
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780133891386
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780133891386
https://plusone.google.com/share?url=http://www.informit.com/title/9780133891386
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780133891386
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780133891386/Free-Sample-Chapter

JAVA™ SE 8
FOR PROGRAMMERS

THIRD EDITION
DEITEL® DEVELOPER SERIES

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include elec-
tronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

On file

© 2014 Pearson Education, Inc.

Portions of the cover are modifications based on work created and shared by Google (http://code.google.com/
policies.html) and used according to terms described in the Creative Commons 3.0 Attribution License (http://
creativecommons.org/licenses/by/3.0/).

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission
to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department,
One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13389138-6
ISBN-10: 0-13-389138-0

Text printed in the United States at Edwards Brothers Malloy in Ann Arbor, Michigan.
First printing, March 2014

http://code.google.com/policies.html
http://code.google.com/policies.html
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

JAVA™ SE 8
FOR PROGRAMMERS

THIRD EDITION
DEITEL® DEVELOPER SERIES

Paul Deitel • Harvey Deitel
Deitel & Associates, Inc.

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Deitel® Ser ies Page
Deitel® Developer Series
Android for Programmers: An App-Driven

Approach, 2/E, Volume 1
C for Programmers with an Introduction to C11
C++11 for Programmers
C# 2012 for Programmers
Dive Into® iOS 6 for Programmers: An App-Driven

Approach
Java™ for Programmers, 3/E
JavaScript for Programmers

How To Program Series
Android How to Program, 2/E
C++ How to Program, 9/E
C How to Program, 7/E
Java™ How to Program, 10/E
Java™ How to Program, Late Objects Version, 10/E
Internet & World Wide Web How to Program, 5/E
Visual C++® 2008 How to Program, 2/E
Visual Basic® 2012 How to Program, 6/E
Visual C#® 2012 How to Program, 5/E

Simply Series
Simply C++: An App-Driven Tutorial Approach
Simply Java™ Programming: An App-Driven

Tutorial Approach

(continued from previous column)
Simply C#: An App-Driven Tutorial Approach
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E

CourseSmart Web Books
www.deitel.com/books/CourseSmart/
C++ How to Program, 8/E and 9/E
Simply C++: An App-Driven Tutorial Approach
Java™ How to Program, 9/E and 10/E
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E
Visual Basic® 2012 How to Program, 6/E
Visual Basic® 2010 How to Program, 5/E
Visual C#® 2012 How to Program, 5/E
Visual C#® 2010 How to Program, 4/E

LiveLessons Video Learning Products
www.deitel.com/books/LiveLessons/
Android App Development Fundamentals
C++ Fundamentals
Java™ Fundamentals
C# 2012 Fundamentals
C# 2010 Fundamentals
iOS® 6 App Development Fundamentals
JavaScript Fundamentals
Visual Basic® Fundamentals

To receive updates on Deitel publications, Resource Centers, training courses, partner offers and more,
please join the Deitel communities on

• Facebook®—facebook.com/DeitelFan
• Twitter®—@deitel
• Google+™—google.com/+DeitelFan
• YouTube™—youtube.com/DeitelTV
• LinkedIn®—linkedin.com/company/deitel-&-associates

and register for the free Deitel® Buzz Online e-mail newsletter at:
 www.deitel.com/newsletter/subscribe.html
To communicate with the authors, send e-mail to:
 deitel@deitel.com
For information on Dive-Into® Series on-site seminars offered by Deitel & Associates, Inc. worldwide,
write to us at deitel@deitel.com or visit:
 www.deitel.com/training/
For continuing updates on Pearson/Deitel publications visit:

www.deitel.com
www.pearsonhighered.com/deitel/

Visit the Deitel Resource Centers that will help you master programming languages, software develop-
ment, Android and iOS app development, and Internet- and web-related topics:
 www.deitel.com/ResourceCenters.html

http://www.deitel.com/books/CourseSmart/
http://www.deitel.com/books/LiveLessons/
http://www.deitel.com/newsletter/subscribe.html
http://www.deitel.com/training/
http://www.deitel.com
http://www.pearsonhighered.com/deitel/
http://www.deitel.com/ResourceCenters.html

To Brian Goetz,
Oracle’s Java Language Architect and
Specification Lead for Java SE 8’s Project Lambda:

Your mentorship helped us make a better book.
Thank you for insisting that we get it right.

Paul and Harvey Deitel

Trademarks
DEITEL, the double-thumbs-up bug and DIVE-INTO are registered trademarks of Deitel & Associates, Inc.

Java is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Google, Android, Google Play, Google Maps, Google Wallet, Nexus, YouTube, AdSense and AdMob
are trademarks of Google, Inc.

Microsoft and/or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All
such documents and related graphics are provided “as is” without warranty of any kind. Microsoft and/
or its respective suppliers hereby disclaim all warranties and conditions with regard to this information,
including all warranties and conditions of merchantability, whether express, implied or statutory, fitness
for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective sup-
pliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting
from loss of use, data or profits, whether in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typograph-
ical errors. Changes are periodically added to the information herein. Microsoft and/or its respective sup-
pliers may make improvements and/or changes in the product(s) and/or the program(s) described herein
at any time. Partial screen shots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and
other countries. Screen shots and icons reprinted with permission from the Microsoft Corporation. This
book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

Foreword xxiii

Preface xxv

Before You Begin xxxvii

1 Introduction to Java and Test-Driving a
Java Application 1

1.1 Introduction 2
1.2 Object Technology Concepts 4

1.2.1 The Automobile as an Object 4
1.2.2 Methods and Classes 4
1.2.3 Instantiation 4
1.2.4 Reuse 5
1.2.5 Messages and Method Calls 5
1.2.6 Attributes and Instance Variables 5
1.2.7 Encapsulation and Information Hiding 5
1.2.8 Inheritance 5
1.2.9 Interfaces 6
1.2.10 Object-Oriented Analysis and Design (OOAD) 6
1.2.11 The UML (Unified Modeling Language) 6

1.3 Open Source Software 7
1.4 Java 8
1.5 A Typical Java Development Environment 9
1.6 Test-Driving a Java Application 12
1.7 Software Technologies 16
1.8 Keeping Up-to-Date with Information Technologies 18

2 Introduction to Java Applications;
Input/Output and Operators 20

2.1 Introduction 21
2.2 Your First Program in Java: Printing a Line of Text 21
2.3 Modifying Your First Java Program 26
2.4 Displaying Text with printf 28

Contents

viii Contents

2.5 Another Application: Adding Integers 29
2.6 Arithmetic 33
2.7 Decision Making: Equality and Relational Operators 34
2.8 Wrap-Up 37

3 Introduction to Classes, Objects,
Methods and Strings 38

3.1 Introduction 39
3.2 Instance Variables, set Methods and get Methods 39

3.2.1 Account Class with an Instance Variable, a set Method and
a get Method 40

3.2.2 AccountTest Class That Creates and Uses an Object of
Class Account 43

3.2.3 Compiling and Executing an App with Multiple Classes 46
3.2.4 Account UML Class Diagram with an Instance Variable and

set and get Methods 46
3.2.5 Additional Notes on Class AccountTest 47
3.2.6 Software Engineering with private Instance Variables and

public set and get Methods 48
3.3 Primitive Types vs. Reference Types 49
3.4 Account Class: Initializing Objects with Constructors 50

3.4.1 Declaring an Account Constructor for Custom Object Initialization 50
3.4.2 Class AccountTest: Initializing Account Objects When

They’re Created 51
3.5 Account Class with a Balance; Floating-Point Numbers 53

3.5.1 Account Class with a balance Instance Variable of Type double 54
3.5.2 AccountTest Class to Use Class Account 55

3.6 Wrap-Up 58

4 Control Statements: Part 1; Assignment, ++
and -- Operators 59

4.1 Introduction 60
4.2 Control Structures 60
4.3 if Single-Selection Statement 62
4.4 if…else Double-Selection Statement 63
4.5 Student Class: Nested if…else Statements 67
4.6 while Repetition Statement 69
4.7 Counter-Controlled Repetition 71
4.8 Sentinel-Controlled Repetition 74
4.9 Nested Control Statements 79
4.10 Compound Assignment Operators 81
4.11 Increment and Decrement Operators 81
4.12 Primitive Types 84
4.13 Wrap-Up 85

Contents ix

5 Control Statements: Part 2; Logical Operators 86
5.1 Introduction 87
5.2 Essentials of Counter-Controlled Repetition 87
5.3 for Repetition Statement 88
5.4 Examples Using the for Statement 92
5.5 do…while Repetition Statement 97
5.6 switch Multiple-Selection Statement 98
5.7 Class AutoPolicy Case Study: Strings in switch Statements 104
5.8 break and continue Statements 108
5.9 Logical Operators 110
5.10 Wrap-Up 115

6 Methods: A Deeper Look 117
6.1 Introduction 118
6.2 Program Modules in Java 118
6.3 static Methods, static Fields and Class Math 119
6.4 Declaring Methods with Multiple Parameters 121
6.5 Notes on Declaring and Using Methods 124
6.6 Argument Promotion and Casting 125
6.7 Java API Packages 127
6.8 Case Study: Secure Random-Number Generation 128
6.9 Case Study: A Game of Chance; Introducing enum Types 133
6.10 Scope of Declarations 138
6.11 Method Overloading 140
6.12 Wrap-Up 142

7 Arrays and ArrayLists 144
7.1 Introduction 145
7.2 Arrays 146
7.3 Declaring and Creating Arrays 147
7.4 Examples Using Arrays 148

7.4.1 Creating and Initializing an Array 148
7.4.2 Using an Array Initializer 149
7.4.3 Calculating the Values to Store in an Array 150
7.4.4 Summing the Elements of an Array 152
7.4.5 Using Bar Charts to Display Array Data Graphically 152
7.4.6 Using the Elements of an Array as Counters 154
7.4.7 Using Arrays to Analyze Survey Results 155

7.5 Exception Handling: Processing the Incorrect Response 157
7.5.1 The try Statement 157
7.5.2 Executing the catch Block 157
7.5.3 toString Method of the Exception Parameter 158

7.6 Case Study: Card Shuffling and Dealing Simulation 158
7.7 Enhanced for Statement 163

x Contents

7.8 Passing Arrays to Methods 164
7.9 Pass-By-Value vs. Pass-By-Reference 166
7.10 Case Study: Class GradeBook Using an Array to Store Grades 167
7.11 Multidimensional Arrays 173
7.12 Case Study: Class GradeBook Using a Two-Dimensional Array 176
7.13 Variable-Length Argument Lists 182
7.14 Using Command-Line Arguments 184
7.15 Class Arrays 186
7.16 Introduction to Collections and Class ArrayList 188
7.17 Wrap-Up 192

8 Classes and Objects: A Deeper Look 193
8.1 Introduction 194
8.2 Time Class Case Study 194
8.3 Controlling Access to Members 199
8.4 Referring to the Current Object’s Members with the this Reference 200
8.5 Time Class Case Study: Overloaded Constructors 202
8.6 Default and No-Argument Constructors 208
8.7 Notes on Set and Get Methods 208
8.8 Composition 210
8.9 enum Types 213
8.10 Garbage Collection 215
8.11 static Class Members 216
8.12 static Import 220
8.13 final Instance Variables 221
8.14 Time Class Case Study: Creating Packages 222
8.15 Package Access 228
8.16 Using BigDecimal for Precise Monetary Calculations 230
8.17 Wrap-Up 232

9 Object-Oriented Programming: Inheritance 234
9.1 Introduction 235
9.2 Superclasses and Subclasses 236
9.3 protected Members 238
9.4 Relationship Between Superclasses and Subclasses 239

9.4.1 Creating and Using a CommissionEmployee Class 239
9.4.2 Creating and Using a BasePlusCommissionEmployee Class 245
9.4.3 Creating a CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy 250
9.4.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance

Hierarchy Using protected Instance Variables 253
9.4.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance

Hierarchy Using private Instance Variables 256
9.5 Constructors in Subclasses 261

Contents xi

9.6 Class Object 261
9.7 Wrap-Up 262

10 Object-Oriented Programming: Polymorphism
and Interfaces 264

10.1 Introduction 265
10.2 Polymorphism Examples 267
10.3 Demonstrating Polymorphic Behavior 268
10.4 Abstract Classes and Methods 270
10.5 Case Study: Payroll System Using Polymorphism 273

10.5.1 Abstract Superclass Employee 274
10.5.2 Concrete Subclass SalariedEmployee 276
10.5.3 Concrete Subclass HourlyEmployee 278
10.5.4 Concrete Subclass CommissionEmployee 280
10.5.5 Indirect Concrete Subclass BasePlusCommissionEmployee 282
10.5.6 Polymorphic Processing, Operator instanceof and Downcasting 283

10.6 Allowed Assignments Between Superclass and Subclass Variables 288
10.7 final Methods and Classes 288
10.8 A Deeper Explanation of Issues with Calling Methods from Constructors 289
10.9 Creating and Using Interfaces 290

10.9.1 Developing a Payable Hierarchy 291
10.9.2 Interface Payable 292
10.9.3 Class Invoice 293
10.9.4 Modifying Class Employee to Implement Interface Payable 295
10.9.5 Modifying Class SalariedEmployee for Use in the Payable

Hierarchy 297
10.9.6 Using Interface Payable to Process Invoices and Employees

Polymorphically 299
10.9.7 Some Common Interfaces of the Java API 300

10.10 Java SE 8 Interface Enhancements 301
10.10.1 default Interface Methods 301
10.10.2 static Interface Methods 302
10.10.3 Functional Interfaces 302

10.11 Wrap-Up 302

11 Exception Handling: A Deeper Look 304
11.1 Introduction 305
11.2 Example: Divide by Zero without Exception Handling 306
11.3 Exception Handling: ArithmeticExceptions and

InputMismatchExceptions 308
11.4 When to Use Exception Handling 314
11.5 Java Exception Hierarchy 314
11.6 finally Block 317
11.7 Stack Unwinding and Obtaining Information from an Exception Object 322

xii Contents

11.8 Chained Exceptions 324
11.9 Declaring New Exception Types 327
11.10 Preconditions and Postconditions 327
11.11 Assertions 328
11.12 try-with-Resources: Automatic Resource Deallocation 330
11.13 Wrap-Up 330

12 Swing GUI Components: Part 1 332
12.1 Introduction 333
12.2 Java’s Nimbus Look-and-Feel 334
12.3 Simple GUI-Based Input/Output with JOptionPane 335
12.4 Overview of Swing Components 338
12.5 Displaying Text and Images in a Window 340
12.6 Text Fields and an Introduction to Event Handling with Nested Classes 344
12.7 Common GUI Event Types and Listener Interfaces 350
12.8 How Event Handling Works 352
12.9 JButton 354
12.10 Buttons That Maintain State 357

12.10.1 JCheckBox 358
12.10.2 JRadioButton 360

12.11 JComboBox; Using an Anonymous Inner Class for Event Handling 363
12.12 JList 367
12.13 Multiple-Selection Lists 370
12.14 Mouse Event Handling 372
12.15 Adapter Classes 377
12.16 JPanel Subclass for Drawing with the Mouse 381
12.17 Key Event Handling 384
12.18 Introduction to Layout Managers 387

12.18.1 FlowLayout 389
12.18.2 BorderLayout 391
12.18.3 GridLayout 395

12.19 Using Panels to Manage More Complex Layouts 397
12.20 JTextArea 398
12.21 Wrap-Up 401

13 Graphics and Java 2D 402
13.1 Introduction 403
13.2 Graphics Contexts and Graphics Objects 405
13.3 Color Control 406
13.4 Manipulating Fonts 413
13.5 Drawing Lines, Rectangles and Ovals 418
13.6 Drawing Arcs 422
13.7 Drawing Polygons and Polylines 425
13.8 Java 2D API 428
13.9 Wrap-Up 435

Contents xiii

14 Strings, Characters and Regular Expressions 436
14.1 Introduction 437
14.2 Fundamentals of Characters and Strings 437
14.3 Class String 438

14.3.1 String Constructors 438
14.3.2 String Methods length, charAt and getChars 439
14.3.3 Comparing Strings 440
14.3.4 Locating Characters and Substrings in Strings 445
14.3.5 Extracting Substrings from Strings 447
14.3.6 Concatenating Strings 448
14.3.7 Miscellaneous String Methods 448
14.3.8 String Method valueOf 450

14.4 Class StringBuilder 451
14.4.1 StringBuilder Constructors 452
14.4.2 StringBuilder Methods length, capacity, setLength and

ensureCapacity 452
14.4.3 StringBuilder Methods charAt, setCharAt, getChars

and reverse 454
14.4.4 StringBuilder append Methods 455
14.4.5 StringBuilder Insertion and Deletion Methods 457

14.5 Class Character 458
14.6 Tokenizing Strings 463
14.7 Regular Expressions, Class Pattern and Class Matcher 464
14.8 Wrap-Up 473

15 Files, Streams and Object Serialization 474
15.1 Introduction 475
15.2 Files and Streams 475
15.3 Using NIO Classes and Interfaces to Get File and Directory Information 477
15.4 Sequential-Access Text Files 481

15.4.1 Creating a Sequential-Access Text File 481
15.4.2 Reading Data from a Sequential-Access Text File 485
15.4.3 Case Study: A Credit-Inquiry Program 487
15.4.4 Updating Sequential-Access Files 491

15.5 Object Serialization 492
15.5.1 Creating a Sequential-Access File Using Object Serialization 493
15.5.2 Reading and Deserializing Data from a Sequential-Access File 498

15.6 Opening Files with JFileChooser 500
15.7 (Optional) Additional java.io Classes 503

15.7.1 Interfaces and Classes for Byte-Based Input and Output 503
15.7.2 Interfaces and Classes for Character-Based Input and Output 505

15.8 Wrap-Up 506

xiv Contents

16 Generic Collections 507
16.1 Introduction 508
16.2 Collections Overview 508
16.3 Type-Wrapper Classes 510
16.4 Autoboxing and Auto-Unboxing 510
16.5 Interface Collection and Class Collections 510
16.6 Lists 511

16.6.1 ArrayList and Iterator 512
16.6.2 LinkedList 514

16.7 Collections Methods 519
16.7.1 Method sort 520
16.7.2 Method shuffle 523
16.7.3 Methods reverse, fill, copy, max and min 525
16.7.4 Method binarySearch 527
16.7.5 Methods addAll, frequency and disjoint 529

16.8 Stack Class of Package java.util 531
16.9 Class PriorityQueue and Interface Queue 533
16.10 Sets 534
16.11 Maps 537
16.12 Properties Class 541
16.13 Synchronized Collections 544
16.14 Unmodifiable Collections 544
16.15 Abstract Implementations 545
16.16 Wrap-Up 545

17 Java SE 8 Lambdas and Streams 547
17.1 Introduction 548
17.2 Functional Programming Technologies Overview 549

17.2.1 Functional Interfaces 550
17.2.2 Lambda Expressions 551
17.2.3 Streams 552

17.3 IntStream Operations 554
17.3.1 Creating an IntStream and Displaying Its Values with the

forEach Terminal Operation 556
17.3.2 Terminal Operations count, min, max, sum and average 557
17.3.3 Terminal Operation reduce 557
17.3.4 Intermediate Operations: Filtering and Sorting IntStream Values 559
17.3.5 Intermediate Operation: Mapping 560
17.3.6 Creating Streams of ints with IntStream Methods range and

rangeClosed 561
17.4 Stream<Integer> Manipulations 561

17.4.1 Creating a Stream<Integer> 562
17.4.2 Sorting a Stream and Collecting the Results 563
17.4.3 Filtering a Stream and Storing the Results for Later Use 563

Contents xv

17.4.4 Filtering and Sorting a Stream and Collecting the Results 563
17.4.5 Sorting Previously Collected Results 563

17.5 Stream<String> Manipulations 564
17.5.1 Mapping Strings to Uppercase Using a Method Reference 565
17.5.2 Filtering Strings Then Sorting Them in Case-Insensitive

Ascending Order 566
17.5.3 Filtering Strings Then Sorting Them in Case-Insensitive

Descending Order 566
17.6 Stream<Employee> Manipulations 566

17.6.1 Creating and Displaying a List<Employee> 568
17.6.2 Filtering Employees with Salaries in a Specified Range 569
17.6.3 Sorting Employees By Multiple Fields 570
17.6.4 Mapping Employees to Unique Last Name Strings 572
17.6.5 Grouping Employees By Department 573
17.6.6 Counting the Number of Employees in Each Department 574
17.6.7 Summing and Averaging Employee Salaries 574

17.7 Creating a Stream<String> from a File 576
17.8 Generating Streams of Random Values 579
17.9 Lambda Event Handlers 581
17.10 Additional Notes on Java SE 8 Interfaces 581
17.11 Java SE 8 and Functional Programming Resources 582
17.12 Wrap-Up 582

18 Generic Classes and Methods 584
18.1 Introduction 585
18.2 Motivation for Generic Methods 585
18.3 Generic Methods: Implementation and Compile-Time Translation 587
18.4 Additional Compile-Time Translation Issues: Methods That Use a

Type Parameter as the Return Type 590
18.5 Overloading Generic Methods 593
18.6 Generic Classes 594
18.7 Raw Types 601
18.8 Wildcards in Methods That Accept Type Parameters 605
18.9 Wrap-Up 609

19 Swing GUI Components: Part 2 611
19.1 Introduction 612
19.2 JSlider 612
19.3 Understanding Windows in Java 616
19.4 Using Menus with Frames 617
19.5 JPopupMenu 625
19.6 Pluggable Look-and-Feel 628
19.7 JDesktopPane and JInternalFrame 633
19.8 JTabbedPane 636

xvi Contents

19.9 BoxLayout Layout Manager 638
19.10 GridBagLayout Layout Manager 642
19.11 Wrap-Up 652

20 Concurrency 653
20.1 Introduction 654
20.2 Thread States and Life Cycle 656

20.2.1 New and Runnable States 657
20.2.2 Waiting State 657
20.2.3 Timed Waiting State 657
20.2.4 Blocked State 657
20.2.5 Terminated State 657
20.2.6 Operating-System View of the Runnable State 658
20.2.7 Thread Priorities and Thread Scheduling 658
20.2.8 Indefinite Postponement and Deadlock 659

20.3 Creating and Executing Threads with the Executor Framework 659
20.4 Thread Synchronization 663

20.4.1 Immutable Data 664
20.4.2 Monitors 664
20.4.3 Unsynchronized Mutable Data Sharing 665
20.4.4 Synchronized Mutable Data Sharing—Making

Operations Atomic 670
20.5 Producer/Consumer Relationship without Synchronization 672
20.6 Producer/Consumer Relationship: ArrayBlockingQueue 680
20.7 (Advanced) Producer/Consumer Relationship with synchronized,

wait, notify and notifyAll 683
20.8 (Advanced) Producer/Consumer Relationship: Bounded Buffers 690
20.9 (Advanced) Producer/Consumer Relationship: The Lock and

Condition Interfaces 698
20.10 Concurrent Collections 705
20.11 Multithreading with GUI: SwingWorker 707

20.11.1 Performing Computations in a Worker Thread: Fibonacci Numbers 708
20.11.2 Processing Intermediate Results: Sieve of Eratosthenes 714

20.12 sort/parallelSort Timings with the Java SE 8 Date/Time API 721
20.13 Java SE 8: Sequential vs. Parallel Streams 723
20.14 (Advanced) Interfaces Callable and Future 726
20.15 (Advanced) Fork/Join Framework 730
20.16 Wrap-Up 730

21 Accessing Databases with JDBC 732
21.1 Introduction 733
21.2 Relational Databases 734
21.3 A books Database 735
21.4 SQL 739

Contents xvii

21.4.1 Basic SELECT Query 739
21.4.2 WHERE Clause 740
21.4.3 ORDER BY Clause 742
21.4.4 Merging Data from Multiple Tables: INNER JOIN 743
21.4.5 INSERT Statement 745
21.4.6 UPDATE Statement 746
21.4.7 DELETE Statement 747

21.5 Setting up a Java DB Database 747
21.5.1 Creating the Chapter’s Databases on Windows 748
21.5.2 Creating the Chapter’s Databases on Mac OS X 749
21.5.3 Creating the Chapter’s Databases on Linux 750

21.6 Manipulating Databases with JDBC 750
21.6.1 Connecting to and Querying a Database 750
21.6.2 Querying the books Database 754

21.7 RowSet Interface 767
21.8 PreparedStatements 769
21.9 Stored Procedures 785
21.10 Transaction Processing 785
21.11 Wrap-Up 786

22 JavaFX GUI 787
22.1 Introduction 788
22.2 JavaFX Scene Builder and the NetBeans IDE 789
22.3 JavaFX App Window Structure 790
22.4 Welcome App—Displaying Text and an Image 791

22.4.1 Creating the App’s Project 791
22.4.2 NetBeans Projects Window—Viewing the Project Contents 793
22.4.3 Adding an Image to the Project 794
22.4.4 Opening JavaFX Scene Builder from NetBeans 794
22.4.5 Changing to a VBox Layout Container 795
22.4.6 Configuring the VBox Layout Container 796
22.4.7 Adding and Configuring a Label 796
22.4.8 Adding and Configuring an ImageView 796
22.4.9 Running the Welcome App 797

22.5 Tip Calculator App—Introduction to Event Handling 798
22.5.1 Test-Driving the Tip Calculator App 799
22.5.2 Technologies Overview 799
22.5.3 Building the App’s GUI 802
22.5.4 TipCalculator Class 806
22.5.5 TipCalculatorController Class 808

22.6 Wrap-Up 813

23 ATM Case Study, Part 1: Object-Oriented
Design with the UML 815

23.1 Case Study Introduction 816

xviii Contents

23.2 Examining the Requirements Document 816
23.3 Identifying the Classes in a Requirements Document 824
23.4 Identifying Class Attributes 830
23.5 Identifying Objects’ States and Activities 835
23.6 Identifying Class Operations 839
23.7 Indicating Collaboration Among Objects 845
23.8 Wrap-Up 852

24 ATM Case Study Part 2: Implementing an
Object-Oriented Design 856

24.1 Introduction 857
24.2 Starting to Program the Classes of the ATM System 857
24.3 Incorporating Inheritance and Polymorphism into the ATM System 862
24.4 ATM Case Study Implementation 868

24.4.1 Class ATM 869
24.4.2 Class Screen 874
24.4.3 Class Keypad 875
24.4.4 Class CashDispenser 876
24.4.5 Class DepositSlot 877
24.4.6 Class Account 878
24.4.7 Class BankDatabase 880
24.4.8 Class Transaction 883
24.4.9 Class BalanceInquiry 884
24.4.10 Class Withdrawal 885
24.4.11 Class Deposit 889
24.4.12 Class ATMCaseStudy 892

24.5 Wrap-Up 893

A Operator Precedence Chart 895

B ASCII Character Set 897

C Keywords and Reserved Words 898

D Primitive Types 899

E Using the Debugger 900
E.1 Introduction 901
E.2 Breakpoints and the run, stop, cont and print Commands 901
E.3 The print and set Commands 905

Contents xix

E.4 Controlling Execution Using the step, step up and next Commands 907
E.5 The watch Command 909
E.6 The clear Command 912
E.7 Wrap-Up 914

F Using the Java API Documentation 915
F.1 Introduction 915
F.2 Navigating the Java API 916

G Creating Documentation with javadoc 924
G.1 Introduction 924
G.2 Documentation Comments 924
G.3 Documenting Java Source Code 925
G.4 javadoc 932
G.5 Files Produced by javadoc 933

H Unicode® 937
H.1 Introduction 937
H.2 Unicode Transformation Formats 938
H.3 Characters and Glyphs 939
H.4 Advantages/Disadvantages of Unicode 940
H.5 Using Unicode 940
H.6 Character Ranges 942

I Formatted Output 944
I.1 Introduction 945
I.2 Streams 945
I.3 Formatting Output with printf 945
I.4 Printing Integers 946
I.5 Printing Floating-Point Numbers 947
I.6 Printing Strings and Characters 949
I.7 Printing Dates and Times 950
I.8 Other Conversion Characters 952
I.9 Printing with Field Widths and Precisions 954
I.10 Using Flags in the printf Format String 956
I.11 Printing with Argument Indices 960
I.12 Printing Literals and Escape Sequences 960
I.13 Formatting Output with Class Formatter 961
I.14 Wrap-Up 962

xx Contents

J Number Systems 963
J.1 Introduction 964
J.2 Abbreviating Binary Numbers as Octal and Hexadecimal Numbers 967
J.3 Converting Octal and Hexadecimal Numbers to Binary Numbers 968
J.4 Converting from Binary, Octal or Hexadecimal to Decimal 968
J.5 Converting from Decimal to Binary, Octal or Hexadecimal 969
J.6 Negative Binary Numbers: Two’s Complement Notation 971

K Bit Manipulation 973
K.1 Introduction 973
K.2 Bit Manipulation and the Bitwise Operators 973
K.3 BitSet Class 983

L Labeled break and continue Statements 987
L.1 Introduction 987
L.2 Labeled break Statement 987
L.3 Labeled continue Statement 988

M UML 2: Additional Diagram Types 990
M.1 Introduction 990
M.2 Additional Diagram Types 990

N Design Patterns 992
N.1 Introduction 992
N.2 Creational, Structural and Behavioral Design Patterns 993

N.2.1 Creational Design Patterns 994
N.2.2 Structural Design Patterns 996
N.2.3 Behavioral Design Patterns 997
N.2.4 Conclusion 998

N.3 Design Patterns in Packages java.awt and javax.swing 998
N.3.1 Creational Design Patterns 999
N.3.2 Structural Design Patterns 999
N.3.3 Behavioral Design Patterns 1001
N.3.4 Conclusion 1005

N.4 Concurrency Design Patterns 1005
N.5 Design Patterns Used in Packages java.io and java.net 1006

N.5.1 Creational Design Patterns 1006
N.5.2 Structural Design Patterns 1006
N.5.3 Architectural Patterns 1008
N.5.4 Conclusion 1010

N.6 Design Patterns Used in Package java.util 1010

Contents xxi

N.6.1 Creational Design Patterns 1010
N.6.2 Behavioral Design Patterns 1010

N.7 Wrap-Up 1011

Index 1013

This page intentionally left blank

I’ve been enamored with Java even prior to its 1.0 release in 1995, and have subsequently
been a Java developer, author, speaker, teacher and Oracle Java Technology Ambassador.
In this journey, it has been my privilege to call Paul Deitel a colleague, and to often lever-
age and recommend his Java books. In their many editions, these books have proven to be
great texts for college and professional courses that I and others have developed to teach
the Java programming language.

One of the qualities that makes Java SE 8 for Programmers, 3/e, a great resource is its
thorough and insightful coverage of Java concepts. Another useful quality is its treatment
of concepts and practices essential to effective software development.

I’d like to point out some of the features of this new edition about which I’m most
excited:

• An ambitious new chapter on Java lambda expressions and streams. This chapter
starts out with a primer on functional programming, and introduces Java lambda
expressions and how to use streams to perform functional programming tasks on
collections.

• Although concurrency has been addressed since the first edition of the book, it is
increasingly important because of multi-core architectures. There are timing ex-
amples—using the new Date/Time API classes introduced in Java SE 8—in the
concurrency chapter that show the performance improvements with multi-core
over single-core.

