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Preface to the Third Edition

During my experience of teaching aircraft structures, I felt the need for a textbook written specifi-
cally for students of aeronautical engineering. Although there were a number of books available
on the subject they were either out of date or too specialized in content to fulfill the requirements
of an undergraduate textbook. With that in mind I wrote Aircraft Structures for Engineering
Students. After a period of years users of that text commented that a briefer version of the book
might be desirable particularly for programs that did not have time to cover all the material in the
“big” book. That feedback, together with a survey carried out by the publisher, resulted in An Intro-
duction to Aircraft Structural Analysis designed to meet the needs of more time-constrained courses.
To this end the chapter on “Vibration of structures” was removed from the “big” book together with
the sections on “Structural and loading discontinuities” and “Aeroelasticity.” The reader interested in
learning more on these topics should refer to the “big” book. Also, in the interest of saving space, the
appendix on “Design of a rear fuselage” was omitted but is available for download from the book’s
companion website, http://booksite.elsevier.com/9780080982014/.

The publication of a third edition has enabled me to include more worked examples and end-of-
chapter exercises of an essentially practical nature and also to extend the work on composite materi-
als and structures to a consideration of multi-ply laminates. In this the method of specifying different
ply lay-ups is included together with the effects of symmetry and reinforcement orientation. The cal-
culation of equivalent elastic constants is presented for the case of in-plane loading only since this is
normally the situation in the thin skins of aircraft structures. The calculation of the distribution of
stresses across the thickness of a laminate is illustrated by an example and the strength of laminates
investigated using the maximum stress theory.

Finally, the publication of a third edition has enabled me to review the text and correct the print-
ing errors, mainly in cross-referencing, which had, unfortunately, crept into the second edition.

T.H.G. Megson

SUPPORTING MATERIAL TO ACCOMPANY THIS BOOK

For instructors using this text in their course, a full set of worked solutions and electronic images of the figures in
the text are available by registering at: www.textbooks.elsevier.com
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CHAPTER

Basic elasticity

We consider, in this chapter, the basic ideas and relationships of the theory of elasticity. The treatment
is divided into three broad sections: stress, strain, and stress—strain relationships. The third section is
deferred until the end of the chapter to emphasize the fact that the analysis of stress and strain, for
example, the equations of equilibrium and compatibility, does not assume a particular stress—strain
law. In other words, the relationships derived in Sections 1.1-1.14 are applicable to nonlinear as well
as linearly elastic bodies.

STRESS

Consider the arbitrarily shaped, three-dimensional body shown in Fig. 1.1. The body is in equilibrium
under the action of externally applied forces Py, P», ... and is assumed to constitute a continuous and
deformable material, so that the forces are transmitted throughout its volume. It follows that, at any
internal point O, there is a resultant force dP. The particle of material at O subjected to the force
OP is in equilibrium, so that there must be an equal but opposite force 8P (shown dotted in
Fig. 1.1) acting on the particle at the same time. If we now divide the body by any plane nn containing
O, then these two forces 8P may be considered as being uniformly distributed over a small area 6A of
each face of the plane at the corresponding point O, as in Fig. 1.2. The stress at O is defined by the
equation

. oP
Stress = 61\1£n)0 5A (1.1)
The directions of the forces 6P in Fig. 1.2 are such as to produce tensile stresses on the faces of the
plane nn. It must be realized here that, while the direction of 6P is absolute, the choice of plane is arbitrary,
so that, although the direction of the stress at O is always in the direction of P, its magnitude depends
upon the actual plane chosen, since a different plane has a different inclination and therefore a different
value for the area dA. This may be more easily understood by reference to the bar in simple tension in
Fig. 1.3. On the cross-sectional plane mm, the uniform stress is given by P/A, while on the inclined plane
m'm’ the stress is of magnitude P/A’. In both cases, the stresses are parallel to the direction of P.
Generally, the direction of 6P is not normal to the area 8A, in which case, it is usual to resolve dP
into two components: one, 6P,, normal to the plane and the other, 3P, acting in the plane itself (see
Fig. 1.2). Note that, in Fig. 1.2, the plane containing 8P is perpendicular to dA. The stresses associated
with these components are a normal or direct stress defined as

P

. n

o = lim (1.2)
34—0 0A
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6 CHAPTER 1 Basic elasticity

P3

FIGURE 1.2 Internal Force Components at the Point 0

and a shear stress defined as
i OP;
T = lim
5A—0 0A
The resultant stress is computed from its components by the normal rules of vector addition, i.e.:

Resultant stress = /62 + 12

Generally, however, as indicated previously, we are interested in the separate effects of ¢ and .

However, to be strictly accurate, stress is not a vector quantity for, in addition to magnitude and
direction, we must specify the plane on which the stress acts. Stress is therefore a tensor, its complete
description depending on the two vectors of force and surface of action.

(1.3)
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FIGURE 1.3 Values of Stress on Different Planes in a Uniform Bar

NOTATION FOR FORCES AND STRESSES

It is usually convenient to refer the state of stress at a point in a body to an orthogonal set of axes Oxyz.
In this case we cut the body by planes parallel to the direction of the axes. The resultant force 6P acting
at the point O on one of these planes may then be resolved into a normal component and two in-plane
components, as shown in Fig. 1.4, thereby producing one component of direct stress and two compo-
nents of shear stress.

The direct stress component is specified by reference to the plane on which it acts, but the shear
stress components require a specification of direction in addition to the plane. We therefore allocate
a single subscript to direct stress to denote the plane on which it acts and two subscripts to shear stress,
the first specifying the plane, the second direction. Therefore, in Fig. 1.4, the shear stress components
are 1., and T, acting on the z plane and in the x and y directions, respectively, while the direct stress
component is G,.

We may now completely describe the state of stress at a point O in a body by specifying components
of shear and direct stress on the faces of an element of side dx, 3y, 6z, formed at O by the cutting planes
as indicated in Fig. 1.5.

The sides of the element are infinitesimally small, so that the stresses may be assumed to be
uniformly distributed over the surface of each face. On each of the opposite faces there will be, to
a first simplification, equal but opposite stresses.

We now define the directions of the stresses in Fig. 1.5 as positive, so that normal stresses directed
away from their related surfaces are tensile and positive; opposite compressive stresses are negative.
Shear stresses are positive when they act in the positive direction of the relevant axis in a plane
on which the direct tensile stress is in the positive direction of the axis. If the tensile stress is in the
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FIGURE 1.4 Components of Stress at a Point in a Body
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FIGURE 1.5 Sign Conventions and Notation for Stresses at a Point in a Body
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opposite direction, then positive shear stresses are in directions opposite to the positive directions of the
appropriate axes.

Two types of external force may act on a body to produce the internal stress system we have already
discussed. Of these, surface forces such as Py, P,, . . ., or hydrostatic pressure, are distributed over the
surface area of the body. The surface force per unit area may be resolved into components parallel to
our orthogonal system of axes, and these are generally given the symbols X, Y, and Z. The second force
system derives from gravitational and inertia effects, and the forces are known as body forces. These
are distributed over the volume of the body and the components of body force per unit volume are
designated X, Y, and Z.

EQUATIONS OF EQUILIBRIUM

Generally, except in cases of uniform stress, the direct and shear stresses on opposite faces of an
element are not equal, as indicated in Fig. 1.5, but differ by small amounts. Therefore if, say, the direct
stress acting on the z plane is ., then the direct stress acting on the z + 8z plane is, from the first two
terms of a Taylor’s series expansion, 6. + (JG,/0z)dz.

We now investigate the equilibrium of an element at some internal point in an elastic body where
the stress system is obtained by the method just described.

In Fig. 1.6, the element is in equilibrium under forces corresponding to the stresses shown and the
components of body forces (not shown). Surface forces acting on the boundary of the body, although
contributing to the production of the internal stress system, do not directly feature in the equilibrium
equations.

Oy
o, t+ 5; Sy
0Ty, 0Ty«
et gy ¥ Bx A T
or, \ 02
Tay + azy Sz >/_£ 7 Sy
N Tzx / al’xy s
~—== Ty ¥ g oK
Txz X [l
4 | 0
ox 4——‘———-|(’ / Tzy § L+ o, + a;:' Sx
; Ol /™~ X
Txy A arxz
STy Tz + ax 3x
- 8z
x : O0Tsx
' T+ 3z 5z
/ + éﬁ ¥4 l
92T 3z o,

7 y

FIGURE 1.6 Stresses on the Faces of an Element at a Point in an Elastic Body
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Taking moments about an axis through the center of the element parallel to the z axis,

ox OTyy ox dy
’ExySySZ? +1 Ty + 8—)(}& BySZ? - tyxéx&?

which simplifies to

T, Oydz0x + % Sydz

dividing through by dxdydz and taking the limit as dx and dy approach zero.

(3x)° Ot (8y)
> Ty 0x0z8y By 8x82—2 =0

Ty = Ty
Similarly, Ty = Toy (1.4)
Tyz = Tz

We see, therefore, that a shear stress acting on a given plane (T, Ty, T,.) is always accompanied by
an equal complementary shear stress (T, T., T-y) acting on a plane perpendicular to the given plane and
in the opposite sense.

Now, considering the equilibrium of the element in the x direction,

oy + do. dx | 8ydz —o, dydz + | T + Oty dy | x5z
Ox ’ dy
—T,,0x8z + | To + Ot 5z | dxdy
0z

—T,,0x0y + X0xdydz = 0

which gives
0o, Oty  Ots
I Ty
ox oy o T

Or, writing 1, = Ty, and 1, = 1., from Eq. (1.4),

0o, 0ty Oy
. X=0
ax "oy "o T
0oy, Oty O1y:
similarly, 8—y+ x| o +Y=0 (1.5)
0o, Ot Oty
SR TR 720
0z * Ox * Jy *

The equations of equilibrium must be satisfied at all interior points in a deformable body under a
three-dimensional force system.
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PLANE STRESS

Most aircraft structural components are fabricated from thin metal sheet, so that stresses across the
thickness of the sheet are usually negligible. Assuming, say, that the z axis is in the direction of
the thickness, then the three-dimensional case of Section 1.3 reduces to a two-dimensional case in
which o, 1., and 7, are all zero. This condition is known as plane stress; the equilibrium equations
then simplify to

00, Oty

T +X=0

1.6)
0o, Oty (
Iy Iy —
5 ot 0

BOUNDARY CONDITIONS

The equations of equilibrium (1.5)—and also (1.6), for a two-dimensional system—satisfy the require-
ments of equilibrium at all internal points of the body. Equilibrium must also be satisfied at all positions
on the boundary of the body, where the components of the surface force per unit area are X, Y, and Z.
The triangular element of Fig. 1.7 at the boundary of a two-dimensional body of unit thickness is then in
equilibrium under the action of surface forces on the elemental length AB of the boundary and internal
forces on internal faces AC and CB.

Summation of forces in the x direction gives

_ 1
X0s — 0,0y — Ty 0x + X§6x8y =0

which, by taking the limit as 6x approaches zero and neglecting second order terms, becomes

- dy dx
X=0,— —
Ox ds + T ds
y —
A Y
Ox } sy Ss X
Txy SX\
C R S B
Tyx
9y
0 x

FIGURE 1.7 Stresses on the Faces of an Element at the Boundary of a Two-Dimensional Body
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The derivatives dy/ds and dx/ds are the direction cosines / and m of the angles that a normal to AB
makes with the x and y axes, respectively. It follows that

X =od+1,m
and in a similar manner
Y =oym+1,l

A relatively simple extension of this analysis produces the boundary conditions for a three-
dimensional body, namely,
X = Ol + Tym + T
Y =o,m+ 1yl + tyn (1.7)
Z =00+ Tyum+ Tyl

where [, m, and n become the direction cosines of the angles that a normal to the surface of the body
makes with the x, y, and z axes, respectively.

DETERMINATION OF STRESSES ON INCLINED PLANES

The complex stress system of Fig. 1.6 is derived from a consideration of the actual loads applied to a
body and is referred to a predetermined, though arbitrary, system of axes. The values of these stresses
may not give a true picture of the severity of stress at that point, so that it is necessary to investigate the
state of stress on other planes on which the direct and shear stresses may be greater.

We restrict the analysis to the two-dimensional system of plane stress defined in Section 1.4.

Figure 1.8(a) shows a complex stress system at a point in a body referred to axes Ox, Oy. All stresses
are positive, as defined in Section 1.2. The shear stresses 1, and 1,, were shown to be equal in
Section 1.3. We now, therefore, designate them both t,,. The element of side dx, 8y and of unit

o
A 4

¥y .l_..._.._.» Txy E

C D
Txy ‘_* Ty |

Oy
O B > X 0,

(a) (b)

FIGURE 1.8 (a) Stresses on a Two-Dimensional Element; (b) Stresses on an Inclined Plane at the Point
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thickness is small, so that stress distributions over the sides of the element may be assumed to be
uniform. Body forces are ignored, since their contribution is a second-order term.

Suppose that we need to find the state of stress on a plane AB inclined at an angle 6 to the vertical.
The triangular element EDC formed by the plane and the vertical through E is in equilibrium under the
action of the forces corresponding to the stresses shown in Fig. 1.8(b), where G,, and 7 are the direct and
shear components of the resultant stress on AB. Then, resolving forces in a direction perpendicular to
ED, we have

6,ED = 6,EC cos0 + ¢,CD sin0 + 1,,EC sin0 + 1,,CD cos0)
Dividing through by ED and simplifying,
o,= G, cos>0 + c, sin0 + Tyy 5in20 (1.8)
Now, resolving forces parallel to ED,
1ED = ¢,EC sinf — 6,CD cos — 1,,EC cos0 4 1,,CDsin0
Again, dividing through by ED and simplifying,
(0 —oy)

T= — sin20 — 1y, cos20 (1.9)

|
Example 1.1

A cylindrical pressure vessel has an internal diameter of 2 m and is fabricated from plates 20 mm thick. If the

pressure inside the vessel is 1.5 N/mm?® and, in addition, the vessel is subjected to an axial tensile load of
2500 kN, calculate the direct and shear stresses on a plane inclined at an angle of 60° to the axis of the vessel.
Calculate also the maximum shear stress.

The expressions for the longitudinal and circumferential stresses produced by the internal pressure may be
found in any text on stress analysis' and are

4 15x2x 10%/4 x 20 = 37.5 N/mm?

Longitudinal stress (o) = IZT[

d
Circumferential stress (Gy) = % =1.5x2 x 10%2 x 20 = 75 N/mm?
The direct stress due to the axial load will contribute to &, and is given by
o, (axial load) = 2500 x 10%/n x 2 x 10* x 20 = 19.9 N/mm?

A rectangular element in the wall of the pressure vessel is then subjected to the stress system shown in Fig. 1.9.
Note that no shear stresses act on the x and y planes; in this case, ¢, and c, form a biaxial stress system.

The direct stress, o, and shear stress, T, on the plane AB, which makes an angle of 60° with the axis of the
vessel, may be found from first principles by considering the equilibrium of the triangular element ABC or by
direct substitution in Eqs. (1.8) and (1.9). Note that, in the latter case, 0 = 30° and t,, = 0. Then,

G, = 57.4 c0s?30° + 755in*30° = 61.8 N/mm>
T = (57.4 —75)[sin(2 x 30°)]/2 = —7.6N/mm?
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T 0, = 75 N/mm?

A
g
57.4 N/mm? n
57.4N/mm2 <+ =] - » 0,=37.5+19.9 = 57.4 N/mm?
T
60°
C l B
75 N/mm?

FIGURE 1.9 Element of Example 1.1

The negative sign for t indicates that the shear stress is in the direction BA and not AB.
From Eq. (1.9), when 1,,, = 0,

T = (o, — 0,)(sin20)/2 @

The maximum value of 1 therefore occurs when sin20 is a maximum, that is, when sin20 = 1 and 6 = 45°. Then,
substituting the values of o, and o, in Eq. (i),

Tmax = (57.4 —75)/2 = —8.8N/mm?

|
Example 1.2

A cantilever beam of solid, circular cross-section supports a compressive load of 50 kN applied to its free end at a

point 1.5 mm below a horizontal diameter in the vertical plane of symmetry together with a torque of 1200 Nm
(Fig. 1.10). Calculate the direct and shear stresses on a plane inclined at 60° to the axis of the cantilever at a point on
the lower edge of the vertical plane of symmetry.

The direct loading system is equivalent to an axial load of 50 kN together with a bending moment of 50 x 10 x
1.5 =75,000 Nmm in a vertical plane. Therefore, at any point on the lower edge of the vertical plane of symmetry,

60 mm diameter

{1.5mm

. \&1200 Nm
50 kN

FIGURE 1.10 Cantilever Beam of Example 1.2.
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28.3 N/mm?
A
28.3 N/mm?
Op
21.2 N/mm? — oy =17.7 + 3.5 = 21.2 N/mm?
21.2 N/mm?
T
60° TXy =28.3 N/mm2
o} B
_—
28.3 N/mm?

FIGURE 1.11 Stress System on a Two-Dimensional Element of the Beam of Example 1.2

there are compressive stresses due to the axial load and bending moment that act on planes perpendicular to the axis
of the beam and are given, respectively, by Egs. (1.2) and (15.9); that is,

o, (axial load) = 50 x 10%/n x (60%/4) = 17.7N/mm?
o, (bending moment) = 75,000 x 30/x x (60%*/64) = 3.5N/mm>

The shear stress, T,,, at the same point due to the torque is obtained from Eq. (iv) in Example 3.1; that is,

Xxy»

T,y = 1200 x 10° x 30/% x (60*/32) = 28.3 N/mm’

The stress system acting on a two-dimensional rectangular element at the point is shown in Fig. 1.11. Note that,
since the element is positioned at the bottom of the beam, the shear stress due to the torque is in the direction shown
and is negative (see Fig. 1.8).

Again, 6, and T may be found from first principles or by direct substitution in Eqs. (1.8) and (1.9). Note that
0 =30°, 6, =0, and 1., = —28.3 N/mm?, the negative sign arising from the fact that it is in the opposite direction
to T,y in Fig. 1.8.

Then,

G, = —21.2¢c0s?30° — 28.35in60° = —40.4N/mm? (compression)
T = (=21.2/2) sin60° + 28.3 c0s60° = 5.0N/mm? (acting in the direction AB)

Different answers are obtained if the plane AB is chosen on the opposite side of AC.

PRINCIPAL STRESSES

For given values of ¢, G,, and 1,,, in other words, given loading conditions, G, varies with the angle 0
and attains a maximum or minimum value when do,/d® = 0. From Eq. (1.8),

do,
do

= —20, cosO sind + 2o, sinb cosd + 21,y cos20 =0

Hence,
—(oy — ©y) sin20 + 21, c0s20 = 0
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or

21y,

tan20 = (1.10)

Gy — Oy

Two solutions, 0 and 6 4 7/2, are obtained from Eq. (1.10), so that there are two mutually perpen-
dicular planes on which the direct stress is either a maximum or a minimum. Further, by comparison of
Egs. (1.9) and (1.10), it will be observed that these planes correspond to those on which there is no shear
stress. The direct stresses on these planes are called principal stresses and the planes themselves,

principal planes.
From Eq. (1.10),

sin20 = 2Ty cos20 = Ox — O
\/(cx — cy)2 +412 \/(Gx — cry)2 + 413,
and
sin2(0 + m/2) = 2 c0s2(0 4 7/2) = 2= %)

\/(cx - cs_v)2 + 41,
Rewriting Eq. (1.8) as

oy = % (14 cos20) + % (1 — c0s20) + 1, sin20

and substituting for {sin20, cos20} and {sin2(0 + m/2), cos2(0 + ®/2)} in turn gives

G,+ 0 1
o1 = 3 y+§\/(6.x_6y)2+4r)2ry (1.11)
and
c,+0o 1
o = ) y _ 5 \/(Gx — Gy)z + 41}%}* (112)

where o7 is the maximum or major principal stress and Gy is the minimum or minor principal stress.
Note that oy is algebraically the greatest direct stress at the point while oy; is algebraically the least.
Therefore, when oy is negative, that is, compressive, it is possible for oy to be numerically greater

than oj.
The maximum shear stress at this point in the body may be determined in an identical manner.
From Eq. (1.9),
dt .
0= (ox — 0y) c0s20 + 21, sin20 = 0
giving

(or —0y)

tan20 = —
an 2ty

(1.13)
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It follows that
—(o, — o, 2Ty,
sin20 = (0x — o) c0s20 = T
\/(GX — csy)2 + 412 \/(cx - 6_‘,)2 + 412
‘= -2
sin2(0 + 1/2) = —%r = %) cos2(6 + m/2) = Loy
V(o)) +41 V0o—0) +4
Substituting these values in Eq. (1.9) gives
1
Tmax,min = ii \/(Gx - Gy)z + 4T)%y (1.14)

Here, as in the case of principal stresses, we take the maximum value as being the greater algebraic
value.
Comparing Eq. (1.14) with Egs. (1.11) and (1.12), we see that

O1 — On
max — 1.15
T 5 (1.15)

Equations (1.14) and (1.15) give the maximum shear stress at the point in the body in the plane of
the given stresses. For a three-dimensional body supporting a two-dimensional stress system, this is not
necessarily the maximum shear stress at the point.

Since Eq. (1.13) is the negative reciprocal of Eq. (1.10), the angles 28 given by these two equations
differ by 90° or, alternatively, the planes of maximum shear stress are inclined at 45° to the principal
planes.

MOHR’S CIRCLE OF STRESS

The state of stress at a point in a deformable body may be determined graphically by Mohr’s circle of
stress.
In Section 1.6, the direct and shear stresses on an inclined plane were shown to be given by

o, = 0,080 + c, sin®0 + T,y 8in20 (1.8)
and

= @ $in20 — 1y, c0s26 (1.9)

respectively. The positive directions of these stresses and the angle 6 are defined in Fig. 1.12(a).
Equation (1.8) may be rewritten in the form

oy = % (1 + cos26) + % (1 — co0s20) + 1, sin20
or

on —5(0x+0y) =

G, — G,)c0s20 + T, sin20
2 y y

| =
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D (Tmax)

Ox

Txy ~~1T (U”)

Ty

M — =

(0, ~7y,)

(Tmin)

(a) (b)
FIGURE 1.12 (a) Stresses on a Triangular Element; (b) Mohr’s Circle of Stress for the Stress System Shown in (a)

Squaring and adding this equation to Eq. (1.9), we obtain

which represents the equation of a circle of radius % \/ (o, — 6}7)2 + 4r§y and having its center at the
point [(c, — ©,)/2, 0].

The circle is constructed by locating the points Q; (c,, T\,) and Q, (o, —1,,) referred to axes OcT,
as shown in Fig. 1.12(b). The center of the circle then lies at C, the intersection of Q;Q, and the

Oo axis; clearly C is the point [(c, — ©,)/2, 0] and the radius of the circle is %\/ (o, — Gy)2 + 41%,

as required. CQ’ is now set off at an angle 20 (positive clockwise) to CQ;, Q’ is then the point
(o,, — 1), as demonstrated next. From Fig. 1.12(b), we see that

ON = 0C +CN
or, since OC = (o, + 6,)/2, CN = CQ’ cos(B —20), and CQ’' = CQ,, we have
G, = % +CQ, (cosBcos20 + sinf sin20)
But,
Gy — Oy)
CO. — 1 d CP, — (o y
Ql OSB an 1 2
Hence,
o, = Ox —; Sy + (Gx ; Gy) c0s20 + CP; tanf sin26

which, on rearranging, becomes

o, = O, cos’0 + (o sin®0 + T,y Sin20
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as in Eq. (1.8). Similarly, it may be shown that
Q'N = 1,y c0s20 — (Q) sin20 = —1

as in Eq. (1.9). Note that the construction of Fig. 1.12(b) corresponds to the stress system of Fig. 1.12
(a), so that any sign reversal must be allowed for. Also, the Oc and Ot axes must be constructed to the
same scale or the equation of the circle is not represented.

The maximum and minimum values of the direct stress, that is, the major and minor principal stres-
ses oy and oy, occur when N (and Q') coincide with B and A, respectively. Thus,

o1 = OC + radius of circle

c,+0o
:%+ \/CP} + P,Q?

' 1
o1 = w+§\/(cx —5,) + 412

or

and, in the same fashion,

(cx+oy) 1 2
on = % —3 \/(GX —0y)" +413,
The principal planes are then given by 20 = B(cy) and 26 = B + n(oy).
Also, the maximum and minimum values of shear stress occur when Q' coincides with D and E at
the upper and lower extremities of the circle.
At these points, Q'N is equal to the radius of the circle, which is given by

(o — Gy)z

CQ, = 1

2
+1

_ 41 2 . .
Hence, Tmaxmin = £5 \/ (o —oy)" + 41:,%},7 as before. The planes of maximum and minimum shear

stress are given by 20 = § 4+ 1/2 and 20 = B + 37/2, these being inclined at 45° to the principal planes.

i
Example 1.3

Direct stresses of 160 N/mm? (tension) and 120 N/mm? (compression) are applied at a particular point in an elastic
material on two mutually perpendicular planes. The principal stress in the material is limited to 200 N/mm? (tension).

Calculate the allowable value of shear stress at the point on the given planes. Determine also the value of the other prin-
cipal stress and the maximum value of shear stress at the point. Verify your answer using Mohr’s circle.

The stress system at the point in the material may be represented as shown in Fig. 1.13 by considering the
stresses to act uniformly over the sides of a triangular element ABC of unit thickness. Suppose that the direct stress
on the principal plane AB is ¢. For horizontal equilibrium of the element,

G6AB cos0 = o, BC 4 1,,AC
which simplifies to

Ty tand = o — o ()
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P o (200 N/mm?)

o,
(160 N/mm?)

Ty

C A
Ty T

\

o, (=120N/mm?)
FIGURE 1.13 Stress System for Example 1.3

Considering vertical equilibrium gives

6ABsin0 = ¢,AC + 1,,BC

or
Ty coth = o — o, (ii)
Hence, from the product of Egs. (i) and (ii),
T, =(c—ac)(c—a)
Now, substituting the values ¢, = 160 N/mmz, o, =-120 N/mmz, and o = o; = 200 N/mm?2, we have

Ty = £113 N/mm?
Replacing cot in Eq. (ii) with 1/tan from Eq. (i) yields a quadratic equation in G:

o’ — o(o, — Cy) + 6,Cy — rfy =0 (iii)

The numerical solutions of Eq. (iii) corresponding to the given values of c,, G,, and 1., are the principal stresses at
the point, namely,

o1 = 200 N/mm?
given
o = —160 N/mm?

Having obtained the principal stresses, we now use Eq. (1.15) to find the maximum shear stress, thus

200 + 1
Trax = w =180 N/mm2

The solution is rapidly verified from Mohr’s circle of stress (Fig. 1.14). From the arbitrary origin O, OPy, and
OP, are drawn to represent 6, = 160 N/mm? and c,=-120 N/mm?. The mid-point C of P, P, is then located. Next,
OB = o, = 200 N/mm? is marked out and the radius of the circle is then CB. OA is the required principal stress.
Perpendiculars P;Q, and P,Q, to the circumference of the circle are equal to &1, (to scale), and the radius of the
circle is the maximum shear stress.
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T max = 180 N/mm?

Q, (160N/mm2, 113N/mm?)

Al p, ol 1.~

o
(0, =200 N/mm?)

\
<

—=N
(9]

_:D S

(o), = -160N/mm?)

\

Q,
(=120 N/mm2, =113 N/mm?)

FIGURE 1.14 Solution of Example 1.3 Using Mohr’s Circle of Stress

[
Example 1.3 MATLAB®
Repeat the derivations presented in Example 1.3 using the Symbolic Math Toolbox in MATLAB®. Do not recreate
Mohr’s circle.

Using the element shown in Fig. 1.13, derivations of the principal stresses and maximum shear stress are
obtained through the following MATLAB file:

% Declare any needed symbolic variables
syms sig tau_xy sig_x sig_y theta AB BC AC

% Define known stress values
sig_x=sym(160);

sig_y =sym(-120);

sig_val =sym(200);

% Define relationships between AB, BC, and AC
BC = AB*cos(theta);
AC = AB*sin(theta);

% For horizontal equalibriumof the element
eql = sig*AB*cos(theta)-sig_x*BC-tau_xy*AC;

% For vertical equalibriumof the element
eqll =sig*AB*sin(theta)-sig_y*AC-tau_xy*BC;
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% Solve eql and eqll for tau_xy
tau_xyl =solve(eql,tau_xy);
tau_xyll =solve(eqll,tau_xy);

% Take the square-root of tau_xyI times tau_xyII to get tau_xy
tau_xy_val =sqrt(tau_xyl*tau_xyIl);

% Substitite the givenvalue of siginto tau_xy
tau_xy_val =subs(tau_xy_val,sig,sig_val);

% Solve eql for theta and substitute intoeqll
eql =simplify(eql/cos(theta));

theta_I =solve(eql,theta);

eqlIl =subs(eqll,theta,theta_I);

% Substitute thevalueof tau_xy intoeqllIl andsolve for theprincipal stresses (sig_p)
sig_p=-solve(subs(eqlIII,tau_xy,tau_xy_val),sig);

sig_l =max(double(sig_p));

sig_II =min(double(sig_p));

% Calculate the maximum shear stressusing Eq. (1.15)
tau_max = (sig_I-sig_II)/2;

% Output tau_xy, the principal stresses, and tau_max to the Command Window
disp([*tau_xy =+/-" num2str(double(tau_xy_val)) ‘N/mm*2’1)
disp([“sig_I =" num2str(sig_I) ‘N/mm~2’7)

disp([*sig_II =" num2str(sig_II) ‘N/mm*2°1)

disp([‘tau_max =" num2str(tau_max) ‘N/mm~2°1)

The Command Window outputs resulting from this MATLAB file are as follows:

tau_xy =+/-113.1371 N/mm"2
sig_I =200 N/mm*2

sig_II =-160 N/mm"2
tau_max = 180 N/mm~2

STRAIN

The external and internal forces described in the previous sections cause linear and angular
displacements in a deformable body. These displacements are generally defined in terms of strain.
Longitudinal or direct strains are associated with direct stresses o and relate to changes in length, while
shear strains define changes in angle produced by shear stresses. These strains are designated, with
appropriate suffixes, by the symbols € and v, respectively, and have the same sign as the associated
stresses.

Consider three mutually perpendicular line elements OA, OB, and OC at a point O in a deformable
body. Their original or unstrained lengths are dx, 8y, and 9z, respectively. If, now, the body is subjected
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FIGURE 1.15 Displacement of Line Elements 0A, 0B, and 0C

to forces that produce a complex system of direct and shear stresses at O, such as that in Fig. 1.6, then
the line elements deform to the positions O'A’, O’'B’, and O'C’ shown in Fig. 1.15.

The coordinates of O in the unstrained body are (x, y, z) so that those of A, B, and C are (x + dx, y, 2),
(x,y+ 0y, 2), and (x, y, z + 8z). The components of the displacement of O to O’ parallel to the x, y, and z
axes are u, v, and w. These symbols are used to designate these displacements throughout the book and
are defined as positive in the positive directions of the axes. We again employ the first two terms of a
Taylor’s series expansion to determine the components of the displacements of A, B, and C. Thus, the
displacement of A in a direction parallel to the x axis is # + (Ju/0x)dx. The remaining components are
found in an identical manner and are shown in Fig. 1.15.

We now define direct strain in more quantitative terms. If a line element of length L at a point in a
body suffers a change in length AL, then the longitudinal strain at that point in the body in the direction
of the line element is

€= lim—
L—0 L

The change in length of the element OA is (O’A’ — OA), so that the direct strain at O in the x di-

rection is obtained from the equation

OA’ —O0A O'A’ —bx
OA &

g = (1.16)

Now,

(O'A")? = 5x+u+%6x—u 2—1— v—l—ﬂ/Sx—v 2—|— w+a—w8x—w :
Ox Ox Ox
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or

. @2 @/2 8_w2
OA_SX\/(1+8X * Ox * Ox

which may be written, when second-order terms are neglected, as

2
O'A' = 5)((1 + 2@>
Ox
Applying the binomial expansion to this expression, we have
0
O'A = 8x<1 +—”) (1.17)
Ox
in which squares and higher powers of Ou/Ox are ignored. Substituting for O’A’ in Eq. (1.16),
we have
. Ou
T Ox
v
It foll h &y = - 1.1
t follows that Y By (1.18)
ow
€ =——
0z

The shear strain at a point in a body is defined as the change in the angle between two mutually
perpendicular lines at the point. Therefore, if the shear strain in the xz plane is 7y,,, then the angle
between the displaced line elements O’A’ and O'C’ in Fig. 1.15 is /2 — vy, radians.

Now, cosA’'O’'C' = cos(n/2 — v,,) = siny,, and as v, is small, cosA’O'C’ = v,,. From the
trigonometrical relationships for a triangle,

(O/A/)Z + (O/C/)Z _ (A/C/)2

A/o/c/ —
o 2(0A)(0'C)

(1.19)

We showed in Eq. (1.17) that

O'A = 6x<1 —|—@>
Oox

Similarly,

ow
I~
o'cC —52(1 +—az)

But, for small displacements, the derivatives of u, v, and w are small compared with I, so that, as we are
concerned here with actual length rather than change in length, we may use the approximations

OA' = dx, 0C =3z
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Again, to a first approximation,

(A'C)Y = (5 _ovs 2+ ox— 25 2
-\ ox " * oz :

Substituting for O’A’, O’'C’, and A’C’ in Eq. (1.19), we have

(8x2) + (82)* — [6z — (Ow/Ox)dx]* — [8x — (Du/Dz)dz)"
26x0z

cosA'0'C’ =

Expanding and neglecting fourth-order powers gives

cosA/O'C — 2(0Ow/0x)6xdz + 2(0u/0z)dxdz
20x0z
or,
_ow_on
Ye = 5y T 8
ov  Ou
Similarly, T = 55 + oy (1.20)
_ow v
="y "oz

It must be emphasized that Eqs. (1.18) and (1.20) are derived on the assumption that the displace-
ments involved are small. Normally, these linearized equations are adequate for most types of structural
problem, but in cases where deflections are large, for example, types of suspension cable, the full,
nonlinear, large deflection equations, given in many books on elasticity, must be employed.

COMPATIBILITY EQUATIONS

In Section 1.9, we expressed the six components of strain at a point in a deformable body in terms of the
three components of displacement at that point, u, v, and w. We supposed that the body remains con-
tinuous during the deformation, so that no voids are formed. It follows that each component, u, v, and w,
must be a continuous, single-valued function or, in quantitative terms,

u:fl(xa Y, Z)v V:fZ(x7 Y, 2)7 W:fg(X, Y, Z)

If voids are formed, then displacements in regions of the body separated by the voids are expressed as
different functions of x, y, and z. The existence, therefore, of just three single-valued functions for dis-
placement is an expression of the continuity or compatibility of displacement, which we presupposed.

Since the six strains are defined in terms of three displacement functions, they must bear some re-
lationship to each other and cannot have arbitrary values. These relationships are found as follows.
Differentiating v,, from Eq. (1.20) with respect to x and y gives

Py P v P Ou

Oxdy Ox ay§+ Ox aya—y
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or, since the functions of # and v are continuous,

vy

_82 ov

& du

oxdy 020y | 0y ox

which may be written, using Eq. (1.18), as

In a similar manner,

Py Py Oy

Ox dy  Ox2 + Oy?

Pv,.  Pey, O

oydz 022 + 0y?

oy, e O,

Oxdz ~ Ox2 + 072

(1.21)

(1.22)

(1.23)

If we now differentiate v,, with respect to x and z and add the result to v,., differentiated with respect

to y and x, we obtain

82\(” 62%‘2 = & (@ + @) + 8_2 (%_1_%)
Ox0dz  OyOx 0x0z \OQy Ox Oyox \ Ox Oz
or
LN R N N LR
Ox \ 0z Oy 0z0y Ox Ox2\0z Oy Oydz Ox
Substituting from Egs. (1.18) and (1.21) and rearranging,
e, 0 vy, Oy, OV,
3yéZ:8)c(_ g; + gy * gzy)
Similarly,
azgy _ 2 <8“{y2 _é?y)c+(9’yw>
Ox0z 0Oy \ Ox dy 0z
and
e, 0 <5sz N 8Y,xy>
Ox0y 0z \ Ox Jy 0z

(1.24)

(1.25)

(1.26)

Equations (1.21)—(1.26) are the six equations of strain compatibility which must be satisfied in the so-
lution of three-dimensional problems in elasticity.

PLANE STRAIN

Although we derived the compatibility equations and the expressions for strain for the general three-
dimensional state of strain, we shall be concerned mainly with the two-dimensional case described in
Section 1.4. The corresponding state of strain, in which it is assumed that particles of the body suffer
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displacements in one plane only, is known as plane strain. We shall suppose that this plane is, as for
plane stress, the xy plane. Then, €., v,., and v,. become zero and Egs. (1.18) and (1.20) reduce to
Ou ov

B=gr B (1.27)

and

ov  Ou
=+ 1.28
Further, by substituting €, = v, = v,. = 0 in the six equations of compatibility and noting that g,, €,
and v,, are now purely functions of x and y, we are left with Eq. (1.21), namely,
Pvy %y Py

oxdy  0Ox2  0y?

as the only equation of compatibility in the two-dimensional or plane strain case.

DETERMINATION OF STRAINS ON INCLINED PLANES

Having defined the strain at a point in a deformable body with reference to an arbitrary system of
coordinate axes, we may calculate direct strains in any given direction and the change in the angle
(shear strain) between any two originally perpendicular directions at that point. We shall consider
the two-dimensional case of plane strain described in Section 1.11.

An element in a two-dimensional body subjected to the complex stress system of Fig. 1.16(a)
distorts into the shape shown in Fig. 1.16(b). In particular, the triangular element ECD suffers distortion
to the shape E'C'D’ with corresponding changes in the length FC and angle EFC. Suppose that the
known direct and shear strains associated with the given stress system are €,, €,, and v,, (the actual

T
y
y 1 y
Tx y
—_— Txy
E
Ox 6 Oy
F
Txy C D
e
Tx
y {9y
X

(a) (b)
FIGURE 1.16 (a) Stress System on a Rectangular Element; (b) Distorted Shape of the Element Due to Stress
System in (a)
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relationships are investigated later) and we are required to find the direct strain €, in a direction normal
to the plane ED and the shear strain y produced by the shear stress acting on the plane ED.
To a first order of approximation,

C'D' = CD(1 + &)
C'E' = CE(l +&,) (1.29)
E,D/ = ED(I + 8}1+n/2)

where €, | 5 is the direct strain in the direction ED. From the geometry of the triangle E'C’'D’ in which
angle E'C'D’ = 1/2 — vy,,,

(ED')* = (C'D')’ + (C'E')’ — 2(C'D')(C'E/) cos(n/2 — v,,)
or, substituting from Egs. (1.29),

(ED)*(1 + £1152)” = (CD)*(1 + &) + (CE)’(1 +&,)°
—2(CD)(CE)(1 +&,)(1 + &) siny,,

Noting that (ED)2 = (CD)2 + (CE)2 and neglecting squares and higher powers of small quantities, this
equation may be rewritten as

2(ED)’&y1r/2 = 2(CD) €, + 2(CE)’, — 2(CE)(CD)y,,
Dividing through by 2(ED)? gives
Enyn/2 = Ex sin®0 + €y cos’0 — cosd sinfy,, (1.30)
The strain g, in the direction normal to the plane ED is found by replacing the angle 6 in Eq. (1.30) by
0 — m/2. Hence,
€, = & 08’0 + ¢, sin?0 + % sin26 (1.31)

Turning our attention to the triangle C'F'E/, we have
(C'E)* = (C'F)* + (FE)* — 2(C'F)(FE') cos(n/2 — 7) (1.32)
in which
CE = CE(l +¢,)

C'F = CF(1 + &,)
FE = FE(1 + 8n+n/2)

Substituting for C'E’, C'F/, and F'E’ in Eq. (1.32) and writing cos(nt/2 — y) = siny, we find

(CE)* (1 +,)* = (CF*(1 +&,)* + (FE)*(1 + £,12)*

— 2(CF)(FE)(1 4 &,)(1 + &,1n/2) siny (1.33)

All the strains are assumed to be small, so that their squares and higher powers may be ignored. Further,
siny ~ v and Eq. (1.33) becomes

(CE)*(1 + 2&,) = (CF)*(1 + 2¢,) + (FE)*(1 + 2&,,/2) — 2(CF)(FE)y
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From Fig. 1.16(a), (CE)* = (CF)* + (FE)? and the preceding equation simplifies to
2(CE)e, = 2(CE)’s, + 2(FE)’s, /2 — 2(CF)(FE)y
Dividing through by 2(CE)? and transposing,

€ sin®0 +&,,,2 cos’0 — g,

sin6 cosO

Substitution of €, and €, » from Eqgs. (1.31) and (1.30) yields

% = ng‘) sin20 — % c0s20 (1.34)

PRINCIPAL STRAINS

If we compare Eqs. (1.31) and (1.34) with Egs. (1.8) and (1.9), we observe that they may be obtained
from Eqgs. (1.8) and (1.9) by replacing 6, with ¢, c, by €,, G, by €, T, by ¥,,/2, and T by /2. Therefore,
for each deduction made from Egs. (1.8) and (1.9) concerning ,, and T, there is a corresponding de-
duction from Egs. (1.31) and (1.34) regarding ¢, and 7y/2.

Therefore, at a point in a deformable body, there are two mutually perpendicular planes on which
the shear strain v is zero and normal to which the direct strain is a maximum or minimum. These strains
are the principal strains at that point and are given (from comparison with Eqgs. (1.11) and (1.12)) by

e +g 1 D)
g = % + E (8,\f — Ey) + Y/%y (135)
and
e+eg 1 >
e =—— > _ 3 (x — &))" + 72, (1.36)

If the shear strain is zero on these planes, it follows that the shear stress must also be zero; and
we deduce, from Section 1.7, that the directions of the principal strains and principal stresses coincide.
The related planes are then determined from Eq. (1.10) or from

{an20 = — 9 (1.37)

€ — &

In addition, the maximum shear strain at the point is
v 1
3 =3V 0 47 139)
or

Y) € —&n
- = 1.39
(2 max 2 ( )

(compare with Egs. (1.14) and (1.15)).
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MOHR'S CIRCLE OF STRAIN

We now apply the arguments of Section 1.13 to the Mohr’s circle of stress described in Section 1.8.
A circle of strain, analogous to that shown in Fig. 1.12(b), may be drawn when c,, G,, etc., are replaced
by &,, &,, etc., as specified in Section 1.13. The horizontal extremities of the circle represent the prin-
cipal strains, the radius of the circle, half the maximum shear strain, and so on.

STRESS-STRAIN RELATIONSHIPS

In the preceding sections, we developed, for a three-dimensional deformable body, three equations of
equilibrium (Egs. (1.5)) and six strain-displacement relationships (Eqgs. (1.18) and (1.20)). From the
latter, we eliminated displacements, thereby deriving six auxiliary equations relating strains. These
compatibility equations are an expression of the continuity of displacement, which we have assumed
as a prerequisite of the analysis. At this stage, therefore, we have obtained nine independent equations
toward the solution of the three-dimensional stress problem. However, the number of unknowns totals
15, comprising six stresses, six strains, and three displacements. An additional six equations are there-
fore necessary to obtain a solution.

So far we have made no assumptions regarding the force—displacement or stress—strain relationship
in the body. This will, in fact, provide us with the required six equations, but before these are derived, it
is worthwhile considering some general aspects of the analysis.

The derivation of the equilibrium, strain—displacement, and compatibility equations does not in-
volve any assumption as to the stress—strain behavior of the material of the body. It follows that these
basic equations are applicable to any type of continuous, deformable body, no matter how complex its
behavior under stress. In fact, we shall consider only the simple case of linearly elastic, isotropic ma-
terials, for which stress is directly proportional to strain and whose elastic properties are the same in all
directions. A material possessing the same properties at all points is said to be homogeneous.

Particular cases arise where some of the stress components are known to be zero and the number of
unknowns may then be no greater than the remaining equilibrium equations which have not identically
vanished. The unknown stresses are then found from the conditions of equilibrium alone and the prob-
lem is said to be statically determinate. For example, the uniform stress in the member supporting a
tensile load P in Fig. 1.3 is found by applying one equation of equilibrium and a boundary condition.
This system is therefore statically determinate.

Statically indeterminate systems require the use of some, if not all, of the other equations involving
strain—displacement and stress—strain relationships. However, whether the system be statically deter-
minate or not, stress—strain relationships are necessary to determine deflections. The role of the six
auxiliary compatibility equations will be discussed when actual elasticity problems are formulated
in Chapter 2.

We now proceed to investigate the relationship of stress and strain in a three—dimensional, linearly
elastic, isotropic body.

Experiments show that the application of a uniform direct stress, say o, does not produce any shear
distortion of the material and that the direct strain €, is given by the equation

Oy

= 1.4
& =% (1.40)
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where E is a constant known as the modulus of elasticity or Young’s modulus. Equation (1.40) is an
expression of Hooke’s law. Further, €, is accompanied by lateral strains
Ox Ox
g =—V—, g =—-V— 1.41
Y £ 2 £ (1.41)

in which v is a constant termed Poisson’s ratio.

For a body subjected to direct stresses G, G, and o, the direct strains are, from Eqs. (1.40) and
(1.41) and the principle of superposition (see Chapter 5, Section 5.9),

1
& = E [Gx - V(Gy + Gz)]

1
& = 5[0y — V(o + o)) (1.42)
e = gl0: — V(o + 0y)

Equations (1.42) may be transposed to obtain expressions for each stress in terms of the strains. The
procedure adopted may be any of the standard mathematical approaches and gives

vE E
o, = e+ € 1.43
i —m T oy (143)
vE E
= , 1.44
TR T LR TRy (1.44)
VvE E
c, = e+ £, 1.45
Arvi—2v° " +v) (143)
in which
e=¢g +¢g +g;
See Eq. (1.53).
For the case of plane stress in which o, = 0, Egs. (1.43) and (1.44) reduce to
E
ox =113 (ex + vey) (1.46)
E
oy =1 (& + vey) (1.47)

Suppose now that, at some arbitrary point in a material, there are principal strains g; and gy corre-
sponding to principal stresses oy and oy If these stresses (and strains) are in the direction of the
coordinate axes x and y, respectively, then t,, = y,, = 0 and, from Eq. (1.34), the shear strain on
an arbitrary plane at the point inclined at an angle 0 to the principal planes is

Y = (8] — 8[]) sin260 (148)
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Using the relationships of Eqgs. (1.42) and substituting in Eq. (1.48), we have

1 .
=g [(o1 — vou) — (on — vor)] sin26
or
1
T = ( ZV) (o1 — o) sin26 (1.49)

Using Eq. (1.9) and noting that for this particular case 1., = 0, 6, = oy, and 6, = oy,
2t = (o7 — oy) sin20
from which we may rewrite Eq. (1.49) in terms of T as

2(1

(1+v)_
E

The term E/2(1 + v) is a constant known as the modulus of rigidity G. Hence,

vy=1/G

(1.50)

and the shear strains y.y, Y., and 7v,. are expressed in terms of their associated shear stresses as
follows:
_ Txy _ Txz o Tyz
’ny_Ea ’sz_Ea sz_E (1.51)

Equations (1.51), together with Eqs. (1.42), provide the additional six equations required to deter-
mine the 15 unknowns in a general three-dimensional problem in elasticity. They are, however, limited
in use to a linearly elastic, isotropic body.

For the case of plane stress, they simplify to

1
g = E(GX VGy)
1
=% (oy —vou)
(1.52)
—v
g = N (o, —oy)
Tyy
Yoy = E

It may be seen from the third of Eqs. (1.52) that the conditions of plane stress and plane strain do not
necessarily describe identical situations. See Ex. 1.1.

Changes in the linear dimensions of a strained body may lead to a change in volume. Suppose that a
small element of a body has dimensions 6x, dy, and dz. When subjected to a three-dimensional stress
system, the element sustains a volumetric strain e (change in volume/unit volume) equal to

(1 +&)0x(1 + &,)dy(1 + &;)dz — dxdydz
Ox0ydz
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Neglecting products of small quantities in the expansion of the right-hand side of this equation yields
e=¢g +& +¢ (1.53)

Substituting for ,, €,, and &, from Egs. (1.42), we find, for a linearly elastic, isotropic body,

1
e =—[oy+ 0y, + 0. —2v(o, + 0y + G.)]

E
or
1—-2v
e:(—)(cx+0y+cz)
E
In the case of a uniform hydrostatic pressure, 6, = 6, = 6. = —p and
3(1—2v)
= 1.54
e P (1.54)

The constant E/3(1 —2v) is known as the bulk modulus or modulus of volume expansion and is often
given the symbol K.

An examination of Eq. (1.54) shows that v < 0.5, since a body cannot increase in volume under
pressure. Also, the lateral dimensions of a body subjected to uniaxial tension cannot increase, so that
v > 0. Therefore, for an isotropic material 0 < v < 0.5 and for most isotropic materials, v is in the range
0.25-0.33 below the elastic limit. Above the limit of proportionality, v increases and approaches 0.5.

|
Example 1.4

A rectangular element in a linearly elastic, isotropic material is subjected to tensile stresses of 83 and 65 N/mm? on

mutually perpendicular planes. Determine the strain in the direction of each stress and in the direction perpendic-
ular to both stresses. Find also the principal strains, the maximum shear stress, the maximum shear strain, and their
directions at the point. Take E = 200,000 N/mm? and v = 0.3.
If we assume that 6, = 83 N/mm? and o, = 65 N/mm?, then from Egs (1.52),
1

=——(83-0. =3.1 107
€, 200,000 (83—-0.3%x65)=3.175x 10
1 4
-0.3 4
& = 5000 (83 + 6%) = ~2220 x 10

In this case, since there are no shear stresses on the given planes, o, and o, are principal stresses, so that €, and
€, are the principal strains and are in the directions of . and . It follows from Eq. (1.15) that the maximum shear

stress (in the plane of the stresses) is

-6
Tmax = 83 ) > = 91\1/1’I11’1’12

acting on planes at 45° to the principal planes.
Further, using Eq. (1.50), the maximum shear strain is
2x(1403)x9
Tmax = 7500000
so that Y. = 1.17 % 10~* on the planes of maximum shear stress.
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[
Example 1.5

At a particular point in a structural member, a two-dimensional stress system exists where ¢, = 60 N/mm?,
c, = —40 N/mmz, and t,, = 50 N/mmz. If Young’s modulus £ = 200,000 N/mm2 and Poisson’s ratio v = 0.3,
calculate the direct strain in the x and y directions and the shear strain at the point. Also calculate the principal

strains at the point and their inclination to the plane on which G, acts; verify these answers using a graphical
method.
From Egs. (1.52),

1 -6
£ = 200,000 (60 + 0.3 x 40) = 360 x 10

1
& = 200,000

(—40 — 0.3 x 60) = —290 x 107°

From Eq. (1.50), the shear modulus, G, is given by

E 200,000
= = ’ =76923 N/mm?
C= 3 +v) 201 +03) 092 N/mm

Hence, from Egs. (1.52),

Ty 50
=2 = =650 x 107°
Yo TG T 76,923 x

Now substituting in Eq. (1.35) for ¢, €,, and vy,,,

360 — 290
g = 1076 |:T

1 2 2
+3 /(360 + 200)” + 650

which gives
e =495 x 107°
Similarly, from Eq. (1.36),
en = —425 x 1076
From Eq. (1.37),

-6
an20 = S50 x 16(;5?6112090 SETE I
Therefore,
20 = 45° or 225°
so that

6 =22.5%or 112.5°
|

The values of g, g, and 0 are verified using Mohr’s circle of strain (Fig. 1.17). Axes Og and Oy are
set up and the points Q;(360 x 107°, 15 x 650 x 10°) and Q»(-290 x 107°, -4 x 650 x 10°)
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YA
Q; (3601075, 1x650x10°6)
A o| 2 B
) e (&) ¢

20+m
Q

(—290x 1078, —1x650x 107°)

FIGURE 1.17 Mohr’s Circle of Strain for Example 1.5

located. The center C of the circle is the intersection of Q;Q, and the Og axis. The circle is then
drawn with radius CQ; and the points B(g;) and A(gy) located. Finally, angle Q;CB = 26 and angle
QCA =20+ m.

Temperature effects

The stress—strain relationships of Eqs. (1.43)—(1.47) apply to a body or structural member at a constant
uniform temperature. A temperature rise (or fall) generally results in an expansion (or contraction) of
the body or structural member so that there is a change in size, that is, a strain.

Consider a bar of uniform section, of original length L,, and suppose that it is subjected to a tem-
perature change AT along its length; AT can be a rise (+ve) or fall (—ve). If the coefficient of linear
expansion of the material of the bar is o, the final length of the bar is, from elementary physics,

L=L,(1+0aAT)
so that the strain, €, is given by
L-L,

0

€= = aAT (1.55)

Suppose now that a compressive axial force is applied to each end of the bar, such that the bar returns
to its original length. The mechanical strain produced by the axial force is therefore just large enough to
offset the thermal strain due to the temperature change, making the rotal strain zero. In general terms, the
total strain, €, is the sum of the mechanical and thermal strains. Therefore, from Eqgs. (1.40) and (1.55),

c
= 1 gqAT 1.56
€ E—Hx ( )

In the case where the bar is returned to its original length or if the bar had not been allowed to ex-
pand at all, the total strain is zero and, from Eq. (1.56),

o = —EaAT (1.57)
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Equations (1.42) may now be modified to include the contribution of thermal strain. Therefore, by com-
parison with Eq. (1.56),

g, = é 6y — V(o) + G.)] + AT
1

& = %[0y = v(0x + )] + AT (1.58)
1

e =1 [0. — V(o + 0y)] + aAT

Equations (1.58) may be transposed in the same way as Eqs. (1.42) to give stress—strain relation-
ships rather than strain—stress relationships; that is,

o, = VE e+ E € — E oaAT
S T Ty R SRV Ry R ey
- VE L E B .
T U - T Y T a—2w” (1.59)
VE E E
= irvi-mv T arvE o

For the case of plane stress in which &, = 0, these equations reduce to

E
(&x + vey) — —— AT

Ox = (1—-v)

E
(1—v?)
(1.60)

E
(gy + vey) — —— AT

oy = (1-v)

E
(1=v?)

[
Example 1.6
A composite bar of length L has a central core of copper loosely inserted in a sleeve of steel; the ends of the steel
and copper are attached to each other by rigid plates. If the bar is subjected to a temperature rise AT, determine the
stress in the steel and in the copper and the extension of the composite bar. The copper core has a Young’s modulus
E., a cross-sectional area A., and a coefficient of linear expansion o,; the corresponding values for the steel are
E,, A, and a.

Assume that o, > a. If the copper core and steel sleeve are allowed to expand freely, their final lengths would

be different, since they have different values of the coefficient of linear expansion. However, since they are rigidly
attached at their ends, one restrains the other and an axial stress is induced in each. Suppose that this stress is G,.
Then, in Egs. (1.58). 6, = . or 6, and 6, = &, = 0; the total strain in the copper and steel is then, respectively,

o, .
€ = E—: + oc(.AT (1)
g = 2 4 o, AT (i)



1.16 Experimental measurement of surface strains 37

The total strain in the copper and steel is the same, since their ends are rigidly attached to each other. Therefore,
from compatibility of displacement,

o, o,
z + o AT = E + o, AT (iii)

No external axial load is applied to the bar, so that
oA, +0,A;, =0

that is,
oy = ——O0O, >iv)

Substituting for o, in Eq. (iii) gives

E.  AEs
from which
o, — AT (oy — 0 )ASESE, “)
AEs +AE,
Also o, > o, so that o, is negative and therefore compressive. Now substituting for o, in Eq. (iv),
o AT (o, — 0 )AESE, i)

AE; +A.E,

which is positive and therefore tensile, as would be expected by a physical appreciation of the situation.
Finally, the extension of the compound bar, 6, is found by substituting for o. in Eq. (i) or for o in
Eq. (ii). Then,

(vii)

5 — ATL A AE: + A AGES
AE, +AE,

EXPERIMENTAL MEASUREMENT OF SURFACE STRAINS

Stresses at a point on the surface of a piece of material may be determined by measuring the strains at
the point, usually by electrical resistance strain gauges arranged in the form of a rosette, as shown in
Fig. 1.18. Suppose that g1 and gyy are the principal strains at the point, then if €., €;, and €. are the mea-
sured strains in the directions 0, (0 + o), (0 + o + B) to g, we have, from the general direct strain
relationship of Eq. (1.31),

€4 = €1 €080 + g1 sin°0 (1.61)

since €, becomes g, €, becomes &y, and 7y, is zero, since the x and y directions have become principal
directions. Rewriting Eq. (1.61), we have

1+ cos20 1 — cos20
el ) el
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FIGURE 1.18 Strain Gauge Rosette

or
1 1
&4 = E (8[ + 81]) + E (S] — EH) €0s20 (162)
Similarly,
1 1
g = 5 (81 + 811) + 5 (81 — SH) COSz(e + O() (163)
and
1 1
g = 5 (SI =+ SH) + 5 (81 — SH) COSZ(@ + o+ B) (164)

Therefore, if €, €, and €. are measured in given directions, that is, given angles o and f3, then r, r;, and
0 are the only unknowns in Egs. (1.62)—(1.64).
The principal stresses are now obtained by substitution of g and gy in Egs. (1.52).

Thus,
1
&=z (o1 — vou) (1.65)
and
1
& = E (GH — VG[) (166)
Solving Eqs. (1.65) and (1.66) gives
E
o] = 1_—\}2 (81 + VSH) (167)
and
E
on=1—5 (€ + ver) (1.68)
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Q (ea)

R
(€0

FIGURE 1.19 Experimental Values of Principal Strain Using Mohr’s Circle

A typical rosette would have oo = B = 45°, in which case the principal strains are most conveniently
found using the geometry of Mohr’s circle of strain. Suppose that the arm a of the rosette is inclined at
some unknown angle 0 to the maximum principal strain, as in Fig. 1.18. Then, Mohr’s circle of strain is
as shown in Fig. 1.19; the shear strains v,, Y, and y. do not feature in the analysis and are therefore
ignored. From Fig. 1.19,

OC ==(g, + &)

N —

1
CN=¢,—0OC = §<Sa — &)

1
QN:CMZS},—OCZS;,—E(SGJFS(-)

The radius of the circle is CQ and

CQ = {/CN? + QN?

Hence,

CQ = \/E (€ — 80)}2 + [gh _%(Sa + 50)]2

which simplifies to

CQ = —= /(e — &) + (5 — )’

1
V2
Therefore, g, which is given by

g; = OC + radius of circle
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is
1 1 > 2
1= 5 (e + (e —60)” 4 (5 - )
Also,
en = OC — radius of circle
that is,

%(ga +e)— \/Li \/(sa — 8;,)2 + (e — €p)

&n =

Finally, the angle 0 is given by

QN & —1(e,+g)
tan20 = ~— = 2~
CN 1 (6a — &)

that is,

2e, — €, — €
tan20 = a <
€ — &

A similar approach may be adopted for a 60° rosette.

(1.69)

(1.70)

(1.71)

Example 1.7

A bar of solid circular cross-section has a diameter of 50 mm and carries a torque, T, together with an axial tensile

load, P. A rectangular strain gauge rosette attached to the surface of the bar gives the following strain readings: €, =

1000 x 1075, &, =200 x 107%, and . = —300 x 107°, where the gauges @ and ¢ are in line with, and perpen-

dicular to, the axis of the bar, respectively. If Young’s modulus, E, for the bar is 70,000 N/mm? and Poisson’s ratio,

v, is 0.3; calculate the values of T and P.
Substituting the values of €,, €, and €. in Eq. (1.69),

107° 1076
o= (1000 — 300) + 7 \/(1000 +200)* + (=200 + 300)°

which gives

e =1202 x 107°
Similarly, from Eq. (1.70),

en = —502 x 107°
Now, substituting for ¢ and gp in Eq. (1.67),

o1 = 70,000 x 107%[1202 — 0.3(502)]/[1 — (0.3)2} = 80.9 N/mm?

Similarly, from Eq. (1.68),

oy = —10.9N/mm?
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Since o, = 0, Eqgs. (1.11) and (1.12) reduce to

o, 1
o1 =7 +54/0l +4T,
and
v 1
GH:G‘—— o2 4 412

respectively. Adding Egs. (i) and (ii), we obtain
O1 + On = Oy
Therefore,
oy = 80.9 — 10.9 = 70N/mm?

For an axial load P,

P P
6, = 70 N/mm? = —

from which
P =137.4kN
Substituting for o, in either of Eq. (i) or (ii) gives

T,y = 29.7N/mm?

