, all a promise really does is save those functions in a list (unless it knows the 
async operation is already complete, in which case it might just call the completed or error function 
immediately). This is why you can call then or done multiple times on the same promise—it just adds 
your completed, error, and progress handlers to the appropriate list within the promise. Of course, those 
lists are useless without some way to invoke the handlers they contain. For this purpose, a promise has 
three functions of its own that go through each list and invoke the registered listeners. That’s really the 
core purpose of a promise: maintain lists of listeners and call those listeners when asked. 

The code that starts up an async operation, then, will want to use a promise to manage those 
listeners, hence the call to new WinJS.Promise. But it also needs to get to those functions in the promise 
that it should call to notify its listeners. This is the purpose of the anonymous function provided to the 
promise’s constructor. When the promise is initialized, this function is called with references to the 
functions that notify the listeners. The async operation code then saves whichever of these it needs for 
later use. In our worker’s case, we’re interested only in notifying the completed handlers, so we save the 
appropriate function reference in the workerCompleteDispatcher variable. 

When we then detect that the operation is complete—when we receive the appropriate message 
from the worker—we check to make sure workerCompleteDispatcher is a good reference and then call it 
with the result value. That dispatcher will again loop through all the registered listeners and call them 
with that same result. In the code above, the only such listener is the anonymous function we gave to 
promiseJS.done. 

Truth be told, it’s really just mechanics. To handle errors and progress, we’d simply save those 
dispatchers as well, add more specific code inside the onmessage event handler that would check e.data 
for other status values from the worker, and invoke the appropriate dispatcher in turn. Such 
relationships are illustrated in Figure 16-4. 

736



 
FIGURE 16-4 A promise manages and invokes listeners on behalf of an async operation. 

Again, everything you see here with the exception of the call to done (which is client code and not 
part of the async operation) is what the JavaScript projection layer does for an async operation coming 
from WinRT. In those cases the async operation is represented by an object with an IAsync* interface 
instead of a worker. Instead of listening for a worker’s message event, the projection layer just wires itself 
up through the IAsync* interface and creates a promise to manage connections from the app. 

The code above is included in the Image Manipulation example accompanying this chapter. It’s 
instructive to set breakpoints within all the anonymous functions and step through the code to see 
exactly when they’re called, even to step into WinJS and see how it’s working. In the end, what’s 
meaningful is that this code gives us a promise (in promiseJS) that looks, feels, and acts like any other 
promise. This will come in very handy when we have promises from other async operations, as explained 
later in “Sidebar: Joining Promises.” It means that we can mix and match async operations from WinRT 
APIs, WinRT components, and workers alike. 

Async Basics in WinRT Components 
Within a WinRT component, there are three primary requirements to make any given method 
asynchronous. 

First, append Async to the method name, a simple act that doesn’t accomplish anything technically 
but clearly communicates to callers that their need to treat the method differently from synchronous 
ones. 

Second, the return value of the method must be one of the following interfaces, shown in the table 
below, each one representing a particular combination of async behaviors, namely whether the method 
produces a result and whether the method is capable of reporting progress: 
 

737

http://msdn.microsoft.com/library/windows/apps/br211924.aspx


Interface (in Windows.Foundation) Use Case 
IAsyncAction Use for an async method that produces no results (no arguments 

are sent to the completed handler) and reports no progress. 
IAsyncActionWithProgress<TProgress> Use for an async method that produces no results but does report 

progress, where <TProgress> is the data type of the argument 
sent to the progress handler. 

IAsyncOperation<TResult> Use for an async method that produces results of type <TResult> 
but reports no progress. 

IAsyncOperationWithProgress<TResult, 
TProgress> 

Use for an async method that produces results of type <TResult> 
and reports progress with type <TProgress> to a progress 
handler. 

 

Having chosen the type of async method we’re creating, we now have to run the method’s code on 
another thread. It is possible here to utilize threads directly, using the thread pool exposed in the 
Windows.System.Threading API, but there are higher level constructs in both C#/VB and C++ that 
make the job much easier. 
 

Async Methods in C#/Visual Basic In C# and Visual Basic we have the 
System.Threading.-Tasks.Task class for this purpose. A Task is created through one of the static 
Task.Run methods. To this we give an anonymous function (called a delegate in .NET, defined with a 
lambda operator =>) that contains the code to execute. To then convert that Task into an appropriate 
WinRT async interface, we call the task’s AsAsyncAction or AsAsyncOperation extension method. Here’s 
what this looks like in a generic way: 

public IAsyncOperation<string> SomeMethodAsync(int id) 
{ 
    var task = Task.Run<string>( () =>  // () => in C# is like function () in JS 
    { 
        return "Here is a string."; 
    }); 
 
    return task.AsAsyncOperation(); 
} 

If the code inside the task itself performs any asynchronous operations (for which we use the C# 
await keyword as described in the blog posts linked earlier), the delegate must be marked with async: 

public IAsyncOperation<string> SomeMethodAsync(int id) 
{ 
    var task = Task.Run<string>(async () => 
    { 
        var idString = await GetMyStringAsync(id); // await makes an async call looks sync 
        return idString; 
    }); 
 
    return task.AsAsyncOperation(); 
} 
 

738

http://msdn.microsoft.com/library/windows/apps/windows.system.threading.aspx
http://msdn.microsoft.com/library/system.threading.tasks.task.aspx


Note that Task.Run does not support progress reporting and the AsAsyncAction and 
AsAsyncOperation extension methods don’t support cancellation. In these cases you need to use the 
System.Runtime.InteropServices.WindowsRuntime.AsyncInfo class and one of its Run methods as 
appropriate to the chosen async behavior. The Task.AsAsyncOperation call at the end is unnecessary 
here because AsyncInfo.Run already provides the right interface: 

public IAsyncOperation<string> SomeMethodAsync(int id) 
{ 
    return AsyncInfo.Run<string>(async (token) => 
    { 
        var idString = await GetMyStringAsync(id); 
        token.ThrowIfCancellationRequested(); 
        return idString;  
    }); 
} 

In this code, AsyncInfo.Run provides the delegate with an argument of type 
System.-Threading.CancellationToken. To support cancellation, you must periodically call the 
token’s ThrowIfCancellationRequested method. This will pick up whether the original caller of the async 
method has canceled it (for example, calling a promise’s cancel method). Because cancelation is 
typically a user-initiated action, there’s no need to call ThrowIfCancellationRequested inside a very 
tight loop; calling it every 50 milliseconds or so will keep the app fully responsive. 

Alternately, if a method like GetMyStringAsync accepted the CancellationToken, you could just pass 
the token to it. One strength of the CancellationToken model is that it’s highly composable: if you 
receive a token in your own async call, you can hand it off to any number of other functions you call 
that also accept a token. If cancellation happens, the request will automatically be propagated to all 
those operations. 

Note that WinRT methods can accept a token because of an AsTask overload. Instead of this: 

await SomeWinRTMethodAsync(); 

you can use this: 

await SomeWinRTMethodAsync().AsTask(token); 

Anyway, given these examples, here’s a noncancellable async version of CountFromZero: 

public static IAsyncOperation<double> CountFromZeroAsync(double max, double increment) 
{ 
    var task = Task.Run<double>(() => 
    {                 
        double sum = 0; 
 
        for (double x = 0; x < max; x += increment) 
        { 
            sum += x; 
        } 
 
        return sum; 

739

http://msdn.microsoft.com/library/windows/apps/system.runtime.interopservices.windowsruntime.asyncinfo.aspx
http://msdn.microsoft.com/library/windows/apps/system.threading.cancellationtoken.aspx


    }); 
 
    return task.AsAsyncOperation(); 
} 

The IAsyncOperation interface returned by this method, like all the async interfaces in 
Windows.Foundation, gets projected into JavaScript as a promise, so we can use the usual code to call 
the method and receive its results (asyncVars is just an object to hold the variables): 

asyncVars.startCS = new Date(); 
var promiseCS = PixelCruncherCS.Tests.countFromZeroAsync(max, increment); 
promiseCS.done(function (sum) { 
    asyncVars.timeCS = new Date() - asyncVars.startCS; 
    asyncVars.sumCS = sum; 
}); 

With code like this, which is in the Image Manipulation example with this chapter, you can start the 
async counting operations (using the Counting Perf (Async) button) and then immediately go open an 
image and do grayscale conversions at the same time. 
 

Async Methods in C++ To implement an async method in C++, we need to produce the same end 
result as in C#: a method that returns one of the IAsync* interfaces and runs its internal code on another 
thread. 

The first part is straightforward—we just need to declare the method with the C++ types (shown 
here in the C++ code; the class declaration in Grayscale.h is similar): 

using namespace Windows::Foundation; 
IAsyncOperation<double>^ Tests::CountFromZeroAsync(double max, double increment) 

The C++ analogue of the AsyncInfo class is a task found in what’s called the Parallel Patterns Library 
for C++, also known as PPL or the Concurrency Runtime, whose namespace is concurrency (use a 
#include <ppltasks.h> and using namespace concurrency; in your C++ code you’re good to go). The 
function that creates a task is called create_async. All we need to do is wrap our code in that function as 
follows: 

IAsyncOperation<double>^ Tests::CountFromZeroAsync(double max, double increment) 
{ 
    return create_async([max, increment]()  
    { 
        double sum = 0; 
 
        for (double x = 0; x < max; x += increment) 
        { 
            sum += x; 
        } 
 
        return sum; 
    }); 
} 

740

http://msdn.microsoft.com/library/windows/apps/hh750113.aspx
http://msdn.microsoft.com/library/windows/apps/dd492819.aspx


As with C#, there are additional structures for when you’re nesting async operations, supporting 
cancellation, and reporting progress. I will leave the details to the documentation. See Asynchronous 
Programming in C++ and Task Parallelism. 

Sidebar: Joining Promises 
There’s one detail from the Image Manipulation example that takes advantage of having all the 
async operations managed through promises. In the app, we show a horizontal progress indicator 
before starting all the async operations with the Counting Perf (Async) button: 

function testPerfAsync() { 
    showProgress("progressAsync", true); 
    //... 
} 

We want this control to stay visible while any of the async operations are still running, 
something that’s easily done with WinJS.Promise.join. What’s interesting to point out here is that 
we can already have called then or done on those individual promises, which simply means that 
we’ve wired up separate handlers for those individual operations. The handlers we give to join, 
then, are just wired up to the fulfillment of all those promises together: 

promiseJS.done(function (sum) { 
    // Output for JS worker 
} 
 
promiseCS.done(function (sum) { 
    // Output for C# component 
}) 
 
promiseCPP.done(function (sum) { 
    // Output for C++ component 
}); 
 
WinJS.Promise.join([promiseJS, promiseCS, promiseCPP]).done(function () { 
    // Hide progress indicator when all operations are done 
    showProgress("progressAsync", false); 
}); 

In this code you can see how much we simplify everything by wrapping a worker’s message 
mechanism within a promise! Without doing so, we’d need to maintain one flag to indicate 
whether the promises were fulfilled (set to true inside the join) and another flag to indicate if the 
worker’s results had been received (setting that one to true inside the worker’s message handler). 
Inside the join, we’d need to check if the worker was complete before hiding the progress 
indicator; the worker’s message handler would do the same, making sure the join was complete. 
This kind of thing is manageable on a small scale but would certainly get messy with many 
parallel async operations—which is the reason promises were created in the first place! 

741

http://msdn.microsoft.com/library/windows/apps/hh780559.aspx
http://msdn.microsoft.com/library/windows/apps/hh780559.aspx
http://msdn.microsoft.com/library/windows/apps/dd492427.aspx


Arrays, Vectors, and Other Alternatives 
Now that we’ve seen the basic structure of asynchronous methods in WinRT components, let’s see how 
we might create an asynchronous variant of the synchronous Convert methods we implemented earlier. 
For the purpose of this exercise we’ll just stick with the C# component. 

It would be natural with Convert to consider IAsyncAction as the method’s type, because we already 
return results in an output array. This would, in fact, be a great choice if we were using types other than 
an array. However, arrays present a variety of problems with asynchronous methods. First, although we 
can pass the method both the input and output arrays, and the method can do its job and populate that 
output array, its contents won’t actually be transferred back across the async task boundary at present. 
So the completed handler in the app will be called as it would expect, but the output array passed to the 
async method will still be empty. 

The next thing we can try is to turn the async action into an operation that produces a result. We 
might consider a return type of IAsyncOperation<Byte[]> (or an equivalent one using progress), where 
the method would create and populate the array it returns. The problem here, however, is that the app 
receiving this array wouldn’t know how to release it—clearly some memory was allocated for it, but that 
allocation happened inside a component and not inside JavaScript, so there’s no clear rule on what to 
do. Because this is a sure fire recipe for memory leaks, returning arrays like this isn’t supported. 

An alternative is for the async method to return a specific WinRT collection type (where there are 
clear rules for deallocation), such as an IList<Byte>, which will be converted to a vector in JavaScript 
that can also be accessed as an array. (Note that IList is specific to .NET languages; the C++ 
walkthrough topic shows how to use a vector directly with the concurrent_vector type.) Here’s a simple 
example of such a method: 

public static IAsyncOperation<IList<Byte>> CreateByteListAsync(int size) 
{ 
    var task = Task.Run<IList<Byte>>(() => 
    {                 
        Byte [] list = new Byte[size]; 
                 
        for (int i = 0; i < size; i++) 
        { 
            list[i] = (Byte)(i % 256); 
        } 
 
        return list.ToList(); 
    }); 
 
    return task.AsAsyncOperation(); 
} 

Applying this approach to the grayscale routine, we get the following ConvertPixelArrayAsync (see 
PixelCruncherCS > ConvertGrayscale.cs), where the DoGrayscale is the core code of the routine broken 
out into a separate function, the third parameter of which is a periodic callback that we can use to 
handle cancellation): 

742



public IAsyncOperation<IList<Byte>> ConvertPixelArrayAsync([ReadOnlyArray()] 
    Byte[] imageDataIn) 
{ 
    //Use AsyncInfo to create an IAsyncOperation that supports cancellation 
    return AsyncInfo.Run<IList<Byte>>((token) => Task.Run<IList<Byte>>(() => 
    { 
        Byte[] imageDataOut = new Byte[imageDataIn.Length]; 
        DoGrayscale(imageDataIn, imageDataOut, () => 
            { 
                token.ThrowIfCancellationRequested(); 
            }); 
 
        return imageDataOut.ToList(); 
    }, token)); 
} 

A fourth approach is to follow the pattern used by the 
Windows.Graphics.Imaging.PixelData-Provider class, which we’re already using in the Image 
Manipulation example. In the function setGrayscale (js/default.js), we open a file obtained from the file 
picker and then decode it with BitmapDecoder.getPixelDataAsync. The result of this operation is the 
PixelDataProvider that has a method called detachPixelData to provide us with the pixel array (some 
code omitted for brevity): 

function setGrayscale(componentType) { 
    imageFile.openReadAsync().then(function (stream) { 
        return Imaging.BitmapDecoder.createAsync(stream); 
    }).then(function (decoderArg) { 
        //Configure the decoder ... [code omitted] 
        return decoder.getPixelDataAsync(); 
    }).done(function (pixelProvider) { 
        copyGrayscaleToCanvas(pixelProvider.detachPixelData(), 
                decoder.pixelWidth, decoder.pixelHeight, componentType);  
    }); 
} 

A similar implementation of our grayscale conversion routine is in PixelCruncherCS > 
ConvertGrayscale.cs in the function ConvertArraysAsync. Its type is IAsyncAction because it operates 
against the Grayscale.inputData array (which must be set first). The output is accessed from 
Grayscale.detatchOutputData(). Here’s how the JavaScript code looks: 

pc1.inputData = pixels; 
pc1.convertArraysAsync().done(function () { 
    var data = pc1.detachOutputData() 
    copyArrayToImgData(data, imgData);  
    updateOutput(ctx, imgData, start); 
}); 

You might be wondering about that copyArrayToImgData function in the code above. I’m glad you 
are, because it points out a problem that really forces us to take a different approach altogether, one 
that leads us to an overall better solution! 
 

743



All along in this example we’ve been loading image data from a file, using the BitmapDecoder, and 
then converting those pixels to grayscale into an array provided by the canvas element’s 
createImageData method. Once the data is inside that image data object, we can call the canvas 
putImageData method to render it. All of this was originally implemented to show interaction with the 
canvas, including how to save canvas contents to a file. That was fine for Chapter 10, where graphics 
were our subject. But if we’re really looking to just convert an image file to grayscale, using a canvas 
isn’t the best road to follow. 

The key issue that we’re encountering here is that the canvas’s putImageData method accepts only an 
ImageData object created by the canvas’s createImageData method. The canvas does not allow you to 
create and render a separate pixel array, nor insert a different array in the ImageData.data property. The 
only way it works is to write data directly into the ImageData.data array. 

In the synchronous versions of our component methods, it was possible to pass ImageData.data as 
the output array so that the component could perform a direct write. Unfortunately, this isn’t possible 
with the async versions. Those methods can provide us with the converted data all right, but because we 
can’t point ImageData.data to such an array, we’re forced to use a routine like copyArrayToImageData 
function to copy those results into ImageData.data, byte by byte. Urk. That pretty much negates any 
performance improvement we might have realized by creating components in the first place! 

Let me be clear that this is a limitation of the canvas element, not of WinRT or components in 
general. Moving arrays around between apps and components, as we’ve seen, works perfectly well for 
other scenarios. Still, the limitation forces us to ask whether we’re even taking the right approach at all. 

Taking a step back, the whole purpose of the demonstration is to convert an image file to grayscale 
and show that conversion on the screen. Using a canvas is just an implementation detail—we can 
achieve the same output in other ways. For example, instead of converting the pixels into a memory 
array, we could create a temporary file using the Windows.Graphics.Image.BitmapEncoder class instead, 
just like we use in the SaveGrayscale function that’s already in the app. We’d just give it the converted 
pixel array instead of grabbing those pixels from the canvas again. Then we can use 
URL.createObjectURL or an ms-appdata:/// URI to display it in an img element. This would likely 
perform much faster because the canvas’s putImageData method actually takes a long time to run, much 
longer than the conversion routines in our components. 

Along these same lines, there’s no reason that we couldn’t place more of the whole process inside a 
component. Only those parts that deal with UI need to be in JavaScript, but the rest can be written in 
another language. For example, why bother shuttling pixel arrays between JavaScript and a WinRT 
component? Once we get a source StorageFile from the file picker we can pass that to a component 
method directly. It could then use the BitmapDecoder to obtain the pixel stream, convert it, and then 
create the temporary file and write the converted pixels back out using the BitmapEncoder, handing 
back a StorageFile to the temp file from which we can set an img src. The pixels, then, never leave the 
component and never have to be copied between memory buffers. This should result in both higher 
performance as well as a smaller memory footprint. 

To this end the PixelCruncherCS project in the Image Manipulation example has another async 

744



method called ConvertGrayscalFileAsync that does exactly what I’m talking of here: 

public static IAsyncOperation<StorageFile> ConvertGrayscaleFileAsync(StorageFile file) 
{ 
    return AsyncInfo.Run<StorageFile>((token) => Task.Run<StorageFile>(async () => 
    { 
        StorageFile fileOut = null; 
 
        try 
        { 
            //Open the file and read in the pixels 
            using (IRandomAccessStream stream = await file.OpenReadAsync()) 
            { 
                BitmapDecoder decoder = await BitmapDecoder.CreateAsync(stream); 
                PixelDataProvider pp = await decoder.GetPixelDataAsync(); 
                Byte[] pixels = pp.DetachPixelData(); 
 
                //We know that our own method can convert in-place, 
                //so we don't need to make a copy 
                DoGrayscale(pixels, pixels); 
 
                //Save to a temp file. 
                ApplicationData appdata = ApplicationData.Current; 
 
                fileOut = await appdata.TemporaryFolder.CreateFileAsync( 
                    "ImageManipulation_GrayscaleConversion.png", 
                    CreationCollisionOption.ReplaceExisting); 
 
                using (IRandomAccessStream streamOut =  
                    await fileOut.OpenAsync(FileAccessMode.ReadWrite)) 
                { 
                    BitmapEncoder encoder = await BitmapEncoder.CreateAsync( 
                        BitmapEncoder.PngEncoderId, streamOut); 
 
                    encoder.SetPixelData(decoder.BitmapPixelFormat, decoder.BitmapAlphaMode, 
                        decoder.PixelWidth, decoder.PixelHeight, 
                        decoder.DpiX, decoder.DpiY, pixels); 
 
                    await encoder.FlushAsync(); 
                } 
            } 
        } 
        catch 
        { 
            //Error along the way; clear fileOut 
            fileOut = null; 
        } 
 
        //Finally, return the StorageFile we created, which makes it convenient for the 
        //caller to copy it elsewhere, use in a capacity like URL.createObjectURL, or refer 
        //to it with "ms-appdata:///temp" + fileOut.Name 
        return fileOut; 
    })); 
} 

745



One thing we can see comparing with this the equivalent JavaScript code is that the C# await 
keyword very much simplifies dealing with asynchronous methods—making them appear like they’re 
synchronous. This is one potential advantage to writing code in a component! The other important 
detail is to note the using statements around the streams. Streams, among other types, are disposable 
(they have an IDisposable interface) and must be cleaned up after use or else files will remain open and 
you’ll see access denied exceptions or other strange behaviors. The using statement encapsulates that 
cleanup logic for you.  

In any case, with this method now we need only a few lines of JavaScript to do the job: 

PixelCruncherCS.Grayscale.convertGrayscaleFileAsync(imageFile).done(function (tempFile) { 
    if (tempFile != null) { 
        document.getElementById("image2").src = "ms-appdata:///temp/" + tempFile.name; 
    } 
}); 

The line with the URI could be replaced with these as well: 

var uri = URL.createObjectURL(tempFile, { oneTimeOnly: true }); 
document.getElementById("image2").src = uri; 

Running tests with this form of image conversion, the app shows a much better response, so much so 
that the progress ring that’s normally shown while the operation is running doesn’t even appear! 

All this illustrates the final point of this whole exercise. If you’re looking for optimizations, think 
beyond just the most computationally intensive operations, especially if it involves moving lots of data 
around. As we’ve seen here, challenging our first assumptions can lead to a much better overall solution. 

Projections into JavaScript 
Already in this chapter we’ve seen some of the specific ways that a WinRT component is projected into 
JavaScript. In this section I wanted to offer a fuller summary of how this world of WinRT looks from 
JavaScript’s point of view. 

Let’s start with naming. We’ve seen that a JavaScript app project must add a component as a 
reference, at which point the component’s namespace becomes inherently available in JavaScript; no 
other declarations are required. The namespace and the classes in the component just come straight 
through into JavaScript. What does change, however, are the names of methods, properties, and events. 
Although namespaces and class names are projected as they exist in the component, method and 
property names (including members of struct and enum) are converted to camel casing: TestMethod 
and TestProperty in the component become testMethod and testProperty in JavaScript. This casing 
change can have some occasional odd side effects, as when the component’s name starts with two 
capital letters such as UIProperty, which will come through as uIProperty. 

 

 

746



Event names, on the other hand, are converted to all lowercase as befits the JavaScript convention. 
An event named SignificantValueChanged in the component becomes significantvaluechanged in 
JavaScript. You’d use that lowercase name with addEventListener, and the class that provides it will also 
be given a property of that name prefixed with on, as in onsignificantvaluechanged. An important point 
with events is that it’s sometimes necessary to explicitly call removeEventListener to prevent memory 
leaks. For a discussion, refer back to Chapter 3, “App Anatomy and Page Navigation,” in the section 
“WinRT Events and removeEventListener.” In the context of this chapter, WinRT events include those 
that come from your own WinRT components. 

Static members of a class, as we’ve seen, can just be referred to directly using the fully qualified name 
of that method or property using the component’s namespace. Nonstatic members, on the other hand, 
are accessible only through an instance created with new. 

Next are two limitations that we’ve mentioned before but are worth repeating in this context. First is 
that a WinRT component cannot work with the UI of an app written in JavaScript. This is because the 
app cannot obtain a drawing surface of any kind that the component could use. Second is that 
JavaScript can resolve only overloaded methods by arity (number of parameters) and not by type. If a 
component provides overloads distinguished only by type, JavaScript can access only whichever one of 
those is marked as the default. 

Next we come to the question of data types, which is always an interesting subject where 
interoperability between languages is concerned. Generally speaking, what you see in JavaScript is 
naturally aligned with what’s in the component. A WinRT DateTime becomes a JavaScript Date, 
numerical values become a Number, bool becomes Boolean, strings are strings, and so on. Some WinRT 
types, like IMapView and IPropertySet, just come straight through to JavaScript as an object type 
because there are no intrinsic equivalents. Then there are other conversions that are, well, more 
interesting: 

• Asynchronous operations in a component that return interfaces like IAsyncOperation are 
projected into JavaScript as promises. 

• Because JavaScript doesn’t have a concept of struct as does C#, VB, and C++, structs from a 
WinRT component appear in JavaScript as objects with the struct’s fields as members. Similarly, 
to call a WinRT component that takes a struct argument, a Javascript app constructs an object 
with the fields as members and passes that instead. Note that the casing of struct members is 
converted to camel casing in JavaScript. 

• Some collection types, like IVector, appear in JavaScript as an array but with different methods. 
That is, the collection can be accessed using the array operator [ ], but its methods are different. 
Be careful, then, passing these to JavaScript manipulation functions that assume those methods 
exist. 

• Enums are translated into objects with camel-cased properties corresponding to each enum 
value, where those values are JavaScript Number types. 

747



• WinRT APIs sometimes return Int64 types (alone or in structs) for which there is no equivalent 
in JavaScript. The 64-bit type is preserved in JavaScript, however, so you can pass it back to 
WinRT in other calls. However, if you modify the variable holding that value, even with 
something as simple as a ++ operator, it will be converted into a JavaScript Number. Such a value 
will not be accepted by methods expecting an Int64. 

• If a component method provides multiple output parameters, these show up in JavaScript as an 
object with those different values. There is no clear standard for this in JavaScript; it’s best to 
avoid in component design altogether. 

The bottom line is that the projection layer tries to make WinRT components written in any other 
language look and feel like they belong in JavaScript, without introducing too much overhead.  

Scenarios for WinRT Components 

Earlier in the “Choosing a Mixed Language Approach” section I briefly outlined a number of scenarios 
where WinRT components might be very helpful in the implementation of your app. In this section we’ll 
think about these scenarios a little more deeply, and I’ll point you to demonstrations of these scenarios 
in the samples, where such are available. 

Higher Performance 
Increasing the performance of a Windows Store app written in HTML, CSS, and JavaScript is one of the 
primary scenarios for offloading some work to a WinRT component. 

When evaluating the performance of your app, keep an eye open for specific areas that are 
computationally intensive or involve moving a lot of data around. For example, if you found it necessary 
to implement an extended splash screen for those exact reasons, perhaps you can reduce the time the 
user has to wait (especially on first launch) before the app is active. Any other situation where the user 
might have to wait—while they might have anything better to do than watch a progress indicator!—is a 
great place to use a high performance component if possible. Clearly there are scenarios where the 
performance of the app isn’t so much the issue as is network latency, but once you get data back from a 
service you might be able to pre-process it faster in a component than in JavaScript. 

Another great place to insert a high-performance component is in an app’s startup sequence, 
especially if it has extra work to do on first run. For example, an app package might include large 
amounts of compressed data to minimize the size of its download from the Store, but it needs to 
decompress that data on first run. A WinRT component might significantly shorten that initialization 
time. If the component uses WinRT APIs to write to your app data folders, all that data will also be 
accessible from JavaScript through those same APIs. 

 

 

748



One challenge, as we saw in the quickstarts, is that writing a component to chew on a bunch of data 
typically means you want to pass JavaScript arrays into that component and get an array back out. As 
we saw in the quickstarts, this works just fine with synchronous operations but is not presently 
supported for async, which is how you’d often want to implement potentially long-running methods. 
Fortunately, there are ways around this limitation, either by transferring results for an async operation 
through synchronous properties or by using other collection types such as vectors. 

One place where performance is very significant is with background tasks. As explained in Chapter 
13, background tasks are limited to a few seconds of CPU time every 15 minutes. Because of this, you 
can get much more accomplished in a background task written in a higher-performance language than 
one written in JavaScript. 

The structure of a component with such tasks is no different than any other, as demonstrated in the 
C# Tasks component included with the Background task sample. Each of the classes in the Tasks 
namespace is marked as public and sealed, and because the component is brought into the JavaScript 
project as a reference, those class names (and their public methods and properties) are in the JavaScript 
namespace. As a result, their names can be given to the BackgroundTaskBuild.taskEntryPoint property 
without any problems. 

Another example of the same technique can be found in the Network status background sample. 