• JavaFX is Java’s GUI/graphics/multimedia technology moving forward, so it is
nice to see JavaFX introduced in the Deitel live-code pedagogic style.

Please join me in congratulating Paul and Harvey Deitel on their latest edition of a won-
derful resource for software developers!

James L. Weaver
Java Technology Ambassador

Oracle Corporation

Foreword

This page intentionally left blank

Welcome to Java and Java SE 8 for Programmers, Third Edition! This book presents lead-
ing-edge computing technologies for software developers.

We focus on software engineering best practices. At the heart of the book is the Deitel
signature “live-code approach”—rather than using code snippets, we present concepts in the
context of complete working programs that run on recent versions of Windows®, Linux®

and OS X®. Each complete code example is accompanied by live sample executions. All the
source code is available at

Keeping in Touch with the Authors
As you read the book, if you have questions, send an e-mail to us at

and we’ll respond promptly. For updates on this book, visit

subscribe to the Deitel® Buzz Online newsletter at

and join the Deitel social networking communities on

• Facebook® (http://www.deitel.com/deitelfan)

• Twitter® (@deitel)

• Google+™ (http://google.com/+DeitelFan)

• YouTube® (http://youtube.com/DeitelTV)

• LinkedIn® (http://linkedin.com/company/deitel-&-associates)

Modular Organization
Java SE 8 for Programmers, 3/e, is appropriate for programmers with a background in high-
level language programming. It features a modular organization:

Introduction
• Chapter 1, Introduction to Java and Test-Driving a Java Application

• Chapter 2, Introduction to Java Applications; Input/Output and Operators

• Chapter 3, Introduction to Classes, Objects, Methods and Strings

http://www.deitel.com/books/javafp3/

deitel@deitel.com

http://www.deitel.com/books/jfp3

http://www.deitel.com/newsletter/subscribe.html

Preface

http://www.deitel.com/deitelfan
http://google.com/+DeitelFan
http://youtube.com/DeitelTV
http://linkedin.com/company/deitel-&-associates
http://www.deitel.com/books/javafp3/
http://www.deitel.com/books/jfp3
http://www.deitel.com/newsletter/subscribe.html

xxvi Preface

Additional Programming Fundamentals
• Chapter 4, Control Statements: Part 1; Assignment, ++ and -- Operators

• Chapter 5, Control Statements: Part 2; Logical Operators

• Chapter 6, Methods: A Deeper Look

• Chapter 7, Arrays and ArrayLists

• Chapter 14, Strings, Characters and Regular Expressions

• Chapter 15, Files, Streams and Object Serialization

Object-Oriented Programming
• Chapter 8, Classes and Objects: A Deeper Look

• Chapter 9, Object-Oriented Programming: Inheritance

• Chapter 10, Object-Oriented Programming: Polymorphism and Interfaces

• Chapter 11, Exception Handling: A Deeper Look

Swing and JavaFX Graphical User Interfaces; Java 2D Graphics
• Chapter 12, Swing GUI Components: Part 1

• Chapter 13, Graphics and Java 2D

• Chapter 19, Swing GUI Components: Part 2

• Chapter 22, JavaFX GUI

Generic Collections, Lambdas and Streams
• Chapter 16, Generic Collections

• Chapter 17, Java SE 8 Lambdas and Streams

• Chapter 18, Generic Classes and Methods

Concurrency/Database
• Chapter 20, Concurrency

• Chapter 21, Accessing Databases with JDBC

Object-Oriented Design
• Chapter 23, ATM Case Study, Part 1: Object-Oriented Design with the UML

• Chapter 24, ATM Case Study Part 2: Implementing an Object-Oriented Design

New and Updated Features
Here are the updates we’ve made for Java SE 8 for Programmers, 3/e:

• Easy to use with Java SE 7 or Java SE 8. This book was published coincident
with the release of Java SE 8. To meet the needs of our diverse audiences, we de-
signed the book for professionals interested in Java SE 7, Java SE 8 or a mixture

 New and Updated Features xxvii

of both. The Java SE 8 features (Fig. 4.1) are covered in Chapter 17 and in easy-
to-include-or-omit sections book wide.

• Java SE 8 lambdas, streams, and interfaces with default and static methods.
The most significant new features in Java SE 8 are lambdas and complementary
technologies. In Chapter 17, you’ll see that functional programming with lamb-
das and streams can help you write programs faster, more concisely, more simply,
with fewer bugs and that are easier to parallelize (to get performance improve-
ments on multi-core systems) than programs written with previous techniques
(Fig. 4.2). You’ll see that functional programming complements object-oriented
programming.

Java SE 8 features

Lambda expressions

Type-inference improvements

@FunctionalInterface annotation

Parallel array sorting

Bulk data operations for Java Collections—filter, map and reduce

Library enhancements to support lambdas (e.g., java.util.stream, java.util.function)

Date & Time API (java.time)

Java concurrency API improvements

static and default methods in interfaces

Functional interfaces—interfaces that define only one abstract method and can include
static and default methods

JavaFX enhancements

Fig. 4.1 | Java SE 8 features we discuss.

Pre-Java-SE-8 topics Corresponding Java SE 8 discussions and examples

Chapter 7, Arrays and ArrayLists Sections 17.3–17.4 introduce basic lambda and streams
capabilities that process one-dimensional arrays.

Chapter 10, Object-Oriented Pro-
gramming: Polymorphism and
Interfaces

Section 10.10 introduces the new Java SE 8 interface
features (default methods, static methods and the
concept of functional interfaces) that support func-
tional programming with lambdas and streams.

Chapters 12 and 19, Swing GUI
Components: Parts 1 and 2

Section 17.9 shows how to use a lambda to implement
a Swing event-listener functional interface.

Chapter 14, Strings, Characters
and Regular Expressions

Section 17.5 shows how to use lambdas and streams to
process collections of String objects.

Fig. 4.2 | Java SE 8 lambdas and streams discussions and examples. (Part 1 of 2.)

xxviii Preface

• Java SE 7’s try-with-resources statement and the AutoClosable interface. Auto-
Closable objects reduce the likelihood of resource leaks when you use them with
the try-with-resources statement, which automatically closes the AutoClosable
objects. In this edition, we use try-with-resources and AutoClosable objects as
appropriate starting in Chapter 15, Files, Streams and Object Serialization.

• Java security. We audited our book against the CERT Oracle Secure Coding
Standard for Java:

See this Preface’s Secure Java Programming section for more about CERT.

• Java NIO API. We updated the file-processing examples in Chapter 15 to use
features from the Java NIO (new IO) API.

• Java Documentation. Throughout the book, we provide links to Java documen-
tation where you can learn more about various topics that we present. For Java
SE 7 documentation, the links begin with

and for Java SE 8 documentation, the links begin with

These links could change when Oracle releases Java SE 8—possibly to links begin-
ning with

For any links that change after publication, we’ll post updates at

Swing and JavaFX GUI; Java 2D Graphics
• Swing GUI and Java 2D graphics. Java’s Swing GUI is discussed in Chapters 12

and 19. Swing is now in maintenance mode—Oracle has stopped development

Chapter 15, Files, Streams and
Object Serialization

Section 17.7 shows how to use lambdas and streams to
process lines of text from a file.

Chapter 20, Concurrency Shows that functional programs are easier to parallelize so
that they can take advantage of multi-core architectures
to enhance performance. Demonstrates parallel stream
processing. Shows that Arrays method parallelSort
improves performance on multi-core architectures when
sorting large arrays.

Chapter 22, JavaFX GUI Section 22.5.5 shows how to use a lambda to imple-
ment a JavaFX event-listener functional interface.

 http://bit.ly/CERTOracleSecureJava

 http://docs.oracle.com/javase/7/

 http://download.java.net/jdk8/

 http://docs.oracle.com/javase/8/

 http://www.deitel.com/books/jfp3

Pre-Java-SE-8 topics Corresponding Java SE 8 discussions and examples

Fig. 4.2 | Java SE 8 lambdas and streams discussions and examples. (Part 2 of 2.)

http://docs.oracle.com/javase/7/
http://download.java.net/jdk8/
http://docs.oracle.com/javase/8/
http://www.deitel.com/books/jfp3
http://bit.ly/CERTOracleSecureJava

 New and Updated Features xxix

and will provide only bug fixes going forward, however it will remain part of Java
and is still widely used. Most of GUI-based legacy code in industry uses Swing
GUI. Chapter 13 discusses Java 2D graphics.

• JavaFX GUI. Java’s GUI, graphics and multimedia technology going forward is
JavaFX. In Chapter 22, we use JavaFX 2.2 with Java SE 7. We use Scene Build-
er—a drag-and-drop tool for creating JavaFX GUIs quickly and conveniently.
It’s a standalone tool that you can use separately or with Java IDEs.

Concurrency
• Concurrency for optimal multi-core performance. In this edition, we were privi-

leged to have as a reviewer Brian Goetz, co-author of Java Concurrency in Practice
(Addison-Wesley). We updated Chapter 20, Concurrency, with Java SE 8 tech-
nology and idiom. We added a parallelSort vs. sort example that uses the Java
SE 8 Date/Time API to time each operation and demonstrate parallelSort’s
better performance on a multi-core system. We include a Java SE 8 parallel vs.
sequential stream processing example, again using the Date/Time API to show
performance improvements. Finally, we added a Java SE 8 CompletableFuture
example that compares the relative performance of sequential and parallel execu-
tion of long-running calculations.

• SwingWorker class. We use class SwingWorker to create multithreaded user inter-
faces.

• Concurrency is challenging. There’s a great variety of concurrency features. We
point out the ones that most developers should use and mention those that
should be left to the experts.

Getting Monetary Amounts Right
• Monetary amounts. In the early chapters, for convenience, we use type double to

represent monetary amounts. Due to the potential for incorrect monetary calcu-
lations with type double, class BigDecimal (which is a bit more complex) should
be used to represent monetary amounts. We demonstrate BigDecimal in
Chapters 8 and 22.

Object Technology
• Object-oriented programming. We use an early objects approach, reviewing the

basic concepts and terminology of object technology in Chapter 1. Readers de-
velop their first customized classes and objects in Chapter 3.

• Early objects real-world case studies. The early classes and objects presentation
features Account, Student, AutoPolicy, Time, Employee, GradeBook and Card
shuffling-and-dealing case studies, gradually introducing deeper OO concepts.

• Inheritance, Interfaces, Polymorphism and Composition. We use a series of real-
world case studies to illustrate each of these OO concepts and explain situations
in which each is preferred in building industrial-strength applications. We discuss
Java SE 8’s improvements to the interface concept.

xxx Preface

• Exception handling. We integrate basic exception handling early in the book then
present a deeper treatment in Chapter 11. Exception handling is important for
building “mission-critical” and “business-critical” applications. Programmers
need to be concerned with, “What happens when the component I call on to do
a job experiences difficulty? How will that component signal that it had a prob-
lem?” To use a Java component, you need to know not only how that component
behaves when “things go well,” but also what exceptions that component
“throws” when “things go poorly.”

• Class Arrays and ArrayList. Chapter 7 covers class Arrays—which contains
methods for performing common array manipulations—and class ArrayList—
which implements a dynamically resizable array-like data structure. This follows
our philosophy of getting lots of practice using existing classes while learning how
to define your own classes.

• Case Study: Developing an Object-Oriented Design and Java Implementation of an
ATM. Chapters 23–24 include a case study on object-oriented design with the
UML (Unified Modeling Language™)—the industry-standard graphical language
for modeling object-oriented systems. We design and implement the software for a
simple automated teller machine (ATM). We analyze a typical requirements docu-
ment that specifies the system to be built. We determine the classes needed to im-
plement that system, the attributes the classes need to have, the behaviors the classes
need to exhibit and specify how the classes must interact with one another to meet
the system requirements. From the design we produce a completely coded Java im-
plementation. Participants in our professional Java courses often report having a
“light-bulb moment”—the case study helps them “tie it all together” and really un-
derstand Java-based object-oriented programming.

Generic Collections
• Generic collections presentation. We begin with generic class ArrayList in

Chapter 7. Chapters 16–18 provide a deeper treatment of generic collections—
showing how to use the built-in collections of the Java API. We show how to im-
plement generic methods and classes. Lambdas and streams (introduced in
Chapter 17) are especially useful for working with generic collections.

Database
• JDBC. Chapter 21 covers JDBC and uses the Java DB database management sys-

tem. The chapter introduces Structured Query Language (SQL) and features an
OO case study on developing a database-driven address book that demonstrates
prepared statements.

Secure Java Programming
It’s difficult to build industrial-strength systems that stand up to attacks from viruses, worms,
and other forms of “malware.” Today, via the Internet, such attacks can be instantaneous and
global in scope. Building security into software from the beginning of the development cycle
can greatly reduce vulnerabilities. We incorporate various secure Java coding practices into
our discussions and code examples.

 Teaching Approach xxxi

The CERT® Coordination Center (www.cert.org) was created to analyze and
respond promptly to attacks. CERT—the Computer Emergency Response Team—is a
government-funded organization within the Carnegie Mellon University Software Engi-
neering Institute™. CERT publishes and promotes secure coding standards for various
popular programming languages to help software developers implement industrial-
strength systems that avoid the programming practices which leave systems open to attack.

We’d like to thank Robert C. Seacord, Secure Coding Manager at CERT and an
adjunct professor in the Carnegie Mellon University School of Computer Science. Mr. Sea-
cord was a technical reviewer for our book, C11 for Programmers, where he scrutinized our
C programs from a security standpoint, recommending that we adhere to the CERT C Secure
Coding Standard. This experience influenced our coding practices in C++11 for Programmers
and Java SE 8 for Programmers, 3/e as well.

Teaching Approach
Java SE 8 for Programmers, 3/e, contains hundreds of complete working examples. We
stress program clarity and concentrate on building well-engineered software.

Syntax Coloring. For readability, we syntax color the code, similar to the way most inte-
grated-development environments and code editors syntax color the code. Our syntax-
coloring conventions are:

Code Highlighting. We place yellow rectangles around each program’s key code.

Using Fonts for Emphasis. We place the key terms and the index’s page reference for each
defining occurrence in bold text for easier reference. On-screen components are empha-
sized in the bold Helvetica font (e.g., the File menu) and Java program text in the Lucida
font (e.g., int x = 5;).

Web Access. All of the source-code examples can be downloaded from:

Objectives. The opening quotations are followed by a list of chapter objectives.

Illustrations/Figures. Abundant tables, line drawings, UML diagrams, programs and pro-
gram outputs are included.

Programming Tips. We include programming tips to help you focus on important aspects
of program development. These tips and practices represent the best we’ve gleaned from a
combined seven decades of programming and teaching experience.

comments appear like this
keywords appear like this
constants and literal values appear like this
errors appear like this
all other code appears in black

www.deitel.com/books/javafp3
www.pearsonhighered.com/deitel

Good Programming Practice
The Good Programming Practices call attention to techniques that will help you pro-
duce programs that are clearer, more understandable and more maintainable.

http://www.cert.org
http://www.deitel.com/books/javafp3
http://www.pearsonhighered.com/deitel

xxxii Preface

Index. We’ve included an extensive index. Defining occurrences of key terms are high-
lighted with a bold page number.

Software Used in Java SE 8 for Programmers, 3/e
All the software you’ll need for this book is available free for download from the Internet.
See the Before You Begin section that follows this Preface for links to each download.

We wrote most of the examples in Java SE 8 for Programmers, 3/e, using the free Java
Standard Edition Development Kit (JDK) 7. For the Java SE 8 modules, we used the
OpenJDK’s early access version of JDK 8. In Chapter 22, we also used the Netbeans IDE.
See the Before You Begin section that follows this Preface for more information.

Java Fundamentals: Parts I, II, III and IV LiveLessons, Second Edition,
Video Training Product
Our Java Fundamentals: Parts I, II, III and IV LiveLessons,2/e (summer 2014), video train-
ing product shows you what you need to know to start building robust, powerful software
with Java. It includes 30+ hours of expert training synchronized with Java SE 8 for Pro-
grammers, Third Edition. Visit

for information on purchasing Deitel LiveLessons video products online from Informit and
Udemy. You may also access our LiveLessons videos if you have a subscription to Safari
Books Online (http://www.safaribooksonline.com).

Common Programming Error
Pointing out these Common Programming Errors reduces the likelihood that you’ll
make them.

Error-Prevention Tip
These tips contain suggestions for exposing and removing bugs from your programs; many
of the tips describe aspects of Java that prevent bugs from getting into programs.

Performance Tip 4.1
These tips highlight opportunities for making your programs run faster or minimizing the
amount of memory that they occupy.

Portability Tip
The Portability Tips help you write code that will run on a variety of platforms.

Software Engineering Observation
The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems.

Look-and-Feel Observation
The Look-and-Feel Observations highlight graphical-user-interface conventions. These
observations help you design attractive, user-friendly graphical user interfaces that con-
form to industry norms.

http://www.deitel.com/livelessons

http://www.safaribooksonline.com
http://www.deitel.com/livelessons

 Acknowledgments xxxiii

Acknowledgments
We’d like to thank Abbey Deitel and Barbara Deitel of Deitel & Associates, Inc. for long
hours devoted to this project. Abbey co-authored Chapter 1 and this Preface, and she and
Barbara painstakingly researched the new capabilities of Java SE 8.

We’re fortunate to have worked on this project with the dedicated publishing profes-
sionals at Prentice Hall/Pearson. We appreciate the extraordinary efforts and 19-year men-
torship of our friend and professional colleague Mark L. Taub, Editor-in-Chief of Pearson
Technology Group. Carole Snyder recruited distinguished members of the Java commu-
nity to review the manuscript and managed the review process. Chuti Prasertsith designed
the cover. John Fuller managed the book’s publication.

Reviewers
We wish to acknowledge the efforts of our recent editions reviewers—a distinguished
group of Oracle Java team members, Oracle Java Champions, other industry professionals
and academics. They scrutinized the text and the programs and provided countless sugges-
tions for improving the presentation.

Third Edition reviewers: Lance Andersen (Oracle Corporation), Dr. Danny Coward
(Oracle Corporation), Brian Goetz (Oracle Corporation), Evan Golub (University of
Maryland), Dr. Huiwei Guan (Professor, Department of Computer & Information Sci-
ence, North Shore Community College), Manfred Riem (Java Champion), Simon Ritter
(Oracle Corporation), Robert C. Seacord (CERT, Software Engineering Institute, Carn-
egie Mellon University), Khallai Taylor (Assistant Professor, Triton College and Adjunct
Professor, Lonestar College—Kingwood), Jorge Vargas (Yumbling and a Java Champion),
Johan Vos (LodgON and Oracle Java Champion) and James L. Weaver (Oracle Corpora-
tion and author of Pro JavaFX 2).

Other recent editions reviewers: Soundararajan Angusamy (Sun Microsystems),
Joseph Bowbeer (Consultant), William E. Duncan (Louisiana State University), Diana
Franklin (University of California, Santa Barbara), Edward F. Gehringer (North Carolina
State University), Ric Heishman (George Mason University), Dr. Heinz Kabutz (JavaSpe-
cialists.eu), Patty Kraft (San Diego State University), Lawrence Premkumar (Sun Micro-
systems), Tim Margush (University of Akron), Sue McFarland Metzger (Villanova
University), Shyamal Mitra (The University of Texas at Austin), Peter Pilgrim (Consul-
tant), Manjeet Rege, Ph.D. (Rochester Institute of Technology), Susan Rodger (Duke
University), Amr Sabry (Indiana University), José Antonio González Seco (Parliament of
Andalusia), Sang Shin (Sun Microsystems), S. Sivakumar (Astra Infotech Private Lim-
ited), Raghavan “Rags” Srinivas (Intuit), Monica Sweat (Georgia Tech), Vinod Varma
(Astra Infotech Private Limited) and Alexander Zuev (Sun Microsystems).

A Special Thank You to Brian Goetz
We were privileged to have Brian Goetz, Oracle’s Java Language Architect and Specifica-
tion Lead for Java SE 8’s Project Lambda, and co-author of Java Concurrency in Practice,
do a detailed full-book review. He thoroughly scrutinized every chapter, providing ex-
tremely helpful insights and constructive comments. Any remaining faults in the book are
our own.

xxxiv Preface

Well, there you have it! As you read the book, we’d appreciate your comments, criti-
cisms, corrections and suggestions for improvement. Please address all correspondence to:

We’ll respond promptly. We hope you enjoy working with Java SE 8 for Programmers, 3/e,
as much as we enjoyed writing it!

Paul and Harvey Deitel

About the Authors
Paul Deitel, CEO and Chief Technical
Officer of Deitel & Associates, Inc., is a
graduate of MIT, where he studied Infor-
mation Technology. He holds the Java
Certified Programmer and Java Certified
Developer designations, and is an Oracle
Java Champion. Through Deitel & Asso-

ciates, Inc., he has delivered hundreds of programming courses worldwide to clients, in-
cluding Cisco, IBM, Siemens, Sun Microsystems, Dell, Fidelity, NASA at the Kennedy
Space Center, the National Severe Storm Laboratory, White Sands Missile Range, Rogue
Wave Software, Boeing, SunGard Higher Education, Nortel Networks, Puma, iRobot,
Invensys and many more. He and his co-author, Dr. Harvey M. Deitel, are the world’s
best-selling programming-language textbook/professional book/video authors.

Dr. Harvey Deitel, Chairman and Chief Strategy Officer of Deitel & Associates, Inc.,
has over 50 years of experience in the computer field. Dr. Deitel earned B.S. and M.S.
degrees in Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston
University. He has extensive college teaching experience, including earning tenure and
serving as the Chairman of the Computer Science Department at Boston College before
founding Deitel & Associates, Inc., in 1991 with his son, Paul. The Deitels’ publications
have earned international recognition, with translations published in Japanese, German,
Russian, Spanish, French, Polish, Italian, Simplified Chinese, Traditional Chinese,
Korean, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has delivered hundreds of pro-
gramming courses to corporate, academic, government and military clients.

About Deitel® & Associates, Inc.
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate training organization, specializing in computer pro-
gramming languages, object technology, mobile app development and Internet and web
software technology. The company’s training clients include many of the world’s largest
companies, government agencies, branches of the military, and academic institutions. The
company offers instructor-led training courses delivered at client sites worldwide on major
programming languages and platforms, including Java™, Android app development,
Objective-C and iOS app development, C++, C, Visual C#®, Visual Basic®, Visual C++®,
Python®, object technology, Internet and web programming and a growing list of addi-
tional programming and software development courses.

deitel@deitel.com

 About Deitel® & Associates, Inc. xxxv

Through its 39-year publishing partnership with Pearson/Prentice Hall, Deitel &
Associates, Inc., publishes leading-edge programming textbooks and professional books in
print and a wide range of e-book formats, and LiveLessons video courses. Deitel & Associ-
ates, Inc. and the authors can be reached at:

To learn more about Deitel’s Dive-Into® Series Corporate Training curriculum, visit:

To request a proposal for worldwide on-site, instructor-led training at your organization,
e-mail deitel@deitel.com.

Individuals wishing to purchase Deitel books and LiveLessons video training can do so
through www.deitel.com. Bulk orders by corporations, the government, the military and
academic institutions should be placed directly with Pearson. For more information, visit

deitel@deitel.com

http://www.deitel.com/training

http://www.informit.com/store/sales.aspx

http://www.deitel.com
http://www.deitel.com/training
http://www.informit.com/store/sales.aspx

This page intentionally left blank

This section contains information you should review before using this book. Any updates
to the information presented here will be posted at:

In addition, we provide Dive-Into® videos (which will be available in time for Fall 2014
classes) that demonstrate the instructions in this Before You Begin section.

Font and Naming Conventions
We use fonts to distinguish between on-screen components (such as menu names and
menu items) and Java code or commands. Our convention is to emphasize on-screen com-
ponents in a sans-serif bold Helvetica font (for example, File menu) and to emphasize Java
code and commands in a sans-serif Lucida font (for example, System.out.println()).

Software Used in the Book
All the software you’ll need for this book is available free for download from the web. With
the exception of the examples that are specific to Java SE 8, all of the examples were tested
with the Java SE 7 and Java SE 8 Java Standard Edition Development Kits (JDKs).

Java Standard Edition Development Kit 7 (JDK 7)
JDK 7 for Windows, OS X and Linux platforms is available from:

Java Standard Edition Development Kit (JDK) 8
At the time of this publication, the near-final version of JDK 8 for Windows, OS X and
Linux platforms was available from:

Once JDK 8 is released as final, it will be available from:

JDK Installation Instructions
After downloading the JDK installer, be sure to carefully follow the JDK installation in-
structions for your platform at:

Though these instructions are for JDK 7, they also apply to JDK 8—you’ll need to update
the JDK version number in any version-specific instructions.

http://www.deitel.com/books/javafp3

http://www.oracle.com/technetwork/java/javase/downloads/index.html

https://jdk8.java.net/download.html

http://www.oracle.com/technetwork/java/javase/downloads/index.html

http://docs.oracle.com/javase/7/docs/webnotes/install/index.html

Before You Begin

http://www.deitel.com/books/javafp3
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://docs.oracle.com/javase/7/docs/webnotes/install/index.html
https://jdk8.java.net/download.html

xxxviii Before You Begin

Setting the PATH Environment Variable
The PATH environment variable on your computer designates which directories the com-
puter searches when looking for applications, such as the applications that enable you to
compile and run your Java applications (called javac and java, respectively). Carefully fol-
low the installation instructions for Java on your platform to ensure that you set the PATH envi-
ronment variable correctly. The steps for setting environment variables differ by operating
system and sometimes by operating system version (e.g., Windows 7 vs. Windows 8). In-
structions for various platforms are listed at:

If you do not set the PATH variable correctly on Windows and some Linux installations,
when you use the JDK’s tools, you’ll receive a message like:

In this case, go back to the installation instructions for setting the PATH and recheck your
steps. If you’ve downloaded a newer version of the JDK, you may need to change the name
of the JDK’s installation directory in the PATH variable.

JDK Installation Directory and the bin Subdirectory
The JDK’s installation directory varies by platform. The directories listed below are for
Oracle’s JDK 7 update 51:

• 32-bit JDK on Windows:
C:\Program Files (x86)\Java\jdk1.7.0_51

• 64-bit JDK on Windows:
C:\Program Files\Java\jdk1.7.0_51

• Mac OS X:
/Library/Java/JavaVirtualMachines/jdk1.7.0_51.jdk/Contents/Home

• Ubuntu Linux:
/usr/lib/jvm/java-7-oracle

Depending on your platform, the JDK installation folder’s name might differ if you’re us-
ing a different update of JDK 7 or using JDK 8. For Linux, the install location depends
on the installer you use and possibly the version of Linux that you use. We used Ubuntu
Linux. The PATH environment variable must point to the JDK installation directory’s bin
subdirectory.

When setting the PATH, be sure to use the proper JDK-installation-directory name for
the specific version of the JDK you installed—as newer JDK releases become available, the
JDK-installation-directory name changes to include an update version number. For
example, at the time of this writing, the most recent JDK 7 release was update 51. For this
version, the JDK-installation-directory name ends with "_51".

Setting the CLASSPATH Environment Variable
If you attempt to run a Java program and receive a message like

http://www.java.com/en/download/help/path.xml

'java' is not recognized as an internal or external command,
operable program or batch file.

Exception in thread "main" java.lang.NoClassDefFoundError: YourClass

http://www.java.com/en/download/help/path.xml

 Setting the JAVA_HOME Environment Variable xxxix

then your system has a CLASSPATH environment variable that must be modified. To fix the
preceding error, follow the steps in setting the PATH environment variable to locate the
CLASSPATH variable, then edit the variable’s value to include the local directory—typically
represented as a dot (.). On Windows add

at the beginning of the CLASSPATH’s value (with no spaces before or after these characters).
On other platforms, replace the semicolon with the appropriate path separator charac-
ters—typically a colon (:).

Setting the JAVA_HOME Environment Variable
The Java DB database software that you’ll use in Chapter 21 requires you to set the
JAVA_HOME environment variable to your JDK’s installation directory. The same steps you
used to set the PATH may also be used to set other environment variables, such as
JAVA_HOME.

Java Integrated Development Environments (IDEs)
There are many Java integrated development environments that you can use for Java pro-
gramming. For this reason, we used only the JDK command-line tools for most of the
book’s examples. We provide Dive-Into® videos (which will be available in time for Fall
2014 classes) that show how to download, install and use three popular IDEs—NetBeans,
Eclipse and IntelliJ IDEA. We use NetBeans in Chapter 22.

NetBeans Downloads
You can download the JDK/NetBeans bundle from:

The NetBeans version that’s bundled with the JDK is for Java SE development. The on-
line JavaServer Faces (JSF) chapters and web services chapter use the Java Enterprise Edi-
tion (Java EE) version of NetBeans, which you can download from:

This version supports both Java SE and Java EE development.

Eclipse Downloads
You can download the Eclipse IDE from:

For Java SE development choose the Eclipse IDE for Java Developers. For Java Enterprise
Edition (Java EE) development (such as JSF and web services), choose the Eclipse IDE for
Java EE Developers—this version supports both Java SE and Java EE development.

IntelliJ IDEA Community Edition Downloads
You can download the free IntelliJ IDEA Community Edition from:

The free version supports only Java SE development.

.;

http://www.oracle.com/technetwork/java/javase/downloads/index.html

https://netbeans.org/downloads/

https://www.eclipse.org/downloads/

http://www.jetbrains.com/idea/download/index.html

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://http://www.eclipse.org/downloads/
http://www.jetbrains.com/idea/download/index.html
https://netbeans.org/downloads/

xl Before You Begin

Obtaining the Code Examples
The examples for Java SE 8 for Programmers, 3/e are available for download at

under the heading Download Code Examples and Other Premium Content. The examples
are also available from

When you download the ZIP archive file, write down the location where you choose to
save it on your computer.

Extract the contents of examples.zip using a ZIP extraction tool such as 7-Zip
(www.7-zip.org), WinZip (www.winzip.com) or the built-in capabilities of your operating
system. Instructions throughout the book assume that the examples are located at:

• C:\examples on Windows

• your user account home folder’s examples subfolder on Linux

• your Documents folders examples subfolder on Mac OS X

Java’s Nimbus Look-and-Feel
Java comes bundled with a cross-platform look-and-feel known as Nimbus. For programs
with Swing graphical user interfaces (e.g., Chapters 12 and 19), we configured our test
computers to use Nimbus as the default look-and-feel.

To set Nimbus as the default for all Java applications, you must create a text file
named swing.properties in the lib folder of both your JDK installation folder and your
JRE installation folder. Place the following line of code in the file:

For more information on locating these folders visit http://docs.oracle.com/javase/
7/docs/webnotes/install/index.html. [Note: In addition to the standalone JRE, there’s
a JRE nested in your JDK’s installation folder. If you’re using an IDE that depends on the
JDK (e.g., NetBeans), you may also need to place the swing.properties file in the nested
jre folder’s lib folder.]

You’re now ready to begin your Java studies with Java SE 8 for Programmers, 3/e. We
hope you enjoy the book!

http://www.deitel.com/books/javafp3

http://www.pearsonhighered.com/deitel

swing.defaultlaf=com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel

http://www.7-zip.org
http://www.winzip.com
http://docs.oracle.com/javase/7/docs/webnotes/install/index.html
http://docs.oracle.com/javase/7/docs/webnotes/install/index.html
http://www.deitel.com/books/javafp3
http://www.pearsonhighered.com/deitel

3
Introduction to Classes,
Objects, Methods and

Strings

O b j e c t i v e s
In this chapter you’ll:

■ Declare a class and use it to create an object.