From the theory of the torsion of circular section bars (see Eq. (iv) in Example 3.1),

A mx50%/4

41

®

(1)

T T x 25
Ty =29.7 N/mm* = - ><74
J 7w x50%/32
from which
T =0.7kNm
Note that P could have been found directly in this particular case from the axial strain. Thus, from the first of
Egs. (1.52),
o, = Eg, = 70000 x 1000 x 107% = 70N/mm?
as before.
|
[

Example 1.7 MATLAB

Repeat the derivations presented in Example 1.7 using the Symbolic Math Toolbox in MATLAB. To obtain the

same results as Example 1.7, set the number of significant digits used in calculations to four.
Calculations of T and P are obtained through the following MATLAB file:

% Declare any needed symbolic variables
symse_ae_be_cEvsig ysig xAJdrTtau_xy
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% Set the significant digits
digits(4);

% Define known variable values
e_a=sym(1000*107(-6));
e_b=sym(-200%107(-6));
e_c=sym(-300*10"(-6));
E=sym(70000);

v=sym(0.3);

sig_y =sym(0);
A=sym(pi*50°2/4,°d’);
J=sym(pi*5074/32,°d’);
r=sym(25);

% Evaluate Eqs (1.69) and (1.70)
e_I =vpa((e_a+e_c)/2) +vpalsqrt(((e_a-e_b)"2+ (e_c-e_c)™2)))/vpal(sqrt(2));
e_Il =vpa((e_a+e_c)/2) -vpal(sqrt(((e_a-e_b)*2+ (e_c-e_c)?2)))/vpal(sqrt(2));

% Substitutee_l ande_II into Egs (1.67) and (1.68)
sig_I =vpa(E*(e_I+v*e_II1)/(1-v™2));
sig_IT =vpa(E*(e_IT4+v*e_I1)/(1-v"2));

% Evaluate Eqs (1.11) and (1.12)
eql =vpa(-sig_I + (sig_x+sig_y)/2 + sqrt((sig_x-sig_y)"2 +4*tau_xy"2)/2);
eqll =vpa(-sig_IT + (sig_x+sig_y)/2 - sqrt((sig_x-sig_y)"2 + 4*tau_xy"2)/2);

% Add eql and eqll and solve for the value of sig_x
sig_x_val =vpa(solve(eql+eqll,sig_x));

% Calculate the axial Toad (P in kN)
P=vpa(sig_x_val*A/1000);
P = round(double(P)*10)/10;

% Substitute sig_x back into eql and solve for tau_xy
tau_xy_val = sym(max(double(solve(subs(eql,sig_x,sig_x_val),tau_xy))));

% Calculate the applied torsion (T in kN-m) using Eq. (iv) in Example 3.1
T=vpa(tau_xy_val*Jd/r/1000/1000);
T=round(double(T)*10)/10;

% Qutput values for Pand T to the Command Window
disp([*P="num2str(P) “kN’1)
disp(L*T="num2str(T) ‘kNm*1)

The Command Window outputs resulting from this MATLAB file are as follows:

P=137.4kN
T=0.7kNm
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PROBLEMS

P.1.1. A structural member supports loads that produce, at a particular point, a direct tensile stress of
80 N/mm? and a shear stress of 45 N/mm? on the same plane. Calculate the values and directions of the
principal stresses at the point and also the maximum shear stress, stating on which planes this acts.

Answer: oy = 1002 N/mm?, 0 =24°11’
on = —202N/mm?, 0= 114°11'
Tmax = 60.2 N/mm? at 45° to principal planes

P.1.2. At a point in an elastic material, there are two mutually perpendicular planes, one of which
carries a direct tensile stress of 50 N/mm? and a shear stress of 40 N/mmz, while the other plane is
subjected to a direct compressive stress of 35 N/mm?” and a complementary shear stress of
40 N/mm?. Determine the principal stresses at the point, the position of the planes on which they
act, and the position of the planes on which there is no normal stress.

Answer: o] = 65.9 N/mm?, 0 =21°38
og = —50.9N/mm?, 6= 111°38

No normal stress on planes at 70°21" and —27°5’ to vertical.

P.1.3. The following are varying combinations of stresses acting at a point and referred to axes x and y
in an elastic material. Using Mohr’s circle of stress determine the principal stresses at the point and their
directions for each combination.

o (N/mm?) o,(N/mm?) 1, (N/mm?)

i) +54 +30 +5
(i) +30 +54 -5
(i) 60 36 +5
(iv) +30 50 +30
Answer: (i) op = +55 N/mm? onp = +29 N/mm* oy at 11.5° to x axis.
(ii) oy = +55N/mm? op = +29 N/mm? oy at 11.5° to x axis.
)

2

2
(iii) oy = —345N/mm?> o= —61 N/mm> ojat79.5°tox axis.
(iv) o1 = +40 N/mm? ong = —60 N/mm? oy at 18.5° to x axis.

P.1.3 MATLAB Repeat P.1.3 by creating a script in MATLAB in place of constructing Mohr’s circle.
In addition to calculating the principal stresses, also calculate the maximum shear stress at the point for
each combination. Do not repeat the calculation of the principal stress directions.
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Answer: (i) Tmax = 13 N/mm?, (i) Tpax = 13 N/mm?
(i) Tmax = 13 N/mm?,  (iv) Tpax = 50 N/mm?

o and oy for each combination are as shown in P.1.3

P.1.4. The state of stress at a point is caused by three separate actions, each of which produces a pure,
unidirectional tension of 10 N/mm? individually but in three different directions, as shown in Fig. P.1.4.
By transforming the individual stresses to a common set of axes (x, y), determine the principal stresses
at the point and their directions.

Answer: o= oy =15 N/mm?. All directions are principal directions.

P.1.5. A shear stress 1, acts in a two-dimensional field in which the maximum allowable shear stress is
denoted by 1,,.x and the major principal stress by or. Derive, using the geometry of Mohr’s circle of
stress, expressions for the maximum values of direct stress which may be applied to the x and y planes in
terms of these three parameters.

Answer: Gy = O — Tmax + /Ty — T,%y

Oy = O1 = Tmax — Tﬁlax Yy

P.1.6. A solid shaft of circular cross-section supports a torque of 50 kNm and a bending moment of
25 kNm. If the diameter of the shaft is 150 mm, calculate the values of the principal stresses and
their directions at a point on the surface of the shaft.

Answer: oy = 121.4 N/mm?, 0= 31°43
og = —46.4N/mm?, 0= 121°43
P.1.7. An element of an elastic body is subjected to a three-dimensional stress system o, Gy, and G..

Show that, if the direct strains in the directions x, y, and z are &,, €,, and ¢, then

o, = he +2Ge,, oy =Ae+2Ge,, ©.= he+ 2Ge,

|0 N/mm?
10 N/mm? 10 N/mm?
/\(Q" 3W\
j 10 N/mm? 10 N/mm?
10 N/mm?

FIGURE P.1.4




Problems 45

where

A VE d e +¢g +¢
=————"— and e=¢, -
(1+v)(1—2v) Y

the volumetric strain.
P.1.8. Show that the compatibility equation for the case of plane strain, namely,

aZny _ % + 828.):
Ox 0y Ox%F  0Oy?

may be expressed in terms of direct stresses o, and Gy in the form

o 0

P.1.9. A bar of mild steel has a diameter of 75 mm and is placed inside a hollow aluminum cylinder of
internal diameter 75 mm and external diameter 100 mm; both bar and cylinder are the same length. The
resulting composite bar is subjected to an axial compressive load of 1000 kN. If the bar and cylinder
contract by the same amount, calculate the stress in each. The temperature of the compressed composite
bar is then reduced by 150°C but no change in length is permitted. Calculate the final stress in the bar and
in the cylinder if E (steel) = 200,000 N/mm?, E (aluminum) = 80,000 N/mm?, o (steel) = 0.000012/°C
and o (aluminum) = 0.000005/°C.

o (steel) = 172.6 N/mm? (compression)

o (aluminum) = 69.1 N/mm? (compression).
Final stress: o (steel) = 187.4 N/mm? (tension)

o (aluminum) = 9.1 N/mm? (compression).

Answer: Due to load:

P.1.9 MATLAB Repeat P.1.9 by creating a script in MATLAB using the Symbolic Math Toolbox for
an axial tension load of 1000 kN.

Answer: Due to load: o (steel) = 172.6 N/mm? (tension)
¢ (aluminum) = 69.1 N/mm? (tension)
Final stress: o (steel) = 532.6 N/mm? (tension)
¢ (aluminum) = 129.1 N/mm? (tension)

P.1.10. In Fig. P.1.10, the direct strains in the directions a, b, ¢ are —0.002, —0.002, and +0.002,
respectively. If T and II denote principal directions, find g, gf, and 0.

Answer: g = +0.00283, g5 = —0.00283, 0= —22.5°or+ 67.5°

P.1.11. The simply supported rectangular beam shown in Fig. P.1.11 is subjected to two symmetrically
placed transverse loads each of magnitude Q. A rectangular strain gauge rosette located at a point P on
the centroidal axis on one vertical face of the beam gives strain readings as follows: &, = —222 x 107,
g, =-213 x 107% and &, = +45 x 107°. The longitudinal stress G, at the point P due to an external
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II

45°
45° A

FIGURE P.1.10

Equal distances
Q % L Q
% ‘<_|_§O mm
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I I Centroidal i P i 300 mm
pl @ axis

45°

FIGURE P.1.11

compressive force is 7 N/mm?. Calculate the shear stress T at the point P in the vertical plane and hence
the transverse load Q:

(Q =2bdt/3, where b = breadth, d = depth of beam)
E = 31,000 N/mm?> v=0.2

Answer: T, =3.16 N/mm?, Q = 94.8 kN

P.1.11. MATLAB Repeat P.1.11 by creating a script in MATLAB using the Symbolic Math Toolbox
for the following cross-section dimensions and longitudinal stress combinations:

b d Oy
(i) 150mm 300 mm 7 N/mm?
(ii) 100mm 250 mm 11 N/mm?
(iii) 270 mm 270mm 9 N/mm?

Answer: (i) Txy =3.16 N/mm*> Q =948kN
(i) Ty =2.5N/mm> Q=417kN
(iii) Ty =141 N/mm?> Q=685kN



CHAPTER

Two-dimensional problems
In elasticity

Theoretically, we are now in a position to solve any three-dimensional problem in elasticity having
derived three equilibrium conditions, Egs. (1.5); six strain—displacement equations, Eqs. (1.18) and
(1.20); and six stress—strain relationships, Eqgs. (1.42) and (1.46). These equations are sufficient, when
supplemented by appropriate boundary conditions, to obtain unique solutions for the six stress, six
strain, and three displacement functions. It is found, however, that exact solutions are obtainable only
for some simple problems. For bodies of arbitrary shape and loading, approximate solutions may be
found by numerical methods (e.g., finite differences) or by the Rayleigh—Ritz method based on energy
principles (Chapter 7).

Two approaches are possible in the solution of elasticity problems. We may solve initially for either
the three unknown displacements or the six unknown stresses. In the former method, the equilibrium
equations are written in terms of strain by expressing the six stresses as functions of strain (see Problem
P.1.7). The strain—displacement relationships are then used to form three equations involving the three
displacements u, v, and w. The boundary conditions for this method of solution must be specified as
displacements. Determination of u, v, and w enables the six strains to be computed from Eqgs. (1.18) and
(1.20); the six unknown stresses follow from the equations expressing stress as functions of strain. It
should be noted here that no use has been made of the compatibility equations. The fact that u, v, and
w are determined directly ensures that they are single-valued functions, thereby satisfying the require-
ment of compatibility.

In most structural problems the object is usually to find the distribution of stress in an elastic body
produced by an external loading system. It is therefore more convenient in this case to determine the six
stresses before calculating any required strains or displacements. This is accomplished by using
Eqgs. (1.42) and (1.46) to rewrite the six equations of compatibility in terms of stress. The resulting
equations, in turn, are simplified by making use of the stress relationships developed in the equations
of equilibrium. The solution of these equations automatically satisfies the conditions of compatibility
and equilibrium throughout the body.

TWO-DIMENSIONAL PROBLEMS

For the reasons discussed in Chapter 1, we shall confine our actual analysis to the two-dimensional
cases of plane stress and plane strain. The appropriate equilibrium conditions for plane stress are given
by Eqgs. (1.6); that is,

Introduction to Aircraft Structural Analysis, Third Edition. http://dx.doi.org/10.1016/B978-0-08-102076-0.00002-6 47
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06, Oty
: X=0
Ox + ady +
0oy, Oty
— Y=0
oy | ox
and the required stress—strain relationships obtained from Egs. (1.47):
1
g = 7 (or —voy)
1
&y = E (oy — voy)
2(1+v)
Yoy = TTX)’

We find that, although ¢, exists, Eqs. (1.22)—(1.26) are identically satisfied, leaving Eq. (1.21) as the
required compatibility condition. Substitution in Eq. (1.21) of the preceding strains gives

o’y P o
2(1+v) o 8y_@(6y — vo,) +8_y2(GX_VGy) 2.1
From Egs. (1.6),
2 2
0Ty _8 cx_a_x 22)

and
o o, OY
oxdy oy B_y(Tyx =)
Adding Egs. (2.2) and (2.3), then substituting in Eq. (2.1) for 282‘cxy/8x8y, we have
—(1+v) K N _Ton Foy Fo, Fo,
Ox  Oy) a2  Oy2  0x2  0Oy?

o? ? oX oY
(@%_yz)(cﬁoy) ——(1+v) (a+8—y) 24)

The alternative two-dimensional problem of plane strain may also be formulated in the same
manner. We saw in Section 1.11 that the six equations of compatibility reduce to the single equation
(1.21) for the plane strain condition. Further, from the third of Egs. (1.42),

(2.3)

or

c. = v(o,+ oy) (since &, = O for plane strain)

so that

1

6= [(1=Vv)o,— V(1 +V)o,]
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and
1 2
& =% [(1=v*)oy, — v(1 +v)oy]
Also,
2(1+v)
Yy = E Tay

Substituting as before in Eq. (1.21) and simplifying by use of the equations of equilibrium, we have the
compatibility equation for plane strain:

> 0 1 [0X OY
(et o) o =155 ) 2

The two equations of equilibrium together with the boundary conditions, from Egs. (1.7), and one of
the compatibility equations, (2.4) or (2.5), are generally sufficient for the determination of the stress
distribution in a two-dimensional problem.

STRESS FUNCTIONS

The solution of problems in elasticity presents difficulties, but the procedure may be simplified by the
introduction of a stress function. For a particular two-dimensional case, the stresses are related to a
single function of x and y such that substitution for the stresses in terms of this function automatically
satisfies the equations of equilibrium no matter what form the function may take. However, a large
proportion of the infinite number of functions that fulfill this condition are eliminated by the require-
ment that the form of the stress function must also satisfy the two-dimensional equations of compat-
ibility, (2.4) and (2.5), plus the appropriate boundary conditions.

For simplicity, let us consider the two-dimensional case for which the body forces are zero.
The problem is now to determine a stress—stress function relationship that satisfies the equilibrium
conditions of

0o, Oty
) Y0
Ox + dy
06, Oty (2.6)
Y 4 _
ady Ox
and a form for the stress function giving stresses which satisfy the compatibility equation
* P
(@ + 8_)’2) (Gx + O'y) =0 2.7
The English mathematician Airy proposed a stress function ¢ defined by the equations
0* 0? 0*
I 2.8)

0y’ T2 T T o Oy
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Clearly, substitution of Eqgs. (2.8) into Eq. (2.6) verifies that the equations of equilibrium are satisfied
by this particular stress—stress function relationship. Further substitution into Eq. (2.7) restricts the
possible forms of the stress function to those satisfying the biharmonic equation:

X A

—+2 — =0 29

Oox* * Ox20y? + oy* 29)
The final form of the stress function is then determined by the boundary conditions relating to the actual
problem. Therefore, a two-dimensional problem in elasticity with zero body forces reduces to the de-
termination of a function ¢ of x and y which satisfies Eq. (2.9) at all points in the body and Eqs. (1.7)
reduced to two dimensions at all points on the boundary of the body.

INVERSE AND SEMI-INVERSE METHODS

The task of finding a stress function satisfying the preceding conditions is extremely difficult in
the majority of elasticity problems, although some important classical solutions have been obtained
in this way. An alternative approach, known as the inverse method, is to specify a form of the function
¢ satisfying Eq. (2.9), assume an arbitrary boundary, and then determine the loading conditions that fit
the assumed stress function and chosen boundary. Obvious solutions arise in which ¢ is expressed as a
polynomial. Timoshenko and Goodier' consider a variety of polynomials for ¢ and deter-
mine the associated loading conditions for a variety of rectangular sheets. Some of these cases are
quoted here.

|
Example 2.1

Consider the stress function
& = AX® + Bxy + Cy?

where A, B, and C are constants. Equation (2.9) is identically satisfied, since each term becomes zero on substitut-
ing for ¢. The stresses follow from

PP
o, =—=2C

y?

P
Gy:wZZA

2
Ty = — 0 q) =
’ Ox Oy

To produce these stresses at any point in a rectangular sheet, we require loading conditions providing the boundary
stresses shown in Fig. 2.1.
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ox=2C
ox=2C

Txy=_B X

FIGURE 2.1 Required Loading Conditions on Rectangular Sheet in Example 2.1

|
Example 2.2

A more complex polynomial for the stress function is

p A By Co? DY
6 2 2 6

As before,

do_ de o0,
ox*  Ox20yr Oyt

so that the compatibility equation (2.9) is identically satisfied. The stresses are given by

0
Oy = aiyz =Cx +Dy
82
Gy = _Bxi) = Ax + By
’d
oy = — — _Bxy —
Tay Ox Oy x—Cy

We may choose any number of values of the coefficients A, B, C, and D to produce a variety of loading conditions
on a rectangular plate. For example, if we assume A = B = C = 0, then 6, = Dy, 6, = 0, and 1, = 0, so that, for
axes referred to an origin at the mid-point of a vertical side of the plate, we obtain the state of pure bending shown
in Fig. 2.2(a). Alternatively, Fig. 2.2(b) shows the loading conditions corresponding to A = C = D = 0 in which
o, =0, o, = By, and 1,, = —Bx.
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Tvx=D>§ =0y T ““1 Ty= Bl
| S I

—> > >

Ty =—Bx

| 1 N | .
N | o, =—Bb/2
(a) ®) | L >y =—Bx
FIGURE 2.2 (a) Required Loading Conditions on Rectangular Sheet in Example 2.2 for A= B= C=0; (b) as in (a) but

A=C=D=0

By assuming polynomials of the second or third degree for the stress function, we ensure that the
compatibility equation is identically satisfied whatever the values of the coefficients. For polynomials
of higher degrees, compatibility is satisfied only if the coefficients are related in a certain way. For
example, for a stress function in the form of a polynomial of the fourth degree,

_Ax4 Bx’y Cx*y? Dxy? Efy4

*=77 6 2 6 12
and
o o' o'
— T 924 — =4 — =2F
Ox* T T Ox2 0y? C oy*

Substituting these values in Eq. (2.9), we have

E=—-(2C+A)
The stress components are then
o’ > 2
o, = o7 =Cx"+Dxy— (2C+A)y
¢ 2 2
oy = E = Ax" 4+ Bxy + Cy
o Bx? Dy?
xy = — =———2Cxy ———
Ty Ox Oy 2 )

The coefficients A, B, C, and D are arbitrary and may be chosen to produce various loading con-
ditions, as in the previous examples.
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Example 2.3

A cantilever of length L and depth 2/ is in a state of plane stress. The cantilever is of unit thickness is rigidly

supported at the end x = L, and loaded as shown in Fig. 2.3. Show that the stress function

¢ = Ax* + Bx’y + CY* + D(5x%y* — )

is valid for the beam and evaluate the constants A, B, C, and D.
The stress function must satisfy Eq. (2.9). From the expression for ¢,
¢

—~ = 2Ax + 2Bxy + 10Dxy*
X

10)
¢ _ 5 _

Also,

)
6—4’ = Bx* 4 3Cy* + 15Dx*y? — 5Dy*
ly

¢ > 3
—— = 6Cy + 30Dx"y — 20Dy’ = o,
0y?

and

P

M = 2Bx + 30ny2 = _Txy

Further,

¢ o &

oyt

g/unit area

y
FIGURE 2.3 Beam of Example 2.3

®

(i)

(iii)
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Substituting in Eq. (2.9) gives

o A
5 2500

—— =2 x 60Dy — 120Dy =0
Ox20y* = Oyt % 4 4

The biharmonic equation is therefore satisfied and the stress function is valid.
From Fig. 2.3, 6, = 0 at y = A, so that, from Eq. (i),

2A +2BH + 10Di® = 0 (iv)
Also, from Fig. 2.3, 6, = —q at y = —h, so that, from Eq. (i),

2A —2BH — 10DI® = —¢ (v)
Again, from Fig. 2.3, 1, = 0 at y = %, giving, from Eq. (iii),

2Bx + 30Dxh* = 0
so that
2B +30Dh? =0 (vi)

At x = 0, no resultant moment is applied to the beam; that is,

h ch
Moo= o= (60 ~2005%) ay =0
—h J—h

so that
Mo = [2Cy’ —4Dy’]" =0
or
C—-2Di* =0 (vii)
Subtracting Eq. (v) from (iv),

4Bh +20Dh* = ¢

or
B+ 5DK = % (viii)
From Eq. (vi),
B+ 15Dh* =0 (ix)
so that, subtracting Eq. (viii) from Eq. (ix),
9
40hn3
Then,
3q q q
B=— A=—-—-, C=—-——
8h’ 4’ 20h
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and

¢ = 47(;1}13 [710}13)52 + 15127y — 212y — (5x%y° — ys)]

The obvious disadvantage of the inverse method is that we are determining problems to fit assumed
solutions, whereas in structural analysis the reverse is the case. However, in some problems, the shape of
the body and the applied loading allow simplifying assumptions to be made, thereby enabling a solution to
be obtained. St. Venant suggested a semi-inverse method for the solution of this type of problem, in which
assumptions are made as to stress or displacement components. These assumptions may be based on ex-
perimental evidence or intuition. St. Venant first applied the method to the torsion of solid sections
(Chapter 3) and to the problem of a beam supporting shear loads (Section 2.6).

|
Example 2.3 MATLAB
Repeat Example 2.3 using the Symbolic Math Toolbox in MATLAB.

Using Fig. 2.3, derivations of the constants A, B, C, and D, along with validation of the stress function ¢ are
obtained through the following MATLAB file:

% Declare any needed symbolic variables
syms ABCDxyLhqgsig_ysig_xtau_xy

% Define the given stress function
phi = A*X"2 + B*X"2*%y 4 C*y"3 + D*(5*x"2*y"3 - y*5);

% Check Eq. (2.9)
check =diff(phi,x,4) + 2*diff(diff(phi,x,2),y,2) +diff(phi,y,4);
if double(check) ==

disp(‘The stress function is valid’)

disp(® ™)

% Calculate expressions for sig_y, sig_x, and tau_xy
eql =diff(phi,x,2) -sig_y;

eqll =diff(phi,y,2) - sig_x;

eqlll =diff(diff(phi,x),y) + tau_xy;

% From Fig. 2.3, sig_y=0at y=h so that fromeql
eqlV =subs(subs(eql,y,h),sig_y,0);

% From Fig. 2.3, sig_y=-qat y=-hso that fromeql
eqV = subs(subs(eql,y,-h),sig_y,-q);

% From Fig. 2.3, tau_xy=0at y=+/-h so that fromeqlIl
eqVI = subs(subs(eqlII,y,h),tau_xy,0);

% Calculate the expression of the applied moment
M=1int(solve(eqll,sig_x)*y,y, -h, h);
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% FromFig. 2.3, M=0 at x=0
eqVII =subs(M,x,0);

% Solve eqlV, eqV, eqVI, and eqVII for A, B, C, and D
D_expr =solve(subs(eqlV-eqV,B,solve(eqVI,B)), D);
C_expr =solve(subs(eqVII,D,D_expr), C);

B_expr =solve(subs(eqVI,D,D_expr), B);

A_expr =solve(subs(subs(eqlV,D,D_expr),B,B_expr), A);

% Substitute the expressions for A, B, C, and D into phi
phi = subs(subs(subs(subs(phi,A,A_expr),B,B_expr),C,C_expr),D,D_expr);

% Output the expression for phi to the Command Window

phi = factor(phi)

else

disp(‘The stress function does not satisfy the biharmonic equation (Eq. (2.9))”)
disp(* )

end

The Command Window outputs resulting from this MATLAB file are as follows.
The stress function is valid.
phi = —(g*(10*h"3*x"2 — 15*%h"2*X"2%y 4 2*h"2*y"3 + 5*x"2*y"3 — y~5))/(40*h"3)

ST. VENANT'S PRINCIPLE

In the examples of Section 2.3, we have seen that a particular stress function form may be applicable to
a variety of problems. Different problems are deduced from a given stress function by specifying, in the
first instance, the shape of the body then assigning a variety of values to the coefficients. The resulting
stress functions give stresses which satisfy the equations of equilibrium and compatibility at all points
within and on the boundary of the body. It follows that the applied loads must be distributed around the
boundary of the body in the same manner as the internal stresses at the boundary. In the case of pure
bending, for example (Fig. 2.2(a)), the applied bending moment must be produced by tensile and com-
pressive forces on the ends of the plate, their magnitudes being dependent on their distance from the
neutral axis. If this condition is invalidated by the application of loads in an arbitrary fashion or by
preventing the free distortion of any section of the body, then the solution of the problem is no longer
exact. As this is the case in practically every structural problem, it would appear that the usefulness of
the theory is strictly limited. To surmount this obstacle, we turn to the important principle of St. Venant,
which may be summarized as stating

that while statically equivalent systems of forces acting on a body produce substantially different
local effects, the stresses at sections distant from the surface of loading are essentially the same.

Therefore, at a section AA close to the end of a beam supporting two point loads P, the stress dis-
tribution varies as shown in Fig. 2.4, while at the section BB, a distance usually taken to be greater than
the dimension of the surface to which the load is applied, the stress distribution is uniform.
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FIGURE 2.4 Stress Distributions Illustrating St. Venant's Principle

We may therefore apply the theory to sections of bodies away from points of applied loading or
constraint. The determination of stresses in these regions requires, for some problems, separate calcu-
lation (see Chapters 26 and 27 of Ref. 2).

DISPLACEMENTS

Having found the components of stress, Eqgs. (1.47) (for the case of plane stress) are used to determine
the components of strain. The displacements follow from Eqs. (1.27) and (1.28). The integration of
Eqgs. (1.27) yields solutions of the form
u=¢gx-+a-—by (2.10)
v=2gy+c+bx 2.11)
in which a, b, and ¢ are constants representing movement of the body as a whole or rigid body displace-
ments. Of these, a and ¢ represent pure translatory motions of the body, while b is a small angular

rotation of the body in the xy plane. If we assume that b is positive in a counterclockwise sense, then
in Fig. 2.5, the displacement v’ due to the rotation is given by

v =PQ - PQ
= OP sin(0 + b) — OPsin6
which, since b is a small angle, reduces to
v =bx
Similarly,

!

u = —by, as stated
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P(x,y)

! |

L

! |

| |

| |

P

P

L X
(0] Q Q
FIGURE 2.5 Displacements Produced by Rigid Body Rotation

BENDING OF AN END-LOADED CANTILEVER

In his semi-inverse solution of this problem, St. Venant based his choice of stress function on the rea-
sonable assumptions that the direct stress is directly proportional to the bending moment (and therefore
distance from the free end) and height above the neutral axis. The portion of the stress function giving
shear stress follows from the equilibrium condition relating o, and 7,,. The appropriate stress function
for the cantilever beam shown in Fig. 2.6 is then

B 3
¢:Axy+% 2.12)

N
R

l
FIGURE 2.6 Bending of an End-Loaded Cantilever
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where A and B are unknown constants. Hence,

o
Oy = 6—)}2 = B.Xy
P
oy=72=0 (2.13)
82(1) Byz
o= A
o Ox Oy 2

Substitution for ¢ in the biharmonic equation shows that the form of the stress function satisfies com-
patibility for all values of the constants A and B. The actual values of A and B are chosen to satisfy the
boundary condition, namely, t,, = 0 along the upper and lower edges of the beam, and the resultant
shear load over the free end is equal to P.

From the first of these,

By? b
TXy:—A—T:OEIty::tE
giving
Bb?
A= ——
8

From the second,

b/2
—J Tdy = P (see sign convention for T,y)

b2
or
b/2 Bb2  By2
_ J <_ _ L) dy=P
from which
12P
B—=_"
b3
The stresses follow from Eqgs. (2.13):
_ 12Pxy  Px
o
6, =0 (2.14)
2P , 5 P, , 5
o= e (B =) = — (0 — 4
Ty apr (07— 47) =~ (07 =47

where I = b>/12, the second moment of area of the beam cross-section (see Section 15.4).
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We note from the discussion of Section 2.4 that Egs. (2.14) represent an exact solution subject to the
following conditions:

1. The shear force P is distributed over the free end in the same manner as the shear stress 1., given
by Egs. (2.14);

2. The distribution of shear and direct stresses at the built-in end is the same as those given by
Egs. (2.14);

3. All sections of the beam, including the built-in end, are free to distort.

In practical cases, none of these conditions is satisfied, but by virtue of St. Venant’s principle, we
may assume that the solution is exact for regions of the beam away from the built-in end and the
applied load. For many solid sections, the inaccuracies in these regions are small. However,
for thin-walled structures, with which we are primarily concerned, significant changes occur and
the effects of structural and loading discontinuities on this type of structure are considered in
Chapters 26 and 27 of Ref. 2.

We now proceed to determine the displacements corresponding to the stress system of Eqs. (2.14).

Applying the strain—displacement and stress—strain relationships, Eqs. (1.27), (1.28), and (1.47),
we have

_ Ou o, Pxy

o _on_ Pu 2.15
ST E El (15)
. VP
g _v_ _vox_vPy (2.16)
By E _ El
ou 0Ov 1Ty P
= T T (pE—4y? 2.17
e taT 6 gl ) @17

Integrating Eqs. (2.15) and (2.16) and noting that €, and €, are partial derivatives of the displacements,
we find

Px%y vPxy?
= + 2.18
" 2EI fiG), v 2EI fax 2.18)

where fi(y) and f>(x) are unknown functions of x and y. Substituting these values of u and v in
Eq. (2.17),

Px? Ofi(y)  vPy* Of(x) P, 2
o - -4
2m oy T 2Er T ox sig” )

Separating the terms containing x and y in this equation and writing

P_xz afZ(X) ( )_VPyz_P_yz afl()’)
261 ax 2 T oEr T a6 T oy

Fi(x) = —

we have
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The term on the right-hand side of this equation is a constant, which means that F;(x) and F(y) must
be constants; otherwise, a variation in either x or y destroys the equality. Denoting F;(x) by C and F>(y)
by D gives

2
C+D=— % (2.19)

and

i) P2 . o) _ PR vy

ox 2EI Oy 2IG  2EI
so that
Px?
Hx) :@—i-Cx—i-F
and
Hb) = %—%ﬂLDyﬂLH

Therefore, from Eqgs. (2.18),
Px’y VvPy} Py}

=2 _ "7 7 i py+H 2.2
" 26l 6El Teig T (2.20)
vPxy?  Px?
- o F 221
e TeE TR (2.21)

The constants C, D, F, and H are now determined from Eq. (2.19) and the displacement boundary con-
ditions imposed by the support system. Assuming that the support prevents movement of the point K in
the beam cross-section at the built-in end, u = v=0atx =/, y = 0, and from Eqgs. (2.20) and (2.21),

If we now assume that the slope of the neutral plane is zero at the built-in end, then dv/Ox = 0 at x =/,
y = 0 and, from Eq. (2.21),

PP
2EI
It follows immediately that
PP
F=—
2EI
and, from Eq. (2.19),
PP PP’

T 2EI 8IG
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Substitution for the constants C, D, F, and H in Egs. (2.20) and (2.21) now produces the equations for
the components of displacement at any point in the beam:

Px’y vPy* Py’ (PP Pb
=— -+ = ———y (2.22)

2ElI  6El  6IG 2EI  8IG

vPxy? Px* PPx PP
— Rl Tl 223
2EI + 6El  2FEI + 3EI ( )
The deflection curve for the neutral plane is
Px* PPx PP

=——— 4 — 2.24
W0 =681~ 261 T 3E1 (@.24)

from which the tip deflection (x = 0) is PI°/3EI. This value is predicted by simple beam theory
(Chapter 15) and does not include the contribution to deflection of the shear strain. This was eliminated
when we assumed that the slope of the neutral plane at the built-in end was zero. A more detailed
examination of this effect is instructive. The shear strain at any point in the beam is given by Eq. (2.17):

and is obviously independent of x. Therefore, at all points on the neutral plane, the shear strain is con-
stant and equal to

Ph?

8IG

which amounts to a rotation of the neutral plane, as shown in Fig. 2.7. The deflection of the neutral
plane due to this shear strain at any section of the beam is therefore equal to

Yoy =

Pb?
% (l — X)

and Eq. (2.24) may be rewritten to include the effect of shear as
B Px* PPx PP PH

L S LA 22
Ws—o =6z1 =221 T3m1 Taig! Y (2.25)

Pb2/8IG
FIGURE 2.7 Rotation of Neutral Plane Due to Shear in an End-Loaded Cantilever




Problems 63

Pb¥8IG

(a) (b)
FIGURE 2.8 (a) Distortion of the Cross-section Due to Shear; (b) Effect on Distortion of the Rotation Due to Shear

Let us now examine the distorted shape of the beam section, which the analysis assumes is free to
take place. At the built-in end, when x = /, the displacement of any point is, from Eq. (2.22),
vPy}  Py*  Pb%y
“T6EI T6IG  8IG
The cross-section would, therefore, if allowed, take the shape of the shallow reversed S shown in
Fig. 2.8(a). We have not included in Eq. (2.26) the previously discussed effect of rotation of the neutral
plane caused by shear. However, this merely rotates the beam section as indicated in Fig. 2.8(b).
The distortion of the cross-section is produced by the variation of shear stress over the depth of the
beam. Therefore, the basic assumption of simple beam theory that plane sections remain plane is not
valid when shear loads are present, although for long, slender beams, bending stresses are much greater
than shear stresses and the effect may be ignored.
We observe from Fig. 2.8 that an additional direct stress system is imposed on the beam at the sup-
port, where the section is constrained to remain plane. For most engineering structures, this effect is
small but, as mentioned previously, may be significant in thin-walled sections.

(2.26)

Reference

[1] Timoshenko S, Goodier JN. Theory of elasticity. 2nd ed. New York: McGraw-Hill; 1951.
[2] Megson THG. Aircraft Structures for Engineering Students. 6th ed. Elsevier; 2016.

PROBLEMS

P.2.1 A metal plate has rectangular axes Ox, Oy marked on its surface. The point O and the direction of
Ox are fixed in space and the plate is subjected to the following uniform stresses:

Compressive, 3p, parallel to Ox,

Tensile, 2p, parallel to Oy,

Shearing, 4p, in planes parallel to Ox and Oy, in a sense tending to decrease the angle xOy.
Determine the direction in which a certain point on the plate is displaced; the coordinates of the point
are (2, 3) before straining. Poisson’s ratio is 0.25.

Answer:  19.73° to Ox.
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FIGURE P.2.2

P.2.2 What do you understand by an Airy stress function in two dimensions? A beam of length /, with a
thin rectangular cross-section, is built in at the end x = 0 and loaded at the tip by a vertical force P
(Fig. P.2.2). Show that the stress distribution, as calculated by simple beam theory, can be represented
by the expression
¢ = Ay’ + By’x + Cyx
as an Airy stress function and determine the coefficients A, B, and C.
Answer: A =2Plitd®>, B = —2P}td*, C =3P/2td
P.2.3 The cantilever beam shown in Fig. P.2.3 is in a state of plane strain and is rigidly supported at
x = L. Examine the following stress function in relation to this problem:
w

=20 (1512%y — 5% — 21y +y°)

yT w/unit area

A A

| I A A

w/unit area

FIGURE P.2.3
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Show that the stresses acting on the boundaries satisfy the conditions except for a distributed direct
stress at the free end of the beam, which exerts no resultant force or bending moment.
Answer: The stress function satisfies the biharmonic equation:
Aty = h, 6, = w and 1,, = 0, boundary conditions satisfied,
Aty = -h, 6, = -w and 1,, = 0, boundary conditions satisfied.
Direct stress at free end of beam is not zero, there is no resultant force or bending moment at the
free end.

P.2.4 A thin rectangular plate of unit thickness (Fig. P.2.4) is loaded along the edge y = +d by a linearly
varying distributed load of intensity w = px with corresponding equilibrating shears along the vertical
edges at x = 0 and /. As a solution to the stress analysis problem, an Airy stress function ¢ is proposed,
where

b 3 2 2 2 212
& = T30 |30 = PO +d) (v = 24) = 3yx(” — )|
Show that ¢ satisfies the internal compatibility conditions and obtain the distribution of
stresses within the plate. Determine also the extent to which the static boundary conditions are
satisfied.

. _px 2 2 3 2
Answer: G, = 08 [5y(x* — ?) — 10y* + 6d°y]
px . 3 2 3
w4
Ty = gop DG = OO = &) = 5y + 6% — ]

The boundary stress function values of t,, do not agree with the assumed constant equilibrating
shears at x = 0 and /.

FIGURE P.2.4
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P.2.4 MATLAB Use the Symbolic Math Toolbox in MATLAB to show the Airy stress function
proposed in Problem P.2.4 satisfies the internal compatibility conditions. Also repeat the derivation
of the distribution of stresses within the plate, assuming that y = —d, —d/2, 0, d /2, and d. Assume
that for all cases x = /.

Answer: ) 5, =0, e = Ip5,
Ty =0
(ii) o, = —5Ip/32, o, = —7Ip/80,

vy = —p((9*)/16 — (45d)/2)/(120d°)

(iii) o, = —Ip/2, oy =0,
Ty = p(3d* + 30d%2)/(120d%)

(iv) o, = -27Ip/32, o, = 7lp/80,
ty = —p((9d4)/16 — (452 P)2)/(1204)

(v) oy, =—Ip, o, = —Ip/5,
Ty =0

P.2.5 The cantilever beam shown in Fig. P.2.5 is rigidly fixed at x = L and carries loading such that the
Airy stress function relating to the problem is
d) =

w
40bc?

Find the loading pattern corresponding to the function and check its validity with respect to the
boundary conditions.

(—lOc3x2 —15¢%x%y 4+ 2¢%y® + 5x%y° — y5)

Answer: The stress function satisfies the biharmonic equation. The beam is a cantilever under
a uniformly distributed load of intensity w/unit area with a self-equilibrating stress
application given by o, = w(12¢%y — 20y°)/40bc” at x = 0. There is zero shear stress
aty =Fcandx =0. Aty = +¢, 6, = —w/b; and at y = —, o, = 0.

—

y

FIGURE P.2.5
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P.2.6 A two-dimensional isotropic sheet, having a Young’s modulus E and linear coefficient of
expansion o, is heated nonuniformly, the temperature being T (x, y). Show that the Airy stress
function ¢ satisfies the differential equation

V2(V2d + EaT) =0
where
? 0
Vi= S+
Ox? + Oy?
is the Laplace operator.
P.2.7 Investigate the state of plane stress described by the following Airy stress function:

o =320 Oxy’
T 4a 4a3

over the square region x = —a to x = +a, y = —a to y = +a. Calculate the stress resultants per unit
thickness over each boundary of the region.

Answer: The stress function satisfies the biharmonic equation. Also,

when x = a,
=30y
Ox = 2a?
when x = —a,
3Qy
Ox = 2a?

and




CHAPTER

Torsion of solid sections

The elasticity solution of the torsion problem for bars of arbitrary but uniform cross-section is accom-
plished by the semi-inverse method (Section 2.3), in which assumptions are made regarding either
stress or displacement components. The former method owes its derivation to Prandtl, the latter to
St. Venant. Both methods are presented in this chapter, together with the useful membrane analogy
introduced by Prandtl.

PRANDTL STRESS FUNCTION SOLUTION

Consider the straight bar of uniform cross-section shown in Fig. 3.1. It is subjected to equal but opposite
torques 7T at each end, both of which are assumed to be free from restraint so that warping displacements
w, that is, displacements of cross-sections normal to and out of their original planes, are unrestrained.
Further, we make the reasonable assumptions that, since no direct loads are applied to the bar,

c6,=0,=06,=0
and that the torque is resisted solely by shear stresses in the plane of the cross-section, giving
Ty =0

To verify these assumptions, we must show that the remaining stresses satisfy the conditions of
equilibrium and compatibility at all points throughout the bar and, in addition, fulfill the equilibrium
boundary conditions at all points on the surface of the bar.

If we ignore body forces, the equations of equilibrium (1.5), reduce, as a result of our assump-
tions, to

Oty 01y, 0tz 01y,

0z =0 0z =0 8x+ Oy =0 G-I
The first two equations of Egs. (3.1) show that the shear stresses 1, and 1, are functions of x and y only.
They are therefore constant at all points along the length of the bar which have the same x and y
coordinates. At this stage, we turn to the stress function to simplify the process of solution. Prandtl
introduced a stress function ¢ defined by

9 _ 99

o

o= (3.2)

which identically satisfies the third of the equilibrium equations (3.1) whatever form ¢ may take. We
therefore have to find the possible forms of ¢ which satisfy the compatibility equations and the
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FIGURE 3.1 Torsion of a Bar of Uniform, Arbitrary Cross-section

boundary conditions, the latter being, in fact, the requirement that distinguishes one torsion problem
from another.
From the assumed state of stress in the bar, we deduce that
& =& =& =7, =0

(see Egs. (1.42) and (1.46)). Further, since 7, and 1,, and hence v, and v, are functions of x and y only,
the compatibility equations (1.21)—(1.23) are identically satisfied, as is Eq. (1.26). The remaining
compatibility equations, (1.24) and (1.25), are then reduced to

O [_O: O

ox | ox Jy =0
o (ome o)
dy \ Ox dy |

Substituting initially for vy, and y,, from Egs. (1.46) and for 1., (= 1,.) and 1., (= T,.) from Egs. (3.2)

gives
2 2
o (7o 7o) _,
Ox | Ox2  0y?
a [P o
"oy o Ty ) 7°
or
0 0
aqu)zo, —a—yvzd):O (3.3)
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where V? is the two-dimensional Laplacian operator
0
(30 + o)
The parameter V>¢ is therefore constant at any section of the bar, so that the function ¢ must satisfy the
equation
b 0P

o2 + 8—))2 = constant = F(Sa}’) G4

at all points within the bar.

Finally, we must ensure that ¢ fulfills the boundary conditions specified by Eqs. (1.7). On the
cylindrical surface of the bar, there are no externally applied forces, so that X =Y =Z = 0. The
direction cosine n is also zero, and therefore the first two equations of Eqs. (1.7) are identically
satisfied, leaving the third equation as the boundary condition; that is,

Ty + Tl =0 3.5

The direction cosines / and m of the normal N to any point on the surface of the bar are, by reference
to Fig. 3.2,

dy dx
l=— =—— .
as’ " ds (36
Substituting Egs. (3.2) and (3.6) into (3.5), we have
0bdx  Opdy
Oxds Oyds
or
9%
—=0
ds
Y4
3s N
By
—3x
S
O x

FIGURE 3.2 Formation of the Direction Cosines / and m of the Normal to the Surface of the Bar
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Therefore, ¢ is constant on the surface of the bar and, since the actual value of this constant does
not affect the stresses of Eq. (3.2), we may conveniently take the constant to be zero. Hence, on the
cylindrical surface of the bar, we have the boundary condition

$=0 (3.7)

On the ends of the bar, the direction cosines of the normal to the surface have the values / =0, m =0,
and n = 1. The related boundary conditions, from Egs. (1.7), are then

Tox

NI~ |

¥
=0

We now observe that the forces on each end of the bar are shear forces which are distributed over the
ends of the bar in the same manner as the shear stresses are distributed over the cross-section. The re-
sultant shear force in the positive direction of the x axis, which we shall call §,, is

= [fra oo

or, using the relationship of Egs. (3.2),

o[ a0 o

as ¢ = O at the boundary. In a similar manner, S,, the resultant shear force in the y direction, is

Sy = —dejﬁa—i)dx:O

It follows that there is no resultant shear force on the ends of the bar and the forces represent a torque of
magnitude, referring to Fig. 3.3,

T = ”(rzy X — T y) dedy

in which we take the sign of T as being positive in the counterclockwise sense.

y
Y(=1,,)
—
X
Sy A_/(=sz)
3x y
) > X

FIGURE 3.3 Derivation of Torque on Cross-section of Bar
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Rewriting this equation in terms of the stress function ¢,
0 0
T = fJJ—d)xdxdyf JJ—d)ydxdy
Ox dy

Integrating each term on the right-hand side of this equation by parts and noting again that ¢ = 0 at all
points on the boundary, we have

T:2”¢M® (3.8)

We are therefore in a position to obtain an exact solution to a torsion problem if a stress function
d(x, y) can be found which satisfies Eq. (3.4) at all points within the bar and vanishes on the surface of
the bar, and providing that the external torques are distributed over the ends of the bar in an identical
manner to the distribution of internal stress over the cross-section. Although the last proviso is gener-
ally impracticable, we know from St. Venant’s principle that only stresses in the end regions are af-
fected; therefore, the solution is applicable to sections at distances from the ends usually taken to be
greater than the largest cross-sectional dimension. We have now satisfied all the conditions of the prob-
lem without the use of stresses other than ., and .., demonstrating that our original assumptions were
justified.

Usually, in addition to the stress distribution in the bar, we need to know the angle of twist and the
warping displacement of the cross-section. First, however, we shall investigate the mode of displace-
ment of the cross-section. We have seen that, as a result of our assumed values of stress,

sxzsy:szzyxyzo
It follows, from Egs. (1.18) and the second of Egs. (1.20), that

Ou 0Ov_Ow 0Ov 8u_0
ox Oy 0z ox oy
which result leads to the conclusions that each cross-section rotates as a rigid body in its own plane
about a center of rotation or twist and that, although cross-sections suffer warping displacements nor-
mal to their planes, the values of this displacement at points having the same coordinates along the
length of the bar are equal. Each longitudinal fiber of the bar therefore remains unstrained, as we have
in fact assumed.

Let us suppose that a cross-section of the bar rotates through a small angle 6 about its center of
twist assumed coincident with the origin of the axes Oxy (see Fig. 3.4). Some point P(r, o) will be dis-
placed to P'(r, o + 0), the components of its displacement being

u = —r0sino, v =r0cosx
or
u=—06y, v==6x (3.9
Referring to Egs. (1.20) and (1.46),

q f@+aiwa 787W+@/7‘Czy
x5 T ex . G V”’_ay 0z G
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FIGURE 3.4 Rigid Body Displacement in the Cross-section of the Bar

Rearranging and substituting for # and v from Egs. (3.9),

ow T do ow Ty do

W _Tx M W Ty 1
x G Az 8y G dz (3.10)

For a particular torsion problem, Egs. (3.10) enable the warping displacement w of the originally
plane cross-section to be determined. Note that, since each cross-section rotates as a rigid body, 0 is a
function of z only.

Differentiating the first of Eqgs. (3.10) with respect to y, the second with respect to x, and subtracting,

we have
1 (0Ot Oty do
= — - — 2 e
0 ( dy  Ox ) * dz

Expressing 1., and T, in terms of ¢ gives

0? 0* de
74) + 7(1) = -2G—
ox2  0y? dz
or, from Eq. (3.4),
de )
—2Gd— = V¢ = F(constant) 3.11)
z
It is convenient to introduce a forsion constant J, defined by the general torsion equation
de
T=0GJ]— (3.12)
dz

The product GJ is known as the torsional rigidity of the bar and may be written, from Egs. (3.8)
and (3.11),

4G
GJ:—V—Z(I)”d)dxdy (3.13)
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¢ = Constant

FIGURE 3.5 Lines of Shear Stress

Consider now the line of constant ¢ in Fig. 3.5. If s is the distance measured along this line from
some arbitrary point, then

9 _
ds

_06dy | 0pds

Oiaiyds Ox ds

Using Egs. (3.2) and (3.6), we may rewrite this equation as

o9
o5 Tl +1m=0 (3.14)

From Fig. 3.5, the normal and tangential components of shear stress are
T = Tod + Tym T = Tl — 10m (3.15)

Comparing the first of Egs. (3.15) with Eq. (3.14), we see that the normal shear stress is zero, so that the
resultant shear stress at any point is tangential to a line of constant ¢. These are known as lines of shear
stress or shear lines.

Substituting ¢ in the second of Egs. (3.15), we have

which may be written, from Fig. 3.5, as

obdx  Oddy 0o
S dhad i ShCAN 4 3.16
fax Oxdn QOydn on (3.16)
where, in this case, the direction cosines / and m are defined in terms of an elemental normal of
length dn.
We have therefore shown that the resultant shear stress at any point is tangential to the line of shear
stress through the point and has a value equal to minus the derivative of ¢ in a direction normal to
the line.
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|
Example 3.1
Determine the rate of twist and the stress distribution in a circular section bar of radius R which is subjected to equal
and opposite torques T at each of its free ends.
If we assume an origin of axes at the center of the bar, the equation of its surface is given by
2y =R
If we now choose a stress function of the form

d=C(*+y —R?) ()

the boundary condition ¢ = 0 is satisfied at every point on the boundary of the bar and the constant C may be
chosen to fulfill the remaining requirement of compatibility. Therefore, from Eqs. (3.11) and (i),

do
4C = —2G—
C Gy
so that
Gdo
C="3%
and
do
o= —GE(XZ +y2—R»)/2 (ii)

Substituting for ¢ in Eq. (3.8),

oot ([ s fus)

Both the first and second integrals in this equation have the value TR*/4, while the third integral is equal to TR>, the
area of cross-section of the bar. Then,

do /nR* =R*
T=-G—|—+" _aR*
Gdz(4 t T )

which gives

nR* _de
T=—G—
2 G dz
that is,
do
T=GJ]— (iii)
dz

in which J = nR*/2 = nD*/32 (D is the diameter), the polar second moment of area of the bar’s cross-section.
Substituting for G(d6/dz) in Eq. (ii) from (iii),

T
¢=75(x2+y27R2)
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and from Egs. (3.2),

L0 x99 Iy
ox  J T oy T

Ty =

The resultant shear stress at any point on the surface of the bar is then given by

— /2 2
T=4/T5 T

that is,
T
_ - /2 2
T 7 x-+y
so that.
TR .
T=— (iv)

This argument may be applied to any annulus of radius » within the cross-section of the bar, so that the stress
distribution is given by

Tr
T=—
J
and therefore increases linearly from zero at the center of the bar to a maximum TR/J at the surface.
||
[
Example 3.2

A uniform bar has the elliptical cross-section shown in Fig. 3.6(a) and is subjected to equal and opposite torques T
at each of its free ends. Derive expressions for the rate of twist in the bar, the shear stress distribution, and the
warping displacement of its cross-section.
The semi-major and semi-minor axes are a and b, respectively, so that the equation of its boundary is
22

X Yy
42
azjL

If we choose a stress function of the form

2y .
then the boundary condition ¢ = 0 is satisfied at every point on the boundary and the constant C may be chosen to
fulfill the remaining requirement of compatibility. Thus, from Eqs. (3.11) and (i),

11 o
2C(F+ﬁ) =26

or

do  a*b?

C=Cg@+»

(i)
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200 y

=200 400
FIGURE 3.6 (a) Torsion of a Bar of Elliptical Cross-section; (b) (MATLAB) Warping Displacement Distribution

giving

de  a*p? x> y?
__g®_ab (¥ ¥y
¢ © dz (a* + b?) (a2 i ) (i)

Substituting this expression for ¢ in Eq. (3.8) establishes the relationship between the torque T and the rate of twist:

o a*h? 1 1
T=-26—"_(=||Pdcdy+—=|]|y* dxd —”dxd
Gdz(a2+b2) (aZJJx y+b2JJy Y Y
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The first and second integrals in this equation are the second moments of area I, = na’ b/dand I = nab’ /4, while
the third integral is the area of the cross-section A = mab. Replacing the integrals by these values gives

d0 na’v?
IT=G———+ i
dz (a* + b?) @)
from which (see Eq. (3.12))
na’h’®
J=——
(@ + b?) ®

The shear stress distribution is obtained in terms of the torque by substituting for the product G(d6/dz) in
Eq. (iii) from (iv) and then differentiating as indicated by the relationships of Eqs. (3.2). Thus,

2Ty 2Tx i)
Ty = ——=, Tpy=—a vi
= nab3 7 nadb
So far we have solved for the stress distribution, Eqgs. (vi), and the rate of twist, Eq. (iv). It remains to determine
the warping distribution w over the cross-section. For this, we return to Egs. (3.10), which become, on substituting
from the preceding for t.,, 1.,, and d0/dz,

ow 2Ty n T (a® + b?) ow  2Tx T (d*+b?)
x mab’G ' G nadbd dy ma’hG G malh’
or
ow T ow T
ow _ b — & ow _ B — & .
Ox na3b3G( @), Oy na3b3G( W (vi)
Integrating both of Egs. (vii),
T(b* — a?) T(b* — a?)
w=—amg +fi) w= g Y +f2(x)

The warping displacement given by each of these equations must have the same value at identical points (x, y). It
follows that f;(y) = f>(x) = 0. Hence,

(b — a®)

=——7 "X viii

G (viid)
Lines of constant w therefore describe hyperbolas with the major and minor axes of the elliptical cross-section
as asymptotes. Further, for a positive (counterclockwise) torque, the warping is negative in the first and third
quadrants (a > b) and positive in the second and fourth.
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[
Example 3.2 MATLAB
Calculate the warping displacement (w) along the boundary of the cross-section illustrated in Fig. 3.6(a) using the
equation for w derived in Example 3.2. Plot the resulting values of w using the plot3 function in MATLAB. Assume
the following variable values: a = 200 mm; b = 300 mm; G = 25,000 N/mmz; T = 15 kNm.

Calculations of w along the cross-section boundary and the code required to create the needed plot are obtained
through the following MATLAB file:

% Declare any needed variables

a=200;

b =300;

G =25000;
T=15*%10"6;

% Define (x,y) values for 1001 points along the cross-section boundary
steps =1000;
x = zeros(steps+1,1);
y =zeros(steps+1,1);
w=zeros(steps+1,1);
for i=l:1:steps/2
x(i)=a- (4%a/steps)*(i-1);
y(i) =Db*sqrt(1-(x(i)/a)"2);
end
for i=1:1:steps/2+1
x(steps/2+i) =-a + (4*a/steps)*(i-1);
y(steps/2+i) = -b*sqrt(1-(x(i)/a)"2);
end

% Calculate thewarping displacement (w) at each point (x,y)
for i=1l:1:steps+1

w(i) =T*(b"2-a"2)*x(i)*y(1)/(pi*a”3*b"3*G);
end

% Plot the values of w

figure(l)
plot3(x,y,w)
gridon
axis square
xlabel(“x”)
ylabel(‘y’)
zlabel(‘w”)
view(-125,18)

The plot resulting from this MATLARB file is illustrated in Fig. 3.6(b) (MATLAB).
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ST. VENANT WARPING FUNCTION SOLUTION

In formulating his stress function solution, Prandtl made assumptions concerning the stress distribution
in the bar. The alternative approach presented by St. Venant involves assumptions as to the mode of
displacement of the bar; namely, that cross-sections of a bar subjected to torsion maintain their original
unloaded shape, although they may suffer warping displacements normal to their plane. The first of
these assumptions leads to the conclusion that cross-sections rotate as rigid bodies about a center
of rotation or twist. This fact was also found to derive from the stress function approach of
Section 3.1, so that, referring to Fig. 3.4 and Eq. (3.9), the components of displacement in the x
and y directions of a point P in the cross-section are

u=—0y,v=_0x

It is also reasonable to assume that the warping displacement w is proportional to the rate of twist and is
therefore constant along the length of the bar. Hence, we may define w by the equation

do
w= () (3.17)
zZ

where (x, y) is the warping function.

The assumed form of the displacements u, v, and w must satisfy the equilibrium and force boundary
conditions of the bar. We note here that it is unnecessary to investigate compatibility, as we are
concerned with displacement forms that are single-valued functions and therefore automatically satisfy
the compatibility requirement.

The components of strain corresponding to the assumed displacements are obtained from
Egs. (1.18) and (1.20) and are

&y =& =& = yxy =

0
_Ow  Ou dB (8\|J

T T @\ G18)
L _ow ov_do(oy
T 9y Tz dz \ dy
The corresponding components of stress are, from Eqs. (1.42) and (1.46),
Oy =0, =0, ="Ty =0
do
T =G— @ —
dz | Ox (3.19)
dé [ oy
T, =G e 87)2 +x

Ignoring body forces, we see that these equations identically satisfy the first two of the equilibrium
equations (1.5) and also that the third is fulfilled if the warping function satisfies the equation
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Py
87‘1’ + aT\l/ _ V=0 (3.20)

The direction cosine 7 is zero on the cylindrical surface of the bar and so the first two of the bound-
ary conditions (Eqgs. (1.7)) are identically satisfied by the stresses of Eqs. (3.19). The third equation

simplifies to
NN me () i=0 3.21)
ady Ox

It may be shown, but not as easily as in the stress function solution, that the shear stresses defined in
terms of the warping function in Eqgs. (3.19) produce zero resultant shear force over each end of
the bar.'! The torque is found in a similar manner to that in Section 3.1, where, by reference to
Fig. 3.3, we have

T = ” (Tyx — T2y)dx dy

A0 ([ [[OV N
(AN RS

By comparison with Eq. (3.12), the torsion constant J is now, in terms of s,

) (o

The warping function solution to the torsion problem reduces to the determination of the warping
function s, which satisfies Egs. (3.20) and (3.21). The torsion constant and the rate of twist follow from
Egs. (3.23) and (3.22); the stresses and strains from Eqgs. (3.19) and (3.18); and finally, the warping
distribution from Eq. (3.17).

or

THE MEMBRANE ANALOGY

Prandtl suggested an extremely useful analogy relating the torsion of an arbitrarily shaped bar to the
deflected shape of a membrane. The latter is a thin sheet of material which relies for its resistance to
transverse loads on internal in-plane or membrane forces.

Suppose that a membrane has the same external shape as the cross-section of a torsion bar
(Fig. 3.7(a)). It supports a transverse uniform pressure g and is restrained along its edges by a uniform
tensile force N/unit length, as shown in Figs. 3.7(a) and (b). It is assumed that the transverse displace-
ments of the membrane are small, so that N remains unchanged as the membrane deflects. Consider the
equilibrium of an element dxdy of the membrane. Referring to Fig. 3.8 and summing forces in the z
direction, we have

ow ow  Pw ow ow  Pw i
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(a) (b)
FIGURE 3.7 Membrane Analogy: (a) In-plane and (b) Transverse Loading

L5+ 5 (5)s]

FIGURE 3.8 Equilibrium of Element of Membrane

or

Pw  Pw q

T V=21

a2 Ty VTN
Equation (3.24) must be satisfied at all points within the boundary of the membrane. Furthermore, at all
points on the boundary,

(3.24)

w=0 (3.25)

and we see that, by comparing Eqs. (3.24) and (3.25) with Egs. (3.11) and (3.7), w is analogous to
¢ when ¢ is constant. Thus, if the membrane has the same external shape as the cross-section of
the bar, then

w(x,y) = &(x,)
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and

q do
N> F=2G &

The analogy now being established, we may make several useful deductions relating the deflected
form of the membrane to the state of stress in the bar.

Contour lines or lines of constant w correspond to lines of constant ¢ or lines of shear stress in the
bar. The resultant shear stress at any point is tangential to the membrane contour line and equal in value
to the negative of the membrane slope, Ow/0n, at that point, the direction n being normal to the contour
line (see Eq. (3.16)). The volume between the membrane and the xy plane is

Vol = Jdexdy

and we see that, by comparison with Eq. (3.8),
T =2Vol

The analogy therefore provides an extremely useful method of analyzing torsion bars possessing
irregular cross-sections for which stress function forms are not known. Hetényi” describes experimen-
tal techniques for this approach. In addition to the strictly experimental use of the analogy, it is also
helpful in the visual appreciation of a particular torsion problem. The contour lines often indicate a
form for the stress function, enabling a solution to be obtained by the method of Section 3.1. Stress
concentrations are made apparent by the closeness of contour lines where the slope of the membrane
is large. These are in evidence at sharp internal corners, cut-outs, discontinuities, and the like.

TORSION OF A NARROW RECTANGULAR STRIP

In Chapter 17, we investigate the torsion of thin-walled open-section beams; the development of the
theory being based on the analysis of a narrow rectangular strip subjected to torque. We now conve-
niently apply the membrane analogy to the torsion of such a strip, shown in Fig. 3.9. The corresponding
membrane surface has the same cross-sectional shape at all points along its length except for small
regions near its ends, where it flattens out. If we ignore these regions and assume that the shape of
the membrane is independent of y, then Eq. (3.11) simplifies to

d*¢ do
— T 929G —
dx? G dz
Integrating twice,
de
¢=—-G—x>+Bx+C
dz

Substituting the boundary conditions ¢ = 0 at x = +¢#/2, we have

ol )]
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s/2

s/2

t
S

FIGURE 3.9 Torsion of a Narrow Rectangular Strip

Although ¢ does not disappear along the short edges of the strip and therefore does not give an exact
solution, the actual volume of the membrane differs only slightly from the assumed volume, so that
the corresponding torque and shear stresses are reasonably accurate. Also, the maximum shear stress
occurs along the long sides of the strip, where the contours are closely spaced, indicating, in any case,
that conditions in the end region of the strip are relatively unimportant.

The stress distribution is obtained by substituting Eq. (3.26) in Eqgs. (3.2), then

de
Ty = 2GXE T, =0 (3.27)
the shear stress varying linearly across the thickness and attaining a maximum
de
Toy,max = iGta (3.28)

at the outside of the long edges, as predicted. The torsion constant J follows from the substitution of
Eq. (3.26) into (3.13), giving
st?
J=— 3.29
3 (3.29)
and
3T

Tzymax — 2
’ s3

These equations represent exact solutions when the assumed shape of the deflected membrane is the
actual shape. This condition arises only when the ratio s/t approaches infinity; however, for ratios in
excess of 10, the error is on the order of only 6 percent. Obviously, the approximate nature of the so-
lution increases as s/t decreases. Therefore, to retain the usefulness of the analysis, a factor 1 is included
in the torsion constant; that is,
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Warping of

. !
cross-section

FIGURE 3.10 Warping of a Thin Rectangular Strip

Values of p for different types of section are found experimentally and quoted in various references.”
We observe that, as s/t approaches infinity, p approaches unity.

The cross-section of the narrow rectangular strip of Fig. 3.9 does not remain plane after loading but
suffers warping displacements normal to its plane; this warping may be determined using either of
Egs. (3.10). From the first of these equations,

ow de

since 1,, = 0 (see Egs. (3.27)). Integrating Eq. (3.30), we obtain
do
w= xyd— + constant 3.31)
vA

Since the cross-section is doubly symmetrical, w = 0 at x = y = 0, so that the constant in Eq. (3.31) is
zero. Therefore,

w= xyg (3.32)

and the warping distribution at any cross-section is as shown in Fig. 3.10.

