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Preface

This book is a compilation of much of the material I used for various game theory
courses over the past decades. The first part, Thinking Strategically, is intended
for undergraduate students in economics or business, but can also serve as an
introduction for the subsequent parts of the book. The second and third parts go
deeper into the various topics treated in the first part. These parts are intended
for more mathematically oriented undergraduate students, or for graduate students
in (for instance) economics. Part II is on noncooperative games and Part III on
cooperative games. Part IV consists of a mathematical tools chapter, a chapter with
review problems for Part I, and a chapter with hints and solutions to the problems
of all chapters. Every chapter has a section with problems.

The material draws heavily on game theory texts developed by many others, often
in collaboration. I mention in particular Jean Derks, Thijs Jansen, Andrés Perea, Ton
Storcken, Frank Thuijsman, Stef Tijs, Dries Vermeulen, and Koos Vrieze. I am also
seriously indebted to a large number of introductory, intermediate, and advanced
texts and textbooks on game theory, and hope I have succeeded in giving sufficient
credits to the authors of these works in all due places.

About the Second Edition

In this second edition, I have corrected mistakes, omissions, and typos from the
first edition, and tried to improve the exposition throughout the book. I have added
extra problems to some chapters, and also a chapter with review problems for Part I.
In Chap. 6, I have added a few sections on auctions with incomplete information.
With only few exceptions, the references to the literature are now collected in Notes
sections, which conclude every chapter in the book.

This second edition has benefitted tremendously from extensive comments of
Piotr Frackiewicz and Peter Wakker. The list of people from who I received
comments also includes Krzysztof Apt, Maikel Bosschaert, Yukihiko Funaki, Ali
Ihsan Ozkes, Mahmut Parlar, Thijs Ruijgrok, Steffen Sagave, Judith Timmer, Mark
Voorneveld, and others.
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viii Preface

How to Use This Book

Part I of the book is intended, firstly, for undergraduate students in economics and
business and, secondly, as preparation and background for Parts II–IV. Part I is
preceded by Chap. 1, which is a general introduction to game theory by means of
examples. The first chapter of Part I, Chap. 2 of the book, is on zero-sum games.
This chapter is included, not only for historical reasons—the minimax theorem of
von Neumann (1928) was one of the first formal results in game theory—but also
since zero-sum games (all parlor games) require basic, strictly competitive, game-
theoretic thinking. The heart of Part I consists of Chaps. 3–6 on noncooperative
games and applications, and Chap. 9 as a basic introduction to cooperative games.
These chapters can serve as a basics course in game theory. Chapters 7 and 8 on
repeated games and evolutionary games can serve as extra material, as well as
Chap. 10 on cooperative game models and Chap. 11, which is an introduction to
the related area of social choice theory.

Although this book can be used for self-study, it is not intended to replace the
teacher. Part I is meant for students who are knowledgeable in basic calculus, and
does not try to avoid the use of mathematics on that basic level. Moreover, (almost)
all basic game theory models are described in a formally precise manner, although
I am aware that some students may have a blind spot for mathematical notation that
goes beyond simple formulas for functions and equations. This formal presentation
is included especially since many students have always been asking questions about
it: leaving it out may lead to confusion and ambiguities. On the other hand, a teacher
may decide to drop these more formal parts and go directly to the examples of
concretely specified games. For example, in Chap. 5, the game theory teacher may
decide to skip the formal Sect. 5.1 and go directly to the worked out examples of
games with incomplete information—and perhaps later return to Sect. 5.1.

Parts II–IV require more mathematical sophistication and are intended for
graduate students in economics, or for an elective game theory course for students
in (applied) mathematics. In my experience, it works well to couple the material
in these parts to related chapters in Part I. In particular, one can combine Chaps. 2
and 12 on zero-sum games, Chaps. 3 and 13 on finite games, Chaps. 4, 5, and 14
on games with incomplete information and games in extensive form, and Chaps. 8
and 15 on evolutionary games. For cooperative game theory, one can combine
Chap. 9 with Part III.

Each chapter contains a problems section. Moreover, Chap. 23 contains review
problems for Part I. Hints, answers and solutions are provided at the end of the book



Preface ix

in Chap. 24. For a complete set of solutions for teachers, as well as any comments,
please contact me by email.1

Maastricht, The Netherlands Hans Peters
January 2015

Reference

von Neumann, J. (1928). Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100,
295–320.

1H.Peters@maastrichtuniversity.nl.

http://www.H.Peters@maastrichtuniversity.nl
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1Introduction

The best introduction to game theory is by way of examples. This chapter starts
with a global definition in Sect. 1.1, collects some historical facts in Sect. 1.2, and
presents examples in Sect. 1.3. Section 1.4 briefly comments on the distinction
between cooperative and noncooperative game theory.

1.1 A Definition

Game theory studies situations of competition and cooperation between several
involved parties by using mathematical methods. This is a broad definition but it
is consistent with the large number of applications. These applications range from
strategic questions in warfare to understanding economic competition, from eco-
nomic or social problems of fair distribution to behavior of animals in competitive
situations, from parlor games to political voting systems—and this list is certainly
not exhaustive.

Game theory is an official mathematical discipline (American Mathematical
Society Classification code 91A) but it is developed and applied mostly by
economists. In economics, articles and books on game theory and applications are
found in particular under the Journal of Economic Literature codes C7x. The list of
references at the end of this book contains many textbooks and other books on game
theory.

1.2 Some History

In terms of applications, game theory is a broad discipline, and it is therefore not
surprising that game-theoretic situations can be recognized in the Bible (Brams,
1980) or the Talmud (Aumann and Maschler, 1985). Also the literature on strategic
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2 1 Introduction

warfare contains many situations that could have been modelled using game theory:
a very early reference, over 2,000 years old, is the work of the Chinese warrior-
philosopher Sun Tzu (1988). Early works dealing with economic problems are
Cournot (1838) on quantity competition and Bertrand (1883) on price competition.
Some of the work of Dodgson—better known as Lewis Carroll, the writer of
Alice’s Adventures in Wonderland—is an early application of zero-sum games to the
political problem of parliamentary representation, see Dodgson (1884) and Black
(1969).

One of the first formal works on game theory is Zermelo (1913). The logician
Zermelo proved that in the game of chess either White has a winning strategy (i.e.,
can always win), or Black has a winning strategy, or each player can always enforce
a draw—see Sect. 13.2.5. Up to the present, however, it is still not known which
of these three cases is the true one. A milestone in the history of game theory is
Von Neumann (1928). In this article von Neumann proved the famous minimax
theorem for zero-sum games. This work was the basis for the book Theory of

Games and Economic Behavior by von Neumann and Morgenstern (1944/1947),
by many regarded as the starting point of game theory. In this book the authors
extended von Neumann’s work on zero-sum games and laid the groundwork for
the study of cooperative (coalitional) games. See Dimand and Dimand (1996) for a
comprehensive study of the history of game theory up to 1945.

The title of the book of von Neumann and Morgenstern reveals the intention of
the authors that game theory was to be applied to economics. Nevertheless, in the
1950s and 1960s the further development of game theory was mainly the domain
of mathematicians. Seminal articles in this period were the papers by Nash1 on
Nash equilibrium (Nash, 1951) and on bargaining (Nash, 1950), and Shapley on the
Shapley value and the core for games with transferable utility (Shapley, 1953, 1967).
See also Bondareva (1962) on the core. Apart from these articles, the foundations
of much that was to follow later were laid in the contributed volumes edited by
Kuhn and Tucker (1950, 1953), Dresher et al. (1957), Luce and Tucker (1958), and
Dresher et al. (1964). A classical work in game theory is Luce and Raiffa (1957):
many examples still used in game theory can be traced back to this source, like the
Prisoners’ Dilemma and the Battle of the Sexes.

In the late 1960s and 1970s of the previous century game theory became accepted
as a new formal language for economics in particular. This development was stim-
ulated by the work of Harsanyi (1967/1968) on modelling games with incomplete
information and Selten (1965, 1975) on (sub)game perfect Nash equilibrium.

In 1994, Nash, Harsanyi and Selten jointly received the Nobel prize in economics
for their work in game theory. Since then, many Nobel prizes in economics
have been awarded for achievements in game theory or closely related to game
theory: Mirrlees and Vickrey (in 1996), Sen (in 1998), Akerlof, Spence and
Stiglitz (in 2001), Aumann and Schelling (in 2005), Hurwicz, Maskin and Myerson
(in 2007), and Roth and Shapley (in 2012).

1See Nasar (1998) for a biography, and the later movie with the same title A Beautiful Mind.
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From the 1980s on, large parts of economics have been rewritten and further
developed using the ideas, concepts and formal language of game theory. Articles
on game theory and applications can be found in many economic journals. Journals
explicitly focusing on game theory include the International Journal of Game

Theory, Games and Economic Behavior, and International Game Theory Review.
Game theorists are organized within the Game Theory Society, see http://www.
gametheorysociety.org/.

1.3 Examples

Every example in this section is based on a story. Each time this story is presented
first and, next, it is translated into a formal mathematical model. Such a mathemat-
ical model is an alternative description, capturing the essential ingredients of the
story with the omission of details that are considered unimportant: the mathematical
model is an abstraction of the story. After having established the model, we spend
some lines on how to solve it: we say something about how the players should or
would act. In more philosophical terms, these solutions can be normative or positive
in nature, or somewhere in between, but often such considerations are left as food for
thought for the reader. As a general remark, a basic distinction between optimization
theory and game theory is that in optimization it is usually clear when some action or
choice is optimal, whereas in game theory we deal with human (or, more generally,
animal) behavior and then it may be less clear when an action is optimal or even
what optimality means.2

Each example is concluded by further comments, possibly including a short
preview on the treatment of the exemplified game in the book. The examples are
grouped in subsections on zero-sum games, nonzero-sum games, extensive form
games, cooperative games, and bargaining games.

1.3.1 Zero-Sum Games

The first example is based on a military situation staged in World War II.

1.3.1.1 The Battle of the Bismarck Sea

Story The game is set in the South-Pacific in 1943. The Japanese admiral Imamura
has to transport troops across the Bismarck Sea to New Guinea, and the American
admiral Kenney wants to bomb the transport. Imamura has two possible choices: a
short Northern route (2 days) or a long Southern route (3 days), and Kenney must
choose one of these routes to send his planes to. If he chooses the wrong route he

2Feyerabend’s (1974) ‘anything goes’ adage reflects a workable attitude in a young science like
game theory.

http://www.gametheorysociety.org/
http://www.gametheorysociety.org/
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can call back the planes and send them to the other route, but the number of bombing
days is reduced by 1. We assume that the number of bombing days represents the
payoff to Kenney in a positive sense and to Imamura in a negative sense.

Model The Battle of the Bismarck Sea problem can be modelled using the
following table:

�North South

North 2 2

South 1 3

�
:

This table represents a game with two players, namely Kenney and Imamura.
Each player has two possible choices; Kenney (player 1) chooses a row, Imamura
(player 2) chooses a column, and these choices are to be made independently and
simultaneously. The numbers represent the payoffs to Kenney. For instance, the
number 2 up left means that if Kenney and Imamura both choose North, the payoff
to Kenney is 2 and the payoff to Imamura is �2. Thus, the convention is to let the
numbers denote the payments from player 2 (the column player) to player 1 (the
row player). This game is an example of a zero-sum game because the sum of the
payoffs is always equal to zero.

Solution In this particular example, it does not seem difficult to predict what will
happen. By choosing North, Imamura is always at least as well off as by choosing
South, as is easily inferred from the above table of payoffs. So it is safe to assume
that Imamura chooses North, and Kenney, being able to perform this same kind of
reasoning, will then also choose North, since that is the best reply to the choice
of North by Imamura. Observe that this game is easy to analyze because one of
the players (Imamura) has a dominated choice, namely South: no matter what the
opponent (Kenney) decides to do, North is at least as good as South, and sometimes
better.

Another way to look at this game is to observe that the payoff 2 resulting from
the combination (North, North) is maximal in its column (2 � 1) and minimal in
its row (2 � 2). Such a position in the matrix is called a saddlepoint. In such a
saddlepoint, neither player has an incentive to deviate unilaterally. (As will become
clear later, this implies that the combination (North, North) is a Nash equilibrium.)
Also observe that, in such a saddlepoint, the row player maximizes his minimal
payoff (because 2 D minf2; 2g � 1 D minf1; 3g), and the column player (who has
to pay according to our convention) minimizes the maximal amount that he has to
pay (because 2 D maxf2; 1g � 3 D maxf2; 3g). The resulting payoff of 2 from
player 2 to player 1 is called the value of the game.

Comments Two-person zero-sum games with finitely many choices, like the one
above, are also called matrix games since they can be represented by a single matrix.
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Matrix games are studied in Chaps. 2 and 12. The combination (North, North) in the
example above corresponds to what happened in reality back in 1943.

1.3.1.2 Matching Pennies

Story In the two-player game of matching pennies, both players have a coin and
simultaneously show heads or tails. If the coins match, player 2 gives his coin to
player 1; otherwise, player 1 gives his coin to player 2.

Model This is a zero-sum game with payoff matrix

�Heads Tails

Heads 1 �1
Tails �1 1

�
:

Solution Observe that in this game no player has a dominated choice: Heads can be
better or worse than Tails, depending on the choice of the opponent. Also, there is
no saddlepoint: there is no position in the matrix at which there is simultaneously a
minimum in the row and a maximum in the column. Thus, there does not seem to be
a natural way to solve the game. One way to overcome this difficulty is by allowing
players to randomize between their choices: player 1 chooses Heads with a certain
probability p and Tails with probability 1 � p, and player 2 chooses Heads and
Tails with probabilities q and 1 � q respectively. From considerations of symmetry,
a good guess would be to suppose that player 1 chooses Heads or Tails both with
probability 1

2
. As above, suppose that player 2 plays Heads with probability q and

Tails with probability 1� q. In that case the expected payoff for player 1 is equal to

1

2
Œq � 1C .1 � q/ � �1�C 1

2
Œq � �1C .1 � q/ � 1�

which is independent of q, namely, equal to 0. So by randomizing in this way
between his two choices, player 1 can guarantee to obtain 0 in expectation (of
course, the actually realized outcome is always C1 or �1). Analogously, player
2, by playing Heads or Tails each with probability 1

2
, can guarantee to pay 0 in

expectation. Thus, the amount of 0 plays a role similar to that of a saddlepoint.
Again, we will say that 0 is the value of this game.

Comments The randomized choices of the players are usually called mixed strate-

gies. Randomized choices are often interpreted as beliefs of the other player(s) about
the choice of the player under consideration. See also Sect. 3.1.
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1.3.2 Nonzero-Sum Games

1.3.2.1 Prisoners’ Dilemma

Story Two prisoners (players 1 and 2) have committed a crime together and are
interrogated separately. Each prisoner has two possible choices: he may ‘cooperate’
(C) which means ‘not betray his partner’ or he may ‘defect’ (D), which means
‘betray his partner’. The punishment for the crime is 10 years of prison. Betrayal
yields a reduction of 1 year for the defector (traitor). If a prisoner is not betrayed,
he is convicted to 1 year for a minor offense.

Model This situation can be summarized as follows:

� C D

C �1;�1 �10; 0
D 0;�10 �9;�9

�
:

This table is read in the same way as before, but now there are two payoffs at each
position: by convention the first number is the payoff for player 1 (the row player)
and the second number is the payoff for player 2 (the column player). Observe that
the game is no longer zero-sum, and we have to write down both numbers at each
matrix position.

Solution For both players C is a strictly dominated choice: D is better than C,
whatever the other player does. So it is natural to argue that the outcome of this
game will be the pair of choices .D;D/, leading to the payoffs �9;�9. Thus, due to
the existence of strictly dominated choices, the Prisoners’ Dilemma game is easy to
analyze.

Comments The payoffs .�9;�9/ are inferior: they are not Pareto optimal, the
players could obtain the higher payoff of �1 for each by cooperating, i.e., both
playing C. There is a large literature on how to establish cooperation, e.g. by
reputation effects in a repeated play of the game. If the game is played repeatedly,
other (higher) payoffs are possible, see Chap. 7.

The Prisoners’ Dilemma is a metaphor for many economic situations. An
outstanding example is the so-called ‘tragedy of the commons’, see Problem 6.27 in
this book.

1.3.2.2 Battle of the Sexes

Story A man and a woman want to go out together, either to a football match or to
a ballet performance. They forgot to agree where they would go to that night, are in
different places and have to decide on their own where to go; they have no means
to communicate. Their main concern is to be together. The man has a preference for
football and the woman for ballet.
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Model A table reflecting the situation is as follows.

� Football Ballet

Football 2; 1 0; 0

Ballet 0; 0 1; 2

�
:

Here, the man chooses a row and the woman a column.

Solution Observe that no player has a dominated choice. The players have to
coordinate without being able to communicate. Now it may be possible that the night
before they discussed football at length; each player remembers this, may think that
the other remembers this, and so this may serve as a focal point for both. In the
absence of such considerations it is hard to give a unique prediction for this game.
We can, however, say that the combinations (Football, Football) and (Ballet, Ballet)
are special in the sense that the players’ choices are best replies to each other; if the
man chooses Football (Ballet), then it is optimal for the woman to choose Football
(Ballet) as well, and vice versa. In the literature, such choice combinations are called
Nash equilibria. The concept of Nash equilibrium is without doubt the main solution
concept developed in game theory.

Comments The Battle of the Sexes game is metaphoric for problems of coordina-
tion.

1.3.2.3 Matching Pennies
Every zero-sum game is, trivially, a special case of a nonzero-sum game. For
instance, the Matching Pennies game discussed in Sect. 1.3.1 can be represented
as a nonzero-sum game as follows:

�Heads Tails

Heads 1;�1 �1; 1
Tails �1; 1 1;�1

�
:

Clearly, no player has a dominated choice and there is no combination of a row and
a column such that each player’s choice is optimal given the choice of the other
player—there is no Nash equilibrium. If mixed strategies are allowed, then it can
be checked that if player 2 plays Heads and Tails each with probability 1

2
, then for

player 1 it is optimal to do so too, and vice versa. Such a combination of mixed
strategies is again called a Nash equilibrium. See Chaps. 3 and 13.

1.3.2.4 A Cournot Game

Story Two firms produce a similar (‘homogenous’) product. The market price of
this product is equal to p D 1� Q or zero (whichever is larger), where Q is the total
quantity produced. There are no production costs.



8 1 Introduction

Model The two firms are the players, 1 and 2. Each player i D 1; 2 chooses a
quantity qi � 0, and makes a profit of Ki.q1; q2/ D qi.1 � q1 � q2/ (or zero if
q1 C q2 � 1).

Solution Suppose player 2 produces q2 D 1
3
. Then player 1 maximizes his own

profit q1.1 � q1 � 1
3
/ by choosing q1 D 1

3
. Also the converse holds: if player 1

chooses q1 D 1
3

then q2 D 1
3

maximizes profit for player 2. This combination
of strategies consists of mutual best replies and is therefore again called a Nash
equilibrium.

Comments This particular Nash equilibrium is often called Cournot equilibrium. It
is easy to check that the Cournot equilibrium in this example is again not Pareto
optimal: if the firms each would produce 1

4
, then they would both be better off. The

main difference between this example and the preceding ones is, that each player
here has infinitely many choices, also if no mixed strategies are included. See further
Chap. 6.

1.3.3 Extensive Form Games

All examples in Sects. 1.3.1 and 1.3.2 are examples of one-shot games: the players
choose only once, independently and simultaneously. In parlor games as well as
in games derived from real-life economic or political situations, this is often not
what happens. Players may move sequentially, and observe or partially observe
each others’ moves. Such situations are better modelled by so-called extensive form
games.

1.3.3.1 Sequential Battle of the Sexes

Story The story is similar to the one in Sect. 1.3.2, but we now assume that the man
chooses first and the woman can observe the choice of the man.

Model This situation can be represented by the decision tree in Fig. 1.1.

1

22
F B

FFBF

2,1 0,0 0,0 1,2

Fig. 1.1 The decision tree of sequential battle of the sexes
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Player 1 (the man) chooses first, player 2 (the woman) observes player 1’s choice
and then makes her own choice. The first number in each pair of numbers is the
payoff to player 1, and the second number is the payoff to player 2. Filled circles
denote decision nodes (of a player) or end nodes (followed by payoffs).

Solution An obvious way to analyze this game is by working backwards. If player 1
chooses F, then it is optimal for player 2 to choose F as well, and if player 1 chooses
B, then it is optimal for player 2 to choose B as well. Given this choice behavior of
player 2 and assuming that player 1 performs this line of reasoning about the choices
of player 2, player 1 should choose F.

Comments What this simple example shows is that in such a so-called extensive
form game, there is a distinction between a play plan of a player and an actual move
or choice of that player. Player 2 has the plan to choose F (B) if player 1 has chosen
F (B). Player 2’s actual choice is F—assuming as above that player 1 has chosen
F. We use the word strategy to denote a play plan, and the word action to denote
a particular move. In a one-shot game there is no difference between the two, and
then the word ‘strategy’ is used.

Games in extensive form are studied in Chaps. 4, 5, and 14. The solution
described above is an example of a so-called backward induction (or subgame
perfect) (Nash) equilibrium. There are other Nash equilibria as well. Suppose player
1 chooses B and player 2’s plan (strategy) is to choose B always, independent of
player 1’s choice. Observe that, given the strategy of the opponent, no player can
do better, and so this combination is a Nash equilibrium, although player 2’s plan is
only partly ‘credible’: if player 1 would choose F instead of B, then player 2 would
be better off by changing her choice to F.

1.3.3.2 Sequential Cournot

Story The story is similar to the one in Sect. 1.3.2, but we now assume that firm 1
chooses first and firm 2 can observe the choice of firm 1.

Model Since each player i D 1; 2 has infinitely many actions qi � 0, we cannot
draw a picture like Fig. 1.1 for the sequential Battle of the Sexes. Instead of straight
lines we use zigzag lines to denote a continuum of possible actions. For this example
we obtain Fig. 1.2.
Player 1 moves first and chooses q1 � 0. Player 2 observes player 1’s choice of q1
and then chooses q2 � 0.

1 q1 0 2 q2 0
q1 (1 − q1 − q2 ), q2 (1 − q1 − q2 )

>– >–

Fig. 1.2 The extensive form of sequential Cournot



10 1 Introduction

Solution Like in the sequential Battle of the Sexes game, an obvious way to solve
this game is by working backwards. Given the observed choice q1, player 2’s optimal
(profit maximizing) choice is q2 D 1

2
.1 � q1/ or q2 D 0, whichever is larger. Given

this reaction function of player 2, the optimal choice of player 1 is obtained by
maximizing the profit function q1 7! q1

�
1 � q1 � 1

2
.1 � q1/

�
. The maximum is

obtained for q1 D 1
2
. Consequently, player 2 chooses q2 D 1

4
.

Comments The solution described here is another example of a backward induction
or subgame perfect equilibrium. It is also called Stackelberg equilibrium. See
Chap. 6.

1.3.3.3 Entry Deterrence

Story An old question in industrial organization is whether an incumbent monop-
olist can maintain his position by threatening to start a price war against any new
firm that enters the market. In order to analyze this question, consider the following
situation. There are two players, the entrant and the incumbent. The entrant decides
whether to Enter (E) or to Stay Out (O). If the entrant enters, the incumbent can
Collude (C) with him, or Fight (F) by cutting the price drastically. The payoffs are
as follows. Market profits are 100 at the monopoly price and 0 at the fighting price.
Entry costs 10. Collusion shares the monopoly profits evenly.

Model This situation can be represented by the decision tree in Fig. 1.3.

Solution By working backward, we find that the entrant enters and the incumbent
colludes.

Comments As in the sequential battle of the sexes there exists another Nash
equilibrium. If the entrant stays out and the incumbent’s plan is to fight if the entrant
would enter, then also this is a combination where no player can do better given the
strategy of the other player. Again, one might argue that the ‘threat’ of the incumbent
firm to start a price war in case the potential entrant would enter, is not credible since
the incumbent hurts himself by carrying out the threat.

Fig. 1.3 The game of entry
deterrence. Payoffs: entrant,
incumbent

0,100

Entrant

Incumbent
E O

C F

40,50 − 10,0
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1.3.3.4 Entry Deterrence with Incomplete Information

Story Consider the following variation on the foregoing entry deterrence model.
Suppose that with 50 % probability the incumbent’s payoff from Fight (F) is equal
to some amount x rather than the 0 above. (Here, x is a given number. It is not
a variable but a parameter.) The entrant still moves first and knows whether this
payoff is x or 0. The incumbent moves last and does not know whether this payoff is
x or 0 when he moves. Both firms know the probabilities of the payoff being x or 0.
This situation might arise, for instance, if the capacity of the entrant firm is private
information. A positive value of x might be associated with the entrant having a
capacity constraint which leaves a larger share of the market to the incumbent if he
fights. The incumbent estimates the probability of the entrant having this capacity
constraint at 50 %, and the entrant knows this.

Model This situation can be modelled by including a chance move in the game tree.
Moreover, the tree should express the asymmetric information between the players.
Consider the game tree in Fig. 1.4. First there is a chance move. The entrant learns
the outcome of the chance move and decides to enter or not. If he enters, then the
incumbent decides to collude or fight, without however knowing the outcome of the
chance move: this is indicated by the dashed line. Put otherwise, the incumbent has
two decision nodes where he should choose, but he does not know at which node he
actually is. Thus, he can only choose between ‘collude’ and ‘fight’, without making
this choice contingent on the outcome of the chance move.

Solution If x � 50 then an obvious solution is that the incumbent colludes and
the entrant enters. Also the combination of strategies where the entrant stays out no
matter what the outcome of the chance move is, and the incumbent fights, is a Nash
equilibrium. A complete analysis is more subtle and may include a consideration of
the probabilistic information that the incumbent might derive from the action of the
entrant in a so-called perfect Bayesian equilibrium, see Chaps. 5 and 14.

Fig. 1.4 Entry deterrence
with incomplete information

Entrant

Entrant

Inc.

E

E

O

O

C

F

C

F

Chance

0,100

0,100

40,50

− 10,0

40,50

− 10, x

50%

50%
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1

2

F B

BFBF

2,1 0,0 0,0 1,2

Fig. 1.5 Simultaneous battle of the sexes in extensive form

Comments The collection of the two nodes of the incumbent, connected by the
dashed line, is called an information set. In general, information sets are used to
model imperfect information. In the present example imperfect information arises
since the incumbent does not know the outcome of the chance move. Imperfect
information can also arise if some player does not observe some move of some
other player. As a simple example, consider again the simultaneous move Battle of
the Sexes game of Sect. 1.3.2. This can be modelled as a game in extensive form as in
Fig. 1.5. Hence, player 2, when he moves, does not know what player 1 has chosen.
This is equivalent to players 1 and 2 moving independently and simultaneously.

1.3.4 Cooperative Games

In a cooperative game the focus is on payoffs and coalitions, rather than on
strategies. The prevailing analyses have an axiomatic flavor, in contrast to the
equilibrium analysis of noncooperative theory. The implicit assumption is that
players can make binding agreements.

1.3.4.1 Three Cooperating Cities

Story Cities 1, 2 and 3 want to be connected with a nearby power source. The
possible transmission links and their costs are shown in the following figure. Each
city can hire any of the transmission links. If the cities cooperate in hiring the links
they save on the hiring costs (the links have unlimited capacity). The situation is
represented in Fig. 1.6.

Model The players in this situation are the three cities. Denote the player set by
N D f1; 2; 3g. These players can form coalitions: any subset S of N is called a
coalition. Table 1.1 presents the costs as well as the savings of each coalition.
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power

1

2

3

100
30

140 20

50

Fig. 1.6 Situation leading to the three cities game

Table 1.1 The three cities
game

S f1g f2g f3g f1; 2g f1; 3g f2; 3g f1; 2; 3g

c.S/ 100 140 130 150 130 150 150

v.S/ 0 0 0 90 100 120 220

The costs c.S/ are obtained by calculating the cheapest routes connecting
the cities in the coalition S with the power source. The cost savings v.S/ are
determined by

v.S/ WD
X

i2S

c.fig/� c.S/ for each nonempty S � N:

The cost savings v.S/ for coalition S are equal to the difference in costs correspond-
ing to the situation where all members of S work alone and the situation where all
members of S work together. The pair .N; v/ is called a cooperative game.

Solution Basic questions in a cooperative game .N; v/ are: which coalitions will
actually be formed, and how should the worth (savings) of such a coalition be
distributed among its members? To form a coalition the consent of every member is
needed, but it is likely that the willingness of a player to participate in a coalition
depends on what that player obtains in that coalition. Therefore, the second question
seems to be the more basic one, and in this book attention is focussed on that
question. Specifically, it is usually assumed that the grand coalition N of all players
is formed, and the question is then reduced to the problem of distributing the
amount v.N/ among the players. In the present example, how should the amount 220
(D v.N/) be distributed among the three cities? In other words, we look for vectors
x D .x1; x2; x3/ 2 R

3 such that x1 C x2 C x3 D 220, where player i 2 f1; 2; 3g
obtains xi. One obvious candidate is to choose x1 D x2 D x3 D 220=3, but this
does not really reflect the asymmetry of the situation: some coalitions save more
than others. The literature offers many quite different solutions to this distribution
problem, among which are the core, the Shapley value, and the nucleolus.

The core consists of those payoff distributions that cannot be improved upon by
any smaller coalition. For the three cities example, this means that the core consists
of those vectors .x1; x2; x3/ such that x1Cx2Cx3 D 220, x1; x2; x3 � 0, x1Cx2 � 90,
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x1 C x3 � 100, and x2 C x3 � 120. Hence, this is a large set and therefore it is rather
indeterminate as a solution to the game.

In contrast, the Shapley value consists by definition of one point (vector).
Roughly, according to the Shapley value, each player receives his average con-
tribution to the worth (savings) of coalitions. More precisely, imagine the players
entering the ‘bargaining room’ one at a time, say first player 1, then player 2, and
finally player 3. When player 1 enters, he forms a coalition on his own, which
has worth 0. When player 2 enters, they form the coalition f1; 2g, so that the
contribution of player 2 is equal to v.f1; 2g/ � v.f1g/ D 90 � 0 D 90. Finally,
player 3 enters and they form the grand coalition. Player 3’s contribution is equal
to v.N/ � v.f1; 2g/ D 220 � 90 D 130. Hence, this results in the payoff vector
.0; 90; 130/. Now the Shapley value is obtained by repeating this argument for the
five other possible orderings in which the players can enter the bargaining room,
and then taking the average of the six payoff vectors. In this example this results in
the distribution .65; 75; 80/.

Also the nucleolus consists of one point, in this case the vector .56 2
3
; 76 2

3
; 86 2

3
/.

The nucleolus is more complicated to define and harder to compute, and at this stage
the reader should take these numbers for granted.

Formal definitions of all these concepts are provided in Chap. 9. See also
Chaps. 16–20.

Comments The implicit assumptions for a game like this are, first, that a coalition
which is actually formed, can make binding agreements on the distribution of its
payoff and, second, that any payoff distribution which distributes (or, at least, does
not exceed) the savings (or, more generally, worth) of the coalition is possible. For
these reasons, such games are called cooperative games with transferable utility.

1.3.4.2 The Glove Game

Story Assume that there are three players, 1, 2, and 3. Players 1 and 2 each possess
a right-hand glove, while player 3 has a left-hand glove. A pair of gloves has worth
1. The players cooperate in order to generate a profit.

Model The associated cooperative game is described by Table 1.2.

Solution The core of this game consists of exactly one vector. The Shapley value
assigns 2=3 to player 3 and 1=6 to both player 1 and player 2 (see Problem 1.6). The
nucleolus is the unique element of the core.

Table 1.2 The glove game S f1g f2g f3g f1; 2g f1; 3g f2; 3g f1; 2; 3g

v.S/ 0 0 0 0 1 1 1
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Table 1.3 Preferences for
dentist appointments

Mon Tue Wed

Adams 2 4 8

Benson 10 5 2

Cooper 10 6 4

Table 1.4 The dentist game:
a permutation game

S f1g f2g f3g f1; 2g f1; 3g f2; 3g f1; 2; 3g

v.S/ 2 5 4 14 18 9 24

1.3.4.3 A Permutation Game

Story Mr. Adams, Mrs. Benson, and Mr. Cooper have appointments with the dentist
on Monday, Tuesday, and Wednesday, respectively. This schedule not necessarily
matches their preferences, due to different urgencies and other factors. These
preferences (expressed in numbers) are given in Table 1.3.

Model This situation gives rise to a game in which the coalitions can gain by
reshuffling their appointments. For instance, Adams (player 1) and Benson (player
2) can change their appointments and obtain a total of 14 instead of 7. A complete
description of the resulting game is given in Table 1.4.3

Solution The core of this game is the convex hull of the vectors .15; 5; 4/, .14; 6; 4/,
.8; 6; 10/, and .9; 5; 10/, i.e., it is the quadrangle with these points as vertices,
together with its inside. The Shapley value is the vector .9 1

2
; 6 1

2
; 8/, and the

nucleolus is the vector .11 1
2
; 5 1

2
; 7/.

Comments See Chap. 20 for an analysis of permutation games.

1.3.4.4 A Voting Game
The United nations Security Council consists of five permanent members (United
States, Russia, Britain, France, and China) and ten other members. Motions must
be approved by at least nine members, including all the permanent members. This
situation gives rise to a 15-player so-called voting game .N; v/ with v.S/ D 1 if
the coalition S contains the five permanent members and at least four nonpermanent
members, and v.S/ D 0 otherwise. Games with worths 0 or 1 are also called simple

games. Coalitions with worth equal to 1 are called winning, the other coalitions are
called losing. Simple games are studied in Chap. 16.

A solution to such a voting game is interpreted as representing the power of a
player, rather than payoff (money) or utility.

3The numbers in this table are the total payoffs to coalitions and not the net payoffs compared to
the coalition members staying alone instead of cooperating. These would be, respectively, 0, 0, 0,
7, 12, 0, and 13.



16 1 Introduction

1.3.5 Bargaining Games

Bargaining theory focusses on agreements between individual players.

1.3.5.1 A Division Problem

Story Consider the following situation. Two players have to agree on the division of
one unit of a perfectly divisible good, say a liter of wine. If they reach an agreement,
say .˛; ˇ/where ˛; ˇ � 0 and ˛Cˇ � 1, then they split up the one unit according to
this agreement; otherwise, they both receive nothing. The players have preferences
for the good, described by utility functions.

Model To fix ideas, assume that player 1 has a utility function u1.˛/ D ˛ and player
2 has a utility function u2.˛/ D p

˛. Thus, a distribution .˛; 1�˛/ of the good leads
to a corresponding pair of utilities .u1.˛/; u2.1 � ˛// D .˛;

p
1� ˛/. By letting ˛

range from 0 to 1 we obtain all utility pairs corresponding to all distributions of
the whole unit of the good: this is the bold curve in Fig. 1.7. It is assumed that also
distributions summing to less than the whole unit are theoretically possible. This
yields the whole shaded region.

Solution According to the Nash bargaining solution this bargaining problem
should be solved as follows: maximize the product of the players’ utilities on the
shaded area. Since this maximum will be reached on the boundary, the problem is
equivalent to

max
0�˛�1

˛
p
1 � ˛:

The maximum is obtained for ˛ D 2
3
. So the solution of the bargaining problem in

utilities equals . 2
3
; 1
3

p
3/, which is the point z in Fig. 1.7. This implies that player

1 obtains 2
3

of the 1 unit of the good, whereas player 2 obtains 1
3
. As described

Fig. 1.7 A bargaining game
1

10
1

2

2
3

1
3
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here, this solution may seem to come out of the blue, but it can be backed up
axiomatically, see below.

Comments For an axiomatic characterization of the Nash bargaining solution, see
Chaps. 10 and 21. The bargaining literature also includes many noncooperative,
strategic approaches to the bargaining problem, notably the Rubinstein alternating
offers model: see Chaps. 6 and 21. The bargaining game can be seen as a special
case of a cooperative game without transferable utility. Also games with transferable
utility form a subset of the more general class of games without transferable utility.
See Chap. 21.

1.4 Cooperative Versus Noncooperative Game Theory

The usual distinction between cooperative and noncooperative game theory is that
in a cooperative game binding agreements between players are possible, whereas
this is not the case in noncooperative games. This distinction is informal and
also not very clear-cut: for instance, the core of a cooperative game has a clear
noncooperative flavor; a concept such as correlated equilibrium for noncooperative
games (see Sect. 13.7) has a clear cooperative flavor. Moreover, quite some game-
theoretic literature is concerned with viewing problems both from a cooperative
and a noncooperative perspective. The latter approach is sometimes called the
Nash program; the bargaining problem discussed above is a typical example.
In a much more precise sense, the theory of implementation is concerned with
representing outcomes from cooperative solutions as equilibrium outcomes of
specific noncooperative solutions.

A workable distinction between cooperative and noncooperative games can be
based on the ‘modelling technique’ that is used: in a noncooperative game players
have explicit strategies, whereas in a cooperative game players and coalitions are
characterized, more abstractly, by the outcomes and payoffs that they can reach.
The examples in Sects. 1.3.1–1.3.3 are examples of noncooperative games, whereas
those in Sects. 1.3.4 and 1.3.5 are examples of cooperative games.

1.5 Problems

1.1. Battle of the Bismarck Sea

(a) Represent the ‘Battle of the Bismarck Sea’ as a game in extensive form.
(b) Now assume that Imamura moves first, and Kenney observes Imamura’s move

and moves next. Represent this situation in extensive form and solve by working
backwards.

(c) Answer the same questions as under (b) with now Kenney moving first.



18 1 Introduction

1.2. Variant of Matching Pennies

Consider the following variant of the ‘Matching Pennies’ game:

�Heads Tails

Heads x �1
Tails �1 1

�

where x is a real number. For each value of x, determine all saddlepoints of the
game, if any.

1.3. Mixed Strategies

Consider the following zero-sum game:

� L R

T 3 2

B 1 4

�
:

(a) Show that this game has no saddlepoint.
(b) Find a mixed strategy (randomized choice) of (the row) player 1 that makes his

expected payoff independent of player 2’s strategy.
(c) Find a mixed strategy of player 2 that makes his expected payoff independent of

player 1’s strategy.
(d) Consider the expected payoffs found under (b) and (c). What do you conclude

about how the game could be played if randomized choices are allowed?

1.4. Sequential Cournot

Consider the sequential Cournot model in Sect. 1.3.3, but now based on the market
price p D 2 � 3Q (or zero, whichever is larger), where Q is the total quantity
produced.

(a) Represent this game in extensive form, similar as in Fig. 1.2.
(b) Solve this game by working backwards.

1.5. Three Cooperating Cities

(a) Complete the computation of the Shapley value of the ‘Three Cooperating Cities
Game’. Is it an element of the core? Why or why not?

(b) Show that the nucleolus of this game is an element of the core.

1.6. Glove Game

(a) Compute the core of the glove game.
(b) Compute the Shapley value of this game. Is it an element of the core?
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1.7. Dentist Appointments

(a) For the permutation (dentist appointments) game, compute the Shapley value
and check if it is an element of the core.

(b) Show that the nucleolus of this game is in the core.

1.8. Nash Bargaining

(a) Verify the computation of the Nash bargaining solution for the division problem
in Sect. 1.3.5.

(b) Compute the Nash bargaining outcome, both in utilities and in division of the
good, when the utility functions are u1.˛/ D 2˛ � ˛2 and u2.˛/ D ˛.

1.9. Variant of Glove Game

Suppose there are n D ` C r players, where ` players own a left-hand glove and r

players own a right-hand glove. Let N be the set of all players, let L be the subset of
N consisting of the players who own a left-hand glove, and let R be the subset of N

consisting of the players who own a right-hand glove. Let S � N denote an arbitrary
coalition and let jSj denote the number of players in S. For instance, jLj D `, and
jR \ Sj is the number of players in S who own a right-hand glove. As before, each
pair of gloves has worth 1. Find an expression for v.S/, i.e., the maximal profit that
S can generate by cooperation of its members.

1.6 Notes

The ‘Battle of the Bismarck Sea’ example is taken from Rasmusen (1989). Also
see the memoirs of Churchill (1983): in 1953, Churchill received the Nobel prize in
literature for this work.

Von Neumann (1928) proved that every two-person finite zero-sum game in
which the players can use mixed strategies, has a value. This result is known as
the minimax theorem.

The Prisoners’ Dilemma game has been widely studied in the literature. Axelrod
(1984) described the results of a tournament for which players could submit
strategies for repeated play of the Prisoners’ Dilemma: the so-called tit-for-tat
strategy emerged as a winning strategy. For the ‘tragedy of the commons’, see
Hardin (1968), or Gibbons (1992, p. 27).

The concept of focal points was developed by Schelling (1960). Nash equilibria
were first explicitly proposed by Nash (1951), who proved that every game in which
each player has finitely many choices—zero-sum or nonzero-sum—has a Nash
equilibrium in mixed strategies. The basic idea of a Nash equilibrium is much older.
For instance, the Cournot equilibrium was developed in Cournot (1838).

Subgame perfect equilibria in extensive form games were first explicitly studied
by Selten (1965). Again, the basic idea occurs earlier, for instance in von Stackelberg
(1934).
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The Three Cooperating Cities is an example of a minimum cost spanning tree
game, see Bird (1976). The core was first introduced in Gillies (1953), the Shapley
value in Shapley (1953), and the nucleolus in Schmeidler (1969). The dentist
example is taken from Curiel (1997, p. 54). The United Nations Security Council
game is taken from Owen (1995).

The Nash bargaining solution was proposed and axiomatically characterized in
Nash (1950). Nash (1953) proposed a noncooperative game to back up the Nash
bargaining solution. Rubinstein (1982) modelled the bargaining problem as an
alternating offers extensive form game. Binmore et al. (1986) observed the close
relationship between the Nash bargaining solution and the strategic approach of
Rubinstein. See Chap. 10.

The reference list contains a number of textbooks on game theory, notably:
Fudenberg and Tirole (1991a), Gardner (1995), Gibbons (1992), Maschler et al.
(2013), Morris (1994), Moulin (1988), Moulin (1995), Myerson (1991), Osborne
(2004), Owen (1995), Peleg and Sudhölter (2003), Perea (2012), Rasmusen (1989),
Thomas (1986), and Watson (2002).
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Part I

Thinking Strategically



2Finite Two-Person Zero-Sum Games

This chapter deals with two-player games in which each player chooses from finitely
many pure strategies or randomizes among these strategies, and the sum of the
players’ payoffs or expected payoffs is always equal to zero. Games like the Battle
of the Bismarck Sea and Matching Pennies, discussed in Sect. 1.3.1 belong to this
class.

In Sect. 2.1 the basic definitions and theory are discussed. Section 2.2 shows how
to solve 2�n and m�2 games, and larger games by elimination of strictly dominated
strategies.

2.1 Basic Definitions and Theory

Since all data of a finite two-person zero-sum game can be summarized in one
matrix, such a game is usually called a ‘matrix game’.

Definition 2.1 (Matrix Game) A matrix game is an m�n matrix A of real numbers,
where m is the number of rows and n is the number of columns. A (mixed ) strategy
of player 1 is a probability distribution p over the rows of A, i.e., an element of the
set

�m WD fp D .p1; : : : ; pm/ 2 R
m j

mX

iD1

pi D 1; pi � 0 for all i D 1; : : : ;mg :

Similarly, a (mixed ) strategy of player 2 is a probability distribution q over the
columns of A, i.e., an element of the set

�n WD fq D .q1; : : : ; qn/ 2 R
n j

nX

jD1

qj D 1; qj � 0 for all j D 1; : : : ; ng :

© Springer-Verlag Berlin Heidelberg 2015
H. Peters, Game Theory, Springer Texts in Business and Economics,
DOI 10.1007/978-3-662-46950-7_2
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A strategy p of player 1 is called pure if there is a row i with pi D 1. This strategy
is also denoted by ei. Similarly, a strategy q of player 2 is called pure if there is a
column j with qj D 1. This strategy is also denoted by ej. �

The interpretation of a matrix game A is as follows. If player 1 plays row i (i.e., pure
strategy ei) and player 2 plays column j (i.e., pure strategy ej), then player 1 receives
payoff aij and player 2 pays aij (and, thus, receives �aij), where aij is the number
in row i and column j of matrix A. If player 1 plays strategy p and player 2 plays
strategy q, then player 1 receives the expected payoff

pAq D
mX

iD1

nX

jD1

piqjaij ;

and player 2 receives �pAq.

Remark 2.2 (1) Note that, according to Definition 2.1, a strategy means a mixed
strategy. A pure strategy is a special case of a mixed strategy. We add the adjective
‘pure’ if we wish to refer to a pure strategy. (2) Since no confusion is likely to arise,
we do not use transpose notations like pTAq or pAqT . �

For ‘solving’ matrix games, i.e., establishing what clever players would or should
do, the concepts of maximin and minimax strategies are important, as will be
explained below. First we give the definitions.

Definition 2.3 (Maximin and Minimax Strategies) A strategy p is a maximin
strategy of player 1 in matrix game A if

minfpAq j q 2 �ng � minfp0Aq j q 2 �ng for all p0 2 �m :

A strategy q is a minimax strategy of player 2 in matrix game A if

maxfpAq j p 2 �mg � maxfpAq0 j p 2 �mg for all q0 2 �n :

�

In words: a maximin strategy of player 1 maximizes the minimal (with respect
to player 2’s strategies) payoff of player 1, and a minimax strategy of player 2
minimizes the maximum (with respect to player 1’s strategies) that player 2 has
to pay to player 1. (It can be proved by basic mathematical analysis that maximin
and minimax strategies always exist.) Of course, the asymmetry in these definitions
is caused by the fact that, by convention, a matrix game represents the amounts that
player 2 has to pay to player 1.

In order to check if a strategy p of player 1 is a maximin strategy it is sufficient to
check that the first inequality in Definition 2.3 holds with ej for every j D 1; : : : ; n
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instead of every q 2 �n. This is not difficult to see but the reader is referred to
Chap. 12 for a formal treatment. A similar observation holds for minimax strategies.
In other words, to check if a strategy is maximin (minimax) it is sufficient to consider
its performance against every pure strategy, i.e., column (row).

Why would we be interested in such strategies? At first glance, these strategies
seem to express a very conservative or pessimistic, worst-case scenario attitude. The
reason for nevertheless considering maximin/minimax strategies is provided by the
so-called minimax theorem, which states that for every matrix game A there is a real
number v D v.A/ with the following properties:

(a) A strategy p of player 1 guarantees a payoff of at least v to player 1 (i.e., pAq �
v for all strategies q of player 2) if and only if p is a maximin strategy.

(b) A strategy q of player 2 guarantees a payment of at most v by player 2 to player
1 (i.e., pAq � v for all strategies p of player 1) if and only if q is a minimax
strategy.

Hence, player 1 can obtain a payoff of at least v by playing a maximin strategy,
and player 2 can guarantee to pay not more than v—hence secure a payoff of at
least �v—by playing a minimax strategy. For these reasons, the number v D v.A/

is also called the value of the game A—it represents the worth to player 1 of playing
the game A—and maximin and minimax strategies are called optimal strategies for
players 1 and 2, respectively.

Therefore, ‘solving’ the game A means, naturally, determining the optimal
strategies and the value of the game. In the Battle of the Bismarck Sea in Sect. 1.3.1,
the pure strategies N of both players guarantee the same amount 2. Therefore, this is
the value of the game and N is optimal for both players. The analysis of that game is
easy since it has a ‘saddlepoint’, namely position .1; 1/with a11 D 2. The definition
of a saddlepoint is as follows.

Definition 2.4 (Saddlepoint) A position .i; j/ in a matrix game A is a saddlepoint if

aij � akj for all k D 1; : : : ;m and aij � aik for all k D 1; : : : ; n ;

i.e., if aij is maximal in its column j and minimal in its row i. �

Clearly, if .i; j/ is a saddlepoint, then player 1 can guarantee a payoff of at least aij

by playing the pure strategy row i, since aij is minimal in row i. Similarly, player 2
can guarantee a payoff of at least �aij by playing the pure strategy column j, since
aij is maximal in column j. Hence, aij must be the value of the game A: v.A/ D aij, ei

is an optimal (maximin) strategy of player 1, and ej is an optimal (minimax) strategy
of player 2.
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2.2 Solving 2 � n Games and m � 2 Games

In this section we show how to solve matrix games where at least one of the players
has only two pure strategies. We also show how the idea of strict domination can be
of help in solving matrix games.

2.2.1 2 � n Games

We demonstrate how to solve a matrix game with 2 rows and n columns graphically,
by considering the following 2 � 4 example:

A D
� e1 e2 e3 e4

10 2 4 1

2 10 8 12

�
:

We have labelled the columns of A, i.e., the pure strategies of player 2 for reference
below. Let p D .p; 1� p/ be an arbitrary strategy of player 1. The expected payoffs
to player 1 if player 2 plays a pure strategy are equal to:

pAe1 D 10p C 2.1� p/ D 8p C 2

pAe2 D 2p C 10.1� p/ D 10 � 8p

pAe3 D 4p C 8.1 � p/ D 8 � 4p

pAe4 D p C 12.1� p/ D 12 � 11p :

We plot these four linear functions of p in one diagram:

2

6

8

10

12

1

2

4

6

10

0 1p
∗

=
1

2

e
1

e
3

e
2

e
4

In this diagram the values of p are plotted on the horizontal axis, and the four straight
gray lines plot the payoffs to player 1 for each of the four pure strategies of player 2.
Observe that for every 0 � p � 1 the minimum payoff that player 1 may obtain is
given by the lower envelope of these curves, the thick black curve in the diagram:
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for any p, any combination .q1; q2; q3; q4/ of the points on e1, e2, e3, and e4 with first
coordinate p would lie on or above this lower envelope. Clearly, the lower envelope
is maximal for p D p� D 1

2
, and the maximal value is 6. Hence, we have established

that player 1 has a unique optimal (maximin) strategy, namely p� D . 1
2
; 1
2
/, and that

the value of the game, v.A/, is equal to 6.
What are the optimal or minimax strategies of player 2? From the theory of the

previous section we know that a minimax strategy q D .q1; q2; q3; q4/ of player 2
should guarantee to player 2 to have to pay at most the value of the game. From
the diagram it is clear that q4 should be equal to zero since otherwise the payoff to
player 1 would be larger than 6 if player 1 plays . 1

2
; 1
2
/, and thus q would not be a

minimax strategy. So a minimax strategy has the form q D .q1; q2; q3; 0/. Any such
strategy, plotted in the diagram, gives a straight line that is a combination of the
lines associated with e1, e2, and e3 and which passes through the point . 1

2
; 6/ since

all three lines pas through this point. Moreover, for no value of p should this straight
line exceed the value 6, otherwise q would not guarantee a payment of at most 6
by player 2. Consequently, this straight line has to be horizontal. Summarizing this
argument, we look for numbers q1; q2; q3 � 0 such that

2q1 C 10q2 C 8q3 D 6 (left endpoint should be .0; 6/)
10q1 C 2q2 C 4q3 D 6 (right endpoint should be .1; 6/)

q1 C q2 C q3 D 1 (q is a probability vector) :

By substitution, it is easy to reduce this system of equations to the two equations

3q1 � q2 D 1

q1 C q2 C q3 D 1 :

In fact, one of the two first equations could have been omitted from the beginning,
since we already know that any combination of the three lines passes through . 1

2
; 6/,

and two points are sufficient to determine a straight line.
From the remaining two equations, we obtain that the set of optimal strategies of

player 2 is

fq D .q1; q2; q3; q4/ 2 �4 j q2 D 3q1 � 1; q4 D 0g :

Note that, if q1 D 1
3
, then q2 D 0, and if q1 D 1

2
, then q2 D 1

2
. Clearly, q1 and q2

cannot be smaller, since then their sum would be negative, and they cannot be larger
since then their sum would exceed 1. Hence, the set of optimal strategies of player
2 can alternatively be described as

fq D .q1; q2; q3; q4/ 2 R
4 j 1
3

� q1 � 1

2
; q2 D 3q1�1; q3 D 1�q1�q2; q4 D 0g :
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This means that the set of optimal strategies of player 2 in this game is one-
dimensional, i.e., a line segment.

2.2.2 m � 2 Games

The solution method to solve m � 2 games is analogous. Consider the following
example:

A D

0
BB@

e1 10 2

e2 2 10

e3 4 8

e4 1 12

1
CCA :

Let q D .q; 1 � q/ be an arbitrary strategy of player 2. Again, we make a diagram
in which now the values of q are put on the horizontal axis, and the straight lines
indicated by ei for i D 1; 2; 3; 4 are the payoffs to player 1 associated with his four
pure strategies (rows) as functions of q. The equations of these lines are given by:

e1Aq D 10q C 2.1� q/ D 8q C 2

e2Aq D 2q C 10.1� q/ D 10 � 8q

e3Aq D 4q C 8.1 � q/ D 8 � 4q

e4Aq D q C 12.1� q/ D 12 � 11q :

The resulting diagram is as follows.

2

118

19

8

10

12

1

2

4

118

19

10

0 1q
∗

=
10

19

e
1

e
3

e
2

e
4

Observe that the maximum payments that player 2 has to make are now located on
the upper envelope, represented by the thick black curve. The minimum is reached at
the point of intersection of e1 and e4 in the diagram, which has coordinates . 10

19
; 118
19
/.

Hence, the value of the game is 118
19

, and the unique optimal (minimax) strategy of

player 2 is q� D . 10
19
; 9
19
/.
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To find the optimal strategy or strategies p D .p1; p2; p3; p4/ of player 1, it
follows from the diagram that p2 D p3 D 0, otherwise for q D 10

19
the value 118

19

of the game is not reached, so that p is not a maximin strategy. So we look for a
combination of e1 and e4 that gives at least 118

19
for every q, hence it has to be equal

to 118
19

for every q. This gives rise to the equations 2p1 C 12p4 D 10p1 C p4 D 118
19

and p1 C p4 D 1, with unique solution p1 D 11
19

and p4 D 8
19

. So the unique optimal

strategy of player 1 is . 11
19
; 0; 0; 8

19
/.

2.2.3 Strict Domination

The idea of strict domination can be used to first eliminate pure strategies before the
graphical analysis of a matrix game. Consider the game

A D
� e1 e2 e3 e4 e5

10 2 5 1 6

2 10 8 12 9

�
:

This game is obtained from the game in Sect. 2.2.1 by adding a fifth column and
changing a13 from 4 to 5.

In this game it cannot be optimal for player 2 to put positive probability on the
fifth column, since the payoffs in the third column are always—that is, no matter
what player 1’s strategy is—better for player 2. So we can assume that the fifth
column is played with zero probability: it is strictly dominated by the third column.
This is a case where a pure strategy is strictly dominated by another pure strategy.

It can also happen that a pure strategy is strictly dominated by a mixed strategy.
For instance, consider the third column. The payoff 5 in the first row is in between
the payoffs 10 and 2 in the first row and first and second columns, respectively; and
also the payoff 8 in the second row is in between the payoffs 2 and 10 in the second
row and first and second columns. So it may be possible to find a combination of
the first two columns that results in smaller payoffs than those in the third column.
In order to see if such a combination is possible, suppose that probability ˛ is put
on the first column and 1�˛ is put on the second column. The resulting payoffs are

˛

�
10

2

�
C .1� ˛/

�
2

10

�
D
�
8˛ C 2

10� 8˛

�
:

We wish to have 8˛ C 2 < 5 and 10 � 8˛ < 8, and both inequalities hold as
long as 1

4
< ˛ < 3

8
. This means that the pure strategy e3 is strictly dominated by

any (mixed) strategy .˛; 1 � ˛; 0; 0; 0/, as long as ˛ is in the computed range. This
implies that, in an optimal strategy, the probability q3 put by player 2 on the third
column must be zero, otherwise player 2 could guarantee to pay less by adding ˛q3
to the first column and .1 � ˛/q3 to the second column, for any 1

4
< ˛ < 3

8
, and

playing the third column with zero probability.
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The preceding analysis implies that, in order to solve the above game, we can
start by eliminating the third and fifth columns of the matrix. Thus, in the diagram
in Sect. 2.2.1, we do not have to draw the line corresponding to e3. The value of the
game is still 6, player 1 still has a unique optimal strategy p� D . 1

2
; 1
2
/, and player 2

now also has a unique optimal strategy, namely the one where q3 D 0, which is the
strategy . 1

2
; 1
2
; 0; 0; 0/.

In general, strictly dominated pure strategies in a matrix game are not played
with positive probability in any optimal strategy and can therefore be eliminated
before solving the game. Sometimes, this idea can also be used to solve matrix
games in which each player has more than two pure strategies (m; n > 2). Moreover,
the idea can be applied iteratively, that is, after elimination of a strictly dominated
pure strategy, in the smaller game perhaps another strictly dominated pure strategy
can be eliminated, etc., until no more pure strategies are strictly dominated. See
Example 2.7 for an illustration, and see Chap. 13 for a rigorous treatment.

We first give the formal definition of strict domination, and then discuss the
announced example.

Definition 2.5 (Strict Domination) Let A be an m�n matrix game and i a row. The
pure strategy ei is strictly dominated if there is a strategy p D .p1; : : : ; pm/ 2 �m

such that pAej > eiAej for every j D 1; : : : ; n. Similarly, let j be a column. The pure
strategy ej is strictly dominated if there is a strategy q D .q1; : : : ; qn/ 2 �n such
that eiAq < eiAej for every i D 1; : : : ;m. �

Remark 2.6 It is not difficult to see that if ei is strictly dominated, then it is strictly
dominated by some p 2 �m with pi D 0. Similarly, if ej is strictly dominated, then
it is strictly dominated by some q 2 �n with qj D 0. �

Example 2.7 Consider the following 3 � 3 matrix game:

A D

0
@
6 0 2

0 5 4

3 2 1

1
A :

For player 1, the third strategy e3 is strictly dominated by the strategy p D
. 7
12
; 5
12
; 0/, since

pA D
�
7
2

25
12

17
6

�
and e3A D

�
3 2 1

�
:

Hence, in any optimal strategy player 1 puts zero probability on the third row.
Elimination of this row results in the matrix

B D
�
6 0 2

0 5 4

�
:
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Now, player 2’s third strategy e3 is strictly dominated by the strategy q D . 1
4
; 3
4
; 0/,

since

Bq D
 

3
2
15
4

!
and Be3 D

�
2

4

�
:

Hence, in any optimal strategy player 2 puts zero probability on the third column.
Elimination of this column results in the matrix

C D
�
6 0

0 5

�
:

This is a 2 � 2 matrix game, which can be solved by the method in Sect. 2.2.1 or
Sect. 2.2.2. See Problem 2.1(a). �

2.3 Problems

2.1. Solving Matrix Games

Solve the following matrix games, i.e., determine the optimal strategies and the
value of the game. Each time, start by checking if the game has a saddlepoint.

(a)
�
6 0

0 5

�

What are the optimal strategies in the original matrix game A in Example 2.7?
(b) 0

@
2 �1 0 2

2 0 0 3

0 0 �1 2

1
A

(c) 0
@
1 3 1

2 2 0

0 3 2

1
A

(d)
0
BB@

16 12 2

2 6 16

8 8 6

0 7 8

1
CCA
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(e)
�
3 1 4 0

1 2 0 5

�

(f) 0
@
1 0 2

4 1 1

3 1 3

1
A :

2.2. Saddlepoints

(a) Let A be an arbitrary m � n matrix game. Show that any two saddlepoints must
have the same value. In other words, if .i; j/ and .k; l/ are two saddlepoints, show
that aij D akl.

(b) Let A be a 4 � 4 matrix game in which .1; 1/ and .4; 4/ are saddlepoints. Show
that A has at least two other saddlepoints.

(c) Give an example of a 4 � 4 matrix game with exactly three saddlepoints.

2.3. Maximin Rows and Minimax Columns

Row i is a maximin row in an m�n matrix game A if minj2f1;:::;ng aij � minj2f1;:::;ng akj

for all k 2 f1; : : : ;mg. Column j is a minimax column if maxi2f1;:::;mg aij �
maxi2f1;:::;mg ai` for all ` 2 f1; : : : ; ng.
Consider the following matrix game:

A D

0
BB@

3 2 0

1 2 2

0 2 4

0 3 1

1
CCA :

(a) Determine all maximin rows and minimax columns. What can you conclude
from this about the value of this game?

(b) The value of this game is 12
7

. Use this to give an argument why player 2 will put
zero probability on column 2 in any minimax strategy.

(c) Determine all minimax strategies of player 2 and all maximin strategies of
player 1.

2.4. Subgames of Matrix Games

Consider the following matrix game:

A D
�
3 1 4 0

1 2 0 5

�
:

(a) Determine all maximin rows and minimax columns. (See Problem 2.3.) What
can you conclude from this about the value of this game?
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(b) Consider the six different 2 � 2-matrix games that can be obtained by choosing
two columns from A, as follows:

A1 D
�
3 1

1 2

�
A2 D

�
3 4

1 0

�
A3 D

�
3 0

1 5

�

A4 D
�
1 4

2 0

�
A5 D

�
1 0

2 5

�
A6 D

�
4 0

0 5

�
:

Determine the values of all these games. Which one must be equal to the value
of A?

(c) Determine all maximin and minimax strategies of A. [Hint: Use your answer to
(b).]

2.5. Rock-Paper-Scissors

In the famous Rock-Paper-Scissors two-player game each player has three pure
strategies: Rock, Paper, and Scissors. Here, Scissors beats Paper, Paper beats Rock,
Rock beats Scissors. Assign a 1 to winning, 0 to a draw, and �1 to losing. Model
this game as a matrix game, try to guess its optimal strategies, and then show that
these are the unique optimal strategies. What is the value of this game?

2.4 Notes

The theory of zero-sum games was developed by von Neumann (1928), who
proved the minimax theorem. In general, matrix games can be solved by Linear
Programming. See Chap. 12 for details.

Reference

von Neumann, J. (1928). Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100,
295–320.



3Finite Two-Person Games

In this chapter we consider two-player games where each player chooses from
finitely many pure strategies or randomizes among these strategies. In contrast to
Chap. 2 it is no longer required that the sum of the players’ payoffs is zero (or,
equivalently, constant). This allows for a much larger class of games, including
many games relevant for economic or other applications. Famous examples are the
Prisoners’ Dilemma and the Battle of the Sexes discussed in Sect. 1.3.2.

In Sect. 3.1 we introduce the model and the concept of Nash equilibrium.
Section 3.2 shows how to compute Nash equilibria in pure strategies for arbitrary
games, all Nash equilibria in games where both players have exactly two pure
strategies, and how to use the concept of strict domination to facilitate computation
of Nash equilibria and to compute equilibria also of larger games. The structure
of this chapter thus parallels the structure of Chap. 2. For a deeper and more
comprehensive analysis of finite two-person games see Chap. 13.

3.1 Basic Definitions and Theory

The data of a finite two-person game can be summarized by two matrices. Usually,
these matrices are written as one matrix with two numbers at each position.
Therefore, such games are often called ‘bimatrix games’. The definition is as
follows.

Definition 3.1 (Bimatrix Game) A bimatrix game is a pair of m � n matrices
.A;B/, where m is the number of rows and n the number of columns. �

The interpretation of a bimatrix game .A;B/ is that, if player 1 (the row player) plays
row i and player 2 (the column player) plays column j, then player 1 receives payoff
aij and player 2 receives bij, where these numbers are the corresponding entries of A

and B, respectively. Definitions and notations for pure and mixed strategies, strategy

© Springer-Verlag Berlin Heidelberg 2015
H. Peters, Game Theory, Springer Texts in Business and Economics,
DOI 10.1007/978-3-662-46950-7_3

37
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sets and expected payoffs are similar to those for matrix games, see Sect. 2.1, but for
easy reference we repeat them here. A (mixed ) strategy of player 1 is a probability
distribution p over the rows of A and B, i.e., an element of the set

�m WD fp D .p1; : : : ; pm/ 2 R
m j

mX

iD1

pi D 1; pi � 0 for all i D 1; : : : ;mg :

Similarly, a (mixed ) strategy of player 2 is a probability distribution q over the
columns of A and B, i.e., an element of the set

�n WD fq D .q1; : : : ; qn/ 2 R
n j

nX

jD1

qj D 1; qj � 0 for all j D 1; : : : ; ng :

A strategy p of player 1 is called pure if there is a row i with pi D 1. This strategy
is also denoted by ei. Similarly, a strategy q of player 2 is called pure if there is a
column j with qj D 1. This strategy is also denoted by e j. If player 1 plays p and
player 2 plays q then the payoff to player 1 is the expected payoff

pAq D
mX

iD1

nX

jD1

piqjaij ;

and the payoff to player 2 is the expected payoff

pBq D
mX

iD1

nX

jD1

piqjbij :

As mentioned, the entries of A and B are usually grouped together in one
(bi)matrix, by putting the pair aij; bij at position .i; j/ of the matrix. Cf. the examples
in Sect. 1.3.2.

Central to noncooperative game theory is the idea of best reply. It says that
a rational selfish player should always maximize his (expected) payoff, given his
knowledge of or conjecture about the strategies chosen by the other players.

Definition 3.2 (Best Reply) A strategy p of player 1 is a best reply to a strategy q

of player 2 in an m � n bimatrix game .A;B/ if

pAq � p0Aq for all p0 2 �m :
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Similarly, q is a best reply of player 2 to p if

pBq � pBq0 for all q0 2 �n :

�

In a Nash equilibrium, each player’s strategy is a best reply to the other player’s
strategy.

Definition 3.3 (Nash Equilibrium) A pair of strategies .p�;q�/ in a bimatrix
game .A;B/ is a Nash equilibrium if p� is a best reply of player 1 to q� and q�

is a best reply of player 2 to p�. A Nash equilibrium .p�;q�/ is called pure if both
p� and q� are pure strategies. �

The concept of a Nash equilibrium can be extended to arbitrary games, including
games with arbitrary numbers of players, strategy sets, and payoff functions. We
will see many examples in later chapters.

Every bimatrix game has a Nash equilibrium: for a proof see Sect. 13.1. Gener-
ally speaking, the main concern with Nash equilibrium is not its existence but rather
the opposite, namely its abundance, as well as its interpretation. In many games,
there are many Nash equilibria, and then the questions of equilibrium selection and
equilibrium refinement are relevant (cf. Chap. 13). With respect to interpretation, an
old question is how the players would come to play a Nash equilibrium in reality.
The definition of Nash equilibrium does not say anything about this.

For a Nash equilibrium in mixed strategies as in Definition 3.3, an additional
question is what the meaning of such a mixed strategy is. Does it mean that
the players actually randomize when playing the game? A different and common
interpretation is that a mixed strategy of a player, say player 1, represents the belief,
or conjecture, of the other player, player 2, about what player 1 will do. Thus, it
embodies the ‘strategic uncertainty’ of the players in a game.

For now, we just leave these questions aside and take the definition of Nash
equilibrium at face value. We show how to compute pure Nash equilibria in general,
and all Nash equilibria in games where both players have two pure strategies. Just
as in Chap. 2, we also consider the role of strict domination.

3.2 Finding Nash Equilibria

To find all Nash equilibria of an arbitrary bimatrix game is a difficult task. We refer
to Sect. 13.2.3 for more discussion on this problem. Here we restrict ourselves to,
first, the much easier problem of finding all Nash equilibria in pure strategies of
an arbitrary bimatrix game and, second, to showing how to find all Nash equilibria
in 2 � 2 games graphically. It is also possible to solve 2 � 3 and 3 � 2 games
graphically, see Sect. 13.2.2. For larger games, graphical solutions are impractical
or, indeed, impossible.



40 3 Finite Two-Person Games

3.2.1 Pure Nash Equilibria

To find the pure Nash equilibria in a bimatrix game, one can first determine the pure
best replies of player 2 to every pure strategy of player 1, and next determine the
pure best replies of player 1 to every pure strategy of player 2. Those pairs of pure
strategies that are mutual best replies are the pure Nash equilibria of the game. To
illustrate this method, consider the bimatrix game

0
@

W X Y Z

T 2; 2 4; 0 1; 1 3; 2

M 0; 3 1; 5 4; 4 3; 4

B 2; 0 2; 1 5; 1 1; 0

1
A :

First we determine the pure best replies of player 2 to every pure strategy of player
1, indicated by underlining the corresponding entries. This yields:

0
@

W X Y Z

T 2; 2 4; 0 1; 1 3; 2

M 0; 3 1; 5 4; 4 3; 4

B 2; 0 2; 1 5; 1 1; 0

1
A :

Next, we determine the pure best replies of player 1 to every pure strategy of player
2, again indicated by underlining the corresponding entries. This yields:

0
@

W X Y Z

T 2; 2 4; 0 1; 1 3; 2

M 0; 3 1; 5 4; 4 3; 4

B 2; 0 2; 1 5; 1 1; 0

1
A :

Putting the two results together yields:

0
@

W X Y Z

T 2; 2 4; 0 1; 1 3; 2

M 0; 3 1; 5 4; 4 3; 4

B 2; 0 2; 1 5; 1 1; 0

1
A :

We conclude that the game has three Nash equilibria in pure strategies, namely
.T;W/, .T;Z/, and .B;Y/. In mixed strategy notation, these are the pairs�
e1; e1

�
,
�
e1; e4

�
, and

�
e3; e3

�
. In more extensive notation: ..1; 0; 0/; .1; 0; 0; 0//,

..1; 0; 0/; .0; 0; 0; 1//, and ..0; 0; 1/; .0; 0; 1; 0//.
Strictly speaking, one should also consider mixed best replies to a pure strategy

in order to establish whether this pure strategy can occur in a Nash equilibrium,
but it is not difficult to see that any mixed best reply is a combination of pure best
replies and, thus, can never lead to a higher payoff. For instance, in the example
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above, any strategy of the form .q; 0; 0; 1 � q/ played against T yields to player 2
a payoff of 2 (D 2q C 2.1 � q/) and is therefore a best reply, but does not yield a
payoff higher than W or Z. However, the reader can check that all strategy pairs of
the form .T; .q; 0; 0; 1� q// (0 < q < 1) are also Nash equilibria of this game.

It is also clear from this example that a Nash equilibrium does not have to result
in Pareto optimal payoffs: a pair of payoffs is Pareto optimal if there is no other
pair of payoffs which are at least as high for both players and strictly higher for
at least one player. The payoff pair .4; 4/, resulting from .M;Y/, is better for both
players than the equilibrium payoffs .2; 2/, resulting from .T;W/. We know this
phenomenon already from the Prisoners’ Dilemma game in Sect. 1.3.2.

3.2.2 2 � 2 Games

We demonstrate the graphical solution method for 2 � 2 games by means of an
example. Consider the bimatrix game

� L R

T 2; 2 0; 1

B 1; 1 3; 3

�
:

Observe that this game has two Nash equilibria in pure strategies, namely .T;L/ and
.B;R/. To find all Nash equilibria we determine the best replies of both players.