Something that we didn’t discuss in Chapter 13, but which is appropriate now, is that when you 
create a WinRT component for this purpose, the class that implements the background task must derive 
from Windows.ApplicationModel.Background.IBackgroundTask and implement its singular Run 
method. That method is what gets called them the background task is triggered. We can see this in the 
Network status background sample where the whole C# implementation of the component comprises 
just a few dozen lines of code (NetworkStatusTask project > BackgroundTask.cs; some comments and 
debug output omitted): 

namespace NetworkStatusTask 
{ 
    public sealed class NetworkStatusBackgroundTask : IBackgroundTask 
    { 
        ApplicationDataContainer localSettings = ApplicationData.Current.LocalSettings; 
 
        // The Run method is the entry point of a background task. 
        public void Run(IBackgroundTaskInstance taskInstance) 
        { 
            // Associate a cancellation handler with the background task. 
            taskInstance.Canceled += new BackgroundTaskCanceledEventHandler(OnCanceled); 
 
            try 
            { 
                ConnectionProfile profile =  
                    NetworkInformation.GetInternetConnectionProfile(); 
                if (profile == null) 
                { 
                    localSettings.Values["InternetProfile"] = "Not connected to Internet"; 
                    localSettings.Values["NetworkAdapterId"] = "Not connected to Internet"; 

749

http://code.msdn.microsoft.com/windowsapps/Background-Task-Sample-9209ade9
http://code.msdn.microsoft.com/windowsapps/Network-status-background-957eb3eb
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.background.ibackgroundtask.aspx


                } 
                else 
                { 
                    localSettings.Values["InternetProfile"] = profile.ProfileName; 
 
                    var networkAdapterInfo = profile.NetworkAdapter; 
                    if (networkAdapterInfo == null) 
                    { 
                        localSettings.Values["NetworkAdapterId"] = 
                            "Not connected to Internet"; 
                    } 
                    else 
                    { 
                        localSettings.Values["NetworkAdapterId"] =  
                            networkAdapterInfo.NetworkAdapterId.ToString(); 
                    } 
                } 
            } 
            catch (Exception e) 
            { 
            // Debug output omitted 
            } 
        } 
 
        // Handles background task cancellation. 
        private void OnCanceled(IBackgroundTaskInstance sender,  
            BackgroundTaskCancellationReason reason) 
        { 
            // Debug output omitted 
        } 
    } 
} 

You can see that the Run method receives an argument through which it can register a handler for 
canceling the task. The code above doesn’t do anything meaningful with this because the task itself 
executes only a small amount of code. The C# tasks in the Background tasks sample, on the other hand, 
simulate longer-running operations, in which case it uses the handler to set a flag that will stop those 
operations. 

Access to Additional APIs 
Between the DOM API, WinJS, third-party libraries, and JavaScript intrinsics, JavaScript developers have 
no shortage of APIs to utilize in their apps. At the same time, there is a whole host of .NET and 
Win32/COM APIs that are available to C#, VB, and C++ apps that are not directly available to JavaScript, 
including the DirectX and Media Foundation APIs. 

With the exception of APIs that affect UI or drawing surfaces (namely Direct2D and Direct3D), WinRT 
components can make such functions—or, more likely, higher-level operations built with 
them—available to apps written in JavaScript. 

 

750

http://msdn.microsoft.com/library/windows/apps/br230232.aspx
http://msdn.microsoft.com/library/windows/apps/br205757.aspx


The Building your own Windows Runtime components to deliver great apps post on the Windows 8 
developer blog gives some examples of this. It shows how to use the System.IO.Compression API in .NET 
to work with ZIP files and the XAudio APIs (part of DirectX) to bypass the HTML audio element and 
perform native audio playback. In the latter case, you might remember from Chapter 10, in the section 
“Playing Sequential Audio,” that no matter how hard we tried to smooth the transition between tracks 
with the audio element, there is always some discernible gap. This is due to the time it takes for the 
element to translate all of its operations into the native XAudio APIs. By going directly to those same 
APIs, you can circumvent the problem entirely. (That said, Microsoft knows about the behavior of the 
audio element and will likely improve its performance in the future.)  

This approach can also be used to communicate with external hardware that’s not represented in the 
WinRT APIs but is represented in Win32/COM. We saw this with the XInput and JavaScript controller 
sketch sample in Chapter 15, “Devices and Printing” (also discussed in the blog post above). 

Another very simple example would be creating a component to answer an oft-heard question: 
“How do I create a GUID in JavaScript?” Although you can implement a routine to construct a GUID 
string from random numbers, it’s not a proper GUID in that there is no guarantee of uniqueness (GUID 
stands for Globally Unique Identifier, after all). To do the job right, you’d want to use the Win32 API 
CoGreatGuid, for which you can create a very simple C++ wrapper. 
 

Overkill?  Some developers have commented that going to all the trouble to create a WinRT 
component just to call one method like CoCreateGuid sounds like a heavyweight solution. However, 
considering the simplicity of a basic WinRT component as we’ve seen in this chapter, all you’re really 
doing with a component is setting up a multilanguage structure through which you can use the full 
capabilities of each language. The overhead is really quite small: a Release build of the C++ component 
in “Quickstart #2” produces a 39K DLL and a 3K .winmd file, for example. 

Using a WinRT component in this way applies equally to COM DLLs that contain third-party APIs like 
code libraries. You can use these in a Windows Store app provided they meet three requirements: 

• The DLL is packaged with the app. 

• The DLL uses only those Win32/COM APIs that are allowed for Windows Store apps. Otherwise 
the app will not pass Store certification. 

• The DLL must implement what is called Regfree COM, meaning that it doesn’t require any 
registry entries for its operation. (Windows Store apps do not have access to the registry and 
thus cannot register a COM library.) The best reference I’ve found for this is the article Simplify 
App Deployment with ClickOnce and Registration-Free COM in MSDN Magazine. 

If all of these requirements are met, the app can then use the CoCreateInstanceFromApp function 
from a component to instantiate objects from that DLL. 

751

http://blogs.msdn.com/b/windowsappdev/archive/2012/08/06/building-your-own-windows-runtime-components-to-deliver-great-metro-style-apps.aspx
http://code.msdn.microsoft.com/windowsapps/XInput-and-JavaScript-c72fe535
http://code.msdn.microsoft.com/windowsapps/XInput-and-JavaScript-c72fe535
http://msdn.microsoft.com/library/windows/apps/ms688568.aspx
http://msdn.microsoft.com/library/windows/apps/br205757.aspx
http://msdn.microsoft.com/magazine/cc188708.aspx
http://msdn.microsoft.com/magazine/cc188708.aspx
http://msdn.microsoft.com/library/windows/desktop/hh404137(v=VS.85).aspx


Obfuscating Code and Protecting Intellectual Property 
Back in Chapter 1, in the section “Playing in Your Own Room: The App Container,” we saw how apps 
written in HTML, CSS, and JavaScript exist on a consumer’s device as source files, which the app host 
loads and executes. By now you’ve probably realized that for as much as Windows tries to hide app 
packages from casual access, all that code is there on their device where a determined user can gain 
access to it. In other words, assume your code is just as visible in an app package as it is on the web 
through a browser’s View Source command. 

It’s certainly possible—and common, in fact—to draw on web services that aren’t so exposed for 
much of an app’s functionality, in the same way that web apps take advantage of server-side processing. 
Still, there will be parts of an app that must exist and run on the client, so you are always running the 
risk of someone taking advantage of your generosity! 

Ever since developers started playing with Windows 8 apps written in HTML, CSS, and JavaScript, 
they’ve been asking about how to protect their code. In fact, developers using C# and Visual Basic ask 
similar questions because although those languages are compiled to IL (intermediate language), plenty 
of decompilers exist to produce source code from that IL just as other tools circumvent JavaScript 
minification. Neither JavaScript nor .NET languages are particularly good at hiding their details. 

Code written in C++, being compiled down to machine code, is significantly harder to 
reverse-engineer, although it’s still not impossible for someone to undertake such a task (in which case 
you have to ask why they aren’t just writing their own code to begin with!). Nevertheless, it’s the best 
protection you can provide for code that lives on the client machine. The only real way to protect an 
algorithm is to keep it on a remote server. 

If the rest of the app is written in a language other than C++, especially JavaScript, know that it’s a 
straightforward manner to also reverse-engineer the interface to a component. The issue here, then, is 
whether a malicious party could use the knowledge of a component’s interface to employ that 
component in their own apps. The short answer is yes, because your code might show them exactly 
how. In such cases, a more flexible and nearly watertight solution would be for the component vendor 
to individually manage licenses to app developers. The component would have some kind of 
initialization call to enable the rest of its functionality. Within that call, it would compare details of the 
app package obtained through the Windows.ApplicationModel.PackageId class against a known and 
secure registry of its own, knowing that the uniqueness of app identity is enforced by the Windows 
Store. Here are some options for validation: 

• Check with an online service This would require network connectivity, which might not be a 
problem in various scenarios. Just remember to encrypt the data you send over the network to 
avoid snooping with a tool like Fiddler! 

• Check against information encrypted and compiled into the component itself That is, the 
component is compiled for each licensee uniquely. This is the most difficult to hack. 
 

752



• Check against an encrypted license file distributed with the component that is unique to 
the licensee (contains the app name and publisher, for instance)  Probably the easiest solution, 
because even if the license file is copied out of the licensed app’s package, the info contained 
would not match another app’s package info at run time. The encryption algorithm would be 
contained within the compiled component, so it would be very difficult to reverse-engineer in 
order to hack the license file—not impossible, but very difficult. Another app could use that 
component only if it used the same package information, which couldn’t be uploaded to the 
Store but could still possibly be side-loaded by developers or an unscrupulous enterprise. 

In the end, though, realize that Windows itself cannot guarantee the security of app code on a client 
device. Further protections must be implemented by the app itself. 

Library Components 
A library component is a piece of code that’s written to be used by any number of other apps written in 
the language of their choice. You might be looking to share such a library with other developers 
(perhaps as a commercial product), or you might just be looking to modularize your own apps.  

A great example of this is the Notifications Extensions Library that we saw in various samples of 
Chapter 13: App tiles and badges sample, Lock screen apps sample, Scheduled notifications sample, 
Secondary tiles sample, and Toast notifications sample. This library contains a number of classes with 
their respective properties and methods, and because all those methods are small and fast, they’re all 
designed to be synchronous. 

In the case of the samples, the Notifications Extensions Library is included as source code in every 
project that uses it. More likely though, especially if you create a commercial project and follow the How 
to: Create a software development kit documentation, you’ll be providing only the compiled DLL and/or 
WinMD file to your customers. Customers will add these libraries to their projects, so they’re packaged 
directly with the app. 

In these cases, be sure you provide separate components that are compiled for x86, x64, and ARM 
targets for components written in C++. 

Concurrency 
We’ve already seen that web workers and WinRT components with asynchronous methods can work 
hand in hand to delegate tasks to different threads. If you really want to exercise such an option, you 
can architect your entire app around concurrent execution by using these mechanisms, spinning up 
multiple async operations at once, possibly across multiple web workers. A WinRT component can also 
use multiple Task.Run calls, not just the single ones we’ve seen. 

Deeper still, a WinRT component can utilize the APIs in Windows.System.Threading to get at the 
thread pool, along with those APIs in Windows.System.Threading.Core that work with semaphores and 
other threading events. The details of these are well beyond the scope of this book, but I wanted to 
mention them because many of the built-in WinRT APIs make use of these and your components can 

753

http://code.msdn.microsoft.com/windowsapps/App-tiles-and-badges-sample-5fc49148
http://code.msdn.microsoft.com/windowsapps/Lock-screen-apps-sample-9843dc3a
http://code.msdn.microsoft.com/windowsapps/Scheduled-notifications-da477093
http://code.msdn.microsoft.com/windowsapps/Secondary-Tiles-Sample-edf2a178
http://code.msdn.microsoft.com/windowsapps/Toast-notifications-sample-52eeba29
http://msdn.microsoft.com/library/windows/apps/hh768146.aspx
http://msdn.microsoft.com/library/windows/apps/hh768146.aspx
http://msdn.microsoft.com/library/windows/apps/windows.system.threading.aspx
http://msdn.microsoft.com/library/windows/apps/windows.system.threading.core.aspx


do the same. And although it doesn’t demonstrate components, necessarily, the Thread pool sample 
provides a good place to start on this topic. 

What We’ve Just Learned 

• Windows Store apps need not be written in just a single language; with WinRT components, 
apps can effectively use the best language for any given problem. Components, however, cannot 
work with UI on behalf of an app written in HTML, CSS, and JavaScript. 

• Reasons for using a mixed language approach include improving performance, gaining access to 
additional APIs (including third-party libraries) that aren’t normally available to JavaScript, 
obfuscating code to protect intellectual property, creating modular library components that can 
be used by apps written in any other language, and effectively managing concurrency. 

• For computationally intensive routines, a component written in C#/VB can realize on the order 
of a 15% improvement over JavaScript and a component written in C++ an improvement on the 
order of 25%. When testing performance, be sure to build a Release version of the app and run 
outside of the debugger, otherwise you’ll see very different results for the different languages. 

• Windows Store apps can employ web workers for creating asynchronous routines that run 
separately from the UI thread, and you can wrap that worker within a WinJS promise to treat it 
like other async method in WinRT. 

• Async methods can also be implemented in WinRT components by using task, concurrency, and 
thread pool APIs. Compared to web workers, such async methods are more responsive because 
they are directly structured as methods. 

• No matter what language a component is written in, the JavaScript projection layer translates 
some of its structures into forms that are natural to JavaScript, including the casing of names and 
conversion of data types. 

• Due to the nature of event handlers that cross the JavaScript/WinRT component boundary, apps 
must be careful to prevent memory leaks by calling removeEventListener for events originating 
from the WinRT API or WinRT components when a listener is only temporary. 

  

754

http://code.msdn.microsoft.com/windowsapps/Pool-Sample-5aa60454


Chapter 17 

Apps for Everyone: Accessibility, 
World-Readiness, and the 
Windows Store 

The title of this chapter, “Apps for Everyone”—especially the ”Everyone” part—has several shades of 
meaning. First is the vitally central role that the Windows Store plays in the whole Windows 8 
experience. As first mentioned in Chapter 1, “The Life Story of a Windows Store App,” the Store is the 
place where you distribute apps to customers (outside of the enterprise and sharing with other 
developers). Everyone, in other words, gets their apps from the Store. 

In this same way, everyone who does business with apps does business with the Store. To define your 
app’s relationship to the Store is in many ways to define your business itself, and that relationship affects 
all stages of the app lifecycle from planning and development to distribution and servicing. Thinking 
about the Store, then, is not something you want to do only when you’ve completed an app: you want 
to be thinking about it when you start thinking about the apps you’d like to build. You might have come 
here directly from Chapter 1, in fact, where I recommended reading the first section below even before 
starting your first coding experiments! Truly, the Windows Store is like a pair of bookends to the whole 
app development process: you think about the Store when planning the business of your app, and when 
all is said and done, you go to the Store’s developer portal itself to make your app available to others. 

Those “others” are the context for the additional meanings of “everyone.” In general, when you set 
out to offer a product to customers, you want to broaden your reach to include as many potential 
customers as you can. There are, of course, cases where you might want to specifically limit your 
audience, but for most apps, being able to reach more customers is certainly an attractive opportunity. 
And if you don’t, your competitors will! 

One way to broaden your reach is to cover your bases where accessibility is concerned. Though 
accessibility has its origins in serving people with serious disabilities, research has shown that a majority 
of people—nearly 60% —use accessibility features in some capacity, even though there’s no disability 
involved. For one, being able to accommodate limited input models—like keyboard only or 
mouse/pointer only—is inherent in dealing with touch-only devices. Resolution-scaling, similarly, serves 
the needs of the visually impaired alongside the desires of the financially unimpaired (that is, those 
customers who are willing to splurge for a high-DPI device just to get sharper graphics). An app that 
works well with a screen reader for the visually impaired can also work rather well for the mobile 
customer whose otherwise sound eyes need to be focused elsewhere—like the road they’re ostensibly 
driving on! And providing for high-contrast color schemes helps not only those whose eyes don’t do 

755



well with subtle colorations but also those who might be working with a mobile device in bright 
sunlight. 

It therefore behooves app developers to take accessibility concerns seriously, especially as the Store 
will specifically mark fully accessible apps. As we will see, this primarily involves adding the appropriate 
aria-* attributes to your HTML markup, adapting your layout to different screen sizes, and making sure 
to provide image variations for different contrast settings. 

The second way to extend your reach is to make your app world-ready—that is, to utilize localized 
resources within the app so that it adapts itself to each user’s language, regional conventions, date and 
time formats, currency formats, and so on. Fortunately, Windows 8 enables you to structure your 
resources—images and strings, primarily—so that the right variations show up automatically, just like 
they do for resolution scales and contrasts. The Windows Runtime also contains a number of APIs to 
help an app be world-ready, and the app itself can take additional steps to localize the web services 
from which it’s drawing data, how it works with live tiles and notifications, and so on. Furthermore, some 
additional tools such as the Multilingual App Toolkit are available to make it all the easier to translate 
your resources. 

The reward for all this effort, of course, is that users who search in the Windows Store for apps in 
their regional language will see your app and not those that are available only in a single language like 
English. Those users will also be more likely to express their appreciation in your app’s reviews and 
ratings. 

One of the great things about the Windows Store is the access it gives you to global markets from 
wherever you happen to be working. In the past, learning to do business in many countries around the 
world has been a tedious and expensive process, sometimes requiring that you understand local tax 
laws, manage currency conversions, and so forth. No longer—this is really what the Windows Store is 
doing on your behalf. Once the Store becomes available in a market, it means that Microsoft has done 
the work to embed local policies into the Store itself. Put another way, whatever small fee you pay to 
upload apps to the Store has made it possible for you to business in those markets with little or no 
effort! This is good. The Store also lets you vary your app pricing for regional markets—if you charge for 
the app or in-app purchases—because standards of living do vary widely around the world. This is also 
good. 

In this chapter then, we’ll begin by looking at the relationship between your app and the business of 
your app as supported by the Store, regardless of whether you seek to monetize your app in any way. 
We’ll then take a tour of accessibility followed by another through the world of world-readiness. The last 
section—of this chapter and of this book!—will bring us full circle to where we started in Chapter 1: 
uploading your app to the Store and what you can expect there. Now that you’ve brought your app this 
far, let’s get it ready for everyone to enjoy! 

756



Your App, Your Business 

If you check in with your local psychologist of philosopher, they’d probably agree with the idea that just 
about all people, across all professions, cultures, and capabilities, are driven by a small number of 
fundamental motivations: fear, lust, power, love, service to others, and just plain ol’ joy. Indeed, the 
wisest among them will even say that the last one—the quest for joy or happiness—is actually the root 
of all the others.  

Leaving all that aside, and assuming that you’re not programming under threat of death or working 
on apps that are going to be rejected from the Windows Store as a matter of policy, let’s take a simpler 
view and identify the few basic reasons why you might be interested in writing apps: 

• Fortune You want to make money. 

• Fame You want social recognition. 

• Philanthropy You want to contribute to a cause. 

• Fun You just want to enjoy yourself through coding—an activity that, alas, nonprogrammers 
just don’t understand! 

Wherever you land in this list—and with whatever combination—your motivations essentially define 
your “business” as a developer. I use the term loosely here. In English, at least, there are about a dozen 
different definitions of this word, only a third of which relate to commercial activities, organizations, 
practices, and commerce. The other definitions have to do with concerns that are important to you, as 
when we say “It’s none of your business” or “I make it my business to know about such things.” In short, 
apps can reflect the nature of your “business,” whatever it is, and that nature is reflected in how you 
share apps with others. Again, with the exception of side loading (see the next section), sharing your 
app means distributing it through the Windows Store. For that reason, your app’s relationship to the 
Store effectively defines your business with that app, and that relationship spans the entire app lifecycle: 

• Planning Determining whether the app can actually be a Store app, meet Store certification 
requirements, and be suitably monetized (if desired). 

• Development Implementing Store-related features and using the APIs for trial versions, 
in-app purchases, etc. 

• Testing Using precertification tools prior to onboarding the app to the Store, and checking the 
app against certification requirements. 

• Availability Making the app available in various markets through the Store developer portal. 
 
 
 
 

757



• Marketing, sales, and support Promoting your app, increasing its visibility, working with your 
customers (responding to ratings and reviews), linking it to your website (if applicable), and 
using Store analytics through the developer portal. 

• Updates and growth Improving your app over time, or removing it from the market. 

We’ll explore some of these topics in more detail shortly, especially those areas that affect planning 
and development. This includes the APIs that allow you to simulate Store interactions when debugging. 
We’ll also review the available monetization models—from completely free apps, ad-supported apps, 
and paid apps, to trial versions and those with in-app purchases, After all, your choices here are 
fundamental to how you’re going to fulfill your goals in writing applications, whatever your motivations. 

The remaining topics we’ll return to in the last section of this chapter, as it’s appropriate to first 
discuss accessibility and localization. 

Side Loading 
A question that’s arisen with just about every mobile platform is the ability for developers to load and 
run apps without going through the associated store. Because store-only distribution is generally 
inconvenient for developers who want to experiment with a platform—especially with apps that don’t 
have the fit-and-finish needed for store certification—they end up hacking that platform to allow for 
some kind of side loading anyway. 

Such is not an issue with Windows. First, as explained on Get a developer license, “A developer 
license for Windows 8 lets you install, develop, test, and evaluate Windows Store apps before the 
Windows Store tests and certifies them.” In addition to enabling some technical capabilities (like using 
local loopback, as we’ve seen in earlier chapters), a developer license means you can share app 
packages (.appx files) with other developers for whatever purposes you need, such as testing. 

Second, enterprise administrators can allow side loading on machines running the Enterprise edition 
of Windows 8. This is typically useful for distributing line-of-business (LOB) apps within that 
organization, as such apps clearly have no need to be uploaded to the public Store. Details and 
requirements can be found on How to Add and Remove Apps (Microsoft TechNet) as well as Deploying 
Windows Store apps to business (Windows Store blog). 

In both cases, the side loading process is the same. You first create the app package through the 
Store > Create App Packages command in Visual Studio and selecting the No radio button, as shown in 
Figure 17-1. You then provide some details for the package, as in Figure 17-2, and press the Create 
button. 

758

http://msdn.microsoft.com/library/windows/apps/Hh974578.aspx
http://technet.microsoft.com/library/hh852635.aspx
http://blogs.msdn.com/b/windowsstore/archive/2012/04/25/deploying-metro-style-apps-to-businesses.aspx
http://blogs.msdn.com/b/windowsstore/archive/2012/04/25/deploying-metro-style-apps-to-businesses.aspx


 
FIGURE 17-1 Creating an app package for side loading. The actual dialog box is much taller; I’ve compressed it to 
save space. 

 
FIGURE 17-2 The second step of creating an app package for side loading. 

When the process is complete, Visual Studio will give you a link to the folder where the package was 
created. Going there you’ll see a file with the extension .appxupload, which is what you’d be using for 
the Store. For side loading, you want to look at the folder whose name ends with _Test. In that folder 
you’ll see the following: 

• The app package (.appx file). 

• A temporary certificate (.cer file). 

• A Dependencies folder that contains any libraries that would normally be provided by the Store; 
WinJS is one such library. 

759



• Most importantly, a PowerShell script named Add-AppDevPackage.ps1 (and a folder with 
associated resources) that will install the app on a side load–capable machine. 

This process makes it easy to share your app with others without sharing your source code project. A 
good case for using this is if you hire others to thoroughly test your app. Running the PowerShell script 
installs the app very much like it would be from the Store, so if testers side-load on a machine where 
your app has not been installed before, it closely approximates a typical user’s environment. This way 
you can truly test the first-run experience of your app on a variety of devices. 

Planning: Can the App Be a Windows Store App? 
In a slight contradiction to this chapter’s title, the idea of “apps for everyone” doesn’t necessarily mean 
that every app can, in fact, be a Windows Store app. There are two sides to this: technical feasibility and 
meeting Store certification requirements. 

Technically, as we covered in Chapter 3, “App Anatomy and Page Navigation” and a few other places, 
Window Store apps run under certain conditions and restrictions. Here's a summary: 

• Windows Store apps always run in the app container and have no access to APIs that can openly 
access the file system or any other sensitive resource. 

• Sharing data between Windows Store apps always goes through the Share contract, the 
clipboard, or web services; local interprocess communication is not supported. (Local loopback is 
supported only on machines with developer licenses and will cause the app to be rejected from 
Store certification.) 

• Windows Store apps can use only the WinRT APIs along with a subset of Win32 and .NET APIs; 
apps written in HTML and JavaScript can also use the intrinsic HTML and JavaScript APIs 
provided by the app host. Any third-party libraries you use in the app must also use only these 
APIs. 

• Apps cannot install custom device drivers or anything else that affects the system, nor can apps 
customize their install process. 

• Only certain apps can run in the background, and for specific purposes, as we’ve seen in Chapter 
10, “Media,” and Chapter 13, “Live Tiles, Notifications, the Lock Screen, and Background Tasks.” 

• Some UI interaction models aren’t appropriate for touch input, such as high precision CAD. 
Because Windows Store apps must support all forms of input, high precision apps either need to 
be redesigned for touch or should be implemented as a desktop app. 

• Windows Store apps run in one of four view states and cannot utilize overlapping windows. 

If any of these technical aspects would prevent you from writing the kind of app you want to write, 
then working with the Windows Store as your business location, if you will, is not really possible. For 
example, many development tools, network administration tools, file system utilities, antimalware 
utilities (that scan the whole hard drive), and database management systems must be implemented as 

760



desktop applications and distributed through the Internet or other retail channels.78 

More generally, because Windows Store apps run full screen or with at most one other visible app, 
they are intended to be much more specifically focused on certain tasks. Apps that try to do too 
much—Swiss Army Knife apps, if you will—may end up feeling cumbersome or confusing. It’s good to 
hone the purpose of the app, as discussed in Planning Windows Store apps; otherwise you should 
probably implement a desktop app instead (for which there is still a very large market, mind you!). 

When planning any app, be sure to review the Windows 8 app certification requirements to 
understand whether the app you’re thinking about will be summarily rejected during the onboarding 
process. Examples include apps that contain gratuitous violence, hate, adult content, solicitations, and 
so forth, as well as apps that consume an inordinate amount of battery power, attempt to just 
repackage a website as an app, or clearly don’t add value to the Store as a whole. So, if you’re thinking 
to submit the next great bodily-functions-sound-effects app, you might think again. 

Also be aware that the Store policies can change over time, so be sure to check them anew before 
you start any new project. 

A final consideration is whether the Windows Store is itself available in a target market when you 
plan to release your app—the Store will be rolled out to different markets over time. Unfortunately, 
there is not a published schedule for that rollout; you'll need to watch for announcements. There might 
also be restrictions on whether you can submit an app to certain locales based on where you operate as 
a developer. This information is again best found on the Store developer portal. 

Planning for Monetization (or Not) 
Just as there are a number of reasons why you’re interested in creating apps in the first place, there are 
also a number of ways to fulfill your business goals. Will your app be completely free? Will it be free but 
supported by ads? Will it be paid, with or without a trial version? Will it involve in-app purchases? Each 
of these business models has its place, especially if you plan on releasing multiple apps. Furthermore, it’s 
likely that your business model or models will change over time as you improve your apps and respond 
to competition. 

In this section, we’ll explore at these different models and better understand how they relate to one 
another.79 Remember in this whole context that licenses for apps and in-app purchases are granted to 
the user and will apply across up to five devices. This isn’t typically a concern for apps because the 
details are automatically handled by the Store—if the user attempts to install the app on a sixth device, 
Windows will instruct him or her to remove the app from a machine. 

78 With developer tools, it’s feasible that a Windows Store app could itself provide an interpreted runtime environment for 
developing apps that would always run inside that tool. A Windows Store app cannot, however, directly produce another 
Windows Store app because the necessary packaging and deployment APIs are only available to desktop apps. 

79 Another general overview that includes details on pricing can be found on Making money with your apps through the 
Windows Store on the Windows 8 Developer Blog. 

761

http://msdn.microsoft.com/library/windows/apps/hh465427.aspx
http://msdn.microsoft.com/library/windows/apps/hh694083.aspx
https://appdev.microsoft.com/StorePortals/
http://blogs.msdn.com/b/windowsstore/archive/2012/07/20/making-money-with-your-apps-through-the-windows-store.aspx
http://blogs.msdn.com/b/windowsstore/archive/2012/07/20/making-money-with-your-apps-through-the-windows-store.aspx


Free Apps  
You don't need to do anything special to create a free app so far as the Store is concerned. You write it, 
upload it to the Store, have it certified, and then get the word out. 

Free apps can serve several purposes: 

• Earn you praise and glory from users and possibly other developers. 

• Give you experience producing apps (otherwise known as resumé items!). 

• Provide a space for marketing your own products and/or services (as opposed to hosting 
third-party ads, as discussed in the next section). 

The first purpose here is self-explanatory and doesn’t need any elaboration, I hope! If this is your 
motivation, I imagine you’re already doing daily or hourly web searches on your name and will be 
watching your app’s ratings and reviews like a floor trader watches stock tickers. 

As for gaining experience, that’s a great exercise, of course, but be aware that every app you make 
available through the Store—along with its ratings and reviews—becomes a permanent part of your 
developer reputation. Because of this, uploading apps to the Store before they’re ready—or before 
you’re really ready as a developer—could backfire over the long term. You don’t want your reputation 
to be weighed down by early experiments when you finally have the idea that’s really going to take off! 