■ Implement a class’s behaviors as methods.

■ Implement a class’s attributes as instance variables.

■ Call an object’s methods to make them perform their tasks.

■ Understand how local variables of a method differ from
instance variables.

■ Understand what primitive types and reference types are.

■ Use a constructor to initialize an object’s data.

3.1 Introduction 39

O
u

tl
in

e

3.1 Introduction
[Note: This chapter depends on the terminology and concepts discussed in Section 1.2,
Object Technology Concepts.]

In Chapter 2, you worked with existing classes, objects and methods. You used the pre-
defined standard output object System.out, invoking its methods print, println and
printf to display information on the screen. You used the existing Scanner class to create
an object that reads into memory integer data typed by the user at the keyboard. Through-
out the book, you’ll use many more preexisting classes and objects.

In this chapter, you’ll create your own classes and methods. Each new class you create
becomes a new type that can be used to declare variables and create objects. You can declare
new classes as needed; this is one reason why Java is known as an extensible language.

We present a case study on creating and using a simple, real-world bank account
class—Account. Such a class should maintain as instance variables attributes such as its
name and balance, and provide methods for tasks such as querying the balance (get-
Balance), making deposits that increase the balance (deposit) and making withdrawals
that decrease the balance (withdraw). We’ll build the getBalance and deposit methods
into the class in the chapter’s examples.

In Chapter 2 we used the data type int to represent integers. In this chapter, we intro-
duce data type double to represent an account balance as a number that can contain a dec-
imal point—such numbers are called floating-point numbers. [In Chapter 8, when we get
a bit deeper into object technology, we’ll begin representing monetary amounts precisely
with class BigDecimal (package java.math) as you should do when writing industrial-
strength monetary applications.]

3.2 Instance Variables, set Methods and get Methods
In this section, you’ll create two classes—Account (Fig. 3.1) and AccountTest (Fig. 3.2).
Class AccountTest is an application class in which the main method will create and use an
Account object to demonstrate class Account’s capabilities.

3.1 Introduction
3.2 Instance Variables, set Methods and get

Methods
3.2.1 Account Class with an Instance

Variable, a set Method and a get Method
3.2.2 AccountTest Class That Creates and

Uses an Object of Class Account
3.2.3 Compiling and Executing an App with

Multiple Classes
3.2.4 Account UML Class Diagram with an

Instance Variable and set and get
Methods

3.2.5 Additional Notes on Class AccountTest
3.2.6 Software Engineering with private

Instance Variables and public set and
get Methods

3.3 Primitive Types vs. Reference Types
3.4 Account Class: Initializing

Objects with Constructors
3.4.1 Declaring an Account Constructor

for Custom Object Initialization
3.4.2 Class AccountTest: Initializing

Account Objects When They’re
Created

3.5 Account Class with a Balance;
Floating-Point Numbers

3.5.1 Account Class with a balance
Instance Variable of Type double

3.5.2 AccountTest Class to Use Class
Account

3.6 Wrap-Up

40 Chapter 3 Introduction to Classes, Objects, Methods and Strings

3.2.1 Account Class with an Instance Variable, a set Method and a get
Method
Different accounts typically have different names. For this reason, class Account (Fig. 3.1)
contains a name instance variable. A class’s instance variables maintain data for each object
(that is, each instance) of the class. Later in the chapter we’ll add an instance variable named
balance so we can keep track of how much money is in the account. Class Account con-
tains two methods—method setName stores a name in an Account object and method
getName obtains a name from an Account object.

Class Declaration
The class declaration begins in line 5. The keyword public (which Chapter 8 explains in
detail) is an access modifier. For now, we’ll simply declare every class public. Each public
class declaration must be stored in a file having the same name as the class and ending with
the .java filename extension; otherwise, a compilation error will occur. Thus, public
classes Account and AccountTest (Fig. 3.2) must be declared in the separate files Ac-
count.java and AccountTest.java, respectively.

Every class declaration contains the keyword class followed immediately by the
class’s name—in this case, Account. Every class’s body is enclosed in a pair of left and right
braces as in lines 6 and 20 of Fig. 3.1.

Identifiers and Camel Case Naming
Class names, method names and variable names are all identifiers and by convention all use
the same camel case naming scheme we discussed in Chapter 2. Also by convention, class

1 // Fig. 3.1: Account.java
2 // Account class that contains a name instance variable
3 // and methods to set and get its value.
4
5 public class Account
6 {
7
8
9

10
11
12
13
14
15
16
17
18
19
20 } // end class Account

Fig. 3.1 | Account class that contains a name instance variable and methods to set and get its
value.

private String name; // instance variable

// method to set the name in the object
public void setName(String name)
{

this.name = name; // store the name
}

// method to retrieve the name from the object
public String getName()
{

return name; // return value of name to caller
}

3.2 Instance Variables, set Methods and get Methods 41

names begin with an initial uppercase letter, and method names and variable names begin
with an initial lowercase letter.

Instance Variable name
Recall that an object has attributes, implemented as instance variables and carried with it
throughout its lifetime. Instance variables exist before methods are called on an object,
while the methods are executing and after the methods complete execution. Each object
(instance) of the class has its own copy of the class’s instance variables. A class normally
contains one or more methods that manipulate the instance variables belonging to partic-
ular objects of the class.

Instance variables are declared inside a class declaration but outside the bodies of the
class’s methods. Line 7

declares instance variable name of type String outside the bodies of methods setName (lines
10–13) and getName (lines 16–19). String variables can hold character string values such
as "Jane Green". If there are many Account objects, each has its own name. Because name
is an instance variable, it can be manipulated by each of the class’s methods.

Access Modifiers public and private
Most instance-variable declarations are preceded with the keyword private (as in line 7).
Like public, private is an access modifier. Variables or methods declared with access mod-
ifier private are accessible only to methods of the class in which they’re declared. So, the
variable name can be used only in each Account object’s methods (setName and getName
in this case). You’ll soon see that this presents powerful software engineering opportuni-
ties.

setName Method of Class Account
Let’s walk through the code of setName’s method declaration (lines 10–13):

We refer to the first line of each method declaration (line 10 in this case) as the method
header. The method’s return type (which appears before the method name) specifies the
type of data the method returns to its caller after performing its task. The return type void
(line 10) indicates that setName will perform a task but will not return (i.e., give back) any
information to its caller. In Chapter 2, you used methods that return information—for ex-
ample, you used Scanner method nextInt to input an integer typed by the user at the key-
board. When nextInt reads a value from the user, it returns that value for use in the
program. As you’ll soon see, Account method getName returns a value.

private String name; // instance variable

Good Programming Practice 3.1
We prefer to list a class’s instance variables first in the class’s body, so that you see the names
and types of the variables before they’re used in the class’s methods. You can list the class’s
instance variables anywhere in the class outside its method declarations, but scattering the
instance variables can lead to hard-to-read code.

public void setName(String name)
{
 this.name = name; // store the name
}

This line is the method header

42 Chapter 3 Introduction to Classes, Objects, Methods and Strings

Method setName receives parameter name of type String. Parameters are declared in
the parameter list, which is located inside the parentheses that follow the method name in
the method header. When there are multiple parameters, each is separated from the next
by a comma. Each parameter must specify a type (in this case, String) followed by a vari-
able name (in this case, name).

Parameters Are Local Variables
In Chapter 2, we declared all of an app’s variables in the main method. Variables declared
in a particular method’s body (such as main) are local variables which can be used only in
that method. Each method can access only its own local variables, not those of other meth-
ods. When a method terminates, the values of its local variables are lost. A method’s pa-
rameters also are local variables of the method.

setName Method Body
Every method body is delimited by a pair of braces (as in lines 11 and 13 of Fig. 3.1) con-
taining one or more statements that perform the method’s task(s). In this case, the method
body contains a single statement (line 12) that assigns the value of the name parameter (a
String) to the class’s name instance variable, thus storing the account name in the object.

If a method contains a local variable with the same name as an instance variable (as in
lines 10 and 7, respectively), that method’s body will refer to the local variable rather than
the instance variable. In this case, the local variable is said to shadow the instance variable
in the method’s body. The method’s body can use the keyword this to refer to the shad-
owed instance variable explicitly, as shown on the left side of the assignment in line 12.

After line 12 executes, the method has completed its task, so it returns to its caller. As
you’ll soon see, the statement in line 21 of main (Fig. 3.2) calls method setName.

getName Method of Class Account
Method getName (lines 16–19 of Fig. 3.1)

returns a particular Account object’s name to the caller. The method has an empty param-
eter list, so it does not require additional information to perform its task. The method re-
turns a String. When a method that specifies a return type other than void is called and
completes its task, it must return a result to its caller. A statement that calls method get-
Name on an Account object (such as the ones in lines 16 and 26 of Fig. 3.2) expects to re-
ceive the Account’s name—a String, as specified in the method declaration’s return type.

The return statement in line 18 of Fig. 3.1 passes the String value of instance variable
name back to the caller. For example, when the value is returned to the statement in lines
25–26 of Fig. 3.2, the statement uses that value to output the name.

Good Programming Practice 3.2
We could have avoided the need for keyword this here by choosing a different name for
the parameter in line 10, but using the this keyword as shown in line 12 is a widely ac-
cepted practice to minimize the proliferation of identifier names.

public String getName()
{
 return name; // return value of name to caller
}

Keyword return passes the String name back to
the method’s caller

3.2 Instance Variables, set Methods and get Methods 43

3.2.2 AccountTest Class That Creates and Uses an Object of Class
Account
Next, we’d like to use class Account in an app and call each of its methods. A class that
contains a main method begins the execution of a Java app. Class Account cannot execute
by itself because it does not contain a main method—if you type java Account in the com-
mand window, you’ll get an error indicating “Main method not found in class Account.”
To fix this problem, you must either declare a separate class that contains a main method
or place a main method in class Account.

Driver Class AccountTest
We use a separate class AccountTest (Fig. 3.2) containing method main to test class Ac-
count. Once main begins executing, it may call other methods in this and other classes;
those may, in turn, call other methods, and so on. Class AccountTest’s main method cre-
ates one Account object and calls its getName and setName methods. Such a class is some-
times called a driver class—just as a Person object drives a Car object by telling it what to
do (go faster, go slower, turn left, turn right, etc.), class AccountTest drives an Account
object, telling it what to do by calling its methods.

1 // Fig. 3.2: AccountTest.java
2 // Creating and manipulating an Account object.
3 import java.util.Scanner;
4
5 public class AccountTest
6 {
7 public static void main(String[] args)
8 {
9 // create a Scanner object to obtain input from the command window

10 Scanner input = new Scanner(System.in);
11
12
13
14
15 // display initial value of name (null)
16 System.out.printf("Initial name is: %s%n%n",);
17
18 // prompt for and read name
19 System.out.println("Please enter the name:");
20
21
22 System.out.println(); // outputs a blank line
23
24 // display the name stored in object myAccount
25 System.out.printf("Name in object myAccount is:%n%s%n",
26);
27 }
28 } // end class AccountTest

Fig. 3.2 | Creating and manipulating an Account object. (Part 1 of 2.)

// create an Account object and assign it to myAccount
Account myAccount = new Account();

myAccount.getName()

String theName = input.nextLine(); // read a line of text
myAccount.setName(theName); // put theName in myAccount

myAccount.getName()

44 Chapter 3 Introduction to Classes, Objects, Methods and Strings

Scanner Object for Receiving Input from the User
Line 10 creates a Scanner object named input for inputting the name from the user. Line
19 prompts the user to enter a name. Line 20 uses the Scanner object’s nextLine method
to read the name from the user and assign it to the local variable theName. You type the
name and press Enter to submit it to the program. Pressing Enter inserts a newline charac-
ter after the characters you typed. Method nextLine reads characters (including white-
space characters, such as the blank in "Jane Green") until it encounters the newline, then
returns a String containing the characters up to, but not including, the newline, which is
discarded.

Class Scanner provides various other input methods, as you’ll see throughout the
book. A method similar to nextLine—named next—reads the next word. When you
press Enter after typing some text, method next reads characters until it encounters a
white-space character (such as a space, tab or newline), then returns a String containing
the characters up to, but not including, the white-space character, which is discarded. All
information after the first white-space character is not lost—it can be read by subsequent
statements that call the Scanner’s methods later in the program.

Instantiating an Object—Keyword new and Constructors
Line 13 creates an Account object and assigns it to variable myAccount of type Account.
Variable myAccount is initialized with the result of the class instance creation expression
new Account(). Keyword new creates a new object of the specified class—in this case, Ac-
count. The parentheses to the right of Account are required. As you’ll learn in Section 3.4,
those parentheses in combination with a class name represent a call to a constructor, which
is similar to a method but is called implicitly by the new operator to initialize an object’s
instance variables when the object is created. In Section 3.4, you’ll see how to place an ar-
gument in the parentheses to specify an initial value for an Account object’s name instance
variable—you’ll enhance class Account to enable this. For now, we simply leave the paren-
theses empty. Line 10 contains a class instance creation expression for a Scanner object—
the expression initializes the Scanner with System.in, which tells the Scanner where to
read the input from (i.e., the keyboard).

Calling Class Account’s getName Method
Line 16 displays the initial name, which is obtained by calling the object’s getName meth-
od. Just as we can use object System.out to call its methods print, printf and println,
we can use object myAccount to call its methods getName and setName. Line 16 calls
getName using the myAccount object created in line 13, followed by a dot separator (.),

Initial name is: null

Please enter the name:
Jane Green

Name in object myAccount is:
Jane Green

Fig. 3.2 | Creating and manipulating an Account object. (Part 2 of 2.)

3.2 Instance Variables, set Methods and get Methods 45

then the method name getName and an empty set of parentheses because no arguments are
being passed. When getName is called:

1. The app transfers program execution from the call (line 16 in main) to method get-
Name’s declaration (lines 16–19 of Fig. 3.1). Because getName was called via the my-
Account object, getName “knows” which object’s instance variable to manipulate.

2. Next, method getName performs its task—that is, it returns the name (line 18 of
Fig. 3.1). When the return statement executes, program execution continues
where getName was called (line 16 in Fig. 3.2).

3. System.out.printf displays the String returned by method getName, then the
program continues executing at line 19 in main.

null—the Default Initial Value for String Variables
The first line of the output shows the name “null.” Unlike local variables, which are not
automatically initialized, every instance variable has a default initial value—a value pro-
vided by Java when you do not specify the instance variable’s initial value. Thus, instance
variables are not required to be explicitly initialized before they’re used in a program—unless
they must be initialized to values other than their default values. The default value for an
instance variable of type String (like name in this example) is null, which we discuss further
in Section 3.3 when we consider reference types.

Calling Class Account’s setName Method
Line 21 calls myAccounts’s setName method. A method call can supply arguments whose
values are assigned to the corresponding method parameters. In this case, the value of
main’s local variable theName in parentheses is the argument that’s passed to setName so
that the method can perform its task. When setName is called:

1. The app transfers program execution from line 21 in main to setName method’s
declaration (lines 10–13 of Fig. 3.1), and the argument value in the call’s paren-
theses (theName) is assigned to the corresponding parameter (name) in the method
header (line 10 of Fig. 3.1). Because setName was called via the myAccount object,
setName “knows” which object’s instance variable to manipulate.

2. Next, method setName performs its task—that is, it assigns the name parameter’s
value to instance variable name (line 12 of Fig. 3.1).

3. When program execution reaches setName’s closing right brace, it returns to where
setName was called (line 21 of Fig. 3.2), then continues at line 22.

The number of arguments in a method call must match the number of parameters in
the method declaration’s parameter list. Also, the argument types in the method call must
be consistent with the types of the corresponding parameters in the method’s declaration.
(As you’ll see in Chapter 6, an argument’s type and its corresponding parameter’s type are

Error-Prevention Tip 3.1
Never use as a format-control a string that was input from the user. When method
System.out.printf evaluates the format-control string in its first argument, the method
performs tasks based on the conversion specifier(s) in that string. If the format-control string
were obtained from the user, a malicious user could supply conversion specifiers that would
be executed by System.out.printf, possibly causing a security breach.

46 Chapter 3 Introduction to Classes, Objects, Methods and Strings

not required to be identical.) In our example, the method call passes one argument of type
String (theName)—and the method declaration specifies one parameter of type String
(name, declared in line 10 of Fig. 3.1). So in this example, the type of the argument in the
method call exactly matches the type of the parameter in the method header.

Displaying the Name That Was Entered by the User
Line 22 of Fig. 3.2 outputs a blank line. When the second call to method getName (line 26)
executes, the name entered by the user in line 20 is displayed. When the statement at lines
25–26 completes execution, the end of method main is reached, so the program terminates.

3.2.3 Compiling and Executing an App with Multiple Classes
You must compile the classes in Figs. 3.1 and 3.2 before you can execute the app. This is
the first time you’ve created an app with multiple classes. Class AccountTest has a main
method; class Account does not. To compile this app, first change to the directory that
contains the app’s source-code files. Next, type the command

to compile both classes at once. If the directory containing the app includes only this app’s
files, you can compile both classes with the command

The asterisk (*) in *.java indicates that all files in the current directory ending with the
filename extension “.java” should be compiled. If both classes compile correctly—that is,
no compilation errors are displayed—you can then run the app with the command

3.2.4 Account UML Class Diagram with an Instance Variable and set
and get Methods
We’ll often use UML class diagrams to summarize a class’s attributes and operations. In
industry, UML diagrams help systems designers specify a system in a concise, graphical,
programming-language-independent manner, before programmers implement the system
in a specific programming language. Figure 3.3 presents a UML class diagram for class
Account of Fig. 3.1.

Top Compartment
In the UML, each class is modeled in a class diagram as a rectangle with three compart-
ments. In this diagram the top compartment contains the class name Account centered
horizontally in boldface type.

javac Account.java AccountTest.java

javac *.java

java AccountTest

Fig. 3.3 | UML class diagram for class Account of Fig. 3.1.

Account

– name : String

+ setName(name : String)
+ getName() : String

Top compartment

Middle compartment

Bottom compartment

3.2 Instance Variables, set Methods and get Methods 47

Middle Compartment
The middle compartment contains the class’s attribute name, which corresponds to the in-
stance variable of the same name in Java. Instance variable name is private in Java, so the
UML class diagram lists a minus sign (–) access modifier before the attribute name. Fol-
lowing the attribute name are a colon and the attribute type, in this case String.

Bottom Compartment
The bottom compartment contains the class’s operations, setName and getName, which
correspond to the methods of the same names in Java. The UML models operations by
listing the operation name preceded by an access modifier, in this case + getName. This
plus sign (+) indicates that getName is a public operation in the UML (because it’s a public
method in Java). Operation getName does not have any parameters, so the parentheses fol-
lowing the operation name in the class diagram are empty, just as they are in the method’s
declaration in line 16 of Fig. 3.1. Operation setName, also a public operation, has a String
parameter called name.

Return Types
The UML indicates the return type of an operation by placing a colon and the return type
after the parentheses following the operation name. Account method getName (Fig. 3.1)
has a String return type. Method setName does not return a value (because it returns void
in Java), so the UML class diagram does not specify a return type after the parentheses of
this operation.

Parameters
The UML models a parameter a bit differently from Java by listing the parameter name,
followed by a colon and the parameter type in the parentheses after the operation name.
The UML has its own data types similar to those of Java, but for simplicity, we’ll use the
Java data types. Account method setName (Fig. 3.1) has a String parameter named name,
so Fig. 3.3 lists name : String between the parentheses following the method name.

3.2.5 Additional Notes on Class AccountTest

static Method main
In Chapter 2, each class we declared had one method named main. Recall that main is a
special method that’s always called automatically by the Java Virtual Machine (JVM)
when you execute an app. You must call most other methods explicitly to tell them to per-
form their tasks.

Lines 7–27 of Fig. 3.2 declare method main. A key part of enabling the JVM to locate
and call method main to begin the app’s execution is the static keyword (line 7), which
indicates that main is a static method. A static method is special, because you can call
it without first creating an object of the class in which the method is declared—in this case class
AccountTest. We discuss static methods in detail in Chapter 6.

Notes on import Declarations
Notice the import declaration in Fig. 3.2 (line 3), which indicates to the compiler that the
program uses class Scanner. As mentioned in Chapter 2, classes System and String are in

48 Chapter 3 Introduction to Classes, Objects, Methods and Strings

package java.lang, which is implicitly imported into every Java program, so all programs
can use that package’s classes without explicitly importing them. Most other classes you’ll
use in Java programs must be imported explicitly.

There’s a special relationship between classes that are compiled in the same directory,
like classes Account and AccountTest. By default, such classes are considered to be in the
same package—known as the default package. Classes in the same package are implicitly
imported into the source-code files of other classes in that package. Thus, an import dec-
laration is not required when one class in a package uses another in the same package—
such as when class AccountTest uses class Account.

The import declaration in line 3 is not required if we refer to class Scanner
throughout this file as java.util.Scanner, which includes the full package name and
class name. This is known as the class’s fully qualified class name. For example, line 10 of
Fig. 3.2 also could be written as

3.2.6 Software Engineering with private Instance Variables and
public set and get Methods
As you’ll see, through the use of set and get methods, you can validate attempted modifi-
cations to private data and control how that data is presented to the caller—these are
compelling software engineering benefits. We’ll discuss this in more detail in Section 3.5.

If the instance variable were public, any client of the class—that is, any other class
that calls the class’s methods—could see the data and do whatever it wanted with it,
including setting it to an invalid value.

You might think that even though a client of the class cannot directly access a private
instance variable, the client can do whatever it wants with the variable through public set
and get methods. You would think that you could peek at the private data any time with
the public get method and that you could modify the private data at will through the
public set method. But set methods can be programmed to validate their arguments and
reject any attempts to set the data to bad values, such as a negative body temperature, a day
in March out of the range 1 through 31, a product code not in the company’s product
catalog, etc. And a get method can present the data in a different form. For example, a
Grade class might store a grade as an int between 0 and 100, but a getGrade method
might return a letter grade as a String, such as "A" for grades between 90 and 100, "B"
for grades between 80 and 89, etc. Tightly controlling the access to and presentation of
private data can greatly reduce errors, while increasing the robustness and security of
your programs.

Declaring instance variables with access modifier private is known as data hiding or
information hiding. When a program creates (instantiates) an object of class Account, vari-
able name is encapsulated (hidden) in the object and can be accessed only by methods of
the object’s class.

java.util.Scanner input = new java.util.Scanner(System.in);

Software Engineering Observation 3.1
The Java compiler does not require import declarations in a Java source-code file if the
fully qualified class name is specified every time a class name is used. Most Java
programmers prefer the more concise programming style enabled by import declarations.

3.3 Primitive Types vs. Reference Types 49

Conceptual View of an Account Object with Encapsulated Data
You can think of an Account object as shown in Fig. 3.4. The private instance variable
name is hidden inside the object (represented by the inner circle containing name) and pro-
tected by an outer layer of public methods (represented by the outer circle containing get-
Name and setName). Any client code that needs to interact with the Account object can do
so only by calling the public methods of the protective outer layer.

3.3 Primitive Types vs. Reference Types
Java’s types are divided into primitive types and reference types. In Chapter 2, you worked
with variables of type int—one of the primitive types. The other primitive types are
boolean, byte, char, short, long, float and double, each of which we discuss in this
book—these are summarized in Appendix D. All nonprimitive types are reference types,
so classes, which specify the types of objects, are reference types.

A primitive-type variable can hold exactly one value of its declared type at a time. For
example, an int variable can store one integer at a time. When another value is assigned
to that variable, the new value replaces the previous one—which is lost.

Recall that local variables are not initialized by default. Primitive-type instance vari-
ables are initialized by default—instance variables of types byte, char, short, int, long,
float and double are initialized to 0, and variables of type boolean are initialized to
false. You can specify your own initial value for a primitive-type variable by assigning the
variable a value in its declaration, as in

Programs use variables of reference types (normally called references) to store the
addresses of objects in the computer’s memory. Such a variable is said to refer to an object

Software Engineering Observation 3.2
Precede each instance variable and method declaration with an access modifier.
Generally, instance variables should be declared private and methods public. Later in
the book, we’ll discuss why you might want to declare a method private.

Fig. 3.4 | Conceptual view of an Account object with its encapsulated private instance
variable name and protective layer of public methods.

private int numberOfStudents = 10;

ge
tN

am
e

se
tN

am
e

name

50 Chapter 3 Introduction to Classes, Objects, Methods and Strings

in the program. Objects that are referenced may each contain many instance variables. Line
10 of Fig. 3.2:

creates an object of class Scanner, then assigns to the variable input a reference to that
Scanner object. Line 13 of Fig. 3.2:

creates an object of class Account, then assigns to the variable myAccount a reference to that
Account object. Reference-type instance variables, if not explicitly initialized, are initialized
by default to the value null—which represents a “reference to nothing.” That’s why the
first call to getName in line 16 of Fig. 3.2 returns null—the value of name has not yet been
set, so the default initial value null is returned.

To call methods on an object, you need a reference to the object. In Fig. 3.2, the state-
ments in method main use the variable myAccount to call methods getName (lines 16 and
26) and setName (line 21) to interact with the Account object. Primitive-type variables do
not refer to objects, so such variables cannot be used to call methods.

3.4 Account Class: Initializing Objects with Constructors
As mentioned in Section 3.2, when an object of class Account (Fig. 3.1) is created, its
String instance variable name is initialized to null by default. But what if you want to pro-
vide a name when you create an Account object?

Each class you declare can optionally provide a constructor with parameters that can
be used to initialize an object of a class when the object is created. Java requires a con-
structor call for every object that’s created, so this is the ideal point to initialize an object’s
instance variables. The next example enhances class Account (Fig. 3.5) with a constructor
that can receive a name and use it to initialize instance variable name when an Account
object is created (Fig. 3.6).

3.4.1 Declaring an Account Constructor for Custom Object
Initialization
When you declare a class, you can provide your own constructor to specify custom initial-
ization for objects of your class. For example, you might want to specify a name for an Ac-
count object when the object is created, as in line 10 of Fig. 3.6:

In this case, the String argument "Jane Green" is passed to the Account object’s construc-
tor and used to initialize the name instance variable. The preceding statement requires that
the class provide a constructor that takes only a String parameter. Figure 3.5 contains a
modified Account class with such a constructor.

Scanner input = new Scanner(System.in);

Account myAccount = new Account();

Account account1 = new Account("Jane Green");

1 // Fig. 3.5: Account.java
2 // Account class with a constructor that initializes the name.
3

Fig. 3.5 | Account class with a constructor that initializes the name. (Part 1 of 2.)

3.4 Account Class: Initializing Objects with Constructors 51

Account Constructor Declaration
Lines 9–12 of Fig. 3.5 declare Account’s constructor. A constructor must have the same
name as the class. A constructor’s parameter list specifies that the constructor requires one
or more pieces of data to perform its task. Line 9 indicates that the constructor has a String
parameter called name. When you create a new Account object (as you’ll see in Fig. 3.6),
you’ll pass a person’s name to the constructor, which will receive that name in the parameter
name. The constructor will then assign name to instance variable name in line 11.

Parameter name of Class Account’s Constructor and Method setName
Recall from Section 3.2.1 that method parameters are local variables. In Fig. 3.5, the con-
structor and method setName both have a parameter called name. Although these param-
eters have the same identifier (name), the parameter in line 9 is a local variable of the
constructor that’s not visible to method setName, and the one in line 15 is a local variable
of setName that’s not visible to the constructor.

3.4.2 Class AccountTest: Initializing Account Objects When They’re
Created
The AccountTest program (Fig. 3.6) initializes two Account objects using the construc-
tor. Line 10 creates and initializes the Account object account1. Keyword new requests
memory from the system to store the Account object, then implicitly calls the class’s con-

4 public class Account
5 {
6 private String name; // instance variable
7
8
9

10
11
12
13
14 // method to set the name
15 public void setName(String name)
16 {
17 this.name = name;
18 }
19
20 // method to retrieve the name
21 public String getName()
22 {
23 return name;
24 }
25 } // end class Account

Error-Prevention Tip 3.2
Even though it’s possible to do so, do not call methods from constructors. We’ll explain this
in Chapter 10, Object-Oriented Programming: Polymorphism and Interfaces.

Fig. 3.5 | Account class with a constructor that initializes the name. (Part 2 of 2.)

// constructor initializes name with parameter name
public Account(String name) // constructor name is class name
{

this.name = name;
}

52 Chapter 3 Introduction to Classes, Objects, Methods and Strings

structor to initialize the object. The call is indicated by the parentheses after the class
name, which contain the argument "Jane Green" that’s used to initialize the new object’s
name. The class instance creation expression in line 10 returns a reference to the new ob-
ject, which is assigned to the variable account1. Line 11 repeats this process, passing the
argument "John Blue" to initialize the name for account2. Lines 14–15 use each object’s
getName method to obtain the names and show that they were indeed initialized when the
objects were created. The output shows different names, confirming that each Account
maintains its own copy of instance variable name.

Constructors Cannot Return Values
An important difference between constructors and methods is that constructors cannot re-
turn values, so they cannot specify a return type (not even void). Normally, constructors
are declared public—later in the book we’ll explain when to use private constructors.

Default Constructor
Recall that line 13 of Fig. 3.2

used new to create an Account object. The empty parentheses after “new Account” indicate
a call to the class’s default constructor—in any class that does not explicitly declare a
constructor, the compiler provides a default constructor (which always has no parameters).
When a class has only the default constructor, the class’s instance variables are initialized
to their default values. In Section 8.5, you’ll learn that classes can have multiple construc-
tors.

1 // Fig. 3.6: AccountTest.java
2 // Using the Account constructor to initialize the name instance
3 // variable at the time each Account object is created.
4
5 public class AccountTest
6 {
7 public static void main(String[] args)
8 {
9

10
11
12
13 // display initial value of name for each Account
14 System.out.printf("account1 name is: %s%n", account1.getName());
15 System.out.printf("account2 name is: %s%n", account2.getName());
16 }
17 } // end class AccountTest

account1 name is: Jane Green
account2 name is: John Blue

Fig. 3.6 | Using the Account constructor to initialize the name instance variable at the time
each Account object is created.

Account myAccount = new Account();

// create two Account objects
Account account1 = new Account("Jane Green");
Account account2 = new Account("John Blue");

3.5 Account Class with a Balance; Floating-Point Numbers 53

There’s No Default Constructor in a Class That Declares a Constructor
If you declare a constructor for a class, the compiler will not create a default constructor for
that class. In that case, you will not be able to create an Account object with the class in-
stance creation expression new Account() as we did in Fig. 3.2—unless the custom con-
structor you declare takes no parameters.

Adding the Constructor to Class Account’s UML Class Diagram
The UML class diagram of Fig. 3.7 models class Account of Fig. 3.5, which has a construc-
tor with a String name parameter. Like operations, the UML models constructors in the
third compartment of a class diagram. To distinguish a constructor from the class’s oper-
ations, the UML requires that the word “constructor” be enclosed in guillemets (« and »)
and placed before the constructor’s name. It’s customary to list constructors before other
operations in the third compartment.