We should not close this chapter without mentioning alternative methods of solution of the torsion
problem. These in fact provide approximate solutions for the wide range of problems for which exact
solutions are not known. Examples of this approach are the numerical finite difference method and the
Rayleigh-Ritz method based on energy principles.’
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PROBLEMS

P.3.1 Show that the stress function ¢ = k (> — a?) is applicable to the solution of a solid circular section
bar of radius a. Determine the stress distribution in the bar in terms of the applied torque, the rate of
twist, and the warping of the cross-section. Is it possible to use this stress function in the solution for a
circular bar of hollow section?

Answer: 1 =Tr/l, ~wherel, =mna*/2,
d0/dz = 2T /Gna*, w = 0 everywhere.

P.3.2 Deduce a suitable warping function for the circular section bar of P.3.1 and derive the expressions
for stress distribution and rate of twist.

T T. T o T
Answer: =0, rM:——y, rzy:—x, r, —=—
I, I, I, dz  Glp
P.3.3 Show that the warping function |y = kxy, in which k is an unknown constant, may be used to solve
the torsion problem for the elliptical section of Example 3.2.

P.3.4 Show that the stress function

do 1 1 2
— Gl e (B33 - L
¢ 5 |7 ) — 5 =307) ——a
is the correct solution for a bar having a cross-section in the form of the equilateral triangle shown in
Fig. P.3.4. Determine the shear stress distribution, the rate of twist, and the warping of the cross-section.
Find the position and magnitude of the maximum shear stress.

B

N

T

W

FIGURE P.3.4
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do 3x2 3y?
Answer: T, = Gd— X — % %
z a a

do
Ty =—G—|y+ 31y
dz a
do
Tmax (at center of each side) = — C—ZG—
2 dz
do 1537
dz  Ga*
1dO, 4 )
w= 2ade (y —3x y)

P.3.5 Determine the maximum shear stress and the rate of twist in terms of the applied torque T for the
section made up of narrow rectangular strips shown in Fig. P.3.5.

Answer: Ty = 3T/(2a + b)f?, d0/dz = 3T/G(2a + b)£*

P.3.5 MATLAB Use the Symbolic Math Toolbox in MATLAB to repeat Problem P.3.5, assuming that
the vertical rectangular strip of length b in Fig. P.3.5 has a thickness of 2.

Answer: Ty = 3T/[23(a +4b)], d0/dz = 3T/[2G*(a + 4b))

FIGURE P.3.5




CHAPTER

Virtual work and energy methods

Many structural problems are statically determinate; that is, the support reactions and internal force sys-
tems may be found using simple statics, where the number of unknowns is equal to the number of equa-
tions of equilibrium available. In cases where the number of unknowns exceeds the possible number of
equations of equilibrium, for example, a propped cantilever beam, other methods of analysis are required.

The methods fall into two categories and are based on two important concepts; the first, which is
presented in this chapter, is the principle of virtual work. This is the most fundamental and powerful
tool available for the analysis of statically indeterminate structures and has the advantage of being able
to deal with conditions other than those in the elastic range. The second, based on strain energy, can
provide approximate solutions of complex problems for which exact solutions do not exist and is
discussed in Chapter 5. In some cases, the two methods are equivalent, since, although the governing
equations differ, the equations themselves are identical.

In modern structural analysis, computer-based techniques are widely used; these include the flex-
ibility and stiffness methods (see Chapter 6). However, the formulation of, say, stiffness matrices for
the elements of a complex structure is based on one of the previous approaches, so that a knowledge and
understanding of their application is advantageous.

WORK

Before we consider the principle of virtual work in detail, it is important to clarify exactly what is meant
by work. The basic definition of work in elementary mechanics is that “work is done when a force
moves its point of application.” However, we require a more exact definition since we are concerned
with work done by both forces and moments and with the work done by a force when the body on which
it acts is given a displacement that is not coincident with the line of action of the force.

Consider the force, F, acting on a particle, A, in Fig. 4.1(a). If the particle is given a displacement, A,
by some external agency so that it moves to A’ in a direction at an angle o to the line of action of F, the
work, W, done by F is given by

Wi = F (Acosa) 4.1
or
Wr = (F cosa)A (4.2)

We see therefore that the work done by the force, F, as the particle moves from A to A’ may be regarded
as either the product of F and the component of A in the direction of F (Eq. (4.1)) or as the product of the
component of F in the direction of A and A (Eq. (4.2)).

Introduction to Aircraft Structural Analysis, Third Edition. http://dx.doi.org/10.1016/B978-0-08-102076-0.00004-X 9 1
Copyright © 2018 T.H.G. Megson. Published by Elsevier Ltd. All rights reserved.
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FIGURE 4.1 Work Done by a Force and a Moment

Now, consider the couple (pure moment) in Fig. 4.1(b) and suppose that the couple is given a small
rotation of 0 radians. The work done by each force F is then F(a/2)0, so that the total work done, Wc,
by the couple is

a a
=F- F-0=F
WC 26+ 26 ab

It follows that the work done, W,,, by the pure moment, M, acting on the bar AB in Fig. 4.1(c) as it is
given a small rotation, 0, is

Wy = M0 “4.3)

Note that in this equation the force, F, and moment, M, are in position before the displacements take
place and are not the cause of them. Also, in Fig. 4.1(a), the component of A parallel to the direction of
F is in the same direction as F; if it had been in the opposite direction, the work done would have been
negative. The same argument applies to the work done by the moment, M, where we see in Fig. 4.1(c)
that the rotation, 0, is in the same sense as M. Note also that if the displacement, A, had been perpen-
dicular to the force, F, no work would have been done by F.

Finally, it should be remembered that work is a scalar quantity, since it is not associated with
direction (in Fig. 4.1(a), the force F does work if the particle is moved in any direction). Therefore,
the work done by a series of forces is the algebraic sum of the work done by each force.

PRINCIPLE OF VIRTUAL WORK

The establishment of the principle is carried out in stages. First, we consider a particle, then a rigid
body, and finally a deformable body, which is the practical application we require when analyzing
structures.
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Principle of virtual work for a particle

In Fig. 4.2, a particle, A, is acted upon by a number of concurrent forces, Fy, F», ..., Fy, ..., F,; the
resultant of these forces is R. Suppose that the particle is given a small arbitrary displacement, A,, to A’
in some specified direction; A, is an imaginary or virtual displacement and is sufficiently small so that
the directions of F', F,, etc., are unchanged. Let O be the angle that the resultant, R, of the forces makes
with the direction of A, and 0, 0,, ..., 0, ..., 0, the angles that F(, F5, ..., Fy, ..., F, make with the
direction of A, respectively. Then, from either of Eqgs. (4.1) or (4.2). the total virtual work, W, done by
the forces F' as the particle moves through the virtual displacement, A,, is given by

Wr = F1A,cos0; + FyA,cos0r + - -+ + FyA,cosb; +-- -+ F,A, cos0,

Therefore,

Wrp = FiA, cosb;

r
k=1

or, since A, is a fixed, although imaginary displacement,

Wr = A, ZF" cos 6 (4.4)
=1

In Eq. (4.4), 22:11: « cos O is the sum of all the components of the forces, F, in the direction of A,
and therefore must be equal to the component of the resultant, R, of the forces, F, in the direction of A,;
that is,

P
Wg = AVZFk cos0; = A,R cosOp 4.5)

k=1
If the particle, A, is in equilibrium under the action of the forces, ', F5, ..., Fy, ..., F,, the resultant,

R, of the forces is zero. It follows from Eq. (4.5) that the virtual work done by the forces, F, during the
virtual displacement, A,, is zero.

FIGURE 4.2 Virtual Work for a System of Forces Acting on a Particle
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We can therefore state the principle of virtual work for a particle as follows:

If a particle is in equilibrium under the action of a number of forces, the total work done by the forces
for a small arbitrary displacement of the particle is zero.

It is possible for the total work done by the forces to be zero even though the particle is not in equi-
librium, if the virtual displacement is taken to be in a direction perpendicular to their resultant, R. We
cannot, therefore, state the converse of this principle unless we specify that the total work done must be
zero for any arbitrary displacement. Thus,

A particle is in equilibrium under the action of a system of forces if the total work done by the forces is
zero for any virtual displacement of the particle.

Note that, in this, A, is a purely imaginary displacement and is not related in any way to the possible
displacement of the particle under the action of the forces, F. The virtual displacement A, has been
introduced purely as a device for setting up the work—equilibrium relationship of Eq. (4.5). The forces,
F, therefore remain unchanged in magnitude and direction during this imaginary displacement; this
would not be the case if the displacement were real.

Principle of virtual work for a rigid body

Consider the rigid body shown in Fig. 4.3, which is acted upon by a system of external forces, F, F»,

., Fi, ..., F,. These external forces induce internal forces in the body, which may be regarded as
comprising an infinite number of particles; on adjacent particles, such as A; and A,, these internal
forces are equal and opposite, in other words, self-equilibrating. Suppose now that the rigid body is
given a small, imaginary, that is, virtual, displacement, A, (or a rotation or a combination of both)
in some specified direction. The external and internal forces then do virtual work and the total virtual
work done, W, is the sum of the virtual work, W,, done by the external forces and the virtual work, W,
done by the internal forces. Thus,

W, =W, +W,; 4.6)

Since the body is rigid, all the particles in the body move through the same displacement, A,, so that the
virtual work done on all the particles is numerically the same. However, for a pair of adjacent particles,

Fy

Self-equilibrating internal forces

Fr Fk
FIGURE 4.3 Virtual Work for a Rigid Body
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such as A; and A; in Fig. 4.3, the self-equilibrating forces are in opposite directions, which means that
the work done on A is opposite in sign to the work done on A,. Therefore, the sum of the virtual work
done on A; and A; is zero. The argument can be extended to the infinite number of pairs of particles in
the body, from which we conclude that the internal virtual work produced by a virtual displacement in a
rigid body is zero. Equation (4.6) then reduces to

W, =W, 4.7)
Since the body is rigid and the internal virtual work is therefore zero, we may regard the body as a large
particle. It follows that if the body is in equilibrium under the action of a set of forces, Fy, F, ..., Fy,

..., F,, the total virtual work done by the external forces during an arbitrary virtual displacement of the
body is zero.

|
Example 4.1
Calculate the support reactions in the cantilever beam AB shown in Fig. 4.4(a).

The concentrated load, W, induces a vertical reaction, R 4, and also one of moment, M4, at A.

Suppose that the beam is given a small imaginary, that is virtual, rotation, 0, 4, at A, as shown in Fig. 4.4(b).
Since we are concerned here with only external forces, we may regard the beam as a rigid body, so that the beam
remains straight and B is displaced to B’. The vertical displacement of B, A, g, is then given by

Avp = 0,4L
or
0,4 =Avp/L @
The total virtual work, W,, done by all the forces acting on the beam is given by
W, =WA,p — MaB,a (ii)

Note that the contribution of M4 to the total virtual work done is negative, since the assumed direction of M, is in
the opposite sense to the virtual displacement, 0, 1. Note also that there is no linear movement of the beam at A so
that R4 does no work. Substituting in Eq. (ii) for 8, o from Eq. (i), we have

W, =WA,p — MaA, /L (iii)
Since the beam is in equilibrium, W, = 0, from the principle of virtual work. Therefore,
0=WA,g — MaA,/L

W lW W
A
MA M AV,B AV
A T T
GV‘A B, A! B!
RA RA
L L _! L _! L

(a) (b) (c)
FIGURE 4.4 Use of the Principle of Virtual Work to Calculate Support Reactions
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so that
My = WL
which is the result which would have been obtained from considering the moment equilibrium of the beam about A.

Suppose now that the complete beam is given a virtual displacement, A, as shown in Fig. 4.4(c). There is no
rotation of the beam, so that M, does no work. The total virtual work done is then given by

W, = WA, — RAA, (iv)

The contribution of R, is negative, since its line of action is in the direction opposite to A,. The beam is in equi-
librium, so that W, = 0. Therefore, from Eq. (iv),

Ra=W
which is the result we would have obtained by resolving forces vertically.
[
[
Example 4.2

Calculate the support reactions in the cantilever beam shown in Fig. 4.5(a).
In this case, we obtain a solution by simultaneously giving the beam a virtual displacement, A, 4, at A and a
virtual rotation, 0, 4, at A. The total deflection at B is then A, 5 + 6, AL and at a distance x from A is A, 5 + 6, ax.
Since the beam carries a uniformly distributed load, we find the virtual work done by the load by first con-
sidering an elemental length, dx, of the load a distance x from A. The load on the element is wdx and the virtual
work done by this elemental load is given by
OW = wox(Aya + 6, ax)

The total virtual work done on the beam is given by

L
W, = J W(Aya + 6, ax)dx — MaB, A — RAA, A
0

which simplifies to
W, = (WL — RA)A, A + [(WL?/2) — Ma]O,a =0 )

MA\—X>||ﬂ
EEENEREE llllllllllB

Ma A B A

A,\(\) Ayt L

Ra ‘ Ra Oy.a B’

(a) (b) —‘
FIGURE 4.5 Calculation of Support Reactions Using the Principle of Virtual Work
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since the beam is in equilibrium. Equation (i) is valid for all values of A, o and 0, 4, so that
wL —Rp = 0and (WL?/2) — M =0
Therefore,
Ra = wL and My = wL?/2

the results which would have been obtained by resolving forces vertically and taking moments about A.

[
Example 4.3
Calculate the reactions at the built-in end of the cantilever beam shown in Fig. 4.6(a).

In this example the load, W, produces reactions of vertical force, moment, and torque at the built-in end. The
vertical force and moment are the same as in Example 4.1. To determine the torque reaction we impose a small,
virtual displacement, A, ¢, vertically downwards at C. This causes the beam AB to rotate as a rigid body through an
angle, 0, A, which is given by

0,aB = Av.,c/d ()

Alternatively, we could have imposed a small virtual rotation, 8, o, on the beam, which would have resulted in a
virtual vertical displacement of C equal to af, p; clearly the two approaches produce identical results.
The total virtual work done on the beam is then given by

Wi =WA,c —TaO,ap =0 (ii)
since the beam is in equilibrium. Substituting for 6, sp, in Eq. (ii) from Eq. (i), we have
TA = Wa

which is the result which would have been obtained by considering the statical equilibrium of the beam.

FIGURE 4.6 Beam of Example 4.3
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i
Example 4.4
Calculate the support reactions in the simply supported beam shown in Fig. 4.7.
Only a vertical load is applied to the beam, so that only vertical reactions, R and Rc, are produced.
Suppose that the beam at C is given a small imaginary, that is, a virtual, displacement, A, ¢, in the direction of
Rc as shown in Fig. 4.7(b). Since we are concerned here solely with the external forces acting on the beam, we may

w

] ! B

(@)

(c)

FIGURE 4.7 Use of the Principle of Virtual Work to Calculate Support Reactions
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regard the beam as a rigid body. The beam therefore rotates about A so that C moves to C’' and B moves to B'. From
similar triangles. we see that

a a

:7Av :7AVA i
apive = A ®

Av,B
The total virtual work, W,, done by all the forces acting on the beam is given by
Wi =RcAyc — WA 5 (i1)
Note that the work done by the load, W, is negative, since A, p is in the opposite direction to its line of action. Note
also that the support reaction, R o, does no work, since the beam rotates only about A. Now substituting for A, g in
Eq. (ii) from Eq. (i), we have

W; =RcA,c — W% A, c (iii)
Since the beam is in equilibrium, W, is zero from the principle of virtual work. Hence, from Eq. (iii),
Rel,c — W%AV,C =0

which gives
a
RC = WZ
which is the result which would have been obtained from a consideration of the moment equilibrium of the beam
about A. The determination of R 5 follows in a similar manner. Suppose now that, instead of the single displacement

A, c, the complete beam is given a vertical virtual displacement, A, together with a virtual rotation, 6,, about A, as
shown in Fig. 4.7(c). The total virtual work, W;, done by the forces acting on the beam is now given by

W, = RAA, — W (A, +aB,) + Rc (A, +L16,) =0 (iv)
since the beam is in equilibrium. Rearranging Eq. (iv),
(Ra + Rc — W)A, + (RcL — Wa)b, = 0 v)
Equation (v) is valid for all values of A, and 6, so that
Ra+Rc—W =0, ReL —Wa =0

which are the equations of equilibrium we would have obtained by resolving forces vertically and taking moments
about A.
[

It is not being suggested here that the application of the principles of statics should be abandoned in
favor of the principle of virtual work. The purpose of Examples 4.1-4.4 is to illustrate the application of
a virtual displacement and the manner in which the principle is used.

Virtual work in a deformable body

In structural analysis, we are not generally concerned with forces acting on a rigid body. Structures and
structural members deform under load, which means that, if we assign a virtual displacement to a par-
ticular point in a structure, not all points in the structure suffer the same virtual displacement, as would
be the case if the structure were rigid. This means that the virtual work produced by the internal forces is
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not zero, as it is in the rigid body case, since the virtual work produced by the self-equilibrating forces on
adjacent particles does not cancel out. The total virtual work produced by applying a virtual displace-
ment to a deformable body acted upon by a system of external forces is therefore given by Eq. (4.6).

If the body is in equilibrium under the action of the external force system, then every particle in the
body is also in equilibrium. Therefore, from the principle of virtual work, the virtual work done by the
forces acting on the particle is zero, irrespective of whether the forces are external or internal. It follows
that, since the virtual work is zero for all particles in the body, it is zero for the complete body and
Eq. (4.6) becomes

We+W; =0 (4.8)

Note that, in this argument, only the conditions of equilibrium and the concept of work are employed.
Equation (4.8) therefore does not require the deformable body to be linearly elastic (i.e., it need not obey
Hooke’s law), so that the principle of virtual work may be applied to any body or structure that is rigid,
elastic, or plastic. The principle does require that displacements, whether real or imaginary, must be
small, so that we may assume that external and internal forces are unchanged in magnitude and direction
during the displacements. In addition, the virtual displacements must be compatible with the geometry
of the structure and the constraints that are applied, such as those at a support. The exception is the sit-
uation we have in Examples 4.1-4.4, where we apply a virtual displacement at a support. This approach
is valid, since we include the work done by the support reactions in the total virtual work equation.

Work done by internal force systems

The calculation of the work done by an external force is straightforward in that it is the product of the
force and the displacement of its point of application in its own line of action (Eqs. (4.1), (4.2), or (4.3)),
whereas the calculation of the work done by an internal force system during a displacement is much
more complicated. Generally, no matter how complex a loading system is, it may be simplified to a
combination of up to four load types: axial load, shear force, bending moment, and torsion; these in
turn produce corresponding internal force systems. We now consider the work done by these internal
force systems during arbitrary virtual displacements.

Axial force
Consider the elemental length, dx, of a structural member as shown in Fig. 4.8 and suppose that it is
subjected to a positive internal force system comprising a normal force (i.e., axial force), N; a shear
force, §; a bending moment, M; and a torque, T, produced by some external loading system acting
on the structure of which the member is part. The stress distributions corresponding to these internal
forces are related to an axis system whose origin coincides with the centroid of area of the cross-section.
We are, in fact, using these stress distributions in the derivation of expressions for internal virtual work
in linearly elastic structures, so that it is logical to assume the same origin of axes here; we also assume
that the y axis is an axis of symmetry. Initially, we consider the normal force, N.

The direct stress, G, at any point in the cross-section of the member is given by 6 = N/A. Therefore
the normal force on the element A at the point (z, y) is

ON = odA :]XSA
A
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Cross-sectional
area, A

Vs

FIGURE 4.8 Virtual Work Due to Internal Force System

Suppose now that the structure is given an arbitrary virtual displacement, which produces a virtual axial
strain, €,, in the element. The internal virtual work, dw; y, done by the axial force on the elemental
length of the member is given by

N
SWLN :J — dASVSX
¥ AA
which, since [5dA = A, reduces to

5W1‘,N = NSVSX (49)

In other words, the virtual work done by N is the product of N and the virtual axial displacement of the
element of the member. For a member of length L, the virtual work, w; 5, done during the arbitrary
virtual strain is then

- J Ne, dx (4.10)
L

For a structure comprising a number of members, the total internal virtual work, W; », done by axial
force is the sum of the virtual work of each of the members. Therefore,

wiv = 3| Nev v (@.11)
L

Note that, in the derivation of Eq. (4.11), we make no assumption regarding the material properties of
the structure, so that the relationship holds for non-elastic as well as elastic materials. However, for a
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linearly elastic material, that is, one that obeys Hooke’s law, we can express the virtual strain in terms
of an equivalent virtual normal force:

c, N,
SV = — = —
E FA
Therefore, if we designate the actual normal force in a member by N, Eq. (4.11) may be expressed in
the form
NaN,
N = 4.12
win = Y| 3 (4.12)
Shear force

The shear force, S, acting on the member section in Fig. 4.8 produces a distribution of vertical shear
stress that depends upon the geometry of the cross-section. However, since the element, dA, is infin-
itesimally small, we may regard the shear stress, T, as constant over the element. The shear force, S, on
the element is then

58 = 18A (4.13)

Suppose that the structure is given an arbitrary virtual displacement which produces a virtual shear
strain, v,, at the element. This shear strain represents the angular rotation in a vertical plane of the
element 8A X dx relative to the longitudinal centroidal axis of the member. The vertical displacement
at the section being considered is therefore v,0x. The internal virtual work, dw; 5, done by the shear
force, S, on the elemental length of the member is given by

8W,‘,S = J T dAYVSX
A

A uniform shear stress through the cross-section of a beam may be assumed if we allow for the actual
variation by including a form factor, B.' The expression for the internal virtual work in the member may

then be written
S
owig=| Bl-) dAy,ox
kL A A

ow; s = BSy,0x 4.14)

or

Hence, the virtual work done by the shear force during the arbitrary virtual strain in a member of
length L is

Wis = BJ S’YV dx (415)
L

For a linearly elastic member, as in the case of axial force, we may express the virtual shear strain, y,, in
terms of an equivalent virtual shear force, S,:
T Sy
VTG T6a
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so that, from Eq. (4.15),

SaSy
Wis = dr (4.16)
s BJL =

For a structure comprising a number of linearly elastic members, the total internal work, W; s, done by
the shear forces is

SaS,
Wis = ZBL SA dx (4.17)

Bending moment

The bending moment, M, acting on the member section in Fig. 4.8 produces a distribution of direct
stress, G, through the depth of the member cross-section. The normal force on the element, A, corre-
sponding to this stress is therefore G0A. Again, we suppose that the structure is given a small arbitrary
virtual displacement which produces a virtual direct strain, €,, in the element 84 x dx. Therefore, the
virtual work done by the normal force acting on the element 34 is 63Ag,dx. Hence, integrating over the
complete cross-section of the member, we obtain the internal virtual work, dw; 5;, done by the bending
moment, M, on the elemental length of member:

OWim = J o dAg,6x (4.18)
A

The virtual strain, g,, in the element A X dx is, from Eq. (15.2), given by
y

g, ==
v Rv
where R, is the radius of curvature of the member produced by the virtual displacement. Thus, substitut-
ing for ¢, in Eq. (4.18), we obtain

Wiy = JAG% dAdx

v

or, since oydA is the moment of the normal force on the element, 6A, about the z axis,

SW,"M = —0ox
v
Therefore, for a member of length L, the internal virtual work done by an actual bending moment, M 5,
is given by
M
Wim = J — dx (419)
L R v
In the derivation of Eq. (4.19), no specific stress—strain relationship has been assumed, so that it is ap-
plicable to a non-linear system. For the particular case of a linearly elastic system, the virtual curvature

1/R, may be expressed in terms of an equivalent virtual bending moment, M,, using the relationship
of Eq. (15.8):

1 M

R, E

~
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Substituting for 1/R, in Eq. (4.19), we have

MM,
Wi = J ATV dy (4.20)
’ . El

so that, for a structure comprising a number of members, the total internal virtual work, W; », produced
by bending is

MaM,
Win = dx 4.21
” ZJL £ (4.21)

Torsion
The internal virtual work, w; 1, due to torsion in the particular case of a linearly elastic circular section
bar may be found in a similar manner and is given by

TAT,

Wit = J dx (4.22)
l L Glo

in which [, is the polar second moment of area of the cross-section of the bar (see Example 3.1). For

beams of a non-circular cross-section, /, is replaced by a torsion constant, J, which, for many practical

beam sections, is determined empirically.

Hinges

In some cases, it is convenient to impose a virtual rotation, 6,, at some point in a structural member
where, say, the actual bending moment is M . The internal virtual work done by M4 is then M50, (see
Eq. (4.3)); physically this situation is equivalent to inserting a hinge at the point.

Sign of internal virtual work
So far, we have derived expressions for internal work without considering whether it is positive or neg-
ative in relation to external virtual work.

Suppose that the structural member, AB, in Fig. 4.9(a) is, say, a member of a truss and that it is in
equilibrium under the action of two externally applied axial tensile loads, P; clearly the internal axial,
that is normal, force at any section of the member is P. Suppose now that the member is given a virtual
extension, 8,, such that B moves to B’. Then, the virtual work done by the applied load, P, is positive,
since the displacement, 3., is in the same direction as its line of action. However, the virtual work done
by the internal force, N (= P), is negative, since the displacement of B is in the opposite direction to its
line of action; in other words, work is done on the member. Thus, from Eq. (4.8), we see that, in this
case,

W, =W, (4.23)

Equation (4.23) applies if the virtual displacement is a contraction and not an extension, in which case,
the signs of the external and internal virtual work in Eq. (4.8) are reversed. Clearly, this applies equally
if P is a compressive load. The arguments may be extended to structural members subjected to shear,
bending, and torsional loads, so that Eq. (4.23) is generally applicable.
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A B
Pe——— O > <t QO —>p
N=P
(a)
A B B’
P<—O > - O------ O —P
N=P

(b)
FIGURE 4.9 Sign of the Internal Virtual Work in an Axially Loaded Member

Virtual work due to external force systems

So far in our discussion, we have only considered the virtual work produced by externally applied con-
centrated loads. For completeness, we must also consider the virtual work produced by moments, tor-
ques, and distributed loads.

In Fig. 4.10, a structural member carries a distributed load, w(x), and, at a particular point, a con-
centrated load, W; a moment, M; and a torque, T; together with an axial force, P. Suppose that, at the
point, a virtual displacement is imposed having translational components, A, and A, ., parallel to the y
and x axes, respectively, and rotational components, 6, and ¢,, in the yx and zy planes, respectively.

If we consider a small element, dx, of the member at the point, the distributed load may be regarded
as constant over the length dx and acting, in effect, as a concentrated load w(x)dx. The virtual work, w,,
done by the complete external force system is therefore given by

we =WA,, +PA,, + M0, +To, + J w(x)A,, dx
L
For a structure comprising a number of load positions, the total external virtual work done is then

we=3" {WAM +PA,. + MO, + T, + LW(X)Av,y dX} (4.24)

FIGURE 4.10 Virtual Work Due to Externally Applied Loads
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In Eq. (4.24), a complete set of external loads need not be applied at every loading point so, in fact, the
summation is for the appropriate number of loads. Further, the virtual displacements in the equation are
related to forces and moments applied in a vertical plane. We could, of course, have forces and mo-
ments and components of the virtual displacement in a horizontal plane, in which case Eq. (4.24) is
extended to include their contribution.

The internal virtual work equivalent of Eq. (4.24) for a linear system is, from Eqs. (4.12), (4.17),
(4.21), and (4.22),

NANV SASV MAMV TATV
;= dx dx dx dx + M0, 4.25
v ZUL EA +BL GA *L EI *L Gr SHHA *22

in which the last term on the right-hand side is the virtual work produced by an actual internal moment
at a hinge (see previous text). Note that the summation in Eq. (4.25) is taken over all the members of the
structure.

Use of virtual force systems

So far, in all the structural systems we have considered, virtual work is produced by actual forces moving
through imposed virtual displacements. However, the actual forces are not related to the virtual displace-
ments in any way, since, as we have seen, the magnitudes and directions of the actual forces are
unchanged by the virtual displacements so long as the displacements are small. Thus, the principle of
virtual work applies for any set of forces in equilibrium and any set of displacements. Equally, therefore,
we could specify that the forces are a set of virtual forces in equilibrium and that the displacements are
actual displacements. Therefore, instead of relating actual external and internal force systems through
virtual displacements, we can relate actual external and internal displacements through virtual forces.

If we apply a virtual force system to a deformable body it induces an internal virtual force system
that moves through the actual displacements; internal virtual work therefore is produced. In this case,
for example, Eq. (4.10) becomes

WiN = J NVSAdX
L

in which N, is the internal virtual normal force and €4 is the actual strain. Then, for a linear system, in
which the actual internal normal force is Na, eo = Na/EA, so that, for a structure comprising a number
of members, the total internal virtual work due to a virtual normal force is

N N
W iN = dx
N ZJL EA

which is identical to Eq. (4.12). Equations (4.17), (4.21), and (4.22) may be shown to apply to virtual
force systems in a similar manner.

APPLICATIONS OF THE PRINCIPLE OF VIRTUAL WORK

We have now seen that the principle of virtual work may be used in the form of either imposed virtual
displacements or imposed virtual forces. Generally, the former approach, as we saw in Example 4.4, is
used to determine forces, while the latter is used to obtain displacements.
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For statically determinate structures, the use of virtual displacements to determine force systems is a
relatively trivial use of the principle, although problems of this type provide a useful illustration of the
method. The real power of this approach lies in its application to the solution of statically indeterminate
structures. However, the use of virtual forces is particularly useful in determining actual displacements
of structures. We shall illustrate both approaches by examples.

[
Example 4.5
Determine the bending moment at the point B in the simply supported beam ABC shown in Fig. 4.11(a).

We determined the support reactions for this particular beam in Example 4.4. In this example, however, we

are interested in the actual internal moment, Mp, at the point of application of the load. We must therefore im-
pose a virtual displacement that relates the internal moment at B to the applied load and excludes other unknown
external forces, such as the support reactions, and unknown internal force systems, such as the bending moment
distribution along the length of the beam. Therefore, if we imagine that the beam is hinged at B and that the
lengths AB and BC are rigid, a virtual displacement, A, g, at B results in the displaced shape shown in
Fig. 4.11(b).

Note that the support reactions at A and C do no work and that the internal moments in AB and BC do no work
because AB and BC are rigid links. From Fig. 4.11(b),

Avp = ap = bo )

Hence,

(b)

FIGURE 4.11 Determination of Bending Moment at a Point in the Beam of Example 4.5 Using Virtual Work
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and the angle of rotation of BC relative to AB is then
a L .

Now, equating the external virtual work done by W to the internal virtual work done by My (see Eq. (4.23)),
we have

WA, 5 = Mgbp (iii)

Substituting in Eq. (iii) for A, g from Eq. (i) and for 8 from Eq. (ii), we have

L
WaBl = My - B
b
which gives
Wab
Me ==~

which is the result we would have obtained by calculating the moment of Rc (= Wa/L from Example 4.4) about B.

|
Example 4.6

Determine the force in the member AB of the truss shown in Fig. 4.12(a).

We are required to calculate the force in the member AB, so that again we need to relate this internal force to the
externally applied loads without involving the internal forces in the remaining members of the truss. We therefore
impose a virtual extension, A, g, at B in the member AB, such that B moves to B'. If we assume that the remaining
members are rigid, the forces in them do no work. Further, the triangle BCD rotates as a rigid body about D to
B’'C'D, as shown in Fig. 4.12(b). The horizontal displacement of C, Ac, is then given by

AC =4a
while
Av,B = 3a
Hence,
4A, .
Ac = B (i)

Equating the external virtual work done by the 30 kN load to the internal virtual work done by the force, Fga, in the
member, AB, we have (see Eq. (4.23) and Fig. 4.9)

3OAC = FBAAV‘B (11)

Substituting for Ac from Eq. (i) in Eq. (ii),

4
30 x §AV=B = FpaA,p
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(a) (b)
FIGURE 4.12 Determination of the Internal Force in a Member of a Truss Using Virtual Work

from which
Fpa = +40 kN

In the preceding, we are, in effect, assigning a positive (that is, Figp is tensile) sign to Fg by imposing a virtual
extension on the member AB.

The actual sign of Fg4 is then governed by the sign of the external virtual work. Thus, if the 30 kN load were in
the opposite direction to A, the external work done would have been negative, so that g, would be negative and
therefore compressive. This situation can be verified by inspection. Alternatively, for the loading shown in
Fig. 4.12(a), a contraction in AB implies that Fg, is compressive. In this case, DC would have rotated in a coun-
terclockwise sense, Ac would have been in the opposite direction to the 30 kN load so that the external virtual work
done would be negative, resulting in a negative value for the compressive force Fga; Fpa would therefore be ten-
sile, as before. Note also that the 10 kN load at D does no work, since D remains undisplaced.

We now consider problems involving the use of virtual forces. Generally, we require the displace-
ment of a particular point in a structure, so that, if we apply a virtual force to the structure at the point
and in the direction of the required displacement, the external virtual work done will be the product of
the virtual force and the actual displacement, which may then be equated to the internal virtual work
produced by the internal virtual force system moving through actual displacements. Since the choice of
the virtual force is arbitrary, we may give it any convenient value; the simplest type of virtual force is
therefore a unit load and the method then becomes the unit load method (see also Section 5.5).
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[
Example 4.7
Determine the vertical deflection of the free end of the cantilever beam shown in Fig. 4.13(a).

Let us suppose that the actual deflection of the cantilever at B produced by the uniformly distributed load is vg
and that a vertically downward virtual unit load is applied at B before the actual deflection takes place. The external
virtual work done by the unit load is, from Fig. 4.13(b), 1vg. The deflection, vg, is assumed to be caused by bending
only; that is, we ignore any deflections due to shear. The internal virtual work is given by Eq. (4.21), which, since
only one member is involved, becomes

L
MAMV .
Wiy = dx

M L El @

The virtual moments, M,, are produced by a unit load, so we replace M, by M. Then,

L
MM .
W,‘.M = ‘[0 2[ ] dx (11)
At any section of the beam a distance x from the built-in end,
My = fg(L X% My=—1(L—x)

Substituting for M, and M in Eq. (ii) and equating the external virtual work done by the unit load to the internal
virtual work, we have

L )
lvB:J " (L —x)*dx

0 2EI
7 w
Py ¥ v ¥ v v v vy
A g B
- i L >

1 (Unit load)

l

(b)
FIGURE 4.13 Deflection of the Free End of a Cantilever Beam Using the Unit Load Method
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which gives

w |1 4L
o = = =],
so that
y 7WL4
5 8EI

Note that v is in fact negative, but the positive sign here indicates that it is in the same direction as the unit load.

[
Example 4.7 MATLAB
Repeat Example 4.7 using the Symbolic Math Toolbox in MATLAB.

Calculation of the vertical deflection of the free end of the cantilever shown in Fig. 4.13(a) is obtained through
the following MATLAB file:

% Declare any needed variables
syms M_AM_VW_eW_iEITwxLV_B

% Define the moments due to the applied load (M_A) and the unit virtual Toad (M_V)
M_A=-0.5%w*(L-x)"2;
M_V=-1*(L-x);

% Define equations for the external (W_e) and internal (W_i) virtual work
W_e=1*v_B;
W_i=1int(M_A*M_V/(E*I),x,0,L); % FromEq. (4.21)

% Equate W_e and W_i, and solve for the free end vertical displacement (v_B)
v_B=solve(W_e-W_i,v_B);

% Output v_B to the Command Window
disp([‘v_B="char(v_B)1)

The Command Window output resulting from this MATLAB file is as follows:
v_B = (L"4*w)/(8*E*I)

|
Example 4.8
Determine the rotation, that is, the slope, of the beam ABC shown in Fig. 4.14(a) at A.

The actual rotation of the beam at A produced by the actual concentrated load, W, is 04. Let us suppose that
a virtual unit moment is applied at A before the actual rotation takes place, as shown in Fig. 4.14(b). The virtual
unit moment induces virtual support reactions of R, o (= 1/L) acting downward and R, ¢ (= 1/L) acting upward.
The actual internal bending moments are
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> Xip L2 |

(a)

Unit moment

(b)
FIGURE 4.14 Determination of the Rotation of a Simply Supported Beam at a Support Using the Unit Load Method

MA:+¥X, 0<x<L/2

w
Ma :—Q—E(L—x), L/2<x<L
The internal virtual bending moment is
1
M,=1——-x, 0<x<L
L
The external virtual work done is 10, (the virtual support reactions do no work, as there is no vertical displacement

of the beam at the supports), and the internal virtual work done is given by Eq. (4.21). Hence,

1| (MW x oW x
104 = = —x(1—= —(L-x)(1-= i
AT E JO 2x( L) d““rJL/zz( x)< L) dr @
Simplifying Eq. (i), we have
w L/2 , L ) B
0a = 2EIL L (Lx —x7) dx+ JL/z (L—x)" dx (i)
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Hence,
w 2 3 L/2 L
0r =39 L5 -5 —5[@ -]
2EIL 2 3], L2
from which
WL?
0p = ——
A T 16El
||
|

Example 4.8 MATLAB
Repeat Example 4.8 using the Symbolic Math Toolbox in MATLAB.

Calculation of the slope of the beam shown in Fig. 4.14(a) at A is obtained through the following
MATLARB file:

% Declare any needed variables
syms M_AM_VWx Ltheta_ AETI

% Define the moments due to the applied Toad (M_A) and the unit virtual Toad (M_V)
M_A=[W/2%x; 50 >=x>=L/2

W/2*(L-x)]; B L/2>=x>=1L

MV=1-x/L; 20>=x>=1L

% Define equations for the external (W_e) and internal (W_i) virtual work
W_e =1*theta_A;
W_1i=Cint(M_AC1)*M_V,x,0,L/2) +int(M_A(2)*M_V,x,L/2,L))/(E*I); % FromEq. (4.21)

% Equate W_e and W_1, and solve for the sTope of the beam (theta_A)
theta_A=solve(W_e-W_i,theta_A);

% Qutput theta_A to the Command Window
disp([‘theta_A =" char(theta_A)1)

The Command Window output resulting from this MATLAB file is as follows:
theta_A=(L"2*W)/(16*E*I) [ ]

|
Example 4.9
Calculate the vertical deflection of the joint B and the horizontal movement of the support D in the truss shown in
Fig. 4.15(a). The cross-sectional area of each member is 1800 mm? and Young’s modulus, £, for the material of the
members is 200,000 N/mmz.

The virtual force systems, that is, unit loads, required to determine the vertical deflection of B and the hori-
zontal deflection of D are shown in Figs. 4.15(b) and (c), respectively. Therefore, if the actual vertical deflection at
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FIGURE 4.15 Deflection of a Truss Using the Unit Load Method

B is 6p,, and the horizontal deflection at D is J, ;,, the external virtual work done by the unit loads is 16 , and 19 5,
respectively. The internal actual and virtual force systems constitute axial forces in all the members.

These axial forces are constant along the length of each member, so that, for a truss comprising 7 members,
Eq. (4.12) reduces to

" FaFyL; .
Wiy = Zli“g/_ - (i)
= EA

in which F j and F; are the actual and virtual forces in the jth member, which has a length L;, an area of cross-
section A;, and a Young’s modulus E;.
Since the forces F,; are due to a unit load, we write Eq. (i) in the form

Fa Pl

Wiy =
o EjA;

(i)

=1
Also, in this particular example, the area of cross-section, A, and Young’s modulus, E, are the same for all mem-
bers, so that it is sufficient to calculate Z};F a,F1,L; then divide by EA to obtain W, y.

The forces in the members, whether actual or virtual, may be calculated by the method of joints.' Note that the
support reactions corresponding to the three sets of applied loads (one actual and two virtual) must be calculated
before the internal force systems can be determined. However, in Fig. 4.15(c), it is clear from inspection that
Fiap = Fi1pc = Ficp = +1, while the forces in all other members are zero. The calculations are presented
in Table 4.1; note that positive signs indicate tension and negative signs compression.
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Table 4.1 Example 4.9

Member

AE
AB
EF
EB
BF
BC
CD
CF
DF

L (m)

5.7
4.0
4.0
4.0
5.7
4.0
4.0
4.0
5.7

F, (kN)

-84.9
+60.0
—-60.0
+20.0
-28.3
+80.0
+80.0
+100.0
-113.1

Fip

-0.94
+0.67
-0.67
+0.67
+0.47
+0.33
+0.33

-0.47

Fip

+1.0

+1.0
+1.0

FFy gL (KN m)

+451.4
+160.8
+160.8
+53.6

-75.2
+105.6
+105.6

0

+301.0
> =+1263.6

Fa FypL (kN m)

0
+240.0

0

0

0
+320.0
+320.0

0

0
> =+880.0

Equating internal and external virtual work done (Eq. (4.23)), we have

from which

and

which gives

168,

op, = 3.51 mm

ISD.h =

dpy = 2.44 mm

_1263.6 x 10°
200,000 x 1,800

880 x 10°
200,000 x 1,800

Both deflections are positive, which indicates that the deflections are in the directions of the applied unit loads.
Note that, in the preceding, it is unnecessary to specify units for the unit load, since the unit load appears, in effect,

on both sides of the virtual work equation (the internal F'; forces are directly proportional to the unit load).

Example 4.10

Determine the components of the deflection of the point C in the frame shown in Fig. 4.16(a); consider the effect of

bending only.

The horizontal and vertical components of the deflection of C may be found by applying unit loads in turn at C,
as shown in Figs. 4.16(b) and (c). The internal work done by this virtual force system, that is, the unit loads acting

through real displacements, is given by Eq. (4.20), in which, for AB,

My = WL — (wx*/2), M, = 1L(horiz.),

M, = —1x (vert.)
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(a) (b) (c)
FIGURE 4.16 Frame of Example 4.10
for BC,
Ma =Wy, M, =1y (horiz.), M, =0 (vert.)
Considering the horizontal deflection first, the total internal virtual work is
L 2L
W; = J (WyYEI) dy +J [WL — (wx*/2)](L/2EI) dx
0 0
that is,
Wi = (W/ED[y/3] + (L/2ENWLx — (wx/6)l5"
which gives
W; = 2L3(2W — wL)/3EI @

The virtual external work done by the unit load is 18¢ g, where ¢ y is the horizontal component of the deflection
of C. Equating this to the internal virtual work given by Eq. (i) gives

Scu = 2L°(2W — wL)/3EI (i)

Now, considering the vertical component of deflection,

W; = (1/2EI) JO [WL — (wx*/2)](—x)dx

Note that, for BC, M, = 0. Integrating this expression and substituting the limits gives
W; = L3(—W + wL)/EI (iii)

The external virtual work done is 18y, where 3¢ y is the vertical component of the deflection of C. Equating the
internal and external virtual work gives
dcy =L} (=W +wL)/EI (iv)

Note that the components of deflection can be either positive or negative, depending on the relative magnitudes of
W and w. A positive value indicates a deflection in the direction of the applied unit load, a negative one indicates a
deflection in the opposite direction to the applied unit load.
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|
Example 4.11

A cantilever beam AB takes the form of a quadrant of a circle of radius, R, and is positioned on a horizontal plane. If

the beam carries a vertically downward load, W, at its free end and its bending and torsional stiftnesses are EI and

GJ, respectively, calculate the vertical component of the deflection at its free end.

A plan view of the beam is shown in Fig. 4.17. To determine the vertical displacement of B, we apply a virtual

unit load at B vertically downward (i.e., into the plane of the paper).

At a section of the beam where the radius at the section makes an angle, o, with the radius through B,

Max =Wp = WRsina, M, = 1R sina,
Th =W(R —Rcosa), T,=1(R—Rcosa)
The total internal virtual work done is given by the summation of Eqgs. (4.20) and (4.22), that is,

/) (/2

2
W; = (1/EI) [ WR?sin’oRdo + (1/GJ) | WR*(1 — cosa)’R da
Jo Jo
Integrating and substituting the limits in Eq. (i) gives

W; = WR*{(n/4EI) + (1/GJ)[(3n/4) — 2]}

The external virtual work done by the unit load is 13g, so that equating with Eq. (ii), we obtain

8 = WR*{(n/4EI) + (1/GJ)[(3n/4) - 2]}

B
FIGURE 4.17 Cantilever Beam of Example 4.11

®

(i1)

Reference
[1] Megson THG. Structural and stress analysis. 3rd ed. Oxford: Elsevier; 2014.
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PROBLEMS

P.4.1 Use the principle of virtual work to determine the support reactions in the beam ABCD shown in
Fig. P.4.1.

Answer: Rp = 1.25W, Rp=1.75W

P.4.2 Find the support reactions in the beam ABC shown in Fig. P.4.2 using the principle of
virtual work.

Answer: Ry = (W +2wL)/4, R.= (3W+2wL)/4

P.4.2 MATLAB Use the Symbolic Math Toolbox in MATLAB to repeat Problem P.4.2, assuming that
the vertical force W in Fig. P.4.2 is located 3L/5 from A.

Answer: Rp =2W/5+wL/2, Rc =3W/5+wL/2

P.4.3 Determine the reactions at the built-in end of the cantilever beam ABC shown in Fig. P.4.3 using
the principle of virtual work.

Answer: Ry =3W, My =25WL

2w w
A B C D
| ]
| L2 o b4 |, 4 |
FIGURE P.4.1
w

ALY ¥ Y ¥V VY OVOYY VOV OY,

3L/4 L/4

FIGURE P.4.2
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L2 L2 |

FIGURE P.4.3

P.4.4 Find the bending moment at the three-quarter-span point in the beam shown in Fig. P.4.4. Use the
principle of virtual work.

Answer:  3wL?/32

P.4.5 Calculate the forces in the members FG, GD, and CD of the truss shown in Fig. P.4.5 using the
principle of virtual work. All horizontal and vertical members are 1 m long.

Answer: FG = +4+20kN, GD = +28.3kN, CD = —20kN

w
| Y Y Y Y Y Y YY VYUY Y

A B
7 2
le L :I
| |
FIGURE P.4.4
10kN E F G
—_—
A D
B C
222227/ 7 120 kN

FIGURE P.4.5
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FIGURE P.4.6

P.4.6 Use the principle of virtual work to calculate the vertical displacements at the quarter- and
mid-span points in the beam shown in Fig. P.4.6.

Answer: 19wL*/2048EI, SwL*/384EI (both downward)

P.4.6 MATLAB Use the Symbolic Math Toolbox in MATLAB to repeat Problem P.4.6. Calculate the
vertical displacements at increments of L/8 along the beam.

Answer:

Distance from A Vertical Displacement
0 0

L/8 497L*w/98,304E1

L/4 19L*w/2,048El

3L/8 395L%w/32,768El

L2 SL*w/384El

5L/8 395L%w/32,768El

3L/5 19L*w/2,048EI

7L/8 497L*w/9,8304E1

L 0

P.4.7 The frame shown in Fig. P.4.7 consists of a cranked beam simply supported at A and F and
reinforced by a tie bar pinned to the beam at B and E. The beam carries a uniformly distributed load
of intensity, w, over the outer parts AB and EF. Considering the effects of bending and axial load
only determine the axial force in the tie bar and the bending moments at B and C. The bending
stiffness of the beam is EI and its cross-sectional area is 3A, while the corresponding values for the
tie bar are E7 and A.

Answer: Force in tie bar is 9wL/8[L? + (41 /A)], M(at B) = wL?/2 (counterclockwise),
M(at C) = (TL — wL?*)/2 (clockwise).
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P.4.8 The flat tension spring shown in Fig. P.4.8 consists of a length of wire of circular cross-section
having a diameter, d, and Young’s modulus, E. The spring consists of n open loops each of which
subtends an angle of 3m/2 radians at its center; the length between the ends of the spring is L.
Considering bending and axial strains only calculate the stiffness of the spring.

Answer:  (V2)nEd?/L{[48L*(n 4 1)/nd?| + (3n — 2)}

P.4.9 The circular fuselage frame shown in Fig. P.4.9 has a cut-out at the bottom and is loaded as
shown. The member AB is pinned to the frame at A and B. If the second moment of area of the
cross-section of the frame is 416,000 mm* and it has a Young’s modulus of 267,000 N/mm? while the
area of cross-section of the member AB is 130 mm? and its Young’s modulus is 44,800 N/mm?,
calculate the axial force in the member AB.

Answer: 15.8 kKN
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8.9 kN

44.5 kN

FIGURE P.4.9

89.0 kN

710 mm

440 mm

200 mm

44.5 kN




CHAPTER

Energy methods

In Chapter 2, we saw that the elasticity method of structural analysis embodies the determination of
stresses and displacements by employing equations of equilibrium and compatibility in conjunction
with the relevant force—displacement or stress—strain relationships. In addition, in Chapter 4, we inves-
tigated the use of virtual work in calculating forces, reactions, and displacements in structural systems.
A powerful alternative but equally fundamental approach is the use of energy methods. These, while
providing exact solutions for many structural problems, find their greatest use in the rapid approximate
solution of problems for which exact solutions do not exist. Also, many structures which are statically
indeterminate, that is, they cannot be analyzed by the application of the equations of statical equilib-
rium alone, may be conveniently analyzed using an energy approach. Further, energy methods provide
comparatively simple solutions for deflection problems not readily solved by more elementary means.

Generally, as we shall see, modern analysisI uses the methods of total complementary energy and
total potential energy. Either method may be employed to solve a particular problem, although as a
general rule, deflections are more easily found using complementary energy and forces by potential
energy.

Although energy methods are applicable to a wide range of structural problems and may even be
used as indirect methods of forming equations of equilibrium or compatibility,"* we shall be concerned
in this chapter with the solution of deflection problems and the analysis of statically indeterminate
structures. We also include some methods restricted to the solution of linear systems, that is, the unit
load method, the principle of superposition, and the reciprocal theorem.

STRAIN ENERGY AND COMPLEMENTARY ENERGY

Figure 5.1(a) shows a structural member subjected to a steadily increasing load P. As the member
extends, the load P does work, and from the law of conservation of energy, this work is stored in
the member as strain energy. A typical load—deflection curve for a member possessing nonlinear elastic
characteristics is shown in Fig. 5.1(b). The strain energy U produced by a load P and corresponding
extension y is then

Yy
U= J P dy 5.1)
0

and is clearly represented by the area OBD under the load—deflection curve. Engesser (1889) called the
area OBA above the curve the complementary energy C, and from Fig. 5.1(b),

P
c— j ydP (5.2)
0

Introduction to Aircraft Structural Analysis, Third Edition. http://dx.doi.org/10.1016/B978-0-08-102076-0.00005-1 1 23
Copyright © 2018 T.H.G. Megson. Published by Elsevier Ltd. All rights reserved.
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FIGURE 5.1 (a) Strain Energy of a Member Subjected to Simple Tension; (b) Load-Deflection Curve for a Nonlinearly
Elastic Member

Complementary energy, as opposed to strain energy, has no physical meaning, being purely a conve-
nient mathematical quantity. However, it is possible to show that complementary energy obeys the law
of conservation of energy in the type of situation usually arising in engineering structures, so that its use
as an energy method is valid.
Differentiation of Eqs. (5.1) and (5.2) with respect to y and P, respectively, gives
w_, dc_
dy dpP

Bearing these relationships in mind, we can now consider the interchangeability of strain and
complementary energy. Suppose that the curve of Fig. 5.1(b) is represented by the function

P =Dby"

where the coefficient b and exponent n are constants. Then,

y P 1/n
U:Jde:EJ (P> dP
0 nJjo b

P ¥
C:J ydP:nJ by" dy
0

0

Hence,
U _, du_ 1P\ 53)
dy 7 dP n\b ) '

dc dc
e 54
T TR A (54)
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FIGURE 5.2 Load-Deflection Curve for a Linearly Elastic Member
Whenn =1,
dU dC
—_—=— = P
dy dy
U dc (53)

and the strain and complementary energies are completely interchangeable. Such a condition is found
in a linearly elastic member; its related load—deflection curve being that shown in Fig. 5.2. Clearly, area
OBD (U) is equal to area OBA (C).

We see that the latter of Egs. (5.5) is in the form of what is commonly known as Castigliano’s first
theorem, in which the differential of the strain energy U of a structure with respect to a load is equated
to the deflection of the load. To be mathematically correct, however, the differential of the comple-
mentary energy C is what should be equated to deflection (compare Eqgs. (5.3) and (5.4)).

PRINCIPLE OF THE STATIONARY VALUE OF THE TOTAL
COMPLEMENTARY ENERGY

Consider an elastic system in equilibrium supporting forces Py, P,, ..., P,, which produce real corre-
sponding displacements Ay, A,, ..., A,. If we impose virtual forces 6Py, dP», ..., 0P, on the system
acting through the real displacements, then the total virtual work done by the system is (see Chapter 4)

n

—JVOI ydP+> A8P,

r=1

The first term in this expression is the negative virtual work done by the particles in the elastic body,
while the second term represents the virtual work of the externally applied virtual forces. From the
principle of virtual work,

- P +S AP, =0 (5.6)
Jvoly Z

r=1
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Comparing Eq. (5.6) with Eq. (5.2), we see that each term represents an increment in complementary
energy; the first, of the internal forces, the second, of the external loads. Equation (5.6) may therefore
be rewritten

3(Ci+C,)=0 5.7
where
P n
c,-:J J ydP and Co—=—S AP, (5.8)
vol JO ;

We now call the quantity (C; + C,) the total complementary energy C of the system.

The displacements specified in Eq. (5.6) are real displacements of a continuous elastic body; they
therefore obey the condition of compatibility of displacement, so that Eqgs. (5.6) and (5.7) are equations
of geometrical compatibility. The principle of the stationary value of the total complementary energy
may then be stated as follows:

For an elastic body in equilibrium under the action of applied forces, the true internal forces (or
stresses) and reactions are those for which the total complementary energy has a stationary value.

In other words, the true internal forces (or stresses) and reactions are those which satisfy the condition
of compatibility of displacement. This property of the total complementary energy of an elastic system is
particularly useful in the solution of statically indeterminate structures, in which an infinite number of
stress distributions and reactive forces may be found to satisty the requirements of equilibrium.

APPLICATION TO DEFLECTION PROBLEMS

Generally, deflection problems are most readily solved by the complementary energy approach,
although for linearly elastic systems, there is no difference between the methods of complementary
and potential energy, since, as we have seen, complementary and strain energy then become completely
interchangeable. We illustrate the method by reference to the deflections of frames and beams, which
may or may not possess linear elasticity.

Let us suppose that we must find the deflection A, of the load P, in the simple pin-jointed frame-
work consisting, say, of k members and supporting loads Py, P», . . ., P,, as shown in Fig. 5.3. From
Egs. (5.8), the total complementary energy of the framework is given by

k  (F; n
C= ZJ %i dF; = > AP, (5.9)
i=1 70 r=1
where 2, is the extension of the ith member, F; is the force in the ith member, and A, is the correspond-
ing displacement of the rth load P,. From the principle of the stationary value of the total complemen-
tary energy,

k

aoC OF;
8—})2_27»,-8—})2—&—0 (5.10)

i=1
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FIGURE 5.3 Determination of the Deflection of a Point on a Framework by the Method of Complementary Energy

from which

k
OF;
A=) "N P, (5.11)

i=1

Equation (5.10) is seen to be identical to the principle of virtual forces in which virtual forces 6F and dP
act through real displacements A and A. Clearly, the partial derivatives with respect to P, of the constant
loads Py, P, .. ., P, vanish, leaving the required deflection A, as the unknown. At this stage, before A,
can be evaluated, the load—displacement characteristics of the members must be known. For linear
elasticity,

_FiL;
- AE;

i

where L;, A;, and E; are the length, cross-sectional area, and modulus of elasticity of the ith member.
On the other hand, if the load—displacement relationship is of a nonlinear form, say,

Fi =b(\)"

in which b and ¢ are known, then Eq. (5.11) becomes
k 1/c
F; OF;
A = —
’ 2:: (b> OP,

The computation of A, is best accomplished in tabular form, but before the procedure is illustrated by
an example, some aspects of the solution merit discussion.

We note that the support reactions do not appear in Eq. (5.9). This convenient absence derives from
the fact that the displacements A, A,, ..., A, are the real displacements of the frame and fulfill the
conditions of geometrical compatibility and boundary restraint. The complementary energy of the re-
action at A and the vertical reaction at B is therefore zero, since both their corresponding displacements
are zero. If we examine Eq. (5.11), we note that A; is the extension of the ith member of the framework
due to the applied loads P, P», . . ., P,,. Therefore, the loads F; in the substitution for A; in Eq. (5.11) are
those corresponding to the loads Py, P», ..., P,. The term OF;/OP, in Eq. (5.11) represents the rate of
change of F; with P, and is calculated by applying the load P, to the unloaded frame and determining
the corresponding member loads in terms of P,. This procedure indicates a method for obtaining the
displacement of either a point on the frame in a direction not coincident with the line of action of a load
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or, in fact, a point such as C that carries no load at all. We place at the point and in the required direction
afictitious or dummy load, say Py, the original loads being removed. The loads in the members due to P
are then calculated and OF/OP; obtained for each member. Substitution in Eq. (5.11) produces the
required deflection.

It must be pointed out that it is not absolutely necessary to remove the actual loads during the appli-
cation of Py The force in each member is then calculated in terms of the actual loading and Py. F; follows
by substituting Py = 0 and OF;/OP; is found by differentiation with respect to P, Obviously, the two
approaches yield the same expressions for F; and OF ;/OPy, although the latter is arithmetically clumsier.

[
Example 5.1
Calculate the vertical deflection of the point B and the horizontal movement of D in the pin-jointed framework
shown in Fig. 5.4(a). All members of the framework are linearly elastic and have cross-sectional areas of
1800 mm?. The value of E for the material of the members is 200,000 N/mmz.

The members of the framework are linearly elastic, so that Eq. (5.11) may be written

k. F.L; OF; @
= i
— AE; OP
or, since each member has the same cross-sectional area and modulus of elasticity,
1 & OF;
A=_— g .2 s
i ;F,L, P (ii)
40,000 N
E F E F
£
£
o
o
o
<+ A D A D
B C B | C
e 100,000 N A Y Pe,r 7
e
| 4,000 mm| 4,000 mm| 4,000 mm|
(a) (b)
E F
A D PD,f
——
B C
Z

(©
FIGURE 5.4 (a) Actual Loading of Framework; (b) Determination of Vertical Deflection of B; (c) Determination of
Horizontal Deflection of D
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Table 5.1 Example 5.1

® @ ® @ ® @ x 10° x 10°
Member L (mm) F (N) Fg ;(N) OFy ;I0Ps ; Fp;(N) OFp /0Py FLOFy ;/0Ps; FLOFp ;f0Pp ;
AE 40002  -60,000v2 —2v2Pg;/3 —2v2/3 0 0 320V2 0
EF 4,000 —60,000 2Py /3 -2/3 0 0 160 0
FD 4,000v2 -80,000v2 —V2Pgs3  —v2/3 0 0 640v/2/3 0
DC 4,000 80,000 Py s/3 1/3 Ppy 1 320/3 320
CB 4,000 80,000 Py s/3 1/3 Ppy 1 320/3 320
BA 4,000 60,000 2P /3 2/3 Ppy 1 480/3 240
EB 4,000 20,000 2Pp /3 23 0 160/3 0
FB 4,000v2  -20,000v2  /2Pg /3 V2/3 0 —160v/2/3 0
FC 4,000 100,000 0 0 0 0 0
S =1268 3°=880

The solution is completed in Table 5.1, in which F are the member forces due to the actual loading of Fig. 5.4(a),
Fg s are the member forces due to the fictitious load Pgyin Fig. 5.4(b), and Fpy are the forces in the members
produced by the fictitious load Ppsin Fig. 5.4(c). We take tensile forces as positive and compressive forces as
negative.

The vertical deflection of B is

1,268 x 10°
Apy=—20X 7 _35
B = 1,800 x 200,000 mm

and the horizontal movement of D is

880 x 10°

= _—244mm
1,800 x 200,000

D,
which agree with the virtual work solution (Example 4.9).
The positive values of Ag, and Ap , indicate that the deflections are in the directions of Pg yand Pp /.

The analysis of beam deflection problems by complementary energy is similar to that of pin-jointed
frameworks, except that we assume initially that displacements are caused primarily by bending action.
Shear force effects are discussed later in the chapter.

[
Example 5.2
Determine the deflection of the free end of the tip-loaded cantilever beam shown in Fig. 5.5; the bending stiffness
of the beam is EI.

The total complementary energy C of the system is given by

M
c:JJ do dM — PA, @)
LJO
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Radius of curvature 1 /
of beam at sectionz K /

)
/—bl»‘

%: ~36

enter of curvature at section z
FIGURE 5.5 Beam Deflection by the Method of Complementary Energy

in which féu dO dM is the complementary energy of an element 3z of the beam. This element subtends an angle 56
at its center of curvature due to the application of the bending moment M. From the principle of the stationary value
of the total complementary energy,

aC dm
—=]1d0——-A,=0
oP L dP
or
dm
A, = — ii
JL do P (ii)

Equation (ii) is applicable to either a nonlinear or linearly elastic beam. To proceed further, therefore, we require
the load—displacement (M—0) and bending moment—load (M—P) relationships. It is immaterial for the purposes of
this illustrative problem whether the system is linear or nonlinear, since the mechanics of the solution are the same
in either case. We choose therefore a linear M—0 relationship, as this is the case in the majority of the problems we
consider. Hence, from Fig. 5.5,

86 = Koz

or

M 1 EI .
do = Edz (E = from simple beam theory)

where the product modulus of elasticity x second moment of area of the beam cross-section is known as the
bending or flexural rigidity of the beam. Also,

M = Pz
so that
am
-
dpr
Substitution for d6, M, and dM/dP in Eq. (ii) gives
L P22
A= —d
v L £
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or
_PL?
T 3El

The fictitious load method of the framework example may be employed in the solution of beam deflection
problems where we require deflections at positions on the beam other than concentrated load points.

Ay

[
Example 5.3
Determine the deflection of the tip of the cantilever beam shown in Fig. 5.6; the bending stiffness of the beam is EI.