First consider the strategy .q; 1� q/ of player 2. The unique best reply of player
1 to this strategy is T or, equivalently, .1; 0/, if the expected payoff from playing T

is higher than the expected payoff from playing B, since then it is also higher than
the expected payoff from playing any combination .p; 1� p/ of T and B. Hence, the
best reply is T if

2q C 0.1� q/ > 1q C 3.1 � q/ ;

so if q > 3
4
. Similarly, we find that B is the unique best reply if q < 3

4
, and that T

and B are both best replies if q D 3
4
. In the last case, since T and B yield the same

payoff to player 1 against .q; 1 � q/, it follows that any .p; 1 � p/ is a best reply.
Summarizing, if we denote the set of best replies of player 1 against .q; 1 � q/ by
ˇ1.q; 1 � q/, we have

ˇ1.q; 1� q/ D

8
<
:

f.1; 0/g if 3
4
< q � 1

f.p; 1� p/ j 0 � p � 1g if q D 3
4

f.0; 1/g if 0 � q < 3
4
:

(3.1)
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By analogous arguments, we find that for a strategy .p; 1 � p/ the best replies
ˇ2.p; 1 � p/ of player 2 are given by

ˇ2.p; 1� p/ D

8
<
:

f.1; 0/g if 2
3
< p � 1

f.q; 1� q/ j 0 � q � 1g if p D 2
3

f.0; 1/g if 0 � p < 2
3
:

(3.2)

By definition, the Nash equilibria of the game are the strategy combinations .p�;q�/

such that p� 2 ˇ1.q
�/ and q� 2 ˇ2.p

�/, i.e., the points of intersection of the
best reply functions in (3.1) and (3.2). A convenient way to find these points is by
drawing the graphs of ˇ1.q; 1� q/ and ˇ2.p; 1� p/. We put p on the horizontal axis
and q on the vertical axis and obtain the following diagram.

0 p 2/3 1

q

3/4

1

The solid black curve depicts the best replies of player 1 and the solid grey curve
depicts the best replies of player 2. The solid circles indicate the three Nash
equilibria of the game: ..1; 0/; .1; 0//, ..2=3; 1=3/; .3=4; 1=4//, and ..0; 1/; .0; 1//.

3.2.3 Strict Domination

The graphical method discussed in Sect. 3.2.2 is suited for 2 � 2 games. It can be
extended to 2 � 3 and 3 � 2 games as well, see Sect. 13.2.2.

In general, for the purpose of finding Nash equilibria the size of a game can
sometimes be reduced by iteratively eliminating strictly dominated strategies. We
look for a strictly dominated (pure) strategy of a player, eliminate the associated row
or column, and continue this procedure for the smaller game until there is no more
strictly dominated strategy. It can be shown (see Sect. 13.3) that no pure strategy
that is eliminated by this procedure is ever played with positive probability in a
Nash equilibrium of the original game. Thus, no Nash equilibrium of the original
game is eliminated. Also, no Nash equilibrium is added. It follows, in particular,
that the order in which strictly dominated strategies are eliminated does not matter.

For completeness we first repeat the definition of strict domination, formulated
for a bimatrix game, and then present an example.
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Definition 3.4 (Strict Domination) Let .A;B/ be an m � n bimatrix game and
i a row. The pure strategy ei is strictly dominated if there is a strategy p D
.p1; : : : ; pm/ 2 �m such that pAe j > eiAe j for every j D 1; : : : ; n. Similarly,
let j be a column. The pure strategy e j is strictly dominated if there is a strategy
q D .q1; : : : ; qn/ 2 �n such that eiBq > eiBe j for every i D 1; : : : ;m. �

We observe that Remark 2.6 is still valid: if ei for player 1 is strictly dominated, then
it is strictly dominated by some p with pi D 0; and similar for player 2.

Consider the following bimatrix game

0
@

W X Y Z

T 2; 2 2; 1 2; 2 0; 0

M 1; 0 4; 1 2; 4 1; 5

B 0; 4 3; 1 3; 0 3; 3

1
A :

Observe, first, that no pure strategy (row) of player 1 is strictly dominated by another
pure strategy of player 1, and that no pure strategy (column) of player 2 is strictly
dominated by another pure strategy of player 2. Consider the pure strategy X of
player 2. Note that the payoffs in column X for player 2 are below the maximum of
the payoffs in columns W and Y: 1 < maxf2; 2g, 1 < maxf0; 4g, and 1 < maxf4; 0g.
Therefore, we may try and see if X can be strictly dominated by a combination of
W and Y, i.e., by a strategy of the form .q; 0; 1 � q; 0/. For this we need: 1 <
2q C 2.1� q/, 1 < 0q C 4.1� q/, and 1 < 4q C 0.1� q/. These three inequalities
hold for all q with 1

4
< q < 3

4
. For instance, X is strictly dominated by . 1

2
; 0; 1

2
; 0/.

So X can be eliminated, to obtain

0
@

W Y Z

T 2; 2 2; 2 0; 0

M 1; 0 2; 4 1; 5

B 0; 4 3; 0 3; 3

1
A :

Next, in this reduced game, for player 1 pure strategy M is strictly dominated by any
strategy of the form .p; 0; 1� p/ with 1

2
< p < 2

3
. So M can be eliminated to obtain

� W Y Z

T 2; 2 2; 2 0; 0

B 0; 4 3; 0 3; 3

�
:

Here, finally, Z can be eliminated since it is strictly dominated by W, and we are left
with the 2 � 2 game

� W Y

T 2; 2 2; 2

B 0; 4 3; 0

�
:
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This game can be solved by the graphical method of Sect. 3.2.2. Doing so results in
the diagram

0 p 1

q

1/3

1

The solid black (grey) curve depicts player 1’s (2’s) best replies. In this case, the
curves overlap in infinitely many points, resulting in the set of Nash equilibria
f..1; 0/; .q; 1 � q// j 1=3 � q � 1g. In the original 3 � 4 game, the set of all
Nash equilibria is therefore equal to

f..1; 0; 0/; .q; 0; 1� q; 0// j 1=3 � q � 1g :

3.3 Problems

3.1. Some Applications

In each of the following situations, set up the corresponding bimatrix game and
solve for all Nash equilibria.

(a) Pure coordination. Two firms (Smith and Brown) decide whether to design the
computers they sell to use large or small floppy disks. Both players will sell more
computers if their disk drives are compatible. If they both choose for large disks
the payoffs will be 2 for each. If they both choose for small disks the payoffs
will be 1 for each. If they choose different sizes the payoffs will be �1 for each.

(b) The welfare game. This game models a government that wishes to aid a pauper if
he searches for work but not otherwise, and a pauper who searches for work only
if he cannot depend on government aid, and who may not succeed in finding
a job even if the tries. The payoffs are 3; 2 (for government, pauper) if the
government aids and the pauper tries to work; �1; 1 if the government does
not aid and the pauper tries to work; �1; 3 if the government aids and the pauper
does not try to work; and 0; 0 in the remaining case. [These payoffs represent
the preferences of the players, rather than monetary values. For instance,
the government ranks the combination Aid/Search above the combination No
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Aid/No Search, which in turn is ranked above the combinations Aid/No Search
and No Aid/Search, between which the government is indifferent.]

(c) Wage game. Each of two firms has one job opening. Suppose that firm i (i D 1; 2)
offers wage wi, where 0 < 1

2
w1 < w2 < 2w1 and w1 ¤ w2. Imagine that

there are two workers, each of whom can apply to only one firm. The workers
simultaneously decide whether to apply to firm 1 or firm 2. If only one worker
applies to a given firm, that worker gets the job; if both workers apply to the
same firm, each worker has probability 1=2 of getting the job while the other
worker remains unemployed and has a payoff of zero.

(d) Marketing game. Two firms sell a similar product. Each percent of market share
yields a net payoff of 1. Without advertising both firms have 50 % of the market.
The cost of advertising is equal to 10 but leads to an increase in market share of
20 % at the expense of the other firm. The firms make their advertising decisions
simultaneously and independently. The total market for the product is of fixed
size.

(e) Voting game. Two political parties, I and II, each have three votes that they
can distribute over three party-candidates each. A committee is to be elected,
consisting of three members. Each political party would like to see as many as
possible of their own candidates elected in the committee. Of the total of six
candidates, those three who have most of the votes will be elected; in case of
ties, tied candidates are drawn with equal probabilities.

(f) Voting game, revisited. Consider the situation in (e) but now assume that each
party is risk averse. For instance, each party strictly prefers to have one candidate
for sure in the committee over a lottery in which it has zero or two candidates
in the committee each with probability 50 %. Model this by each party having
a payoff of

p
c for a sure number c 2 f0; 1; 2; 3g of its candidates in the

committee.

3.2. Matrix Games

(a) Since a matrix game is a special case of a bimatrix game, it may be analyzed
by the graphical method of Sect. 3.2.2. Do this for the game in Problem 2.1(a).
Compare your answer with what you found previously.

(b) Argue that a pair consisting of a maximin and a minimax strategy in a matrix
game is a Nash equilibrium; and that any Nash equilibrium in a matrix game
must be a pair consisting of a maximin and a minimax strategy. (You may give
all your arguments in words.)

(c) Define a maximin strategy for player 1 in the bimatrix game .A;B/ to be a
maximin strategy in the matrix game A. Which definition is appropriate for
player 2 in this respect? With these definitions, find examples showing that
a Nash equilibrium in a bimatrix game does not have to consist of maximin
strategies, and that a maximin strategy does not have to be part of a Nash
equilibrium.
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3.3. Strict Domination

Consider the bimatrix game

� W X Y Z

T 6; 6 4; 4 1; 2 8; 5

B 4; 5 6; 6 2; 8 4; 4

�
:

(a) Which pure strategy of player 1 or player 2 is strictly dominated by a pure
strategy?

(b) Describe all combinations of strategies W and Y of player 2 that strictly
dominate X.

(c) Find all Nash equilibria of this game.

3.4. Iterated Elimination (1)

Consider the bimatrix game

0
BB@

W X Y Z

A 5; 4 4; 4 4; 5 12; 2

B 3; 7 8; 7 5; 8 10; 6

C 2; 10 7; 6 4; 6 9; 5

D 4; 4 5; 9 4; 10 10; 9

1
CCA :

(a) Find a few different ways in which strictly dominated strategies can be iteratedly
eliminated in this game.

(b) Find the Nash equilibria of this game.

3.5. Iterated Elimination (2)

Consider the bimatrix game

0
@
2; 0 1; 1 4; 2

3; 4 1; 2 2; 3

1; 3 0; 2 3; 0

1
A :

Find the Nash equilibria of this game.

3.6. Weakly Dominated Strategies

A pure strategy i of player 1 in an m � n bimatrix game .A;B/ is weakly dominated
if there a strategy p D .p1; : : : ; pm/ 2 �m such that pAe j � eiAe j for every
j D 1; : : : ; n, and pAe j > eiAe j for at least one j. The definition of a weakly
dominated strategy of player 2 is similar. In words, a pure strategy is weakly
dominated if there is some pure or mixed strategy that is always at least as good,
and that is better against at least one pure strategy of the opponent. Instead of
iterated elimination of strictly dominated strategies one might also consider iterated
elimination of weakly dominated strategies. The advantage is that in games where
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no strategy is strictly dominated it might still be possible to eliminate strategies that
are weakly dominated. However, some Nash equilibria of the original game may be
eliminated as well, and also the order of elimination may matter. These issues are
illustrated by the following examples.

(a) Consider the bimatrix game

0
@

X Y Z

A 11; 10 6; 9 10; 9

B 11; 6 6; 6 9; 6

C 12; 10 6; 9 9; 11

1
A :

First, determine the pure Nash equilibria of this game. Next, apply iterated
elimination of weakly dominated strategies to reduce the game to a 2 � 2 game
and determine the unique Nash equilibrium of this smaller game.

(b) Consider the bimatrix game

0
@

X Y Z

A 1; 1 0; 0 2; 0

B 1; 2 1; 2 1; 1

C 0; 0 1; 1 1; 1

1
A :

Show that different orders of eliminating weakly dominated strategies may
result in different Nash equilibria.

3.7. A Parameter Game

Consider the bimatrix game

� L R

T 1; 1 a; 0

B 0; 0 2; 1

�

where a 2 R. Determine the Nash equilibria of this game for every possible value
of a.

3.8. Equalizing Property of Mixed Equilibrium Strategies

(a) Consider again the game of Problem 3.3, which has a unique Nash equilibrium
in mixed strategies. In this equilibrium, player 1 puts positive probability p� on
T and 1 � p� on B, and player 2 puts positive probability q� on W and 1 � q�

on Y. Show that, if player 2 plays this strategy, then both T and B give player
1 the same expected payoff, equal to the equilibrium payoff. Also show that, if
player 1 plays his equilibrium strategy, then both W and Y give player 2 the same



48 3 Finite Two-Person Games

expected payoff, equal to the equilibrium payoff, and higher than the expected
payoff from X or from Z.

(b) Generalize the observations made in (a), more precisely, give an argument for
the following statement:
Let .A;B/ be an m � n bimatrix game and let .p�;q�/ be a Nash equilibrium.

Then each row played with positive probability in this Nash equilibrium has the

same expected payoff for player 1 against q� and this payoff is at least as high

as the payoff from any other row. Each column played with positive probability

in this Nash equilibrium has the same expected payoff for player 2 against p�

and this payoff is at least as high as the payoff from any other column.

You may state your argument in words, without using formulas.

3.9. Voting

Suppose the spectrum of political positions is described by the closed interval
(line segment) Œ0; 5�. Voters are uniformly distributed over Œ0; 5�. There are two
candidates, who may occupy any of the positions in the set f0; 1; 2; 3; 4; 5g. Voters
will always vote for the nearest candidate. If the candidates occupy the same position
they each get half of the votes. The candidates simultaneously and independently
choose positions. Each candidate wants to maximize the number of votes for
him/herself. Only pure strategies are considered.

(a) Model this situation as a bimatrix game between the two candidates.
(b) Determine the best replies of both players.
(c) Determine all Nash equilibria (in pure strategies), if any.

We now change the situation as follows. Candidate 1 can only occupy the positions
1; 3; 5, and candidate 2 can only occupy the positions 0; 2; 4.

(d) Answer questions (a), (b), and (c) for this new situation.
(e) The two games above are constant-sum games. How would you turn them

into zero-sum games without changing the strategic possibilities (best replies,
equilibria)? What would be the value of these games and the (pure) optimal
strategies?

3.10. Guessing Numbers

Players 1 and 2 each choose a number from the set f1; : : : ;Kg. If the players choose
the same number, then player 2 pays 1 Euro to player 1; otherwise no payment
is made. The players can use mixed strategies and each player’s preferences are
determined by his or her expected monetary payoff.

(a) Show that each player playing each pure strategy with probability 1
K

is a Nash
equilibrium.

(b) Show that in every Nash equilibrium, player 1 must choose every number with
positive probability.

(c) Show that in every Nash equilibrium, player 2 must choose every number with
positive probability.
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(d) Determine all (mixed strategy) Nash equilibria of the game.
(e) This is a zero-sum game. What are the optimal strategies and the value of the

game?

3.11. Bimatrix Games

(a) Give an example of a 2 � 2-bimatrix game with exactly two Nash equilibria in
pure strategies and no other Nash equilibrium. For your example, determine the
players’ reaction functions and make a picture, showing that your example is as
desired.

(b) Consider the following bimatrix game:

.A;B/ D
�

a; b c; d

e; f g; h

�
:

Assume that a > e. Give necessary and sufficient further conditions on the
payoffs such that the game has no pure strategy Nash equilibria. Under these
conditions, determine all mixed Nash equilibria of the game.

3.4 Notes

For finite two-person games, Nash (1951) proved that every game has a Nash
equilibrium in mixed strategies. The term ‘strategic uncertainty’ can already be
found in von Neumann and Morgenstern (1944/1947). For general bimatrix games,
Nash equilibria can be found by Nonlinear Programming methods, see Chap. 13.

Problems 3.1(a, b) are taken from Rasmusen (1989), and Problem 3.1(c) from
Gibbons (1992). Problem 3.4 is taken from Watson (2002).
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4Finite Extensive Form Games

Most games derived from economic or political situations have in common with
most parlor games (like card games and board games) that they are not ‘one-shot’:
players move sequentially, and one and the same player may move more often than
once. Such games are best described by drawing a decision tree which tells us whose
move it is and what a player’s information is when that player has to make a move.

In this chapter these ‘games in extensive form’ are studied. Attention is restricted
to games with finitely many players (usually two), finitely many decision moments
and finitely many moves. See Sect. 1.3.3 for a few examples. We also assume that
each player has ‘complete information’: this means that either there is no chance
move in the game or, if there is one, there is no player who still has to move after
the chance move and is not informed about the outcome of the chance move. This
excludes, for instance, the game of entry deterrence with incomplete information in
Sect. 1.3.3, but it also excludes most card games—most card games start with cards
being dealt, which is a chance move. For the analysis of games with incomplete
information see Chap. 5. Chapter 14 extends the analysis of the present and the next
chapter.

The first section of this chapter introduces games in extensive form. In order
to avoid a load of cumbersome notation the treatment will be somewhat informal
but—hopefully—not imprecise. In Sect. 4.2 we define strategies and the ‘strategic
form’ of a game: the definition of Nash equilibrium for extensive form games is then
practically implied. The focus in this chapter is on pure Nash equilibrium.

In the third section the concept of Nash equilibrium is refined by considering
backward induction and subgame perfection. A further important refinement, called
‘perfect Bayesian equilibrium’, is treated in the fourth section.

© Springer-Verlag Berlin Heidelberg 2015
H. Peters, Game Theory, Springer Texts in Business and Economics,
DOI 10.1007/978-3-662-46950-7_4
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4.1 The Extensive Form

A game in extensive form is described by a game tree. Such a game tree is
characterized by nodes and edges. Each node is either a decision node of a player,
or a chance node, or an end node. Each edge corresponds to either an action of a
player or a choice made by chance, sometimes called a ‘move of Nature’.

Figure 4.1 illustrates these and other concepts.
The upper node in the tree, the root of the tree, is a decision node of player 1 and

the starting point of the game. Player 1 chooses between three actions, namely A,
B, and C. Player 2 learns that player 1 has chosen either one of the actions A and B,
or action C. The first event is indicated by the dashed line connecting the two left
decision nodes of player 2. In that case, player 2 has two actions, namely l and r. We
call the two connected nodes an information set of player 2: player 2 knows that the
play of the game has arrived at one of these nodes but he does not know at which
one. The fact that player 2 has the same set of actions at each of the two nodes in this
information set is a necessary consequence: if this were not the case, player 2 would
know at which node he was (i.e., would know whether player 1 would have played
A or B) by simply examining the set of available actions, which would go against the
interpretation of an information set. This last argument is one consequence of the
more general assumption that the whole game tree is common knowledge between
the players: each player knows it, knows that the other player(s) know(s) it, knows
that the other player(s) know(s) that he knows it, and so on.

If player 1 plays C, then there is a chance move, resulting with probability 1=4
in a decision node of player 2 (following U) and with probability 3=4 in a decision
node of player 1 (following D). At player 2’s decision node this player has two
actions, namely L and R. At player 1’s decision node this player also has two actions,
namely a and b. All the remaining nodes are end nodes, indicated by payoff pairs,
where the upper number is the payoff to player 1 and the lower number the payoff
to player 2. In this diagram, the payoffs are written as column vectors, but we also
write them as row vectors, whatever is convenient in a given situation.

1

A B C
Chance

1/ 4 3/ 4

2
12

U D

l r l r L R a b

4

1

7

2

6

3

4

0

0

0

8

4

8

8

0

8

Fig. 4.1 A game in extensive form
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1

A B C
Chance

1/ 4 3/ 4

12

l r l r

2 2
U D

L R a b

4

1

7
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4

0

0

0
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8

8

0
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Fig. 4.2 The game of Fig. 4.1, now with perfect information

Also the singleton decision nodes are called information sets. Thus, in this game,
each player has two different information sets. An information set is nontrivial if it
consists of at least two nodes. Games with nontrivial information sets are called
games with imperfect information . If a game has only trivial information sets,
then we say that it has perfect information . If we change the present example by
assuming that player 2 observes whether player 1 chooses A or B, then the game
has perfect information. See Fig. 4.2. We have renamed the actions of player 2 after
action B of player 1 for later convenience: these actions can now be regarded as
different from player 2’s actions following A, since player 2 knows that player 1 has
chosen B.

The chance move in our example is not a particularly interesting one, since the
players learn what the outcome of the chance move is. (The situation is different if
at least one player is not completely informed about the outcome of a chance move
and if this lack of information has strategic consequences. In that case, we talk about
games with ‘incomplete’ information, see Chap. 5.)

As mentioned before, we do not give a formal definition of a game in extensive
form: the examples in Figs. 4.1 and 4.2 illustrate the main ingredients of such a
game.1 An important condition is that the game tree should be a tree indeed: it
should have a single root and no ‘cycles’. This means that a situation as for instance
in Fig. 4.3a is not allowed.

We also restrict attention to games in extensive form that have perfect recall : each
player remembers what he did in the past. For instance, the situation in Fig. 4.3b,
where player 1 at his lower information set does not recall which action he took
earlier, is not considered.2

1See Chap. 14 for a formal definition.
2The assumption of perfect recall plays a particular role for the relation between mixed and
behavioral strategies, see Chap. 14.
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2

1

2

1

(a)

1

1

(b)

Fig. 4.3 An example of a cycle (a), and of a game without perfect recall (b)

4.2 The Strategic Form

In a game in extensive form, it is extremely important to distinguish between actions
and strategies. An action is a possible move of a player at an information set. In the
games in Figs. 4.1 and 4.2 player 1 has the actions A, B, and C, and a and b; and
player 2 has the actions l and r, and L and R. In contrast,

a strategy is a complete plan to play the game.

This is one of the most important concepts in game theory. In the games in Figs. 4.1
and 4.2, a possible strategy for player 1 is:

Start by playing C; if the chance move of the game results in D, then play b.

Another strategy of player 1 is:

Start by playing A; if the chance move of the game results in D, then play b.

The last strategy might look strange since player 1’s first action A precludes him
having to take any further action. Nevertheless, also this plan is regarded as a
possible strategy.3

A possible strategy for player 2 in the game of Fig. 4.1 is:

Play l if player 1 plays A or B, and play L if player 1 plays C and the chance
move results in U.

Note that player 2 cannot make his action contingent on whether player 1 plays A

or B, since player 2 does not have that information. In the perfect information game

3Although there is not much lost if we would exclude such strategies—as some authors do.
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of Fig. 4.2, however, player 2’s strategy should tell what player 2 plays after A and
what he plays after B. A possible strategy would then be:

Play l if player 1 plays A, play r0 if player 1 plays B, and play L if player 1
plays C and the chance move results in U.

A formal definition of a strategy of a player is:

a strategy is a list of actions, exactly one at each information set of that player.

In both our examples, a strategy of player 1 is therefore a list of two actions since
player 1 has two information sets. The number of possible strategies of player 1 is
the number of different lists of actions. Since player 1 has three possible actions at
his first information set and two possible actions at his second information set, this
number is equal to 3 � 2 D 6. The strategy set of player 1 can be denoted as

fAa;Ab;Ba;Bb;Ca;Cbg :

Similarly, in the imperfect information game in Fig. 4.1 player 2 has 2 � 2 D 4

different strategies, and his strategy set can be denoted as

flL; lR; rL; rRg :

In the perfect information game in Fig. 4.2 player 2 has three information sets and
two actions at each information set, so 2 � 2 � 2 D 8 different strategies, and his
strategy set can be denoted as

fll0L; ll0R; lr0L; lr0R; rl0L; rl0R; rr0L; rr0Rg :

In general, it is important to distinguish between a strategy combination and the
associated outcome. The outcome is the induced play of the game, that is, the path
followed in the game tree. For instance, the strategy combination .Aa; ll0L/ in the
game in Fig. 4.2 induces the outcome .A; l/ and the payoffs .4; 1/.

There are several reasons why we are interested in strategies. The main reason
is that by considering strategies the extensive form game is effectively reduced to a
one-shot game. Once we fix a profile (in the present example, pair) of strategies we
can compute the payoffs by following the path followed in the game tree. Consider
for instance the strategy pair .Cb; rL/ in the game in Fig. 4.1. Then player 1 starts by
playing C, and this is followed by a chance move; if the result of this move is U, then
player 2 plays L; if the result is D, then player 1 plays b. Hence, with probability
1=4 the resulting payoff pair is .0; 0/ and with probability 3=4 the resulting payoff
pair is .0; 8/. So the expected payoffs are 0 for player 1 and 6 for player 2. In this
way, we can compute the payoffs in the game of Fig. 4.1 resulting from each of the
6�4 possible strategy combinations. Similarly, for the game in Fig. 4.2 we compute
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lL lR rL rR

Aa 4, 1 4, 1 7, 2 7, 2

Ab 4, 1 4, 1 7, 2 7, 2

Ba 6, 3 6, 3 4, 0 4, 0

Bb 6, 3 6, 3 4, 0 4, 0

Ca 6, 6 8, 7 6, 6 8, 7

Cb 0, 6 2, 7 0, 6 2, 7

































ll L ll R lr L lr R rl L rl R rr L rr R

Aa 4, 1 4, 1 4, 1 4, 1 7, 2 7, 2 7, 2 7, 2

Ab 4, 1 4, 1 4, 1 4, 1 7, 2 7, 2 7, 2 7, 2

Ba 6, 3 6, 3 4, 0 4, 0 6, 3 6, 3 4, 0 4, 0

Bb 6, 3 6, 3 4, 0 4, 0 6, 3 6, 3 4, 0 4, 0

Ca 6, 6 8, 7 6, 6 8, 7 6, 6 8, 7 6, 6 8, 7

Cb 0, 6 2, 7 0, 6 2, 7 0, 6 2, 7 0, 6 2, 7

















Fig. 4.4 The 6� 4 strategic form of the game in Fig. 4.1 and the 6� 8 strategic form of the game
in Fig. 4.2

6� 8 payoff pairs. We next write these payoff pairs in a bimatrix, as in Chap. 3. The
resulting bimatrix games are presented in Fig. 4.4.

Such a bimatrix game is called the strategic form of the extensive form game. The
definition of Nash equilibrium of an extensive form game is then almost implied:

A Nash equilibrium of a game in extensive form is a Nash equilibrium of the
strategic form.

This definition holds for pure Nash equilibria and, more generally, Nash equilibria
in mixed strategies, but in this chapter we restrict attention to pure strategies and
pure strategy Nash equilibria.

The pure strategy Nash equilibria of the bimatrix games in Fig. 4.4 can be
found by using the method of Sect. 3.2.1. The equilibria correspond to the double
underlined entries. Thus, the imperfect information game has six different Nash
equilibria in pure strategies, and the perfect information game has ten different Nash
equilibria in pure strategies.

In the next two sections we examine these Nash equilibria more closely and
discuss ways to distinguish between them.

4.3 Backward Induction and Subgame Perfection

We first consider the perfect information game of Fig. 4.2. This game can be
analyzed using the principle of backward induction. This means that we start with
the nodes preceding the end nodes, and turn them into end nodes with payoffs
resulting from choosing the optimal action(s). Specifically, player 2 chooses r after
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Fig. 4.5 The reduced game of Fig. 4.2

A of player 1 and l0 after B of player 1; and R after C and U. Player 1 chooses a after
D. Thus, we obtain the reduced game of Fig. 4.5. Note that player 2’s strategy has
already been completely determined by this first step: it is the strategy rl0R. Player
1 has chosen a at his lower information set. Next, in this reduced game, player 1
chooses the action(s) that yield(s) the highest payoff. Since A yields a payoff of 7, B

a payoff of 6, and C a(n expected) payoff of 1
4

� 8C 3
4

� 8 D 8, it is optimal for player
1 to choose C. Hence, we obtain the strategy combination .Ca; rl0R/ with payoffs
1
4
.8; 4/C 3

4
.8; 8/ D .8; 7/. This is one of the ten Nash equilibria of the game (see

Fig. 4.4). It is called backward induction equilibrium.
It can be shown that, in a game of perfect information, applying the backward

induction principle always results in a (pure) Nash equilibrium. As a by-product,
we obtain that a game of perfect information has at least one Nash equilibrium in

pure strategies, which can be obtained by backward induction.

It is illustrative to consider backward induction equilibrium—in this game:
.Ca; rl0R/—as opposed to the induced backward induction outcome. The latter
refers to the actual play of the game or, equivalently, the equilibrium path, in this
case .Ca;R/. Observe that there are other Nash equilibria in this game that generate
the same outcome or path, namely .Ca; ll0R/, .Ca; lr0R/, and .Ca; rr0R/: they all
generate the path .Ca;R/, but differ in the left part of the tree, where player 2 makes
at least one decision that is not optimal. Hence, the principle of backward induction
ensures that every player always takes an optimal action, even in parts of the game
tree that are not actually reached when the game is played.

A generalization of backward induction is subgame perfection. The definition of
a subgame is as follows:

A subgame is any part of the game tree, starting at an information set
consisting of a single decision node (trivial information set) of a player or
at a chance node, and which is not connected to the rest of the tree by any
later information set.

The last part of this definition is illustrated in Fig. 4.6. Although player 2’s
information set consists of a single decision node, no subgame starts there: this
would not make sense since player 3 does not observe any earlier move and in
particular does not know at which of the three nodes in his information set he is.
Formally, the subtree starting at player 2’s decision node is still connected to the
whole tree by player 3’s information set.
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1

2

3

A

B

L R

l r l r l r

3

Fig. 4.6 No subgame starts at player 2’s decision node

The game in Fig. 4.2 has six different subgames, namely: the entire game; the
game starting from the chance move; and the four games starting from the four
nodes preceding the end nodes. The definition of a subgame perfect equilibrium is
as follows:

A subgame perfect equilibrium is a strategy combination that induces a Nash
equilibrium in every subgame.

To see what this means, consider again the game in Fig. 4.2. In order for a
strategy combination to be a subgame perfect equilibrium, it has to induce a Nash
equilibrium in every subgame. Since the entire game is a subgame, a subgame
perfect equilibrium has to be a Nash equilibrium in the entire game, and, thus, the ten
Nash equilibria in this game are the candidates for a subgame perfect equilibrium.
This is the case for any arbitrary game, and therefore a subgame perfect equilibrium

is always a Nash equilibrium.

Returning to the game in Fig. 4.2, a subgame perfect equilibrium also has to
induce an equilibrium in each of the four one-player subgames preceding the end
nodes: although we have not defined Nash equilibria for one-person games, the only
reasonable definition is that a player should choose the action that is optimal. In the
example, this means that (from left to right) the actions r, l0, R, and a, should be
chosen. This implies that the players choose optimally also in the subgame starting
from the chance node. Summarizing, we look for the Nash equilibrium or equilibria
that generate the mentioned actions, and the only Nash equilibrium that does this
is again .Ca; rl0R/. Hence, the unique subgame perfect equilibrium in this game is
.Ca; rl0R/. It is not surprising that this is also the backward induction equilibrium: in

games of perfect information, backward induction equilibria and subgame perfect

equilibria coincide.

Let us now consider the imperfect information version of the game in Fig. 4.1.
In this case, backward induction cannot be applied to the left part of the game tree:
since player 2 does not know whether player 1 has played A or B when he has to
choose an action in his left information set, he cannot optimally choose between l

and r: l is better if player 1 has played B, but r is better if player 1 has played A.
Considering subgame perfection, the only subgames are now: the entire game; the
two subgames following U and D; and the subgame starting from the chance move.
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Fig. 4.7 A three-player game

Hence, the restrictions imposed by subgame perfection are that player 1 should play
a, player 2 should play R, and the strategy combination should be a Nash equilibrium
in the entire game. Of the six Nash equilibria of the game (see Fig. 4.4), this leaves
the two equilibria .Ca; lR/ and .Ca; rR/. So these are the subgame perfect equilibria
of the game in Fig. 4.1.

We conclude this section with an example which shows more explicitly than the
preceding example that subgame perfection can be more generally applied than the
backward induction principle. Consider the game in Fig. 4.7, which is a three player
game (for a change). Clearly, backward induction cannot be applied here: player 3
cannot unambiguously determine his optimal action since he does not know whether
player 2 has played L or has played R. For subgame perfection, notice that this game
has two subgames: the entire game; and the game starting with player 2’s decision
node. The latter game is a game between players 2 and 3 with strategic form

� l r

L 3; 1 0; 0

R 0; 0 1; 3

�

where player 2 is the row player and player 3 the column player. This game has two
pure Nash equilibria, namely .L; l/ and .R; r/. Hence, a subgame perfect equilibrium
has to induce one of these two equilibria in this subgame. Note that if the first
equilibrium is played, then player 1 should play A, yielding him a payoff of 3 rather
than the payoff of 2 obtained by playing B. If the other equilibrium is played in the
subgame, then player 1 should obviously play B since A now yields only 1. So the
two subgame perfect equilibria are .A;L; l/ and .B;R; r/.

Alternatively, one can first compute the (pure) Nash equilibria of the entire game.
The strategic form of the game can be represented as follows, where the left matrix
results from player 1 playing A and the right matrix from player 1 playing B.
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1 W A

� l r

L 3; 3; 1 0; 0; 0

R 0; 0; 0 1; 1; 3

�
1 W B

� l r

L 2; 0; 0 2; 0; 0

R 2; 0; 0 2; 0; 0

�
:

Best replies are underlined (for player 1 one has to compare the corresponding
payoffs over the two matrices), and the pure Nash equilibria are .A;L; l/, .B;L; r/,
.B;R; l/, and .B;R; r/. The subgame perfect equilibria are those where the combi-
nation .L; l/ or .R; r/ is played, resulting in the two equilibria found above.

4.4 Perfect Bayesian Equilibrium

A further refinement of Nash equilibrium and of subgame perfect equilibrium is
provided by the concept of ‘perfect Bayesian equilibrium’. Consider an information
set of a player in an extensive form game. A belief of that player on that information
set is a probability distribution over the nodes of that information set or, equivalently,
over the actions leading to that information set. Of course, if the information set is
trivial (consists of a single node) then also the belief is trivial, namely attaching
probability 1 to the unique node. Our somewhat informal definition of a perfect
Bayesian equilibrium is as follows.

A perfect Bayesian equilibrium in an extensive form game is a combination of
strategies and a specification of beliefs such that the following two conditions
are satisfied:

(i) Bayesian consistency: the beliefs are consistent with the strategies under
consideration;

(ii) sequential rationality: the players choose optimally given their beliefs.

The first condition says that the beliefs should satisfy Bayesian updating with
respect to the strategies whenever possible. The second condition says that a
player should maximize his expected payoff given his beliefs. In order to see what
these conditions mean exactly, we consider some examples. (Formal definitions are
provided in Chap. 14.)

Consider the game in Fig. 4.8, which is identical to the game in Fig. 4.1.
This game has one nontrivial information set. Suppose player 2’s belief at this
information set is given by the probabilities ˛ at the left node and 1 � ˛ at the
right node, where 0 � ˛ � 1. That is, if this information set is reached then player
2 attaches probability ˛ to player 1 having played A and probability 1� ˛ to player
1 having played B. All the other information sets are trivial and therefore the beliefs
attach probability 1 to each of the corresponding nodes. Condition (ii), sequential
rationality, means that player 2 should choose R and player 1 should choose a at the
corresponding (trivial) information sets. At the nontrivial information set, player 2
should choose the action that maximizes his expected payoff, given his belief at this

information set. The expected payoff from l is equal to ˛ � 1C .1� ˛/ � 3 D 3� 2˛
and the expected payoff from r is ˛ � 2 C .1 � ˛/ � 0 D 2˛. Hence, l is optimal if
3 � 2˛ � 2˛, i.e., if ˛ � 3=4 and r is optimal if ˛ � 3=4.
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Fig. 4.8 The extensive form game of Fig. 4.1

What does condition (i), Bayesian consistency, imply for this game? It says that,
whenever possible, the belief of player 2 at the left, nontrivial information set should
be computed by Bayesian updating using the strategy of player 1, specifically, using
the initial action of player 1. Thus, if the strategy of player 1 prescribes action A,
then player 2 should indeed believe this, so ˛ D 1. Similarly, if the strategy of
player 1 prescribes action B, then 1 � ˛ D 1 so ˛ D 0. The formula behind this is
the formula for conditional probability:

˛ D ProbŒA is played j A or B is played�

D ProbŒA and (A or B) is played�

ProbŒA or B is played�

D ProbŒA is played�

ProbŒA or B is played�

where these probabilities should be computed given the strategy of player 1. Hence,
indeed, if the strategy of player 1 prescribes A then ˛ D 1=1 D 1 and if the
strategy of player 1 prescribes B then ˛ D 0=1 D 0. If, however, player 1’s strategy
prescribes C, then ProbŒA or B is played� D 0 and we cannot use the formula for
computing ˛: the belief of player 2 on his nontrivial information set is undetermined
or free.

Remark 4.1 We do not consider mixed strategies in this chapter, but suppose we
did and consider, for instance, the mixed strategy where player 1 plays Aa with
probability 1

2
, Ab with probability 1

6
, and Ba, Bb, Ca and Cb each with probability

1
12

. Then we would have ˛ D . 1
2

C 1
6
/=. 1

2
C 1

6
C 2 � 1

12
/ D 4

5
. In words, given player

1’s strategy, if it turns out that player 1 has played A or B, then player 2 should
believe that player 1 has played A with probability 4

5
and B with probability 1

5
. �
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To complete the analysis of this game, note that it is always optimal for player 1 to
play C, given the actions R and a following the chance move: C yields 8 to player
1 whereas A or B yield at most 7. But if player 1 does not play A or B, then, as we
have just seen, Bayesian consistency [condition (i)] does not put any restriction on
the belief ˛ of player 2, since the nontrivial information set of player 2 is reached
with zero probability. This means that ˛ is free, but given ˛ player 2 should choose
optimally, as computed before. Hence, we have essentially two perfect Bayesian
equilibria, namely .Ca; lR/ with beliefs ˛ � 3=4 and .Ca; rR/ with beliefs ˛ � 3=4.
Note that these are also the subgame perfect equilibria, now ‘backed up’ by a belief
of player 2 on his nontrivial information set.

Remark 4.2 As already indicated, a perfect Bayesian equilibrium is also a subgame
perfect equilibrium, but in order to show this a more detailed formal definition is
required. See Chap. 14. �

In order to show that the perfect Bayesian equilibrium requirement can have an
additional impact compared to subgame perfection, consider the variation on the
game of Fig. 4.1, obtained by replacing the payoffs .4; 1/ after A and l by the payoffs
.4; 3/, resulting in the game in Fig. 4.9.

One can check that the subgame perfect equilibria are still .Ca; lR/ and .Ca; rR/.
Obviously, a rational player 2 would never play r at his nontrivial information set
since l is always better, but subgame perfection does not rule this out. But clearly,
there is no belief that player 2 could have at this information set that would make
r optimal: if we denote player 2’s belief by .˛; 1 � ˛/ as before, then r yields 2˛
whereas l yields 3˛ C 3.1 � ˛/ D 3, which is always larger than 2˛. Hence, the
only perfect Bayesian equilibrium is .Ca; lR/, with arbitrary free belief of player 2
at his nontrivial information set.

We conclude with another example. Consider again the game of Fig. 4.7,
reproduced in Fig. 4.10 with belief .˛; 1�˛/ attached to the nodes in the information
set of player 3. There are two ways to find the perfect Bayesian equilibria of this
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Fig. 4.9 The extensive form game of Fig. 4.1 with payoffs (4,3) after A and l
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Fig. 4.10 The three-player game of Fig. 4.7 with belief of player 3

game. One can consider the subgame perfect equilibria and find appropriate beliefs.
Alternatively, one can start from scratch and apply a form of backward induction. To
illustrate the last method, start with player 3. If player 3 plays l then his (expected)
payoff is 1˛ C 0.1 � ˛/ D ˛. If player 3 plays r then his (expected) payoff is
0˛ C 3.1 � ˛/ D 3 � 3˛. Therefore, l is optimal if ˛ � 3=4 and r is optimal if
˛ � 3=4. In fact, we have just applied condition (ii), sequential rationality, in the
definition of a perfect Bayesian equilibrium.

Now suppose player 3 plays l. Then it is optimal for player 2 to play L. If player
2 plays L, then condition (i) in the definition of a perfect Bayesian equilibrium,
Bayesian consistency, implies ˛ D 1: that is, player 3 should indeed believe that
player 2 has played L. Since 1 � 3=4, l is the optimal action for player 3. Player 1,
finally, should play A, yielding payoff 3 instead of the payoff 2 resulting from B. So
we have a perfect Bayesian equilibrium .A;L; l/ with belief ˛ D 1.

If player 3 plays r, then it is optimal for player 2 to play R, resulting in ˛ D 0

by Bayesian consistency; since 0 � 3=4, r is the optimal action for player 3. In this
case, player 1 should play B: this yields payoff 2, whereas A yields only 1. Hence,
we have a perfect Bayesian equilibrium .B;R; r/ with belief ˛ D 0.

4.5 Problems

4.1. Counting Strategies

Consider the following simplified chess game. White moves first (in accordance
with the usual rules). Black observes White’s move and then makes its move. Then
the game is over and ends in a draw. Determine the strategy sets of White and Black.
How many strategies does Black have? [In case you do not know the rules of chess:
the only information you need is that both players have 20 possible actions.]
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Fig. 4.11 Entry deterrence,
Problem 4.3
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4.2. Extensive vs. Strategic Form

Each game in extensive form leads to a unique game in strategic form. The converse,
however, is not true. Consider the following bimatrix game:

�
1; 0 1; 0 0; 1 0; 1

2; 0 0; 2 2; 0 0; 2

�
:

Find an extensive form game with perfect information and an extensive form game
with imperfect information, both having this bimatrix game as their strategic form
game.

4.3. Entry Deterrence

Consider the entry deterrence game of Chap. 1, of which the extensive form is
reproduced in Fig. 4.11.

(a) Write down the strategic form of this game.
(b) Determine the Nash equilibria (in pure strategies). Which one is the backward

induction equilibrium? Which one is subgame perfect? In which sense is the
other equilibrium based on an ‘incredible threat’?

4.4. Choosing Objects

Four objects O1, O2, O3, and O4 have different worths for two players 1 and 2, given
by the following table:

O1 O2 O3 O4

Worth for player 1 1 2 3 4

Worth for player 2 2 3 4 1

Player 1 starts with choosing an object. After him player 2 chooses an object, then
player 1 takes his second object, and finally player 2 gets the object that is left. The
payoff for a player is the sum of the worths of the objects he obtains.

(a) Draw the decision tree for this extensive form game.
(b) How many strategies does each player have?
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(c) Determine the backward induction or subgame perfect equilibria (in pure
strategies). How many different subgame perfect equilibria are there? What are
the associated outcomes, and the resulting divisions of the objects?

(d) Is there a Nash equilibrium in this game resulting in a division of the objects
different from the division in a subgame perfect equilibrium?

4.5. A Bidding Game

Players 1 and 2 bid for an object that has value 2 for each of them. They both have
wealth 3 and are not allowed to bid higher than this amount. Each bid must be a
nonnegative integer amount. Besides bidding, each player, when it is his turn, has
the options to pass (P) or to match (M) the last bid, where the last bid is set at zero
at the beginning of the game. If a player passes (P), then the game is over and the
other player gets the object and pays the last bid. If a player matches (M), then the
game is over and each player gets the object and pays the last bid with probability 1

2
.

Player 1 starts, and the players alternate until the game is over. Each new bid must
be higher than the last bid.

(a) Draw the game tree of this extensive form game.
(b) How many strategies does player 1 have? Player 2?
(c) How many subgame perfect equilibria does this game have? What is (are) the

possible subgame perfect equilibrium outcome(s)?
(d) Describe all (pure strategy) Nash equilibria of the game (do not make the

strategic form). Is there any Nash equilibrium that does not result in a subgame
perfect equilibrium outcome?

4.6. An Extensive Form Game

For the game in Fig. 4.12, write down the strategic form and compute all Nash
equilibria, subgame perfect equilibria, and perfect Bayesian equilibria in pure
strategies.

[α] [1 − α]
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Fig. 4.12 Extensive form game of Problem 4.6



66 4 Finite Extensive Form Games

[α] [1 − α]

1 R

L M

2

l
m

lr
m

r

1

3

1

2

4

0

4

2

0

2

3

3

2

4

Fig. 4.13 Extensive form game of Problem 4.7
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Fig. 4.14 Extensive form game of Problem 4.8

4.7. Another Extensive Form Game

For the game in Fig. 4.13, write down the strategic form and compute all Nash
equilibria, subgame perfect equilibria, and perfect Bayesian equilibria in pure
strategies.

4.8. Still Another Extensive Form Game

Consider the extensive form game in Fig. 4.14.



4.5 Problems 67

C C C C C C

S S SSS S

1 2 1 2 1 2

2, , , , ,0 1 3 4 2 3 5 6 4 5, 7

8, 6

Fig. 4.15 The centipede game of Problem 4.9

(a) Determine the strategic form of this game.
(b) Determine all Nash equilibria in pure strategies.
(c) Determine all subgame perfect equilibria in pure strategies.
(d) Determine all perfect Bayesian equilibria in pure strategies.

4.9. A Centipede Game

In the centipede game, the two players move alternatingly. On each move, a player
can stop (S) or continue (C). On any move, a player is better off stopping the game
than continuing if the other player stops immediately afterward, but is worse off
stopping than continuing if the other player continues, regardless of the subsequent
actions. The game ends after a finite number of periods. Consider an example of this
game in Fig. 4.15.

(a) Determine the backward induction or subgame perfect equilibrium of this game.
What is the associated outcome?

(b) Show that there are other Nash equilibria, but that these always result in the
same outcome as the subgame perfect equilibrium.

4.10. Finitely Repeated Prisoners’ Dilemma

Consider the prisoners’ dilemma game of Chap. 1:

� C D

C �1;�1 �10; 0
D 0;�10 �9;�9

�
:

Suppose that this game is played twice. After the first play of the game the players
learn the outcome of that play. The final payoff for each player is the sum of the
payoffs of the two stages.

(a) Write down the extensive form of this game. How many strategies does each
player have? How many subgames does this game have?

(b) Determine the subgame perfect equilibrium or equilibria of this game. What if
the game is repeated more than twice but still finitely many times?
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4.11. A Twice Repeated 2 � 2 Bimatrix Game

Consider the following bimatrix game:

� L R

T 2; 1 1; 0

B 5; 2 4; 4

�
:

Suppose that the game is played twice, and that after the first play of the game the
players learn the outcome of that play. The final payoff for each player is the sum of
the payoffs of the two stages.

(a) Determine the subgame perfect equilibrium or equilibria of this game. What if
the game is repeated more than twice but still finitely many times?

(b) Exhibit a Nash equilibrium (of the twice repeated game) where .B;L/ is played
in the first round.

4.12. Twice Repeated 3 � 3 Bimatrix Games

Consider the following bimatrix game:

0
@

L M R

T 8; 8 0; 9 0; 0

C 9; 0 0; 0 3; 1

B 0; 0 1; 3 3; 3

1
A :

Suppose that the game is played twice, and that after the first play of the game the
players learn the outcome of that play. The final payoff for each player is the sum of
the payoffs of the two stages.

(a) How many strategies does each player have in this game? How many subgames
does the game have?

(b) Describe a subgame perfect equilibrium in which .T;L/ is played in the first
round.

For question (c), consider the bimatrix game

0
@

L M R

T 5; 3 0; 0 2; 0

C 0; 0 2; 2 0; 0

B 0; 0 0; 0 0; 0

1
A :

(c) For the twice repeated version of this game, describe a subgame perfect
equilibrium in which .B;R/ is played in the first round.
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4.6 Notes

The concept of subgame perfection was first formally introduced by Selten (1965,
1975). The result that each finite extensive form game of perfect information has
a backward induction equilibrium in pure strategies is intuitive but nevertheless
somewhat cumbersome to prove, see for instance Perea (2001, Chap. 3).

There is also a stronger version of Bayesian consistency, resulting in the concept
of ‘sequential equilibrium’, see Kreps and Wilson (1982) and Chap. 14.

The game in Problem 4.12(c) is taken from Benoit and Krishna (1985).
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5Finite Games with Incomplete Information

In a game of imperfect information players may be uninformed about the moves
made by other players. Every one-shot, simultaneous move game is a game
of imperfect information. In a game of incomplete information players may be
uninformed about certain characteristics of the game or of the players. For instance,
a player may have incomplete information about actions available to some other
player, or about payoffs of other players. Incomplete information is modelled by
assuming that every player can be of a number of different types. A type of a player
summarizes all relevant information (in particular, actions and payoffs) about that
player. Furthermore, it is assumed that each player knows his own type and, given
his own type, has a probability distribution over the types of the other players. Often,
these probability distributions are assumed to be consistent in the sense that they
are the marginal probability distributions derived from a basic commonly known
distribution over all combinations of player types.

In this chapter we consider games with finitely many players, finitely many types,
and finitely many strategies. These games can be either static (simultaneous, one-
shot) or dynamic (extensive form games). A Nash equilibrium in this context is
also called ‘Bayesian equilibrium’, and in games in extensive form an appropriate
refinement is perfect Bayesian equilibrium. As will become clear, in essence the
concepts studied in Chaps. 3 and 4 are applied again. Throughout this chapter we
restrict attention to pure strategies and pure strategy Nash equilibria.

In Sect. 5.1 we present a brief introduction to the concept of player types in a
game, but the remainder of the chapter can also be understood without this general
introduction. Section 5.2 considers static games of incomplete information, and
Sect. 5.3 discusses so-called signaling games, which is the most widely applied class
of extensive form games with incomplete information. Both Sects. 5.2 and 5.3 are
based on examples, rather than general definitions. For the latter, see Chap. 14.
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5.1 Player Types

Consider the set of players N D f1; : : : ; ng. For each player i 2 N, there is a finite
set Ti of types which that player can have. If we denote by T D T1 � : : :� Tn the set

T D f.t1; : : : ; tn/ j t1 2 T1; t2 2 T2; : : : ; tn 2 Tng ;

i.e., the set of all possible combinations of types, then a game with incomplete infor-
mation specifies a separate game for every possible combination t D .t1; : : : ; tn/ 2
T, in a way to be explained in the next sections. We assume that each player i knows
his own type ti and, given ti, attaches probabilities

p.t1; : : : ; ti�1; tiC1; : : : ; tnjti/

to all type combinations t1 2 T1, : : :, ti�1 2 Ti�1, tiC1 2 TiC1, : : :, tn 2 Tn of the
other players.

Often, these probabilities are derived from a common probability distribution p

over T, where p.t/ is the probability that the type combination is t. This is also what
we assume in this chapter. Moreover, we assume that every player i, apart from
his own type ti, also knows the probability distribution p. Hence, if player i has
type ti, then he can compute the probability that the type combination of the other
players is the vector .t1; : : : ; ti�1; tiC1; : : : ; tn/. Formally, this probability is equal to
the conditional probability

p.t1; : : : ; ti�1; tiC1; : : : ; tnjti/ D p.t1; : : : ; ti�1; ti; tiC1; : : : ; tn/P
p.t01; : : : ; t

0
i�1; ti; t

0
iC1; : : : ; t

0
n/

where the sum in the denominator is taken over all possible types of the other
players, i.e., over all possible t01 2 T1; : : : ; t

0
i�1 2 Ti�1; t

0
iC1 2 TiC1; : : : ; t

0
n 2 Tn.

Hence, the sum in the denominator is the probability that player i has type ti.
Thus, a player in a game of incomplete information can make his actions

dependent on his own type but not on the types of the other players. However, since
he knows the probabilities of the other players’ types, he can compute the expected
payoffs from taking specific actions. In the next two sections we will see how this
works in static and in extensive form games.

5.2 Static Games of Incomplete Information

We discuss a few examples.
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5.2.1 Battle-of-the-Sexes with One-Sided Incomplete Information

The first example is a variant of the Battle-of-the-Sexes (see Sect. 1.3.2) in which
player 1 (the man) does not know whether player 2 (the woman) wants to go out
with him or avoid him. More precisely, player 1 does not know whether he plays
the game y (from ‘yes’) or the game n (from ‘no’), where these games are as
follows:

y W
� F B

F 2; 1 0; 0

B 0; 0 1; 2

�
n W

� F B

F 2; 0 0; 2

B 0; 1 1; 0

�
:

Player 1 attaches probability 1=2 to each of these games, and player 2 knows this.
In the terminology of types, this means that player 1 has only one type, simply
indicated by ‘1’, and that player 2 has two types, namely y and n. So there are two
type combinations, namely .1; y/ and .1; n/, each occurring with probability 1=2.
Player 2 knows player 1’s type with certainty, and also knows her own type, that is,
she knows which game is actually being played. Player 1 attaches probability 1=2
to each type of player 2.

What would be a Nash equilibrium in this game? To see this, it is helpful to model
the game as a game in extensive form, using the tree representation of Chap. 4. Such
a tree is drawn in Fig. 5.1.

The game starts with a chance move which selects which of the two bimatrix
games is going to be played. In the terminology of types, it selects the type of player
2. Player 2 is informed but player 1 is not. Player 2 has four different strategies but
player 1 only two.

From this extensive form it is apparent that every Nash equilibrium is subgame
perfect, since there are no nontrivial subgames.

Also, every Nash equilibrium is perfect Bayesian, since the only nontrivial
information set (namely, that of player 1) is reached with positive probability
(namely, equal to 1) for any strategy of player 2, and thus the beliefs are completely

Chance

.5
y

.5
n

2 2

BFBF
1

F B F B F B F B

2

1

0

0

0

0

1

2

2

0

0

1

0

2

1

0

Fig. 5.1 An extensive form representation of the Battle-of-the-Sexes game with incomplete
information. The upper numbers are the payoffs for player 1
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determined by player 2’s strategy through Bayesian updating (see Sect. 4.4). More
precisely, suppose the belief of player 1 is denoted by the nonnegative vector
.˛1; ˛2; ˛3; ˛4/, where ˛1C : : :C˛4 D 1, from left to right in Fig. 5.1. For instance,
˛3 is the probability attached by player 1 to player 2 having type n and playing
strategy F. Suppose, for instance, that player 2 plays F if she has type y and B if
she has type n, and let E denote the event that player 1’s information set is reached.
Then

˛1 D Prob Œ2 plays F and has type y j E�

D Prob Œ2 plays F, has type y, and E�

Prob ŒE�

D Prob Œ2 plays F j 2 has type y�Prob Œ2 has type y�Prob ŒE�

Prob ŒE�

D 1 � 0:5 � 1
1

D 0:5 :

By a similar computation we find ˛2 D 0, ˛3 D 0, and ˛4 D 0:5. Such computations
can also be made if player 2 would play mixed but we restrict attention here to
pure strategies. Important is that the beliefs of player 1 are always determined by
computing the conditional probabilities since his (only) information set is always
reached with positive probability, namely 1. Hence, there are no free beliefs, in the
terminology of Sect. 4.4.

The strategic form of the game is given in Fig. 5.2. There, the first letter in a
strategy of player 2 says what player 2 plays if y is chosen by the Chance move, and
the second letter says what player 2 plays if n is chosen. For instance, if player 1
plays F and player 2 plays FF, then the expected payoffs are equal to 0:5 � .2; 1/C
0:5 � .2; 0/ D .2; 0:5/. Or if player 1 plays B and player 2 plays FB, the expected
payoffs are equal to 0:5 � .0; 0/C 0:5 � .1; 0/ D .0:5; 0/, etc. Also the best replies are
indicated.

From the strategic form it is apparent that the game has a unique Nash
equilibrium in pure strategies, namely .F;FB/. In this equilibrium player 1 plays
F, type y of player 2 plays F and type n of player 2 plays B.

Another equilibrium concept, appropriate for static games with incomplete
information, is that of a Bayesian equilibrium . In a Bayesian equilibrium, each
type of each player plays a best reply against the other players. That is, each
type of a player plays an action that maximizes his expected payoff, where the
expectation is taken over the type combinations of the other players and their
actions. The Nash equilibrium .F;FB/ in the game above is such a Bayesian

Fig. 5.2 The strategic form
of the game in Fig. 5.1. Player
1 is the row player

FF FB BF BB

F 2, 0.5 1, 1.5 1, 0 0, 1

B 0, 0. .5,5 0 0 0.5, 1.5 1, 1
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equilibrium: the action F of type y of player 2 is a best reply against F of
player 1 (player 1 has only one type), the action B of type n of player 2 is
a best reply against F of player 1, and action F of player 1 maximizes player
1’s expected payoff against the strategy FB of player 2. In fact, if every type
of every player has positive probability (as will be the case throughout this
chapter), then the Nash equilibria of the strategic form coincide with the Bayesian
equilibria.

The (pure) Nash equilibrium or equilibria of a game like this can also be found
without drawing the extensive form and computing the strategic form, as follows.
Suppose first that player 1 plays F in an equilibrium. Then the best reply of player
2 is to play F if her type is y and B if here type is n. The expected payoff to player 1
is then 1; playing B against this strategy FB of player 2 yields only 0:5. So .F;FB/

is a Nash equilibrium. If, on the other hand, player 1 plays B, then the best reply
of player 2 if her type is y, is B and if her type is n it is F. This yields a payoff of
0:5 to player 1, whereas playing F against this strategy BF of player 2 yields payoff
1. Hence, there is no equilibrium where player 1 plays B. Of course, this is also
apparent from the strategic form, but the argument can be made without complete
computation of the strategic form.

5.2.2 Battle-of-the-Sexes with Two-Sided Incomplete Information

The next example is a further variation on the Battle-of-the-Sexes game in which
neither player knows whether the other player wants to be together with him/her
or not. It is based on the four bimatrix games in Fig. 5.3. These four bimatrix
games correspond to the four possible type combinations of players 1 and 2. The
probabilities of these four different combinations are given in Table 5.1. One way
to find the Nash equilibria of this game is to draw the extensive form and compute
the associated strategic form: see Problem 5.1. Alternatively, we can systematically
examine the possible strategy pairs, as follows.

First observe that each player now has four strategies, namely FF, FB, BF, and
BB, where the first letter is the action taken by the yes-type (y1 or y2), and the second
letter is the action taken by the no-type (n1 or n2).

Fig. 5.3 Payoffs for
Battle-of-the-Sexes with two
types per player y1 y2 :

F 2, , 0

B 0, , 2
y1 n 2 :

F 2, , 2

B 0, , 0

n 1 y2 :
F 0, , 0

B 1, , 2
n 1 n 2 :

F B F B

F B F B

F 0, , 2

B 1,

1 0

0 1

0 0

1 1

1 2

0 0

0 2

1 0, 0

Table 5.1 Type probabilities
for Battle-of-the-Sexes with
two types per player

t y1y2 y1n2 n1y2 n1n2

p.t/ 2=6 2=6 1=6 1=6
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Next, the conditional type probabilities can easily be computed from Table 5.1.
For instance,

p.y2jy1/ D p.y1y2/

p.y1/
D p.y1y2/

p.y1y2/C p.y1n2/
D 2=6

.2=6/C .2=6/
D 1=2 :

The other conditional probabilities are computed in the same way, yielding:

p.n2jy1/ D 1=2; p.y2jn1/ D 1=2; p.n2jn1/ D 1=2 ;

p.y1jy2/ D 2=3; p.n1jy2/ D 1=3; p.y1jn2/ D 2=3; p.n1jn2/ D 1=3 :

We now consider the four pure strategies of player 1 one by one.

(i) Suppose that player 1 plays the strategy FF, meaning that he plays F (the first
letter) if his type is y1 and also F (the second letter) if his type is n1. Then the
expected payoff for type y2 of player 2 if she plays F is

p.y1jy2/ � 1C p.n1jy2/ � 1 D .2=3/ � 1C .1=3/ � 1 D 1 :

If type y2 of player 2 plays B her expected payoff is

p.y1jy2/ � 0C p.n1jy2/ � 0 D .2=3/ � 0C .1=3/ � 0 D 0 :

Hence the best reply of type y2 of player 2 is F. Similarly, for type n2 of player
2, playing F yields

p.y1jn2/ � 0C p.n1jn2/ � 0 D .2=3/ � 0C .1=3/ � 0 D 0

and playing B yields

p.y1jn2/ � 2C p.n1jn2/ � 2 D .2=3/ � 2C .1=3/ � 2 D 2 ;

so that B is the best reply. Hence, player 2’s best reply against FF is FB.
Suppose, now, that player 2 plays FB, so type y2 plays F and type n2 plays
B. Then playing F yields type y1 of player 1 an expected payoff of

p.y2jy1/ � 2C p.n2jy1/ � 0 D .1=2/ � 2C .1=2/ � 0 D 1

and playing B yields

p.y2jy1/ � 0C p.n2jy1/ � 1 D .1=2/ � 0C .1=2/ � 1 D 1=2 ;
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so that F is the best reply for type y1 of player 1. Similarly, for type n1 playing
F yields

p.y1jn1/ � 0C p.n2jn1/ � 2 D .1=2/ � 0C .1=2/ � 2 D 1

whereas playing B yields

p.y1jn1/ � 1C p.n2jn1/ � 0 D .1=2/ � 1C .1=2/ � 0 D 1=2 :

Hence, F is the best reply for type n1. Hence, player 1’s best reply against FB

is FF. We conclude that .FF;FB/ is a Nash equilibrium.
(ii) Suppose player 1 plays FB. Playing F yields type y2 of player 2 a payoff of

p.y1jy2/ � 1C p.n1jy2/ � 0 D 2=3 � 1C 1=3 � 0 D 2=3

and playing B yields

p.y1jy2/ � 0C p.n1jy2/ � 2 D 2=3 � 0C 1=3 � 2 D 2=3

so that both F and B are best replies. Playing F yields type n2 a payoff of

p.y1jn2/ � 0C p.n1jn2/ � 1 D 2=3 � 0C 1=3 � 1 D 1=3

and playing B yields

p.y1jn2/ � 2C p.n1jn2/ � 0 D 2=3 � 2C 1=3 � 0 D 4=3

so that B is the best reply. Hence, player 2 has two best replies, namely FB and
BB. Against FB player 1’s best reply is FF [as established in case (i)] and not
FB, so this does not result in a Nash equilibrium. Against BB one can compute
in the same way as hitherto that player 1’s best reply is BF and not FB, so also
this combination is not a Nash equilibrium.

(iii) Suppose that player 1 plays BF. Then player 2 has two best replies, namely
BF and BB. Against BF the best reply of player 1 is FF and not BF, so this
combination is not a Nash equilibrium. Against BB, player 1’s best reply is BF,
so the combination .BF;BB/ is a Nash equilibrium.

(iv) Finally, suppose player 1 plays BB. Then player 2’s best reply is BF. Against
this, player 1’s best reply is FF and not BB. So BB of player 1 is not part of a
Nash equilibrium.

We conclude that the game has two Nash equilibria in pure strategies, namely: (i)
both types of player 1 play F, type y2 of player 2 also plays F but type n2 of player
2 plays B; (ii) type y1 of player 1 plays B, type n1 plays F, and both types of player
2 play B. Again, these equilibria are also called Bayesian Nash equilibria.



78 5 Finite Games with Incomplete Information

5.3 Signaling Games

The extensive form can be used to examine a static game of incomplete information,
usually by letting the game start with a chance move that picks the types of the
players (see Sect. 5.2). More generally, the extensive form can be used to describe
incomplete information games where players move sequentially. An important class
of such games is the class of signaling games.

A (finite) signaling game starts with a chance move that picks the type of player
1. Player 1 is informed about his type but player 2 is not. Player 1 moves first, player
2 observes player 1’s action and moves next, and then the game ends. Such a game
is called a signaling game because the action of player 1 may be a signal about his
type: that is, from the action of player 1 player 2 may be able to infer something
about the type of player 1.

5.3.1 An Example

Consider the example in Fig. 5.4. (The numbers between square brackets at player
2’s decision nodes are the beliefs of player 2, which are used in a perfect Bayesian
equilibrium below.) In this game, player 1 learns the result of the chance move but
player 2 does not. In the terminology of Sect. 5.1, there are two type combinations,
namely .t; 2/ and .Qt; 2/, each one occurring with probability 1=2: these notations
express the fact that player 2 has only one type (called ‘2’). Both types of player 1
can choose between L and R. Player 2 only observes the action, L or R, and not the
type of player 1. For this reason we use the same letter L for the ‘left’ action of each
type: player 2 cannot distinguish between them. Similar for the ‘right’ action.

In order to analyze this game and find the (pure strategy) Nash equilibria, one
possibility is to first compute the strategic form. Both players have four strategies.
Player 1 has strategy set

fLL;LR;RL;RRg ;

d

d

u

u

d

d

u

u

L

L

R

R

t

t

Chance

1/ 2

1/ 2

0, 2

4, 8

8, 0

2, 6

2, 4

2, 0

0, 0

4, 2

[1 − α]

[α]

2 2

[1 − β]

[β]

Fig. 5.4 A signaling game
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Fig. 5.5 The strategic form
of the game in Fig. 5.4

uu ud du dd

LL 3, 7 3, 7 4, , 1

LR 2, , 5 5, , 2

RL 4, 5 2, 4 2, , 1

RR 3, , 2 3,

1 4

3 2 0 5

2 0

1 1 1 1, 2

where the first letter refers to the action of type t and the second letter to the action
of type Qt. Player 2 has strategy set

fuu0; ud0; du0; dd0g :

The (expected) strategic form of the game can be computed in the usual way and
is presented in Fig. 5.5. For instance, consider the strategy combination .LR; ud0/.
Then the expected payoffs are 1=2 �.2; 6/C1=2 �.2; 4/ D .2; 5/, etc. The (pure) best
replies are underlined. This shows that the game has two Nash equilibria, namely
.RL; uu0/ and .LL; ud0/. What else can be said about these equilibria? Observe
that the only subgame of the game is the entire game, so that both equilibria are
trivially subgame perfect. Are they also perfect Bayesian? That is, do they satisfy
the conditions of Bayesian consistency and sequential rationality (Sect. 4.4)?

First consider the equilibrium .RL; uu0/. Bayesian consistency requires

˛ D Prob Œplayer 1 has type t j player 1 plays L�

D Prob Œplayer 1 has type t and plays L�

Prob Œplayer 1 plays L�

D 1=2 � 0
1=2

D 0

and, similarly,

ˇ D Prob Œplayer 1 has type t j player 1 plays R�

D Prob Œplayer 1 has type t and plays R�

Prob Œplayer 1 plays R�

D 1=2 � 1
1=2

D 1 :

Given these beliefs, playing u yields a payoff of 8 to player 2 (at the left information
set), whereas playing d yields only 2, so u is optimal. Playing u0 yields a payoff
of 2 to player 2 (at the right information set), whereas playing d0 yields 0, so u0 is
optimal. Hence, uu0 is indeed the best reply of player 2—as we already knew from
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the strategic form. Thus, the pair .RL; uu0/ is a perfect Bayesian equilibrium with
beliefs ˛ D 0 and ˇ D 1.

Note that, in this case and, more generally, in case of a Nash equilibrium where
each information set of player 2 is reached with positive probability (i.e., every
possible action of player 1 is played by some type of player 1), the perfect Bayesian
equilibrium requirement does not add anything that is essential: the beliefs of player
2 are completely determined by Bayesian consistency, and sequential rationality
is automatically satisfied for these beliefs, given that we already have a Nash
equilibrium.

The perfect Bayesian equilibrium .RL; uu0/ is called separating: it separates the
two types of player 1, since these types play different actions. In this equilibrium,
the action of player 1 is a signal for his type, and the equilibrium is ‘information
revealing’.

Next, consider the Nash equilibrium .LL; ud0/. In this case, by Bayesian consis-
tency we obtain

˛ D Prob Œplayer 1 has type t j player 1 plays L�

D Prob Œplayer 1 has type t and plays L�

Prob Œplayer 1 plays L�

D 1=2 � 1
1

D 1=2 :

In words: since each type of player 1 plays L, the conditional probabilities of the two
decision nodes in the left information set of player 2 are both equal to 1=2. Given
˛ D 1=2 it follows that u is optimal at player 2’s left information set (in fact, in
this particular game u is optimal for any ˛): we know this already from the strategic
form, where both uu0 and ud0 are best replies of player 2 against LL.

How about the belief .ˇ; 1 � ˇ/? Since player 1 always plays L, the right
information set of player 2 is reached with zero probability, and therefore we cannot
compute ˇ by the formula for conditional probability: Bayesian consistency has no
bite, the belief .ˇ; 1 � ˇ/ is free (in the terminology of Sect. 4.4). Formally,

ˇ D Prob Œplayer 1 has type t j player 1 plays R�

D Prob Œplayer 1 has type t and plays R�

Prob Œplayer 1 plays R�
;

but the probability in the denominator of the last expression is zero if player 1
plays LL. However, we still have the sequential rationality requirement: in order
for .LL; ud0/ to be a perfect Bayesian equilibrium the belief .ˇ; 1 � ˇ/ should be
such that player 2’s action d0 is optimal. Hence, the expected payoff to player 2
from playing d0 should be at least as large as the expected payoff from playing u0,
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so 4.1 � ˇ/ � 2ˇ, which is equivalent to ˇ � 2=3. Thus, .LL; ud0/ is a perfect
Bayesian equilibrium with beliefs ˛ D 1=2 and ˇ � 2=3.

In this case, and more generally, in cases where in a Nash equilibrium not every
information set of player 2 is reached with positive probability, i.e., there is some
action of player 1 which is played by no type of player 1, the perfect Bayesian
equilibrium requirement does have an impact.

The equilibrium .LL; ud0/ is called pooling, since it ‘pools’ the two types of
player 1: both types play the same action, L in this case. In this equilibrium, the
action of player 1 does not reveal any information about his type.

5.3.2 Computing Perfect Bayesian Equilibria in the Extensive Form

Perfect Bayesian equilibria can also be found without first computing the strategic
form. We consider again the signaling game in Fig. 5.4.

First, assume that there is an equilibrium where player 1 plays LL. Then ˛ D 1=2

by Bayesian consistency, and player 2’s optimal action at the left information set
(following L) is u. At the right information set, player 2’s optimal action is u0 if
ˇ � 2=3 and d0 if ˇ � 2=3. If player 2 would play u0 after R, then type t of player 1
would improve by playing R instead of L, so this cannot be an equilibrium. If player
2 plays d0 after R, then no type of player 1 would want to play R instead of L. We
have established that .LL; ud0/ with beliefs ˛ D 1=2 and ˇ � 2=3 is a (pooling)
perfect Bayesian equilibrium.