3.5 Account Class with a Balance; Floating-Point
Numbers
We now declare an Account class that maintains the balance of a bank account in addition
to the name. Most account balances are not integers. So, class Account represents the ac-
count balance as a floating-point number—a number with a decimal point, such as 43.95,
0.0, –129.8873. [In Chapter 8, we’ll begin representing monetary amounts precisely with
class BigDecimal as you should do when writing industrial-strength monetary applications.]

Java provides two primitive types for storing floating-point numbers in memory—
float and double. Variables of type float represent single-precision floating-point num-
bers and can hold up to seven significant digits. Variables of type double represent double-
precision floating-point numbers. These require twice as much memory as float variables
and can hold up to 15 significant digits—about double the precision of float variables.

Most programmers represent floating-point numbers with type double. In fact, Java
treats all floating-point numbers you type in a program’s source code (such as 7.33 and
0.0975) as double values by default. Such values in the source code are known as floating-
point literals. See Appendix D, Primitive Types, for the precise ranges of values for floats
and doubles.

Software Engineering Observation 3.3
Unless default initialization of your class’s instance variables is acceptable, provide a
custom constructor to ensure that your instance variables are properly initialized with
meaningful values when each new object of your class is created.

Fig. 3.7 | UML class diagram for Account class of Fig. 3.5.

Account

– name : String

«constructor» Account(name: String)
+ setName(name: String)
+ getName() : String

54 Chapter 3 Introduction to Classes, Objects, Methods and Strings

3.5.1 Account Class with a balance Instance Variable of Type double
Our next app contains a version of class Account (Fig. 3.8) that maintains as instance vari-
ables the name and the balance of a bank account. A typical bank services many accounts,
each with its own balance, so line 8 declares an instance variable balance of type double.
Every instance (i.e., object) of class Account contains its own copies of both the name and
the balance.

1 // Fig. 3.8: Account.java
2 // Account class with a double instance variable balance and a constructor
3 // and deposit method that perform validation.
4
5 public class Account
6 {
7 private String name; // instance variable
8
9

10 // Account constructor that receives two parameters
11
12 {
13 this.name = name; // assign name to instance variable name
14
15 // validate that the balance is greater than 0.0; if it's not,
16 // instance variable balance keeps its default initial value of 0.0
17
18
19 }
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 // method that sets the name
35 public void setName(String name)
36 {
37 this.name = name;
38 }
39
40 // method that returns the name
41 public String getName()
42 {

Fig. 3.8 | Account class with a double instance variable balance and a constructor and
deposit method that perform validation. (Part 1 of 2.)

private double balance; // instance variable

public Account(String name, double balance)

if (balance > 0.0) // if the balance is valid
 this.balance = balance; // assign it to instance variable balance

// method that deposits (adds) only a valid amount to the balance
public void deposit(double depositAmount)
{

if (depositAmount > 0.0) // if the depositAmount is valid
 balance = balance + depositAmount; // add it to the balance
}

// method returns the account balance
public double getBalance()
{

return balance;
}

3.5 Account Class with a Balance; Floating-Point Numbers 55

Account Class Two-Parameter Constructor
The class has a constructor and four methods. It’s common for someone opening an account
to deposit money immediately, so the constructor (lines 11–19) now receives a second pa-
rameter—initialBalance of type double that represents the starting balance. Lines 17–
18 ensure that initialBalance is greater than 0.0. If so, initialBalance’s value is as-
signed to instance variable balance. Otherwise, balance remains at 0.0—its default initial
value.

Account Class deposit Method
Method deposit (lines 22–26) does not return any data when it completes its task, so its
return type is void. The method receives one parameter named depositAmount—a dou-
ble value that’s added to the balance only if the parameter value is valid (i.e., greater than
zero). Line 25 first adds the current balance and depositAmount, forming a temporary
sum which is then assigned to balance, replacing its prior value (recall that addition has a
higher precedence than assignment). It’s important to understand that the calculation on
the right side of the assignment operator in line 25 does not modify the balance—that’s
why the assignment is necessary.

Account Class getBalance Method
Method getBalance (lines 29–32) allows clients of the class (i.e., other classes whose meth-
ods call the methods of this class) to obtain the value of a particular Account object’s bal-
ance. The method specifies return type double and an empty parameter list.

Account’s Methods Can All Use balance
Once again, the statements in lines 18, 25 and 31 use the variable balance even though it
was not declared in any of the methods. We can use balance in these methods because it’s
an instance variable of the class.

3.5.2 AccountTest Class to Use Class Account
Class AccountTest (Fig. 3.9) creates two Account objects (lines 9–10) and initializes them
with a valid balance of 50.00 and an invalid balance of -7.53, respectively—for the pur-
pose of our examples, we assume that balances must be greater than or equal to zero. The
calls to method System.out.printf in lines 13–16 output the account names and bal-
ances, which are obtained by calling each Account’s getName and getBalance methods.

43 return name; // give value of name back to caller
44 } // end method getName
45 } // end class Account

1 // Fig. 3.9: AccountTest.java
2 // Inputting and outputting floating-point numbers with Account objects.
3 import java.util.Scanner;

Fig. 3.9 | Inputting and outputting floating-point numbers with Account objects. (Part 1 of 3.)

Fig. 3.8 | Account class with a double instance variable balance and a constructor and
deposit method that perform validation. (Part 2 of 2.)

56 Chapter 3 Introduction to Classes, Objects, Methods and Strings

4
5 public class AccountTest
6 {
7 public static void main(String[] args)
8 {
9

10
11
12 // display initial balance of each object
13 System.out.printf("%s balance: $ %n",
14 account1.getName(),);
15 System.out.printf("%s balance: $ %n%n",
16 account2.getName(),);
17
18 // create a Scanner to obtain input from the command window
19 Scanner input = new Scanner(System.in);
20
21 System.out.print("Enter deposit amount for account1: "); // prompt
22
23 System.out.printf("%nadding to account1 balance%n%n",
24 depositAmount);
25
26
27 // display balances
28 System.out.printf("%s balance: $ %n",
29 account1.getName(),);
30 System.out.printf("%s balance: $ %n%n",
31 account2.getName(),);
32
33 System.out.print("Enter deposit amount for account2: "); // prompt
34
35 System.out.printf("%nadding to account2 balance%n%n",
36 depositAmount);
37
38
39 // display balances
40 System.out.printf("%s balance: $ %n",
41 account1.getName(),);
42 System.out.printf("%s balance: $ %n%n",
43 account2.getName(),);
44 } // end main
45 } // end class AccountTest

Jane Green balance: $50.00
John Blue balance: $0.00

Enter deposit amount for account1: 25.53

adding 25.53 to account1 balance

Jane Green balance: $75.53
John Blue balance: $0.00

Fig. 3.9 | Inputting and outputting floating-point numbers with Account objects. (Part 2 of 3.)

Account account1 = new Account("Jane Green", 50.00);
Account account2 = new Account("John Blue", -7.53);

%.2f
account1.getBalance()

%.2f
account2.getBalance()

double depositAmount = input.nextDouble(); // obtain user input
%.2f

account1.deposit(depositAmount); // add to account1’s balance

%.2f
account1.getBalance()

%.2f
account2.getBalance()

depositAmount = input.nextDouble(); // obtain user input
%.2f

account2.deposit(depositAmount); // add to account2 balance

%.2f
account1.getBalance()

%.2f
account2.getBalance()

3.5 Account Class with a Balance; Floating-Point Numbers 57

Displaying the Account Objects’ Initial Balances
When method getBalance is called for account1 from line 14, the value of account1’s
balance is returned from line 31 of Fig. 3.8 and displayed by the System.out.printf
statement (Fig. 3.9, lines 13–14). Similarly, when method getBalance is called for
account2 from line 16, the value of the account2’s balance is returned from line 31 of
Fig. 3.8 and displayed by the System.out.printf statement (Fig. 3.9, lines 15–16). The
balance of account2 is initially 0.00, because the constructor rejected the attempt to start
account2 with a negative balance, so the balance retains its default initial value.

Formatting Floating-Point Numbers for Display
Each of the balances is output by printf with the format specifier %.2f. The %f format
specifier is used to output values of type float or double. The .2 between % and f repre-
sents the number of decimal places (2) that should be output to the right of the decimal
point in the floating-point number—also known as the number’s precision. Any floating-
point value output with %.2f will be rounded to the hundredths position—for example,
123.457 would be rounded to 123.46 and 27.33379 would be rounded to 27.33.

Reading a Floating-Point Value from the User and Making a Deposit
Line 21 (Fig. 3.9) prompts the user to enter a deposit amount for account1. Line 22 de-
clares local variable depositAmount to store each deposit amount entered by the user. Un-
like instance variables (such as name and balance in class Account), local variables (like
depositAmount in main) are not initialized by default, so they normally must be initialized
explicitly. As you’ll learn momentarily, variable depositAmount’s initial value will be de-
termined by the user’s input.

Line 22 obtains the input from the user by calling Scanner object input’s nextDouble
method, which returns a double value entered by the user. Lines 23–24 display the
depositAmount. Line 25 calls object account1’s deposit method with the depositAmount
as the method’s argument. When the method is called, the argument’s value is assigned to
the parameter depositAmount of method deposit (line 22 of Fig. 3.8); then method
deposit adds that value to the balance. Lines 28–31 (Fig. 3.9) output the names and bal-
ances of both Accounts again to show that only account1’s balance has changed.

Enter deposit amount for account2: 123.45

adding 123.45 to account2 balance

Jane Green balance: $75.53
John Blue balance: $123.45

Common Programming Error 3.1
The Java compiler will issue a compilation error if you attempt to use the value of an un-
initialized local variable. This helps you avoid dangerous execution-time logic errors. It’s
always better to get the errors out of your programs at compilation time rather than exe-
cution time.

Fig. 3.9 | Inputting and outputting floating-point numbers with Account objects. (Part 3 of 3.)

58 Chapter 3 Introduction to Classes, Objects, Methods and Strings

Line 33 prompts the user to enter a deposit amount for account2. Line 34 obtains the
input from the user by calling Scanner object input’s nextDouble method. Lines 35–36
display the depositAmount. Line 37 calls object account2’s deposit method with
depositAmount as the method’s argument; then method deposit adds that value to the
balance. Finally, lines 40–43 output the names and balances of both Accounts again to
show that only account2’s balance has changed.

UML Class Diagram for Class Account
The UML class diagram in Fig. 3.10 concisely models class Account of Fig. 3.8. The dia-
gram models in its second compartment the private attributes name of type String and
balance of type double.

Class Account’s constructor is modeled in the third compartment with parameters name
of type String and initialBalance of type double. The class’s four public methods also
are modeled in the third compartment—operation deposit with a depositAmount param-
eter of type double, operation getBalance with a return type of double, operation setName
with a name parameter of type String and operation getName with a return type of String.

3.6 Wrap-Up
In this chapter, you learned how to create your own Java classes and methods, create ob-
jects of those classes and call methods of those objects to perform useful actions. You de-
clared instance variables of a class to maintain data for each object of the class, and you
declared your own methods to operate on that data. You called methods and passed infor-
mation to them as arguments whose values are assigned to the method’s parameters. You
learned the difference between a local variable of a method and an instance variable of a
class, and that only instance variables are initialized automatically. You also learned how
to use a class’s constructor to specify the initial values for an object’s instance variables. You
saw how to create UML class diagrams that model the methods, attributes and construc-
tors of classes. Finally, you learned about floating-point numbers (numbers with decimal
points)—how to store them with variables of primitive type double, how to input them
with a Scanner object and how to format them with printf and format specifier %f for
display purposes. [In Chapter 8, we’ll begin representing monetary amounts precisely with
class BigDecimal.] In the next chapter we discuss control statements, which specify the or-
der in which a program’s actions are performed.

Fig. 3.10 | UML class diagram for Account class of Fig. 3.8.

Account

– name : String
– balance : double

«constructor» Account(name : String, balance: double)
+ deposit(depositAmount : double)
+ getBalance() : double
+ setName(name : String)
+ getName() : String

This page intentionally left blank

Symbols
^, bitwise exclusive OR 973
^, boolean logical exclusive OR 110, 112

truth table 112
^=, bitwise exclusive OR assignment

operator 983
_ SQL wildcard character 740, 741
, (comma) formatting flag 96
--, predecrement/postdecrement 82
-, subtraction 33, 34
!, logical NOT 110, 112

truth table 113
!=, not equals 34
? (wildcard type argument) 607
?:, ternary conditional operator 66
. dot separator 44
‚ flag 956
(flag 956
{, left brace 23
}, right brace 23
@ symbol 924
@Override annotation 243
* SQL wildcard character 739
* wildcard in a file name 46
*, multiplication 33, 34
*=, multiplication assignment operator

81
/, division 33, 34
/* */ traditional comment 22
/** */ Java documentation comment

22, 924
//, end-of-line comment 22
/=, division assignment operator 81
\, backslash escape sequence 28
\', single-quote-character escape

sequence 960
\", double-quote escape sequence 28,

960
\\, backslash-character escape sequence

960
\b, escape sequence 960
\f, form-feed escape sequence 961
\n, newline escape sequence 27, 28, 961
\r, carriage-return escape sequence 28,

961
\t, horizontal tab escape sequence 28,

961
&, bitwise AND 973
&, boolean logical AND 110, 112
&&, conditional AND 110, 111

truth table 110
&=, bitwise AND assignment operator

983
character 930
flag 956, 957
% conversion character 952

% SQL wildcard character 740
%, remainder 33, 34
%% format specifier 954
%=, remainder assignment operator 81
%A format specifier 948
%a format specifier 948
%B format specifier 952
%b format specifier 113, 952, 953
%C format specifier 949
%c format specifier 949, 949
%d format specifier 32, 946, 946, 947
%E format specifier 947, 948
%e format specifier 947, 948
%f format specifier 57, 947, 948
%G format specifier 948
%g format specifier 948
%H format specifier 952
%h format specifier 953
%n format specifier 953
%o format specifier 946, 947
%S format specifier 949
%s format specifier 29, 946, 949
%T format specifier 950
%t format specifier 950
%X format specifier 946
%x format specifier 946
- flag 956
+ flag 956
– (minus sign) formatting flag 95
+, addition 33, 34
++, preincrement/postincrement 81
+=, addition assignment operator 81
+=, string concatenation assignment

operator 452
<, less than 34
<<, left shift 973, 980
<<=, left shift assignment operator 983
<=, less than or equal 34
<> (diamond notation in generics) 514
<> diamond notation for generic type

inference (Java SE 7) 514
=, assignment operator 32
-=, subtraction assignment operator 81
== to determine whether two references

refer to the same object 261
==, is equal to 34
-> (arrow token in a lambda) 551
>, greater than 34
>=, greater than or equal to 34
>>, signed right shift 973, 980
>>=, signed right shift assignment

operator 983
>>>, unsigned right shift 973, 980
>>>=, unsigned right shift assignment

operator 983
|, bitwise inclusive OR 973
|, boolean logical inclusive OR 110, 112

|=, bitwise inclusive OR assignment
operator 983

||, conditional OR 110, 111
truth table 111

~ (bitwise complement) 973
~, bitwise complement 974

Numerics
0 flag 154
0 format flag 196
0x (hexadecimal prefix) 957

A
abbreviating assignment expressions 81
abs method of Math 119
absolute method of ResultSet 760
absolute path 477, 479
absolute value 119
abstract class 266, 270, 271, 272, 291,

998
Abstract Factory design pattern 994, 995,

1006
abstract implementation 545
abstract keyword 271
abstract method 271, 273, 275, 352, 867,

898
abstract superclass 270, 867
Abstract Window Toolkit (AWT) 338,

788
Abstract Window Toolkit Event package

127
AbstractButton class 354, 357, 618,

623
addActionListener method 357
addItemListener method 360
isSelected method 625
setMnemonic method 623
setRolloverIcon method 357
setSelected method 624

AbstractCollection class 545
AbstractList class 545
AbstractMap class 545
AbstractQueue class 545
AbstractSequentialList class 545
AbstractSet class 545
AbstractTableModel class 755, 761

fireTableStructureChanged
method 761

accept method of functional interface
Consumer (Java SE 8) 569

accept method of interface
BiConsumer (Java SE 8) 573

accept method of interface
IntConsumer (Java SE 8) 556

Index

1014 Index

access modifier 40, 41, 857
private 41, 199, 238
protected 199, 238
public 40, 199, 238

access modifier in the UML
- (private) 47

access shared data 680
accessibility 339
accessor method 209
Account class (ATM case study) 823,

826, 829, 831, 832, 839, 846, 847,
848, 849, 850, 851, 878

acquire a lock 664
acquire the lock 664
action 63, 70
action expression in the UML 61, 836
action key 384
action of an object 836
action state in the UML 61, 836
action state symbol 61
ActionEvent class 348, 349, 353, 400

getActionCommand method 349,
357

ActionEvent class (JavaFX) 809, 811
ActionListener interface 348, 353

actionPerformed method 348,
352, 393, 400

actionPerformed method of interface
ActionListener 348, 352, 393,
400

activation in a UML sequence diagram
850

activity diagram 60, 61, 63, 92
do...while statement 98
for statement 92
if statement 63
if...else statement 64
in the UML 70, 823, 836, 837, 854
sequence statement 61
switch statement 103
while statement 70

activity in the UML 60, 823, 835, 838
actor in use case in the UML 821
actual type arguments 589
acyclic gradient 431
adapter class 377
Adapter Classes used to implement event

handlers 381
Adapter design pattern 994, 996, 999
add method

ArrayList<T> 191
ButtonGroup 363
JFrame 342
JMenu 623
JMenuBar 624
LinkedList<T> 518
List<T> 513, 516

add method of class BigDecimal 231
add rows or columns to a GridPane 803
addActionListener method

of class AbstractButton 357
of class JTextField 348

addAll method
Collections 519, 529
List 516

addFirst method of LinkedList 519
addItemListener method of class

AbstractButton 360
addition 33

addition compound assignment operator,
+= 81

addKeyListener method of class
Component 384

addLast method of LinkedList 518
addListener method of interface

ObservableValue 812
addListSelectionListener method

of class JList 369
addMouseListener method of class

Component 377
addMouseMotionListener method of

class Component 377
addPoint method of class Polygon 426,

428
addSeparator method of class JMenu

624
addTab method of class JTabbedPane

638
addTableModelListener method of

TableModel 755
addWindowListener method of class

Window 617
aggregation in the UML 828
Agile Alliance

(www.agilealliance.org) 16
Agile Manifesto

(www.agilemanifesto.org) 16
agile software development 16
algorithm 1004

in Java Collections Framework 519
aligning decimal points in output 945
alignment in a VBox (JavaFX) 796
Alignment property of a VBox (JavaFX)

796
allClasses-frame.html generated by

javadoc 934
alpha software 18
alphabetizing 440
analysis stage of the software life cycle 821
anchor field of class

GridBagConstraints 643
AND (in SQL) 746, 747
and method of class BitSet 984
and method of interface Predicate

(Java SE 8) 563
Android 7

Google Play 8
operating system 7
smartphone 7

Android for Programmers: An App-Driven
Approach 8

angle brackets (< and >) 588
annotation

@Override 243
anonymous inner class 194, 302, 348,

366, 382, 812
anonymous method (Java SE 8) 551
anonymous methods 302
Apache Software Foundation 7
API (application programming interface)

30, 118
API documentation 128
API links

Deprecated 916
Help 916
Index 916
Tree 916

append method of class
StringBuilder 455

Apple Computer, Inc. 938
application 21

command-line arguments 121
Application class (JavaFX) 799

launch method 799, 807
start method 799, 807

application programming interface (API)
8, 118

apply method of functional interface
Function (Java SE 8) 565

applyAsDouble method of interface
ToDoubleFunction (Java SE 8) 575

applyAsInt method of interface
IntBinaryOperator (Java SE 8)
558

applyAsInt method of interface
IntUnaryOperator (Java SE 8) 560

arc 422
arc angle 422
arc width and arc height for rounded

rectangles 421
Arc2D class 403

CHORD constant 432
OPEN constant 432
PIE constant 432

Arc2D.Double class 428
architectural patterns 994, 1008, 1010
archive files 227
args parameter 184
argument index 946, 952, 960
argument list 947
argument promotion 125
argument to a method 45
arithmetic compound assignment

operators 81
arithmetic operators 33
arithmetic overflow 73, 314
ArithmeticException class 232, 307,

313
array 145, 475, 1011

bounds checking 155
ignoring element zero 157
length instance variable 147
pass an array element to a method

165
pass an array to a method 165

array-access expression 146
array-creation expression 147
array initializer 149

for multidimensional array 173
nested 173

array of one-dimensional arrays 173
ArrayBlockingQueue class 680, 691,

706
size method 682

arraycopy method of class System
186, 187

ArrayIndexOutOfBoundsException
class 155, 158, 428

ArrayList<T> generic class 188, 511,
527
add method 191
clear method 189
contains method 189, 191
get method 191
indexOf method 189
isEmpty method 210

http://www.agilealliance.org
http://www.agilemanifesto.org

Index 1015

ArrayList<T> generic class (cont.)
remove method 189, 191
size method 191
toString method 607
trimToSize method 189

Arrays class 186
asList method 517, 518
binarySearch method 186
equals method 186
fill method 186, 716
parallelPrefix method 723
parallelSetAll method 723
parallelSort method 721
parallelSort method (Java SE 8)

563
sort method 186, 563, 721
stream method (Java SE 8) 561,

562
toString method 471

Arrays method parallelSort 188
arrow 61
arrow key 384
arrow token (->) in a lambda 551
arrowhead in a UML sequence diagram

850
artifact in the UML 990
ascending order 186

ASC in SQL 742, 743
ascent 416
ASCII (American Standard Code for

Information Interchange) character
set 104, 938

ASCII character set Appendix 897
asList method of Arrays 517, 518
assert statement 328, 898
assertion 328
AssertionError class 328
Assigning superclass and subclass

references to superclass and subclass
variables 269

assignment operator, = 32, 36
assignment operators 81
associate

right to left 78
association (in the UML) 826, 827, 828,

859, 860
name 827

associativity of operators 33, 37, 84
left to right 37
right to left 33

asterisk (*) SQL wildcard character 739
asynchronous call 849
asynchronous event 314
ATM (automated teller machine) case

study 816, 821
ATM class (ATM case study) 826, 827,

828, 831, 833, 835, 839, 846, 847,
848, 849, 858

ATM system 821, 822, 824, 825, 835,
839, 857

ATMCaseStudy class (ATM case study)
892

atomic operation 670, 786
attribute 857, 859, 860

compartment in a class diagram 833
declaration in the UML 833, 835
in the UML 5, 47, 826, 830, 832,

833, 835, 838, 865, 866
name in the UML 833

attribute (cont.)
of a class 4
of an object 5
type in the UML 833

@author javadoc tag 929
Author: note 929
-author option 933
AuthorISBN table of Books database

737
authorISBN table of books database

735, 737
authors table of books database 735
auto commit state 786
auto-unboxing 510
autobox an int 592
autoboxing 462, 510, 592
AutoCloseable interface 216, 330, 752

close method 330
autoincremented 735, 745
automated teller machine (ATM) 816, 821

user interface 817
automatic driver discovery (JDBC 4) 751
automatic garbage collection 317
automatic scrolling 369
average 71, 73
average method of interface

DoubleStream (Java SE 8) 575
average method of interface

IntStream (Java SE 8) 557
await method of interface Condition

699, 703
awaitTermination method of interface

ExecutorService 669
AWT (Abstract Window Toolkit) 338,

788
components 339

AWTEvent class 350

B
B conversion character 952
b conversion character 952
background color 410, 412
backing array 517
backslash (\) 27, 960, 961
BalanceInquiry class (ATM case

study) 826, 829, 831, 832, 834, 836,
839, 847, 848, 849, 850, 858, 862,
863, 864

Balking design pattern 994, 1005
BankDatabase class (ATM case study)

826, 829, 831, 839, 841, 846, 847,
848, 849, 850, 851, 858, 860

bar chart 152, 153
bar of asterisks 152, 153
base 973
base class 235
base of a number 461
baseline of the font 414
BasePlusCommissionEmployee class

extends CommissionEmployee 282
Basic Latin block 942
BasicStroke class 403, 431, 432

CAP_ROUND constant 432
JOIN_ROUND constant 433

batch file 483
behavior 839

of a class 4
of a system 835, 836, 838, 848

behavioral design patterns 993, 997,
1001, 1010

beta software 18
between method of class Duration 722
BiConsumer functional interface (Java

SE 8) 573, 580
accept method 573

bidirectional iterator 517
bidirectional navigability in the UML

858
BigDecimal class 78, 96, 230, 808

add method 231
ArithmeticException class 232
multiply method 231
ONE constant 231
pow method 231
setScale method 232
TEN constant 231
valueOf method 230
ZERO constant 231

BigInteger class 708
binary

base 2 number system 964
binary file 476
binary operator 32, 33, 112
binary search algorithm 527
BinaryOperator functional interface

(Java SE 8) 551
binarySearch method

of Arrays 186, 188
of Collections 519, 527, 529

bit manipulation 973
BitSet class 973, 983

and method 984
clear method 984
equals method 984
get method 984
or method 984
set method 983
size method 984
toString method 984
xor method 984

bitwise AND (&) 973
Bitwise AND, bitwise inclusive OR,

bitwise exclusive OR and bitwise
complement operators 976

bitwise assignment operators 983
^= (bitwise exclusive OR) 983
&= (bitwise AND) 983
<<= (left shift) 983
>>= (signed right shift) 983
>>>= (unsigned right shift) 983
|= (bitwise inclusive OR) 983

bitwise complement (~) operator 973,
974, 980

bitwise exclusive OR (^) operator 973,
980

bitwise inclusive OR (|) operator 973
bitwise operators 110, 973, 974

^ (bitwise exclusive OR) 973
& (bitwise AND) 973
<< (left shift) 973
>> (signed right shift) 973
>>> (unsigned right shift) 973
| (bitwise inclusive OR) 973
~ (complement) 973

bitwise shift operations 981
blank line 22
block 65, 77

1016 Index

block increment of a JSlider 613
blocked state 657, 665
BlockingQueue interface 680

put method 680, 681
take method 680, 682

body
of a class declaration 23
of a loop 70
of a method 23
of an if statement 34

Bohm, C. 60
BOLD constant of class Font 414, 414
book-title capitalization 337, 354
books database 735

table relationships 738
Boolean

attribute in the UML 831
class 510

boolean 105
expression 66, 906
promotions 126

boolean logical AND, & 110, 112
boolean logical exclusive OR, ^ 110, 112

truth table 112
boolean logical inclusive OR, | 112
boolean primitive type 66, 898, 899,

906
border of a JFrame 616
BorderLayout class 377, 387, 388, 391,

400
CENTER constant 377, 391, 393
EAST constant 377, 391
NORTH constant 377, 391
SOUTH constant 377, 391
WEST constant 377, 391

BOTH constant of class
GridBagConstraints 644

bounded buffer 691
bounding rectangle 420, 422, 613
bounds checking 155
Box class 399, 639, 641

createGlue method 642
createHorizontalBox method

400, 641
createHorizontalGlue method

642
createHorizontalStrut method

641
createRigidArea method 642
createVerticalBox method 641
createVerticalGlue method 642
createVerticalStrut method

641
X_AXIS constant 642
Y_AXIS constant 642

boxed method of interface IntStream
(Java SE 8) 580

boxing 189
boxing conversion 510, 592
BoxLayout class 400, 639
BoxLayout layout manager 639
braces ({ and }) 65, 77, 90, 98, 149

not required 102
braille screen reader 339
branch 1000
break 898
break mode 903
break statement 102, 108

breakpoint 901
inserting 903, 905
listing 913
removing 913

Bridge design pattern 994, 996, 1000
brightness 412
brittle software 255
buffer 504, 673
buffered I/O 504
BufferedImage class 432

createGraphics method 432
TYPE_INT_RGB constant 432

BufferedInputStream class 505
BufferedOutputStream class 504,

1007
flush method 504

BufferedReader class 505
BufferedWriter class 505
Builder design pattern 995
building-block approach to creating

programs 5
bulk operation 510
business publications 18
button 334, 354
Button class (JavaFX) 805
button label 354
ButtonGroup class 360, 618, 625

add method 363
byte-based stream 476
Byte class 510
byte keyword 899
byte primitive type 98, 898, 973

promotions 126
ByteArrayInputStream class 505
ByteArrayOutputStream class 505
bytecode 10, 25
bytecode verifier 11

C
CachedRowSet interface 767

close method 769
calculations 37, 60
Calendar class 951

getInstance method 952
call-by-reference 166
call-by-value 166
call method of interface Callable 726
Callable interface 726

call method 726
CallableStatement interface 785
camel case 31
camera 8
cancel method of class SwingWorker

721
CANCEL_OPTION constant of

JFileChooser 501
CAP_ROUND constant of class

BasicStroke 432
capacity method

of class StringBuilder 452
capacity of a StringBuilder 451
capturing lambdas 556
card games 158
Card Shuffling and Dealing

with Collections method
shuffle 523

caretaker object 998
carriage return 28

carry bit 971
Cascading 789
Cascading Style Sheets (CSS) 789, 789
case keyword 102, 898
case sensitive 23

Java commands 13
CashDispenser class (ATM case study)

826, 827, 828, 831, 832, 839, 851,
876

casino 133
cast

downcast 268
operator 77, 126

catch
a superclass exception 317
an exception 309

catch
block 311, 313, 314, 318, 321, 322
clause 311, 898
keyword 311

Catch block 157
catch handler

multi-catch 312
catch-or-declare requirement 316
cd to change directories 24
ceil method of Math 120
cell in a GridPane 799
CENTER constant

BorderLayout 377, 391, 393
FlowLayout 391
GridBagConstraints 643

center mouse button click 380
centered 389
Chain-of-Responsibility design pattern

994, 997, 1002
chained exception 325
change directories 24
change the default layout (JavaFX Scene

Builder) 795, 803
changed method of interface

ChangeListener (JavaFX) 808
ChangeEvent class 616
ChangeListener interface 616

stateChanged method 616
ChangeListener interface (JavaFX)

801, 808, 812
changing look-and-feel of a Swing-based

GUI 632
char

array 439
keyword 898, 899
primitive type 31, 98
promotions 126

character
constant 104
literal 437

character-based stream 476
Character class 437, 460, 510

charValue method 462
digit method 461
forDigit method 461
isDefined method 460
isDigit method 460
isJavaIdentifierPart method

460
isJavaIdentifierStart method

460
isLetter method 460
isLetterOrDigit method 460

Index 1017

Character class (cont.)
isLowerCase method 460
isUpperCase method 460
static conversion methods 461
toLowerCase method 461
toUpperCase method 460

character encoding 937
character set 938
character string 24
CharArrayReader class 506
CharArrayWriter class 506
charAt method

of class String 439
of class StringBuilder 454

CharSequence interface 471
charValue method of class Character

462
checkbox 354, 360
checkbox label 360
checked exception 315
Checking with assert that a value is

within range 329
child window 612, 633, 635, 636
CHORD constant of class Arc2D 432
circular buffer 692
CJK Unified Ideographs block 942
class 4, 833, 839, 843, 857

anonymous inner class 194
class keyword 40
constructor 44, 50, 859
data hiding 48
declaration 22
default constructor 52
file 25
get method 202
instance variable 5
name 22, 859
nested class 194
set method 202

class-average problem 71, 75
class cannot extend a final class 289
Class class 262, 287, 343, 760

getName method 262, 287
getResource method 343

class diagram
for the ATM system model 829, 853
in the UML 823, 826, 828, 832,

839, 857, 860, 864, 865, 866
.class file 10, 25

separate one for every class 200
class hierarchy 235, 271
class instance creation expression 44, 52,