First, we apply a fictitious load P at the point where the deflection is required. The total complementary
energy of the system is then

M L
C:JJ dOdM—ATPf—J Aw dz
LJo 0

where the symbols take their previous meanings and A is the vertical deflection of any point on the beam. Then,

oc (£ oM
— =] d——-Ar=0 i
OPy Jo op, " »
As before,
M
0=—d
d! 7 z
but
W22
M=Priz+— (P;=0)
Hence,
oM
P, ©

Substituting in Eq. (i) for d0, M, and OM/OP; and remembering that P, = 0, we have

L WZ3
Ar = —d
T L 2B -
w/unit length P,

A
L z T

FIGURE 5.6 Deflection of a Uniformly Loaded Cantilever by the Method of Complementary Energy
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giving
wL*

T 8El

Note that here, unlike the method for the solution of the pin-jointed framework, the fictitious load is applied to
the loaded beam. However, no arithmetical advantage is gained by the former approach, although the result ob-
viously is the same, since M would equal wz?/2 and 8M/8Pf would have the value z.

[
Example 5.4

Calculate the vertical displacements of the quarter- and mid-span points B and C of the simply supported beam of
length L and flexural rigidity EI loaded, as shown in Fig. 5.7.

The total complementary energy C of the system including the fictitious loads Pg s and Pcyis

M L
C= [ J deM—PBJAB—PC,fAC— [ Aw dz (1)
J.Jo Jo
Hence,
ocC oM
=1 do —Ag =0 ii
OPg s JL OPg s i (@)
and
aC oM
= 0 —Ac=0 iii
OPc s L oPc; € (i)
Assuming a linearly elastic beam, Eqgs. (ii) and (iii) become
1t oM
Ag = — d i
BT R L oPg; @)
O G
Ac—EJOMaP—Cf dz (V)
1 Pa,s 1Fe,r w/unit length
|
A B lc D
wlL 1 L wl
FPart 3R+ T L aPrtz Rt
4 L
2
'L
|

FIGURE 5.7 Deflection of a Simply Supported Beam by the Method of Complementary Energy
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From A to B,
3 1 wL wz?
M= |(-P —P — |z ——
(4 Bf+2 cf+ 2)2 >
so that
oM 3 oM 1
-2, ——
OPgy 47 OPcy 2
From B to C,
Y 3P +1P +wL wz? P L
=~ — —z——— z—=
g "BITRICS T 2 B\"T1g
giving
M 1 M 1
a :_(L_Z)7 a =3z
OPgy 4 OPcy 2
From C to D,
1 1 wL w 2
M= |-P —P WL —-2) — — (L —
(37 5Per +5) -9 -5 w2
so that
oM 1 oM 1
=—(L-2), ==(L-2)
8PB‘f 4 8PC‘f 2

Substituting these values in Egs. (iv) and (v) and remembering that Pg s = Pcy= 0, we have, from Eq. (iv)

L

1 L/4 L 2 3 L/2 L 2 1 oL 2 1
Ag == J e R P weE we —(L—z)dz+ e we —(L —2)dz
EI ) o 2 2 4 Joja \ 2 2 4 Jip\ 2 2 4
from which
_ 5TwL?
56, 144E1
Similarly,
_ SwL*
€7 384EI
||
|
Example 5.5

Use the principle of the stationary value of the total complementary energy of a system to calculate the horizontal
displacement of the point C in the frame of Example 4.10.

Referring to Fig. 4.16, we apply a horizontal fictitious load, P¢ 4, at C. The total complementary energy of the
system, including the fictitious load, is given by

2L

M
C= J [ do dM — PCA,fACh — [ Aw dx — WAC,/I (1)
LJO Jo
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where Ac, is the actual horizontal displacement of C. Then,

aC/0Pc; = J d0(0M/0Pc. ;) — Acy = 0 (ii)
L
Therefore, from Eq. (ii),
2L L
Acy=(1 /2EI)J M(OM/OPc s)dx + (1/EI) [ M(OM[OPc.5)dy (iii)
0 Jo
In AB,
M = (W +Pcf)L - (WXZ/Z)
so that
OM/OPc s =L
In BC,
M = (W + Pc,f)y
and

8M/(9Pcf =Yy

Substituting these expressions in Eq. (iii) and remembering that Pc s = 0, we have

2L

Ac, = (1/2EI) J WL — (wx?/2)]L dx + (1/EI) L Wy? dy (iv)

0
Integrating Eq. (iv) and substituting the limits gives
Acy = (2L° /3EI)(2W — wL)

which is the solution produced in Example 4.10.

[
Example 5.6
Using the principle of the stationary value of the total complementary energy of a system, calculate the vertical
displacement of the point B in the cantilever beam of Ex. 4.11.

In this example, we need to consider the torsional contribution to the total complementary energy in addition to
that due to bending. By comparison with Eq. (i) of Example 5.2, we see that the internal complementary energy of a

bar subjected to torsion is given by

T
Cir = [ J dy dT ()
JrJo
where 7 is the angle of twist at any section of the bar.

Suppose that an imaginary load, Pg g, is applied vertically at B (i.e., into the plane of the paper) in the cantilever
beam of Example 4.11. The total complementary energy of the beam is then given by

M o T
C:J J d6dM+J [ dy dT — Py ;Ag (i)
LJO LJO
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where Ag is the vertical deflection of B. Then,

aC /0Py s = J d0(dm/dPg ;) + J dy(dT/dPg ;) — Ag (iif)
L L

The first term on the right-hand side of Eq. (iii) is replaced as in Example 5.2. The second term is replaced in a
similar manner using Eq. (3.12). Then,

L L
Ag = (1/EI)J M(dM /dPg f) dz + (I/GJ)J T(dT/dPgf) dz (@iv)
0 0
Referring to Fig. 4.17,

M = (W +PB,f)p = (W—.—PB,_IF)R sino

Then,
(dM/dPg,f) = R sina.
Also ,
T = (W+Pgs)(R—R cosa)
And

(dT/dPg f) = R(1 — cosa)
Substituting these expressions in Eq. (iv) and remembering that Pg = 0 gives

) /2

2
WR2 sin?aR do. + (1/GJ) J WR*(1 — cos 0)’R do %)
0

Ap = (I/EI)J

0
The right-hand side of Eq. (v) is identical to the expression for the internal work done in Example 4.11. Therefore,
Ag = WR*{(n/4EI) + (1/GJ)[(3n/4) — 2]}

as before.

The fictitious load method of determining deflections may be streamlined for linearly elastic
systems and is then termed the unit load method; this we discuss later in the chapter.

APPLICATION TO THE SOLUTION OF STATICALLY
INDETERMINATE SYSTEMS

In a statically determinate structure, the internal forces are determined uniquely by simple statical equi-
librium considerations. This is not the case for a statically indeterminate system, in which, as already
noted, an infinite number of internal force or stress distributions may be found to satisfy the conditions
of equilibrium. The true force system is, as demonstrated in Section 5.2, the one satisfying the conditions
of compatibility of displacement of the elastic structure or, alternatively, that for which the total com-
plementary energy has a stationary value. We apply the principle to a variety of statically indeterminate
structures, beginning with the relatively simple singly redundant pin-jointed frame of Example 5.7.
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[
Example 5.7

Determine the forces in the members of the pin-jointed framework shown in Fig. 5.8. Each member has the same
value of the product AE.

The first step is to choose the redundant member. In this example, no advantage is gained by the choice of any
particular member, although in some cases careful selection can result in a decrease in the amount of arithmetical
labor. Taking BD as the redundant member, we assume that it sustains a tensile force R due to the external loading.
The total complementary energy of the framework is, with the notation of Eq. (5.9),

k F;
c:ZJ L dF; — PA

i=1 J0

Hence,
9C ., OF;
—=>"n"l=0 ()
ok = 2" o
or, assuming linear elasticity,
1 & OF; .
EZF,LlaiR:O (ll)

The solution is now completed in Table 5.2, where, as in Table 5.1, positive signs indicate tension.
Hence, from Eq. (ii),

4.83RL +2.707PL =0
or
R = —-0.56P

Substitution for R in column @ of Table 5.2 gives the force in each member. Having determined the forces in the

members, the deflection of any point on the framework may be found by the method described in Section 5.3.
Unlike the statically determinate type, statically indeterminate frameworks may be subjected to self-straining.

Therefore, internal forces are present before external loads are applied. Such a situation may be caused by a local

B c

FIGURE 5.8 Analysis of a Statically Indeterminate Framework by the Method of Complementary Energy
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Table 5.2 Example 5.7

® ) ® @ ®
Member Length F OFIOR FLOF/OR
AB L —R/\V2 —1/V2 RL/2
BC L —R/V2 —1/V2 RL/2
CD L —(P+R/V2) -1/v2 L(P+R/V2)/V2)
DA L —R/\V2 —1/V2 RL/2
AC V2L V2P +R 1 L(2P + V2R)
BD V2L R 1 V2RL
S =4.83RL + 2.707PL

temperature change or by an initial lack of fit of a member. Suppose that the member BD of the framework of
Fig. 5.8 is short by a known amount A when the framework is assembled but is forced to fit. The load R in
BD has suffered a displacement Ag in addition to that caused by the change in length of BD produced by the
load P. The total complementary energy is then

k F
C:Z;L A; dF; — PA — RAg

and

aC . OF;
a_R*;x"a_R_AR*O

or
Ar = L5 p, O
R = E; i iﬁ (iii)
Obviously, the summation term in Eq. (iii) has the same value as in the previous case, so that

AE
= —0. ——A
R 056P+4.83L R

Hence, the forces in the members due to both applied loads and an initial lack of fit.

Some care should be given to the sign of the lack of fit Az. We note here that the member BD is short by an
amount Ag, so that the assumption of a positive sign for Ar is compatible with the tensile force R. If BD were
initially too long, then the total complementary energy of the system would be written

Fi
C= ZL AidF; — PA — R(—Ag)

i=1

giving

1< ;
~Ag=-—=Y FiLi—
: AE; OR
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i
Example 5.8
Calculate the loads in the members of the singly redundant pin-jointed framework shown in Fig. 5.9. The members
AC and BD are 30 mm? in cross-section, and all other members are 20 mm? in cross-section. The members AD,
BC, and DC are each 800 mm long. E = 200,000 N/mm?.

From the geometry of the framework ABD = CBD = 30°; therefore, BD = AC = 800\/§ mm. Choosing CD
as the redundant member and proceeding from Eq. (ii) of Example 5.7, we have

| ESFL; OF; .
— T
EZ<A; OR @
From Table 5.3, we have
zk:F"L"aF" = 268+ 129.2R =0
~ A; OR o

Hence, R = 2.1 N and the forces in the members are tabulated in column @ of Table 5.3.

-

FIGURE 5.9 Framework of Example 5.8

Table 5.3 Example 5.8 (tension positive)

@ @ ® @ ® @
Member L (mm) A (mm?) F (N) OF/OR (FL/A)OF/OR Force (N)
AC 800v/3 30 50 —V3R/2 —V3)/2 —2000 +20+/3R 48.2

CB 800 20 86.6+R/2 1/2 1732 + 10R 87.6

BD 8003 30 —V/3R/2 -3 /2 20v/3R -1.8

CD 800 20 R 1 40R 2.1

AD 800 20 R/2 1/2 10R 1.0

ST =268 + 129.2R
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[
Example 5.8 MATLAB
Repeat Example 5.8 using MATLAB and columns 14 of Table 5.3.

Values for R and the member forces, rounded to the first decimal place, are obtained through the following
MATLAB file:

% Declare any needed variables
syms FLAER
E=200000;

% Define L, A, and Fusing columns 2-4 of Table 5.3

L =[800*sqrt(3); % L_AC
800; % L_CB
800*sqrt(3); % L_BD
800; % L_CD
8001; % L_AD

A=sym([30; % A_AC

20; % A_CB
30; % A_BD
20; % A_CD
201); % A_AD

F=[50-sqrt(3)*R/2; % F_AC
86.6+R/2; % F_CB
-sqrt(3)*R/2; % F_BD
R; % F_CD
R/21; % F_AD

% Use Eq. (5.16) tosolve forR
eql =F.*L.*diff(F,R)./(A.*E); % Eq. (5.16)
R_val =solve(sum(eql),R);

% Substitute R_val into F tocalculate the member forces
Force = subs(F,R,R_val);

% Output R and the member forces, rounded to the first decimal place, to the Command
Window

R =round(double(R_val)*10)/10;

Force = round(double(Force)*10)/10;

disp(L*R="num2str(R) ‘N’ 1)
disp([‘Force = [‘num2str(Force(1))’, ‘num2str(Force(2))’, ‘num2str(Force(3))’,
‘num2str(Force(4))’, ‘num2str(Force(5))’1N"1)

The Command Window outputs resulting from this MATLAB file are as follows:

R=2.1IN
Force=1[48.2,87.6, -1.8, 2.1, 11N
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[
Example 5.9

A plane, pin-jointed framework consists of six bars forming a rectangle ABCD 4000 mm x 3000 mm with two
diagonals, as shown in Fig. 5.10. The cross-sectional area of each bar is 200 mm? and the frame is unstressed when

the temperature of each member is the same. Due to local conditions, the temperature of one of the 3000 mm
members is raised by 30°C. Calculate the resulting forces in all the members if the coefficient of linear expansion
o of the bars is 7 x 10°/°C and E = 200,000 N/mm”.

Suppose that BC is the heated member, then the increase in length of BC = 3000 x 30 x 7 x 107% = 0.63 mm.
Therefore, from Eq. (iii) of Example 5.7,

0.63 i Fr, OF o)
—0.65 = o7 iki = 1
200 x 200,000 4 OR
Substitution from the summation of column ® in Table 5.4 into Eq. (i) gives
—0.63 x 200 x 200,000
R = —— =-525N
48,000

Column ® of Table 5.4 is now completed for the force in each member.

[

So far, our analysis has been limited to singly redundant frameworks, although the same procedure
may be adopted to solve a multi-redundant framework of, say, m redundancies. Therefore, instead of a
single equation of the type (i) in Example 5.7, we would have m simultaneous equations

A B
R
R
D C

FIGURE 5.10 Framework of Example 5.9

Table 5.4 Example 5.9 (tension positive)

@ @ ® (©) ®
Member L (mm) F(N) OF/OR FLOF/OR Force (N)
AB 4,000 4R/3 4/3 64,000R/9 —700

BC 3,000 R 1 3,000R —525

CD 4,000 4R/3 4/3 64,000R/9 —700

DA 3,000 R 1 3,000R —525

AC 5,000 —5R/3 -5/3 125,000R/9 875

DB 5,000 —5R/3 -5/3 125,000R/9 875

ST = 48,000R
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aC K, OF;

== i—==0 (j=1,2,...,

aRj i—1 aRI (J m)
from which the m unknowns Ry, R», . . ., R,, are obtained. The forces F in the members follow, being
expressed initially in terms of the applied loads and Ry, R, . . ., R,

Other types of statically indeterminate structure are solved by the application of total complemen-
tary energy with equal facility. The propped cantilever of Fig. 5.11 is an example of a singly redundant
beam structure for which total complementary energy readily yields a solution.

The total complementary energy of the system is, with the notation of Eq. (i) of Example 5.2,

M
C:J J d0 dM — PAc — RgAp
LJo
where Ac and Ag are the deflections at C and B, respectively. Usually, in problems of this type, Ag is
either zero for a rigid support or a known amount (sometimes in terms of Rg) for a sinking support.
Hence, for a stationary value of C,
ocC oM
— =] d0——-Ag=0
aRB JL 8RB B
from which equation Rg may be found; Rg being contained in the expression for the bending moment
M.
Obviously, the same procedure is applicable to a beam having a multiredundant support system, for
example, a continuous beam supporting a series of loads Py, P, . . ., P,. The total complementary en-
ergy of such a beam is given by

C= J JM dodM — f:R,-Aj - zn:P,.A,.
L =1 r=1

0

where R; and A; are the reaction and known deflection (at least in terms of R)) of the jth support point in
a total of m supports. The stationary value of C gives

oc oM
L [T ey W i=1,2,...
OR; L or, ¥ =" U= % m

producing m simultaneous equations for the m unknown reactions.

The intention here is not to suggest that continuous beams are best or most readily solved by the
energy method; the moment distribution method produces a more rapid solution, especially for beams
in which the degree of redundancy is large. Instead the purpose is to demonstrate the versatility and
power of energy methods in their ready solution of a wide range of structural problems. A complete
investigation of this versatility is impossible here due to restrictions of space; in fact, whole books have

| - :

FIGURE 5.11 Analysis of a Propped Cantilever by the Method of Complementary Energy
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been devoted to this topic. We therefore limit our analysis to problems peculiar to the field of aircraft
structures, with which we are primarily concerned. The remaining portion of this section is therefore
concerned with the solution of frames and rings possessing varying degrees of redundancy.

The frameworks we considered in the earlier part of this section and in Section 5.3 comprised mem-
bers capable of resisting direct forces only. Of a more general type are composite frameworks, in which
some or all of the members resist bending and shear loads in addition to direct loads. It is usual, how-
ever, except for the thin-walled structures in Part B of this book, to ignore deflections produced by shear
forces. We, therefore, only consider bending and direct force contributions to the internal complemen-
tary energy of such structures. The method of analysis is illustrated in Ex. 5.10.

|
Example 5.9 MATLAB
Repeat Example 5.9 using MATLAB and columns 1-3 of Table 5.4.

Values for R and the member forces are obtained through the following MATLAB file:

% Declare any needed variables
syms delta_Ralpha FLAERT

A=200;

alpha =7*10"(-6);
E=200000;
T=230;

% Define L and Fusing columns 2-3 of Table 5.4

L =[4000; % L_AB
3000; % L_BC
4000; %5 L_CD
3000; % L_DA
5000; % L_AC
50007; % L_DB

F=[4*R/3; % F_AB
R; % F_BC
4*R/3; % F_CD
R; % F_DA
-5*R/3; % F_AC

-5*R/37; % F_DB

% Use Eq. (5.17) tosolve for Rassuming BC is the heated member
delta_R=1L(2)* T*alpha;

eql =F.*L.*diff(F,R)./(A*E); % Eq. (5.17)

R_val =solve(sum(eql)+delta_R,R);

% Substitute R_val into F tocalculate the member forces
Force = subs(F,R,R_val);

% Output R and the member forces to the Command Window
R=round(double(R_val));
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Force = round(double(Force));

disp([‘R="num2str(R) “N’1)
disp([‘Force = [‘num2str(Force(l))’, ‘num2str(Force(2)) ‘num2str(Force(3))
‘num2str(Force(4))’, ‘num2str(Force(5))’, ‘num2str(Force(6))’1N"1])

B B

The Command Window output resulting from this MATLAB file is as follows:

=-525N
Force=[-700, -525, -700, -525, 875, 875] N

[
Example 5.10

The simply supported beam ABC shown in Fig. 5.12 is stiffened by an arrangement of pin-jointed bars capable
of sustaining axial loads only. If the cross-sectional area of the beam is Ag and that of the bars is A, calculate the
forces in the members of the framework, assuming that displacements are caused by bending and direct force
action only.

We observe that, if the beam were capable of supporting only direct loads, then the structure would be a relatively
simple statically determinate pin-jointed framework. Since the beam resists bending moments (we are ignoring shear
effects), the system is statically indeterminate with a single redundancy, the bending moment at any section of
the beam. The total complementary energy of the framework is given, with the notation previously developed, by

. M k
C:‘ ‘ dodM + A dF; — PA Q)
Jasc Jo ;

If we suppose that the tensile load in the member ED is R, then, for C to have a stationary value,

ac oM I~ OF; .
8—R:L8Cdea—R+;xia—R_o (ii)
L/2 R L/2
L/4 |P
A F B Cross-sectional
¢ "/Area, AB
L A P
60°
3 l.p
aP ry
Cross- sectional
Area, A
E R R D

FIGURE 5.12 Analysis of a Trussed Beam by the Method of Complementary Energy
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At this point, we assume the appropriate load—displacement relationships; again we take the system to be linear so
that Eq. (ii) becomes

L k
M oM F;L; OF;
J, B a2 o - i
The two terms in Eq. (iii) may be evaluated separately, bearing in mind that only the beam ABC contributes to the
first term, while the complete structure contributes to the second. Evaluating the summation term by a tabular
process, we have Table 5.5.

Summation of column ® in Table 5.5 gives

" FLiOF; RL{1 10 _
e @
~ AE OR 4E\Ag A
The bending moment at any section of the beam between A and F is
3 3 oM 3
M:Zsz\/Tsz; hence, R 7\/7'2
between F and B is
P V3 oM V3
Z‘4—Z(L*Z)77RZ7 hel’lCe7 87—772
and between B and C is
P V3 oM V3
M—Z(L72)77R(L72), hence7 8—R—77(L72)

Therefore,

oL L4
%G_M dz:i J — EPz—ﬁRz ézd
Jo EI OR EI') J, 4 2 2
L)2
+J E(L—Z)—ﬁRZ —ﬁz d

L |4 2 2

v [p V3 V3
Table 5.5 Example 5.10 (tension positive)
(O] (@) ® @ ®
Member Length Area F OF/OR (F/A)OF/OR
AB L2 Ap —R/2 12 R/4Ag
BC L/2 Ap —R/2 —1/2 R/4Ag
CD L2 A R 1 R/A
DE L2 A R 1 R/A
BD L2 A —R —1 R/A
EB L2 A —R —1 R/A
AE L2 A R 1 R/A
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giving

JLME)M _ —11V/3PL* | RL? @

JEIOR Y = T I68EI ' 16EI
Substituting from Egs. (iv) and (v) into Eq. (iii)
11\/§PL3+ RL*  RL (A+10Ag) _
768EI ' 16EI ' 4E \ AgA -

from which

- 11V/3PL2AgA
" 48[L2ARA + 4I(A 4 1043))

hence, the forces in each member of the framework. The deflection A of the load P or any point on the framework
may be obtained by the method of Section 5.3. For example, the stationary value of the total complementary energy
of Eq. (i) gives A; that is,

oc M . OF;
=~ — - i~ — A=
oP JABC 0%k * ; b op 0

Although braced beams are still found in modern light aircraft in the form of braced wing structures, a
much more common structural component is the ring frame. The role of this particular component is
discussed in detail in Chapter 11; it is therefore sufficient for the moment to say that ring frames form
the basic shape of semi-monocoque fuselages reacting to shear loads from the fuselage skins, point loads
from wing spar attachments, and distributed loads from floor beams. Usually, a ring is two-dimensional,
supporting loads applied in its own plane. Our analysis is limited to the two-dimensional case.

[
Example 5.11
Determine the bending moment distribution in the two-dimensional ring shown in Fig. 5.13; the bending stiffness
of the ring is EI.

A two-dimensional ring has redundancies of direct load, bending moment, and shear at any section, as shown in
Fig. 5.13. However, in some special cases of loading, the number of redundancies may be reduced. For example, on
a plane of symmetry, the shear loads and sometimes the normal or direct loads are zero, while on a plane of anti-
symmetry the direct loads and bending moments are zero. Let us consider the simple case of the doubly symmet-
rical ring shown in Fig. 5.14(a). At a section in the vertical plane of symmetry, the internal shear and direct loads
vanish, leaving one redundancy, the bending moment M 5 (Fig. 5.14(b)). Note that, in the horizontal plane of sym-
metry, the internal shears are zero but the direct loads have a value P/2. The total complementary energy of the

M P
C:J J deM—Z(—A)
ring JO 2

system (again ignoring shear strains) is
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FIGURE 5.13 Internal Force System in a Two-Dimensional Ring

P

(a) (b)
FIGURE 5.14 Doubly Symmetric Ring

taking the bending moment as positive when it increases the curvature of the ring. In this expression for C, A is the
displacement of the top, A, of the ring relative to the bottom, B. Assigning a stationary value to C, we have

aoc J oM 0
oM A ring a]MA
or assuming linear elasticity and considering, from symmetry, half the ring,

J"R M oM
o EIOM,

ds=0
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|
FIGURE 5.15 Distribution of Bending Moment in a Doubly Symmetric Ring
Therefore, since
P oM
M =My —=Rsinb, ——=1
A 5 sSIno, 8MA
and we have
" P
J (MA ——RsinO) RdO =0
0 2
or
P T
{MAG +—=R cose} =0
2 0
from which
PR
My =—
n
The bending moment distribution is then
M = PR <l — Ln@)
t 2
and is shown diagrammatically in Fig. 5.15.
We shall now consider a more representative aircraft structural problem.
[
[
Example 5.12

The circular fuselage frame shown in Fig. 5.16(a) supports a load, P, which is reacted to by a shear flow, ¢ (i.e., a shear
force per unit length, see Chapter 16), distributed around the circumference of the frame from the fuselage skin. If the

bending stiffness of the frame is El, calculate the distribution of bending moment round the frame.

The value and direction of this shear flow are quoted here but are derived from theory established in

Section 16.3. From our previous remarks on the effect of symmetry, we observe that there is no shear force at
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(© P
FIGURE 5.16 Determination of Bending Moment Distribution in a Shear and Direct Loaded Ring

the section A on the vertical plane of symmetry. The unknowns are therefore the bending moment M 4 and normal
force No. We proceed, as in the previous example, by writing down the total complementary energy C of the
system. Then, neglecting shear strains,

M
C:J J do dM — PA @
ring JO

in which A is the deflection of the point of application of P relative to the top of the frame. Note that M, and N do
not contribute to the complement of the potential energy of the system, since, by symmetry, the rotation and hor-
izontal displacements at A are zero. From the principle of the stationary value of the total complementary energy,

oc J oM
ring

GMA o 8MA B 0 (u)
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and

oc J om _
ring

ONA ONA

The bending moment at a radial section inclined at an angle 6 to the vertical diameter is, from Fig.

8
M = Ma + NaR(1 — cos0) + [ ¢BDR do
Jo

or

0
P
M = Ma + NaR(1 — cos0) +J R sin a[R — R cos(0 — o)]R dat
0

which gives
PR 1.
M = Ma 4+ NaR(1 — cosb) + ?(1 — cosf — Eesm 0)
Hence,

oM oM
— = —=R(1 - 0
OM 7 ONj ( cos6)
Assuming that the fuselage frame is linearly elastic, we have, from Egs. (ii) and (iii),
"M oM "M OM
2| =——RdO=2| ———RdO=0
JO EIOM 4 JO EIONy

Substituting from Egs. (iv) and (v) into Eq. (vi) gives two simultaneous equations:

PR
—— = Mup + NaR
27
7PR 3
——=M —NAR
Py A+2 A

These equations may be written in matrix form as follows:
PR —-1/21 _|1 R Ma
n | =7/8) |1 3R/2|]| Na
Ma\ _PR1 R 1'f-1)2
Na [ m |1 3R)2 -7/8

{%:} :% LS/R 27%}{:%}

PR —-3P
M= M=

so that

or

which gives

149

(iii)

5.16(c),

(iv)

)

(vi)

(vii)

(viii)

(ix)
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The bending moment distribution follows from Eq. (iv) and is

PR
M= I (2 — cosB — 205inh) (x)

The solution of Eq. (ix) involves the inversion of the matrix

1 R
1 3R/2
which may be carried out using any of the standard methods detailed in texts on matrix analysis. In this example,

Egs. (vii) and (viii) are clearly most easily solved directly; however, the matrix approach illustrates the technique
and serves as a useful introduction to the more detailed discussion in Chapter 6.

[

Example 5.13

A two-cell fuselage has circular frames with a rigidly attached straight member across the middle. The bending

stiffness of the lower half of the frame is 2E/, while that of the upper half and also the straight member is EI.
Calculate the distribution of the bending moment in each part of the frame for the loading system shown in

Fig. 5.17(a). Illustrate your answer by means of a sketch and show clearly the bending moment carried by each part
of the frame at the junction with the straight member. Deformations due only to bending strains need be taken into
account.

The loading is antisymmetrical, so that there are no bending moments or normal forces on the plane of anti-
symmetry; there remain three shear loads S, Sp, and S¢, as shown in Fig. 5.17(b). The total complementary energy
of the half-frame is then (neglecting shear strains)

M MO
C= J [ d6dM — Mooy — — Agp i)
half-frame JO r

El A

M, } Sp
M, M, (B D
o
A M, Yo
v r r 2EI ¢

(a) (b)
FIGURE 5.17 Determination of Bending Moment Distribution in an Antisymmetrical Fuselage Frame
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where og and Ag are the rotation and deflection of the frame at B caused by the applied moment M, and concen-
trated load M/r, respectively. From antisymmetry, there is no deflection at A, D, or C so that S, Sc, and Sp make
no contribution to the total complementary energy. In addition, overall equilibrium of the half-frame gives

M ..
SA+SD+SC:TO (i)
Assigning stationary values to the total complementary energy and considering the half-frame only, we have
ocC oM
— = J dd—=0
8SA half-frame 6SA

and
M
oc _ J a0 _ g
half-frame

Sp aSp
or, assuming linear elasticity,
M oM M oM
J MOM s — J 22 45=0 (i)
half-frame El 6SA half-frame El 6SD
In AB,
oM oM
M = —Sarsind d —=-rsinf, —=0
A7sin® an BTN 7 sin0, 55
In DB,
oM oM
M=S d —= —=
px and - Sh T X
In CB,
M
M = Scrsing = (—0 —SaA — SD> rsind
-
Thus,
oM oM
2Sx = —rsindg and %o = —rsind
Substituting these expressions in Eq. (iii) and integrating, we have
3365SA + Sc = M()/I‘ (IV)
SA+2.]78SC:M0/I‘ )

which, with Eq. (ii), enable S, Sp, and Sc to be found. In matrix form, these equations are written

My/r 1 1 1 Sa
Mo/r p = 13365 0 1 Sp (vi)
My/r 1 0 2.178 Sc
from which we obtain
Sa 0 0.345 —-0.159 My/r
Sp p= 1|1 —0.187 —-0.373 My/r (vii)

Sc 0 —-0.159 0.532 My/r
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Negative B.M. (Decreasing curvature)

A
0.44M, 0.187 M,
I Positive )
0.187M, (Sagging B.M.)
0.373M, 5 D ‘)0.44,140
External
moment M, _)
' 0.373M,
C

Positive _
B.M (Increasing curvature)
(a) (b)

FIGURE 5.18 Distribution of Bending Moment in the Frame of Example 5.13

which give
Sa =0.187Mo/r, Sp=0.44My/r, Sc=0.373M/r

Again, the square matrix of Eq. (vi) has been inverted to produce Eq. (vii).
The bending moment distribution with directions of bending moment is shown in Fig. 5.18.

So far in this chapter we considered the application of the principle of the stationary value of the
total complementary energy of elastic systems in the analysis of various types of structure. Although
the majority of the examples used to illustrate the method are of linearly elastic systems, it was pointed
out that generally they may be used with equal facility for the solution of nonlinear systems.

In fact, the question of whether a structure possesses linear or non-linear characteristics arises only after
the initial step of writing down expressions for the total potential or complementary energies. However, a
great number of structures are linearly elastic and possess unique properties which enable solutions, in some
cases, to be more easily obtained. The remainder of this chapter is devoted to these methods.

UNIT LOAD METHOD

In Section 5.3, we discussed the dummy or fictitious load method of obtaining deflections of structures.
For a linearly elastic structure, the method may be streamlined as follows.

Consider the framework of Fig. 5.3, in which we require, say, to find the vertical deflection of
the point C. Following the procedure of Section 5.3, we would place a vertical dummy load P, at C
and write down the total complementary energy of the framework (see Eq. (5.9)):

k f n
c=>_ JF A, dF; — ;A,.P,.

=1 70



5.5 Unit load method 153

For a stationary value of C,

oC I~ OF;
 _ —L— Ac = 12
op; ~ 2" op; c=0 (5.12)
from which
k
OF;
Ac = A— .1
c ; "oP; (5.13)

as before. If, instead of the arbitrary dummy load Py, we had placed a unit load at C, then the load in the
ith linearly elastic member would be

_OF;
0Py
Therefore, the term OF ;/OP;in Eq. (5.13) is equal to the load in the ith member due to a unit load at C,
and Eq. (5.13) may be written

Fi 1

: FioFi1L;

A =
¢ AE;

(5.14)
i—1
where F;  is the force in the ith member due to the actual loading and F; ; is the force in the ith member
due to a unit load placed at the position and in the direction of the required deflection. Thus, in Example
5.1, columns @ and ® in Table 5.1 would be eliminated, leaving column ® as Fj ; and column @ as
Fp_. Obviously column ® is F.
Similar expressions for deflection due to bending and torsion of linear structures follow from the
well-known relationships between bending and rotation and torsion and rotation. Hence, for a member
of length L and flexural and torsional rigidities EI and GJ, respectively,

MM, ToT)
A = A = .1
- L od, A L EANE (5.15)

where M|, is the bending moment at any section produced by the actual loading and M is the bending
moment at any section due to a unit load applied at the position and in the direction of the required
deflection; similarly for torsion.

Generally, shear deflections of slender beams are ignored but may be calculated when required for
particular cases. Of greater interest in aircraft structures is the calculation of the deflections produced by
the large shear stresses experienced by thin-walled sections. This problem is discussed in Chapter 19.

|
Example 5.14

A steel rod of uniform circular cross-section is bent as shown in Fig. 5.19, AB and BC being horizontal and CD
vertical. The arms AB, BC, and CD are of equal length. The rod is encastré at A and the other end D is free. A
uniformly distributed load covers the length BC. Find the components of the displacement of the free end D in
terms of EI and GJ.

Since the cross-sectional area A and modulus of elasticity E are not given, we assume that displacements due to

axial distortion are to be ignored. We place, in turn, unit loads in the assumed positive directions of the axes xyz.
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B
w/unit length
z
1 X
1
p!l<Z ! N
~ -

FIGURE 5.19 Deflection of a Bent Rod

First, consider the displacement in the direction parallel to the x axis. From Egs. (5.15),

MM, ToT,
A = d d
~ L El ”JL oI

Employing a tabular procedure,

M, M, To Ty
Plane Xy Xz yz Xy Xz yz Xy Xz @ yz Xy Xxz yz
CD 0 0 0 y 0 0 0 0 0 0 0 O
CB 0 0 —wz?/2 0 z O 0 0 0 /I 0 0
BA —wlx 0 0 [ 1 0 0 0 w?/2 0 0 0
Hence,
5[
o EI
or
14
A= -2
2EI
Similarly,

11
Ay=wl (ot
v = (24E1+ZGJ>

11
A= wh [ —
s =wl (6EI+2GJ)
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FLEXIBILITY METHOD

An alternative approach to the solution of statically indeterminate beams and frames is to release the
structure, that is, remove redundant members or supports, until the structure becomes statically deter-
minate. The displacement of some point in the released structure is then determined by, say, the unit
load method. The actual loads on the structure are removed and unknown forces applied to the points
where the structure has been released; the displacement at the point produced by these unknown forces
must, from compatibility, be the same as that in the released structure. The unknown forces are then
obtained; this approach is known as the flexibility method.

[
Example 5.15

Determine the forces in the members of the truss shown in Fig. 5.20(a); the cross-sectional area A and Young’s
modulus E are the same for all members.

The truss in Fig. 5.20(a) is clearly externally statically determinate but has a degree of internal statical inde-
terminacy equal to 1. We therefore release the truss so that it becomes statically determinate by “cutting” one of the
members, say BD, as shown in Fig. 5.20(b). Due to the actual loads (P in this case) the cut ends of the member BD
separate or come together, depending on whether the force in the member (before it was cut) is tensile or com-
pressive; we shall assume that it was tensile.

We are assuming that the truss is linearly elastic, so that the relative displacement of the cut ends of the member
BD (in effect, the movement of B and D away from or toward each other along the diagonal BD) may be found using,
say, the unit load method. Thus, we determine the forces F, ;, in the members produced by the actual loads. We then
apply equal and opposite unit loads to the cut ends of the member BD, as shown in Fig. 5.20(c), and calculate the
forces, F; ; in the members. The displacement of B relative to D, Agp (see Eq. (ii) in Ex. 4.9), is given by

" FoF1L;
ABD:Z ajl' 1k
& AE

Yy

45°

(a) (b) (c)
FIGURE 5.20 Analysis of a Statically Indeterminate Truss
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The forces, F, , are the forces in the members of the released truss due to the actual loads and are not, therefore, the
actual forces in the members of the complete truss. We therefore redesignate the forces in the members of the
released truss as F ;. The expression for Agp becomes

n
FiiLi
Arpy — 0" 15 :
BD ; AE (1)
In the actual structure, this displacement is prevented by the force, Xgp, in the redundant member BD. If, therefore,
we calculate the displacement, agp, in the direction of BD produced by a unit value of Xjp, the displacement due to
Xgp is Xgpagpp. Clearly, from compatibility,

Agp + Xppasp =0 (i)
from which Xpp, is found, agp is a flexibility coefficient. Having determined Xpp, the actual forces in the members
of the complete truss may be calculated by, say, the method of joints or the method of sections.

In Eq. (ii), agp is the displacement of the released truss in the direction of BD produced by a unit load. There-
fore, in using the unit load method to calculate this displacement, the actual member forces (F ;) and the member
forces produced by the unit load (F;) are the same. Therefore, from Eq. (i),

n F2 L:
ap = ; /’;E d (iii)
The solution is completed in Table 5.6.
From Table 5.6,
A — 2.71PL 4821
BD = p dBD =

Substituting these values in Eq. (i), we have

2.71PL 4.82L
+X =

0
AE BD AR

from which
Xgp = —0.56P

(i.e., compression). The actual forces, F, j, in the members of the complete truss of Fig. 5.20(a) are now calculated
using the method of joints and are listed in the final column of Table 5.6.

Table 5.6 Example 5.15

Member L; (m) Fo, Fyj Fo,;Fy;L; F,/’L; F,;

AB L 0 ~0.71 0 0.5L +0.40P
BC L 0 -0.71 0 0.5L +0.40P
CD L ~P ~0.71 0.71PL 0.5L ~0.60P
BD 141 L — 1.0 — 141L ~0.56P
AC 141 L 1.41P 1.0 2.0PL 141 L +0.85P
AD L 0 -0.71 0 0.5L +0.40P

S =2.71PL S =4.82L
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We note in the preceding that App is positive, which means that Agp is in the direction of the unit loads; that is,
B approaches D and the diagonal BD in the released structure decreases in length. Therefore, in the complete struc-
ture, the member BD, which prevents this shortening, must be in compression as shown; also agp will always be
positive, since it contains the term F; Jz. Finally, we note that the cut member BD is included in the calculation of
the displacements in the released structure, since its deformation, under a unit load, contributes to agp.

[
Example 5.16
Calculate the forces in the members of the truss shown in Fig. 5.21(a). All members have the same cross-sectional
area A and Young’s modulus E.

By inspection we see that the truss is both internally and externally statically indeterminate, since it would
remain stable and in equilibrium if one of the diagonals, AD or BD, and the support at C were removed; the degree

of indeterminacy is therefore 2. Unlike the truss in Example 5.15, we could not remove any member, since, if BC or

10kN 10kN
B A VB
A
X4
im

‘ E D c c

E D
N WA N

A

im l im I

A
A B B
§ 1 §
]
C
E D C E D
N N ]

() (d)
FIGURE 5.21 Statically Indeterminate Truss of Example 5.16

(b)
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CD were removed, the outer half of the truss would become a mechanism while the portion ABDE would remain
statically indeterminate. Therefore, we select AD and the support at C as the releases, giving the statically deter-
minate truss shown in Fig. 5.21(b); we designate the force in the member AD as X; and the vertical reaction at
C as R,.

In this case, we shall have two compatibility conditions, one for the diagonal AD and one for the support at C.
We therefore need to investigate three loading cases: one in which the actual loads are applied to the released
statically determinate truss in Fig. 5.21(b), a second in which unit loads are applied to the cut member AD
(Fig. 5.21(c)), and a third in which a unit load is applied at C in the direction of R, (Fig. 5.21(d)). By comparison
with the previous example, the compatibility conditions are

Aap +anX; +apR, =0 (i)
ve +anXi +apRy =0 (i)

in which Ap and v are, respectively, the change in length of the diagonal AD and the vertical displacement of C
due to the actual loads acting on the released truss, while a;, a1, and so forth, are flexibility coefficients, which we
have previously defined. The calculations are similar to those carried out in Example 5.15 and are shown in
Table 5.7. From Table 5.7,
Y FoiF1;(X)L; —27.1
Ay = 3 F0 XL

AE =B (i.e., AD increases in length)

=1

s =5 (i.e., C is displaced downward)

Ve = XH:FUJFIJ(RZ)LJ —48.11
F (X)L 432
a = ZT:E

P (R)L 1162
@ :Z AE  AE
J=
n
Fiy(X0)F 1 (R)L; 2.7

Table 5.7 Example 5.16

Fy; Fy; FoiFy; FoFy; Fy:j Fy:j Fy; (Xy)
Member L; Fy; Xy (R>) X L; (R>) L; X 1)Lj (Rz)Lj F1;(R)L; Fg
AB 1 10.0 —0.71 -2.0 -7.1 —20.0 0.5 4.0 1.41 0.67
BC 1.41 0 0 —1.41 0 0 0 2.81 0 —4.45
CD 1 0 0 1.0 0 0 0 1.0 0 3.15
DE 1 0 —0.71 1.0 0 0 0.5 1.0 —0.71 0.12
AD 1.41 0 1.0 0 0 0 1.41 0 0 4.28
BE 1.41 —14.14 1.0 1.41 —-20.0 —28.11 1.41 2.81 2.0 —54
BD 1 0 —-0.71 0 0 0 0.5 0 0 -3.03

S =-271 Y =-4811 > =432 > =11.62 > =2.7
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Substituting in Eqs. (i) and (ii) and multiplying through by AE, we have
—27.14+4.32X,+27R, =0 (iii)
—48.11 +2.7X; + 11.62R, =0 (@iv)
Solving Egs. (iii) and (iv), we obtain
X, =4.28kN,R, = 3.15kN

The actual forces, F,,
listed in the final column of Table 5.7.

in the members of the complete truss are now calculated by the method of joints and are

Self-straining trusses

Statically indeterminate trusses, unlike the statically determinate type, may be subjected to self-
straining, in which internal forces are present before external loads are applied. Such a situation
may be caused by a local temperature change or by an initial lack of fit of a member. In cases such
as these, the term on the right-hand side of the compatibility equations, Eq. (ii) in Example 5.15
and Egs. (i) and (ii) in Example 5.16, would not be zero.

|
Example 5.17

The truss shown in Fig. 5.22(a) is unstressed when the temperature of each member is the same, but due to local

conditions, the temperature in the member BC is increased by 30°C. If the cross-sectional area of each member is
200 mm? and the coefficient of linear expansion of the members is 7 x 107%/°C, calculate the resulting forces in the
members; Young’s modulus £ = 200,000 N/mm?.

Due to the temperature rise, the increase in length of the member BC is 3 x 10 x 30 x 7 x 107° = 0.63 mm.
The truss has a degree of internal statical indeterminacy equal to 1 (by inspection). We therefore release the truss by
cutting the member BC, which has experienced the temperature rise, as shown in Fig. 5.22(b); we suppose that the
force in BC is X;. Since there are no external loads on the truss, Agc is zero and the compatibility condition

becomes
(111X1 =—-0.63 (1)
A B A B
X
3m X
D C D C

(a) (b) (c)
FIGURE 5.22 Self-Straining Due to a Temperature Change
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Table 5.8 Example 5.17

Member L; (mm) Fy; F,Li F,; N)
AB 4,000 1.33 7,111.1 ~700
BC 3,000 1.0 3,000.0 —525
CD 4,000 1.33 7,111.1 ~700
DA 3,000 1.0 3,000.0 —525
AC 5,000 —1.67 13,888.9 875
DB 5,000 -1.67 13,888.9 875
S = 48,000.0

in which, as before,
n F2 ) L,‘

w =30

=1

Note that the extension of BC is negative, since it is opposite in direction to X;. The solution is now completed in
Table 5.8. Hence,
48,000

_ _ -3
=200 % 200000 2 <10

ai

Then, from Eq. (i),

X; =-525N
The forces, F,;, in the members of the complete truss are given in the final column of Table 5.8. Compare the
preceding with the solution of Example 5.9.

TOTAL POTENTIAL ENERGY

In the spring—mass system shown in its unstrained position in Fig. 5.23(a), we normally define the
potential energy of the mass as the product of its weight, Mg, and its height, /#, above some arbitrarily
fixed datum. In other words, it possesses energy by virtue of its position. After deflection to an

N

Mass M

(@) (b)
FIGURE 5.23 (a) Potential Energy of a Spring—Mass System; (b) Loss in Potential Energy Due to a Change in Position
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equilibrium state (Fig. 5.23(b)), the mass has lost an amount of potential energy equal to Mgy. There-
fore, we may associate deflection with a loss of potential energy. Alternatively, we may argue that the
gravitational force acting on the mass does work during its displacement, resulting in a loss of energy.
Applying this reasoning to the elastic system of Fig. 5.1(a) and assuming that the potential energy of the
system is zero in the unloaded state, the /oss of potential energy of the load P as it produces a deflection
y is Py. Thus, the potential energy V of P in the deflected equilibrium state is given by

V=—-Py

We now define the fotal potential energy (TPE) of a system in its deflected equilibrium state as the sum
of its internal or strain energy and the potential energy of the applied external forces. Hence, for the
single member—force configuration of Fig. 5.1(a),

y
TPE:U—i-V:J Pdy — Py
0

For a general system consisting of loads Py, P», . . ., P, producing corresponding displacements (i.e.,
displacements in the directions of the loads; see Section 5.10), Ay, A,, .. ., A, the potential energy of all
the loads is

V= Z v, = i(—P,A,.)
r=1

r=1

and the total potential energy of the system is given by

TPE=U+V=U+)Y (-PA,) (5.16)
r=1

PRINCIPLE OF THE STATIONARY VALUE OF THE TOTAL
POTENTIAL ENERGY

Let us now consider an elastic body in equilibrium under a series of external loads, Py, P, . . ., P,, and
suppose that we impose small virtual displacements dA{, dA,, . . ., A, in the directions of the loads.
The virtual work done by the loads is

r=1

This work is accompanied by an increment of strain energy oU in the elastic body, since by specifying
virtual displacements of the loads, we automatically impose virtual displacements on the particles of
the body itself, as the body is continuous and is assumed to remain so. This increment in strain energy
may be regarded as negative virtual work done by the particles so that the total work done during the
virtual displacement is

—oU + P.3A,

n

r=1
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The body is in equilibrium under the applied loads, so that by the principle of virtual work, this
expression must be equal to zero. Hence,

SU—-S P3A, =0 (5.17)

n
r=1

The loads P, remain constant during the virtual displacement; therefore, Eq. (5.17) may be written

dU—-3)» PA =0

n
r=

=1

or, from Eq. (5.16),

Thus, the total potential energy of an elastic system has a stationary value for all small displacements
if the system is in equilibrium. It may also be shown that, if the stationary value is a minimum, the
equilibrium is stable. A qualitative demonstration of this fact is sufficient for our purposes, although
mathematical proofs exist'. In Fig. 5.24, the positions A, B, and C of a particle correspond to different
equilibrium states. The total potential energy of the particle in each of its three positions is proportional
to its height 7 above some arbitrary datum, since we are considering a single particle for which the
strain energy is zero. Clearly, at each position, the first-order variation, (U + V)/0u, is zero (indicating
equilibrium), but only at B, where the total potential energy is a minimum is the equilibrium stable. At
A and C, we have unstable and neutral equilibrium, respectively.

To summarize, the principle of the stationary value of the total potential energy may be stated as
follows:

The total potential energy of an elastic system has a stationary value for all small displacements when
the system is in equilibrium; further, the equilibrium is stable if the stationary value is a minimum.

This principle is often used in the approximate analysis of structures where an exact analysis
does not exist. We illustrate the application of the principle in Example 5.18, where we suppose
that the displaced form of the beam is unknown and must be assumed; this approach is called the
Rayleigh—Ritz method.

TPE

=f(h)

(U+Vv)

FIGURE 5.24 States of Equilibrium of a Particle
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[
Example 5.18

Determine the deflection of the mid-span point of the linearly elastic, simply supported beam shown in Fig. 5.25;
the flexural rigidity of the beam is EI.

The assumed displaced shape of the beam must satisfy the boundary conditions for the beam. Generally, trig-
onometric or polynomial functions have been found to be the most convenient, where, however, the simpler the
function, the less accurate is the solution. Let us suppose that the displaced shape of the beam is given by

. Tz .
V=g s1nf @)
in which v is the displacement at the mid-span point. From Eq. (i), we see that v =0 when z = 0 and z = L and
that v = vg when z = L/2. Also dv/dz = 0 when z = L/2, so that the displacement function satisfies the boundary
conditions of the beam.
The strain energy, U, due to bending of the beam, is given by’

MZ
U=| ==d ii
JL T z (i1)
Also,
d?v
M= _EIF (see Chapter 15) (iii)

Substituting in Eq. (iii) for v from Eq. (i) and for M in Eq. (ii) from (iii),

U= Qr v sian dz
2 Jy L* L
which gives
_ TE4E]V2B
413
The total potential energy of the beam is then given by
TPE— U v ="V,
- E b
w
A B Cc
l LY ]
é > El %
F——— z
L/2 L/2
[ |

FIGURE 5.25 Approximate Determination of Beam Deflection Using Total Potential Energy
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Then, from the principle of the stationary value of the total potential energy,

dU+V) n'Elvg

- W =0
GVB 2L3
from which
2WL? wL?
= =0.02 Z .
VB = 0.02053 7l (@iv)
The exact expression for the mid-span displacement is’
wL? wL?
= = 0.02083 ——
B T 4REl EI ©

Comparing the exact (Eq. (v)) and approximate results (Eq. (iv)), we see that the difference is less than 2 percent.
Further, the approximate displacement is less than the exact displacement, since, by assuming a displaced shape,
we have, in effect, forced the beam into taking that shape by imposing restraint; the beam is therefore stiffer.

PRINCIPLE OF SUPERPOSITION

An extremely useful principle employed in the analysis of linearly elastic structures is that of super-
position. The principle states that, if the displacements at all points in an elastic body are proportional to
the forces producing them, that is, the body is linearly elastic, the effect on such a body of a number of
forces is the sum of the effects of the forces applied separately. We make immediate use of the principle
in the derivation of the reciprocal theorem in the following section.

RECIPROCAL THEOREM

The reciprocal theorem is an exceptionally powerful method of analysis of linearly elastic structures
and is accredited in turn to Maxwell, Betti, and Rayleigh. However, before we establish the theorem,
we consider a useful property of linearly elastic systems resulting from the principle of superposition.
This principle enables us to express the deflection of any point in a structure in terms of a constant
coefficient and the applied loads. For example, a load P, applied at a point 1 in a linearly elastic body
produces a deflection A; at the point given by

Ay = an Py

in which the influence or flexibility coefficient a;; is defined as the deflection at the point 1 in the di-
rection of Py, produced by a unit load at the point 1 applied in the direction of P;. Clearly, if the body
supports a system of loads such as those shown in Fig. 5.26, each of the loads Py, P», . . ., P, contributes
to the deflection at the point 1. Thus, the corresponding deflection A, at the point 1 (i.e., the total
deflection in the direction of P, produced by all the loads) is

Ay =ap Py +apPr+ - +anpP,



5.10 Reciprocal theorem 165

7

FIGURE 5.26 Linearly Elastic Body Subjected to Loads P;, P, Ps, .. ., P,

where a, is the deflection at the point 1 in the direction of P; produced by a unit load at the point 2 in
the direction of the load P,, and so on. The corresponding deflections at the points of application of the
complete system of loads are

Ay =anPi+anP +ainPs+ - +anP,

Ay = ay Py +anPr + anPs + - + anlPy

A3 = a3 Py + anPy 4+ azPs + - - + a3, Py (5.19)

Ay =anP +apPr+apPs + - + aulP,

or, in matrix form,

A ayy ap @z - ap Py
Ay a apn ap -+ ay| | P2
A\ a3 an ax - az |] P3
An dapl dpy  Ap3 cc App Pn

which may be written in shorthand matrix notation as

{A} = [A{P}
Suppose now that an elastic body is subjected to a gradually applied force P; at a point 1 and then,

while P remains in position, a force P is gradually applied at another point 2. The total strain energy U

of the body is given by
Py

P
U= 7(0111)1) +72 (anP2) + Pi(a12P2) (5.20)

The third term on the right-hand side of Eq. (5.20) results from the additional work done by P, as it is
displaced through a further distance a,,P, by the action of P,. If we now remove the loads and apply P,
followed by P, we have

P P
U, = 72(6122132) +71 (a11P1) + P2(axiPy) (5.21)
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By the principle of superposition, the strain energy stored is independent of the order in which the loads
are applied. Hence,

U =0,
and it follows that

app = ds) (5.22)
Thus, in its simplest form, the reciprocal theorem states the following:

The deflection at point 1 in a given direction due to a unit load at point 2 in a second direction is equal
to the deflection at point 2 in the second direction due to a unit load at point 1 in the first direction.

In a similar manner, we derive the relationship between moments and rotations:

The rotation at a point I due to a unit moment at a point 2 is equal to the rotation at point 2 produced
by a unit moment at point 1.

Finally, we have

The rotation at point 1 due to a unit load at point 2 is numerically equal to the deflection at point 2 in
the direction of the unit load due to a unit moment at point 1.

[
Example 5.19

A cantilever 800 mm long with a prop 500 mm from the wall deflects in accordance with the following observa-
tions when a point load of 40 N is applied to its end:

Distance (mm) 0 100 200 300 400 500 600 700 800
Deflection (mm) 0 -03 —-14 =25 -19 0 2.3 48 10.6

What is the angular rotation of the beam at the prop due to a 30 N load applied 200 mm from the wall, together
with a 10 N load applied 350 mm from the wall?

The initial deflected shape of the cantilever is plotted as shown in Fig. 5.27(a) and the deflections at D and E
produced by the 40 N load determined. The solution then proceeds as follows.

Deflection at D due to 40 N load at C = —1.4 mm.

Hence, from the reciprocal theorem, the deflection at C due to a 40 N load at D = —1.4 mm.

40N 30N ION C
A D _E g ' §A BA(
N
‘\\\ZOOmm N b D E
C
350 mm

(a) (b)
FIGURE 5.27 (a) Given Deflected Shape of Propped Cantilever; (h) Determination of the Deflection of C
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It follows that the deflection at C due to a 30 N load at D = -3/4 x 1.4 = —-1.05 mm.

Similarly, the deflection at C due to a 10 N load at E = — 1/4 x 2.4 = 0.6 mm.

Therefore, the total deflection at C, produced by the 30 and 10 N loads acting simultaneously (Fig. 5.27(b)),
is —1.05 — 0.6 = —1.65 mm, from which the angular rotation of the beam at B, 0g, is given by

6
0 = tan! 300 = tan~' 0.0055
or
0 = 0°19
[ |
[
Example 5.20

An elastic member is pinned to a drawing board at its ends A and B. When a moment M is applied at A, A rotates
04, B rotates 0, and the center deflects 8;. The same moment M applied to B rotates B, O, and deflects the center
through §,. Find the moment induced at A when a load W is applied to the center in the direction of the measured
deflections, both A and B being restrained against rotation.

The three load conditions and the relevant displacements are shown in Fig. 5.28. From Figs. 5.28(a) and (b),
the rotation at A due to M at B is, from the reciprocal theorem, equal to the rotation at B due to M at A. Hence,

Oa) = OB
It follows that the rotation at A due to My at B is
Oa()1 = (Mp/M)0p ()
Also the rotation at A due to unit load at C is equal to the deflection at C due to unit moment at A. Therefore,
Oac2 81
WM
or
w
Oa()2 = MSI (ii)
m M
A ; B A 6. B
7 s \;
1 5
C
(a) (b)
w
A B
7
MA C MB

(c)
FIGURE 5.28 Model Analysis of a Fixed Beam
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where 04 > is the rotation at A due to W at C. Finally, the rotation at A due to M , at A is, from Fig. 5.28(a) and (c),

M,
Oaa = 7 0a (iii)
The total rotation at A produced by M4 at A, W at C, and My at B is, from Egs. (i), (ii), and (iii),
M w M .
Oa(e),1 +Oa(e)2 + Oa)3 = WBGB + M51 + WAGA =0 (iv)
since the end A is restrained from rotation. Similarly, the rotation at B is given by
Mg w My
—0c+—-06+—0=0
TS + %2 + u B )
Solving Egs. (iv) and (v) for M, gives
0,0 — 916,
My =W 2B 12C
040c — 03

The fact that the arbitrary moment M does not appear in the expression for the restraining moment at A (sim-
ilarly it does not appear in M), produced by the load W, indicates an extremely useful application of the reciprocal
theorem, namely, the model analysis of statically indeterminate structures. For example, the fixed beam of
Fig. 5.28(c) could be a full-scale bridge girder. It is then only necessary to construct a model, say of Perspex, having
the same flexural rigidity E/ as the full-scale beam and measure rotations and displacements produced by an ar-
bitrary moment M to obtain fixing moments in the full-scale beam supporting a full-scale load.

TEMPERATURE EFFECTS

A uniform temperature applied across a beam section produces an expansion of the beam, as shown in
Fig. 5.29, provided there are no constraints. However, a linear temperature gradient across the beam sec-
tion causes the upper fibers of the beam to expand more than the lower ones, producing a bending strain, as
shown in Fig. 5.30, without the associated bending stresses, again provided no constraints are present.
Consider an element of the beam of depth 4 and length 3z subjected to a linear temperature gradient

over its depth, as shown in Fig. 5.31(a). The upper surface of the element increases in length to
0z (1 4+ at) (see Section 1.15.1), where o is the coefficient of linear expansion of the material of
the beam. Thus, from Fig. 5.31(b),

R R+ h

oz dz(1 4 o)

Expansion
FIGURE 5.29 Expansion of Beam Due to Uniform Temperature
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N

A ATe B f

- B ;

FIGURE 5.30 Bending of Beam Due to Linear Temperature Gradient

f 3z(1+at)

L4 \

(a) (b)
FIGURE 5.31 (a) Linear Temperature Gradient Applied to Beam Element; (b) Bending of Beam Element Due to
Temperature Gradient

giving

R=h/at (5.23)
Also.

80=05z/R
so that, from Eq. (5.23).

00 = ? (5.24)

We may now apply the principle of the stationary value of the total complementary energy in conjunc-
tion with the unit load method to determine the deflection Ar., due to the temperature of any point of the
beam shown in Fig. 5.30. We have seen that this principle is equivalent to the application of the prin-
ciple of virtual work, where virtual forces act through real displacements. Therefore, we may specify
that the displacements are those produced by the temperature gradient, while the virtual force system is
the unit load. Thus, the deflection Ar. p of the tip of the beam is found by writing down the increment in
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total complementary energy caused by the application of a virtual unit load at B and equating the result-
ing expression to zero (see Eqs. (5.7) and Eq. (i) of Example 5.2). Thus,

8C:J M1d0 — 1Aqes =0
L

or
Atep = J M, do (5.25)
L
where M is the bending moment at any section due to the unit load. Substituting for d® from Eq. (5.24),
we have
t
ATeBzzjiﬂllg’dZ (5.26)
» L h

where ¢ can vary arbitrarily along the span of the beam but only linearly with depth. For a beam
supporting some form of external loading, the total deflection is given by the superposition of the
temperature deflection from Eq. (5.26) and the bending deflection from Eq. (5.15); thus,

. My ot
A_Lm(ﬂ+h)w (5.27)

|
Example 5.21

Determine the deflection of the tip of the cantilever in Fig. 5.32 with the temperature gradient shown.

Applying a unit load vertically downward at B, M; = 1 X z. Also the temperature 7 at a section z is #o (I —z)/I.
Substituting in Eq. (5.26) gives

I
Atep = J z (I —2)dz (1)

0

=R
~|

Integrating Eq. (i) gives

0(1012

o (i.e.,downward)

ATe.B =

Spanwise variation of t

7
A W o l
B o
h : ~ De|
6 pth variation of t

FIGURE 5.32 Beam of Example 5.21
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PROBLEMS

P.5.1. Find the magnitude and the direction of the movement of the joint C of the plane pin-jointed
frame loaded as shown in Fig. P.5.1. The value of L/AE for each member is 1/20 mm/N.

Answer: 5.24 mm at 14.7° to left of vertical

P.5.2. A rigid triangular plate is suspended from a horizontal plane by three vertical wires attached to
its corners. The wires are each 1 mm diameter, 1440 mm long, with a modulus of elasticity of
196,000 N/mm?. The ratio of the lengths of the sides of the plate is 3:4:5. Calculate the deflection at
the point of application due to a 100 N load placed at a point equidistant from the three sides of the plate.

Answer: 0.33 mm

P.5.3. The pin-jointed space frame shown in Fig. P.5.3 is attached to rigid supports at points 0, 4, 5, and
9 and is loaded by a force P in the x direction and a force 3P in the negative y direction at the point 7.
Find the rotation of member 27 about the z axis due to this loading. Note that the plane frames 01234
and 56789 are identical. All members have the same cross-sectional area A and Young’s modulus E.

Answer: 382P/9AE
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FIGURE P.5.1
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FIGURE P.5.3

P.5.4. A horizontal beam is of uniform material throughout but has a second moment of area of / for the
central half of the span L and //2 for each section in both outer quarters of the span. The beam carries a
single central concentrated load P.

(a) Derive a formula for the central deflection of the beam, due to P, when simply supported at each

end of the span.

(b) If both ends of the span are encastré determine the magnitude of the fixed end moments.

Answer: 3PL*/128EI, 5PL/48 (hogging)

P.5.5. The tubular steel post shown in Fig. P.5.5 supports a load of 250 N at the free end C. The outside
diameter of the tube is 100 mm and the wall thickness is 3 mm. Neglecting the weight of the tube find
the horizontal deflection at C. The modulus of elasticity is 206,000 N/mmz.

R\ ¢
—— [B

W=250N

Answer: 53.3 mm

4R R = 1500 mm

FIGURE P.5.5
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P.5.6. A simply supported beam AB of span L and uniform section carries a distributed load of intensity
varying from zero at A to wo/unit length at B according to the law

2woz z
w= (1 — —)
L 2L

per unit length. If the deflected shape of the beam is given approximately by the expression

. Tchr . 2mz
v =a;sin— + a, sin—
L L

evaluate the coefficients a; and a, and find the deflection of the beam at mid-span.
Answer: a; = 2woL*(n? + 4)/EIn’, ay = —woL*/16EIT>, 0.00918 wolL*/EI.