Second, assume player 1 plays LR in equilibrium. Then player 2’s beliefs are
given by ˛ D 1 and ˇ D 0, and player 2’s best reply is ud0. But then type Qt of player
1 would gain by playing L instead of R, so this cannot be an equilibrium.

Third, assume player 1 plays RL in equilibrium. Then ˛ D 0, ˇ D 1, and player
2’s best reply is uu0. Against uu0, RL is player 1’s best reply, so that .RL; uu/ is a
(separating) perfect Bayesian equilibrium with beliefs ˛ D 0 and ˇ D 1.

Fourth, suppose player 1 plays RR in equilibrium. Then ˇ D 1=2 and player 2’s
best reply after R is d0. After L, player 2’s best reply is u for any value of ˛. Against
ud0, however, type t of payer 1 would gain by playing L instead of R. So RR is not
part of an equilibrium.

Of course, these considerations can also be based on the strategic form, but we
do not need the entire strategic form to find the perfect Bayesian equilibria.

5.3.3 The Intuitive Criterion

In a perfect Bayesian equilibrium, if an information set of player 2 is reached with
zero probability, then the belief of player 2 on that information set is free—the
only requirement is the sequential rationality requirement demanding that, given
this belief, player 2 should choose the optimal action. The question is whether such
a free belief is always plausible or reasonable. The so-called intuitive criterion (IC)
puts a restriction on the plausibility of free beliefs.
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It works as follows. Consider a perfect Bayesian equilibrium in a signaling game
and suppose that there is an information set which is reached in the equilibrium
with zero probability. In other words, there is an action, say A, of player 1 which
is played by no type of player 1. Consider a type t of player 1. Suppose this type t

obtains payoff x in the equilibrium under consideration. Then consider the maximal
possible payoff for this type t attainable by playing A, say m. If m < x, then the
belief of player 2 on the information set following A should assign zero probability
to type t of player 1. The reason is indeed intuitive: type t could never possibly gain
by playing A instead of his equilibrium action, since at best he would obtain m from
doing so, but m is less than what t can get in equilibrium, namely x. Therefore, player
2 should not believe that type t would ever deviate to A. This comparison should
be made for every type of player 1. This way, we may obtain some restrictions
on the belief of player 2 at the information set following action A. If the original
belief of player 2 on this information set, corresponding to the perfect Bayesian
equilibrium under consideration, satisfies these restrictions, then we say that this
perfect Bayesian equilibrium survives the IC. However, it could happen that this way
all types of player 1 get assigned zero probability: in that case, the IC simply does
not apply, since the probabilities in a belief have to sum up to 1 [cf. Problem 5.9(a)].

Let us apply the IC to the perfect Bayesian equilibrium .LL; ud0/ with ˇ � 2=3

in the game in Fig. 5.4. The equilibrium payoff to type t of player 1 is equal to 2.
If type t of player 1 deviates to R, then he could get maximally 4, namely if player
2 would play u0 following R. It is important to notice that we consider the maximal

possible payoff after such a deviation—of course, the payoff in the equilibrium after
a deviation (in this case 0) can never be higher by the mere definition of Nash
equilibrium. Since 4 6< 2, type t could have a reason to deviate, and so the IC
puts no restriction on the belief of player 2 that player 1, if he would deviate to R,
is of type t. The equilibrium payoff to type Qt of player 1 is 4. Type Qt, however, could
get at most 2 (in fact, would always get 2 in this game) by deviating to R. Since
2 < 4, the IC now says that it is not reasonable for player 2 to assume that type Qt
would ever deviate to R. Thus, 1 � ˇ D 0, so that ˇ D 1. With this belief, however,
.LL; ud0/ can no longer be sustained as a perfect Bayesian equilibrium, since for this
we need ˇ � 2=3. Hence, the perfect Bayesian equilibrium with ˇ � 2=3 does not
survive the IC.

5.3.4 Another Example

Consider the signaling game in Fig. 5.6. We compute the pure strategy perfect
Bayesian equilibria of this game by considering the strategies of player 1 one by
one.

Suppose player 1 plays LL (the first letter refers to type t and the second to type
Qt). Then ˛ D 1=2 by Bayesian consistency, so player 2 is indifferent between u and
d. If player 2 plays u, however, then type Qt obtains 0 and will therefore deviate to
R, so that he obtains at least 1. Hence, player 2 should play d following L in order
to get an equilibrium. Then, again to keep type Qt from deviating, player 2 should
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1/ 2
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2, 0

0, −1
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2 2

[1 − β]
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Fig. 5.6 Another signaling game

play u0 following R. This is indeed optimal for player 2 for ˇ � 1=2. Obviously,
type t will not deviate to R, so .LL; du0/ with ˛ D 1=2 and ˇ � 1=2 is a (pooling)
perfect Bayesian equilibrium. In this equilibrium, type t obtains 3 and by deviating
to R obtains maximally 2. Type Qt obtains 2 in equilibrium and by deviating to R

maximally 3. Hence, the IC prescribes ˇ D 0, but for this belief .LL; du0/ does
not result in a perfect Bayesian equilibrium. Hence, .LL; du0/ with ˛ D 1=2 and
ˇ � 1=2 does not survive the IC.

Suppose player 1 plays LR. Then the best reply of player 2 is ud0, but then
type t will deviate to R. So there is no perfect Bayesian equilibrium (or even Nash
equilibrium) in which player 1 plays LR.

Suppose player 1 plays RL. Then the best reply of player 2 is du0, but then
type t will deviate to L. So there is no perfect Bayesian equilibrium (or even Nash
equilibrium) in which player 1 plays RL.

Finally, suppose player 1 plays RR. Then ˇ D 1=2 and player 2 is indifferent
between u0 and d0 following R. If player 2 plays u0 then type t of player 1 will deviate
to R, where he obtains always more than 0. Hence in an equilibrium player 2 should
play d0. Again to keep type t from deviating, player 2 should play u following L. This
is indeed optimal for player 2 if ˛ � 1=2. Hence, .RR; ud0/with beliefs ˇ D 1=2 and
˛ � 1=2 is a (pooling) perfect Bayesian equilibrium. Type t obtains 2 in equilibrium
and maximally 3 by deviating to L. Type Qt obtains 3 in equilibrium and maximally
2 by deviating to L. Thus, the IC prescribes 1 � ˛ D 0 or ˛ D 1, and therefore this
perfect Bayesian equilibrium survives the IC for ˛ D 1.

5.4 Problems

5.1. Battle-of-the-Sexes

Draw the extensive form of the Battle-of-the-Sexes game in Sect. 5.2 with payoffs
in Fig. 5.3 and type probabilities in Table 5.1. Compute the strategic form and find
the pure strategy Nash equilibria of the game.
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5.2. A Static Game of Incomplete Information

Compute all pure strategy Nash equilibria in the following static game of incomplete
information:

1. Chance determines whether the payoffs are as in Game 1 or as in Game 2, each
game being equally likely.

2. Player 1 learns which game has been chosen but player 2 does not.

The two bimatrix games are:

Game 1:

� L R

T 1; 1 0; 0

B 0; 0 0; 0

�
Game 2:

� L R

T 0; 0 0; 0

B 0; 0 2; 2

�

5.3. Another Static Game of Incomplete Information

Player 1 has two types, t1 and t01, and player 2 has two types, t2 and t02. The
conditional probabilities of these types are:

p.t2jt1/ D 1; p.t2jt01/ D 3=4; p.t1jt2/ D 3=4; p.t1jt02/ D 0 :

(a) Show that these conditional probabilities can be derived from a common
distribution p over the four type combinations, and determine p.

As usual suppose that each player learns his own type and knows the conditional
probabilities above. Then player 1 chooses between T and B and player 2 between L

and R, where these actions may be contingent on the information a player has. The
payoffs for the different type combinations are given by the bimatrix games

t1t2 W
� L R

T 2; 2 0; 0

B 3; 0 1; 1

�
t01t2 W

� L R

T 2; 2 0; 0

B 0; 0 1; 1

�
t01t

0
2 W

� L R

T 2; 2 0; 0

B 0; 0 1; 1

�
;

where the type combination .t1; t02/ is left out since it has zero probability.

(b) Compute all pure strategy Nash equilibria for this game.

5.4. Job-Market Signaling

A worker can have either high or low ability, where the probability of high ability
is equal to 2=5. A worker knows his ability, but a firm which wants to hire the
worker does not. The worker, whether a high or a low ability type, can choose
between additional education or not. Choosing additional education does not enlarge
the worker’s productivity but may serve as a signal to the firm: a high ability
worker can choose education without additional costs, whereas for a low ability
worker the cost of education equals e > 0. The firm chooses either a high
or a low wage, having observed whether the worker took additional education
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or not. The payoff to the firm equals the productivity of the worker minus the
wage. The payoff to the worker equals the wage minus the cost of education;
if, however, this payoff is lower than the worker’s reservation utility, he chooses
not to work at all and to receive his reservation utility, leaving the firm with 0
payoff. Denote the productivities of the high and low ability worker by pH and
pL, respectively, and denote the high and low wages by wh and wl. Finally, let rH

and rL denote the reservation utilities of both worker types. (All these numbers are
fixed.)

(a) Determine the extensive form of this game.
(b) Choose pH D 10, pL D 8, wh D 6, wl D 3, rH D 4, rL D 0, e D 4. Compute

the strategic form of this game, and determine the pure strategy Nash equilibria.
Also compute the perfect Bayesian equilibrium or equilibria in pure strategies,
determine whether they are separating or pooling and whether they survive
the IC.

5.5. A Joint Venture

Software Inc. and Hardware Inc. are in a joint venture together. The parts used
in the joint product can be defective or not; the probability of defective parts is
0.7, and this is commonly known before the start of the game. Each can exert
either high or low effort, which is equivalent to costs of 20 and 0. Hardware
moves first, but software cannot observe his effort. Revenues are split equally
at the end. If both firms exert low effort, total profits are 100. If the parts are
defective, the total profit is 100; otherwise (i.e., if the parts are not defective),
if both exert high effort, profit is 200, but if only one player does, profit is
100 with probability 0.9 and 200 with probability 0.1. Hardware discovers the
truth about the parts by observation before he chooses effort, but software does
not.

(a) Determine the extensive form of this game. Is this a signaling game?
(b) Determine the strategic form of this game.
(c) Compute the (pure) Nash equilibria? Which one(s) is (are) subgame perfect?

Perfect Bayesian?

5.6. Entry Deterrence

The entry deterrence game of Chap. 1 is reproduced in Fig. 5.7. For this game,
compute the pure strategy perfect Bayesian equilibria for every value of x 2 R.
Which one(s) is (are) pooling or separating? Satisfy the intuitive criterion?

5.7. The Beer-Quiche Game

Consider the following two-player signaling game. Player 1 is either ‘weak’ or
‘strong’. This is determined by a chance move, resulting in player 1 being ‘weak’
with probability 1=10. Player 1 is informed about the outcome of this chance
move but player 2 is not; but the probabilities of either type of player 1 are
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Fig. 5.7 The entry
deterrence game of
Problem 5.6 Entrant

Entrant

Inc.

E

E

O

O

C

F

C

F

Chance

0, 100

0, 100

40, 50

−10, 0

40, 50

10, x

50%

50%

common knowledge among the two players. Player 1 has two actions: either have
quiche (Q) or have beer (B) for breakfast. Player 2 observes the breakfast of
player 1 and then decides to duel (D) or not to duel (N) with player 1. The
payoffs are as follows. If player 1 is weak and eats quiche then D and N give
him payoffs of 1 and 3, respectively; if he is weak and drinks beer, then these
payoffs are 0 and 2, respectively. If player 1 is strong, then the payoffs are 0
and 2 from D and N, respectively, if he eats quiche; and 1 and 3 from D and N,
respectively, if he drinks beer. Player 2 has payoff 0 from not duelling, payoff 1
from duelling with the weak player 1, and payoff �1 from duelling with the strong
player 1.

(a) Draw a diagram modelling this situation.
(b) Compute all the pure strategy Nash equilibria of the game. Find out which of

these Nash equilibria are perfect Bayesian equilibria. Give the corresponding
beliefs and determine whether these equilibria are pooling or separating, and
which ones satisfy the intuitive criterion.

5.8. Issuing Stock

In this story the players are a manager (M) and an existing shareholder (O). The
manager is informed about the current value of the firm, a, and the NPV (net present
value) of a potential investment opportunity, b, but the shareholder only knows
that high values and low values each have probability 1=2. More precisely, either
.a; b/ D .a; b/ or .a; b/ D .a; b/, each with probability 1=2, where a < a and
b < b. The manager moves first and either proposes to issue new stock E (where E

is fixed) to undertake the investment opportunity, or decides not to issue new stock.
The existing shareholder decides whether to approve of the new stock issue or not.
The manager always acts in the interest of the existing shareholder: their payoffs in
the game are always equal.
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If the manager decides not to issue new stock, then the investment opportunity
is foregone, and the payoff is either a or a. If the manager proposes to issue new
stock but this is not approved by the existing shareholder, then again the investment
opportunity is foregone and the payoff is either a or a. If the manager proposes to
issue new stock E and the existing shareholder approves of this, then the payoff to
the existing shareholder is equal to ŒM=.M C E/�.a C b C E/ in the good state .a; b/
and ŒM=.M C E/�.a C b C E/ in the bad state .a; b/; here, M D .1=2/Œa C b� C
.1=2/Œa C b� is the price of the existing shares if the investment is undertaken.

(a) Set up the extensive form of this signaling game.
(b) Take a D 150, a D 50, b D 20, b D 10, and E D 100. Compute the pure

strategy perfect Bayesian equilibria of this game. Are they pooling, separating?
How about the intuitive criterion? Try to interpret the results from an economic
point of view.

(c) Repeat the analysis of (b) for b D 100.

5.9. More Signaling Games

(a) Consider the signaling game in Fig. 5.4, but with payoffs .1; 2/ instead of .4; 2/
if type t of player 1 plays R and player 2 plays u0. Show that this game has only
pooling equilibria. Which ones survive the IC?

(b) Compute the pure strategy perfect Bayesian equilibria and test for the intuitive
criterion in the signaling game in Fig. 5.8.

(c) Consider the signaling game in Fig. 5.9, where the chance move is not explicitly
drawn in order to keep the diagram simple. Compute the pure strategy perfect
Bayesian equilibria and test for the intuitive criterion.

d

d

u

u

d

d

u

u

L

L

R

R

t

t

Chance

.5

.5

3, 1

0, 0

2, 0

1, 2

2, 2

1, 0

3, 0

0, 1

[1 − α]

[α]

[1 − β]

[β]

Fig. 5.8 The signaling game of Problem 5.9(b)
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Fig. 5.9 The signaling game of Problem 5.9(c). Each type of player 1 has probability 1=3

5.5 Notes

The type terminology and corresponding theory is due to Harsanyi (1967/1968).
The Battle of the Sexes examples in Sect. 5.2 are taken from Osborne (2004). One
of the first examples of a signaling game is the Spence (1973) job market signaling
model (see Problem 5.4). The intuitive criterion is due to Cho and Kreps (1987).

Problem 5.5 is taken from Rasmusen (1989). The beer-quiche game of Prob-
lem 5.7 is from Cho and Kreps (1987). Problem 5.8 is based on Myers and Majluf
(1984).
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6Noncooperative Games: Extensions

In Chaps. 2–5 we have studied noncooperative games in which the players have
finitely many (pure) strategies. The reason for the finiteness restriction is that in such
games special results hold, such as the existence of a value and optimal strategies
for two-person zero-sum games, and the existence of a Nash equilibrium in mixed
strategies for finite nonzero-sum games.

The basic game-theoretical concepts discussed in these chapters can be applied to
more general games. Once, in a game-theoretic situation, the players, their possible
strategies, and the associated payoffs are identified, the concepts of best reply and of
Nash equilibrium can be applied. Also the concepts of backward induction, subgame
perfection, and perfect Bayesian equilibrium carry over to quite general extensive
form games. In games of incomplete information, the concept of player types and
the associated Nash equilibrium (Bayesian Nash equilibrium) can be applied also if
the game has infinitely many strategies.

The bulk of this chapter consists of diverse examples verifying these claims.
The main objective of the chapter is, indeed, to show how the basic game-theoretic
apparatus can be applied to various different conflict situations; and, of course, to
show these applications themselves.

In Sect. 6.1 we generalize some of the concepts of Chaps. 2 and 3. This section
serves only as background and general framework for the examples in the following
sections—most of the remainder of this chapter can also be understood without
this general framework and the reader may choose to postpone reading it. Concepts
specific to extensive form games and to incomplete information games are adapted
later, when they are applied. In Sects. 6.2–6.7 we discuss Cournot competition
with complete and incomplete information, Bertrand competition, Stackelberg
equilibrium, auctions with complete and incomplete information, mixed strategies
with objective probabilities, and sequential bargaining. Variations on these topics
and various other topics are treated in the problem section.

© Springer-Verlag Berlin Heidelberg 2015
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6.1 General Framework: Strategic Games

An n-person strategic game is a 2n C 1-tuple

G D .N; S1; : : : ; Sn; u1; : : : ; un/ ;

where

• N D f1; : : : ; ng, with n � 1, is the set of players;
• for every i 2 N, Si is the strategy set of player i;
• for every i 2 N, ui W S D S1 � : : : � Sn ! R is the payoff function of player i;

i.e., for every strategy combination .s1; : : : ; sn/ 2 S where s1 2 S1, : : :, sn 2 Sn,
ui.s1; : : : ; sn/ 2 R is player i’s payoff.

A best reply of player i to the strategy combination .s1; : : : ; si�1; siC1; : : : ; sn/ of the
other players is a strategy si 2 Si such that

ui.s1; : : : ; si�1; si; siC1; : : : ; sn/ � ui.s1; : : : ; si�1; s
0
i; siC1; : : : ; sn/

for all s0
i 2 Si.

A Nash equilibrium of G is a strategy combination .s�
1 ; : : : ; s

�
n / 2 S such that for

each player i, s�
i is a best reply to .s�

1 ; : : : ; s
�
i�1; s

�
iC1; : : : ; s

�
n /.

A strategy s0
i 2 Si of player i is strictly dominated by si 2 Si if

ui.s1; : : : ; si�1; si; siC1; : : : ; sn/ > ui.s1; : : : ; si�1; s
0
i; siC1; : : : ; sn/

for all .s1; : : : ; si�1; siC1; : : : ; sn/ 2 S1 � : : : � Si�1 � SiC1 � : : : � Sn, i.e., for all
strategy combinations of players other than i. Clearly, a strictly dominated strategy
is never used in a Nash equilibrium.

Finally we define weak domination. A strategy s0
i 2 Si of player i is weakly

dominated by si 2 Si if

ui.s1; : : : ; si�1; si; siC1; : : : ; sn/ � ui.s1; : : : ; si�1; s
0
i; siC1; : : : ; sn/

for all .s1; : : : ; si�1; siC1; : : : ; sn/ 2 S1 � : : : � Si�1 � SiC1 � : : : � Sn, such that at
least once this inequality is strict.

The reader may verify that matrix games (Chap. 2) and bimatrix games (Chap. 3)
are special cases of this general framework, in which the set Si is the set of all mixed
strategies of player i. The same is true for the concepts of Nash equilibrium and
domination discussed in these chapters.
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6.2 Cournot Quantity Competition

6.2.1 Simple Version with Complete Information

In the simplest version of the famous Cournot model, two firms producing a
homogenous good compete in quantity. Each firm offers a quantity of this good on
the market. The price of the good depends on the total quantity offered: the higher
this quantity is, the lower the price of the good. The profit for each firm is equal to
total revenue (price times quantity) minus total cost. This gives rise to a two-person
game in which the players are the firms, the players’ strategies are the quantities
offered and the payoff functions are the profit functions. In a simple version, the
price depends linearly on total quantity and marginal cost is constant and positive
while there are no fixed costs. Specifically, we study the following game.

(a) The set of players is N D f1; 2g.
(b) Each player i D 1; 2 has set of strategies Si D Œ0;1/, with typical element qi.
(c) The payoff function of player i is …i.q1; q2/ D qiP.q1; q2/ � cqi, for all

q1; q2 � 0. Here,

P.q1; q2/ D
�

a � q1 � q2 if q1 C q2 � a

0 if q1 C q2 > a

is the market price of the good, where a is a constant, and c is marginal cost,
with a > c > 0.

A Nash equilibrium in this game is a pair .qC
1 ; q

C
2 /, with qC

1 ; q
C
2 � 0, of mutually

best replies, that is,

…1.q
C
1 ; q

C
2 / � …1.q1; q

C
2 /; …2.q

C
1 ; q

C
2 / � …2.q

C
1 ; q2/ for all q1; q2 � 0 :

This equilibrium is also called Cournot equilibrium . To find the equilibrium, we
first compute the best reply functions, also called reaction functions. The reaction
function ˇ1.q2/ of player 1 is found by solving the maximization problem

max
q1�0

…1.q1; q2/

for each given value of q2 � 0. If q2 > a then P.q1; q2/ D 0 for every q1 and the
profit of firm 1 is equal to �cq1 so that, clearly, the maximum is attained by setting
q1 D 0. For q2 � a we have

…1.q1; q2/ D
�

q1.a � q1 � q2/ � cq1 if q1 � a � q2

�cq1 if q1 > a � q2
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so that the maximum is attained for some q1 � a � q2. In that case, function

q1.a � q1 � q2/ � cq1 D q1.a � c � q1 � q2/

has to be maximized with respect to q1 � 0. If q2 > a � c then the maximum is
attained for q1 D 0. If q2 � a � c then we compute the maximum by setting the
derivative with respect to q1, namely the function a�2q1�q2�c, equal to zero. This
yields q1 D .a � c � q2/=2. (The second derivative is equal to �2 so that, indeed,
we have a maximum.) Summarizing, we have

ˇ1.q2/ D
�

f a�c�q2
2

g if q2 � a � c

f0g if q2 > a � c :

Since this reaction function is single-valued for all q2, we can omit the braces at the
right-hand side and write

ˇ1.q2/ D
�

a�c�q2
2

if q2 � a � c

0 if q2 > a � c :
(6.1)

By symmetric arguments we obtain for the reaction function of player 2:

ˇ2.q1/ D
�

a�c�q1
2

if q1 � a � c

0 if q1 > a � c :
(6.2)

These reaction functions are drawn in Fig. 6.1. The Nash equilibrium is the point of
intersection of the reaction functions. It is obtained by simultaneously solving the
two equations q1 D .a � c � q2/=2 and q2 D .a � c � q1/=2, resulting in

.qC
1 ; q

C
2 / D .

a � c

3
;

a � c

3
/ :

6.2.1.1 Pareto Optimality
A pair .q1; q2/ of strategies is Pareto optimal if there is no other pair .q0

1; q
0
2/

such that the associated payoffs are at least as good for both players and strictly
better for at least one player. Not surprisingly, the equilibrium .qC

1 ; q
C
2 / is not

Pareto optimal. For instance, both players can strictly benefit from joint profit
maximization, attained by solving the problem

max
q1;q2�0

…1.q1; q2/C…2.q1; q2/ :

This amounts to solving the maximization problem

max
q1;q2�0

.q1 C q2/.a � c � q1 � q2/
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0 a − c

2

a − c

2

a − c

a − c

q
2

q
1

qC

Fig. 6.1 The Cournot model: the thick black piecewise linear curve is the reaction function of
player 1 and the thick gray piecewise linear curve is the reaction function of player 2. The point
qC is the Nash–Cournot equilibrium. The two isoprofit curves of the players through the Nash
equilibrium are drawn. The curve intersecting the q1-axis is the isoprofit curve of player 1: profit
increases if this curve shifts downwards. The curve intersecting the q2-axis is the isoprofit curve
of player 2: profit increases if this curve shifts leftwards. The shaded area consists of the quantity
combinations that Pareto dominate the equilibrium

or, writing Q D q1 C q2,

max
Q�0

Q.a � c � Q/

which yields Q D .a � c/=2. Observe that this is just the monopoly quantity. Thus,
joint profit maximization is attained by any pair .q1; q2/ � 0 with q1 C q2 D .a �
c/=2. Taking, in particular, q1 D q2 D .a � c/=4 yields each player a profit of
.a � c/2=8, whereas in the Nash equilibrium each player obtains .a � c/2=9. See
also Fig. 6.1, where all points in the gray-shaded area ‘Pareto dominate’ the Nash
equilibrium: the associated payoffs are at least as good for both agents and better
for at least one agent.

6.2.2 Simple Version with Incomplete Information

Consider the Cournot model of Sect. 6.2.1 but now assume that the marginal cost of
firm 2 is either high, cH , or low, cL, where cH > cL > 0. Firm 2 knows its marginal
cost but firm 1 only knows that it is cH with probability # and cL with probability
1 � # . The cost of firm 1 is c > 0 and this is commonly known. In the terminology
of Sect. 5.1, player 1 has only one type but player 2 has two types, cH and cL. The
associated game is as follows.
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(a) The player set is f1; 2g.
(b) The strategy set of player 1 is Œ0;1/ with typical element q1, and the strategy

set of player 2 is Œ0;1/ � Œ0;1/ with typical element .qH ; qL/. Here, qH is the
chosen quantity if player 2 has type cH , and qL is the chosen quantity if player
2 has type cL.

(c) The payoff functions of the players are the expected payoff functions. These are

…i.q1; qH; qL/ D #…i.q1; qH/C .1 � #/…i.q1; qL/ ;

for i D 1; 2, where …i.�; �/ is the payoff function from the Cournot model of
Sect. 6.2.1.

To find the (Bayesian) Nash equilibrium, we first compute the best reply function or
reaction function of player 1, by maximizing …1.q1; qH; qL/ over q1 � 0, with qH

and qL regarded as given. Hence, we solve the problem

max
q1�0

# Œq1.a � c � q1 � qH/�C .1 � #/ Œq1.a � c � q1 � qL/� :

Assuming qH; qL � a � c (this has to be checked later for the equilibrium), this
problem is solved by setting the derivative with respect to q1 equal to zero, which
yields

q1 D q1.qH; qL/ D a � c � #qH � .1 � #/qL

2
: (6.3)

Observe that, compared to (6.1), we now have the expected quantity #qHC.1�#/qL

instead of q2: this is due to the linearity of the model.
For player 2, we consider, for given q1, the problem

max
qH ;qL�0

# ŒqH.a � cH � q1 � qH/�C .1 � #/ ŒqL.a � cL � q1 � qL/� :

Since the first term in this function depends only on qH and the second term only
on qL, solving this problem amounts to maximizing the two terms separately. In
other words, we determine the best replies of types cH and cL separately.1 Assuming
q1 � a � cH (and hence q1 � a � cL) this results in

qH D qH.q1/ D a � cH � q1

2
(6.4)

1This is generally so in a Bayesian, incomplete information game: maximizing the expected payoff
of a player over all his types is equivalent to maximizing the payoff per type.
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and

qL D qL.q1/ D a � cL � q1

2
: (6.5)

The Nash equilibrium is obtained by simultaneously solving (6.3)–(6.5) (using
substitution or Gaussian elimination). The solution is the triple

qC
1 D a � 2c C #cH C .1 � #/cL

3

qC
H D a � 2cH C c

3
C 1 � #

6
.cH � cL/

qC
L D a � 2cL C c

3
� #

6
.cH � cL/ :

Assuming that the parameters of the game are such that these three values are
nonnegative and that q1 � a � cH and qH; qL � a � c, this is the Bayesian
Nash–Cournot equilibrium of the game. This solution may be compared with the
Nash equilibrium in the complete information model with asymmetric costs, see
Problem 6.1. The high cost type of firm 2 produces more than it would in the
complete information case: it benefits from the fact that firm 1 is unsure about the
cost of firm 2 and therefore produces less than it would if it knew for sure that firm
2 had high costs. Similarly, the low cost firm 2 produces less.

6.3 Bertrand Price Competition

Consider two firms who compete in the price of a homogenous good. Specifically,
assume that the demand q for the good is given by q D q.p/ D maxfa � p; 0g
for every price p � 0, where a is a positive constant (the demand for the good if
the price is zero). The firm with the lower price serves the whole market; if prices
are equal the firms share the market equally. Each firm has the same marginal cost
0 � c < a, and no fixed cost. If firm 1 sets a price p1 and firm 2 sets a price p2, then
the profit of firm 1 is

…1.p1; p2/ D

8
<
:

.p1 � c/.a � p1/ if p1 < p2 and p1 � a
1
2
.p1 � c/.a � p1/ if p1 D p2 and p1 � a

0 in all other cases.

Similarly, the profit of firm 2 is

…2.p1; p2/ D

8
<
:

.p2 � c/.a � p2/ if p2 < p1 and p2 � a
1
2
.p2 � c/.a � p2/ if p1 D p2 and p2 � a

0 in all other cases.
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Fig. 6.2 The profit function
of firm i in the monopoly
situation

0 c pm a
pi

Πi

Thus, the two firms are the players in this game, and their profit functions are the
payoff functions; the strategy sets are Œ0;1/ for each, with typical elements p1 and
p2. To find a Nash equilibrium (Bertrand equilibrium) we first compute the best
reply functions (reaction functions). An important role is played by the price that
maximizes profit if there is only one firm in the market, i.e., the monopoly price
pm D .a C c/=2, obtained by solving the problem

max
p�0

.p � c/.a � p/ :

Note that the monopoly profit function (or the profit function of each firm in the
monopoly situation) is a quadratic function, and that profit increases as the price
gets closer to the monopoly price. See Fig. 6.2.

To determine player 1’s best reply function ˇ1.p2/ we distinguish several cases.
If p2 < c, then any p1 � p2 yields player 1 a negative payoff, whereas any

p1 > p2 yields a payoff of zero. Hence, the set of best replies in this case is the
interval .p2;1/.

If p2 D c, then any p1 < p2 yields a negative payoff for player 1, and any p1 � p2
yields zero payoff. So the set of best replies in this case is the interval Œc;1/.

If c < p2 � pm, then the best reply of player 1 would be a price below p2
(to obtain the whole market) and as close to the monopoly price as possible (to
maximize payoff) but such a price does not exist: for any price p1 < p2, a price in
between p1 and p2 would still be better. Hence, in this case the set of best replies of
player 1 is empty.2

If p2 > pm then the unique best reply of player 1 is the monopoly price pm.

2If prices are in smallest monetary units this somewhat artificial consequence is avoided. See
Problem 6.7.
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Summarizing we obtain

ˇ1.p2/ D

8
ˆ̂<
ˆ̂:

fp1 j p1 > p2g if p2 < c

fp1 j p1 � cg if p2 D c

; if c < p2 � pm

fpmg if p2 > pm.

For player 2, similarly,

ˇ2.p1/ D

8
ˆ̂<
ˆ̂:

fp2 j p2 > p1g if p1 < c

fp2 j p2 � cg if p1 D c

; if c < p1 � pm

fpmg if p1 > pm.

The point(s) of intersection of these best reply functions can be found by making a
diagram or by direct inspection. We follow the latter method and leave the diagram
method to the reader. If p2 < c then by ˇ1.p2/ a best reply p1 satisfies p1 > p2. But
then, according to ˇ2.p1/, we must have p2 D pm, a contradiction since pm > c.
Therefore, in equilibrium, we must have p2 � c. If p2 D c, then p1 � c; if however,
p1 > c then the only possibility is p2 D pm, a contradiction. Hence, p1 D c as well
and, indeed, p1 D p2 D c is a Nash equilibrium. If p2 > c, then the only possibility
is p1 D pm but then p2 is never a best reply. We conclude that the unique Nash
equilibrium (Bertrand equilibrium) is p1 D p2 D c.

It is also possible to establish this result without completely computing the best
reply functions. Suppose, in equilibrium, that p1 ¤ p2, say p1 < p2. If p1 < pm

then player 1 can increase his payoff by setting a higher price still below p2. If
p1 � pm then player 2 can increase his payoff by setting a price below p1, e.g.,
slightly below pm if p1 D pm and equal to pm if p1 > pm. Hence, we must have p1 D
p2 in equilibrium. If this common price is below c then each player can improve
by setting a higher price. If this common price is above c then each player can
improve by setting a slightly lower price. Hence, the only possibility that remains is
p1 D p2 D c, and this is indeed an equilibrium, as can be verified directly.

A few remarks on this equilibrium are in order. First, it is again Pareto inferior.
For example, both firms setting the monopoly price results in higher profits. Second,
each firm plays a weakly dominated strategy: any price c < pi < a weakly
dominates pi D c, since it always results in a positive or zero profit whereas pi D c

always results in zero profit. Third, the Bertrand equilibrium is beneficial from the
point of view of the consumers: it maximizes consumer surplus.

See Problem 6.3(d)–(f) for an example of price competition with heterogenous
goods.
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6.4 Stackelberg Equilibrium

In the Cournot model of Sect. 6.2.1, the two firms move simultaneously. Consider
now the situation where firm 1 moves first, and firm 2 observes this move and
moves next. This situation has already been discussed in Chap. 1. The corresponding
extensive form game is given in Fig. 6.3. In this game, player 1 has infinite
action/strategy set Œ0;1/, with typical element q1. In the diagram, we use a zigzag
line to express the fact that the number of actions is infinite. Player 2 has the infinite
set of actions Œ0;1/ with typical element q2, again represented by a zigzag line.
A strategy of player 2 assigns to each information set, hence to each decision
node—the game has perfect information—an action. Since each decision node of
player 2 follows an action q1 of player 1, a strategy of player 2 is a function
s2 W Œ0;1/ ! Œ0;1/. Hence, q2 D s2.q1/ is the quantity that firm 2 offers if
firm 1 has offered q1. Obviously, the number of strategies of player 2 is infinite as
well.3 The appropriate solution concept is backward induction or subgame perfect
equilibrium. The subgames of this game are the entire game and the infinite number
of one-player games starting at each decision node of player 2, i.e., following each
choice q1 of player 1. Hence, the subgame perfect equilibrium can be found by
backward induction, as follows. In each subgame for player 2, that is, after each
choice q1, player 2 should play optimally. This means that player 2 should play
according to the reaction function ˇ2.q1/ as derived in (6.2). Then, going back
to the beginning of the game, player 1 should choose q1 � 0 so as to maximize
…1.q1; ˇ2.q1//. In other words, player 1 takes player 2’s optimal reaction into
account when choosing q1. Assuming q1 � a � c (it is easy to verify that q1 > a � c

is not optimal) player 1 maximizes the expression

q1

�
a � c � q1 � a � c � q1

2

�
:

The maximum is obtained for q1 D .a � c/=2, and thus q2 D ˇ2 ..a � c/=2/ D
.a � c/=4. Hence, the subgame perfect equilibrium of the game is:

q1 D .a � c/=2; q2 D ˇ2.q1/ :

The subgame perfect equilibrium outcome is by definition the resulting play of the
game, that is, the actions chosen on the equilibrium path in the extensive form. In

1 q1 ≥ 0 2 q2 ≥ 0
(Π1 (q1 , q2 ), Π2 (q1 , q2 ))

Fig. 6.3 Extensive form representation of the Stackelberg game with firm 1 as the leader

3In mathematical notation the strategy set of player 2 is the set Œ0;1/Œ0;1/.
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Fig. 6.4 As before, the thick

black curve is the reaction
function of player 1 and the
thick gray curve is the
reaction function of player 2.
The point qS D . a�c

2
; a�c

4
/ is

the Stackelberg equilibrium
outcome: it is the point on the
reaction curve of player 2
where player 1 maximizes
profit. The associated
isoprofit curve of player 1 is
drawn

0 a − c

2

a − c

2

a − c

a − c

q
2

q
1

qS

this case, the equilibrium outcome is:

qS
1 D .a � c/=2; qS

2 D .a � c/=4 :

The letter ‘S’ here is the first letter of ‘Stackelberg’, after whom this equilibrium
is named. More precisely, this subgame perfect equilibrium (or outcome) is called
the Stackelberg equilibrium (or outcome) with player 1 as the leader and player 2
as the follower. Check that player 1’s profit in this equilibrium is higher and player
2’s profit is lower than in the Cournot equilibrium qC

1 D qC
2 D .a � c/=3. See also

Problem 6.9.
The Stackelberg equilibrium is depicted in Fig. 6.4. Observe that player 1, the

leader, picks the point on the reaction curve of player 2 which has maximal profit
for player 1. Hence, player 2 is on his reaction curve but player 1 is not.

6.5 Auctions

An auction is a procedure to sell goods among various interested parties, such that
the prices are determined in the procedure. Examples range from selling a painting
through an ascending bid auction (English auction) and selling flowers through a
descending bid auction (Dutch auction) to tenders for public projects and selling
mobile telephone frequencies.

In this section we consider a few simple, classical auction models. We start with
first and second-price sealed-bid auctions under complete information, continue
with a first-price sealed bid auction with incomplete information, and end with a
double auction between a buyer and a seller. Some variations and extensions are
discussed in Problems 6.10–6.14.
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6.5.1 Complete Information

Consider n individuals who are interested in one indivisible object. Each individual i

has valuation vi > 0 for the object. We assume without loss of generality v1 � v2 �
: : : � vn. In a first-price sealed-bid auction each individual submits a bid bi � 0 for
the object: the bids are simultaneous and independent (‘sealed bids’). The individual
with the highest bid wins the auction and obtains the object at a price equal to his
own bid (‘first price’). In case there are more highest bidders, the bidder among
these with the lowest number wins the auction and pays his own bid—this is just
a tie-breaking rule, which can be replaced by alternative tie-breaking assumptions
without affecting the basic results.

This situation gives rise to a game with player set N D f1; 2; : : : ; ng, where each
player i has strategy set Si D Œ0;1/ with typical element bi. The payoff function to
player i is4

ui.b1; : : : ; bi; : : : ; bn/ D
�
vi � bi if i D minfk 2 N j bk � bj for all j 2 Ng
0 otherwise.

One Nash equilibrium in this game is the strategy combination .b1; : : : ; bn/ D
.v2; v2; v3; : : : ; vn/. To check this one should verify that no player has a better bid,
given the bids of the other players: see Problem 6.10. In this equilibrium, player 1
obtains the object and pays v2, the second-highest valuation. Check that this is also
the outcome one would approximately expect in an auction with ascending bids
(English auction) or descending bids (Dutch auction).

This game has many Nash equilibria. In each of these equilibria, however, a
player with a highest valuation obtains the object. Bidding one’s true valuation as
well as bidding higher than one’s true valuation are weakly dominated strategies.
Bidding lower than one’s true valuation is not weakly dominated. (See Sect. 6.1
for the definition of weak domination.) Problem 6.10 is about proving all these
statements.

A second-price sealed-bid auction differs from a first-price sealed-bid auction
only in that the winner now pays the bid of the second highest bidder. In the case
that two or more players have the highest bid the player with the lowest number
wins and pays his own bid. The main property of this auction is that for each player
i, the strategy of bidding the true valuation vi weakly dominates all other strategies.
This property and other properties are collected in Problem 6.11.

4Also here the assumption is that the players know the game. This means, in particular, that the
players know each other’s valuations.
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6.5.2 Incomplete Information

We consider the same setting as in Sect. 6.5.1 but now assume that each bidder
knows his own valuation but has only a probabilistic estimate about the valuations
of the other bidders. In the terminology of types (cf. Sect. 5.1), a bidder’s valuation
is his true type, and each bidder holds a probability distribution over the type
combinations of the other bidders. To keep things simple, we assume that every
bidder’s type is drawn independently from the uniform distribution over the interval
Œ0; 1�, that this is common knowledge, and that each bidder learns his true type.
The auction is a first-price sealed-bid auction. Of course, we can no longer fix the
ordering of the valuations, but we can still employ the same tie-breaking rule in case
of more than one highest bid.

We discuss the case of two bidders and postpone the extension to n > 2 bidders
until Problem 6.13. In the associated two-person game, a strategy of player i 2 f1; 2g
should assign a bid to each of his possible types. Since the set of possible types is
the interval Œ0; 1� and it does not make sense to ever bid more than 1, a strategy is
a function si W Œ0; 1� ! Œ0; 1�. Hence, if player i’s type is vi, then bi D si.vi/ is his
bid according to the strategy si. The payoff function ui of player i assigns to each
strategy pair .si; sj/ (where j is the other player) player i’s expected payoff if these
strategies are played. In a Nash equilibrium of the game, player i maximizes this
payoff function given the strategy of player j, and vice versa. For this, it is sufficient
that each type of player i maximizes its expected payoff given the strategy of player
j, and vice versa; in other words (cf. Chap. 5), it is sufficient that the strategies form
a Bayesian equilibrium.5

We claim that s�
1 .v1/ D v1=2 and s�

2 .v2/ D v2=2 is a Nash equilibrium of this
game. To prove this, first consider type v1 of player 1 and suppose that player 2 plays
strategy s�

2 . If player 1 bids b1, then the probability that player 1 wins the auction is
equal to the probability that the bid of player 2 is smaller than or equal to b1. This
probability is equal to the probability that v2=2 is smaller than or equal to b1, i.e.,
to the probability that v2 is smaller than or equal to 2b1. We may assume without
loss of generality that b1 � 1=2, since according to s�

2 player 2 will never bid higher
than 1=2. Since v2 is uniformly distributed over the interval Œ0; 1� and 2b1 � 1, the
probability that v2 is smaller than or equal to 2b1 is just equal to 2b1. Hence, the
probability that the bid b1 of player 1 is winning is equal to 2b1 if player 2 plays s�

2 ,
and therefore the expected payoff from this bid is equal to 2b1.v1 � b1/ (if player
1 loses his payoff is zero). This is maximal for b1 D v1=2. Hence, s�

1 .v1/ D v1=2

is a best reply to s�
2 . The converse is almost analogous—the only difference being

that for player 2 to win player 1’s bid must be strictly smaller due to the tie-breaking
rule employed, but this does not change the associated probability under the uniform
distribution. Hence, we have proved the claim.

5The difference is that, for instance, single types may not play a best reply in a Nash equilibrium
since they have probability zero and therefore do not influence the expected payoffs.
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Thus, in this equilibrium, each bidder bids half his true valuation, and a player
with the highest valuation wins the auction.

How about the second-price sealed-bid auction with incomplete information?
This is more straightforward since bidding one’s true valuation (si.vi/ D vi for all
vi 2 Œ0; 1�) is a strategy that weakly dominates every other strategy, for each player i.
Hence, these strategies still form a (Bayesian) Nash equilibrium. See Problem 6.11.

6.5.3 Incomplete Information: A Double Auction

Assume there are two players, a buyer and a seller. The seller owns an object, for
which he has a valuation vs. The buyer has a valuation vb for this object. These
valuations are independently drawn from the uniform distribution over Œ0; 1�. The
seller knows (learns) his own valuation, and also the buyer knows his own valuation,
but each of them does not know the valuation of the other player, only that this is
drawn from the uniform distribution over Œ0; 1�.

The auction works as follows. The buyer and the seller independently and
simultaneously mention prices pb and ps. If pb � ps, then trade takes place at the
average price p D .pb C ps/=2, and the payoffs are vb � p to the buyer and p � vs to
the seller. If pb < ps then no trade takes place and both have payoff 0.

This is a game of incomplete information. The buyer has infinitely many types
vb 2 Œ0; 1�, and the seller has infinitely many types vs 2 Œ0; 1�. A strategy assigns a
price to each type. A strategy for the buyer is therefore a function pb W Œ0; 1� ! Œ0; 1�,
where pb.vb/ is the price that the buyer offers if his type (valuation) is vb. (Observe
that we may indeed assume that the price is never higher than 1.) Similarly, a strategy
for the seller is a function ps W Œ0; 1� ! Œ0; 1�, where ps.vs/ is the price that the seller
asks if his type (valuation) is vs.

Suppose the seller plays a strategy ps.�/. Then the expected payoff to the buyer if
his valuation is vb and he offers price pb is equal to

�
vb � pb C EŒps.vs/jpb � ps.vs/�

2

�
ProbŒpb � ps.vs/� (6.6)

where EŒps.vs/jpb � ps.vs/� denotes the expected price asked by the seller according
to his strategy ps.�/, conditional on this price being smaller than or equal to the price
pb of the buyer.

Similarly, suppose the buyer plays a strategy pb.�/. Then the expected payoff to
the seller if his valuation is vs and he asks price ps is equal to

�
ps C EŒpb.vb/jps � pb.vb/�

2
� vs

�
ProbŒps � pb.vb/� (6.7)

where EŒpb.vb/jps � pb.vb/� denotes the expected price offered by the buyer
according to his strategy pb.�/, conditional on this price being larger than or equal
to the price ps of the seller.
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Now the pair of strategies .pb.�/; ps.�// is a (Bayesian) Nash equilibrium if for
each vb 2 Œ0; 1�, pb.vb/ solves

max
pb2Œ0;1�

�
vb � pb C EŒps.vs/jpb � ps.vs/�

2

�
ProbŒpb � ps.vs/� (6.8)

and for each vs 2 Œ0; 1�, ps.vs/ solves

max
ps2Œ0;1�

�
ps C EŒpb.vb/jps � pb.vb/�

2
� vs

�
ProbŒps � pb.vb/� : (6.9)

This game has many Nash equilibria. Ideally, trade should take place whenever it
is efficient, i.e., whenever vb � vs. In Problem 6.14 we will see that not all Nash
equilibria are equally efficient.

6.6 Mixed Strategies and Incomplete Information

In this section we discuss how a mixed strategy Nash equilibrium in a bimatrix game
can be obtained as a limit of pure strategy Bayesian Nash equilibria in associated
games of incomplete information.

Consider the bimatrix game (cf. Chap. 3)

G D
� L R

T 2; 1 2; 0

B 3; 0 1; 3

�
;

which has a unique Nash equilibrium ..p�; 1 � p�/; .q�; 1 � q�// with p� D 3=4

and q� D 1=2. The interpretation of mixed strategies and of a mixed strategy
Nash equilibrium in particular is an old issue in the game-theoretic literature. One
obvious interpretation is that a player actually plays according to the equilibrium
probabilities. Although there is some empirical evidence that this may occur in
reality,6 this interpretation may not be entirely convincing, in particular since in
a mixed strategy Nash equilibrium a player is indifferent between all pure strategies
played with positive probability (cf. Problem 3.8). An alternative interpretation—
also mentioned in Sect. 3.1—is that a mixed strategy of a player represents the
belief(s) of the other player(s) about the strategic choice of that player. For instance,
in the above equilibrium, player 2 believes that player 1 plays T with probability 3/4.
The drawback of this interpretation is that these beliefs are subjective, and it is not
explained how they are formed. In this section we discuss a way to obtain a mixed
strategy Nash equilibrium as the limit of pure strategy (Bayesian) Nash equilibria
in games obtained by adding some objective uncertainty about the payoffs. In this

6For example, Walker and Wooders (2001).
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way, the strategic uncertainty of players as expressed by their beliefs is replaced by
the objective uncertainty of a chance move.

In the above example, suppose that the payoff to player 1 from .T;L/ is the
uncertain amount 2 C ˛ and the payoff to player 2 from .B;R/ is the uncertain
amount 3Cˇ. Assume that both ˛ and ˇ are (independently) drawn from a uniform
distribution over the interval Œ0; x�, where x > 0. Moreover, player 1 learns the true
value of ˛ and player 2 learns the true value of ˇ, and all this is common knowledge
among the players. In terms of types, player 1 knows his type ˛ and player 2 knows
his type ˇ. The new payoffs are given by

� L R

T 2C ˛; 1 2; 0

B 3; 0 1; 3C ˇ

�
:

A (pure) strategy of a player assigns an action to each of his types. Hence, for player
1 it is a map s1 W Œ0; x� ! fT;Bg and for player 2 it is a map s2 W Œ0; x� ! fL;Rg.

To find an equilibrium of this incomplete information game, suppose that player 2
has the following rather simple strategy: play L if ˇ is small and play R if ˇ is large.
Specifically, let b 2 Œ0; x� such that each type ˇ � b plays L and each type ˇ > b

plays R. Call this strategy sb
2. What is player 1’s best reply against sb

2? Suppose the
type of player 1 is ˛. If player 1 plays T, then his expected payoff is equal to 2C ˛

times the probability that player 2 plays L plus 2 times the probability that player 2
plays R. The probability that player 2 plays L, given the strategy sb

2, is equal to the
probability that ˇ is at most equal to b, and this is equal to b=x since ˇ is uniformly
distributed over Œ0; x�. Hence, the expected payoff to player 1 from playing T is

.2C ˛/ � b

x
C 2 � .1 � b

x
/ D 2C ˛ � b

x
:

Similarly, the expected payoff to player 1 from playing B is

3 � b

x
C 1 � .1 � b

x
/ D 1C 2 � b

x
:

From this, it easily follows that T is at least as good as B if ˛ � .2b � x/=b. Hence,
the following strategy of player 1 is a best reply against strategy sb

2 of player 2: play
T if ˛ � a and play B if ˛ < a, where a D .2b � x/=b. Call this strategy sa

1.
For the converse, assume that player 1 plays sa

1. To find player 2’s best reply
against sa

1 we proceed similarly as above. If type ˇ of player 2 plays L then the
expected payoff is 1 times the probability that player 1 plays T, hence 1 times .x �
a/=x. If type ˇ of player 2 plays R then his expected payoff is equal to 3C ˇ times
the probability that player 1 plays B, hence .3Cˇ/a=x. So L is at least as good as R

if ˇ � .x � 4a/=a. Hence, a best reply of player 2 against sa
1 is the strategy sb

2 with
b D .x � 4a/=a.
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Summarizing these arguments, we have that
�
sa
1; s

b
2

�
is a (Bayesian) Nash

equilibrium for

a D .2b � x/=b; b D .x � 4a/=a :

Solving these two equations simultaneously for solutions a; b 2 Œ0; x� yields:

a D .1=4/.x C 4 �
p

x2 C 16/; b D .1=2/.x � 4C
p

x2 C 16/ :

In this equilibrium, the a priori probability that player 1 will play T, that is, the
probability of playing T before he learns his type, is equal to .x � a/=x, hence to
.
p

x2 C 16C 3x � 4/=4x. Similarly, the a priori probability that player 2 plays L is
equal to b=x, hence to .x�4C

p
x2 C 16/=2x. What happens with these probabilities

as the amount of uncertainty decreases, i.e., for x approaching 0? For player 1,

lim
x!0

p
x2 C 16C 3x � 4

4x
D lim

x!0

x=
p

x2 C 16C 3

4
D 3

4
;

where the first equality follows from l’Hôpital’s rule. Similarly for player 2:

lim
x!0

x � 4C
p

x2 C 16

2x
D lim

x!0

1C x=
p

x2 C 16

2
D 1

2
:

In other words, these probabilities converge to the mixed strategy Nash equilibrium
of the original game.

6.7 Sequential Bargaining

In its simplest version, the bargaining problem involves two parties who have
to agree on one alternative within a set of feasible alternatives. If they fail to
reach an agreement, a specific ‘disagreement’ alternative is implemented. In the
game-theoretic literature on bargaining there are two main strands, namely the
cooperative, axiomatic approach, also known as the Nash bargaining problem, and
the noncooperative, strategic approach, with the Rubinstein alternating offers game
as main representative. In this section the focus is on the strategic approach, but in
Sect. 6.7.2 we also mention the connection with the Nash bargaining solution. For an
introduction to the axiomatic bargaining approach see Sect. 10.1, and see Chap. 21
for a more extensive study.
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6.7.1 Finite Horizon Bargaining

Consider the example in Sect. 1.3.5, where two players bargain over the division of
one unit of a perfectly divisible good, e.g., 1 liter of wine. If they do not reach an
agreement, we assume that no one gets anything. To keep the problem as simple
as possible, assume that the preferences of the players are represented by u1.˛/ D
u2.˛/ D ˛ for every ˛ 2 Œ0; 1�. That is, obtaining an amount ˛ of the good has
utility ˛ for each player. In this case the picture of the feasible set in Sect. 1.3.5
would be a triangle.

To model the bargaining process we consider the following alternating offers
procedure. There are T C 1 rounds, where T 2 N. In round t D 0 player 1
makes a proposal, say .˛; 1 � ˛/, where ˛ 2 Œ0; 1�, meaning that he claims an
amount ˛ for himself, so that player 2 obtains 1 � ˛. Player 2 can either accept this
proposal, implying that the proposal is implemented and the game is over, or reject
the proposal. In the latter case the next round t D 1 starts, and the first round is
repeated with the roles of the players interchanged: player 2 makes the proposal and
player 1 accepts or rejects it. If player 1 accepts the proposal then it is implemented
and the game is over; if player 1 rejects the proposal then round t D 2 starts, and the
roles of the players are interchanged again. Thus, at even rounds, player 1 proposes;
at odd rounds, player 2 proposes. The last possible round is round T: if this round is
reached, then the disagreement alternative .0; 0/ is implemented.

We assume that utilities are discounted. Specifically, there is a discount factor
0 < ı < 1 such that receiving an amount ˛ at round t has utility ıt˛ at round 0. Or,
receiving an amount ˛ at time t has utility ı˛ at round t � 1. This reflects the fact
that receiving the same amount earlier is more valuable.

In Fig. 6.5 this bargaining procedure is represented as a game in extensive form.
Here, we assume that T is odd, so that the last proposal at time t D T � 1 is made
by player 1.

We look for a subgame perfect equilibrium of this game, which can be found
by backward induction. Note that subgames start at each decision node of a player,
and that at each such node in Fig. 6.5 where a player has to make, accept or reject

· · ·

t = 0 t = 1 t = 2 t = T − 1 t = T

αααα

1 2 2 2 1 2

R R R

A

1 1 2 1

R R

A A A A

(α, 1 − α) δ(α, 1 − α) δ2 (α, 1 − α) δT − 2 (α, 1 − α) δT − 1 (α, 1 − α)

(0 , 0)

Fig. 6.5 The extensive form representation of the finite horizon bargaining procedure. The
number of rounds T C 1 is even, ˛ denotes the proposed amount for player 1, A is acceptance
and R is rejection



6.7 Sequential Bargaining 107

t = 0 t = 1 t = 2

ααα

1 2 2 2

R R R

A

1 1 2

A A

(α, 1 − α) δ(α, 1 − α) δ2 (α, 1 − α)

· · ·

t = T − 2 t = T − 1

α

2 1

R R

2

A A

δ − 3 (α, 1 − α) δT − 2 (α, 1 − α)

(δT − 1 , 0)

Fig. 6.6 The game of Fig. 6.5 reduced by replacing rounds T �1 and T by the equilibrium payoffs
of the associated subgames

a proposal, actually infinitely many subgames start, since there are infinitely many
possible paths leading to that node.

To start the analysis, at the final decision node, player 2 accepts if ˛ < 1 and
is indifferent between acceptance and rejection if ˛ D 1 : this is because rejection
results in getting 0 at round T. In the subgame starting at round T �1with a proposal
of player 1, the only equilibrium therefore is for player 1 to propose ˛ D 1 and for
player 2 to accept any proposal: if player 2 would reject ˛ D 1 then player 1 could
improve by proposing 0 < ˛ < 1; hence, we only have an equilibrium if player 2
accepts ˛ D 1 and, clearly, proposing ˛ D 1 is optimal for player 1. Hence, we can
replace the part of the game from round T � 1 on by the pair of payoffs .ıT�1; 0/, as
in Fig. 6.6.

In this reduced game, in the subgame starting at round T � 2, player 1 can obtain
ıT�1 by rejecting player 2’s proposal. Recall that this is the discounted utility at time
t D 0 of receiving an amount 1 at time T � 1; the discounted utility of the amount
1 at time T � 2 is equal to ı. Hence, in a backward induction equilibrium player
2 proposes ˛ D ı and player 1 accepts this proposal or any higher ˛ and rejects
any lower ˛. Hence, we can replace this whole subgame by the pair of payoffs
.ıT�2ı; ıT�2.1�ı// D .ıT�1; ıT�2.1�ı//. Continuing this line of reasoning, in the
subgame starting at round T � 3, player 1 proposes ˛ D 1� ı.1� ı/, which will be
accepted by player 2. This results in the payoffs .ıT�3.1 � ı.1 � ı//; ıT�2.1 � ı//.
This can be written as

�
ıT�3.1 � ı C ı2/; ıT�3.ı � ı2/

�
. And so on and so forth.

The general principle is that each player offers the other player a share equal to ı
times the share the other player can expect in the next round.

By backtracking all the way to round 0 (see Table 6.1), we find that player 1
proposes 1 � ı C ı2 � : : : C ıT�1 and player 2 accepts this proposal, resulting in
the payoffs 1� ı C ı2 � : : :C ıT�1 for player 1 and ı � ı2 C : : : � ıT�1 for player
2. This is the subgame perfect equilibrium outcome of the game and the associated
payoffs. This outcome is the path of play, induced by the following subgame perfect
equilibrium:

• At even rounds t, player 1 proposes ˛ D 1�ıC: : :CıT�1�t and player 2 accepts
this proposal or any smaller ˛, and rejects any larger ˛.
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Table 6.1 The proposals made in the subgame perfect equilibrium

Round Proposer Share for player 1 Share for player 2

T 0 0

T � 1 1 1 0

T � 2 2 ı 1� ı

T � 3 1 1� ı C ı2 ı � ı2

T � 4 2 ı � ı2 C ı3 1� ı C ı2 � ı3

:
:
:

:
:
:

:
:
:

:
:
:

0 1 1� ı C ı2 � : : :C ıT�1 ı � ı2 C : : :� ıT�1

• At odd rounds t, player 2 proposes ˛ D ı�ı2C: : :CıT�1�t and player 1 accepts
this proposal or any larger ˛, and rejects any smaller ˛.

In Problem 6.16 some variations on this finite horizon bargaining game are
discussed.

6.7.2 Infinite Horizon Bargaining

In this subsection we consider the same bargaining problem as in the previous
subsection, but now we assume T D 1: the number of rounds may potentially
be infinite. If no agreement is ever reached, then no player obtains anything. This
game, like the finite horizon game, has many Nash equilibria: see Problem 6.16(f).

One way to analyze the game is to consider the finite horizon case and take the
limit as T approaches infinity: see Problem 6.16(e). In fact, the resulting distribution
is the uniquely possible outcome of a subgame perfect equilibrium, as can be seen
by comparing the answer to Problem 6.16(e) with the result presented below. Of
course, this claim is not proved by just taking the limit.

Note that a subgame perfect equilibrium cannot be obtained by backward
induction, since the game has no final decision nodes. Here, we will just describe a
pair of strategies and show that they are a subgame perfect equilibrium of the game.
A proof that the associated outcome is the unique outcome resulting in any subgame
perfect equilibrium can be found in the literature.

Let x� D .x�
1 ; x

�
2 / and y� D .y�

1 ; y
�
2 / be such that x�

1 ; x
�
2 ; y

�
1 ; y

�
2 � 0, x�

1 C x�
2 D

y�
1 C y�

2 D 1, and moreover

x�
2 D ıy�

2 ; y�
1 D ıx�

1 : (6.10)

It is not difficult to verify that x� D .1=.1 C ı/; ı=.1 C ı// and y� D .ı=.1 C
ı/; 1=.1C ı//. Consider the following strategies for players 1 and 2, respectively:

.��
1 / At t D 0; 2; 4; : : : propose x�; at t D 1; 3; 5; : : : accept a proposal z D .z1; z2/

of player 2 if and only if z1 � ıx�
1 .



6.7 Sequential Bargaining 109

.��
2 / At t D 1; 3; 5; : : : propose y�; at t D 0; 2; 4; : : : accept a proposal z D .z1; z2/

of player 1 if and only if z2 � ıy�
2 .

These strategies are stationary: the players always make the same proposals.
Moreover, a player accepts any proposal that offers him at least the discounted value
of his own demand. According to (6.10), player 2 accepts the proposal x� and player
1 accepts the proposal y�. Hence, play of the strategy pair .��

1 ; �
�
2 / results in player

1’s proposal x� D .1=.1 C ı/; ı=.1 C ı// being accepted at round 0, so that these
are also the payoffs. We will show that .��

1 ; �
�
2 / is a subgame perfect equilibrium of

the game.
To show this, note that there are two kinds of subgames: subgames where a player

has to make a proposal; and subgames where a proposal is on the table and a player
has to choose between accepting and rejecting the proposal.

For the first kind of subgame we may without loss of generality consider the
entire game, i.e., the game starting at t D 0. We have to show that .��

1 ; �
�
2 / is a

Nash equilibrium in this game. First, suppose that player 1 plays ��
1 . By accepting

player 1’s proposal at t D 0, player 2 has a payoff of ı=.1 C ı/. By rejecting this
proposal, the maximum player 2 can obtain against ��

1 is ı=.1 C ı/, by proposing
y� in round t D 1. Proposals z with z2 > y�

2 and thus z1 < y�
1 are rejected by player

1. Hence, ��
2 is a best reply against ��

1 . Similarly, if player 2 plays ��
2 , then the best

player 1 can obtain is x�
1 at t D 0 with payoff 1=.1C ı/, since player 2 will reject

any proposal that gives player 1 more than this, and also does not offer more.
For the second kind of subgame, again we may without loss of generality take

t D 0 and assume that player 1 has made some proposal, say z D .z1; z2/—the
argument for t odd, when there is a proposal of player 2 on the table, is analogous.
First, suppose that in this subgame player 1 plays ��

1 . If z2 � ıy�
2 , then accepting

this proposal yields player 2 a payoff of z2 � ıy�
2 D ı=.1 C ı/. By rejecting, the

maximum player 2 can obtain against ��
1 is ı=.1 C ı/ by proposing y� at t D 1,

which will be accepted by player 1. If, on the other hand, z2 < ıy�
2 , then player 2

can indeed better reject z and obtain ı=.1 C ı/ by proposing y� at t D 1. Hence,
��
2 is a best reply against ��

1 . Next, suppose player 2 plays ��
2 . Then z is accepted

if z2 � ıy�
2 and rejected otherwise. In the first case it does not matter how player

1 replies, and in the second case the game starts again with player 2 as the first
proposer, and by an argument analogous to the argument in the previous paragraph,
player 1’s best reply is ��

1 .
We have, thus, shown that .��

1 ; �
�
2 / is a subgame perfect equilibrium of the game.

In Problem 6.17 some variations on this game are discussed.
We conclude this section with two remarks.

Remark 6.1 Nothing in the whole analysis changes if we view the number ı not
as a discount factor but as the probability that the game continues to the next
round. Specifically, if a proposal is rejected, then assume that with probability
1 � ı the game stops and each player receives 0, and with probability ı the game
continues in the usual way. Under this alternative interpretation, the game ends with
probability 1 [Problem 6.17(e)], which makes the infinite horizon assumption more
acceptable. �
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Remark 6.2 In the subgame perfect equilibrium of the infinite horizon game the
shares are 1=.1 C ı/ for player 1 and ı=.1 C ı/ for player 2. For ı converging to
1, i.e., the players becoming more patient, these shares converge to 1=2 for each,
which is the Nash bargaining outcome of the game, arising from maximizing the
product ˛.1 � ˛/ for 0 � ˛ � 1 (cf. Sect. 1.3.5). This is true more generally, i.e.,
also if the utility functions are more general. See Sects. 10.1.2 and 21.4. �

6.8 Problems

6.1. Cournot with Asymmetric Costs

Consider the Cournot model of Sect. 6.2.1 but now assume that the firms have
different marginal costs c1; c2 � 0. Assume 0 � c1; c2 < a and a � 2c1 � c2,
a � 2c2 � c1. Compute the Nash equilibrium.

6.2. Cournot Oligopoly

Consider the Cournot model of Sect. 6.2.1 but now assume that there are n firms
instead of two. Each firm i D 1; : : : ; n offers qi � 0 and the market price is

P.q1; : : : ; qn/ D maxfa � q1 � : : : � qn; 0g :

Each firm still has marginal cost c with a > c � 0 and no fixed costs.

(a) Formulate the game corresponding to this situation. In particular, write down
the payoff functions.

(b) Derive the reaction functions of the players.
(c) Derive a Nash equilibrium of the game by trying equal quantities offered. What

happens if the number of firms becomes large?
(d) Show that the Nash equilibrium found in (c) is unique.

6.3. Quantity Competition with Heterogenous Goods

Suppose, in the Cournot model, that the firms produce heterogenous goods, which
have different market prices. Specifically, suppose that these market prices are
given by:

p1 D maxf5� 3q1 � 2q2; 0g; p2 D maxf4:5 � 1:5 q1 � 3q2; 0g :

The firms still compete in quantities and have equal constant marginal costs c, with
c < 4:5.

(a) Formulate the game corresponding to this situation. In particular, write down
the payoff functions.

(b) Solve for the reaction functions and the Nash equilibrium of this game. Also
compute the corresponding prices and profits.
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(c) Compute the quantities at which joint profit is maximized. Also compute the
corresponding prices.
In (d)–(f), we assume that the firms compete in prices.

(d) Derive the demands q1 and q2 as a function of the prices. Set up the associated
game where the prices p1 and p2 are now the strategic variables.

(e) Solve for the reaction functions and the Nash equilibrium of this game. Also
compute the corresponding quantities and profits.

(f) Compute the prices at which joint profit is maximized. Also compute the
corresponding quantities.

(g) Compare the results found under (b) and (c) with those under (e) and (f).

6.4. A Numerical Example of Cournot Competition with Incomplete Information

Redo the model of Sect. 6.2.2 for the following values of the parameters: a D 1,
c D 0, # D 1=2, cL D 0, cH D 1=4. Compute the Nash equilibrium and compare
with what was found in the text. Also compare with the complete information case
by using the answer to Problem 6.1.

6.5. Cournot Competition with Two-Sided Incomplete Information

Consider the Cournot game of incomplete information of Sect. 6.2.2 and assume
that also firm 1 can have high costs or low costs, say ch with probability � and
cl with probability 1 � � . Set up the associated game and compute the (four)
reaction functions. (Assume that the parameters of the game are such that the Nash
equilibrium quantities are positive and the relevant parts of the reaction functions
can be found by differentiating the payoff functions (i.e., no corner solutions).) How
can the Nash equilibrium be computed? (You do not actually have to compute it
explicitly.)

6.6. Incomplete Information About Demand

Consider the Cournot game of incomplete information of Sect. 6.2.2 but now assume
that the incomplete information is not about the cost of firm 2 but about market
demand. Specifically, assume that the number a can be either high, aH, with
probability # , or low, aL, with probability 1 � # . Firm 2 knows the value for
sure but firm 1 only knows these probabilities. Set up the game and compute the
reaction functions and the Nash equilibrium. (Make appropriate assumptions on the
parameters aH, aL, # , and c to avoid corner solutions.)

6.7. Variations on Two-Person Bertrand

(a) Assume that the two firms in the Bertrand model of Sect. 6.3 have different
marginal costs, say c1 < c2 < a. Derive the best reply functions and find the
Nash–Bertrand equilibrium or equilibria, if any.

(b) Reconsider the questions in (a) for the case where prices and costs are
restricted to integer values, i.e., p1; p2; c1; c2 2 f0; 1; 2; : : :g. (This reflects the
assumption that there is a smallest monetary unit.) Specifically, consider two
cases: (i) a D 6, c1 D c2 D 2 and (ii) a D 6, c1 D 1, c2 D 2.
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6.8. Bertrand with More Than Two Firms

Suppose that there are n > 2 firms in the Bertrand model of Sect. 6.3. Assume again
that all firms have equal marginal cost c, and that the firm with the lowest price gets
the whole market. In case of a tie, each firm with the lowest price gets an equal share
of the market. Set up the associated game and find all its Nash equilibria.

6.9. Variations on Stackelberg

(a) Suppose, in the model in Sect. 6.4, that the firms have different marginal costs
c1 and c2 (cf. Problem 6.1). Compute the Stackelberg equilibrium and outcome
with firm 1 as a leader and with firm 2 as a leader.

(b) Give a logical argument why the payoff of the leader in a Stackelberg equilib-
rium is always at least as high as his payoff in the Cournot equilibrium. Can you
generalize this to arbitrary games?

(c) Consider the situation in Sect. 6.4, but now assume that there are n firms, firm 1
moves first, firm 2 second, etc. Assume again perfect information, and compute
the subgame perfect equilibrium.

6.10. First-Price Sealed-Bid Auction

Consider the game associated with the first-price sealed-bid auction in Sect. 6.5.1,
with v1 � : : : � vn > 0 as there.

(a) Show that .b1; b2; b3; : : : ; bn/ D .v2; v2; v3; : : : ; vn/ is a Nash equilibrium in
this game.

(b) Show that, in any Nash equilibrium of the game, a player with the highest
valuation obtains the object. Exhibit at least two other Nash equilibria in this
game, apart from the equilibrium in (a).

(c) Show that bidding one’s true valuation as well as bidding higher than one’s
true valuation are weakly dominated strategies. Also show that any positive
bid lower than one’s true valuation is not weakly dominated. (Note: to show
that a strategy is weakly dominated one needs to exhibit some other strategy
that is always—that is, whatever the other players do—at least as good as the
strategy under consideration and at least once—that is, for at least one strategy
combination of the other players—strictly better.)

(d) Show that, in any Nash equilibrium of this game, at least one player plays a
weakly dominated strategy.

6.11. Second-Price Sealed-Bid Auction

Consider the game associated with the second price sealed bid auction in Sect. 6.5.1.

(a) Formulate the payoff functions in this game.
(b) Show that .b1; : : : ; bn/ D .v1; : : : ; vn/ is a Nash equilibrium in this game.
(c) Show, for each player, that bidding one’s true valuation weakly dominates any

other action. (Show that this holds even if each player only knows his own
valuation.)
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(d) Show that .b1; : : : ; bn/ D .v2; v1; 0; : : : ; 0/ is a Nash equilibrium in this game.
What about .b1; : : : ; bn/ D .v1; 0; 0; : : : ; 0/?

(e) Determine all Nash equilibria in the game with two players (n D 2). (Hint:
compute the best reply functions and make a diagram.)

6.12. Third-Price Sealed-Bid Auction

In the auction of Sect. 6.5.1, assume that there are at least three bidders and that the
highest bidder wins and pays the third highest bid.

(a) Show that for any player i bidding vi weakly dominates any lower bid but does
not weakly dominate any higher bid.

(b) Show that the strategy combination in which each player i bids his true valuation
vi is in general not a Nash equilibrium.

(c) Find some Nash equilibria of this game.

6.13. n-Player First-Price Sealed-Bid Auction with Incomplete Information

Consider the setting of Sect. 6.5.2 but now assume that the number of bid-
ders/players is n � 2. Show that .s�

1 ; : : : ; s
�
n / with s�

i .vi/ D .1 � 1=n/vi for every
player i is a Nash equilibrium of this game. (Hence, for large n, each bidder almost
bids his true valuation.)

6.14. Double Auction

This problem is about the auction in Sect. 6.5.3.