To manage this risk, you could start by only sharing apps with other developers who can side-load 
whatever packages you make available through some means other than the Store. You might also 
consider creating a personal developer account just for your experimental work, keeping it separate 
from the account through which you’d want to post your real apps. This way, any negative reputation 
from your experiments doesn’t accrue to your serious work; neither does positive reputation, of course, 
but that’s a balance you have to find for yourself. Also, creating an extra account will require an 
additional annual fee, but that might be well worth it in the end. 

As for marketing, what I mean here again differs greatly from ad-supported apps (see the next 
section). Here I’m specifically referring to promoting your own business or causes (such as a charity) 
through the functioning of the app where you have complete control over the content. 

Be aware, however, that the Store certification requirements are somewhat strict where this sort of 
thing is concerned. Section 2.1 states, “Your app must not display only ads.” Section 2.3 says, “Your app 
must not use its tiles, notifications, app bar, or swipe-from-edge interactions to display ads.” That said, 
it’s recognized that the very purpose of some apps is to provide offers, for example, in which case it’s 
not really displaying ads, per se, but content for which the user has expressed interest through the act of 
installing the app. The policies are targeted more toward apps that pick up ads from an ad provider, 
such that the user would get random content showing up on their tiles and other key areas of the user 
interface. 

The other point to these policies reflects Section 1.1 of the requirements: “Your app must offer 
customers unique, creative value or utility in all languages and markets that it supports.” What this 

762



means is that if you want to promote a cause or business through the app, do it in a way that delivers 
value to consumers. For example, an app for a nonprofit organization could help its users understand 
and be inspired by the organization’s activities, keep up to date on current projects, and be directed to a 
place where perhaps they can make a donation. There’s a fine line to walk here, because apps that 
simply ask for donations won’t be accepted to the store (no creative value). Their primary purpose must 
be to inform, educate, inspire, entertain, and so on, with links to websites for any kind of charitable 
transactions. (Making donations directly through the Windows Store is not presently supported, plus it 
would incur revenue sharing, which you’d want to avoid anyway.) 

More generally, free apps can also provide some useful functions in themselves but otherwise be a 
demonstration of features of any number of other apps—something like a tour of your paid offerings 
(so long as there’s again real value in the app by itself). When related to only a single app, such a demo 
or “lite” version is different from a trial version of a full app. As we’ll see shortly, a trial version should 
look and operate as if you had acquired a license to a full version, but it would be hobbled in some key 
ways or time-limited to place a restriction on its use. A demo app, on the other hand, is meant more to 
showcase features rather than provide a complete experience. 

For example, let’s say you have a game with five distinct “worlds” through which a player would 
normally progress in the app's full version. A trial version would allow a player to start working through 
those worlds but would cease to operate completely after some short period of time, say 30 or 60 
minutes. In that time, a player might not progress past the first few levels in the first world, so the 
experience of the overall game is incomplete. A free demo/lite version, on the other hand, could be 
played as much as one wished but would contain only one level from, say, three of the five worlds. This 
gives the user a broader taste of the app and, because it can be played many times, serves as a continual 
advertisement for the full experience without giving anything more away. In other words, a demo app is 
like a teaser trailer: enough to create but not satisfy a hunger. (And, yes, while there may be some 
people that only ever watch free trailers and never go see a full movie, those are a rare breed. The same 
is true with apps.) 

Great free apps can also fit well into an overall business model without asking for anything: they can 
help build a great reputation for your business, thereby supporting other paid offerings. Each app in the 
store can include links to your website and support information, so each one is a doorway to the rest of 
your business. In this way, free apps are like the giveaways (or loss leaders) that many businesses offer to 
get you in the door so that you can look at their full line of products without distraction. 

Ad-Supported Apps 
Ad-supported apps, which are typically free but can also be paid, are those that deliver some clear value 
in themselves and use that value to sell advertising space to others. Such advertising, while hopefully 
well-directed to the user’s interests, typically isn’t integral to the app’s own function. Many free games, 
for instance, place interstitial (gap-filling) ads between levels or boards, ostensibly to keep you 
entertained while the next level is loading but in truth to take full advantage of your captured attention! 
The bottom line is that a user’s attention, focused on something of value, has real value to advertisers 
who are willing to pay you for a bit of that focus. 

763



As a user of the web, you’re undoubtedly familiar with how ads can appear in an app’s overall layout: 
filling gaps in space rather than in time. Typically, an app will place a control in such a space, which is 
itself connected to an ad service and pretty much manages itself. The control will acquire ads to display 
and track click-throughs, which is typically how you get paid: clicking is a sign that the user actually did 
pay a little attention to the ad, so you receive the value for that attention; users who ignore ads and 
never click them don’t register. 

Either way, many developers have found that selling ad space may be the most lucrative means of 
monetizing an app and building a business, but of course you have to understand your target audience 
and whether they’re the sorts who will care for advertising at all. 

The advertising control you use depends on the ad provider. For Windows 8, you can use the 
Microsoft Advertising SDK, an extension that you incorporate into your app. For details on how this 
works, see the Developer Walkthrough – HTML 5 JavaScript documentation (part of the Microsoft 
Advertising SDK for Windows 8 documentation). I expect that other ad providers will make similar 
controls available in time. 

Paid Apps and Trial Versions 
Producing an app and charging for a license is certainly the one of the oldest means of monetizing, and 
it still works quite well. Value received for value delivered: that’s the simple equation on which many 
successful products are built. Generally speaking, paid apps are free of advertising and are not 
advertisements themselves (again enforced by policy), hence customers’ willingness to pay money for 
the apps in the first place. It could be, however, that we’ll gradually see some creative means of ad 
insertion even into paid apps: after all, you pay for issues of a magazine and yet that magazine contains 
ads (unless you pay for premium magazines that contain none). Think too how we once balked at the 
idea of advertising on cable television or in movie theaters, but all that’s just a matter-of-course now. 
The simple truth is that wherever there is a focus of customer attention, as already mentioned, there is a 
value to advertisers and to the businesses that can sell them access to that attention. You just have to be 
careful not to abuse those customers! 

An important consideration for paid apps especially (but really for all apps) is the need for marketing. 
The existence of a place—the Windows Store—where customers can acquire your app doesn’t eliminate 
the need for finding your customers and making them aware of your product. With every such store, 
there is a brief window of time where the total number of apps is still relatively small, meaning that 
users have a good chance of finding the app through casual browsing. But as soon as the store contains 
more apps, and users tire of browsing as a primary means of discovery, either users have to find you in a 
search (assuming you even show up in the top of the results list) or you have to generate interest 
through other means. This is again one of the functions of other free apps or demo versions that you 
might produce: if one of your free apps gets featured in some category, every user who downloads that 
free app at least has an opportunity to learn about your other products. And then, of course, there are 
all the other means to market your product: the social web, your company website and SEO, advertising 
in traditional media, and so forth. 

764

http://advertising.microsoft.com/windowsadvertising/developer
http://msdn.microsoft.com/library/hh506343.aspx
http://msdn.microsoft.com/library/hh506371.aspx
http://msdn.microsoft.com/library/hh506371.aspx


You should also strongly consider making a trial version of the paid app available. A trial is typically 
free and is subject to an expiration date. As noted before, a trial app looks, feels, and operates like the 
real thing but is simply time-limited or hobbled. For example, a picture editor might allow you to edit 
but not save your work, meaning that you get the full experience of using the product without the full 
benefits of owning a license. A video converter app, as another example, might place a logo or 
watermark (that is, an advertisement) on the output video, so the functionality is all there, but the result 
isn’t as useful. A trial version might also just disable in-app purchases, thereby limiting its extensibility 
until the full app is acquired. 

Whether the trial is hobbled is your choice as a developer—if an app creates something and saves it 
in a particular format, such that you could not re-open those files without the same app (unlike 
pictures), there may be no reason to disable a save feature at all. In such cases, the strategy is to get the 
trial user heavily invested in continued use of the app, such that purchasing the full license is a better 
choice than letting go of that investment. Personal finance and contact management are good 
examples: in a 30-day trial period (or whatever period the app sets), users of such apps could amass 
quite a bit of useful data that they would not want to re-enter into another app. (Such a trial might also 
quietly disable any exporting features.) 

A trial version is typically quite adept at reminding the user (that is, nagging them) about their trial 
status and that, hey, really, don’t you want to get the real thing? The APIs for working with the Windows 
Store are such that checking for trial status (and its pending expiration) is quite simple. APIs also exist to 
initiate a streamlined purchase flow through which the user can acquire a full license with minimal 
disruption, all within the context of the app itself. In short, trial versions are an important monetization 
model that are, fortunately, quite easy to implement in Windows 8. 

A technical stipulation of a trial version is that all the bits of the full version are actually already 
present on the user’s machine: purchasing a full license from a trial version is simply an act of setting the 
license information in the Windows Store, and such a purchase will not initiate any new downloading. 
For a user, this means that to download and install a trial is to effectively download and install the full 
version, with the Store simply indicating that the user doesn’t have full rights. If such a full download 
would be an obstacle, however, such as when the app is large, it may be a better strategy to create a 
much smaller demo version that will take the user to the appropriate page in the Store to buy the full 
app. 

All of this is really about creating a smooth and painless experience for users to try new software. 
One of the primarily motivations behind the Store (and the associated packaging technology) is to 
eliminate nearly all of the past risk of software acquisition: unknown or untrusted sources, potential 
malware, inconsistent install/uninstall procedures, and so forth. Microsoft wants Windows users to feel 
confident that they can experiment and try out new apps—your apps!—without corrupting their system, 
compromising their data, or in other ways being exposed to those sorts of problems. 
 

765



Sidebar: Piracy Protection 
The existence of the Windows Store and the fact that users cannot install an app except in the 
context of the Store provides a certain inherent level of piracy protection. Users are blocked from 
accessing the folders that contain installed appx packages, and even if they managed to extract 
and install one elsewhere, the Store would report that the app is unlicensed for that user and 
would thus refuse to run it. 

Beyond that, any additional levels of protection are up to the app. It’s perfectly allowable for 
an app to ask the user to register with the publisher (because customer information isn’t shared 
from the Store) and to obtain a secondary license key. Windows does not block such procedures 
but doesn’t provide any such services itself. Do consider, however, that customers might be 
annoyed by such additional requirements. It’s best to exercise caution in such a decision. 

In-App Purchases 
In-app purchases are a primary means to monetize an application over time by selling incremental 
add-ons, options, periodicals, time-limited subscriptions/rentals, and so forth. By definition, the lack of 
any such options cannot interfere with the core operation of the app. In-app purchases cannot also be 
interdependent—that is, users cannot be required to purchase other options to use one they’re already 
bought. Know too that an app is limited to 100 such in-app purchases when they are managed through 
the Windows Store; if you use your own commerce engine, as described in the next section, there is no 
such limit. 

Whether in-app purchases are the right choice for your app involves a number of considerations: 

• Implementing them well can be difficult because they introduce complexities into an app’s 
architecture. (Note that Windows does maintain information for in-app purchases that can 
expire.) 

• The app has full responsibility for correct delivery of the purchased item or feature, as opposed 
to the Store handling all the details. 

• In-app purchases effectively create multiple variations of an app, which can increase user 
support and interaction. 

• Overuse or inappropriate use of in-app purchases can generate the perception that you’re trying 
to get money from users at every possible opportunity. Users who don’t or won’t pay for in-app 
purchases can still leave bad reviews about their experience. 

• At present, the Windows Store supports only “durable” products (that can be purchased only 
once until they expire); there is no support for “consumable” products that can be repeatedly 
purchased. Consumables are under consideration for future versions; at present they can be 
implemented by using a custom commerce engine. 
 

766



• In-app purchases through the Windows Store do not trigger download of additional content; 
they only change the user’s license for that product. If needed, an app can initiate its own 
downloads once the product license has been acquired. 

On the flip side, offering a new full version of an app with new features might generate better sales 
than offering the same features as in-app purchases. An app update is a real event in itself and can 
generate renewed interest in and energy around your product like the release of a new movie. In-app 
purchases, on the other hand, are by nature more prosaic, like the popcorn and drinks you buy in the 
theater—always there, and often considered essential for the whole experience, but not all that exciting 
outside that context. The best approach is probably to follow Hollywood’s example and do both! 

So it’s worthwhile at even the earliest stages of design to think about what kinds of in-app purchases 
make sense for your product. You may not even at this time have anything you plan to offer, but you 
may want to add them later on. In short, keep the door open for expansion and creativity without 
necessarily having to revise the app. It’s equally important to also think about what makes sense for your 
customers. We emphasize this point because there have been stories of outright abuse in this area. Apps 
aimed at young children, for example, have been known to dangle lots of in-app purchases like candy, 
enticing those children to press a “buy” button when they have no sense of the transaction. For this 
reason, the Windows Store will prompt the user for authentication with each purchase. Parents, protect 
your passwords! 

The key thing is that if you try to be sleazy, you probably won’t get far with your app. If you try to 
trick users out of their money, your app will certainly decline in ratings and reviews over time. And if 
you’re found to be truly abusive, Microsoft does reserve the right to kicked your app out of the Store 
altogether, if it even passes certification at the outset. 

All in all, these are all just considerations that will eventually affect how you set prices in the Store. 
You'll need to consider the tradeoffs involved between setting a higher price point with an initial-app 
purchase versus monetizing through multiple in-app purchases, and you'll need to be sensitive to how 
willing your target customers might be to making one purchase versus making multiple purchases. Apps 
that constantly nag their users to make additional purchases will be on par with pushy street vendors 
who just won’t leave you alone. 

Revenue Sharing and Custom Commerce for In-App Purchases 
The subject of monetization is not complete without answering one of the most important questions: 
how much of the Store-related revenue stream do you, as the publisher of the app, get to keep? The 
basic answer is simple: 70% comes to you, 30% goes to the Store (you have to pay your rent). However, 
once an app achieves US$25,000 in sales (from both the app and in-app purchases), your share 
increases to 80%. 

Revenue sharing is always in effect for paid apps. For in-app purchases, however, you have the 
option to bypass the Windows Store altogether and use a commerce platform of your own, which 
potentially allows you to realize a much higher percentage of the revenue. This is an especially great 
option if you already have arrangements with a transaction provider through your existing websites. 

767



Be aware that Sections 4.8 and 4.9 of the Store certification requirements apply here, where you need to 
ensure that the user enters credentials for each purchase and that each transaction meets the PCI Data 
Security Standards. 

With this custom commerce option, you’re pretty much on your own where all the details are 
concerned, including UI—the Windows Store API itself doesn’t provide for extensibility of its own 
mechanisms. You might draw from The in-app purchase user experience for a customer topic in the 
documentation to understand the flow, and you may also be able to find a third-party solution that 
provides an app control along with the backend commerce services. 

Note that although the Windows Store does not presently support consumable in-app purchases, 
you can certainly implement this with your own commerce scheme. Doing so will also avoid the 
100-item limit imposed by the Windows Store mechanisms. 

The Windows Store APIs 

Now that you’ve likely decided on a course for your app, let’s see how you use the Windows Store APIs 
to accomplish those ends. These are found in the Windows.ApplicationModel.Store namespace; all 
objects referred to in this section are contained in this namespace unless noted.80 

First, know that basic licensing and trial enforcement comes for free: the app doesn’t actually need to 
do anything at all! A user cannot acquire your app without going through the Store, and even if he did 
manage to, he’d have to have a developer license to install and run it. Furthermore, because the Store 
automatically tracks trial periods for apps, Windows will simply not launch an app once the trial is 
expired. Instead, Windows will redirect the user to the product’s page in the Store where the user can 
purchase a full license. 

An app can also set the expiration time of a license—not just for trials but the full app. This could be 
useful for apps that aren’t valid or useful after a given date, such as event registration (conferences, 
meetings, etc.) or time-limited demos. Think about it, though: if the user has gone to the trouble of 
acquiring the app in the first place, do you really want to go and disable it? Far better, I imagine, is to 
maintain the usefulness of the app in some way. With event registration, for example, there are 
probably more events in the future that you could provide information about and perhaps open up 
registration at the appropriate time. Again, the user has the app already and must have had some intent 
in launching it even after it’s expired—so can you leverage that intent in some way? It’s a good question 
to ask. 

As noted before, apps can enforce a secondary licensing scheme if desired. Here it would ask the user 
for a separate registration or a separately acquired license key of some sort. Again, Windows does not 
offer an API for this but will not block schemes of your own. 

80 To make a note, the Windows.ApplicationModel.Package class also provides a few details about the installed app 
package. Usage is simple, and you can refer to the App package information sample for more. 

768

https://www.pcisecuritystandards.org/security_standards/index.php
https://www.pcisecuritystandards.org/security_standards/index.php
http://msdn.microsoft.com/library/windows/apps/Hh924350.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.aspx
http://code.msdn.microsoft.com/windowsapps/Package-sample-46e239fa


That said, WinRT provides for the following features: 

• Retrieving app and product (in-app purchase) information from the Store, including price values 
formatted for the user’s current locale.  

• Retrieving license information for the app, indicating trials, expirations, etc. The app can make 
any decisions it wants with these details. 

• Prompting the user to purchase a full license during or after a trial period; this is especially useful 
when the app is running and the trial period expires. 

• Handling in-app (product) purchases. 

• Generating receipts. 

• Testing all the app’s Store interactions prior to uploading to the store. 

When an app runs for real—that is, after it has been uploaded to the Store and has made its way into 
the hands of customers—interaction with the API happens through the static CurrentApp object: 

var currentApp = Windows.ApplicationModel.Store.CurrentApp; 

whose methods and properties are as follows: 

• appId The GUID that uniquely identifies the app in the Store. 

• linkUri The URI (Windows.Foundation.Uri) to the app’s listing page in the Store. (If you recall 
from Chapter 12, “Contracts,” this is the value you want to store in the application-ListingUri 
property of a DataPackage used in the Share contract; doing so lets a user who receives the 
shared data easily find your app.) 

• licenseInformation A LicenseInformation object. 

• loadListingInformationAsync Retrieves the ListingInformation object for the app; through 
this you can retrieve information about the in-app products. 

• requestAppPurchaseAsync Invokes the Store UI to invite the user to purchase the app. This is 
used when the app is running and detects that a license has expired. 

• requestProductPurchaseAsync Invokes the Store UI to invite the user to do an in-app purchase. 

• getAppReceiptAsync Requests an XML string that contains receipts for the app and any in-app 
purchases.81 

A ListingInformation object contains a number of properties that come pre-localized as 
appropriate: ageRating (a number, currently one of 3, 7, 12, and 16), currentMarket (a BCP-47 string 
indicating the user’s market that is used for transation), description (a string containing the app’s 
description from its Store page localized for the user’s current market), formattedPrice (a string 

81 There is also a getProductReceiptAsync, but this is for future use and is currently not implemented. 

769

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.currentapp.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.licenseinformation.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.listinginformation.aspx


containing the app’s purchase price formatted for the user’s current market and currency), name (a string 
with the app’s name in the current market), and productListings. The latter is an array of 
ProductListing objects, each of which contains just three properties: productId (a string containing 
the app-defined product identifier), formattedPrice (a localized string containing the product price), 
and a localized name (a string). You can see that this collection is exactly what you’ll use to present the 
user with a localized list of options they can purchase, where the productId could be used to retrieve 
additional content like images from your package or a web service. 

The LicenseInformation object for its part contains simple properties of expirationDate (a Date), 
isActive (a Boolean), and isTrial (a Boolean). It has one event, licenseChanged, which you can use to 
detect any changes to these properties, such as the expiration of a license while the app is running, in 
which case you want to prompt for purchase. The remaining property, productLicenses, is a collection 
of ProductLicense objects. Each of these contains the appropriate productId, expirationDate, and 
isActive properties. 

Tip For globalization purposes, never compare two dates with simple arithmetic operators like <, >, 
and =. Instead. Use the Windows.Globalization.Calendar.compareDateTime method, which will 
account for the specific needs of different calendar systems that might be in effect. 

That’s really the extent of the Store APIs in a nutshell. You may notice, by the way, that the APIs don’t 
concern themselves with ad-supported apps, since ads don’t involve the Store itself. 

But you might be asking yourself some very significant questions: how on earth can this API return 
any meaningful information while the app is under development and has yet to be uploaded to the 
Store in the first place? How can you get product information and test all your purchase features when 
there’s nothing yet available to purchase? 

These are great questions, and the answer lies in the one other object in the 
Windows.ApplicationModel.Store namespace that is our next topic: the Windows Store app simulator. 

The CurrentAppSimulator Object 
To make it possible to test an app’s interactions with the Store before the app is actually onboarded, 
WinRT provides the static CurrentAppSimulator object that is identical to CurrentApp with two 
exceptions: the simulator object works against data from a local XML file rather than live data from the 
Store, and the object has an extra method, reloadSimulatorAsync, to reinitialize the simulator with such 
XML. During development, you’ll want to use this line of code to start your work with the API: 

var currentApp = Windows.ApplicationModel.Store.CurrentAppSimulator; 

and then delete the Simulator suffix when you’re ready to send the app to the Store. (And if you forget, 
you’ll fail Store certification.) 

 

 

770

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.productlisting.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.calendar.comparedatetime.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.currentappsimulator.aspx


When your app accesses CurrentAppSimulator, WinRT looks for a file called WindowsStore-Proxy.xml 
in your app data, specifically under %userprofile%\AppData\local\packages\<package 
name>\Microsoft\Windows Store\ApiData. If it exists, the simulator is initialized from that data; 
otherwise the file is created with the following defaults (slightly formatted to fit the page):  

<?xml version="1.0" encoding="utf-16" ?> 
<CurrentApp> 
    <ListingInformation> 
        <App> 
            <AppId>00000000-0000-0000-0000-000000000000</AppId> 
            <LinkUri> 
              http://apps.microsoft.com/webpdp/app/00000000-0000-0000-0000-000000000000 
            </LinkUri> 
            <CurrentMarket>en-US</CurrentMarket> 
            <AgeRating>3</AgeRating> 
            <MarketData xml:lang="en-us"> 
                <Name>AppName</Name> 
                <Description>AppDescription</Description> 
                <Price>1.00</Price> 
                <CurrencySymbol>$</CurrencySymbol> 
                <CurrencyCode>USD</CurrencyCode> 
            </MarketData> 
        </App> 
        <Product ProductId="1" LicenseDuration="0"> 
            <MarketData xml:lang="en-us"> 
                <Name>Product1Name</Name> 
                <Price>1.00</Price> 
                <CurrencySymbol>$</CurrencySymbol> 
                <CurrencyCode>USD</CurrencyCode> 
            </MarketData> 
        </Product> 
    </ListingInformation> 
    <LicenseInformation> 
        <App> 
            <IsActive>true</IsActive> 
            <IsTrial>true</IsTrial> 
        </App> 
        <Product ProductId="1"> 
            <IsActive>true</IsActive> 
        </Product> 
    </LicenseInformation> 
</CurrentApp> 

The full XML schema for this can be found on the CurrentAppSimulator page, but it’s straightforward 
to see exactly where you’d modify the XML to test different scenarios: 

• Create additional MarketData elements to specify app details for other locales. The 
CurrentMarket element indicates the default. 

• Create additional Product elements (including their MarketData children) for each in-app 
purchase. 
 

771



• In the App element under LicenseInformation, change the values of IsActive (that is, not 
expired) and IsTrial between true and false to test the variations: active/non-trial, active/trial, 
expired/non-trial, and expired/trial. You can also add an ExpirationDate element to indicate 
when the app expires (in UTC time), using the form of yyyy-mm-ddThh:mm:ss.ssZ (replacing 
yyyy:mm:dd with the date and mm:ss.ss with the time). For automated testing, additional 
elements allow you to hard-code result codes; see the CurrentAppSimulator page for details. 

• For each product, add a Product element under LicenseInformation with the appropriate 
ProductId attribute. Supported child elements are IsActive and ExpirationDate, with the same 
meaning as the app license. 

It’s important to note that using the methods in the simulator object that change license status, such 
as converting a trial app to a purchased app or acquiring in-app purchases, will not alter the contents of 
the WindowsStoreProxy.xml file. This means you can just restart the app to reset the state of the 
simulator object. But it also means you’d need to edit the XML and launch the app again to test how 
different variations are handled on startup. (Note also that the store simulator state is not persisted 
when the app is suspended and terminated.) 

For this purpose, the simulator object’s reloadSimulatorAsync method takes a StorageFile 
containing the XML initialization data. This can very much simplify your testing procedures, and often 
you’ll have such files directly in your project folder such that you can refer to them with ms-appx:/// 
URIs. However, make sure that these files don’t end up in your app package when you upload to the 
Store. In Visual Studio, right-click the file in the Solution Explorer pane and select Properties. In the 
Property Pages dialog that appears, as shown in Figure 17-3, set Package Action to None. 

 
FIGURE 17-3 Make sure that XML configuration files for the simulator object don’t end up in your Store packages. 

The Trial app and in-app purchase sample, which we’ll be drawing from in the sections ahead, use 
reloadSimulatorAsync to load a specific XML file for each of its scenarios. In Scenario 4, for example 
(js/api-listing-uri.js), it loads data/app-listing-uri.xml as follows: 

var currentApp = Windows.ApplicationModel.Store.CurrentAppSimulator; 
 
var page = WinJS.UI.Pages.define("/html/app-listing-uri.html", { 
    ready: function (element, options) { 
        // ... 
        loadAppListingUriProxyFile();  // Initialize the license proxy file 
    }, 
    unload: function () { 

772

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.currentappsimulator.aspx
http://code.msdn.microsoft.com/windowsapps/Licensing-API-Sample-19712f1a


        currentApp.licenseInformation.removeEventListener("licensechanged", 
            appListingUriRefreshScenario); 
    } 
}); 
 
function loadAppListingUriProxyFile() { 
    // We could also use folder.getFileFromPathAsync("ms-appx:///data/app-listing-ur.xml") 
    // instead of the two-step process with getFileAsync as shown here. 
    Windows.ApplicationModel.Package.current.installedLocation.getFolderAsync("data").done( 
        function (folder) { 
            folder.getFileAsync("app-listing-uri.xml").done( 
                function (file) { 
                    currentApp.licenseInformation.addEventListener("licensechanged", 
                        appListingUriRefreshScenario); 
                    Windows.ApplicationModel.Store.CurrentAppSimulator 
                        .reloadSimulatorAsync(file).done(); 
                }); 
        }); 
} 

Notice how this sample listens for the licensechanged event and makes sure to call 
remove-EventListener when the page is unloaded. (See the “WinRT Events and removeEventListener” 
section in Chapter 3.) 

This same Scenario 4 shows the basic retrieval of app information from the Store. When you click the 
Show Uri button on that page, it goes to the handler below that simply outputs the app’s linkUri 
property: 

function displayLink() { 
    WinJS.log && WinJS.log(currentApp.linkUri.absoluteUri, "sample", "status"); 
} 

Getting at the app’s other properties would look the same, just using 
currentApp.loadListingInformationAsync first to obtain that data. This is shown in Scenario 1 
(js/trial-mode.js): 

function trialModeRefreshScenario() { 
    currentApp.loadListingInformationAsync().done( 
    function (listing) { 
        document.getElementById("purchasePrice").innerText = 
            "You can buy the full app for: " + listing.formattedPrice + "."; 
    }); 
 
    displayCurrentLicenseMode(); 
} 

And on that note, let’s look at the rest of the sample more fully because it shows the other use 
scenarios of the Store API as a whole. 
 

773



Trial Versions and App Purchase 
Implementing a trial version that hopefully leads to an app purchase is demonstrated in Scenario 1 of 
the Trial app and in-app purchase sample. When you run this sample and select Scenario 1, as shown in 
Figure 17-4, the simulator object is initialized using data/trial-mode.xml where the app’s IsActive and 
IsTrial elements are both set to true, meaning that we have a valid trial license. The ExpirationDate for 
this license is set to January 1, 2014, but we’ll play around with that in a moment. 

 
FIGURE 17-4 Scenario 1 of the Trial apps and in-app purchases sample (cropped slightly). 

The Trial Period button in this scenario just calculates the number of days remaining in the trial 
period, using basic arithmetic and the licenseInformation.expirationDate property. Again, let me 
point out that the proper way to do this is with the Windows.Globalization.Calendar class that we’ll 
see later in the “World Readiness and Localization” section and demonstrated in the Calendar details 
and math sample. Using the APIs designed for this purpose will insulate your app from regional 
variations. 

The Trial Mode and Purchased buttons just output different messages based on the state of the 
isActive and isTrial properties. Both button click handlers start like this: 

var licenseInformation = currentApp.licenseInformation; 
if (licenseInformation.isActive) { 
    if (licenseInformation.isTrial) { 

What can make the output from these buttons more interesting is modifying the 
data/trail-mode.xml file with different initial values for IsActive and IsTrial. Also try setting the 
ExpirationDate to a time in the past (remembering that it’s UTC time, not local time), and you’ll see that 
IsActive automatically gets set to false. You can also try setting ExpirationDate about a minute in the 
future, set a breakpoint on the trailModeRefreshScenario function inside js/trial-mode.js, then run the 
sample again. 

774

http://code.msdn.microsoft.com/windowsapps/Licensing-API-Sample-19712f1a
http://msdn.microsoft.com/library/windows/apps/windows.globalization.calendar.aspx
http://code.msdn.microsoft.com/windowsapps/Calendar-details-and-math-b1683bb7
http://code.msdn.microsoft.com/windowsapps/Calendar-details-and-math-b1683bb7


You won’t hit your breakpoint immediately after ExpirationDate has passed, however. For 
performance reasons, the licensechanged event is not triggered immediately—there could be 
hundreds of expiration dates to track throughout the system. The event will instead fire reasonably 
soon, within about 20 minutes, so you might start such a test before going out for lunch. 