196
diamond notation (<>) 191, 192

class keyword 22, 40, 898
class library 236
class loader 10, 227, 343
class method 119
class name

fully qualified 48
class names

camel case naming 40
class variable 120, 216
classwide information 216
ClassCastException class 509
Classes

AbstractButton 354, 357, 618,
623

AbstractCollection 545

Classes (cont.)
AbstractList 545
AbstractMap 545
AbstractQueue 545
AbstractSequentialList 545
AbstractSet 545
AbstractTableModel 755, 761
ActionEvent 348, 349, 353, 400
ActionEvent (JavaFX) 809, 811
Application (JavaFX) 799
Arc2D 403
Arc2D.Double 428
ArithmeticException 232, 307
ArrayBlockingQueue 680, 691,

706
ArrayIndexOutOfBoundsExcept

ion 155, 158
ArrayList<T> 188, 189, 191, 511,

512, 527
Arrays 186
AssertionError 328
AWTEvent 350
BasicStroke 403, 431, 432
BigDecimal 78, 96, 230, 808
BigInteger 708
BitSet 973
Boolean 510
BorderLayout 377, 387, 388, 391,

400
Box 399, 639, 641
BoxLayout 400, 639
BufferedImage 432
BufferedInputStream 505
BufferedOutputStream 504
BufferedReader 505
BufferedWriter 505
ButtonGroup 360, 618, 625
Byte 510
ByteArrayInputStream 505
ByteArrayOutputStream 505
Calendar 951
ChangeEvent 616
Character 437, 455, 460, 510
CharArrayReader 506
CharArrayWriter 506
Class 262, 287, 343, 760
Collections 511, 591
Collector (Java SE 8) 563
Color 403
CompletableFuture class 726
Component 339, 372, 405, 406,

617, 648
ComponentAdapter 378
ComponentListener 388
ConcurrentHashMap 706
ConcurrentLinkedDeque 706
ConcurrentSkipListMap 706
ConcurrentSkipListSet 706
Container 339, 370, 388, 396, 397
ContainerAdapter 378
CopyOnWriteArrayList 706
CopyOnWriteArraySet 706
DataInputStream 504
DataOutputStream 504
Date 951
DelayQueue 706
Double 510, 606
DoubleProperty (JavaFX) 812
DriverManager 752

Classes (cont.)
Ellipse2D 403
Ellipse2D.Double 428
Ellipse2D.Float 428
EmptyStackException 533
EnumSet 215
Error 314
EventListenerList 352
Exception 314
ExecutionException 710
Executors 660
FileReader 506
Files 477, 577
FilterInputStream 504
FilterOutputStream 504
Float 510
FlowLayout 342, 388
FocusAdapter 378
Font 359, 403, 414
FontMetrics 403, 416
Formatter 477, 945
Frame 616
FXMLLoader (JavaFX) 801, 807,

810, 811
GeneralPath 403, 433
GradientPaint 403, 431
Graphics 382, 403, 428
Graphics2D 403, 428, 432
GridBagConstraints 643, 648,

649
GridBagLayout 639, 642, 644,

649
GridLayout 388, 395
GridPane (JavaFX) 799
HashMap 537
HashSet 534
Hashtable 537
IllegalMonitorStateExceptio

n 684, 699
ImageIcon 343
ImageView (JavaFX) 791
IndexOutOfRangeException 158
InetAddress 1007
InputEvent 373, 380, 384
InputMismatchException 308
InputStream 503
InputStreamReader 506
Instant (Java SE 8) 729
Integer 337, 510, 606
InterruptedException 661
ItemEvent 360, 363
JApplet 617
JButton 338, 354, 357, 393
JCheckBox 338, 357
JCheckBoxMenuItem 617, 618,

624
JColorChooser 410
JComboBox 338, 363, 644
JComponent 339, 340, 342, 352,

364, 367, 381, 397, 403, 405
JDesktopPane 633
JDialog 623
JFileChooser 500
JFrame 616
JInternalFrame 633, 635
JLabel 338, 340
JList 338, 367
JMenu 617, 624, 635
JMenuBar 617, 624, 635

1018 Index

Classes (cont.)
JMenuItem 618, 635
JOptionPane 335
JPanel 338, 381, 388, 397, 613
JPasswordField 344, 349
JPopupMenu 625
JProgressBar 717
JRadioButton 357, 360, 363
JRadioButtonMenuItem 617,

618, 625
JScrollPane 369, 372, 400, 401
JSlider 612, 613, 616
JTabbedPane 636, 642
JTable 754
JTextArea 387, 398, 400, 644, 647
JTextComponent 344, 347, 398,

400
JTextField 338, 344, 348, 352, 398
JToggleButton 357
KeyAdapter 378
KeyEvent 353, 384
Label (JavaFX) 791
Line2D 403, 432
Line2D.Double 428
LinearGradientPaint 431
LineNumberReader 506
LinkedBlockingDeque 706
LinkedBlockingQueue 706
LinkedList 511
LinkedTransferQueue 706
ListSelectionEvent 367
ListSelectionModel 369
Long 510
Matcher 437, 471
Math 119
MouseAdapter 377, 378
MouseEvent 353, 373, 628
MouseMotionAdapter 378, 381
MouseWheelEvent 374
Node (JavaFX) 790
Number 606
NumberFormat 230, 722, 800, 808
Object 216
ObjectInputStream 492
ObjectOutputStream 492
Optional class (Java SE 8) 570
OptionalDouble 557, 575
OutputStream 503
OutputStreamWriter 506
Parent (JavaFX) 802, 807
Paths 477
Pattern 437, 471
PipedInputStream 503
PipedOutputStream 503
PipedReader 506
PipedWriter 506
Point 382
Polygon 403, 425
PrintStream 504
PrintWriter 506
PriorityBlockingQueue 706
PriorityQueue 533
Properties 541
RadialGradientPaint 431
Reader 505
Rectangle2D 403
Rectangle2D.Double 428
ReentrantLock 698, 700
RoundRectangle2D 403

Classes (cont.)
RoundRectangle2D.Double 428,

432
RowFilter 766
RowSetFactory 767
RowSetProvider 767
RuntimeException 315
Scanner 31
Scene (JavaFX) 790, 799, 807, 808
SecureRandom 128
Short 510
Slider (JavaFX) 798, 800
Socket 1006
SQLException 752
SQLFeatureNotSupportedExcep

tion 760
Stack 531
StackTraceElement 324
Stage (JavaFX) 790, 799, 807, 808
String 437
StringBuffer 452
StringBuilder 437, 451
StringIndexOutOfBoundsExcep

tion 447
StringReader 506
StringWriter 506
SwingUtilities 632
SwingWorker 707
SynchronousQueue 706
SystemColor 431
TableModelEvent 766
TableRowSorter 766
TextField (JavaFX) 800
TexturePaint 403, 431, 432
Throwable 314, 324
TreeMap 537
TreeSet 534
Types 754
UIManager 629
UnsupportedOperationExcepti

on 517
Vbox (JavaFX) 795
Vector 511
Window 616, 617
WindowAdapter 378, 766
Writer 505

class-instance creation expression 813
ClassName.this 623
CLASSPATH

environment variable 25, 227
classpath 227, 751
-classpath command-line argument

to java 228
to javac 227

CLASSPATH problem 13
clear debugger command 913
clear method

of ArrayList<T> 189
of BitSet 984
of List<T> 517
of PriorityQueue 533

clearRect method of class Graphics
419

click a button 344, 801
click count 378
click the scroll arrows 366
client

object 1007
of a class 48, 839, 848

client code 267
client tier 1009
clone method of Object 262
cloning objects

deep copy 262
shallow copy 262

close a window 340, 344, 801
close method

of CachedRowSet 769
of Connection 754
of Formatter 484
of interface Connection 754
of interface ResultSet 754
of interface Statement 754
of JdbcRowSet 769
of ObjectOutputStream 497
of ResultSet 754
of Statement 754

close method of interface
AutoCloseable 330

closed polygons 425
closePath method of class

GeneralPath 435
cloud computing 17
code 6
code value 939, 942
coin tossing 129
collaboration diagram in the UML 823
collaboration in the UML 845, 846, 847,

849
collect method of interface Stream

(Java SE 8) 563, 573, 574, 580
collection 188, 508
collection implementation 544
Collection interface 509, 510, 514,

519
contains method 514
iterator method 514

collections
synchronized collection 511
unmodifiable collection 511

Collections class 511, 591
addAll method 519, 529
binarySearch method 519, 527,

529
copy method 519, 526
disjoint method 519, 529
fill method 519, 525
frequency method 519, 529
max method 519, 526
min method 519, 526
reverse method 519, 525
reverseOrder method 521
shuffle method 519, 523, 525
sort method 520
wrapper methods 511

collections framework 508
Collections methods reverse, fill,

copy, max and min 526
Collector interface (Java SE 8) 563
Collectors class (Java SE 8) 563

groupingBy method 573, 574, 578,
580

toList method 563
collision in a hashtable 538
color 403
Color class 403

getBlue method 407, 409
getColor method 407

Index 1019

Color class (cont.)
getGreen method 407, 409
getRed method 407, 409
setColor method 407

Color constant 406, 409
color manipulation 405
color swatches 412
color-chooser dialog 412
column 173, 734, 735
column number in a result set 740
columns of a two-dimensional array 173
combo box 334, 363
comma (,) 94
comma (,) formatting flag 96
comma-separated list 93

of parameters 122
command button 354
Command design pattern 994, 997, 1002
command line 24
command-line argument 121, 184
Command Prompt 10, 24
command window 12, 24
comment

end-of-line (single-line), // 22
Javadoc 22

CommissionEmployee class derived
from Employee 280

commit a transaction 786
commit method of interface

Connection 786
Common Programming Errors overview

xxxii
communication diagram in the UML

823, 848, 849
Comparable<T> interface 300, 443,

520, 590
compareTo method 520, 591

Comparator interface 520, 521, 566,
566
compare method 522
thenComparing method (Java SE

8) 571
Comparator object 520, 526, 535, 537

in sort 520
compare method of interface

Comparator 522
compareTo method

of class String 441, 443
of Comparable 520

compareTo method of Comparable<T>
591

comparing String objects 440
comparison operator 300
compartment in a UML class diagram 46
compilation errors 25
compile 24
compile a program 10
compile method of class Pattern 471
compile-time type safety 513
compiler options

-d 224
compile-time type safety 585
compiling an application with multiple

classes 46
CompletableFuture class (Java SE 8)

726
runAsync method 730
supplyAsync method 729

complex curve 433

component 4, 372
Component class 339, 372, 405, 406,

412, 617, 648, 999, 1001
addKeyListener method 384
addMouseListener method 377
addMouseMotionListener

method 377
getMinimumSize method 616
getPreferredSize method 615
repaint method 383
setBackground method 412
setBounds method 388
setFont method 359
setLocation method 388, 617
setSize method 388, 617
setVisible method 393, 617

component diagram in the UML 990
component in the UML 990
component of an array 146
ComponentAdapter class 378
ComponentListener interface 378, 388
composing lambda expressions 560
Composite design pattern 994, 996, 1001
composite primary key 737, 738
composite structure diagram in the UML

991
composition 210, 236, 238, 827, 828,

853
in the UML 827

compound assignment operators 81, 83
compound interest 94
computerized scientific notation 947
concat method of class String 448
concatenate strings 219
concatenation 123
concordance 576
concrete class 271
concrete subclass 276
CONCUR_READ_ONLY constant 759
CONCUR_UPDATABLE constant 759
Concurrency API 655
concurrency APIs 655
concurrency design patterns 994, 1005
concurrency problem 1005
concurrent access to a Collection by

multiple threads 544
concurrent operations 654
concurrent programming 655
concurrent threads 680
ConcurrentHashMap class 706
ConcurrentLinkedDeque class 706
ConcurrentSkipListMap class 706
ConcurrentSkipListSet class 706
condition 34, 98
Condition interface 699, 700

await method 699, 703
signal method 699
signalAll method 699

condition object 699
conditional AND, && 110, 111, 112

truth table 110
conditional expression 66
conditional operator, ?: 66
conditional OR, || 110, 111

truth table 111
confusing the equality operator == with

the assignment operator = 36
connect to a database 750
connected lines 425

connected RowSet 767
connection between Java program and

database 752
Connection interface 752, 754, 759,

786
close method 754
commit method 786
createStatement method 753,

759
getAutoCommit method 786
prepareStatement method 776
rollBack method 786
setAutoCommit method 786

constant 221
constant integral expression 98, 104
constant variable 104, 151

must be initialized 151
constructor 44, 50, 859

call another constructor of the same
class using this 205

multiple parameters 53
no argument 205
overloaded 202

Constructor Detail section in API 921
constructor reference (Java SE 8) 578
Constructor Summary section in API 919
constructors cannot specify a return type

52
consume an event 348
consumer 655, 672
consumer electronic device 8
Consumer functional interface (Java SE

8) 551, 556, 569
accept method 569

consumer thread 673
cont debugger command 904
Container class 339, 370, 388, 396,

397, 1001
setLayout method 342, 389, 393,

396, 642
validate method 396

container for menus 617
ContainerAdapter class 378
ContainerListener interface 378
contains method

of Collection 514
contains method of class

ArrayList<T> 189, 191
containsKey method of Map 540
content pane 369, 625

setBackground method 370
context-sensitive popup menu 625
continue statement 108, 109, 898, 988
continuous beta 18
control statement 60, 62, 63

nesting 62
stacking 62

control variable 71, 87, 87, 89
controller (in MVC architecture) 801,

1008
controller class 802

initialize instance variables 807
controller class (JavaFX) 791, 801

initialize method 811
controlling expression of a switch 102
controls 333, 788, 791
conversion characters 946

% 953
A 948

1020 Index

conversion characters (cont.)
a 948
B 952
b 952, 953
C 949
c 949
d 946
E 947, 948
e 947, 948
f 947, 948
G 948
g 948
H 952
h 953
n 953
o 946
S 949
s 949
T 950
t 950
X 946
x 946

conversion suffix characters 950
A 950
a 950
B 950
b 950
c 950
D 950
d 950
e 951
F 950
H 951
I 951
j 951
k 951
l 951
M 951
m 950
P 951
p 951
R 950
r 950
S 951
T 950
Y 951
y 951
Z 951

convert
a binary number to decimal 969
a hexadecimal number to decimal

969
an octal number to decimal 969
between number systems 461

coordinate system 403, 405
coordinates (0, 0) 403
copy method of Collections 519, 526
copying files 477
copying objects

deep copy 262
shallow copy 262

CopyOnWriteArrayList class 706
CopyOnWriteArraySet class 706
core package 25
cos method of Math 120
cosine 120
count method of interface IntStream

(Java SE 8) 557
counter 71

counter-controlled repetition 71, 71, 76,
87, 88, 89

coupling 1003, 1003
-cp command line argument

to java 228
craps (casino game) 133
create a package 222
create a reusable class 222
create an object of a class 44
create and use your own packages 222
createGlue method of class Box 642
createGraphics method of class

BufferedImage 432
createHorizontalBox method of class

Box 400, 641
createHorizontalGlue method of

class Box 642
createHorizontalStrut method of

class Box 641
createJdbcRowSet method of interface

RowSetFactory 767
createRigidArea method of class Box

642
createStatement method of

Connection 753, 759
createVerticalBox method of class

Box 641
createVerticalGlue method of class

Box 642
createVerticalStrut method of class

Box 641
creating and initializing an array 148
creating files 477
creational design patterns 993, 994, 999,

1006, 1010
CSS(Cascading Style Sheets) 789
<Ctrl>-d 101
Ctrl key 370, 387
ctrl key 101
<Ctrl>-z 101
currentThread method of class

Thread 661, 666
cursor 24, 26
curve 433
custom drawing area 381
customized subclass of class JPanel 381
cyclic gradient 431

D
-d compiler option 224
-d option 933
dangling-else problem 65
dashed lines 428
data hiding 48
data integrity 209
data source 549
data structure 145, 1011
database 733, 739

table 734
database management system (DBMS)

733
DataInput interface 504
DataInputStream class 504
DataOutput interface 504

writeBoolean method 504
writeByte method 504
writeBytes method 504
writeChar method 504

DataOutput interface (cont.)
writeChars method 504
writeDouble method 504
writeFloat method 504
writeInt method 504
writeLong method 504
writeShort method 504
writeUTF method 504

DataOutputStream class 504
date and time compositions 950
Date class 951
date formatting 946
Date/Time API 188, 199
Date/Time API package 128
DBCS (double byte character set) 940
DB2 733
dead state 657
deadlock 659, 703, 1005
dealing 158
debugger 901

break mode 903
breakpoint 901
clear command 913
cont command 904
defined 901
exit command 909
-g compiler option 902
inserting breakpoints 903
jdb command 902
logic error 901
next command 909
print command 905, 906
run command 903, 905
set command 905, 906
step command 907
step up command 908
stop command 903, 905
suspending program execution 905
unwatch command 910, 911
watch command 909

decimal (base 10) number system 964
decimal integer 946
decimal integer formatting 32
decision 34, 62

symbol in the UML 62, 838
declaration

class 22
import 30, 31
method 23

declarative programming 790
Decorator design pattern 994, 996, 1006,

1007
decrement a control variable 91
decrement operator, -- 82
dedicated drawing area 381
deep copy 262
default case in a switch 102, 104, 132
default constructor 52, 208, 242
default exception handler 324
default initial value 45
default interface methods (Java SE 8)

301
default keyword 898
default layout of the content pane 400
default locale 809
default method in an interface (Java SE

8) 550, 581
default method of an interface (Java SE

8) 548

Index 1021

default methods in interfaces (Java SE
8) 301

default package 48, 224
default upper bound (Object) of a type

parameter 596
default value 45, 85
define a custom drawing area 381
degree 422
Deitel Resource Centers 18
DelayQueue class 706
delegation event model 351
delete method of class

StringBuilder 457
DELETE SQL statement 739, 747
deleteCharAt method of class

StringBuilder 457
deleting directories 477
deleting files 477
delimiter for tokens 463
delimiter string 463
dependent condition 111
deployment diagram in the UML 990
Deposit class (ATM case study) 826,

829, 831, 832, 839, 847, 848, 855,
858, 862, 863

DepositSlot class (ATM case study)
826, 827, 828, 831, 839, 848, 859

deprecated APIs 30
@deprecated javadoc tag 932
Deprecated link in API 916
deprecated-list.html generated by

javadoc 935
Deprecated note 932
deprecation flag 30
derived class 235
descending order 186
descending sort (DESC) 742
descent 416
descriptive words and phrases 831, 832
deserialized object 492
design pattern 17, 992, 993, 995, 996,

998, 999, 1001, 1002, 1003, 1004,
1005, 1006, 1007, 1010

Design Patterns, Elements of Reusable
Object-Oriented Software 993

design process 6, 816, 822, 840, 845
design specification 822
diacritic 939
dialog 335
dialog box 335, 623
Dialog font 414
DialogInput font 414
diamond in the UML 61
diamond notation 514
diamond notation (<>) 191, 191, 192
dice game 133
digit 31, 462, 464, 964
digit method of class Character 461
direct superclass 235, 237
directories

creating 477
getting information about 477
manipulating 477

DIRECTORIES_ONLY constant of
JFileChooser 500

directory 477
separator 227

DirectoryStream interface 477
disconnected RowSet 767

disjoint method of Collections
519, 529

disk 475
disk I/O completion 314
dismiss a dialog 336
dispatch

a thread 658
an event 353

display a line of text 24
display monitor 403
display output 37
dispose method of class Window 617
DISPOSE_ON_CLOSE constant of

interface WindowConstants 617
distance between values (random

numbers) 133
distinct method of interface Stream

(Java SE 8) 572
divide by zero 12, 307
division 33
division compound assignment operator,

/= 81
DO_NOTHING_ON_CLOSE constant of

interface WindowConstants 616
do...while repetition statement 62, 97,

98, 898
document 612, 633
documentation comments 924
dollar signs ($) 23
dot (.) separator 44, 95, 119, 217, 428
dotted line in the UML 61
double-byte character set (DBCS) 940
(double) cast 77
Double class 510, 606
double-precision floating-point number

53
double primitive type 31, 53, 75, 898,

899
promotions 126

double quotes, " 24, 27, 28
double-selection statement 62
DoubleProperty class (JavaFX) 812
doubles method of class

SecureRandom (Java SE 8) 580
DoubleStream interface (Java SE 8)

554, 574
average method 575
reduce method 575
sum method 575

doubleValue method of Number 607
downcast 287, 509
downcasting 268
downstream Collector (Java SE 8) 574
drag the scroll box 366
dragging the mouse to highlight 400
draw method of class Graphics2D 431
draw shapes 403
draw3DRect method of class Graphics

419, 422
drawArc method of class Graphics 422
drawing color 407
drawing on the screen 405
drawLine method of class Graphics

419
drawOval method of class Graphics

419, 422
drawPolygon method of class

Graphics 425, 427

drawPolyline method of class
Graphics 425, 427

drawRect method of class Graphics
419, 432

drawRoundRect method of class
Graphics 420

drawString method of class Graphics
409

driver class 43
DriverManager class 752

getConnection method 752
drop-down list 338, 363
dummy value 74
Duration clas

between method 722
toMillis method 722

dynamic binding 270, 286
dynamic content 8
dynamic resizing 145

E
eager 552
eager stream operation (Java SE 8) 557
eager terminal operation 559
EAST constant

of class BorderLayout 377, 391
of class GridBagConstraints 643

echo character of class JPasswordField
344

Eclipse
demonstration video

(www.deitel.com/books/
jhtp9) 21

Eclipse (www.eclipse.org) 9
Eclipse Foundation 7
edit a program 9
editor 9
effectively final local variables (Java SE

8) 556
efficient (Unicode design principle) 938
element of an array 146
element of chance 128
elided UML diagram 826
eligible for garbage collection 220
eliminate resource leaks 318
Ellipse2D class 403
Ellipse2D.Double class 428
Ellipse2D.Float class 428
ellipsis (...) in a method parameter list

182
else keyword 63, 898
emacs 9
embedded system 7
embedded version of Java DB 747
Employee abstract superclass 275
Employee class hierarchy test program

283
Employee class that implements

Payable 295
empty statement (a semicolon, ;) 37, 66,

98
empty string 349, 439
EmptyStackException class 533
encapsulation 5
end cap 431
End key 384
“end of data entry” 74

http://www.deitel.com/books/jhtp9
http://www.deitel.com/books/jhtp9
http://www.eclipse.org

1022 Index

end-of-file (EOF)
indicator 101
key combinations 484
marker 475

end-of-line (single-line) comment, // 22
endsWith method of class String 444
enhanced for statement 163
ensureCapacity method of class

StringBuilder 453
Enter (or Return) key 24, 352
entity-relationship diagram 738
enum 136

constant 213
constructor 213
declaration 213
EnumSet class 215
keyword 136, 898
values method 214

enum type 136
enumeration constant 136
EnumSet class 215

range method 215
environment variable

CLASSPATH 25
PATH 25

EOFException class 500
equal likelihood 131
equality operator == to compare String

objects 441
equality operators 34
equals method

of class Arrays 186
of class BitSet 984
of class Object 261
of class String 441, 443

equalsIgnoreCase method of class
String 441, 443

erasure 590, 593
Error class 314
Error-Prevention Tips overview xxxi
escape character 27, 745
escape sequence 27, 31, 481, 960, 961

\, backslash 28
\", double-quote 28
\t, horizontal tab 28
newline, \n 27, 28

event 301, 344, 405, 791, 800, 835
event classes 350
event-dispatch thread (EDT) 405, 707
event driven 344, 800
event-driven process 405
event eandling 800
event handler 301, 344, 791, 801

implement with a lambda 581, 813
lambda 581

event handling 344, 347, 352, 791, 801
event source 349

event ID 353
event listener 301, 351, 377

adapter class 377
interface 347, 348, 351, 352, 353,

372, 377, 801
event object 351
event registration 348
event source 349, 351
EventHandler<ActionEvent>

interface (JavaFX) 811
EventListenerList class 352

EventObject class
getSource method 349

exception 157, 305
handler 157
handling 155
parameter 158

Exception class 314
exception handler 311
exception parameter 311
Exceptions 158

IndexOutOfRangeException 158
execute 11
execute method

of JdbcRowSet 769
execute method of the Executor

interface 659, 663
executeQuery method

of PreparedStatement 776
of Statement 753

executeUpdate method of interface
PreparedStatement 776

executing an application 13
execution-time error 12
ExecutionException class 710
Executor interface 659

execute method 659, 663
Executors class 660

newCachedThreadPool method
661

ExecutorService interface 660, 726
awaitTermination method 669
shutdown method 663
submit method 726

exists method of class Files 478
exit debugger command 909
exit method of class System 318, 483
exit point

of a control statement 62
exiting a for statement 108
exp method of Math 120
expanded submenu 623
explicit conversion 77
exponential format 946
exponential method 120
exponential notation 947
exponentiation operator 95
expression 32
extend a class 235
extends keyword 239, 250, 898
extensibility 267
extensible language 39
extension mechanism

extending Java with additional class
libraries 227

external event 372
external iteration 549, 579

F
Facade design pattern 994, 996, 1007
facade object 1007
Facebook 7
factory 1006
factory method 999
Factory Method design pattern 994, 995,

999
fail fast iterator 514
fairness policy of a lock 698
false keyword 34, 66, 898

fatal runtime error 12
fault tolerant 305
fault-tolerant program 157
feature-complete 18
field

default initial value 45
Field Detail section in API 921
field of a class 120, 138
Field Summary section in API 919
field width 95, 946, 954
file 475
File class

toPath method 501
used to obtain file and directory

information 479
FileInputStream class 544
FileNotFoundException class 483
FileOutputStream class 543, 1006
FileReader class 506
files

copying 477
creating 477
getting information about 477
manipulating 477
reading 477

Files class 477, 577
exists method 478
getLastModifiedTime method

478
isDirectory method 478
lines method (Java SE 8) 577
newDirectoryStream method 478
newOutputStream method 495,

498
size method 478

FILES_AND_DIRECTORIES constant of
JFileChooser 500

FILES_ONLY constant of
JFileChooser 500

FileWriter class 506
fill method

of class Arrays 186, 187
of class Collections 519, 525
of class Graphics2D 431, 432, 435

fill method of class Arrays 716
fill pattern 432
fill texture 432
fill with color 403
fill3DRect method of class Graphics

419, 422
fillArc method of class Graphics 422
filled-in shape 432
filled rectangle 407
filled three-dimensional rectangle 419
fillOval method of class Graphics

383, 419, 422
fillPolygon method of class

Graphics 425, 428
fillRect method of class Graphics

407, 419, 432
fillRoundRect method of class

Graphics 420
filter a stream 504
filter elements of a stream (Java SE 8) 559
filter method of interface IntStream

(Java SE 8) 559
filter method of interface Stream

(Java SE 8) 563, 566
FilterInputStream class 504

Index 1023

FilterOutputStream class 504
final

class 289
keyword 104, 120, 151, 221, 288,

664, 898
local variable 366
method 288
variable 151

final release 18
final state in the UML 61, 836
final value 87
finalize method 216, 262
finally

block 311, 317, 703
clause 317, 898
keyword 311

find method of class Matcher 471
findFirst method of interface Stream

(Java SE 8) 570
fireTableStructureChanged

method of AbstractTableModel
761

first method of SortedSet 536
Fit Width property of an ImageView

(JavaFX) 797
five-pointed star 433
fixed text 32

in a format string 28, 946
flag value 74
flags 946, 956
flash drive 475
flatMap method of interface Stream

(Java SE 8) 578
float

literal suffix F 532
primitive type 31, 53, 898, 899
primitive type promotions 126

Float class 510
floating-point constant 94
floating-point conversion specifiers 955
floating-point literal 53

double by default 53
floating-point number 53, 73, 75, 76,

532, 948
division 77
double precision 53
double primitive type 53
float primitive type 53
single precision 53

floor method of Math 120
flow of control 70, 76
flow of control in the if...else statement

63
FlowLayout class 342, 388, 389

CENTER constant 391
LEFT constant 391
RIGHT constant 391
setAlignment method 391

flush method
of class BufferedOutputStream

504
Flyweight design pattern 996
focus 345, 805
focus for a GUI application 613, 628
FocusAdapter class 378
FocusListener interface 378
font

manipulation 405
name 414

font (cont.)
size 414
style 414

Font class 359, 403, 414
BOLD constant 414,
getFamily method 413, 416
getName method 413, 414
getSize method 413, 414
getStyle method 413, 416
isBold method 413, 416
isItalic method 413, 416
isPlain method 413, 416
ITALIC constant 414
PLAIN constant 414

font information 403
font manipulation 405
font metrics 416

ascent 418
descent 418
height 418
leading 418

Font property of a Label (JavaFX) 796
font style 358
FontMetrics class 403, 416

getAscent method 417
getDescent method 417
getFontMetrics method 416
getHeight method 417
getLeading method 417

for repetition statement 62, 88, 89, 91,
92, 94, 95, 898
activity diagram 92
enhanced 163
example 92
header 90
nested 154, 175
nested enhanced for 175

forDigit method of class Character
461

forEach method of interface
IntStream (Java SE 8) 556

forEach method of interface Map (Java
SE 8) 573

forEach method of interface Stream
(Java SE 8) 563

foreign key 737, 738
fork/join framework 730
format method

of class Formatter 484, 962
of class String 196, 962

format method of class NumberFormat
231, 722

format specifiers 28, 946
%.2f for floating-point numbers

with precision 78
%% 953
%B 952
%b 952
%b for boolean values 113
%c 949
%d 32, 946, 947
%E 948
%e 948
%f 57, 948
%G 948
%g 948
%H 953
%h 952
%n 953

format specifiers (cont.)
%n (line separator) 29
%o 947
%S 949
%s 29, 946, 949
%X 947
%x 947

format string 28, 946, 955
formatted output 952

, (comma) formatting flag 96
%f format specifier 57
– (minus sign) formatting flag 95
0 flag 154, 196
aligning decimal points in output

945
boolean values 113
comma (,) formatting flag 96
conversion character 946
date and time compositions 950
date and time conversion suffix

characters 950
dates 946
exponential format 946
field width 95, 946
floating-point numbers 57
grouping separator 96
inserting literal characters 945
integers in hexadecimal format 946
integers in octal format 946
left justification 945
left justify 95
minus sign (–) formatting flag 95
precision 57, 946
right justification 95, 945
rounding 945
times 946

Formatter class 477, 481, 945, 961
close method 484
format method 484, 962
toString method 962

FormatterClosedException class
484

formatting
display formatted data 28

Formatting date and time with
conversion character t 951

Formatting output with class Formatter
961

fragile software 255
frame (in the UML) 850
Frame class 616
frequency method of Collections

519, 529
FROM SQL clause 739
fully qualified class name 48
fully qualified type name 224
Function functional interface (Java SE

8) 551, 565
apply method 565
identity method 580

function key 384
functional interface 548, 726
functional interface (Java SE 8) 302, 551
Functional Interfaces