(a) Fix a number x 2 Œ0; 1� and consider the following strategies pb.�/ and ps.�/:

pb.vb/ D
�

x if vb � x

0 if vb < x
and ps.vs/ D

�
x if vs � x

1 if vs > x
:

Show that these strategies constitute a Nash equilibrium.
(b) For the equilibrium in (a), compute the probability that trade takes place

conditional on vb � vs. For which value of x is this probability maximal?
(c) Consider linear strategies of the form pb.vb/ D ab C cbvb and ps.vs/ D as C

csvs, where ab; cb; as; cs are positive constants. Determine the values of the four
constants so that these strategies constitute a Nash equilibrium.

(d) Answer the same question as in (b) for the equilibrium in (c). Which of the
equilibria in (b) and (c) is the most efficient, i.e., has the highest probability of
resulting in trade conditional on vb � vs?

6.15. Mixed Strategies and Objective Uncertainty

Consider the bimatrix game

� L R

T 4; 1 1; 3

B 1; 2 3; 0

�
:
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(a) Compute the Nash equilibrium of this game.
(b) Add some uncertainty to the payoffs of this game and find a pure (Bayesian)

Nash equilibrium of the resulting game of incomplete information, such that
the induced a priori mixed strategies converge to the Nash equilibrium of the
original game as the amount of uncertainty shrinks to 0.

6.16. Variations on Finite Horizon Bargaining

(a) Adapt the arguments and the results of Sect. 6.7.1 for the case where T is even
and the case where player 2 proposes at even rounds.

(b) Let T D 3 in Sect. 6.7.1 and suppose that the players have different discount
factors ı1 and ı2. Compute the subgame perfect equilibrium and the subgame
perfect equilibrium outcome.

(c) Consider again the model of Sect. 6.7.1, let T D 3, but now assume that the
utility function of player 2 is u2.˛/ D p

˛ for all ˛ 2 Œ0; 1�. Hence, the utility
of receiving ˛ at time t for player 2 is equal to ıt

p
˛. Compute the subgame

perfect equilibrium and the subgame perfect equilibrium outcome.
(d) Suppose, in the model of Sect. 6.7.1, that at time T the ‘disagreement’ distribu-

tion is s D .s1; s2/ with s1; s2 � 0 and s1 C s2 � 1, rather than .0; 0/. Compute
the subgame perfect equilibrium and the subgame perfect equilibrium outcome.

(e) In (d), compute the limits of the equilibrium shares for T going to infinity. Do
these limits depend on s?

(f) Show, in the game in Sect. 6.7.1, that subgame perfection really has a bite.
Specifically, for every s D .s1; s2/ with s1; s2 � 0 and s1 C s2 D 1, exhibit
a Nash equilibrium of the game in Fig. 6.5 resulting in the distribution s.

6.17. Variations on Infinite Horizon Bargaining

(a) Determine the subgame perfect equilibrium outcome and subgame perfect
equilibrium strategies in the game in Sect. 6.7.2 when the players have different
discount factors ı1 and ı2.

(b) Determine the subgame perfect equilibrium outcome and subgame perfect
equilibrium strategies in the game in Sect. 6.7.2 when player 2 proposes at even
rounds and player 1 at odd rounds.

(c) Determine the subgame perfect equilibrium outcome and subgame perfect
equilibrium strategies in the game in Sect. 6.7.2 when the ‘disagreement’
distribution is s D .s1; s2/ with s1; s2 � 0 and s1 C s2 � 1, rather than .0; 0/, in
case the game never stops.

(d) Consider the game in Sect. 6.7.2, but now assume that the utility function of
player 2 is u2.˛/ D p

˛ for all ˛ 2 Œ0; 1�. Hence, the utility of receiving ˛ at
time t for player 2 is equal to ıt

p
˛. Compute the subgame perfect equilibrium

and the subgame perfect equilibrium outcome. [Hint: first determine for this
situation the values for x� and y� analogous to (6.10).]
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(e) Interpret, as at the end of Sect. 6.7.2, the discount factor as the probability that
the game continues to the next round. Show that the game ends with probability
equal to 1.

6.18. A Principal-Agent Game

There are two players: a worker (the agent) and an employer (the principal). The
worker has three choices: either reject the contract offered to him by the employer,
or accept this contract and exert high effort, or accept the contract and exert low
effort. If the worker rejects the contract then the game ends with a payoff of zero
to the employer and a payoff of 2 to the worker (his reservation payoff). If the
worker accepts the contract he works for the employer: if he exerts high effort the
revenues for the employer will be 12 with probability 0.8 and 6 with probability
0.2; if he exerts low effort then these revenues will be 12 with probability 0.2 and
6 with probability 0.8. The employer can only observe the revenues but not the
effort exerted by the worker: in the contract he specifies a high wage wH in case the
revenues equal 12 and a low wage wL in case the revenues are equal to 6. These
wages are the respective choices of the employer. The final payoff to the employer
if the worker accepts the contract will be equal to revenues minus wage. The worker
will receive his wage; his payoff equals this wage minus 3 if he exerts high effort
and this wage minus 0 if he exerts low effort.

(a) Set up the extensive form of this game. Does this game have incomplete or
imperfect information? What is the associated strategic form?

(b) Determine the subgame perfect equilibrium or equilibria of the game.

6.19. The Market for Lemons

A buyer wants to buy a car but does not know whether the particular car he is
interested in has good or bad quality (a lemon is a car of bad quality). About half
of the market consists of good quality cars. The buyer offers a price p to the seller,
who is informed about the quality of the car; the seller may then either accept of
reject this price. If he rejects, there is no sale and the payoff will be 0 to both. If he
accepts, the payoff to the seller will be the price minus the value of the car, and to
the buyer it will be the value of the car minus the price. A good quality car has a
value of 15,000, a lemon has a value of 5,000.

(a) Set up the extensive as well as strategic form of this game.
(b) Compute the subgame perfect equilibrium or equilibria of this game.

6.20. Corporate Investment and Capital Structure

Consider an entrepreneur who has started a company but needs outside financing to
undertake an attractive new project. The entrepreneur has private information about
the profitability of the existing company, but the payoff of the new project cannot be
disentangled from the payoff of the existing company—all that can be observed is
the aggregate profit of the firm. Suppose the entrepreneur offers a potential investor
an equity stake in the firm in exchange for the necessary financing. Under what
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circumstances will the new project be undertaken, and what will the equity stake
be? In order to model this as a game, assume that the profit of the existing company
can be either high or low: � D L or � D H, where H > L > 0. Suppose that
the required investment for the new project is I, the payoff will be R, the potential
investor’s alternative rate of return is r, with R > I.1 C r/. The game is played as
follows.

1. Nature determines the profit of the existing company. The probability that � D L

is p.
2. The entrepreneur learns � and then offers the potential investor an equity stake

s, where 0 � s � 1.
3. The investor observes s (but not �) and then decides either to accept or to reject

the offer.
4. If the investor rejects then the investor’s payoff is I.1 C r/ � I and the

entrepreneur’s payoff is � . If he accepts his payoff is s.� C R/ � I and the
entrepreneur’s is .1 � s/.� C R/.

(a) Set up the extensive form and the strategic form of this signaling game.
(b) Compute the perfect Bayesian Nash equilibrium or equilibria, if any.

6.21. A Poker Game

Consider the following game. There are two players, I and II. Player I deals II one of
three cards—Ace, King, or Queen—at random and face down. II looks at the card.
If it is an Ace, II must say “Ace”, if a King he can say “King” or “Ace”, and if a
Queen he can say “Queen” or “Ace”. If II says “Ace” player I can either believe him
and give him $1 or ask him to show his card. If it is an Ace, I must pay II $2, but if
it is not, II pays I $2. If II says “King” neither side looses anything, but if he says
“Queen” II must pay player I $1.

(a) Set up the extensive form and the strategic form of this zerosum game.
(b) Determine its value and optimal strategies (cf. Chap. 2).

6.22. A Hotelling Location Problem

Consider n players each choosing a location in the interval Œ0; 1�. One may think
of n shops choosing locations in a street, n firms choosing product characteristics
on a continuous scale from 0 to 1, or n political parties choosing positions on the
ideological scale. We assume that customers or voters are uniformly distributed over
the interval, with a total of 1. The customers go to (voters vote for) the nearest shop
(candidate). For example, if n D 2 and the chosen positions are x1 D 0:2 and
x2 D 0:6, then 1 obtains 0:4 and 2 obtains 0:6 customers (votes). In case two or
more players occupy the same position they share the customers or voters for that
position equally.

In the first scenario, the players care only about winning or loosing in terms of
the number of customers or votes. This scenario may be prominent for presidential
elections, as an example. For each player the best alternative is to be the unique
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winner, the second best alternative is to be one of the winners, and the worst
alternative is not to win. For this scenario, answer questions (a) and (b).

(a) Show that there is a unique Nash equilibrium for n D 2.
(b) Exhibit a Nash equilibrium for n D 3.

In the second scenario, the payoffs of the players are given by the total numbers of
customers (or voters) they acquire. For this scenario, answer questions (c) and (d).

(c) Show that there is a unique Nash equilibrium for n D 2.
(d) Is there a Nash equilibrium for n D 3? How about n D 4?

6.23. Median Voting

Of the n persons in a room, each person i has a most favorite room temperature ti,
and the further away (lower or higher) the room temperature is from ti, the worse it
is for this person. Specifically, if the room temperature is x, then person i’s utility
is equal to �jx � tij. In order to find a compromise, the janitor asks each person to
propose a room temperature, and based on the proposed temperatures a compromise
is determined. The proposed temperatures are not necessarily equal to the favorite
temperatures. Only temperatures (proposed and favorite) in the interval 0–30 ıC are
possible.

(a) Suppose the janitor announces that he will take the average of the proposed
temperatures as the compromise temperature. Formulate this situation as an
n-person game, that is, give the strategy sets of the players and the payoff
functions. Does this game have a Nash equilibrium?

(b) Suppose n is odd, and suppose the janitor announces that he will take the median
of the proposed temperatures as the compromise temperature. Formulate this
situation as an n-person game, that is, give the strategy sets of the players and
the payoff functions. Show that, for each player, proposing his ideal temperature
weakly dominates any other strategy: thus, in particular, .t1; : : : ; tn/ is a Nash
equilibrium of this game. Does the game have any other Nash equilibria?

6.24. The Uniform Rule

An amount M � 0 of a good (labor, green pea soup, : : :) is to be distributed
completely among n persons. Each person i considers an amount ti � 0 as the ideal
amount, and the further away the allocated amount is from this ideal, the worse it
is. Specifically, if the amount allocated to person i is xi, then person i’s utility is
equal to �jx � tij. In order to find a compromise, each person is asked to report
an amount, and based on the reported amounts a compromise is determined. Let
the ideal amounts be given by t1 � t2 � : : : � tn. The reported amounts are not
necessarily equal to the ideal amounts.

(a) Suppose M is distributed proportionally to the reported amounts, that is, if the

reported amounts are .r1; : : : ; rn/, then person i receives xi D
�

ri=
Pn

jD1 rj

�
M.
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(If all rj are zero then take xi D M=n.) Formulate this situation as a game. Does
this game have a Nash equilibrium?

Consider the following division rule, called the uniform rule. Let .r1; : : : ; rn/ denote
the reported amounts. If M �

Pn
jD1 rj, then each person i receives

xi D minfri; �g ;

where � is such that
Pn

jD1 xj D M. If M �
Pn

jD1 rj, then each person i receives

xi D maxfri; �g ;

where, again, � is such that
Pn

jD1 xj D M.

(b) Suppose that n D 3 and r1 D 1, r2 D 2, and r3 D 3. Apply the uniform rule for
M D 4, M D 5, M D 5:5, M D 6, M D 6:5, M D 7, M D 8, M D 9.

(c) Suppose, for the general case, that the uniform rule is used to distribute the
amount M. Formulate this situation as a game. Show that reporting one’s ideal
amount weakly dominates any other strategy: thus, in particular, .t1; : : : ; tn/ is a
Nash equilibrium of this game. Does the game have any other Nash equilibria?

6.25. Reporting a Crime

There are n individuals who witness a crime. Everybody would like the police to be
called. If this happens, each individual derives satisfaction v > 0 from it. Calling
the police has a cost of c, where 0 < c < v. The police will come if at least one
person calls. Hence, this is an n-person game in which each player chooses from
fC;Ng: C means ‘call the police’ and N means ‘do not call the police’. The payoff
to person i is 0 if nobody calls the police, v � c if i (and perhaps others) call the
police, and v if the police is called but not by person i.

(a) What are the Nash equilibria of this game in pure strategies? In particular, show
that the game does not have a symmetric Nash equilibrium in pure strategies (a
Nash equilibrium is symmetric if every player plays the same strategy).

(b) Compute the symmetric Nash equilibrium or equilibria in mixed strategies.
(Hint: suppose, in such an equilibrium, every person plays C with probability
0 < p < 1. Use the fact that each player must be indifferent between C and N.)

(c) For the Nash equilibrium/equilibria in (b), compute the probability of the crime
being reported. What happens to this probability if n becomes large?

6.26. Firm Concentration

Consider a market with ten firms. Simultaneously and independently, the firms
choose between locating downtown and locating in the suburbs. The profit of
each firm is influenced by the number of other firms that locate in the same area.
Specifically, the profit of a firm that locates downtown is given by 5n � n2 C 50,
where n denotes the number of firms that locate downtown. Similarly, the profit of
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a firm that locates in the suburbs is given by 48 � m, where m denotes the number
of firms that locate in the suburbs. In equilibrium how many firms locate in each
region and what is the profit of each?

6.27. Tragedy of the Commons

There are n farmers, who use a common piece of land to graze their goats. Each
farmer i chooses a number of goats gi—for simplicity we assume that goats are
perfectly divisible. The value to a farmer of grazing a goat when the total number
of goats is G, is equal to v.G/ per goat. We assume that there is a number NG such
that v.G/ > 0 for G < NG and v.G/ D 0 for G � NG. Moreover, v is continuous, and
twice differentiable at all G ¤ NG, with v0.G/ < 0 and v00.G/ < 0 for G < NG. The
payoff to farmer i if each farmer j chooses gj, is equal to

giv.g1 C : : :C gi�1 C gi C giC1 C : : :C gn/ � cgi ;

where c � 0 is the cost per goat.

(a) Interpret the conditions on the function v.
(b) Show that the total number of goats in a Nash equilibrium .g�

1 ; : : : ; g
�
n / of this

game, G� D g�
1 C : : :C g�

n , satisfies

v.G�/C .1=n/G�v0.G�/ � c D 0 :

(c) The socially optimal number of goats G�� is obtained by maximizing Gv.G/ �
cG over G � 0. Show that G�� satisfies

v.G��/C G��v0.G��/ � c D 0 :

(d) Show that G� > G��. (Hence, in a Nash equilibrium too many goats are grazed.)

6.9 Notes

The Cournot model in Sect. 6.2 dates back from Cournot (1838), and the Bertrand
model in Sect. 6.3 from Bertrand (1883). The occurrence of the Bertrand price
equilibrium is often referred to as the Bertrand paradox. On Cournot versus
Bertrand, see Magnan de Bornier (1992). The Stackelberg equilibrium (Sect. 6.4)
is named after von Stackelberg (1934).

Our coverage of auction theory is limited, and based on Osborne (2004) and
Gibbons (1992). For more extensive overviews and treatments see Milgrom (2004)
and Krishna (2002). The second price auction is also called Vickrey auction

(Vickrey, 1961). The condition that bidders bid their true valuation is an example
of the incentive compatibility requirement.

Section 6.6 is based on Harsanyi (1973), see also Gibbons (1992).
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Axiomatic bargaining theory was initiated by Nash (1950). The noncooperative,
strategic approach in Sect. 6.7 is based on Rubinstein (1982). See also Nash (1953)
for a noncooperative approach to the Nash bargaining solution.

The goods in the model of Problem 6.3 are strategic substitutes. In duopoly
models such as this the distinction between strategic substitutes and strategic com-

plements is important for the differences between quantity and price competition.
See, e.g., Tirole (1988).

Problem 6.19 (market for lemons), exhibiting the adverse selection problem, is
based on Akerlof (1970). Problem 6.20 is taken from Gibbons (1992). Problem 6.21
(poker game) is taken from Thomas (1986). For an axiomatization of the median
voting method in Problem 6.23 see Moulin (1980), and for an axiomatization of the
uniform rule in Problem 6.24 see Sprumont (1991).

Problem 6.26 is taken from Watson (2002). For the tragedy of the commons
situation in Problem 6.27 see Hardin (1968) and Gibbons (1992).
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7Repeated Games

In the famous prisoners’ dilemma game the bad (Pareto inferior) outcome, resulting
from each player playing his dominant action, cannot be avoided in a Nash
equilibrium or subgame perfect Nash equilibrium even if the game is repeated a
finite number of times, cf. Problem 4.10. As we will see in this chapter, this bad
outcome can be avoided if the game is repeated an infinite number of times. This,
however, is coming at a price, namely the existence of a multitude of outcomes
attainable in equilibrium. Such an embarrassment of riches is expressed by a so-
called folk theorem.

As was illustrated in Problem 4.11, also finite repetitions of a game may
sometimes lead to outcomes that are better than (repeated) Nash equilibria of the
original game.

In this chapter we consider two-person infinitely repeated games and formulate
folk theorems both for subgame perfect and for Nash equilibrium. The approach
is somewhat informal, and mainly based on examples. In Sect. 7.1 we consider
subgame perfect equilibrium and in Sect. 7.2 we consider Nash equilibrium.

7.1 Subgame Perfect Equilibrium

7.1.1 The Prisoners’ Dilemma

Consider the prisoners’ dilemma game (in the form of the ‘marketing game’ of
Problem 3.1(d))

G D
� C D

C 50; 50 30; 60

D 60; 30 40; 40

�
:

© Springer-Verlag Berlin Heidelberg 2015
H. Peters, Game Theory, Springer Texts in Business and Economics,
DOI 10.1007/978-3-662-46950-7_7

121
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In G each player has a strictly dominated action, namely C, and .D;D/ is the unique
Nash equilibrium of the game, also if mixed strategies are allowed.

We assume now that G is played infinitely many times, at times t D 0; 1; 2; : : :,
and that after each play of G the players learn what has been played, i.e., they learn
which element of the set f.C;C/, .C;D/, .D;C/, .D;D/g has occurred. For instance,
in the marketing game, one can think of the game being played once per period—
a week, month—each player observing in each period whether his opponent has
advertised or not. Note that a player does not learn the exact, possibly mixed, action
of his opponent, but only its realization. These realizations induce an infinite stream
of associated payoffs, and we assume that there is a common discount factor 0 <
ı < 1 such that the final payoff to each player is the ı-discounted value of the
infinite stream. That is, player i (i D 1; 2) obtains

1X

tD0

.payoff from play of the stage game G at time t/ � ıt :

Here, the expression stage game is used for the one-shot game G, in order to
distinguish the one-shot game from the repeated game.

As always, a strategy of a player is a complete plan to play the game. This means
that, at each moment t, this plan should prescribe an action of a player—a mixed
or pure strategy in the stage game G—for each possible history of the game up to
time t, that is, an action for each sequence of length t (namely, at 0; : : : ; t � 1) of
elements from the set f.C;C/; .C;D/; .D;C/; .D;D/g. Clearly, such a strategy can
be quite complicated and the number of possible strategies is enormous. We will be
able, however, to restrict attention to relatively simple strategies.

The infinite extensive form game just defined is denoted by G1.ı/. A natural
solution concept for this game is subgame perfect (Nash) equilibrium. Each
subgame in G1.ı/ is, basically, equal to the game G1.ı/ itself: the difference
between two subgames is the difference between the two histories leading to those
subgames. For instance, at t D 6, there are 46 possible histories of play and therefore
there are 46 different subgames; each of these subgames, however, looks exactly like
G1.ı/.

We will now exhibit a few subgame perfect equilibria of G1.ı/. First consider
the simple strategy

D1: play D at each moment t D 0; 1; 2; : : :, independent of the history of the
game, i.e., independent of what was played before t.

Then D1 is a well-defined strategy. If both players play D1 then the resulting
payoff is

1X

tD0

40 ıt D 40=.1� ı/
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for each player. We claim that .D1;D1/ is a subgame perfect equilibrium in
G1.ı/. Consider any t D 0; 1; : : : and any subgame starting at time t. Then
.D1;D1/ induces a Nash equilibrium in this subgame: given that player 2 always
plays D, player 1 cannot do better than always play D as well, and vice versa. Hence,
.D1;D1/ is a subgame perfect equilibrium. In this subgame perfect equilibrium,
the players just play the Nash equilibrium of the stage game at every time t.

We next exhibit another subgame perfect equilibrium. Consider the following
strategy:

Tr.C/: at t D 0 and at every time t such that in the past only .C;C/ has
occurred in the stage game: play C. Otherwise, play D.

Strategy Tr.C/ is an example of a so-called trigger strategy . In general, if the players
play trigger strategies, they follow some fixed pattern of play until a deviation
occurs: then a Nash equilibrium action of the stage game is played forever. In the
present example, Tr.C/, a player starts by playing C and keeps on playing C as long
as both players have only played C in the past, i.e., as long as the history of play
is .C;C/; : : : ; .C;C/; after any deviation from this, i.e., if the history of play is not

.C;C/; : : : ; .C;C/, the player plays D and keeps on playing D forever. Again, Tr.C/

is a well-defined strategy, and if both players play Tr.C/, then each player obtains
the payoff

1X

tD0

50 ıt D 50=.1� ı/ :

Is .Tr.C/;Tr.C// also a subgame perfect equilibrium? The answer is a qualified yes:
if ı is large enough, then it is. The crux of the argument is as follows. At each stage
of the game, a player has an incentive to deviate from C and play his dominant
action D, thereby obtaining a momentary gain of 10. Deviating, however, triggers
eternal ‘punishment’ by the other player, who is going to play D forever. The best
reply to this punishment is to play D as well, entailing a loss of 10 at each moment
from the next moment on. The discounted value, at the moment of deviation, of this
loss is equal to 10ı=.1� ı/, and to keep a player from deviating this loss should be
at least as large as the momentary gain of 10. This is the case if and only if ı � 1=2.

More formally, we can distinguish two kinds of subgames that are relevant for
the strategy combination .Tr.C/;Tr.C//. One kind are those subgames where not

always .C;C/ has been played in the past. In such a subgame, Tr.C/ tells a player
to play D forever, and therefore the best reply of the other player is to do so as well,
which means indeed to play according to Tr.C/. Thus, in this kind of subgame,
.Tr.C/;Tr.C// is a Nash equilibrium.



124 7 Repeated Games

In the other kind of subgame, no deviation has occurred so far: in the past always
.C;C/ has been played. Consider this subgame at some time T and suppose that
player 2 plays Tr.C/. If player 1 plays Tr.C/ as well, his payoff is equal to

T�1X

tD0

50 ıt C
1X

tDT

50 ıt :

If, instead, he deviates at time T to D, he obtains maximally

T�1X

tD0

50 ıt C 60 ıT C
1X

tDTC1

40 ıt :

The first term in this expression is the discounted payoff from .C;C/ at t D
0; : : : ;T � 1. The second term is the discounted payoff from .D;C/ at time T. The
third term is the discounted payoff from .D;D/ from time t D T C 1 on. Note that
from t D T C 1 on player 2 plays D, according to his strategy Tr.C/, and the best
that the (deviating) player 1 can do is to play D as well.

Hence, to avoid deviation (and make Tr.C/ player 1’s best reply in the subgame)
we need that the first payoff is at least as high as the second one, resulting in the
inequality

50 ıT=.1 � ı/ � 60 ıT C 40 ıTC1=.1 � ı/

or, equivalently, ı � 1=2—as found before. The arguments for the roles of
the players reversed are exactly equal. We conclude that for every ı � 1=2,
.Tr.C/;Tr.C// is a subgame perfect equilibrium of the game G1.ı/. The existence
of this equilibrium is a major reason to study infinitely repeated games. In popular
terms, it shows that cooperation is sustainable if deviations can be credibly punished,
which is the case if the future is sufficiently important (i.e., ı large enough).

To exhibit yet another subgame perfect equilibrium, different from .D1;D1/

and .Tr.C/;Tr.C//, consider the following strategies for players 1 and 2, respec-
tively.

Tr1: As long as the sequence .C;D/, .D;C/, .C;D/, .D;C/, .C;D/, .D;C/,
: : : has occurred in the past from time 0 on, play C at t 2 f0; 2; 4; 6; : : :g; play
D at t 2 f1; 3; 5; 7; : : :g. Otherwise, play D.

Tr2: As long as the sequence .C;D/, .D;C/, .C;D/, .D;C/, .C;D/, .D;C/,
: : : has occurred in the past from time 0 on, play D at t 2 f0; 2; 4; 6; : : :g; play
C at t 2 f1; 3; 5; 7; : : :g. Otherwise, play D.

Note that these are again ‘trigger strategies’: the players ‘tacitly’ agree on a certain
sequence (pattern) of play, but revert to playing D forever after a deviation. If player



7.1 Subgame Perfect Equilibrium 125

1 plays Tr1 and player 2 plays Tr2, then the sequence .C;D/, .D;C/, .C;D/, .D;C/,
: : :, results. To see why .Tr1;Tr2/might be a subgame perfect equilibrium, note that
on average a player obtains 45 per stage, which is more than the 40 that would be
obtained from deviating from this sequence and playing D forever. More precisely,
suppose player 2 plays Tr2 and suppose player 1 considers a deviation from Tr1. It
is optimal to deviate at an even moment, say at t D 0, since then player 1 receives a
payoff of 30, and can obtain 40 by deviating to D. Since, after this deviation, player
2 plays D forever, the maximal total discounted payoff to player 1 from deviating is
obtained by also playing D forever after his deviation to D at time t D 0, and this
payoff is equal to

40C 40.ıC ı2 C : : :/ D 40=.1� ı/ :

If player 1 does not deviate and sticks to the strategy Tr1 he obtains

30.1C ı2 C ı4 C : : :/C 60.ıC ı3 C ı5 C : : :/ D .30C 60ı/=.1� ı2/ :

To keep player 1 from deviating we need 40=.1� ı/ � .30C 60ı/=.1� ı2/, which
yields ı � 1=2. The argument if the roles of the players are reversed is similar, and
we conclude that for each ı � 1=2, .Tr1;Tr2/ is a subgame perfect equilibrium in
G1.ı/.

More generally, by playing appropriate sequences of elements from the set of
possible outcomes f.C;C/; .C;D/; .D;C/; .D;D/g of the stage game G, the players
can on average reach any convex combination of the associated payoffs in the long
run. That is, take any such combination

˛1.50; 50/C ˛2.30; 60/C ˛3.60; 30/C ˛4.40; 40/ ; (*)

where ˛i 2 R, ˛i � 0 for every i D 1; : : : ; 4, and
P4

iD1 ˛i D 1. By choosing
a sequence of possible outcomes such that .C;C/ occurs on average in a fraction
˛1 of the stages, .C;D/ in a fraction ˛2, .D;C/ in a fraction ˛3, and .D;D/ in a
fraction ˛4, then the payoffs (*) are reached as averages in the limit, i.e., as t ! 1.
These are indeed average payoffs, independent of the discount factor ı. If these
limit average payoffs exceed 40 (the Nash equilibrium payoff of the stage game) for
each player, associated trigger strategies can be formulated that result in these (limit
average) payoffs and that trigger eternal play of .D;D/ after a deviation, similar to
the strategies Tr.C/, Tr1 and Tr2 above.

Note that for ˛1 D 1we can take the strategy pair .Tr.C/;Tr.C//. For ˛2 D ˛3 D
1=2 we can take the strategy pair .Tr1;Tr2/.

To exhibit yet another example, consider the average payoff pair .42; 48/, which
is equal to

1

5
.50; 50/C 2

5
.30; 60/C 1

5
.60; 30/C 1

5
.40; 40/ :
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(30,60)

(40,40)

(60,30)

(50,50)

Fig. 7.1 For every payoff pair in the shaded area there is a ı large enough such that this payoff
pair can be obtained as the limit average in a subgame perfect equilibrium of G1.ı/, where G is
the prisoners’ dilemma game of Sect. 7.1.1

This means that the payoffs .42; 48/ can be obtained on average by playing .C;C/
at t D 0; 5; 10; : : :; .C;D/ at t D 1; 2; 6; 7; 11; 12; : : :; .D;C/ at t D 3; 8; 13; : : :;
and .D;D/ at t D 4; 9; 14; : : : Translated to trigger strategies we have

Tr�
1 : As long as the sequence .C;C/, .C;D/, .C;D/, .D;C/, .D;D/; .C;C/, .C;D/,

.C;D/, .D;C/, .D;D/; : : : has occurred in the past from time 0 on, play C at t 2
f0; 1; 2; 5; 6; 7; 10; 11; 12; : : :g; play D at t 2 f3; 4; 8; 9; 13; 14; : : :g. Otherwise, play D.

Tr�
2 : As long as the sequence .C;C/, .C;D/, .C;D/, .D;C/, .D;D/; .C;C/, .C;D/,

.C;D/, .D;C/, .D;D/; : : : has occurred in the past from time 0 on, play C at t 2
f0; 3; 5; 8; 10; 13; : : :g; play D at t 2 f1; 2; 4; 6; 7; 9; 11; 12; 14; : : :g. Otherwise, play D.

For ı sufficiently high, these strategies form a subgame perfect equilibrium of
G1.ı/. (See Problem 7.5.)

Figure 7.1 shows all limit average payoffs that can be reached in this way.

7.1.2 Some General Observations

For the prisoners’ dilemma game we have established that each player playing
always D is a subgame perfect equilibrium of G1.ı/ for every 0 < ı < 1. The
logic is simple. If player 2 always plays the Nash equilibrium action D in the stage
game, then player 1 can never do better than playing a best reply action in the stage
game, i.e., playing D—‘never’ means: independent of the history, i.e., independent
of the play in the stage game thus far, i.e., in any subgame. The same logic holds for
any stage game, that is, with finitely or infinitely many actions, with any arbitrary



7.1 Subgame Perfect Equilibrium 127

number of players, and for any Nash equilibrium of the stage game. The following
proposition merely states this more formally.1

Proposition 7.1 Let G be any arbitrary .not necessarily finite/ n-person game, and

let the strategy combination s D .s1; : : : ; si; : : : ; sn/ be a Nash equilibrium in G. Let

0 < ı < 1. Then each player i playing si at every moment t is a subgame perfect

equilibrium in G1.ı/.

In particular, this proposition holds for any bimatrix game (see Definition 3.1) and
any (not necessarily pure) Nash equilibrium in this bimatrix game. But it also holds,
for instance, for the Cournot or Bertrand games (cf. Chap. 6) with two or more
players (see Problems 7.6 and 7.7).

Let G D .A;B/ be an m � n-bimatrix game with A D .aij/ and B D .bij/. Let
P.G/ be the convex hull of the set f.aij; bij/ 2 R

2 j i D 1; : : : ;m; j D 1; : : : ; ng.
That is,

P.G/ D

8
<
:

mX

iD1

nX

jD1

˛ij.aij; bij/

????
mX

iD1

nX

jD1

˛ij D 1; ˛ij � 0 for all i; j

9
=
; :

Equivalently, to obtain the set P.G/, just plot all m � n payoff pairs in R
2, and take

the smallest convex polygon containing all these points.
For the prisoners’ dilemma game G, P.G/ is the quadrangle with vertices

.40; 40/, .30; 60/, .60; 30/, and .50; 50/, see Fig. 7.1. The elements (payoff pairs)
of P.G/ can be obtained as limit average payoffs in the infinitely repeated game
G by an appropriate sequence of play, as demonstrated before in Sect. 7.1.1. The
following proposition says that every payoff pair in P.G/ that strictly dominates
the payoffs associated with a Nash equilibrium of G can be obtained as limit
average payoffs in a subgame perfect equilibrium of G1.ı/ for ı large enough.
Such a proposition is known as a folk theorem. Its proof (omitted here) is somewhat
technical but basically consists of formulating trigger strategies in a similar way as
for the prisoners’ dilemma game above. In these strategies, after a deviation from
the pattern leading to the desired limit average payoffs, players revert to the Nash
equilibrium under consideration of the stage game forever.

Proposition 7.2 (Folk Theorem for Subgame Perfect Equilibrium) Let .p�;q�/

be a Nash equilibrium of G D .A;B/, and let x D .x1; x2/ 2 P.G/ such that

x1 > p�Aq� and x2 > p�Bq�. Then there is a 0 < ı� < 1 and a subgame perfect

equilibrium in G1.ı�/ with limit average payoffs x.

1In this proposition it is assumed that G1.ı/ is well-defined, in particular that the discounted
payoff sums are finite.
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Remark 7.3 For the purpose of this chapter, a limit average payoff pair is just a
payoff pair in the set P.G/, i.e., in the polygon with the payoff pairs in .A;B/ as
vertices. More formally, if �0; �1; �2; : : : is a sequence of real numbers, then the limit
average of this sequence is the number limT!1

1
TC1

PT
tD0 �t, assuming that this

limit exists. In other words, we take the average of the first T C 1 numbers of the
sequence and let T go to infinity. �

7.1.3 Another Example

In order to illustrate Propositions 7.1 and 7.2 we consider another example. Let the
bimatrix game (stage game) G D .A;B/ be given by

G D
� L R

U 4; 4 0; 2

D 3; 6 1; 8

�
:

This game has two pure strategy Nash equilibria .U;L/ and .D;R/ and a mixed
equilibrium .. 1

2
; 1
2
/; . 1

2
; 1
2
//, with associated payoffs respectively .4; 4/, .1; 8/, and

.2; 5/. The set of limit average payoff pairs P.G/ is depicted in Fig. 7.2.
Proposition 7.1 applies to the three Nash equilibria of the stage game:

• Player 1 always playing U and player 2 always L is a subgame perfect Nash
equilibrium of G1.ı/ for any value of ı. The payoffs are 4=.1� ı/ for each. The
limit average payoffs are 4 for each.

Fig. 7.2 The crosshatched

area is the set P.G/ of the
game G in Sect. 7.1.3. The
shaded area—all points
strictly above .2; 5/—as well
as .2; 5/, .4; 4/, and .1; 8/,
are the limit average payoffs
pairs attainable in a subgame
perfect equilibrium of G1.ı/

according to Propositions 7.1
and 7.1, for a sufficiently high
value of ı

(4,4)

(3,6)

(1,8)

(0,2)

(2,5)
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• Player 1 always playing D and player 2 always L is a subgame perfect Nash
equilibrium of G1.ı/ for any value of ı. The payoff is 1=.1� ı/ for player 1 and
8=.1� ı/ for player 2. The limit average payoffs are 1 and 8, respectively.

• Player 1 always playing . 1
2
; 1
2
/ and player 2 always . 1

2
; 1
2
/ is a subgame perfect

Nash equilibrium of G1.ı/ for any value of ı. The payoff is 2=.1�ı/ for player 1
and 5=.1� ı/ for player 2. The limit average payoffs are 2 and 5, respectively.

Proposition 7.2 says that all payoffs in the shaded area strictly above .2; 5/ in
Fig. 7.2 can be obtained as limit average payoffs in G1.ı/, provided ı is sufficiently
high.

As a first example we consider the payoffs .3; 6/. Clearly, these payoffs can be
obtained as limit average payoffs if the players play .D;L/ always. In order to obtain
them in a subgame perfect equilibrium we can use the mixed Nash equilibrium of the
stage game as a punishment after a deviation. Specifically, consider the following
trigger strategy pair .S�

1 ; S
�
2 /.

S�
1 : Start with D and keep playing D as long as .D;L/ has been played so far.

After any deviation, play . 1
2
; 1
2
/ forever.

S�
2 : Start with L and keep playing L as long as .D;L/ has been played so far.

After any deviation, play . 1
2
; 1
2
/ forever.

In this case, the maximal payoff to player 1 from deviating to U, given that player 2
plays S�

2 , is equal to 4 C 2 � ı=.1 � ı/, since player 2 switches to . 1
2
; 1
2
/ forever: to

this, player 1’s best reply is to also play . 1
2
; 1
2
/ forever, resulting in the payoff 2 at

each stage. This maximal payoff is smaller than or equal to 3=.1 � ı/ if and only if
ı � 1=2. Similarly, the maximal payoff to player 2 from deviating to R, given that
player 1 plays S�

1 , is equal to 8 C 5 � ı=.1 � ı/, and this is smaller than or equal to
6=.1 � ı/ if and only if ı � 2=3. We conclude that .S�

1 ; S
�
2 / is a subgame perfect

equilibrium of G1.ı/ for ı � 2=3.
As a second example, consider the limit average payoff pair .3; 5 1

3
/. From

Proposition 7.2 we can conclude that these payoffs can be obtained as limit average
payoffs in a subgame perfect equilibrium of G1.ı/. Note that we can write
.3; 5 1

3
/ D 2

3
.4; 4/ C 1

3
.1; 8/, so that these limit averages can be achieved by the

sequence of play

.U;L/; .U;L/; .D;R/; .U;L/; .U;L/; .D;R/; : : :

Consider the following strategies.

NS1: Play U at times t D 0; 1; 3; 4; 6; 7; : : : and play D at times t D 2; 5; 8; : : :.

NS2: Play L at times t D 0; 1; 3; 4; 6; 7; : : : and play R at times t D 2; 5; 8; : : :.
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Observe that, with these strategies, the players play a Nash equilibrium of the
stage game at every time t, which implies that they can only loose by deviating.
Thus, we do not need trigger strategies to punish deviations. The pair .NS1; NS2/ is a
subgame perfect equilibrium of G1.ı/ for every value of ı 2 .0; 1/.

As a final example, consider following the strategies in G1.ı/ for players 1
and 2, respectively.

OS1: Play D at times t D 4; 9; 14; 19; : : : and play U at all other times.

OS2: Play R at times t D 4; 9; 14; 19; : : : and play L at all other times.

These strategies result in the sequence of play

.U;L/; .U;L/; .U;L/; .U;L/; .D;R/; .U;L/; .U;L/; .U;L/; .U;L/; .D;R/; : : :

resulting in limit average payoffs 4
5
.4; 4/C 1

5
.1; 8/ D .3 2

5
; 4 4

5
/. This pair is outside

the shaded region in Fig. 7.2, i.e., does not dominate the pair .2; 5/. This means
that the mixed equilibrium .. 1

2
; 1
2
/; . 1

2
; 1
2
// of the stage game cannot serve as a

punishment for deviations by player 2, since the payoff 5 to player 2 from this
equilibrium is larger than 4 4

5
. Nevertheless, by the same logic as for the pair .NS1; NS2/,

the strategy pair .OS1; OS2/ is a subgame perfect equilibrium of G1.ı/ for every value
of ı 2 .0; 1/: at each time t the players play a Nash equilibrium of the stage game.
This example shows that Proposition 7.2 is not exhaustive: it does not necessarily
give all limit average payoff pairs attainable in a subgame perfect equilibrium.

7.2 Nash Equilibrium

In this section we consider the consequences of relaxing the subgame perfection
requirement for a Nash equilibrium in an infinitely repeated game. When thinking
of trigger strategies as in Sect. 7.1, this means that deviations can be punished more
severely, since the equilibrium does not have to induce a Nash equilibrium in the
‘punishment subgame’.

For the infinitely repeated prisoners’ dilemma game of Sect. 7.1 this has no
consequences. In this game each player can guarantee to obtain at least 40 at each
stage, so that more severe punishments are not possible. In the following subsection
we consider a different example.

7.2.1 An Example

Consider the bimatrix game

G D .A;B/ D
� L R

U 1; 1 0; 0

D 0; 0 �1; 4

�
:
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The set P.G/ (see Sect. 7.1.2) is the triangle with vertices .1; 1/, .0; 0/, and .�1; 4/.
In the game G the strategy D is a strictly dominated strategy for player 1. The
unique Nash equilibrium of the stage game is .U;L/. Player 1 always playing U

and player 2 always playing L is a subgame perfect equilibrium in G1.ı/ for every
0 < ı < 1, cf. Proposition 7.1. Note that Proposition 7.2 does not add anything to
this observation, since P.G/ does not contain any payoff pair larger than .1; 1/ for
each player.

Now consider the following strategy pair .N1;N2/ in the infinitely repeated game
G1.ı/.

N1: At t D 0 play D. After a history where .D;R/ was played at t D 0; 4; 8; 12; : : :

and .U;L/ at all other times: play D at t D 0; 4; 8; 12; : : : and play U at all other
times. After any other history play the mixed action . 4

5
; 1
5
/, that is, play U with

probability 4
5

and D with probability 1
5
.

N2: At t D 0 play R. After a history where .D;R/ was played at t D 0; 4; 8; 12; : : :

and .U;L/ at all other times: play R at t D 0; 4; 8; 12; : : : and play L at all other
times. After any other history play R.

These strategies are again trigger strategies. They induce a sequence of play in which
within each four times, .D;R/ is played once and .U;L/ is played thrice. After a
deviation player 1 plays the mixed action . 4

5
; 1
5
/ and player 2 the pure action R

forever. Thus, in a subgame following a deviation the players do not play a Nash
equilibrium: if player 2 plays R always, then player 1’s best reply is to play U

always. Hence, .N1;N2/ is not a subgame perfect equilibrium.
We claim, however, that .N1;N2/ is a Nash equilibrium if ı is sufficiently large.
First observe that player 2 can never achieve a momentary gain from deviating

since, if player 1 plays N1, then N2 requires player 2 to play a best reply in the stage
game at every moment t. Moreover, after any deviation player 1 plays . 4

5
; 1
5
/ at any

moment t, so that both L and R have an expected payoff of 4
5

for player 2, which is
less than 1 and less than 4.

Suppose player 2 plays N2. If player 1 wants to deviate from N1, the best moment
to do so is one where he is supposed to play D, so at t D 0; 4; : : :. Without loss of
generality suppose player 1 deviates at t D 0. Then .U;R/ is played at t D 0,
yielding payoff 0 to player 1. After that, player 2 plays R forever, and the best reply
of player 1 to this is to play U forever, again yielding 0 each time. So his total payoff
from deviating is 0. Without deviation player 1’s total discounted payoff is equal to

�1.ı0 C ı4 C ı8 C : : :/C 1.ı1 C ı2 C ı3 C ı5 C ı6 C ı7 C : : :/ :

In order to keep player 1 from deviating this expression should be at least 0, i.e.

�1
1 � ı4

C
�

ı

1 � ı
� ı4

1 � ı4
�

� 0
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which holds if and only if ı � ı� with ı� � 0:54: Hence, for these values
of ı, .N1;N2/ is a Nash equilibrium in G1.ı/. The limit average payoffs in this
equilibrium are equal to 3

4
.1; 1/C 1

4
.�1; 4/, hence to . 1

2
; 7
4
/.

The actions played in this equilibrium after a deviation are, in fact, the actions
that keep the opponent to his maximin payoff. To see this, first consider the action
of player 2, R. The payoff matrix of player 1 is the matrix A with

A D
� L R

U 1 0

D 0 �1

�
:

The value of the matrix game A (cf. Chap. 2) is equal to 0—in fact, .U;R/ is a
saddlepoint of A—and, thus, player 1 can always obtain at least 0. By playing R,
which is player 2’s optimal strategy in A, player 2 can hold player 1 down to 0.
Hence, this is the most severe punishment that player 2 can inflict upon player 1
after a deviation.

Similarly, if we view the payoff matrix B for player 2 as a zerosum game with
payoffs to player 2 and, following convention, convert this to a matrix game giving
the payoffs to player 1, we obtain

�B D
� L R

U �1 0

D 0 �4

�
:

In this game, . 4
5
; 1
5
/ is an (the) optimal strategy for player 1, yielding the value of

the game, which is equal to � 4
5
. Hence, player 2 can guarantee to obtain a payoff

of 4
5
, but player 1 can make sure that player 2 does not obtain more than this by

playing . 4
5
; 1
5
/. Again, this is the most severe punishment that player 1 can inflict

upon player 2 after a deviation.
By using these punishments in a trigger strategy, the same logic as in Sect. 7.1

tells us that any pair of payoffs in P.G/ that strictly dominates the pair v D
.v.A/;�v.�B// D .0; 4

5
/ can be obtained as limit average payoffs in a Nash

equilibrium of the game G1.ı/ for ı sufficiently large. This is illustrated in Fig. 7.3.

7.2.2 A Folk Theorem for Nash Equilibrium

Let G D .A;B/ be an arbitrary m � n bimatrix game. Let v.A/ be the value of the
matrix game A and let v.�B/ be the value of the matrix game �B. Let the set P.G/

be defined as in Sect. 7.1.2. The following proposition generalizes what we found
above.
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Fig. 7.3 For every payoff
pair in the shaded area there
is a ı large enough such that
this payoff pair can be
obtained as the pair of limit
averages in a Nash
equilibrium of G1.ı/

(0, 0)

(1, 1)

(−1, 4)

v

v = (0, 4

5
)

Proposition 7.4 (Folk Theorem for Nash Equilibrium) Let x D .x1; x2/ 2 P.G/

such that x1 > v.A/ and x2 > �v.�B/. Then there is a 0 < ı� < 1 and a Nash

equilibrium in G1.ı�/ with limit average payoffs x.

The set of payoff pairs that can be reached as limit average payoff pairs in a Nash
equilibrium (Proposition 7.4) contains the set of payoff pairs that can be obtained
this way in a subgame perfect equilibrium (Proposition 7.2). This follows because
the payoffs in a Nash equilibrium of the stage game .A;B/ are at least as large as the
payoffs .v.A/;�v.�B//: if not then a player could improve by playing an optimal
strategy in the associated matrix game, guaranteeing v.A/ (player 1) or �v.�B/

(player 2).

7.2.3 Another Example

Consider the bimatrix game

G D .A;B/ D
� L R

U 5; 1 1; 2

D 4; 2 2; 4

�
:

The matrix game A has a saddlepoint at .D;R/. Thus, v.A/ D 2 and R is the unique
optimal strategy of player 2 in A. The matrix game �B, given by

�B D
� L R

U �1 �2
D �2 �4

�
;

has a saddlepoint at .U;R/. Its value is v.�B/ D �2, and U is the unique optimal
strategy of player 1 in �B. The set of limit average payoff pairs and the point v D
.v.A/;�v.�B// D .2; 2/ are depicted in Fig. 7.4.
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Fig. 7.4 For every payoff
pair in the shaded area there
is a ı large enough such that
this payoff pair can be
obtained as the pair of limit
averages in a Nash
equilibrium of G1.ı/

(5, 1)

(4, 2)

(3, 3)

(2, 4)

(1, 2)

v

v = (2, 2)

Consider, for instance, the limit average payoffs .3; 3/, and the following strategy
pair in G1.ı/.

N�
1 : Start by playing D and keep playing D as long as .D;L/ was played at even

moments and .D;R/ at odd moments. After any deviation from this, play U

forever.
N�
2 : Play L at even moments and R at odd moments as long as .D;L/ was played at

even moments and .D;R/ at odd moments. After any deviation from this, play
R forever.

These strategies result in the limit average payoffs 1
2
.4; 2/C 1

2
.2; 4/ D .3; 3/.

Suppose player 2 plays N�
2 . If player 1 deviates from N�

1 , it is optimal to do so at
even moments, say at t D 0. His payoff from deviating is 5 C 2 � ı=.1 � ı/, since
after this deviation player 2 plays R forever and player 1’s best reply is to play D

forever. If player 1 plays according to N�
1 he obtains 4=.1� ı2/C 2 � ı=.1� ı2/. To

obtain an equilibrium, this should be at least as large as the maximal payoff from
deviating, hence

4=.1 � ı2/C 2 � ı=.1� ı2/ � 5C 2 � ı=.1� ı/ ;

which holds if and only if ı � 1
3

p
3 � 0:58.

Suppose player 1 plays N�
1 . If player 2 deviates from N�

2 , it is optimal to do so at
even moments, say at t D 0. His payoff from deviating is 4 C 2 � ı=.1 � ı/, since
after this deviation player 1 plays U forever and player 2’s best reply is to play R

forever. If player 2 plays according to N�
2 he obtains 2=.1� ı2/C 4 � ı=.1� ı2/. To

obtain an equilibrium, this should be at least as large as the maximal payoff from
deviating, hence

2=.1 � ı2/C 4 � ı=.1� ı2/ � 4C 2 � ı=.1� ı/ ;

which holds if and only if ı � 1
2

p
5 � 1

2
� 0:62.

Thus, .N�
1 ;N

�
2 / is a Nash equilibrium of G1.ı/ for ı � 0:62. Note that this

equilibrium is not subgame perfect: in a subgame following a deviation the players
end up playing .U;R/ forever, which is not a Nash equilibrium in such a subgame.
Also note that the only Nash equilibrium in the stage game is .D;R/. Hence,
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Propositions 7.1 and 7.2 only imply that the limit average payoffs .2; 4/ can be
obtained in a subgame perfect Nash equilibrium of G1.ı/.

7.3 Problems

7.1. Nash and Subgame Perfect Equilibrium in a Repeated Game (1)

Consider the following bimatrix game:

G D .A;B/ D
� L R

U 2; 3 1; 5

D 0; 1 0; 1

�
:

(a) Determine all Nash equilibria of this game. Also determine the value v.A/ of
the matrix game A and the value v.�B/ of the matrix game �B. Determine the
optimal strategies of player 2 in A and of player 1 in �B.

(b) Consider the repeated game G1.ı/. Which limit average payoffs can be
obtained in a subgame perfect equilibrium of this repeated game according to
Proposition 7.1 or Proposition 7.2? Does this depend on ı?

(c) Which limit average payoffs can be obtained in a Nash equilibrium in G1.ı/

according to Proposition 7.4?
(d) Describe a pair of Nash equilibrium strategies in G1.ı/ that result in the limit

average payoffs .2; 3/. What is the associated minimum value of ı?

7.2. Nash and Subgame Perfect Equilibrium in a Repeated Game (2)

Consider the following bimatrix game:

G D .A;B/ D
� L R

U 2; 1 0; 0

D 0; 0 1; 2

�
:

(a) Which payoffs can be reached as limit average payoffs in a subgame perfect
equilibrium of the infinitely repeated game G1.ı/ for suitable choices of ı
according to Propositions 7.1 and 7.2?

(b) Which payoffs can be reached as limit average payoffs in a Nash equilibrium
of the infinitely repeated game G1.ı/ for suitable choices of ı according to
Proposition 7.4?

(c) Describe a subgame perfect Nash equilibrium of G1.ı/ resulting in the limit
average payoffs . 3

2
; 3
2
/. Also give the corresponding restriction on ı.

(d) Describe a subgame perfect Nash equilibrium of G1.ı/ resulting in the limit
average payoffs .1; 1/. Also give the corresponding restriction on ı.
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7.3. Nash and Subgame Perfect Equilibrium in a Repeated Game (3)

Consider the following bimatrix game:

G D .A;B/ D
� L R

U 3; 2 8; 0

D 4; 0 6; 2

�

(a) Which payoffs can be reached as limit average payoffs in a subgame perfect
Nash equilibrium of the infinitely repeated discounted game G1.ı/ for suitable
choices of ı according to Propositions 7.1 and 7.2?

(b) Which payoffs can be reached as limit average payoffs in a Nash equilibrium
of the infinitely repeated game G1.ı/ for suitable choices of ı according to
Proposition 7.4?

(c) Describe a Nash equilibrium of G1.ı/ resulting in the limit average payoffs
.4 1

2
; 2/. Is there any value of ı for which this equilibrium is subgame perfect?

Why or why not?

7.4. Subgame Perfect Equilibrium in a Repeated Game

Consider the following bimatrix game:

G D

0
@

L C R

T 6; 4 0; 7 0; 0

M 8; 0 4; 6 0; 0

B 0; 0 0; 0 1; 1

1
A :

(a) What are the pure strategy Nash equilibria of this game?
(b) Which limit average payoffs can be obtained in a subgame perfect equilibrium

of G1.ı/ according to your answer to (a) and Propositions 7.1 and 7.2?
(c) Describe a subgame perfect equilibrium in the infinitely repeated game which

results in the limit average payoffs of 5 for each player. Also give the minimum
value of ı for which your strategy combination is a subgame perfect equilibrium.

7.5. The Strategies Tr�
1 and Tr�

2

Give the inequalities that determine the lower bound on ı for the strategy com-
bination .Tr�

1 ;Tr�
2 / to be a subgame perfect equilibrium in the infinitely repeated

prisoners’ dilemma game in Sect. 7.1.1.

7.6. Repeated Cournot and Bertrand

(a) Reconsider the duopoly (Cournot) game of Sect. 6.2.1. Suppose that this game
is repeated infinitely many times, and that the two firms discount the streams
of payoffs by a common discount factor ı. Describe a subgame perfect Nash
equilibrium of the repeated game that results in each firm receiving half of the
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monopoly profits at each time. Also give the corresponding restriction on ı.
What could be meant by the expression ‘tacit collusion’?

(b) Answer the same questions as in (a) for the Bertrand game of Sect. 6.3.

7.7. Repeated Duopoly

Two firms (1 and 2) offer heterogenous goods at prices

p1 D maxf10� 2q1 C q2; 0g
p2 D maxf10� 2q2 C q1; 0g

where q1; q2 are the quantities offered. All costs are assumed to be zero, and the
firms are engaged in price competition.

(a) Show that the market clearing quantity of firm 1 at prices p1 and p2 is given by

q1 D maxf10� 2

3
p1 � 1

3
p2; 0g :

Also derive the quantity q2 of firm 2 as a function of the prices, and set up the
profit functions of the two firms.

(b) Derive the reaction functions of the firms and use these to compute the Nash
equilibrium prices. Compute the associated profits of both firms.

(c) Compute the prices at which joint profit is maximized. Compute the associated
profits of both firms.

(d) Now suppose that this price competition game is played infinitely many times,
and that the firms’ payoffs are discounted by a common factor ı. Describe a
subgame perfect equilibrium in which joint profit is maximized in each period.
Also give the associated lower bound for the discount factor ı.

7.8. On Discounting

In a repeated game, interpret the discount factor 0 < ı < 1 as the probability
that the game will continue, i.e., that the stage game will be played again. Show
that, with this interpretation, the repeated game will end with probability 1. (Cf.
Problem 6.17(e).)

7.9. On Limit Average

Can you give an example in which the limit that defines the long run average payoffs,
does not exist? (Cf. Remark 7.3.)
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7.4 Notes

For finitely repeated games as in Problems 4.10–4.12 see also Benoit and Krishna
(1985) and Friedman (1985).

Fudenberg and Maskin (1986) show that Proposition 7.4—the folk theorem for
Nash equilibrium in infinitely repeated games—also holds for subgame perfect Nash
equilibrium if the dimension of the ‘cooperative payoff space’ (the set P.G/ in the
text) is equal to the number of players. This, however, requires more sophisticated
strategies. See Fudenberg and Tirole (1991a) for further references.

The expression ‘folk theorem’ refers to the fact that results like this had been
known among game theorists even before they were formulated and written down
explicitly. They belonged to the folklore of game theory.

For more advanced and elaborate treatments of repeated games see, e.g.,
Fudenberg and Tirole (1991a), Mailath and Samuelson (2006), or Myerson (1991).
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8An Introduction to Evolutionary Games

In an evolutionary game, players are interpreted as populations—of animals or
individuals. The probabilities in a mixed strategy of a player in a bimatrix game
are interpreted as shares of the population. Individuals within the same part of the
population play the same pure strategy. The main ‘solution’ concept is the concept
of an evolutionary stable strategy.

Evolutionary game theory originated in biology. The developed evolutionary
biological concepts were later applied to boundedly rational human behavior, and a
connection was established with dynamic systems and with game-theoretic concepts
such as Nash equilibrium.

This chapter presents a short introduction to evolutionary game theory. For a
more advanced continuation see Chap. 15.

In Sect. 8.1 we consider symmetric two-player games and evolutionary stable
strategies. Evolutionary stability is meant to capture the idea of mutation from
the theory of evolution. We also establish that an evolutionary stable strategy is
part of a symmetric Nash equilibrium. In Sect. 8.2 the connection with the so-
called replicator dynamics is studied. Replicator dynamics intends to capture the
evolutionary idea of selection based on fitness. In Sect. 8.3 asymmetric games are
considered. Specifically, a connection between replicator dynamics and strict Nash
equilibrium is discussed.

8.1 Symmetric Two-Player Games and Evolutionary Stable
Strategies

A famous example from evolutionary game theory is the Hawk-Dove game:

�Hawk Dove

Hawk 0; 0 3; 1

Dove 1; 3 2; 2

�
:

© Springer-Verlag Berlin Heidelberg 2015
H. Peters, Game Theory, Springer Texts in Business and Economics,
DOI 10.1007/978-3-662-46950-7_8

139



140 8 An Introduction to Evolutionary Games

This game models the following situation. Individuals of the same large population
meet randomly, in pairs, and behave either aggressively (Hawk) or passively
(Dove)—the fight is about nest sites or territories, for instance. This behavior is
genetically determined, so an individual does not really choose between the two
modes of behavior. The payoffs reflect (Darwinian) fitness, e.g., the number of
offspring. In this context, players 1 and 2 are just two different members of the same
population who meet: indeed, the game is symmetric—see below for the formal
definition. A mixed strategy p D .p1; p2/ (of player 1 or player 2) is naturally
interpreted as expressing the population shares of individuals characterized by the
same type of behavior. In other words, p1 � 100% of the population are Hawks
and p2 � 100% are Doves. In view of this interpretation, in what follows we are
particularly interested in symmetric Nash equilibria, i.e., Nash equilibria in which
the players use the same strategy. The Hawk-Dove game has three Nash equilibria,
only one of which is symmetric namely .. 1

2
; 1
2
/; . 1

2
; 1
2
//.

Remark 8.1 The Hawk-Dove game can also be interpreted as a Game of Chicken.
Two car drivers approach each other on a road, each one driving in the middle. The
driver who is the first to return to his own lane (Dove) ‘loses’ the game, the one
who stays in the middle ‘wins’ (Hawk). With this interpretation also the asymmetric
equilibria are of interest. The asymmetric equilibria can also be of interest within
the evolutionary approach: the Hawk-Dove game can be interpreted as modelling
competition between two species, represented by the row and the column player.
Within each species, there are again two types of behavior. See Sect. 8.3. �

The definitions of a symmetric game and a symmetric Nash equilibrium are as
follows.

Definition 8.2 Let G D .A;B/ be an m � n bimatrix game. Then G is symmetric
if m D n and bij D aji for all i; j D 1; : : : ;m. A Nash equilibrium .p�;q�/ of G is
symmetric if p� D q�. �

In other words, a bimatrix game .A;B/ is symmetric if both players have the same
number of pure strategies and the payoff matrix of player 2 is the transpose of the
payoff matrix of player 1, i.e., we obtain B by interchanging the rows and columns
of A. This will also be denoted by B D AT , where ‘T’ stands for ‘transpose’. A Nash
equilibrium is symmetric if both players play the same strategy.

We state the following fact without a proof (see Chap. 15).

Proposition 8.3 Every symmetric bimatrix game G has a symmetric Nash

equilibrium.

With the interpretation above—different types of behavior within one and the same
population—it is only meaningful to consider symmetric Nash equilibria. But in
fact, we will require more.



8.1 Symmetric Two-Player Games and Evolutionary Stable Strategies 141

Let G D .A;B/ be a symmetric game. Knowing that the game is symmetric, it
is sufficient to know the payoff matrix A, since B D AT . In what follows, when
we consider a symmetric game A we mean the game G D .A;AT/. Let A be an
m � m matrix. Recall (Chaps. 2 and 3) that �m denotes the set of mixed strategies
(for player 1 or player 2).

The main concept in evolutionary game theory is that of an evolutionary stable

strategy. The original concept will be formally introduced in Chap. 15. Here, we
give an equivalent but easier to handle definition. With some abuse of language we
give it the same name.

Definition 8.4 Let A be an m � m matrix. A strategy x 2 �m is an evolutionary
stable strategy .ESS/ if the following two conditions hold.

(a) .x; x/ is a Nash equilibrium in .A;AT/.
(b) For every y 2 �m with y ¤ x we have:

xAx D yAx ) xAy > yAy : (8.1)

�

To interpret this definition, think again of x as shares of one and the same large
population. The first condition says that this population is in equilibrium: x is one
of the possible distributions of shares that maximize average fitness against x. The
second condition concerns mutations. Suppose there is another distribution of shares
y (a mutation) that fares equally well against x as x itself does: y is an alternative
‘best reply’ to x. Then (8.1) says that x fares better against y than y does against
itself. Hence, y does not take over: the ‘mutation’ y is not successful. The original
definition of ESS is phrased in terms of small mutations, but this turns out to be
equivalent to the definition above (Chap. 15).

The evolutionary stable strategies for an m � m matrix A can be found as follows.
First, compute the symmetric Nash equilibria of the game G D .A;B/ with B D AT .
This can be done using the methods developed in Chap. 3. Second, for each such
equilibrium .x; x/, check whether (8.1) holds. If it does, then x is an evolutionary
stable strategy.

We apply this method to the Hawk-Dove game. For this game,

A D
�Hawk Dove

Hawk 0 3

Dove 1 2

�
:

The unique symmetric equilibrium strategy was x D . 1
2
; 1
2
/. The condition xAx D

yAx in (8.1) is satisfied for every y D .y; 1 � y/. This can be seen by direct
computation but it also follows from the fact that .x; x/ is a Nash equilibrium and x
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has all coordinates positive (how?). Hence, we have to check if

xAy > yAy

for all y D .y; 1 � y/ ¤ x. This inequality reduces (check!) to:

.2y � 1/2 > 0 ;

which is true for all y ¤ 1
2
. Thus, x D . 1

2
; 1
2
/ is the unique ESS in A.

8.2 Replicator Dynamics and Evolutionary Stability

Central in the theory of evolution are the concepts of mutation and selection. While
the idea of mutation is meant to be captured by the concept of evolutionary stability,
the idea of selection is captured by the so-called replicator dynamics. We illustrate
the concept of replicator dynamics by considering again the Hawk-Dove game

�Hawk Dove

Hawk 0; 0 3; 1

Dove 1; 3 2; 2

�
:

Consider a mixed strategy or, in the present context, vector of population shares
x D .x; 1 � x/. Consider an arbitrary individual of the population. Playing ‘Hawk’
against the population x yields an expected payoff or ‘fitness’ of

0 � x C 3 � .1 � x/ D 3.1 � x/

and playing ‘Dove’ yields

1 � x C 2 � .1 � x/ D 2 � x :

Hence, the average fitness of the population is

x � 3.1 � x/C .1 � x/ � .2 � x/ D 2 � 2x2 :

We now assume that the population shares develop over time, i.e., that x is a
function of time t, and that the change in x, described by the time derivative
Px D Px.t/ D dx.t/=dt, is proportional to the difference between Hawk’s fitness and
average fitness. In particular, if Hawk’s fitness is larger than average fitness, then the
percentage of Hawks increases, and if Hawk’s fitness is smaller than average fitness,
then the percentage of Hawks decreases. In case of equality the population is at rest.
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Fig. 8.1 Replicator dynamics for the Hawk-Dove game

Formally, we assume that Px is given by the following equation.

Px.t/ D dx.t/=dt D x.t/
�
3.1� x.t// � .2 � 2x.t/2/

�
: (8.2)

Equation (8.2) is the replicator dynamics for the Hawk-Dove game. The equation
says that the population of Hawks changes continuously (described by dx.t/=dt),
and that this change is proportional to the difference between the fitness at time t—
which is equal to 3.1 � x.t//—and the average fitness of the population—which is
equal to 2 � 2x.t/2. Simplifying (8.2) and writing x instead of x.t/ yields

Px D dx=dt D x.x � 1/.2x � 1/:

This makes it possible to draw a diagram of dx=dt as a function of x (a so-called
phase diagram). See Fig. 8.1. We see that this replicator dynamics has three different
roots, the so-called rest points1 x D 0, x D 1

2
, and x D 1. For these values of x,

the derivative dx=dt is equal to zero, so the population shares do not change: the
system is at rest. In case x D 0 all members of the species are Doves, their fitness
is equal to the average fitness, and so nothing changes. This rest point, however, is
not stable. A slight disturbance, e.g., a genetic mutation resulting in a Hawk, makes
the number of Hawks increase because dx=dt becomes positive. This increase will
go on until the rest point x D 1

2
is reached. A similar story holds for the rest point

x D 1, where the population consists of only Hawks. Now suppose the system is at
the rest point x D 1

2
. Note that, after a disturbance in either direction, the system

will move back again to the state where half the population consists of Doves. Thus,
of the three rest points, only x D 1

2
is stable. (A formal definition of stability of a

rest point is provided in Chap. 15.)
Recall from the previous section that x D . 1

2
; 1
2
/ is also the unique evolutionary

stable strategy of the Hawk-Dove game. That this is no coincidence follows from
the next proposition, which we state here without a proof (see Chap. 15 for a proof).
(The definition of replicator dynamics is analogous to the one in the Hawk-Dove
game.)

1In the literature also called equilibrium points, critical points, stationary points.
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Proposition 8.5 Let A D
�

a11 a12

a21 a22

�
be a 2 � 2 matrix with a11 ¤ a21 and a12 ¤

a22. Then:

.a/ A has at least one evolutionary stable strategy.

.b/ x D .x; 1 � x/ is an evolutionary stable strategy of A if and only if x is a stable

rest point of the replicator dynamics.

Remark 8.6 For general m � m matrices the set of completely mixed (i.e., with
all coordinates positive) rest points of the replicator dynamics coincides with the
set of completely mixed strategies in symmetric Nash equilibria. There are also
connections between stability of rest points and further properties of Nash equilibria.
See Chap. 15 for details. �

Example 8.7 As another example, consider the matrix

A D
�V W

V 3 1

W 1 2

�
:

The bimatrix game .A;AT/ has three Nash equilibria all of which are symmetric,
namely: .V;V/, .W;W/, and ..1=3; 2=3/; .1=3; 2=3//. Against V the unique best
reply is V , so that V is an ESS: (8.1) is satisfied trivially. By a similar argument, W

is an ESS.
Against .1=3; 2=3/, any y D .y; 1 � y/ is a best reply. For .1=3; 2=3/ to be an

ESS we therefore need

�
1=3 2=3

�
A

�
y

1 � y

�
>
�

y 1 � y
�

A

�
y

1 � y

�

for all 0 � y � 1 with y ¤ 1=3. The inequality simplifies (check!) to the inequality
.3y � 1/2 < 0, which never holds. Hence, .1=3; 2=3/ is not an ESS.

We now investigate the replicator dynamics. The expected payoff of V against
.x; 1 � x/ is equal to 3x C 1 � .1 � x/ D 2x C 1. The expected payoff of W against
.x; 1� x/ is equal to x C 2 � .1� x/ D 2� x. The average payoff is x.2x C 1/C .1�
x/.2 � x/ D 3x2 � 2x C 2. Hence, the replicator dynamics is

dx=dt D x.2x C 1 � .3x2 � 2x C 2// D �x.x � 1/.3x � 1/ :

Figure 8.2 presents the phase diagram, which shows that x D 0 and x D 1 are
stable rest points, and that the rest point x D 1=3 is not stable, in accordance with
Proposition 8.5. �
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Fig. 8.2 Replicator dynamics for Example 8.7

8.3 Asymmetric Games

The evolutionary approach to game theory is not necessarily restricted to symmetric
situations, i.e., bimatrix games of the form .A;AT/ in which the row and column
players play identical strategies. In biology as well as economics one can find many
examples of asymmetric situations. Think, for instance, of two different species
competing about territory in biology; and see Problem 8.6 for an example from
economics.

Consider the 2 � 2-bimatrix game

.A;B/ D
� L R

U 0; 0 2; 2

D 1; 5 1; 5

�
:

Think of two populations, the row population and the column population. In each
population there are two different types: U and D in the row population and L and
R in the column population. Individuals of one population are continuously and
randomly matched with individuals of the other population, and we are interested
again in the development of the population shares. To start with, assume the shares
of U and D types in the row population are x and 1� x, respectively, and the shares
of L and R types in the column population are y and 1� y. The expected payoff of a
U type individual is given by:

0 � y C 2 � .1� y/ D 2 � 2y :

For a D type individual it is

1 � y C 1 � .1 � y/ D 1 :

For an L type individual it is

0 � x C 5 � .1 � x/ D 5� 5x :
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Fig. 8.3 Phase diagram of
the asymmetric evolutionary
game
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And for an R type individual:

2 � x C 5 � .1 � x/ D 5� 3x :

The average of the row types is therefore:

xŒ2.1� y/�C .1 � x/ � 1

and the replicator dynamics for the population share x.t/ of U individuals is given by

dx=dt D xŒ2.1 � y/ � xŒ2.1 � y/� � .1� x/� D x.1 � x/.1 � 2y/ : (8.3)

Here, we write x and y instead of x.t/ and y.t/. Similarly one can calculate the
replicator dynamics for the column population (check this result!):

dy=dt D y.1 � y/.�2x/ : (8.4)

We are interested in the rest points of the dynamic system described by Eqs. (8.3)
and (8.4), and, in particular, by the stable rest points. Figure 8.3 presents a diagram
of the possible values of x and y. In this diagram, the black lines are the values of x

and y for which the derivative in (8.3) is equal to 0, i.e., for which the row population
is at rest. The gray lines are the values of x and y for which the derivative in (8.4) is
equal to 0: there, the column population is at rest. The points of intersection are the
points where the whole system is at rest; this is the set

f.0; y/ j 0 � y � 1g [ f.1; 0/g [ f.1; 1/g :

In Fig. 8.3, arrows indicate the direction in which x and y move. For instance, if
1 > y � 1

2
and 0 < x < 1 we have dx=dt < 0 and dy=dt < 0, so that in that region

x as well as y decrease. A stable rest point is a rest point such that, if the system
is slightly disturbed and moves to some point close to the rest point in question,
then it should move back again to this rest point. In terms of the arrows in Fig. 8.3
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this means that a stable rest point is one where all arrows in the neighborhood point
towards that point. It is obvious that in our example the point .1; 0/ is the only such
point. So the situation where the row population consists only of U type individuals
(x D 1) and the column population consists only of R type individuals (y D 0) is
the only stable situation with respect to the replicator dynamics.

Is there a relation with Nash equilibrium? One can check (!) that the set of Nash
equilibria in this example is the set:

f.U;R/; .D;L/g [ f.D; .q; 1� q// j 1
2

� q � 1g :

So the stable rest point .U;R/ is a Nash equilibrium. Furthermore, it has a special
characteristic, namely, it is the only strict Nash equilibrium of the game. A strict
Nash equilibrium in a game is a Nash equilibrium where each player not only does
not gain but in fact strictly looses by deviating. For instance, if the row player
deviates from U in the Nash equilibrium .U;R/ then he obtains strictly less than
2. All the other equilibria in this game do not have this property. For instance, if
the column player deviates from L to R in the Nash equilibrium .D;L/, then he still
obtains 5.