This sample, of course, merely changes some output messages according to the validity of the 
license. In a real app you would either disable certain features for an active trial license or let the user do 
nothing except purchase the app if the trial has expired. You’d want to make such checks both when the 
app is run and in the resuming event. 

The latter case is handled by the Buy App button in this scenario, an option that you would almost 
always present to users of your trial version at appropriate times, regardless of expiration status. This 
button calls a function called doTrialConversion that makes use of the 
CurrentApp.requestAppPurchaseAsync method (sample output code has been replaced here with 
comments identifying the specific results): 

var licenseInformation = currentApp.licenseInformation; 
if (!licenseInformation.isActive || licenseInformation.isTrial) { 
    currentApp.requestAppPurchaseAsync(false).done( 
    function () { 
        if (licenseInformation.isActive && !licenseInformation.isTrial) { 
            // Purchase was fulfilled 
        } else { 
            // Purchase UI was shown, but the user canceled. 
        } 
    }, 
    function () { 
        // There was an error in the transaction; purchase did not occur 
    }); 

The one argument to requestAppPurchaseAsync indicates whether a receipt string is sent to your 
completed handler; see “Receipts” below. In any case, if the user makes a purchase, the 
license-changed event will fire as it does for trial expiration, so you can always consolidate your license 
handling there. 

When running in the simulator and you invoke requestAppPurchaseAsync, you won’t see the actual 
Store UI. Instead you’ll get an ultra-prosaic dialog from the simulator object in which you can specify 
the exact return value (an HRESULT): 

 

775



Sending back S_OK indicates that the purchase was made. The isTrial flag should change to false 
and isActive set to true. Returning any of the other errors will invoke the error handler for 
requestAppPurchaseAsync. Pressing Cancel, on the other hand, will call your completed handler but the 
values of isTrial and isActive will remain unchanged. 

In the real world, of course, consumers will not be fiddling around with simulated Store conditions. 
Instead, if your app is marked to offer a trial version (something you set while uploading to the Store), 
they’ll see a Try button on the app’s listing page like this: 

 
Tapping Try will install the app and set both isActive and isTrial to true. At the point when the 

app calls requestAppPurchaseAsync, Windows will launch the Store and take the user to the app’s listing 
page where they can tap the Buy button if they choose. 

Tip When writing this book, I looked at a number of apps that were available in the Windows Store and 
found that while many offered trials, few of them gave me any indication about why and how to 
purchase a full version. I was presented with such an option only when the (unknown) trial period had 
passed. If you want to convert trials into paid licenses, it’s better, even as the sample demonstrates, to 
inform the user that she’s running a trial and give her reminders and opportunities to convert! 

Sidebar: Expiring Apps? 
Although the app’s expiration date is often used in conjunction with a trial license, there’s no 
limitation that it must be so: a free or paid app can also expire. If you don’t indicate a trial version 
when uploading the app to the Store yet indicate an expiration, the isActive flag will change to 
false at that date and time. A licensechanged event will also fire, allowing a running app to take 
appropriate action. The app can also check the active status and/or expiration date on startup and 
in the resuming event and display an appropriate message. Such an option is possibly useful for 
apps that truly have a limited lifespan, say an app that provides news and other information about 
a certain candidate’s political campaign. It might not expire immediately after election day, of 
course—maybe the app is still good for another few months, at which point it could be taken 
down from the Store altogether. Yet, as noted before, if the user has gone to all the trouble of 
acquiring an app in the first place, why not make it useful even after its primary purpose has been 
fulfilled? Updates to the app can also add fresh content and capabilities later. 

Listing and Purchasing In-App Products 
There are two aspects of working with your in-app purchases, or products as the API calls them. The first 
is letting the user appropriately know that those products are available through your own UI. The 
second is then completing the purchase and activating the product’s license. 

776



If you’re using a custom commerce engine, the app will use its own services to retrieve the necessary 
product information and handle all the UI and license management for a transaction—the Store API will 
not play any role here. If the products are handled through the Store, on the other hand, the 
ListingInformation.productListings collection supplies localized product details and the 
CurrentApp.requestProductPurchaseAsync method handles the transaction, including the UI. This 
section focuses on these APIs. 

As noted before, in-app purchases can have expiration dates, after which time the user needs to 
repurchase the product to continue its use. This is appropriate for subscriptions or rentals where the 
user was fully aware at the time of purchase that the product would eventually expire. In general, you 
should always make it clear if a product purchase will expire. Don’t surprise the user or the user will 
likely surprise you with a less than favorable review in the Store! 

In-app purchases are demonstrated in Scenario 2 of the sample we’ve been using. In this case, the 
CurrentAppSimulator is initialized with data/in-app-purchase.xml, which defines two products 
(prosaically named Product 1 and Product 2), the first of which has an active license and the second of 
which is inactive. When you switch to this scenario (js/in-app-purchase.js), the sample loads the app’s 
ListingInformation, retrieves the product details from the productListings collection, and then 
displays those options (as shown in Figure 17-5): 

currentApp.loadListingInformationAsync().done( 
    function (listing) { 
        var product1 = listing.productListings.lookup("product1"); 
        var product2 = listing.productListings.lookup("product2"); 
        document.getElementById("product1SellMessage").innerText = 
            "You can buy " + product1.name + " for: " + product1.formattedPrice + "."; 
        document.getElementById("product2SellMessage").innerText = 
            "You can buy " + product2.name + " for: " + product2.formattedPrice + "."; 
    }); 

 
FIGURE 17-5 Scenario 2 of the Trial apps and in-app purchases sample (cropped); product information obtained 
from the Store is displayed in blue text (circled here in red). 

777

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.listinginformation.productlistings.aspx
http://msdn.microsoft.com/library/windows/apps/hh967814.aspx


Note that the productListings collection is an IMapView object and not an array; you can retrieve a 
specific item in the collection by using its lookup method, as in the code above, or by using a key-based 
array lookup: 

var product1 = listing.productListings["product1"]; 

Iterating through the IMapView takes a little more work; it does not support index-based lookup nor 
the foreach method. You instead use an IIterator obtained through the first method, as shown 
here: 

var iterator = listing.productListings.first() 
var product; 
 
while (iterator.hasCurrent) { 
    product = iterator.current.value; 
    document.getElementById(product.productId + "SellMessage").innerText = 
        "You can buy " + product.name + " for: " + product.formattedPrice + "."; 
    iterator.moveNext(); 
}; 

This code is completely equivalent to the previous snippet and relies on the fact that the product ID 
just so happens to match the first part of the appropriate element ID in the HTML. In any case, this is the 
sort of code you would use to present a variable list of options to the user. 

In doing so, you’ll likely want to filter out those products that have already been purchased. In that 
case, you’d look up the product license within the CurrentApp.licenseInformation.productLicenses 
collection, which is another IMapView of ProductLicense objects, using the product’s ID as the key. 
Here’s how we’d modify the code above to perform this additional step: 

var iterator = listing.productListings.first() 
var licenses = currentApp.licenseInformation.productLicenses; 
var product, message; 
 
while (iterator.hasCurrent) { 
    product = iterator.current.value; 
                                     
    if (licenses[product.productId].isActive) { 
        message = "You own " + product.name + "."; 
    } else { 
        message = "You can buy " + product.name + " for: " + product.formattedPrice + "."; 
    } 
 
    document.getElementById(product.productId + "SellMessage").innerText = message; 
    iterator.moveNext(); 
}; 

If you use this code in Scenario 2 of the sample (which is provided in the modified sample in this 
chapter’s companion content), you’ll see the message “You own Product 1” when you first switch to that 
scenario. You could also add a further refinement to check the expirationDate property of each 
product license and display its remaining time. 

778

www.SoftGozar.com

http://msdn.microsoft.com/library/windows/apps/br226037.aspx
http://msdn.microsoft.com/library/windows/apps/br226026.aspx


You might have noticed that a ProductListing (from the app’s productListings collection) only 
contains a name and not a description. This really means that the name is the description and you should 
use it as such, rather than using it as another type of identifier, for which you already have productId. In 
other words, a product that provides 20 extra levels for a game should be named something like 
“Twenty extra levels with new challenges” rather than “extra_levels” because that name will appear in UI. 

As you dangle all your product options in front of the user, the user will (I’m being very affirmative 
here!) at some point want to purchase one or more of them. When the user taps the appropriate 
button, like the Buy Product buttons in the sample (see Figure 17-5 again), the app just needs to call 
requestProductPurchaseAsync with the product ID and a Boolean indicating whether the method 
should provide a receipt: 

currentApp.requestProductPurchaseAsync("product1", false).done( 
    function () { 
        if (licenseInformation.productLicenses.lookup("product1").isActive) { 
            // Purchase was fulfilled; UI is not shown if the user already owns the product. 
        } else { 
            // Purchase UI was shown, but the user canceled. 
        } 
    }, 
    function () { 
        // There was an error in the transaction; purchase did not occur 
    }); 

If the product already has an active license, requestProductPurchaseAsync will simply call your 
completed handler without showing any UI, as none is needed. Otherwise the user will see a series of 
prompts to confirm the purchase, including confirmation of their credentials. For the whole flow, see 
The in-app purchase user experience for a customer.  A typical confirmation message is shown below: 

 
Note that the warning here, which exists to meet regulations in some countries, is not entirely true: 

you can also cancel entering your credentials in the next dialog. 

When using the CurrentAppSimulator, of course, you won’t see the Store prompts but only another 
simple dialog to control the result: 

779

www.SoftGozar.com

http://msdn.microsoft.com/library/windows/apps/Hh924350.aspx


 
As with the app purchase, any changes in product license status will trigger the licensechanged 

event; your handler for that event makes a great place to update your app status and initiate any 
downloads related to the purchase. The same event will be fired if a time-limited product license 
expires, which is your signal to make the purchase available again. It’s likely that you might also want to 
alert the user to that status, perhaps with a toast notification or with inline messages when the user tries 
to access that feature. 

Receipts 
Both the requestAppPurchaseAsync and requestProductPurchaseAsync methods of CurrentApp have an 
option, as we saw earlier, to provide a receipt string to the completed handler of the async operation. Its 
getAppReceiptAsync method also provides an all-up receipt (app and products) at any time. Generally 
speaking, receipts are most useful when a service needs to validate that an app is authorized to use 
certain functionality. The app acquires the receipt and sends it to the service, which can then do 
whatever validation it requires. 

In all cases, the receipt is an XML string that contains information such as the app or product id, the 
dates when the purchase was made and when the receipt was issued, and a digital signature. The details 
of the XML schema can be found on the reference page linked above. 

As an example, here’s the receipt string provided from requestProductPurchaseAsync when 
purchasing Product 2 in Scenario 2 of the sample: 

<?xml version=\"1.0\" encoding=\"utf-8\"?><Receipt Version=\"1.0\" ReceiptDate=\"2012-09-11T17:35:55Z\" 
CertificateId=\"\" ReceiptDeviceId=\"7a61447d-c8f4-457a-8310-363cbdffd21c\"><ProductReceipt 
Id=\"e729be49-8299-4122-b6fb-a95bcfac6a7c\" AppId=\"Microsoft.SDKSamples.Store.JS_8wekyb3d8bbwe\" 
ProductId=\"product2\" PurchaseDate=\"2012-09-11T17:35:55Z\" ProductType=\"Durable\"  /></Receipt> 

Here’s what Scenario 5 of the same sample receives from getAppReceiptAsync: 

<?xml version=\"1.0\" encoding=\"utf-8\"?><Receipt Version=\"1.0\" ReceiptDate=\"2012-09-11T17:39:39Z\" 
CertificateId=\"\" ReceiptDeviceId=\"50b4267d-437d-429e-a4b8-88da96da9e52\"><AppReceipt 
Id=\"1550eb89-31ae-4559-b516-267afe47ae19\" AppId=\"Microsoft.SDKSamples.Store.JS_8wekyb3d8bbwe\" 
PurchaseDate=\"2012-09-11T17:39:12Z\" LicenseType=\"Full\"  /><ProductReceipt 

780

www.SoftGozar.com

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.store.currentapp.getappreceiptasync.aspx


Id=\"e2a62d42-dbca-43d2-b779-66eb916d9df4\" AppId=\"Microsoft.SDKSamples.Store.JS_8wekyb3d8bbwe\" 
ProductId=\"product2\" PurchaseDate=\"2012-09-11T17:39:12Z\" ProductType=\"Durable\" 
ExpirationDate=\"2014-01-01T00:00:00Z\" /><ProductReceipt Id=\"21967f50-ac55-4b41-acd9-f1e86ad6c7b9\" 
AppId=\"Microsoft.SDKSamples.Store.JS_8wekyb3d8bbwe\" ProductId=\"product1\" 
PurchaseDate=\"2012-09-11T17:39:12Z\" ProductType=\"Durable\"  /></Receipt> 

If you want to consume a receipt as an XML document instead of a string (for display or print), it’s a 
simple matter to create such an object like we did with tile and notification XML in Chapter 13: 

var receiptDOM = new Windows.Data.Xml.Dom.XmlDocument(); 
receiptDOM.loadXml(receipt); 

Accessibility 

As I mentioned in this chapter’s introduction, nearly 60% of users employ accessibility features in some 
capacity—sometimes because of a real disability, sometimes due to personal preference, and sometimes 
just to make the device easier to use within certain environments. In many countries, accessibility is 
actually a legal requirement, so it will be necessary if you plan to make an app available in those regions. 
In short, supporting accessibility is something that every app should do and do well, and fortunately this 
isn’t the onerous task you might think it to be. (For reference, see Making your app accessible and 
Introduction to Web Accessibility; the latter is written for web apps but is very applicable to Windows 
Store apps. Also see Guidelines and checklist for Accessibility, Practices to avoid for accessible apps, and 
Implementing accessibility for particular content types.) 

Accessibility might feel like a lot of work because developers are relatively unfamiliar with what it 
means. To remedy this, take a few minutes to give yourself some direct experience. But before you do 
anything else: 

Go to PC Settings > Sync Your Settings and turn off the options for Desktop Personalization and Ease 
of Access. Otherwise the effects of your tinkering will roam to other devices you might have. I learned this 
the hard way when I was playing around with contrast settings on my main laptop after which a game my 
son wanted to play on a tablet came up mostly black! Clearly, that app didn’t handle high contrast well, 
but it also took me a while to figure out what was going on! 
 

Now that we’ve taken care of that detail, try the following: 

• Press Left Shift+Alt+Print Screen or go to PC Settings > Ease of Access and toggle high contrast 
mode (see image below). How does the app respond? Are all of the critical elements visible? A 
mode like this is important for users who have difficulty distinguishing subtle colors. 

781

http://msdn.microsoft.com/library/windows/apps/hh452681.aspx
http://msdn.microsoft.com/library/windows/desktop/gg671915.aspx
http://msdn.microsoft.com/library/windows/apps/hh700325.aspx
http://msdn.microsoft.com/library/windows/apps/hh452715.aspx
http://msdn.microsoft.com/library/windows/apps/hh700326.aspx


 
• You can also select a particular high contrast theme through Control Panel > Appearance and 

Personalization > Personalization, where you have a choice between three black background 
themes and one white-background theme; the latter is the same one that’s activated through PC 
Settings or Left Shift + Alt + Print Screen: 

 
• In PC Settings > Ease of Access, tap Make Everything on the Screen Bigger. If your display is 

large enough, this will effectively scale everything by 140%. How does the app respond to the 
new screen dimensions? As discussed in Chapter 6, turning this on will activate the 140% 
resolution scaling, even though you’re not using a high pixel density device.  

• Press Win+Ctrl+U to start (and stop) the built-in screen reader called Narrator. Win+Enter also 
starts it, and you can press Win+U to go to Control Panel > Ease of Access Center and tap Start 
Narrator. (Note that Narrator is a desktop application that starts minimized; you need to close 
that application to stop Narrator.) Now turn off the monitor. Can you still use the app? What 
happens when you navigate around with the keyboard? Do you hear an audible indication of 
where the focus is? This is clearly important for users who are blind or visually impaired. 

• If you have a mouse, disconnect it and try keyboard-only navigation (you can open your eyes 
now). This is important for users with mobility issues and those who rely on speech recognition. 

• With your mouse connected, go to Control Panel > Ease of Access Center and tap Start 
On-Screen Keyboard to try mouse/touch-only navigation. This special on-screen keyboard is 
different from the one activated for touch with input fields (as we saw in Chapter 9, “Input and 
Sensors”) because it always remains visible.  

Through this experience I hope you’ve gained some understanding of what accessibility means. 
Simply said, there are four key scenarios for accessibility support: screen readers, keyboard-only or 
mouse-only input, high contrast, and resolution scaling. 

782

www.SoftGozar.com



The latter two we’ve already covered. In Chapter 6, “Layout,” we saw how to work with different 
resolution scales, how to handle varying screen sizes (which can occur as a result of scaling), and how to 
provide raster graphics for different scales so that they always look their best. For a quick review, you 
might want to revisit the Scaling according to DPI sample. 

Input considerations were also covered in Chapter 9, and I’ll remind you again that the Store 
certification policy (section 3.5) requires that apps support all forms of input. Typically, this isn’t an issue 
for mouse and touch; the real work to be done is making sure that your app can be used with nothing 
but a keyboard. As noted in Chapter 9, see Implementing keyboard accessibility for full details. Testing 
your app with Narrator turned on will also reveal whether you’ve paid any attention to keyboard 
navigation, because no matter how well your elements are labeled for that purpose, those labels don’t 
do any good if the user can never set the focus to them! 

It’s also worth mentioning that including closed captions in video will assist users who are hearing 
impaired. Doing so, however, is a detail for the video data itself or can be implemented via text overlays 
on a video element. See the HTML5 and Accessibility in MSDN Magazine for more on video accessibility. 

Let’s now look at how we support screen readers and contrast variations. 

Sidebar: Accessibility Test Tools 
The Windows SDK includes two tools to help you verify your implementation of accessibility. The 
first is called Inspect, a UI automation tool that checks through the accessibility information 
you’ve made available to screen readers and lets you know what you’ve missed. The second is 
called AccChecker, which runs a series of verifications on the rest of the app. You’ll find these tools 
in the Windows SDK install folder, typically c:\Program Files (x86)\Windows Kits\8.0\bin\x86. You 
might also be interested in the Accessible Event Watcher and the UI Automation Verify tools. For 
usage details on all of these, see Automation Testing Tools in the documentation as well as 
Testing your app for accessibility. Of course, for the most complete kind of testing, find yourself a 
few users who regularly work with assistive technologies, set them up with a developer license (so 
that you can share your app package), and let them put your app through its paces! 

Sidebar: Narrator and tabindex Attributes 
When making your app navigable by keyboard, be careful not to overuse tabindex attributes on 
elements that don’t need them, thinking that this will help Narrator for noninteractive elements. It 
actually doesn’t. Narrator has its own keyboard commands (like CapsLock+arrows) and its own 
navigation modes that skilled users employ to read anything on a page, irrespective of tabindex. 
For this reason, setting tabindex properties on static elements decreases Narrator’s usability; you 
should set the property only on interactive elements. In other words, understand that using an 
app through keyboard and using it through Narrator are different processes, and think only of 
tabindex in the context of keyboard navigation. 

783

www.SoftGozar.com

http://code.msdn.microsoft.com/windowsapps/Scaling-sample-cf072f4f
http://msdn.microsoft.com/library/windows/apps/hh700327.aspx
http://msdn.microsoft.com/magazine/hh204741.aspx
http://msdn.microsoft.com/library/windows/desktop/dd373661.aspx
http://msdn.microsoft.com/library/windows/apps/hh452726.aspx


Screen Readers and Aria Attributes 
Screen readers like the built-in Narrator can work only if the app provides some kind of information that 
tells the screen reader about the elements in the UI. For Windows Store apps written in HTML, CSS, and 
JavaScript, this is achieved through aria-* attributes on your UI elements. 
 

Tip If you need separate text to speech capabilities, the Bing Translator API, for example includes a 
Speak method available through AJAX, SOAP, and HTTP interfaces that generates a WAV or MP3 
stream for text in a given language. Other web services also exist for this purpose, and third-party 
libraries might be available. 

ARIA stands for Accessible Rich Internet Applications, a standard that’s spelled out in the WAI-ARIA 
specifications. WIA itself stands for the W3C Web Accessibility Initiative. Two other W3C documents of 
interest are the WAI-ARIA Primer and WAI-ARIA Authoring Practices. 

What it really boils down to is that assistive technologies like Narrator are first able to automatically 
derive what they need from certain elements, like header element, paragraphs, the title attribute, 
label elements associated with focusable elements (using the label’s for attribute), button text, input 
elements, the caption attribute of a table, and the alt attribute of img elements. The role attribute also 
comes into play here. 

For everything else, as for div elements (including custom controls) whose role cannot be inferred, 
the specs define a number of attributes, starting with aria-, to indicate the role that a particular 
element plays in the app. Full details can of course be found in the specifications linked above, along 
with the ARIA reference on the Windows Developer Center. Another good reference topic is also 
Exposing basic information about UI elements in the documentation, that shows examples of a number 
of the core aria-* attributes. That page makes a special note about the canvas element. Because a 
canvas is just a pixel bucket, it generally doesn’t have content that is accessible to screen readers, even 
though it might appear as text. Make a special effort, then, to give a canvas appropriate attributes as 
you would with other custom elements (again see the HTML5 and Accessibility article for more on 
canvas). 

All of the controls in WinJS are fully stocked with ARIA attributes and other bits that work with 
assistive technologies, so by using them you get lots of accessibility for free. (An exception is the 
SemanticZoom control that specifically does not have an aria-label itself because it’s a container for 
other controls that should have such labels themselves.) That said, it’s still necessary for you to properly 
adorn other elements, including HTML controls like progress. Here’s a summary of the core aria-* 
attributes: 
 
 
 
 

784

http://www.microsofttranslator.com/dev/
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/
http://www.w3.org/WAI/intro/aria.php
http://www.w3.org/TR/wai-aria-primer/
http://www.w3.org/TR/wai-aria-practices/
http://msdn.microsoft.com/library/windows/apps/hh767301.aspx
http://msdn.microsoft.com/library/windows/apps/Hh700323.aspx
http://msdn.microsoft.com/magazine/hh204741.aspx


• aria-label Directly provides text for screen readers. 

• aria-labelledby (Note the spelling with two l’s.) Specifies the identifier of another element 
that contains the appropriate label for an element. The specifications state that aria-labelledby 
should be used instead of aria-label if that text is already on the screen. 

• aria-describedby Similar to aria-labelledby, identifies an element that contains fuller 
description instead of just label text. Narrator reads that text when the user presses the 
Win+Alt+F key on the element with this attribute. This is a good option to use with a canvas that 
contains drawn text: if you also store that text in another element linked with this attribute, even 
a hidden element, then the user has a way to hear that content. 

• aria-valuemin, aria-valuemax, and aria-valuenow For div elements whose role is set to slider, 
progressbar, or spinbutton, these indicate the values within the control. aria-valuetext can also 
provide text that corresponds to the value of aria-valuenow. 

• aria-selected, aria-checked, aria-disabled and aria-hidden Indicate the state of an 
element. 

• aria-live Needed for content that changes dynamically, such as master-detail views, chat, RSS 
feeds, fragment loading, and so forth. 

 

Back in Chapter 4, “Controls, Control Styling, and Data Binding,” we saw that a special syntax was 
necessary to do data-binding on attributes of target elements where there are no associated JavaScript 
properties. The aria-* attributes are the primary example of this, because of their hyphenated names, 
for which we use this[ ] along with special WinJS initializers in data-win-bind: 

<div data-win-bind="this['aria-label']: title WinJS.Binding.setAttribute"></div> 
<div data-win-bind="this['aria-label']: title WinJS.Binding.setAttributeOneTime"></div> 

It’s probably more typical, though, that you’ll provide localized ARIA labels in your app’s resources, 
and for this there is a different declarative syntax that we’ll see later on in “World Readiness and 
Localization.” 

The ARIA Sample 
To see the various aria-* attributes and Narrator in action, the best place to turn is a unique sample in 
the Windows SDK, the ARIA sample. One of its unique characteristics is that is doesn’t at all look like an 
SDK sample, as you can see in Figure 17-6. This was done to intentionally represent the content of a 
typical app, without all the other chrome that normally decorates the samples. In this case the sample 
emulates a simple chat app with a kind of master-detail view on the left side. 

785

http://code.msdn.microsoft.com/windowsapps/Aria-sample-f3cf5323


 
FIGURE 17-6 The ARIA sample’s main page. 

When you run this sample, be sure to turn on Narrator to hear what it has to say. (I highly 
recommend doing this in the Visual Studio simulator because then Narrator is only running in that 
session and not for your entire machine!) You’ll find that it’s accurately reflecting what’s happening on 
the screen, especially as you Tab or Shift+Tab between controls, press Enter or the spacebar to select 
items, and enter chat text. Again, turn off your monitor, close your eyes, get a blindfold, or have your 
five-year-old come up behind you and cover your eyes to get the full experience. 

Pressing Enter on an item in the left-hand list will update the contacts shown in the middle. Selecting 
one of those contacts and pressing enter will then open another page containing a table—a contrived 
table, certainly, but one that shows the aria-* attributes that apply there. The page, shown in Figure 
17-7, also provides an opportunity to experience page navigation through the keyboard and Narrator. 

 
FIGURE 17-7 The ARIA sample’s secondary page (cropped a bit). 

786



Apart from the small bits of code in pages/chat/chat.js to work the chat window, the really 
interesting parts of this sample are all contained in the markup, specifically pages/chat/chat.html (the 
main page) and pages/table/ table.html (the secondary page). In the first we can see aria-label on 
most of the controls (with the text you hear as you tab around) and much more extensive roster of 
attributes for the chat output div near the bottom: 

<div class="chatpage fragment"> 
    <header aria-label="Header content" role="banner"> 
        <button class="win-backbutton" aria-label="Back" disabled></button> 
        <h1 class="titlearea win-type-ellipsis"> 
            <span class="pagetitle">Aria Sample</span> 
        </h1> 
    </header> 
    <section aria-label="Main content" role="main"> 
        <div class="chat"> 
            <div class="groupslist" aria-label="List of groups" 
                data-win-control="WinJS.UI.ListView" 
                data-win-options="{ selectionMode: 'none'}"></div> 
            <div class="contactslist" aria-label="List of contacts"  
                data-win-control="WinJS.UI.ListView" 
                data-win-options="{ selectionMode: 'none' }"></div> 
            <div class="chatTextContainer"> 
                <div class="chatTextEchoContainer" aria-label="Chat text area" 
                    aria-live="assertive" aria-multiline="true" aria-readonly="true" 
                    aria-relevant="additions" role="log" 
                    tabindex="0"></div> 
                <input class="chatTextInput" accesskey="i" 
                    aria-label="Chat input area" type="text" 
                    value="Type here..."/> 
            </div> 
        </div> 
    </section> 
</div> 

That div, with the chatTextEchoContainer class, is updated at run time to contain child div elements 
for each text entry. For this reason it has the aria-live attribute, whose values are described as a 
“politeness level” in the W3C spec. The value of assertive says “communicate the change right away,” 
which is appropriate for chat but should be used carefully. The other value, polite (the default for 
role="log" elements), indicates a lower priority such that Narrator won’t interrupt the current task. The 
aria-relevant="additions" attribute is related to this, indicating what kind of changes are relevant to 
the live area. Its values are additions, removals, text, and all. With additions, if we happened to add 
an image to the chat window with an alt attribute, that would be communicated; if we set this to text, 
only text elements would be read. 

The aria-multiline attribute indicates that the chat window is a mutliline textbox such that the 
Enter key is taken as text input rather than as a button press that would submit a form (as with the 
single-line textbox). The aria-readonly attribute then indicates that this control cannot be edited, to 
distinguish it from those marked with aria-disabled. 
 

787



If you play with the sample, you’ll notice that when you tab to the chat window, Narrator reads the 
entire contents. When you enter a line of in the single line control, on the other hand, Narrator only 
reads the new element that’s been added. This is due to a default value of false for the aria-atomic 
attribute (not present in the markup). When used on an aria-live element, this tells the screen reader 
to read only the changed node in that element. If you set aria-atomic to true, a change to any child 
element is considered a change to the whole element such that all the contents will be read. This can 
apply on multiple levels, mind you, so that if you add a child element that is atomic and add grandchild 
elements within it, only that atomic child element would be read if the parent element is not atomic. 

As for the markup in pages/table/table.html, this gives us an example of aria-describedby. Here’s 
the relevant section, omitting the table contents: 

<div class="detail"> 
    <h2 id="title" role="heading" aria-level="2">Sample table</h2> 
    <p id="subtitle" role="note">This table shows sample data.</p> 
    <p class="generaltext">...</p> 
    <table class="tabledetail" aria-describedby="subtitle" 
        aria-labelledby="title" border="1"> 
        <!-- Contents omitted --> 
    </table> 
</div> 

When you set the focus to the table in the running sample (you have to use the mouse for this unless 
you add a tabindex to the table), you’ll initially hear “Sample table” according to the aria-labelledby 
attribute. Then press Win+Alt+F, and you’ll hear “Item described by…” followed by the 
aria-describedby text. (And yes, go ahead and change it so that Narrator says some silly things. You 
know you want to!) 