Supplier 726
Functional interfaces (Java SE 8)

@FunctionalInterface
annotation 582

1024 Index

functional interfaces
ActionListener 581
ItemListener 581

Functional interfaces (Java SE 8) 550,
551
BiConsumer 573, 580
BinaryOperator 551
Consumer 551, 556, 569
Function 551, 565
IntFunction 723
IntToDoubleFunction 723
IntToLongFunction 723
IntUnaryOperator 723
Predicate 551, 569
Supplier 551
UnaryOperator 551

functional programming 550
@FunctionalInterface annotation

582
Future interface 726

get method 726, 730
fx:id property of a JavaFX component

802
FXML (FX Markup Language) 789
@FXML annotation 809, 810
FXML markup 794
FXMLLoader class (JavaFX) 801, 807,

810, 811
load method 801, 807

G
-g command line option to javac 902
game playing 128
gaming console 8
Gamma, Erich 993
“Gang of Four” 993, 996, 997, 1005
garbage collection 655
garbage collector 216, 313, 317
general class average problem 74
general path 433
generalities 267
generalization in the UML 862
GeneralPath class 403, 433

closePath method 435
lineTo method 435
moveTo method 434

generic class 189
generics 509, 585

? (wildcard type argument) 607
actual type arguments 589
angle brackets (< and >) 588
class 585, 594
default upper bound (Object) of a

type parameter 596
diamond notation 514
erasure 590
interface 591
method 585, 587, 593
parameterized class 594
parameterized type 594
scope of a type parameter 596
type parameter 588
type parameter section 588
type variable 588
upper bound of a type parameter

592, 593
upper bound of a wildcard 607
wildcard type argument 607

generics (cont.)
wildcard without an upper bound

609
wildcards 605, 607

gesture 8
get method

of class ArrayList<T> 191
of class BitSet 984
of interface Future 726
of interface List<T> 513
of interface Map 540

get method 202, 209
get method of class Paths 477, 478
get method of interface Future 730
getActionCommand method of class

ActionEvent 349, 357
getAscent method of class

FontMetrics 417
getAsDouble method of class

OptionalDouble (Java SE 8) 557,
575

getAutoCommit method of interface
Connection 786

getBlue method of class Color 407,
409

getChars method
of class String 439
of class StringBuilder 454

getClass method of class Object 343
getClass method of Object 262, 287
getClassName method of class

StackTraceElement 324
getClassName method of class

UIManager.LookAndFeelInfo 632
getClickCount method of class

MouseEvent 380
getColor method of class Color 407
getColor method of class Graphics

407
getColumnClass method of

TableModel 755, 760
getColumnClassName method of

ResultSetMetaData 760
getColumnCount method of

ResultSetMetaData 753, 760
getColumnCount method of

TableModel 755, 760
getColumnName method of

ResultSetMetaData 760
getColumnName method of

TableModel 755, 760
getColumnType method of

ResultSetMetaData 753
getConnection method of

DriverManager 752
getContentPane method of class

JFrame 369
getDescent method of class

FontMetrics 417
getFamily method of class Font 413,

416
getFileName method of class

StackTraceElement 324
getFileName method of interface Path

478
getFont method of class Graphics 414
getFontMetrics method of class

FontMetrics 416

getFontMetrics method of class
Graphics 417

getGreen method of class Color 407,
409

getHeight method of class
FontMetrics 417

getIcon method of class JLabel 343
getInstalledLookAndFeels method

of class UIManager 629
getInstance method of Calendar 952
getInt method of ResultSet 754
getKeyChar method of class KeyEvent

387
getKeyCode method of class KeyEvent

387
getKeyModifiersText method of class

KeyEvent 387
getKeyText method of class KeyEvent

387
getLastModifiedTime method of class

Files 478
getLeading method of class

FontMetrics 417
getLineNumber method of class

StackTraceElement 324
getMessage method of class

Throwable 324
getMethodName method of class

StackTraceElement 324
getMinimumSize method of class

Component 616
getModifiers method of class

InputEvent 387
getName method of class Class 262,

287
getName method of class Font 413, 414
getObject method of interface

ResultSet 754, 760
getPassword method of class

JPasswordField 349
getPercentInstance method of class

NumberFormat 722, 809
getPoint method of class MouseEvent

383
getPreferredSize method of class

Component 615
getProperty method of class

Properties 541
getRed method of class Color 407, 409
getResource method of class Class

343
getRow method of interface ResultSet

761
getRowCount method of interface

TableModel 755, 760
getSelectedFile method of class

JFileChooser 501
getSelectedIndex method of class

JComboBox 367
getSelectedIndex method of class

JList 370
getSelectedText method of class

JTextComponent 400
getSelectedValuesList method of

class JList 372
getSize method of class Font 413, 414
getSource method of class

EventObject 349

Index 1025

getStackTrace method of class
Throwable 324

getStateChange method of class
ItemEvent 367

getStyle method of class Font 413,
416

getText method 811
getText method of class JLabel 343
getText method of class

JTextComponent 625
getText method of class

TextInputControl 811
geturrencyCInstance method of class

NumberFormat 231
getValue method of class JSlider 616
getValueAt method of interface

TableModel 755, 760
getX method of class MouseEvent 377
getY method of class MouseEvent 377
GIF (Graphics Interchange Format) 343
GitHub 7
glass pane 369
glyph 939
Good Programming Practices xxxi
Google Play 8
Gosling, James 8
goto elimination 60
goto statement 60
gradient 431
GradientPaint class 403, 431
Grand, Mark 1005
graph information 153
graphical user interface (GUI) 301, 333,

788
design tool 388

graphics 381
Graphics class 382, 403, 405, 428

clearRect method 419
draw3DRect method 419, 422
drawArc method 422
drawLine method 419
drawOval method 419, 422
drawPolygon method 425, 427
drawPolyline method 425, 427
drawRect method 419, 432
drawRoundRect method 420
drawString method 409
fill3DRect method 419, 422
fillArc method 422
fillOval method 383, 419, 422
fillPolygon method 425, 428
fillRect method 407, 419, 432
fillRoundRect method 420
getColor method 407
getFont method 414, 414
getFontMetrics method 417
setColor method 432
setFont method 414

graphics context 405
graphics in a platform-independent

manner 405
Graphics Interchange Format (GIF) 343
Graphics2D class 403, 428, 432, 435

draw method 431
fill method 431, 432, 435
rotate method 435
setPaint method 431
setStroke method 431
translate method 435

greedy quantifier 469
grid 395
grid for GridBagLayout layout manager

642
GridBagConstraints class 643, 648,

649
anchor field 643
BOTH constant 644
CENTER constant 643
EAST constant 643
gridheight field 644
gridwidth field 644
gridx field 644
gridy field 644
HORIZONTAL constant 644
instance variables 643
NONE constant 644
NORTH constant 643
NORTHEAST constant 643
NORTHWEST constant 643
RELATIVE constant 649
REMAINDER constant 649
SOUTH constant 643
SOUTHEAST constant 643
SOUTHWEST constant 643
VERTICAL constant 644
weightx field 644
weighty field 644
WEST constant 643

GridBagConstraints constants
RELATIVE and REMAINDER 649

GridBagLayout class 639, 642, 644,
649
setConstraints method 649

GridBagLayout layout manager 645
gridheight field of class

GridBagConstraints 644
GridLayout class 388, 395
GridLayout containing six buttons 395
GridPane class (JavaFX) 799, 799

add rows or columns 803
Hgap property 805
Vgap property 805

gridwidth field of class
GridBagConstraints 644

gridx field of class
GridBagConstraints 644

gridy field of class
GridBagConstraints 644

GROUP BY 739
group method of class Matcher 472
grouping separator (formatted output) 96
groupingBy method of class

Collectors (Java SE 8) 573, 574,
578, 580

guard condition in the UML 62, 838
Guarded Suspension design pattern 994,

1005
guarding code with a lock 664
GUI (Graphical User Interface) 301

component 333
design tool 388

GUI (Graphical User Interface)
component 788
ImageView (JavaFX) 791
Label (JavaFX) 791
Label class (JavaFX) 791
naming convention 802
Slider (JavaFX) 798, 800

GUI (Graphical User Interface)
component (cont.)
TextField (JavaFX) 800
TextField class (JavaFX) 800

guillemets (« and ») 53

H
H conversion character 952
h conversion character 952
handle an exception 309
has-a relationship 210, 236, 828
hash table 534, 538
hashCode method of Object 262
hashing 537
HashMap class 537

keySet method 541
HashSet class 534
Hashtable class 537, 538, 1011
hash-table collisions 538
hasNext method

of class Scanner 101, 484
of interface Iterator 514, 517

hasPrevious method of
ListIterator 517

headSet method of class TreeSet 535
heavyweight components 339
height 416
height of a rectangle in pixels 407
Helm, Richard 993
Help link in API 916
helpdoc.html generated by javadoc

935
helper method 197
hexadecimal (base 16) number system

964
hexadecimal integer 946
Hgap property of a GridPane 805
hidden fields 138
hide a dialog 336
hide implementation details 199
HIDE_ON_CLOSE constant of interface

WindowConstants 616
Hierarchy window in NetBeans 794, 795
Hiragana block 942
hold a lock 664
hollow diamonds (representing

aggregation) in the UML 828
Home key 384
HORIZONTAL constant of class

GridBagConstraints 644
horizontal coordinate 403
horizontal gap space 393
horizontal glue 642
horizontal JSlider component 613
horizontal scrollbar policy 401
horizontal tab 28
HORIZONTAL_SCROLLBAR_ALWAYS

constant of class JScrollPane 401
HORIZONTAL_SCROLLBAR_AS_NEEDED

constant of class JScrollPane 401
HORIZONTAL_SCROLLBAR_NEVER

constant of class JScrollPane 401
hot spots in bytecode 11
HourlyEmployee class derived from

Employee 278
hue 412

1026 Index

I
I/O performance enhancement 504
IBM Corporation 938
icon 337
Icon interface 343
IDE (integrated development

environment) 9
identifier 23, 31
identifiers

camel case naming 40
identity column 735, 770
IDENTITY keyword (SQL) 735
identity method of functional interface

Function (Java SE 8) 580
identity value in a reduction (Java SE 8)

558
IEEE 754 (grouper.ieee.org/

groups/754/) 899
IEEE 754 floating point 899
if single-selection statement 34, 61, 62,

63, 98, 898
activity diagram 63

if...else double-selection statement 61,
63, 63, 64, 75, 98
activity diagram 64

ignoring array element zero 157
IllegalArgumentException class

196
IllegalMonitorStateException

class 684, 699
IllegalStateException class 487
Image property of a ImageView 796,

797
ImageIcon class 343
ImageView class (JavaFX) 791

Fit Width property 797
Image property 796, 797

immutability 550
immutable 439
immutable data 664
immutable object 219
immutable String object 439
implement an interface 266, 290, 298
implementation-dependent code 199
implementation of a function 276
implementation phase 867
implementation process 840, 857
implements 6
implements 898
implements keyword 290, 295
implements multiple interfaces 374
implicit conversion 77
import declaration 30, 31, 48, 898
in parallel 654
increment 93

a control variable 87
expression 109
of a for statement 91
operator, ++ 82

increment a control variable 87
increment and decrement operators 82
indefinite postponement 659, 703
indefinite repetition 74
indentation 63, 65
index (subscript) 146, 155
Index link in API 916
index of a JComboBox 366
index zero 146

Index_CD.html generated by javadoc
934

Index_CD-all.html generated by
javadoc 935

indexOf method of class
ArrayList<T> 189

indexOf method of class String 445
IndexOutOfBoundsException class

526
IndexOutOfRangeException class

158
indirect superclass 235, 237
InetAddress class 1007
infer a type with the diamond (<>)

notation 192
infer parameter types in a lambda 556
infinite loop 70, 77, 91
infinite recursion 260
infinite stream (Java SE 8) 580
infinity symbol 738
information hiding 5, 48
information tier 1009
inheritance 5, 233, 235, 862, 865, 866,

867
examples 236
extends keyword 239, 250
hierarchy 236, 272
hierarchy for university

CommunityMembers 237
multiple 235
single 235

initial state in the UML 61, 835, 836
initial value of an attribute 833
initial value of control variable 87
initialize a controller’s instance variables

807
initialize a variable in a declaration 31
initialize method of a JavaFX

controller class 811
initializer list 149
initializing two-dimensional arrays in

declarations 174
initiate an action 618
inlining method calls 206
inner class 347, 360, 382, 624

anonymous 366, 812
object of 360
relationship between an inner class

and its top-level class 360
INNER JOIN SQL clause 739, 744
innermost set of brackets 156
input data from the keyboard 37
input dialog 335
input/output operation 61
input/output package 127
InputEvent class 373, 380, 384

getModifiers method 387
isAltDown method 380, 387
isControlDown method 387
isMetaDown method 380, 387
isShiftDown method 387

InputMismatchException class 308,
311

InputStream class 493, 503, 544
InputStreamReader class 506
insert method of class

StringBuilder 457
INSERT SQL statement 739, 745

inserting literal characters in the output
945

insertion point 188, 528
Inspector window in NetBeans 795
instance 4
instance (non-static) method 217
instance method reference (Java SE 8)

565
instance methods 124
instance variable 5, 41, 54, 120
instance variables 41
instanceof operator 286, 898
Instant clas

now method 722
Instant class (Java SE 8) 729
int primitive type 31, 75, 81, 98, 898,

899
promotions 126

IntBinaryOperator functional
interface (Java SE 8) 558
applyAsInt method 558

IntConsumer functional interface (Java
SE 8) 556
accept method 556

integer 29
array 150
division 73
quotient 33
value 31

Integer class 184, 337, 510, 606
parseInt method 184, 337
toBinaryString method 976

integer conversion characters 946
integer division 33
integers

suffix L 532
integral expression 104
integrated development environment

(IDE) 9
intelligent consumer electronic device 8
IntelliJ IDEA (www.jetbrains.com) 9
interaction diagram in the UML 848
interaction overview diagram in the UML

991
interactions among objects 845, 849
interest rate 94
interface 6, 266, 291, 299, 753

declaration 290
implementing more than one at a

time 374
tagging interface 493

interface keyword 290, 898
Interfaces 290

ActionListener 348, 353
AutoCloseable 216, 330, 752
BiConsumer functional interface

(Java SE 8) 573, 580
BinaryOperator functional

interface (Java SE 8) 551
BlockingQueue 680
CachedRowSet 767
Callable 726
CallableStatement 785
ChangeListener 616
ChangeListener (JavaFX) 801,

808, 812
CharSequence 471
Collection 509, 510, 519

http://www.jetbrains.com

Index 1027

Interfaces (cont.)
Collector functional interface

(Java SE 8) 563
Comparable 300, 443, 520, 590
Comparator 520, 521, 566
ComponentListener 378
Condition 699, 700
Connection 752, 754, 759
Consumer functional interface (Java

SE 8) 551, 556, 569
ContainerListener 378
DataInput 504
DataOutput 504
default methods (Java SE 8) 301,

301
DirectoryStream 477
DoubleStream functional interface

(Java SE 8) 554
EventHandler<ActionEvent>

(JavaFX) 811
Executor 659
ExecutorService 660, 726
FocusListener 378
Function functional interface (Java

SE 8) 551, 565
Future 726
Icon 343
IntBinaryOperator functional

interface (Java SE 8) 558
IntConsumer functional interface

(Java SE 8) 556
IntFunction functional interface

(Java SE 8) 723
IntPredicate functional interface

(Java SE 8) 559
IntStream functional interface

(Java SE 8) 554
IntToDoubleFunction functional

interface (Java SE 8) 723
IntToLongFunction functional

interface (Java SE 8) 723
IntUnaryOperator functional

interface (Java SE 8) 560, 723
ItemListener 360, 624
Iterator 510
JdbcRowSet 767
KeyListener 353, 378, 384
LayoutManager 387, 391
LayoutManager2 391
List 509, 517
ListIterator 511
ListSelectionListener 369
Lock 698
LongStream functional interface

(Java SE 8) 554
Map 509, 537
Map.Entry 578
MouseInputListener 372, 377
MouseListener 353, 372, 378,

628
MouseMotionListener 353, 372,

377, 378
MouseWheelListener 374
ObjectInput 492
ObjectOutput 492
ObservableValue (JavaFX) 809
Path 477
Predicate functional interface

(Java SE 8) 551, 569

Interfaces (cont.)
PreparedStatement 785
PropertyChangeListener 720
Queue 509, 533, 680
ResultSet 753
ResultSetMetaData 753
RowSet 767
Runnable 659, 301
Serializable 301, 493
Set 509, 534
SortedMap 537
SortedSet 535
Statement 754
static methods (Java SE 8) 302
Stream (Java SE 8) 552, 562
Supplier 726, 729
Supplier functional interface (Java

SE 8) 551
SwingConstants 343, 616
TableModel 754
ToDoubleFunction functional

interface (Java SE 8) 575
UnaryOperator functional

interface (Java SE 8) 551
WindowConstants 616
WindowListener 377, 378, 617,

766
intermediate operation 559
intermediate operations

stateful 560
stateless 560

intermediate stream operations (Java SE
8)
filter method of interface

IntStream 559
filter method of interface Stream

563, 566
flatMap method of interface

Stream 578
map method of interface IntStream

560
map method of interface Stream 565
sorted method of interface

IntStream 559
sorted method of interface Stream

563, 566
internal frame

closable 636
maximizable 636
minimizable 636
resizable 636

internal iteration 550
internationalization 231, 800
Internet domain name in reverse order

224
Interpreter design pattern 997
interrupt method of class Thread 661
InterruptedException class 661
IntFunction functional interface (Java

SE 8) 723
IntPredicate functional interface (Java

SE 8) 559
test method 559, 560

intrinsic lock 664
ints method of class SecureRandom

(Java SE 8) 580
IntStream interface (Java SE 8) 554

average method 557
boxed method 580

IntStream interface (Java SE 8) (cont.)
count method 557
filter method 559
forEach method 556
map method 560
max method 557
min method 557
of method 556
range method 561
rangeClosed method 561
reduce method 557
sorted method 559
sum method 557

IntToDoubleFunction functional
interface (Java SE 8) 723

IntToLongFunction functional
interface (Java SE 8) 723

IntUnaryOperator functional interface
(Java SE 8) 560, 723
applyAsInt method 560

IOException class 497
is-a relationship 236, 267
isAbsolute method of interface Path

478
isActionKey method of class

KeyEvent 387
isAltDown method of class

InputEvent 380, 387
isBold method of class Font 413, 416
isCancelled method of class

SwingWorker 716
isControlDown method of class

InputEvent 387
isDefined method of class Character

460
isDigit method of class Character 460
isDirectory method of class Files

478
isEmpty method

ArrayList 210
Map 541
Stack 533

isItalic method of class Font 413,
416

isJavaIdentifierPart method of
class Character 460

isJavaIdentifierStart method of
class Character 460

isLetter method of class Character
460

isLetterOrDigit method of class
Character 460

isLowerCase method of class
Character 460

isMetaDown method of class
InputEvent 380, 387

isPlain method of class Font 413, 416
isPopupTrigger method of class

MouseEvent 628
isSelected method

AbstractButton 625
JCheckBox 360

isShiftDown method of class
InputEvent 387

isUpperCase method of class
Character 460

ITALIC constant of class Font 414
ItemEvent class 360, 363

getStateChange method 367

1028 Index

ItemListener interface 360, 624
itemStateChanged method 360,

625
itemStateChanged method of interface

ItemListener 360, 625
iteration 72

of a loop 87, 109
iteration (looping)

of a for loop 156
iteration statements 62
iterative model 820
iterator 508

fail fast 514
Iterator design pattern 994, 997, 1011
Iterator interface 510

hasNext method 514
next method 514
remove method 514

iterator method of Collection 514

J
Jacopini, G. 60
JApplet class 617
java .time package 199
Java 2D API 403, 428
Java 2D shapes 428
Java 2D Shapes package 127
Java Abstract Window Toolkit Event

package 127
Java API 118

overview 128
Java API documentation 128

download 32
java.sun.com/javase/6/docs/

api/ 32, 915
online 32

Java Application Programming Interface
(Java API) 8, 30, 118, 127

Java class library 8, 30, 118
java command 10, 13, 21
Java compiler 10
Java Concurrency Package 127
Java Database Connectivity (JDBC) 733
Java DB 733, 747

embedded 747
Java DB Developer’s Guide 735
Java debugger 901
Java development environment 9, 10, 11,

12
Java Development Kit (JDK) 24
Java Enterprise Edition (Java EE) 3
.java extension 9
.java file name extension 40
Java fonts

Dialog 414
DialogInput 414
Monospaced 414
SansSerif 414
Serif 414

Java HotSpot compiler 11
Java Input/Output Package 127
java interpreter 25
Java Keywords 898
Java Language Package 127
Java Micro Edition (Java ME) 3
Java programming language 7
Java SE 7 (Java Standard Edition 7) 3

Java SE 8 146, 164, 172, 188, 199, 723,
726
@FunctionalInterface

annotation 582
anonymous onner classes with

lambdas 367
Arrays method parallelSort

188
BinaryOperator functional

interface 551
Collector functional interface 563
Collectors class 563
CompletableFuture class 726
Consumer functional interface 551,

556, 569
Date/Time API 188, 199
Date/Time APi 128
default interface methods 301
default method in an interface

550, 581
default method of an interface 548
default methods in interfaces 301
doubles method of class

SecureRandom 580
effectively final 366
Function functional interface 551,

565
functional interface 302
functional interfaces 551
@FunctionalInterface

annotation 582
implementing event listeners with

lambdas 350, 612
Instant class 729
IntBinaryOperator functional

interface 558
IntConsumer functional interface

556
IntFunction functional interface

723
IntPredicate functional interface

559
ints method of class

SecureRandom 580
IntToDoubleFunction functional

interface 723
IntToLongFunction functional

interface 723
IntUnaryOperator functional

interface 560, 723
java.util.function package

550, 556
java.util.stream package 554
lambda 302
lambdas and streams with regular

expressions 473
lines method of class Files 577
longs method of class

SecureRandom 580
Optional 570
OptionalDouble class 557
Predicate functional interface 551,

563, 566, 569
reversed method of interface

Comparator 566
static interface methods 302
static method in an interface 550,

581
static method of an interface 548

Java SE 8 (cont.)
Stream interface 562
Supplier functional interface 551
Supplier interface 726, 729
ToDoubleFunction functional

interface 575
UnaryOperator functional

interface 551
Java SE 8 (Java Standard Edition 8) 3
Java SE 8 Development Kit (JDK) 9
Java Security Package 127
Java Standard Edition (Java SE)

7 3
8 3

Java Standard Edition 8 (Java SE 8) 3
Java Swing Event Package 127
Java Swing GUI Components Package

127
Java Utilities Package 127
Java Virtual Machine (JVM) 10, 21, 23
JAVA_HOME environment variable 748
java.awt package 338, 405, 406, 425,

428, 616, 628
java.awt.color package 428
java.awt.event package 127, 350,

352, 377, 387
java.awt.font package 428
java.awt.geom package 127, 428
java.awt.image package 428
java.awt.image.renderable

package 428
java.awt.print package 428
java.beans package 720
java.io package 127, 476
java.lang package 31, 119, 127, 239,

261, 437, 659, 1010
imported in every Java program 32

java.math package 78, 230, 808
java.nio.file package 475, 476, 477,

577
java.security package 128
java.sql package 127, 750, 753
java.text package 230, 800, 808
java.time package 128
java.util package 30, 127, 188, 509,

531, 951
Calendar class 951
Date class 951

java.util.concurrent package 127,
660, 680, 705, 726

java.util.concurrent.locks
package 698, 699

java.util.function package (Java SE
8) 550, 556

java.util.prefs package 541
java.util.regex package 437
java.util.stream package (Java SE 8)

554
Java™ Language Specification

(java.sun.com/docs/books/
jls/) 33

Java2D API 428
javac compiler 10, 24
javacdeprecation flag 30
Javadoc comment 22
javadoc options

-author 933
-d 933
-link 933

Index 1029

javadoc tag 924
javadoc tags

{@link} 932
@author 929
@deprecated 932
@param 930
@return 930
@see 929
@since 932
@throws 930
@version 932

javadoc utility program 22, 924
JavaFX 333, 788

@FXML annotation 809, 810
ActionEvent class 809, 811
alignment in a VBox 796
Application class 799
Cascading Style Sheets (CSS) 789
ChangeListener interface 801,

808, 812
controller class 791, 801
DoubleProperty class 812
EventHandler<ActionEvent>

interface 811
fx:id property 802
FXML (FX Markup Language) 789
FXMLLoader class 801, 807
GridPane class 799, 799
ImageView class 791
Label class 791
Max Width property 805
node 790
Node class 790
padding 805
Padding property 805
Parent class 802, 807
Pref Height property of a

component 796
Pref Width property 804
Pref Width property of a component

796
preferred size 796
register event handlers 807
scene 790
Scene class 790, 799, 807, 808
scene graph 790
Slider class 798, 800
stage 790
Stage class 790, 799, 807, 808
TextField class 800
Vbox class 795

JavaFX FXML Application NetBeans
project 791

JavaFX Scene Builder 789, 791
change the default layout 795, 803

JavaFX Script 788
javafx.application.Application

package 799
javafx.beans.value package 808,

812
javafx.event package 809
javafx.fxml package 809
javafx.scene package 790, 802, 807
javafx.scene.control package 800,

809
javafx.scene.layout package 795,

799
javafx.stage package 790
JavaScript 788

javax.sql.rowset package 767
javax.swing package 127, 333, 335,

343, 352, 354, 399, 410, 616, 629,
635

javax.swing.event package 127, 351,
369, 377, 616

javax.swing.table package 755, 766
JButton class 338, 354, 357, 393
JCheckBox buttons and item events 358
JCheckBox class 338, 357

isSelected method 360
JCheckBoxMenuItem class 617, 618,

624
JColorChooser class 410, 412

showDialog method 411
JComboBox class 338, 363, 644

getSelectedIndex method 367
setMaximumRowCount method 366

JComboBox that displays a list of image
names 364

JComponent class 339, 340, 342, 352,
364, 367, 381, 397, 403, 405, 1001
paintComponent method 381,

403, 613, 615
repaint method 406
setForeground method 624
setOpaque method 381, 383
setToolTipText method 342

jdb command 902
JDBC

API 733, 750, 785
driver 733

JDBC Package 127
jdbc†erby:books 752
JdbcRowSet interface 767

close method 769
execute method 769
setCommand method 769
setPassword method 769
setUrl method 767
setUsername method 769

JDesktopPane class 633
JDesktopPane documentation 636
JDialog class 623
JDK 9, 24
JFileChooser class 500

CANCEL_OPTION constant 501
FILES_AND_DIRECTORIES

constant 500
FILES_ONLY constant 500
getSelectedFile method 501
setFileSelectionMode method

500
showOpenDialog method 500

JFrame class 616
add method 342
EXIT_ON_CLOSE 344
getContentPane method 369
setDefaultCloseOperation

method 344, 616
setJMenuBar method 617, 624
setSize method 344
setVisible method 344

JFrame.EXIT_ON_CLOSE 344
JInternalFrame class 633, 635
JInternalFrame documentation 636
JLabel class 338, 340

getIcon method 343
getText method 343

JLabel class (cont.)
setHorizontalAlignment

method 343
setHorizontalTextPosition

method 343
setIcon method 343
setText method 343
setVerticalAlignment method

343
setVerticalTextPosition

method 343
JList class 338, 367

addListSelectionListener
method 369

getSelectedIndex method 370
getSelectedValuesList method

372
setFixedCellHeight method 372
setFixedCellWidth method 372
setListData method 372
setSelectionMode method 369
setVisibleRowCount method 369

JMenu class 617, 624, 635
add method 623
addSeparator method 624

JMenuBar class 617, 624, 635
add method 624

JMenuItem class 618, 635
JMenus and mnemonics 618
Johnson, Ralph 993
JOIN_ROUND constant of class

BasicStroke 433
joining database tables 738, 744
Joint Photographic Experts Group

(JPEG) 343
JOptionPane class 335, 336

constants for message dialogs 338
PLAIN_MESSAGE constant 337
showInputDialog method 336
showMessageDialog method 337

JOptionPane constants for message
dialogs
JOptionPane.ERROR_MESSAGE

338
JOptionPane.INFORMATION_MES

SAGE 338
JOptionPane.PLAIN_MESSAGE

338
JOptionPane.QUESTION_MESSAG

E 338
JOptionPane.WARNING_MESSAGE

338
JPanel class 338, 381, 388, 397, 613,

1001
JPasswordField class 344, 349

getPassword method 349
JPEG (Joint Photographic Experts

Group) 343
JPopupMenu class 625

show method 628
JProgressBar class 717
JRadioButton class 357, 360, 363
JRadioButtonMenuItem class 617,

618, 625
JScrollPane class 369, 372, 400, 401

HORIZONTAL_SCROLLBAR_ALWAYS
constant 401

HORIZONTAL_SCROLLBAR_AS_NEE
DED constant 401

1030 Index

JScrollPane class (cont.)
HORIZONTAL_SCROLLBAR_NEVER

constant 401
setHorizontalScrollBarPolic

y method 401
setVerticalScrollBarPolicy

method 401
VERTICAL_SCROLLBAR_ALWAYS

constant 401
VERTICAL_SCROLLBAR_AS_NEEDE

D constant 401
VERTICAL_SCROLLBAR_NEVER

constant 401
JScrollPane scrollbar policies 401
JSlider class 612, 613, 616

block increment 613
getValue method 616
major tick marks 612
minor tick marks 612
setInverted method 613
setMajorTickSpacing method

616
setPaintTicks method 616
snap-to ticks 612
thumb 612
tick marks 612

JTabbedPane class 636, 642
addTab method 638
SCROLL_TAB_LAYOUT constant 642
TOP constant 642

JTable class 754
RowFilter 766
setRowFilter method 766
setRowSorter method 766
TableRowSorter 766

JTextArea class 387, 398, 400, 644,
647
setLineWrap method 401

JTextComponent class 344, 347, 398,
400
getSelectedText method 400
getText method 625
setDisabledTextColor method

387
setEditable method 347
setText method 400

JTextField class 338, 344, 348, 352,
398
addActionListener method 348

JTextFields and JPasswordFields
345

JToggleButton class 357
just-in-time compilation 11
just-in-time (JIT) compiler 11

K
key constant 387
key event 353, 384
Key event handling 384
key–value pair 538
KeyAdapter class 378
keyboard 29, 333, 788
KeyEvent class 353, 384

getKeyChar method 387
getKeyCode method 387
getKeyModifiersText method 387
getKeyText method 387
isActionKey method 387

KeyListener interface 353, 378, 384
keyPressed method 384, 387
keyReleased method 384
keyTyped method 384

Keypad class (ATM case study) 823, 826,
827, 828, 839, 846, 847, 848, 850,
859, 862, 893

keyPressed method of interface
KeyListener 384, 387

keyReleased method of interface
KeyListener 384

keySet method
of class HashMap 541
of class Properties 544

keyTyped method of interface
KeyListener 384

keyword 22, 62
Keywords

abstract 271
boolean 66, 906
break 102
case 102
catch 311
char 31
class 22, 40
continue 108
default 102
do 62, 97
double 31, 53
else 62
enum 136
extends 239, 250
false 66, 898
final 104, 120, 151, 664
finally 311
float 31, 53
for 62, 88
if 62
implements 290
import 30
instanceof 286
int 31
interface 290
new 31, 44, 147, 148
null 50, 147, 898
private 41, 199, 209
public 22, 40, 41, 122, 199
reserved but not used by Java 898
return 40, 42, 125
static 95, 119
super 238, 261
switch 62
synchronized 664
table of Keywords and reserved words