P.5.7. A uniform simply supported beam, span L, carries a distributed loading which varies according
to a parabolic law across the span. The load intensity is zero at both ends of the beam and wy at its
mid-point. The loading is normal to a principal axis of the beam cross-section and the relevant flexural
rigidity is EI. Assuming that the deflected shape of the beam can be represented by the series

find the coefficients a; and the deflection at the mid-span of the beam using only the first term in this
series.

Answer:  a; = 32woL*/EIn"i’ (i odd), woL*/94.4EI.

P.5.8. Figure P.5.8 shows a plane pin-jointed framework pinned to a rigid foundation. All its members
are made of the same material and have equal cross-sectional area A, except member 12, which has area
A+/2.Under some system of loading, member 14 carries a tensile stress of 0.7 N/mm?. Calculate the
change in temperature which, if applied to member 14 only, reduces the stress in that member to zero.
Take the coefficient of linear expansion as o = 24 x IO’G/OC and Young’s modulus £ = 70,000 N/mmz.

Answer: 5.6°C

P.5.8. MATLAB Use the Symbolic Math Toolbox in MATLAB to repeat Problem P.5.8, assuming that
member 14 carries tensile stresses of 0.5, 0.7, 0.9, and 1.1 N/mm?.

Answer: (i) 4.0°C

(i) 5.6°C
(iii) 7.2°C
(iv) 8.8°C

P.5.9. The plane, pin-jointed rectangular framework shown in Fig. P.5.9(a) has one member (24) which
is loosely attached at joint 2, so that relative movement between the end of the member and the joint
may occur when the framework is loaded. This movement is a maximum of 0.25 mm and takes place
only in the direction 24. Figure P.5.9(b) shows joint 2 in detail when the framework is not loaded. Find
the value of the load P at which member 24 just becomes an effective part of the structure and also the
loads in all the members when P is 10,000 N. All bars are of the same material (E = 70,000 N/mmz)
and have a cross-sectional area of 300 mm?.
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12a

FIGURE P.5.8
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(@) 7 (b)
FIGURE P.5.9

Answer: P =294 1\17 F12 = 2481.6 N(T), F23 = 1861.2 N(T), F34 = 2481.6 N(T),
F41 = 5638.9N(C), Fi3 =9398.1N(T), Fa4 =3102.0N(C).

P.5.10. The plane frame ABCD of Fig. P.5.10 consists of three straight members with rigid joints at B
and C, freely hinged to rigid supports at A and D. The flexural rigidity of AB and CD is twice that of
BC. A distributed load is applied to AB, varying linearly in intensity from zero at A to w per unit length
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FIGURE P.5.10

at B. Determine the distribution of bending moment in the frame, illustrating your results with a sketch
showing the principal values.

Answer: My =7 wl?/45, Mc = 8 wi*/45,
Cubic distribution on AB, linear on BC and CD
P.5.11. A bracket BAC is composed of a circular tube AB, whose second moment of area is 1.5/, and a
beam AC, whose second moment of area is / and which has negligible resistance to torsion. The two
members are rigidly connected together at A and built into a rigid abutment at B and C, as shown in

Fig. P.5.11. A load P is applied at A in a direction normal to the plane of the figure. Determine the
fraction of the load supported at C. Both members are of the same material, for which G = 0.38E.

Answer: 0.72P.

P.5.12. In the plane pin-jointed framework shown in Fig. P.5.12, bars 25, 35, 15, and 45 are linearly
elastic with modulus of elasticity E. The remaining three bars obey a nonlinear elastic stress—strain law

given by
T \"
= — |1 -
e ()]

where 7 is the stress corresponding to strain €. Each of bars 15, 45, and 23 has a cross-sectional area A,
and each of the remainder has an area of A/+/3. The length of member 12 is equal to the length of
member 34 =2 L. If a vertical load P, is applied at joint 5, as shown, show that the force in the member
23, that is, F»3, is given by the equation

o 4 35x+0.8=0
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where

X = F23/P0 and o = PQ/A‘E()

P.5.13. Figure P.5.13 shows a plan view of two beams, AB 9150 mm long and DE 6100 mm long. The
simply supported beam AB carries a vertical load of 100,000 N applied at F, a distance one third of
the span from B. This beam is supported at C on the encastré beam DE. The beams are of uniform cross-
section and have the same second moment of area 83.5 x 10° mm*. E = 200,000 N/mm?. Calculate the
deflection of C.

Answer: 5.6 mm

P.5.14. The plane structure shown in Fig. P.5.14 consists of a uniform continuous beam ABC pinned to
a fixture at A and supported by a framework of pin-jointed members. All members other than ABC
have the same cross-sectional area A. For ABC, the area is 4A and the second moment of area for bend-
ing is Aa/16. The material is the same throughout. Find (in terms of w, A, a, and Young’s modulus E)
the vertical displacement of point D under the vertical loading shown. Ignore shearing strains in the
beam ABC.

Answer: 30,232 wa*/3AE
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P.5.15. The fuselage frame shown in Fig. P.5.15 consists of two parts, ACB and ADB, with frictionless
pin joints at A and B. The bending stiffness is constant in each part, with value EI for ACB and xEI for
ADB. Find x so that the maximum bending moment in ADB is one half of that in ACB. Assume that the
deflections are due to bending strains only.

Answer: 0.092

P.5.16. A transverse frame in a circular section fuel tank is of radius » and constant bending stiffness EI.
The loading on the frame consists of the hydrostatic pressure due to the fuel and the vertical support
reaction P, which is equal to the weight of fuel carried by the frame, shown in Fig. P.5.16. Taking into
account only strains due to bending, calculate the distribution of bending moment around the frame in
terms of the force P, the frame radius r, and the angle 6.

Answer: M = Pr(0.160 — 0.080 cos® — 0.1590 sin0)

P.5.17. The frame shown in Fig. P.5.17 consists of a semi-circular arc, center B, radius a, of constant
flexural rigidity E jointed rigidly to a beam of constant flexural rigidity 2E1. The frame is subjected to
an outward loading, as shown, arising from an internal pressure p,. Find the bending moment at points
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FIGURE P.5.15

FIGURE P.5.16

FIGURE P.5.17
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A, B, and C and locate any points of contraflexure. A is the mid-point of the arc. Neglect deformations
of the frame due to shear and normal forces.

Answer: My = —0.057poa®, Mg = —0.292ppa®, Mc = 0.208pya>
Points of contraflexure: in AC, at 51.7° from horizontal; in BC, 0.764a from B

P.5.18. The rectangular frame shown in Fig. P.5.18 consists of two horizontal members 123 and 456
rigidly joined to three vertical members 16, 25, and 34. All five members have the same bending stiff-
ness EI. The frame is loaded in its own plane by a system of point loads P, which are balanced by a
constant shear flow ¢ around the outside. Determine the distribution of the bending moment in the
frame and sketch the bending moment diagram. In the analysis, take into account only bending
deformations.

Answer: Shears only at mid-points of vertical members. On the lower half of the frame,
S43 = 0.27P to right, S5, = 0.69P to left, S¢; = 1.08P to left; the bending moment
diagram follows.

P.5.19. A circular fuselage frame, shown in Fig. P.5.19, of radius r and constant bending stiffness EI,
has a straight floor beam of length /2, bending stiffness EI, rigidly fixed to the frame at either end.
The frame is loaded by a couple T applied at its lowest point and a constant equilibrating shear flow ¢

FIGURE P.5.19
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FIGURE P.5.20

around its periphery. Determine the distribution of the bending moment in the frame, illustrating your
answer by means of a sketch. In the analysis, deformations due to shear and end load may be considered
negligible. The depth of the frame cross-section in comparison with the radius r may also be neglected.

Answer: My =T(0.29 sinf — 0.160), My = 0.30Tx/r, Myz = T(0.59 sind — 0.160).

P.5.20. A thin-walled member BCD is rigidly built-in at D and simply supported at the same level at C,
as shown in Fig. P.5.20. Find the horizontal deflection at B due to the horizontal force F. Full account
must be taken of deformations due to shear and direct strains, as well as to bending. The member is of
uniform cross-section, of area A, relevant second moment of area in bending / = Ar2/400, and “reduced:
effective area in shearing A’ = A/4. Poisson’s ratio for the material is v = 1/3. Give the answer in terms
of F, r, A, and Young’s modulus E.

Answer: 448 Fr/EA.

P.5.21. Figure P.5.21 shows two cantilevers, the end of one being vertically above the other and con-
nected to it by a spring AB. Initially, the system is unstrained. A weight W placed at A causes a vertical
deflection at A of 8, and a vertical deflection at B of 8,. When the spring is removed, the weight W at A
causes a deflection at A of 95. Find the extension of the spring when it is replaced and the weight W is
transferred to B.

Answer: 8, (8 — 8,)/(85 — &)

P.5.22. A beam 2400 mm long is supported at two points A and B, which are 1440 mm apart; point A is
360 mm from the left-hand end of the beam and point B is 600 mm from the right-hand end; the value of
EI for the beam is 240 x 10®* N mm®. Find the slope at the supports due to a load of 2000 N applied at
the mid-point of AB. Use the reciprocal theorem in conjunction with this result to find the deflection at
the mid-point of AB due to loads of 3000 N applied at each of the extreme ends of the beam.

Answer: 0.011, 15.8 mm

ANt
oMWW P

FIGURE P.5.21
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P.5.22. MATLAB Use the Symbolic Math Toolbox in MATLAB to repeat Problem P.5.22. In addition,
use the reciprocal theorem to calculate the displacement at the mid-point of AB due to the following
combinations of loads at C and D:

(i) (i) (i) — (v) (v)
C: 2000N 2500N 3000N 3500N 4000 N
D: 4000N 3500N 3000N 2500N 2000 N

Answer: 0.011 rad

(i) (ii) (iii) (iv) (v)
17.16 mm 16.5mm 15.84 mm 15.18 mm 14.52 mm

P.5.23. Figure P.5.23 shows a cantilever beam subjected to linearly varying temperature gradients
along its length and through its depth. Calculate the deflection at the free end of the beam.

Answer: ZatoLz/Sh

P.5.24. Figure P.5.24 shows a frame pinned to its support at A and B. The frame center-line is a circular arc
and the section is uniform, of bending stiffness £/ and depth d. Find an expression for the maximum stress
produced by a uniform temperature gradient through the depth, the temperatures on the outer and inner
surfaces being, respectively, raised and lowered by amount 7. The points A and B are unaltered in position.

Answer: 1.30ETo

P.5.25. A uniform, semi-circular fuselage frame is pin-jointed to a rigid portion of the structure and is
subjected to a given temperature distribution on the inside, as shown in Fig. P.5.25. The temperature
falls linearly across the section of the frame to zero on the outer surface. Find the values of the reactions
at the pin-joints and show that the distribution of the bending moment in the frame is

M= 0.59 Elo;leo cos s

t

h 1 ; Depth variation

of temperature

FIGURE P.5.23
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FIGURE P.5.24

FIGURE P.5.25

given that
(a) The temperature distribution is

0=0pcos2y, for—n/4<¥ <n/4
0=0, for—n/4>% > mn/4
(b) Only bending deformations are to be taken into account:
o = coefficient of linear expansion of frame material
EI = bending rigidity of frame
h = depth of cross-section
r = mean radius of frame.



CHAPTER

Matrix methods

Actual aircraft structures consist of numerous components generally arranged in an irregular manner.
These components are usually continuous and therefore, theoretically, possess an infinite number of
degrees of freedom and redundancies. Analysis is possible only if the actual structure is replaced
by an idealized approximation or model. This procedure is discussed to some extent in Chapter 19,
where we note that the greater the simplification introduced by the idealization, the less complex
but more inaccurate becomes the analysis. In aircraft design, where structural weight is of paramount
importance, an accurate knowledge of component loads and stresses is essential, so that at some stage
in the design these must be calculated as accurately as possible. This accuracy is achieved only by
considering an idealized structure which closely represents the actual structure. Standard methods
of structural analysis are inadequate for coping with the necessary degree of complexity in such ide-
alized structures. This situation led, in the late 1940s and early 1950s, to the development of matrix
methods of analysis and at the same time to the emergence of high-speed, electronic, digital computers.
Conveniently, matrix methods are ideally suited for expressing structural theory and expressing that
theory in a form suitable for numerical solution by computer.

A structural problem may be formulated in either of two ways. One approach proceeds with the
displacements of the structure as the unknowns, the internal forces then follow from the determina-
tion of these displacements; in the alternative approach, forces are treated as being initially unknown.
In the language of matrix methods, these two approaches are known as the stiffness (or displacement)
method and the flexibility (or force) method, respectively. The most widely used of these two
methods is the stiffness method, and for this reason, we shall concentrate on this particular approach.
Argyris and Kelsey', however, showed that complete duality exists between the two methods, in that
the form of the governing equations is the same whether they are expressed in terms of displacements
or forces.

Generally, actual structures must be idealized to some extent before they become amenable to
analysis. Examples of some simple idealizations and their effect on structural analysis are presented
in Chapter 19 for aircraft structures. Outside the realms of aeronautical engineering, the represen-
tation of a truss girder by a pin-jointed framework is a well-known example of the idealization of
what are known as “skeletal” structures. Such structures are assumed to consist of a number of
elements joined at points called nodes. The behavior of each element may be determined by basic
methods of structural analysis and hence the behavior of the complete structure is obtained by
superposition. Operations such as this are easily carried out by matrix methods, as we shall see later
in this chapter.

A more difficult type of structure to idealize is the continuum structure; in this category are dams,
plates, shells, and obviously, aircraft fuselage and wing skins. A method, extending the matrix tech-
nique for skeletal structures, of representing continua by any desired number of elements connected at
their nodes was developed by Clough et al’. at the Boeing Aircraft Company and the University of

Introduction to Aircraft Structural Analysis, Third Edition. http://dx.doi.org/10.1016/B978-0-08-102076-0.00006-3 1 83
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Berkeley in California. The elements may be of any desired shape but the simplest, used in plane stress
problems, are the triangular and quadrilateral elements. We shall discuss the finite element method, as it
is known, in greater detail later.

Initially, we shall develop the matrix stiffness method of solution for simple skeletal and beam
structures. The fundamentals of matrix algebra are assumed.

NOTATION

Generally, we shall consider structures subjected to forces, Fiy 1, Fy 1, F. 1, Foo, Fyo, Fony oo Fop Fy
F,,, atnodes 1, 2, ..., n, at which the displacements are u;, vy, Wy, Ua, Vo, Wa, ..., Uy, Vy, W, The
numerical suffixes specify nodes, while the algebraic suffixes relate the direction of the forces to
an arbitrary set of axes, x, y, z. Nodal displacements u, v, w represent displacements in the positive
directions of the x, y, and z axes, respectively. The forces and nodal displacements are written as

column matrices (alternatively known as column vectors)

Fx,l uy
Fy, Vi
F:1 w1
Fx,2 up
Fy» V2
FZ,Z Wo
Fx,n Uy
Fy,n Vi
F,, Wy,

which, when once established for a particular problem, may be abbreviated to

{Fy {3}

The generalized force system {F'} can contain moments M and torques 7 in addition to direct forces,
in which case, {8} includes rotations 6. Therefore, in referring simply to a nodal force system, we imply
the possible presence of direct forces, moments, and torques, while the corresponding nodal displace-
ments can be translations and rotations.

For a complete structure, the nodal forces and nodal displacements are related through a stiffness
matrix [K]. We shall see that, in general,

{F} = [K]{s} (6.1)
where [K] is a symmetric matrix of the form
ki ki - ki
K= |t ©2)

knl kn2 e knn
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The element k;; (that is, the element located on row 7 and in column j) is known as the stiffness influence
coefficient (note k;; = kj;). Once the stiffness matrix [K] has been formed, the complete solution to a
problem follows from routine numerical calculations that are carried out, in most practical cases, by
computer.

STIFFNESS MATRIX FOR AN ELASTIC SPRING

The formation of the stiffness matrix [K] is the most crucial step in the matrix solution of any structural
problem. We shall show in the subsequent work how the stiffness matrix for a complete structure may
be built up from a consideration of the stiffness of its individual elements. First, however, we shall
investigate the formation of [K] for a simple spring element, which exhibits many of the characteristics
of an actual structural member.

The spring of stiffness k shown in Fig. 6.1 is aligned with the x axis and supports forces F, ; and F', »
at its nodes 1 and 2, where the displacements are u; and u,. We build up the stiffness matrix for this
simple case by examining different states of nodal displacement. First, we assume that node 2 is
prevented from moving, such that u; = u; and u, = 0. Hence,

Fx,l = ku1
and, from equilibrium, we see that
Fx,2 = —Ll'x1 = _kul (63)

which indicates that F', , has become a reactive force in the opposite direction to F, ;. Secondly, we take
the reverse case, where u; = 0 and u, = u,, and obtain

Fip=kuy =—F, (6.4)

By superposition of these two conditions, we obtain relationships between the applied forces and the
nodal displacements for the state when u#; = u; and u, = u,. Thus,

Fy1 = kuy — kuy }

FX72 = —kuy + kuy 6.5)

Writing Eq. (6.5) in matrix form, we have

Fx,l o k —k up
=L

Fy U k Fx,2 Uz
O

¢ \00000000000000
1 2 X

FIGURE 6.1 Determination of Stiffness Matrix for a Single Spring
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and by comparison with Eq. (6.1), we see that the stiffness matrix for this spring element is

o=

which is a symmetric matrix of order 2 x 2.

6.7)

STIFFNESS MATRIX FOR TWO ELASTIC SPRINGS IN LINE

Bearing in mind the results of the previous section, we shall now proceed, initially by a similar process,
to obtain the stiffness matrix of the composite two-spring system shown in Fig. 6.2. The notation and
sign convention for the forces and nodal displacements are identical to those specified in section 6.1.

First, let us suppose that u; = u; and u, = uz = 0. By comparison with the single spring case,
we have

Fx‘l = kaul = _Fx.,2 (68)

but, in addition, F, 3 = 0, since u, = uz = 0.
Secondly, we put #; = u3 = 0 and u, = u,. Clearly, in this case, the movement of node 2 takes place
against the combined spring stiffnesses &, and k,. Hence,

Fip = (ky + kp)uy }

(6.9)
Fy1 = —kaup, Fy3 = —kpup

Thus, the reactive force F, ; (= —k,u,) is not directly affected by the fact that node 2 is connected to
node 3 but is determined solely by the displacement of node 2. Similar conclusions are drawn for the
reactive force F, 3.
Finally, we set u; = u, = 0, u3 = u3 and obtain
F.3 =kyus = —F,
X3 bU3 2 6.10)
Fe1=0
Superimposing these three displacement states, we have, for the condition u; = uy, u, = u,, Uz = us,
Fx,l = kaul - ka”Z
Fx,2 = —k,u; + (ka + kb)uz — k],bl3 (61 1)
Fy3 = —kpuz + kpu3

Fx,g up y
Fy s ko S “ o Fus Us
— 00— 0000000000000 ——0—0000000000000~
1 2 3 X

FIGURE 6.2 Stiffness Matrix for a Two-Spring System
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Writing Egs. (6.11) in matrix form gives

Fx,l ka _ka 0 251
Fop o= | —ka kathky —ky|Q uo (6.12)
ny3 0 7/{}, k}, us

Comparison of Egs. (6.12) with Eq. (6.1) shows that the stiffness matrix [K] of this two-spring system is

k, —k, O
Kl = | —ki kat+hky —kp (6.13)
0 —ky  ky

Equation (6.13) is a symmetric matrix of order 3 x 3.

It is important to note that the order of a stiffness matrix may be predicted from a knowledge of the
number of nodal forces and displacements. For example, Eq. (6.7) is a 2 X 2 matrix connecting two
nodal forces with two nodal displacements; Eq. (6.13) is a 3 x 3 matrix relating three nodal forces to
three nodal displacements. We deduce that a stiffness matrix for a structure in which » nodal forces
relate to n nodal displacements is of order n X n. The order of the stiffness matrix does not, however,
bear a direct relation to the number of nodes in a structure, since it is possible for more than one force to
be acting at any one node.

So far we have built up the stiffness matrices for the single- and two-spring assemblies by consid-
ering various states of displacement in each case. Such a process clearly becomes tedious for more
complex assemblies involving a large number of springs, so that a shorter, alternative procedure is
desirable. From our remarks in the preceding paragraph and by reference to Eq. (6.2), we could have
deduced at the outset of the analysis that the stiffness matrix for the two-spring assembly would be of
the form

kiv ki kg3
[K] = | kyy kp ko3 (6.14)
ka1 k3 k33

The element k1, of this matrix relates the force at node 1 to the displacement at node 1 and so on. Hence,
remembering the stiffness matrix for the single spring (Eq. (6.7)), we may write down the stiffness
matrix for an elastic element connecting nodes 1 and 2 in a structure as

(ki ki |
K| = 6.15
(K12] ko koo | (6.15)
and for the element connecting nodes 2 and 3 as
(koo ks |
Konl = 6.16
[Kzs] | k32 k33 | (6.16)

In our two-spring system, the stiffness of the spring joining nodes 1 and 2 is k, and that of the
spring joining nodes 2 and 3 is k,. Therefore, by comparison with Eq. (6.7), we rewrite Egs. (6.15)

and (6.16) as
Kio) = [kk _kﬂ (K] = [kb _k”} (6.17)
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Substituting in Eq. (6.14) gives

kq —k, 0
[K] = | —kys ko+ky —kp
0 —kp kp

which is identical to Eq. (6.13). We see that only the kp, term (linking the force at node 2 to the
displacement at node 2) receives contributions from both springs. This results from the fact that node
2 is directly connected to both nodes 1 and 3, while nodes 1 and 3 are each joined directly only to
node 2. Also, the elements k3 and k3; of [K] are zero since nodes 1 and 3 are not directly connected
and are therefore not affected by each other’s displacement.

The formation of a stiffness matrix for a complete structure thus becomes a relatively simple matter
of the superposition of individual or element stiffness matrices. The procedure may be summarized
as follows: terms of the form k; on the main diagonal consist of the sum of the stiffnesses of all
the structural elements meeting at node i while off-diagonal terms of the form k;; consist of the sum
of the stiffnesses of all the elements connecting node i to node j.

An examination of the stiffness matrix reveals that it possesses certain properties. For example, the
sum of the elements in any column is zero, indicating that the conditions of equilibrium are satisfied.
Also, the nonzero terms are concentrated near the leading diagonal, while all the terms in the leading
diagonal are positive; the latter property derives from the physical behavior of any actual structure in
which positive nodal forces produce positive nodal displacements.

Further inspection of Eq. (6.13) shows that its determinant vanishes. As a result, the stiffness matrix
[K] is singular and its inverse does not exist. We shall see that this means that the associated set of
simultaneous equations for the unknown nodal displacements cannot be solved, for the simple reason
that we have placed no limitation on any of the displacements u,, u,, or uz. Thus, the application of
external loads results in the system moving as a rigid body. Sufficient boundary conditions must
therefore be specified to enable the system to remain stable under load. In this particular problem,
we shall demonstrate the solution procedure by assuming that node 1 is fixed; thst is, #; = 0.

The first step is to rewrite Eq. (6.13) in partitioned form as

kq — kg, 0
FA,I uy = 0
FX‘VZ | e s 0 6.18)
F.3 —kq kg +kyp —kp Uz

0 —kp kp

In Eq. (6.18), F, ; is the unknown reaction at node 1, #; and u, are unknown nodal displacements, while
F., and F, 3 are known applied loads. Expanding Eq. (6.18) by matrix multiplication, we obtain

. up Foo | |kat+ky —kpl| [ u
N N T

Inversion of the second of Eqs. (6.19) gives u, and u3 in terms of F, ; and F 3. Substitution of these
values in the first equation then yields F, ;.

Thus,
u | | kg +ky —kp B F,»
w [ | —k ky, Fy3
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or

{Zj} N “72 1/k;,1fal/kaH1;i§}

- ol ) 52)

Hence,

which gives
Fx,l = _FxﬁZ - F,x,3

as would be expected from equilibrium considerations. In problems where reactions are not required,
equations relating known applied forces to unknown nodal displacements may be obtained by deleting
the rows and columns of [K] corresponding to zero displacements. This procedure eliminates the ne-
cessity of rearranging rows and columns in the original stiffness matrix when the fixed nodes are not
conveniently grouped together.

Finally, the internal forces in the springs may be determined from the force—displacement relation-
ship of each spring. Thus, if S, is the force in the spring joining nodes 1 and 2, then

Sa = ka(up — 1)
Similarly for the spring between nodes 2 and 3,

Sb = kb(u3 — M2)

MATRIX ANALYSIS OF PIN-JOINTED FRAMEWORKS

The formation of stiffness matrices for pin-jointed frameworks and the subsequent determination of
nodal displacements follow a similar pattern to that described for a spring assembly. A member in such
a framework is assumed to be capable of carrying axial forces only and obeys a unique force—defor-
mation relationship given by

_AE
L

where F is the force in the member, § its change in length, A its cross-sectional area, L its unstrained
length, and FE its modulus of elasticity. This expression is seen to be equivalent to the spring—displace-

ment relationships of Egs. (6.3) and (6.4), so that we immediately write down the stiffness matrix for a
member by replacing k by AE/L in Eq. (6.7):

F )

AE/L —AE/L
K] = [—AE?L AE?L}

or

K] _AE {_1 _]} (6.20)
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so that, for a member aligned with the x axis, joining nodes 7 and j subjected to nodal forces F,; and F ,

we have
FXJ 7AE 1 —1 Uu;
{FxJ}L [—1 1“%'} ©20

The solution proceeds in a similar manner to that given in the previous section for a spring or
spring assembly. However, some modification is necessary, since frameworks consist of members
set at various angles to one another. Figure 6.3 shows a member of a framework inclined at an angle
0 to a set of arbitrary reference axes x, y. We shall refer every member of the framework to this global
coordinate system, as it is known, when we consider the complete structure, but we shall use a
member or local coordinate system X, y when considering individual members. Nodal forces and dis-
placements referred to local coordinates are written as F, 4, etc., so that Eq. (6.21) becomes, in terms

of local coordinates,
F.. AE 1 —1|[w
X, _ i 22
(=T [l 62

where the element stiffness matrix is written [ITU]

In Fig. 6.3, external forces F; and F; are applied to nodes i and j. Note that F; and Fy; do not
exist, since the member can only support axial forces. However, F; and F; have components F ;, F, ;
and F ;, F, ;, respectively, so that, whereas only two force components appear for the member in terms
of local coordinates, four components are present when global coordinates are used. Therefore, if we
are to transfer from local to global coordinates, Eq. (6.22) must be expanded to an order consistent with

the use of global coordinates; that is,

Fxﬁi 1 0 -1 0 u;
F,|_AE| 00 o0 0|)W
Fo( L |-10 1 0% (6.23)
Fy; 00 00/(7
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FIGURE 6.3 Local and Global Coordinate Systems for a Member of a Plane Pin-Jointed Framework
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Equation (6.23) does not change the basic relationship between F.;, F,; and u;, ; as defined in
Eq. (6.22).
From Fig. 6.3, we see that

o

; = F;cos0+ Fy;sinf
; = —F;sin0 4 F; cos0

-

and

F.j = F.jcosd + F,sin®

Fyj = —F,;sin0 + F, ;cos0

Writing A for cosf and p for sinf, we express the preceding equations in matrix form as

Fri Ap 0 0] (Fu
1{},, =170 g 7(3 3 ?j (6.24)
Fyj 0 0 —p r||F,
or, in abbreviated form,
{F} = [TI{F} (6.25)

where [T] is known as the transformation matrix. A similar relationship exists between the sets of nodal
displacements. Thus, again using our shorthand notation,

{8} = [11{8} (6.26)
Substituting now for {F} and {S} in Eq. (6.23) from Egs. (6.25) and (6.26), we have

[T{F} = [Ky][T]{3}
Hence,
{F} = [T][Ky][T{3} (6.27)
It may be shown that the inverse of the transformation matrix is its transpose; that is,
(] =1’
Therefore, we rewrite Eq. (6.27) as
{F} = [1"[K;) (718} (6.28)

The nodal force system referred to global coordinates, {F'}, is related to the corresponding nodal
displacements by

(F} = [Ki]{5} (629)
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where [K;;] is the member stiffness matrix referred to global coordinates. Comparison of Eqgs. (6.28)
and (6.29) shows that

K] = (1] [K;][T)
Substituting for [T] from Eq. (6.24) and [K;] from Eq. (6.23), we obtain

/Y N TR Y ¥
_AE | @t e 2
7 I S VTR S ¥T)
e L L VTR Th
By evaluating A(= cos0) and p(= sin0) for each member and substituting in Eq. (6.30), we obtain the
stiffness matrix, referred to global coordinates, for each member of the framework.
In Section 6.3, we determined the internal force in a spring from the nodal displacements. Applying
similar reasoning to the framework member, we may write down an expression for the internal force S;
in terms of the local coordinates:

K] (6.30)

AE
i =@ ) ©31)
L
Now,
U = Mij +
uj = Au; + p;
Hence,

wj —u; = Muj — i) + p(v; — vi)
Substituting in Eq. (6.31) and rewriting in matrix form, we have

S,;,»IEF “H“f‘_”"} (6.32)

L ij Vi — Vi

[
Example 6.1
Determine the horizontal and vertical components of the deflection of node 2 and the forces in the members of the
pin-jointed framework shown in Fig. 6.4. The product AE is constant for all members.

We see in this problem that nodes 1 and 3 are pinned to a fixed foundation and are therefore not displaced.

Hence, with the global coordinate system shown
uy=vi=u3=v3=20

The external forces are applied at node 2 such that F, , = 0, F,, , = —W; the nodal forces at 1 and 3 are then unknown
reactions.

The first step in the solution is to assemble the stiffness matrix for the complete framework by writing down the
member stiffness matrices referred to the global coordinate system using Eq. (6.30). The direction cosines A and .
take different values for each of the three members; therefore, remembering that the angle 6 is measured coun-
terclockwise from the positive direction of the x axis, we have Table 6.1.
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X
4
FIGURE 6.4 Pin-Jointed Framework of Example 6.1
Table 6.1 Example 6.1
Member 0 A r
1-2 0 1 0
1-3 90 0 1
2-3 135 —1/V2 1/v2
The member stiffness matrices are therefore
1 0 -1 0 0 0 0
AE 0 0 00 AE | 0 1 0 -1
Kol="1_1 ¢ 1 o Ksl="10 0 0 o0
0 0 0 0 0 -1 0 1
ro1 1 1 17
2 2 2 2
1 1 1 1
(R B 0
SRRV, N S S B |
2 2 2 2
1 1 1 1
2 2 2 2

The next stage is to add the member stiffness matrices to obtain the stiffness matrix for the complete frame-
work. Since there are six possible nodal forces producing six possible nodal displacements, the complete stiffness
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matrix is of the order 6 x 6. Although the addition is not difficult in this simple problem, care must be taken when
solving more complex structures to ensure that the matrix elements are placed in the correct position in the com-
plete stiffness matrix. This may be achieved by expanding each member stiffness matrix to the order of the
complete stiffness matrix by inserting appropriate rows and columns of zeros. Such a method is, however, time
and space consuming. An alternative procedure is suggested here. The complete stiffness matrix is of the form
shown in Eq. (ii):

Fx,l uy

F

Fy’; kin]  [kio]  [kis) Z;

FX’Z = | [ka1] [k22] [k23] v, (ii)
Y,

F.s kai]  [ks2]  [ks] s

Fy‘3 v3

The complete stiffness matrix has been divided into a number of submatrices in which [k;;] is a 2 X 2 matrix
relating the nodal forces F 1, F; to the nodal displacements u;, v, and so on. It is a simple matter to divide each
member stiffness matrix into submatrices of the form [k;], as shown in Eqs. (iii). All that remains is to insert each
submatrix into its correct position in Eq. (ii), adding the matrix elements where they overlap; for example, the [k;;]
submatrix in Eq. (ii) receives contributions from [K,] and [K;3]. The complete stiffness matrix is then of the form
shown in Eq. (iv). It is sometimes helpful, when considering the stiffness matrix separately, to write the nodal
displacement above the appropriate column (see Eq. (iv)). We note that [K] is symmetrical, all the diagonal terms
are positive, and the sum of each row and column is zero

o0l [0

I N

AE| 10 o 1+ 0 01

[Kp2] = — rL _I_| Lr _|_|

L [7-1 07 11 07

T A A

(] 0 10 01

Lo J L a ol

70 07 10 07]

DETIES B I TR

|0 o
[Ki3] = T |ro 0 o 0 (iii)

P ks b ks

1 0 -1+ 10 11

L - | | - -

e 17 71 i

o2 2] | 2 21

' ka2 o ka3 i

Pl i1 1 1

AE |L 2 24 L 2 2

Kpl = —

[K23] NIALER 771 17

P2 20 1 2 2!

' k32 i i k33 !

Pl 1y 01 1

LL 2 i L2 2]
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u v Uz Vo us V3
! 0 —1 0 0 0 7
0 1 0 0 0 -1
1 0 1+ ! ! ! !
Fu W2 22 22 2/2 | (=0
Fya 1 1 1 1 v =0
F\ AE 0 0 R — — - iv
X2 _4ar 2\/2 2\/5 2\/§ 2\/5 uz ( )
F/V’z L V2
Fy3 0 0 - L L L - L uz =0
Fy3 V2 2v2 2V2 22| Ly, =0
1 1 1 1
0 -1 1+

22 22 22

If we now delete rows and columns in the stiffness matrix corresponding to zero displacements, we obtain the
unknown nodal displacements u, and v, in terms of the applied loads F,, (= 0) and F,, (= -W):

1 1
l+— ——=
Foo| _AE 2v2 2v2 u )
Fy,2 - L _ 1 1 %) v
V2 22
Inverting Eq. (v) gives
up . L 1 1 FX.2 (v1)
v [ TAE[1 142V2| | Fyp
from which
L WL ..
Uy = IE (FX,Z + Fy.z) = — ﬁ (Vll)
L WL
n= [Fio+ (14+2V2)F,,] = — i (1+2v2) (viii)

The reactions at nodes 1 and 3 are now obtained by substituting for u, and v, from Eq. (vi) into Eq. (iv):

~1 0
F. 0 0
F\ LI T For
Fi3 RS {1 1+2\/§HFy,2}
Fy3 L O

2v2 2V2

-1 -1
0 Of(Fe
1 o 1{Fy,2}
0 —1
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giving
Fx,l = 7Fx,27Fy,2 =W
Fy1=0
Fi3=Fy,=-W
Fy3=W

Finally, the forces in the members are found from Eqs. (6.32), (vii), and (viii):

AE —
Sp=—]1 0}{ Zj _ \Ifll } = —W (compression)

AE —
Si3=—10 1]{ Z; B ‘L/{ll } = — 0 (as expected)

Sy — % {_ % %} { oo } _ V3 (tension)

APPLICATION TO STATICALLY INDETERMINATE FRAMEWORKS

The matrix method of solution described in the previous sections for spring and pin-jointed framework
assemblies is completely general and therefore applicable to any structural problem. We observe that at
no stage in Example 6.1 did the question of the degree of indeterminacy of the framework arise. It
follows that problems involving statically indeterminate frameworks (and other structures) are solved
in an identical manner to that presented in Example 6.1, the stiffness matrices for the redundant mem-
bers being included in the complete stiffness matrix as before.

MATRIX ANALYSIS OF SPACE FRAMES

The procedure for the matrix analysis of space frames is similar to that for plane pin-jointed frame-
works. The main difference lies in the transformation of the member stiffness matrices from local
to global coordinates, since, as we see from Fig. 6.5, axial nodal forces F_H and F_” each now has three
global components F, ;, F ;, F.;and F ;, F, ;, . j, respectively. The member stiffness matrix referred to
global coordinates is therefore of the order of 6 x 6 so that [K;;] of Eq. (6.22) must be expanded to the

same order to allow for this. Hence,

v W uov; w
1 00 -1 00
000 000
. AE| 00 0 0 0 0 (6.33)
[’117—100100
000 00O
000 000

In Fig. 6.5, the member ij is of length L, cross-sectional area A, and modulus of elasticity E£. Global
and local coordinate systems are designated as for the two-dimensional case. Further, we suppose that
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I
|

S~

Z, W

zZ, w
FIGURE 6.5 Local and Global Coordinate Systems for a Member in a Pin-Jointed Space Frame

0,z = angle between x and X
0,; = angle between x and y

0.5 = angle between z and y

Therefore, nodal forces referred to the two systems of axes are related as follows:

= F,cos0,z + Fy cosO,5 + F cos0,z
= FcosOz + F cosOy5 + F. cosO,z (6.34)
= F,cos0; 4 F\ cosO; + F. cosOz

.23

Writing
Ay = cosbz, Ay = cosly, A: = cosOy
He = cosByz, py = cosByy, pz = cosby; (6.35)
vy = cos0x, V5= cosOy, v:= cosO;z

we may express Eq. (6.34) for nodes i and j in matrix form as

Fx,i >\')_c My Vx 0 0 0 Fx,/
F_v‘i 7\,y ].,l} Vy 0 0 0 Fy_’,
Fz‘i _ >\,§ Mz Vz 0 0 0 Fz,i
FxJ' - 0 0 0 7\.} Hs Vx FAJ (636)
Eyj 00 0 % p vyl [Fy
Fz,] 0 0 0 7\.3 Mz vz Fz.j

or in abbreviated form
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The derivation of [K;;] for a member of a space frame proceeds on identical lines to that for the plane
frame member. Thus, as before,

[Ky] = (1] [Ky][T]
Substituting for [7] and [K_,-j] from Eqgs. (6.36) and (6.33) gives

) Mie Asve o A2 “haby —Asve ]
Azbiz e Heve  —Agly  —2 —ppve
CAE | lv: o Vs VE o Shevi —pgv: —V2

L = —hspy —hve A2 Mk Azve

e e R TR I HzVz
L — Azvi  — HxVx - V)—2( AsVx M5 Vx v%

(6.37)

All the suffixes in Eq. (6.37) are X, so that we may rewrite the equation in simpler form, namely,

[ 2 : SYM |
TR :
2
P L o
R TR S b
R e T A TRt
L —Awv —puv =V o Av opv V2

where A, p, and v are the direction cosines between the x, y, z and X axes, respectively.
The complete stiffness matrix for a space frame is assembled from the member stiffness matrices in
a similar manner to that for the plane frame and the solution completed as before.

STIFFNESS MATRIX FOR A UNIFORM BEAM

Our discussion so far has been restricted to structures comprising members capable of resisting axial
loads only. Many structures, however, consist of beam assemblies in which the individual members
resist shear and bending forces in addition to axial loads. We shall now derive the stiffness matrix
for a uniform beam and consider the solution of rigid jointed frameworks formed by an assembly
of beams, or beam elements, as they are sometimes called.

Figure 6.6 shows a uniform beam ij of flexural rigidity EI and length L subjected to nodal forces
F, ;, F, jand nodal moments M;, M; in the xy plane. The beam suffers nodal displacements and rotations
v;, v; and 0;, 0;. We do not include axial forces here, since their effects have already been determined in
our investigation of pin-jointed frameworks.

The stiffness matrix [K;;] may be built up by considering various deflected states for the beam
and superimposing the results, as we did initially for the spring assemblies of Figs 6.1 and 6.2 or,
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FIGURE 6.6 Forces and Moments on a Beam-Element
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alternatively, it may be written down directly from the well-known beam slope—deflection equations.”

We shall adopt the latter procedure. From slope—deflection theory, we have

6EI 4EI 6EI 2EI
sttt
and
6EI 2EI 6EI 4EI0;
O A A A
Also, considering vertical equilibrium, we obtain
F}',i +Fy] - O
and, from moment equilibrium about node j, we have
FyL+M;+M;=0
Hence, the solution of Eqs. (6.39)—(6.42) gives
12E1 6EI 12E1 6EI
R Ay Ry F e ER A
Expressing Egs. (6.39), (6.40), and (6.43) in matrix form yields
Fy; 12/ —6/L> —12/L3> —6/L*] ( vi
M, —6/L*  4/L 6/L> 2/L 0;
= El 3 2 3 2
Fy; —12/L 6/L 12/L 6/L vj
M; —6/L>  2/L 6/L*  4/L 0,

which is of the form
{F} = [Ky]{3}

where [K;;] is the stiffness matrix for the beam.

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)
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It is possible to write Eq. (6.44) in an alternative form such that the elements of [K;] are pure

numbers:
Fy; 12 -6 —-12 -6 V;
M;/L EI| —6 4 6 2 0,L
Fy, Ll-12 6 12 6| v
M;/L -6 2 6 4]loL

This form of Eq. (6.44) is particularly useful in numerical calculations for an assemblage of beams in
which EI/L? is constant.

Equation (6.44) is derived for a beam whose axis is aligned with the x axis so that the stiffness ma-
trix defined by Eq. (6.44) is actually [K;], the stiffness matrix referred to a local coordinate system. If
the beam is positioned in the xy plane with its axis arbitrarily inclined to the x axis, then the x and y axes
form a global coordinate system and it becomes necessary to transform Eq. (6.44) to allow for this. The
procedure is similar to that for the pin-jointed framework member of Section 6.4, in that [K;;] must be
expanded to allow for the fact that nodal displacements u; and u;, which are irrelevant for the beam in

local coordinates, have components u;, v; and u;, v; in global coordinates:

U; Vi 0; u; vj 0;
ro 0 0 0 0 0 7
0 12/L3 —6/L* 0 —12/I* —6/L?
K| = El 0 —-6/L> 4/L 0 6/L? 2/L (6.45)
0 0 0 0 0 0
0 —12/L* 6/L* 0 12/L* 6/L?
L0 —6/L* 2/L 0 6/L? 4/L |

We may deduce the transformation matrix [7] from Eq. (6.24) if we remember that, although « and v
transform in exactly the same way as in the case of a pin-jointed member, the rotations 8 remain the
same in either local or global coordinates.

Hence,
[ A pu O 0 0 07
—u A0 0 0 O
0 0 1 0 0 O
[T] = (6.46)
0 0 0 A p 0
00 0 —u 2 O
L 0 0 O 0 0 1]

where A and p have previously been defined. Thus, since

[Ky) = [T]" [Ky)[T] (see Section 6.4)
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we have, from Egs. (6.45) and (6.46),

r12u2/L3 SYM
—120/L3  12)%/L1°
6u/L? —60/L2  4/L
K =] / / (6.47)

—1202/07  12ap/L3  —6p/L? 12p%/L3
120/L3  —120%/0°  6L/L*  —120/L3 1227/03
L 6u/L? —60/L2 2/L 6u/L? 6)L/L>  4L/L

Again, the stiffness matrix for the complete structure is assembled from the member stiffness matrices,
the boundary conditions are applied, and the resulting set of equations solved for the unknown nodal
displacements and forces.

The internal shear forces and bending moments in a beam may be obtained in terms of the calculated
nodal displacements. For a beam joining nodes i and j, we shall have obtained the unknown values of v;,
0; and v;, 0;. The nodal forces F, ; and M; are then obtained from Eq. (6.44) if the beam is aligned with
the x axis. Hence,

12 6 12 6

Fy,l':EI Evi—ﬁﬁi—ﬁvj—ﬁej
(6.48)

6 4. 6 20

M; = EI *EViJrZeiJrEVj+T

Similar expressions are obtained for the forces at node j. From Fig. 6.6, we see that the shear force S,
and bending moment M in the beam are given by

Sy =Fy,;
M — Fyﬁ[x +Ml } (6.49)

Substituting Eq. (6.48) into Eq. (6.49) and expressing in matrix form yields

12 6 12 6 v
& 2 K 2

S gy - - ’ ‘ o (6.50)

Mf |12 6 6 412 6 6 2[)y '

o et ette Tt | .

The matrix analysis of the beam in Fig. 6.6 is based on the condition that no external forces are
applied between the nodes. Obviously, in a practical case, a beam supports a variety of loads along
its length and therefore such beams must be idealized into a number of beam—elements for which this
condition holds. The idealization is accomplished by merely specifying nodes at points along the beam
such that any element lying between adjacent nodes carries, at the most, a uniform shear and a linearly
varying bending moment. For example, the beam of Fig. 6.7 is idealized into beam—elements 1-2, 2-3,
and 3-4, for which the unknown nodal displacements are v,, 0,, 03, v4 and 04 (v; = 0; = v3 = 0).
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FIGURE 6.7 Idealization of a Beam into Beam—Elements

Beams supporting distributed loads require special treatment, in that the distributed load is replaced
by a series of statically equivalent point loads at a selected number of nodes. Clearly, the greater the
number of nodes chosen, the more accurate but more complicated and therefore time consuming is the
analysis. Figure 6.8 shows a typical idealization of a beam supporting a uniformly distributed load.
Details of the analysis of such beams may be found in Martin.*

Many simple beam problems may be idealized into a combination of two beam—elements and three
nodes. A few examples of such beams are shown in Fig. 6.9. If we therefore assemble a stiffness matrix
for the general case of a two beam—element system, we may use it to solve a variety of problems
simply by inserting the appropriate loading and support conditions. Consider the assemblage of two

//r% w/unit length

I |

wi Wi Wl Wl Wi
8 3 3 a 8
T/ 2 3 4 \5
WLZ W_Lz

i28 128
FIGURE 6.8 Idealization of a Beam Supporting a Uniformly Distributed Load
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FIGURE 6.9 Idealization of Beams into Beam-Elements
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FIGURE 6.10 Assemblage of Two Beam-Elements

3
-
i

beam—elements shown in Fig. 6.10. The stiffness matrices for the beam—elements 1-2 and 2-3 are
obtained from Eq. (6.44):

Vi 01 V2 0>
T 12/ —6/L37 [-12/L3 —6/L27]
| ki | ki s
i 2 1 i 2 1
[Ki2] = EI, |L~6/La 4Ly & 9/ 2/La (6.51)
r—12/L3 6/L37  [12/L3 6/L"
| ko P ka2 E
| | —6/L2 2/Lai | 6/L} 4/Ly
V2 0> V3 03
[T 12/L3 —6/L27 [—12/L} —6/L37]
i k2 P k2 i
! 2 [ 2 |
[Kx] = El, | L6/ e} | O/L 2/Ls ; (6.52)
F—12/L} 6L Ti2/E 6/L%
i k3 o k33 !
|| —6/L¢ 2/Lyi i 6/L 4/Ly i

The complete stiffness matrix is formed by superimposing [K,] and [K,3] as described in Example
6.1. Hence,

o121, 61, 121, 6l, 1
o oo o0
6l, 4, 6l, 21,
-— = — == 0 0
L2 L, L2 L,
121, 6l, I, 1 I, 1 121, 6l
-— = RIS+ 6l5-3] —— ——=
Ly L2 L} * L} L2 L7 L} L}
K] =E |0 (6.53)
6l, 2, I, 1, I, 1, 6l 21,
_ e o fla b Py e il il
L2 L L2 L L, L L? L,
0 0 121, 61, 121, 6l
L L L
b b b b
o o S A, Oy 4
L2 Ly L2 Ly
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i
Example 6.2
Determine the unknown nodal displacements and forces in the beam shown in Fig. 6.11. The beam is of uniform
section throughout.

The beam may be idealized into two beam—elements, 1-2 and 2-3. From Fig. 6.11, we see that v; = v3 =0,

Fy, = -W, M, = +M. Therefore, eliminating rows and columns corresponding to zero displacements from
Eq. (6.53), we obtain

Fyo=-W 27/2L3 9/2L* 6/L*> —3/2L*] (w
My=M { _ |9 /2L*  6/L  2/L  1/L 0, @
M; =0 6/L> 2/L 4/L 0 0;
M;=0 —3/2L> 1/L 0 2/L 0;

Equation (i) may be written such that the elements of [K] are pure numbers:

Fyo=-W 27 9 12 31 (w
MyL=Mm/L| EI| 9 12 4 2|]|6L .
My/L=0 Tl 12 4 8 o|)eL (i)
Msy/L=0 3 2 0 4|6

Expanding Eq. (ii) by matrix multiplication, we have

Gare =2 (05 2ot =15 o)
= (15 3n )+ 10 ee))

and

Equation (iv) gives

301
61L _ 2 2 V2 ()
0Lf | 3 1|letL :
4

&S

LM ;
-\ A
A

FIGURE 6.11 Beam of Example 6.
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Substituting Eq. (v) in Eq. (iii), we obtain

() =oml 5 ]{i)

from which the unknown displacements at node 2 are

4WL*  2ML?
Vy=—o— ————

9 EI 9 EI

2WL* 1ML

g, = 2T
2=5m T

In addition, from Eq. (v), we find that

SWL? | 1ML

OEI ' 6 EI
4WL* 1ML
9 EI 3 EI

1=

6; =

205

(vi)

Note that the solution has been obtained by inverting two 2 x 2 matrices rather than the 4 x 4 matrix of Eq. (ii).

This simplification has been brought about by the fact that M; = M3 = 0.

The internal shear forces and bending moments can now be found using Eq. (6.50). For the beam—element 1-2,

we have
12 6 12 6
Sy,IZ :E[<L—3V1—[79]—1?V2—I?92)
or
2 1M
Sz =3W =37
and
12 6 6 4 12 6
My =EI Ek_ﬁ vi + ﬁx+z 0, + _Ex+ﬁ
which reduces to
2 1M
Mpy==W-—-—
2 <3 3L)

FINITE ELEMENT METHOD FOR CONTINUUM STRUCTURES

In the previous sections, we have discussed the matrix method of solution of structures composed of el-
ements connected only at nodal points. For skeletal structures consisting of arrangements of beams, these
nodal points fall naturally at joints and at positions of concentrated loading. Continuum structures, such as
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flat plates, aircraft skins, shells, etc., possess no such natural subdivisions and must therefore be artificially
idealized into a number of elements before matrix methods can be used. These finite elements, as they are
known, may be two- or three-dimensional but the most commonly used are two-dimensional triangular
and quadrilateral shaped elements. The idealization may be carried out in any number of different ways,
depending on such factors as the type of problem, the accuracy of the solution required, and the time and
money available. For example, a coarse idealization involving a small number of large elements provides
a comparatively rapid but very approximate solution, while a fine idealization of small elements produces
more accurate results but takes longer and consequently costs more. Frequently, graded meshes are used,
in which small elements are placed in regions where high stress concentrations are expected, for example,
around cut-outs and loading points. The principle is illustrated in Fig. 6.12, where a graded system of
triangular elements is used to examine the stress concentration around a circular hole in a flat plate.

Although the elements are connected at an infinite number of points around their boundaries it is
assumed that they are interconnected only at their corners or nodes. Thus, compatibility of displace-
ment is ensured only at the nodal points. However, in the finite element method, a displacement pattern
is chosen for each element which may satisfy some, if not all, of the compatibility requirements along
the sides of adjacent elements.

Since we are employing matrix methods of solution, we are concerned initially with the determi-
nation of nodal forces and displacements. Therefore, the system of loads on the structure must be
replaced by an equivalent system of nodal forces. Where these loads are concentrated, the elements
are chosen such that a node occurs at the point of application of the load. In the case of distributed
loads, equivalent nodal concentrated loads must be calculated.”

The solution procedure is identical in outline to that described in the previous sections for skeletal
structures; the differences lie in the idealization of the structure into finite elements and the calculation
of the stiffness matrix for each element. The latter procedure, which in general terms is applicable to all
finite elements, may be specified in a number of distinct steps. We shall illustrate the method by estab-
lishing the stiffness matrix for the simple one-dimensional beam—element of Fig. 6.6, for which we
have already derived the stiffness matrix using slope—deflection.

FIGURE 6.12 Finite Element Idealization of a Flat Plate with a Central Hole
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Stiffness matrix for a heam—-element

The first step is to choose a suitable coordinate and node numbering system for the element and define
its nodal displacement vector {3°} and nodal load vector { F°}. Use is made here of the superscript e to
denote element vectors, since, in general, a finite element possesses more than two nodes. Again, we
are not concerned with axial or shear displacements, so that, for the beam—element of Fig. 6.6, we have

Vi Fy’j
0; M;
66 — 1 , Fe — 1
&) vj =1 r Vi
6; M;

Since each of these vectors contains four terms the element stiffness matrix [K°] is of order of 4 x 4.

In the second step, we select a displacement function which uniquely defines the displacement of all
points in the beam—element in terms of the nodal displacements. This displacement function may be
taken as a polynomial which must include four arbitrary constants, corresponding to the four nodal
degrees of freedom of the element:

v(x) = oy 4 opx + o3a® + o’ (6.54)

Equation (6.54) is of the same form as that derived from elementary bending theory for a beam
subjected to concentrated loads and moments and may be written in matrix form as

&
(v} =[x 2 24 2
A4
or in abbreviated form as
{v(0)} = [f ()} (6.55)

The rotation 8 at any section of the beam—element is given by 0v/Ox; therefore,
0 = o + 205x + 3oux’ (6.56)

From Egs. (6.54) and (6.56), we can write expressions for the nodal displacements v;, 0, and v;, 0; at
x = 0 and x = L, respectively. Hence,

Vi = g
6,’ = 0l
Vi = oy + oL + o3L? + oyl? (6.57)
e,' = oy + 203L + 3O(4L2
Writing Egs. (6.57) in matrix form gives
Vi 1 0 0 0 ol
;1 _(0 1 0 O o
vi( |1 L * L o3 (6.58)
0; 0 1 2L 317 oLy
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or
{6°} = [Al{a} (6.59)

The third step follows directly from Eqgs. (6.58) and (6.55), in that we express the displacement at
any point in the beam—element in terms of the nodal displacements. Using Eq. (6.59), we obtain

{o} = [A71]{8°} (6.60)
Substituting in Eq. (6.55) gives
{v(x)} = [F(0)][A7] {8} (6.61)
where [A™'] is obtained by inverting [A] in Eq. (6.58) and may be shown to be given by
1 0 0 0
0 1 0 0

A7 = (6.62)

-3/L* -2/L 3/L*> -—1/L
2/L3  1/L> =2/L3 1/L?
In step four, we relate the strain {€(x)} at any point x in the element to the displacement {v(x)} and

hence to the nodal displacements {6°}. Since we are concerned here with bending deformations only,
we may represent the strain by the curvature 9°v/0x”. Hence, from Eq. (6.54),

g—i‘; = 203 + 604X (6.63)
or in matrix form
&
{e} =002 6] zj (6.64)
0y
which we write as
{e} = [Cl{o} (6.65)
Substituting for {a} in Eq. (6.65) from Eq. (6.60), we have
{e} = [Cl[a7']{5"} (6.66)

Step five relates the internal stresses in the element to the strain {&} and hence, using Eq. (6.66), to
the nodal displacements {5°}. In our beam—element, the stress distribution at any section depends en-
tirely on the value of the bending moment M at that section. Therefore, we may represent a “state of
stress” {o} at any section by the bending moment M, which, from simple beam theory, is given by

v
M =EI 72
or

{o} = [El){e} (6.67)
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which we write as
{c} = [D|{e} (6.68)

The matrix [D] in Eq. (6.68) is the “elasticity” matrix relating “stress” and “strain.” In this case, [D]
consists of a single term, the flexural rigidity EI of the beam. Generally, however, [D] is of a higher
order. If we now substitute for {e} in Eq. (6.68) from Eq. (6.66), we obtain the “stress” in terms of the
nodal displacements; that is,

{o} = DI[C][A7"]{5°} (6.69)
The element stiffness matrix is finally obtained in step six, in which we replace the internal “stresses”
{c} by a statically equivalent nodal load system {F°}, thereby relating nodal loads to nodal displace-
ments (from Eq. (6.69)) and defining the element stiffness matrix [K°]. This is achieved by employing

the principle of the stationary value of the total potential energy of the beam (see Section 5.8), which
comprises the internal strain energy U and the potential energy V of the nodal loads. Thus,

U+V= %J I{S}T{c}d(vol) — {8} {F*} (6.70)

Substituting in Eq. (6.70) for {€} from Eq. (6.66) and {c} from Eq. (6.69), we have

vrv= %LOI{??}T[A“JT[CF[D] [C)[A"{5" Hd(vol) — {5} {F*} (6.71)

The total potential energy of the beam has a stationary value with respect to the nodal displacements
{8°}T; hence, from Eq. (6.71),

A= | e ol e atvo) ~ 7) =0 672
from which
()= || e Tl n oo | ) 673
or, writing [C][A™"] as [B], we obtain
()= || oisaon)| ) (6.74)
from which the element stiffness matrix is clearly
k) = || s mlelaon| (675
From Egs. (6.62) and (6.64) we have )
1 0 0 0
0 1 0 0

[B} = [C][A_]] = [O 0 2 6x] —3/L2 —2/L 3/L2 —l/L

2/ /L2 —2/1° 1/1?

or
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[ 6 12x7
NZANE
4+6x
. L' L2
B]" = 6 12 (6.76)
2 I3
2, &
L' L2
Hence,
6 12x]
ZANE
4  6x
LT 6 12 4 6x 6 12 2 6
] _ b X 2, b 1 2 W
[KFL 6 12 EN-pt T e L%
L2 L3
2,6
L' 12
which gives
12 —6L —12  —6L
El | —6L 4I7 6L 212
KI=G-12 e 12 6L 677
—6L 2I? 6L 412

Equation (6.77) is identical to the stiffness matrix (see Eq. (6.44)) for the uniform beam of Fig. 6.6.
Finally, in step seven, we relate the internal “stresses,” { G}, in the element to the nodal displace-
ments {6°}. This has in fact been achieved to some extent in Eq. (6.69), namely,

{o} = DI[C][A7"]{5°}
or, from the preceding,
{o} = [DI[BI{5°} (6.78)
Equation (6.78) is usually written
{o} = [H|{5°} (6.79)

in which [H] = [D][B] is the stress—displacement matrix. For this particular beam—element, [D] = EI
and [B] is defined in Eq. (6.76). Thus,

12, 4 12 2
H] = [E1] _£+ X 6x 6 X 6x

ot LT LT (©:50)
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Stiffness matrix for a triangular finite element

Triangular finite elements are used in the solution of plane stress and plane strain problems. Their ad-
vantage over other shaped elements lies in their ability to represent irregular shapes and boundaries
with relative simplicity.

In the derivation of the stiffness matrix, we shall adopt the step-by-step procedure of the previous
example. Initially, therefore, we choose a suitable coordinate and node numbering system for the
element and define its nodal displacement and nodal force vectors. Figure 6.13 shows a triangular
element referred to axes Oxy and having nodes i, j, and k lettered counterclockwise. It may be shown
that the inverse of the [A] matrix for a triangular element contains terms giving the actual area of the
element; this area is positive if the preceding node lettering or numbering system is adopted. The element
is to be used for plane elasticity problems and has therefore two degrees of freedom per node, giving a
total of six degrees of freedom for the element, which results in a 6 x 6 element stiffness matrix [K°]. The
nodal forces and displacements are shown, and the complete displacement and force vectors are

u; Fx,i
vi Fy;
ey =" p=4 1t 6.81)
vj Fyj
Uk Fx,k
Vi Fy,k

We now select a displacement function which must satisfy the boundary conditions of the element, that is,
the condition that each node possesses two degrees of freedom. Generally, for computational purposes, a
polynomial is preferable to, say, a trigonometric series, since the terms in a polynomial can be calculated
much more rapidly by a digital computer. Furthermore, the total number of degrees of freedom is six, so
that only six coefficients in the polynomial can be obtained. Suppose that the displacement function is

u(x,y) = o + X + o3y } (6.82)

v(x,y) = o4 + olsX + 06y

Fy ks Vi

> X

0]
FIGURE 6.13 Triangular Element for Plane Elasticity Problems
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The constant terms, o; and o, are required to represent any in-plane rigid body motion, that is, motion
without strain, while the linear terms enable states of constant strain to be specified; Eqgs. (6.82) ensure
compatibility of displacement along the edges of adjacent elements. Writing Egs. (6.82) in matrix
form gives

Ol
25

u(x,y)] |1 x y 0 0 0]) o3

{v(x,y)}_{o 0 01 x y|)o (6.83)
Ols
Qg

Comparing Eq. (6.83) with Eq. (6.55), we see that it is of the form
{”(” )} = [£(y){o} (6.84)
v(x,y)

Substituting values of displacement and coordinates at each node in Eq. (6.84), we have, for node i,

u; . 1 Xi Yi 0O 0 O
{v,-}{o 00 1 x y,}{“}

Similar expressions are obtained for nodes j and k, so that, for the complete element, we obtain

u; 1 Xi Vi 0 O 0 o4]
Vi 0 0 0 1 x /)
U; _ 1 Xi Yy 0 0 0 o3
Zi - 0 O 0 1 XY oy (685)
Uy 1 Xk Yk 0 O 0 Qs
Vi 0 O 0 1 Xk Yk Qg
From Eq. (6.81) and by comparison with Egs. (6.58) and (6.59), we see that Eq. (6.85) takes the form
{6} = [A{a}

Hence (step 3), we obtain
{a} = [A7"){8°} (compare with Eq. (6.60))
The inversion of [A], defined in Eq. (6.85), may be achieved algebraically, as illustrated in Example

6.3. Alternatively, the inversion may be carried out numerically for a particular element by computer.
Substituting for {a} from the preceding into Eq. (6.84) gives

u(x,y) | _ iy _
{v(x,y) } =[f(x,y)][A'{8°} (compare with Eq. (6.61)) (6.86)
The strains in the element are
Ex
feh=q5 (6.87)
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From Eqgs. (1.18) and (1.20), we see that
Ou ov ou Ov
X — 7. ) v — A a_ 688
BT ¥ dy Tay Oy + Ox (6.88)
Substituting for u and v in Eqgs. (6.88) from Eqs. (6.82) gives
Ex = 0y
&y = O¢
YXy =03 + o5
or in matrix form
A
010000 §2
{ey=]10 0 0 0 0 1 Of (6.89)
001010 4
s
A
which is of the form
{e} = [C]{a} (see Egs. (6.64) and (6.65))

Substituting for {a}(= [A’l] {5°}), we obtain

{e} = [C][A7']{8°} (compare with Eq. (6.66))
or
{e} = [B{5°}
where [C] is defined in Eq. (6.89).