Note, finally, that it’s essential that the title and subtitle elements also have some aria-related 
attributes, such as role. Otherwise aria-labelledby and aria-describedby won’t work. 

Handling Contrast Variations 
Working with high contrast modes is primarily one of accommodating changes to the Windows color 
theme and making sure that you apply graphics that meet high contrast requirements. Technically 
speaking, high contrast is defined by the W3C as a minimum luminosity ratio of 4.5 to 1. A full 
explanation including how to measure this ratio can be found on 
http://www.w3.org/TR/WCAG20-TECHS/G18.html. A Contrast Analyzer (from the Paciello Group) is also 
available to check your images (some of mine in Here My Am! failed the test). Do note, however, that 
creating high contrast graphics isn’t required for non-informational content such as logos and 
decorative graphics. At the same time, full-color graphics might look out of place in a high contrast 
mode, so be sure to evaluate your entire end-to-end user experience under such conditions. 

An app handles high contrast through four means. The first is to use built-in controls (both HTML 
and WinJS) and let the system do the work! To see what happens, run a few of the controls samples, 
such as the HTML essential controls sample and HTML essential controls sample and the HTML Rating 

788

http://www.w3.org/TR/WCAG20-TECHS/G18.html
http://www.paciellogroup.com/node/18?q=node/20
http://code.msdn.microsoft.com/windowsapps/Common-HTML-controls-and-09a72a24
http://code.msdn.microsoft.com/windowsapps/Rating-control-sample-4666c750


control sample, and switch between the different high contrast themes in the Personalization section of 
Control Panel. 

Of course, an app will almost always have some layout of its own, such as div elements with custom 
color schemes and such defined in CSS. You’ll want to make sure you have appropriate style rules for 
high contrast settings, for which we have the -ms-high-contrast media feature for media queries, 
similar to -ms-view-state as we saw in Chapter 6. This feature can have the values of active (to apply its 
rules to all high contrast themes), black-on-white (the white background theme), white-on-black (a 
black background theme), and none. Clearly, none is implied when you don’t use -ms-high-contrast to 
group any rules; active is also implied if you use -ms-high-contrast without a value. We’ll take a closer 
look at all this in the next section. 

As with view states, you can use media query listeners and matchMedia to pick up contrast themes in 
code. This is useful for updating canvas elements, as we’ll see shortly. There is also the 
-ms-high-contrast-adjust CSS style that indicates whether to allow the element’s normal CSS 
properties to be overridden for high contrast. The default value, auto, allows this; the value of none will 
prevent this behavior. Again, we’ll see more shortly. 

Next, WinRT surfaces the current contrast settings through the 
Windows.UI.ViewManagement.-AccessibilitySettings class. This has two properties: highContrast, a 
Boolean indicating if high contrast is on), and highContrastTheme, a string with the name of the high 
contrast color scheme. For the black on white theme this will be “High Contrast White”; for the other 
three themes in Control Panel > Personalization the strings will be “High Contrast #1”, “High Contrast 
#2”, and “High Contrast Black” (going from left to right). You can see these results through Scenario 2 of 
the UI contrast and settings sample, where the code is very simple: 

var accessibilitySettings = new Windows.UI.ViewManagement.AccessibilitySettings(); 
id("highContrast").innerHTML = accessibilitySettings.highContrast; 
id("highContrastScheme").innerHTML = accessibilitySettings.highContrast ?  
    accessibilitySettings.highContrastScheme : "undefined"; 

WinRT also provides detailed color information through the 
Windows.UI.ViewManagement.-UISettings.uIElementColor method. (Note the odd casing on 
uIElementColor, an artifact of WinRT names projecting into JavaScript.) This returns a 
Windows.UI.Color object for an element identified with a UIElementType. Scenario 1 of the UI contrast 
and settings sample shows all these possibilities with a piece of instructive but otherwise uninspiring 
code that I won’t duplicate here! 

The AccessibilitySettings object also supports one event, highcontrastchanged, that lets you 
know when high contrast is turned on or off; its eventArgs.target is the updated AccessbilitySettings 
object. You can use this event to trigger any programmatic updates you need to make in your UI, such 
as redrawing a canvas with high contrast colors if you’re not using a media query listener for that 
purpose. 

 

789

http://code.msdn.microsoft.com/windowsapps/Rating-control-sample-4666c750
http://msdn.microsoft.com/library/windows/apps/hh465764.aspx
http://msdn.microsoft.com/library/windows/apps/hh441137.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.accessibilitysettings.aspx
http://code.msdn.microsoft.com/windowsapps/High-Contrast-UI-Settings-9a310961
http://msdn.microsoft.com/library/windows/apps/br229470.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.color.aspx
http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.uielementtype.aspx


Finally, with both raster and vector images, there are file naming conventions that you use in 
conjunction with the .scale-100, .scale-140, and .scale-180 suffixes for pixel density. For contrast, the 
appropriate suffixes are .contrast-standard, .contrast-high, .contrast-black (black-on-white), and 
.contrast-white (white on black). We’ll see this in action in the second section below, “High Contrast 
Resources,” and see how to combine both the scaling and contrast suffixes in the third section, “Scale + 
Contrast = Resource Qualifiers.” 

CSS Styling for High Contrast 
The CSS styling for high contrast mode sample provides a valuable look at dealing with high contrast 
modes where media queries and image files are concerned. As you might expect, most of these features 
are demonstrated declaratively in CSS and the app’s resources; only one scenario actually has any 
JavaScript code at all! 

Scenario 1 shows the difference between elements that are and are not aware of contrast. With a 
normal color scheme in effect, its three buttons appear as follows, where the first two are div elements 
and the third a true button: 

 
When high contrast is turned on (Left Shift + Alt + Print Screen is very handy to toggle the setting for 

this sample), they appear like so: 

 
The first control, lacking contrast awareness, is still using white for its border, which of course 

disappears against a white background. The second button, on the other hand, has styles that use 
system-defined colors associated with a high contrast media query, so the button works well with any 
theme (css/scenario1.css): 

@media (-ms-high-contrast) { 
    .s1-hc { 
        background-color: ButtonFace; 
        color: ButtonText; 
        border: 1px solid ButtonText; 
    } 
    /* ... */ 
} 
 

Tip If you just stick with system colors entirely, both in CSS and in SVGs, then you won’t need to use 
media queries or different SVG files at all, because those colors will be adjusted for high contrast modes 
automatically. See User-defined system colors for a reference. You can also use the current-Color 
value in SVGs for fill, stroke, stop-color, flood-color, and lighting-color properties to reflect 
contrast settings. 

790

http://code.msdn.microsoft.com/windowsapps/High-Contrast-b36079d8
http://msdn.microsoft.com/library/ie/aa358804.aspx


Scenario 2 shows similar effects with button elements that use SVGs for their background images. 
With normal settings, those buttons appear as follows: 

 
With high contrast turned on, they appear like this: 

 
All that’s happening here is that we’re using a media query to use a high contrast background image 

for the button when necessary: 

.s2-button-hc-bg-svg { 
    background-image: url(../button-not-aware.svg); 
    background-size: 100% 100%; 
    width: 200px; 
    height: 200px; 
} 
 
@media (-ms-high-contrast) { 
    .s2-button-hc-bg-svg { 
        background-image: url(../button.contrast-high.svg); 
        background-repeat: no-repeat; 
        background-size: cover; 
    } 
} 

If you look in button-not-aware.svg, you’ll see that its gradient colors have many different values; in 
button.contrast-high.svg, on the other hand, those colors are generally set to black or ButtonFace, the 
latter reflecting the system color setting as is appropriate. (It would probably be better, in fact, to 
replace black with ButtonText, to use a system color that will automatically adjust to contrast settings.) 
 
 

791

http://msdn.microsoft.com/library/ie/aa358804.aspx


What’s going on with the first and second buttons? If you look in the CSS (css/scenario2.css), you’ll 
see that the only difference is that the style class for the first button, .s2-button, lacks a rule within the 
high contrast media query, whereas the second, .s2-button-hc, has a rule there that just specifies the 
exact same background image. So what’s the deal? What’s happening is that because the first button 
lacks any applicable style rule within the media query, its styles are automatically overridden with high 
contrast values. As described in Introduction to Web Accessibility, turning on high contrast overrides 
most color styles as well as background-image, in the latter case simply removing those images. This is 
why the first button shows up blank. The second button has a rule to define a background-image within 
the media query, so that image appears. 

This brings us to the purpose of the -ms-high-contrast-adjust style. By default this is set to auto, 
allowing CSS properties to be overridden. If we set this to none within a style rule, we prevent those 
styles from being overridden or adjusted. Thus, if you add -ms-high-contrast-adjust: none; to the 
.s2-button rule in css/scenario2.css, you’ll see that the first and second buttons behave exactly the same. 
You can see this change in the copy of the sample included with this chapter’s companion content. 

Moving now to Scenario 3, it normally draws the Internet Explorer logo on a canvas in color (below 
left), whereas in high contrast mode it draws the logo in black and white (below right): 

  
In this case, high contrast is picked up in JavaScript (js/scenario3.js) using a media query listener; no 

CSS is involved (this code is simplified for clarity; the actual sample also detects high contrast on 
startup): 

var fillStyleOuterColor = "rgb(9, 126, 196)"; 
var fillStyleInnerColor = "rgb(255, 255, 255)"; 
 
var mql = matchMedia("(-ms-high-contrast)"); 
mql.addListener(updateColorValues); 
 
function updateColorValues(listener) { 
    if (listener.matches) { 
        fillStyleOuterColor = "ButtonText"; 
        fillStyleInnerColor = "ButtonFace"; 
        draw(); 
    } 
    else { 
        fillStyleOuterColor = "rgb(9, 126, 196)"; 
        fillStyleInnerColor = "rgb(255, 255, 255)"; 
        draw(); 
    } 

Note that the AccessibilitySettings.onhighcontrastchanged event could be used here instead 
of the media query listener. 

792

http://msdn.microsoft.com/library/windows/desktop/gg671915.aspx


Canvas a better choice?  To this point in the Here My Am! app, I’ve been using images to provide 
messages in img elements when a photograph or the map isn’t available. When considering the needs 
for contrast and localized variations of those images, it’s easier to take localized string resources, as 
we’ll work with later on, and just generate the images on the fly with a canvas. This eliminates the need 
for many different image files and make the app package smaller, while still fully addressing both 
accessibility and localization needs. The version of Here My Am! in this chapter now works this way. 

High Contrast Resources 
In the previous section with the CSS styling for high contrast mode sample we saw a bit of the filename 
conventions that the Windows resource loader uses for high contrast: button.contrast-high.svg, for 
example. Scenario 4 of that sample shows how this lookup can happen automatically. In the project 
there is a file named button.svg alongside one named button.contrast-high.svg, with an img element 
declared in html/scenario4.html as follows: 

<img src="../button.svg" /> 

If the system is running with normal contrast, the resource loader resolves the URI here to button.svg. 
(The ../ is because the scenario page is one level down in the HTML folder.) When high contrast is in 
effect, the resource loader instead looks for that same filename but with .contrast-high inserted before 
the extension. 

Note If you’re using custom app bar icons, as discussed in the “Custom Icons” section of Chapter 7, 
“Commanding UI,” remember to include high contrast variants of your source images using this naming 
scheme. 

If you like having more parallel filenames, you can also name the normal contrast file with 
.contrast-standard, as in button.contrast-standard.svg. If you do this in the sample project, leaving the 
HTML as is, you’ll see no difference in the output. At the same time, because of behavior nuances with 
contrast handling, it’s only recommended to use .contrast-standard if you also supply .contrast-white 
and .contrast-black variants. 

As noted before, these variants are applied automatically for black-on-white (white background) and 
white-on-black (black background) themes, respectively. To see this, make a copy of 
button.contrast-high.svg and name it button.contrast-white.svg, and then make a second copy names 
button.contrast-black.svg. In that second copy, modify the gradient colors in the CDATA block by 
exchanging black with ButtonFace. When you then switch on a black background theme, you’ll see a 
button that’s white on black, as it should be. 

All these changes can be found in the copy of the sample included with this chapter’s companion 
content. 

The one caveat with the img element in Scenario 4 is that it won’t be updated when contrast is 
changed while the app is running, as happens with media queries in Scenarios 1–3. That is, the app host 
will not re-render the img element in response to a contrast switch. To change this behavior, we basically 

793

http://code.msdn.microsoft.com/windowsapps/High-Contrast-b36079d8


have to trick the app host into thinking that the source URI has changed by appending some dummy 
URI parameters. We can do this inside AccessibilitySettings.onhighcontrastchanged with 
eventArgs.target.highContrastScheme providing a decent variable for the URI (see js/scenario4.js in the 
modified sample): 

var page = WinJS.UI.Pages.define("/html/scenario4.html", { 
    ready: function (element, options) { 
        var accSet = new Windows.UI.ViewManagement.AccessibilitySettings(); 
 
        accSet.addEventListener("highcontrastchanged", function (e) { 
            var image = document.getElementById("buttonImage"); 
 
            //Use the scheme name (sans whitespace) as the dummy URI parameter 
            var params = e.target.highContrast ?  
                "?" + e.target.highContrastScheme.replace(/\s*/g, "") : ""; 
            image.src = "../button.svg" + params; 
        }); 
    } 
}); 

One significant advantage to highcontrastchanged over media query listeners is that the latter will 
be fired very soon after the change happens, at which point the resource loader might not have picked 
up the change by the time you set the img.src attribute. This results in the wrong image being 
displayed. highcontrastchanged is fired much later, so the code above generally works. That said, my 
experiments along these lines (with the sample running in snap view and the desktop control panel in 
filled view) show that it’s still not 100% reliable: changing contrasts is an expensive operation that 
triggers many events throughout the system, and there’s no guarantee when the resource loader will 
get reset. For this reason you can consider just bypassing the whole matter and explicitly setting the src 
attribute to a known file with a specific name. The modified sample actually runs with code like this 
(commenting out the code above). Or you can just use media queries! 

Scale + Contrast = Resource Qualifiers 
Because the graphics we worked with in the previous section are SVGs, there is no need to supply 
separate files for different pixel densities. But what if we have raster graphics? How do we combine 
scaling and contrast? This will also come up when we look at localization in the next section, because we 
might also need to include language variants. 

This brings us to the matter of resource qualifiers, a topic that’s discussed in its fullest extent on How 
to name resources using qualifiers. Qualifiers include scale and contrast as we’ve seen, along with 
language, layout direction, home region, and a few other obscure variants. 

To combine qualifiers within a single filename, append them together with underscores. The general 
form is filename.qualifiername-value_qualifiername-value.ext. So, a graphic named logo.png can have 
variants like logo.contrast-high_scale-180.png and logo.scale-100_contrast-white.png (the order of 
qualifiers doesn’t matter). Clearly, with the full set of three or four scales (accounting for the few 
scale-80 cases) and four possible contrasts, you might have as many as 16 distinct graphics files for that 

794

http://msdn.microsoft.com/library/windows/apps/windows.ui.viewmanagement.accessibilitysettings.highcontrastchanged.aspx
http://msdn.microsoft.com/library/windows/apps/hh965372.aspx
http://msdn.microsoft.com/library/windows/apps/hh965372.aspx


one resource. For a few examples of this, load the Application resources and localization sample into 
Visual Studio and look in the images folder. (Although the sample shows only contrast+100% scale 
examples, be sure to provide at 140% and 180% scales as well in your own app; Here My Am! for this 
chapter does so with its splash screen, tile, and other logo graphics.) 

As we get into the topic of world readiness, we’ll find that localized image resources will require a set 
of scale and contrast variants for each language. As you can guess, the file naming conventions here 
could get really messy as the file count increases! Fortunately, the resource loader also allows qualifiers 
in folder names, so localized resources are typically placed within language-specific folders. We’ll see 
more of this later on in the section entitled “Part 2: Structuring Resources for the Default Language.” 
We’ll also avoid this complexity entirely in Here My Am! by using a canvas instead of discrete images for 
those graphics that contain text messages (the logos aren’t localized). 

High Contrast Tile and Toast Images 
Like any other images in your app, tile images in your manifest, images sent to the tile through updates, 
and images used in toast notifications all respect contrast settings. (Badges are not an issue as they are 
already monochromatic and adapt automatically.) In the manifest, naming images with resource 
qualifiers work for both scale and contrast, as well as language as we’ll see later.  

XML payloads for tiles and toasts can refer to local images using ms-appx:/// URIs, and the resource 
loader will look for the appropriately qualified file. This does not apply to ms-appdata:/// URIs, 
however, so if you’re working with downloaded or dynamically generated images, you’ll need to 
identify a specific file yourself. 

For XML payloads that refer to remote images, setting the addImageQuery option in the payload to 
true, as discussed in the “Using Local and Web Images” section of Chapter 13, will append query strings 
to the remote URIs that indicate scale, contrast, and language:  

?ms-scale=<scale>&ms-contrast=<contrast>&ms-lang=<language> 

These details are described on Globalization and accessibility for tile and toast notifications, along 
with how to localize strings in the XML payload. We’ll see these details for ourselves later on. 

World Readiness and Localization 

Over the years I’ve heard a number of words used to describe the process of making an app ready for 
different regional markets, and I imagine you have too: localization, localizability, internationalization, 
globalization, and world readiness. To be honest, the differences between these terms have confused 
me for some time, but I finally found a good explanation in an older book for desktop apps called 
Developing International Software by Dr. International (Microsoft Press, 2003). The same ideas are also 
expressed on Globalization Step-by-Step. Let me begin this section then by offering a simple summary 
of that view. 

795

http://code.msdn.microsoft.com/windowsapps/Application-resources-and-cd0c6eaa
http://msdn.microsoft.com/library/windows/apps/Hh831183.aspx
http://msdn.microsoft.com/goglobal/bb688110


The goal with Windows Store apps is to make them available in many markets around the world, as 
provided for so conveniently by the Store itself. To do this, an app needs to be written such that it can 
adapt itself to just about any language and culture it might encounter. In some situations you may need 
to produce specific versions of the app, but hopefully you can have one app with localized resources 
that works for most markets. Truly, the days of monolingual apps are over. 

To reach this goal you must first make your app world-ready. World readiness means that even 
though the app initially supports only one language and culture (most likely your own), it doesn’t 
actually make any assumptions about those specifics anywhere within its HTML, CSS, and JavaScript 
(and any WinRT components). That is, the core app is language-, culture-, and market-neutral, taking all 
these factors into account: 

• Each and every string that might be shown in the app’s user interface, including element 
attributes like aria-label and img.alt, has been separated out into a resource file such that 
different resources can be loaded for different languages. (Using Unicode text is pretty much a 
given nowadays, so displaying text in many languages isn’t an issue, but be sure to keep this in 
mind if you’re migrating older software or using web services that might work otherwise). 

• Each and every localized image (those that contain text or culture-specific content) has been 
organized into language-specific folders, appropriately named so that the resource loader can 
find them automatically. 

• Any formatting and manipulation of dates, times, and currencies use APIs that automatically 
apply regional settings. 

• Any sorting or collation of data takes the user’s language into account, using APIs for this 
purpose. 

• No assumptions are made about how strings are concatenated; format strings with appropriate 
placeholders are instead included in language-specific resource strings so that they can be 
localized. 

• The web services an app uses might vary from location to location, because of the need for local 
information or regional legal requirements. 

• Text might be laid out left to right or right to left. Vertical is also possible but might be 
implemented in a separate version of an app because of its unique layout needs. 

• Text input just works for all languages, whether from a keyboard or an Input Method Editor 
(IME), which implies that you should avoid hard-coding font names that don’t have full Unicode 
support. It’s good to stick with the typography in the WinJS stylesheets—they have built-in 
support for at least 109 languages. 

• The user might switch languages at run time, and the app responds accordingly. 

A world-ready app, in short, is both globalized—using APIs that isolate regional specifics—and is 
readily localizable such that adding support for another language requires no code changes, just the 

796



addition of new string and image resources. This is mostly a matter of how you structure those resources 
and how you reference them within the app’s markup and source code. 

The process of localization, then, is one of generating or acquiring those language- and 
culture-specific resources, for which some very helpful tools are available to streamline translation work. 

In the following sections we’ll look first at matters of globalization, explore how to structure 
resources to be localizable, and then see how to go about obtaining localized resources. After that, we’ll 
be ready to look at the last step in the long journey of an app’s creation: uploading to the Store. 

Globalization 
Besides language, the things that vary around the world are the representation of dates and times 
(including calendars); the representation of numbers, measures (units), phone numbers, and addresses; 
currencies; paper sizes (already discussed in Chapter 15, “Devices and Printing”); how text is sorted 
(collation); the direction of text; and the fonts used for text along with the input method. 

To globalize an app means to make no assumptions about how any of this is accomplished, instead 
using the WinRT APIs that will do the right thing according to the current user’s settings. Working with 
those APIs is what globalization is mostly about. 

Beyond using the APIs, look at the content of the app itself, checking for words, phrases, or 
expressions that might be very hard to translate (or potentially politically offensive), especially 
colloquialisms, vernacular, slang, metaphors, jargon, and the like. Use images that travel well, and aren’t 
likely to be misinterpreted elsewhere in the world (imagine wearing a T-shirt with such imagery in a 
country where you intend to market the app!). And exercise caution with maps because there is 
disagreement among different nations about where, exactly, their borders should be drawn. Be sure also 
to refer to “country/region” rather than just “country,” because disputed territories might not be 
recognized specifically as a country. 

Also be aware of your regional export laws regarding encryption algorithms, because you might not 
be allowed to make the app available in certain markets. See Staying within export restrictions on 
cryptography. In addition, if you’re writing a game, be mindful of regional game rating requirements 
that might create more work for you than it’s worth. See Windows game publishing requirements. 

If you use web services, make sure you also use services that are appropriate to the user’s locale. This 
might be required by law in some parts of the world (especially for financial transactions and maps) and 
often ensures that the user gets regionally relevant information from that service, unless they’ve 
specifically configured the app otherwise. You also want to be able to communicate the user’s locale 
and language to those services so that they can return content that’s already localized. It’s also helpful 
for the app’s overall performance to use servers that are relatively close to the user rather than on the 
other side of the world!  

The first step in any of this, however, is to know where your app is actually running and the user’s 
language and cultural preferences, so let’s see how that is accomplished. 

797

http://msdn.microsoft.com/library/windows/apps/hh694069.aspx
http://msdn.microsoft.com/library/windows/apps/hh694069.aspx
http://msdn.microsoft.com/library/windows/apps/hh452788.aspx


User Language and Other Settings 
When a user first acquires a Windows 8 device or installs Windows 8 on a machine, it will likely be 
configured for their country of residence. However, many users speak multiple languages irrespective of 
where they live and might want to work with Windows in a particular language that has nothing to do 
with their location. For this reason, you always want to think about the user’s preferences separately 
from the actual location of the device, applying the user’s preferences to how your app displays 
information but using the physical location to control the services you use and other more functional 
aspects. 

Languages and other preferences are configured through Control Panel > Clock, Language, and 
Region. Here you can add languages and select your primary one (see Figure 17-8), change input 
methods, specifically set your location (a country or territory), and set date, time, number, and currency 
formats (see Figure 17-9).  

 
FIGURE 17-8 Managing and selecting a language in Control Panel. 

It’s a good thing there are globalization APIs, because dealing with all the variations here would be 
quite a chore otherwise! (Note that changes to the formats in Figure 17-9 will affect only those 
Windows Store apps that are running in the language you’re configuring; each set of custom formats is 
particular to a language.) 

The basic details of the user’s settings are available through the 
Windows.System.UserProfile.-GlobalizationPreferences object and the classes in the 
Windows.Globalization namespace. GlobalizationPreferences just provides a handful of properties. 
Four of these, calendars, clocks, currencies, and languages are each an array of strings (an 
IVectorView to be precise) with the user’s preferred settings in order of preference. In the case of 
languages, it contains a list of BCP-47 language tags. 

 

798

http://msdn.microsoft.com/library/windows/apps/windows.system.userprofile.globalizationpreferences.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.aspx
http://tools.ietf.org/html/bcp47


 
FIGURE 17-9 Control panel dialogs for formatting and region. 

It also contains a string property called homeGeographicRegion, which is the abbreviation for the 
selected value in Control Panel’s Location tab of Figure 17-9, and a property called weekStartsOn, which 
is a DayOfWeek value. Scenario 1 of the Globalization preferences sample will retrieve and display these 
values, except that you’ll want to add a line for currencies, which is missing from the sample. Having 
made that change and added a number of languages to my system, I see this output: 

 
Generally speaking, these values are exactly what you’ll typically need to communicate to a web 

service if it will be providing localized data to the app. However, the user’s language preference is best 
obtained in a slightly different manner, as we’ll see shortly. 

Oftentimes you’ll need more detail for all of these settings, for which we can turn to the classes in 
Windows.Globalization. Some of these are static classes that are just there in the API to provide you 
with all the string identifiers that you would use to make comparisons in code without writing out the 
strings explicitly. ClockIdentifiers, for instance, just contains two string properties, twelveHour and 
twentyFourHour, whose values match those returned from Globalization-Preferences.clocks. 
Similarly, CalendarIdentifiers contains string properties for gregorian, hebrew, hijri, japanese, 
julian, korean, taiwan, thai, and umAlQura. So, if you wanted to compare the user’s preferred calendar 
to a specific one, you’d write code like this: 

799

http://msdn.microsoft.com/library/windows/apps/windows.globalization.dayofweek.aspx
http://code.msdn.microsoft.com/windowsapps/Globalization-preferences-6654eb36
http://msdn.microsoft.com/library/windows/apps/windows.globalization.clockidentifiers.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.calendaridentifiers.aspx


var userCalendar = Windows.System.UserProfile.GlobalizationPreferences.calendars[0]; 
if (userCalendar == Windows.Globalization.CalendarIdentifiers.julian) { 
    // ... 
} 

This way you’re fully honoring the key principle of globalization by not making any assumptions 
about what those calendar strings are. 

The other globalization classes are somewhat richer in scope and function. The Language class, which 
you typically instantiate with a specific BCP-47 tag, provides details like the displayName, nativeName, 
languageTag, and script. Scenario 2 of the aforementioned sample demonstrates this. The Language 
class also has two static members. One is the isWellFormed method that will tell you if a string contains a 
valid BCP-47 tag. The other is the currentInputMethodLanguageTag property that contains the BCP-47 
tag for the user’s preferred input, which can be customized in Control Panel to be something other than 
the language’s default. (See the Options links on the right side of Figure 17-8; this is also demonstrated 
in Scenario 4 of the sample.) 

Then we have the GeographicRegion class, which, if instantiated with no arguments, provides details 
on the user’s home region. You can also instantiate it with a specific location string. Either way, it then 
provides you with a displayName, a nativeName, a variety of code formats for the region (code, 
codeThreeDigit, codeThreeLetter, and codeTwoLetter), and currenciesInUse (an array of ISO 4217 
three-letter codes). Scenario 3 of the sample shows these values for your configuration, such as: 

 
The ApplicationLanguages class, for its part, contains just a few things. manifestLanguages is an 

array of languages as defined by the app’s manifest; you’ll set these when you localize an app. 
languages contains a combination of the GlobalizationPreferences.languages array and those from 
manifestLanguages. The first item in this list is the best value to use for the user’s preferred language in 
your app, so this will be the one to send to web services for localization purposes. 

Lastly, there’s primaryLanguageOverride, a property (BCP-47 tag) for apps that allow the user to 
select an app-specific language preference (and add it to the mix of languages). Setting this tells the 
system what language the app is using so that it can configure its own UI, and the setting is persistent 
across sessions. As it’s a relatively expensive operation, avoid using primaryLanguageOverride for 
transient purposes, such as rendering a few elements in a different language. For that, create a new 
language context and use that explicitly; see 
Windows.ApplicationModel.Resources.Code.-ResourceContext and scenario 13 of the Application 
resources and localization sample. 

The last class, Calendar, is quite extensive and contains too many members to list here, many of 
which work with formatting as well performing calendar math. Before stepping into that arena, 
however, let’s look more broadly at the question of formatting data. 

800

http://msdn.microsoft.com/library/windows/apps/windows.globalization.language.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.geographicregion.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.applicationlanguages.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.resources.core.resourcecontext.aspx
http://code.msdn.microsoft.com/windowsapps/Application-resources-and-cd0c6eaa
http://code.msdn.microsoft.com/windowsapps/Application-resources-and-cd0c6eaa
http://msdn.microsoft.com/library/windows/apps/windows.globalization.calendar.aspx


Formatting Culture-Specific Data and Calendar Math 
If you clicked around within Control Panel’s formatting and region dialogs (refer back to Figure 17-9), 
you’ll find that the possible permutations for formatting something as simple as a number is quite mind 
boggling, let alone dates, times, and currencies! 

Fortunately, “formatter” classes in WinRT take care of all the details such that you can take a value 
from new Date(), for example, and get back a string that completely reflects the user’s preferences. The 
APIs also provide parsing services that work in the opposite direction. 