The observation that the stable rest point of the replicator dynamics coincides
with a strict Nash equilibrium is not a coincidence. The following proposition is
stated here without a proof.

Proposition 8.8 In a 2 � 2 bimatrix game a pair of strategies is a stable rest point

of the replicator dynamics if and only if it is a strict Nash equilibrium. For larger

games, any stable rest point of the replicator dynamics is a strict Nash equilibrium,

but the converse does not necessarily hold.

Remark 8.9 A strict Nash equilibrium in a bimatrix game must be a pure Nash
equilibrium, for the following reason. If a player plays two or more pure strategies
with positive probability in a Nash equilibrium, then he must be indifferent between
these pure strategies and, thus, can deviate to any of them while keeping the same
payoff. This holds true in any arbitrary game, not only in bimatrix games. �

8.4 Problems

8.1. Symmetric Games

Compute the evolutionary stable strategies for the following payoff matrices A.

(a) A D
�
4 0

5 3

�
(Prisoners’ Dilemma)

(b) A D
�
2 0

0 1

�
(Coordination game)
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8.2. More Symmetric Games

For each of the following two matrices, determine the replicator dynamics, rest
points and stable rest points, and evolutionary stable strategies. Include phase
diagrams for the replicator dynamics. For the evolutionary stable strategies, provide
independent arguments to show evolutionary stability by using Definition 8.4.

(a) A D
�
0 1

1 0

�

(b) A D
�
2 0

1 0

�

8.3. Asymmetric Games

For each of the following two asymmetric situations (i.e., row and column pop-
ulations are assumed to be different and we do not only consider symmetric
population shares), determine the replicator dynamics, rest points and stable rest
points, including phase diagrams. Also determine all Nash and strict Nash equilibria.

(a) .A;AT/ D
�
0; 0 1; 1

1; 1 0; 0

�

(b) .A;AT/ D
�
2; 2 0; 1

1; 0 0; 0

�

8.4. More Asymmetric Games

For each of the following two bimatrix games, determine the replicator dynamics
and all rest points and stable rest points. Also compute all Nash equilibria, and
discuss the relation using Proposition 8.8.

(a) .A;B/ D
�
3; 2 8; 0

4; 0 6; 2

�

(b) .A;B/ D
�
4; 3 3; 4

5; 5 2; 4

�

8.5. Frogs Call For Mates

Consider the following game played by male frogs who Call or Don’t Call their
mates.

� Call Don’t Call

Call P � z;P � z m � z; 1 � m

Don’t Call 1 � m;m � z 0; 0

�

The payoffs are in units of ‘fitness’, measured by the frog’s offspring. Here z denotes
the cost of Calling (danger of becoming prey, danger of running out of energy); and
m is the probability that the male who calls in a pair of males, the other of whom
is not calling, gets a mate. Typically, m � 1

2
. Next, if no male calls then no female
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is attracted, and if both call returns diminish and they each attract P females with
0 < P < 1.

(a) Show that there are several possible evolutionary stable strategies for this game,
depending on the parameters .m; z;P/.

(b) Set m D 0:6 and P D 0:8 : Find values for z for each of the following situations:
(i) Don’t Call is an evolutionary stable strategy (ESS); (ii) Call is an ESS; (iii) A
mixture of Call and Don’t Call is an ESS.

(c) Suppose there are two kinds of frogs in Frogs Call For Mates. Large frogs have a
larger cost of calling (z1) than do small frogs (z2). Determine the corresponding
asymmetric bimatrix game. Determine the possible stable rest points of the
replicator dynamics.

8.6. Video Market Game

Two boundedly rational video companies are playing the following asymmetric
game:

�Open system Lockout system

Open system 6; 4 5; 5

Lockout system 9; 1 10; 0

�

Company I (the row company) has to decide whether to have an open system or a
lockout system. Company II (the column company) has to decide whether to create
its own system or copy that of company I. What is a rest point of the replicator
dynamics for this system?

8.5 Notes

Evolutionary game theory originated in the work of the biologists Maynard Smith
and Price (1973). Taylor and Jonker (1978) and Selten (1983), among others,
played an important role in applying the developed evolutionary biological concepts
to boundedly rational human behavior, and in establishing the connection with
dynamic systems and with game-theoretic concepts such as Nash equilibrium.
A comprehensive treatment is Weibull (1995).

The original definition of evolutionary stable strategy (Chap. 15) is due to
Maynard Smith and Price (1973). Taylor and Jonker (1978) introduced the replicator
dynamics.

For more economic applications of asymmetric evolutionary games see for
instance Gardner (1995). In the literature the concept of evolutionary stable strategy
is extended to asymmetric games. See Selten (1980) or Hofbauer and Sigmund
(1988) for details, also for the relation between stable rest points and strict Nash
equilibrium.

Problems 8.5 and 8.6 are taken from Gardner (1995).
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9Cooperative Games with Transferable Utility

The implicit assumption in a cooperative game is that players can form coalitions
and make binding agreements on how to distribute the proceeds of these coalitions.
A cooperative game is more abstract than a noncooperative game in the sense that
strategies are not explicitly modelled: rather, the game describes what each possible
coalition can earn by cooperation. In a cooperative game with transferable utility

it is assumed that the earnings of a coalition can be expressed by one number.
One may think of this number as an amount of money, which can be distributed
among the players in any conceivable way—including negative payments—if the
coalition is actually formed. More generally, it is an amount of utility and the
implicit assumption is that it makes sense to transfer this utility among the players—
for instance, due to the presence of a medium like money, assuming that individual
utilities can be expressed in monetary terms.

This chapter presents a first acquaintance with the theory of cooperative games
with transferable utility. A few important solution concepts—the core, the Shapley
value, and the nucleolus—are briefly discussed in Sects. 9.2–9.4. We start with
examples and preliminaries in Sect. 9.1.

9.1 Examples and Preliminaries

In Chap. 1 we have seen several examples of cooperative games with transferable
utility: the three cities game, a glove game, a permutation game, and a voting game.
For the stories giving rise to these games the reader is referred to Sect. 1.3.4. Here
we reconsider the resulting games.

In the three cities game, cooperation between cities leads to cost savings
expressed in amounts of money, as in Table 9.1. In the first line of this table all
possible coalitions are listed. It important to note that the term ‘coalition’ is used for
any subset of the set of players. So a coalition is not necessarily formed. The empty
subset (empty coalition) has been added for convenience: it is assigned the number
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Table 9.1 The three cities
game

S ; f1g f2g f3g f1; 2g f1; 3g f2; 3g f1; 2; 3g

v.S/ 0 0 0 0 90 100 120 220

Table 9.2 A glove game S ; f1g f2g f3g f1; 2g f1; 3g f2; 3g f1; 2; 3g

v.S/ 0 0 0 0 0 1 1 1

Table 9.3 A permutation
game

S ; f1g f2g f3g f1; 2g f1; 3g f2; 3g f1; 2; 3g

v.S/ 0 2 5 4 14 18 9 24

0 by convention. The numbers in the second line of the table are called the ‘worths’
of the coalitions. For instance, coalition S D f1; 2g has worth 90. In this particular
example, 90 are the costs saved by cities 1 and 2 if they cooperate. It is assumed that
this amount can be split between the two players (cities) if the coalition is actually
formed: that is, player 1 may receive x1 2 R and player 2 may receive x2 2 R such
that x1 C x2 D 90 or, more generally, x1 C x2 � 90.

In the glove game in Sect. 1.3.4 coalitions may make pairs of gloves. The game is
described in Table 9.2. In this game the worth 1 of the ‘grand coalition’ f1; 2; 3g, for
instance, means that this coalition can earn 1 by producing one pair of gloves. One
can think of this number as expressing the monetary value of this pair of gloves.
Alternatively, one can think of one pair of gloves having ‘utility’ equal to 1. Again,
it is assumed that the players can split up this amount in any way they like. So a
possible distribution of the worth of the grand coalition takes the form .x1; x2; x2/ 2
R
3 such that x1 C x2 C x3 � 1. For i D 1; 2; 3, the number xi may represent the

money that player i receives, or (if nonnegative) the percentage of time that player i

is allowed to wear the gloves.
The permutation game (dentist game) of Sect. 1.3.4 is reproduced in Table 9.3.

In this game, one could think of the worth of a coalition as expressing, for instance,
savings of opportunity costs by having dentist appointments on certain days. What
is important is that, again, these worths can be distributed in any way among the
players of the coalitions.

For the voting game related to the UN Security Council, a table could be
constructed as well, but this table would be huge: there are 215 D 32;768 possible
coalitions (cf. Problem 9.1). Therefore, it is convenient to describe this game as
follows. Let the permanent members be the players 1; : : : ; 5 and let the other
members be the players 6; : : : ; 15. Denote by N D f1; 2; : : : ; 15g the grand coalition
of all players and by v.S/ the worth of a coalition S � N. Then

v.S/ WD
�
1 if f1; : : : ; 5g � S and jSj � 9

0 otherwise

where jSj denotes the number of players in S. In this case the number 1 indicates
that the coalition is ‘winning’ and the number 0 that the coalition is ‘losing’.



9.2 The Core 153

In analyzing games like this the resulting numbers—e.g., nonnegative numbers
x1; : : : ; x15 summing to 1—are usually interpreted as power indices, expressing the
power of a player in some way or another.

We summarize the concepts introduced informally in the preceding examples,
formally in the following definition.

Definition 9.1 A cooperative game with transferable utility or TU-game is a pair
.N; v/, where N D f1; : : : ; ng with n 2 N is the set of players, and v is a function
assigning to each coalition S, i.e., to each subset S � N a real number v.S/, such
that v.;/ D 0. The function v is called the characteristic function and v.S/ is called
the worth of S. The coalition N is called the grand coalition. A payoff distribution
or payoff vector for coalition S is a vector of real numbers .xi/i2S. �

When analyzing a TU-game there are two important questions to answer: which
coalitions are formed; and how are the worths of these coalitions distributed among
their members? In this chapter we assume that the grand coalition is formed and
we concentrate on the second question. This is less restrictive than it may seem
at first sight, since coalition formation depends, naturally, on how the proceeds of
a coalition are going to be distributed among its members. Thus, also if smaller
coalitions are formed the distribution question has to be considered for these
coalitions.

9.2 The Core

Consider the three cities game in Table 9.1, suppose that the grand coalition gets
together, and suppose that there is a proposal x1 D 40, x2 D 40, and x3 D 140 for
distribution of the savings v.N/ D 220 on the bargaining table. One can imagine,
for instance, that player 3 made such a proposal. In that case, players 1 and 2 could
protest successfully, since they can save v.f1; 2g/ D 90 > 80 D x1 C x2 without
player 3. We express this by saying that x D .x1; x2; x3/ is not in the “core” of
this game. More generally, the core of the three cities game is the set of payoff
distributions for N D f1; 2; 3g such that the sum of the payoffs is equal to v.N/ D
220 and each nonempty coalition S obtains at least its own worth. Thus, it is the set

C D f.x1; x2; x3/ 2 R
3 j x1; x2; x3 � 0;

x1 C x2 � 90; x1 C x3 � 100; x2 C x3 � 120;

x1 C x2 C x3 D 220g :

To obtain a better idea of what this set looks like, we can make a diagram. Although
C is a subset of R3, the constraint x1Cx2Cx3 D 220makes that the set C is contained
in a two-dimensional subset of R

3, i.c., the plane through the points .220; 0; 0/,
.0; 220; 0/, and .0; 0; 220/. The triangle formed by these three points is represented
in Fig. 9.1. By the constraints xi � 0 for every i D 1; 2; 3, the set C must be a
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Fig. 9.1 The set C (shaded)
is the core of the three cities
game. Line segment a

corresponds to the constraint
x1 C x2 � 90; it consists of
the payoff vectors in the
triangle with x1 C x2 D 90 or,
equivalently, x3 D 130. Line
segment b corresponds to the
constraint x1 C x3 � 100, and
line segment c corresponds to
the constraint x2 C x3 � 120

(220,0,0)

(0,0,220)

(0,220,0)

(0,90,130)

(0,120,100)

(100,120,0)

(90,0,130)

(100,0,120)

a

c b

C

subset of this triangle. The set C is further restricted by the three constraints for the
two-person coalitions: it is the shaded area in Fig. 9.1.

Hence, the core of the three cities game is the polygon and its inside with vertices
.100; 120; 0/, .0; 120; 100/, .0; 90; 130/, .90; 0; 130/, and .100; 0; 120/.

We now give the formal definition of the core and of some other related concepts.
We write x.S/ WD

P
i2S xi for a payoff distribution x D .x1; : : : ; xn/ 2 R

n and a
nonempty coalition S � N D f1; : : : ; ng. Hence, x.S/ is what the members of the
coalition S obtain together if the payoff vector is x.

Definition 9.2 For a TU-game .N; v/, a payoff distribution x D .x1; : : : ; xn/ 2
R

n is

• efficient if x.N/ D v.N/,
• individually rational if xi � v.fig/ for all i 2 N,
• coalitionally rational if x.S/ � v.S/ for all nonempty coalitions S.

The core of .N; v/ is the set

C.N; v/ D fx 2 R
n j x.N/ D v.N/ and x.S/ � v.S/ for all ; ¤ S � Ng :

Thus, the core of .N; v/ is the set of all efficient and coalitionally rational payoff
distributions. �

The core of a game can be a large set, as in the three cities game; a small set, as
in the glove game (see Problem 9.2); or it can be empty (see again Problem 9.2).
In general, core elements can be computed by linear programming. For games with
two or three players the core can be computed graphically, as we did for the three
cities game. Sometimes, the core can be computed by using the special structure of
the specific game under consideration.
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We conclude this section with analyzing the core of the general glove game (cf.
Problem 1.9).

Example 9.3 In the general glove game, there are ` > 0 players who own a left-
hand glove and r > 0 players who own a right-hand glove. In total there are n

players, so n D ` C r. The coalition N of all players is the grand coalition. The
worth of a coalition S is equal to the number of pairs of gloves that the members
of the coalition can make. Hence, it is equal to the minimum of two numbers: the
number of left-hand glove owners in S and the number of right-hand glove owners in
S. If we denote the set of all left-hand glove owners by L and the set of all right-hand
glove owners by R, then we can also write this as

v.S/ D minfjS \ Lj; jS \ Rjg :

Here, S \ L is the intersection of S and L, i.e., the set of left-hand glove owners in
S, and as before j � j denotes the number of elements in a set, in this case the number
of players. What is the core of this game?

To answer this question we cannot just make a diagram as before. Even if we take
specific numbers for ` and r, as soon as ` C r is larger than three we cannot make
a picture. (This is not quite true: we could still make a picture for four players, but
that would be a three-dimensional picture, which is not easy to draw.) Therefore, we
have to argue in a different way.

Let us assume, first, that ` > r. Then v.N/ D r: we can use the above formula or
simply observe that the grand coalition can make r pairs. Since each single player
can make zero pairs, we also have v.fig/ D 0 for each player i 2 N. Hence, for a
payoff vector x D .x1; : : : ; xn/ to be in the core, we already need x1 C : : :C xn D r

and xi � 0 for each i 2 N. Now take a player j 2 L, that is, j owns a left-hand glove.
Consider the coalition S that consists of all right-hand glove owners and of at least
r left-hand glove owners but not player j: this is possible since ` > r. Then we still
have v.S/ D r, since S can still make r pairs, but this means that the members of
S together should obtain at least r. In turn, this implies that they obtain exactly r,
and thus player j obtains zero: xj D 0. Since this argument holds for every arbitrary
left-hand glove owner, every such player obtains zero. So far we have derived: all
right-hand glove owners together obtain r, each one of them obtains at least zero,
and every left-hand glove owner obtains zero.

Now let i be a right-hand glove owner and j a left-hand glove owner. Then
v.fi; jg/ D 1, hence xi C xj � 1. Since xj D 0, as already established, we have
xi � 1. But this holds for every right-hand glove owner. Since there are r of them
and together they obtain r, we must have that xi D 1 for every right-hand glove
owner. So we have found that x is unique: it assigns 1 to right-hand glove owners
and 0 to left-hand glove owners. Thus, we have found that if x is in the core, then it
can only be this specific payoff vector.

Conversely, this payoff vector is indeed in the core. All players together receive r,
which is indeed equal to v.N/. An arbitrary coalition S receives an amount which is
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equal to the number of right-hand glove owners in S: this is indeed at least equal to
the worth of S, i.e., the number of glove pairs that S can make.

Altogether, in one formula, we have for the core of the general glove game with
` > r:

C.v/ D fxg with x 2 R
n, xi D 1 for i 2 R and xi D 0 for i 2 L :

Similarly we find for r > `:

C.v/ D fxg with x 2 R
n, xi D 1 for i 2 L and xi D 0 for i 2 R :

The case ` D r is left as Problem 9.4. �

9.3 The Shapley Value

The Shapley value is a solution concept for TU-games that is quite different from
the core. Whereas the core is a (possibly empty) set, the Shapley value assigns a
unique payoff distribution for the grand coalition to every TU-game. The Shapley
value is not so much based on strategic considerations but, rather, assigns to each
player his “average marginal contribution” in the game. For three-player games we
already explained the definition of the Shapley value in Chap. 1. Here, we repeat
and extend this definition.

Consider again the three cities game of Table 9.1. Imagine a setting where
the players enter a bargaining room one by one, and upon entering each player
demands and obtains what he contributes to the worth of the coalition present in
the room. Suppose that player 1 enters first, player 2 enters next, and player 3
enters last. Player 1 enters an empty room and can take his “marginal contribution”
v.f1g/ � v.;/ D 0 � 0 D 0. When player 2 enters, player 1 is already present,
and player 2 obtains his marginal contribution v.f1; 2g/ � v.f1g/ D 90 � 0 D 90.
When, finally, player 3 enters, then the coalition f1; 2g is already present. So player
3 obtains his marginal contribution v.f1; 2; 3g/ � v.f1; 2g/ D 220 � 90 D 130.
Hence, this procedure results in the payoff distribution .0; 90; 130/, which is called
a marginal vector. Of course, this payoff distribution does not seem fair since it
depends on the order in which the players enter the room, and this order is arbitrary:
there are five other possible orders. The Shapley value takes the marginal vectors
of all six orders into consideration, and assigns to a TU-game their average. See
Table 9.4.

For an arbitrary TU-game .N; v/ with player set N D f1; : : : ; ng the Shapley
value can be computed in the same way. There are n � .n �1/ � : : : � 2 � 1 D nŠ possible
orders of the players. First compute the marginal vectors corresponding to these nŠ

different orders, and then take the average—that is, sum all marginal vectors and
divide the result by nŠ . If the number of players is large, then this is a huge task.
In the UN security council voting game of Sect. 9.1, for instance, this would mean
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Table 9.4 Computation of
the Shapley value for the
three cities game. The
Shapley value is obtained by
dividing the totals of the
marginal contributions by 6

Order of entry 1 2 3

1, 2, 3 0 90 130

1, 3, 2 0 120 100

2, 1, 3 90 0 130

2, 3, 1 100 0 120

3, 1, 2 100 120 0

3, 2, 1 100 120 0

Total 390 450 480

Shapley value 65 75 80

computing 15Š > 13 � 1011 marginal vectors. Fortunately, there is a more clever
way to compute the total marginal contribution of a player.

For instance, let .N; v/ be a TU-game with ten players. Consider player 7 and the
coalition f3; 5; 9g. The marginal contribution v.f3; 5; 9; 7g/ � v.f3; 5; 9g/ accruing
to player 7 occurs in more than one marginal vector. In how many marginal vectors
does it occur? To compute this, note that first players 3, 5, and 9 must enter, and this
can happen in 3Š different orders. Then player 7 enters. Finally, the other six players
enter, and this can happen in 6Š different orders. Therefore, the total number of
marginal vectors in which player 7 obtains the marginal contribution v.f3; 5; 9; 7g/�
v.f3; 5; 9g/ is equal to 3Š� 6Š. By counting in this way the number of computations
is greatly reduced.

We now repeat this argument for an arbitrary TU-game .N; v/, an arbitrary player
i 2 N, and an arbitrary coalition S that does not contain player i. By the same
argument as in the preceding paragraph, the total number of marginal vectors in
which player i receives the marginal contribution v.S [ fig/ � v.S/ is equal to the
number of different orders in which the players of S can enter first, jSjŠ , multiplied
by the number of different orders in which the players not in S [ fig can enter after
player i, which is .n � jSj � 1/Š . Hence, the total contribution obtained by player
i by entering after the coalition S is equal to jSjŠ.n � jSj � 1/ŠŒv.S [ fig/ � v.S/� .
The Shapley value for player i is then obtained by summing over all coalitions S not

containing player i, and dividing by nŠ . In fact, we use this alternative computation
as the definition of the Shapley value.

Definition 9.4 The Shapley value of a TU-game .N; v/ is denoted by ˆ.N; v/. Its
i-th coordinate, i.e., the Shapley value payoff to player i 2 N, is given by

ˆi.N; v/ D
X

S�NW i…S

jSjŠ.n � jSj � 1/Š

nŠ
Œv.S [ fig/� v.S/� :

�
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Especially for larger TU-games it is easier to work with the formula in Definition 9.4
than to use the definition based on marginal vectors. For some purposes, however, it
is easier to use the latter definition (Problem 9.7).

The Shapley value of the three cities game is an element of the core of that game
(check this). In general, however, this does not have to be the case even if the core
is nonempty (Problem 9.8).

Example 9.5 Consider the general glove game of Example 9.3. We assume ` D 4

and r D 2. The worth v.N/ of the grand coalition is equal to 2. First note that, for
reasons of symmetry, in the Shapley value all left-hand glove owners receive the
same payoff and also all right-hand glove owners receive the same payoff. (This is
intuitive, but can also be made more precise: see Problem 9.17 or Chap. 16.) Since
the total payoff is 2, this means that it is sufficient to compute the Shapley value of
either one left-hand glove owner or one right-hand glove owner: if, say, the payoff of
a left-hand glove owner in the Shapley value is ˛, then every left-hand glove owner
receives ˛ and every right-hand glove owner receives .2�4˛/=2. Let us compute ˛.

Suppose i is a left-hand glove owner. Then i makes a contribution of 1 to any
coalition with strictly less left-hand players than right-hand players. To all other
coalitions i’s contribution is zero, so we do not have to take those into consideration.
Take a coalition S with k right-hand glove owners and j left-hand glove owners,
such that player i is not in S and such that j < k, where k is equal to 1 or 2. Then
indeed v.S [ fig/ � v.S/ D 1, since v.S/ D j and v.S [ fig/ D j C 1. There

are

�
2

k

�
�
�
3

j

�
coalitions with k right-hand glove owners and j left-hand glove

owners.1 Since jSj D k C j, the weight of S as in the formula in Definition 9.4 is
.k C j/Š.5 � k � j/Š. Hence, summing over all possible values of k and j we obtain

ˆi.N; v/ D ˛ D
2X

kD1

k�1X

jD0

.k C j/Š.5 � k � j/Š

6Š

�
2

k

�
�
�
3

j

�
:

This is readily computed and yields ˛ D 2=15. Hence, every left-hand glove owner
receives 2=15 in the Shapley value, which implies that for the two right-hand glove
owners 2 � 4 � 2=15 D 22=15 is left. This implies

ˆi.N; v/ D
�
2=15 if i is a left-hand glove owner
11=15 if i is a right-hand glove owner.

Observe that the Shapley value of this game is not in the core (see Example 9.3).

1In general,

�
p

q

�
D

pŠ

qŠ.p�q/Š
is the number of ways in which we can choose a set of q elements

from a set of p elements.
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The same arguments can be used to compute the Shapley value for any number
of left-hand and right-hand glove owners. If ` D r, then for reasons of symmetry,
all players receive the same payoff in the Shapley value, namely 1=2. �

The definition of the Shapley value as assigning to each player in a game his average
marginal contribution, can be regarded as a justification of this solution concept by
itself. In the literature there are, moreover, a number of axiomatic characterizations
of the Shapley value. In an axiomatic characterization one proceeds as follows.
Consider an arbitrary map, which (like the Shapley value) assigns to each game
with player set N a payoff vector. Next, define “reasonable” properties or axioms

for this map. Such axioms limit the possible maps (i.e., solution concepts), and if
the axioms are strong enough, they admit only one solution concept. This so-called
axiomatic approach is common in cooperative game theory. Problem 9.17 preludes
to this. For details, see Chap. 17.

9.4 The Nucleolus

The last concept we discuss in this introduction to TU-games is the nucleolus. Like
the Shapley value it assigns a unique payoff distribution to a game. An advantage
compared to the Shapley value is that the nucleolus assigns a payoff distribution
in the core of a game, provided the core is nonempty. The nucleolus is defined
for games which possess the following property. A TU-game .N; v/ is essential
if v.N/ �

P
i2N v.fig/. For an essential game there are payoff distributions for

the grand coalition that are both efficient and individually rational. Such payoff
distributions are called imputations. The set

I.N; v/ D fx 2 R
N j x.N/ D v.N/; xi � v.fig/ for all i 2 Ng

is called the imputation set of the TU-game .N; v/. Hence, a game .N; v/ is essential
if and only if I.N; v/ ¤ ; (check!).

Let .N; v/ be an essential TU-game, let x 2 I.N; v/, and let S be a nonempty
coalition unequal to N. The excess of S at x, denoted by e.S; x/, is defined by

e.S; x/ D v.S/� x.S/ :

The excess of a coalition S at a payoff distribution x is, thus, the difference between
what S can acquire on its own and what it receives in total from x. The excess can
be seen as a measure of the dissatisfaction of the coalition S with the imputation x:
the smaller the total payoff of S at x, the larger e.S; x/. In particular, if this excess is
positive then S obtains less than its own worth.

In words, the nucleolus of an essential TU-game .N; v/ is defined as follows.
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1. First, find all imputations for which the maximal excess among all coalitions
(not equal to N or the empty set) is as small as possible. If there is a unique such
imputation, then that is the nucleolus.

2. If not, then determine those coalitions for which the maximal excess found in (1)
cannot be decreased any further. Then continue with the remaining coalitions
and among the imputations found in (1) find those imputations for which the
maximal excess among these remaining coalitions is as small as possible. If there
is a unique such imputation, then that is the nucleolus.

3. If not, then determine those coalitions for which the maximal excess found in (2)
cannot be decreased any further. Then continue with the remaining coalitions
and among the imputations found in (2) find those imputations for which the
maximal excess among these remaining coalitions is as small as possible. If there
is a unique such imputation, then that is the nucleolus.

4. Etc.

Thus, the idea behind the nucleolus is to make the largest dissatisfaction as small
as possible. If there is more than one possibility to do this, then we also make
the second largest dissatisfaction as small as possible, and so on, until a unique
distribution is reached.

A formal definition of the nucleolus can be found in Chap. 19. Here we content
ourselves with the given verbal description and some examples.

Our first illustration of this procedure is its application to the three cities game,
reproduced in Table 9.5. The third line of the table gives the excesses at the
imputation .70; 70; 80/. The choice of this particular imputation is arbitrary: we use
it as a starting point to find the nucleolus. The largest excess at this imputation is
�30, namely for the coalition f2; 3g. Clearly, we can decrease this excess by giving
players 2 and 3 more at the expense of player 1. Doing so implies that the excesses
of f1; 2g or of f1; 3g or of both will increase. These excesses are equal to �50. We
can increase the payoffs of players 2 and 3 by 6 2

3
and decrease the payoff of player

1 by 2 � 6 2
3

D 13 1
3
, so that these three excesses become equal. Thus we obtain the

imputation .56 2
3
; 76 2

3
; 86 2

3
/, at which the excesses of the three two-player coalitions

are all equal to �43 1
3
, and these are also the maximal excesses. Now first observe

that at this imputation the maximal excess is as small as possible. This follows since

Table 9.5 Heuristic determination of the nucleolus of the three cities game

S f1g f2g f3g f1; 2g f1; 3g f2; 3g f1; 2; 3g

v.S/ 0 0 0 90 100 120 220

e.S; .70; 70; 80// �70 �70 �80 �50 �50 �30

e.S; .56 2
3
; 76 2

3
; 86 2

3
// �56 2

3
�76 2

3
�86 2

3
�43 1

3
�43 1

3
�43 1

3
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the sum of the excesses of the three two-player coalitions at any imputation must be
the same, namely equal to �130, as follows from

e.f1; 2g; x/C e.f1; 3g; x/C e.f2; 3g; x/ D v.f1; 2g/C v.f1; 3g/C v.f2; 3g/
�2.x1 C x2 C x3/

D 310� 2 � 220
D �130 :

This implies that none of these excesses can be decreased without increasing at least
one other excess. Second, the imputation at which these three excesses are equal is
unique, since the system

90� x1 � x2 D 100� x1 � x3

100� x1 � x3 D 120� x2 � x3

x1 C x2 C x3 D 220

x1; x2; x3 � 0

has a unique solution—namely, indeed, .56 2
3
; 76 2

3
; 86 2

3
/. So this imputation must be

the nucleolus of the three cities game.
This example suggests that, at least for a three player TU-game, it is easy to

find the nucleolus, namely simply by equating the excesses of the three two-player
coalitions. Unfortunately, this is erroneous. It works if the worths of the two-
player coalitions are large relative to the worths of the single player coalitions, but
otherwise it may fail to result in the nucleolus. Consider the three-player TU-game
in Table 9.6, which is identical to the three cities game except that now v.f1g D 20.
The third line of the table shows the excesses at .56 2

3
; 76 2

3
; 86 2

3
/ in this TU-game.

(This vector is still an imputation.) The maximal excess is now �36 2
3

for the single-

player coalition f1g. Clearly, .56 2
3
; 76 2

3
; 86 2

3
/ is no longer the nucleolus: the excess

of f1g can be decreased by giving player 1 more at the expense of players 2 and/or
3. Suppose we equalize the excesses of f1g and f2; 3g by solving the equation
20 � x1 D 120 � x2 � x3. Together with x1 C x2 C x3 D 220 this yields x1 D 60

and x2 C x3 D 160. Trying the imputation .60; 75; 85/, obtained by taking away
the same amount 1 2

3
from players 2 and 3, yields the excesses in the fourth line of

Table 9.6 Heuristic determination of the nucleolus in the three cities game with the worth of
coalition f1g changed to 20

S f1g f2g f3g f1; 2g f1; 3g f2; 3g f1; 2; 3g

v.S/ 20 0 0 90 100 120 220

e.S; .56 2
3
; 76 2

3
; 86 2

3
// �36 2

3
�76 2

3
�86 2

3
�43 1

3
�43 1

3
�43 1

3

e.S; .60; 75; 85// �40 �75 �85 �45 �45 �40
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Table 9.6. We claim that .60; 75; 85/ is the nucleolus of this TU-game. The maximal
excess is �40, reached by the coalitions f1g and f2; 3g, and this cannot be decreased:
decreasing the excess for one of those two coalitions implies increasing the excess
for the other coalition. Hence, x1 has to be equal to 60 in the nucleolus. The second
maximal excess is �45, reached by the coalitions f1; 2g and f1; 3g. Since x1 has
already been fixed at 60, a decrease in the excess for one of these two coalitions
implies an increase of the excess for the other coalition. Hence, also x2 and x3 are
fixed, at 75 and 85, respectively.

These two examples indicate that it may not be easy to compute the nucleolus.
For three-player games the heuristic method above works well. In general, it can be
computed by solving a series of linear programs. The following example illustrates
this for the three-player games considered above.

Example 9.6 The maximal excess at the nucleolus of the three-cities game in
Table 9.5 can be found by solving the following linear minimization problem.

Minimize ˛ subject to

x1 C x2 C x3 D 220

x1; x2; x3 � 0

0 � x1 � ˛

0 � x2 � ˛

0 � x3 � ˛

90� x1 � x2 � ˛

100� x1 � x3 � ˛

120� x2 � x3 � ˛

Here, ˛ is the maximal excess to be minimized. The first two constraints make sure
that ˛ is minimized over the set of imputations. The next three constraints are those
for the excesses of the single-player coalitions, and the last three constraints are
those for the excesses of the two-player coalitions: these six inequalities ensure that
˛ will be the maximal excess. By using the efficiency constraint x1 C x2 C x3 D
220 we can rewrite the problem into a minimization problem with three variables
(˛ and for instance x1, x2) which could be solved graphically (by making a three-
dimensional diagram); in general, however, we can use a computer program, based
on for instance the simplex method, to solve the problem. In this case, from the
preceding analysis we already know that the optimal solution of the problem is
˛ D �43 1

3
, attained at a unique point .x1; x2; x3/ D .56 2

3
; 76 2

3
; 86 2

3
/.



9.4 The Nucleolus 163

For the modified three-cities game in Table 9.6 the linear program becomes:

Minimize ˛ subject to

x1 C x2 C x3 D 220

x1; x2; x3 � 0

20 � x1 � ˛

0 � x2 � ˛

0 � x3 � ˛

90� x1 � x2 � ˛

100� x1 � x3 � ˛

120� x2 � x3 � ˛

From the preceding analysis the solution of this problem is ˛ D �40, and at all
points at which this value is attained we have x1 D 60 and, consequently, x2 C x3 D
160. To determine the second maximal excess we need to solve the following linear
program:

Minimize ˛ subject to

x2 C x3 D 160

x2; x3 � 0

�x2 � ˛

�x3 � ˛

30� x2 � ˛

40� x3 � ˛

The optimal solution to this problem is ˛ D �45, attained at .x2; x3/ D .75; 85/—
this follows from the preceding analysis, or from solving the problem graphically
after reducing it to a problem of two variables using the constraint x2 C x3 D 160.
Thus, the nucleolus of the modified three-cities problem is .60; 75; 85/, as found
earlier. �

Although the nucleolus is not easy to compute it is an attractive solution for the
following reasons. It assigns a unique imputation to every essential game and if a
game has a nonempty core, the nucleolus assigns a core element.

Proposition 9.7 Let .N; v/ be a game with nonempty core. Then the nucleolus of

.N; v/ is a payoff distribution in the core.
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Table 9.7 The game in Example 9.8

S f1g f2g f3g f1; 2g f1; 3g f2; 3g f1; 2; 3g

v.S/ 0 0 0 10 0 20 20

e.S; .0; 10; 10// 0 �10 �10 0 �10 0

e.S; .0; 15; 5// 0 �15 �5 �5 �5 0

Proof Take any x in the core of .N; v/. Then for every nonempty coalition S ¤ N we
have x.S/ � v.S/, hence e.S; x/ D v.S/ � x.S/ � 0. Suppose that z is the nucleolus
of .N; v/. Since the nucleolus minimizes the maximal excess over all imputations,
and we already have an imputation, namely x, at which all excesses and thus also
the maximal excess are non-positive, we must have that the maximal excess at z is
non-positive and, hence, all excesses at z are non-positive. This means that for every
nonempty coalition S ¤ N we have e.S; z/ D v.S/ � z.S/ � 0, hence z.S/ � v.S/.
But this means that z is in the core of .N; v/. �

In view of Proposition 9.7, if the core of a game is known then this may be very
helpful in finding the nucleolus since we can restrict consideration to the core. We
illustrate this by the next examples.

Example 9.8 Consider the three-person game in Table 9.7. This game has a
nonempty core, and player 1 obtains 0 in every core distribution. Starting with the
core distribution .0; 10; 10/, we find that the maximal excess is equal to 0, reached
for the coalitions f1g, f1; 2g, and f2; 3g. Clearly, this excess cannot be decreased
any further since a decrease of the excess for f1g implies an increase for f2; 3g,
and conversely. Hence, if z is the nucleolus, then z1 D 0 and z2 C z3 D 20. Note,
however, that the excess for f1; 2g can be decreased by increasing the payoff for
player 2 at the expense of player 3. For the payoff distribution .0; 15; 5/, we find
that the second maximal excess is reached by f1; 2g, f1; 3g, and f3g. We cannot
decrease the excess of f1; 2g without increasing it for f1; 3g and f3g, given that z1 is
already fixed at 0. Hence, we have obtained the nucleolus: z D .0; 15; 5/. �

Example 9.9 Consider again the general glove game of Example 9.3. For ` > r,
the core of this game consists of the unique payoff distribution where the left-hand
glove owners obtain 0 and the right-hand glove owners obtain 1. By Proposition 9.7,
this is also the nucleolus of this game. �

We conclude with an example illustrating again the core, Shapley value and
nucleolus of a game.

Example 9.10 Consider the following six-player cooperative game. The player set
is N D f1; : : : ; 6g. A coalition S has worth 1 in exactly two cases: either it contains
player 1 and at least one other player, or it is the coalition f2; : : : ; 6g. All other
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coalitions have worth 0. (Such a game is called an apex game, player 1 is the apex

player and the other players are called minor players.)
First observe that the core of this game is empty. To see this, suppose x D

.x1; : : : ; x6/ is in the core. Then x1 C : : : C x5 � v.f1; : : : ; 5g/ D 1. Since
x6 � v.f6g/ D 0 and x1 C : : : C x6 D v.N/ D 1, we must have x1 C : : : C x5 D 1

and x6 D 0. Similarly, one derives x2 D : : : D x5 D 0. Hence, x2 C : : : C x6 D 0,
but then 1 D v.f2; : : : ; 6g/ > x2 C : : :C x6, so that the core constraint for coalition
f2; : : : ; 6g is violated. From this contradiction, we conclude that the core of this
game is empty.

To find the nucleolus, for reasons of symmetry we may assume that it is of the
form .1 � 5˛; ˛; : : : ; ˛/, where 0 � ˛ � 1=5 in order to make it an imputation.
The excess of a coalition of the form f1; ig for every i 2 f2; : : : ; 6g is equal to
1 � .1 � 5˛/ � ˛ D 4˛, and the excess of the coalition f2; : : : ; 6g is 1 � 5˛.
Clearly, these will be the maximal excesses. By increasing ˛ the excesses of the
f1; ig coalitions will increase and the excess of the coalition f2; : : : ; 6g will decrease;
by decreasing ˛ the effects will be opposite. Therefore, we find the nucleolus by
equating these excesses. Setting 4˛ D 1 � 5˛ yields ˛ D 1=9, hence the nucleolus
is .4=9; 1=9; : : : ; 1=9/.

To find the Shapley value, we use Definition 9.4. (There are 6Š D 720 possible
orderings of the six players, so listing all of them is an inefficient method to compute
the Shapley value.) It is sufficient to compute the Shapley value for player 2 (for
instance) since then we also know the Shapley value for the other players. Player 2
makes a nonzero contribution, equal to 1, in exactly two cases: either to S D f1g or
to S D f3; : : : ; 6g. So we obtain

ˆ2.N; v/ D 1Š.6 � 1 � 1/Š

6Š
� 1C 4Š.6� 4 � 1/Š

6Š
� 1 D 1

15
:

Thus, the Shapley value of this game is

ˆ.N; v/ D .1 � 5 � 1
15
;
1

15
; : : : ;

1

15
/ D .

2

3
;
1

15
; : : : ;

1

15
/ :

�

9.5 Problems

9.1. Number of Coalitions

Show that a set of n 2 N elements has 2n different subsets.

9.2. Computing the Core

(a) Compute the core of the glove game of Table 9.2 by making a diagram.
(b) Compute the core of the dentist game of Table 9.3 by making a diagram.
(c) Compute the core of the UN security council voting game in Sect. 9.1.



166 9 Cooperative Games with Transferable Utility

9.3. The Core of a Two-Person Game

Consider the two-person game .f1; 2g/; v/ given by v.f1g/ D a, v.f2g/ D b, and
v.f1; 2g/ D c, where a; b; c 2 R. Give a necessary and sufficient condition on a, b,
and c for the core of .f1; 2g; v/ to be nonempty. Make a diagram and compute the
core.

9.4. The Core of the General Glove Game

Compute the core of the general glove game in Example 9.3 for the case where the
numbers of left-hand glove owners and right-hand glove owners are equal. Is the
Shapley value (cf. Example 9.5) in the core?

9.5. A Condition for Nonemptiness of the Core of a Three-Person Game

Let .f1; 2; 3g; v/ be a three-person game which has a nonempty core. Show that
2v.f1; 2; 3g/ � v.f1; 2g/C v.f1; 3g/C v.f2; 3g/. (Hint: Take a core element x D
.x1; x2; x3/ and write down the core constraints.)

9.6. Non-monotonicity of the Core

Consider the following four-person game: v.fig/ D 0 for every i D 1; : : : ; 4,
v.f1; 2g/ D v.f3; 4g/ D 0, v.S/ D 1 for all other two-person coalitions and for
all three-person coalitions, and v.N/ D 2.

(a) Show that C.N; v/ D f.˛; ˛; 1 � ˛; 1 � ˛/ 2 R
4 j 0 � ˛ � 1g.

(b) Consider the game .N; v0/ equal to .N; v/ except for v0.f1; 3; 4g/ D 2. Show
that the core of .N; v0/ consists of a single element. What about the payoff to
player 1 if core elements in .N; v/ and .N; v0/ are compared? Conclude that the
core is not “monotonic” (consider player 1).

9.7. Efficiency of the Shapley Value

Let .N; v/ be an arbitrary TU-game. Show that the Shapley value ˆ.N; v/ is
efficient. [Hint: take an order i1; i2; : : : ; in of the players and show that the sum
of the coordinates of the corresponding marginal vector is equal to v.N/; use this to
conclude that ˆ.N; v/ is efficient.]

9.8. Computing the Shapley Value

(a) Compute the Shapley value of the glove game of Table 9.2. Is it an element of
the core?

(b) Compute the Shapley value of the dentist game of Table 9.3. Is it an element of
the core?

(c) Compute the Shapley value of the UN security council voting game in Sect. 9.1.
(Hint: observe the—more or less—obvious fact that the Shapley value assigns
the same payoff to all permanent members and also to all nonpermanent
members. Use the formula in Definition 9.4.) Is it an element of the core?
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9.9. The Shapley Value and the Core

For every real number a the three-player TU-game va is given by: va.fig/ D 0 for
i D 1; 2; 3, va.f1; 2g/ D 3, va.f1; 3g/ D 2, va.f2; 3g/ D 1, va.f1; 2; 3g/ D a.

(a) Determine the minimal value of a so that the TU-game va has a nonempty core.
(b) Calculate the Shapley value of va for a D 6.
(c) Determine the minimal value of a so that the Shapley value of va is a core

distribution.

9.10. Shapley Value in a Two-Player Game

Let .N; v/ be a two-player TU-game, i.e., N D f1; 2g. Compute the Shapley value
(expressed in v.f1g/, v.f2g/, and v.f1; 2g/), and show that it is in the core of the
game provided the core is nonempty. Make a diagram.

9.11. Computing the Nucleolus

(a) Compute the nucleolus of the glove game of Table 9.2.
(b) Compute the nucleolus of the dentist game of Table 9.3.
(c) Compute the nucleolus of the UN security council voting game in Sect. 9.1.

(Hint: use Proposition 9.7.)
(d) Compute the nucleolus of the games .N; v/ and .N; v0/ in Problem 9.6.

9.12. Nucleolus of Two-Player Games

Let .N; v/ be an essential two-player TU-game. Compute the nucleolus.

9.13. Computing the Core, the Shapley Value, and the Nucleolus

(a) Compute the Shapley value and the nucleolus in the three-player TU-game given
by: v.fig/ D 1 for i D 1; 2; 3, v.f1; 2g/ D 2, v.f1; 3g/ D 3, v.f2; 3g/ D 4,
v.f1; 2; 3g/ D 6. Is the Shapley value a core element in this game?

(b) Compute the core of this game. Make a picture.
(c) Suppose we increase v.f1g/. What is the maximal value of v.f1g/ such that the

game still has a nonempty core?

9.14. Voting (1)

Suppose in Parliament there are four parties A;B;C;D with numbers of votes equal
to 40; 30; 20; 10, respectively. To pass any law a two-third majority is needed.

(a) Formulate this situation as a four-person cooperative game where winning
coalitions have worth 1 and losing coalitions worth 0. Determine the Shapley
value of this game.

(b) Determine also the core and the nucleolus of this game.
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9.15. Voting (2)

A voting committee consists of five members: members 1 and 2 belong to party I,
while members 3, 4, and 5 belong to party II. In order to pass a decision at least
a weak majority of each party (that is, at least 50 % of the votes of each party) is
required. A coalition that has a weak majority of both parties is called winning. We
model this situation as a so-called simple game: winning coalitions obtain worth 1,
all other coalitions worth 0.

(a) Show that there are six winning coalitions of minimal size: list all of them.
(b) Use your answer to (a) to give a concise description of the game (i.e., without

listing all 32 coalitions).
(c) Compute the Shapley value of this game. According to the Shapley value, which

players (members) are most powerful?
(d) Compute the nucleolus of this game. According to the nucleolus, which players

(members) are most powerful?
(e) Compute the core of this game.

9.16. Two Buyers and a Seller

Players 1 and 2 are buyers, while player 3 is a seller. The seller owns an object that
is worth nothing to him, but has value 1 for buyer 1 and value 2 for buyer 2. These
are the prices that the buyers are willing to pay to the seller in order to get the object.

(a) Model this situation as a three-person TU-game, where the worth of each
coalition is the maximal surplus it can create by a transaction between a buyer
and the seller.

(b) Compute the core of this game.
(c) Compute the Shapley value of this game. Is it in the core?
(d) Compute the nucleolus of this game.

9.17. Properties of the Shapley Value

The properties of the Shapley value described in (a)–(c) below are called symmetry,
additivity, and dummy property, respectively. It can be shown (Chap. 17) that
the Shapley value is the unique solution concept that assigns exactly one payoff
vector to each TU-game and has these three properties together with efficiency (cf.
Problem 9.7). In other words, a solution concept has these four properties if, and
only if, it is the Shapley value. In this exercise you are asked to show the “easy” part
of this statement, namely the if-part. (Hint: in each case, decide which of the two
formulas for the Shapley value—the one in Definition 9.4 or the formula based on
marginal vectors—is most convenient to use.)

(a) Let .N; v/ be a TU-game, and suppose players i and j are symmetric in this
game, i.e., v.S [ fig/ D v.S [ fjg/ for all coalitions S which do not contain i

and j. Show that i and j obtain the same payoff from the Shapley value.
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(b) Let .N; v/ and .N;w/ be two TU-games with the same player set N. Define the
sum of these TU-games as the TU-game with player set N where the worth of
each coalition S is given by v.S/C w.S/; denote this TU-game by .N; v C w/.
Show that the Shapley value assigns to this sum TU-game the payoff vector
which is the sum of the Shapley values of .N; v/ and .N;w/.

(c) Call player i a dummy in the TU-game .N; v/ if v.S [ fig/ D v.S/C v.fig/ for
every coalition S to which player i does not belong. Show that the Shapley value
assigns exactly the payoff v.fig/ to player i.

9.6 Notes

For a more advanced treatment of cooperative game theory, see Chaps. 16–20.
Games with nonempty cores were characterized in Bondareva (1962) and Shapley
(1967), see Chap. 16.

The Shapley value was introduced and axiomatically characterized in Shapley
(1953)—see Chap. 17.

Imputations were first introduced by von Neumann and Morgenstern
(1944/1947). They introduced cooperative games in order to cope with multi-person
zero-sum games, which in general do not have a value.

The nucleolus was introduced in Schmeidler (1969). The nucleolus is similar in
spirit to the main principle of distributive justice proposed in Rawls (1971), namely
to maximize the lot of the worst off people in society.

The arguments used above to show that a particular imputation is indeed the
nucleolus implicitly use a general property of the nucleolus called the Kohlberg
criterion. See Chap. 19 for a detailed study of the nucleolus.

Problem 9.6 is taken from Moulin (1988).
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The common features of a cooperative game model—such as the model of a
game with transferable utility in Chap. 9—include: the abstraction from a detailed
description of the strategic possibilities of a player; instead, a detailed description
of what players and coalitions can attain in terms of outcomes or utilities; solution
concepts based on strategic considerations and/or considerations of fairness, equity,
efficiency, etc.; if possible, an axiomatic characterization of such solution concepts.
For instance, one can argue that the core for TU-games is based on strategic
considerations whereas the Shapley value is based on a combination of efficiency
and symmetry or fairness with respect to contributions. The latter is made precise
by an axiomatic characterization as in Problem 9.17.

In this chapter a few other cooperative game models are discussed: bargaining
problems in Sect. 10.1, exchange economies in Sect. 10.2, matching problems in
Sect. 10.3, and house exchange in Sect. 10.4.

10.1 Bargaining Problems

An example of a bargaining problem is the division problem in Sect. 1.3.5. A
noncooperative, strategic approach to such a bargaining problem can be found in
Sect. 6.7, see also Problems 6.16 and 6.17. In this section we treat the bargaining
problem from a cooperative, axiomatic perspective. Surprisingly, there is a close
relation between this approach and the strategic approach, as we will see. In
Sect. 10.1.1 we discuss the Nash bargaining solution and in Sect. 10.1.2 its relation
with the Rubinstein bargaining procedure of Sect. 6.7.

© Springer-Verlag Berlin Heidelberg 2015
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10.1.1 The Nash Bargaining Solution

We start with the definition of a two-person bargaining problem.1

Definition 10.1 A two-person bargaining problem is a pair .S; d/, where

.i/ S � R
2 is a convex, closed and bounded set,2

.ii/ d D .d1; d2/ 2 S such that there is some point x D .x1; x2/ 2 S with x1 > d1
and x2 > d2.

S is the feasible set and d is the disagreement point. �

The interpretation of a bargaining problem .S;d/ is as follows. The two players
bargain over the feasible outcomes in S. If they reach an agreement x D .x1; x2/ 2 S,
then player 1 receives utility x1 and player 2 receives utility x2. If they do not reach
an agreement, then the game ends in the disagreement point d, yielding utility d1
to player 1 and d2 to player 2. This is an interpretation, and the actual bargaining
procedure is not spelled out.

For the example in Sect. 1.3.5, the feasible set and the disagreement point are
given by

S D fx 2 R
2 j 0 � x1; x2 � 1; x2 �

p
1 � x1g; d1 D d2 D 0 :

See also Fig. 1.7. In general, a bargaining problem may look as in Fig. 10.1. The set
of all such bargaining problems is denoted by B.

Fig. 10.1 A two-person
bargaining problem

d

S

1We restrict attention here to two-person bargaining problems. For n-person bargaining problems
and, more generally, NTU-games, see the Notes section at the end of the chapter and Chap. 21.
2A subset of Rk is convex if with each pair of points in the set also the line segment connecting these
points is in the set. A set is closed if it contains its boundary or, equivalently, if for every sequence
of points in the set that converges to a point that limit point is also in the set. It is bounded if there
is a number M > 0 such that jxij � M for all points x in the set and all coordinates i.
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d (c)

S T

F (S, d )

F (T, d ) d

TS

F (T, d ) = F (S, d )

(d)

d
S

P (S ) F (S, d )

(a)

S

d

(b)

Fig. 10.2 Illustration of the four conditions (‘axioms’) determining the Nash bargaining
solution—cf. Theorem 10.2. In (a) the Pareto optimal subset of S is the thick black curve. The
bargaining problem .S; d/ in (b) is symmetric, and symmetry of F means that F should assign a
point on the thick black line segment. In (c), which illustrates scale covariance, we took d to be the
origin, and T results from S by multiplying all first coordinates by 2: then scale covariance implies
that F1.T; d/ D 2F1.S; d/. The independence of irrelevant alternatives axiom is illustrated in (d)

We consider the following question: for any given bargaining problem .S;d/,
what is a good compromise? We answer this question by looking for a map
F W B ! R

2 which assigns a feasible point to every bargaining problem,
i.e., satisfies F.S;d/ 2 S for every .S;d/ 2 B. Such a map is called a (two-
person) bargaining solution. According to Nash (1950), a bargaining solution should
satisfy four conditions, namely: Pareto optimality, symmetry, scale covariance, and
independence of irrelevant alternatives. We discuss each of these conditions in
detail. The conditions are illustrated in Fig. 10.2a–d.

For a bargaining problem .S;d/ 2 B, the Pareto optimal points of S are those
where the utility of no player can be increased without decreasing the utility of the
other player. Formally,

P.S/ D fx 2 S j for all y 2 S with y1 � x1, y2 � x2, we have y D xg

is the Pareto optimal (sub)set of S. The bargaining solution F is Pareto optimal if
F.S;d/ 2 P.S/ for all .S;d/ 2 B. Hence, a Pareto optimal bargaining solution
assigns a Pareto optimal point to each bargaining problem. See Fig. 10.2a for an
illustration.
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A bargaining problem .S;d/ 2 B is symmetric if d1 D d2 and if S is symmetric
with respect to the 45ı-line through d, i.e., if

S D f.x2; x1/ 2 R
2 j .x1; x2/ 2 Sg :

In a symmetric bargaining problem there is no way to distinguish between the
players other than by the arbitrary choice of axes. A bargaining solution is
symmetric if F1.S;d/ D F2.S;d/ for each symmetric bargaining problem .S;d/ 2
B. Hence, a symmetric bargaining solution assigns the same utility to each player in
a symmetric bargaining problem. See Fig. 10.2b.

Observe that, for a symmetric bargaining problem .S;d/, Pareto optimality and
symmetry of F would completely determine the solution point F.S;d/, since there
is a unique symmetric Pareto optimal point in S.

The condition of scale covariance says that a bargaining solution should not
depend on the choice of the origin or on a positive multiplicative factor in the
utilities. For instance, in the wine division problem in Sect. 1.3.5, it should not
matter if the utility functions were Nu1.˛/ D a1˛ C b1 and Nu2.˛/ D a2

p
˛ C b2,

where a1; a2; b1; b2 2 R with a1; a2 > 0. Saying that this should not matter means
that the final outcome of the bargaining problem, the division of the wine, should
not depend on this. One can think of Nu1; Nu2 expressing the same preferences about
wine as u1; u2 in different units.3 Formally, a bargaining solution F is scale covariant
if for all .S;d/ 2 B and all a1; a2; b1; b2 2 R with a1; a2 > 0 we have:

F
�
f.a1x1 C b1; a2x2 C b2/ 2 R

2 j .x1; x2/ 2 Sg; .a1d1 C b1; a2d2 C b2/
�

D .a1F1.S;d/C b1; a2F2.S;d/C b2/ :

For a simple case, this condition is illustrated in Fig. 10.2c.
The final condition is regarded as the most controversial one. Consider a

bargaining problem .S;d/ with solution outcome z D F.S;d/ 2 S. In a sense,
z can be regarded as the best compromise in S according to F. Now consider a
smaller bargaining problem .T;d/ with T � S and z 2 T. Since z was the best
compromise in S, it is should certainly be regarded as the best compromise in T: z is
available in T and every point of T is also available in S. Thus, we should conclude
that F.T;d/ D z D F.S;d/. As a less abstract example, suppose that in the wine
division problem the wine is split fifty-fifty, with utilities .1=2;

p
1=2/. Suppose

now that no player wants to drink more than 3=4 liter of wine: more wine does not
increase utility. In that case, the new feasible set is

T D fx 2 R
2 j 0 � x1 � 3=4; 0 � x2 �

p
3=4; x2 �

p
1 � x1g :

3The usual assumption is that the utility functions are expected utility functions, which uniquely
represent preferences up to choice of origin and scale.
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According to the argument above, the wine should still be split fifty-fifty: T � S

and .1=2;
p
1=2/ 2 T. This may seem reasonable but it is not hard to change

the example in such a way that the argument is, at the least, debatable. For
instance,suppose that player 1 still wants to drink as much as possible but player
2 does not want to drink more than 1/2 L. In that case, the feasible set becomes

T 0 D fx 2 R
2 j 0 � x1 � 1; 0 � x2 �

p
1=2; x2 �

p
1 � x1g ;

and we would still split the wine fifty-fifty. In this case player 2 would obtain
his maximal feasible utility, and .1=2;

p
1=2/ no longer seems a reasonable

compromise since only player 1 makes a concession.
Formally, a bargaining solution F is independent of irrelevant alternatives if for

all .S;d/; .T;d/ 2 B with T � S and F.S;d/ 2 T, we have F.T;d/ D F.S;d/. See
Fig. 10.2d for an illustration.

The theorem below says that these four conditions determine a unique bargaining
solution FNash, defined as follows. For .S;d/ 2 B, FNash.S;d/ is equal to the unique
point z 2 S with zi � di for i D 1; 2 and such that

.z1 � d1/.z2 � d2/ � .x1 � d1/.x2 � d2/ for all x 2 S with xi � di, i D 1; 2 :

The solution FNash is called the Nash bargaining solution. The result of Nash is as
follows.

Theorem 10.2 The Nash bargaining solution FNash is the unique bargaining solu-

tion which is Pareto optimal, symmetric, scale covariant, and independent of

irrelevant alternatives.

For a proof of this theorem and the fact that FNash is well defined—i.e., the point z

above exists and is unique—see Chap. 21.

Example 10.3 In this example we illustrate the role of the conditions in Theo-
rem 10.2. In fact, we show how the proof of this theorem (cf. Chap. 21) works in
an example. Consider the bargaining problem .S;d/, where S D f.x1; x2/ 2 R

2 j
0 � x1 � 2; 0 � x2 � 4 � x21g and d D .0; 1/. The Nash bargaining solution
outcome is obtained by solving the problem max0�x1�2 x1.3 � x21/, which yields
the point .1; 3/. Alternatively, consider the bargaining problem .S0;d0/, obtained by
subtracting 1 from the second coordinates of the points in S, including d, yielding

S0 D f.x1; x2/ 2 R
2 j 0 � x1 � 2; �1 � x2 � 3 � x21g; d0 D .0; 0/ :

Next, consider the bargaining problem .S00;d00/, obtained from .S0;d0/ by dividing
all second coordinates by 2, yielding

S00 D f.x1; x2/ 2 R
2 j 0 � x1 � 2; �1

2
� x2 � 3

2
� 1

2
x21g; d00 D .0; 0/ :
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Fig. 10.3 Illustrating
Example 10.3

S

T

(0, 0)

(1, 1)

( 1, (3,)1 1)

( 1, 3)

The Pareto optimal boundary of S00 is described by the function f .x1/ D 3
2

� 1
2
x21

for 0 � x1 � 2. At x1 D 1 the derivative of this function is equal to �1, so that
the straight line through the point .1; 1/ with slope �1 is tangential to S00, i.e., the
set S00 is below this line. Now consider the bargaining problem .T; .0; 0// with T

the triangle and inside with vertices .�1;�1/, .3;�1/, and .�1; 3/; see Fig. 10.3.
The bargaining problem .T; .0; 0// is symmetric, so that by symmetry and Pareto
optimality of the Nash bargaining solution, the outcome is the point .1; 1/. This
point is also in S00, and moreover, S00 is a subset of T, so that by independence of
irrelevant alternatives the point .1; 1/ is also the Nash bargaining solution outcome
of .S00; .0; 0//. By scale covariance, this implies that the Nash bargaining solution
outcome of .S0; .0; 0// is the point .1; 2/. Again by scale covariance, we obtain that
the Nash bargaining solution outcome of .S; .0; 1// is the point .1; 3/. We have
reached this result by using only the properties of the Nash bargaining solution
in Theorem 10.2, and not the formula. Observe that the result is in accordance with
what we established by direct computation. �

10.1.2 Relation with the Rubinstein Bargaining Procedure

In the Rubinstein bargaining procedure the players make alternating offers. See
Sect. 6.7.2 for a detailed discussion of this noncooperative game, and Prob-
lem 6.17(d) for the application to the wine division problem of Sect. 1.3.5. Here,
we use this example to illustrate the relation with the Nash bargaining solution.

The Nash bargaining solution assigns to this bargaining problem the point z D
.2=3;

p
1=3/. This means that player 1 obtains 2/3 of the wine and player 2 obtains

1/3. According to the Rubinstein infinite horizon bargaining game with discount
factor 0 < ı < 1 the players make proposals x D .x1; x2/ 2 P.S/ and y D .y1; y2/ 2
P.S/ such that

x2 D ıy2; y1 D ıx1 ; (10.1)
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and these proposals are accepted in (subgame perfect) equilibrium. From (10.1) we
derive

p
1 � x1 D x2 D ıy2 D ı

p
1� y1 D ı

p
1 � ıx1

hence 1 � x1 D ı2.1� ıx1/, which implies

x1 D 1 � ı2
1 � ı3 D 1C ı

1C ı C ı2
:

If we let ı increase to 1, we obtain

lim
ı!1

1C ı

1C ı C ı2
D 2

3
;

which coincides with the payoff to player 1 according to the Nash bargaining
solution. This is not a coincidence. It follows, in general, from (10.1) that

.x1 � d1/.x2 � d2/ D x1x2 D .y1=ı/.ıy2/ D y1y2 D .y1 � d1/.y2 � d2/

hence the Rubinstein proposals x and y have the same ‘Nash product’. For our wine
division example, the proposals x and y for ı D 0:5 are represented in Fig. 10.4.

As ı increases to 1, this level curve shifts up until it passes through the point
z D FNash.S; d/, since this point maximizes the product x1x2 on the set S: see again
Fig. 10.4.

Fig. 10.4 The wine division
problem. The disagreement
point is the origin, and z is the
Nash bargaining solution
outcome. The points x and y

are the proposals of players 1
and 2, respectively, in the
subgame perfect equilibrium
of the Rubinstein bargaining
game for ı D 0:5

1

10

u1

u2

2

3

1

3

z

y

x
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We conclude that the subgame perfect equilibrium payoffs of the infinite horizon
Rubinstein bargaining game converge to the Nash bargaining solution outcome as
the discount factor ı approaches 1.

Example 10.4 In the bargaining game .S0; .0; 0// of Example 10.3 the Rubinstein
proposals are determined by the equations in (10.1) together with x2 D 3 � x21 and
y2 D 3 � y21, yielding

3� x21 D x2 D ıy2 D ı.3� y21/ D ı.3� ı2x21/

hence

x1 D
r
3.1� ı/

1 � ı3 D
r

3

1C ı C ı2
:

For ı approaching 1 we obtain

lim
ı!1

r
3

1C ı C ı2
D 1

which is the Nash bargaining solution payoff to player 1. �

10.2 Exchange Economies

In an exchange economy with n agents and k goods, each agent is endowed with
a bundle of goods. Each agent has preferences over different bundles of goods,
expressed by some utility function over these bundles. By exchanging goods among
each other, it is in general possible to increase the utilities of all agents. One way
to arrange this exchange is to introduce prices. For given prices the endowment of
each agent represents the agent’s income, which can be spent on buying a bundle
of the goods that maximizes the agent’s utility. If prices are such that the market
for each good clears—total demand is equal to total endowment—while each agent
maximizes utility, then the prices are in equilibrium: such an equilibrium is called
Walrasian or competitive equilibrium. Alternatively, reallocations of the goods can
be considered which are in the core of the exchange economy. A reallocation of the
total endowment is in the core of the exchange economy if no coalition of agents can
improve the utilities of its members by, instead, reallocating the total endowment of
its own members among each other. It is well known that a competitive equilibrium
allocation is an example of a core allocation.

This section is a first acquaintance with exchange economies. Attention is
restricted to exchange economies with two agents and two goods. We work out
an example of such an economy. Some variations are considered in Problem 10.4.

There are two agents, A and B, and two goods, 1 and 2. Agent A has an
endowment eA D .eA

1 ; e
A
2 / 2 R

2
C of the goods, and a utility function uA W R2C ! R,



10.2 Exchange Economies 179

representing the preferences of A over bundles of goods.4 Similarly, agent B has an
endowment eB D .eB

1 ; e
B
2 / 2 R

2
C of the goods, and a utility function uB W R2C ! R.

(We use superscripts to denote the agents and subscripts to denote the goods.) This
is a complete description of the exchange economy.

For our example we take eA D .2; 3/, eB D .4; 1/, uA.x1; x2/ D x21x2 and
uB.x1; x2/ D x1x

2
2. Hence, the total endowment in the economy is e D .6; 4/, and the

purpose of the exchange is to reallocate this bundle of goods such that both agents
are better off.

Let p D .p1; p2/ be a vector of positive prices of the goods. Given these prices,
both agents want to maximize their utilities. Agent A has an income of p1e

A
1 C p2e

A
2 ,

i.e., the monetary value of his endowment. Then agent A solves the maximization
problem

maximize uA.x1; x2/

subject to p1x1 C p2x2 D p1e
A
1 C p2e

A
2 ; x1; x2 � 0 :

(10.2)

The income constraint is called the budget equation. The solution of this maxi-
mization problem is a bundle xA.p/ D .xA

1 .p/; x
A
2 .p//, called agent A’s demand

function. Maximization problem (10.2) is called the consumer problem (of agent
A). Similarly, agent B’s consumer problem is:

maximize uB.x1; x2/

subject to p1x1 C p2x2 D p1e
B
1 C p2e

B
2 ; x1; x2 � 0 :

(10.3)

For our example, (10.2) becomes

maximize x21x2

subject to p1x1 C p2x2 D 2p1 C 3p2; x1; x2 � 0 ;

which can be solved by using Lagrange’s method or by substitution. By using the
latter method the problem reduces to

maximize x21 ..2p1 C 3p2 � p1x1/=p2/

subject to x1 � 0 and 2p1 C 3p2 � p1x1 � 0. Setting the derivative with respect to
x1 equal to 0 yields

2x1

�
2p1 C 3p2 � p1x1

p2

�
� x21

�
p1

p2

�
D 0 ;

4
R
2
C

WD fx D .x1; x2/ 2 R
2 j x1; x2 � 0g.



180 10 Cooperative Game Models

which after some simplifications yields the demand function x1 D xA
1 .p/ D

.4p1 C 6p2/=3p1. By using the budget equation, xA
2 .p/ D .2p1 C 3p2/=3p2.

Similarly, solving (10.3) for our example yields xB
1 .p/ D .4p1 C p2/=3p1 and

xB
2 .p/ D .8p1 C 2p2/=3p2 (check this!).

The prices p are Walrasian equilibrium prices if the markets for both goods clear.
For the general model, this means that xA

1 .p/CxB
1 .p/ D eA

1CeB
1 and xA

2 .p/CxB
2 .p/ D

eA
2 C eB

2 . For the example, this means

.4p1 C 6p2/=3p1 C .4p1 C p2/=3p1 D 6 and

.2p1 C 3p2/=3p2 C .8p1 C 2p2/=3p2 D 4 :

Both equations result in the same condition, namely 10p1 � 7p2 D 0. That there
is only one equation left is no coincidence, since prices are only relative, as is
easily seen from the budget equations. In fact, the prices represent the rate of
exchange between the two goods, and are meaningful even if money does not
exist in the economy. Thus, p D .7; 10/ (or any positive multiple thereof) are the
equilibrium prices in this exchange economy. The associated equilibrium demands
are xA.7; 10/ D .88=21; 22=15/ and xB.7; 10/ D .38=21; 38=15/.

We now turn to the core of an exchange economy. A reallocation of the total
endowments is in the core if no coalition can improve upon it. This definition is
in the spirit as the corresponding definition for TU-games (Definition 9.2). In a
two-person exchange economy, there are only three coalitions (excluding the empty
coalition), namely fAg, fBg, and fA;Bg. Consider an allocation .xA; xB/ with xA

1 C
xB
1 D eA

1 C eB
1 and xA

2 C xB
2 D eA

2 C eB
2 . To prevent that agents A or B can improve

upon .xA; xB/ we need that

uA.xA/ � uA.eA/; uB.xB/ � uB.eB/ ; (10.4)

which are the individual rationality constraints. To prevent that the grand coalition
fA;Bg can improve upon .xA; xB/ we need that

For no .yA; yB/ with yA
1 C yB

1 D eA
1 C eB

1 and yA
2 C yB

2 D eA
2 C eB

2 we have:
uA.yA/ � uA.xA/ and uB.yB/ � uB.xB/ with at least one inequality strict.

(10.5)

In words, (10.5) says that there should be no other reallocation of the total
endowments such that no agent is worse off and at least one agent is strictly better
off. This is the efficiency or Pareto optimality constraint.

We apply (10.4) and (10.5) to our example. The individual rationality constraints
are

.xA
1 /
2xA
2 � 12; xB

1 .x
B
2 /
2 � 4 :
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The Pareto optimal allocations, satisfying (10.5), can be computed as follows. Fix
the utility level of one of the agents, say B, and maximize the utility of A subject
to the utility level of B being fixed. By varying the fixed utility level of B we find
all Pareto optimal allocations. In the example, we solve the following maximization
problem for c 2 R:

maximize .xA
1 /
2xA
2

subject to xA
1 C xB

1 D 6; xA
2 C xB

2 D 4; xB
1 .x

B
2 /
2 D c; xA

1 ; x
A
2 ; x

B
1 ; x

B
2 � 0 :

By substitution this problem reduces to

maximize .xA
1 /
2xA
2

subject to .6 � xA
1 /.4 � xA

2 /
2 D c; xA

1 ; x
A
2 � 0 :

The associated Lagrange function is .xA
1 /
2xA
2 � �Œ.6 � xA

1 /.4 � xA
2 /
2 � c� and the

first-order conditions are

2xA
1x2A C �.4 � xA

2 /
2 D 0; .xA

1 /
2 C 2�.6� xA

1 /.4 � xA
2 / D 0 :

Extracting � from both equations and simplifying yields

xA
2 D 4xA

1

24� 3xA
1

:

Thus, for any value of xA
1 between 0 and 6 this equation returns the corresponding

value of xA
2 , resulting in a Pareto optimal allocation with xB

1 D 6�xA
1 and xB

2 D 4�xA
2 .

It is straightforward to check by substitution that the Walrasian equilibrium
allocation xA.7; 10/ D .88=21; 22=15/ and xB.7; 10/ D .38=21; 38=15/ found
above, is Pareto optimal. This is no coincidence: the First Welfare Theorem states
that in an exchange economy such as the one under consideration, a Walrasian
equilibrium allocation is Pareto optimal.

Combining the individual rationality constraint for agent A with the Pareto
optimality constraint yields 4.xA

1 /
3=.24 � 3xA

1 / � 12, which holds for xA
1 larger

than approximately 3:45. For agent B, similarly, the individual rationality and Pareto
optimality constraints imply

.6 � xA
1 /

�
96 � 16xA

1

24 � 3xA
1

�2
� 4 ;
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Fig. 10.5 The contract curve is the curve through c and c0. The point c is the point of intersection
of the contract curve and the indifference curve of agent A through the endowment point e. The
point c0 is the point of intersection of the contract curve and the indifference curve of agent B

through the endowment point e. The core consists of the allocations on the contract curve between
c and c0. The straight line (‘budget line’) through e is the graph of the budget equation for A at the
equilibrium prices, i.e., 7x1 C 10x2 D 44, and its point of intersection with the contract curve, w,
is the Walrasian equilibrium allocation. At this point the indifference curves of the two agents are
both tangential to the budget line

which holds for xA
1 smaller than approximately 4:88. Hence, the core of the exchange

economy in the example is, approximately, the set

f.xA
1 ; x

A
2 ; x

B
1 ; x

B
2 / 2 R

4 j 3:45 � xA
1 � 4:88;

xA
2 D 4xA

1

24�3xA
1

; xB
1 D 6 � xA

1 ; xB
2 D 4 � xA

2 g :

Clearly, the Walrasian equilibrium allocation is in the core, since 3:45 � 88=21 �
4:88, and also this holds more generally. Thus, decentralization of the reallocation
process through prices leads to an allocation that is in the core.