In step five, we relate the internal stresses { o} to the strain {&} and hence, using step four, to the
nodal displacements {3°}. For plane stress problems,

(see Eq. 6.76)

o,
{c} =1 o, (6.90)
Tyy
and
_%x_VSy
“TEE
O, VO,
5T F T E (see Chapter 1)
Ty 2(14+v)
Xy = E = E Txy
Thus, in matrix form,
o | 1 —v 0 (8
{e} =145 =z —v 1 0 cy (6.91)
Yy 0 0 2(1+v) Tyy



214 CHAPTER 6 Matrix methods

It may be shown that (see Chapter 1)

o 1 v 0 c
* E v 1 0 i
{c} =<0y p = 5 1 €y (6.92)
o[ 1=V 0 S|y,
which has the form of Eq. (6.68); that is,
{c} = [Dl{e}

Substituting for {€} in terms of the nodal displacements {3}, we obtain
{o} = [D][B]{&°} (see Eq. (6.69))

In the case of plane strain, the elasticity matrix [D] takes a different form to that defined in Eq. (6.92).
For this type of problem,

E E E

Gy VO, VO
gy =————

E E E

G, VO, VO,

=22 Yo YO

““FE E

Ty 2(14vV)
’Y\y_é: E T‘)

1 0
1—v
Oy \Y €

x E(1—v) 1 0 )
= y g = |7 : 6.93
{G} SV (1 + V)(l _ 2V) 1 A% 8) ( )

o 0 o =am it

2(1—v)
which again takes the form
{c} = [Dl{e}

Step six, in which the internal stresses {c} are replaced by the statically equivalent nodal forces
{F°}, proceeds in an identical manner to that described for the beam—element. Thus,

() = || _olel a5

as in Eq. (6.74), whence

k) = || lel avon)
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In this expression [B] = [C] [A™Y], where [A] is defined in Eq. (6.85) and [C] in Eq. (6.89). The elasticity
matrix [D] is defined in Eq. (6.92) for plane stress problems or in Eq. (6.93) for plane strain problems.
We note that the [C], [A] (therefore [B]), and [D] matrices contain only constant terms and may there-
fore be taken outside the integration in the expression for [K°], leaving only [d(vol), which is simply the
area A of the triangle times its thickness ¢. Thus,

K] = [[B]" [D][B]A{] (6.94)
Finally, the element stresses follow from Eq. (6.79); that is,

{o} = [H|{5°}
where [H] = [D][B] and [D] and [B] have previously been defined. It is usually found convenient to plot
the stresses at the centroid of the element.

Of all the finite elements in use, the triangular element is probably the most versatile. It may be used
to solve a variety of problems ranging from two-dimensional flat plate structures to three-dimensional
folded plates and shells. For three-dimensional applications, the element stiffness matrix [K*] is trans-
formed from an in-plane xy coordinate system to a three-dimensional system of global coordinates by
the use of a transformation matrix similar to those developed for the matrix analysis of skeletal struc-
tures. In addition to the above, triangular elements may be adapted for use in plate flexure problems and
for the analysis of bodies of revolution.

|
Example 6.3
A constant strain triangular element has corners 1(0, 0), 2(4, 0), and 3(2, 2) referred to a Cartesian Oxy axes system
and is 1 unit thick. If the elasticity matrix [D] has elements Dy = Dy, = a, D, =Dy =b,D 3 =Dy3 =D3, =
D3, = 0 and D33 = ¢, derive the stiffness matrix for the element.

From Eq. (6.82),

up = o —+ OLQ(O) + OL‘;(O)

that is,
up = 0oy Q)
ur = oy + 0(4) 4 03(0)
that is,
Uy = oy + 4oy (ii)
uz = oy + 0a(2) + 03(2)
that is,
uz = o + 200 + 203 (iii)
From Eq. (i),
o = Uy (iv)
and, from Eqs (ii) and (iv),
on=20 )
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Then, from Egs (iii) to (v),

QU — Uy —
e i)

Substituting for oy, o, and o3 in the first of Eqs. (6.82) gives

_ U — Uy ) 2M3—M1—M2
uful—O—( 1 >A+< 2 )y

or
—(1_*_7 x_y Y i
“= (1 4 4)”1+<4 4)“”2”3 (vid
Similarly,
(15D (D
Now, from Eq. (6.88),
. ou w
T ox 4 4
ov Vi Vo w3

and
_Ou Ov w uwy v v
Y9y ox 4 4 44
Hence,
@ up
ox
Vi
) -1 0 1 0 0 0
. v 1 us .
[BI{d°} = ) =-]1 0 -1 0 -1 0 2 (ix)
y 4 V)
-1 -1 -1 1 2 0
ou Ov u3
- + R
dy Ox V3
Also,
a b 0
Dl=1{b a 0
0 0 ¢
Hence,
. —a —b a —b 0 2b
[D][B] = 1 -b —a b —a 0 2a

—c —c —c c 2¢ 0
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and
[a+c b+c¢c —a+c¢c b—c —2c¢ -=2b]
b+c a+c¢c —-b+c¢c a—c —2c¢ —2a
1 |—-a+c¢c -b+c a+c¢c —-b—c —2c 2b
[B]"[D][B] = —
16| b—c a—c —-b—c a+c 2¢c  —2a
—2c —2c —2c 2¢ 4c 0
—2b —2a 2b —2a 0 da |

Then, from Eq. (6.94),

[ a+c b+c —a+c b—c —2c -2b7
b+c at+c —b+c a—c —2c —2a
. —a+c¢ —-b+c a+c —-b—c —2¢ 2b
[K]:Z b—c a—c —-b—c a+c 2¢c  —2a
—2c —2c —2c 2¢ 4c 0
—2b —2a 2b —2a 0 da |

Stiffness matrix for a quadrilateral element
Quadrilateral elements are frequently used in combination with triangular elements to build up partic-

ular geometrical shapes.
Figure 6.14 shows a quadrilateral element referred to axes Oxy and having corner nodes, i, j, k, and /;

the nodal forces and displacements are also shown and the displacement and force vectors are

Fy, ko Vi

YA Fyvi T

—> Fy ko Uk

Fx 1o Uy —>
F . v
vV
Fyy,-, T
—)FXYII‘ u;
Fy, i U —> d j
i
0 X

FIGURE 6.14 Quadrilateral element Subjected to Nodal In-Plane Forces and Displacements
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u; Fy;
Vi Fy;
u; FXJ'
(51 = vj {Fe} = Fyj (6.95)
ue (7 Frx '
Vi Fy,k
u Fyi
% Fy’]

As in the case of the triangular element, we select a displacement function that satisfies the total of eight
degrees of freedom of the nodes of the element; again this displacement function is in the form of a
polynomial with a maximum of eight coefficients:

u(x,y):a1+oczx+oc3y+oc4xy} (6.96)

v(x,y) = 05 + dex + 07y + Olgxy

The constant terms, o; and a5, are required, as before, to represent the in-plane rigid body motion of the
element, while the two pairs of linear terms enable states of constant strain to be represented throughout
the element. Further, the inclusion of the xy terms results in both the u (x, y) and v (x, y) displacements
having the same algebraic form, so that the element behaves in exactly the same way in the x direction
as it does in the y direction.

Writing Eqgs. (6.96) in matrix form gives

048]
()
A3
1 x y x» 00 0 O Oly
}_[0 00 0 1 x vy xy|) os 6.97)
o3
o7
g

or

{Z((jfj i))} = [F(ry)H{e) (6.98)

Now, substituting the coordinates and values of displacement at each node, we obtain

U; 1 Xi  Yi  XiVi 0 O 0 0 o5}
Vi 0 O 0 0 1 Xi Vi  Xi)i o
U; 1 Xi Y Xy 0 0 0 0 o3
v Ll _ |0 0 O 0 1 x vy xv Oly
Uy - 1 Xt Y o XYk 0 0 0 0 Qs (699)
Vi 0 O 0 0 1 Xk Yo XiYk Qg
uj 1 x Yo Xy 0 0 0 0 o7
1% L 0 0 0 0 1 XY Xy og
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which is of the form

{6°} = [Al{a}
Then,
{a} = [A’l] {6°} (6.100)

The inversion of [A] is illustrated in Example 6.4 but, as in the case of the triangular element, is most
easily carried out by means of a computer. The remaining analysis is identical to that for the triangular
element except that the {e}—{a} relationship (see Eq. (6.89)) becomes
A
£%)
A3
g
As
Ao
A7
g

{e} = (6.101)

(= e iNe]
S O =
— O O
= O'<
(=R
— O O
(=]
<~ = O

|
Example 6.4

A rectangular element used in a plane stress analysis has corners whose coordinates (in metres), referred to an Oxy
axes system, are 1(-2, —1), 2(2, —1), 3(2, 1), and 4(-2, 1); the displacements (also in metres) of the corners are

u =0.001, u=0.003, u3=-0.003, us=0
v = —0.004, v, =-0.002, v;=0.001, vq=0.001

If Young’s modulus £ = 200,000 N/mm? and Poisson’s ratio v = 0.3, calculate the stresses at the center of the
element.
From the first of Egs. (6.96),

up = oy — 20p — o3 + 204 = 0.001 @)
Uy = o + 20 — oz — 204 = 0.003 (i)
uz = oy + 20 + o3 + 204 = —0.003 (iii)
Uy =0y — 200 + oz — 204 =0 >iv)
Subtracting Eq. (ii) from Eq. (1),

o — oy = 0.0005 (v)

Now, subtracting Eq. (iv) from Eq. (iii),
oy + oy = —0.00075 (vi)

Then, subtracting Eq. (vi) from Eq. (v),
oy = —0.000625 (vii)

whence, from either Eq. (v) or (vi),

ap = —0.000125 (viii)
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Adding Egs. (i) and (ii),

o — oz = 0.002 (ix)
Adding Egs. (iii) and (iv),
o + o3 = —0.0015 (x)
Then, adding Egs. (ix) and (x),
a; = 0.00025 (xi)
and, from either Eq. (ix) or (x),
az = —0.00175 (xii)

The second of Eqgs. (6.96) is used to determine o5, o, 017, Og in an identical manner to the preceding. Thus,

as = —0.001

o = 0.00025

o7 = 0.002

ag = —0.00025
Now, substituting for o, o, ..., og in Egs. (6.96),

u; = 0.00025 — 0.000125x — 0.00175y — 0.000625xy
and
v; = —0.001 4 0.00025x + 0.002y — 0.00025xy

Then, from Egs. (6.88),
ou

£ = = = —0.000125 — 0.000625y
ox
B
g = 8—‘; = 0.002 — 0.00025x
v =202 00015 - 0.000625x — 000025y
Y dy  Ox

Therefore, at the center of the element (x = 0, y = 0),

& = —0.000125
g, = 0.002
Yy = —0.0015
so that, from Eqgs. (6.92),
E 200,000
O, = - (&x + vgy) = o0 [—0.000125 + (0.3 x 0.002)]
that is,
o, = 104.4 N/mm?
E 200,000
G, = T (& + vey) = 1-032 [0.002 + (0.3 x 0.000125)]
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that is,
oy = 431.3N/mm’
and
E 1 E
v = oy % 5 (0 = 5

Thus,

i % x (~0.0015)
that is,

T,y = —115.4 N/mm?
m

The application of the finite element method to three-dimensional solid bodies is a straightforward ex-
tension of the analysis of two-dimensional structures. The basic three-dimensional elements are the tetra-
hedron and the rectangular prism, both shown in Fig. 6.15. The tetrahedron has four nodes, each possessing
3 degrees of freedom, a total of 12 degrees of freedom for the element, while the prism has eight nodes and
therefore a total of 24 degrees of freedom. Displacement functions for each element require polynomials in
X, y, and z; for the tetrahedron, the displacement function is of the first degree with 12 constant coefficients,
while that for the prism may be of a higher order to accommodate the 24 degrees of freedom. A develop-
ment in the solution of three-dimensional problems has been the introduction of curvilinear coordinates.
This enables the tetrahedron and prism to be distorted into arbitrary shapes that are better suited for fitting
actual boundaries. For more detailed discussions of the finite element method, reference should be made to
the work of Jenkins,” Zienkiewicz and Cheung,” and to the many research papers published on the method.

New elements and new applications of the finite element method are still being developed, some of
which lie outside the field of structural analysis. These fields include soil mechanics, heat transfer, fluid
and seepage flow, magnetism, and electricity.

FIGURE 6.15 Tetrahedron and rectangular Prism Finite Elements for Three-Dimensional Problems
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[
Example 6.4 MATLAB
Repeat Example 6.4 using MATLAB. Use matrix methods when possible.

Values for the stresses in the element, rounded to the first decimal place, are obtained through the following
MATLAB file:

% Declare any needed variables

E=200000; % Youngs Modulus

v_p=0.3; %Poisson’s ratio

x=[-222-2]"; %x-location of corners

y=1[-1-111]1"; %y-locationof corners
u=1[0.0010.003-0.0030]; %x-displacement of corners
v=1[-0.004-0.0020.0010.001]; %y-displacement of corners

% Calculate alpha values using Eqs (6.99) and (6.100)
A= zeros(8,8);

delta = zeros(8,1);

fori=1:1:4

ACCI-1)%241,:) =[1 x(1) y(i) x(i)*y(i)00007;
AC(T-1)%242,:)=[00001 x(i) y(i)x(i)*y(i)l;
delta((i-1)*2+1) =u(i);

delta((i-1)*2+42) =v(i);

end

alpha =A\delta;

% Calculate the strains at the center (x=0,y=0) of the element using Eq. (6.101)
x=0;

y=0;

B=[010y0000;

0000001 x;

001x010y1;

strain=B*alpha;

% Calculate the stressesusing Eq. (6.92)
C=[1v_pO0;

v_p1l0;

00 (1-v_p)/2];
sig=E/(1-v_p*2)*(C*strain);

% Output stresses rounded to the first decimal to the Command Window
disp([*sig_x="num2str(round(sig(1)*10)/10) ‘N/mm*2°1)
disp([*sig_y =" num2str(round(sig(2)*10)/10) ‘N/mm*2°1)
disp([‘tau_xy =" num2str(round(sig(3)*10)/10) ‘N/mm~2°1)

The Command Window outputs resulting from this MATLAB file are as follows:

sig_x=104.4 N/mm"~2
sig_y =431.3 N/mm"~2
tau_xy = -115.4 N/mm*2
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PROBLEMS

P.6.1. Figure P.6.1 shows a square symmetrical pin-jointed truss 1234, pinned to rigid supports at 2 and
4 and loaded with a vertical load at 1. The axial rigidity FA is the same for all members. Use the stiff-
ness method to find the displacements at nodes 1 and 3 and solve for all the internal member forces and
support reactions.

Answer:  v; = —PL/+\/2AE, v3 = —0.293PL/AE, S;» =P/2 =S,
Sy3 = —0.207P = S43, S;3 = 0.293P
Fip=—F.4=0207P, Fyy=F,4=P/2.

P.6.2. Use the stiffness method to find the ratio H/P for which the displacement of node 4 of the plane
pin-jointed frame shown loaded in Fig. P.6.2 is zero and, for that case, give the displacements of nodes
2 and 3. All members have equal axial rigidity EA.

Answer: H/P =0.449, v, = —4P1/(9 + 2+/3)AE,
vs = —6PL/(9 + 2+/3)AE.

P.6.3. Form the matrices required to solve completely the plane truss shown in Fig. P.6.3 and determine
the force in member 24. All members have equal axial rigidity.

Answer: S, = 0.

P.6.4. The symmetrical plane rigid jointed frame 1234567, shown in Fig. P.6.4, is fixed to rigid sup-
ports at 1 and 5 and supported by rollers inclined at 45° to the horizontal at nodes 3 and 7. It carries a
vertical point load P at node 4 and a uniformly distributed load w per unit length on the span 26. As-
suming the same flexural rigidity EI for all members, set up the stiffness equations which, when solved,
give the nodal displacements of the frame. Explain how the member forces can be obtained.

P.6.5. The frame shown in Fig. P.6.5 has the planes xz and yz as planes of symmetry. The nodal co-
ordinates of one quarter of the frame are given in Table P.6.5(i). In this structure, the deformation of
each member is due to a single effect, this being axial, bending, or torsional. The mode of deformation
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FIGURE P.6.1

FIGURE P.6.2
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FIGURE P.6.3
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of each member is given in Table P.6.5(ii), together with the relevant rigidity. Use the direct stiffness
method to find all the displacements and hence calculate the forces in all the members. For member
123, plot the shear force and bending moment diagrams. Briefly outline the sequence of operations in a
typical computer program suitable for linear frame analysis.

Answer:  Syy = Spg = v/2P/6 (tension)
M3 = —M, = PL/9 (hogging), M, = 2PL/9 (sagging)
SF1; = —SF23 =P/3

Twisting moment in 37, PL/18 (counterclockwise).
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FIGURE P.6.5

Table P.6.5(i) Nodal Coordinates

Node x y z

0 0 0
3 L 0 0
7 L 0.8L 0
9 L 0 L

Table P.6.5(ii) Mode of Defprmation

Effect
Member Axial Bending Torsional
23 — EI —
37 — o — GJ = 0. 8EI
29 EA = 6\/§L—2 — _

P.6.6. Given that the force—displacement (stiffness) relationship for the beam—element shown in
Fig. P.6.6(a) may be expressed in the following form:

F»] 12 -6 —-12 -6 Vi
ML\ EI| -6 4 6 2|)6L
Foo (L3|-12 6 12 6| v
M,/L -6 2 6 4]|6L

Obtain the force—displacement (stiffness) relationship for the variable section beam (Fig. P.6.6(b)),
composed of elements 12, 23, and 34. Such a beam is loaded and supported symmetrically, as shown in
Fig. P.6.6(c). Both ends are rigidly fixed and the ties FB, CH have a cross-section area a; and the ties
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FIGURE P.6.6

EB, CG a cross-section area a,. Calculate the deflections under the loads, the forces in the ties, and all
other information necessary for sketching the bending moment and shear force diagrams for the beam.
Neglect axial effects in the beam. The ties are made from the same material as the beam.

vg = vc = —5PL3/144El, 05 = —0c = PL?/24EI,

S; =2P/3,8, =2 P/3,
Fya=P/3,Ms = —PL/4.

Answer:
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FIGURE P.6.7

P.6.7. The symmetrical rigid jointed grillage shown in Fig. P.6.7 is encastré at 6, 7, 8, and 9 and rests on
simple supports at 1, 2, 4, and 5. It is loaded with a vertical point load P at 3. Use the stiffness method
to find the displacements of the structure and calculate the support reactions and the forces in all the
members. Plot the bending moment diagram for 123. All members have the same section properties and
GJ = 0.8EI.

Answer: Fy,; =F;s=—P/16
Fyo=Fy4=9P/16
My = Mys = —PI1/16 (hogging)
M3 = M3 = —PI/12 (hogging) Twisting moment in 62, 82, 74, and 94 is PI/96.

P.6.8. It is required to form the stiffness matrix of a triangular element 123 with coordinates (0, 0), (a,
0), and (0, a), respectively, to be used for “plane stress” problems.

(a) Form the [B] matrix.

(b) Obtain the stiffness matrix [K°].
Why, in general, is a finite element solution not an exact solution?

P.6.9. It is required to form the stiffness matrix of a triangular element 123 for use in stress analysis
problems. The coordinates of the element are (1, 1), (2, 1), and (2, 2), respectively.
(a) Assume a suitable displacement field explaining the reasons for your choice.
(b) Form the [B] matrix.
(¢) Form the matrix that gives, when multiplied by the element nodal displacements, the
stresses in the element. Assume a general [D] matrix.

P.6.10. It is required to form the stiffness matrix for a rectangular element of side 2a x 2b and thickness
t for use in “plane stress” problems.

(a) Assume a suitable displacement field.

(b) Form the [C] matrix.

(¢) Obtainf [C]"[D][C]dV.
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Note that the stiffness matrix may be expressed as
K= | eroliciavia

P.6.11. A square element 1234, whose corners have coordinates x, y (in metres) of (-1, —1), (1, —1),
(1, 1), and (-1, 1), respectively, was used in a plane stress finite element analysis. The following nodal
displacements (mm) were obtained:

uy =01 =03 u3=06 wuy=0.1
vi=01 v»w=03 v=07 vy=0.5

If Young’s modulus E = 200,000 N/mm? and Poisson’s ratio v = 0.3, calculate the stresses at the center
of the element.

Answer: G, =51.65N/mm?, o, =5549N/mm? 1, = 13.46 N/mm?

P.6.12. A rectangular element used in plane stress analysis has corners whose coordinates in metres
referred to an Oxy axes system are 1(-2,-1),2(2,-1), 3(2, 1), 4(-2, 1). The displacements of the corners
(in metres) are

up =0.001 wu, =0.003 u3 =-0.003 wus =0

vi = —0.004 v, =-0.002 v3=0.001 v4=0.001

If Young’s modulus is 200,000 N/mm? and Poisson’s ratio is 0.3, calculate the strains at the center of
the element.

Answer: g, = —0.000125, ¢, =0.002, vy,, =—0.0015.

P.6.12 MATLAB Use MATLAB to repeat Problem P.6.12. In addition, calculate the strains at the
following (x,y) locations in the element:

(=1,05)  (0,0.5)  (1,0.5)

(-1,0) (0,0) (1,0)
(=1,-0.5) (0,—0.5) (1,-0.5)

Answer: (i) (x,y) = (=1,0.5),& = —0.0004375, ¢, = 0.0023,7,, = —0.0010
(i) (x,y) = (0,0.5),& = —0.0004375, &, = 0.0020,y,, = —0.0016
(iii) (x,y) = (1,0.5), 8, = —0.0004375, &, = 0.0018,y,, = —0.0023
(iv) (x,y) = (~1,0),& = —0.000125, &, = 0.0023,y,, = —0.000875
V) (%,y) = (0,0),& = —0.000125, &, = 0.0020,y,, = —0.0015
(vi) (x,y) = (1,0),sx = —0.000125, &, = 0.0018,y,, = —0.0021
(vii) (x,y) = (-1, 0. 5) &, = 0.0001875, &, = 0.0023,7v,, = —0.00075
(viii) () = (0,—0.5), £ — 0.0001875, &, — 0.002, 7, — —0.0014
(ix) (x,y) = (1,-0.5),&, = 0.0001875,¢, = 0.0018,y,, = —0.002

P.6.13. A constant strain triangular element has corners 1(0,0), 2(4,0), and 3(2,2) and is 1 unit thick. If
the elasticity matrix [D] has elements Dy = Dy, =a,D, =D,y =b,D 3 =D,3 = D3, =D3; =0and
D53 = ¢, derive the stiffness matrix for the element.
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Answer: a+c
b+c a—+c
e l|—a+c —b+c a+c
[ }_Z b—c a—-c¢c —-b—c a+c
—2c —2c —2c 2c 4c
—2b —2a 2b —2a 0 4da

P.6.14. The following interpolation formula is suggested as a displacement function for deriving the
stiffness of a plane stress rectangular element of uniform thickness ¢# shown in Fig. P.6.14.

1
u——
4ab
Form the strain matrix and obtain the stiffness coefficients K;; and K, in terms of the material
constants ¢, d, and e defined next. In the elasticity matrix [D],

Dll :D22:CD12:dD33:€ and D13:D23:O

[(@ =x)(b = y)ur + (a +x)(b = y)us + (a + x)(b + y)us + (a — x) (b + y)ua]

Answer: Ky =t(4c+e)/6, Kp=td+e)/4

2b =4 p

2a=2

FIGURE P.6.14
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CHAPTER

Bending of thin plates

Generally, we define a thin plate as a sheet of material whose thickness is small compared with its other
dimensions but which is capable of resisting bending in addition to membrane forces. Such a plate
forms a basic part of an aircraft structure, being, for example, the area of stressed skin bounded by
adjacent stringers and ribs in a wing structure or by adjacent stringers and frames in a fuselage.

In this chapter, we investigate the effect of a variety of loading and support conditions on the small
deflection of rectangular plates. Two approaches are presented: an “exact” theory based on the solution
of a differential equation and an energy method relying on the principle of the stationary value of the
total potential energy of the plate and its applied loading. The latter theory is used in Chapter 9 to
determine buckling loads for unstiffened and stiffened panels.

PURE BENDING OF THIN PLATES

The thin rectangular plate of Fig. 7.1 is subjected to pure bending moments of intensity M, and M, per
unit length uniformly distributed along its edges. The former bending moment is applied along the
edges parallel to the y axis, the latter along the edges parallel to the x axis. We assume that these bend-
ing moments are positive when they produce compression at the upper surface of the plate and tension
at the lower.

If we further assume that the displacement of the plate in a direction parallel to the z axis is small
compared with its thickness 7 and sections which are plane before bending remain plane after bending,
then, as in the case of simple beam theory, the middle plane of the plate does not deform during the
bending and is therefore a neutral plane. We take the neutral plane as the reference plane for our system
of axes.

Let us consider an element of the plate of side xdy and having a depth equal to the thickness ¢ of the
plate, as shown in Fig. 7.2(a). Suppose that the radii of curvature of the neutral plane # are p, and p, in
the xz and yz planes, respectively (Fig. 7.2(b)). Positive curvature of the plate corresponds to the pos-
itive bending moments which produce displacements in the positive direction of the z or downward
axis. Again, as in simple beam theory, the direct strains €, and €, corresponding to direct stresses
6, and o, of an elemental lamina of thickness 8z a distance z below the neutral plane are given by

Z Z
& =—, & =— (7.1)
Py Py
Referring to Egs. (1.52), we have
1 1
& =—(oy —voy), & =—(o,—Voy) (7.2)
E E
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FIGURE 7.1 Plate Subjected to Pure Bending

N

(a) (b)
FIGURE 7.2 (a) Direct Stress on Lamina of Plate Element; (b) Radii of Curvature of Neutral Plane

Substituting for €, and &, from Egs. (7.1) into (7.2) and rearranging gives

k2 1 %

GX*]—VZ E+Ey
(7.3)

_ Ez 1 %

YT p_) o

As would be expected from our assumption of plane sections remaining plane, the direct stresses vary
linearly across the thickness of the plate, their magnitudes depending on the curvatures (i.e., bending
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moments) of the plate. The internal direct stress distribution on each vertical surface of the element
must be in equilibrium with the applied bending moments. Thus,

t/2
M. by = J G,z0ydz
—t/2
and
t/2
M,dx = J G,z0xdz
—t/2

Substituting for ¢, and o, from Egs. (7.3) gives

t/2 E 2 1
M, = J z 5| —+ Y dz
—t/2 l—v Px Py

2 E2 (1 v
M, = s\ —+— | dz
—t/2 1—v py Px

Let
t/2 E22 E[3
D= dz = 7.4
J_,/zl—\ﬂ TRO-W 74
Then,
1 \Y
M,=D|—+— (7.5)
Py Py
1 \Y
My=D|—+— (7.6)
Py Py

in which D is known as the flexural rigidity of the plate.
If w is the deflection of any point on the plate in the z direction, then we may relate w to the curvature
of the plate in the same manner as the well-known expression for beam curvature:
1 Pw 1 O*w

pe O p, O
the negative signs resulting from the fact that the centers of curvature occur above the plate, in which

region z is negative. Equations (7.5) and (7.6) then become

O*w Pw

O*w 82w>

My =-D (8—}/2—"_\}@ (78)
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FIGURE 7.3 Anticlastic Bending

Equations (7.7) and (7.8) define the deflected shape of the plate provided that M, and M, are known.
If either M, or M, is zero, then

0w v 0w Pw v Pw

oy or =y =

Ox? Oy? 0y? Ox?
and the plate has curvatures of opposite signs. The case of M, = 0 is illustrated in Fig. 7.3. A surface
possessing two curvatures of opposite sign is known as an anticlastic surface, as opposed to a synclastic
surface, which has curvatures of the same sign. Further, if M, = M, = M, then from Eqgs. (7.5) and (7.6),

1 I 1

PeoPP
Therefore, the deformed shape of the plate is spherical and of curvature

1 M

» DY) 79

PLATES SUBJECTED TO BENDING AND TWISTING

In general, the bending moments applied to the plate will not be in planes perpendicular to its edges.
Such bending moments, however, may be resolved in the normal manner into tangential and perpen-
dicular components, as shown in Fig. 7.4. The perpendicular components are seen to be M, and M, as
before, while the tangential components M,, and M,, (again, these are moments per unit length)

FIGURE 7.4 Plate Subjected to Bending and Twisting
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produce twisting of the plate about axes parallel to the x and y axes. The system of suffixes and the sign
convention for these twisting moments must be clearly understood to avoid confusion. M, is a twisting
moment intensity in a vertical x plane parallel to the y axis, while M, is a twisting moment intensity in a
vertical y plane parallel to the x axis. Note that the first suffix gives the direction of the axis of the
twisting moment. We also define positive twisting moments as being clockwise when viewed along
their axes in directions parallel to the positive directions of the corresponding x or y axis. In
Fig. 7.4, therefore, all moment intensities are positive.

Since the twisting moments are tangential moments or torques they are resisted by a system of hor-
izontal shear stresses T,,, as shown in Fig. 7.6. From a consideration of complementary shear stresses
(see Fig. 7.6), M, = —M,,, so that we may represent a general moment application to the plate in terms
of M, M,, and M, as shown in Fig. 7.5(a). These moments produce tangential and normal moments, M,
and M, on an arbitrarily chosen diagonal plane FD. We may express these moment intensities (in an
analogous fashion to the complex stress systems of Section 1.6) in terms of M., M, and M,,. Thus, for
equilibrium of the triangular element ABC of Fig. 7.5(b) in a plane perpendicular to AC

M,AC = MAB cosa. + M,BC sino. — M, AB sinot — M,,BC cosa.
giving
M, = M, cos’o. + M, sin’o, — M,, sin2a (7.10)
Similarly, for equilibrium in a plane parallel to CA,
M;AC = M AB sino. — M,BC cosa. + M,,AB cosa. — M,,BC sina.

or

M—i(M"—My) in 20+ M 2 7.11
= 5 sin 200 + M., cos 20 (7.11)

(compare Eqs. (7.10) and (7.11) with Egs. (1.8) and (1.9)). We observe, from Eq. (7.11), that there are
two values of o, differing by 90° and given by

(a) (b)
FIGURE 7.5 (a) Plate Subjected to Bending and Twisting; (b) Tangential and Normal Moments on an Arbitrary Plane
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t/2
82/(,: Txy Txy \&
9( C'M,,
M,y

FIGURE 7.6 Complementary Shear Stresses Due to Twisting Moments M,,

for which M, = 0, leaving normal moments of intensity M,, on two mutually perpendicular planes.
These moments are termed principal moments and their corresponding curvatures principal curvatures.
For a plate subjected to pure bending and twisting in which M,, M,, and M, are invariable throughout
the plate, the principal moments are the algebraically greatest and least moments in the plate. It follows
that there are no shear stresses on these planes and that the corresponding direct stresses, for a given
value of z and moment intensity, are the algebraically greatest and least values of direct stress in
the plate.

Let us now return to the loaded plate of Fig. 7.5(a). We have established, in Egs. (7.7) and (7.8),
the relationships between the bending moment intensities M, and M, and the deflection w of the plate.
The next step is to relate the twisting moment M, to w. From the principle of superposition, we may
consider M, acting separately from M, and M,. As stated previously, M,, is resisted by a system of
horizontal complementary shear stresses on the vertical faces of sections taken throughout the thick-
ness of the plate parallel to the x and y axes. Consider an element of the plate formed by such sections,
as shown in Fig. 7.6. The complementary shear stresses on a lamina of the element a distance z below
the neutral plane are, in accordance with the sign convention of Section 1.2, t,. Therefore, on the
face ABCD,

t/2
M0y = — J Ty Oyz dz
—t/2
and, on the face ADFE,

t/2
Mox = — J Tyy0xz dz
—t/2
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giving
t/2
M, =— J Tz dz
—t/2
or, in terms of the shear strain y,, and modulus of rigidity G,
t/2
M, = —GJ Yz dz
—t/2
Referring to Eqgs. (1.20), the shear strain v,, is given by

v o
To = oy Oy

239

(7.12)

We require, of course, to express Y., in terms of the deflection w of the plate; this may be accomplished as
follows. An element taken through the thickness of the plate suffers rotations equal to dw/Ox and Ow/dy
in the xz and yz planes, respectively. Considering the rotation of such an element in the xz plane, as shown
in Fig. 7.7, we see that the displacement u in the x direction of a point a distance z below the neutral

plane is
ow
U=——1:
Ox
Similarly, the displacement v in the y direction is
ow
V=——2
Ay
Hence, substituting for u and v in the expression for vy,,, we have
0w
, = —2z
Ty Ox0y

i
.

FIGURE 7.7 Determination of Shear Strain v,,

t/2

t/2

(7.13)
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whence from Eq. (7.12),

1/2 2
My =G J_/,/z 272 gxgy dz
or
3 92
My =S5 3
Replacing G by the expression E/2 (1 + v) established in Eq. (1.50) gives
EP 0w

My=———-—F
Y 12(1 + v) Oxdy

Multiplying the numerator and denominator of this equation by the factor (1 — v) yields
0*w
0xQy

Equations (7.7), (7.8), and (7.14) relate the bending and twisting moments to the plate deflection
and are analogous to the bending moment—curvature relationship for a simple beam.

My, =D(1—v) (7.14)

PLATES SUBJECTED TO A DISTRIBUTED TRANSVERSE LOAD

The relationships between bending and twisting moments, and plate deflection are now employed in
establishing the general differential equation for the solution of a thin rectangular plate, supporting a
distributed transverse load of intensity ¢ per unit area (see Fig. 7.8). The distributed load may, in gen-
eral, vary over the surface of the plate and is therefore a function of x and y. We assume, as in the
preceding analysis, that the middle plane of the plate is the neutral plane and that the plate deforms
such that plane sections remain plane after bending. This latter assumption introduces an apparent in-
consistency in the theory. For plane sections to remain plane, the shear strains 7, and y,, must be zero.

z
FIGURE 7.8 Plate Supporting a Distributed Transverse Load
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aQ
X 8x

30
Q, +—~ 5y 5%
oy

y

FIGURE 7.9 Plate Element Subjected to Bending, Twisting, and Transverse Loads

However, the transverse load produces transverse shear forces (and therefore stresses), as shown in
Fig. 7.9. We therefore assume that, although y,. = 1,./G and v, = 1,./G are negligible, the correspond-
ing shear forces are of the same order of magnitude as the applied load ¢ and the moments M., M,, and
M,,. This assumption is analogous to that made in slender beam theory, in which shear strains are
ignored.

The element of plate shown in Fig. 7.9 supports bending and twisting moments as previously de-
scribed and, in addition, vertical shear forces O, and Q, per unit length on faces perpendicular to the
x and y axes, respectively. The variation of shear stresses 1. and t,. along the small edges 6x, 3y of
the element is neglected and the resultant shear forces Q.8y and Q,0x are assumed to act through the
centroid of the faces of the element. From the previous sections,

1/2 1/2 1/2
M, = J cizdz, M, = J cyzdz My = (—My,) = —J Tz dz
—1/2 —1/2 —t/2
In a similar fashion,
t/2 t/2
0., = J T dz, Oy = J Ty; dz (7.15)
—t/2 —t/2
For equilibrium of the element parallel to Oz and assuming that the weight of the plate is included in ¢,
00, 0
O, + £(3)6 dy — Q0y + | O, + &5)2 dx — Qy0x + gdxdy =0
Ox Oy
or, after simplification,

an aQ y
Ox * Jdy

+4=0 (7.16)
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Taking moments about the x axis,

M., M,
Moy — | My + %Sx dy — Mydx + | My + aa—y}Sy dx
00y 8y? 90 . | & &y*
Oy + 7y O |00y Qu 5 = | Q5 70 | 5 = qdx - =0

Simplifying this equation and neglecting small quantities of a higher order than those retained gives

oM, OM,
v _ ) =0 7.17
oy + 0y (7.17)
Similarly, taking moments about the y axis, we have
oM., OM,
. v =0 7.18
5 g T (7.18)

Substituting in Eq. (7.16) for O, and Q,, from Eqgs. (7.18) and (7.17), we obtain

IPM, M, M, O’M,
_ + _ =—q
Ox2  Oxdy = Oy*  OxOy

or

PM, ) O*M,, N o*M,
Ox? Oxdy — 0y?
Replacing M., M,,, and M, in Eq. (7.19) from Eqs. (7.7), (7.14), and (7.8) gives

dw_ , 0w Ow g
Oox* ox29y? Oy D

=g (7.19)

(7.20)

This equation may also be written
”* FPw  Pw q
—+-=| (s5+55) ==
ox2  0y? ox2 ~ 0y? D
P 2\ ¢
(@ i 5) "7b

The operator (0°/0x* 4+ 9°/9y?) is the well-known Laplace operator in two dimensions and is some-
times written as V2. Therefore,

or

22 4
(V)W—D

Generally, the transverse distributed load ¢ is a function of x and y, so that the determination of the
deflected form of the plate reduces to obtaining a solution to Eq. (7.20), which satisfies the known
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boundary conditions of the problem. The bending and twisting moments follow from Egs. (7.7), (7.8),
and (7.14), and the shear forces per unit length O, and Q,, are found from Egs. (7.17) and (7.18) by
substitution for M,, My, and M,, in terms of the deflection w of the plate; thus,

_OM, oM, o (Pw  Pw
=%~ ~ Pu (T*W) (72D
oM, OM,, o (*w *w
— _ =D (4= 22
© Jy Ox Jy (8}(2 + 0y? (7.22)

Direct and shear stresses are then calculated from the relevant expressions relating them to M., M,, M ,,
0., and Q.

Before discussing the solution to Eq. (7.20) for particular cases, we shall establish boundary con-
ditions for various types of edge support.

The simply supported edge

Let us suppose that the edge x = 0 of the thin plate shown in Fig. 7.10 is free to rotate but not to deflect.
The edge is then said to be simply supported. The bending moment along this edge must be zero and
also the deflection w = 0. Thus,

2 2
W), =0 and (M) _,=-D <‘9 L W) -0
x=0

[ V [
Ox? * Oy?
The condition that w = 0 along the edge x = 0 also means that
ow Pw B
dy
along this edge. These boundary conditions therefore reduce to
O*w
(W)XZO = 0, (W)x_o = 0 (723)
b a
y X
z

FIGURE 7.10 Plate of Dimensions a x b
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The built-in edge

If the edge x = 0 is built-in or firmly clamped so that it can neither rotate nor deflect, then, in addition to
w, the slope of the middle plane of the plate normal to this edge must be zero. That is,

ow
(W) =0, (a)xo =0 (7.24)

The free edge

Along a free edge, there are no bending moments, twisting moments, or vertical shearing forces, so that,
if x = 0 is the free edge, then

(MX)X:() =0, (Mxy)x:o =0, (Qx)xzo =0

giving, in this instance, three boundary conditions. However, Kirchhoff (1850) showed that only two
boundary conditions are necessary to obtain a solution to Eq. (7.20) and that the reduction is obtained
by replacing the two requirements of zero twisting moment and zero shear force by a single equivalent
condition. Thomson and Tait (1883) gave a physical explanation of how this reduction may be effected.
They pointed out that the horizontal force system equilibrating the twisting moment M,, may be
replaced along the edge of the plate by a vertical force system.

Consider two adjacent elements dy; and &y, along the edge of the thin plate of Fig. 7.11. The
twisting moment M,,3y; on the element 8y; may be replaced by forces M,, a distance 8y; apart. Note
that M,,, being a twisting moment per unit length, has the dimensions of force. The twisting moment
on the adjacent element 8y, is [M,, + (OM,,/0y)dy]dy,. Again, this may be replaced by forces
M, + (OM,,/0y)dy. At the common surface of the two adjacent elements there is now a resultant force
(OM,,/0y)dy or a vertical force per unit length of OM,,/0y. For the sign convention for 0, shown in

FIGURE 7.11 Equivalent Vertical Force System
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Fig. 7.9, we have a statically equivalent vertical force per unit length of (Q, — OM,,/0y). The separate
conditions for a free edge of (M,,),—o = 0 and (Q,).—¢ = 0 are therefore replaced by the equivalent

condition
oM.,
0 2)
( ay x=0

or, in terms of deflection,

OPw Pw
—+2-Vv)— = 7.25
e o
Also, for the bending moment along the free edge to be zero,
*w  Pw
M) _o=|=5+Vv=— = 7.26

The replacement of the twisting moment M., along the edges x = 0 and x = a of a thin plate by a
vertical force distribution results in leftover concentrated forces at the corners of M,,, as shown in
Fig. 7.11. By the same argument concentrated forces M, are produced by the replacement of the twist-
ing moment M,,. Since M, = —M,,, the resultant forces 2M, act at each corner as shown and must be
provided by external supports if the corners of the plate are not to move. The directions of these forces
are easily obtained if the deflected shape of the plate is known. For example, a thin plate simply sup-
ported along all four edges and uniformly loaded has dw/Ox positive and numerically increasing, with
increasing y near the corner x = 0, y = 0. Hence, 9*w/dxdy is positive at this point and, from Eq. (7.14),
we see that M, is positive and M,, negative; the resultant force 2M,, is therefore downward. From
symmetry, the force at each remaining corner is also 2M,, downward, so that the tendency is for
the corners of the plate to rise.

Having discussed various types of boundary conditions, we shall proceed to obtain the solution for
the relatively simple case of a thin rectangular plate of dimensions a x b, simply supported along each
of its four edges and carrying a distributed load g(x, y). We have shown that the deflected form of the
plate must satisfy the differential equation

O*w Pw  Iw o q(x,y)
oc acay Ty T D

Pw
= (Z2) =
=0 axz x=0,a

Pw
W), =0, (—) =0
y=0b ay? x=0,b

Navier (1820) showed that these conditions are satisfied by representing the deflection w as an infinite
trigonometrical or Fourier series:

w=3"3 A sinT sin% (7.27)
a

with the boundary conditions
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in which m represents the number of half waves in the x direction and # the corresponding number in the
y direction. Further, A,,, are unknown coefficients which must satisfy the preceding differential equa-
tion and may be determined as follows.

We may also represent the load g(x, y) by a Fourier series:

=L . mmX . AW
qle.y.) =D Y Amsin—= smTy (7.28)

m=1 n=1

A particular coefficient a,,,, is calculated by first multiplying both sides of Eq. (7.28) by
sin(m’nx/a) sin(n'ny/b) and integrating with respect to x from 0 to a and with respect to y from

0 to b. Thus,
a b ! /
i T
J J q(x,y) sin sinnby dxdy
0Jo a
o0 00 pra b / /
= ZZJ J Ay sinm—m sinm il sin@ sinw dxdy
m=1n=1J0 JO a a b b
ab
= Zamrn/
since
a /
J sin 2 gin T gy = 0, whenm # m'
0 a a
= %, when m = m’
and
b amy | n'my
J sin—= sin dy =0, whenn#n'
0 b b
b
=—, whenn=r
X n=n
It follows that
4 (¢ b ' '
Ay = _J J g, y) sin 2 sin 7 dady (7.29)
ab 0Jo a b

Substituting now for w and ¢g(x, y) from Eqs. (7.27) and (7.28) into the differential equation for w,

we have
& mm\ 4 mm\ 2 /nm\ 2 nm\4|  au,) . mmx . nmy
ZZ{AW[(G) 200) (5) +(5) } D }S“‘asmb—o

m=1 n=1

This equation is valid for all values of x and y, so that

e[ 2 (Y ()] 5 o
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or in alternative form

»? D
giving
1 Ay
Amn:4— )
D [(m?/a?) + (n*/b?))]
Hence,
& Amn . mmx . nmy
— — 7.30
YR ) R e (730

in which a,,, is obtained from Eq. (7.29). Equation (7.30) is the general solution for a thin rectangular
plate under a transverse load g(x, y).

|
Example 7.1

A thin rectangular plate a x b is simply supported along its edges and carries a uniformly distributed load of

intensity go. Determine the deflected form of the plate and the distribution of bending moment.
Since ¢g(x, y) = qo, we find from Eq. (7.29) that,

4qo (¢ ¢ 16,
Amn = ﬂj J sm—mm sin n;ty dxdy El
0

ab a ~ mn

where m and n are odd integers. For m or n even, a,,, = 0. Hence, from Eq. (7.30),

o0 o0
16¢¢ sin(mmx/a) sin(nmy /b .
=3 Z : /2) (2 é ) (i)
smnl(m?/a?) + (n2 /b))
The maximum deflection occurs at the center of the plate, where x = a/2, y = b/2. Thus,
> > sin(mn/2) sin(nm/2 B
o =05 32 3 [2)sin(r2) o)

m=13,5n=13 Smn m2/a2 (nZ/bZ)]

This series is found to converge rapidly, the first few terms giving a satisfactory answer. For a square plate, taking
v = 0.3, summation of the first four terms of the series gives

&

Wimax = 0.0443¢0 — o

Substitution for w from Eq. (i) into the expressions for bending moment, Eqs. (7.7) and (7.8), yields

1690 <~ ~~ [(m*/a®) +v(?/b?)] _ mmx . nmy
M, =— —— sin——
2 2l ) + R e o
00 0 27,2 2 /K2
M, = 1640 Z Z v fa) + (/b)) sin@ sin@ @iv)

!t w35 neiasmn(m?/a?) + (n2/b2)]? a b
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Maximum values occur at the center of the plate. For a square plate @ = b and the first five terms give
2
M,\f,max = My max — 00479%0

Comparing Egs. (7.3) with Eqgs. (7.5) and (7.6), we observe that

12M 2 12M,z
8 YT

X

Again the maximum values of these stresses occur at the center of the plate at z = + #/2, so that
6M, 6M,
Oxmax = l_27 Oy max = [_2
For the square plate,

a2
Gxmax = Oymax = 0287% 1‘7

The twisting moment and shear stress distributions follow in a similar manner.

The infinite series (Eq. (7.27)) assumed for the deflected shape of a plate gives an exact solution for dis-
placements and stresses. However, a more rapid, but approximate, solution may be obtained by assuming a
displacement function in the form of a polynomial. The polynomial must, of course, satisfy the governing
differential equation (Eq. (7.20)) and the boundary conditions of the specific problem. The “guessed” form
of the deflected shape of a plate is the basis for the energy method of solution described in Section 7.6.

|
Example 7.2

Show that the deflection function

w = A(x%y* — bxy — axy® + abxy)

is valid for a rectangular plate of sides a and b, built in on all four edges and subjected to a uniformly distributed
load of intensity ¢g. If the material of the plate has a Young’s modulus E and is of thickness ¢, determine the dis-
tributions of bending moment along the edges of the plate.

Differentiating the deflection function gives

w w w

— = —=0, —=-5=44
Oox* T oyt T Ox20y?
Substituting in Eq. (7.20), we have
042 x 4A+0=c0nstant:%

The deflection function is therefore valid and

-4
8D

The bending moment distributions are given by Eqs. (7.7) and (7.8); that is,

MX:—%b)z—by+v(x2—ax)] (1)
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M, = —% [x2 —ax+ v(y2 — by)] (i1)
For the edges x = 0 and x = a,
q vq
My==307=by), My=="0"=by)

For the edgesy =0andy = b

[
Example 7.2 MATLAB
Repeat Example 7.2 using the Symbolic Math Toolbox in MATLAB.

Expressions for M, and M, along the edges of the plate are obtained through the following MATLAB file:

% Declare any needed variables
symswAxybagM_xM_yvD

% Define the given deflection function
W= A*X(X"2%y"2 - b*X"2*y - a*x*y"2 + a*b*x*y);

% Check Eq. (7.20)

check =diff(w,x,4) +2*diff(diff(w,x,2),y,2) +diff(w,y,4) -q/D;

if diff(check,x) ==sym(0) && diff(check,y) ==sym(0) && check ~=-q/D
disp(‘The deflection function isvalid’)

disp(* ™)

% Solve check for the constant A and substitute back intow
A_val =solve(check,A);
w=subs(w,A,A_val);

% Calculate the bending moment distributions using Eqs (7.7) and (7.8)
eql = -D*x(diff(w,x,2) +v*diff(w,y,2)); ZM_x
eqll =-D*(diff(w,y,2) +v*diff(w,x,2)); 5 M_y

% Output expressions of M_x, M_y for the edge x=0 to the Command Window

disp(*For the edgex=0:")
disp([*M_x="char(simplify(subs(eql,x,0)))]1)
disp([‘M_y =" char(simplify(subs(eqll,x,0)))]1)
disp(*® ")

% Output expressions of M_x, M_y for the edge x=a to the Command Window
disp(‘For the edgex=a:")
disp([‘M_x="char(simplify(subs(eql,x,a)))])

disp([® M_y:’ char(simplify(subs(eqll,x,a)))])

disp(*® ")
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% Qutput expressions of M_x, M_y for the edge y=0 to the Command Window
disp(‘For the edgey=0:")

disp([*M_x =" char(simplify(subs(eql,y,0)))]1)

disp([‘M_y =’ char(simplify(subs(eqlIl,y,0)))1)

disp(® ")

% Qutput expressions of M_x, M_y for the edge y=b to the Command Window
disp(‘For the edgey="0b:")

disp([“M_x =" char(simplify(subs(eql,y,b)))1)

disp([‘M_y =’ char(simplify(subs(eqIl,y,b)))])

disp(® ™)

else

disp(‘The deflection function does not satisfy Equation (7.20)")
disp(* )

end

The Command Window outputs resulting from this MATLAB file are as follows. The deflection function is valid

For the edge x =10:
M_x = (g*y*(b-y))/4
M_y = (g*v*y*(b - y))/4

For the edge x = a:
M_x = (g*y*(b - y))/4
M_y = (g*xv*xy*(b-y))/4

For the edgey =0:
M_x = (g*v*x*(a - x))/4
M_y = (g*x*(a - x))/4

For the edgey =b:
M_x = (g*v*x*(a - x))/4
M_y = (g*x*(a - x))/4

COMBINED BENDING AND IN-PLANE LOADING OF
A THIN RECTANGULAR PLATE

So far our discussion has been limited to small deflections of thin plates produced by different forms of
transverse loading. In these cases, we assumed that the middle or neutral plane of the plate remained
unstressed. Additional in-plane tensile, compressive, or shear loads produce stresses in the middle
plane, and these, if of sufficient magnitude, affect the bending of the plate. Where the in-plane stresses
are small compared with the critical buckling stresses, it is sufficient to consider the two systems sep-
arately; the total stresses are then obtained by superposition. On the other hand, if the in-plane stresses
are not small, then their effect on the bending of the plate must be considered.
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0
— X
Ow_ 9 (Jw
+ 5 (32) o
N,
7 N, + I Sx
0
X
ON,
% Sx
Sx

y
FIGURE 7.12 In-Plane Forces on Plate Element

The elevation and plan of a small element dxdy of the middle plane of a thin deflected plate are
shown in Fig. 7.12. Direct and shear forces per unit length produced by the in-plane loads are given
the notation N,, Ny, and N,, and are assumed to be acting in positive senses in the directions shown.
Since there are no resultant forces in the x or y directions from the transverse loads (see Fig. 7.9), we
need only include the in-plane loads shown in Fig. 7.12 when considering the equilibrium of the ele-
ment in these directions. For equilibrium parallel to Ox,

ONy,
Jy

For small deflections, dw/dx and (dw/dx) + (0*w/Ox*)8x are small and the cosines of these angles
are therefore approximately equal to one. The equilibrium equation thus simplifies to

2
(Nx + O 8x> dy cos <8_w + ow 5x> — N, 8y cos (Z_w + <Nyx +
X

Ox Ox  Ox? 8y> Or ~ Nyxbr =0

ON, ONy,
=0 7.31
Ox dy (7.31)
Similarly, for equilibrium in the y direction, we have
ON, ON,
—+——==0 7.32
R + (7.32)

Note that the components of the in-plane shear loads per unit length are, to a first order of approxima-
tion, the value of the shear load multiplied by the projection of the element on the relevant axis.
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\ Ny,
Ny, + —
X

FIGURE 7.13 Component of Shear Loads in the z Direction

The determination of the contribution of the shear loads to the equilibrium of the element in the z
direction is complicated by the fact that the element possesses curvature in both the xz and yz planes.
Therefore, from Fig. 7.13, the component in the z direction due to the N,, shear loads only is

ONyy 8w Pw ow
(NX_VJr P 6x)6 < axdy 8x> fNXySya—y

62
Y dxdy 8 8

or

N.

neglecting terms of a lower order. Similarly, the contribution of Ny, is

O*w ON,, Ow
Ny, — oxd
** Oxdly dy ox Y
The components arising from the direct forces per unit length are readily obtained from Fig. 7.12,
namely,
ON, ow  Pw ow
| =—+—==9 N,
( Ox )y<8x+6x2 x) Y ox
or
82 ON, Ow
—— 8x8y + —— —— dxdy
N "0t 5 o
and, similarly,
82 ON, 8w
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The total force in the z direction is found from the summation of these expressions and is

O ON, Ow ow ON, Ow
815 Sxdy + Ny 2 swdy + 22 M 5 sy

Ny gz 838y + 55 8xby + 32”+aa
(9NX‘(9W (9NX‘8W

in which N, is equal to and is replaced by N,,. Using Eqgs. (7.31) and (7.32), we reduce this expression
to

O*w 0w O*w
NEE N N,y o) 58
<'8)62Jr y82+ xy)xy

Since the in-plane forces do not produce moments along the edges of the element, Eqs. (7.17) and
(7.18) remain unaffected. Further, Eq. (7.16) may be modified simply by the addition of the preceding
vertical component of the in-plane loads to ¢dxdy. Therefore, the governing differential equation for a
thin plate supporting transverse and in-plane loads is, from Eq. (7.20),

do'w N I'w @_1
ot T ox20y? 8y4 D

2 2 2
0*w O0*w Bw) (7.33)

NZY N, T oy, O
(“ Yo T g T E M gy

|
Example 7.3

Determine the deflected form of the thin rectangular plate of Example 7.1 if, in addition to a uniformly distributed

transverse load of intensity gy, it supports an in-plane tensile force N, per unit length.
The uniform transverse load may be expressed as a Fourier series (see Eq. (7.28) and Example 7.1); that is,

Equation (7.33) then becomes, on substituting for ¢,

4 Vi 2 o0 o0 -
Ow , 0w  Ow NOw_ 16q >y 1 i ™™ i Y ()
a

ot

Ox20y2 + oyt D ox2 nm2D

The appropriate boundary conditions are

82
w=8—v2v=0,atx:0anda

X

82

W_O aty = 0 andb

These conditions may be satisfied by the assumption of a deflected form of the plate given by

= zx: zx:An,,, sm— smn—Zy

m=1 n=1
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Substituting this expression into Eq. (i) gives
16g0

2 b
2 2 2
m n N.m
n®Dmn —+ —) + —]
a

Apn = for odd m and n

b? n2Da?
A = 0, for even m and n

Therefore,

16 > ad 1
Y Z Z sin mix sin nny (i)
a

7D m> n2\2 Nom? b
()

Comparing Eq. (ii) with Eq. (i) of Example 7.1, we see that, as a physical inspection would indicate, the presence of a
tensile in-plane force decreases deflection. Conversely, a compressive in-plane force would increase the deflection.

BENDING OF THIN PLATES HAVING A SMALL INITIAL CURVATURE

Suppose that a thin plate has an initial curvature so that the deflection of any point in its middle plane is
wo. We assume that wy is small compared with the thickness of the plate. The application of transverse
and in-plane loads causes the plate to deflect a further amount wy, so that the total deflection is then
w = wg + wy. However, in the derivation of Eq. (7.33), we note that the left-hand side is obtained from
expressions for bending moments, which themselves depend on the change of curvature. We therefore
use the deflection w on the left-hand side, not w. The effect on bending of the in-plane forces depends
on the total deflection w so that we write Eq. (7.33)

84W1 64W1 (94W1
+2 +
Oox* Ox20y? Oyt
1 0*(wo +wy) 0*(wo +wy) % (wo + w1) 739
_ 1 _ 0 1 ' 0 1 0 1
“p|? N Ox? Ny 0y? 2Ny Oxdy

The effect of an initial curvature on deflection is therefore equivalent to the application of a transverse
load of intensity
82w0 asz 82w0
N + N. + 2N,y
T ox? 7 oy? 2 Ox0y
Thus, in-plane loads alone produce bending, provided there is an initial curvature.
Assuming that the initial form of the deflected plate is

wo = Z Z A sm sm ? (7.35)

m=1 n=

then, by substitution in Eq. (7.34), we find that, if N, is compressive and N, = N, = 0,

Z Z B, sm — sm % (7.36)

m=1 n=



7.6 Energy method for the bending of thin plates 255

where

_ Anme
(mD/a?)[m + (n2a?/mb?)]* — Ny

mn

We shall return to the consideration of initially curved plates in the discussion of the experimental de-
termination of buckling loads of flat plates in Chapter 9.

ENERGY METHOD FOR THE BENDING OF THIN PLATES

Two types of solution are obtainable for thin-plate bending problems by the application of the principle
of the stationary value of the total potential energy of the plate and its external loading. The first, in
which the form of the deflected shape of the plate is known, produces an exact solution; the second, the
Rayleigh—Ritz method, assumes an approximate deflected shape in the form of a series having a finite
number of terms chosen to satisfy the boundary conditions of the problem and also to give the kind of
deflection pattern expected.

In Chapter 5, we saw that the total potential energy of a structural system comprised the internal
or strain energy of the structural member plus the potential energy of the applied loading. We now
proceed to derive expressions for these quantities for the loading cases considered in the preceding
sections.

Strain energy produced by bending and twisting

In thin-plate analysis, we are concerned with deflections normal to the loaded surface of the plate.
These, as in the case of slender beams, are assumed to be primarily due to bending action, so that
the effects of shear strain and shortening or stretching of the middle plane of the plate are ignored.
Therefore, it is sufficient for us to calculate the strain energy produced by bending and twisting only,
as this will be applicable, for the reason of the previous assumption, to all loading cases. It must be
remembered that we are only neglecting the contributions of only shear and direct strains on the de-
flection of the plate; the stresses producing them must not be ignored.

Consider the element dx x dy of a thin plate @ x b shown in elevation in the xz plane in Fig. 7.14(a).
Bending moments M, per unit length applied to its 8y edge produce a change in slope between its ends
equal to (azw/axz)Sx. However, since we regard the moments M, as positive in the sense shown, then
this change in slope, or relative rotation, of the ends of the element is negative, as the slope decreases
with increasing x. The bending strain energy due to M, is then

1 0*w

Similarly, in the yz plane the contribution of M, to the bending strain energy is

1 Pw
e~ e)
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(a) (b)

FIGURE 7.14 (a) Strain Energy of an Element Due to Bending; (b) Strain Energy Due to Twisting

The strain energy due to the twisting moment per unit length, M,,, applied to the dy edges of the
element, is obtained from Fig. 7.14(b). The relative rotation of the dy edges is (0*w/0xdy)dx, so that
the corresponding strain energy is

1 Pw
—M,,0y ———29
el OxOy x
Finally, the contribution of the twisting moment M., on the dx edges is, in a similar fashion,

1 82w
M» ox—— Ee 6

The total strain energy of the element from bending and twisting is thus

1 0*w 0*w 0*w
E (-M\,W—M};a—yz‘i_zMxva 8 >8x6y

Substitution for M, M, and M, from Eqs. (7.7), (7.8), and (7.14) gives the total strain energy of the

element as
Pw\*  [(Pw\® _ Pwdw Pw\’
(ﬁ) + (a—yz> +2VW8—}72+2(1 —V) (8}(8}1) 8x5y

which on rearranging becomes

D Pw  Pw\’ Pw Pw Pw\’
z{(v*ﬁ) —Ae [a—W‘ (555) ]}my

Hence, the total strain energy U of the rectangular plate @ x b is

D a (b azw 82w 2 82w82w 82W 2
U_EL Jo {(W+8—)ﬂ> —2(1—-v) [Wa—ﬁ_ (8)6—(9y> 1} dxdy (7.37)
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Note that, if the plate is subject to pure bending only, then M,, = 0 and, from Eq. (7.14), O*w/Oxdy =0,
so that Eq. (7.37) simplifies to

D[P\, (Pw\, Pwdrw

Potential energy of a transverse load

An element dx x Oy of the transversely loaded plate of Fig. 7.8 supports a load gdxdy. If the displace-
ment of the element normal to the plate is w, then the potential energy dV of the load on the element
referred to the undeflected plate position is

8V = —wgdxdy (see Section 5.7)
Therefore, the potential energy V of the total load on the plate is given by

a b
V= —J [ wq dxdy (7.39)
Jo

Potential energy of in-plane loads

We may consider each load N,, Ny, and N,, in turn, then use the principle of superposition to determine
the potential energy of the loading system when they act simultaneously. Consider an elemental strip of
width dy along the length a of the plate in Fig. 7.15(a). The compressive load on this strip is N, 0y, and
due to the bending of the plate, the horizontal length of the strip decreases by an amount A, as shown in
Fig. 7.15(b). The potential energy 3V, of the load N,dy, referred to the undeflected position of the plate
as the datum, is then

From Fig. 7.15(b), the length of a small element da of the strip is

da = (8x* + 5w2)%

el (o)
2\ Ox

and, since Ow/Ox is small,

da ~ dx

Hence,

giving
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(b) z

FIGURE 7.15 (a) In-Plane Loads on a Plate; (h) Shortening of an Element Due to Bending

and

A=a asz » dx
Since

!

1 (ow\? “1
Jo 3 (a‘;}) dx only differs from Jo 2
by a term of negligible order, we write

a1 /ow\?
K—Lz(a)dx

The potential energy V, of the N, loading follows from Egs. (7.40) and (7.41), thus

(7.41)

1 ow\?
Vi=—= N, [—=— ) dx d
’ 2J0Jo (8)() Y

(7.42)
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Similarly,

IR ow\?