In Windows.Globalization.NumberFormatting we have CurrencyFormatter, DecimalFormatter, 
PercentFormatter, and PermilleFormatter, which you should always use these when converting data 
values into UI display strings. All of these classes are demonstrated in the Number formatting and 
parsing sample, where the basic process is to instantiate the formatter with or without specific codes or 
languages, set any necessary properties for the formatter (such as the number of digits and using 
separators), ahd then call its format method to obtain a string or, alternately, one of its parse* methods 
to turn a string into a number. 

For example, to format a currency value, instantiate a CurrencyFormatter with a currency identifier 
(or a currency identifier plus a language list and a geographic region), set up any options, and then call 
format (js/CurrencyFormatting.js): 

var userCurrency = Windows.System.UserProfile.GlobalizationPreferences.currencies; 
var wholeNumber = 12345; 
var fractionalNumber = 12345.67; 
 
// Apply user defaults 
var userCurrencyFormat = 
    new Windows.Globalization.NumberFormatting.CurrencyFormatter(userCurrency); 
var currencyDefault = userCurrencyFormat.format(fractionalNumber); 
 
// Apply a specific currency 
var currencyFormatUSD = new Windows.Globalization.NumberFormatting.CurrencyFormatter("USD"); 
var currencyUSD = currencyFormatUSD.format(fractionalNumber); 
 
// Apply a specific currency, language, and region (France, then Ireland) 
var currencyFormatEuroFR = 
    new Windows.Globalization.NumberFormatting.CurrencyFormatter("EUR", 
    ["fr-FR"], "ZZ"); 
var currencyEuroFR = currencyFormatEuroFR.format(fractionalNumber); 
 
var currencyFormatEuroIE = 
    new Windows.Globalization.NumberFormatting.CurrencyFormatter("EUR", 
    ["gd-IE"], "IE"); 
var currencyEuroIE = currencyFormatEuroIE.format(fractionalNumber); 
 
// Include fractions with a whole number 
var currencyFormatUSD1 = 
    new Windows.Globalization.NumberFormatting.CurrencyFormatter("USD"); 
currencyFormatUSD1.fractionDigits = 2; 
var currencyUSD1 = currencyFormatUSD1.format(wholeNumber); 

801

http://msdn.microsoft.com/library/windows/apps/windows.globalization.numberformatting.currencyformatter.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.numberformatting.decimalformatter.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.numberformatting.percentformatter.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.numberformatting.permilleformatter.aspx
http://code.msdn.microsoft.com/windowsapps/Number-formatting-and-bb10ba3d
http://code.msdn.microsoft.com/windowsapps/Number-formatting-and-bb10ba3d


 
// Group integers 
var currencyFormatUSD2 = 
    new Windows.Globalization.NumberFormatting.CurrencyFormatter("USD"); 
currencyFormatUSD2.isGrouped = 1; 
var currencyUSD2 = currencyFormatUSD2.format(fractionalNumber); 

The output of this code is as follows: 

 
The other number formatters all work like this, so I’ll leave it to you to check out the details in the 

documentation and the sample. 

To format dates and time, we can turn to the Windows.Globalization.DateTimeFormatting 
namespace where we find the DateTimeFormatter class along with many enumerations for the different 
ways to formats seconds, minutes, hours, days, months, and years. To use the API, you instantiate a 
formatter object specifying the desired formats and applicable languages. (There are no less than eight 
separate constructors here!) You then set options like the clock, geographicRegion, and so forth and call 
its format method with the Date value you need to format. You can even apply custom formats if 
desired. Many such variations are demonstrated in the Date and time formatting sample; I trust a simple 
snippet of its code will suffice here (from Scenario 2, js/stringtemplate.js); 

var mydatefmt1 = new Windows.Globalization.DateTimeFormatting.DateTimeFormatter( 
    "month day"); 
var mytimefmt1 = new Windows.Globalization.DateTimeFormatting.DateTimeFormatter( 
    "hour minute "); 
var dateToFormat = new Date(); 
var mydate1 = mydatefmt1.format(dateToFormat); 
var mytime1 = mytimefmt1.format(dateToFormat); 

The other bit of code from the SDK that’s relevant here is the Calendar details and math sample. As 
mentioned earlier in this chapter when I described expiration times for app trials and in-app purchases, 
a world-ready app must not make assumptions about how time periods are computed or compared 
because this can vary depending on regional calendars. This is why the extensive 
Windows.-Globalization.Calendar class contains ten distinct add* methods that range from 
addNanoseconds to addEras, along with its compare and compareDateTime methods (and a bunch to get 
all the little bits of calendar-related text). In other words, drill it into your mind now to never, ever use 
arithmetic operators on date and time values because they won’t work properly in every locale. Even in 
the United States you’ll end up getting wrong answers at times because you won’t be taking things like 
daylight savings time into account, where the number of hours in two days of every year will not 
actually be 24! 

802

http://msdn.microsoft.com/library/windows/apps/br206859.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.datetimeformatting.datetimeformatter.aspx
http://code.msdn.microsoft.com/windowsapps/Date-and-time-formatting-2361f348
http://code.msdn.microsoft.com/windowsapps/Calendar-details-and-math-b1683bb7
http://msdn.microsoft.com/library/windows/apps/windows.globalization.calendar.aspx


Sorting and Grouping 
Just as a world-ready app cannot make assumptions about comparing date and time values, it cannot 
make assumptions about how strings are sorted. Simply said, every language has its own way of sorting 
that doesn’t necessarily have anything to do with the values of the character codes involved. The 
bottom line here is that you should never sort by such values; always use a language-aware API instead. 

For Windows Store apps written in HTML and JavaScript, you can use the localeCompare method 
that’s already built into strings (even for individual characters). This performs the comparison based on 
the user’s current language. You can also use a string’s tolocaleLowerCase and toLocaleUpper-Case 
methods. In Chapter 5, “Collections and Collection Controls,” specifically in the section “Quickstart #2b: 
The ListView Grouping Sample,“ we also saw how to use the 
Windows.Globalization.-Collation.CharacterGroupings API to create proper groupings by the first 
character of item titles. You can compare the original SDK sample and the modified sample in Chapter 
5’s companion content to see how such code was globalized. 

Fonts and Text Layout 
Thanks to Unicode and the ability of HTML directly handle text in different languages, there’s little you 
need to do to make such text appear properly within your layout. For example, if you look at the 
Language font mapping sample, pages like html/scenario2.html that contain this markup: 

<div id="scenario2Document"> 
    <h2 lang="hi" id="scenario2Heading" contenteditable="true"> 

        है।अभी प�त्र लरभरिन्व</h2> 
    <p lang="hi" contenteditable="true"> 

        है।अभी प�त्र लरभरिन्व सुनर समजवे संभ् ध्वन �्भरजन ्ैिश्् बनरवव संभ् �््�सव 
        �्चर�्मशर प्रसर्हव िजममे ्�णरव पेरनर सुचनर जरवर भरषरओ �लये ्दनरं् भेदन�मवर 
        सुचनरचल�चत डरले। �लए। मुिश्ल �्भरजन�मवर मुकव दसवर्ेज �्चरर�शलवर �्चर�्मशर 
        उस्े न्ंबर रचनर उदय्ो ्रवर्रण पह्चरनर समजवे व्वन्ल अंगेजी बनरए स�भसमज जरन्रर� 
        संदेश अ�ध् दवुनयर अनु्रद स्वी मुखय रचनर समजवे उपलबध सभी्ुछ देखने</p> 
</div> 

just show up like you expect they would (and if you read Hindi, you’ll see that this is just jibberish): 

 
What this particular sample is actually meant to demonstrate is the Windows.Globalization.- 

Font.LanguageFontGroup object, which provides specific font recommendations for different parts of 
the UI. Once created using a specific BCP-47 tag, the object contains a number of properties, each of 
type LanguageFont, such as uITextFont and uIHeadingFont (notice the odd casing again). Each 
LanguageFont object then contains properties of fontFamily, fontStretch, fontStyle, fontWeight, and 
scaleFactor. Through a couple of helper functions in js/langfont.js, which are deceivingly added to the 

803

http://msdn.microsoft.com/library/62b7ahzy.aspx
http://msdn.microsoft.com/library/94h6w1kx.aspx
http://msdn.microsoft.com/library/6t6xaca8.aspx
http://msdn.microsoft.com/library/windows/apps/windows.globalization.collation.charactergroupings.aspx
http://code.msdn.microsoft.com/windowsapps/Language-font-mapping-919f08d4
http://msdn.microsoft.com/library/windows/apps/br206865.aspx
http://msdn.microsoft.com/library/windows/apps/br206865.aspx


WinJS.UI namespace without being part of WinJS itself, these recommen-dations are applied to 
elements in the DOM simply by setting the appropriate styles for those elements. 

Be clear that these font recommendations are really refinements and not necessary for basic 
function. As Scenario 4 of the sample demonstrates, a basic English font (with Unicode characters, of 
course) applied to mixed English/Japanese text will still render the Japanese but perhaps not optimally. 
Applying the recommended font will make that refinement. 

The other aspect to working with different fonts and languages is how these affect your overall 
layout, something we didn’t go into in Chapter 6, “Layout.” This is discussed in the documentation on 
How to adjust layout for RTL languages and localize fonts, but let me summarize that material and add 
a bit more. 

First of all, a world-ready app leaves extra space for various bits of content like headings and labels 
because the words and phrases will be longer in some languages and shorter in others. The general 
guidelines are to leave at least 30% more room over what’s needed in English for typical strings and as 
much as 300% for really short strings or single words. As a simple example, the English word “wrench” 
translates into German as “Schraubenschlüssel”; the word “click” (if I’m to trust Bing Translator), 
translates into Greek as “Κάντε κλικ στο κουμπί.” You may need to enable word wrapping in some 
cases. 

For all such purposes you can and should use the :lang()/:-ms-lang() pseudo-class selector in CSS 
to adjust styles like width as needed for specific languages. Just be sure to test your app with those 
languages, or test thoroughly with the pseudo-language (see “Testing with the Pseudo Language” later 
on). 

Secondly, different languages flow text in directions other than the left to right (then top to bottom), 
like English and many Indo-European languages. Arabic and Hebrew, for instance, read right to left 
(RTL) instead of left to right; a few will flow top to bottom first, then right to left. 

When making your app world-ready for RTL languages (considering that such markets are 
significant), you’ll want to support what is called mirroring in your layout. It really means reversing your 
layout, including images, the direction of the back button, the direction of animations, panning 
directions, and so forth. 

Fortunately, HTML and CSS layout automatically accommodate this, and the WinJS stylesheets, 
ui-light.css and ui-dark.css, set the CSS direction style appropriately as follows (something you should 
use on the element level for RTL languages rather than align): 

html:-ms-lang(ar, dv, fa, he, ku-Arab, pa-Arab, prs, ps, sd-Arab, syr, ug, ur, qps-plocm) { 
    direction: rtl; 
} 

In fact, look around in the WinJS stylesheets and you’ll find many adjustments made for RTL 
languages with :-ms-lang, specifically with margins and padding. So by using HTML, CSS< and 
WinJS—including built-in controls—much of the mirroring is taken care of automatically; Here My Am!, 
for instance, just works in Hebrew. 

804

http://msdn.microsoft.com/library/windows/apps/hh967757.aspx
http://msdn.microsoft.com/library/windows/apps/Hh996886.aspx
http://msdn.microsoft.com/library/windows/apps/hh996832.aspx


With images, you can reverse them when needed by applying a transform: scaleX(-1) style to the 
necessary elements. If, however, you have images that really need to be replaced (as when some parts 
would be mirrored by other parts would not), you can use layoutdir-RTL in the image filename in the 
same way we’ve seen for pixel densities and contrast. In fact, there are many qualifiers for use with 
resources that are described on How to name resources using qualifiers, something we’ll be looking at 
more closely in the next section. 

Sometimes you’ll need to reverse a certain portion of text, as when mixing languages in the same 
paragraph. For this you can apply the unicode-bidi style in conjunction with direction. (Do note that 
numbers are generally direction-neutral so that they take on the directionality of their containing 
element, so you might need to set direction separately.) Along similar lines, you can also use the 
-ms-writing-mode style to flow text in just about any other direction, something you might use for an 
app that presents classical Chinese, Japanese, or Korean poetry. 

Preparing for Localization 
Once your app has been made world-ready such that it can handle just about any language and 
regional settings you want to throw at it, the next step is to make sure that language-specific resources 
in the app are cleanly separated from your HTML, CSS, and JavaScript and placed in your resources 
where the Windows resource loader (also referred to as the Resource Management System) can find 
them. 

Before going further, there’s an excellent topic in the documentation on this subject, How to prepare 
for localization, which provides suggestions for translation and other details. It’s not productive to 
repeat all of that here, of course, so I want instead to break that guidance down into a couple of steps 
that you can apply to an app and its default language before adding support for additional languages. 

Note The resource loader supports sparse localization for dealing with slight variations between 
similar. It means that with languages like American English (en-US) and British English (en-GB), most of 
the app’s resources can be assigned to en-US with en-GB resources for only those bits that vary, like 
“color” vs. “colour” and “favorite” vs. “favourite,” or vice-versa. Because each resource is resolved 
individually according to the user’s preferences, an app running in an en-GB context will find those 
specific bits first, if they exist, otherwise the loader will look in the en-US resources. There is also support 
for dealing with specific language exceptions through the use of resources marked with the 
undertermined tag und. See How to manage language and region, step 4 (toward the end) for details 
along with Language Matching. 

Part 1: Separating String Resources 
The first step in preparing for localization is to move language- or region-specific strings from source 
files into a string resource file and inserting references to that file where necessary. In the next section 
(Part 2), we’ll then set up the folder structure for this file and image resources that will then 
accommodate localized versions. 

 

805

http://msdn.microsoft.com/library/windows/apps/hh965372.aspx
http://msdn.microsoft.com/library/windows/apps/hh996988.aspx
http://msdn.microsoft.com/library/windows/apps/Hh997001.aspx
http://msdn.microsoft.com/library/windows/apps/hh967759.aspx
http://msdn.microsoft.com/library/windows/apps/hh967759.aspx
http://msdn.microsoft.com/library/windows/apps/Hh967758.aspx
http://msdn.microsoft.com/library/windows/apps/jj673578.aspx


To create your first string resource file, right-click your project in Visual Studio’s solution explorer, 
select Add > New Item, and then select Resources File (.resjson). Although you can change the filename, 
just leave it set to the default resources.resjson for now. Press Add, and the file will be created in your 
project root, where we’ll also leave it until Part 2. 

Omitting a comment at the top, the contents of this file appear as follows: 

{ 
    "greeting"              : "Hello World!", 
    "_greeting.comment"     : "This is a comment to the localizer" 
} 

As you can see, the file is just plain JSON where each property has a string identifier and a string 
value; any resjson file can have as many properties as you want. 

Clearly, too, there is a relationship between the two entries above. The first entry of the form 
<identifier> : <value>, is a real string resource that maps an valid JSON identifier (no whitespace) to a 
string value. This is what the resource loader will use to replace references to the identifier with the 
string value. 

Any entry of that begins with an underscore, such as the conventional <_identifier.comment> : 
<value> is ignored by the resource loader. Such entries provide notes for a translator so that they can 
fully understand how the string is used and specific parts that shouldn’t be translated. A second optional 
entry, <_identifier.source> : <value>, provides the original string in the default language, which is very 
helpful for reference. 

If you want to see some more extensive resjson files, open the Application resources and localization 
sample and look in the strings folder under a particular language. In the ja/resources.resjson file, for 
example, you’ll see the string resources along with both comment and source entries: 

{ 
    "displayName"                       : "アプリケーション リソース JS SDK サンプル", 
    "_displayName.source"               : "Application Resources JS SDK Sample", 
    "_displayName.comment"              : "Don't change 'SDK'", 
 
    "description"                       : "アプリケーション リソース JS SDK サンプル", 
    "_description.source"               : "Application Resources JS SDK Sample", 
    "_description.comment"              : "Don't change 'SDK'", 
} 

Turning back to your own app with the new resources.resjson file in hand, we’re now ready to go on 
a search and replace mission throughout the app project, looking for localizable strings, extracting them 
into the resource file, and replacing them in the source files with an appropriate reference. The three 
primary places we need to look at are your HTML files, JavaScript files, and the app manifest. To 
demonstrate, I’ll show what I did with the Here My Am! example that we’ve been working with in this 
book (to which I’ve added a resources.resjson file). 

 

806

http://code.msdn.microsoft.com/windowsapps/Application-resources-and-cd0c6eaa
http://code.msdn.microsoft.com/windowsapps/Application-resources-and-cd0c6eaa


Note CSS files can contain string literals in the content and quotes styles; however, resource lookup from 
CSS is not supported for Windows Store apps in Windows 8. Localization must be done in CSS with the 
:lang and :-ms-lang pseudo-selectors. 

JavaScript: Let’s start with JavaScript, where you need to scrub your code for string literals, including 
any you are drawing to a canvas. In Here My Am! I found only a couple localizable strings, namely a 
folder name used in the Pictures library and the title and description used when formatting text for the 
Share contract and our live tiles (pages/home/home.js):  

var folderName = "HereMyAm"; 
data.properties.title = "Here My Am!"; 
return "At latitude " + lat + ", longitude " + long; 
return "At (" + lat + ", " + long + ")"; 

and the Settings commands in js/default.js: 

app.onsettings = function (e) { 
    e.detail.applicationcommands = 
        { 
            "about":   { title: "About", href: "/html/about.html" }, 
            "help":    { title: "Help", href: "/html/help.html" }, 
            "privacy": { title: "Privacy Statement", href: "/html/privacy.html" } 
        }; 
    WinJS.UI.SettingsFlyout.populateSettings(e); 
}; 

Note that in home.js English strings are used for exceptions, but because they’re only for debugging 
purposes they don’t need to be localized. 

Extracting the other strings into resources.resjson, then, that file appears as follows where I’m using 
regular comments to identify where the strings are used. Notice that I’m now using a format string to 
create a descriptive location for Share and tiles instead of hard-coding its construction (see the 
formatLocation function in js/home.js for how these are used):  

{ 
    // pages/home/home.js 
    "foldername" : "HereMyAm", 
    "share_title" : "Here My Am!", 
    "location_formatShort"          : "At (%s, %s)", 
    "_location_formatShort_comment" : "Used to format a short location as in 'At (120, 45)", 
    "location_formatLong"           : "At latitude %s, longitude %s", 
    "_location_formatLong_comment"  : 
                           "Used to format a long location, 'At latitude 120, longitude 45", 
     
    // default.js 
    // Settings panel commands 
    "about_command"   : "About", 
    "help_command"    : "Help", 
    "privacy_command" : "Privacy Statement", 
} 

807



I highly recommend that you organize your entries by source file like this, and you can also use 
multiple resource files if you like, as explained in the next section. Also be careful about how you reuse 
the same string that occurs in multiple places. If it’s for the same kind of UI with the same intent, that’s 
fine, but if the usage context is different it’s better to duplicate the string as they might translate 
differently in other languages. In the resources above, notice how I also included a comment for 
location_formatShort because the word “At” by itself probably needs more context to translate properly. 

With the strings separated as resources, we can now use the resource loader to obtain those strings 
at run time. This can be done in two ways. First is with the WinRT APIs directly, namely 
Windows.ApplicationModel.Resources.ResourceLoader.getString: 

var loader = new Windows.ApplicationModel.Resources.ResourceLoader(); 
var text = loader.getString('location_formatShort'); 

or, more simply, with the WinJS.Resources.getString wrapper: 

var text = WinJS.Resources.getString('location_formatShort').value; 

that also happens to work in the web context where WinRT isn’t defined (see Scenario 12 of the 
Application resources and localization sample.) Note that getString returns an object that includes a 
value property with the string along with lang and an empty flag indicating if the resource wasn’t found. 

The WinJS method, being one line, is clearly helpful in cases like our settings commands because we 
can call it inline. Thus, in our code we just replace the string literals with the WinJS call, such as the 
following in pages/home/home.js: 

data.properties.title = WinJS.Resources.getString('about_command').value; 

and the following inside the object for the Settings commands: 

"about":   { title: WinJS.Resources.getString('about_command').value, 
    href: "/html/about.html" }, 

Note that WinJS, being optimized for common scenarios, supports loading strings in the user’s 
default language only. The WinRT ResourceLoader class, on the other hand, is much more flexible and 
can load a string for any specific language. You’ll need to use that API when your requirements exceed 
what WinJS provides. 

And that’s really it for JavaScript. If you’ve made these changes to your app, now is a good time to 
use the Build > Build Solution command in Visual Studio. This will compile the resources.resjson file into 
a more efficient binary format called resources.pri, ignoring entries that begin with an underscore. 
Doing an occasional build (without string the app) is a good practice when working with resources so 
that you can clean up any problems in your files, such as duplicate entries or syntax errors. Then you can 
run the app to see the resource loader in action—mostly by seeing no difference from the app as it was 
before! Be sure to test all the code paths that were affected, however, to ensure that all the strings are 
being loaded properly. 

 

808

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.resources.resourceloader.getstring.aspx
http://msdn.microsoft.com/library/windows/apps/hh701590.aspx
http://code.msdn.microsoft.com/windowsapps/Application-resources-and-cd0c6eaa


Manifest: Let’s turn now to the manifest, where the story is even simpler because there’s no code 
involved. The textual pieces here that might need localization are 

• The display name, description, and short name (for tiles) on the Application UI tab. 

• Any text descriptions for specific entries on the Declarations tab. 

• The package display name on the Packaging tab. (You would change the package name only if 
you were going to submit the app to the Store under a different name in certain markets, in 
which case it’s a different app package entirely.) 

• Possibly some URIs on the Content URIs tab. 

While we’re looking at the manifest, note the Default Language setting on the Application UI tab. 
This is what defines the app’s default or fallback language if the user runs the app with a language that 
isn’t provided for in your resources. We’ll also come back to images in the manifest in the next section. 

Looking at all the strings in the manifest, extract these to your resources.resjson file, giving them 
appropriate identifiers. Again, if you have some strings in the manifest that match those elsewhere in 
the app, carefully evaluate them to determine if they can all use the same resource. When in doubt, 
keep them separate as the overhead is quite small. In the case of Here My Am!, the app’s display name 
and the string used for the header on the main page are the same and have the same usage, so they can 
refer to the same resource. 

To refer to those resources in the manifest, then, use ms-resource:<identifier>. For example, I moved 
the Application UI > Display Name value into the resource file and called it app_title, so in that field of 
the manifest editor I simply write ms-resource:app_title. I did the same for the description and the 
package display name. 

Once you’ve made these changes, run the app and make sure text on your tile, if you’re using it, 
shows up properly. You might temporarily set the Application UI > Show Name to “All Logos” as a 
check, but be sure to change it back before you forget! 

Sidebar: Localized Strings in Tile and Toast XML Payloads 
As described on Globalization and accessibility for tile and toast notifications, XML payloads for 
tile and toast notifications use the ms-resource: syntax to identify string resources in text 
elements. This will trigger the resource loader’s lookup mechanism when the tile is rendered, and 
this works regardless of whether the notification was issued locally, obtained from a web service, 
or received as a push notification. The web services just need to be sure they use the app’s 
particular resource identifiers. 

A web service can also issue localized tile updates directly. In this case, an app will generally 
append query strings to the service URI to communicate the desired language, updating those 
parameters as necessary when the language changes (see “Localization Wrap-Up” for details). An 
app can also combine this with using regional web services that help localize the update content. 

809

http://msdn.microsoft.com/library/windows/apps/Hh831183.aspx


HTML: The final place we need to look for strings is our HTML, which I’ve saved for last because it’s 
the most involved. In HTML, really scrub, scrub, scrub your markup for any hard-coded text that will 
become visible in the UI. Check the body content of elements like p, h1, span, div, button, option, and so 
on, as well as the value of attributes like title, alt, aria-label, etc. Also look inside WinJS controls like 
AppBar and Flyout, and look for any embedded URIs that you’ll want to localize, including those of 
services you employ and content you show in an iframe. Note, though, that title elements in a page 
head are not shown and do not need localization. 

In Here My Am! I found lots of strings in pages/html/home.html, which I’ve highlighted below: 

<header id="header" aria-label="Header content" role="banner"> 
<section id="section" aria-label="Main content" role="main"> 
<div id="photoSection" class="subsection" aria-label="Photo section"> 
<h1 class="titlearea win-type-ellipsis"><span class="pagetitle">Here My Am! (8)</span></h1> 
<h2 class="group-title" role="heading">Photo</h2> 
<img id="photo" class="graphic" src="/images/taphere.png"  
    alt="Tap to capture image from camera" role="img" /> 
<div id="locationSection" class="subsection" aria-label="Location section"> 
<h2 class="group-title" role="heading">Location</h2> 
<div id="floatingError" class="win-type-x-large">Unable to obtain geolocation; check 
<br />permissions and use the app bar to try again.</div> 
<div id="retryFlyout" data-win-control="WinJS.UI.Flyout" aria-label="Trying geolocation" 
    data-win-options="{anchor: 'mapDiv', placement: 'bottom', alignment: 'center'}"> 
    <div class="win-type-large">Attempting to obtain geolocation...</div> 
</div> 

where I also made a note that I’ll need to localize the taphere.png image, as it contains text, but this is 
for the next section. In default.html, I also found labels and tooltips in the data-win-options attributes 
of the appbar commands (and I’m omitting some of the other markup for brevity): 

<div id="appbar" data-win-control="WinJS.UI.AppBar" data-win-options=""> 
    <button data-win-options="{id:'cmdPickFile', label:'Load picture', icon:'browsephotos', 
        section:'global', tooltip:'Load a picture through the file picker'}"> 
    </button> 
    <button data-win-options="{id:'cmdRecentPictures', label:'Recent pictures', 
        icon:'pictures', 
        section:'global', tooltip:'Browse recent pictures taken in the app'}"> 
    </button> 
    <button data-win-options="{id:'cmdRefreshLocation', label:'Refresh location', 
        icon:'globe', 
        section:'global', tooltip:'Refresh your location'}"> 
    </button> 
</div> 
 
 

Tip When preparing for localization, consider whether your appbar icons have a universal meaning. If 
not, they’ll also need to be localized. Fortunately, the icon values are strings and can be localized as 
such, in which case you can treat them like the labels and tooltips. 

810



Other affected files in this app include all of those in the HTML folder that are used for Settings 
commands. With such commands, be especially careful to note the short header labels that might be in 
a div like the one below amongst a bunch of other markup. Leave nothing behind! 

Once you’ve located your strings, copy them as before to resources.resjson. This will likely be an 
extensive workout with copy and paste, so grab some refreshments and go for it. It’s also fine to have 
HTML in these strings—they’ll just be inserted into the markup and will render as such if you attach 
them to a property like innerHTML, but don’t include the surrounding tag (we’ll need it shortly). For 
example, in html/about.html I have a number of p elements with text, such as: 

<p>Here My Am!<br />Version 1.0.0.0<br /></p> 

for which I make the following string in the resources (no p tag): 

"about1"   : "Here My Am!<br />Version 1.0.0.0<br />", 

Now for the fun part: how to we reference the string resources in markup? If you think about it a 
little bit, we have to run some piece of code to go through and replace whatever references we make 
with the appropriate string from the resource file. Hmmm. Haven’t we seen something like this before? 
Indeed we have. With controls, we added data-win-control attributes to the markup and used 
WinJS.UI.processAll or WinJS.UI.process to run the code to instantiate the control. We have a similar 
setup for resources: a data-win-res attribute and WinJS.Resources.processAll, the latter of which 
should be called in each page’s ready method or wherever else HTML content like the appbar is loaded, 
such as in the app’s activated handler after WinJS.UI.processAll (so the controls are instantiated).82 
Here’s what you do in markup: 

• Replace attributes and their string values with data-win-res="{<attribute> : '<identifier>'}" 
where <attribute> is the original attribute name and <identifier> matches the desired string in 
the resource file, contained in single quotes. 

• Where there are multiple attributes in the same element, you can separate each <attribute> : 
'<identifier>' pair with a comma. 

• When the string is directly inside a tag, we use data-win-res with the equivalent attribute name, 
such as textContent for a div, p, or span. If the string contains markup, use innerHTML instead, 
but only when necessary because textContent is much faster. 

• For hyphenated attributes like aria-label, use the syntax {attributes: {'<attribute>' : 
'<identifier>'}} in the data-win-res value, using single quotes around <attribute>. This is how 
you combine localization and accessibility together. 

• For properties of WinJS controls that would normally appear within data-win-options, place 
those in data-win-res with the syntax {winControl: {<property> : '<identifier>'}}. Multiple 
properties are again separated with a comma within the inner { }’s. 

82 If you see a null reference exception within WinJS.Resources.processAll, it’s probably because you’re trying to map 
resources for a WinJS control that hasn’t been instantiated. 

811



Here are some examples as modified from the earlier markup: 
 

Original Markup Modified Markup 

<img id="photo" class="graphic" src="/images/taphere.png"  
alt="Tap to capture image from camera" role="img" /> 

<img id="photo" class="graphic" 
src="/images/taphere.png" 
data-win-res="{alt: 'photo_alt'}" role="img" /> 

<span class="pagetitle">Here My Am! (8)</span> <span class="pagetitle" 
data-win-res="{textContent : 'app_title'}"></span> 

<div id="locationSection" class="subsection" 
aria-label="Location section"> 

<div id="locationSection" class="subsection"  
data-win-res="{attributes: {'aria-label' : 
'aria_location'}}" > 

<div id="floatingError" class="win-type-x-large">Unable to 
obtain geolocation; check<br />permissions and use the app bar 
to try again. 