For an exchange economy with two agents and two goods a very useful pictorial
device is the Edgeworth box, see Fig. 10.5. The Edgeworth box consists of all
possible reallocations of the two goods. The origin for agent A is the South West
corner and the origin for agent B the North East corner. In the diagram, the
indifference curves of the agents through the endowment point are plotted, as well
as the contract curve, i.e., the set of Pareto optimal allocations. The core is the
subset of the contract curve between the indifference curves of the agents through
the endowment point.

10.3 Matching Problems

In a matching problem there is a group of agents that have to form couples.
Examples are: students who have to be coupled with schools; hospitals that have
to be coupled with doctors; workers who have to be coupled with firms; men who
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Table 10.1 A matching
problem

m1 m2 m3 w1 w2 w3

w2 w1 w1 m1 m2 m1

w1 w2 w2 m3 m1 m3

w3 m2 m3 m2

have to be coupled with women; etc. In this section we consider so-called one-to-one
matching problems.

The agents are divided in two equally large (finite and nonempty) sets, denoted
M and W. Each agent in M has a strict preference over those agents in W which
he prefers over staying single. Similarly, each agent in W has a strict preference
over those agents in M which she prefers over staying single. In such a matching
problem, a matching assigns to each agent in M at most one agent in W, and vice
versa; thus, no two agents in M are assigned the same agent in W, and vice versa.

Such matching problems are also called marriage problems, and the agents of M

and W are called men and women, respectively. While the problem may indeed refer
to the ‘marriage market’, this terminology is of course adopted for convenience.
Other examples are matching tasks and people, or matching rooms and people.

As an example, consider the matching problem in Table 10.1. The set of men
is M D fm1;m2;m3g and the set of women is W D fw1;w2;w3g. The columns
in the table represent the preferences. For instance m1 prefers w2 over w1 over
staying single, but prefers staying single over w3. An example of a matching in
this particular matching problem is .m1;w1/, .m3;w2/, m2, w3, meaning that m1

is married to w1 and m3 to w2, while m2 and w3 stay single.5 Observe that this
matching does not seem very ‘stable’: m1 and w2 would prefer to be married to each
other instead of to their partners in the given matching. Moreover, m2 and w3 would
prefer to be married to each other instead of being single. Also, for instance, any
matching in which m1 would be married to w3 would not be plausible, since m1

would prefer to stay single.
The obvious way to formalize these considerations is to require that a matching

should be in the core of the matching problem. A matching is in the core of there
is no subgroup (coalition) of men and/or women who can do better by marrying (or
staying single) among each other. For a matching to be in the core, the following
two requirements are certainly necessary:

(c1) each person prefers his/her partner over being single;
(c2) if m 2 M and w 2 W are not matched to each other, then it is not the case that

both m prefers w over his current partner if m is married or over being single
if m is not married; and w prefers m over her current partner if w is married or
over being single if w is not married.

5Check that there are 34 possible different matchings for this problem.
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Obviously, if (c1) were violated then the person in question could improve by
divorcing and becoming single; if (c2) were violated then m and w would both be
better off by marrying each other. A matching satisfying (c1) and (c2) is called
stable. Hence, any matching in the core must be stable. Interestingly, the converse is
also true: any stable matching is in the core. To see this, suppose there is a matching
outside the core and satisfying (c1) and (c2). Then there is a coalition of agents
each of whom can improve by marrying or staying single within that coalition. If
a member of the coalition improves by becoming single, then (c1) is violated. If
two coalition members improve by marrying each other, then (c2) is violated. This
contradiction establishes the claim that stable matchings must be in the core. Thus,
the core of a matching problem is the set of all stable matchings.

How can stable matchings be computed? A convenient procedure is the deferred
acceptance procedure, developed by Gale and Shapley. In this procedure, the
members of one of the two parties propose and the members of the other party accept
or reject proposals. Suppose men propose. In the first round, each man proposes to
his favorite woman (or stays single if he prefers that) and each woman, if proposed
to at least once, chooses her favorite man among those who have proposed to her
(which may mean staying single). This way, a number of couples may form, and
the involved men and women are called ‘engaged’. In the second round, the rejected
men propose to their second-best woman (or stay single); then each woman again
picks here favorite among the men who proposed to her including possibly the man
to whom she is currently engaged. The procedure continues until all proposals are
accepted. Then all currently engaged couples marry and a matching is established.

It is not hard to verify that this matching is stable. A man who stays single was
rejected by all women he preferred over staying single and therefore can find no
woman who prefers him over her husband or over being single. A woman who stays
single was never proposed to by any man whom she prefers over staying single.
Consider, finally, an m 2 M and a w 2 W who are married but not to each other. If
m prefers w over his current wife, then w must have rejected him for a better partner
somewhere in the procedure. If w prefers m over her current husband, then m has
never proposed to her and, thus, prefers his wife over her.

Of course, the deferred acceptance procedure can also be applied with women as
proposers, resulting in a stable matching that is different in general.

Table 10.2 shows how the deferred acceptance procedure with the men proposing
works, applied to the matching problem in Table 10.1.

There may be other stable matchings than those found by applying the deferred
acceptance procedure with the men and with the women proposing. It can be shown

Table 10.2 The deferred
acceptance procedure applied
to the matching problem of
Table 10.1

Stage 1 Stage 2 Stage 3 Stage 4

m1 ! w2 rejected ! w1

m2 ! w1 rejected ! w2

m3 ! w1 rejected ! w2 rejected

The resulting matching is .m1;w1/, .m2;w2/, m3, w3
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that the former procedure—with the men proposing—results in a stable matching
that is optimal, among all stable matchings, from the point of view of the men,
whereas the latter procedure—with the women proposing—produces the stable
matching optimal from the point of view of the women. See also Problems 10.6
and 10.7.

10.4 House Exchange

In a house exchange problem each one of finitely many agents owns a house, and
has a preference over all houses. The purpose of the exchange is to make the agents
better off. A house exchange problem is an exchange economy with as many goods
as there are agents, and where each agent is endowed with one unit of a different,
indivisible good.

Formally, the set of agents is N D f1; : : : ; ng, and each agent i 2 N owns house
hi, and has a strict preference of the set of all (n) houses. In a core allocation, each
agent obtains exactly one house, and there is no coalition that can make each of
its members strictly better off by exchanging their initially owned houses among
themselves.6

As an example, consider the house exchange problem in Table 10.3. In this
problem there are six possible different allocations of the houses. Table 10.4 lists
these allocations and also which coalitions could improve by exchanging their own
houses.

Especially for larger problems, the ‘brute force’ analysis as in Table 10.4 is rather
cumbersome. A different and more convenient way is to use the top trading cycle
procedure. In a given house exchange problem a top trading cycle is a sequence
i1; i2; : : : ; ik of agents, with k � 1, such that the favorite house of agent i1 is house
hi2 , the favorite house of agent i2 is house hi3 , : : :, and the favorite house of agent ik
is house hi1 . If k D 1, then this simply means that agent i1 already owns his favorite
house. In the top trading cycle procedure, we look for a top trading cycle, assign
houses within the cycle, and next the involved agents and their houses leave the
scene. Then we repeat the procedure for the remaining agents, etc., until no agent is
left.

Table 10.3 A house exchange problem with three agents. For instance, agent 1 prefers the house
of agent 3 over the house of agent 2 over his own house

Agent 1 Agent 2 Agent 3

h3 h1 h2

h2 h2 h3

h1 h3 h1

6Hence, by definition players in coalitions can only possibly improve by exchanging their initially
owned houses, not the houses they acquired after the exchange has taken place.



186 10 Cooperative Game Models

Table 10.4 Analysis of the
house exchange problem of
Table 10.3. There are two
core allocations

Agent 1 Agent 2 Agent 3 Improving coalition(s)

h1 h2 h3 f1; 2g, f1; 2; 3g

h1 h3 h2 f2g, f1; 2g

h2 h1 h3 None: core allocation

h2 h3 h1 f2g, f3g, f2; 3g, f1; 2; 3g

h3 h1 h2 None: core allocation

h3 h2 h1 f3g

In the example in Table 10.3 there is only one top trading cycle, namely 1; 3; 2,
resulting in the allocation 1 W h3, 3 W h2, 2 W h1, a core allocation: in fact, each agent
obtains his top house. In general, it is true that for strict preferences the top trading

cycle procedure results in a core allocation. The reader should check the validity of
this claim (Problem 10.8).

What about the other core allocation found in Table 10.4? In this allocation, the
grand coalition could weakly improve: by the allocation 1 W h3, 3 W h2, 2 W h1 agents
1 and 3 would be strictly better off, while agent 2 would not be worse off. We define
the strong core as consisting of those allocations on which no coalition could even
weakly improve, that is, make all its members at least as well off and at least one
member strictly better off. In the example, only the allocation 1 W h3, 3 W h2, 2 W h1 is
in the strong core. In general, one can show that the strong core of a house exchange

problem with strict preferences consists of the unique allocation produced by the

top trading cycle procedure.

10.5 Problems

10.1. A Division Problem (1)

Suppose two players (bargainers) bargain over the division of one unit of a perfectly
divisible good. Player 1 has utility function u1.˛/ D ˛ and player 2 has utility
function u2.ˇ/ D 1 � .1 � ˇ/2 for amounts ˛; ˇ 2 Œ0; 1� of the good.

(a) Determine the set of feasible utility pairs. Make a picture.
(b) Determine the Nash bargaining solution outcome, in terms of utilities as well as

of the distribution of the good.
(c) Suppose the players’ utilities are discounted by a factor ı 2 Œ0; 1/. Calculate the

Rubinstein bargaining outcome, i.e., the subgame perfect equilibrium outcome
of the infinite horizon alternating offers bargaining game.

(d) Determine the limit of the Rubinstein bargaining outcome, for ı approaching 1,
in two ways: by using the result of (b) and by using the result of (c).
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10.2. A Division Problem (2)

Suppose that two players (bargainers) bargain over the division of one unit of a
perfectly divisible good. Assume that player 1 has utility function u.˛/ (0 � ˛ � 1)
and player 2 has utility function v.˛/ D 2u.˛/ (0 � ˛ � 1).

Determine the distribution of the good according to the Nash bargaining solution.
Can you say something about the resulting utilities? (Hint: use the relevant
properties of the Nash bargaining solution.)

10.3. A Division Problem (3)

Suppose that two players (bargainers) bargain over the division of two units of a
perfectly divisible good. Assume that player 1 has a utility function u.˛/ D ˛

2

(0 � ˛ � 2) and player 2 has utility function v.˛/ D 3
p
˛ (0 � ˛ � 2).

(a) Determine the distribution of the good according to the Rubinstein bargaining
procedure, for any discount factor 0 < ı < 1.

(b) Use the result to determine the Nash bargaining solution distribution.
(c) Suppose player 1’s utility function changes to w.˛/ D ˛ for 0 � ˛ � 1:6 and

w.˛/ D 1:6 for 1:6 � ˛ � 2. Determine the Nash bargaining solution outcome,
both in utilities and in distribution, for this new situation.

10.4. An Exchange Economy

Consider an exchange economy with two agents A and B and two goods. The agents
are endowed with initial bundles eA D .3; 1/ and eB D .1; 3/. Their preferences
are represented by the utility functions uA.x1; x2/ D ln.x1 C 1/ C ln.x2 C 2/ and
uB.x1; x2/ D 3 ln.x1 C 1/C ln.x2 C 1/.

(a) Compute the demand functions of the agents.
(b) Compute Walrasian equilibrium prices and the equilibrium allocation.
(c) Compute the contract curve and the core. Sketch the Edgeworth box.
(d) Show that the Walrasian equilibrium allocation is in the core.
(e) How would you set up a two-person bargaining problem associated with this

economy? Would it make sense to consider the Nash bargaining solution in order
to compute an allocation? Why or why not?

10.5. The Matching Problem of Table 10.1 Continued

(a) Apply the deferred acceptance procedure to the matching problem of Table 10.1
with the women proposing.

(b) Are there any other stable matchings in this example?

10.6. Another Matching Problem

Consider the matching problem with three men, three women, and preferences as in
Table 10.5.
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Table 10.5 The matching
problem of Problem 10.6

m1 m2 m3 w1 w2 w3

w1 w1 w1 m1 m1 m1

w2 w2 w3 m2 m3 m2

w3 w3 w2 m3 m2 m3

Table 10.6 The matching
problem of Problem 10.7

m1 m2 m3 w1 w2 w3

w2 w1 w1 m1 m3 m1

w1 w3 w2 m3 m1 m3

w3 w2 w3 m2 m2 m2

(a) Compute the two matchings produced by the deferred acceptance procedure
with the men and with the women proposing.

(b) Are there any other stable matchings?
(c) Verify the claim made in the text about the optimality of the matchings in (a) for

the men and the women, respectively.

10.7. Yet Another Matching Problem: Strategic Behavior

Consider the matching problem with three men, three women, and preferences as in
Table 10.6.

(a) Compute the two matchings produced by the deferred acceptance procedure
with the men and with the women proposing.

(b) Are there any other stable matchings?

Now consider the following noncooperative game. The players are w1, w2, and w3.
The strategy set of a player is simply the set of all possible preferences over the men.
(Thus, each player has 16 different strategies.) The outcomes of the game are the
matchings produced by the deferred acceptance procedure with the men proposing,
assuming that each man uses his true preference given in Table 10.6.

(c) Show that the following preferences form a Nash equilibrium: w2 and w3
use their true preferences, as given in Table 10.6; w1 uses the preference
.m1;m2;m3/. Conclude that sometimes it may pay off to lie about one’s true
preference. (Hint: in a Nash equilibrium, no player can gain by deviating.)

10.8. Core Property of Top Trading Cycle Procedure

Show that for strict preferences the top trading cycle results in a core allocation.

10.9. House Exchange with Identical Preferences

Consider the n-agent house exchange problem where all agents have identical strict
preferences. Find the house allocation(s) in the core.
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Table 10.7 The house
exchange problem of
Problem 10.10

Player 1 Player 2 Player 3 Player 4

h3 h4 h1 h3

h2 h1 h4 h2

h4 h2 h3 h1

h1 h3 h2 h4

10.10. A House Exchange Problem

Consider the house exchange problem with four agents in Table 10.7.
Compute all core allocations and all strong core allocations.

10.11. Cooperative Oligopoly

Consider the Cournot oligopoly game with n firms with different costs c1; c2; : : : ; cn.
(This is the game of Problem 6.2 with heterogenous costs.) As before, each firm i

offers qi � 0, and the price-demand function is p D maxf0; a �
Pn

iD1 qig, where
0 < ci < a for all i.

(a) Show that the reaction function of player i is

qi D maxf0;
a � ci �

P
j¤i qi

2
g :

(b) Show that the unique Nash equilibrium of the game is q� D .q�
1 ; : : : ; q

�
n / with

q�
i D

a � nci C
P

j¤i cj

n C 1
;

for each i, assuming that this quantity is positive.
(c) Derive that the corresponding profits are

.a � nci C
P

j¤i cj/
2

.n C 1/2

for each player i.

Let the firms now be the players in a cooperative TU-game with player set N D
f1; 2; : : : ; ng, and consider a coalition S � N. What is the total profit that S can
make on its own? This depends on the assumptions that we make on the behavior of
the players outside S. Very pessimistically, one could solve the problem

max
qiWi2S

min
qjWj…S

X

i2S

Pi.q1; : : : ; qn/ ;
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which is the profit that S can guarantee independent of the players outside S. This
view is very pessimistic because it presumes maximal resistance of the outside
players, even if this means that these outside players hurt themselves. In the present
case it is not hard to see that this results in zero profit for S.

Two alternative scenarios are: S plays a Cournot-Nash equilibrium in the .n �
jSj C 1/-player oligopoly game against the outside firms as separate firms, or S

plays a Cournot-Nash equilibrium in the duopoly game against N n S.
In the first case we in fact have an oligopoly game with costs cj for every player

j … S and with cost cS WD minfci W i 2 Sg for ‘player’ (coalition) S.

(d) By using the results of (a)–(c) show that coalition S obtains a profit of

v1.S/ D
Œa � .n � jSj C 1/cS C

P
j…S cj�

2

.n � jSj C 2/2

in this scenario. Thus, this scenario results in a cooperative TU-game .N; v1/.
(e) Assume n D 3, a D 7, and ci D i for i D 1; 2; 3. Compute the core, the Shapley

value, and the nucleolus for the TU-game .N; v1/.
(f) Show that in the second scenario, coalition S obtains a profit of

v2.S/ D .a � 2cS C cN�S/
2

9
;

resulting in a cooperative game .N; v2/.
(g) Assume n D 3, a D 7, and ci D i for i D 1; 2; 3. Compute the core, the Shapley

value, and the nucleolus for the TU-game .N; v2/.

10.6 Notes

The Nash bargaining model and solution were proposed and characterized in
Nash (1950). Critique on the independence of irrelevant alternatives axiom was
formalized in Kalai and Smorodinsky (1975), see Chap. 21.

For a proof of the First Welfare Theorem, see for instance Jehle and Reny (2001).
There one can also find a proof of the fact that the Walrasian equilibrium results in
a core allocation.

The deferred acceptance procedure for matching problems was first proposed
in Gale and Shapley (1962). Our introduction to matching problems and house
exchange is largely based on Osborne (2004). Also Problems 10.5–10.7 are from
that source. Problem 10.10 is from Moulin (1995).

Two-person bargaining problems and TU-games (Chap. 9) are both special cases
of the general model of cooperative games without transferable utility, so-called
NTU-games. In an NTU-game, a set of feasible utility vectors V.T/ is assigned to
each coalition T of players. For a TU-game .N; v/ and a coalition T, this set takes
the special form V.T/ D fx 2 R

n j
P

i2T xi � v.T/g, i.e., a coalition T can attain



References 191

any vector of utilities such that the sum of the utilities for the players in T does not
exceed the worth of the coalition. In a two-player bargaining problem .S;d/, one can
set V.f1; 2g/ D S and V.fig/ D f˛ 2 R j ˛ � dig for i D 1; 2. See also Chap. 21.
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Social choice theory studies the aggregation of individual preferences into a
common or social preference. It overlaps with several social science disciplines,
such as political theory (e.g., voting for Parliament, or for a president) and game
theory (e.g., voters may vote strategically, or candidates may choose positions
strategically).

In the classical model of social choice, there is a finite number of agents who
have preferences over a finite number of alternatives. These preferences are either
aggregated into a social preference according to a so-called social welfare function,
or result in a common alternative according to a so-called social choice function.

The main purpose of this chapter is to review two classical results, namely
Arrow’s Theorem and the Gibbard-Satterthwaite Theorem. The first theorem applies
to social welfare functions and says that, if the social preference between any
two alternatives should only depend on the individual preferences between these
alternatives and, thus, not on individual preferences involving other alternatives,
then basically the social welfare function must be dictatorial. The second theorem
applies to social choice functions and says that, basically, the only social choice
functions that are invulnerable to strategic manipulation are the dictatorial ones.
These results are often referred to as ‘impossibility theorems’ since dictatorships
are generally regarded undesirable.

Section 11.1 is introductory. Section 11.2 discusses Arrow’s Theorem and
Sect. 11.3 the Gibbard-Satterthwaite Theorem.

11.1 Introduction and Preliminaries

11.1.1 An Example

Suppose there are three agents (individuals, voters) who have strict preferences over
a set of five alternatives (a1; : : : ; a5), as given in Table 11.1.

© Springer-Verlag Berlin Heidelberg 2015
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DOI 10.1007/978-3-662-46950-7_11
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Table 11.1 Borda scores Agent a1 a2 a3 a4 a5

1 5 1 3 2 4

2 1 2 3 4 5

3 3 4 5 2 1

In this table the preferences of the players are represented by the Borda scores:
the best alternative of an agent obtains 5 points, the second best 4 points, etc., until
the worst alternative which obtains 1 point. For instance, agent 1 has the preference
a1P1a5P1a3P1a4P1a2 in the notation to be introduced below. We use the Borda
scores as a convenient way to represent these preferences and, more importantly,
to obtain an example of a social welfare as well as a social choice function.

First, suppose that we want to extract a common social ranking of the alternatives
from the individual preferences. One way to do this is to add the Borda scores
per alternative. In the example this results in 9; 7; 11; 8; 10 for a1; a2; a3; a4; a5,
respectively, resulting in the social ranking a3Pa5Pa1Pa4Pa2. If we just want to
single out one alternative, then we could take the one with the maximal Borda score,
in this case alternative a3. In the terminology to be introduced formally below, Borda
scores give rise to a social welfare as well as a social choice function.1

One potential drawback of using Borda scores to obtain a social ranking is,
that the ranking between two alternatives may not just depend on the individual
preferences between these two alternatives. For instance, suppose that agent 1’s
preference would change to a1P1a4P1a5P1a3P1a2. Then the Borda scores would
change to 9; 7; 10; 10; 9 for a1; a2; a3; a4; a5, respectively, resulting in the social
ranking a3Ia4Pa1Ia5Pa2 (where I denotes indifference). Observe that no agent’s
preference between a1 and a4 has changed, but that socially this preference is
reversed. This is not a peculiarity of using Borda scores: Arrow’s Theorem, to be
discussed in Sect. 11.2, states that under some reasonable additional assumptions
the only way to avoid this kind of preference reversal is to make one agent the
dictator, i.e., to have the social preference coincide with the preference of one fixed
agent.

Another potential drawback of using the Borda scores in order to single out a
unique alternative is that this method is vulnerable to strategic manipulation. For
instance, suppose that agent 1 would lie about his true preference given in Table 11.1
and claim that his preference is a1P1a5P1a2P1a4P1a3 instead. Then the Borda scores
would change to 9; 9; 9; 8; 10 for a1; a2; a3; a4; a5, respectively, resulting in the
chosen alternative a5 instead of a3. Since agent 1 prefers a5 over a3 according to his
true preference, he gains by this strategic manipulation. Again, this phenomenon

1Ties may occur, but this need not bother us here.
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is not a peculiarity of the Borda method: the Gibbard-Satterthwaite Theorem in
Sect. 11.3 shows that again under some reasonable additional assumptions the only
way to avoid it is to make one fixed agent a dictator.

11.1.2 Preliminaries

Let A D fa1; : : : ; amg be the set of alternatives. To keep things interesting we assume
m � 3.2 The set of agents is denoted by N D f1; : : : ; ng. We assume n � 2.

A binary relation on A is a subset of A � A. In our context, for a binary relation
R on A we usually write aRb instead of .a; b/ 2 R and interpret this as an agent or
society (weakly) preferring a over b. Well-known conditions for a binary relation R

on A are:

(a) Reflexivity: aRa for all a 2 A.
(b) Completeness: aRb or bRa for all a; b 2 A with a ¤ b.
(c) Antisymmetry: For all a; b 2 A, if aRb and bRa, then a D b.
(d) Transitivity: For all a; b; c 2 A, aRb and bRc imply aRc.

A preference on A is a reflexive, complete and transitive binary relation on A.
For a preference R on A we write aPb if aRb and not bRa; and aIb if aRb

and bRa. The binary relations P and I are called the asymmetric and symmetric
parts of R, respectively, and are interpreted as strict preference and indifference.
Check (Problem 11.1) that P is antisymmetric and transitive but not reflexive and
not necessarily complete, and that I is reflexive and transitive but not necessarily
antisymmetric and not necessarily complete. By L� we denote the set of all
preferences on A, and by L � L� the set of all antisymmetric (i.e., strict)
preferences on A. In plain words, elements of L� order the elements of A but allow
for indifferences, while elements of L order the elements of A strictly.3

In what follows, it is assumed that agents have strict preferences while
social preferences may have indifferences. A strict preference profile is a list
.R1; : : : ;Ri; : : : ;Rn/, where Ri is the strict preference of agent i. Hence, LN denotes
the set of all strict preference profiles. A social choice function is a map f W LN ! A,
i.e., it assigns a unique alternative to every profile of strict preferences. A social
welfare function is a map F W LN ! L�, i.e., it assigns a (possibly non-strict)
preference to every profile of strict preferences.

2See Problem 11.7 for the case m D 2.
3Elements of L are usually called linear orders and those of L� weak orders.
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11.2 Arrow’s Theorem

In this section the focus is on social welfare functions. We formulate three properties
for a social welfare function F W LN ! L�. We call F:

(a) Pareto Efficient (PE) if for each profile .R1; : : : ;Rn/ 2 LN and all a; b 2 A,
if a ¤ b and aRib for all i 2 N, then aPb, where P is the asymmetric part of
R D F.R1; : : : ;Rn/.

(b) Independent of Irrelevant Alternatives (IIA) if for all .R1; : : : ;Rn/ 2 LN and
.R0

1; : : : ;R
0
n/ 2 LN and all a; b 2 A, if aRib , aR0

ib for all i 2 N, then aRb ,
aR0b, where R D F.R1; : : : ;Rn/ and R0 D F.R0

1; : : : ;R
0
n/.

(c) Dictatorial (D) if there is an i 2 N such that F.R1; : : : ;Rn/ D Ri for all
.R1; : : : ;Rn/ 2 LN .

Pareto Efficiency requires that, if all agents prefer an alternative a over an alternative
b, then the social ranking should also put a above b. Independence of Irrelevant
Alternatives says that the social preference between two alternatives should only
depend on the agents’ preferences between these two alternatives and not on the
position of any other alternative.4 Dictatoriality says that the social ranking is always
equal to the preference of a fixed agent, the dictator. Clearly, there are exactly n

dictatorial social welfare functions.
The first two conditions are usually regarded as desirable but the third clearly

not. Unfortunately, Arrow’s Theorem implies that the first two conditions imply the
third one.5

Theorem 11.1 (Arrow’s Theorem) Let F be a Pareto Efficient and IIA social

welfare function. Then F is dictatorial.

Proof

Step 1 Consider a profile in LN and two distinct alternatives a; b 2 A such that
every agent ranks a on top and b at bottom. By Pareto Efficiency, the social ranking
assigned by F must also rank a on top and b at bottom.

Now change agent 1’s ranking by raising b in it one position at a time. By IIA,
a is ranked socially (by F) on top as long as b is still below a in the preference of
agent 1. In the end, if agent 1 ranks b first and a second, we have a or b on top of the
social ranking by Pareto efficiency of F. If a is still on top in the social ranking, then
continue the same process with agents 2, 3, etc., until we reach some agent k such
that b is on top of the social ranking after moving b above a in agent k’s preference.

4Although there is some similarity in spirit, this condition is not in any formal sense related to the
IIA condition in bargaining, see Sect. 10.1 or Chap. 21.
5For this reason the theorem is often referred to as Arrow’s Impossibility Theorem.
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Table 11.2 Step 1 of the
proof of Theorem 11.1, agent
k ranks a above b

R1 � � � Rk�1 Rk RkC1 � � � Rn F f

b � � � b a a � � � a a a

a � � � a b � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � b

� � � � � � � � � � � �

� � � � � � b � � � b �

Table 11.3 Step 1 of the
proof of Theorem 11.1, agent
k ranks b above a

R1 � � � Rk�1 Rk RkC1 � � � Rn F f

b � � � b b a � � � a b b

a � � � a a � � � � � a

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � b � � � b �

Table 11.4 Step 2 of the
proof of Theorem 11.1,
arising from Table 11.2

R1 � � � Rk�1 Rk RkC1 � � � Rn F f

b � � � b a � � � � � a a

� � � � � b � � � � � b

� � � � � � � � � � � �

� � � � � � a � � � a �

a � � � a � b � � � b �

Table 11.5 Step 2 of the
proof of Theorem 11.1,
arising from Table 11.3

R1 � � � Rk�1 Rk RkC1 � � � Rn F f

b � � � b b � � � � � b b

� � � � � a � � � � � �

� � � � � � � � � � � a

� � � � � � a � � � a �

a � � � a � b � � � b �

Tables 11.2 and 11.3 give the situations just before and just after b is placed above
a in agent k’s preference.6

Step 2 Now consider Tables 11.4 and 11.5.
The profile in Table 11.4 arises from the one in Table 11.2 by moving a to the last
position for agents i < k and to the second last position for agents i > k. In exactly
the same way, the profile in Table 11.5 arises from the one in Table 11.3. Then IIA
applied to Tables 11.3 and 11.5 implies that b is socially top-ranked in Table 11.5.
Next, IIA applied to the transition from Table 11.5 to Table 11.4 implies that in

6In these tables and also the ones below, we generically denote all preferences by R1; : : : ;Rn. The
last column in every table will be used in Sect. 11.3.
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Table 11.6 Step 3 of the
proof of Theorem 11.1

R1 � � � Rk�1 Rk RkC1 � � � Rn F f

� � � � � a � � � � � a a

� � � � � c � � � � � �

� � � � � b � � � � � �

c � � � c � c � � � c �

b � � � b � a � � � a �

a � � � a � b � � � b �

Table 11.7 Steps 4 and 5 of
the proof of Theorem 11.1

R1 � � � Rk�1 Rk RkC1 � � � Rn F f

� � � � � a � � � � � a a

� � � � � c � � � � � �

� � � � � b � � � � � c

c � � � c � c � � � c �

b � � � b � b � � � b b

a � � � a � a � � � a �

Table 11.4 b must still be socially ranked above every alternative except perhaps
a. But IIA applied to the transition from Table 11.2 to Table 11.4 implies that in
Table 11.4 a must still be socially ranked above every alternative. This proves that
the social rankings in Tables 11.4 and 11.5 are correct.

Step 3 Consider a third alternative c distinct from a and b. The social ranking in
Table 11.6 is obtained by from Table 11.4 by applying IIA.

Step 4 Consider the profile in Table 11.7, obtained from the profile in Table 11.6 by
switching a and b for agents i > k. By IIA applied to the transition from Table 11.6
to Table 11.7, we have that a must still be socially ranked above every alternative
except possibly b. However, b must be ranked below c by Pareto efficiency, which
shows that the social ranking in Table 11.7 is correct.

Step 5 Consider any arbitrary profile in which agent k prefers a to b. Change the
profile by moving c between a and b for agent k and to the top of every other agent’s
preference (if this is not already the case). By IIA this does not affect the social
ranking of a vs. b. Since the preference of every agent concerning a and c is now as
in Table 11.7, IIA implies that a is socially ranked above c, which itself is socially
ranked above b by Pareto Efficiency. Hence, by transitivity of the social ranking we
may conclude that a is socially ranked above b whenever it is preferred by agent k

over b. By repeating the argument with the roles of b and c reversed, and recalling
that c was an arbitrary alternative distinct from a and b, we may conclude that the
social ranking of a is above some alternative whenever agent k prefers a to that
alternative: k is a ‘dictator’ for a. Since a was arbitrary, we can repeat the whole
argument to conclude that there must be a dictator for every alternative. Since there
cannot be distinct dictators for distinct alternatives, there must be a single dictator
for all alternatives. �
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11.3 The Gibbard-Satterthwaite Theorem

The Gibbard-Satterthwaite Theorem applies to social choice functions. We start by
listing the following possible properties of a social choice function f W LN ! A.
Call f :

(a) Unanimous (UN) if for each profile .R1; : : : ;Rn/ 2 LN and each a 2 A, if aRib

for all i 2 N and all b 2 A n fag, then f .R1; : : : ;Rn/ D a.
(b) Monotonic (MON) if for all profiles .R1; : : : ;Rn/ 2 LN and .R0

1; : : : ;R
0
n/ 2 LN

and all a 2 A, if f .R1; : : : ;Rn/ D a and aRib ) aR0
ib for all b 2 A n fag and

i 2 N, then f .R0
1; : : : ;R

0
n/ D a.

(c) Dictatorial (D) if there is an i 2 N such that f .R1; : : : ;Rn/ D a where aRib for
all b 2 A n fag, for all .R1; : : : ;Rn/ 2 LN .

(d) Strategy-Proof (SP) if for all profiles .R1; : : : ;Rn/ 2 LN and .R0
1; : : : ;R

0
n/ 2 LN

and all i 2 N, if R0
j D Rj for all j 2 N n fig, then f .R1; : : : ;Rn/ Ri f .R0

1; : : : ;R
0
n/.

Unanimity requires that, if all agents have the same top alternative, then this
alternative should be chosen. Monotonicity says that, if some alternative a is chosen
and the profile changes in such a way that a is still preferred by every agent over
all alternatives over which it was originally preferred, then a should remain to be
chosen.7 Dictatoriality means that there is a fixed agent whose top element is always
chosen. Strategy-Proofness says that no agent can obtain a better chosen alternative
by lying about his true preference.

In accordance with mathematical parlance, call a social choice function f W
LN ! A surjective if for every a 2 A there is some profile .R1; : : : ;Rn/ 2 LN

such that f .R1; : : : ;Rn/ D a. Hence, each a is chosen at least once.8 The Gibbard-
Satterthwaite Theorem is as follows.

Theorem 11.2 (Gibbard-Satterthwaite Theorem) Let f W LN ! A be a surjec-

tive and strategy-proof social choice function. Then f is dictatorial.

Since surjectivity is implied by unanimity, Theorem 11.2 also holds with
unanimity instead of surjectivity.

We will prove the Gibbard-Satterthwaite Theorem by using the next theorem,
which is a variant of the Muller-Satterthwaite Theorem.

Theorem 11.3 (Muller-Satterthwaite) Let f W LN ! A be a unanimous and

monotonic social choice function. Then f is dictatorial.

Proof of Theorem 11.2 We prove that f is unanimous and monotonic. The result
then follows from Theorem 11.3.

7This property is also called Maskin Monotonicity, after Maskin (1999).
8In the social choice literature this property is sometimes called citizen-sovereignty.
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Suppose that f .R1; : : : ;Rn/ D a for some profile .R1; : : : ;Rn/ 2 LN and some
alternative a 2 A. Let i 2 N and let .R0

1; : : : ;R
0
n/ 2 LN be a profile such that for all

j 2 N n fig we have R0
j D Rj and for all b 2 A n fag we have aR0

ib if aRib. We wish to
show that f .R0

1; : : : ;R
0
n/ D a. Suppose, to the contrary, that f .R0

1; : : : ;R
0
n/ D b ¤ a.

Then SP implies aRib, and hence aR0
ib. Again by SP, however, bR0

ia, hence, by
antisymmetry of R0

i, a D b, a contradiction. This proves f .R0
1; : : : ;R

0
n/ D a.

Now suppose that .R0
1; : : : ;R

0
n/ 2 LN is a profile such that for all i 2 N and

all b 2 A n fag we have aR0
ib if aRib. By applying the argument in the preceding

paragraph n times, it follows that f .R0
1; : : : ;R

0
n/ D a. Hence, f is monotonic.

To prove unanimity, suppose that .R1; : : : ;Rn/ 2 LN and a 2 A such that
aRib for all i 2 N and b 2 A n fag. By surjectivity there is .R0

1; : : : ;R
0
n/ 2 LN

with f .R0
1; : : : ;R

0
n/ D a. By monotonicity we may move a to the top of each

agent’s preference and still have a chosen. Next, again by monotonicity, we may
change each agent i’s preference to Ri without changing the chosen alternative, i.e.,
f .R1; : : : ;Rn/ D a. Hence, f is unanimous. �

Proof of Theorem 11.3 The proof parallels the proof of Theorem 11.1 and uses
analogous steps and the same tables.

Step 1 Consider a profile in LN and two distinct alternatives a; b 2 A such that
every agent ranks a on top and b at bottom. By unanimity, f chooses a.
Now change agent 1’s ranking by raising b in it one position at a time. By MON, a

is chosen by f as long as b is still below a in the preference of agent 1. In the end, if
agent 1 ranks b first and a second, we have a or b chosen by f , again by MON. If a

is still chosen, then continue the same process with agents 2, 3, etc., until we reach
some agent k such that b is chosen after moving b above a in agent k’s preference.
Tables 11.2 and 11.3 give the situations just before and just after b is placed above
a in agent k’s preference.

Step 2 Now consider Tables 11.4 and 11.5. The profile in Table 11.4 arises from the
one in Table 11.2 by moving a to the last position for agents i < k and to the second
last position for agents i > k. In exactly the same way, the profile in Table 11.5
arises from the one in Table 11.3.
Then MON applied to Tables 11.3 and 11.5 implies that b is chosen in Table 11.5.
Next, MON applied to the transition from Table 11.5 to Table 11.4 implies that in
Table 11.4 the choice must be either b or a. Suppose b would be chosen. Then MON
applied to the transition from Table 11.4 to Table 11.2 implies that in Table 11.2
b must be chosen as well, a contradiction. Hence, a is chosen in Table 11.4. This
proves that the choices by f in Tables 11.4 and 11.5 are correct.

Step 3 Consider a third alternative c distinct from a and b. The choice in Table 11.6
is obtained by from Table 11.4 by applying MON.
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Step 4 Consider the profile in Table 11.7, obtained from the profile in Table 11.6 by
switching a and b for agents i > k. If the choice in Table 11.7 were some d unequal
to a or b, then by MON it would also be d in Table 11.6, a contradiction. If it were
b, then by MON it would remain b even if c would be moved to the top of every
agent’s preference, contradicting unanimity. Hence, it must be a.

Step 5 Consider any arbitrary profile with a at the top of agent k’s preference. Such
a profile can always be obtained from the profile in Table 11.7 without worsening
the position of a with respect to any other alternative in any agent’s preference. By
MON therefore, a must be chosen whenever it is at the top of agent k’s preference,
so k is a ‘dictator’ for a. Since a was arbitrary, we can find a dictator for every other
alternative but, clearly, these must be one and the same agent. Hence, this agent is
the dictator. �

There is a large literature that tries to escape the negative conclusions of
Theorems 11.1–11.3 by adapting the model and/or restricting the domain. Examples
are provided in Problems 6.23 and 6.24.

11.4 Problems

11.1. Preferences

Let R be a preference on A, with symmetric part I and asymmetric part P.

(a) Prove that P is antisymmetric and transitive but not reflexive and not necessarily
complete.

(b) Prove that I is reflexive and transitive but not necessarily complete and not
necessarily antisymmetric.

11.2. Pairwise Comparison

For a profile r D .R1; : : : ;Rn/ 2 LN and a; b 2 A define

N.a; b; r/ D fi 2 N j aRibg ;

i.e., N.a; b; r/ is the set of agents who (strictly) prefer a to b in the profile r. With r

we can associate a binary relation C.r/ on A by defining aC.r/b W, jN.a; b; r/j �
jN.b; a; r/j for all a; b 2 A. If aC.r/b we say that ‘a beats b by pairwise majority’.

(a) Is C.r/ reflexive? Complete? Antisymmetric?
(b) Show that C.r/ is not transitive, by considering the famous Condorcet profile

for N D f1; 2; 3g and A D fa; b; cg: aR1bR1c, bR2cR2a, cR3aR3b.
(c) Call a a Condorcet winner if jN.a; b; r/j > jN.b; a; r/j for all b 2 A n fag. Is

there a Condorcet winner in the example in Sect. 11.1?
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11.3. Independence of the Conditions in Theorem 11.1

Show that the conditions in Theorem 11.1 are independent. That is, exhibit a social
welfare function that is Pareto efficient and does not satisfy IIA or dictatoriality, and
one that satisfies IIA and is not dicatorial nor Pareto efficient.

11.4. Independence of the Conditions in Theorem 11.2

Show that the conditions in Theorem 11.2 are independent.

11.5. Independence of the Conditions in Theorem 11.3

Show that the conditions in Theorem 11.3 are independent.

11.6. Copeland Score and Kramer Score

The Copeland score of an alternative a 2 A at a profile r D .R1; : : : ;Rn/ 2 LN is
defined by

c.a; r/ D jfb 2 A j N.a; b; r/ � N.b; a; r/gj ;

i.e., the number of alternatives that a beats (cf. Problem 11.2). The Copeland ranking
is obtained by ranking the alternatives according to their Copeland scores.

(a) Is the Copeland ranking a preference? Is it antisymmetric? Does the derived
social welfare function satisfy IIA? Pareto efficiency?

The Kramer score of an alternative a 2 A at a profile r D .R1; : : : ;Rn/ 2 LN is
defined by

k.a; r/ D min
b2Anfag

jN.a; b; r/j ;

i.e., the worst score among all pairwise comparisons. The Kramer ranking is
obtained by ranking the alternatives according to their Kramer scores.

(b) Is the Kramer ranking a preference? Is it antisymmetric? Does the derived social
welfare function satisfy IIA? Pareto efficiency?

11.7. Two Alternatives

Show that Theorems 11.1–11.3 no longer hold if there are just two alternatives, i.e.,
if m D 2.

11.5 Notes

For a general overview of social choice theory see Arrow et al. (2002, 2011). For
Arrow’s Theorem see Arrow (1963). For the Gibbard-Satterthwaite Theorem see
Gibbard (1973) and Satterthwaite (1975). Both these theorems are closely related:
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indeed, the proof of the Gibbard-Satterthwaite Theorem in Gibbard (1973) uses
Arrow’s Theorem. The presentation in this chapter closely follows that in Reny
(2001), which is both simple and elegant, and which shows the close relation
between the two results.

For the Borda scores and the so-called Borda rule see de Borda (1781). The
Muller-Satterthwaite Theorem is from Muller and Satterthwaite (1977).

De Condorcet (1785) was the first to explicitly discuss the notion of a Condorcet
winner; see Gehrlein (2006) for a comprehensive study of the so-called Condorcet

paradox in Problem 11.2(b).
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Part II

Noncooperative Games



12Matrix Games

In this chapter we study finite two-person zero-sum games—matrix games—more
rigorously. In particular, von Neumann’s Minimax Theorem is proved. The chapter
extends Chap. 2 in Part I. Although it is self-contained, it may be useful to (re)read
Chap. 2 first.

Section 12.1 presents a proof of the Minimax Theorem, and Sect. 12.2 shows
how a matrix game can be solved—i.e., optimal strategies and the value of the game
can be found—by solving an associated linear programming problem.

12.1 The Minimax Theorem

A two-person zero-sum game is completely determined by a single matrix. We
repeat Definition 2.1.

Definition 12.1 (Matrix Game) A matrix game is an m � n matrix A of real
numbers, where m is the number of rows and n is the number of columns. A (mixed )
strategy of player 1 is a probability distribution p over the rows of A, i.e., an element
of the set

�m WD fp D .p1; : : : ; pm/ 2 R
m j

mX

iD1

pi D 1; pi � 0 for all i D 1; : : : ;mg :

Similarly, a (mixed ) strategy of player 2 is a probability distribution q over the
columns of A, i.e., an element of the set

�n WD fq D .q1; : : : ; qn/ 2 R
n j

nX

jD1

qj D 1; qj � 0 for all j D 1; : : : ; ng :

© Springer-Verlag Berlin Heidelberg 2015
H. Peters, Game Theory, Springer Texts in Business and Economics,
DOI 10.1007/978-3-662-46950-7_12
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A strategy p of player 1 is called pure if there is a row i with pi D 1. This strategy
is also denoted by ei. Similarly, a strategy q of player 2 is called pure if there is a
column j with qj D 1. This strategy is also denoted by ej. �

Let A be an m � n matrix game. For any strategy p 2 �m of player 1, let v1.p/ D
minq2�n pAq. It is easy to see that v1.p/ D minj2f1;:::;ng pAej, since pAq is a convex
combination of the numbers pAej. In the matrix game A player 1 can guarantee a
payoff of at least

v1.A/ WD max
p2�m

v1.p/ :

Similarly, for any strategy q 2 �n of player 2 let v2.q/ D maxp2�m pAq D
maxi2f1;:::;mg eiAq, then player 2 can guarantee to have to pay at most

v2.A/ WD min
q2�n

v2.q/ :

Intuitively, player 1 should not be able to guarantee to obtain more than what player
2 can guarantee to pay maximally. Indeed, we have the following lemma.

Lemma 12.2 For any m � n matrix game, v1.A/ � v2.A/.

Proof Problem 12.2. �

The following theorem is due to von Neumann. The proof is based on Lemma 22.3,
which is equivalent to Farkas’ Lemma.

Theorem 12.3 (Minimax Theorem for Matrix Games) For any m � n matrix

game A, v1.A/ D v2.A/.

Proof Let A be an m � n matrix game. In view of Lemma 12.2 it is sufficient to
prove that v1.a/ � v2.A/. Suppose, to the contrary, that v1.A/ < v2.A/. We derive a
contradiction, which completes the proof of the theorem.

Let B be any arbitrary m � n matrix game. Then either (i) or (ii) in Lemma 22.3
has to hold for B, i.e., exactly one of the following holds:

(i) There are y 2 R
n and z 2 R

m with .y; z/ � 0, .y; z/ ¤ 0 and By C z D 0.
(ii) There is an x 2 R

m with x > 0 and xB > 0.

First suppose that (i) holds and let y 2 R
n and z 2 R

m with .y; z/ � 0, .y; z/ ¤ 0

and By C z D 0. It cannot be the case that y D 0, since that would imply that also
z D 0, a contradiction. Hence

Pn
kD1 yk > 0. Define q 2 �n by qj D yj=

Pn
kD1 yk for

every j D 1; : : : ; n. Then Bq D �z=
Pn

kD1 yk � 0. Hence v2.q/ � 0, and therefore
v2.B/ � 0.
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Suppose instead that (ii) holds. Then there is an x 2 R
m with x > 0 and xB > 0.

Define p 2 �m by p D x=
Pm

iD1 xi, then v1.p/ > 0 and therefore v1.B/ > 0.
We conclude that, for any matrix game B, it is not possible to have v1.B/ � 0 <

v2.B/.
Let now B be the matrix game arising by subtracting the number v1.A/ from all

entries of A. Then, clearly, v1.B/ D v1.A/�v1.A/ D 0 and v2.B/ D v2.A/�v1.A/ >
0. Hence, v1.B/ � 0 < v2.B/, which is the desired contradiction. �

In view of Theorem 12.3 we can define the value of the game A by v.A/ D v1.A/ D
v2.A/. An optimal strategy of player 1 is a strategy p such that v1.p/ � v.A/.
Similarly, an optimal strategy of player 2 is a strategy q such that v2.q/ � v.A/.
Theorem 12.3 implies that v1.p/ D v2.q/ D v.A/ for such optimal strategies. Thus,
if p is an optimal strategy for player 1, then v1.p/ D maxp02�m v1.p

0/, so that p

is a maximin strategy (cf. Definition 2.3). Conversely, every maximin strategy is
an optimal strategy for player 1. Similarly, the optimal strategies for player 2 are
exactly the minimax strategies.

For computation of optimal strategies and the value of matrix games in some
special cases, see Chap. 2 and Problems 12.3 and 12.4. In general, matrix games
can be solved by linear programming. This is demonstrated in the next section.

12.2 A Linear Programming Formulation

Let A be an m � n matrix game:

A D

0
B@

a11 � � � a1n

:::
: : :

:::

am1 � � � amn

1
CA :

Adding the same number to all entries of A changes the value by that same number
but not the optimal strategies of the players. So we may assume without loss of
generality that all entries of A are positive. We define the .m C 1/ � .n C 1/ matrix
B as follows:

B D

0
BBB@

a11 � � � a1n �1
:::

: : :
:::

:::

am1 � � � amn �1
�1 � � � �1 0

1
CCCA :

Let b D .0; : : : ; 0;�1/ 2 R
nC1 and c D .0; : : : ; 0;�1/ 2 R

mC1. Define V WD
fx 2 R

mC1 j xB � b, x � 0g and W WD fy 2 R
nC1 j By � c, y � 0g. It is easy to

check that V;W ¤ ;. The Duality Theorem of Linear Programming (Theorem 22.6)
therefore implies:
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Corollary 12.4 minfx � c j x 2 Vg D maxfb � y j y 2 Wg .

The minimum and maximum problems in this corollary are so-called linear pro-
gramming (LP) problems. If we call the minimization problem the primal problem,
then the maximization problem is the dual problem—or vice versa. The common
minimum/maximum is called the value of the LP, and x and y achieving the value
are called optimal solutions. Denote the sets of optimal solutions by Omin and Omax,
respectively.

We have the following result. The proof uses Lemma 22.9, which states that if
Ox 2 V and Oy 2 W satisfy Ox � c D b � Oy, then Ox and Oy are optimal solutions.

Theorem 12.5 Let A be an m � n matrix game with all entries positive.

.i/ If p 2 �m is an optimal strategy for player 1 and q 2 �n is an optimal strategy

for player 2 in A, then .p; v.A// 2 Omin and .q; v.A// 2 Omax. The value of the

LP is �v.A/.
.ii/ If x D .x1; : : : ; xm; xmC1/ 2 Omin and y D .y1; : : : ; yn; ynC1/ 2 Omax, then

.x1; : : : ; xm/ is an optimal strategy for player 1 in A, .y1; : : : ; yn/ is an optimal

strategy for player 2 in A, and v.A/ D xmC1 D ynC1.

Proof

(i) Let p 2 �m and q 2 �n be optimal strategies in the matrix game A. Then
pAej � v.A/ and eiAq � v.A/ for all i D 1; : : : ;m and j D 1; : : : ; n. Since
all entries of A are positive and therefore v.A/ > 0, this implies .p; v.A// 2 V

and .q; v.A// 2 W. Since .p; v.A// � c D �v.A/ and .q; v.A// � b D �v.A/,
Lemma 22.9 implies that the value of the LP is �v.A/, .p; v.A// 2 Omin and
.q; v.A// 2 Omax.

(ii) Let x D .x1; : : : ; xmC1/ 2 Omin. Since x � c D �v.A/ by (i), we have xmC1 D
v.A/. Since xB � b, we have .x1; : : : ; xm/Aej � v.A/ for all j D 1; : : : ; n, xi � 0

for all i D 1; : : : ;m, and
Pm

iD1 xi � 1. Suppose that
Pm

iD1 xi < 1. Obviously,Pm
iD1 xi > 0, otherwise x D .0; : : : ; 0; v.A// … V since v.A/ > 0. Then,

letting t D .
Pm

iD1 xi/
�1 > 1, we have tx 2 V and tx � c D �t v.A/ < �v.A/,

contradicting x 2 Omin. Hence,
Pm

iD1 xi D 1, and .x1; : : : ; xm/ is an optimal
strategy of player 1 in A.

The proof of the second part of (ii) is analogous. �

The interest of this theorem derives from the fact that solving linear programming
problems is a well established area. Thus, one can apply any (computer) method for
solving LPs to find the value and optimal strategies of a matrix game.

By slightly modifying part (ii) of the proof of Theorem 12.5, we can in fact derive
the Minimax Theorem from the Duality Theorem (Problem 12.5). Conversely,
with each LP we can associate a matrix game and thereby derive the Duality
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Theorem from the Minimax Theorem. This confirms the close relationship between
linear programming (Duality Theorem) and the theory of matrix games (Minimax
Theorem).

12.3 Problems

12.1. Solving a Matrix Game

Consider the matrix game

A D

0
BB@

6 4 2 1

5 3 3 2

1 0 3 4

2 �3 2 3

1
CCA :

(a) Reduce the game by iterated elimination of strictly dominated strategies.
Describe exactly which pure strategy you eliminate each time, and by which
pure or mixed strategy the strategy to be eliminated is strictly dominated. [See
Chap. 2, also for the following questions.]

Denote the reduced game derived in (a) by B.

(b) Solve B graphically. Explicitly compute v1.p/ and v2.q/ for strategies p of
player 1 and q of player 2. Determine the value of B and the optimal strategy or
strategies of players 1 and 2 in B.

(c) Determine the value of A and the optimal strategy or strategies of players 1 and
2 in A.

Now change the entry a11 from 6 to y 2 R, so that we obtain the matrix game

Ay D

0
BB@

y 4 2 1

5 3 3 2

1 0 3 4

2 �3 2 3

1
CCA :

(d) Compute v.Ay/ and the optimal strategies in Ay for every y 2 R.

12.2. Proof of Lemma 12.2

Prove Lemma 12.2.
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12.3. 2 � 2 Games

Consider the 2 � 2 matrix game

A D
�

a11 a12
a21 a22

�
:

Assume that A has no saddlepoints. [A saddlepoint is an entry .i; j/ such that aij is
maximal in column j and minimal in row i, cf. Definition 2.4.]

(a) Assume that a11 > a12. Show that

a12 < a22; a21 < a22; a11 > a21 :

(b) Show that the unique optimal strategies p and q and the value of the game are
given by:

p D JA�

JA�JT
; q D A�JT

JA�JT
; v.A/ D jAj

JA�JT
;

where A� is the adjoint matrix of A, i.e.,

A� D
�

a22 �a12

�a21 a11

�
;

jAj is the determinant of A, and J WD .1; 1/.1

12.4. Symmetric Games

An m � n matrix game A D .aij/ is called symmetric if m D n and aij D �aji for all
i; j D 1; : : : ;m. Prove that the value of a symmetric game is zero and that the sets of
optimal strategies of players 1 and 2 coincide.

12.5. The Duality Theorem Implies the Minimax Theorem

Modify the proof of part (ii) of Theorem 12.5 in order to derive the Minimax
Theorem from the Duality Theorem. [Hint: first show that the value of the LP must
be negative.]

12.6. Infinite Matrix Games

Consider the following two-player game. Each player mentions a natural number.
The player with the higher number receives one Euro from the player with the lower
number. If the numbers are equal then no player receives anything.

1J denotes the row vector and JT the transpose, i.e., the column vector. In general, we omit the
transpose notation if confusion is unlikely.
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(a) Write this game in the form of an infinite matrix game A.
(b) Compute supp infq pAq and infq supp pAq, where p and q are probability

distributions over the rows and the columns of A, respectively. (Conclude that
this game has no ‘value’.)

12.7. Equalizer Theorem

Let v be the value of the m � n-matrix game A, and suppose that pAen D v for every
optimal strategy p of player 1. Show that player 2 has an optimal strategy q with
qn > 0.

12.4 Notes

The Minimax Theorem was first proved in von Neumann (1928). The simplex
algorithm was developed by George Dantzig in 1947; see Dantzig (1963) or any
textbook on linear programming or operations research.

With each linear programming problem we can associate a matrix game and
thereby derive the Duality Theorem from the Minimax Theorem: see, e.g., Owen
(1995).

For Problem 12.7 see also Raghavan (1994).
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This chapter builds on Chap. 3, where we studied finite two person games—bimatrix
games. (Re)reading Chap. 3 may serve as a good preparation for the present chapter,
which offers a more rigorous treatment of finite games, i.e., games with finitely
many players—often two—who have finitely many pure strategies over which
they can randomize. We only discuss games with complete information. In the
terminology of Chap. 5, each player has only one type.

In Sect. 13.1 a proof of Nash’s existence theorem is provided. Section 13.2 goes
deeper into bimatrix games. In Sect. 13.3 the notion of iterated dominance is studied,
and its relation with rationalizability indicated. Sections 13.4–13.6 present some
basics about refinements of Nash equilibrium. Section 13.7 is on correlated equilib-
rium in bimatrix games, and Sect. 13.8 concludes with an axiomatic characterization
of Nash equilibrium based on a reduced game (consistency) condition.

13.1 Existence of Nash Equilibrium

We start with a general definition of a finite game. Matrix and bimatrix games are
special cases.

A finite game is a 2n C 1-tuple

G D .N; S1; : : : ; Sn; u1; : : : ; un/ ;

where

• N D f1; : : : ; ng, with n 2 N, is the set of players;
• for every i 2 N, Si is the finite pure strategy set of player i;
• for every i 2 N, ui W S D S1� : : :�Sn ! R is the payoff function of player i; i.e.,

for every pure strategy combination .s1; : : : ; sn/ 2 S where s1 2 S1; : : : ; sn 2 Sn,
ui.s1; : : : ; sn/ 2 R is player i’s payoff.

© Springer-Verlag Berlin Heidelberg 2015
H. Peters, Game Theory, Springer Texts in Business and Economics,
DOI 10.1007/978-3-662-46950-7_13
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This definition is identical to the definition of an n-person game in Chap. 6, except
that the pure strategy sets are now finite. The elements of Si are the pure strategies
of player i. A (mixed) strategy of player i is a probability distribution over Si. The
set of (mixed) strategies of player i is denoted by�.Si/. Observe that, whenever we
talk about a strategy, we mean a mixed strategy (which may of course be pure).

Let .�1; : : : ; �n/ 2 �.S1/ � : : : � �.Sn/ be a strategy combination. Player i’s
payoff from this strategy combination is defined to be his expected payoff. With
some abuse of notation this is also denoted by ui.�1; : : : ; �n/. Formally,

ui.�1; : : : ; �n/ D
X

.s1;:::;sn/2S

0
@Y

j2N

�j.sj/

1
A ui.s1; : : : ; sn/ :

For a strategy combination � and a player i 2 N we denote by .� 0
i ; ��i/ the strategy

combination in which player i plays � 0
i 2 �.Si/ and each player j ¤ i plays �j.

A best reply of player i to the strategy combination ��i of the other players is a
strategy �i 2 �.Si/ such that ui.�i; ��i/ � ui.�

0
i ; ��i/ for all � 0

i 2 �.Si/.
A Nash equilibrium of G is a strategy combination �� 2

Q
i2N �.Si/ such that

for each player i, ��
i is a best reply to ��

�i.
As in Chaps. 3 and 6, ˇi denotes player i’s best reply correspondence. That is,

ˇi W
Q

j2N; j¤i�.Sj/ ! �.Si/ assigns to each strategy combination of the other
players the set of all best replies of player i.

Theorem 13.1 (Existence of Nash Equilibrium) Every finite game G D
.N; S1; : : : ; Sn; u1; : : : ; un/ has a Nash equilibrium.

The proof of this theorem below is based on the Kakutani Fixed Point Theorem
(Sect. 22.5).

Proof of Theorem 13.1 Consider the correspondence

ˇ W
Y

i2N

�.Si/ !
Y

i2N

�.Si/; .�1; : : : ; �n/ 7!
Y

i2N

ˇi.�1; : : : ; �i�1; �iC1; : : : ; �n/ :

This correspondence is convex-valued and upper semi-continuous (Problem 13.2).
By the Kakutani Fixed Point Theorem (Theorem 22.11) it has a fixed point ��. By
definition of ˇ, any fixed point is a Nash equilibrium of G. �

An alternative proof is obtained by using the Brouwer Fixed Point Theorem
(Theorem 22.10). See Problem 13.1.
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13.2 Bimatrix Games

Two-person finite games—bimatrix games—were studied in Chap. 3. Here we
present some extensions. In Sect. 13.2.1 we give some formal relations between pure
and mixed strategies in a Nash equilibrium. In Sect. 13.2.2 we extend the graphical
method for computing Nash equilibria (cf. Sect. 3.2.2). In Sect. 13.2.3 a general
mathematical programming method is described by which equilibria of bimatrix
games can be found. Section 13.2.4 reconsiders matrix games as a special kind of
bimatrix games. Section 13.2.5 is about Zermelo’s theorem on the game of chess.

13.2.1 Pure and Mixed Strategies in Nash Equilibrium

Let .A;B/ be an m � n bimatrix game (Definition 3.1). The first lemma implies that
to determine whether a strategy pair is a Nash equilibrium it is sufficient to compare
the expected payoff of a (mixed) strategy with the payoffs of pure strategies.

Lemma 13.2 Let p 2 �m and q 2 �n. Then p 2 ˇ1.q/ if and only if pAq � eiAq

for all i D 1; : : : ;m; and q 2 ˇ2.p/ if and only if pBq � pBej for all j D 1; : : : ; n.

Proof Problem 13.3. �

The next lemma says that a player always has a pure best reply against any strategy
of the opponent.

Lemma 13.3 Let p 2 �m and q 2 �n. Then there is an i 2 f1; : : : ;mg with

ei 2 ˇ1.q/ and a j 2 f1; : : : ; ng with ej 2 ˇ2.p/.

Proof Problem 13.4. �

In light of these lemmas it makes sense to introduce the pure best reply correspon-
dences.

Definition 13.4 Let .A;B/ be an m � n bimatrix game and let p 2 �m and q 2 �n.
Then

PB1.q/ D fi 2 f1; : : : ;mg j eiAq D max
k

ekAqg

is the set of pure best replies of player 1 to q and

PB2.p/ D fj 2 f1; : : : ; ng j pBej D max
k

pBekg

is the set of pure best replies of player 2 to p. �
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Observe that, with some abuse of notation, the pure best replies in this definition are
labelled by the row and column numbers.

The carrier C.p/ of a mixed strategy p 2 �k, where k 2 N, is the set of
coordinates that are positive, i.e.,

C.p/ D fi 2 f1; : : : ; kg j pi > 0g :

The next lemma formalizes the observation used already in Chap. 3, namely that
in a best reply a player puts positive probability only on those pure strategies that
maximize his expected payoff (cf. Problem 3.8).

Lemma 13.5 Let .A;B/ be an m � n bimatrix game, p 2 �m and q 2 �n. Then

p 2 ˇ1.q/ , C.p/ � PB1.q/

and

q 2 ˇ2.p/ , C.q/ � PB2.p/ :

Proof We only show the first equivalence.
First let p 2 ˇ1.q/, and assume i 2 C.p/ and, contrary to what we want to prove,

that eiAq < maxk ekAq. Then

pAq D max
k

ekAq D
mX

k0D1

pk0 max
k

ekAq >

mX

kD1

pk ekAq D pAq ;

where the first equality follows from Lemma 13.3. This is a contradiction, hence
eiAq D maxk ekAq and i 2 PB1.q/.

Next, assume that C.p/ � PB1.q/. Then

pAq D
mX

iD1

pi eiAq D
X

i2C.p/

pi eiAq D
X

i2C.p/

pi max
k

ekAq D max
k

ekAq :

So pAq � eiAq for all i D 1; : : : ;m, which by Lemma 13.2 implies p 2 ˇ1.q/. �

The following corollary is an immediate consequence of Lemma 13.5. It is, in
principle, helpful to find Nash equilibria or to determine whether a given strategy
combination is a Nash equilibrium. See Example 13.7.

Corollary 13.6 A strategy pair .p;q/ is a Nash equilibrium in a bimatrix game

.A;B/ if and only if C.p/ � PB1.q/ and C.q/ � PB2.p/.
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Example 13.7 Consider the bimatrix game

.A;B/ D

0
BB@

1; 1 0; 1 0; 1 0; 1

1; 1 1; 1 0; 1 0; 1

1; 1 1; 1 1; 1 0; 1

1; 1 1; 1 1; 1 1; 1

1
CCA

and the strategies p D .0; 1
3
; 1
3
; 1
3
/ and q D . 1

2
; 1
2
; 0; 0/. Since

Aq D

0
BB@

1
2

1

1

1

1
CCA and pB D

�
1 1 1 1

�
;

PB1.q/ D f2; 3; 4g and PB2.p/ D f1; 2; 3; 4g. Since C.p/ D f2; 3; 4g and C.q/ D
f1; 2g, we have C.p/ � PB1.q/ and C.q/ � PB2.p/. So Corollary 13.6 implies that
.p;q/ is a Nash equilibrium.

13.2.2 Extension of the Graphical Method

In Sect. 3.2.2 we learnt how to solve 2 � 2 bimatrix games graphically. We now
extend this method to 2�3 and 3�2 games. For larger games it becomes impractical
or impossible to use this graphical method.

As an example consider the 2 � 3 bimatrix game

.A;B/ D
�
2; 1 1; 0 1; 1

2; 0 1; 1 0; 0

�
:

The Nash equilibria of this game are elements of the set �2 � �3 of all possible
strategy combinations. This set can be represented as in Fig. 13.1.

Here player 2 chooses a point in the triangle with vertices e1; e2 and e3, while
player 1 chooses a point of the horizontal line segment with vertices e1 and e2.

In order to determine the best replies of player 1 note that

Aq D
�
2q1 C q2 C q3

2q1 C q2

�
:
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Fig. 13.1 The set �2 ��3

e1

e3

e2

e2

Fig. 13.2 The best reply
correspondence of player 1
(shaded)

e1

e3

e2

e2

As e1Aq D e2Aq , q3 D 0, it follows that

ˇ1.q/ D
�

fe1g if q3 > 0

�2 if q3 D 0 :

This yields the best reply correspondence represented in Fig. 13.2.
Similarly,

pB D
�

p1 p2 p1
�

implies

ˇ2.p/ D

8
<
:

fe2g if p1 < p2

�3 if p1 D p2

fq 2 �3 j q2 D 0g if p1 > p2:

This yields the best reply correspondence represented in Fig. 13.3.
Figure 13.4 represents the intersection of the two best reply correspondences and,

thus, the set of Nash equilibria.
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Fig. 13.3 The best reply
correspondence of player 2
(shaded/thick)

e1

e3

e2

e2
( 1

2
, 1

2
)

Fig. 13.4 The set of Nash
equilibria:
f..1; 0/; q/ j q2 D 0g [
f.p; .1; 0; 0// j 1 � p1 � 1

2
g

[ f.. 1
2
; 1
2
/; q/ j q3 D 0g [

f.p; .0; 1; 0// j 1
2

� p1 � 0g

e1

e3

e2

e2
( 1

2
, 1

2
)

13.2.3 A Mathematical Programming Approach

In Sect. 12.2 we have seen that matrix games can be solved by linear programming.
Nash equilibria of an m � n bimatrix game .A;B/ can be found by considering the
following quadratic programming problem:

max
p2�m; q2�n; a;b2R

f .p;q; a; b/ WD pAq C pBq � a � b

subject to eiAq � a for all i D 1; 2; : : : ;m

pBej � b for all j D 1; 2; : : : ; n :
(13.1)

Theorem 13.8 The following two statements are equivalent:

.1/ .p;q; a; b/ is a solution of (13.1)

.2/ .p;q/ is a Nash equilibrium of .A;B/, a D pAq, b D pBq.

Proof Problem 13.9. �
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If .A;B/ is a zero-sum game, i.e., if B D �A, then (13.1) reduces to

max
p2�m; q2�n; a;b2R

�a � b

subject to eiAq � a for all i D 1; 2; : : : ;m

�pAej � b for all j D 1; 2; : : : ; n :
(13.2)

Program (13.2) can be split up into two independent programs

max
q2�n; a2R

�a

subject to eiAq � a for all i D 1; 2; : : : ;m (13.3)

and

min
p2�m; b2R

b

subject to pAej � �b for all j D 1; 2; : : : ; n : (13.4)

One can check that these problems are equivalent to the LP and its dual for matrix
games in Sect. 12.2, see Problem 13.10.

13.2.4 Matrix Games

Since matrix games are also bimatrix games, everything that we know about
bimatrix games is also true for matrix games. In fact, the Minimax Theorem (Theo-
rem 12.3) can be derived directly from the existence theorem for Nash equilibrium
(Theorem 13.1). Moreover, each Nash equilibrium in a matrix game consists of a
pair of optimal (maximin and minimax) strategies, and each such pair is a Nash
equilibrium. As a consequence, in a matrix game, Nash equilibrium strategies are
exchangeable—there is no coordination problem, and all Nash equilibria result in
the same payoffs.

All these facts are collected in the following theorem. For terminology concern-
ing matrix games see Chap. 12. The ‘new’ contribution of this theorem is part (2),
part (1) is just added to provide an alternative proof of the Minimax Theorem.

Theorem 13.9 Let A be an m � n matrix game. Then:

.1/ v1.A/ D v2.A/.

.2/ A pair .p�;q�/ 2 �m ��n is a Nash equilibrium of .A;�A/ if and only if p� is

an optimal strategy for player 1 in A and q� is an optimal strategy for player 2

in A.
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Proof

(1) In view of Lemma 12.2 it is sufficient to prove that v1.A/ � v2.A/. Choose
.p�;q�/ 2 �m � �n to be a Nash equilibrium of .A;�A/—this is possible by
Theorem 13.1. Then

pAq� � p�Aq� � p�Aq for all p 2 �m, q 2 �n :

This implies maxp pAq� � p�Aq for all q, hence v2.A/ D minq0 maxp pAq0 �
p�Aq for all q. So

v2.A/ � min
q

p�Aq � max
p

min
q

pAq D v1.A/ :

(2) First, suppose that .p�;q�/ 2 �m ��n is a Nash equilibrium of .A;�A/. Then

p�Aq� D max
p

pAq� D v2.q
�/ � min

q
v2.q/ D v2.A/ D v.A/ :

If p� were not optimal, then p�Aq < v.A/ for some q 2 �n, so p�Aq� �
p�Aq < v.A/, a contradiction. Similarly, q� must be optimal.

Conversely, suppose that p� and q� are optimal strategies. Since pAq� �
v.A/ for all p 2 �m and p�Aq � v.A/ for all q 2 �n, it follows that p� and q�

are mutual best replies and, thus, .p�;q�/ is a Nash equilibrium in .A;�A/. �

13.2.5 The Game of Chess: Zermelo’s Theorem

One of the earliest formal results in game theory is Zermelo’s Theorem on the game
of chess. In this subsection we provide a simple proof of this theorem, based on
Theorem 13.9.

The game of chess is a classical example of a zero-sum game. There are three
possible outcomes: a win for White, a win for Black, and a draw. Identifying player
1 with White and player 2 with Black, we can associate with these outcomes the
payoffs .1;�1/, .�1; 1/, and .0; 0/, respectively. In order to guarantee that the
(extensive form) game stops after finitely many moves, we assume the following
stopping rule: if the same configuration on the chess board has occurred more than
twice, the game ends in a draw. Since there are only finitely many configurations
on the chess board, the game must stop after finitely many moves. Note that the
chess game is a finite extensive form game of perfect information and therefore it
has a Nash equilibrium in pure strategies—see Sect. 4.3. To be precise, this is a pure
strategy Nash equilibrium in the associated matrix game, where mixed strategies are
allowed as well.
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Theorem 13.10 (Zermelo’s Theorem) In the game of chess, either White has a

pure strategy that guarantees a win, or Black has a pure strategy that guarantees a

win, or both players have pure strategies that guarantee at least a draw.

Proof Let A D .aij/ denote the associated matrix game, and let row i� and column
j� constitute a pure strategy Nash equilibrium. We distinguish three cases.

Case 1. ai�j� D 1, i.e., White wins. By Theorem 13.9, v.A/ D 1. Hence, White
has a pure strategy that guarantees a win, namely to play row i�.

Case 2. ai�j� D �1, i.e., Black wins. By Theorem 13.9, v.A/ D �1. Hence,
Black has a pure strategy that guarantees a win, namely to play column j�.