The potential energy of the in-plane shear load N, may be found by considering the work done by
N, during the shear distortion corresponding to the deflection w of an element. This shear strain is the
reduction in the right angle C,AB to the angle C;AB, of the element in Fig. 7.16 or, rotating C,A with
respect to AB to AD in the plane C;{AB, the angle DAC;. The displacement C,D is equal to (Ow/0y)dy
and the angle DC,C, is Ow/Ox. Thus CD is equal to

ow ow
235y
Ox Oy
and the angle DAC,, representing the shear strain corresponding to the bending displacement w, is

ow ow
Ox Oy
so that the work done on the element by the shear force N,,0x is
1 ow ow
—NyOX ————
Voot Ox dy
Similarly, the work done by the shear force N,y is
1 ow ow
2% By dy
and the total work done, taken over the complete plate, is

1 (@ (b ow ow
— IN, =X dx d
zLL Yox oy Y

xy

FIGURE 7.16 Calculation of Shear Strain Corresponding to Bending Deflection
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It follows immediately that the potential energy of the N,, loads is

1 ow Ow
Vx’y = —EJO JO ZNXy aa—y dxdy (744)

and, for the complete in-plane loading system, we have, from Eqs. (7.42), (7.43), and (7.44), a potential

energy of
1 a b 2
V:_EJ J N‘(a—W) +N},(6—W> +2leawa—wl dxdy (7.45)
0Jo

Ox ady Ox O
We are now in a position to solve a wide range of thin-plate problems, provided that the deflections are
small, obtaining exact solutions if the deflected form is known or approximate solutions if the deflected
shape has to be guessed.
Considering the rectangular plate of Section 7.3, simply supported along all four edges and sub-
jected to a uniformly distributed transverse load of intensity gy, we know that its deflected shape is

given by Eq. (7.27), namely,
[o.¢] o0
= z ZAW, sm sm%ﬂy

m=1 n=1

The total potential energy of the plate is, from Eqgs. (7.37) and (7.39),

a (pl/oPw  ow\* 0*w 0w Pw\’
U+V = — =z +==] —2(1- — | == — dxdy (7.46
+ JO JO {2 <8x2 + 8y2> (1=v) ox* dy? (8x6y> o v (7:46)
Substituting in Eq. (7.46) for w and realizing that “cross-product” terms integrate to zero, we have
2

w2
U+V = JJ ZZA TE _+ﬁ sin2$ sin2%

m I n=

m-nm . MAX . , ATy mnx nmy
=2(1 = V) —55— sin> ——  sin®> —= — cos’ — cos® —~=
a’b a b a b

—qoZZAmn sm — smn—:y dx dy

m=1n=

The term multiplied by 2(1 — v) integrates to zero and the mean value of sin® or cos” over a complete
number of half waves is %, thus integration of the above expression yields

U+V_ Z Z 3mnab( 2) qoz Z o (7.47)
m135”l35 b m=1,3,5n=1,35

From the principle of the stationary value of the total potential energy, we have

oUu+Vv) D mtab (m>  n?\° 4ab
= — — 4o

2Amn ﬁ

A 2 4 2mn
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so that
1640
nSDmn|(m? a?) + (n2 /b))

mn

giving a deflected form

[o°]

:_q - sin(mmnx/a) sin(nmy/b)
WD, 2 D i) + ()

which is the result obtained in Eq. (i) of Example 7.1.

This solution is exact, since we know the true deflected shape of the plate in the form of an infinite series
for w. Frequently, the appropriate infinite series is not known, so that only an approximate solution may be
obtained. The method of solution, known as the Rayleigh—Ritz method, involves the selection of a series for
w containing a finite number of functions of x and y. These functions are chosen to satisfy the boundary
conditions of the problem as far as possible and also to give the type of deflection pattern expected.
Naturally, the more representative the guessed functions are, the more accurate the solution becomes.

Suppose that the guessed series for w in a particular problem contains three functions of x and y. Thus;

w = Aifi(x,y) + Asfa(x,y) + Asfa(x,y)

where A;, A,, and Az are unknown coefficients. We now substitute for w in the appropriate expression
for the total potential energy of the system and assign stationary values with respect to A1, A,, and A3 in
turn. Thus,
oU+V)
0A,

oU+V)
0A,

AU +V)

=0
’ 0A3

:O’ :O

giving three equations which are solved for Ay, A,, and Aj.

[
Example 7.4

A rectangular plate a x b, is simply supported along each edge and carries a uniformly distributed load of intensity
qo- Assuming a deflected shape given by

L MX | T
= A sin— sm—y
a b
determine the value of the coefficient A;; and hence find the maximum value of deflection.
The expression satisfies the boundary conditions of zero deflection and zero curvature (i.e., zero bending

moment) along each edge of the plate. Substituting for w in Eq. (7.46), we have

a b 2 4 "
DA s 2 X , Ty
U+V=JJ 1 2 4+ b?)”sin’ sin?~= —2(1 —v
odo| 2 ] (a?p?)? (@ y a b ( )
n* o n n* o n
X | == sin?= sin? 2y T cos’=— cos’ 2y
a’b? a b a*b? a b

—qoA11 sinn—x sinQ dxdy
a b
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from which
DA%, n*
U+v=—H4
* 2 4d3b3
so that
(9(U + V) _ DAHTE4
0An 48D
and
16¢ga*b*
Au=———"73
n°D(a? + b?)
giving
16qu4b4

W=——s
n°D(a? + b?)
At the center of the plate, w is a maximum and
16goa’*b*

Wmax

For a square plate and assuming v = 0.3,
a
Whax = 00455q0 ﬁ

which compares favorably with the result of Example 7.1.

(@ + b2)2 — qoAn =

(@ +5) =z =0

LTX T
sin— sin —
a b

 1D(a? + b?)?

In this chapter, we have dealt exclusively with small deflections of thin plates. For a plate subjected
to large deflections, the middle plane is stretched due to bending, so that Eq. (7.33) requires modifi-
cation. The relevant theory is outside the scope of this book but may be found in a variety of references.

Example 7.4 MATLAB

Repeat Example 7.4 using the Symbolic Math Toolbox in MATLAB.
Expressions for A;; and the maximum deflection are obtained through the following MATLAB file:

% Declare any needed variables
symswA_11xybaqg OUVvD

% Define the given deflection function
w=A_1l*sin(pi*x/a)*sin(pi*y/b);

% Evaluate Eq. (7.46) tocalculate U+V (UV)
w_xx=diff(w,x,2);

w_yy=diff(w,y,2);

w_xy =diff(diff(w,x),y);

UV =1nt(int((D/2*((w_xX+w_yy) 2 - 2*(1-v)*(w_xx*w_yy-w_xy"2)) -w*q_0),y,0,b),x,0,a);
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% Differentiate UV with respect to A_11, set equal to 0, and solve for A_11
A_1lval =solve(diff(UV,A_11),A_11);

% Substitute A_11 back intow
w=-subs(w,A_11,A_11lval);

% Due to the boundary conditions and the formof w, therewill only be onemaximumvalue.
% Therefore, w_max will occur where the gradient of wis 0.

x_max =solve(diff(w,x),x);

y_max =solve(diff(w,y),y);

% Substitute x_max and y_max intow
w_max = subs(subs(w,x,x_max),y,y_max);

% Qutput expressions for A_11 and w_max to the Command Window
disp([“A_11="char(A_11lval)l)
disp([‘w_max =" char(w_max)])

The Command Window outputs resulting from this MATLAB file are as follows:

A_11 = (16*a"4*b™4*q_0)/(D*pi~6*(a"2 + b"2)"2)
w_max = (16*a"4*b™4*q_0)/(D*pi~6*(a™2 + b"2)"2)

Further reading

Jaeger JC. Elementary theory of elastic plates. New York: Pergamon press; 1964.

Timoshenko SP, Woinowsky-Krieger S. Theory of plates and shells. 2nd ed. New York: McGraw-Hill; 1959.
Timoshenko SP, Gere JM. Theory of elastic stability. 2nd ed. New York: McGraw-Hill; 1961.

Wang CT. Applied elasticity. New York: McGraw-Hill; 1953.

PROBLEMS

P.7.1. A plate 10 mm thick is subjected to bending moments M, equal to 10 Nm/mm and M, equal to
5 Nm/mm. Calculate the maximum direct stresses in the plate.

Answer: G ma= 600N/mm?, Gy max= +300N/mm?.

P.7.2. For the plate and loading of problem P.7.1, find the maximum twisting moment per unit length in
the plate and the direction of the planes on which this occurs.

Answer: 2.5 Nm/mm at 45° to the x and y axes.

P.7.3. The plate of the previous two problems is subjected to a twisting moment of 5 Nm/mm along
each edge in addition to the bending moments of M, = 10 Nm/mm and M, = 5 N m/mm. Determine the
principal moments in the plate, the planes on which they act, and the corresponding principal stresses.

Answer: 13.1 Nm/mm, 1.9Nm/mm, o= -31.7°, o=+58.3° 4786 N/mm?,
+114 N/mm?.
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P.7.3 MATLAB Use MATLAB to repeat Problem P.7.3 for the following combinations of M., M,, and
M,,. Do not calculate the principal stresses.

i G () Gv) (V)

M, 6 8 10 12 14
M, 7 6 5 4 3
M, 3 4 5 6 7

Answer: (i) My= 9.5N m/mm, My =3.5N m/mm,o = —49.7° or 40.3°
(i) M;=11.1N m/mm, My = 2.9 N m/mm, o« = —38° or 52°

(ili) M;=13.1 N m/mm, Mg = 1.9 N m/mm, o = —31.7° or 58.3°

) Mp=152N m/mm, My = 0.8 N m/mm,a = —28.2° or 61.8°

) Mp=174N m/mm, My = 0.4 N m/mm,a = —25.9° or 64.1°

v
v

—~

P.7.4. A thin rectangular plate of length a and width 2a is simply supported along the edges x = 0,
X =a,y =-a,and y = +a. The plate has a flexural rigidity D, a Poisson’s ratio of 0.3, and carries a
load distribution given by g(x, y) = go sin(nx/a). If the deflection of the plate is represented by the
expression

4
w _ 499 (1 -|-AcoshE—&—BH sinhﬂ) sinE
Dr#* a a a a

determine the values of the constants A and B.

Answer: A = —0.2213,B = 0.0431.

P.7.5. A thin, elastic square plate of side a is simply supported on all four sides and supports a uniformly
distributed load g. If the origin of axes coincides with the center of the plate show that the deflection of
the plate can be represented by the expression

q

— T pF v — 3421 — 2 2y _ 122y + A
96(1_V)D[(x +") = 3a*(1 = v)(x" +y7) — 12vx°y” + A]

w
where D is the flexural rigidity, v is Poisson’s ratio and A is a constant. Calculate the value of A and
hence the central deflection of the plate.

Answer: A = a*(5 — 3v)/4, Cen. def. = ga* (5 — 3v)/384D(1 — v)

P.7.6. The deflection of a square plate of side a which supports a lateral load represented by the function
q(x, y) is given by

X 3ny
w(x,y) = wycos— cos ——
a a

where x and y are referred to axes whose origin coincides with the center of the plate and wy is the
deflection at the center. If the flexural rigidity of the plate is D and Poisson’s ratio is v, determine
the loading function ¢, the support conditions of the plate, the reactions at the plate corners, and
the bending moments at the center of the plate.

4 3my

T X
Answer:  g(x,y) = woD100—; cos— cos—
a a a
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The plate is simply supported on all edges. Reactions: —6wyD (%)2(1 —v)
T\ 2 T\ 2
M, = woD (—) (1+9v), M, =wD (—) (9 +v)
a a
P.7.7. A simply supported square plate a x a carries a distributed load according to the formula

X
c](x,y) - qo;

where ¢ is its intensity at the edge x = a. Determine the deflected shape of the plate.

(— 1y

mnx 'l“y

. _ 8qoa*
Answer:  w = m=12, 3 135

=78 ———— sinZ& gin =2

mn(m?+n?)

P.7.8. An elliptic plate of major and minor axes 2a and 2b and of small thickness ¢ is clamped along its
boundary and is subjected to a uniform pressure difference p between the two faces. Show that the usual
differential equation for normal displacements of a thin flat plate subject to lateral loading is satisfied

by the solution
22 2
w = Wwqy 1 — E — ﬁ

where wy is the deflection at the center, which is taken as the origin.
Determine wy in terms of p and the relevant material properties of the plate and hence expressions
for the greatest stresses due to bending at the center and at the ends of the minor axis.

3p(1 —v?)

Answer: wy = 3 3 5 3
2ER —l— 2 +F

Center,

5 _ E3pd®b* (b + va?) - +3pa*h? (a® + vb?)
T 234 4 2a2h? + 3a%)’ T 2(3b* 4 242k + 3a%)

Ends of minor axis,
i6pa4b2 j:6pb4a2
G max
2(3b* +2a2h? +3a*)’ 234 + 2a2h? + 3a?)

Gxmax =

P.7.9. Use the energy method to determine the deflected shape of a rectangular plate a x b, simply
supported along each edge and carrying a concentrated load W at a position (&, 1) referred to axes
through a corner of the plate. The deflected shape of the plate can be represented by the series

00

= . mmXx . nmy
= E Ay SIn—— sin——
a b

m=1 n=1
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4W sin m_né sin diddll
Answer: A, = a b 5
wDab|(n?/a?) + (2 /6?)

P.7.10. If, in addition to the point load W, the plate of problem P.7.9 supports an in-plane compressive
load of N, per unit length on the edges x = 0 and x = a, calculate the resulting deflected shape.

4W sin _mn& sin il

Answer: A, = a 5 b
m?  n? m2N
abD* | [ =+ —=| ———=
a b2 n2a?D

P.7.11. A square plate of side a is simply supported along all four sides and is subjected to a transverse
uniformly distributed load of intensity go. It is proposed to determine the deflected shape of the plate by
the Rayleigh—Ritz method employing a “guessed” form for the deflection of

4x2 4y2
v=n(1-5) (1-%)

in which the origin is taken at the center of the plate.
Comment on the degree to which the boundary conditions are satisfied and find the central deflection
assuming v = 0.3.

Answer: 0.0389(]0614/El3

P.7.11 MATLAB Use the Symbolic Math Toolbox in MATLAB to repeat Problem P.7.11. In addition,
calculate the deflections at the following (x,y) locations in the plate.

(a/4,a/4),(0,0), (a/3,a/3)

Answer: (i) (x,y) = (a/4,a/4),w = 0.0218a%*qy/EF
(i) (x,y) = (0,0),w = 0.0388a*q,/Er’
(iii)  (x,y) = (a/3,a/3),w = 0.012a*qo /EF

P.7.12. A rectangular plate a x b, simply supported along each edge, possesses a small initial curvature
in its unloaded state given by

. MX . Ty
wo = Ay sSin— sin—
a b

Determine, using the energy method, its final deflected shape when it is subjected to a compressive load
N, per unit length along the edges x = 0, x = a.

Ay , MX . Ty
Answer: w = sSin— SIn—

N.a? a? 2 b
 — 1+ —=
/) (15)




CHAPTER

Columns

A large proportion of an aircraft’s structure consists of thin webs stiffened by slender longerons or
stringers. Both are susceptible to failure by buckling at a buckling stress or critical stress, which is fre-
quently below the limit of proportionality and seldom appreciably above the yield stress of the material.
Clearly, for this type of structure, buckling is the most critical mode of failure, so that the prediction of
buckling loads of columns, thin plates, and stiffened panels is extremely important in aircraft design.
In this chapter, we consider the buckling failure of all these structural elements and also the flexural—
torsional failure of thin-walled open tubes of low torsional rigidity.

Two types of structural instability arise: primary and secondary. The former involves the complete
element, there being no change in cross-sectional area while the wavelength of the buckle is of the same
order as the length of the element. Generally, solid and thick-walled columns experience this type of
failure. In the latter mode, changes in cross-sectional area occur and the wavelength of the buckle is of
the order of the cross-sectional dimensions of the element. Thin-walled columns and stiffened plates
may fail in this manner.

EULER BUCKLING OF COLUMNS

The first significant contribution to the theory of the buckling of columns was made as early as 1744 by
Euler. His classical approach is still valid, and likely to remain so, for slender columns possessing a
variety of end restraints. Our initial discussion is therefore a presentation of the Euler theory for the
small elastic deflection of perfect columns. However, we investigate first the nature of buckling
and the difference between theory and practice.

It is common experience that, if an increasing axial compressive load is applied to a slender column,
there is a value of the load at which the column will suddenly bow or buckle in some unpredetermined
direction. This load is patently the buckling load of the column or something very close to the buckling
load. Clearly, this displacement implies a degree of asymmetry in the plane of the buckle caused by
geometrical or material imperfections of the column and its load. However, in our theoretical stipula-
tion of a perfect column in which the load is applied precisely along the perfectly straight centroidal
axis, there is perfect symmetry, so that, theoretically, there can be no sudden bowing or buckling. We
therefore require a precise definition of the buckling load that may be used in our analysis of the perfect
column.

If the perfect column of Fig. 8.1 is subjected to a compressive load P, only shortening of the column
occurs, no matter what the value of P. However, if the column is displaced a small amount by a lateral
load F, then, at values of P below the critical or buckling load, Pcg, removal of F results in a return of
the column to its undisturbed position, indicating a state of stable equilibrium. At the critical load, the
displacement does not disappear and, in fact, the column remains in any displaced position as long as

Introduction to Aircraft Structural Analysis, Third Edition. http://dx.doi.org/10.1016/B978-0-08-102076-0.00008-7 2 69
Copyright © 2018 T.H.G. Megson. Published by Elsevier Ltd. All rights reserved.
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_— Initial position

Displaced
position

FIGURE 8.1 Definition of Buckling Load for a Perfect Column

the displacement is small. Thus, the buckling load Pcy is associated with a state of neutral equilibrium.
For P > Pcg, enforced lateral displacements increase and the column is unstable.

Consider the pin-ended column AB of Fig. 8.2. We assume that it is in the displaced state of neutral
equilibrium associated with buckling, so that the compressive load P has attained the critical value Pcg.
Simple bending theory (see Chapter 15) gives

d*v

0~y
dz2

or

d*v
EI@ = —PCRV (81)
so that the differential equation of bending of the column is

d2V PCR
-ty = 2
a2 "m0 8.2)

The well-known solution of Eq. (8.2) is
v=Acos uz + Bsin pz (8.3)

FIGURE 8.2 Determination of Buckling Load for a Pin-Ended Column
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where p? = Pcr/EI and A and B are unknown constants. The boundary conditions for this particular
case are v = 0 at z = 0 and /. Therefore, A = 0 and

Bsinpl =0
For a non-trivial solution (i.e., v # 0),

sinp/ =0 or W =nm, wheren=1, 2, 3,...

giving
or
Peg = ”2’;22E] (8.4)

Note that Eq. (8.3) cannot be solved for v no matter how many of the available boundary conditions are
inserted. This is to be expected, since the neutral state of equilibrium means that v is indeterminate.

The smallest value of buckling load, in other words the smallest value of P that can maintain the
column in a neutral equilibrium state, is obtained by substituting » = 1 in Eq. (8.4). Hence,

n2El
P = 7 (8.5)
Other values of Pcgr corresponding to n = 2, 3, ..., are

4m*El 9m*El
Pcr =—pgm oTp o

These higher values of buckling load cause more complex modes of buckling such as those shown in
Fig. 8.3. The different shapes may be produced by applying external restraints to a very slender column
at the points of contraflexure to prevent lateral movement. If no restraints are provided then these forms
of buckling are unstable and have little practical meaning.
The critical stress, ocg, corresponding to Pcg, is, from Eq. (8.5)
n’E
OCR =~ (8.6)
(t/r)
where r is the radius of gyration of the cross-sectional area of the column. The term //r is known as the
slenderness ratio of the column. For a column that is not doubly symmetrical, r is the least radius of

Fer_ Per Fer Per
L /2 172 U3 W3 | 13

Per = 4m2EI/12 Per= 9m2EI/12
FIGURE 8.3 Buckling Loads for Different Buckling Modes of a Pin-Ended Column
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gyration of the cross-section since the column bends about an axis about which the flexural rigidity E7 is
least. Alternatively, if buckling is prevented in all but one plane, then EI is the flexural rigidity in that
plane.

Equations (8.5) and (8.6) may be written in the form

n2El
Pcr = o 8.7)
€
and
n2E
OR =" (8.3)

(le/r)?

where [, is the effective length of the column. This is the length of a pin-ended column that has the same
critical load as that of a column of length / but with different end conditions. The determination of
critical load and stress is carried out in an identical manner to that for the pin-ended column, except
that the boundary conditions are different in each case. Table 8.1 gives the solution in terms of effective
length for columns having a variety of end conditions. In addition, the boundary conditions referred to
the coordinate axes of Fig. 8.2 are quoted. The last case in Table 8.1 involves the solution of a tran-
scendental equation; this is most readily accomplished by a graphical method.

Let us now examine the buckling of the perfect pin-ended column of Fig. 8.2 in greater detail. We
showed, in Eq. (8.4), that the column buckles at discrete values of axial load and that associated with
each value of buckling load is a particular buckling mode (Fig. 8.3). These discrete values of buckling
load are called eigenvalues, their associated functions (in this case v = B sinnnz/[) are called eigenfunc-
tions and the problem itself is called an eigenvalue problem.

Further, suppose that the lateral load F in Fig. 8.1 is removed. Since the column is perfectly straight,
homogeneous, and loaded exactly along its axis, it suffers only axial compression as P is increased.
This situation, theoretically, continues until yielding of the material of the column occurs. However,
as we have seen, for values of P below Pcg, the column is in stable equilibrium, whereas for P > Pcg,
the column is unstable. A plot of load against lateral deflection at mid-height therefore has the form
shown in Fig. 8.4, where, at the point P = P, it is theoretically possible for the column to take one of
three deflection paths. Thus, if the column remains undisturbed, the deflection at mid-height continues
to be zero but unstable (i.e., the trivial solution of Eq. (8.3), v = 0), or if disturbed, the column buckles
in either of two lateral directions; the point at which this possible branching occurs is called a bifur-
cation point; further bifurcation points occur at the higher values of Per(4m°El/I%, 9n°EI/1%, .. ).

Table 8.1 Column Length Solutions

Ends Ll Boundary conditions

Both pinned 1.0 v=0atz=0and/

Both fixed 0.5 v=0atz=0andz=1[dv/dz=0atz=1
One fixed, the other free 2.0 v=0anddv/dz=0atz=0

One fixed, the other pinned 0.6998 dv/dz=0atz=0,v=0atz=/andz=0
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P=P.g (bifurcation point)

/

0
Lateral deflection at mid-height

FIGURE 8.4 Behavior of a Perfect Pin-Ended Column

[
Example 8.1
A uniform column of length L and flexural stiffness EI is simply supported at its ends and has an additional elastic
support at mid-span. This support is such that, if a lateral displacement v, occurs at this point, a restoring force kv.. is
generated at the point. Derive an equation giving the buckling load of the column. If the buckling load is ATEI/L?,
find the value of k. Also, if the elastic support is infinitely stiff, show that the buckling load is given by the equation
tan AL/2 = AL/2, where . = /P/EL.

The column is shown in its displaced position in Fig. 8.5. The bending moment at any section in the left hand
half of the column is given by

k
R
so that, by comparison with Eq. (8.1),
d*v kv,
EI@ = —Pv + 72

FIGURE 8.5 Column of Example 8.1
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giving
d*v kv,

=
a2 MY T o

0]
The solution of Eq. (i) is of standard form and is
. kv,
=A Az +Bsin Az +—
v cos Az + B sin Z+2PZ

The constants A and B are found using the boundary conditions of the column, which are v=0whenz =0, v =v,,
when z = L/2 and (dv/dz) = 0 when z = L/2.
From the first of these, A = 0, while from the second,

B =v.(1 —kL/4P)/sin(AL/2)
The third boundary condition gives, since v, # 0, the required equation; that is,

PR M K G M
4p) P2 T MMy T

Rearranging,

. %L (1 - tank(Lk/L2/2)>

If P (buckling load) = 4T122E1/L2, then AL/2 = m, so that k = 4P/L. Finally, if k — oo,

. A AL -
an—-=- ii
Note that Eq. (ii) is the transcendental equation which would be derived when determining the buckling load of a

column of length L/2, built in at one end, and pinned at the other.

[
Example 8.1 MATLAB
Repeat the derivation of the column buckling load in Example 8.1 using MATLAB.

The expression for the column buckling load (P) is obtained through the following MATLAB file:

% Declare any needed variables
syms MPvkv_czEI Tambda LABCPI
P_buck = EL/(L"2)*4*PI1"2;
lTambda_sq = P_buck/ET;

% Define the bending moment equation at any section in the column
M= P*v - k*v_c*z/2;

% SubstitutingMintoEq.(8.1)and solving the second order differential

% equation results in the following general solution for v
C=solve(EI*diff(C,2)+subs(M,v,C),C); %Equation8.1

v =A*cos(lambda*z) + B*sin(lambda*z) + C; % General solutionofEq.(8.1)
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% Check boundary conditions to solve for Aand B and P
% Boundary Condition#1: v=0whenz=0

A_val =solve(subs(v,z,0),A);

v =-subs(v,A,A_val);

% Boundary Condition#2: v=v_cwhenz=1L1/2
B_val =solve(subs(v,z,L/2)-v_c,B);
v =subs(v,B,B_val);

% Boundary Condition #3: v_z=0whenz=1/2
P=solve(subs(diff(v,z),z,L/2),P);

% Qutput a simplified expression of P to the Command Window
disp([*P="char(simplify(P))])

The Command Window output resulting from this MATLAB file is as follows:
P=(L*k)/4 - (k*tan((L*Tambda)/2))/(2*1ambda)

INELASTIC BUCKLING

We have shown that the critical stress, Eq. (8.8), depends only on the elastic modulus of the material of
the column and the slenderness ratio //r. For a given material, the critical stress increases as the slen-
derness ratio decreases, that is, as the column becomes shorter and thicker. A point is reached when
the critical stress is greater than the yield stress of the material, so that Eq. (8.8) is no longer applicable.
For mild steel, this point occurs at a slenderness ratio of approximately 100, as shown in Fig. 8.6.
We therefore require some alternative means of predicting column behavior at low values of the
slenderness ratio.

900

600

T

Ocr (N/mmz)

3001
Yield stressfp—-——-

¢}

|
|
|
1 A 1
100 200 300
(L/r)
FIGURE 8.6 Critical Stress—Slenderness Ratio for a Column
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€
FIGURE 8.7 Elastic Moduli for a Material Stressed ahove the Elastic Limit

It was assumed in the derivation of Eq. (8.8) that the stresses in the column remain within the elastic
range of the material, so that the modulus of elasticity E(= dc/de) was constant. Above the elastic limit,
do/de depends upon the value of stress and whether the stress is increasing or decreasing. Thus, in
Fig. 8.7, the elastic modulus at the point A is the tangent modulus E, if the stress is increasing but
E if the stress is decreasing.

Consider a column having a plane of symmetry and subjected to a compressive load P such that the
direct stress in the column P/A is above the elastic limit. If the column is given a small deflection, v, in
its plane of symmetry, then the stress on the concave side increases while the stress on the convex side
decreases. Thus, in the cross-section of the column shown in Fig. 8.8(a) the compressive stress
decreases in the area A; and increases in the area A,, while the stress on the line nn is unchanged.
Since these changes take place outside the elastic limit of the material, we see, from our remarks in

61 (o] /E
R /J SAN. Convex side o / 1
L I A ~ - — d1
A, Y4
n n _ _ _ _

1 e

d Cy. 1 _ v ,-’—895
Centroid Ye
. Az d>
3A Concave side ov

- 0'2 (o) /Ef

(a) (b) (c)
FIGURE 8.8 Determination of Reduced Elastic Modulus
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the previous paragraph, that the modulus of elasticity of the material in the area A is E while thatin A,
is E.. The homogeneous column now behaves as if it were nonhomogeneous, with the result that the
stress distribution is changed to the form shown in Fig. 8.8(b); the linearity of the distribution follows
from an assumption that plane sections remain plane.

As the axial load is unchanged by the disturbance,

dy d>
J Gdi = J G, dA (89)
0 0
Also, P is applied through the centroid of each end section a distance e from nn, so that
d ds
J ox(y1 +e)dA + J o,(y2 —e)dA = —Pv (8.10)
0 0
From Fig. 8.8(b),
O O
x = 7)1 v — 8.11
G d; Y1, © & Y2 ( )

The angle between two close, initially parallel, sections of the column is equal to the change in slope
d?v/dz? of the column between the two sections. This, in turn, must be equal to the angle 8¢ in the strain
diagram of Fig. 8.8(c). Hence,

d*v o [}
A S 8.12
de Edl Eldz ( )
and Eq. (8.9) becomes, from Eqs. (8.11) and (8.12),
d2v d d2V d

Further, in a similar manner, from Eq. (8.10),

d2V dy dy d2V d, d;
F(EJ y%dA—&-EtJ y§dA>+e—2<EJ yldA—EtJ ysz) = —Pv (8.14)
z 0 0 dz 0 0

The second term on the left-hand side of Eq. (8.14) is zero, from Eq. (8.13). Therefore, we have

d*v
32 (Bl + Edo) = —Pv (8.15)
in which
d[ d2
11=J y?dA  and IZ:J y3 dA
0 0

the second moments of area about nn of the convex and concave sides of the column, respectively.
Putting

EJI = EI, +E[,
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or
I 5
E.=E—+E—= 8.16
7 + E¢ 7 ( )
where E, known as the reduced modulus, gives
d*v
Erlg —+ Pv = 0
Comparing this with Eq. (8.2), we see that, if P is the critical load Pcg, then
2E.1
Per =" (8.17)
le
and
2
E.
Ger = (8.18)

(le/r)?
This method for predicting critical loads and stresses outside the elastic range is known as the reduced
modulus theory. From Eq. (8.13), we have

d] dz
EJ yldA—E[J ysz:O (819)
0 0

which, together with the relationship d = d; + d,, enables the position of nn to be found.

It is possible that the axial load P is increased at the time of the lateral disturbance of the column
such that no strain reversal occurs on its convex side. The compressive stress therefore increases over
the complete section so that the tangent modulus applies over the whole cross-section. The analysis is
then the same as that for column buckling within the elastic limit except that E is substituted for E.
Hence, the tangent modulus theory gives

2Ed
Pog =~ 12‘ (8.20)
S
and
2
E
OCR — L (821)

(le/r)?

By a similar argument, a reduction in P could result in a decrease in stress over the whole cross-
section. The elastic modulus applies in this case and the critical load and stress are given by the standard
Euler theory; namely, Eqgs. (8.7) and (8.8).

In Eq. (8.16), I; and I, are together greater than / while E is greater than E;. It follows that the
reduced modulus E, is greater than the tangent modulus E,. Consequently, buckling loads predicted
by the reduced modulus theory are greater than buckling loads derived from the tangent modulus the-
ory, so that, although we specified theoretical loading situations where the different theories apply,
there remains the difficulty of deciding which should be used for design purposes.
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Extensive experiments carried out on aluminum alloy columns by the aircraft industry in the 1940s
showed that the actual buckling load was approximately equal to the tangent modulus load. Shanley
(1947) explained that, for columns with small imperfections, an increase of axial load and bending
occur simultaneously. He then showed analytically that, after the tangent modulus load is reached,
the strain on the concave side of the column increases rapidly while that on the convex side decreases
slowly. The large deflection corresponding to the rapid strain increase on the concave side, which oc-
curs soon after the tangent modulus load is passed, means that it is possible to exceed the tangent mod-
ulus load by only a small amount. It follows that the buckling load of columns is given most accurately
for practical purposes by the tangent modulus theory.

Empirical formulae have been used extensively to predict buckling loads, although in view of the
close agreement between experiment and the tangent modulus theory, they would appear unnecessary.
Several formulae are in use; for example, the Rankine, Straight-line, and Johnson’s parabolic formulae
are given in many books on elastic stability.'

|
Example 8.2

A short column of rectangular cross-section, width b and depth d, is fabricated from material having a Young’s

modulus £ and a tangent modulus E,. Determine, in terms of £ and E;, an expression for the reduced modulus E..
For a rectangular section of width » Eq. (8.19) becomes

d d>

EJ by dy — E[J by,dy = 0
0 0

Integrating and substituting the limits gives
Ed? —Ed? =0 )
Substituting in Eq. (i) for d, (=d — d;) we obtain
d*(E — E\) + 2Edd, — Ed* =0

Solving this quadratic in d; using the formula and simplifying gives
d
dy=——F—— (ii)
1 +/(E/E,)

It follows that

d
dz = W (lll)

Now, in Eq. (8.16)

bd® bd? bd3
I=— L =—"L =22
12 3 3
Substituting for d; and d, in these expressions from Egs. (ii) and (iii) respectively and then in Eq. (8.16) gives
AEE, )
E,=—— @iv)

(VE+ VE)'
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Note that in the case of elastic failure occurring across the complete cross-section of the column then, in
Eq. (iv), E = E, and E, = E,. If no elastic failure occurs then £, = FE and E, = E.
[ |

EFFECT OF INITIAL IMPERFECTIONS

Obviously, it is impossible in practice to obtain a perfectly straight homogeneous column and to ensure
that it is exactly axially loaded. An actual column may be bent with some eccentricity of load. Such
imperfections influence to a large degree the behavior of the column, which, unlike the perfect column,
begins to bend immediately the axial load is applied.

Let us suppose that a column, initially bent, is subjected to an increasing axial load P, as shown in
Fig. 8.9. In this case, the bending moment at any point is proportional to the change in curvature of the
column from its initial bent position. Thus,

d2V d Vo
which, on rearranging, becomes
v, d2v0
iz + AV =4z (8.23)

where A* = P/EI. The final deflected shape, v, of the column depends upon the form of its unloaded
shape, vo. Assuming that

Vo = ;An sin—~ (8.24)
and, substituting in Eq. (8.23), we have
v, ’X , nmz
@"‘7\. :—ﬁ;nAnslnT
The general solution to this equation is
nA, . nnz

o
v:Bcost—i—Dsinkz—l—Z 5 sin ;
n* —o
n=1

—— ——

FIGURE 8.9 Initially Bent Column
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where B and D are constants of integration and oo = A**/m%. The boundary conditions are v = 0 at
z=0and /, giving B = D = 0, from which

> n?A, . nmz
v= Z P J'OL smT (8.25)

Note that, in contrast to the perfect column, we are able to obtain a non-trivial solution for deflec-
tion. This is to be expected, since the column is in stable equilibrium in its bent position at all
values of P.

An alternative form for o is

PP P
== —
n2El PCR

(see Eq. (8.5)). Thus, o is always less than 1 and approaches unity when P approaches Pcg, so that the
first term in Eq. (8.25) usually dominates the series. A good approximation, therefore, for deflection
when the axial load is in the region of the critical load, is

A] Tz

v= - sinT (8.26)
or, at the center of the column, where z = [/2,
Ay
R S 8.27
"T1-P/Px (8.27)

in which A, is seen to be the initial central deflection. If central deflections 6(= v — A;) are measured
from the initially bowed position of the column, then from Eq. (8.27), we obtain

A
— L A =5
1-P/Px

which gives, on rearranging,

5 :PCR%—A1 (8.28)

and we see that a graph of 0 plotted against 6/P has a slope, in the region of the critical load, equal to
Pcr and an intercept equal to the initial central deflection. This is the well-known Southwell plot for the
experimental determination of the elastic buckling load of an imperfect column.

Timoshenko and Gere' also showed that Eq. (8.27) may be used for a perfectly straight column with
small eccentricities of column load.

|
Example 8.3

The pin-jointed column shown in Fig. 8.10 carries a compressive load P applied eccentrically at a distance e from

the axis of the column. Determine the maximum bending moment in the column.
The bending moment at any section of the column is given by

M=P(e+v)
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y
bo
-z
P e e P
L -
FIGURE 8.10 Eccentrically Loaded Column of Example 8.3.
Then, by comparison with Eq. (8.1),
d*v
El@ = —P(e + V)
giving
v, Pe , ,
— =—— = P/EI i
V== (W = PIEI) ()

The solution of Eq. (i) is of standard form and is
v=Acospz+Bsinpz —e

The boundary conditions are v = 0 when z = 0 and (dv/dz) = 0 when z = L/2. From the first of these, A = e, while
from the second,

pnL
B = etan—
ean2

The equation for the deflected shape of the column is then

|

The maximum value of v occurs at mid-span, where z = L/2; that is,
nL
Vmax = € secj —1

M(max) = Pe + Pviax

The maximum bending moment is given by

so that

L
M(max) = Pesec %
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STABILITY OF BEAMS UNDER TRANSVERSE AND AXIAL LOADS

Stresses and deflections in a linearly elastic beam subjected to transverse loads, as predicted by simple
beam theory, are directly proportional to the applied loads. This relationship is valid if the deflections
are small, such that the slight change in geometry produced in the loaded beam has an insignificant
effect on the loads themselves. This situation changes drastically when axial loads act simultaneously
with the transverse loads. The internal moments, shear forces, stresses, and deflections then become
dependent upon the magnitude of the deflections as well as the magnitude of the external loads. They
are also sensitive, as we observed in the previous section, to beam imperfections, such as initial cur-
vature and eccentricity of axial load. Beams supporting both axial and transverse loads are sometimes
known as beam-columns or simply as transversely loaded columns.

We consider first the case of a pin-ended beam carrying a uniformly distributed load of intensity
w per unit length and an axial load P, as shown in Fig. 8.11. The bending moment at any section of
the beam is

M= Pvrt wlz w2 Bl d*v
= rv _— = — N
2 2 dz2
giving
v P W,
4l = (2] 8.2
RS AT A (8.29)

The standard solution to Eq. (8.29) is
2
v=Acos kz+Bsinkz+% <22 — ZZ_P)
where A and B are unknown constants and A* = P/EI. Substituting the boundary conditions v = 0 at
z =0 and [/ gives

w w

A= 22p’ ~ A2Psin M (= cos M)
|
wl
wlhy e 2
2] 1% TS~ o
P T T T REREENR! z

w/unit length

L
FIGURE 8.11 Bending of a Uniformly Loaded Beam-column
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so that the deflection is determinate for any value of w and P and is given by

w 1 — cos AL\ . w 2
v= Zp {cos Az + <W> sin Xz} + 2P (z2 — Iz — P) (8.30)

In beam-columns, as in beams, we are primarily interested in maximum values of stress and deflec-
tion. For this particular case, the maximum deflection occurs at the center of the beam and is, after some
transformation of Eq. (8.30),

w ) wi?
Vmax:W(SGCE—l> —5 (831)
The corresponding maximum bending moment is
wi?
Mmax = _PVmax - ?
or, from Eq. (8.31),
A
Jy— % (1 - sec2> (8.32)

We may rewrite Eq. (8.32) in terms of the Euler buckling load Pcg = n°El/I* for a pin-ended column, hence

lePCR n | P
Mmax = ?T (1 — SCCE a (833)

As P approaches Pcg, the bending moment (and deflection) becomes infinite. However, this theory is
based on the assumption of small deflections (otherwise, d*v/dz” is not a close approximation for cur-
vature), so that such a deduction is invalid. The indication is, though, that large deflections are pro-
duced by the presence of a compressive axial load no matter how small the transverse load might be.

Let us consider now the beam-column of Fig. 8.12, with hinged ends carrying a concentrated load W
at a distance a from the right-hand support. For

d2
VM= _py (8.34)

ZSZ—LI, EI@: /

FIGURE 8.12 Beam-Column Supporting A Point Load
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and, for
d?v w
z>1—a, E[@:—M:—Pv—T(l—a)(l—z) (8.35)
Writing
=t
El
Eq. (8.34) becomes
d*v Wa
==
dz? + Ell
the general solution of which is
W
v = Acos Az + Bsin Ksz—laz (8.36)
Similarly, the general solution of Eq. (8.35) is
W
v:Ccoskz—I—Dsin?»z—Fl(l—a)(l—z) (8.37)

where A, B, C, and D are constants, which are found from the boundary conditions as follows.

When z = 0, v = 0, therefore, from Eq. (8.36), A = 0. At z = [, v = 0, giving, from Eq. (8.37),
C = -D tan Al. At the point of application of the load, the deflection and slope of the beam given
by Egs (8.36) and (8.37) must be the same. Hence, equating deflections,

BsinA(I — a) —‘%l(l—a) = D[sin Al — a) — tan M cos A(I — a)] —%(Z—a)
and, equating slopes,
B)lcos Ml —a) — % = D\[cos Ml — a) — tan M sin (I — a)] + g (I—a)

Solving these equations for B and D and substituting for A, B, C, and D in Eqgs. (8.36) and (8.37),
we have

W sin Aa Wa
- g _ <]_ .
Y asinad o Az Pl forz<l-a (8.38)
Wsin (Il —a) . w
T Phsind —z) =5 (l—a)l— > 11— _
V= sy M-z =g (l=a)l=2), forz>l-a (8.39)

These equations for the beam-column deflection enable the bending moment and resulting bending
stresses to be found at all sections.

A particular case arises when the load is applied at the center of the span. The deflection curve is
then symmetrical with a maximum deflection under the load of

w Mo WI

Vimax = 55 AN b
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FIGURE 8.13 Beam-Column Supporting End Moments

Finally, we consider a beam-column subjected to end moments M 4 and My in addition to an axial load
P (Fig. 8.13). The deflected form of the beam-column may be found by using the principle of superposition
and the results of the previous case. First, we imagine that My acts alone with the axial load P. If we assume
that the point load W moves towards B and simultaneously increases so that the product Wa = constant =
Mg, then, in the limit as @ tends to zero, we have the moment My applied at B. The deflection curve is then
obtained from Eq. (8.38) by substituting Aa for sin Aa (since Aa is now very small) and My for Wa:

Mg (sinkz z
T ( sin Al 7) (840)

P

In a similar way, we find the deflection curve corresponding to M, acting alone. Suppose that W
moves toward A such that the product W(I — a) = constant = M. Then, as ([ — a) tends to zero,
we have sin A(/ — a) = M — a) and Eq. (8.39) becomes

V:%[sink(l—z)_(l_z)]

sin A/ / @41

The effect of the two moments acting simultaneously is obtained by superposition of the results of
Egs. (8.40) and (8.41). Hence, for the beam-column of Fig. 8.13,

V:M3<sinxz z) Aﬁ[sin?»(lz) (12)]

P P sinA I

sin Al [

(8.42)

Equation (8.42) is also the deflected form of a beam-column supporting eccentrically applied end loads
at A and B. For example, if e4 and eg are the eccentricities of P at the ends A and B, respectively, then
My = Pea, Mg = Peg, giving a deflected form of

V6B<sinkzz>+eA{sink(l—z)(l—z)] (8.43)

sinA [ sin A/ [

Other beam-column configurations featuring a variety of end conditions and loading regimes may
be analyzed by a similar procedure.

ENERGY METHOD FOR THE CALCULATION OF BUCKLING LOADS
IN COLUMNS

The fact that the total potential energy of an elastic body possesses a stationary value in an equilibrium
state may be used to investigate the neutral equilibrium of a buckled column. In particular, the energy
method is extremely useful when the deflected form of the buckled column is unknown and has to be
guessed.
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Per

y
FIGURE 8.14 Shortening of a Column Due to Buckling

First, we consider the pin-ended column shown in its buckled position in Fig. 8.14. The internal or
strain energy U of the column is assumed to be produced by bending action alone and is given by the
well-known expression

[ 2
M
U=| 24 8.44
JOZEIZ 844

or alternatively, since EI d?v/dz? = M,

El( [\’
U:EJ (é) dz (8.45)
0

The potential energy V of the buckling load Pcg, referred to the straight position of the column as the
datum, is then
V = —Pcrd

where § is the axial movement of Pcg caused by the bending of the column from its initially straight
position. By reference to Fig. 7.15(b) and Eq. (7.41), we see that

1( /dv 2
5—5L(&> ¢

giving
Per (! (dv)®

| p— —1]d 8.46
2 J() dz g ( )

The total potential energy of the column in the neutral equilibrium of its buckled state is therefore

[ a2 ! 2
M P CR dv

U+V=|75 dz—— — ) d 8.47

+ W2E1 T2 J o (dz : (8.47)

or, using the alternative form of U from Eq. (8.45),

EI ! d2V 2 PCR ! dv 2
= — 4
U+v 2J0(d22) dz = L (dz) dz (8.48)

We saw in Chapter 7 that exact solutions of plate bending problems are obtainable by energy
methods when the deflected shape of the plate is known. An identical situation exists in the determi-
nation of critical loads for column and thin-plate buckling modes. For the pin-ended column under
discussion, a deflected form of
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v= ZAn sin”T”Z (8.49)

satisfies the boundary conditions of

(Vg = (Vg =0, (j_> - (3_> =0

and is capable, within the limits for which it is valid and if suitable values for the constant coefficients
A, are chosen, of representing any continuous curve. We are therefore in a position to find Pcg exactly.
Substituting Eq. (8.49) into Eq. (8.48) gives

U+V =" J ( ) (ZHZA sm£> dz —Pﬂj ( ) (Zm cos£> dz  (8.50)

The product terms in both integrals of Eq. (8.50) disappear on integration, leaving only integrated
values of the squared terms. Thus,

BT & 2p
U+ V—Ti”3 a2 =T CRZ A2 (8.51)
=1

Assigning a stationary value to the total potential energy of Eq. (8.51) with respect to each coefficient
A, in turn, then taking A, as being typical, we have

6(U + V) - TC4E1I’l4An TEZPCanAn B

04, 2B 2/ 0

from which
n’Eln?
Pcr = 2
as before.

We see that each term in Eq. (8.49) represents a particular deflected shape with a corresponding
critical load. Hence, the first term represents the deflection of the column shown in Fig. 8.14, with
Pcr = m2EIl/I*. The second and third terms correspond to the shapes shown in Fig. 8.3, having critical
loads of 41:2E1/l2 and 91t2E1/l2 and so on. Clearly, the column must be constrained to buckle into
these more complex forms. In other words, the column is being forced into an unnatural shape, is con-
sequently stiffer, and offers greater resistance to buckling, as we observe from the higher values of
critical load. Such buckling modes, as stated in Section 8.1, are unstable and are generally of academic
interest only.

If the deflected shape of the column is known, it is immaterial which of Egs. (8.47) or (8.48) is used
for the total potential energy. However, when only an approximate solution is possible, Eq. (8.47) is
preferable, since the integral involving bending moment depends upon the accuracy of the assumed
form of v, whereas the corresponding term in Eq. (8.48) depends upon the accuracy of d*v/dz>.
Generally, for an assumed deflection curve, v is obtained much more accurately than d?v/dz2.

Suppose that the deflection curve of a particular column is unknown or extremely complicated. We
then assume a reasonable shape which satisfies, as far as possible, the end conditions of the column and
the pattern of the deflected shape (Rayleigh—Ritz method). Generally, the assumed shape is in the form
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of a finite series involving a series of unknown constants and assumed functions of z. Let us suppose
that v is given by

v=Afi(z) + Asfa(2) + Asfa(z)

Substitution in Eq. (8.47) results in an expression for total potential energy in terms of the critical load
and the coefficients A, A,, and A5 as the unknowns. Assigning stationary values to the total potential
energy with respect to Ay, A,, and A; in turn produces three simultaneous equations from which the
ratios A;/A,, A;/As, and the critical load are determined. Absolute values of the coefficients are unob-
tainable, since the deflections of the column in its buckled state of neutral equilibrium are
indeterminate.

As a simple illustration, consider the column shown in its buckled state in Fig. 8.15. An approximate
shape may be deduced from the deflected shape of a tip-loaded cantilever. Thus,

- V()Z2
2B

This expression satisfies the end conditions of deflection, thatis,v=0atz=0andv=vyatz=1[.
In addition, it satisfies the conditions that the slope of the column is zero at the built-in end and that
the bending moment, that is, d’v/dz?, is zero at the free end. The bending moment at any section is
M = Pcr (vo — v), so that substitution for M and v in Eq. (8.47) gives

P%Rv% ! 322 3 : Pcr ! 3vy 3 ) 2
—TRW (22 E ) g TR () 200 )2
UtV ="m JO 2w ) YT L (213 Z-)d

Integrating and substituting the limits, we have

v (3l —12)

R TR

U+V= —ZPkR2=0
V=355 Tm 5T Ry
Hence,
a(U + V) _ HP%RVOI . 6PCRV0 -0
ovy 35 EI 51
from which
42F1 EI
PR =——=2471—
RT7R e
y
N ‘ Per
| 1

I |
FIGURE 8.15 Buckling Load for a Built-in Column by the Energy Method
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This value of the critical load compares with the exact value (see Table 8.1) of T2El/AIP = 2.467EI/1;
the error, in this case, is seen to be extremely small. Approximate values of the critical load obtained by
the energy method are always greater than the correct values. The explanation lies in the fact that an
assumed deflected shape implies the application of constraints to force the column to take up an arti-
ficial shape. This, as we have seen, has the effect of stiffening the column with a consequent increase in
critical load.

It will be observed that the solution for this example may be obtained by simply equating the in-
crease in internal energy (U) to the work done by the external critical load (-V). This is always the case
when the assumed deflected shape contains a single unknown coefficient, such as v, in the above
example.

FLEXURAL-TORSIONAL BUCKLING OF THIN-WALLED COLUMNS

In some instances, thin-walled columns of open cross-section do not buckle in bending as predicted
by the Euler theory but twist without bending or bend and twist simultaneously, producing flexural—
torsional buckling. The solution of this type of problem relies on the theory presented in Chapter 27
of Ref. 3 for the torsion of open section beams subjected to warping (axial) restraint. Initially,
however, we shall establish a useful analogy between the bending of a beam and the behavior of
a pin-ended column.

The bending equation for a simply supported beam carrying a uniformly distributed load of inten-
sity w, and having Cx and Cy as principal centroidal axes is

d*v
E]XX@ =w, (see Chapter 15) (8.52)
Also, the equation for the buckling of a pin-ended column about the Cx axis is (see Eq. (8.1))
d*v
EI’”@ = —Pcrv (8.53)

Differentiating Eq. (8.53) twice with respect to z gives

d* d?
Y _peg o (8.54)

EIW ~ 4
dz4 dz2

Comparing Eqgs. (8.52) and (8.54), we see that the behavior of the column may be obtained by
considering it as a simply supported beam carrying a uniformly distributed load of intensity w,

given by
d*v
wy = —PCR@ (8.55)
Similarly, for buckling about the Cy axis,
a2
Wy = —Peg —t (8.56)

dz2
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FIGURE 8.16 Flexural-Torsional Buckling of a Thin-Walled Column

Consider now a thin-walled column having the cross-section shown in Fig. 8.16 and suppose that
the centroidal axes Cxy are principal axes (see Chapter 15); S(xs, ys) is the shear center of the column
(see Chapter 16) and its cross-sectional area is A. Due to the flexural-torsional buckling produced, say,
by a compressive axial load P, the cross-section suffers translations # and v parallel to Cx and Cy,
respectively, and a rotation 0, positive counterclockwise, about the shear center S. Thus, due to trans-
lation, C and S move to C’ and S’ and, due to rotation about S’, C' moves to C”. The total movement of
C, uc, in the x direction is given by

e = u+C'D = u+C'C"sino (S'C'C” ~ 90°)
But
c'C"=C'S'0 =CSo
Hence.
uc =u~+0CSsina =u+ ys0 (8.57)
Also, the total movement of C in the y direction is

ve=v—DC"=v—-CC"coso=v—0CScos a
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so that
Ve =V —Xx0 (8.58)

Since, at this particular cross-section of the column, the centroidal axis has been displaced, the axial
load P produces bending moments about the displaced x and y axes given, respectively, by

M, = Pvc = P(v — xs0) (8.59)
and

M, = Puc = P(u + ys0) (8.60)

From simple beam theory (Chapter 15),

d*v
EIXX@ =-M, = —P(V—xse) (8.61)
and
d*u
Elyy@ =—-M, =—P(u+ys0) (8.62)

where /I, and I, are the second moments of area of the cross-section of the column about the principal
centroidal axes, E is Young’s modulus for the material of the column, and z is measured along the cen-
troidal longitudinal axis.

The axial load P on the column at any cross-section, is distributed as a uniform direct stress 6. Thus,
the direct load on any element of length s at a point B(xg, yg) is of ds acting in a direction parallel to
the longitudinal axis of the column. In a similar manner to the movement of C to C”, the point B is
displaced to B”. The horizontal movement of B in the x direction is then

ug = u+ B'F=u+ B'B’cos B

But

B'B” = S'B'6 = SB6
Hence,

ug =u+ 0SB cos B
or

ug =u+ (ys — ygp)9 (8.63)
Similarly, the movement of B in the y direction is
vg = v — (xs —xp)0 (8.64)

Therefore, from Eqs. (8.63) and (8.64) and referring to Egs. (8.55) and (8.56), we see that the compres-
sive load on the element &s at B, c13s, is equivalent to lateral loads
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2

d
—0o1ds— ) 5[+ (ys — yB)0] in the x direction

and

2
fctﬁsﬁ [v— (xs — xg)0] in the y direction
z

The lines of action of these equivalent lateral loads do not pass through the displaced position S’ of the
shear center and therefore produce a torque about S’ leading to the rotation 8. Suppose that the element
Os at B is of unit length in the longitudinal z direction. The torque per unit length of the column 67(z)
acting on the element at B is then given by
a2
8T (z) = —otds [u+ (ys = y8)0](ys — )
d2 (8.65)
+ otds — [v — (xs — x)0](xs — xp)
dz

Integrating Eq. (8.65) over the complete cross-section of the column gives the torque per unit length
acting on the column; that is,

d*u ,d%0
T(z) = — 1 (yg — yp)ds — t(ys — y8)* —— d
0= orGHOs—rads—| ot~y @
v L d20 (8.66)
+Lect Gl@()cs — xp)ds fLw ot(xs — xg) FEd ds

Expanding Eq. (8.66) and noting that ¢ is constant over the cross-section, we obtain

d*u d*u d*0
T(z) = —6— td — | teds—o—y:| «d
(Z) ° dZ2 s JSect sro dZZ JSecl e ° dZZ ys JSect ’

2 2

&0 &0 d2v
—2 ds tyy ds td
d dz? s JSect tyB T dZZ JSect yB o dz 2 JSect g
8.67
szJ txp d d2ex2J as + 050 J txp d aer
—0— g ds — o — s+ 0 —=2xg vg ds
dZZ Sect 22 S Sect dZZ Sect

d’o
—G—J o ds
dz? Sect
Equation (8.67) may be rewritten
v dw\ Pd*0
T = P _— JR— N —
) <xs a2 s dz2> AdZ

In Eq. (8.68), the term I, + I, + A(xé + yé)) is the polar second moment of area /; of the column
about the shear center S. Thus, Eq. (8.68) becomes

(Ayg + Lo + Axg + Iy) (8.68)
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2 2 P&
d°v du) d-e (8.69)

T(z) = P(xs s — yg ) —Ip~——>
) (XS a2 78d2) T 'Ad2

Substituting for 7(z) from Eq. (8.69) in Eq. (27.11) of Ref. 3, the general equation for the torsion of a
thin-walled beam, we have

ET

4 2 2 2
d*o ( P)d@ d-v d“u : (8.70)

@* GJ*I()X @7PXS@+P))S@:
Equations (8.61), (8.62), and (8.70) form three simultaneous equations which may be solved to deter-
mine the flexural-torsional buckling loads.

As an example, consider the case of a column of length L in which the ends are restrained against
rotation about the z axis and against deflection in the x and y directions; the ends are also free to rotate
about the x and y axes and are free to warp. Thus, u = v=0 = 0at z = 0 and z = L. Also, since the
column is free to rotate about the x and y axes at its ends, M, = M, =0 at z = 0 and z = L, and from
Egs. (8.61) and (8.62),

v d*u
@:@:Oatz:Oandz:L
Further, the ends of the column are free to warp so that
d?0
P Oatz=0andz=L (see Eq. (27.1) of Ref. 3)

An assumed buckled shape given by
u=A sinEe, v=Aysin’L 8= Ajssin— 8.71)
L L L

in which Ay, A,, and A5 are unknown constants, satisfies the preceding boundary conditions. Substitut-
ing for u, v, and 0 from Eqgs. (8.71) into Egs. (8.61), (8.62), and (8.70), we have

2
nEl
P—T“ Ay — PxsA3 =0
nEl,,
— =3 | A1~ PysAs =0 (8.72)
n’El Iy
PySAl — P.XSA2 - L2 + GJ — XP A3 =0

For nonzero values of A;, A,, and As, the determinant of Egs. (8.72) must equal zero that is,
0 P — n’El,,/L? —Pxg
P — n?El,,/L? 0 Pyg =0 (8.73)
Pyg —Pxs IyP/A — m’ET’JL* — GJ
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The roots of the cubic equation formed by the expansion of the determinant give the critical loads for
the flexural-torsional buckling of the column; clearly, the lowest value is significant.

In the case where the shear center of the column and the centroid of area coincide, that is, the col-
umn has a doubly symmetrical cross-section, xs = ys = 0 and Egs. (8.61), (8.62), and (8.70) reduce,
respectively, to

d*v
EIM@ = —Pv (8.74)
d%u
d*o P\ d%0
Er——(GI—-I)-)]—=0 8.76
dz* ( OA) dz? (8.76)

Equations (8.74), (8.75), and (8.76), unlike Egs. (8.61), (8.62), and (8.70), are uncoupled and provide
three separate values of buckling load. Thus, Egs. (8.74) and (8.75) give values for the Euler buckling
loads about the x and y axes, respectively, while Eq. (8.76) gives the axial load that produces pure tor-
sional buckling; clearly the buckling load of the column is the lowest of these values. For the column
whose buckled shape is defined by Eqs. (8.71), substitution for v, u, and 6 in Eqs. (8.74), (8.75), and
(8.76), respectively, gives

_ TElL, T’El,, A n2El )

Perpy === Peron = =27 Porio) = - (GJ 0

(8.77)

|
Example 8.4

A thin-walled pin-ended column is 2 m long and has the cross-section shown in Fig. 8.17. If the ends of the column

are free to warp, determine the lowest value of axial load which causes buckling and specify the buckling mode.
Take E = 75,000 N/mm* and G = 21,000 N/mm>.

Since the cross-section of the column is doubly symmetrical, the shear center coincides with the centroid of
area and xg = yg = 0; Egs. (8.74), (8.75), and (8.76) therefore apply. Further, the boundary conditions are those
of the column whose buckled shape is defined by Eqgs. (8.71), so that the buckling load of the column is the lowest
of the three values given by Eqgs. (8.77).

The cross-sectional area A of the column is

A =25(2x37.5+75) =375 mm?

The second moments of area of the cross-section about the centroidal axes Cxy are (see Chapter 15), respectively,

Lo =2 % 37.5%x2.5 % 37.5% +2.5 x 75%/12 = 3.52 x 10° mm*
Iy =2 x 2.5 x37.5/12 = 0.22 x 10° mm*

The polar second moment of area [ is
lo=1y+1y+ A(xé + yé) (see the derivation of Eq. (8.69))
that is

Iy =3.52 x 10° +0.22 x 10° = 3.74 x 10° mm*
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25mm

I GE—— 75 mm

—t=—25mm

L 37.5mm |
[ |
FIGURE 8.17 Column Section of Example 8.4

The torsion constant J is obtained using Eq. (17.11), which gives
J =2x375x25%3+75 x 2.5%3 = 781.3 mm*
Finally, I' is found using the method of Section 27.2 of Ref. 3 and is
I'=2.5x37.5 x 75%/24 = 30.9 x 10° mm®
Substituting these values in Egs. (8.77), we obtain

Pcr(w) = 6.5 x 10°N, Pcryyy) = 0.41 x 10°N, Pcgi) = 2.22 x 10'N

yy)

The column therefore buckles in bending about the Cy axis when subjected to an axial load of 0.41 x 10* N.

Equation (8.73) for the column whose buckled shape is defined by Egs. (8.71) may be rewritten in
terms of the three separate buckling loads given by Eqgs. (8.77):

0 P—Pcrw) —Pxs
P — Pcriy) 0 Pys =0 (8.78)
Pys —Pxg Io — (P — Pcgrp)) /A

If the column has, say, Cx as an axis of symmetry, then the shear center lies on this axis and ys = 0.
Equation (i) thereby reduces to

P — Pcriw) —Pxs

=0 8.79
—Pxg Ip — (P — Pcree))/A) (8.79)
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The roots of the quadratic equation formed by expanding Eq. (8.79) are the values of axial load which
produce flexural—torsional buckling about the longitudinal and x axes. If Pcgyy) is less than the smallest
of these roots the column will buckle in pure bending about the y axis.

[
Example 8.5
A column of length 1 m has the cross-section shown in Fig. 8.18. If the ends of the column are pinned and free to
warp, calculate its buckling load; £ = 70,000 N/mm?, G = 30,000 N/mm?>.

In this case, the shear center S is positioned on the Cx axis, so that ys = 0 and Eq. (8.79) applies. The distance
X of the centroid of area C from the web of the section is found by taking first moments of area about the web:

2(100 + 100 + 100)x = 2 x 2 x 100 x 50

which gives
X=333mm

The position of the shear center S is found using the method of Example 16.3; this gives xg = —76.2 mm. The
remaining section properties are found by the methods specified in Example 8.4 and follow:

A = 600 mm?, Ly = 1.17 x 10 mm*, I, = 0.67 x 10° mm*,
Iy =535 x 10°mm*, J =800 mm*, I = 2488 x 10°mm®

From Eq. (8.77),
Pcr(yy) = 4.63 x 10°N,  Pcr(w) = 8.08 x 10°N,  Pcr() = 1.97 x 10°N
Expanding Eq. (8.79),

(P — Pcru)) (P — Pcreo))o/A — PPxg =0 ()

2mm —=f=—

e = 100 mm
Six,,0) C X
x
* 1
2mm
I |
o 100 mm 1

FIGURE 8.18 Column Section of Example 8.5
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Rearranging Eq. (i),
P*(1 — Axg/Iy) — P(Pcr) + Per(o)) + Pcr(eryPer(o) = 0 (ii)
Substituting the values of the constant terms in Eq. (ii), we obtain
P* —29.13 x 10°P +46.14 x 10" =0 (iii)
The roots of Eq. (iii) give two values of critical load, the lowest of which is
P =168 x 10°N

It can be seen that this value of flexural-torsional buckling load is lower than any of the uncoupled buckling loads
Pcreos Peroyy OF Peregys the reduction is due to the interaction of the bending and torsional buckling modes.

|
Example 8.5 MATLAB
Repeat Example 8.5 using the MATLAB and the calculated section properties.