<div id="floatingError" class="win-type-x-large" 
data-win-res="{innerHTML : 'error_obtaingeoloc'}"> 

<button data-win-control="WinJS.UI.AppBarCommand"  
data-win-options="{id:'cmdPickFile',  
label:'Load picture', icon:'browsephotos', 
section:'global',  
tooltip:'Load a picture through the file picker'}"> 

<button data-win-control="WinJS.UI.AppBarCommand" 
data-win-options="{id:'cmdPickFile', 
icon:'browsephotos', section:'global'}"  
data-win-res="{winControl: {label : 'appbar_label1', 
tooltip : 'appbar_tooltip1'}}"> 

 

When WinJS.Resources.processAll goes through the DOM, it actually doesn’t remove any of the 
data-win-res attributes; it just processes those values and adds other attributes to the element that 
contain the string resource. The advantage of this is that a later call to processAll will go through the 
DOM and refresh all those strings. That means that if you handle the WinJS.Resources.- 
oncontextchanged event, which tells you when the language changes, you can call processAll again and 
your UI appears in that new language! We’ll add this little piece of code later on once we’ve added a 
few more languages to Here My Am!. 

It also means that if you want to perform WinJS data binding in conjunction with a string that 
originates in your resources, simply include data-win-bind attributes inside those strings, assign that 
string to an element’s innerHTML property within data-win-res, and then be sure to call 
WinJS.Resources.processAll before calling WinJS.Binding.processAll. This is demonstrated in 
Scenario 8 of the Application resources and localization sample (html/scenario8.html and 
js/scenario8.js): 

HTML: <p id="messageCount" data-win-res="{innerHTML: 'scenario8MessageCount'}"> 
Resources: "scenario8MessageCount" : "You have <span  
            data-win-bind=\"innerText:count\"></span> message(s)", 

And with that (except for the following sidebar that I’ve cleverly inserted), we’re ready for the next 
step that will take care of our image resources and set us up to localize all this content we’ve extracted. 

 

 

812

http://code.msdn.microsoft.com/windowsapps/Application-resources-and-cd0c6eaa


Sidebar: String Resources in Settings Flyouts 
In all of this, one of the more challenging pieces of markup to work with were the HTML pages for 
settings flyouts, namely the about.html, help.html, and privacy.html in the project’s HTML folder. 
These pages are not loaded until the settings command is invoked, and because that’s happening 
all within WinJS we have to use the flyout’s beforeshow event to call WinJS.Resources.processAll 
for the flyout’s markup. To catch that event, I added onbeforeshow : beforeShow in each flyout’s 
data-win-options string and then this piece of code within a script tag at the end of the body 
element: 

function beforeShow() { 
    WinJS.Resources.processAll(); 
} 
beforeShow.supportedForProcessing = true; 

where the last line is necessary because WinJS will be calling WinJS.UI.processAll when the page 
is loaded. In any case, this works just great for patching up the string resources, with one 
exception. In privacy.html, if you remember from Chapter 8, “State, Settings, Files, and 
Documents,” I’m using an iframe to load a remote page with a privacy statement. Because this 
should be localized, I placed the URI itself into the string resources and attempted to load it up 
like other strings: 

<!-- This won't work --> 
<iframe data-win-res="{src : 'privacy_URI'}" height="600"></iframe> 

However, this caused an exception within WinJS.Resources.processAll that complained about 
something not being marked with supportedForProcessing. Say what? The only such function I 
clearly had marked, and I couldn’t think of what that has to do with an iframe. It turns out that 
iframe elements are specifically blocked from the WinJS processAll methods just like unmarked 
functions. As a result, you simply can’t use data-win-res with an iframe! 

Fortunately, the simple solution was to give the iframe an id (privacyFrame), load the string 
manually in the beforeshow handler, and then set the iframe.src attribute: 

document.getElementById("privacyFrame").src = WinJS.Resources.getString('privacy_URI').value; 

Now you’ll have to excuse me for a moment while I file a bug to make sure this fact gets 
documented! 

Part 2: Structuring Resources for the Default Language 
In the previous section we created only a single resources.resjson file in the root folder of the project 
and we deferred any work on images. The next step is to introduce a little more structure into the 
project that will allow us to add localized resources for additional languages, including our images. 

Starting with strings, do the following steps: 

 

813



1. Create a strings folder in the root of your app project. 

2. Within that folder, create a subfolder that matches the BCP-47 language tag specified as the 
default language in the manifest (for example, en-US, fr-FR, ja-JP, or just the base language like 
en or ru). 

3. Move your resources.resjson file into that folder. 

If you run your app again at this point, you should see that everything still works. If you go back to 
the How to name resources using qualifiers topic we mentioned earlier, you’ll see that the resource 
loader is perfectly happy when you use qualifiers like a BCP-47 name as a folder name. It basically parses 
entire folder names looking for qualifiers, so you can create deep hierarchies to sort your resources 
however you like. That is, you can sort by contrast or scale first, if desired, and include language suffixes 
in the filename (where the format is lang-<BCP-47 tag>). What’s more, you can create secondary 
.resjson files in these folders as well and play some other tricks. See “Sidebar: Secondary String Resource 
Files” for details. 

Anyway, what you’ve just done by moving your resources into a folder for your default language is 
set your fallback language resources—this is what the resource loader will turn to if it cannot find a 
more specific match for the user’s current language. Finding a match is actually a sophisticated process 
wherein the resource loader measures a kind of “distance” between the user’s preferences and the 
available resources and chooses whichever is closest. This makes it possible to select en-GB as a closer 
match to en-AU than en-US, for example. Generally, though, it means that the resource loaded will 
search for a specific match like de-DE (German) first, then the next closest language using the base 
qualifier de, and then eventually fall back to your default language (if there are no resources for the 
user’s other languages). The short of it is that you should always make sure the language identified in 
your manifest is fully populated with your full set of resources! Then even if you don’t happen to localize 
some of those resources (say, for exact cultural alignment with images), one will still be found. For the 
complete story on this subject, refer to Language Matching in the documentation. 
 

Sidebar: Secondary String Resource Files 
Both WinRT and WinJS are able to work with secondary string resource (.resjson) files, allowing 
you to organize your strings in multiple files, if desired. For example, it’s common to separate 
error strings into a file called errors.resjson. When referencing a string identifier in one of these 
secondary files, all that’s needed is that you use the syntax /<file>/<identifier> instead of just 
<identifier>. This syntax works in HTML, JavaScript, and the app manifest. See Scenario 5 of the 
Application resources and localization sample for an example. 

Something else you can do with .resjson files is name them with other qualifiers for contrast, 
scale, home region, and so forth and even organize those files under any old folder. This is 
demonstrated in Scenario 13 of the same sample, where it has many different .resjson files 
underneath strings/scenario13, each of which is named as scenario13.<qualifiers>.resjson. Because 

814

http://msdn.microsoft.com/library/windows/apps/hh965372.aspx
http://msdn.microsoft.com/library/windows/apps/jj673578.aspx
http://code.msdn.microsoft.com/windowsapps/Application-resources-and-cd0c6eaa


the folder name itself doesn’t use a standard qualifier, you have to do a little more work to get at 
everything, using the Windows.ApplicationModel.Resources.Core.-ResourceManager API, but 
it can be done if you’re a serious resource junkie! 
 

With images, we’ve already seen that if you have something like an images folder and place files like 
logo.contrast-high_scale-140.png therein, you can just refer to that file with a nonqualified relative URI 
like /images/logo.png and the resource loader will find them. 

Tip The potential multiplicity of images with (scale variants * contrast variants * language variants) and 
potentially others (like direction) is an important consideration for your app package: more images will 
make the package size larger. A large package in the Store might deter some users from downloading 
your app, especially those running on metered networks. So it’s worth carefully evaluating exactly 
which images really need to vary with these different factors, especially the larger ones, and to optimize 
the degree of compression for all of your images to minimize the package size. Ask especially whether 
your splash screen image—typically one of the largest, especially at the 180% scale—needs to be 
localized at all, and even test whether the 180% image will look good when scaled down to 140%, 
100%. If your splash screen, in other words, is just imagery with a sufficient contrast ratio and you have 
used a universally acceptable app name, one file might work everywhere. 

Note also that you don’t want to provide an unqualified resource if you provide any other specific 
variants, because a scale variant will always be matched before the unqualified one. As a result, the 
unqualified resource will just take up space in the app package but will never be used. 

To prepare for localization, we need only move those images into a folder for our default language, 
as we did with strings. Because you’re already using relative URIs to refer to your images (with or 
without ms-appx:///), you can use whatever folder path you want as your image root. There, create a 
folder with the appropriate BCP-47 tag and move all your default language images into that one. In 
Here My Am!, for example, images live in the images folder, so all I need to do is create an en-US folder 
under there, move all the images, and all my references such as /images/tile.png will still work. And 
because they now live in a folder that corresponds to the app’s default language, they become the 
fallback images. 

I will mention that I did have one image, maperror.png, that was located in pages/home alongside 
the home.html file that referenced it. I moved this to images/en-US and updated URI references 
accordingly (but later eliminated it and taphere.png in favor of drawing a canvas dynamically). You can, 
of course, place images in as many folders as you like, provided that they each have language-specific 
folders therein. It’s probably most convenient, however, to use a single root folder, or just a few; with 
Here My Am!, at the end of this step I had just two language folders in the project: 

815

http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.resources.core.resourcemanager.aspx


 
In your own app, then, look for app image references throughout your project. In HTML, look 

especially for img elements. In CSS, look especially for background-image styles. In the manifest, look at 
the Application UI tab (logos and badges), the Declarations tab (more logos), and the Packaging tab 
(the store logo). In JavaScript, finally, check any URIs you might be assigning to element properties or 
CSS styles, as well as any you might be referring to in the XML for tiles, badges, and toasts. 

After that, evaluate each graphic to determine whether it will require localization, including those 
that need to be reversed generally for right to left languages (for these you can use single copies for all 
RTL languages, named with the layoutdir qualifier; refer back to How to name resources using 
qualifiers). For images that don’t require localization (perhaps your tile and other logos, along with plain 
graphic elements you use in your layout), keep them in your fallback language folder. These will be used 
if no other match to the current set of qualifiers is found (language, scale, contrast, etc.) Depend on the 
fallbacks only if you have no other variants. 

With that, we’re now ready to localize! 

Sidebar: The Application Resources and Localization Sample 
The Application resources and localization sample shows many different scenarios for managing 
and referring to localized resources. It’s worth spending some time with this sample because it will 
reinforce much of what we’ve discussed here: image resources (Scenario 1); string resources in 
HTML, JavaScript, and the manifest (Scenarios 2–4); using secondary resource files (Scenario 5); 
sending language info to web services (Scenario 7); combining resources and data binding 
(Scenario 8); using resources with hyphenated attributes (Scenario 9); triggering and detecting 
language changes (Scenarios 10 and 6); overriding the default language context (Scenario 11); 
using WinJS for resource lookup in the web context (Scenario 12); and multidimensional fallback 
(Scenario 13). 

Creating Localized Resources: The Multilingual App Toolkit 
Congratulations! With all the work you’ve done in the previous sections, you should have an app that’s 
completely ready to be localized. The process here is really just one of acquiring translated versions of 
your .resjson files (for strings, taking sparse localization into account) and translated copies of any 
necessary images. 

Tip If you have images that contain text, make sure that you have strings in your resources that match 
the image content, as you’d typically use for img alt attributes. In doing so, you’ll obtain the necessary 
translations for the graphics in the process of localizing the strings. 

816

http://msdn.microsoft.com/library/windows/apps/hh965372.aspx
http://msdn.microsoft.com/library/windows/apps/hh965372.aspx
http://code.msdn.microsoft.com/windowsapps/Application-resources-and-cd0c6eaa


If you like, you can just send your .resjson files, along with the text inside images, to an appropriate 
translator or translation agency and have them do the work. When you get them back, simply create 
additional BCP-47 folders in your strings and images, drop in those files, and away you go. You’ll see 
such structures in the Application resources and localization sample, as we’ve referred to before. 

Such manual translation can take a long time, however, and can become expensive. This is partly 
because professional translators don’t necessarily have tools to work with resjson files other than a text 
editor. What they do have—sophisticated tools that help them track the status of translation jobs and 
much more—work with an industry-standard XML format known as XLIFF (XML Language Files). So it 
behooves us (and our checkbooks!) to make life as easy as we can for translators, even reducing their 
job to reviewing suggested translations rather than generating everything from scratch. 

To assist in this, Microsoft offers the free Multilingual App Toolkit for Visual Studio 2012. Once you’ve 
downloaded and installed the Toolkit, load your project into Visual Studio and select the Tools > Enable 
Multilingual App Toolkit menu item. You have to do this for each project separately, because what 
happens from here on is that the Toolkit will be generating multilingual resources for your app—in the 
resources.pri file—without you having to actually add any more .resjson files. 

Once you’ve enabled the Toolkit, a command appears on the Project menu called Add Translation 
Languages. This brings up the Translation Languages dialog, as in Figure 17-10, in which you select 
desired target languages. At the very top of the list, the Pseudo Language option (qps-ploc) will be 
automatically checked; we’ll be using it in the next section to test localization. This is something you 
typically want to do before doing specific localizations. Also note that many languages sport a 
“Microsoft Translator” logo, which means they can be mostly translated automatically, saving paid 
translators much time and you, much money. 

Videos! For a video series on the Toolkit from the team who created it, see the following: 

Introduction to the Multilingual App Toolkit (3m 50s) 

Build Multi-language apps using the Multilingual App Toolkit (9m 01s), covers creating string 
resources as we’ve already discussed. 

Test Multi-language apps using the Multilingual App Toolkit (5m 36s), covers what we’ll talk about in 
“Testing with the Pseudo Language” later on. 

Localize Multi-language apps using the Multilingual App Toolkit (6m 40s) demonstrates the 
Multilingual App Toolkit Editor as we’ll see shortly. 

Submitting your localized app to the Store (9m, 05s) highlights considerations for getting your app 
to the right markets. 
 

 

 

 

 

 

817

http://msdn.microsoft.com/windows/apps/hh848309.aspx
http://channel9.msdn.com/posts/Introduction-to-the-Multilingual-App-Toolkit
http://channel9.msdn.com/posts/Build-Multi-language-apps-using-the-Multilingual-App-Toolkit
http://channel9.msdn.com/posts/Test-Multi-language-apps-using-the-Multilingual-App-Toolkit
http://channel9.msdn.com/posts/Localize-Multi-Language-apps-using-the-Multilingual-App-Toolkit
http://channel9.msdn.com/posts/Submitting-your-localized-app-to-the-Store


Once you’ve made your selections (you can add more later), press OK and the Toolkit will create a 
folder in your project called MultilingualResources stocked with a bunch of XLF files (the ones the 
translators like). At first these will be mostly empty, but now here’s why it was worth the effort to build 
up your default resources.resjson file. Right-click your project in Solution Explorer and select Build or 
Rebuild, or use the Build > [Re]build Solution menu item. This will go through your string resources 
(including any localized variants you might have created already) and populate all the XLF files with all 
your strings. The process will also draw in references to nonlogo images (that is, tiles and splash screens 
are omitted) that might also need translation. 

Now for the real fun: double-click an XLF file to launch the  Multilingual App Toolkit Editor shown in 
Figure 17-11. Here you can manage which resources can or should be translated along with the state of 
the translation. If the language is also supported by Microsoft Translator, the Translate button at the top 
will be enabled to translate a single entry as well as to Translate All. Select the latter and sit back to 
enjoy the show. In a few moments you’ll see that the tool has translated all your strings, marking each 
with the state of Review, as shown in Figure 17-12. 

 
FIGURE 17-10 The first dialog of the Multilingual App Toolkit’s language selection feature. At left we see the option 
for Pseudo Language, an artificial language with lots of funky characters that represents the needs of most other 
languages. 
 
 

818



 
FIGURE 17-11 The Multilingual App Toolkit Editor, an XLF editor with machine translation built in. 

 
FIGURE 17-12 The string resources of Here My Am! after being machine-translated into Hindi. 

 

 

819



Once the translation is complete, save the file and close the editor if you want. Go to Control Panel > 
Control  Clock, Language, and Region > Language and make sure the target language is added and is 
placed at the top of the list. Then return to Visual Studio and launch the app—and there is your 
first-pass localization, as shown in Figure 17-13 for Here My Am! (Notice that I elected to not translate 
the title, something that my translators suggested I keep in English because of its unique grammar.) 

 
FIGURE 17-13 Here My Am! running in Hindi using machine translation output, which should still be checked by a 
native speaker, of course. As you can see, I’m checking if Yogananda has any advice apropos to the language. 

If you like living on the edge and don’t mind shipping an app that people in other markets might 
laugh at or otherwise criticize for your carelessness, there’s nothing stopping you from making your app 
available to those markets in the Windows Store with such machine translations. If you like good 
positive ratings and reviews, on the other hand, it’s a good idea to at least find some native speaker who 
can validate and correct what the automatic translation process suggested. You can have this helpful 
person use the Toolkit editor to review your XLF files, in fact. When those files are reviewed and 
returned to you, import them back into your project by right-clicking the existing XLF file in Visual 
Studio and selecting Import Translation. The new translations will then be included in your next build. 

When working with professional translators, you can also select specific XLIFF Translation file formats 
by right-clicking the XLF file in Visual Studio and selecting Send for Translation. 

Three other notes about this process. First, there may be some strings or parts of strings that don’t 
require translation. In the Toolkit editor you can set the Translatable option to No for whole strings to 
prevent the machine translation from changing that string. For parts of a string, those will be translated 
but you can edit them back to their original and make a note in the Comments area for your translators. 

 

 

820



Second, the Toolkit will detect if you’ve already made translations in an XLF file such that running a 
Build/Rebuild will not overwrite those strings. At the same time it will import any new strings you’ve 
added to your resource file in the meantime and remove any that have been deleted. A change in a 
resource identifier, however, is treated as a delete+add, meaning that the translation will be lost. 

Lastly, if you want to remove a language just right-click the XLF file and select Exclude From Project. 
This will keep the language out of the build while preserving the file (and its translations) in your project 
folder. 

Testing with the Pseudo Language 
As much fun as it is to produce many translations for your app, there is still the matter of testing it well, 
a task that is clearly overwhelming if you’re targeting many languages! To reduce this burden, the best 
approach is to test your app using the Pseudo Language, a step that’s ideally done before incurring the 
cost of specific translations. It helps you validate that your app can handle a variety of languages, 
because the fictitious Psuedo Language contains some of the most problematic characteristics of 
localized text. 

As noted in the previous section, this language is automatically added to your project through the 
Multilingual App Toolkit’s language selection dialog. This creates a Pseudo Language (pseudo).xlf file in 
your MultilingualResources folder, alongside the real translations. Next, right-click that file and select 
the Generate Pseudo Translations command. This will populate the XLF file with translations of your 
default resources where basic characters are often converted to extended characters and strings are 
generally expanded with extra !!!’s tacked on. So, a string like “Recent pictures” gets translated to 
“[62BD8][!!_Ŗęćęйť þîćťµŗêš_!!!!]” where the hexadecimal stuff in the first [ ]’s is a resource identifier that 
helps testers identify the exact resource that’s being used. (Note that this process will “translate” every 
string whether you will ultimately translate those strings for real, because it’s helpful for testing.) 

To run the app with this translation, you need to make Pseudo Language the system default. In 
Control Panel > Clock, Language, and Region > Language, click Add a Language, and then enter 
qps-ploc in the search box. This is the only way to make the Pseudo Language option appear: 

 

821



Select that language, click Add, and then move it to the top of the list: 

 
When you run you app now, you should see it appear in Pseudo Language: 

 
With your app running in Pseudo Language, be sure to exercise every feature and option. Check 

every page in each view state; check all your app bar commands; check all of your settings; check any 
error messages, flyouts, and message dialogs that might only appear under specific circumstances like 
changes in network connectivity; and test your app with all its activation paths according to the 
contracts you support. As you do so, look for any strings that don’t appear in Pseudo Language, a clear 
indication that you missed pulling that string from your markup or code. Also check for truncated text, 
unintended word wrapping, and so forth, which reveals where your layout isn’t accommodating longer 
translated strings. 

This is the time to be as thorough as possible, because once you upload to the Store, issuing another 
update will take at least one or two weeks, during which time your customers might find those 
problems and ding your ratings accordingly. It’s always something to keep in mind, especially if you’ve 
been accustomed to instantly fixing bugs on websites: apps simply take longer, so you want to invest in 
testing ahead of time. 

822



Localization Wrap-Up 
Well, we’re almost done with the app and ready to go to the Store! There are just a few more things to 
mention about localization: 

• Testing with the Pseudo Language does not cover RTL language considerations; you’ll need to 
run with those languages separately. I’m happy to say that when I ran Here My Am! under such 
conditions (such as Hebrew), the layout automatically mirrored thanks to the direction style set 
in the WinJS stylesheets. 

• Be sure to test any and all interactions with online services, including periodic tile/badge updates 
and those that arrive through push notifications. 

• If you want to dynamically update your app when the user changes languages (instead of having 
to restart the app), listen for the WinJS.Resources.oncontextchanged event and call 
WinJS.Resources.processAll. This code is in Here My Am! as well as Scenario 6 of the 
Application resources and localization sample: 

WinJS.Resources.addEventListener("contextchanged", function () { 
    WinJS.Resources.processAll(); 
}); 

• The above code will refresh string resources but neither image resources nor content obtained 
from online sources. You’ll want to do those other updates with additional code, such as giving 
Windows a new URI for periodic tile updates or indicating that language to a service that issues 
push notifications. For the app’s overall UI, try using document.location = document.location + 
"?reload", picking up that URI parameter in your activated handler to take additional steps. 
This essentially mimics relaunching your app. 

• If you like, you can allow the user to select the language for the app independent of the system 
settings. This is done by setting the Windows.Globalization.ApplicationLanguages.- 
primaryLanguageOverride property, as demonstrated in Scenario 10 the Application resources 
and localization sample. Scenario 11 also shows loading specific language resources rather than 
the default. 

• In Visual Studio, open your manifest in the XML code editor (right-click and select View Code) 
and check if you see this line within the Resources element: <Resource Language="x-generate" 
/>. If so, replace that line with individual entries like <Resource Language="en-US" />, where the 
first is your default language, and you must have localized resources for all the rest. In addition, 
you must have at least one “certification language,” as described on Building your app package, 
or the app will fail Store certification. 

• For translation on the fly, you can use various web services such as Bing Translator. 

823

http://code.msdn.microsoft.com/windowsapps/Application-resources-and-cd0c6eaa
http://code.msdn.microsoft.com/windowsapps/Application-resources-and-cd0c6eaa
http://code.msdn.microsoft.com/windowsapps/Application-resources-and-cd0c6eaa
http://msdn.microsoft.com/library/windows/apps/hh694075.aspx#app_langs
http://www.microsofttranslator.com/dev/


Releasing Your App to the World 

We have arrived at the last section of this chapter and the last section of this book, coming full circle to 
the exact point where we started in Chapter 1: onboarding our world-ready app to the Windows Store 
and making it available to that world. 

Because the onboarding process is well documented already in the Selling apps topic, I’m not going 
to spend our time here together giving you a bunch of screen shots from the Store Dashboard, where 
all of this action takes place. I’ll point you to specific pages in those docs when appropriate, but it’s 
definitely a section of the documentation that you should review. After all, the Windows Store is the 
retail channel for your app, so you want to understand that channel as best you can. The Store 
dashboard is also designed to lead you through the process directly. 

What we’ll focus on here specifically are those aspects of the process that aren’t always so obvious, 
based on the real-world experience that I and my teammates in the Windows Ecosystem Team have 
gained through working with the first partners to submit apps to the Store. Through this I hope to raise 
your awareness of issues that you’ll likely face so that you’re more prepared to address them. We’ll then 
conclude with a look at app updates and increasing discoverability of your app through linkage with 
your website. 

Sidebar: Setting Build Targets 
When you create your app package to upload to the Store, be mindful that you set your project’s 
configuration to Release instead of Debug, otherwise it will fail certification. When choosing the 
target platform, set this to “Any CPU” unless you specifically have WinRT components written in 
C++. That is, JavaScript and .NET languages (C#/VisualBasic) are architecture-neutral; anything 
written in C++, on the other hand, must target x86, x64, and ARM specifically. More often you’ll 
need to create three builds for these architectures that you’ll upload to the Store individually. 

Promotional Screenshots, Store Graphics, and Text Copy 
Before you do anything else with your app and the Store, review the topic How customers see your app 
in the Windows Store and its four subsidiary topics: App listing info, app listing overview, app listing 
details, and app images. Also review the Pre-development checklist, which provides a blend of 
pre-development and pre-onboarding topics, especially Naming your app and Describing your app. 

The reason why I specifically call out these topics is because you’ve invested or you’re going to invest 
a lot of time and energy developing your app (and testing it, as we’ll discuss in the next section), and so 
you should make a comparable effort to make it look great in the Store. All of the content described by 
the links above—your app’s name and description, its details, and its promotional images—constitute 
your customers’ first experience of your app. 

 

824

http://msdn.microsoft.com/library/windows/apps/br230836
https://appdev.microsoft.com/StorePortals
http://msdn.microsoft.com/library/windows/apps/hh694057.aspx
http://msdn.microsoft.com/library/windows/apps/hh694057.aspx
http://msdn.microsoft.com/library/windows/apps/hh694060.aspx
http://msdn.microsoft.com/library/windows/apps/hh694061.aspx
http://msdn.microsoft.com/library/windows/apps/hh694059.aspx
http://msdn.microsoft.com/library/windows/apps/hh694059.aspx
http://msdn.microsoft.com/library/windows/apps/hh846296.aspx
http://msdn.microsoft.com/library/windows/apps/hh694079.aspx
http://msdn.microsoft.com/library/windows/apps/hh694077.aspx
http://msdn.microsoft.com/library/windows/apps/hh694076.aspx


Let me say that again: all of this information is what potential customers will use to evaluate your app 
before they tap any button to acquire it. It is marketing material, plain and simple, so make it shine! 
Spend time writing really good copy for your app description—even to the point of having it 
professionally edited or hiring a professional writer. If you feel your app is fun and engaging, 
communicate that experience through your description and imagery. Truly, you want customers’ first 
impression of your app—just from a quick glance at your app’s page in the Store—to be WOW! And 
this content is all that determines that response. 

The other reason I emphasize this so strongly is that you won’t otherwise know you need any of this 
information until you begin the onboarding process, at which point the Store will ask you to paste in 
text and upload images. If you haven’t prepared those materials already, then, and you’re trying to get 
the app into the Store as quickly as possible, you’ll end up cutting some serious corners. As a result, your 
app’s first impression will be nowhere near as good as it could be. 

Game Rating Certificate When uploading a game to the Windows Store, you’ll also be required to 
provide a game rating certificate in the form of a GDF file. For details, see Windows game publishing 
requirements. 

Testing and Pre-Certification Tools 
Unless you’re a born tester, app testing is an activity that has little glory and thrill compared to 
development, yet it can make a huge difference in the success of your app. 

Indeed, for many developers—especially those who have been primarily focused on the web, as I 
expect many readers are—rigorous testing is not one of their skill sets. I think this is because the nature 
of web development, where you can upload a fix to a site and have it take effect immediately, has not 
demanded much testing discipline. How often have you seen one of your favorite websites just blow up 
one day, hobble around for a few hours, and then come back to life? It’s probably because some 
developer introduced a nasty bug which was discovered and purged during those hours of 
awkwardness. For some sites, that downtime can be disastrous, but for many others the impact is small 
to negligible. 

Put another way, the costliness of bugs in web apps is generally quite small because the update time 
is also very small. But this is not a reality with apps. The time from when you submit an app to the 
Windows Store to when it’s made available is at least a week, if not longer, depending on the Store’s 
backlog. This means that each submission is far more significant. 

Just look at it in terms of turnaround time. Let’s say it takes five minutes to upload a fix to a web app. 
Compare that to the number of minutes in a week, which is 10080. The ratio? 1 to 2016. In other words, 
it’s at least 2000 times more expensive in terms of time and effort to update an app in the Store. 
Practically speaking, this means that you might need to spend orders of magnitude more effort testing 
apps than testing websites. That’s significant! (And don’t make the argument that because you spend 
zero time testing web apps the multiple still comes out zero.) 

825

http://msdn.microsoft.com/library/windows/apps/hh452788.aspx
http://msdn.microsoft.com/library/windows/apps/hh452788.aspx


If you don’t have some testing methodology in place, then, start building one, even from the basics. 
For example, be sure to always test your app on a clean install of Windows 8 on a machine without a 
developer license, as well as on low-end machines whose performance is similar to many ARM devices. 
One developer I worked with had an app rejected by the Store because it came up blank on first 
run—he never saw this happen because of all the cached data on his development machine! 