898
this 42, 200, 217
throw 321
true 66, 898
try 310
void 23, 41
while 62, 97

Koenig, Andrew 305

L
label 340, 988
Label class (JavaFX) 791

Font property 796
Text property 796

label in a switch 102
labeled block 988
labeled break statement 987

exiting a nested for statement 987
labeled continue statement 988

terminating a single iteration of a
labeled-for statement 989

labeled statement 987, 988
labels for tick marks 612
lambda (Java SE 8) 302
lambda expression

composing 560
type of 551

lambda expression (Java SE 8) 551
lambda expressions

arrow token (->) 551
event handler 581
method references 552
parameter list 551
target type 556
with an empty parameter list 552

lambdas
implementing an event handler 813

lamda expressions
statement block 551
type inference 556

LAMP 17
language package 127
last-in, first-out (LIFO) order 599
last method of ResultSet 761
last method of SortedSet 536
lastIndexOf method of class String

445
late binding 286
launch method of class Application

(JavaFX) 799, 807
Layers architecture pattern 994, 1010
layout containers (JavaFX) 790
layout manager 342, 377, 387, 396

BorderLayout 377
FlowLayout 342
GridLayout 395

layoutContainer method of interface
LayoutManager 391

LayoutManager interface 387, 391
layoutContainer method 391

LayoutManager2 interface 391
Layouts

GridPane 799
Vbox 795

lazy 552
lazy quantifier 469
lazy stream operation (Java SE 8) 559,

560
Lea, Doug 1005
leading 416
leaf 1000
left brace, { 23, 30
LEFT constant of class FlowLayout 391
left justification 945
left justified 63, 95, 343, 389
left-mouse-button click 380
left shift (<<) 973, 974, 980, 981
Left, center and right mouse-button clicks

378
length field of an array 147
length instance variable of an array 147
length method of class String 439

Index 1031

length method of class
StringBuilder 452

level of indentation 63
levels of nesting 988
lexical scope 556
lexicographical comparison 442, 443
Library window in NetBeans 795, 796
life cycle of a thread 656, 658
lifeline of an object in a UML sequence

diagram 850
LIFO (last-in, first-out) 599
lightweight GUI component 339
LIKE operator (SQL) 740
LIKE SQL clause 741, 743
line 403, 418, 427
line join 431
line wrapping 401
Line2D class 403, 432
Line2D.Double class 428
LinearGradientPaint class 431
LineNumberReader class 506
lines method of class Files (Java SE 8)

577
lineTo method of class GeneralPath

435
{@link} javadoc tag 932
-link option 933
linked list 1011
LinkedBlockingDeque class 706
LinkedBlockingQueue class 706
LinkedList class 511, 527

add method 518
addFirst method 519
addLast method 518

LinkedTransferQueue class 706
Linux 24, 483
Linux operating system 7
list 366
List interface 509, 517, 520, 525

add method 513, 516
addAll method 516
clear method 517
get method 513
listIterator method 517
size method 513, 517
subList method 517
toArray method 518

list method of Properties 543
listen for events 348
ListIterator interface 511

hasPrevious method 517
previous method 517
set method 517

listIterator method of interface
List 517

ListSelectionEvent class 367
ListSelectionListener interface

369
valueChanged method 369

ListSelectionModel class 369
MULTIPLE_INTERVAL_SELECTION

constant 369, 372
SINGLE_INTERVAL_SELECTION

constant 369, 370, 372
SINGLE_SELECTION constant 369

literals
floating point 53

load factor 538

load method of class FXMLLoader
(JavaFX) 801, 807

load method of Properties 544
loading 10
local variable 42, 72, 138
locale-specific currency Strings 231
locale-specific String 230
localization 339, 937
lock

acquire 664
hold 664
release 664

lock an object 686, 687
Lock interface 698

lock method 698, 703
newCondition method 699, 700
unlock method 698, 703

lock method of interface Lock 698, 703
log method of Math 120
logarithm 120
logic error 9, 32, 901
logical complement operator, ! 112
logical input operations 505
logical negation, ! 112
logical negation, or logical NOT (!)

operator truth table 113
logical operators 110, 112
logical output operations 504
long

literal suffix L 532
Long class 510
long keyword 898, 899
long promotions 126
longs method of class SecureRandom

(Java SE 8) 580
LongStream interface (Java SE 8) 554
look-and-feel 338, 339, 387, 628

Nimbus 335
Look-and-Feel Observations

overview xxxii
Look-and-feel of a Swing-based GUI 629
look-and-feel of an application 338
look-and-feel 335
LookAndFeelInfo nested class of class

UIManager 629
lookingAt method of class Matcher

471
loop 70, 72

body 97
continuation condition 62
counter 87
infinite 70, 77
statement 62

loop-continuation condition 87, 87, 89,
91, 93, 97, 98, 109

looping 72
lowercase letter 22
lowered rectangle 422

M
m-by-n array 173
Mac OS X 24, 483
Macintosh look-and-feel 629
main method 30, 47
main thread 663
major tick marks of class JSlider 612
make your point (game of craps) 133
making decisions 37

many-to-many relationship 738
many-to-one mapping 537
many-to-one relationship in the UML

829
map elements of a stream (Java SE 8) 560
Map interface 509, 537

containsKey method 540
forEach method (Java SE 8) 573
get method 540
isEmpty method 541
put method 540
size method 541

map method of interface IntStream
(Java SE 8) 560

map method of interface Stream (Java SE
8) 565

Map.Entry interface 578
mapToDouble method of interface

Stream (Java SE 8) 574
marker interfaces 291
mask 974
Matcher class 437, 471

find method 471
group method 472
lookingAt method 471
matches method 471
replaceAll method 471
replaceFirst method 471

matcher method of class Pattern 471
matches method of class Matcher 471
matches method of class Pattern 471
matches method of class String 464
matching catch block 311
Math class 95, 119

abs method 119
ceil method 120
cos method 120
E constant 120
exp method 120
floor method 120
log method 120
max method 120
min method 120
PI constant 120
pow method 95, 96, 119, 120
sqrt method 119, 120, 125
tan method 120

MathContext class 232
max method of Collections 519, 526
max method of interface IntStream

(Java SE 8) 557
max method of Math 120
Max property of a Slider (JavaFX) 806
Max Width property of a JavaFX control

805
maximize a window 340, 635
maximized internal frame 636
MBCS (multi-byte character set) 940
MDI (Multiple Document Interface)

612, 633
Mediator design pattern 997
Memento design pattern 994, 997, 998
memento object 998
memory buffer 505
memory leak 216, 317
memory-space/execution-time trade-off

538
memory utilization 538
menu 334, 398, 617, 618

1032 Index

menu bar 334, 617
menu item 618, 623
merge in the UML 838
merge records from tables 743
merge symbol in the UML 70
message dialog 335, 337

types 337
message in the UML 845, 848, 849, 850
message passing in the UML 850
Meta key 380
metadata 753
metal look-and-feel 612, 629
method 4, 23, 857

local variable 42
parameter list 42
signature 142
static 95

method call 5, 122
method declaration 122
Method Detail section in API 922
method header 41
method names

came case naming 40
method overloading 140
method parameter list 182
method reference 565
method reference (Java SE 8) 565
method references 552
Method Summary section in API 920
methods implicitly final 289
Microsoft 938
Microsoft SQL Server 733
Microsoft Windows 101, 616, 628
Microsoft Windows-style look-and-feel

629
middle mouse button 380
middle tier 1009
min method of Collections 519, 526
min method of interface IntStream

(Java SE 8) 557
min method of Math 120
minimize a window 340, 617, 635
minimize internal frame 635
minor tick marks of class JSlider 612
minus sign (–) formatting flag 95
minus sign (-) indicating private visibility

in the UML 857
mnemonic 339, 618, 622, 624
mobile application 3
modal dialog 337, 412
modal dialog box 623
model (in MVC architecture) 801, 1008
model of a software system 827, 834, 864
Model-View-Controller (MVC) 801,

994, 1002, 1008
modifier key 387
monetary calculations 96, 230
monitor 664
monitor lock 664
Monospaced Java font 414
Motif-style (UNIX) look-and-feel 612,

629
mouse 333, 788
mouse-button click 380
mouse click 378
mouse event 353, 372, 628

handling 373
mouse wheel 374
MouseAdapter class 377, 378

mouseClicked method of interface
MouseListener 373, 378

mouseDragged method of interface
MouseMotionListener 373, 381

mouseEntered method of interface
MouseListener 373

MouseEvent class 353, 373, 628
getClickCount method 380
getPoint method 383
getX method 377
getY method 377
isAltDown method 380
isMetaDown method 380
isPopupTrigger method 628

mouseExited method of interface
MouseListener 373

MouseInputListener interface 372,
377

MouseListener interface 353, 372,
378, 628
mouseClicked method 373, 378
mouseEntered method 373
mouseExited method 373
mousePressed method 373, 628
mouseReleased method 373, 628

MouseMotionAdapter class 378, 381
MouseMotionListener interface 353,

372, 377, 378
mouseDragged method 373, 381
mouseMoved method 373, 381

mouseMoved method of interface
MouseMotionListener 373, 381

mousePressed method of interface
MouseListener 373, 628

mouseReleased method of interface
MouseListener 373, 628

MouseWheelEvent class 374
MouseWheelListener interface 374

mouseWheelMoved method 374
mouseWheelMoved method of interface

MouseWheelListener 374
moveTo method of class GeneralPath

434
Mozilla Foundation 7
MP3 player 8
multi-button mouse 380
multibyte character set (MBCS) 940
multi-catch 312
multi-core 548
multidimensional array 173, 174
multiple class declarations

in one source-code file 200
multiple document interface (MDI) 612,

633
multiple inheritance 235
multiple-selection list 367, 369, 370
multiple-selection statement 62
MULTIPLE_INTERVAL_SELECTION

constant of interface
ListSelectionModel 369, 372

multiplication compound assignment
operator, *= 81

multiplication, * 33, 33
multiplicative operators: *, / and % 78
multiplicity 826, 827
multiply method of class BigDecimal

231
multithreading 511, 655, 1005
multitouch screen 8

mutable data 664
mutable reduction (Java SE 8) 563
mutable reduction operations 553
mutator method 209
mutual exclusion 664
mutually exclusive options 360
MVC (Model-View-Controller) 801,

1008
MySQL 17, 733

N
n conversion character 952
%n format specifier (line separator) 29
name collision 224
name conflict 224
name of an array 147
named constant 151
naming convention

GUI (Graphical User Interface)
component 802

methods that return boolean 105
native keyword 898
natural comparison method 520
natural logarithm 120
natural order 566
navigability arrow in the UML 857
negate method of functional interface

Predicate (Java SE 8) 563
negative arc angles 423
negative degree 422
nested array initializers 173
nested class 194, 347, 629

relationship between an inner class
and its top-level class 360

Nested Class Summary section in API
919

nested control statement 988
nested control statements 79, 132

Examination-results problem 79
nested for statement 154, 174, 175, 176,

180, 987
enhanced for 175

nested if selection statement 67
nested if...else selection statement 64,

65, 67, 69
nested message in the UML 850
NetBeans

Hierarchy window 794, 795
Inspector window 795
JavaFX FXML Application project

791
Library window 795, 796
Projects window 793

Netbeans
demonstration video

(www.deitel.com/books/
jhtp9) 21

NetBeans (www.netbeans.org) 9
network message arrival 314
new keyword 31, 44, 147, 148, 898
New Project dialog (NetBeans) 792, 802
new Scanner(System.in) expression

31
new state 657
newCachedThreadPool method of class

Executors 661
newCondition method of interface

Lock 699, 700

http://www.deitel.com/books/jhtp9
http://www.deitel.com/books/jhtp9
http://www.netbeans.org

Index 1033

newDirectoryStream method of class
Files 478

newFactory method of interface
RowSetProvider 767

newline character 27
newline escape sequence, \n 27, 28
newOutputStream method of class

Files 495, 498
next method

of Iterator 514
of ResultSet 753
of Scanner 44

nextDouble method of class Scanner
57

nextInt method of class Random 129,
132

nextLine method of class Scanner 44
Nimbus look and feel 335

swing.properties xl, 335
Nimbus look-and-feel 629
no-argument constructor 205, 206
node 1000, 1001
Node class (JavaFX) 790, 811
node in a JavaFX application 790
non-deterministic random numbers 128
NONE constant of class

GridBagConstraints 644
nonfatal runtime error 12
NORTH constant of class BorderLayout

377, 391
NORTH constant of class

GridBagConstraints 643
NORTHEAST constant of class

GridBagConstraints 643
NORTHWEST constant of class

GridBagConstraints 643
NoSuchElementException class 484,

487
note in the UML 61
Notepad 9
notify method of class Object 684
notify method of Object 262
notifyAll method of class Object

684, 687
notifyAll method of Object 262
noun phrase in requirements document

824
now method of class Instant 722
null 898
null keyword 45, 50, 147, 337
null reserved word 85
NullPointerException exception 163
Number class 606

doubleValue method 607
number systems 461
NumberFormat class 230, 722, 800, 808

format method 231, 722
getCurrencyInstance method

231
getPercentInstance method

722, 809
setRoundingMode method 812

numeric Classes 510

O
object 2, 4
object (or instance) 848

Object class 216, 235, 239, 500
clone method 262
equals method 261
finalize method 262
getClass method 262, 287, 343
hashCode method 262
notify method 262, 684
notifyAll method 262, 684, 687
toString method 242, 262
wait method 262, 684

object diagram in the UML 990
object of a derived class 268
object of a derived class is instantiated 261
object-oriented analysis and design

(OOAD) 6
object-oriented design (OOD) 816, 822,

824, 834, 857
object-oriented language 6
object-oriented programming (OOP) 2,

6, 233, 235
object serialization 492
ObjectInput interface 492

readObject method 493
ObjectInputStream class 492, 493,

498
ObjectOutput interface 492

writeObject method 493
ObjectOutputStream class 492, 492,

493, 543, 1006
close method 497

Observable class 1003
ObservableValue interface 809
ObservableValue interface (JavaFX)

addListener method 812
Observer design pattern 994, 997, 1003
Observer interface 1003
observer object 1003
octal integer 946
octal number system (base 8) 964
of method of interface IntStream (Java

SE 8) 556
off-by-one error 89
offer method of PriorityQueue 533
ON clause 744
ONE constant of class BigDecimal 231
one-to-many relationship 738, 738
one-to-one mapping 537
one-, two- or three-button mouse 380
one’s complement 971, 980
ones position 964
one-to-many relationship in the UML

829
one-to-one relationship in the UML 829
OOAD (object-oriented analysis and

design) 6
OOD (object-oriented design) 816, 822,

824, 834
OOP (object-oriented programming) 6,

233, 235
opaque Swing GUI components 381
open a file 476
OPEN constant of class Arc2D 432
Open Handset Alliance 7
open source 7
operand 77
operating system 7
operation compartment in a class diagram

839

operation in the UML 47, 826, 839, 843,
859, 860, 865, 866

operation parameter in the UML 47, 840,
843, 844, 845

operator 32
operator precedence 33

operator precedence chart 78
Operator Precedence Chart

Appendix 895
rules 33

Operators
^, boolean logical exclusive OR 110,

112
--, predecrement/postdecrement 82
--, prefix decrement/postfix

decrement 82
!, logical NOT 110, 112
?:, ternary conditional operator 66
*=, multiplication assignment

operator 81
/=, division assignment operator 81
&, boolean logical AND 110, 112
&&, conditional AND 110, 111
%=, remainder assignment operator

81
++, prefix increment/postfix

increment 82
++, preincrement/postincrement 81
+=, addition assignment operator 81
= 32, 36
-=, subtraction assignment operator

81
|, boolean logical inclusive OR 110,

112
||, conditional OR 110, 111
arithmetic 33
binary 32, 33
boolean logical AND, & 110, 112
boolean logical exclusive OR, ^ 110,

112
boolean logical inclusive OR, | 112
cast 77
compound assignment 81, 83
conditional AND, && 110, 111, 112
conditional operator, ?: 66
conditional OR, || 110, 111, 112
decrement operator, -- 82
increment and decrement 82
increment, ++ 82
logical complement, ! 112
logical negation, ! 112
logical operators 110, 112, 113
multiplication, * 33
multiplicative: *, / and % 78
postfix decrement 82
postfix increment 82
prefix decrement 82
prefix increment 82
remainder, % 33, 33
subtraction, - 33

Optional class (Java SE 8) 570
optional package 227
OptionalDouble class (Java SE 8) 557,

575
getAsDouble method 557, 575
orElse method 557, 575

or method of class BitSet 984
or method of functional interface

Predicate (Java SE 8) 563

1034 Index

Oracle Corporation 733, 938
ORDER BY SQL clause 739, 742, 743
ordering of records 739
orElse method of class

OptionalDouble (Java SE 8) 557,
575

origin component 628
originator object 998
out-of-bounds array index 314
outer set of brackets 157
output 24
output cursor 24, 26
output parameter for a

CallableStatement 785
OutputStream class 493, 503
OutputStreamWriter class 506
oval 418, 422
oval bounded by a rectangle 422
oval filled with gradually changing colors

431
overflow 314
overload a method 140
overloaded constructors 202
overloaded method 585
overloading generic methods 593
override a superclass method 238, 242

P
PaaS (Platform as a Service) 17
pack method of class Window 636
package 30, 118, 127, 222, 990
package access 228
package-access members of a class 229
package-access methods 228
package declaration 222
package diagram in the UML 990
package directory names 224
package directory structure 222
package keyword 898
package-list generated by javadoc

935
package name 48
package overview 128
Packages

default package 48
java .time 199
java.awt 338, 406, 428, 616, 628
java.awt.color 428
java.awt.event 127, 350, 352,

377, 387
java.awt.font 428
java.awt.geom 127, 428
java.awt.image 428
java.awt.image.renderable

428
java.awt.print 428
java.beans 720
java.io 127, 476
java.lang 31, 119, 127, 239, 261,

437, 659
java.math 78, 230, 808
java.nio.file 475, 476, 477,

577
java.security 128
java.sql 127, 750, 753
java.text 230, 800, 808
java.time 128
java.util 30, 127, 188

Packages (cont.)
java.util.concurrent 127, 660,

680, 705, 726
java.util.concurrent.locks

698, 699
java.util.function (Java SE 8)

550, 556
java.util.prefs 541
java.util.regex 437
java.util.stream (Java SE 8)

554
javafx.application.Applicat

ion 799
javafx.beans.value 808, 812
javafx.event 809
javafx.fxml 809
javafx.scene 790, 802, 807
javafx.scene.control 800, 809
javafx.scene.layout 795, 799
javafx.stage 790
javax.sql.rowset 767
javax.swing 127, 333, 335, 343,

354, 399, 410, 616, 629, 635
javax.swing.event 127, 351,

352, 369, 377, 616
javax.swing.table 755, 766

packages
create your own 222
naming 222

padding (JavaFX) 805
Padding property of a JavaFX layout

container 805
Page Down key 384
page layout software 437
Page Up key 384
Paint object 431
paintComponent method of class

JComponent 381, 403, 613, 615
panel 397
parallel 654
parallel operations 654
parallel stream 725
parallelPrefix method of class

Arrays 723
parallelSetAll method of class

Arrays 723
parallelSort method of class Arrays

188, 721
parallelSort method of class Arrays

(Java SE 8) 563
@param javadoc tag 930
parameter 45
parameter in the UML 47, 840, 843, 844,

845
parameter list 42
parameter list in a lambda 551
parameterized class 594
parameterized type 594
Parameters: note 930
Parent class (JavaFX) 802, 807
parent window 337, 612, 633
parent window for a dialog box 623
parent window specified as null 623
parentheses 23
parseInt method of class Integer 337
parseInt method of Integer 184
pass an array element to a method 165
pass an array to a method 165
pass-by-reference 166

pass-by-value 165, 166
passing options to a program 184
password 344
PATH environment variable xxxviii, 25
Path interface 477

getFileName method 478
isAbsolute method 478
toAbsolutePath method 478
toString method 478

Paths class 477
get method 477, 478

pattern 428
Pattern class 437, 471

compile method 471
matcher method 471
matches method 471
splitAsStream method (Java SE

8) 578
pattern matching 740
Payable interface declaration 293
Payable interface hierarchy UML class

diagram 292
Payable interface test program

processing Invoices and Employees
polymorphically 299

peek method of class PriorityQueue
533

peek method of class Stack 533
percent (%) SQL wildcard character 740
perform a calculation 37
perform a task 42
Performance Tips overview xxxi
performing operations concurrently 654
persistent data 475
persistent Hashtable 541
PHP 17
physical input operation 505
physical output operation 504
PIE constant of class Arc2D 432
pie-shaped arc 432
pipe 503
PipedInputStream class 503
PipedOutputStream class 503
PipedReader class 506
PipedWriter class 506
pixel (“picture element”) 403
PLAF (pluggable look-and-feel) 612
PLAIN constant of class Font 414
PLAIN_MESSAGE 337
Platform as a Service (PaaS) 17
platform dependency 659
platform independent 10
pluggable look-and-feel (PLAF) 612
pluggable look-and-feel package 339
plus sign (+) indicating public visibility in

the UML 857
PNG (Portable Network Graphics) 343
point 414
Point class 382
poll method of PriorityQueue 533
polygon 425, 427
Polygon class 403, 425

addPoint method 426, 428
polyline 425
polylines 425
polymorphic processing

of collections 511
polymorphic processing of related

exceptions 317

Index 1035

polymorphically process Invoices and
Employees 299

polymorphism 104, 263, 265, 862, 863,
873

pop method of Stack 533
popup trigger event 625, 628
portability 405, 940
Portability Tips overview xxxii
portable 10
portable GUI 127
Portable Network Graphics (PNG) 343
position number 146
positional notation 964
positional value 965
positional values in the decimal number

system 965
positive and negative arc angles 423
positive degrees 422
postcondition 328
postdecrement 82
postfix decrement operator 82
postfix increment operator 82, 91
PostgreSQL 733
postincrement 82, 84
pow method of class BigDecimal 231
pow method of class Math 95, 96, 119,

120
power (exponent) 120
power of 2 larger than 100 69
prebuilt data structures 508
precedence 33, 37, 84

arithmetic operators 34
chart 33, 78

Precedence Chart Appendix 895
precise floating-point calculations 230
precision 946, 947

format of a floating-point number 78
precision of a formatted floating-point

number 57
precondition 328
predecrement 82
predefined character class 464
predicate 559, 740
Predicate functional interface (Java SE

8) 551, 569
and method 563
negate method 563
or method 563

predicate method 105, 210
preemptive scheduling 659
Pref Height property of a JavaFX

component 796
Pref Width property of a JavaFX

component 796
Pref Width property of a JavaFX control

804
Preferences API 541
preferred size (JavaFX) 796
prefix decrement operator 82
prefix increment operator 82
preincrement 82, 84
Preincrementing and postincrementing

82
PreparedStatement interface 769,

770, 772, 776, 785
executeQuery method 776
executeUpdate method 776
setString method 769, 776

prepareStatement method of interface
Connection 776

previous method of ListIterator
517

primary key 734, 738
composite 738

prime number 580
primitive type 31, 49, 84, 126

boolean 906
byte 98
char 31, 98
double 31, 53, 75
float 31, 53
int 31, 75, 81, 98
names are keywords 31
passed by value 167
promotions 126
short 98

principal in an interest calculation 94
Principle of Least Privilege 140
principle of least privilege 221
print a line of text 24
print debugger command 905
print method of System.out 26
print on multiple lines 26
print spooling 673
printArray generic method 588
printf method of System.out 28, 945
println method of System.out 26
printStackTrace method of class

Throwable 324
PrintStream class 504, 543
PrintWriter class 484, 506
priority of a thread 658
PriorityBlockingQueue class 706
PriorityQueue class 533

clear method 533
offer method 533
peek method 533
poll method 533
size method 533

private
access modifier 41, 199, 238
data 209
field 208
keyword 209, 857, 898

private static
class member 217

probability 129
producer 655, 672
producer thread 673
producer/consumer relationship 672,

692
program construction principles 115
program in the general 265
program in the specific 265
project (NetBeans) 792
Projects window in NetBeans 793
promotion 77

of arguments 125
rules 78, 125

promotions for primitive types 126
Properties class 541

getProperty method 541
keySet method 544
list method 543
load method 544
setProperty method 541
store method 543

propertyChange method of interface
PropertyChangeListener 720

PropertyChangeListener interface
720
propertyChange method 720

protected access modifier 199, 238,
898

protocol for communication (jdbc) 752
Prototype design pattern 994, 995, 1010
Proxy design pattern 994, 996, 997
proxy object 997
public

abstract method 290
access modifier 40, 41, 122, 199, 238
final static data 290
interface 194
keyword 22, 41, 857, 859, 860, 898
member of a subclass 238
method 195, 199
method encapsulated in an object

198
service 194
static class members 217
static method 217

push method of class Stack 532
put method

of interface BlockingQueue 680,
681

of interface Map 540

Q
qualified name 744
quantifiers used in regular expressions

468, 469
quantum 658
query 733, 735
query a database 750
query method 209
QUESTION_MESSAGE 337
queue 533
Queue interface 509, 533, 680

R
RadialGradientPaint class 431
radians 120
radio button 354, 360
radio button group 360
radix (base) of a number 461
raised rectangle 422
Random class

nextInt method 129, 132
random numbers

difference between values 133
element of chance 128
generation 158
scaling 129
scaling factor 129, 133
shift a range 130
shifting value 130, 133

range checking 74
range method of class EnumSet 215
range method of interface IntStream

(Java SE 8) 561
range-view methods 517, 535
rangeClosed method of interface

IntStream (Java SE 8) 561
Rational Software Corporation 822

1036 Index

Rational Unified Process™ 822
raw type 602
read-only file 497
read-only text 340
Read/Write Lock design pattern 994,

1005
Reader class 505
reading files 477
readObject method of ObjectInput

493
readObject method of

ObjectInputStream 500
ready state 658
real number 31, 75
realization in the UML 292
reclaim memory 220
record 481
rectangle 403, 407, 419
Rectangle2D class 403
Rectangle2D.Double class 428
redirect a standard stream 476
reduce method of interface

DoubleStream (Java SE 8) 575
reduce method of interface IntStream

(Java SE 8) 557
reduction (mutable) 563
reduction operations 553
reentrant lock 688
ReentrantLock class 698, 700
refactoring 16
refer to an object 49
reference 49
reference type 49, 228
regexFilter method of class

RowFilter 766
regionMatches method of class

String 441
register an ActionListener 624
register event handlers (JavaFX) 807
registered listener 353
registering the event handler 347, 801
regular expression 464, 576

^ 468
? 468
. 472
{n,} 469
{n,m} 468
{n} 468
* 468
\D 465
\d 465
\S 465
\s 465
\W 465
\w 465
+ 468
| 468

reinventing the wheel 5, 30, 186
relational database 733, 734
relational database management system

(RDBMS) 733
relational database table 734
relational operators 34
relationship between an inner class and its

top-level class 360
RELATIVE constant of class

GridBagConstraints 649
relative path 477
release a lock 664, 686, 687

release a resource 318
release candidate 18
reluctant quantifier 469
remainder 33
remainder compound assignment

operator, %= 81
REMAINDER constant of class

GridBagConstraints 649
remainder operator, % 33, 33
remove duplicate String 534
remove method of class ArrayList<T>

189, 191
remove method of interface Iterator

514
removeTableModelListener method

of interface TableModel 755
Reordering output with argument index

960
repaint method of class Component

383
repaint method of class JComponent

406
repetition 62

counter controlled 76
sentinel controlled 75, 76

repetition statement 60, 62, 69
do...while 62, 97, 98, 98
for 62, 92
while 62, 69, 70, 72, 75, 76, 88

repetition terminates 70
replaceAll method

of class Matcher 471
of class String 469

replaceFirst method
of class Matcher 471
of class String 469

representing integers in hexadecimal
format 946

representing integers in octal format 946
requestFocus method 811
requestFocus method of class Node

811
requirements 6, 820
requirements document 816, 820, 822
requirements gathering 820
requirements of an app 104
reserved word 22, 62, 898

false 63
null 45, 50, 85
true 63

resizable array
implementation of a List 511

resolution 403
resource leak 215, 317
resource-release code 318
responses to a survey 155
result 740
result set concurrency 759
result set type 759
ResultSet interface 753, 759, 760, 761

absolute method 760
close method 754
column name 754
column number 754
CONCUR_READ_ONLY constant 759
CONCUR_UPDATABLE constant 759
concurrency constant 759
getInt method 754
getObject method 754, 760

ResultSet interface (cont.)
getRow method 761
last method 761
next method 753
TYPE_FORWARD_ONLY constant 759
TYPE_SCROLL_INSENSITIVE

constant 759
TYPE_SCROLL_SENSITIVE

constant 759
ResultSetMetaData interface 753, 760

getColumnClassName method 760
getColumnCount method 753, 760
getColumnName method 760
getColumnType method 753

ResultSetTableModel enables a
JTable to display the contents of a
ResultSet 755

resumption model of exception handling
312

rethrow an exception 321
@return javadoc tag 930
return keyword 42, 125, 898
return message in the UML 850
return type

in the UML 840, 845
of a method 41

Returns: note 930
reusability 594
reusable software components 4, 127,

236
reuse 5, 30
reverse method of class

StringBuilder 454
reverse method of Collections 519,

525
reversed method of interface

Comparator (Java SE 8) 566
reverseOrder method of

Collections 521
RGB value 406, 407, 412
right aligned 389
right brace, } 23, 30, 72, 76
RIGHT constant of class FlowLayout

391
right justification 945, 954
right justify output 95
right justifying integers 954
right-align the contents of a column 804
rigid area of class Box 642
robust 32
robust application 305
role in the UML 827
role name in the UML 827
roll back a transaction 786
rollback method of interface

Connection 786
rolling two dice 136
rollover Icon 356
root directory 477
root node 790
rotate method of class Graphics2D

435
round a floating-point number for display

purposes 78
round-robin scheduling 658
rounded rectangle 420, 432
rounded rectangle (for representing a state

in a UML state diagram) 835
rounding 945

Index 1037

rounding a number 33, 73, 96, 120
RoundingMode enum 232, 808
RoundRectangle2D class 403
RoundRectangle2D.Double class 428,

432
row 734, 738, 739, 740, 741, 745
RowFilter class 766
rows of a two-dimensional array 173
rows to be retrieved 739
RowSet interface 767
RowSetFactory class 767
RowSetFactory interface

createJdbcRowSet method 767
RowSetProvider class 767
RowSetProvider interface

newFactory method 767
Rule of Entity Integrity 738
Rule of Referential Integrity 737
rule of thumb (heuristic) 109
rules of operator precedence 33
run debugger command 903
run method of interface Runnable 659
runAsync method of class