The value of the critical buckling load is obtained through the following MATLAB file:

% Declare any needed variables
syms P
L=1000;
t=2;
E=70000;

G =30000;
y_s=0;
X_S=-76.2;
A=600;
I_xx=1.17e6;
I_yy=0.67e6;
1_0=5.32e6;
J =2800;

T =2488e6;

% Evaluate Eq.(8.77)

P_CRyy = pit2*E*I_yy/L"2;

P_CRxx = pim2*E*I_xx/L"2;

P_CRtheta = A*(G*J + pit2*E*T/L"2)/1_0;

% Substitute results of Eq. (8.77) into Eq.(8.79)
eq_l =det([P-P_CRxx -P*x_s; -P*x_s I_0*(P-P_CRtheta)/Al);

% Solveeq_I for thecritical buckling lToad (P)
P=solve(eq_I,P);

% Output the minimum value of P to the Command Window
disp([“P="num2str(min(double(P))) ‘N’1)
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The Command Window output resulting from this MATLAB file is as follows:
P=167785.096N

[
Example 8.6

A thin-walled column has the cross-section shown in Fig. 8.19, is of length L, and is subjected to an axial load
through its shear center S. If the ends of the column are prevented from warping and twisting, determine the value
of direct stress when failure occurs due to torsional buckling.

The torsion bending constant I" is found using the method described in Section 27.2 of Ref. 3. The position of
the shear center is given but is obvious by inspection. The swept area 2I'Ag o is determined as a function of s, and its
distribution is shown in Fig. 8.20. The center of gravity of the “wire: is found by taking moments about the s axis.

Then,

& 5 3P 5d2+d2
4 "2 T4 T2

2A,51d = td(E o+t

which gives
24y = d*

The torsion bending constant is then the “moment of inertia” of the “wire” and is

1 2\ 2 2\ 2
F:thg(d2)2+g(d7) ><2+td(d)

3 2
y
i_{
2 1
.
d t
3 S\J 4 ‘X
d
6 5
}.;

FIGURE 8.19 Section of Column of Example 8.6
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24, | o - S d?|

1 I
1 d 2 d 3 d 4 d 5 d 6 s
FIGURE 8.20 Determination of Torsion Bending Constant for Column Section of Example 8.6

from which

13
Ir=—1td
12

Also, the torsion constant J is given by (see Section 3.4)

st 5dr
J= =
2.5=7
The shear center of the section and the centroid of area coincide, so that the torsional buckling load is given by
Eq. (8.76). Rewriting this equation,
a‘e  ,d%0
= -0 i
dz* T dz? @
where

u* = (cly — GI)JET, (c=P/A)

The solution of Eq. (i) is

0=Acosuz+Bsinuz+Cz+D (ii)
The boundary conditions are 6 = 0 when z = 0 and z = L, and since the warping is suppressed at the ends of the
beam,
de
o 0, whenz=0 andz=L (see Eq.(17.19))

Putting 6 = 0 at z = 0 in Eq. (ii)
0=A+D

or
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Also,

do
d—z—uAsinpz—O—uBcosuz—i—C
z

and, since (d6/dz) = 0 at z = 0,
C=—-uB
When z = L, 6 = 0, so that, from Eq. (ii),
0=AcospL+ BsinpuL+CL+D

which may be rewritten

0 = B(sin uL — pL) + A(cos uL — 1)

Then, for (d6/dz) =0 atz =1L,

0 = uBcos pL — pAssin pL — puB
or

0=B(cospuL — 1) — Asin puL

Eliminating A from Egs. (iii) and (iv),

0 = B[2(1 — cos pL) — pLsin pL]
Similarly, in terms of the constant C,

0= —C[2(1 — cos uL) — pLsin pL]

or
B=-C

But B = —C/p, so that to satisfy both equations, B = C = 0 and
0=Acospuz—A =A(cospz—1)

Since 6 = 0 at z = [,

cospul = 1
or
uL = 2nm
Therefore,
W12 = dnPn
or

clp —GJ 4n’n?
Er L2

301

(iii)

(iv)

)

(vi)

(vii)
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The lowest value of torsional buckling load corresponds to n = 1, so that, rearranging the preceding,

Am?ET
L2

1
0——(GJ+

=7 (viii)

The polar second moment of area / is given by
Iy=1.+1, (see Megsonz)

that is,

td? 3td? d?
Iy=2(tdd*+— | + —+2td—
0 ( + 3 ) + B + n

which gives

41
Iy = —1td®
°T12
Substituting for Iy, J, and I in Eq. (viii),
4 13n2Ed*
—— (56
°T e ( L )
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PROBLEMS

P.8.1. The system shown in Fig. P.8.1 consists of two bars AB and BC, each of bending stiffness EI
elastically hinged together at B by a spring of stiffness K (i.e., bending moment applied by spring = K x
change in slope across B). Regarding A and C as simple pin joints, obtain an equation for the first buck-
ling load of the system. What are the lowest buckling loads when (a) K — oo, (b) EI — oo. Note that B
is free to move vertically.

Answer: pK/tan pl.

p A B/{Stiffness K C P
—_— [_\L}l L =
| |

FIGURE P.8.1
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EI 4ET EI
P = | lt P
| |< -
‘ 1 ol 1 ! 1
zl 3l 7l

FIGURE P.8.2

P.8.2. A pin-ended column of length / and constant flexural stiffness EI is reinforced to give a flexural
stiffness 4EI over its central half (see Fig. P.8.2). Considering symmetric modes of buckling only,
obtain the equation whose roots yield the flexural buckling loads and solve for the lowest buckling load.

Answer: tan pl/8 = 1/v/2, P =24.2FI/P

P.8.3. A uniform column of length / and bending stiffness EI is built-in at one end and free at the other
and has been designed so that its lowest flexural buckling load is P (see Fig. P.8.3). Subsequently it has
to carry an increased load, and for this it is provided with a lateral spring at the free end. Determine the
necessary spring stiffness k£ so that the buckling load becomes 4P.

Answer: k =4Pp/(pl — tan pl).

P.8.4. A uniform, pin-ended column of length / and bending stiffness EI has an initial curvature such
that the lateral displacement at any point between the column and the straight line joining its ends is
given by

4z .
W =ap (I—z) (see Fig. P.8.4)
7 Y
EI 7 4P
e P -
7 L ;k
A . Z 1 I/
- —
FIGURE P.8.3

FIGURE P.8.4
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Show that the maximum bending moment due to a compressive end load P is given by
Moo — 8aP <sec ) 1)
max (7\‘1)2 2

A =P/EI

where

P.8.5. The uniform pin-ended column shown in Fig. P.8.5 is bent at the center so that its eccentricity
there is 8. If the two halves of the column are otherwise straight and have a flexural stiffness EI, find the
value of the maximum bending moment when the column carries a compression load P.

286 [EI /P I
Answer: _PT Ftan ok

P.8.6. A straight uniform column of length / and bending stiffness EI is subjected to uniform lateral
loading w/unit length. The end attachments do not restrict rotation of the column ends. The longitudinal
compressive force P has eccentricity e from the centroids of the end sections and is placed so as to
oppose the bending effect of the lateral loading, as shown in Fig. P.8.6. The eccentricity e can be varied
and is to be adjusted to the value which, for given values of P and w, will result in the least maximum
bending moment on the column. Show that

e = (w/Pp?) tan’pl/4

where

w? = P/EI

FIGURE P.8.5

w/unit length

t i b v b by

o

— | ® |-
@
o

FIGURE P.8.6
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Deduce the end moment that gives the optimum condition when P tends to zero.
Answer:  wi*/16.

P.8.7. The relation between stress ¢ and strain € in compression for a certain material is

16
c
10.5 x 10% = 6 421,000 { ———
g=o+2l (49,000)
Assuming the tangent modulus equation to be valid for a uniform strut of this material, plot the graph of
Gy, against //r, where oy, is the flexural buckling stress, / the equivalent pin-ended length, and r the least
radius of gyration of the cross-section. Estimate the flexural buckling load for a tubular strut of this
material, of 1.5 units outside diameter and 0.08 units wall thickness with effective length 20 units.

Answer: 14,454 force units

P.8.8. A short column has a doubly symmetrical I-section and is fabricated from material for which
Young’s modulus is E and the tangent modulus is E;; its flange width is » and its overall depth is
d. Assuming that the direct stresses are concentrated in the flanges at distances £d/2 from the horizon-
tal axis of symmetry obtain an expression for the reduced section modulus E, in terms of £ and E,.

Answer: E, = 2E/[1 + (E/E)].

P.8.9. A rectangular portal frame ABCD is rigidly fixed to a foundation at A and D and is subjected to a
compression load P applied at each end of the horizontal member BC (see Fig. P.8.9). If all the mem-
bers have the same bending stiffness EI, show that the buckling loads for modes which are symmetrical
about the vertical center line are given by the transcendental equation

7=-36)m(3)

where
A =P/EI
P B EI C P
- —_ —t——
b ET EI
| A D
a |

FIGURE P.8.9
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FIGURE P.8.10

P.8.10. A compression member (Fig. P.8.10) is made of circular section tube, diameter d, thickness ¢.
The member is not perfectly straight when unloaded, having a slightly bowed shape which may be
represented by the expression
. (TZ
v = Jsin (7)

Show that when the load P is applied, the maximum stress in the member can be expressed as

c —il-i- L4
T ndr l—ad

where
o=P/P,, P.,=nEl/"
Assume ¢ is small compared with d, so that the following relationships are applicable:

Cross-sectional area of tube = mdt
Second moment of area of tube = md’t/8

P.8.11. Figure P.8.11 illustrates an idealized representation of part of an aircraft control circuit.
A uniform, straight bar of length a and flexural stiffness EI is built-in at the end A and hinged at
B to a link BC, of length b, whose other end C is pinned, so that it is free to slide along the line
ABC between smooth, rigid guides. A, B, and C are initially in a straight line and the system carries
a compression force P, as shown. Assuming that the link BC has a sufficiently high flexural stiffness
to prevent its buckling as a pin-ended strut, show, by setting up and solving the differential equation
for flexure of AB, that buckling of the system, of the type illustrated in Fig. P.8.11, occurs when P has
such a value that

tan ha = Ma + b)

C

%A B X P

R
| a b |

| l
FIGURE P.8.11
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where
A? = P/EI

P.8.12. A pin-ended column of length / has its central portion reinforced, the second moment of its
area being I,, while that of the end portions, each of length q, is /. Use the energy method to deter-
mine the critical load of the column, assuming that its centerline deflects into the parabola v = kz(/ —
z) and taking the more accurate of the two expressions for the bending moment. In the case where I, =
1.6/, and a = 0.2 [, find the percentage increase in strength due to the reinforcement, and compare it
with the percentage increase in weight on the basis that the radius of gyration of the section is not
altered.

Answer: Pcr = 14.96E]1/12, 52 percent, 36 percent
P.8.12 MATLAB Use the MATLAB to repeat Problem P.8.12 for the following relations of /; and /5.

(i) (i) (iif) (iv) (v)
L 145 154 164 175 181

Answer: (i
i

(ii

) Pcr = 13.38El,/I?,36%,24%
) Pcr = 14.18El, /I*,44%,30%
(iii) Pcr = 14.96El, /I>,52%,36%
(iv) Pcr = 15.72E1,/I,59%,42%
(v) Pcr = 16.47EI,/I?,67%,48%

P.8.13. A tubular column of length / is tapered in wall thickness so that the area and the second mo-
ment of area of its cross-section decrease uniformly from A; and /; at its center to 0.24; and 0.2/, at
its ends. Assuming a deflected center-line of parabolic form and taking the more correct form for the
bending moment, use the energy method to estimate its critical load when tested between pin-centers,
in terms of the preceding data and Young’s modulus E. Hence, show that the saving in weight by
using such a column instead of one having the same radius of gyration and constant thickness is about
15 percent.

Answer: 7.01E11/l2

P.8.14. A uniform column (Fig. P.8.14), of length / and bending stiffness EI, is rigidly built-in at the
end z = 0 and simply supported at the end z = [. The column is also attached to an elastic foun-
dation of constant stiffness k/unit length. Representing the deflected shape of the column by a
polynomial

P
v= Z;ann", where n = z/!/

determine the form of this function by choosing a minimum number of terms p such that all the kine-
matic (geometric) and static boundary conditions are satisfied, allowing for one arbitrary constant only.
Using the result thus obtained, find an approximation to the lowest flexural buckling load Pcg by the
Rayleigh—Ritz method.

Answer: Pcr = 21.05E]/l2 + 0.09k?
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P.8.15. Figure P.8.15 shows the doubly symmetrical cross-section of a thin-walled column with rigidly
fixed ends. Find an expression, in terms of the section dimensions and Poisson’s ratio, for the column
length for which the purely flexural and the purely torsional modes of instability occur at the same axial
load. In which mode does failure occur if the length is less than the value found? The possibility of local
instability is to be ignored.

Answer: [ = (2nb*/t) /(1 + v)/255, torsion

P.8.16. A column of length 2/ with the doubly symmetric cross-section, shown in Fig. P.8.16, is com-
pressed between the parallel platens of a testing machine which fully prevents twisting and warping of
the ends. Using the data that follows, determine the average compressive stress at which the column
first buckles in torsion:

[=500mm, b=250mm, r=25mm, E=70000N/mm* E/G=2.6

Answer: Gcgr = 282 N/mm?.
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FIGURE P.8.16

P.8.17. A pin-ended column of length 1.0 m has the cross-section shown in Fig. P.8.17. If the ends of
the column are free to warp, determine the lowest value of axial load which will causes the column to
buckle and specify the mode. Take E =70,000 N/mm? and G = 25,000 N/mm?.

Answer: 5,527 N. The column buckles in bending about an axis in the plane of its web.
P.8.17. MATLAB Use MATLAB to repeat Problem P.8.16 for the following column lengths.
(i) (i) () (i) (v) (vi)

L Sm 1m 1.5m 2m 2.5m 3m

Answer: (i) 22108 N
(ii) 5527 N
20mm
1.5mm
1.5mm
40 mm
} 1.5mm
!

20mm

FIGURE P.8.17
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(i) 2456 N
(iv) 1382 N
(v) 884N
(vi) 614N

The column buckles in bending about the y axis (plane of the web) for all selected values of L.

P.8.18. A pin-ended column of height 3.0 m has a circular cross-section of diameter 80 mm, wall thick-
ness 2.0 mm, and is converted to an open section by a narrow longitudinal slit; the ends of the column
are free to warp. Determine the values of axial load which would cause the column to buckle in (a) pure
bending and (b) pure torsion. Hence, determine the value of the flexural-torsional buckling load. Take
E =70,000 N/mm? and G = 22,000 N/mm?. Note: the position of the shear center of the column section
may be found using the method described in Chapter 16.

Answer: (a) 3.09 x 10*N, (b) 1.78 x 10*N, 1.19 x 10*N



CHAPTER

Thin plates

We shall see in Chapter 11, when we examine the structural components of aircraft, that they consist
mainly of thin plates stiffened by arrangements of ribs and stringers. Thin plates under relatively small
compressive loads are prone to buckle and so must be stiffened to prevent this. The determination of
buckling loads for thin plates in isolation is relatively straightforward, but when stiffened by ribs and
stringers, the problem becomes complex and frequently relies on an empirical solution. In fact, the
stiffeners may buckle before the plate and, depending on their geometry, may buckle as a column
or suffer local buckling of, say, a flange.

In this chapter, we shall present the theory for the determination of buckling loads of flat plates and
examine some of the different empirical approaches various researchers have suggested. In addition,
we investigate the particular case of flat plates which, when reinforced by horizontal flanges and
vertical stiffeners, form the spars of aircraft wing structures; these are known as fension field beams.

BUCKLING OF THIN PLATES

A thin plate may buckle in a variety of modes, depending upon its dimensions, the loading, and the
method of support. Usually, however, buckling loads are much lower than those likely to cause failure
in the material of the plate. The simplest form of buckling arises when compressive loads are applied to
simply supported opposite edges and the unloaded edges are free, as shown in Fig. 9.1. A thin plate in
this configuration behaves in exactly the same way as a pin-ended column, so that the critical load is
that predicted by the Euler theory. Once this critical load is reached, the plate is incapable of supporting
any further load. This is not the case, however, when the unloaded edges are supported against displace-
ment out of the xy plane. Buckling, for such plates, takes the form of a bulging displacement of the
central region of the plate while the parts adjacent to the supported edges remain straight. These parts
enable the plate to resist higher loads; an important factor in aircraft design.

At this stage, we are not concerned with this postbuckling behavior but rather with the prediction of
the critical load which causes the initial bulging of the central area of the plate. For the analysis, we may
conveniently employ the method of total potential energy, since we already, in Chapter 7, derived
expressions for strain and potential energy corresponding to various load and support configurations.
In these expressions, we assumed that the displacement of the plate comprises bending deflections only
and that these are small in comparison with the thickness of the plate. These restrictions therefore apply
in the subsequent theory.

First, we consider the relatively simple case of the thin plate of Fig. 9.1, loaded as shown, but simply
supported along all four edges. We saw in Chapter 7 that its true deflected shape may be represented by
the infinite double trigonometrical series

Introduction to Aircraft Structural Analysis, Third Edition. http://dx.doi.org/10.1016/B978-0-08-102076-0.00009-9 3 1 1
Copyright © 2018 T.H.G. Megson. Published by Elsevier Ltd. All rights reserved.
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Nx/unit length

FIGURE 9.1 Buckling of a Thin Flat Plate

00 00 _ nmy
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m=1

Also, the total potential energy of the plate is, from Eqgs. (7.37) and (7.45),
1’ Pw  Pw\’ 0w 0w Pw\’ ow\?
U+V = DSl =+ ) 20l = V)| == | z= —Ny| = |dxd
wv=3l,), {(W #oE) 20 [axz (o) | () oo

(CAY)
The integration of Eq. (9.1) on substituting for w is similar to those integrations carried out in Chapter 7.
Thus, by comparison with Eq. (7.47),

Uty n%;bD i i A2 (’;izz n2> B NxzzmzAim 9.2)
m=1 n=1

m=1 n=1

The total potential energy of the plate has a stationary value in the neutral equilibrium of its buckled
state (i.e., N, = N, cr). Therefore, differentiating Eq. (9.2) with respect to each unknown coefficient
A,.n, We have

Nx,CRmzAnln =0

oU+V) n*abD m* n®\° b
OAp 4 T b? 4a

and, for a nontrivial solution,

1 (m® 2\’
Nx CR =T azD— (?—i_ﬁ) (93)

Exactly the same result may have been deduced from Eq. (ii) of Example 7.3, where the displacement
w becomes infinite for a negative (compressive) value of N, equal to that of Eq. (9.3).

We observe, from Eq. (9.3), that each term in the infinite series for displacement corresponds, as in
the case of a column, to a different value of critical load (note, the problem is an eigenvalue problem).
The lowest value of critical load evolves from some critical combination of integers m and n, that is, the
number of half-waves in the x and y directions, and the plate dimensions. Clearly n = 1 gives a
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minimum value, so that no matter what the values of m, a, and b, the plate buckles into a half sine wave
in the y direction. Thus, we may write Eq. (9.3) as

1 21\’
Nycr = w°a’D— (m + )
' m

a’? b
or
kn*D
Nxcr = =5~ 9.4
where the plate buckling coefficient k is given by the minimum value of
b 2
k= (m— + i) ©9.5)
a mb

for a given value of a/b. To determine the minimum value of & for a given value of a/b, we plot k as a
function of a/b for different values of m, as shown by the dotted curves in Fig. 9.2. The minimum value
of k is obtained from the lower envelope of the curves shown solid in the figure.

It can be seen that m varies with the ratio a/b and that k and the buckling load are a minimum when
k=4atvaluesofa/b=1,2,3,.... Asa/bbecomes large k approaches 4, so that long narrow plates tend
to buckle into a series of squares.

The transition from one buckling mode to the next may be found by equating values of k for the m
and m + 1 curves. Hence,

mb —a (m+1)b a
a mb  a (m+ 1)b
8...
6_
k
[
4 | ! r i
! i | |
| o |
| | | |
| | i !
| | | {
2 P! ] ! L i ] ] 1
0 142 2 6 3 Vi2 4 V20 5

a/b
FIGURE 9.2 Buckling Coefficient k for Simply Supported Plates




314 CHAPTER 9 Thin plates

giving
a
L 1
L=Vl + 1)
Substituting m = 1, we have a/b = V2 = 1.414, and for m = 2, a/b = v/6 = 2.45, and so on.
For a given value of a/b, the critical stress, ccr =N, cr/t, is found from Eqgs. (9.4) and (7.4);
that is,

kn’E 1?2
o =iz () ©-0)

In general, the critical stress for a uniform rectangular plate, with various edge supports and loaded
by constant or linearly varying in-plane direct forces (N,, N,) or constant shear forces (VN,,) along
its edges, is given by Eq. (9.6). The value of k remains a function of a/b but depends also upon
the type of loading and edge support. Solutions for such problems have been obtained by solv-
ing the appropriate differential equation or by using the approximate (Rayleigh—Ritz) energy
method. Values of k for a variety of loading and support conditions are shown in Fig. 9.3. For
a plate subjected to shear loads along its four edges k becomes the shear buckling coefficient
(Fig. 9.3(c)) and ocr in Eq. (9.6) becomes the critical shear stress, Tcg.

We see from Fig. 9.3 that & is very nearly constant for a/b > 3. This fact is particularly useful in
aircraft structures where longitudinal stiffeners are used to divide the skin into narrow panels (having
small values of b), thereby increasing the buckling stress of the skin.

INELASTIC BUCKLING OF PLATES

For plates having small values of b/¢, the critical stress may exceed the elastic limit of the material of the
plate. In such a situation, Eq. (9.6) is no longer applicable, since, as we saw in the case of columns,
E becomes dependent on stress, as does Poisson’s ratio v. These effects are usually included in a plas-
ticity correction factor 1, so that Eq. (9.6) becomes

_ Mkn’E 2
OR T (1 - v2) (b) ©.7

where E and v are elastic values of Young’s modulus and Poisson’s ratio. In the linearly elastic
region, n = 1, which means that Eq. (9.7) may be applied at all stress levels. The derivation of a
general expression for 1 is outside the scope of this book, but one' giving good agreement with

experiment is
L 1(1 3E 3
2 2\4 4E;

where E, and E are the tangent modulus and secant modulus (stress/strain) of the plate in the inelastic
region and v, and v, are Poisson’s ratio in the elastic and inelastic ranges.

1 —V2E,
-——=
1 va

n
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Bending; (c) Shear Buckling Coefficients for Flat Plates
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EXPERIMENTAL DETERMINATION OF THE CRITICAL LOAD FOR
A FLAT PLATE

In Section 8.3, we saw that the critical load for a column may be determined experimentally, without
actually causing the column to buckle, by means of the Southwell plot. The critical load for an actual,
rectangular, thin plate is found in a similar manner.

The displacement of an initially curved plate from the zero load position was found, in Section
7.5, to be

ZZB’”” sm@ i %

m=1 n=
where
ApnNy
2 2.2\ 2
7ta_2D (m + %) — Ny
We see that the coefficients B,,, increase with an increase of compressive load intensity N,. It follows
that, when N, approaches the critical value, N, cg, the term in the series corresponding to the buckled

shape of the plate becomes the most significant. For a square plate, n = 1 and m = 1 give a minimum
value of critical load, so that at the center of the plate

mn —

w AN,
| =
N.\“CR - Nx
or, rearranging,
wi = Ny, CR —Ap
Nx

Thus, a graph of w; plotted against w/N, has a slope, in the region of the critical load, equal to N, cg.

LOCAL INSTABILITY

We distinguished in the introductory remarks to Chapter 8 between primary and secondary (or local)
instability. The latter form of buckling usually occurs in the flanges and webs of thin-walled columns
having an effective slenderness ratio, /./r < 20. For [./r > 80, this type of column is susceptible to
primary instability. In the intermediate range of /./r between 20 and 80, buckling occurs by a combi-
nation of both primary and secondary modes.

Thin-walled columns are encountered in aircraft structures in the shape of longitudinal stiffeners,
which are normally fabricated by extrusion processes or by forming from a flat sheet. A variety of
cross-sections are employed although each is usually composed of flat plate elements arranged to form
angle, channel, Z, or “top hat” sections, as shown in Fig. 9.4. We see that the plate elements fall into two
distinct categories: flanges, which have a free unloaded edge, and webs, which are supported by the
adjacent plate elements on both unloaded edges.
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(a) (b) (c) (d)

FIGURE 9.4 (a) Extruded Angle; (b) Formed Channel; (c) Extruded Z; (d) Formed “Top Hat”

In local instability, the flanges and webs buckle like plates, with a resulting change in the cross-section
of the column. The wavelength of the buckle is of the order of the widths of the plate elements, and the
corresponding critical stress is generally independent of the length of the column when the length is equal
to or greater than three times the width of the largest plate element in the column cross-section.

Buckling occurs when the weakest plate element, usually a flange, reaches its critical stress,
although in some cases all the elements reach their critical stresses simultaneously. When this
occurs, the rotational restraint provided by adjacent elements to each other disappears and the elements
behave as though they are simply supported along their common edges. These cases are the simplest to
analyze and are found where the cross-section of the column is an equal-legged angle, T, cruciform, or a
square tube of constant thickness. Values of local critical stress for columns possessing these types of
section may be found using Eq. (9.7) and an appropriate value of k. For example, k for a cruciform
section column is obtained from Fig. 9.3(a), for a plate which is simply supported on three sides with
one edge free and has a/b > 3. Hence, k = 0.43 and if the section buckles elastically the plasticity
correction factor (see Eq. (9.7)) n = 1 and

e — 0.388E (é)z, (v=103)

It must be appreciated that the calculation of local buckling stresses is generally complicated, with no
particular method gaining universal acceptance, much of the information available being experimental. A
detailed investigation of the topic is therefore beyond the scope of this book. When the individual plate
elements do not reach their critical stresses simultaneously an average compressive stress on the cross-
section of the member may be found; this is called the crippling or failure stress Gy (see Section 9.6).

INSTABILITY OF STIFFENED PANELS

It is clear from Eq. (9.7) that plates having large values of b/t buckle at low values of critical stress. An
effective method of reducing this parameter is to introduce stiffeners along the length of the plate thereby
dividing a wide sheet into a number of smaller and more stable plates. Alternatively, the sheet may be di-
vided into a series of wide short columns by stiffeners attached across its width. In the former type of struc-
ture, the longitudinal stiffeners carry part of the compressive load, while in the latter, all the load is supported
by the plate. Frequently, both methods of stiffening are combined to form a grid-stiffened structure.

Stiffeners in earlier types of stiffened panel possessed a relatively high degree of strength compared
with the thin skin, resulting in the skin buckling at a much lower stress level than the stiffeners. Such
panels may be analyzed by assuming that the stiffeners provide simply supported edge conditions to a
series of flat plates.
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A more efficient structure is obtained by adjusting the stiffener sections so that buckling occurs in
both stiffeners and skin at about the same stress. This is achieved by a construction involving closely
spaced stiffeners of comparable thickness to the skin. Since their critical stresses are nearly the same
there is an appreciable interaction at buckling between skin and stiffeners so that the complete panel
must be considered as a unit. However, caution must be exercised, since it is possible for the two si-
multaneous critical loads to interact and reduce the actual critical load of the structure” (see Example
8.4). Various modes of buckling are possible, including primary buckling, where the wavelength is
of the order of the panel length, and local buckling, with wavelengths of the order of the width of
the plate elements of the skin or stiffeners. A discussion of the various buckling modes of panels having
Z-section stiffeners has been given by Argyris and Dunne.’

The prediction of critical stresses for panels with a large number of longitudinal stiffeners is
difficult and relies heavily on approximate (energy) and semi-empirical methods. Bleich! and
Timoshenko (see Ref. 1, Chapter 8) give energy solutions for plates with one and two longitudinal
stiffeners and also consider plates having a large number of stiffeners. Gerard and Becker’ summarize
much of the work on stiffened plates, and a large amount of theoretical and empirical data is presented
by Argyris and Dunne in the Handbook of Aeronautics.”

For detailed work on stiffened panels, reference should be made to as much as possible of the
preceding work. The literature is extensive, however, so that here we present a relatively simple
approach suggested by Gerard." Figure 9.5 represents a panel of width w stiffened by longitudinal
members which may be flats (as shown), Z, I, channel, or “top hat” sections. It is possible for the panel
to behave as an Euler column, its cross-section being that shown in Fig. 9.5. If the equivalent length of
the panel acting as a column is /., then the Euler critical stress is

o _ n’E
Sy
as in Eq. (8.8). In addition to the column buckling mode, individual plate elements constituting
the panel cross-section may buckle as long plates. The buckling stress is then given by Eq. (9.7);
that is,
nkm’E <t) 2

CRTNM ) b

where the values of k, ¢, and » depend upon the particular portion of the panel being investigated.
For example, the portion of skin between stiffeners may buckle as a plate simply supported on all

L w N
I ¥ I
A *
i = I N B
bk

FIGURE 9.5 Stiffened Panel
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four sides. Thus, for a/b > 3, k = 4 from Fig. 9.3(a), and, assuming that buckling takes place in the

elastic range,
4mE ta )\
OR="7""—"5 |—
R0 -v?) \bg

A further possibility is that the stiffeners may buckle as long plates simply supported on three sides with

one edge free. Thus,
0.43m°E (14’
OR="7""7"—% |—
RTN2(1—v2) \by

Clearly, the minimum value of these critical stresses is the critical stress for the panel taken as a
whole.

The compressive load is applied to the panel over its complete cross-section. To relate this load to
an applied compressive stress o, acting on each element of the cross-section, we divide the load per
unit width, say N,, by an equivalent skin thickness 7, hence,

N
OA = —
t

where

Ay
= bsk + sk
and A is the stiffener area.

The above remarks are concerned with the primary instability of stiffened panels. Values of local
buckling stress have been determined by Boughan, Baab, and Gallaher for idealized web, Z, and T
stiffened panels. The results are reproduced in Rivello® together with the assumed geometries.

Further types of instability found in stiffened panels occur where the stiffeners are riveted
or spot welded to the skin. Such structures may be susceptible to interrivet buckling, in which
the skin buckles between rivets with a wavelength equal to the rivet pitch, or wrinkling, where
the stiffener forms an elastic line support for the skin. In the latter mode, the wavelength of the
buckle is greater than the rivet pitch and separation of skin and stiffener does not occur. Methods
of estimating the appropriate critical stresses are given in Rivello® and the Handbook of
Aeronautics.”

FAILURE STRESS IN PLATES AND STIFFENED PANELS

The previous discussion on plates and stiffened panels investigated the prediction of buckling stresses.
However, as we have seen, plates retain some of their capacity to carry load, even though a portion of
the plate has buckled. In fact, the ultimate load is not reached until the stress in the majority of the plate
exceeds the elastic limit. The theoretical calculation of the ultimate stress is difficult, since non-
linearity results from both large deflections and the inelastic stress—strain relationship.
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Gerard' proposes a semi-empirical solution for flat plates supported on all four edges. After elastic
buckling occurs, theory and experiment indicate that the average compressive stress, G,, in the plate
and the unloaded edge stress, G, are related by the following expression:

— n
%2 _ oc1< Oe ) 9.8)
OCR OCR

where
o — km*E (5)2
RTNROI-)\b

and o is some unknown constant. Theoretical work by Stowell” and Mayers and Budiansky® shows that
failure occurs when the stress along the unloaded edge is approximately equal to the compressive yield
strength, Gy, of the material. Hence, substituting 6., for 6. in Eq. (9.8) and rearranging gives

— 1—n
c c

L= ocl( CR) 9.9)
Gey Gey
where the average compressive stress in the plate has become the average stress at failure Gj.
Substituting for ccg in Eq. (9.9) and putting

OLITEZ(lfn)

R0 —w

t(E
b\ oy
Having obtained the failure stress & for each wall of the cross-section an average failure stress ot , may
be calculated from
n —
Zi —1 arii

Ef,a = 7
A
i=1

yields

_ 172(1-n)
Of _ 2
— =k
Gy

(9.10)

in which A; =bt,. The failure load, Py, for the cross-section is then given by
Py = 01,A

where A is the total area of the cross-section.

[
Example 9.1

Fig. 9.6 shows the cross-section of a long column. For the material of the column Young’s modulus

E=70,000 N/mm?, Poisson’s ratio v=0.3 and the compressive yield strength is 480 N/mm?. Calculate the failure
stress for the column and hence the failure load.
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FIGURE 9.6 Column Cross-Section of Example 9.1

Since the column is said to be long it may be assumed that for each wall of the column a/b > 3.

Flange 12 (and 34)
This may be regarded as a flat plate with one edge free and three edges simply supported. Then k=0.43
(see Fig. 9.3(a)). Also, from Ref. 6, n=0.6 and o;=0.8 so that

0.8 x %8

b= =077
[12(1 - 03%)]™

0.8
— 2. 0.5
Ot _ 0.77 x 0.4304 {—5 (70000> } —076

Then, from Eq. (9.10)

Gy 20 \ 480

and Gy = 0.76 x 480 = 366.6 N/mm?>.

Web 23
The web may be considered to be a flat plate simply supported on all four sides so that, from Fig. 9.3(a), k=4.0.
Again, from Ref. 6, n=0.6 and a,;=0.8 so that a=0.77 as for the flange 12. Then, from Eq. (9.10)

0.8
O 77 40|13 (TO0ONEN T g
Cey 150 \ 480 -

which gives 6y = 0.6 x 480 = 288.0 N/mmz.
The average failure stress is then

2 % 366.6 x 2.5 x 20 4 288.0 x 1.5 x 50

=3329 N 2
2% 25%x20+ 1.5 % 50 332.9 N/mm

6f.,a =

The failure load follows and is
Py = 3329 x 175 = 58,257.5 N.
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Eq. (9.10) may be written in simplified form as

t [ E\?
Bz(c—c)

where p = ak™>. The constants B and m are determined by the best fit of Eq. (9.11) to test data.
Experiments on simply supported flat plates and square tubes of various aluminum and magnesium
alloys and steel show that B = 1.42 and m = 0.85 fit the results within &+ 10 percent up to the yield
strength. Corresponding values for long clamped flat plates are B = 1.80, m = 0.85.
Gerard”'? extended this method to the prediction of local failure stresses for the plate elements of
thin-walled columns. Equation (9.11) becomes

Ot . glz E 3"
o [)()]

where A is the cross-sectional area of the column, B, and m are empirical constants, and g is the
number of cuts required to reduce the cross-section to a series of flanged sections plus the number
of flanges that would exist after the cuts are made. Examples of the determination of g are shown in
Fig. 9.7.

The local failure stress in longitudinally stiffened panels was determined by Gerard'*'? using a
slightly modified form of Eqgs. (9.11) and (9.12). Thus, for a section of the panel consisting of a stiffener
and a width of skin equal to the stiffener spacing,

_ m
Of

©.11)

Ocy

1m
af 8lsklst E \?
— = 9.13
Ocy P A (Ecy) O
Angle Tube T —section Cruciform
|
|
|
|
[
|
|
Basic section g = 4 cuts + 8 flanges g = 3 flanges g = 4 flanges
g=2 =12
I—section Z-section

—_—— e —— —_——— — — —

g = 1cut +6flanges =7 g =1cut + 4 flanges=5
FIGURE 9.7 Determination of Empirical Constant g
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Stiffener cuts = 1
| Stiffener flanges = 4
-t Skin cuts = 1
[ Skin flanges = 2
= 0 =F
| S

I
Stiffener cuts = 3
Stiffener flanges = 8
- —4- Skin cuts = 2
Skin flanges = 4
| | —
= = ¢ =T7

Cut not included
FIGURE 9.8 Determination of g for Two Types of Stiffener—Skin Comhination

where g and ¢ are the skin and stiffener thicknesses, respectively. A weighted yield stress Gy is used
for a panel in which the material of the skin and stiffener have different yield stresses, thus,

5. — Gy + ch,ska/lst) - 1]
< t/ty

where 7 is the average or equivalent skin thickness previously defined. The parameter g is obtained in a
similar manner to that for a thin-walled column, except that the number of cuts in the skin and the number
ofequivalent flanges of the skin are included. A cut to the left of a stiffener is not counted, since it isregarded
as belonging to the stiffener to the left of that cut. The calculation of g for two types of skin/stiffener com-
bination is illustrated in Fig. 9.8. Equation (9.13) is applicable to either monolithic or built-up panels when,
in the latter case, interrivet buckling and wrinkling stresses are greater than the local failure stress.

The values of failure stress given by Egs. (9.11), (9.12), and (9.13) are associated with local or sec-
ondary instability modes. Consequently, they apply when /./r < 20. In the intermediate range between
the local and primary modes, failure occurs through a combination of both. At the moment, no theory
satisfactorily predicts failure in this range, and we rely on test data and empirical methods. The NACA
(now NASA) produced direct reading charts for the failure of “top hat,” Z, and Y section stiffened
panels; a bibliography of the results is given by Gerard.'’

It must be remembered that research into methods of predicting the instability and postbuckling
strength of the thin-walled types of structure associated with aircraft construction is a continuous pro-
cess. Modern developments include the use of the computer-based finite element technique (see
Chapter 6) and the study of the sensitivity of thin-walled structures to imperfections produced during
fabrication; much useful information and an extensive bibliography is contained in Murray.”

TENSION FIELD BEAMS

The spars of aircraft wings usually comprise an upper and a lower flange connected by thin, stiffened
webs. These webs are often of such a thickness that they buckle under shear stresses at a fraction of their
ultimate load. The form of the buckle is shown in Fig. 9.9(a), where the web of the beam buckles under
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\ \Diagonal tension
Direction of buckle
(a) (b)
FIGURE 9.9 Diagonal Tension Field Beam

_ 7

the action of internal diagonal compressive stresses produced by shear, leaving a wrinkled web capable
of supporting diagonal tension only in a direction perpendicular to that of the buckle; the beam is then
said to be a complete tension field beam.

Complete diagonal tension

The theory presented here is due to H. Wagner.

The beam shown in Fig. 9.9(a) has concentrated flange areas having a depth d between their
centroids and vertical stiffeners spaced uniformly along the length of the beam. It is assumed that
the flanges resist the internal bending moment at any section of the beam while the web, of thickness
t, resists the vertical shear force. The effect of this assumption is to produce a uniform shear stress
distribution through the depth of the web (see Section 19.3) at any section. Therefore, at a section
of the beam where the shear force is S, the shear stress 7 is given by

T—i
i

Consider now an element ABCD of the web in a panel of the beam, as shown in Fig. 9.9(a). The element
is subjected to tensile stresses, G, produced by the diagonal tension on the planes AB and CD; the angle
of the diagonal tension is o.. On a vertical plane FD in the element, the shear stress is T and the direct
stress &,. Now, considering the equilibrium of the element FCD (Fig. 9.9(b)) and resolving forces ver-
tically, we have (see Section 1.6)

(9.14)

o,CDt sin o = 7FDt

which gives
T 21

- = (9.15)
sino cos o sin 2a

or, substituting for T from Eq. (9.14) and noting that, in this case, S = W at all sections of the beam,

2w

- 9.16
O = d sin 24 ©.16)

Further, resolving forces horizontally for the element FCD,



o, FDt = o,CDt cos o
which gives

6. = G;c0s% o
or, substituting for o, from Eq. (9.15),

T

c, =
tan o
or, for this particular beam, from Eq. (9.14),

w
C, =
° tdtana
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(9.17)

(9.18)

Since 1t and G, are constant through the depth of the beam, it follows that o, is constant through the

depth of the beam.

The direct loads in the flanges are found by considering a length z of the beam, as shown in
Fig. 9.10. On the plane mm, direct and shear stresses G, and 7 are acting in the web, together with direct
loads Fr and Fg in the top and bottom flanges, respectively. Fr and Fg are produced by a combination
of the bending moment Wz at the section and the compressive action (c,) of the diagonal tension. Tak-

ing moments about the bottom flange,

td?
Wz = Frd —
2
Hence, substituting for o, from Eq. (9.18) and rearranging,
Wz w
Fr=—
"7d "2wana

Now, resolving forces horizontally,

Fg—Fr+o,d=0

which gives, on substituting for ¢, and Fr from Eqs. (9.18) and (9.19),

Wz w
Fgp=——
B d 2tano

: ,,,

L z

[
FIGURE 9.10 Determination of Flange Forces

13

(9.19)

(9.20)
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FIGURE 9.11 Stress System on a Horizontal Plane in the Beam Web

The diagonal tension stress o, induces a direct stress G, on horizontal planes at any point in the web.
Then, on a horizontal plane HC in the element ABCD of Fig. 9.9, there is a direct stress o, and a
complementary shear stress T, as shown in Fig. 9.11.

From a consideration of the vertical equilibrium of the element HDC we have

o,HCt = 5,CDt sin o
which gives
_ 102
Gy = O; sin” o

Substituting for G, from Eq. (9.15),

Gy =7ttana 9.21)
or, from Eq. (9.14), in which § = W,
Gy = g tan o (9.22)

The tensile stresses &, on horizontal planes in the web of the beam cause compression in the vertical
stiffeners. Each stiffener may be assumed to support half of each adjacent panel in the beam, so that the
compressive load P in a stiffener is given by

P = o,th
which becomes, from Eq. (9.22),
Wb
P = 7 tan o (923)

If the load P is sufficiently high, the stiffeners buckle. Tests indicate that they buckle as columns of
equivalent length

le =d/\/4—2bjd , for b<15d } (9.24)

l. =d, for b > 1.5d
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FIGURE 9.12 Bending of Flanges Due to Web Stress

In addition to causing compression in the stiffeners, the direct stress o, produces bending of the
beam flanges between the stiffeners, as shown in Fig. 9.12. Each flange acts as a continuous beam car-
rying a uniformly distributed load of intensity c,#. The maximum bending moment in a continuous
beam with ends fixed against rotation occurs at a support and is wL?*/12, in which w is the load intensity
and L the beam span. In this case, therefore, the maximum bending moment M, occurs at a stiffener
and is given by

Mo csytb2
max — 12
or, substituting for 6, from Eq. (9.22),
Wh? tan o
My = ——— 9.25
12d ©-25)

Midway between the stiffeners this bending moment reduces to Wh* tan o/24d.

The angle o adjusts itself such that the total strain energy of the beam is a minimum. If it is assumed
that the flanges and stiffeners are rigid, then the strain energy comprises the shear strain energy of the
web only and o = 45°. In practice, both flanges and stiffeners deform, so that o is somewhat less than
45°, usually of the order of 40° and, in the type of beam common to aircraft structures, rarely below 38°.
For beams having all components made of the same material, the condition of minimum strain energy
leads to various equivalent expressions for o, one of which is

C; + OF

9.26
G, + Os ( )

tan® o =
in which o and g are the uniform direct compressive stresses induced by the diagonal tension in the

flanges and stiffeners, respectively. Thus, from the second term on the right-hand side of either
Eq. (9.19) or (9.20),

w

A — 9.27
2Ag tan o ( )

OF
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in which Ag is the cross-sectional area of each flange. Also, from Eq. (9.23),

Wb

=—tan o 9.28
Os Asd an ( )
where Ag is the cross-sectional area of a stiffener. Substitution of o, from Eq. (9.16) and of
and og from Egs. (9.27) and (9.28) into Eq. (9.26) produces an equation which may be solved
for a.. An alternative expression for o, again derived from a consideration of the total strain energy

of the beam, is
4 1+1d/2Ap

tan” o =

2
1+ th/As ©-29)

|
Example 9.2

The beam shown in Fig. 9.13 is assumed to have a complete tension field web. If the cross-sectional areas of the

flanges and stiffeners are, respectively, 350 mm? and 300 mm? and the elastic section modulus of each flange is
750 mm?, determine the maximum stress in a flange and also whether or not the stiffeners buckle. The thickness of
the web is 2 mm and the second moment of area of a stiffener about an axis in the plane of the web is 2,000 mm4;
E = 70,000 N/mm”.

From Eq. (9.29),

4+ 14+2x400/(2 x 350)

tan® o — = 07143
A T % 300/300

so that
o =42.6°

The maximum flange stress occurs in the top flange at the built-in end, where the bending moment on the beam
is greatest and the stresses due to bending and diagonal tension are additive. Therefore, from Eq. (9.19),

15kN

400 mm

i/

V4

300 mm

FIGURE 9.13 Beam of Example 9.2

1200 mm

X3
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_5x1200 5
T 400 2tan4d2.6°

T

that is,
Fr=17.7kN

Hence, the direct stress in the top flange produced by the externally applied bending moment and the diagonal
tension is 17.7 x 10%/350 = 50.6 N/mm?.In addition to this uniform compressive stress, local bending of the type
shown in Fig. 9.12 occurs. The local bending moment in the top flange at the built-in end is found using Eq. (9.25):

_ 5%10° x 300” tan 42.6°

4
Mmax = 12 % 400 8.6 x 10°N mm

The maximum compressive stress corresponding to this bending moment occurs at the lower extremity of the

flange and is 8.6 x 10%750 = 114.9 N/mm®. Thus, the maximum stress in the flange occurs on the inside of

the top flange at the built-in end of the beam, is compressive, and is equal to 114.9 + 50.6 = 165.5 N/mm?.
The compressive load in a stiffener is obtained using Eq. (9.23):

5% 300 tan 42.6°

P
400

=34kN

Since, in this case, b < 1.5d, the equivalent length of a stiffener as a column is given by the first of Eqs. (9.24):

le = 400/+/4 — 2 x 300/400 = 253 mm

From Eq. (8.7), the buckling load of a stiffener is then

2 x 70,000 x 2,000

e =22.0kN

Pcr =

Clearly, the stiffener does not buckle.

[
Example 9.2: MATLAB
Repeat Example 9.1 using MATLAB.

The maximum stress in a flange and the determination whether or not the stiffener buckles is obtained through
the following MATLAB file:

% Declare any needed variables

t=2;
d=400;
b =300;
A_F =350;
A_S =300;
L=1200;

E=70000;
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S=750;
1 =2000;
W=5;

% Solve Eq. (9.29) for the angle of diagonal tension (alpha)
alpha =atan(((1+t*d/(2*A_F))/(14+t*b/A_S))"(1/4));

% The maximum flange stress and bending moment will occur in the top of the
% flange at the built-in end where the stresses due to bending and diagonal
% tension are additive.

% Evaluate Eq. (9.19) in the top of the flange at the built-in end
z=1L;
F_T=W*z/d+5/(2*tan(alpha)); % Eq. (9.19)

% Calculate thedirect stress in the top flange produced by the externally
% applied bending moment
sig_d=F_T/A_F;

% Calculate the Tocal bending moment in the top flange using Eq. (9.25)
M_max = W*b"2*tan(alpha)/(12*d);

% Calculate the corresponding maximum compressive stress due to M_max
sig_M=M_max/S;

% Calculate the combined maximum stress ina flange
sig_max=sig_d+ sig_M;

% Calculate the compressive Toad ina stiffener using Eq. (9.23)
P =W*b*tan(alpha)/d;

% Substitute P into Eq. (9.24) tocalculate the equivalent Tength of a
% stiffener as a column

ifb<1.5%d
1_e=d/sqrt(4 - 2*b/d);
else

1_e=d;

end

% Calculate the buckling Toad of a stiffenerusing Eq. (8.7)
P_CR=pi™2*E*1/(1_e"2);

% Check if the stiffener will buckle

if P_CR>P

disp(‘The stiffenerwill not buckle”)
else

disp(‘The stiffenerwill buckle’)
end

% Qutput the combined max stress to the Command Window
disp([*sig_max =" char(vpa(sig_max*1000,4)) ‘N/mm*2°])
disp([*P_CR="num2str(round(P_CR/1000)) ‘kN*1)
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The Command Window output resulting from this MATLAB file is as follows:

The stiffenerwill not buckle
sig_max = 165.5N/mm"2
P_CR =22 kN

In Egs. (9.28) and (9.29,) it is implicitly assumed that a stiffener is fully effective in resisting axial
load. This is the case if the centroid of area of the stiffener lies in the plane of the beam web. Such a
situation arises when the stiffener consists of two members symmetrically arranged on opposite sides
of the web. In the case where the web is stiffened by a single member attached to one side, the com-
pressive load P is offset from the stiffener axis, thereby producing bending in addition to axial load.
For a stiffener having its centroid a distance e from the center of the web, the combined bending and
axial compressive stress, G, at a distance e from the stiffener centroid, is

P, Pe?
Cc=—+—
¢ As Asr 2
in which r is the radius of gyration of the stiffener cross-section about its neutral axis (note, second

moment of area I = Arz). Then,
P . (e)Z
O, = — -
AS r

or
L P
c _ASe
where
A
5. = S (9.30)
1+ (e/r)

and is termed the effective stiffener area.

Incomplete diagonal tension

In modern aircraft structures, beams having extremely thin webs are rare. They retain, after buckling,
some of their ability to support loads, so that even near failure, they are in a state of stress somewhere
between that of pure diagonal tension and the pre-buckling stress. Such a beam is described as
an incomplete diagonal tension field beam and may be analyzed by semi-empirical theory as follows.

It is assumed that the nominal web shear t (=S/td) may be divided into a “true shear” component tg
and a diagonal tension component Tyt by writing

or = k1, 15 =(1l—k)t (9.31)
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where k, the diagonal tension factor, is a measure of the degree to which the diagonal tension is devel-
oped. A completely unbuckled web has k = 0, whereas k = 1 for a web in complete diagonal tension. The
value of k corresponding to a web having a critical shear stress Tcg is given by the empirical expression

k = tanh (0.5 log i) (9.32)
Tcr

The ratio t/tcg is known as the loading ratio or buckling stress ratio. The buckling stress tcg may be
calculated from the formula

"2
TCR elastic = kssE (*)

b 2 d

3
Ro+ (Ry — Ry) <b> ] (9.33)

where kg is the coefficient for a plate with simply supported edges and R, and R, are empirical restraint
coefficients for the vertical and horizontal edges of the web panel, respectively. Graphs giving kg, Ry,
and Ry, are reproduced in Kuhn."

The stress equations (9.27) and (9.28) are modified in the light of these assumptions and may be
rewritten in terms of the applied shear stress T as

kT cot o
= 34
°F = 2Ap/td) + 0.5(1 — k) ©34)
kT tan o 9.35)

S = (As/th) + 0.5(1 — k)

Further, the web stress &, given by Eq. (9.15) becomes two direct stresses: o along the direction of o
given by
2kt

o1 =5y + t(1 — k) sin 2a (9.36)

and o, perpendicular to this direction given by
oy = —1(1 — k) sin 2a (9.37)

The secondary bending moment of Eq. (9.25) is multiplied by the factor &, while the effective lengths
for the calculation of stiffener buckling loads become (see Eqgs. (9.24))

le = dy/\/T+K2(3 —2bJdy), for b < 1.5d
lo = Sy for b > 1.5d

where d is the actual stiffener depth, as opposed to the effective depth d of the web, taken between the
web—flange connections, as shown in Fig. 9.14. We observe that Eqs. (9.34)—(9.37) are applicable to
either incomplete or complete diagonal tension field beams, since, for the latter case, k = 1, giving the
results of Egs. (9.27), (9.28), and (9.15).

In some cases, beams taper along their lengths, in which case the flange loads are no longer
horizontal but have vertical components which reduce the shear load carried by the web. Thus,
in Fig. 9.15, where d is the depth of the beam at the section considered, we have, resolving forces
vertically,
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FIGURE 9.14 Calculation of Stiffener Buckling Load
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FIGURE 9.15 Effect of Taper on Diagonal Tension Field Beam Calculations

W — (Fr + Fg)sin B — o,#(d cos o) sino. = 0
For horizontal equilibrium,

(Fr — Fg)cos B — o,td cos® o0 =0
Taking moments about B,

1
Wz — Frd cos B + Ec,tdz cos’ =0

Solving Egs. (9.38), (9.39), and (9.40) for &,, Fr, and Fg,
2w 2
(1 —Ztan B)

Ot = i sin 200 d

w d cot o 2z
Fr= l——t
T dcos B {ZJF 2 ( a™ B)}

w d cot a 2z
Fg = - l——
B~ dcosp {Z 2 ( d tan B)]

Wb 2
sz tanoc<1—gz tan|3>

Equation (9.23) becomes

(9.38)

(9.39)

(9.40)

(9.41)

(9.42)

(9.43)

(9.44)
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Also, the shear force S at any section of the beam is, from Fig. 9.15,

S:W—(FT+FB) SiI‘lB
or, substituting for Fr and Fg from Egs. (9.42) and (9.43),

S = W(l —% tan B) (9.45)

Posthuckling behavior

Sections 9.7.1 and 9.7.2 are concerned with beams in which the thin webs buckle to form tension
fields; the beam flanges are then regarded as being subjected to bending action, as in Fig. 9.12. It
is possible, if the beam flanges are relatively light, for failure due to yielding to occur in the beam
flanges after the web has buckled, so that plastic hinges form and a failure mechanism of the type shown
in Fig. 9.16 exists. This postbuckling behavior was investigated by Evans, Porter, and Rockey,'* who
developed a design method for beams subjected to bending and shear. Their method of analysis is pre-
sented here.

Suppose that the panel AXBZ in Fig. 9.16 collapses due to a shear load S and a bending moment M;
plastic hinges form at W, X, Y, and Z. In the initial stages of loading, the web remains perfectly flat until it
reaches its critical stresses, that is, T in shear and 6,4, in bending. The values of these stresses may be found

approximately from
2 2
(Gmb> + (T—“‘> —1 (9.46)
Gerb Ter

where G, is the critical value of bending stress with S = 0, M # 0, and 1., is the critical value of shear
stress when S # 0 and M = 0. Once the critical stress is reached, the web starts to buckle and cannot carry

CC
Element "—‘
\ 3

w

L]
g
j Direction
of buckle
T
B Y B

z
Web thickness f,, Cy

b

FIGURE 9.16 Collapse Mechanism of a Panel of a Tension Field Beam
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FIGURE 9.17 Determination of Stresses on Planes Parallel and Perpendicular to the Plane of the Buckle

any increase in compressive stress, so that, as we have seen in Section 9.7.1, any additional load is carried
by tension field action. It is assumed that the shear and bending stresses remain at their critical values T,
and o, and that there are additional stresses a,, which are inclined at an angle 0 to the horizontal and
which carry any increases in the applied load. At collapse, that is, at ultimate load conditions, the addi-
tional stress o, reaches its maximum value Gymax) and the panel is in the collapsed state shown in Fig. 9.16.
Consider now the small rectangular element on the edge AW of the panel before collapse. The stres-
ses acting on the element are shown in Fig. 9.17(a). The stresses on planes parallel to and perpendicular
to the direction of the buckle may be found by considering the equilibrium of triangular elements within
this rectangular element. Initially, we consider the triangular element CDE, which is subjected to the
stress system shown in Fig. 9.17(b) and is in equilibrium under the action of the forces corresponding to
these stresses. Note that the edge CE of the element is parallel to the direction of the buckle in the web.
For equilibrium of the element in a direction perpendicular to CE (see Section 1.6),

6:CE + 6mpED cos 6 — 1,,ED sin 6 — 7,DC cos 6 = 0
Dividing through by CE and rearranging, we have
Gt = —Omp cos® 0 + 1., sin 20 9.47)
Similarly, by considering the equilibrium of the element in the direction EC, we have
Tne = — % sin 20 — 1, cos 20 (9.48)
Further, the direct stress 6, on the plane FD (Fig. 9.17(c)), which is perpendicular to the plane of the
buckle, is found from the equilibrium of the element FED. Then,
61 FD + 6mpED sin 0 + 7,EF sin 0 4- 7, DE cos 6 = 0
Dividing through by FD and rearranging gives
On = —Cmb sin? § — 1, sin 20 (9.49)

Note that the shear stress on this plane forms a complementary shear stress system with T,¢.
The failure condition is reached by adding Gymax) t0 G¢ and using the von Mises theory of elastic
failure'; that is,

2 =01+ 03— 0610, + 377 (9.50)

Gy:
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where G, is the yield stress of the material, ¢, and G, are the direct stresses acting on two mutually
perpendicular planes, and t is the shear stress acting on the same two planes. Hence, when the yield
stress in the web is Gy, failure occurs when

Giw = (Gi + Gl(max))z + 612] — Ony (Gi + Gt(max)) + 3‘5%5 (951)
Equations (9.47), (9.48), (9.49), and (9.51) may be solved for Gymax), Which is then given by

1 1 3
Oma = — 54 +5 42 = 4(0%y + 3% — o2, )| 9.52)
where
A = 37, sin 20 + Gy sin 0 — 26, cos® 0 (9.53)

These equations have been derived for a point on the edge of the panel but are applicable to any point
within its boundary. Therefore, the resultant force F,,, corresponding to the tension field in the web,
may be calculated and its line of action determined.

If the average stresses in the compression and tension flanges are 6. and G¢ and the yield stress of
the flanges is Gy, the reduced plastic moments in the flanges are'”

2
M, = M, ll - <z;> ] (compression flange) 9.54)
M, =My |1— ()] (tension flange) (9.55)
L= My o ension flange .

The position of each plastic hinge may be found by considering the equilibrium of a length of flange
and employing the principle of virtual work. In Fig. 9.18, the length WX of the upper flange of the-
beam is given a virtual displacement ¢. The work done by the shear force at X is equal to the
energy absorbed by the plastic hinges at X and W and the work done against the tension field
Stress Oymax). SUppose the average value of the tension field stress is oy, that is, the stress at the
mid-point of WX.

FIGURE 9.18 Determination of Plastic Hinge Position
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Then,

2
chcd) = ZM;)Cd) + Otclw Sin2 e%d}

The minimum value of S, is obtained by differentiating with respect to c.; that is,

ds : sin” 0
X = —2 pe CtW _— =
de c2 o 2 0
which gives
!
;= L”“z (9.56)
O lw sin” 0
Similarly, in the tension flange,
4M!
d=—"2"__ 9.57)

Oyt sin® 0

Clearly, for the plastic hinges to occur within a flange, both ¢, and ¢, must be less than b. Therefore,
from Eq. (9.56),

M twb? sin® O

<2 (9.58)

where o is found from Egs. (9.52) and (9.53) at the mid-point of WX.

The average axial stress in the compression flange between W and X is obtained by considering the
equilibrium of half of the length of WX (Fig. 9.19).

Then,

Ce . Ce
F. = o64As + Oty E‘ sin 0 cos 0 + Tty 5{

from which

Fe — 3 (0 8in 0 cos 0 + )1 cc
Acf

Ot = (9.59)

Cc/2 |

—

Fo —| —
[}

- ‘[m
%

Otc

FIGURE 9.19 Determination of Flange Stress
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Mid-point
of WY

Sult

FIGURE 9.20 Determination of Flange Forces

where F. is the force in the compression flange at W and A is the cross-sectional area of the
compression flange.
Similarly, for the tension flange,

F, +1(oy sin 8 cos 8 + T, )twc
G = — 3(Su - m)twct (9.60)
tf

The forces F. and F, are found by considering the equilibrium of the beam to the right of WY
(Fig. 9.20). Then, resolving vertically and noting that S., = T,,twd,

Sur = Fuy sin 0 + tmtyd + > Wi (9.61)
Resolving horizontally and noting that H., = T,tw(b — cc — ¢y),
Fo.—F =F, cos0— tyty(b—c.—c) (9.62)
Taking moments about O, we have
2 b+c.—c¢
Fet+Fi=> [suh <s - f) + M) — M, +Fyqg—My =Y Wz, (9.63)

where W to W,, are external loads applied to the beam to the right of WY and M, is the bending mo-
ment in the web when it has buckled and become a tension field: that is,

o Gmbbd2

My
b
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The flange forces are then

S 1
FC:ZL;(dcot9+2s+b+cc—ct)+g(M]’)t—MI’)C—kFWq—MW—Zann)
) n (9.64)
—Ermtw(d cotO0+b—c.—c)
F _Sult 9 o) . 1 , ,
;—g(dcot + s+b+cc—ct)+3 Mpl—MpC—FWq—MW—Zann
n

] (9.65)
+§‘cmtw(d cotO+b—cc—c)

Evans, Porter, and Rockey adopted an iterative procedure for solving Eqs. (9.61)—(9.65), in which an
initial value of 6 was assumed and 6 and o were taken to be zero. Then, ¢ and ¢, were calculated and
approximate values of F. and F, found giving better estimates for 6.+ and ;. The procedure was re-
peated until the required accuracy was obtained.
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PROBLEMS

P.9.1 A thin square plate of side a and thickness 7 is simply supported along each edge and has a slight
initial curvature giving an initial deflected shape:
L MX T
wo =0 sm—x sm—y
a a
If the plate is subjected to a uniform compressive stress ¢ in the x direction (see Fig. P.9.1), find an
expression for the elastic deflection w normal to the plate. Show also that the deflection at the mid-point

of the plate can be presented in the form of a Southwell plot and illustrate your answer with a suitable
sketch.

L MX T
Answer: w = [ct8/(4n’D/a* — ot)] sin ™ sin
a a
P.9.2 A uniform flat plate of thickness ¢ has a width b in the y direction and length / in the x
direction (see Fig. P.9.2). The edges parallel to the x axis are clamped and those parallel to the y axis
are simply supported. A uniform compressive stress ¢ is applied in the x direction along the
edges parallel to the y axis. Using an energy method, find an approximate expression for the mag-
nitude of the stress G that causes the plate to buckle, assuming that the deflected shape of the plate is
given by
B _MTX 5Ty
w =dii SIH—Z sin b
For this particular case, / = 2b, find the number of half waves m corresponding to the lowest critical
stress, expressing the result to the nearest integer. Determine also the lowest critical stress.

Answer: m =3, ocr = [6E/(1 —V2)](1/b)?
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