Case 3. ai�j� D 0, i.e., the game ends in a draw. By Theorem 13.9, v.A/ D 0.
Hence, both White and Black can guarantee at least a draw by playing row i�

and column j�, respectively. �

13.3 Iterated Dominance and Best Reply

A pure strategy of a player in a finite game is strictly dominated if there is another
(mixed or pure) strategy that yields always—whatever the other players do—a
strictly higher payoff. Such a strategy is not played in a Nash equilibrium, and can
therefore be eliminated. In the smaller game there may be another pure strategy of
the same or of another player that is strictly dominated and again may be eliminated.
This way a game may be reduced to a smaller game for which it is easier to
compute the Nash equilibria. If the procedure results in a unique surviving strategy
combination then the game is called dominance solvable, but this is a rare exception.

We applied these ideas before, in Chaps. 2 and 3. In this section we show,
formally, that by this procedure of iterated elimination of strictly dominated
strategies no Nash equilibria of the original game are lost, and no Nash equilibria
are added.

For iterated elimination of weakly dominated strategies the situation is different:
Nash equilibria may be lost, and the final result may depend on the order of
elimination. See Problem 3.6.

We start with repeating the definition of a strictly dominated strategy for an
arbitrary finite game.

Definition 13.11 Let G D .N; S1; : : : ; Sn; u1; : : : ; un/ be a finite game, i 2 N, si 2
Si. Strategy si is strictly dominated by strategy �i 2 �.Si/ if ui.�i; ��i/ > ui.si; ��i/

for all ��i 2
Q

j¤i�.Sj/. Strategy si 2 Si is strictly dominated if it is strictly
dominated by some strategy �i 2 �.Si/. �

The fact that iterated elimination of strictly dominated strategies does not essentially
change the set of Nash equilibria of a game is a straightforward consequence of the
following lemma.
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Lemma 13.12 Let G D .N; S1; : : : ; Sn; u1; : : : ; un/ be a finite game, i 2 N,

and let si 2 Si be strictly dominated. Let G0 D .N; S1; : : : ; Si�1; Si n
fsig; SiC1; : : : ; Sn; u

0
1; : : : ; u

0
n/ be the game arising from G be eliminating si from

Si and restricting the payoff functions accordingly. Then:

.1/ If � is a Nash equilibrium in G, then �i.si/ D 0 .where �i.si/ is the probability

assigned by �i to pure strategy si 2 Si / and � 0 is a Nash equilibrium in G0,

where � 0
j D �j for each j 2 N n fig and � 0

i is the restriction of �i to Si n fsig.

.2/ If � 0 is a Nash equilibrium in G0, then � is a Nash equilibrium in G, where

�j D � 0
j for each j 2 N n fig and �i.ti/ D � 0

i .ti/ for all ti 2 Si n fsig.

Proof

(1) Let � be a Nash equilibrium in G, and let �i 2 �.Si/ strictly dominate si. If
�i.si/ > 0, then

ui. O�i C �i.si/�i; ��i/ > ui.�i; ��i/ ;

where O�i W Si ! R is defined by O�i.ti/ D �i.ti/ for all ti 2 Sinfsig and O�i.si/ D 0.
This contradicts the assumption that � is a Nash equilibrium in G. Therefore,
�i.si/ D 0. With � 0 and G0 as above, we have

u0
i.�

0
1; : : : ; �

0
i�1; �

0
i ; �

0
iC1; : : : ; �

0
n/ D ui.�1; : : : ; �i�1; N� 0

i ; �iC1; : : : ; �n/ ;

for every � 0
i 2 �.Si n fsig/, where N� 0

i 2 �.Si/ assigns 0 to si and is equal
to � 0

i otherwise. From this it follows that � 0
i is still a best reply to � 0

�i. It is
straightforward that also for each j ¤ i, � 0

j is still a best reply to � 0
�j. Hence � 0

is a Nash equilibrium in G0.
(2) Let � 0 and � be as in (2) of the lemma. Obviously, for every player j ¤ i, �j is

still a best reply in � since �i.si/ D 0, i.e., player i puts zero probability on the
new pure strategy si. For player i, �i is certainly a best reply among all strategies
that put zero probability on si. But then, �i is a best reply among all strategies,
since strategies that put nonzero probability on si can never be best replies by
the first argument in the proof of (1). Hence, � is a Nash equilibrium in G. �

Obviously, a strictly dominated pure strategy is not only never played in a Nash
equilibrium, but, a fortiori, is never (part of) a best reply. Formally, we say that
a pure strategy si of player i in the finite game G D .N; S1; : : : ; Sn; u1; : : : ; un/ is
never a best reply if for all .�j/j¤i and all �i 2 ˇi..�j/j¤i/, we have �i.si/ D 0. The
following result shows that for two-player games also the converse holds.

Theorem 13.13 In a finite two-person game every pure strategy that is never a best

reply, is strictly dominated.
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Proof Let .A;B/ be an m � n bimatrix game and suppose without loss of gen-
erality that pure strategy e1 2 �m of player 1 is never a best reply. Let b D
.�1;�1; : : : ;�1/ 2 R

n.
Let QA be the .m �1/� n matrix with i-th row equal to the first row of A minus the

i C 1-th row of A, i.e., Qaij D a1j � aiC1;j for every i D 1; : : : ;m � 1 and j D 1; : : : ; n.
Thus,

QA D

0
BBB@

a11 � a21 � � � a1n � a2n

a11 � a31 � � � a1n � a3n

:::
: : :

:::

a11 � an1 � � � a1n � ann

1
CCCA :

The assumption that the pure strategy e1 of player 1 is never a best reply is equivalent
to the statement that the system

QAq D

0
B@

e1Aq � e2Aq
:::

e1Aq � enAq

1
CA � 0; q 2 �n

has no solution. This, in turn, is equivalent to the statement that the system

QAq � 0; q � 0; q � b < 0

has no solution. This means that the system in (2) of Lemma 22.7 (with QA instead of
A there) has no solution. Hence, this lemma implies that the system

x 2 R
m�1; x QA � b; x � 0

has a solution. By definition of b and QA we have for such a solution x D .x2; : : : ; xm/:

x � 0 and
mX

iD2

xi eiA �
mX

iD2

xi e1A C .1; : : : ; 1/ :

This implies that x ¤ 0 and therefore that e1 is strictly dominated by the strategy

 
0; x2=

mX

iD2

xi; : : : ; xm=

mX

iD2

xi

!
2 �m :

Hence, e1 is strictly dominated. �

For games with more than two players Theorem 13.13 does not hold, see Prob-
lem 13.13 for a counterexample.
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The concept of ‘never a best reply’ is closely related to the concept of ratio-
nalizability. Roughly, rationalizable strategies are strategies that survive a process
of iterated elimination of strategies that are never a best reply. Just like the strate-
gies surviving iterated elimination of strictly dominated strategies, rationalizable
strategies constitute a set-valued solution concept. The above theorem implies that
for two-player games the two solution concepts coincide. In general, the set of
rationalizable strategies is a subset of the set of strategies that survive iterated
elimination of strictly dominated strategies.

The implicit assumption justifying iterated elimination of strategies that are
dominated or never a best reply is quite demanding. Not only should a player believe
that some other player will not play a such a strategy, but he should also believe that
the other player believes that he (the first player) believes this and, in turn, will not
use such a strategy in the reduced game, and so on and so forth. See the notes at the
end of the chapter for references.

13.4 Perfect Equilibrium

Since a game may have many, quite different Nash equilibria, the literature has
focused since a long time on refinements of Nash equilibrium. We have seen
examples of this in extensive form games, such as subgame perfect equilibrium
and perfect Bayesian equilibrium (Chaps. 4 and 5). One of the earliest and best
known refinements of Nash equilibrium in strategic form games is the concept of
‘trembling hand perfection’. This refinement excludes Nash equilibria that are not
robust against ‘trembles’ in the players’ strategies.

Formally, let G D .N; S1; : : : ; Sn; u1; : : : ; un/ be a finite game and let � be an
error function, assigning a number �ih 2 .0; 1/ to every i 2 N and h 2 Si, such thatP

h2Si
�ih < 1 for every player i. The number �ih is the minimum probability with

which player i is going to play pure strategy h, perhaps by ‘mistake’ (‘trembling
hand’). Let, for each i 2 N, �.Si; �/ D f�i 2 �.Si/ j �i.h/ � �ih for all h 2 Sig,
and let G.�/ denote the game derived from G by assuming that each player i may
only choose strategies from �.Si; �/. The game G.�/ is called the �-perturbed
game. Denote the set of Nash equilibria of G by NE.G/ and of G.�/ by NE.G.�//.

Lemma 13.14 For every error function �, NE.G.�// ¤ ;.

Proof Analogous to the proof of Theorem 13.1. �

A perfect equilibrium is a strategy combination that is the limit of some sequence of
Nash equilibria of perturbed games. Formally:

Definition 13.15 A strategy combination � is a perfect equilibrium if there is a
sequence G.�t/, t 2 N, of perturbed games with �t ! 0 for t ! 1 and a sequence
of Nash equilibria � t 2 G.�t/ such that � t ! � for t ! 1. �
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As will follow from Theorem 13.17 below, a perfect equilibrium is a Nash
equilibrium. So the expressions perfect equilibrium and perfect Nash equilibrium

are equivalent.
Call a strategy combination � in G completely mixed if �i.h/ > 0 for all i 2 N

and h 2 Si.

Lemma 13.16 A completely mixed Nash equilibrium of G is a perfect equilibrium.

Proof Problem 13.14. �

Also if a game has no completely mixed Nash equilibrium, it still has a perfect
equilibrium.

Theorem 13.17 Every finite game G D .N; S1; : : : ; Sn; u1; : : : ; un/ has a perfect

equilibrium. Every perfect equilibrium is a Nash equilibrium.

Proof Take any sequence .G.�t//�t!0 of perturbed games and � t 2 NE.G.�t//

for each t 2 N. Since
Q

i2N �.Si/ is a compact set we may assume without loss of
generality that the sequence .� t/t2N converges to some � 2

Q
i2N �.Si/. Then � is

perfect. It is easy to verify that � 2 NE.G/. �

Example 13.18 Consider the bimatrix game

G D

0
@

L C R

U 1; 1 0; 0 2; 0

M 1; 2 1; 2 1; 1

D 0; 0 1; 1 1; 1

1
A :

(Cf. Problem 3.6.) The set of Nash equilibria in this game is the union of the
following sets (Problem 13.8):

(i) f..p; 0; 1� p/; .0; 1
2
; 1
2
// j 0 � p � 1

2
g,

(ii) f..0; 0; 1/; .0; q; 1� q// j 1
2

� q � 1g,
(iii) f..p; 1� p; 0/; .1; 0; 0// j 0 � p � 1g,
(iv) f..0; 1; 0/; .q; 1� q; 0// j 0 � q � 1g,
(v) f..0; p; 1� p/; .0; 1; 0// j 0 � p � 1g.

We consider these collections one by one. The Nash equilibria in the first collection
are not perfect, for the following reason. In any perturbed game, player 1 plays each
pure strategy with positive probability. As a consequence, for player 2, R always
gives a strictly lower expected payoff than C: if player 1 plays p D .p1; p2; p3/ > 0,
then the payoff from C is 2p2 C p3, and hence strictly larger than p2 C p3, which is
the payoff from R. Thus, any best reply of player 2 in a perturbed game puts minimal
probability on R, so that the strategy .0; 1

2
; 1
2
/ can never be the limit of strategies of
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player 2 in Nash equilibria of perturbed games. In fact, this argument preludes on
Theorem 13.21, which states that weakly dominated strategies (the third column in
this case) are never played with positive probability in a perfect equilibrium. For
a similar reason, the equilibria in the second collection are not perfect: D gives
player 1 a strictly lower payoff than M if player 2 plays each column with positive
probability, as is the case in a perturbed game. Hence, player 1’s strategy .0; 0; 1/
cannot occur as the limit of Nash equilibrium strategies in perturbed games.

Now consider the collection in (iii). We will show that all Nash equilibria in this
collection are perfect. For every " > 0 let G."/ be the perturbed game with �ij D "

for each player i D 1; 2 and each row/column j D 1; 2; 3. First, suppose p D 1 and
consider the strategy combination ..1 � 2"; "; "/; .1� 2"; "; "// in G."/.1 Given the
strategy of player 2, the three pure strategies (rows) of player 1 result in the payoffs
1, 1, and 2", respectively, so that player 1’s strategy .1 � 2"; "; "/ is a best reply:
the inferior row D is only played with the minimally required probability. Similarly,
given this strategy of player 1, the three pure strategies (columns) of player 2 yield
1, 3", and 2", so that player 2’s strategy .1 � 2"; "; "/ is a best reply: it puts only
the minimally required probability on the inferior columns C and R. Hence, ..1 �
2"; "; "/; .1� 2"; "; "// is a Nash equilibrium in G."/. In fact, with these arguments
we are preluding on Lemma 13.19, in particular part (2). Since ..1 � 2"; "; "/; .1�
2"; "; "// ! ..1; 0; 0/; .1; 0; 0// for " ! 0, we conclude that ..1; 0; 0/; .1; 0; 0// is a
perfect equilibrium.

For the other cases in (iii) the arguments are similar. For p D 0, take the strategy
combination .."; 1 � 2"; "/; .1 � 2"; "; "// in G."/. Given the strategy of player 2
the three rows yield 1, 1, and 2" as before, so that player 1’s strategy is a best reply.
Given the strategy of player 1 the three columns now yield 2� 3", 2� 3", and 1� ",
so that player 2 still has a best reply, putting only the minimally required probability
on the inferior R. Thus, .."; 1 � 2"; "/; .1� 2"; "; "// is a Nash equilibrium in G."/,
converging to ..0; 1; 0/; .1; 0; 0// as " goes to zero. Hence, ..0; 1; 0/; .1; 0; 0// is
a perfect equilibrium. Finally, for 0 < p < 1, consider the strategy combination
..p � "

2
; 1 � p � "

2
; "/; .1 � 2"; "; "// in G."/. Player 1 still plays a best reply, as

before. For player 2, the three columns yield 2�p � 3"
2

, 2�2p, and 1�p C "
2
. Since

player 2’s strategy puts only the minimally required probability on C and R, it is a
best reply. Thus, the strategy combination ..p � "

2
; 1 � p � "

2
; "/; .1 � 2"; "; "// is a

Nash equilibrium in G."/, implying that its limit ..p; 1 � p; 0/; .1; 0; 0// is perfect.
Also the Nash equilibria in (iv) are perfect: the arguments are analogous to those

for the collection in (iii) (Problem 13.8). In collection (v), finally, if 1 � p > 0,
then the Nash equilibrium cannot be perfect since D always gives a strictly lower
payoff than M in any perturbed game, and therefore should be played with minimal
probability, hence zero in the limit. The Nash equilibrium ..0; 1; 0/; .0; 1; 0// is also
an element of the collection in (iv), and thus perfect. �

1Whenever needed we assume that " is sufficiently small, which is without loss of generality since
we consider the limit for " ! 0. To comply with our definitions we may take values " D "t D 1=t,
t 2 N, but this is not essential.
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The following lemma formalizes some of the arguments already used in Exam-
ple 13.18. It relates the Nash equilibria of a perturbed game to pure best replies in
such a game. The first part says that, in a Nash equilibrium of a perturbed game, if a
player puts more than the minimally required probability on some pure strategy, then
that pure strategy must be a best reply. The second part says that, in some strategy
combination, if all players only put more than the minimally required probabilities
on pure best replies, then that combination must be a Nash equilibrium.

Lemma 13.19 Let G.�/ be a perturbed game and let � a strategy combination in

G.�/.

.1/ If � 2 NE.G.�//, i 2 N, h 2 Si, and �i.h/ > �ih, then h 2 ˇi.��i/.

.2/ If for all i 2 N and h 2 Si, �i.h/ > �ih implies h 2 ˇi.��i/, then � 2 NE.G.�//.

Proof

(1) Let � 2 NE.G.�//, i 2 N, h 2 Si, and �i.h/ > �ih. Suppose, contrary to what
we wish to prove, that h … ˇi.��i/. Take h0 2 Si with h0 2 ˇi.��i/. (Such an h0

exists by an argument similar to the proof of Lemma 13.3.) Consider the strategy
� 0

i defined by � 0
i .h/ D �ih, � 0

i .h
0/ D �i.h

0/C �i.h/��ih, and � 0
i .k/ D �i.k/ for

all k 2 Si n fh; h0g. Then � 0
i 2 �.Si; �/ and ui.�

0
i ; ��i/ > ui.�/, contradicting

the assumption � 2 NE.G.�//.
(2) Let i 2 N. The condition in (2) implies that, if h 2 Si and h … ˇi.��i/, then

�i.h/ D �ih. This implies that �i is a best reply to .�j/j¤i. Thus, � 2 NE.G.�//.
�

Below we present two characterizations of perfect Nash equilibrium that both avoid
sequences of perturbed games. The first one is based on the notion of "-perfect
equilibrium, defined as follows. Let " > 0. A strategy combination � 2

Q
i2N �.Si/

is an "-perfect equilibrium of G if it is completely mixed and �i.h/ � " for all i 2 N

and all h 2 Si with h … ˇi.��i/.
An "-perfect equilibrium of G need not be a Nash equilibrium of G, but it puts

probabilities of at most " on pure strategies that are not best replies.
The announced characterizations are collected in the following theorem. The

theorem says that a perfect equilibrium is a limit of "-perfect equilibria. Also, a
perfect equilibrium is a limit of completely mixed strategy combinations such that
the strategy of each player in the perfect equilibrium under consideration is a best
reply to the strategy combinations of the other players in those completely mixed
strategy combinations.

Theorem 13.20 Let G D .N; S1; : : : ; Sn; u1; : : : ; un/ and � 2
Q

i2N �.Si/. The

following statements are equivalent:

.1/ � is a perfect equilibrium of G;

.2/ � is a limit of a sequence of "-perfect equilibria �" of G for " ! 0;
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.3/ � is a limit of a sequence of completely mixed strategy combinations �" for

" ! 0, where �i 2 ˇi.�
"
�i/ for each i 2 N and each �" in this sequence.

Proof (1) ) (2): Take a sequence of perturbed games G.�t/, t 2 N with �t ! 0

and a sequence � t 2 NE.G.�t// with � t ! � . For each t define "t 2 R by "t D
maxf�t

ih j i 2 N; h 2 Sig. Then, by Lemma 13.19(1), � t is an "t-perfect equilibrium
for every t. So (2) follows.
(2) ) (3): Take a sequence of "-perfect equilibria �" as in (2) converging to � for
" ! 0. Let i 2 N. By the definition of "-perfect equilibrium, if �i.h/ > 0 for some
h 2 Si, then for " sufficiently small we have h 2 ˇ"i .��i/. This implies �i 2 ˇi.�

"
�i/,

and (3) follows.
(3) ) (1): Let �"

t

, t 2 N, be a sequence as in (3) with "t ! 0 and �"
t ! � as

t ! 1. For each t 2 N, i 2 N and h 2 Si define �t
ih D �"

t

i .h/ if �i.h/ D 0 and
�t

ih D "t otherwise. Then, for t sufficiently large, �t is an error function, G.�t/ is
a perturbed game, and �"

t

is a strategy combination in G.�t/. By Lemma 13.19(2),
�"

t 2 NE.G.�t//. So � is a perfect Nash equilibrium of G. �

There is a close relation between the concept of domination and the concept of
perfection. We first extend the concept of (weak) domination to mixed strategies.
In the game G D .N; S1; : : : ; Sn; u1; : : : ; un/, call a strategy �i 2 �.Si/ (weakly)
dominated by � 0

i 2 �.Si/ if ui.�i; ��i/ � ui.�
0
i ; ��i/ for all ��i 2

Q
j¤i�.Sj/, with

at least one inequality strict. (Observe that it is actually sufficient to check this for
combinations s�i 2

Q
j¤i Si.) Call �i undominated if there is no � 0

i by which it is
dominated, and call a strategy combination � undominated if �i is undominated for
every i 2 N. We now have:

Theorem 13.21 Every perfect Nash equilibrium in G is undominated.

Proof Let � be a perfect Nash equilibrium and suppose that (say) �1 is dominated.
Then there is a � 0

1 2 �.S1/ such that u1.�1; s�1/ � u1.�
0
1; s�1/ for all s�1 2

Qn
iD2 Si,

with at least one inequality strict. Take a sequence .� t/t2N of strategy combinations
as in (3) of Theorem 13.20, converging to � . Then, since every � t is completely
mixed, we have u1.�1; �

t
�1/ < u1.�

0
1; �

t
�1/ for every t. This contradicts the fact that

�1 is a best reply to � t
�1. �

The converse of Theorem 13.21 is only true for two-person games. For a counterex-
ample involving three players, see Problem 13.15.

For proving the converse of the theorem for bimatrix games, we use the following
auxiliary lemma. In this lemma, for a matrix game QA, C2. QA/ denotes the set of all
columns of QA that are in the carrier of some optimal strategy of player 2 in QA.

Lemma 13.22 Let G D .A;B/ be an m � n bimatrix game and let p 2 �m. Define

the m � n matrix QA D .Qaij/ by Qaij D aij � pAej for all i D 1; : : : ;m and j D 1; : : : ; n.

Then p is undominated in G if and only if v. QA/ D 0 and C2. QA/ D f1; : : : ; ng.
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Proof First note that p QA D 0 and therefore v. QA/ � 0.
For the if-direction, suppose that p is dominated in G, say by p0. Then p0A ‰ pA,

hence p0 QA ‰ 0. Therefore, if v. QA/ D 0, then p0 is an optimal strategy in QA; take a
column j with p0 QAej > 0, then we have j … C2. QA/ and, thus, C2. QA/ ¤ f1; : : : ; ng.
This proves the if-direction.

For the only-if direction suppose that p is undominated in G. Suppose we had
v. QA/ > 0. Then take an optimal strategy Qp of player 1 in QA, so that Qp QA > 0, hence
QpA > pA, a contradiction. Thus, v. QA/ D 0. Suppose there is a column j that is not
an element of C2. QA/. By Problem 12.7 there must be an optimal strategy p0 of player
1 in QA such that p0 QAej > 0, so that p0 QA ‰ 0, hence p0A ‰ pA. So p0 dominates p in
G, a contradiction. This proves the only-if direction. �

Theorem 13.23 Let G D .A;B/ be a bimatrix game, and let .p;q/ be an

undominated Nash equilibrium. Then .p;q/ is perfect.

Proof Let QA as in Lemma 13.22, then p is an optimal strategy for player 1 in QA since
p QA D 0 and v. QA/ D 0. By Lemma 13.22 we can find a completely mixed optimal
strategy q0 for player 2 in QA. So p is a best reply to q0 in QA, i.e., p QAq0 � Qp QAq0 for
all Qp, and thus QpAq0 � pAq0 � 0 for all Qp. So p is also a best reply to q0 in G.
For 1 > " > 0 define q" D .1 � "/q C "q0. Then q" is completely mixed, p is
a best reply to q", and q" ! q for " ! 0. In the same way we can construct a
sequence p" with analogous properties, converging to p. Then implication (3) )
(1) in Theorem 13.20 implies that .p;q/ is perfect. �

Example 13.24 Consider again the game G from Example 13.18. Row D is weakly
dominated by M, and R by C. There are no other weakly dominated strategies in
this game. Thus, as established earlier, but now using Theorems 13.21 and 13.23,
the set of perfect equilibria is the set f..p; 1 � p; 0/; .1; 0; 0// j 0 � p � 1g [
f..0; 1; 0/; .q; 1� q; 0// j 0 � q � 1g. �

The following example shows an advantage but at the same time a drawback of
perfect equilibrium: a perfect equilibrium may be payoff-dominated by another
Nash equilibrium.

Example 13.25 Consider the bimatrix game

� L R

U 1; 1 10; 0

D 0; 10 10; 10

�
;

which has two Nash equilibria, both pure, namely .U;L/ and .D;R/. Only .U;L/
is perfect, as can be seen by direct inspection or by applying Theorems 13.21
and 13.23. At the equilibrium .D;R/, each player has an incentive to deviate to
the other pure strategy since the opponent may deviate by mistake. This equilibrium
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is excluded by perfection. On the other hand, the unique perfect equilibrium .U;L/

is payoff-dominated by the equilibrium .D;R/. �

Another drawback of perfect equilibrium is the fact that adding strictly dominated
strategies may result in adding perfect Nash equilibria, as the following example
shows.

Example 13.26 In the game

0
@

L C R

U 1; 1 0; 0 �1;�2
M 0; 0 0; 0 0;�2
D �2;�1 �2; 0 �2;�2

1
A ;

there are two perfect Nash equilibria, namely .U;L/ and .M;C/. If we reduce the
game by deleting the strictly dominated pure strategies D and R, the only perfect
equilibrium that remains is .U;L/. �

This motivated the introduction of a further refinement called proper Nash equilib-

rium. See the next section.

13.5 Proper Equilibrium

A perfect equilibrium is required to be robust only against some ‘trembles’ and,
moreover, there are no further conditions on these trembles. We now propose the
additional restriction that trembles be less probable if they are more ‘costly’.

Given some " > 0, call a strategy combination � in the game G D
.N; S1; : : : ; Sn; u1; : : : ; un/ an "-proper equilibrium if � is completely mixed and
for all i 2 N and h; k 2 Si we have

ui.h; ��i/ < ui.k; ��i/ ) �i.h/ � "�i.k/ :

Observe that an "-proper equilibrium does not have to be a Nash equilibrium.

Definition 13.27 A strategy combination � in G is proper if, for some sequence
"t ! 0, t 2 N, there exist "t-proper equilibria �."t/ such that �."t/ ! � . �

Since, in a proper strategy combination � , a pure strategy h of a player i that is not
a best reply to ��i is played with probability 0, it follows that a proper strategy
combination is a Nash equilibrium. Moreover, since it is straightforward by the
definitions that an "-proper equilibrium is also an "-perfect equilibrium, it follows
from Theorem 13.20 that a proper equilibrium is perfect. Hence, properness is a
refinement of perfection.
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Remark 13.28 By replacing the word ‘proper’ by ‘perfect’ in Definition 13.27,
we obtain an alternative definition of perfect equilibrium. This follows from
Theorem 13.20. �

Example 13.26 shows that properness is a strict refinement of perfection: the Nash
equilibrium .M;C/ is perfect but not proper. To see this, for "t > 0 with "t ! 0 as
t ! 1, let .p."t/;q."t// be a converging sequence of "t-proper equilibria. Then for
each t we must have q3."

t/ � "tq1."
t/. In turn, this implies that U is the unique best

reply to q."t/, hence p2."
t/ � "tp1."

t/ for each t. But then p."t/ cannot converge to
.0; 1; 0/.

A proper Nash equilibrium always exists:

Theorem 13.29 Let G D .N; S1; : : : ; Sn; u1; : : : ; un/ be a finite game. Then G has a

proper Nash equilibrium.

Proof It is sufficient to show that for " > 0 close to 0 there exists an "-proper
equilibrium of G. Let 0 < " < 1 and define the error function � by �ik D "jSij=jSij
for all i 2 N and k 2 Si. For every i 2 N and � 2

Q
j2N �.Sj; �/ define

Fi.�/ D f�i 2 �.Si; �/ j 8k; l 2 Si Œui.k; ��i/ < ui.l; ��i/ ) �i.k/ � "�i.l/�g :

Then Fi.�/ ¤ ;, as can be seen as follows. Define

vi.�; k/ D jfl 2 Si j ui.k; ��i/ < ui.l; ��i/gj ;

and define �i.k/ D "vi.�;k/=
P

l2Si
"vi.�;l/, for all k 2 Si. Then �i 2 Fi.�/. Consider

the correspondence

F W
Y

j2N

�.Sj; �/ !
Y

j2N

�.Sj; �/; � 7!
Y

i2N

Fi.�/ :

Then F satisfies the conditions of the Kakutani Fixed Point Theorem (Theo-
rem 22.11)—see Problem 13.16. Hence, F has a fixed point, and each fixed point of
F is an "-proper equilibrium of G. �

In spite of the original motivation for introducing properness, this concept suffers
from the same deficit as perfect equilibrium: adding strictly dominated strategies
may enlarge the set of proper Nash equilibria. See Problem 13.17 for an example of
this.
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Example 13.30 We consider again the game G from Example 13.18:

G D

0
@

L C R

U 1; 1 0; 0 2; 0

M 1; 2 1; 2 1; 1

D 0; 0 1; 1 1; 1

1
A :

The perfect equilibria are:

(a) f..p; 1� p; 0/; .1; 0; 0// j 0 � p � 1g,

(b) f..0; 1; 0/; .q; 1� q; 0// j 0 � q � 1g.

First consider the equilibria in (a). Which ones are proper? In any "-proper
equilibrium .p";q"/, player 1 plays a completely mixed strategy. This implies that
C gives player 2 a higher payoff than R, so that q"3 � "q"2. For player 1, the payoff
of U is q"1 C 2q"3 and the payoff of M is q"1 C q"2 C q"3 > q"1 C 2q"3 for " small, so
that we obtain p"1 � "p"2. Hence, for p > 0 the equilibria in (a) are not proper. The
equilibrium ..0; 1; 0/; .1; 0; 0// is proper: it is the limit of the "-proper equilibria
.."; 1; "2/=�; .1; "; "2/=�/, where � D 1C "C "2.

Next consider the equilibria in (b). As before, in any "-proper equilibrium .p";q"/
we must have q"3 � "q"2. This implies that for player 1, the payoff from U is higher
than the payoff from D, so that we must have p"3 � "p"1. In turn, this implies that
for player 2 the payoff from L is higher than the payoff from C, so that q"2 � "q"1.
Thus, the only candidate in (b) for a proper equilibrium is ..0; 1; 0/; .1; 0; 0//, and
we have already established that this combination is proper indeed. Hence, it is the
unique proper equilibrium of G. �

13.6 Strictly Perfect Equilibrium

Another refinement of perfect equilibrium is obtained by requiring robustness of a
Nash equilibrium with respect to all ‘trembles’. This results in the concept of strictly
perfect equilibrium.

Definition 13.31 A strategy combination � in the game G D .N; S1; : : : ; Sn;

u1; : : : ; un/ is a strictly perfect equilibrium if, for every sequence fG.�t/g, t 2 N, of
perturbed games with �t ! 0 for t ! 1, there exist profiles � t 2 NE.G.�t// such
that � t ! � .

Clearly, a strictly perfect equilibrium is a perfect equilibrium. For some further
observations concerning strictly perfect equilibrium see Problem 13.18.

A clear drawback of strictly perfect equilibrium is the fact that it does not have
to exist, as the following (continued) example shows.
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Example 13.32 We consider again the game G from Example 13.18:

G D

0
@

L C R

U 1; 1 0; 0 2; 0

M 1; 2 1; 2 1; 1

D 0; 0 1; 1 1; 1

1
A ;

with perfect equilibria:

(a) f..p; 1� p; 0/; .1; 0; 0// j 0 � p � 1g,

(b) f..0; 1; 0/; .q; 1� q; 0// j 0 � q � 1g.

Consider the equilibria in (a) and suppose p > 0. Let G.�/ be the perturbed game as
in Sect. 13.4. We may assume that, since p > 0, L must yield player 2 a higher payoff
than C in a Nash equilibrium of G.�/. In turn this implies that player 2’s equilibrium
strategy in any Nash equilibrium of G.�/ is equal to .1 � �22 � �23; �22; �23/ (we
already saw that player 2 must always put minimal probability on R). Now choose
�23 < �22, then the payoff 1��22C�23 to player 1 from playing U is smaller than
the payoff 1 from M. This implies that player 1 plays M in the limit. Thus, a perfect
equilibrium of the form ..p; 1 � p; 0/; .1; 0; 0// with p > 0 is not strictly perfect.

Next, consider the equilibrium ..0; 1; 0/; .1; 0; 0//, which is both in (a) and in (b).
Assume again that �23 < �22. If player 2 plays .q1; q2; q3/ in G.�/, then q3 D �23
and the payoff to player 1 from U is q1 C 2�23, whereas the payoff from M is
q1 C q2 C �23. Since q2 � �22 > �23, this implies that M yields player 1 a higher
payoff than U. In turn, this implies that player 1’s strategy in any Nash equilibrium
of G.�/ is equal to .�11; 1 � �11 � �13; �13/ (recall that player 1 puts minimal
probability on D). Now suppose that �11 < �13, then the payoff to player 2 from
C is higher than the payoff from L, so that player 2 must play C in the limit. Thus,
also the perfect equilibrium ..0; 1; 0/; .1; 0; 0// with p > 0 is not strictly perfect.

For the equilibria in (b) with q < 1, the argument is almost identical to the one
in the preceding paragraph. In the end, choose �11 > �13, then the payoff to player
2 from L is higher than the payoff from C, so that player 2 must play L in the limit.
Hence, no equilibrium of the form f..0; 1; 0/; .q; 1 � q; 0// with q < 1 is strictly
perfect. We conclude that this game has no strictly perfect equilibria. �

13.7 Correlated Equilibrium

In the preceding sections we studied several refinements of Nash equilibrium. In
this section the set of Nash equilibria is extended in a way to become clear below.
It is, however, not the intention to enlarge the set of Nash equilibria but rather to
enable the players to reach better payoffs by allowing some communication device.
This will result in the concept of correlated equilibrium. Attention in this section is
restricted to bimatrix games.
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In order to fix ideas, consider the situation where two car drivers approach a
road crossing. Each driver has two pure strategies: ‘stop’ (s) or ‘cross’ (c). The
preferences for the resulting combinations are as expressed by the following table:

.A;B/ D
� c s

c �10;�10 5; 0

s 0; 5 �1;�1

�
:

This bimatrix game has two asymmetric and seemingly unfair pure Nash equilibria,
and one symmetric mixed Nash equilibrium ..3=8; 5=8/; .3=8; 5=8//, resulting in an
expected payoff of �5=8 for both, and therefore also not quite satisfying.

Now suppose that traffic lights are installed that indicate c (‘green’) or s (‘red’)
according to the probabilities in the following table:

� c s

c 0:00 0:55

s 0:40 0:05

�
:

For example, with probability 0.55 (55 % of the time) the light is green for driver
1 and red for driver 2. Assume that the players (drivers) are not forced to obey the
traffic lights but know the probabilities as given in the table. We argue that it is in
each player’s own interest to obey the lights if the other player does so.

If the light is green for player 1 then player 1 knows with certainty that the light
is red for player 2. So if player 2 obeys the lights and stops, it is indeed optimal
for player 1 to cross. If the light is red for player 1, then the conditional probability
that player 2 crosses (if he obeys the lights) is equal to 0:4=0:45 � 0:89 and the
conditional probability that player 2 stops is 0:05=0:45 � 0:11. So if player 1 stops,
his expected payoff is 0:89 � 0C 0:11 � �1 D �0:11, and if he crosses his expected
payoff is 0:89 � �10C 0:11 � 5 D �8:35. Clearly, it is optimal for player 1 to obey
the light and stop.

For player 2 the argument is similar. If the light is green for player 2 then he
knows with certainty that player 1 has red light. Thus, if player 1 obeys the red light
and stops, it is optimal for player 2 to cross. If player 2 has red light then he knows
that the conditional probabilities are 0:55=0:60 � 0:92 and 0:05=0:60 � 0:08 that
player 1 has green light and red light, respectively. For player 2, assuming that player
1 obeys the traffic lights, stopping yields an expected payoff of 0:08��1 and crossing
an expected payoff of 0:92 � �10C 0:08 � 5: clearly, stopping is optimal.

Thus, we can indeed talk of an equilibrium: such an equilibrium is called a
correlated equilibrium. Note that there is no mixed strategy combination in the
game .A;B/ that induces these probabilities. If p D .p1; p2/ and q D .q1; q2/

are mixed strategies of players 1 and 2, respectively, then we would need p1 ¤ 0

since p1q2 D 0:55 and we would need q1 ¤ 0 since p2q1 D 0:40, but then
p1q1 ¤ 0, hence the combination .c; c/ would have positive probability. In terms of
the situation in the example, this particular equilibrium cannot be reached without
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traffic lights serving as a communication device between the players. The overall
expected payoffs of the players are 0:55 � 5 C 0:05 � �1 D 2:7 for player 1 and
0:40 � 5C 0:05 � �1 D 1:95 for player 2, which is considerably better for both than
the payoffs in the mixed Nash equilibrium.

In general, let .A;B/ be an m � n bimatrix game. A correlated strategy is an
m � n matrix P D .pij/ with

Pm
iD1

Pn
jD1 pij D 1 and pij � 0 for all i D 1; : : : ;m,

j D 1; : : : ; n. A correlated strategy P can be thought of as a communication device:
the pair .i; j/ is chosen with probability pij, and if that happens, player 1 receives
the signal i and player 2 the signal j. Suppose player 2 obeys the signal. If player 1
receives signal i and indeed plays i, his expected payoff is

nX

jD1

pijaij

,
nX

jD1

pij ;

and if he plays row k instead, his expected payoff is

nX

jD1

pijakj

,
nX

jD1

pij :

So to keep player 1 from disobeying the received signal, we should have

nX

jD1

.aij � akj/pij � 0 for all i; k D 1; : : : ;m : (13.5)

The analogous condition for player 2 is:

mX

iD1

.bij � bil/pij � 0 for all j; l D 1; : : : ; n : (13.6)

Definition 13.33 A correlated equilibrium in the bimatrix game .A;B/ is a corre-
lated strategy P D .pij/ satisfying (13.5) and (13.6). �

For the two-driver example conditions (13.5) and (13.6) result in four inequalities,
which are not difficult to solve (Problem 13.19). In general, any Nash equilibrium
of a bimatrix game results in a correlated equilibrium (Problem 13.20), so existence
of a correlated equilibrium is not an issue.

The set of correlated equilibria is convex (Problem 13.21), so the convex hull of
all payoff pairs corresponding to the Nash equilibria of a bimatrix game consists of
payoff pairs attainable in correlated equilibria. Problem 13.22 presents an example
of a game in which some payoff pairs can be reached in correlated equilibria but not
as convex combinations of payoff pairs of Nash equilibria.
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In general, correlated equilibria can be computed using linear programming.
Specifically, let .A;B/ be an m � n bimatrix game. We associate with .A;B/ an
mn � .m.m � 1/C n.n � 1// matrix C as follows. For each pair .i; j/ of a row and a
column in .A;B/ we have a row in C, and for each pair .h; k/ of two different rows
in .A;B/ or two different columns in .A;B/ we have a column in C. We define

c.i;j/.h;k/ D

8
<
:

aij � akj if i D h 2 f1; : : : ;mg and k 2 f1; : : : ;mg
bij � bik if j D h 2 f1; : : : ; ng and k 2 f1; : : : ; ng
0 otherwise.

Let P D .pij/ be a correlated strategy in .A;B/. Then P can be seen as a vector
p 2 R

mn. Let c.h;k/ be a column in C. If h and k are rows of .A;B/ we have

p � c.h;k/ D
nX

jD1

phj.ahj � akj/

and if h and k are columns of .A;B/ we have

p � c.h;k/ D
mX

iD1

pih.bih � bik/ :

Hence, by (13.5) and (13.6), P is a correlated equilibrium of .A;B/ if and only if
pC � 0. If we consider C as a matrix game and p as a strategy of player 1 in
C—not to be confused with player 1 in .A;B/—then the existence of a correlated
equilibrium implies that v.C/, the value of the matrix game C, is nonnegative. In
particular, this implies that any optimal strategy of player 1 in C is a correlated
equilibrium in .A;B/. If v.C/ D 0 then any correlated equilibrium in .A;B/ is an
optimal strategy of player 1 in C, but if v.C/ > 0 then there may be correlated
equilibria in .A;B/ that are not optimal strategies for player 1 in C—they may only
guarantee zero. The latter is the case in the two-drivers example (Problem 13.23).

Matrix games can be solved by linear programming, see Sect. 12.2. We conclude
with an example in which the described technique is applied.

Example 13.34 Consider the bimatrix game

.A;B/ D
� 10 20 30

1 3; 1 2; 5 6; 0

2 1; 4 3; 3 2; 6

�
:
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The associated matrix game C is as follows.

0
BBBBBB@

.1; 2/ .2; 1/ .10; 20/ .10; 30/ .20; 10/ .20; 30/ .30; 10/ .30; 20/

.1; 10/ 2 0 �4 1 0 0 0 0

.1; 20/ �1 0 0 0 4 5 0 0

.1; 30/ 4 0 0 0 0 0 �1 �5

.2; 10/ 0 �2 1 �2 0 0 0 0

.2; 20/ 0 1 0 0 �1 �3 0 0

.2; 30/ 0 �4 0 0 0 0 2 3

1
CCCCCCA
:

It can be checked that this game has value 0, by using the optimal strategies

P D
� 1

0 20 30

1 0 0:3 0:075

2 0 0:5 0:125

�

for player 1 in C and .0; 0; 1=2; 1=2; 0; 0; 0; 0/ for player 2 in C. The optimal
strategy for player 1 in C is unique, and since v.C/ D 0 this implies that the game
.A;B/ has a unique correlated equilibrium. Consequently, this must correspond to
the unique Nash equilibrium of the game. Indeed, ..3=8; 5=8/; .0; 4=5; 1=5// is the
unique Nash equilibrium of .A;B/ and it results in the probabilities given by P. �

13.8 A Characterization of Nash Equilibrium

The concept of Nash equilibrium requires strong behavioral assumptions about the
players. Each player should be able to guess what other players will do, assume that
other players know this and make similar conjectures, and so on, and all this should
be in equilibrium. The basic difficulty is that Nash equilibrium is a circular concept:
a player plays a best reply against the conjectured strategies of the opponents but,
in turn, this best reply should be conjectured by the opponents and they should play
best replies as well. Not surprisingly, theories of repeated play or learning or, more
generally, dynamic models that aim to explain how players in a game come to play
a Nash equilibrium, have in common that they change the strategic decision into a
collection of single-player decision problems.

In this section we review a different approach, which is axiomatic in nature. The
Nash equilibrium concept is viewed as a solution concept: a correspondence which
assigns to any finite game a set of strategy combinations. One of the conditions
(axioms) put on this correspondence is a condition of consistency with respect to
changes in the number of players: if a player leaves the game, leaving his strategy
as an input behind, then the other players should not want to change their strategies.
This is certainly true for Nash equilibrium, and it can be imposed as a condition on a
solution correspondence. By assuming that players in single-player games—hence,
in ‘simple’ maximization problems—behave rationally, and by adding a converse
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consistency condition, it follows that the solution correspondence must be the Nash
equilibrium correspondence. We proceed with a formal treatment of this axiomatic
characterization.

Let � be a collection of finite games of the form G D .N; S1; : : : ; Sn; u1; : : : ; un/.
(It is implicit that also the set of players N may vary in � .) A solution on � is a
function ' that assigns to each G 2 � a set of strategy combinations '.G/ �Q

i2N �.Si/. A particular solution is the Nash correspondence NE, assigning to each
G 2 � the set NE.G/ of all Nash equilibria of G.

Definition 13.35 The solution ' satisfies one-person rationality (OPR) if

'.G/ D f�i 2 �.Si/ j ui.�i/ � ui.�i/ for all �i 2 �.Si/g

for every one-person game G D .fig; Si; ui/ in � . �

The interpretation of OPR is clear and needs no further comment.
Let G D .N; S1; : : : ; Sn; u1; : : : ; un/ be a game, ; ¤ M � N, and let � be

a strategy combination in G. The reduced game of G with respect to M and �
is the game GM;� D .M; .Si/i2M; .u

�
i /i2M/, where u�i .�/ D ui.�; �NnM/ for all

� 2
Q

j2M �.Sj/.2 The interpretation of such a reduced game is straightforward:
if the players of N n M leave the game, leaving their strategy combination �NnM

behind, then the remaining players are faced with the game GM;� . Alternatively, if
it is common knowledge among the players in M that the players outside M play
according to � , then they are faced with the game GM;� . Call a collection of games
� closed if it is closed under taking reduced games.

Definition 13.36 Let � be a closed collection of games and let ' be a solution on
� . Then ' is consistent (CONS) if for every game G D .N; S1; : : : ; Sn; u1; : : : ; un/,
every ; ¤ M � N, and every strategy combination � 2 '.G/, we have �M 2
'.GM;� /. �

The interpretation of consistency is as follows. If the players outside M have left the
game while leaving the strategy combination �NnM behind, then there should be no
need for the remaining players to revise their strategies.

The consequence of imposing OPR and CONS on a solution correspondence is
that it can contain only Nash equilibria:

Proposition 13.37 Let � be a closed collection of games and let ' be a solution

on � satisfying OPR and CONS. Then '.G/ � NE.G/ for every G 2 � .

Proof Let G D .N; S1; : : : ; Sn; u1; : : : ; un/ 2 � and � 2 '.G/. By CONS, �i 2
'.Gfig;� / for every i 2 N. By OPR, u�i .�i/ � u�i .�i/ for every �i 2 �.Si/ and i 2 N.

2For a subset T � N, we denote .�j/j2T by �T .
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Hence

ui.�i; �Nnfig/ � ui.�i; �Nnfig/ for every �i 2 �.Si/ and i 2 N.

Thus, � 2 NE.G/. �

Proposition 13.37 says that NE is the maximal solution (with respect to set-
inclusion) satisfying OPR and CONS. (It it trivial to see that NE satisfies these
conditions.) To derive a similar minimal set-inclusion result we use another
condition.

Let � be a closed collection of games and let ' be a solution on � . For a game
G D .N; S1; : : : ; Sn; u1; : : : ; un/ 2 � with jNj � 2 denote

Q'.G/ D f� 2
Y

i2N

�.Si/ j for all ; ¤ M   N, �M 2 '.GM;� /g :

Definition 13.38 A solution ' on a closed collection of games satisfies converse
consistency (COCONS) if for every game G with at least two players, Q'.G/ �
'.G/. �

Converse consistency says that strategy combinations of which the restrictions
belong to the solution in smaller reduced games, should also belong to the solution
of the game itself. Note that consistency can be defined by the converse inclusion
'.G/ � Q'.G/ for every G 2 � , which explains the expression ‘converse
consistency’. Obviously, the Nash equilibrium correspondence satisfies COCONS.

Proposition 13.39 Let � be a closed collection of games and let ' be a solution

on � satisfying OPR and COCONS. Then '.G/ � NE.G/ for every G 2 � .

Proof The proof is by induction on the number of players. For one-person games
the inclusion follows (with equality) from OPR. Assume that NE.G/ � '.G/ for
all t-person games in � , where t � k and k � 1. Let G0 be a k C 1-person game
in � . Note that NE.G0/ � fNE.G0/ by CONS of NE. By the induction hypothesis,
fNE.G0/ � Q'.G0/ and by COCONS, Q'.G0/ � '.G0/. Thus, NE.G0/ � '.G0/. �

Corollary 13.40 Let � be a closed collection of games. The Nash equilibrium

correspondence is the unique solution on � satisfying OPR, CONS, and COCONS.

It can be shown that the axioms in Corollary 13.40 are independent (Problem 13.26).
In general, the consistency approach fails when applied to refinements of Nash

equilibrium. For instance, Problem 13.27 shows that the correspondence of perfect
equilibria is not consistent.
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13.9 Problems

13.1. Existence of Nash Equilibrium Using Brouwer

Let G D .N; S1; : : : ; Sn; u1; : : : ; un/ be a finite game, as defined in Sect. 13.1. Define
the function f W

Q
i2N

�.Si/ !
Q
i2N

�.Si/ by

fi;si
.�/ D �i.si/C maxf0; ui.si; ��i/ � ui.�/g

1C
P

s0
i 2Si

maxf0; ui.s
0
i; ��i/ � ui.�/g

for all i 2 N and si 2 Si, where ��i D .�1; : : : ; �i�1; �iC1; : : : ; �n/.

(a) Show that f is well-defined, i.e., that f .�/ 2
Q
i2N

�.Si/ for every � 2
Q
i2N

�.Si/.

(b) Argue that f has a fixed point, i.e., there is �� 2
Q
i2N

�.Si/ with f .��/ D ��, by

using the Brouwer Fixed Point Theorem (Theorem 22.10).
(c) Show that �� 2

Q
i2N

�.Si/ is a fixed point of f if and only if it is a Nash

equilibrium of G.

13.2. Existence of Nash Equilibrium Using Kakutani

Prove that the correspondence ˇ in the proof of Theorem 13.1 is upper semi-
continuous and convex-valued. Also check that every fixed point of ˇ is a Nash
equilibrium of G.

13.3. Lemma 13.2

Prove Lemma 13.2.

13.4. Lemma 13.3

Prove Lemma 13.3.

13.5. Dominated Strategies

Let .A;B/ be an m � n bimatrix game. Suppose there exists a q 2 �n such that
qn D 0 and Bq > Ben (i.e., there exists a mixture of the first n � 1 columns of B that
is strictly better than playing the n-th column).

(a) Prove that q�
n D 0 for every Nash equilibrium .p�;q�/.

Let .A0;B0/ be the bimatrix game obtained from .A;B/ be deleting the last
column.

(b) Prove that .p�;q0/ is a Nash equilibrium of .A0;B0/ if and only if .p�;q�/ is a
Nash equilibrium of .A;B/, where q0 is the strategy obtained from q� by deleting
the last coordinate.
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13.6. A 3 � 3 Bimatrix Game

Consider the 3 � 3 bimatrix game

.A;B/ D

0
@
0; 4 4; 0 5; 3

4; 0 0; 4 5; 3

3; 5 3; 5 6; 6

1
A :

Let .p;q/ be a Nash equilibrium in .A;B/.

(a) Prove that f1; 2g ª C.p/.
(b) Prove that C.p/ ¤ f2; 3g.
(c) Find all Nash equilibria of this game.

13.7. A 3 � 2 Bimatrix Game

Use the graphical method to compute the Nash equilibria of the bimatrix game

.A;B/ D

0
@
0; 0 2; 1

2; 2 0; 2

2; 2 0; 2

1
A :

13.8. The Nash Equilibria in Example 13.18

(a) Compute the Nash equilibria of the game in Example 13.18.
(b) Show that the Nash equilibria in the set f..0; 1; 0/; .q; 1 � q; 0// j 0 � q � 1g

are perfect by using the definition of perfection.

13.9. Proof of Theorem 13.8

Prove Theorem 13.8.

13.10. Matrix Games

Show that the pair of linear programs (13.3) and (13.4) is equivalent to the LP and
its dual in Sect. 12.2 for solving matrix games.

13.11. Tic-Tac-Toe

The two-player game of Tic-Tac-Toe is played on a 3 � 3 board. Player 1 starts by
putting a cross on one of the nine fields. Next, player 2 puts a circle on one of the
eight remaining fields. Then player 1 puts a cross on one of the remaining seven
fields, etc. If player 1 achieves three crosses or player 2 achieves three circles in
a row (either vertically or horizontally or diagonally) then that player wins. If this
does not happen and the board is full, then the game ends in a draw.
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(a) Design a pure maximin strategy for player 1. Show that this maximin strategy
guarantees at least a draw to him.

(b) Show that player 1 cannot guarantee a win.
(c) What is the value of this game?

13.12. Iterated Elimination in a Three-Player Game

Solve the following three-player game, where player 1 chooses rows, player 2
columns, and player 3 one of the two games L and R:

L W
� l r

U 14; 24; 32 8; 30; 27

D 30; 16; 24 13; 12; 50

�
R W

� l r

U 16; 24; 30 30; 16; 24

D 30; 23; 14 14; 24; 32

�
:

13.13. Never a Best Reply and Domination

In the following game player 1 chooses rows, player 2 chooses columns, and player
3 chooses matrices. The diagram gives the payoffs of player 3. Show that Y is never
a best reply for player 3, and that Y is not strictly (and not even weakly) dominated.

V W

0
@

L R

U 9 0

D 0 0

1
A W W

0
@

L R

U 0 9

D 9 0

1
A

X W

0
@

L R

U 0 0

D 0 9

1
A Y W

0
@

L R

U 6 0

D 0 6

1
A

13.14. Completely Mixed Nash Equilibria Are Perfect

Prove Lemma 13.16.

13.15. A 3-Player Game with an Undominated But Not Perfect Equilibrium

Consider the following 3-player game, where player 1 chooses rows, player 2
columns, and player 3 matrices:

L W
� l r

U 1; 1; 1 1; 0; 1

D 1; 1; 1 0; 0; 1

�
R W

� l r

U 1; 1; 0 0; 0; 0

D 0; 1; 0 1; 0; 0

�
:

(a) Show that .U; l;L/ is the only perfect Nash equilibrium of this game.
(b) Show that .D; l;L/ is an undominated Nash equilibrium.

13.16. Existence of Proper Equilibrium

Prove that the correspondence F in the proof of Theorem 13.29 satisfies the
conditions of the Kakutani Fixed Point Theorem.
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13.17. Strictly Dominated Strategies and Proper Equilibrium

Consider the 3-person game

L W
� l r

U 1; 1; 1 0; 0; 1

D 0; 0; 1 0; 0; 1

�
R W

� l r

U 0; 0; 0 0; 0; 0

D 0; 0; 0 1; 1; 0

�
;

where player 1 chooses rows, player 2 chooses columns, and player 3 chooses
matrices.

(a) First assume that player 3 is a dummy and has only one strategy, namely L.
Compute the perfect and proper Nash equilibrium or equilibria of the game.

(b) Now suppose that player 3 has two pure strategies. Compute the perfect and
proper Nash equilibrium or equilibria of the game. Conclude that adding a
strictly dominated strategy (namely, R) has resulted in an additional proper
equilibrium.

13.18. Strictly Perfect Equilibrium

(a) Show that a completely mixed Nash equilibrium in a finite game G is strictly
perfect.

(b) Show that a strict Nash equilibrium in a game G is strictly perfect. (A Nash
equilibrium is strict if any unilateral deviation of a player leads to a strictly
lower payoff for that player.)

(c) Compute all Nash equilibria, perfect equilibria, proper equilibria, and strictly
perfect equilibria in the following game, where ˛; ˇ > 0. (Conclude that strictly
perfect equilibria may fail to exist.)

.A;B/ D
� L M R

U 0; ˇ ˛; 0 0; 0

D 0; ˇ 0; 0 ˛; 0

�
:

13.19. Correlated Equilibria in the Two-Driver Example (1)

Compute all correlated equilibria in the game

.A;B/ D
� c s

c �10;�10 5; 0

s 0; 5 �1;�1

�
;

by using the definition of correlated equilibrium.

13.20. Nash Equilibria Are Correlated

Let .p;q/ be a Nash equilibrium in the m �n bimatrix game .A;B/. Let P D .pij/ be
the m � n matrix defined by pij D piqj for all i D 1; : : : ;m and j D 1; : : : ; n. Show
that P is a correlated equilibrium.
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13.21. The Set of Correlated Equilibria Is Convex

Show that the set of correlated equilibria in a bimatrix game .A;B/ is convex.

13.22. Correlated vs. Nash Equilibrium

Consider the bimatrix game

.A;B/ D
 
6; 6 2; 7

7; 2 0; 0

!

and the correlated strategy

P D
 
1
3

1
3

1
3
0

!
:

(a) Compute all Nash equilibria of .A;B/.
(b) Show that P is a correlated equilibrium and that the associated payoffs fall

outside the convex hull of the payoff pairs associated with the Nash equilibria
of .A;B/.

13.23. Correlated Equilibria in the Two-Driver Example (2)

Consider again the game of Problem 13.19 and set up the associated matrix C as in
Sect. 13.7. Show that the value of the matrix game C is equal to 3, and that player 1 in
C has a unique optimal strategy. (Hence, this method gives one particular correlated
equilibrium.)

13.24. Finding Correlated Equilibria

Compute (the) correlated equilibria in the following game directly, and by using the
associated matrix game.

.A;B/ D
� 10 20

1 5; 2 1; 3

2 2; 3 4; 1

�
:

13.25. Nash, Perfect, Proper, Strictly Perfect, and Correlated Equilibria

Consider the bimatrix game .A;B/ D

0
@
0; 6 0; 4 6; 0

4; 0 0; 0 4; 0

6; 0 0; 4 0; 6

1
A :

Let .p;q/ 2 �3 ��3 be a Nash equilibrium in .A;B/.

(a) Show that, if p3 D 0, then p D .0; 1; 0/.
(b) Show that, if p1 > 0 and p3 > 0, then q D .0; 1; 0/.
(c) Show that in each Nash equilibrium at least one player has payoff 0.
(d) Compute all Nash equilibria of .A;B/.
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(e) Which Nash equilibria are perfect?
(f) Which Nash equilibria are proper? Strictly perfect?

Consider the correlated strategy P D

0
@
0 ˛ 0

ˇ 0 

0 ı 0

1
A ;

with ˛; ˇ; ; ı � 0 and ˛ C ˇ C  C ı D 1.

(g) Under which conditions is P a correlated equilibrium?
(h) Find a correlated equilibrium with payoff 3 for player 1 and 1 for player 2.

13.26. Independence of the Axioms in Corollary 13.40

Show that the three conditions in Corollary 13.40 are independent: for each pair of
conditions, exhibit a solution that satisfies these two conditions but not the third one.

13.27. Inconsistency of Perfect Equilibria

Consider the 3-person game G0

D W
� L R

T 1; 1; 1 1; 0; 1

B 1; 1; 1 0; 0; 1

�
U W

� L R

T 0; 1; 0 0; 0; 0

B 1; 1; 0 0; 0; 0

�

where player 1 chooses rows, player 2 columns, and player 3 matrices. Let � consist
of this game and all its reduced games. Use this collection to show that the perfect
Nash equilibrium correspondence is not consistent.

13.10 Notes

The result that every finite game has a Nash equilibrium in mixed strategies is
due to Nash (1951). For the quadratic programming problem in Sect. 13.2.3, see
Mangasarian and Stone (1964). Lemke and Howson (1964) provide an algorithm to
find at least one Nash equilibrium of a bimatrix game. See von Stengel (2002) for
an overview.

For the first proof of Theorem 13.10 see Zermelo (1913). Theorem 13.13 is due
to Pearce (1984). For the concept of rationalizability, see Bernheim (1984) and
Pearce (1984). For a study of the assumptions underlying the procedure of iterated
elimination of strictly dominated strategies see Tan and Werlang (1988) or Perea
(2001). Perea (2012) presents a recent overview on epistemic game theory.

The concept of perfect equilibrium (trembling hand perfection) is due to Selten
(1975). The notions of "-perfect and ("-)proper equilibrium were introduced in
Myerson (1978). Theorem 13.20 is based on Selten (1975) and Myerson (1978)
and appears as Theorem 2.2.5 in van Damme (1991). The notion of strictly perfect
equilibrium was introduced in Okada (1981).
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Correlated equilibria were introduced in Aumann (1974). Our treatment of the
topic closely follows the presentation in Owen (1995); Example 13.34 corresponds
to Example VIII.4.4 in that book.

For theories of strategic learning, see Young (2004). Section 13.8 is based on
Peleg and Tijs (1996); the presentation there is for more general games. See Norde
et al. (1996) for a study of the notion of consistency for refinements of Nash
equilibrium.

Problem 13.12 is from Watson (2002). Problem 13.13 is from Fudenberg
and Tirole (1991). Problems 13.15 and 13.17 are based on van Damme (1991).
Problem 13.22 is based on Aumann (1974).
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14Extensive Form Games

A game in extensive form specifies when each player in the game has to move, what
his information is about the sequence of previous moves, which chance moves occur,
and what the final payoffs are. Such games are discussed in Chaps. 4 and 5, and also
occur in Chaps. 6 and 7. The present chapter extends the material introduced in
Chaps. 4 and 5, and it may be useful to (re)read these chapters before continuing.

Section 14.1 formally introduces extensive form structures and games, and
Sect. 14.2 introduces behavioral strategies and studies the relation between behav-
ioral and mixed strategies. Section 14.3 is on Nash equilibrium and its main
refinements, namely subgame perfect equilibrium and sequential equilibrium. The
latter concept generalizes perfect Bayesian equilibrium.

14.1 Extensive Form Structures and Games

An extensive form game is based on a directed rooted tree. A directed rooted tree is
a pair T D .X;E/, where:

• X is a finite set with jXj � 2. The elements of X are called nodes.
• E is a subset of X�X. The elements of E are called edges. An edge e D .x; y/ 2 E

is called an outgoing edge of x and an ingoing edge of y.
• There is an x0 2 X, called the root, such that for each x 2 X n fx0g there

is a unique path from x0 to x. Here, a path from x0 to x is a series of edges
.x0; x1/; .x1; x2/; : : : ; .xk�1; xk/; .xk; x/ for some k � 0.

• x0 has no ingoing edges.

These conditions imply that each node which is not the root, has exactly one ingoing
edge. Moreover, there are nodes which have no outgoing edges. These nodes are
called end nodes. The set of end nodes is denoted by Z .� X/.

© Springer-Verlag Berlin Heidelberg 2015
H. Peters, Game Theory, Springer Texts in Business and Economics,
DOI 10.1007/978-3-662-46950-7_14
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An extensive form structure is a tuple S D .T;N;P;H;A; �/, where:

• T D .X;E/ is a directed rooted tree with root x0 and set of end nodes Z.
• N D f1; : : : ; ng with n � 1 is the set of players.
• P W X n Z ! N [ fCg is a function assigning to each non-end node either a player

or Chance C. If P.x/ is a player, then node x is a decision node of player P.x/,
otherwise x is a chance node.

• H D .Hi/i2N where for each i 2 N, Hi is a partition of the set P�1.i/ of decision
nodes of player i. The sets h 2 Hi are called information sets of player i. Each
h 2 Hi is assumed to satisfy (i) every path in T intersects h at most once and (ii)
every node in h has the same number of outgoing edges.

• A D .A.h//h2H, where H D [i2NHi, and for each h 2 H, A.h/ is a partition
of the set of edges outgoing from nodes x 2 h. The partition A.h/ is such that
for each x 2 h and each a 2 A.h/, a contains exactly one edge outgoing from x.
Every set a 2 A.h/ is called an action at h. It is assumed that jA.h/j � 2 for each
h 2 H.

• � assigns to each chance node a probability distribution over the set of outgoing
edges, where it is assumed that all these probabilities are positive.

In Fig. 14.1—which is a partial reproduction of Fig. 4.1—these concepts are
illustrated.

In this extensive form structure, the directed rooted tree has 14 nodes
x0; x1; : : : ; x13 and, consequently, 13 edges. The set of end nodes is Z D
fx6; : : : ; x13g and the player set is N D f1; 2g. The function P W fx0; : : : ; x5g !
f1; 2g [ fCg is defined by P.x/ D 1 for x 2 fx0; x5g, P.x/ D 2 for x 2 fx2; x3; x4g,
and P.x1/ D C. The information sets are fx0g; fx5g 2 H1 and fx2; x3g; fx4g 2 H2.
The actions for player 1 are: f.x0; x2/g, f.x0; x3/g, f.x0; x1/g 2 A.fx0g/ and
f.x5; x12/g, f.x5; x13/g 2 A.fx5g/. The actions for player 2 are: f.x2; x6/; .x3; x8/g,
f.x2; x7/; .x3; x9/g 2 A.fx2; x3g/ and f.x4; x10/g, f.x4; x11/g 2 A.fx4g/. Finally,
�.x1/ D .1=4; 3=4/, where 1=4 is the probability of .x1; x4/ and 3=4 is the
probability of .x1; x5/.

x 2 x 3 x 4 x 5

1 x 0

A B C
Chancex 1

1/ / 4

2
12

l r l r

4 3

U D

L R a b

x 6 x 7 x 8 x 9 x 10 x 11 x 12 x 13

Fig. 14.1 An extensive form structure
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1

2

2

baba

x y

Fig. 14.2 Part of an extensive form structure without perfect recall

Clearly, this formal notation is quite cumbersome and we try to avoid it as much
as possible. It is only needed to give precise definitions and proofs.

It is usually assumed that an extensive form structure S satisfies perfect recall:
this means that each player always remembers what he did in the past. The formal
definition is as follows.

Definition 14.1 An extensive form structure S satisfies perfect recall for player
i 2 N if for every information set h 2 Hi and each pair of nodes x; y 2 h, player i’s
outgoing edges on the path from the root to x belong to the same player i actions as
player i’s outgoing edges on the path from the root to y. In other words, an action of
player i is on the path to x if and only if it is on the path to y. We say that S satisfies
perfect recall if it satisfies perfect recall for every player. �

Figure 14.2 shows part of an extensive form structure without perfect recall.
The condition of perfect recall plays an important role for the relation between

mixed and behavioral strategies (see Sect. 14.2).
We also repeat the definitions of perfect and imperfect information (cf. Chap. 4).

Definition 14.2 An extensive form structure S has perfect information if for every
i 2 N and h 2 Hi, jhj D 1. Otherwise, S has imperfect information. �

We conclude this section with the formal definition of an extensive form game. An
extensive form game � is an n C 1 tuple � D .S; u1; : : : ; un/, where S is an
extensive form structure and for each player i 2 N, ui W Z ! R. The function ui is
player i’s payoff function.

A game � D .S; u1; : : : ; un/ has (im)perfect information if S has (im)perfect
information.

14.2 Pure, Mixed and Behavioral Strategies

Let S D .T;N;P;H;A; �/ be an extensive form structure. A pure strategy si of
player i 2 N is a map assigning an action a 2 A.h/ to every information set h 2 Hi.
By Si we denote the (finite) set of pure strategies of player i.
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Any pure strategy combination .s1; : : : ; sn/, when played, results in a (unique)
probability distribution over the end nodes of the game tree. (Of course, if there
are no chance moves then this probability distribution is degenerate.) Therefore,
with each extensive form game � D .S; u1; : : : ; un/ we can associate (with a slight
abuse of notation) a strategic form game G.� / D .S1; : : : ; Sn; u1; : : : ; un/ in the
obvious way: if the pure strategy combination .s1; : : : ; sn/ generates a probability
distribution .qz/z2Z over the end nodes of the game tree, then player i receivesP

z2Z qzui.z/. A (mixed) strategy of player i 2 N is an element of �.Si/, i.e., a
probability distribution over the elements of Si.

When considering an extensive form game (structure) it seems more natural to
consider, instead of mixed strategies, so-called behavioral strategies. A behavioral
strategy of a player assigns to each information set of that player a probability
distribution over the actions at that information set. Formally, we have the following
definition.

Definition 14.3 Let S D .T;N;P;H;A; �/ be an extensive form structure. A
behavioral strategy of player i 2 N is a map bi assigning to each information set
h 2 Hi a probability distribution over the set of actions A.h/. �

Given a behavioral strategy there is an obvious way to define an associated mixed
strategy: for each pure strategy, simply multiply all probabilities assigned by the
behavioral strategy to the actions occurring in the pure strategy. Consider for
instance the extensive form structure in Fig. 14.3. In this diagram a behavioral
strategy b1 of player 1 is indicated. The associated mixed strategy �1 assigns the
probabilities �1.A; l/ D 1

2
� 1
3

D 1
6
, �1.A; r/ D 1

2
� 2
3

D 1
3
, �1.B; l/ D 1

2
� 1
3

D 1
6
, and

�1.B; r/ D 1
2

� 2
3

D 1
3
. Strategy �1 is the ‘right’ mixed strategy associated with b1

in the following sense. Suppose player 2 plays the mixed or behavioral strategy—
there is no difference in this case—which puts probability ˛ on L and 1� ˛ on R. If
player 1 plays the behavioral strategy b1 then the probability distribution generated
over the end nodes of the game is x5 7! 1

6
� ˛, x6 7! 1

3
� ˛, x7 7! 1

6
� .1 � ˛/,

x8 7! 1
3

� .1 � ˛/. The same distribution is generated by the mixed strategy �1. For

example, the probability that x5 is reached equals �1.A; l/ �˛ D 1
6

�˛, etc. We call b1

x 5 x 6 x 7 x 8

x 2

1 x 0

2
x 1

1

A
1

2

B
1

2

l
1

3

2

3

1

3

2

3

L R

r l r

x 3 x 4

Fig. 14.3 From behavioral to mixed strategies
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and �1 outcome equivalent. Obviously, it would have been sufficient to check this
for the two pure strategies L and R for player 2.

We summarize these considerations in a definition and a proposition, which is
presented without a formal proof.

Definition 14.4 Two (behavioral or mixed) strategies of player i in S are outcome
equivalent if for each pure strategy combination s�i of the other players the
probability distributions generated by the two strategies over the end nodes are
equal. �

Proposition 14.5 Let bi be a behavioral strategy of player i in S. Then there is

a mixed strategy �i of player i that is outcome equivalent to bi. Such a strategy

�i is obtained by assigning to each pure strategy si of player i the product of the

probabilities assigned by bi to the actions chosen by si.

It should be noted that there is not necessarily a unique mixed strategy that is
outcome equivalent to a given behavioral strategy. For instance, in the example
above, if we change the behavioral strategy of player 1 such that it assigns
probability 0 to action A and probability 1 to action B at information set fx0g,
then all mixed strategies which put zero probability on .A; l/ and .A; r/ are outcome
equivalent, resulting in each end node other than x2 with zero probability.

Also for the converse question of how to associate an outcome equivalent
behavioral strategy with a mixed strategy, it is not hard to figure out a procedure.
Suppose that �1 is a mixed strategy of player i, h is an information set of player i,
and a is an action in h. First, let Si.h/ denote the set of pure strategies of player i

such that the play of the game possibly reaches h, in other words, such that there
exists a path through h containing the actions prescribed by the pure strategy under
consideration. Then �i.Si.h// is the total probability assigned by �i to this set of
pure strategies. Within this set, consider those pure strategies that assign a to h

and divide their total probability by �i.Si.h// if �i.Si.h// > 0: the result is defined
to be bi.h/.a/. Thus, bi.h/.a/ is the probability of a being played conditional on
the set h being reached—it is a conditional probability. If �i.Si.h// D 0 then we
can choose bi.h/ arbitrary. This way, we construct a behavioral strategy bi that is
outcome equivalent to the mixed strategy �i.

As an illustration consider the extensive form structure in Fig. 14.4, which is the
same as the one in Fig. 14.3.

Consider the mixed strategy �1 of player 1 defined by: .A; l/ 7! 1
5
, .A; r/ 7! 1

10
,

.B; l/ 7! 2
5
, .B; r/ 7! 3

10
. Following the above procedure we obtain

b1.A/ D �1.A;l/C�1.A;r/
1

D 1
5

C 1
10

D 3
10

b1.B/ D �1.B;l/C�1.B;r/
1

D 2
5

C 3
10

D 7
10

b1.l/ D �1.A;l/

�1.A;l/C�1.A;r/
D 1=5

1=5C1=10
D 2

3

b1.r/ D �1.A;r/

�1.A;l/C�1.A;r/
D 1=10

1=5C1=10
D 1

3
:
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x 5 x 6 x 7 x 8

x 2

1 x 0
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x 1

1
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L R

l r l r

x 3 x 4

Fig. 14.4 From mixed to behavioral strategies

It is straightforward to verify that b1 and �1 are outcome equivalent.
Outcome equivalence is not guaranteed without perfect recall: see Problem 14.2

for an example. With perfect recall, we have the following theorem.