You also want to develop a solid checklist of how to poke and prod your app to exercise all its code 
paths. This should include subjecting it to all the conditions that come from outside your app: changing 
view states and device orientations; invocation of the different charms; changes in network connectivity; 
running on slow networks; varying screen sizes and pixel densities; input from different sources; having 
your temp files cleaned out with the Disk Cleanup tool; signing on with different credentials; 
suspending, resuming, and restarting after termination; running with high contrast modes and other 
accessibility features; and running under different languages. The better your app behaves under all 
these circumstances, the more solid it will look and feel to the customers who will be writing ratings and 
reviews. I cover these topics in a two-part video called “Beyond Just Beautiful” that you can find on the 
Concepts and architecture page of the Developer Center. 

Beyond that there are some great topics in the documentation to help you take the next steps: 

• Debugging and Testing Windows Store apps 

• Analyzing the code quality of Windows Store apps with Visual Studio code analysis 

• Creating and running unit tests on a Windows Store app 

• Analyzing the performance of Windows Store apps 

The other very important part of testing is running your app through the Windows App Certification 
Kit, otherwise known as the WACK. This tool subjects your app to all the automated tests that will 
happen when you onboard to the Store, thereby letting you correct any problems it finds beforehand. 
Passing the tests in the WACK is no guarantee that your app will be accepted, but it will certainly save 
you a great deal of time waiting for onboarding results and having to resubmit over and over. You 
should, in fact, run the WACK just about every day during development. You won’t necessarily fix 
everything it brings up right away, but the ongoing data will be very valuable. 

For complete details on the tool and what it does, see Testing your app with the Windows App 
Certification Kit and Windows App Certification Kit tests. 
 

Tip If you find the WACK coming up blank (showing no apps to test), try uninstalling SDK samples that 
you might have run from Visual Studio. It seems the tool can get overloaded sometimes. 
 
 

826

www.SoftGozar.com

http://msdn.microsoft.com/library/windows/apps/br211361.aspx
http://msdn.microsoft.com/library/windows/apps/hh441481.aspx
http://msdn.microsoft.com/library/windows/apps/hh441471.aspx
http://msdn.microsoft.com/library/windows/apps/hh441482.aspx
http://msdn.microsoft.com/library/windows/apps/hh696636.aspx
http://msdn.microsoft.com/library/windows/apps/hh694081.aspx
http://msdn.microsoft.com/library/windows/apps/hh694081.aspx
http://msdn.microsoft.com/library/windows/apps/jj657973.aspx


Onboarding and Working through Rejection 
When you’re really ready to upload your app to the Store, you can use the Visual Studio’s Store menu 
options. Create App Package will let you create a Store-ready package (and run the WACK); the Upload 
App Package command will take you to the Store dashboard to complete the process. And just in case 
you’re interested, the maximum size of an app page for upload is 2GB (see Building the app package). 

When onboarding your app, you’ll be asked for all the promotional details discussed earlier, as well 
as URIs where support and privacy information can be found. You’ll also select target markets, set 
pricing, enter details for in-app purchases, set trials and expiration dates, set a release date, and provide 
notes to the Store testers. (For an overview, see the App submission checklist.) The last item is essential if 
there are any details that will be necessary for a real person to test your app as part of the process, such 
as credentials for a test account. And yes, a real human being will look at your app (and read your notes, 
so be courteous)! Automated tests can only accomplish so much—in the end, someone needs to run the 
app and make sure it does what it says. 

If you’ve done the work to make your app accessible, by the way, there’s a special place to say so. See 
Declaring your app as accessible. 

Once your app has completed the testing process, it will either be accepted or rejected. Acceptance 
is really a nonissue—that’s what you’re looking for! If your app is rejected, on the other hand, the Store 
will tell you why, specifically citing violations of the Windows 8 app certification requirements. Indeed, 
these policies contain the only reasons that an app can be rejected, so any rejection must necessarily 
indicate the particular requirement that isn’t being met. The Store also provides some information 
about failures, such as where an app crashed (a violation of requirement 1.2). 

By and large, most of the policies are straightforward such that if you fail on them, it’s pretty clear 
why. A few, however, seem to be more confusing or subjective, and in the early days of Windows 8 
previews they were downright mysterious. Now, fortunately, there is an extensive list of reasons why an 
app might fail a number of requirements on Resolving certification errors, many of which come from 
our experience with real apps submitted to the Store. The Store testers can also provide direct feedback 
regarding specific failures, like where and when an app might have crashed which certainly caused them 
to reject it. 

App Updates 
One thing that apps and books share in common is that the moment you release them, you’ll find 
errors, bugs, typos, and a hundred other things you wish you could change. Fortunately, updating apps 
is easier than updating books (even though fixing app bugs is often far more difficult than correcting a 
typo). 

You might want to issue an update for many reasons besides the obvious problems you see yourself 
and the features that didn’t make it into your current version. You might want to respond to user 
reviews and requests, add more in-app purchase options, or add features to pursue new opportunities. 
For nearly all of these purposes, the Reports and data that come from the Windows Store will be highly 
valuable. You’ll want to review this as soon as your app is in the Store and make a plan for monitoring 

827

www.SoftGozar.com

http://msdn.microsoft.com/library/windows/apps/hh694075.aspx
http://msdn.microsoft.com/library/windows/apps/hh694062.aspx
http://msdn.microsoft.com/library/windows/apps/Hh700322.aspx
http://msdn.microsoft.com/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/library/windows/apps/hh921583.aspx
http://msdn.microsoft.com/library/windows/apps/hh921583.aspx
http://msdn.microsoft.com/library/windows/apps/jj193602.aspx


those reports that are most interesting to you. Some suggestions for this are found on Updating your 
Windows Store app. In fact, schedule some time in the future right now to check in with these reports, 
lest you forget they exist. Truly, these reports are your best link to real customers!83 

All such data will surely feed back into your planning and development processes, ultimately 
bringing you to the point of one again uploading your app with new promotional materials and more 
features. When you’re ready to upload a new package, be sure to increment the version number in the 
manifest so that you can keep track of things. (This is available at run time from 
Windows.ApplicationModel.Package.current.id.version.) Onboarding is then the same as for any 
other app—no matter how little you might have changed, the app goes through the whole certification 
process again. For this reason, don’t think to make whimsical updates—make each one count (fixing a 
single critical bug certainly counts!). Also, be aware that the certification requirements can change over 
time, so just because an app was accepted once doesn’t mean it will be accepted again. Make it a point 
to periodically review the requirements. 

In your updated app, be prepared to migrate any state that might already exist on the machine, if 
there have been changes. We talked about this in Chapter 8 in “Versioning App State,” where we 
distinguished between the version of an app and the version of its state; many app versions can use the 
same state version. However, if the app now uses a new state version, the old state must be migrated. 
Remember too that you can use the servicingComplete background task for this purpose, as mentioned 
in Chapter 13 in “Tasks for System Triggers (Non-Lock Screen).” Finally, once you introduce new versions 
of your state, roaming data will roam between apps of the same version only—you’ll be able to migrate 
old state when the new app is run, but once the version is increased, that data will no longer roam to 
devices with older versions of the app. 

The last point to mention about updates is that although your new app package might be fairly 
large, existing customers will not have to download the whole thing again. If you go way, way back in 
this book to Figure 1-1 in Chapter 1, we talked about the package’s blockmap. To summarize, an app 
package is segmented into 64K blocks, and only those blocks that have actually changed between 
versions are necessary to download for the update. In practical terms, this means that you shouldn’t 
worry about making a critical update to your app: if it affects only a small part of the code, your existing 
customers might end up downloading only one or two 64K blocks total! To help this along, try to have 
more small files in your project than a few large ones, and it’s better to make changes at the ends of files 
than at the beginning or the middle. 

Getting Known: Marketing, Discoverability, and the Web 
As Gandalf the White says to Frodo, Sam, Merry, and Pippin at the conclusion of the Lord of the Rings 
movies, “Here at least, on the shores of the sea, comes the end of our fellowship.” And, my friends, it has 
been a delight to share the journey with you! In this last section, then, I wanted to leave you with one 
technical matter—that of linking your app to your website—before sharing a few final thoughts. 

83 These reports will not give you any personal information about your customers, of course. If you want to collect that, 
you’ll need to implement an opt-in registration system in the app that complies with requirement 4.1.2. 

828

www.SoftGozar.com

http://msdn.microsoft.com/library/windows/apps/jj606115.aspx
http://msdn.microsoft.com/library/windows/apps/jj606115.aspx
http://msdn.microsoft.com/library/windows/apps/windows.applicationmodel.packageid.version.aspx


Connecting Your Website 
If you have an app, you’ll almost certainly have a site that provides additional information and support. 
(Requirement 6.3 deals with support specifically.) What, then, if potential customers come to your site 
first? Surely you’ll want to provide an easy way for them to acquire your app if they’re running on 
Windows 8. 

For this you can simply link to a special URI for the Windows Store that starts with ms-windows-store, 
as described on Creating links with the Windows Store protocol. You can also use the form 
ms-windows-store:REVIEW? to link directly to your app’s ratings and reviews. And also remember that 
you can include a link to your app’s page in the Store with data packages you provide to the Share 
contract, as covered in Chapter 12, “Contracts.” 

With Internet Explorer, a little bit of metadata in your web page’s <head> will enable a feature that 
makes it simple for a customer to acquire your app and even run it if the app is installed. For example: 

<meta name="msApplication-ID" content="ProgrammingWin8-JS-CH17-HereMyAm17"/> 
<meta name="msApplication-PackageFamilyName"  
    content="ProgrammingWin8-JS-CH17-HereMyAm17_5xchamk3agtd6"/> 

where the two content values come from the Package Name and Package Family Name fields in your 
manifest’s Packaging tab. Again, if the user doesn’t have your app, this makes the acquisition process 
easy. If the user does have your app, he’ll have the opportunity to launch it in which case the app will be 
activated with the launch kind of protocol. 

For more, see Linking to your apps on the web on the Windows Store developer blog and Connect 
your Web Site to Your Windows 8 App on the Internet Explorer blog. And for a working example, visit 
the site of Inrix Traffic, one of the earliest app partners who implemented these features. 

One other possibility comes to mind here as you make the effort to promote your app: you might be 
approached by an OEM to include the app preinstalled on their devices. If this happens—it’s quite a 
prize!—the OEM will share with you some special instructions about how to onboard and maintain an 
app specifically for their customers. 

Final Thoughts: Qualities of a Rock Star App 
It almost goes without saying that the Windows Store will at some point become crowded, so 
differentiating your app and yourself as a developer will become increasingly important. Again, there’s 
plenty to do with marketing and gaining awareness for your app, as well as being responsive to 
customers. Beyond that, though, what does it really mean to make an app that’s truly special? 

Early on, long before Microsoft landed on the term “Windows Store apps,” we referred to them as 
“tailored apps.” To play with that older term, think of what tailoring means in the context of clothes: 
well-tailored clothes are very distinctive. They make you look really good. They make you feel great. 
That’s how you want the users of your app to feel when they’re immersed in your experience. Indeed, 
just as joy and happiness are the undercurrent behind your own app-building efforts, so also do they  
 

829

www.SoftGozar.com

http://msdn.microsoft.com/library/windows/apps/hh974767.aspx
http://blogs.msdn.com/b/windowsstore/archive/2012/02/22/linking-to-your-apps-on-the-web.aspx
http://blogs.msdn.com/b/ie/archive/2011/10/20/connect-your-web-site-to-your-windows-8-app.aspx
http://blogs.msdn.com/b/ie/archive/2011/10/20/connect-your-web-site-to-your-windows-8-app.aspx
http://www.inrixtraffic.com/


live in the hearts of your customers. If you can deliver joy to them through your app, then I think you’ll 
have a winner! 

Another meaning of “tailored” implies that the kinds of apps we’ve been building in this book—apps 
that run full screen and deeply immerse a user in an experience—lend themselves well to being very 
specific to both the device and the user’s context. As we saw in Chapter 9, sensors give you the ability to 
know the device’s relationship to the physical world, which is an extension of the user who is holding 
that device. Ask then, “What can I do with that information? How can the app really light up when it has 
a deeper understanding of where the user is and how the user is moving about in this world of ours? Is 
there something more the app can do to say, ‘Aren’t you glad you brought me along?’” 

To differentiate your app, think through how a consumer might use various form factors in different 
situations and have the app present itself differently in those contexts. This kind of tailoring means that 
the app surfaces the most relevant features or content for the most likely or appropriate use cases. As 
shown in the last figure of Chapter 1 within “Sidebar: The Opportunity of Per-User Licensing and Data 
Roaming,” I like to think of there being one app across many devices and that the user has a much 
stronger relationship to the app than to the devices it’s running on. The app and its underlying state 
becomes the consistent element across the whole experience, with the devices just being the vehicles. 
The more you can deliver an app that understands and support this (and obviously roaming data is 
important here!), the more I think the app will stand out from others that, sure, run in the new 
environment of Windows, but otherwise offer the same experience as we’ve had for many years. 

So, what about being a rock star? Let’s be honest here. You’re in this game for name and fame, right? 
And for the big money that could come with it? What kind of app will get you there? 

In what is now the very last paragraph of this book (apart from the end-of-chapter summary), I can’t 
really give you a bunch of specific ideas. (Otherwise I’d be writing those apps instead of writing books, 
but someone has to do this dirty work….) But ponder this: what makes a rock star in the music industry? 
Well, it’s not typically about the philosophical depth of the lyrics or the virtuosity of the musicians, it’s 
about performance, personality, and sheer entertainment value. It’s about delivering a joyful experience 
that turns everyday customers into raving lunatic fans who can’t wait to be your greatest champions. In 
a very real way, the experience is one that truly lets people escape their everyday realities and become 
part of something larger for a time, or even just part of a fantasy. And like great music or movies, the 
app experience is one that people want to repeat many times over and not just check the box as 
another “been there, done that.” Although there are certainly aspects of timing and sheer luck, all rock 
stars—along with great athletes, Oscar-winning movies like Lord of the Rings, and so on—strive for and 
achieve one thing above all: excellence. Commit yourself to that. Commit yourself to excellence in 
everything you do—not just in your apps, but in all parts of your life. Such striving, certainly, will 
eventually bring many rewards! 

830

www.SoftGozar.com



What We’ve Just Learned 

• An app’s relationship to the Windows Store is very closely related to your business as a 
developer, because it supports a range of options from free apps, ad-supported apps, 
limited-time trials, paid apps, and in-app purchases (using a custom commerce engine for the 
latter if desired). 

• Side loading of app packages is supported for developers (on a machine with a developer 
license) and for enterprises. Otherwise all apps come from the Windows Store. 

• The Windows Store APIs provide for managing app licenses, licenses for in-app purchases, and 
receipts. During development, the app uses a simulator object where data is obtained from a 
local XML file instead of the live Store, which allows for testing different types of transactions 
and license conditions. 

• Accessibility features are a concern for the majority of users, even those without disabilities who 
find those features useful at different times. Apps support accessibility through ARIA attributes 
(for screen readers), implementing keyboard interaction, resolution scaling, and responding to 
high contrast modes. 

• Globalization is the process of removing language and cultural assumptions from an app, using 
globalization APIs to properly handle user language, varying, calendars, formatting of numbers, 
dates, times, and currencies, sort orders, how strings are combined, varying text input methods, 
and which web services are used from which regions. 

• To prepare for localization, an app needs to be scrubbed for text and image content that will be 
subject to translation, separating strings into resources files and inserting references in their 
place, and then structuring those resources in folders and files that employ resource qualifiers. 

• For efficient localization, the Multilingual App Toolkit for Visual Studio generates and translates 
an app’s default resources into any number of other languages, using the file formats employed 
by professional translators who can verify the results. It also produces a Pseudo Language 
translation for localization testing. 

• Getting an app in the store starts with testing the app both manually and through the Windows 
App Certification Kit and being prepared for possible rejection during the onboarding process.  

• App updates can be submitted to the Store at a later time, with improvements based on 
feedback and telemetry, and the updated code needs to be ready to migrate state. 

• Being in the Windows Store does not reduce the need for marketing; getting found will become 
increasingly difficult as more apps appear in the Store. Cross-linking your app and website can 
thus very much help discoverability. 

  

831

www.SoftGozar.com



About the Author  
Kraig Brockschmidt has worked with Microsoft since 1988, 

focusing primarily on helping developers through writing, 
education, public speaking, and direct engagement. Kraig is 
currently a Senior Program Manager in the Windows Ecosystem 
team working directly with key partners on building apps for 
Windows 8 and bringing knowledge gained in that experience to 
the wider developer community. His other books include Inside 
OLE (two editions), Mystic Microsoft, The Harmonium Handbook, 
and Finding Focus. His website is www.kraigbrockschmidt.com. 

 

 

832

www.SoftGozar.com

http://www.kraigbrockschmidt.com/


Tell us how well this book meets your needs —what works effectively, and what we can  
do better. Your feedback will help us continually improve our books and learning  
resources for you.   

Thank you in advance for your input!

What do  
you think of  
this book?
We want to hear from you! 
To participate in a brief online survey, please visit: 

microsoft.com/learning/booksurvey 

833

www.SoftGozar.comwww.SoftGozar.com

www.SoftGozar.com


	Cover
	Copyright

	Table of Contents
	Introduction
	Who This Book Is For
	What You'll Need (Can You Say “Samples”?)
	A Formatting Note
	Acknowledgements
	Errata & Book Support
	We Want to Hear from You
	Stay in Touch

	Chapter 1: The Life Story of a Windows Store App: Platform Characteristics of Windows 8
	Leaving Home: Onboarding to the Windows Store
	Discovery, Acquisition, and Installation
	Playing in Your Own Room: The App Container
	Different Views of Life: View States and Resolution Scaling
	Those Capabilities Again: Getting to Data and Devices
	Taking a Break, Getting Some Rest: Process Lifecycle Management
	Remembering Yourself: App State and Roaming
	Coming Back Home: Updates and New Opportunities
	And, Oh Yes, Then There’s Design

	Chapter 2: Quickstart
	A Really Quick Quickstart: The Blank App Template
	Blank App Project Structure

	QuickStart #1: Here My Am! and an Introduction to Blend for Visual Studio
	Design Wireframes
	Create the Markup
	Styling in Blend
	Adding the Code
	Extra Credit: Receiving Messages from the iframe

	The Other Templates
	Fixed Layout Template
	Navigation Template
	Grid Template
	Split Template

	What We’ve Just Learned

	Chapter 3: App Anatomy and Page Navigation
	Local and Web Contexts within the App Host
	Referencing Content from App Data: ms-appdata

	Sequential Async Operations: Chaining Promises
	Error Handling Within Promises: then vs. done
	Debug Output, Error Reports, and the Event Viewer

	App Activation
	Branding Your App 101: The Splash Screen and Other Visuals
	Activation Event Sequence
	Activation Code Paths
	WinJS.Application Events
	Extended Splash Screens

	App Lifecycle Transition Events and Session State
	Suspend, Resume, and Terminate
	Basic Session State in Here My Am!

	Data from Services and WinJS.xhr
	Handling Network Connectivity (in Brief)
	Tips and Tricks for WinJS.xhr

	Page Controls and Navigation
	WinJS Tools for Pages and Page Navigation
	The Navigation App Template, PageControl Structure, and PageControlNavigator
	The Navigation Process and Navigation Styles
	Optimizing Page Switching: Show-and-Hide

	WinRT Events and removeEventListener
	Completing the Promises Story
	What We’ve Just Learned

	Chapter 4: Controls, Control Styling, and Data Binding
	The Control Model for HTML, CSS, and JavaScript
	HTML Controls
	WinJS stylesheets: ui-light.css, ui-dark.css, and win-* styles
	Extensions to HTML Elements

	WinJS Controls
	WinJS Control Instantiation
	Strict Processing and processAll Functions
	Example: WinJS.UI.Rating Control
	Example: WinJS.UI.Tooltip Control

	Working with Controls in Blend
	Control Styling
	Styling Gallery: HTML Controls
	Styling Gallery: WinJS Controls
	Some Tips and Tricks

	Custom Controls
	Custom Control Examples
	Custom Controls in Blend

	Data Binding
	Data Binding in WinJS
	Additional Binding Features

	What We’ve Just Learned

	Chapter 5: Collections and Collection Controls
	Collection Control Basics
	Quickstart #1: The FlipView Control Sample
	Quickstart #2a: The HTML ListView Essentials Sample
	Quickstart #2b: The ListView Grouping Sample
	ListView in the Grid App Project Template

	The Semantic Zoom Control
	FlipView Features and Styling
	Data Sources
	A FlipView Using the Pictures Library
	Custom Data Sources

	How Templates Really Work
	Referring to Templates
	Template Elements and Rendering
	Template Functions (Part 1): The Basics

	ListView Features and Styling
	When Is ListView the Wrong Choice?
	Options, Selections, and Item Methods
	Styling
	Backdrops
	Layouts and Cell Spanning

	Optimizing ListView Performance
	Random Access
	Incremental Loading
	Template Functions (Part 2): Promises, Promises!

	What We’ve Just Learned

	Chapter 6: Layout
	Principles of Windows Store App Layout
	Quickstart: Pannable Sections and Snap Points
	Laying Out the Hub
	Laying Out the Sections
	Snap Points

	The Many Faces of Your Display
	View States
	Screen Size, Pixel Density, and Scaling

	Adaptive and Fixed Layouts for Display Size
	Fixed Layouts and the ViewBox Control
	Adaptive Layouts

	Using the CSS Grid
	Overflowing a Grid Cell
	Centering Content Vertically
	Scaling Font Size

	Item Layout
	CSS 2D and 3D Transforms
	Flexbox
	Nested and Inline Grids
	Fonts and Text Overflow
	Multicolumn Elements and Regions

	What We’ve Just Learned

	Chapter 7: Commanding UI
	Where to Place Commands
	The App Bar
	App Bar Basics and Standard Commands
	App Bar Styling
	Command Menus
	Custom App Bars and Navigation Bars

	Flyouts and Menus
	WinJS.UI.Flyout Properties, Methods, and Events
	Flyout Examples
	Menus and Menu Commands

	Message Dialogs
	Improving Error Handling in Here My Am!
	What We’ve Just Learned

	Chapter 8: State, Settings, Files, and Documents
	The Story of State
	Settings and State
	App Data Locations
	AppData APIs (WinRT and WinJS)
	Using App Data APIs for State Management

	Settings Pane and UI
	Design Guidelines for Settings
	Populating Commands
	Implementing Commands: Links and Settings Flyouts

	User Data: Libraries, File Pickers, and File Queries
	Using the File Picker
	Media Libraries
	Documents and Removable Storage
	Rich Enumeration with File Queries

	Here My Am! Update
	What We’ve Just Learned

	Chapter 9: Input and Sensors
	Touch, Mouse, and Stylus Input
	The Touch Language, Its Translations, and Mouse/Keyboard Equivalents
	What Input Capabilities Are Present?
	Unified Pointer Events
	Pointer Capture

	Gesture Events
	Multipoint Gestures
	The Input Instantiable Gesture Sample

	The Gesture Recognizer

	Keyboard Input and the Soft Keyboard
	Soft Keyboard Appearance and Configuration
	Adjusting Layout for the Soft Keyboard
	Standard Keystrokes

	Inking
	Geolocation
	Sensors
	What We’ve Just Learned

	Chapter 10: Media
	Creating Media Elements
	Graphics Elements: Img, Svg, and Canvas (and a Little CSS)
	Additional Characteristics of Graphics Elements
	Some Tips and Tricks

	Video Playback and Deferred Loading
	Disabling Screen Savers and the Lock Screen During Playback
	Video Element Extension APIs
	Applying a Video Effect
	Browsing Media Servers

	Audio Playback and Mixing
	Audio Element Extension APIs
	Playback Manager and Background Audio
	The Media Control UI
	Playing Sequential Audio

	Playlists
	Loading and Manipulating Media
	Media File Metadata
	Image Manipulation and Encoding
	Manipulating Audio and Video

	Media Capture
	Flexible Capture with the MediaCapture Object
	Selecting a Media Capture Device

	Streaming Media and PlayTo
	Streaming from a Server and Digital Rights Management (DRM)
	Streaming from App to Network
	PlayTo

	What We Have Learned

	Chapter 11: Purposeful Animations
	Systemwide Enabling and Disabling of Animations
	The WinJS Animations Library
	Animations in Action

	CSS Animations and Transitions
	The Independent Animations Sample

	Rolling Your Own: Tips and Tricks
	What We’ve Just Learned

	Chapter 12: Contracts
	Share
	Source Apps
	Target Apps
	The Clipboard

	Search
	Search in the App Manifest and the Search Item Template
	Basic Search and Search Activation
	Providing Query Suggestions
	Providing Result Suggestions
	Type to Search

	Launching Apps: File Type and URI Scheme Associations
	File Activation
	Protocol Activation

	File Picker Providers
	Manifest Declarations
	Activation of a File Picker Provider

	Cached File Updater
	Updating a Local File: UI
	Updating a Remote File: UI
	Update Events

	Contacts
	Using the Contact Picker
	Contact Picker Providers

	What We’ve Just Learned

	Chapter 13: Tiles, Notifications, the Lock Screen, and Background Tasks
	Alive with Activity: A Visual Tour
	The Four Sources of Updates and Notifications
	Tiles, Secondary Tiles, and Badges
	Secondary Tiles
	Basic Tile Updates
	Cycling, Scheduled, and Expiring Updates
	Badge Updates

	Periodic Updates
	Web Services for Updates
	Using the Localhost
	Windows Azure

	Toast Notifications
	Creating Basic Toasts
	Butter and Jam: Options for Your Toast
	Tea Time: Scheduled Toasts
	Toast Events and Activation

	Push Notifications and the Windows Push Notification Service
	Requesting and Caching a Channel URI (App)
	Managing Channel URIs (Service)
	Sending Updates and Notifications (Service)
	Raw Notifications (Service)
	Receiving Notifications (App)
	Debugging Tips
	Windows Azure Toolkit and Windows Azure Mobile Services

	Background Tasks and Lock Screen Apps
	Background Tasks in the Manifest
	Building and Registering Background Task
	Conditions
	Tasks for Maintenance Triggers
	Tasks for System Triggers (Non-Lock Screen)
	Lock Screen–Dependent Tasks and Triggers
	Debugging Background Tasks

	What We’ve Just Learned (Whew!)

	Chapter 14: Networking
	Network Information and Connectivity
	Network Types in the Manifest
	Network Information (the Network Object Roster)
	The ConnectionProfile Object
	Connectivity Events
	Cost Awareness
	Running Offline

	XmlHttpRequest
	Background Transfer
	Basic Downloads
	Basic Uploads
	Providing Headers and Credentials
	Setting Cost Policy
	Grouping Transfers
	Suspend, Resume, and Restart with Background Transfers

	Authentication, Credentials, and the User Profile
	The Credential Picker UI
	The Credential Locker
	The Web Authentication Broker
	Single Sign On
	The User Profile (and the Lock Screen Image)
	Encryption, Decryption, Data Protection, and Certificates

	Syndication
	Reading RSS Feeds
	Using AtomPub

	Sockets
	Datagram Sockets
	Stream Sockets
	Web Sockets: MessageWebSocket and StreamWebSocket
	The ControlChannelTrigger Background Task

	Loose Ends (or Some Samples To Go)
	What We’ve Just Learned

	Chapter 15: Devices and Printing
	Using Devices
	The XInput API and Game Controllers
	Enumerating Devices in a Class
	Windows Portable Devices and Bluetooth Capabilities

	Near Field Communication and the Proximity API
	Finding Your Peers (No Pressure!)
	Sending One-Shot Payloads: Tap to Share

	Printing Made Easy
	The Printing User Experience
	Print Document Sources
	Providing Print Content and Configuring Options

	What We’ve Just Learned

	Chapter 16: WinRT Components: An Introduction
	Choosing a Mixed Language Approach (and Web Workers)
	Quickstarts: Creating and Debugging Components
	Quickstart #1: Creating a Component in C#
	Quickstart #2: Creating a Component in C++
	Comparing the Results

	Key Concepts for WinRT Components
	Implementing Asynchronous Methods
	Async Basics in WinRT Components
	Arrays, Vectors, and Other Alternatives

	Projections into JavaScript

	Scenarios for WinRT Components
	Higher Performance
	Access to Additional APIs
	Obfuscating Code and Protecting Intellectual Property
	Library Components
	Concurrency

	What We’ve Just Learned

	Chapter 17: Apps for Everyone: Accessibility, World-Readiness, and the Windows Store
	Your App, Your Business
	Side Loading
	Planning: Can the App Be a Windows Store App?
	Planning for Monetization (or Not)

	The Windows Store APIs
	The CurrentAppSimulator Object
	Trial Versions and App Purchase
	Listing and Purchasing In-App Products
	Receipts

	Accessibility
	Screen Readers and Aria Attributes
	Handling Contrast Variations

	World Readiness and Localization
	Globalization
	Preparing for Localization
	Creating Localized Resources: The Multilingual App Toolkit
	Localization Wrap-Up

	Releasing Your App to the World
	Promotional Screenshots, Store Graphics, and Text Copy
	Testing and Pre-Certification Tools
	Onboarding and Working through Rejection
	App Updates
	Getting Known: Marketing, Discoverability, and the Web

	What We’ve Just Learned

	About the Author
	Survey: What do you think of this eBook?