CompletableFuture 730
Runnable interface 301, 659

run method 659
runnable state 657
running an application 13
running state 658
runtime error 12
runtime logic error 32
RuntimeException class 315

S
SaaS (Software as a Service) 17
SalariedEmployee class that

implements interface Payable
method getPaymentAmount 297

SalariedEmployee concrete class
extends abstract class Employee
277

SAM interface 550
SansSerif Java font 414
saturation 412
savings account 94
scalar 165
scaling (random numbers) 129

scale factor 129, 133
scaling BigDecimal values 232
Scanner class 30, 31

hasNext method 101
next method 44
nextDouble method 57
nextLine method 44

Scene Builder 789, 791
Scene class (JavaFX) 790, 799, 807, 808
scene graph 808
scene graph in a JavaFX application 790
scene in a JavaFX application 790
scheduling threads 658
scientific notation 947
scope 90
scope of a declaration 138
scope of a type parameter 596
scope of a variable 90
Screen class (ATM case study) 826, 828,

839, 846, 847, 848, 849, 850, 851,
859

screen cursor 28
screen-manager program 267
script (Unicode) 943
scroll 365, 369
scroll arrow 366
scroll box 366
SCROLL_TAB_LAYOUT constant of class

JTabbedPane 642
scrollbar 369, 401

of a JComboBox 366
scrollbar policies 401
SDK (Software Development Kit) 17
secondary storage devices 475
sector 423
SecureRandom class 128, 129

documentation 129
doubles method (Java SE 8) 580
ints method (Java SE 8) 580
longs method (Java SE 8) 580
streams of random numbers (Java SE

8) 580
security 11
security breach 45
security breaches 129
SecurityException class 483
See Also: note 929
@see javadoc tag 929
seful 477
SELECT SQL keyword 739, 740, 741,

742, 743
selectAll method 811
selectAll method of class

TextInputControl 811
selected text in a JTextArea 400
selecting an item from a menu 344, 801
selection 62
selection criteria 740
selection mode 369
selection statement 60, 61

if 61, 62, 63, 98
if...else 61, 63, 63, 64, 75, 98
switch 61, 98, 103

semicolon (;) 24, 31, 36
send a message to an object 5
sentence-style capitalization 336
sentinel-controlled repetition 74, 75, 76
sentinel value 74, 76
separator character 480
separator line in a menu 623, 624
sequence 62, 511
sequence diagram in the UML 823, 848
sequence of messages in the UML 849
sequence structure 60
sequence-structure activity diagram 61
SequenceInputStream class 505
sequential-access file 475, 481
Serializable interface 301, 493
serialized object 492
serialized-form.html generated by

javadoc 935
Serif Java font 414
service of a class 199
set debugger command 905
Set interface 509, 534, 535, 537

stream method (Java SE 8) 578
set method

of class BitSet 983
of interface ListIterator 517

set method 202

SET SQL clause 746
set up event handling 347
setAlignment method of class

FlowLayout 391
setAutoCommit method of interface

Connection 786
setBackground method of class

Component 370, 412
setBounds method of class Component

388
setCharAt method of class

StringBuilder 454
setColor method of class Graphics

407, 432
setCommand method of JdbcRowSet

interface 769
setConstraints method of class

GridBagLayout 649
setDefaultCloseOperation method

of class JFrame 344, 616
setDisabledTextColor method of

class JTextComponent 387
setEditable method of class

JTextComponent 347
setErr method of class System 476
setFileSelectionMode method of

class JFileChooser 500
setFixedCellHeight method of class

JList 372
setFixedCellWidth method of class

JList 372
setFont method of class Component

359
setFont method of class Graphics 414
setForeground method of class

JComponent 624
setHorizontalAlignment method of

class JLabel 343
setHorizontalScrollBarPolicy

method of class JScrollPane 401
setHorizontalTextPosition

method of class JLabel 343
setIcon method of class JLabel 343
setIn method of class System 476
setInverted method of class JSlider

613
setJMenuBar method of class JFrame

617, 624
setLayout method of class Container

342, 389, 393, 396, 642
setLength method of class

StringBuilder 453
setLineWrap method of class

JTextArea 401
setListData method of class JList

372
setLocation method of class

Component 388, 617
setLookAndFeel method of class

UIManager 632
setMajorTickSpacing method of class

JSlider 616
setMaximumRowCount method of class

JComboBox 366
setMnemonic method of class

AbstractButton 623
setOpaque method of class

JComponent 381, 383
setOut method of System 476

1038 Index

setPaint method of class Graphics2D
431

setPaintTicks method of class
JSlider 616

setPassword method of JdbcRowSet
interface 769

setProperty method of Properties
541

setRolloverIcon method of class
AbstractButton 357

setRoundingMode method of class
NumberFormat 812

setRowFilter method of class JTable
766

setRowSorter method of class JTable
766

setScale method of class BigDecimal
232

setSelected method of class
AbstractButton 624

setSelectionMode method of class
JList 369

setSize method of class Component
388, 617

setSize method of class JFrame 344
setString method of interface

PreparedStatement 769, 776
setStroke method of class

Graphics2D 431
setText method 811
setText method of class JLabel 343
setText method of class

JTextComponent 400
setText method of class

TextInputControl 811
Setting the PATH environment variable

xxxviii
setToolTipText method of class

JComponent 342
setUrl method of JdbcRowSet

interface 767
setUsername method of JdbcRowSet

interface 769
setVerticalAlignment method of

class JLabel 343
setVerticalScrollBarPolicy

method of class JScrollPane 401
setVerticalTextPosition method

of class JLabel 343
setVisible method of class

Component 344, 393, 617
setVisibleRowCount method of class

JList 369
shadow 42
shadow a field 138
shallow copy 262
shape 428
Shape class hierarchy 237
Shape object 431
share memory 655
shared buffer 673
shell 24
shell in Linux 10
shell script 483
Shift 387
shift (random numbers) 130

shifting value 130, 133
short-circuit evaluation 111
Short class 510

short primitive type 98, 898, 899
promotions 126

short-circuting terminal operation (Java
SE 8) 570

shortcut key 618
show method of class JPopupMenu 628
showDialog method of class

JColorChooser 411
showInputDialog method of class

JOptionPane 336
showMessageDialog method of class

JOptionPane 337
showOpenDialog method of class

JFileChooser 500
shuffle 158

algorithm 523
shuffle method of class Collections

519, 523, 525
shutdown method of class

ExecutorService 663
side effect 112
Sieve of Eratosthenes 580, 716
Sieve of Eratosthenes, using a BitSet

984
signal method of interface Condition

699, 703
signal value 74
signalAll method of interface

Condition 699
signature of a method 142, 142
signed right shift (>>) 973, 974, 980, 983
simple condition 110
simple name 224
simulate a middle-mouse-button click on

a one- or two-button mouse 380
simulate a right-mouse-button click on a

one-button mouse 380
simulation 128
sin method of class Math 120
@since javadoc tag 932
Since: note 932
sine 120
single abstract method (SAM) interface

550
single-entry/single-exit control statements

62
single inheritance 235
single-precision floating-point number 53
single-quote character 437, 741
single-selection list 367
single-selection statement 61, 62
single static import 220
Single-Threaded Execution design

pattern 994, 1005
single-type-import declaration 226
SINGLE_INTERVAL_SELECTION

constant of interface
ListSelectionModel 369, 370, 372

SINGLE_SELECTION constant of
interface ListSelectionModel 369

Singleton design pattern 994, 995
size method

of class ArrayBlockingQueue 682
of class ArrayList<T> 191
of class BitSet 984
of class Files 478
of class PriorityQueue 533
of interface List 513, 517
of interface Map 541

skinning 789
sleep interval 657
sleep method of class Thread 661, 674,

676, 677
sleeping thread 657
Slider class (JavaFX) 798, 800

Max property 806
Value property 806
valueProperty method 812

small circles in the UML 61
small diamond symbol (for representing a

decision in a UML activity diagram)
838

smartphone 3
snap-to ticks for JSlider 612
Socket class 1006
SocketImpl class 1006
Software as a Service (SaaS) 17
Software Development Kit (SDK) 17
software engineering 209
Software Engineering Observations

overview xxxii
software life cycle 820
software reuse 5, 222
solid circle (for representing an initial

state in a UML diagram) in the UML
835, 836

solid circle enclosed in an open circle (for
representing the end of a UML
activity diagram) 836

solid circle in the UML 61
solid circle surrounded by a hollow circle

in the UML 61
solid diamonds (representing

composition) in the UML 827
sort method

of class Arrays 186
of class Collections 520

sort method of class Arrays 563, 721
sorted method of interface IntStream

(Java SE 8) 559
sorted method of interface Stream

(Java SE 8) 563, 566
sorted order 535, 537
SortedMap interface 537
SortedSet interface 535, 536

first method 536
last method 536

sorting
descending order 520
with a Comparator 521

source code 9
SourceForge 7
SOUTH constant of class BorderLayout

377, 391
SOUTH constant of class

GridBagConstraints 643
SOUTHEAST constant of class

GridBagConstraints 643
SOUTHWEST constant of class

GridBagConstraints 643
space character 22
space flag 957
special character 31, 437
specialization 235
specialization in the UML 863
specifics 267
split method of class String 463, 469

Index 1039

splitAsStream method of class
Pattern (Java SE 8) 578

SQL 733, 735, 739, 745
DELETE statement 739, 747
FROM clause 739
GROUP BY 739
IDENTITY keyword 735
INNER JOIN clause 739, 744
INSERT statement 739, 745
LIKE clause 741
ON clause 744
ORDER BY clause 739, 742, 743
SELECT query 739, 740, 741, 742,

743
SET clause 746
UPDATE statement 739
VALUES clause 745
WHERE clause 740

SQL (Structured Query Language) 769
SQL injection attack (preventing) 770
SQL keyword 739
SQL statement 786
SQLException class 752, 754, 770
SQLFeatureNotSupported-

Exception class 760
sqrt method of class Math 119, 120, 125
square brackets, [] 146
square root 120
stack 594
Stack class 533

isEmpty method 533
of package java.util 531
peek method 533
pop method 533
push method 532

Stack generic class 594
Stack< Double > 601
Stack< Integer > 601

Stack generic class declaration 595
stack trace 307
stack unwinding 322
StackTraceElement class 324

getClassName method 324
getFileName method 324
getLineNumber method 324
getMethodName method 324

Stage class (JavaFX) 790, 799, 807, 808
stage in a JavaFX application 790
stale value 670
standard error stream 311, 320, 945
standard error stream (System.err)

476, 504
standard input stream (System.in) 31,

476
standard output stream 320
standard output stream (System.out)

24, 476, 504
standard reusable component 236
standard time format 197
start method of class Application

(JavaFX) 799, 807
starting angle 422
startsWith method of class String

444
starvation 659
state 823
state button 357
state dependent 673

State design pattern 994, 997, 998, 1004
context object 998
State class 998
state object 998
State subclass 998

state diagram for the ATM object 835
state diagram in the UML 835
state in the UML 823, 836
state machine diagram in the UML 823,

835
state object 1004
state of an object 830, 835
stateChanged method of interface

ChangeListener 616
stateful intermediate operation 560
stateless intermediate operation 560
stateless stream operation 560
statement 24, 42
statement block in a lambda 551
Statement interface 753, 754, 769

close method 754
executeQuery method 753

Statements
break 102, 108
continue 108, 988
control statement 60, 62, 63
control-statement nesting 62
control-statement stacking 62
do...while 62, 97, 98
double selection 62
empty 37, 66
empty statement 66
enhanced for 163
for 62, 88, 91, 92, 94, 95
if 34, 61, 62, 63, 98
if...else 61, 63, 63, 64, 75, 98
labeled break 987
labeled continue 988
looping 62
multiple selection 62
nested 79
nested if...else 64, 65
repetition 60, 62, 69
return 125
selection 60, 61
single selection 61
switch 61, 98, 103, 132
throw 196
try 157
try-with-resources 330
while 62, 69, 70, 72, 75, 76, 88

static
class member 216, 217
class variable 217
field (class variable) 216
import 220
import on demand 220
keyword 119, 898
method 47, 95

static binding 289
static interface methods (Java SE 8)

302
static method in an interface (Java SE

8) 550, 581
static method of an interface (Java SE

8) 548
step debugger command 907
step up debugger command 908
stop debugger command 903

store method of Properties 543
stored procedure 785
Strategy design pattern 994, 997, 1004
strategy object 1004
stream 320, 945
stream (Java SE 8)

DoubleStream interface 554
eager operations 557
filter elements 559
intermediate operation 552
IntStream interface 554
lazy operation 559, 560
LongStream interface 554
map elements to new values 560
pipeline 552, 559, 560
terminal operation 552

Stream interface (Java SE 8) 552, 562
collect method 563, 563, 573,

574, 580
distinct method 572
filter method 563, 566
findFirst method 570
forEach method 563
map method 565, 565
sorted method 563, 566

Stream interface (java SE 8)
flatMap method 578

stream method of class Arrays (Java SE
8) 561, 562

stream method of interface Set 578
stream of bytes 475
stream pipeline 556
streaming 655
streams 552
streams (Java SE 8)

infinite streams 580
strictfp keyword 898
string 24

literal 24
of characters 24

String class 437
charAt method 439, 454
compareTo method 441, 443
concat method 448
endsWith method 444
equals method 441, 443
equalsIgnoreCase method 441,

443
format method 196, 962
getChars method 439
immutable 219
indexOf method 445
lastIndexOf method 445
length method 439
matches method 464
regionMatches method 441
replaceAll method 469
replaceFirst method 469
split method 463, 469
startsWith method 444
substring method 447
toCharArray method 450
toLowerCase 517
toLowerCase method 450
toUpperCase 517
toUpperCase method 449
trim method 450
valueOf method 450

String class searching methods 445

1040 Index

string concatenation 123, 219
string literal 437
StringBuffer class 452
StringBuilder class 437, 451

append method 455
capacity method 452
charAt method 454
constructors 452
delete method 457
deleteCharAt method 457
ensureCapacity method 453
getChars method 454
insert method 457
length method 452
reverse method 454
setCharAt method 454
setLength method 453

StringIndexOutOfBoundsExceptio
n class 447

StringReader class 506
StringWriter class 506
Stroke object 431, 432
strongly typed languages 84
Stroustrup, Bjarne 305
structural design patterns 993, 996, 999,

1006
structure of a system 834, 835
structured programming 60, 87, 109
Structured Query Language (SQL) 733,

735, 739
subclass 5, 235, 862, 863, 1000
subject object 1003
sublist 517
subList method of List 517
submenu 618
submit method of class

ExecutorService 726
subprotocol for communication 752
subscript (index) 146
substring method of class String 447
subsystem 1007
subtraction 33

operator, - 33
subtraction compound assignment

operator, -= 81
suffix F for float literals 532
suffix L for long literals 532
sum method of interface DoubleStream

(Java SE 8) 575
sum method of interface IntStream

(Java SE 8) 557
sum the elements of an array 152
summarizing responses to a survey 155
Sun Microsystems 938, 993
super keyword 238, 261, 898

call superclass constructor 252
superclass 5, 235, 862, 1001

constructor 242
constructor call syntax 252
default constructor 242
direct 235, 237
indirect 235, 237
method overridden in a subclass 260

Supplier functional interface (Java SE
8) 551

Supplier interface (Java SE 8) 726, 729
supplyAsync method of class

CompletableFuture 729
surrogates 938

sweep 422
sweep counterclockwise 422
Swing Event Package 127
Swing GUI APIs 334
Swing GUI components 333
Swing GUI components package 127
swing.properties file xl, 335
SwingConstants interface 343, 616
SwingUtilities class 632

updateComponentTreeUI method
632

SwingWorker class 707
cancel method 721
doInBackground method 707, 710
done method 707, 710
execute method 707
get method 707
isCancelled method 716
process method 708, 717
publish method 707, 717
setProgress method 708, 716

switch logic 104
switch multiple-selection statement 61,

98, 103, 132, 898
activity diagram with break

statements 103
case label 102
controlling expression 102
default case 102, 104, 132

Sybase 733
Sybase, Inc. 938
synchronization 664, 684
synchronization wrapper 544
synchronize 655
synchronize access to a collection 511
synchronized

keyword 544, 664, 898
method 665
statement 664

synchronized collection 511
synchronous call 848
synchronous error 314
SynchronousQueue class 706
system 822
system behavior 822
System class

arraycopy 186, 187
exit method 318, 483
setErr method 476
setIn method 476
setOut 476

system requirements 820
system structure 822
System.err (standard error stream)

311, 476, 504, 945
System.in (standard input stream) 476
System.out

print method 26, 26, 26
printf method 28
println method 24, 26

System.out (standard output stream)
24, 476, 504

SystemColor class 431

T
tab 960
tab character, \t 28
Tab key 23

tab stops 28
table 173, 734
table element 173
table of values 173
TableModel interface 754

addTableModelListener 755
getColumnClass method 755, 760
getColumnCount method 755, 760
getColumnName method 755, 760
getRowCount method 755
getValueAt method 755
removeTableModelListener 755

TableModelEvent class 766
TableRowSorter class 766
tabular format 150
tagging interface 291, 493
tailSet method of class TreeSet 536
take method of class BlockingQueue

680, 682
tan method of class Math 120
tangent 120
target type of a lambda (Java SE 8) 556
technical publications 18
Template Method design pattern 994,

997, 1004
temporary 77
TEN constant of class BigDecimal 231
Terminal application (OS X) 10
terminal operation 556

eager 559
terminal operations

mutable reduction 553
reduction 553

terminal stream operations (Java SE 8)
552, 563
average method of interface

IntStream 557
collect method of interface

Stream 563, 573, 574, 580
count method of interface

IntStream 557
findFirst method of interface

Stream 570
mapToDouble method of interface

Stream 574
max method of interface IntStream

557
min method of interface IntStream

557
reduce method of interface

IntStream 557
short-circuting 570
sum method of interface IntStream

557
terminal window 24
terminate an application 623
terminate successfully 483
terminated state 657
termination housekeeping 216, 262
termination model of exception handling

312
ternary operator 66
test method of functional interface

IntPredicate (Java SE 8) 559, 560
text editor 24, 437
text file 476
Text property of a Label (JavaFX) 796
TextEdit 9
TextField class (JavaFX) 800, 804

Index 1041

TextInputControl class (JavaFX) 811
TexturePaint class 403, 431, 432
The Java™ Language Specification

(java.sun.com/docs/books/
jls/) 33

thenComparing method of functional
interface Comparator (Java SE 8)
571

thick lines 428
this

keyword 42, 200, 217, 898
reference 200
to call another constructor of the

same class 205
thread 312, 405, 1005

life cycle 656, 658
of execution 655
scheduling 658, 677
state 656
synchronization 544, 664

Thread class
currentThread method 661, 666
interrupt method 661
sleep method 661

thread confinement 707
thread-life-cycle statechart diagram 656,

658
thread pool 659
thread priority 658
thread safe 670, 707
thread scheduler 658
thread states

blocked 657, 665
dead 657
new 657
ready 658
runnable 657
running 658
terminated 657
timed waiting 657
waiting 657

three-button mouse 380
three-dimensional rectangle 419
throw an exception 157, 306, 310
throw an exception 196, 206
throw keyword 321, 898
throw point 308
throw statement 320
Throwable class 314, 324

getMessage method 324
getStackTrace method 324
hierarchy 315
printStackTrace method 324

throws clause 313
@throws javadoc tag 930
throws keyword 898
thumb of class JSlider 612, 616
thumb position of class JSlider 616
tick marks on a JSlider 612
time formatting 946
timed waiting state 657
timeslice 658
timeslicing 658
timing diagram in the UML 991
title bar 334, 340, 616
title bar of a window 337
title bar of internal window 636
titles table of books database 735, 736

toAbsolutePath method of interface
Path 478

toArray method of List 518, 519
toBinaryString method of class

Integer 976
toCharArray method of class String

450
ToDoubleFunction functional interface

(Java SE 8) 575
applyAsDouble method 575

toggle buttons 354
token of a String 463
tokenization 463
toList method of class Collectors

(Java SE 8) 563
toLowerCase method of class

Character 461
toLowerCase method of class String

450, 517
toMillis method of class Duration

722
tool tips 339, 342, 344
top 533
TOP constant of class JTabbedPane 642
top-level class 347
toPath method of class File 501
toString method

of class ArrayList 520, 607
of class Arrays 471
of class BitSet 984
of class Formatter 962
of class Object 242, 262

toString method of an object 124
toString method of interface Path 478
toUpperCase method of class

Character 460
toUpperCase method of class String

449, 517
track mouse events 374
traditional comment 22
trailing white-space characters 450
Transaction class (ATM case study)

862, 863, 864, 865, 867, 893
transaction processing 785, 786
transient keyword 495, 898
transition arrow 63, 70

in the UML 61
transition arrow in the UML 70
transition between states in the UML

835, 838
transition in the UML 61
translate method of class

Graphics2D 435
transparency of a JComponent 381
traverse an array 174
tree 534
Tree link in API 916
TreeMap class 537, 578
TreeSet class 534, 535, 536

headSet method 535
tailSet method 536

trigger an event 338
trigonometric cosine 120
trigonometric sine 120
trigonometric tangent 120
trim method of class String 450
trimToSize method of class

ArrayList<T> 189
true 34, 898

true reserved word 63, 66
truncate 33
truncate fractional part of a calculation 73
truncated 481
truth table 110
truth tables

for operator ^ 112
for operator ! 113
for operator && 110
for operator || 111

try block 157, 310, 322
terminates 312

try keyword 310, 898
try statement 157, 313
try-with-resources statement 330
24-hour clock format 194
two-dimensional array 173, 174
two-dimensional graphics 428
two-dimensional shapes 403
Two-Phase Termination design pattern

994, 1006
two’s complement 971
twos position 966
type 31
type argument 596
type casting 77
type-import-on-demand declaration 226
type inference with the <> notation (Java

SE 7) 514
type inferencing 514
type of a lambda expression 551
type parameter 588, 594, 601

scope 596
section 588, 594

type safety 587
type variable 588
type-wrapper class 458, 510, 590

implements Comparable 590
TYPE_FORWARD_ONLY constant 759
TYPE_INT_RGB constant of class

BufferedImage 432
TYPE_SCROLL_INSENSITIVE constant

759
TYPE_SCROLL_SENSITIVE constant

759
Types class 754
typesetting system 437
type-wrapper classes 458
typing in a text field 344, 801

U
U+yyyy (Unicode notational convention)

939
UIManager class 629

getInstalledLookAndFeels
method 629

LookAndFeelInfo nested class 629
setLookAndFeel method 632

UIManager.LookAndFeelInfo class
getClassName method 632

UML (Unified Modeling Language) 6,
816, 822, 826, 833, 834, 862
activity diagram 60, 61, 63, 70, 92,

98
aggregation 828
arrow 61
association 826
class diagram 46

1042 Index

UML (cont.)
compartment in a class diagram 46
diagram 822
diamond 62
dotted line 61
elided diagram 826
final state 61
frame 850
guard condition 62
hollow diamond representing

aggregation 828
many-to-one relationship 829
merge symbol 70
multiplicity 826
note 61
one-to-many relationship 829
one-to-one relationship 829
Resource Center

(www.deitel.com/UML/) 823
role name 827
solid circle 61
solid circle surrounded by a hollow

circle 61
solid diamond representing

composition 827
Specification (www.omg.org/

technology/documents/
formal/uml.htm) 828

UML Activity Diagram
small diamond symbol (for

representing a decision) in the
UML 838

solid circle (for representing an initial
state) in the UML 836

solid circle enclosed in an open circle
(for representing the end of an
activity) in the UML 836

UML Class Diagram 826
attribute compartment 833
operation compartment 839

UML Sequence Diagram
activation 850
arrowhead 850
lifeline 850

UML State Diagram
rounded rectangle (for representing a

state) in the UML 835
solid circle (for representing an initial

state) in the UML 835
UML Use Case Diagram

actor 821
use case 822

unambiguous (Unicode design basis) 938
unary operator 78, 112

cast 77
UnaryOperator functional interface

(Java SE 8) 551
unbiased shuffling algorithm 161
unboxing 594, 599
unboxing conversion 510
uncaught exception 312
unchecked exceptions 315
uncovering a component 405
underlying data structure 533
underscore (_) SQL wildcard character

740, 741
uneditable JTextArea 398
uneditable text or icons 338

Unicode character set 85, 104, 437, 442,
460, 899

Unicode Consortium 938
Unicode Standard 937
Unicode Standard design basis 938
Unicode value of the character typed 387
Unified Modeling Language (UML) 6,

816, 822, 826, 833, 834, 862
uniform (Unicode design principle) 938
Uniform Resource Identifier (URI) 478
Uniform Resource Locator (URL) 478
universal (Unicode design principle) 938
universal-time format 194, 196, 197
UNIX 24, 101, 483
unlock method of interface Lock 698,

703
unmodifiable collection 511
unmodifiable wrapper 544
unsigned right shift (>>>) 973, 974, 980,

983
unspecified number of arguments 182
UnsupportedOperationException

class 517
unwatch debugger command 911
unwinding the method-call stack 322
UPDATE SQL statement 739, 746
updateComponentTreeUI method of

class SwingUtilities 632
upper bound 591

of a wildcard 607
upper bound of a type parameter 592,

593
upper-left corner of a GUI component

403
upper-left x-coordinate 407
upper-left y-coordinate 407
uppercase letter 23, 31
URI (Uniform Resource Identifier) 478
URL 1007
URL (Uniform Resource Locator) 478
URLStreamHandler class 1007
use case diagram in the UML 821, 822
use case in the UML 821
use case modeling 821
user interface 1009
UTF-16 938
UTF-32 938
UTF-8 938
Utilities Package 127
Utility class that displays bit

representation of an integer 979
utility method 197

V
va 484
vacated bits 983
valid identifier 31
validate data 74
validate method of class Container

396
validity checking 209
Value property of a Slider (JavaFX) 806
valueChanged method of interface

ListSelectionListener 369
valueOf method of class BigDecimal

230
valueOf method of class String 450

valueProperty method of class
Slider 812

values method of an enum 214
VALUES SQL clause 745, 745
variable 31

name 31
reference type 49

variable declaration statement 31
variable is not modifiable 221
variable-length argument list 182
variable names

came case naming 40
variable scope 90
VBox class (JavaFX) 795

alignment 796
Alignment property 796

Vbox class (JavaFX) 795
Vector class 511
verb phrase in requirements document

839
@version javadoc tag 932
Version note 932
VERTICAL constant of class

GridBagConstraints 644
vertical coordinate 403
vertical gap space 393
vertical scrolling 400
vertical strut 641
VERTICAL_SCROLLBAR_ALWAYS

constant of class JScrollPane 401
VERTICAL_SCROLLBAR_AS_NEEDED

constant of class JScrollPane 401
VERTICAL_SCROLLBAR_NEVER constant

of class JScrollPane 401
Vgap property of a GridPane 805
vi editor 9
video game 129
video streaming 691
View 334
view (in MVC) 801, 1008
virtual key code 387
virtual machine (VM) 10
visibility in the UML 857
visibility marker in the UML 857
Visitor design pattern 997
visual feedback 357
visual programming 791
Vlissides, John 993
void keyword 23, 41, 898
volatile keyword 898

W
wait method of class Object 262, 684
waiting line 533
waiting state 657
waiting thread 687
watch debugger command 909
waterfall model 820
weightx field of class

GridBagConstraints 644
weighty field of class

GridBagConstraints 644
WEST constant of class BorderLayout

377, 391
WEST constant of class

GridBagConstraints 643
WHERE SQL clause 739, 740, 741, 743,

746, 747

http://www.deitel.com/UML/
http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/technology/documents/formal/uml.htm

Index 1043

while repetition statement 62, 69, 70,
72, 75, 76, 88
activity diagram in the UML 70

white space 22, 24
white-space character 450, 463, 464
whole/part relationship 827
widgets 333, 788
width 418
width of a rectangle in pixels 407
wildcard 607

in a generic type parameter 605
type argument 607, 607
upper bound 607

window 616
Window class 616, 617

addWindowListener method 617
dispose method 617
pack method 636

window event 617
window event-handling methods 377
window events 617
window gadgets 333, 788
windowActivated method of interface

WindowListener 617
WindowAdapter class 378, 766
windowClosed method of interface

WindowListener 617, 766
windowClosing method of interface

WindowListener 617
WindowConstants interface 616

DISPOSE_ON_CLOSE constant 617
DO_NOTHING_ON_CLOSE constant

616
HIDE_ON_CLOSE constant 616

windowDeactivated method of
interface WindowListener 617

windowDeiconified method of
interface WindowListener 617

windowIconified method of interface
WindowListener 617

windowing system 339
WindowListener interface 377, 378,

617, 766
windowActivated method 617
windowClosed method 617, 766
windowClosing method 617
windowDeactivated method 617
windowDeiconified method 617
windowIconified method 617
windowOpened method 617

windowOpened method of interface
WindowListener 617

Windows 101, 483
Windows look-and-feel 612
Withdrawal class (ATM case study)

826, 827, 829, 831, 832, 837, 838,
839, 847, 848, 850, 851, 859, 860,
862, 863, 864, 867

word character 464
word processor 437, 445
workflow 60
workflow of an object in the UML 836
wrapper methods of the Collections

class 511
wrapper object (collections) 544
wrapping stream objects 492, 497
wrapping text in a JTextArea 401
writeBoolean method of interface

DataOutput 504
writeByte method of interface

DataOutput 504
writeBytes method of interface

DataOutput 504
writeChar method of interface

DataOutput 504
writeChars method

of interface DataOutput 504

writeDouble method
of interface DataOutput 504

writeFloat method
of interface DataOutput 504

writeInt method of interface
DataOutput 504

writeLong method of interface
DataOutput 504

writeObject method
of class ObjectOutputStream 497
of interface ObjectOutput 493

Writer class 505i
writeShort method of interface

DataOutput 504
writeUTF method of interface

DataOutput 504
www 16

X
x-coordinate 403, 427
X_AXIS constant of class Box 642
x-axis 403
xor method of class BitSet 984

Y
y-coordinate 403, 427
Y_AXIS constant of class Box 642
y-axis 403

Z
ZERO constant of class BigDecimal 231
0 (zero) flag 956, 958
zero-based counting 149
zeroth element 146

This page intentionally left blank

	Contents
	Foreword
	Preface
	Before You Begin
	3 Introduction to Classes, Objects, Methods and Strings
	3.1 Introduction
	3.2 Instance Variables, set Methods and get Methods
	3.2.1 Account Class with an Instance Variable, a set Method and a get Method
	3.2.2 AccountTest Class That Creates and Uses an Object of Class Account
	3.2.3 Compiling and Executing an App with Multiple Classes
	3.2.4 Account UML Class Diagram with an Instance Variable and set and get Methods
	3.2.5 Additional Notes on Class AccountTest
	3.2.6 Software Engineering with private Instance Variables and public set and get Methods

	3.3 Primitive Types vs. Reference Types
	3.4 Account Class: Initializing Objects with Constructors
	3.4.1 Declaring an Account Constructor for Custom Object Initialization
	3.4.2 Class AccountTest: Initializing Account Objects When They’re Created

	3.5 Account Class with a Balance; Floating-Point Numbers
	3.5.1 Account Class with a balance Instance Variable of Type double
	3.5.2 AccountTest Class to Use Class Account

	3.6 Wrap-Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