Theorem 14.6 (Kuhn) Let the extensive form structure S satisfy perfect recall.

Then, for every player i and every mixed strategy �i there is a behavioral strategy bi

that is outcome equivalent to �i.

The behavioral strategy bi in Theorem 14.6 can be constructed as described in the
text.

14.3 Nash Equilibrium and Refinements

Let � D .S; .ui/i2N/ be an extensive form game with associated strategic form
game G.� / D ..Si/i2N ; .ui/i2N/. We assume that S satisfies perfect recall.

A pure strategy Nash equilibrium of � is defined to be a pure strategy Nash
equilibrium of G.� /. Note that, if � has perfect information, then a pure strategy
Nash equilibrium exists (cf. Chap. 4).

A mixed strategy Nash equilibrium of � is defined to be a (mixed strategy) Nash
equilibrium of G.� /. By Theorem 13.1 such an equilibrium always exists.

Consider, now, a behavioral strategy combination b D .bi/i2N in � . Such a
strategy combination generates a probability distribution over the end nodes and,
thus, an expected payoff for each player. We call bi a best reply of player i 2 N

to the strategy combination b�i if there is no other behavioral strategy b0
i of player

i such that .b0
i; b�i/ generates a higher expected payoff for player i. We call b a

Nash equilibrium (in behavioral strategies) of � if bi is a best reply to b�i for every
player i 2 N. (Thus, observe that a Nash equilibrium of an extensive form game is
by definition a Nash equilibrium in behavioral strategies.)

Let � be a mixed strategy Nash equilibrium of � . By Theorem 14.6 there is
a behavioral strategy combination b that is outcome equivalent to � . We claim
that b is a Nash equilibrium of � . Suppose not, then there is a player i 2 N and
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a behavioral strategy b0
i that gives player i a higher expected payoff against b�i.

By Proposition 14.5 there is a mixed strategy � 0
i that is outcome equivalent to b0

i.
Consequently,� 0

i gives player i a higher expected payoff against ��i, a contradiction.
We have thus proved:

Theorem 14.7 Every extensive form game has a Nash equilibrium.

In fact, a similar argument as the one leading to this theorem can be applied to show
that every Nash equilibrium (in behavioral strategies) results in a Nash equilibrium
in mixed strategies. Hence, one way to find the (behavioral strategy) Nash equilibria
of an extensive form game is to determine all (mixed strategy) Nash equilibria of
the associated strategic form game. Which way is most convenient depends on the
game at hand. In particular for refinements it is often easier to compute behavioral
equilibrium strategies directly, without first computing the mixed strategy Nash
equilibria. Before discussing these refinements we first consider an example.

Example 14.8 Consider the extensive form game �1 in Fig. 14.5.
This game is based on the extensive form structure of Fig. 14.4, in which the

symbols for the end nodes are replaced by payoffs for player 1 (upper number)
and player 2 (lower number). The associated strategic form of this game is given in
Table 14.1. (Note that in G.�1/ there is no essential difference between BC and BD.)

8

0

0

8

0

8

8

0

6

0

1 x 0

2
x 1

1

BA

L R

C D C D

x 3 x 4

Fig. 14.5 The game �1

Table 14.1 The strategic form G.�1/ of �1 0
BB@

L R

AC 8; 0 0; 8

AD 0; 8 8; 0

BC 6; 0 6; 0

BD 6; 0 6; 0

1
CCA
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To find the Nash equilibria in G.�1/, first note that player 2 will never play pure
in a Nash equilibrium. Suppose, in equilibrium, that player 2 plays .˛; 1 � ˛/ with
0 < ˛ < 1, and player 1 plays p D .p1; p2; p3; p4/, where p1 is the probability of
AC, p2 the probability of AD, p3 the probability of BC, and p4 the probability of
BD. Since 0 < ˛ < 1, player 2 is indifferent between L and R, which implies that
p1 D p2. Suppose p1 D p2 > 0. Then we must have 8˛ � 6 and 8.1 � ˛/ � 6,
which is impossible. Hence p3 C p4 D 1 and both 6 � 8˛ and 6 � 8.1 � ˛/, so
1=4 � ˛ � 3=4. This implies that b D .b1; b2/ is a (behavioral strategy) Nash
equilibrium of � if and only if

b1.A/ D 0; b1.B/ D 1; 1=4 � b2.L/ � 3=4 :

So b1.C/ may take any arbitrary value. �

In the remainder of this section we consider refinements of Nash equilibrium.

14.3.1 Subgame Perfect Equilibrium

Let x be a non-end node in an extensive form structure S and let Tx D .Vx;Ex/ be
the subtree starting from x—i.e., Vx is the subset of V consisting of fxg and all nodes
of V that can be reached by a path starting from x, and Ex is the subset of E of all
edges between nodes in Vx. If every information set of S is contained either in Vx

or in V n Vx (this implies, in particular, that fxg is a singleton information set), then
we call Sx, the restriction of S to Tx, a substructure. Then, for the extensive form
game � D .S; .ui/i2N/, the game � x D .Sx; .ux

i /i2N/ is defined by restricting the
payoff functions to the end nodes still available in Vx. We call � x a subgame of � .
For a behavioral strategy combination b D .bi/i2N we denote by bx D .bx

i /i2N the
restriction to the substructure Sx.

Definition 14.9 A behavioral strategy combination b in � is a subgame perfect
equilibrium if bx is a Nash equilibrium for every subgame � x. �

Clearly, this definition extends the definition of subgame perfection for pure strategy
combinations given in Chap. 4.

Since the whole game � is a subgame (� D � x0 , where x0 is the root of the
game tree), every subgame perfect equilibrium is a Nash equilibrium. By carrying
out a backward induction procedure as in Sect. 4.3, it can be seen that a subgame
perfect equilibrium exists in any extensive form game.

Subgame perfection often implies a considerable reduction of the set of Nash
equilibria. The following example is the continuation of Example 14.8.

Example 14.10 To find the subgame perfect equilibria in �1, we only have to
analyze the subgame � x1

1 . It is easy to see that this subgame has a unique Nash
equilibrium, namely player 2 playing L and R each with probability 1=2, and player
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1 playing C and D each with probability 1=2. This results in a unique subgame
perfect equilibrium b D .b1; b2/ given by

b1.B/ D 1; b1.C/ D 1=2; b2.L/ D 1=2 :

To reach this conclusion we have used that in any Nash equilibrium player 1 plays
B, as established in Example 14.8. This, however, can also be seen from the fact that
the only Nash equilibrium in the subgame starting at x1 gives player 1 a payoff of 4,
which is smaller than the payoff of 6 which player 1 obtains from playing B. In fact,
this argument is a kind of ‘backward induction’, where in the first step we analyze
the whole game � x1

1 . �

14.3.2 Perfect Bayesian and Sequential Equilibrium

In games without proper subgames and in games of imperfect information the
subgame perfection requirement may not have much bite (see the examples in
Chaps. 4 and 5). The concepts of perfect Bayesian and sequential equilibrium
allow to distinguish between Nash equilibria by considering beliefs of players on
information sets.

Consider an extensive form structure S D .T;N;P;H;A; �/. A belief system ˇ

assigns to every information set h 2 H D [i2NHi a probability distribution ˇh over
the nodes in h. An assessment is a pair .b; ˇ/ of a behavioral strategy combination
b D .bi/i2N and a belief system ˇ.

The first requirement we consider is that of sequential rationality, which requires
a player at an information set to choose only those actions that yield maximal
expected payoff, given that player’s beliefs. Consider an extensive form game
� D .S; .ui/i2N/. Let .b; ˇ/ be an assessment. Let i 2 N, h 2 Hi, a 2 A.h/,
and x 2 h. Suppose player i is at node x and takes action a. This corresponds to
an edge .x; y/ in the game tree. Then each end node on a path starting from x and
passing though y is reached with a probability that is equal to the product of the
probabilities of all edges on this path following y, given by b and the probabilities of
eventual chance nodes on this path. This way, we can compute the expected payoff
to player i from playing a, conditional on being at node x: denote this payoff by
ui.ajb; x/. Player i’s expected payoff from action a, given information set h, is then
equal to

P
x2h ˇ.x/ui.ajb; x/.

Definition 14.11 An assessment .b; ˇ/ in � D .S; .ui/i2N/ is sequentially rational
if for every i 2 N, h 2 Hi, and a 2 A.h/ we have:

bi.h/.a/ > 0 )
X

x2h

ˇ.x/ ui.ajb; x/ D max
a02A.h/

X

x2h

ˇ.x/ ui.a
0jb; x/ :

�
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Thus, indeed, sequential rationality of an assessment .b; ˇ/means that a player puts
only positive probability on those actions at an information set h that maximize his
expected payoff, given h and his belief fˇ.x/ j x 2 hg.

Sequential rationality is defined with respect to a given belief system. We now
formulate conditions on such belief systems which, in turn, are defined with respect
to a given profile of behavioral strategies.

Let x be a node in the game tree T such that Sx is a substructure. For any node
x0 in the subtree Tx, let Px

b.x
0/ denote the probability that x0 is reached in Tx given

b, that is, Px
b.x

0/ is the product of the probabilities of all edges on the unique path
from x to x0: these probabilities are given by b, or by � in case of a chance node on
the path. For every information set h of Sx, Px

b.h/ D
P

x02h P
x
b.x

0/ is the probability
that, within Sx, the information set h is reached, given b.

The next definition is the formal version of the consistency requirement intro-
duced already in Chap. 4.

Definition 14.12 An assessment .b; ˇ/ in S is Bayesian consistent if ˇh.x
0/ D

P
x
b.x

0/=Px
b.h/ for all x0 2 h, for each substructure Sx and each information set h

in Sx for which P
x
b.h/ > 0. �

It is not difficult to see that, if h is an information set within a substructure Sx and
Sx is in turn a substructure of another substructure Sy, such that Py

b.h/ > 0, then
P

x
b.h/ > 0 and P

x
b.x

0/=Px
b.h/ D P

y

b.x
0/=P

y

b.h/ for all x0 2 h. In other words, if
beliefs are restricted by Bayesian consistency, this restriction does not depend on
the particular substructure (or subgame) considered.

By Bayesian consistency the players’ beliefs are determined, as conditional
probabilities, by the behavioral strategies on all information sets that are reached
with positive probability in some subgame. This requirement can be quite weak; for
instance, it does not even imply that the beliefs of one and the same player have
to be internally consistent, as is illustrated by the following example. Consider the
extensive form structure in Fig. 14.6. Suppose that player 1 plays a and player 2
plays e. Then the beliefs of player 2 at the information sets fx1; x2g and fx3; x4g are
not restricted by Bayesian consistency: the only substructure is the whole structure,
within which the information sets of player 2 are reached with zero probability.

Fig. 14.6 If player 1 plays a,
then player 2’s beliefs at
fx1; x2g and fx3; x4g are
independent under Bayesian
consistency
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x 2 x 4
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Moreover, a belief ˇ.x1/ D ˇ.x4/ D 1 is allowed, which means that player 2’s
beliefs are not internally consistent.

In many applications this drawback does not occur, and Bayesian consistency
is strong enough. For instance, in signaling games (see Chap. 5) Bayesian consis-
tency implies the stronger version of consistency in Definition 14.13 below. See
Problem 14.4.

Call a behavioral strategy bi of player i completely mixed if bi.h/.x/ > 0

for each h 2 Hi and x 2 h. A behavioral strategy combination b D .bi/i2N is
completely mixed if bi is completely mixed for every i 2 N. Observe that, if b

is completely mixed and the assessment .b; ˇ/ is Bayesian consistent, then ˇ is
uniquely determined by b: all information sets in all substructures are reached with
positive probability. The announced stronger version of consistency, simply called
consistency, is defined as follows.

Definition 14.13 An assessment .b; ˇ/ in S is consistent if there exists a sequence
.bm; ˇm/m2N of Bayesian consistent assessments with each bm completely mixed
and limm!1.b

m; ˇm/ D .b; ˇ/. �

Consistency implies Bayesian consistency (Problem 14.3). Consistency is clearly
stronger than Bayesian consistency. For instance, in the extensive form structure of
Fig. 14.6, it is easily seen that consistency requires player 2 to have identical beliefs
on his two information sets, i.e., ˇ.x1/ D ˇ.x3/. This is true even if on his right
information set player 2 is replaced by some other player 3, as in Fig. 14.7.

We can now define the announced equilibrium refinements.

Definition 14.14 An assessment .b; ˇ/ in � D .S; .ui/i2N/ is a perfect Bayesian
equilibrium if it is sequentially rational and Bayesian consistent; it is a sequential
equilibrium if it is sequentially rational and consistent. �

The following theorem, stated without a proof, collects some facts about perfect
Bayesian and sequential equilibrium.1

Fig. 14.7 Under consistency,
the beliefs of players 2 and 3
are identical: ˇ.x1/ D ˇ.x3/
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g

g

x 1 x 3

x 2 x 4

1See also the Notes to this chapter.
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Fig. 14.8 The game of
Example 14.16
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Theorem 14.15 Every extensive form game has a sequential equilibrium. Every

sequential equilibrium is perfect Bayesian. Every perfect Bayesian equilibrium is

subgame perfect and, in particular, a Nash equilibrium.

The following example shows that a perfect Bayesian equilibrium does not have to
be sequential.

Example 14.16 We consider again the extensive form structure of Fig. 14.7, supple-
mented with payoffs: see Fig. 14.8. An example of a perfect Bayesian equilibrium
in this game is the assessment .b; ˇ/ with ˇ.x1/ D ˇ.x4/ D 1 and b1.a/ D
b2.e/ D b3. f / D 1. This equilibrium is not sequential, since any consistent
assessment should attach equal belief probabilities to x1 and x3. In fact, there is
no sequential equilibrium in which b1.a/ D b2.e/ D b3. f / D 1. To see this, let
˛ D ˇ.x1/ D ˇ.x3/. Then still b1.a/ D 1. If ˛ < 1=2, then b3. f / D 1, if ˛ > 1=2,
then b3. f / D 0, and if ˛ D 1=2, then b3. f / is arbitrary. For player 2, playing d

yields 2. Playing e yields 3˛ if ˛ < 1=2, 0 if ˛ > 1=2, and at most 3=2 if ˛ D 1=2.
Hence, b2.d/ D 1. Hence, the sequential equilibria in this game are the assessments
.b; ˇ/ with b1.a/ D b2.d/ D 1, ˇ.x1/ D ˇ.x3/ D ˛ 2 Œ0; 1�, and if ˛ < 1=2, then
b3. f / D 1, if ˛ > 1=2, then b3. f / D 0, and if ˛ D 1=2, then b3. f / is arbitrary. For
0 < ˛ < 1, such an assessment is obtained as the limit of assessments .bm; ˇm/with:
bm
1 .a/ D 1�˛=m�.1�˛/=m, bm

1 .b/ D ˛=m, and bm
1 .c/ D .1�˛/=m; bm

2 .e/ D 1=m;
and bm

3 .g/ D 1=m if ˛ < 1=2, bm
3 . f / D 1=m if ˛ > 1=2, and bm

3 . f / D b3. f /

if b3. f / 2 .0; 1/. If ˛ D 1, then bm
1 .a/ D 1 � 1=m � 1=m2, bm

1 .b/ D 1=m,
bm
1 .c/ D 1=m2; if ˛ D 0, then bm

1 .a/ D 1 � 1=m � 1=m2, bm
1 .b/ D 1=m2,

bm
1 .c/ D 1=m; in both these cases the behavioral strategies bm

2 and bm
3 can remain

unchanged. The belief systems ˇm are determined by Bayesian consistency. �
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Fig. 14.9 Sequential equilibrium analysis in a three-player game

The advantage of perfect Bayesian equilibrium is that it avoids the condition
involving limiting assessments in the definition of consistency. The idea behind
perfect Bayesian equilibrium is that beliefs of players should be obtained by the
method of Bayesian updating ‘as much as possible’. In the preceding examples,
however, it has become clear that the formal definition of Bayesian consistency
and perfect Bayesian equilibrium does not capture this completely. (See also the
Notes to this chapter.) Therefore, we stick to sequential equilibrium but keep in
mind that, in order to compute sequential equilibria for a given game, the method
of Bayesian updating ‘as much as possible’ is a good heuristic. There is hardly any
general method available to compute sequential equilibria: it depends very much on
the game at hand what the best way is. We conclude with two additional examples
and refer to the problem section for other examples.

Example 14.17 Consider the three-player game in Fig. 14.9. The extensive form
structure is similar to the one in Example 14.16, but without the ‘outside option’ of
player 1. Note that the only subgame is the whole game—the notation P.�/ refers
to the probabilities in this trivial subgame. To find the sequential equilibria of this
game, first observe that consistency requires the beliefs of players 2 and 3 to be
the same, so ˇ D ˇ0. For completeness we spell out the argument. Denote the
behavioral strategies of the players by b1.a/ and b1.b/ D 1 � b1.a/, b2.c/ and
b2.d/ D 1 � b2.c/, and b3.e/ and b3. f / D 1 � b3.e/. Suppose b1, b2, and b3 are
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completely mixed. Let x denote the left node in player 2’s information set h2. Then
Pb.x/ D b1.a/ and Pb.h2/ D 1, so by Bayesian consistency ˇ D b1.a/. Let y

denote the left node in player 3’s information set h3. Then Pb.y/ D b1.a/b2.c/ and
Pb.h3/ D b2.c/, so by Bayesian consistency ˇ0 D b1.a/b2.c/=b2.c/ D b1.a/. Thus,
ˇ D ˇ0 if the behavioral strategies are completely mixed. By consistency, ˇ D ˇ0

for all profiles of behavioral strategies. Note that this is not necessarily the case
under only Bayesian consistency: if player 2 plays d with probability 1, then ˇ0 is
‘free’.

Now, starting with player 3, sequential rationality requires b3.e/ D 1 if ˇ > 1
4
,

b3.e/ D 0 if ˇ < 1
4
, and 0 � b3.e/ � 1 if ˇ D 1

4
.

Using this, if ˇ > 1
4

then playing c yields 0 for player 2 and playing d yields

1. Therefore b2.c/ D 0. Similarly, b2.c/ D 1 if ˇ < 1
4
. If ˇ D 1

4
then d yields 1

whereas c yields 3b3. f /. Hence, b2.c/ D 0 if ˇ D 1
4

and b3. f / < 1
3
; b2.c/ D 1 if

ˇ D 1
4

and b3. f / > 1
3
; and 0 � b2.c/ � 1 if ˇ D 1

4
and b3. f / D 1

3
.

We finally consider player 1. If b1.a/ >
1
4

then consistency requires ˇ D b1.a/ >
1
4

and therefore b2.c/ D 0. So player 1 obtains 2b1.a/C 1.1� b1.a// D 1C b1.a/,
which is maximal for b1.a/ D 1. Obviously, player 1 cannot improve on this. So we
have the following sequential equilibrium:

b1.a/ D 1; b2.c/ D 0; b3.e/ D 1; ˇ D ˇ0 D 1 :

If b1.a/ <
1
4

then ˇ D b1.a/ <
1
4

and therefore b2.c/ D 1 and b3.e/ D 0. So
player 1 obtains 1b1.a/C2.1�b1.a// D 2�b1.a/, which is maximal for b1.a/ D 0.
Obviously again, player 1 cannot improve on this. So we have a second sequential
equilibrium:

b1.a/ D 0; b2.c/ D 1; b3.e/ D 0; ˇ D ˇ0 D 0 :

If b1.a/ D 1
4

then player 1 must be indifferent between a and b. This implies that
the expected payoff from a should be equal to the expected payoff from b, hence
that 2.1�b2.c//C1b2.c/ D 2b2.c/C1.1�b2.c// which is true for b2.c/ D 1

2
. The

preceding analysis for player 2 shows that for player 2 to play completely mixed we
need b3.e/ D 2

3
. So we have a third sequential equilibrium

b1.a/ D 1

4
; b2.c/ D 1

2
; b3.e/ D 2

3
; ˇ D ˇ0 D 1

4
:

Also in this game there are perfect Bayesian equilibria which are not sequential,
e.g., b1.a/ D b2.d/ D 1, b3.e/ D 2=3, ˇ D 1, and ˇ0 D 1=4. �

Example 14.18 Consider the signaling game in Fig. 14.10 (this is the same game as
in Fig. 5.4). To find the sequential equilibria in this game, we start with the beliefs
of player 2. Clearly, and independently of ˛, sequential rationality requires player 2
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1/ 2

1/ 2

0, 2

4, 8

8, 0

2, 6

2, 4

2, 0

0, 0

4, 2

[1 − α]

[α]

2 2

[1 − β]

[β]

Fig. 14.10 The game of Example 14.18

to play u at his left information set. At his right information set, u0 is at least as good
as d0 if 2ˇ � 4.1� ˇ/, hence if ˇ � 2=3. Therefore, we distinguish three cases:

• ˇ > 2=3. Then player 2 plays the pure strategy uu0, hence player 1 plays
RL0, implying ˇ D 1 and ˛ D 0. This is a sequential equilibrium (in fact, a
pure strategy Nash equilibrium). In behavioral strategies: b1.R/ D b1.L

0/ D 1,
b2.u/ D b2.u

0/ D 1.
• ˇ < 2=3. Then player 2 plays ud0, player 1 plays LL0, ˛ D 1=2, and ˇ < 2=3. In

behavioral strategies: b1.L/ D b1.L
0/ D 1, b2.u/ D b2.d

0/ D 1.
• ˇ D 2=3. Again b2.u/ D 1 implies b1.L

0/ D 1, but then we must have b1.L/ D 1

since otherwise we would have ˇ D 1 (by Bayesian consistency). We then must
have b2.u

0/ � 1=2 to keep type t from deviating to R. Further,˛ D 1=2 completes
the description of this collection of sequential equilibria.

The analysis of this game is facilitated by the fact that player 2 always prefers u over
d. In general, analysis of even these relatively simple signaling games can be quite
cumbersome. �

Remark 14.19 With the exception of Example 14.16 we did not really check that the
sequential equilibria, computed in the examples, are indeed consistent. In general,
however, this is rather straightforward. For instance, for the sequential equilibria in
Example 14.17 we can proceed as follows, for each of the three equilibria:

• b1.a/ D 1, b2.c/ D 0, b3.e/ D 1, ˇ D ˇ0 D 1. For each m 2 N take
bm
1 .b/ D bm

2 .c/ D bm
3 . f / D 1=m. The associated beliefs are determined by

Bayesian consistency.
• b1.a/ D 0, b2.c/ D 1, b3.e/ D 0, ˇ D ˇ0 D 0. For each m 2 N take

bm
1 .a/ D bm

2 .d/ D bm
3 .e/ D 1=m. The associated beliefs are determined by

Bayesian consistency.
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• b1.a/ D 1=4, b2.c/ D 1=2, b3.e/ D 2=3, ˇ D ˇ0 D 1=4. For each m 2 N

take bm
1 .a/ D 1=4, bm

2 .c/ D 1=2, b3.e/ D 2=3 (hence, constant). The associated
beliefs are determined by Bayesian consistency.

�

14.4 Problems

14.1. Mixed and Behavioral Strategies

Determine all mixed strategies that are outcome equivalent with the behavioral
strategy represented in the following one-player extensive form structure.

x 01

z3

1
2

L R

1
2

1 x 1

1
4

L

3
4

R

z1 z2

14.2. An Extensive Form Structure Without Perfect Recall

Consider the following extensive form structure:

x 3 x 4 x 5 x 6

1
x 0

1

L R

l r l r

x 1 x 2

(a) Show that this one-player extensive form structure has no perfect recall.
(b) Consider the mixed strategy �1 that assigns probability 1=2 to both .L; l/

and .R; r/. Show that there is no behavioral strategy that generates the same
probability distribution over the end nodes as �1 does.

14.3. Consistency Implies Bayesian Consistency

Let .b; ˇ/ be a consistent assessment in an extensive form structure S. Show that
.b; ˇ/ is Bayesian consistent.

14.4. (Bayesian) Consistency in Signaling Games
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Prove that Bayesian consistency implies consistency in a signaling game.
[A general definition of a signaling game (cf. also Chap. 5) is as follows. The set of
players is N D f1; 2g and for the extensive form structure S we have:

1. The directed rooted tree is T D .X;E/ with root x0,

X D fx0; x1; : : : ; xk; xi1; : : : ; xil; xij1; : : : ; xijm j i D 1; : : : ; k; j D 1; : : : ; lg ;

where k; l;m � 2,

E D f.x0; xi/; .xi; xij/; .xij; xijj0/ j i D 1; : : : ; k; j D 1; : : : ; l; j0 D 1; : : : ;mg :

Hence

Z D fxijj0 j i D 1; : : : ; k; j D 1; : : : ; l; j0 D 1; : : : ;mg :

2. The chance and player assignment P is defined by P.x0/ D C, P.xi/ D 1 for all
i D 1; : : : ; k, P.xij/ D 2 for all i D 1; : : : ; k, j D 1; : : : ; l.

3. The information sets are

H1 D ffx1g; : : : ; fxkgg; H2 D ffx1j; : : : ; xkjg j j D 1; : : : ; lg :

4. The action sets are

A.fxig/ D ff.xi; xij/g j j D 1; : : : ; lg for every i D 1; : : : ; k

for player 1 and

A.fx1j; : : : ; xkjg/ D ff.x1j; x1jj0/; : : : ; .xkj; xkjj0/g j j0 D 1; : : : ;mg

for every j D 1; : : : ; l, for player 2.
5. The map � assigns a positive probability to each edge in the set

f.x0; x1/; : : : ; .x0; xk/g. (Player 1 has k ‘types’.)

Finally, the players have payoff functions u1; u2 W Z ! R.]

14.5. Sequential Equilibria in a Signaling Game

Compute the sequential equilibria in the signaling game in Fig. 14.11 (this is the
game from Fig. 5.8).

14.6. Computation of Sequential Equilibrium (1)

Compute the sequential equilibrium or equilibria in the game �1 in Fig. 14.5.

14.7. Computation of Sequential Equilibrium (2)

Consider the following extensive form game below.
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d
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1, 2

2, 2

1, 0

3, 0

0, 1

[1 − α]

[α]

[1 − β]

[β]

Fig. 14.11 The signaling game of Problem 14.5

(a) Determine the strategic form of this game.
(b) Determine all Nash and subgame perfect Nash equilibria of this game.
(c) Determine all sequential equilibria of this game.

R

2

2

x
1

L M

y1 y2

2

l r l r

4

1

0

0

3

0

0

1

14.8. Computation of Sequential Equilibrium (3)

Consider the following extensive form game below.

(a) Determine the strategic form of this game.
(b) Compute the Nash equilibria and subgame perfect Nash equilibria.
(c) Compute the sequential equilibria.
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R
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2
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1

L M

y1 y2

2

l r l r
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0

0

1

0

1

3

0

14.9. Computation of Sequential Equilibrium (4)

Consider the following extensive form game.

R

2

4

x
1

L M

y1 y2

2

l
m

r l
m

r

1

3

1

2

4

0

4

2

0

2

3

3

Compute all sequential equilibria of this game.

14.10. Computation of Sequential Equilibrium (5)

Compute all Nash, subgame perfect and sequential equilibria in the following game.
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1

D

R 4

4

2

l r

[β] [1 − β]
1

A B A B

2

2

0

0

3

0

6

6

14.5 Notes

For more about refinements in extensive form games and some relations with
refinements of Nash equilibrium in strategic form games see van Damme (1991)
and Perea (2001). The presentation in Sect. 14.1 is based on the latter source. For
most of the remarks below Perea (2001) is a good reference.

The condition of perfect recall was introduced by Kuhn (1953). For a proof of
Theorem 14.6 see that paper, or Perea (2001), Theorem 2.4.4.

In Example 14.8, the strategies BC and BD are equivalent for all practical
purposes. Indeed, some authors do not distinguish between these strategies. More
generally, actions of players excluded by own earlier actions could be left out, but
we do not do this in this book.

By carrying out a backward induction procedure as in Sect. 4.3, it can be seen that
a subgame perfect equilibrium exists in any extensive form game. This is intuitive
but not trivial. See, e.g., Perea (2001).

In the literature the condition of updating consistency has been proposed to
remedy the defect in a game like the one in Fig. 14.6: with player 1 playing a

and player 2 playing e, updating consistency would imply that ˇ.x3/ D ˇ.x1/, as
seems natural. Consistency of beliefs based on limits of completely mixed strategies
was introduced in Kreps and Wilson (1982). This consistency condition is stronger
than Bayesian consistency combined with ‘updating consistency’, since the latter
condition would only require a player to ‘update’ his own earlier beliefs. Also
sequential equilibria were introduced in Kreps and Wilson (1982). The definition
of sequential rationality in Definition 14.11 is actually called ‘local’ sequential
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rationality. Together with consistency, it implies the sequential rationality condition
in Kreps and Wilson. It is, however, easier to apply. See also Perea (2001), Chap. 4,
or van Damme (1991), Chap. 6. See the same sources for a proof that sequential
equilibria always exist.

There is no unified definition of perfect Bayesian equilibrium in the literature,
since it is hard to capture all instances of Bayesian updating for general extensive
for games. For instance, Fudenberg and Tirole (1991b) provide two definitions of
perfect Bayesian equilibrium for different classes of games and show that their
concepts coincide with sequential equilibrium.
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15Evolutionary Games

In this chapter we go deeper into evolutionary game theory. The concepts of
evolutionary stable strategy and replicator dynamics, introduced in Chap. 8, are
further explored. It may be helpful to study Chap. 8 first, although the present
chapter is largely self-contained.

In Sect. 15.1 we briefly review symmetric two-player games. Section 15.2
discusses evolutionary stable strategies and Sect. 15.3 replicator dynamics.

15.1 Symmetric Two-Player Games

Much of evolutionary game theory is concerned with symmetric two-player games.
A (finite) symmetric two-player game is a pair of m � m payoff matrices .A;B/ such
that B D AT , i.e., B D .bij/

m
i;jD1 is the transpose of A D .aij/

m
i;jD1. In other words, for

all i; j 2 f1; 2; : : : ;mg, we have bij D aji.
In such a game we are particularly interested in symmetric (pure and mixed

strategy) Nash equilibria. A Nash equilibrium .�1; �2/ is symmetric if �1 D �2.
We denote by NE.A;AT/ the set of all Nash equilibria of .A;AT/ and by

NE.A/ D fx 2 �m j .x; x/ 2 NE.A;AT/g

the set of all strategies that occur in a symmetric Nash equilibrium. By a standard
application of the Kakutani Fixed Point Theorem we prove that this set is nonempty.

Proposition 15.1 For any m � m-matrix A, NE.A/ ¤ ;.

Proof For each x 2 �m, viewed as a strategy of player 2 in .A;AT/, let ˇ1.x/ be
the set of best replies of player 1 in .A;AT/. Then the correspondence x 7! ˇ1.x/

is upper semi-continuous and convex-valued (check this), so that by the Kakutani
Fixed Point Theorem 22.11 there is an x� 2 �m with x� 2 ˇ1.x

�/. Since player

© Springer-Verlag Berlin Heidelberg 2015
H. Peters, Game Theory, Springer Texts in Business and Economics,
DOI 10.1007/978-3-662-46950-7_15
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2’s payoff matrix is the transpose of A, it also follows that x� 2 ˇ2.x
�/. Hence,

.x�; x�/ 2 NE.A;AT/, so x� 2 NE.A/. �

15.1.1 Symmetric 2 � 2-Games

For later reference it is convenient to have a classification of symmetric 2�2-games
with respect to their symmetric Nash equilibria. Such a game is described by the
payoff matrix

A D
�

a11 a12

a21 a22

�
:

For the purpose of Nash equilibrium analysis, we may consider without loss of
generality the matrix

A0 D
�

a11 � a21 a12 � a12

a21 � a21 a22 � a12

�
D
�

a11 � a21 0

0 a22 � a12

�
D
�

a1 0

0 a2

�
;

where a1 WD a11 � a21 and a2 WD a22 � a12. Indeed, it is straightforward to verify
that .p;q/ 2 �2 � �2 is a Nash equilibrium of .A;AT/ if and only if it is a Nash
equilibrium of .A0;A0T/.

For a generic matrix A, implying a1; a2 ¤ 0, there are essentially three different
cases:

(1) a1 < 0, a2 > 0. In this case, NE.A0/ D fe2g, i.e., each player playing the second
strategy is the unique symmetric Nash equilibrium.

(2) a1; a2 > 0. In this case, NE.A0/ D fe1; e2; Oxg, where Ox D .a2=.a1Ca2/; a1=.a1C
a2//.

(3) a1; a2 < 0. In this case, NE.A0/ D fOxg with Ox as in (2).

15.2 Evolutionary Stability

15.2.1 Evolutionary Stable Strategies

In evolutionary game theory the interpretation of a symmetric two-person game
is that players in a possibly large population randomly meet in pairs. Let such a
game be described by A, then a mixed strategy x 2 �m is interpreted as a vector
of population shares: for each k, xk is the share of the population that ‘plays’ pure
strategy k. Such a strategy is called evolutionary stable if it performs better against
a small ‘mutation’ than that mutation performs against itself. Formally, we have the
following definition.
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Definition 15.2 A strategy x 2 �m is an evolutionary stable strategy .ESS/ in A if
for every strategy y 2 �m, y ¤ x, there exists some 0 < "y < 1 such that for all
0 < " < "y we have

xA."y C .1 � "/x/ > yA."y C .1 � "/x/: (15.1)

The set of all ESS is denoted by ESS.A/. �

Again, the interpretation of an ESS x is as follows. Consider any small mutation

"y C .1 � "/x of x. Condition (15.1) then says that against such a small mutation,
the original strategy x is better than the mutant strategy y. In other words, if the
population x is invaded by a small part of the mutant population y, then x survives
since it fares better against this small mutation than the mutant y itself does.

Evolutionary stable strategies can be characterized as follows. In fact, this
characterization was used as the definition of an evolutionary stable strategy in
Chap. 8 (Definition 8.4).

Theorem 15.3 Let A be a symmetric m � m game. Then

ESS.A/ D fx 2 NE.A/ j 8y 2 �m; y ¤ x ŒxAx D yAx ) xAy > yAy�g :

This theorem follows from Propositions 15.4 and 15.5.

Proposition 15.4 Let A be an m � m-matrix and let x 2 ESS.A/. Then x 2 NE.A/.

Proof Let y 2 �m, then it is sufficient to show xAx � yAx. Let "y be as in
Definition 15.2, then

xA."y C .1 � "/x/ > yA."y C .1 � "/x/

for all 0 < " < "y by (15.1). By letting " go to zero, this implies xAx � yAx. �

Proposition 15.5 Let A be an m � m-matrix. If x 2 ESS.A/, then, for all y 2 �m

with y ¤ x we have:

xAx D yAx ) xAy > yAy : (15.2)

Conversely, if x 2 NE.A/ and (15.2) holds, then x 2 ESS.A/.

Proof Let x 2 ESS.A/. Let y 2 �m with y ¤ x and xAx D yAx. Suppose that
yAy � xAy. Then, for any " 2 Œ0; 1�, yA."y C .1 � "/x/ � xA."y C .1 � "/x/,
contradicting (15.1).

Conversely, let x 2 NE.A/ and let (15.2) hold for x. If xAx > yAx, then also
xA."y C .1 � "/x/ > yA."y C .1 � "/x/ for small enough ". If xAx D yAx, then
xAy > yAy, hence (15.1) holds for any " 2 .0; 1�. �
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Clearly, Theorem 15.3 follows from the preceding propositions.
From Problems 15.1–15.3 it follows that the concept of ESS does not ‘solve’

the prisoners’ dilemma nor the ‘coordination problem’. Also, an ESS may be
completely mixed (Hawk-Dove), or fail to exist (Rock-Paper-Scissors).

15.2.2 The Structure of the Set ESS.A/

Let x be an ESS and let y 2 �m, y ¤ x such that the carrier1 of y is contained in
the carrier of x, i.e., C.y/ � C.x/. Since x 2 NE.A/ by Theorem 15.3, this implies
xAx D yAx and hence, again by Theorem 15.3, xAy > yAy. We have established:

Proposition 15.6 If x 2 ESS.A/ and y 2 �m with y ¤ x and C.y/ � C.x/, then

y … NE.A/.

This implies the following corollary (check!):

Corollary 15.7 The set ESS.A/ is finite. If x 2 ESS.A/ is completely mixed, then

ESS.A/ D fxg.

15.2.3 Relations with Other Refinements

If x 2 NE.A/ is weakly dominated by y 2 �m, then xAx D yAx and yAy �
xAy; so by Theorem 15.3, x … ESS.A/. Therefore, if x 2 ESS.A/, then .x; x/ is
an undominated equilibrium and hence perfect by Theorem 13.23. It can even be
shown that .x; x/ is proper. The next proposition summarizes these facts.

Proposition 15.8 If x 2 ESS.A/, then .x; x/ 2 NE.A;AT/ is undominated, perfect

and proper.

The unique (symmetric) equilibrium in the Rock-Paper-Scissors game in Prob-
lem 15.3 is proper (why?), but the associated equilibrium strategy is not ESS, so
the converse of Proposition 15.8 does not hold.

15.2.4 Other Characterizations of ESS

15.2.4.1 Uniform Invasion Barriers
The number "y in the definition of an ESS can be interpreted as an ‘invasion barrier’:
if the share of the mutant strategy y is smaller than "y, then the ‘incumbent’ strategy
x fares better against the mutated population than the mutant y itself does, so that

1Recall—see Chap. 13—that the carrier of y, C.y/, is the set fi 2 f1; : : : ;mg j yi > 0g.



15.2 Evolutionary Stability 277

the mutant strategy becomes extinct. In a large but finite population, it would not
make sense if this invasion barrier could become arbitrarily small since then the
‘mutant’ population would sometimes have to consist of less than one individual
to guarantee survival of the strategy x under consideration. This gives rise to the
following definition.

Definition 15.9 A strategy x 2 �m has a uniform invasion barrier if there exists an
N" 2 .0; 1/ such that (15.1) holds for all strategies y ¤ x and every " 2 .0; N"/. �

It turns out that possessing a uniform invasion barrier characterizes an evolutionary
stable strategy.

Proposition 15.10 For each x 2 �m, x 2 ESS.A/ if and only if x has a uniform

invasion barrier.

Proof Let x 2 �m. If x has a uniform invasion barrier N", then clearly x is an ESS by
choosing, in (15.1), "y D N" for each y 2 �m.

Conversely, let x be an ESS. Define the function b W �m n fxg ! Œ0; 1� by

b.y/ D supfı 2 Œ0; 1� j 8" 2 .0; ı/ Œ.x � y/A."y C .1 � "/x/ > 0�g

for all y 2 �m n fxg. We first consider the function b on the compact set Z D fz 2
�m j zi D 0 for some i 2 C.x/g. Consider y 2 Z. Since x is an ESS, we have
that .x � y/A."y C .1 � "/x/ is positive for small positive values of ". Since this
expression depends linearly on ", this implies that there can be at most one value of
", which we denote by "0

y, such that .x � y/A."0
yy C .1 � "0

y/x/ D 0. If "0
y 2 .0; 1/,

then .x � y/A."0
yy C .1 � "0

y/x/ D 0 implies that .x � y/A.x � y/ ¤ 0. To see this,
suppose that .x � y/A.x � y/ D 0. Then

0 D .x � y/A."0
yy C .1 � "0

y/x/ D .x � y/Ax ;

hence also .x � y/Ay D 0 and, thus, .x � y/A."y C .1 � "/x/ D 0 for all ",
a contradiction. Hence, in that case, b.y/ D "0

y D .x � y/Ax=.x � y/A.x � y/;
otherwise, b.y/ D 1. Clearly, b is a continuous function. Since b is positive and Z

is compact, miny2Z b.y/ > 0. Hence, x has a uniform invasion barrier, namely this
minimum value, on the set Z.

Now suppose that y 2 �m, y ¤ x. We claim that there is a � 2 .0; 1� such
that y D �z C .1 � �/x for some z 2 Z. To see this, first note that we can take
� D 1 and z D y if y 2 Z. If y … Z then consider, for each � � 0, the point
z.�/ D .1��/xC�y, and let O� � 1 be the largest value of � such that z.�/ 2 �m.
Then there is a coordinate i 2 f1; : : : ;mg with zi. O�/ D 0, zi.�/ > 0 for all � < O�,
and zi.�/ < 0 for all � > O�. Clearly, this implies xi > yi, hence i 2 C.x/, and thus
z. O�/ 2 Z. Then, for z D z. O�/ and � D 1= O�, we have y D �z C .1 � �/x.
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By straightforward computation we have

.x � y/A."y C .1 � "/x/ D �.x � z/A."�z C .1 � "�/x/

for each " > 0, so that b.y/ D minfb.z/=�; 1g � b.z/.
We conclude that N" D miny2Z b.y/ is a uniform invasion barrier for x. �

15.2.4.2 Local Superiority
By Theorem 15.3, a completely mixed ESS earns a higher payoff against any mutant
than such a mutant earns against itself. This global superiority property can be
generalized to the following local version.

Definition 15.11 The strategy x 2 �m is locally superior if it has an open
neighborhood U such that xAy > yAy for all y 2 U n fxg. �

The local superiority condition provides another characterization of ESS.

Proposition 15.12 For each x 2 �m, x 2 ESS.A/ if and only if x is locally superior.

Proof Let x 2 �m.
First suppose that x is locally superior, and let U be as in Definition 15.11. Let

z 2 �m n fxg and define for each 0 < " < 1 the point w."/ by w."/ D "z C .1� "/x.
Then there is "z > 0 such that w."/ 2 U, hence xAw."/ > w."/Aw."/, for all
" 2 .0; "z/. By slight rewriting, this implies xAw."/ > zAw."/ for all " 2 .0; "z/. In
particular, we have

"xAz C .1 � "/xAx > "zAz C .1 � "/zAx

for all " 2 .0; "z/, hence xAx � zAx. So x 2 NE.A/. Suppose now that zAx D xAx.
Then, for " 2 .0; "z/,

"xAz D xAw."/ � .1 � "/xAx

> zAw."/ � .1 � "/xAx

D "zAz C .1 � "/zAx � .1 � "/xAx

D "zAz ;

so that x is an ESS.
Conversely, let x be an ESS with uniform invasion barrier (cf. Proposition 15.10)

N" 2 .0; 1/, and let Z be as in the proof of Proposition 15.10. Let

V D fy 2 �m j y D "z C .1 � "/x for some z 2 Z and " 2 Œ0; N"/g:
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Since Z is closed and x … Z, there is an open neighborhood U of x such that U \
�m � V . Suppose that y ¤ x, y 2 U \�m. Then y 2 V , and by Proposition 15.10,
zAy D zA."z C .1� "/x/ < xA."z C .1� "/x/ D xAy, with z as in the definition of
V . This implies yAy D "zAy C .1 � "/xAy < xAy. �

15.2.4.3 Local Strict Efficiency
Consider the special case of a symmetric game .A;B/ with AT D A, hence A is itself
symmetric and B D A. Call such a game doubly symmetric.

Definition 15.13 A strategy x 2 �m is locally strictly efficient if it has an open
neighborhood U such that xAx > yAy for all y 2 U n fxg. �

For doubly symmetric games, local strict efficiency characterizes ESS.

Proposition 15.14 Let A D AT . Then x 2 ESS.A/ if and only if x is locally strictly

efficient.

Proof Let x 2 �m. For any y ¤ x and z D 1
2
x C 1

2
y, we have

yAy D xAx � 2xAz � 2zAx C 4zAz :

Hence, using the symmetry of A,

xAx � yAy D 4 ŒxAz � zAz� :

If x is locally strictly efficient, then this identity implies that x is locally superior,
and conversely. By Proposition 15.12, it follows that x is an ESS if and only if x is
locally strictly efficient. �

15.3 Replicator Dynamics and ESS

The concept of an evolutionary stable strategy is based on the idea of mutation.
Incorporation of the evolutionary concept of selection calls for a more explicitly
dynamic approach.

15.3.1 Replicator Dynamics

As before, consider a symmetric game described by the m � m matrix A. A mixed
strategy x 2 �m can be interpreted as a vector of population shares (a state) over the
pure strategies, evolving over time. To express time dependence, we write x D x.t/.
For each pure strategy i, the expected payoff of playing i when the population
is in state x is equal to eiAx, hence the average population payoff is equal toPm

iD1 xie
iAx D xAx. In the replicator dynamics it is assumed that population shares
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develop according to the differential equation

Pxi D dxi.t/=dt D
�
eiAx � xAx

�
xi (15.3)

for each pure strategy i D 1; 2; : : : ;m, where dependence on t is (partly) suppressed
from the notation. In other words, the share of the population playing strategy i

changes with rate proportional to the difference between the expected payoff of i

(individual fitness) and the average population payoff (average fitness).
To study the replicator dynamics in (15.3) one needs to apply the theory of

differential equations and dynamical systems. For a first analysis we can restrict
attention to a few basic concepts and facts.

For each initial state x.0/ D x0 2 �m, the system (15.3) induces a solution or
trajectory �.t; x0/ in �m. Call state x a stationary point of the dynamics (15.3) if
Px D .Px1; : : : ; Pxm/ D .0; : : : ; 0/. If m D 2 then Px1 D 0 or Px2 D 0 is sufficient for
x to be a stationary point, since (15.3) implies the natural condition

Pm
iD1 Pxi D 0.

Note that any ei is a stationary point—this is a more or less artificial property of the
replicator dynamics. A state x is Lyapunov stable if every open neighborhood B of
x contains an open neighborhood B0 of x such that �.t; x0/ 2 B for all x0 2 B0 and
t � 0. A state x asymptotically stable if it is Lyapunov stable and it has an open
neighborhood B� such that limt!1 �.t; x0/ D x for all x0 2 B�. It is easy to see that
Lyapunov stability implies stationarity.

Before studying the replicator dynamics in more detail, we state the following
useful fact without proof—see the Notes to this chapter for a reference. By �m

0 we
denote the (relative) interior of the set �m, i.e., �m

0 D fx 2 �m j x > 0g is the set
of completely mixed strategies or states.

Proposition 15.15 The replicator dynamics (15.3) has a unique solution �.t; x0/,

t 2 R, through any initial state x0 2 �m. The solution mapping � W R ��m ! �m

is continuous, and continuously differentiable with respect to time. Both �m
0 and

�m n �m
0 are invariant, that is, �.t; x0/ 2 �m

0 for all t whenever x0 2 �m
0 and

�.t; x0/ 2 �m n�m
0 for all t whenever x0 2 �m n�m

0 .

15.3.2 Symmetric 2 � 2 Games

In order to analyze the replicator dynamics for symmetric 2�2 games corresponding
to A, we can without loss of generality restrict attention again to the normalized
game

A0 D
�

a1 0

0 a2

�
:

Now (15.3) reduces to

Px1 D Œa1x1 � a2x2�x1x2 (15.4)
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(and Px2 D �Px1). For case (1) in Sect. 15.1.1, a1 < 0 and a2 > 0, the stationary
points of the dynamics are x D e1 and x D e2. For all other x, Px1 < 0, which implies
that the system then converges to e2, the unique ESS. Hence, the (unique) ESS is
also the (unique) asymptotically stable state.

From the answers to Problems 15.5 and 15.6 we have:

Proposition 15.16 Let A be a generic 2�2matrix and let x 2 �2. Then x 2 ESS.A/

if and only if x is an asymptotically stable state of the replicator dynamics.

Note that this proposition implies Proposition 8.5(b). Part (a) of Proposition 8.5
follows from Problem 15.2.

15.3.3 Dominated Strategies

Does the replicator dynamics discard of dominated strategies? One answer to this
question is provided by the following proposition, which states that if we start from
a completely mixed strategy eventually all strictly dominated pure strategies vanish,
i.e., their population shares converge to zero.

Proposition 15.17 Let x0 2 �m be completely mixed and let pure strategy i be

strictly dominated. Then limt!1 �i.t; x
0/ D 0 :

Proof Let i be strictly dominated by y 2 �m and let

" D min
x2�m

yAx � eiAx :

By continuity of the expected payoff function and compactness of�m, " > 0. Define
vi W �m

0 ! R by vi.x/ D ln xi �
Pm

jD1 yj ln.xj/. The function vi is differentiable,

with time derivative at any point x D �.t; x0/ equal to

Pvi.x/ D
�

dvi.�.t; x
0//

dt

�

�.t;x0/Dx

D
mX

jD1

@vi.x/

@xj

Pxj

D Pxi

xi

�
mX

jD1

yj Pxj

xj

D .ei � x/Ax �
mX

jD1

yj.e
j � x/Ax

D .ei � y/Ax � �" < 0 :
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(Cf. Proposition 15.15.) Hence, vi.�.t; x
0// decreases to minus infinity as t ! 1.

This implies ln.�.t; x0// decreases to minus infinity, so that �i.t; x
0/ ! 0. �

Proposition 15.17 remains true for pure strategies i that are iteratively strictly
dominated. For weakly dominated strategies several things may happen, see Prob-
lem 15.7.

15.3.4 Nash Equilibrium Strategies

Consider again the finite symmetric two-player game with payoff matrix A. What
is the relation between the replicator dynamics and Nash equilibrium strategies?
The answer is given by the following proposition, where ST.A/ denotes the set of
stationary states, hence (check!):

ST.A/ D fx 2 �m j 8i 2 C.x/ ŒeiAx D xAx�g : (15.5)

Proposition 15.18 For any finite symmetric two-player game with payoff matrix A

we have:

(a) fe1; : : : ; emg [ NE.A/ � ST.A/,

(b) ST.A/ \�m
0 D NE.A/ \�m

0 ,

(c) ST.A/ \ �m
0 is a convex set and if z 2 �m is a linear combination of states in

this set, then z 2 NE.A/.

Proof It is straightforward from (15.3) that ei 2 ST.A/ for every pure strategy i. If
x 2 NE.A/, then every i 2 C.x/ is a pure best reply, hence eiAx D xAx. Hence,
x 2 ST.A/. This proves (a). As to (b), part (a) implies that ST.A/\�m

0 � NE.A/\
�m
0 . Further, eiAx D xAx for every x 2 ST.A/ \ �m

0 and every i 2 �m, so that
x 2 NE.A/\�m

0 . This proves (b).
It remains to prove the last claim. Let x and y be completely mixed stationary

points, and let ˛; ˇ 2 R and z D ˛x C ˇy 2 �m. For any pure strategy i we have

eiAz D ˛eiAx C ˇeiAy D ˛xAx C ˇyAy

since x; y 2 ST.A/\�m
0 . This implies that actually eiAz D zAz for all pure strategies

i, hence z is stationary. If z is completely mixed, then we are done by part (b).
Otherwise, z is a boundary point of ST.A/ \�m

0 and hence of NE.A/ \�m
0 , so z 2

NE.A/ since NE.A/ is a closed set. Finally, since�m is convex and z 2 ST.A/\�m
0

for all ˛; ˇ � 0 with ˛ C ˇ D 1, ST.A/\�m
0 is a convex set. �

Proposition 15.18 implies that every (symmetric) Nash equilibrium is stationary.
The weakest form of dynamical stability, Lyapunov stability, leads to a refinement
of Nash equilibrium, as the next result shows.
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Proposition 15.19 Let x 2 �m be a Lyapunov stable stationary state. Then x 2
NE.A/.

Proof Suppose x … NE.A/. Then eiAx � xAx > 0 for some i 2 N. By continuity,
there is a ı > 0 and an open neighborhood U of x such that eiAy � yAy � ı

for all y 2 U \ �m. Let x0 2 U \ �m with x0i > 0. Then �i.t; x
0/ � x0i exp.ıt/

for all t � 0; this follows from the fact that the system P� D ı� has solution
�.t/ D �.0/ exp.ıt/. So �i.t; x

0/ increases exponentially from any x0 2 U \�m
0 with

x0i > 0. This contradicts Lyapunov stability of x. �

The final result in this subsection says that if a trajectory of the replicator dynamics
starts from an interior (completely mixed) state and converges, then the limit state
is a Nash equilibrium strategy.

Proposition 15.20 Let x0 2 �m
0 and x 2 �m such that x D limt!1 �.t; x0/. Then

x 2 NE.A/.

Proof Suppose that x … NE.A/. Then there is a pure strategy i and an " > 0 such that
eiAx � xAx D ". Hence, there is a T 2 R such that eiA�.t; x0/ � �.t; x0/A�.t; x0/ >
"=2 for all t � T. By (15.3), Pxi > xi "=2 for all t � T, and hence (as in the proof
of Proposition 15.19) �i.t; x

0/ > �i.T; x
0/ exp.".t � T/=2/ for all t � T. Since

�i.T; x
0/ > 0, this implies �i.t; x

0/ ! 1 as t ! 1, a contradiction. �

15.3.5 Perfect Equilibrium Strategies

In the preceding subsection we have seen that Lyapunov stability implies Nash
equilibrium. What are the implications of asymptotic stability?

First, asymptotic stability implies Lyapunov stability and therefore also Nash
equilibrium. Since Nash equilibrium implies stationarity, however, it must be the
case that an asymptotically stable Nash equilibrium strategy is isolated, meaning
that it has an open neighborhood in which there are no other Nash equilibrium
strategies. If not, there would be arbitrarily close stationary states, which conflicts
with asymptotic stability.

Second, asymptotic stability also implies perfection.

Proposition 15.21 Let x 2 �m be asymptotically stable. Then x 2 NE.A/ and x is

isolated. Moreover, .x; x/ is a perfect equilibrium in .A;AT/.

Proof We still have to prove that .x; x/ is a perfect equilibrium in .A;AT/. Suppose
not. Then x is weakly dominated by some y 2 �m n fxg, see Theorem 13.23. Hence
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yAz � xAz for all z 2 �m. Define v W �m ! R by

v.z/ D
X

i2C.z/

.yi � xi/ ln.zi/

for all z 2 �m. Similarly as in the proof of Proposition 15.17, we obtain that v is
nondecreasing along all interior solution trajectories of (15.3), i.e., at any z 2 �m

0

(so z completely mixed),

Pv.z/ D
X

i2C.z/

.yi � xi/
Pzi

zi

D
mX

iD1

.yi � xi/Œe
iAz � zAz� D .y � x/Az � 0 :

Since x is asymptotically stable, it has an open neighborhood U such that �.t; x0/ !
x for all x0 2 U \ �m. By nondecreasingness of v along all interior solution
trajectories this implies v.x/ � v.z/ for all z 2 U \�m

0 . We will construct, however,
a z in U\�m

0 with v.z/ > v.x/. This is a contradiction and, hence, x must be perfect.
To construct such a z, define for ı 2 .0; 1/, w 2 �m

0 , and " 2 Œ0; 1�,

z D .1 � "/Œ.1 � ı/x C ıy�C "w :

For " sufficiently small, we have yi > xi ) zi > xi and yi < xi ) zi < xi. Moreover,
z 2 �m

0 and

v.z/� v.x/ D
mX

iD1

.yi � xi/ ln.zi/ �
X

i2C.x/

.yi � xi/ ln.xi/

D
X

i2C.x/

.yi � xi/Œln.zi/ � ln.xi/�C
X

i…C.x/

yi ln.zi/ :

Note that the first term after the second inequality sign is positive. We will show
that the second term is zero, which completes the proof of the proposition, since
then v.z/ > v.x/. To show that

P
i…C.x/ yi ln.zi/ D 0, it is sufficient to show that

C.y/ � C.x/. Suppose that j 2 C.y/ and j … C.x/. By asymptotic stability of x,
�.t; x0/ ! x for all x0 2 U \�m

0 . Write

v.�.t; x0// D
X

iW�i.t;x0/>0;i2C.x/

.yi � xi/ ln.�i.t; x
0//

C
X

iW�i.t;x0/>0;i…C.x/

yi ln.�i.t; x
0// :
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The first term after the inequality sign is bounded by some constant  , since
�i.t; x

0/ ! xi > 0. The second term converges to �1 since �j.t; x
0/ ! xj D 0 and

yj > 0. But v.�.t; x0// ! �1 contradicts the nondecreasingness of v along the
trajectory �.t; x0/. �

15.4 Problems

15.1. Computing ESS in 2 � 2 Games (1)

Compute ESS.A/ for the following payoff matrices A.

(a) A D
�
4 0

5 3

�
(Prisoners’ Dilemma)

(b) A D
�
2 0

0 1

�
(Coordination game)

(c) A D
�

�1 4

0 2

�
(Hawk-Dove game)

15.2. Computing ESS in 2 � 2 Games (2)

Compute ESS.A0/ for each of the cases (1), (2), and (3) in Sect. 15.1.1. Compare
with your answers to Problem 15.1.

15.3. Rock-Paper-Scissors (1)

Show that the Rock-Paper-Scissors game

A D

0
@
1 2 0

0 1 2

2 0 1

1
A

has no ESS.

15.4. Uniform Invasion Barriers

Find the maximal value of the uniform invasion barrier for the ESS’s in each of the
cases (1), (2), and (3) in Sect. 15.1.1.

15.5. Replicator Dynamics in Normalized Game (1)

Show that A and A0 (see Sect. 15.3.2) result in the same replicator dynamics.

15.6. Replicator Dynamics in Normalized Game (2)

(a) Simplify the dynamics (15.4) for case (1) in Sect. 15.1.1 by substituting x2 D
1 � x1 and plot Px1 as a function of x1 2 Œ0; 1�.

(b) Carry out this analysis also for cases (2) and (3). What is your conclusion?
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15.7. Weakly Dominated Strategies and Replicator Dynamics

(a) Consider the matrix

A D
�
0 1

0 0

�
:

Investigate the trajectories of the replicator dynamics.
(b) Consider the matrix

A D

0
@
1 1 1

1 1 0

0 0 0

1
A :

Investigate the trajectories of the replicator dynamics.
[Cf. Proposition 15.17.]

15.8. Stationary Points and Nash Equilibria (1)

Consider the two-person symmetric game with payoff matrix

A D

0
@
0 2 0

2 0 0

1 1 0

1
A :

(a) Compute NE.A/.
(b) Compute ST.A/.

15.9. Stationary Points and Nash Equilibria (2)

Consider the two-person symmetric game with payoff matrix

A D

0
@
3 3 1

4 4 0

0 2 4

1
A :

(a) Compute NE.A/.
(b) Compute ST.A/.
(c) Which stationary states are asymptotically stable, which are Lyapunov stable,

and which are not Lyapunov stable?
(d) Show directly from the definition of local superiority that the strategy

x D .1=2; 0; 1=2/ is not locally superior. [Hint: consider the strategy
z D .1=2; �; 1=2� �/ for 0 < � < 1=2.]
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15.10. Lyapunov Stable States in 2 � 2 Games

Consider the normalized two-player symmetric 2 � 2 game A0. Compute the
Lyapunov stable states for cases (1), (2), and (3).

15.11. Nash Equilibrium and Lyapunov Stability

Consider the symmetric game with payoff matrix

A D

0
@
0 1 0

0 0 2

0 0 1

1
A :

Compute NE.A/. Show that the unique element in this set is not Lyapunov stable.

15.12. Rock-Paper-Scissors (2)

Consider the generalized Rock-Paper-Scissors game with payoff matrix

A D

0
@

1 2C a 0

0 1 2C a

2C a 0 1

1
A

where a 2 R.

(a) Write down the three equations of the replicator dynamics.
(b) Define h.x/ D ln.x1x2x3/ for x positive and show that Ph.x/ D 3C a � 3xAx.
(c) Show that the average payoff is equal to

xAx D 1C a

2
.1 � jjxjj2/

for each x 2 �3, where jjxjj is the Euclidean norm of x. Conclude that Ph.x/ D
a
2

�
3jjxjj2 � 1

�
.

(d) Show that Ph. 1
3
; 1
3
; 1
3
/ D 0 and Ph.x/ has the same sign as a for other x 2 �m.

(e) Show that the unique Nash equilibrium in this game is (i) asymptotically stable
for a > 0; (ii) Lyapunov but not asymptotically stable for a D 0; (iii) not
Lyapunov stable for a < 0.

15.5 Notes

This chapter is based mainly on Weibull (1995). The concept of an evolutionary
stable strategy was introduced by Maynard Smith and Price (1973). See Selten
(1980, 1983) for early applications of evolutionary stable strategies in game theory.

For properness of .x; x/, where x is an ESS (Proposition 15.8), see van Damme
(1991).
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Uniform invasion barriers were introduced by Vickers and Cannings (1987), and
local superiority by Hofbauer et al. (1979). Proposition 15.14 is due to Hofbauer
and Sigmund (1988).

Replicator dynamics were introduced by Taylor and Jonker (1978). Proposi-
tion 15.17 remains true for pure strategies i that are iteratively strictly dominated:
see Samuelson and Zhang (1992). For Proposition 15.21, in particular the result
that asymptotic stability implies perfection, see Bomze (1986). For more on weakly
dominated strategies see Weibull (1995), p. 83 ff. See Sect. 3.3.2 in the same book
for more on the relation between Lyapunov stability and Nash equilibrium. For a
proof of Proposition 15.15, see Weibull (1995), Proposition 3.20.

A general reference to the theory of differential equations and dynamical systems
is Hirsch and Smale (1974).
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Part III

Cooperative Games



16TU-Games: Domination, Stable Sets,
and the Core

In a game with transferable utility (TU-game) each coalition (subset of players) is
characterized by its worth, i.e., a real number representing the payoff or utility that
the coalition can achieve if it forms. It is assumed that this payoff can be freely
distributed among the members of the coalition in any way desired.

For some examples the reader is referred to Chap. 1. Chapter 9 presents a first
acquaintance with transferable utility games. Although the present chapter and the
following ones are self-contained, it may be helpful to study the relevant parts of
Chaps. 1 and 9 first.

In this chapter the focus is on the core of a transferable utility game. Section 16.1
starts with a weaker concept, the imputation set, and introduces the concept of
domination. Section 16.2 introduces the domination core and the core. Section 16.3
studies these solution concepts for a special class of TU-games called simple games.
In Sect. 16.4 we briefly review von Neumann and Morgenstern’s stable sets, which
are also based on the concept of domination. Section 16.5, finally, presents a
characterization of games with non-empty cores in terms of balancedness.

16.1 Imputations and Domination

We start with repeating the definition of a game with transferable utility (cf.
Definition 9.1).

Definition 16.1 A cooperative game with transferable utility or TU-game is a pair
.N; v/, where N D f1; : : : ; ng with n 2 N is the set of players, and v is a function
assigning to each coalition S, i.e., to each subset S � N a real number v.S/, such
that v.;/ D 0. The function v is called the characteristic function and v.S/ is called
the worth of S. The coalition N is called the grand coalition. A payoff distribution
for coalition S is a vector of real numbers .xi/i2S. �

© Springer-Verlag Berlin Heidelberg 2015
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The set of coalitions is also denoted by 2N , so that a TU-game is a pair .N; v/ with
v W 2N ! R such that v.;/ D 0. The game .N; v/ is often denoted by v if no
confusion about the set of players is likely to arise. Also, for a coalition fi; j; : : : ; kg
we sometimes write i; j; : : : ; k or ij : : : k instead of fi; j; : : : ; kg. By jSj we denote
the cardinality of a coalition S. By GN the set of all TU-games with player set N is
denoted.

We frequently use the notation x.S/ WD
P

i2S xi for a payoff distribution x D
.x1; : : : ; xn/ 2 R

N and a coalition S � N.
Let .N; v/ be a TU-game. A vector x 2 R

N is called an imputation if

(a) x is individually rational i.e.

xi � v.i/ for all i 2 N ;

(b) x is efficient i.e.

x.N/ D v.N/ :

The set of imputations of .N; v/ is denoted by I.v/. An element x 2 I.v/ is a payoff
distribution of the worth v.N/ of the grand coalition N which gives each player i a
payoff xi which is at least as much as he can obtain when he operates alone.

Example 16.2 A game v is called additive if v.S[T/D v.S/C v.T/ for all disjoint
coalitions S and T. Such a game is completely determined by the worths of the one-
person coalitions v.i/ (i 2 N), since v.S/ D

P
i2S v.i/ for every coalition S. For an

additive game v, I.v/ consists of one point: I.v/ D f.v.1/; v.2/; : : : ; v.n//g. �

Note that for a game v

I.v/ ¤ ; if and only if v.N/ �
nX

iD1

v.i/ :

For an essential game v, that is, a game with v.N/ �
Pn

iD1 v.i/, I.v/ is the
convex hull of the points: f1; f2; : : : ; fn where f i

k WD v.k/ if k ¤ i and f i
i WD

v.N/ �
P

k2Nnfig v.k/. (See Problem 16.1.)

Example 16.3 Let .N; v/ be a three-person game with v.1/ D v.3/ D 0, v.2/ D 3,
v.1; 2; 3/ D 5. Then I.v/ is the triangle with vertices f1 D .2; 3; 0/, f2 D .0; 5; 0/

and f3 D .0; 3; 2/. (See Fig. 16.1.) �
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Fig. 16.1 Example 16.3 (0, 0, 5)

f
3 = (0, 3, 2)

f
2 = (0, 5, 0)

f
1 = (2, 3, 0)

(5, 0, 0)

I(v)

Definition 16.4 Let .N; v/ be a game. Let y, z 2 I.v/, S 2 2N n f;g. Then y

dominates z via coalition S, denoted by y domS z, if

(1) yi > zi for all i 2 S ,
(2) y.S/ � v.S/ .

For y; z 2 I.v/, y is said to dominate z (notation: y dom z) if there is an S 2 2N n f;g
such that y domS z. �

Thus, imputation y dominates imputation z via coalition S if y is better than z for all
members i 2 S—this is condition (1)—and the payoffs .yi/i2S are attainable for the
members of S by cooperation—this is condition (2). Against each z in

D.S/ WD fz 2 I.v/ j there exists y 2 I.v/ with y domS zg

the players of S can protest successfully. The set D.S/ consists of the imputations
which are dominated via S. Note that always D.N/ D ; (see Problem 16.3). We call
x 2 I.v/ undominated if x 2 I.v/ n

S
S22N nf;g D.S/.

Example 16.5 Let .N; v/ be the three-person game with v.1; 2/ D 2, v.N/ D 1 and
v.S/ D 0 if S ¤ f1; 2g, N. Then D.S/ D ; if S ¤ f1; 2g and D.f1; 2g/ D fx 2
I.v/ j x3 > 0g. The elements x in I.v/ which are undominated are those that satisfy
x3 D 0. �

16.2 The Core and the Domination-Core

The concept of domination defined in the preceding section gives rise to the
following definition.

Definition 16.6 The domination core .D-core/ of a game .N; v/ is the set

DC.v/ WD I.v/ n
[

S22N nf;g

D.S/;
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i.e., the set of all undominated elements in I.v/. The core of a game .N; v/ is the set

C.v/ WD fx 2 I.v/ j x.S/ � v.S/ for all S 2 2N n f;gg: �

If x 2 C.v/, then no coalition S ¤ N has an incentive to split off if x is the proposed
payoff distribution in N, because the total amount x.S/ allocated to S is not smaller
than the amount v.S/ which the players in S can obtain by forming the coalition S.

For the game in Example 16.5 the D-core is nonempty and the core is empty. In
general the following holds.

Theorem 16.7 The core is a subset of the D-core for each TU-game.

Proof Let .N; v/ be a game and x 2 I.v/, x 62 DC.v/. Then there is a y 2 I.v/ and
a coalition S ¤ ; such that y domS x. Thus, v.S/ � y.S/ > x.S/, which implies that
x 62 C.v/. �

Elements of C.v/ can easily be obtained because the core is defined with the aid
of linear inequalities. The core is a polytope. Also the D-core is a convex set: see
Problem 16.2.

A natural question that arises is: for which games is the core equal to the D-core?
Consider the following condition on a game .N; v/:

v.N/ � v.S/C
X

i2NnS

v.i/ for all S 2 2N n f;g: (16.1)

It turns out that this condition is sufficient for the equality of core and D-core.

Theorem 16.8 Let .N; v/ be a game satisfying (16.1). Then DC.v/ D C.v/.

Proof In view of Theorem 16.7 it is sufficient to show that DC.v/ � C.v/.

Claim Let x 2 I.v/ with x.S/ < v.S/ for some S, then there is a y 2 I.v/ such that
y domS x.

To prove this claim, define y as follows. If i 2 S, then yi WD xiCjSj�1.v.S/�x.S//.
If i 62 S, then yi WD v.i/ C .v.N/ � v.S/ �

P
i2NnS v.i//jN n Sj�1. Then y 2 I.v/,

where yi � v.i/ for i 2 N n S follows from (16.1). Furthermore, y domS x. This
proves the claim.

To prove DC.v/ � C.v/, suppose x 2 DC.v/. Then there is no y 2 I.v/ with
y dom x. In view of the Claim it follows that x.S/ � v.S/ for all S 2 2N nf;g. Hence,
x 2 C.v/. �

Remark 16.9 Condition (16.1) is satisfied if the game v has a non-empty core. So
in that case, C.v/ D DC.v/. See also Problem 16.11. �
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Many games v derived from practical situations have the following property:

v.S [ T/ � v.S/C v.T/ for all disjoint S;T � N. (16.2)

A game satisfying (16.2) is called super-additive. Observe that (16.2) implies (16.1),
so that Theorem 16.8 holds for super-additive games in particular.

16.3 Simple Games

In this section we study the core and D-core of simple games. Simple games arise
in particular in political situations, see for instance the United Nations Security
Council example in Chap. 1.

Definition 16.10 A simple game .N; v/ is a game where every coalition has either
worth 0 or worth 1, and the grand coalition N has worth 1. Coalitions with worth
1 are called winning, the other coalitions are called losing. A minimal winning
coalition is a winning coalition for which every proper subset is losing. A player i is
called a dictator in a simple game .N; v/ if v.S/ D 1 if and only if i 2 S. A player i

is called a veto player in a simple game .N; v/ if i belongs to all winning coalitions.
The set of veto players of v is denoted by veto.v/. Hence,

veto.v/ D
\

fS 2 2N j v.S/ D 1g: �

The next example suggests that non-emptiness of the core has something to do with
the existence of veto players.

For each i 2 N let ei 2 R
n denote the vector with i-th coordinate equal to 1 and

all other coordinates equal to 0.

Example 16.11 (1) Let i 2 N. For the dictator game ıi, which is the simple game
with ıi.S/ D 1 if and only if i 2 S one has I.ıi/ D feig, veto.ıi/ D fig and
C.ıi/ D DC.ıi/ D feig.

(2) For the three-person majority game with v.S/ D 1 if jSj 2 f2; 3g and v.S/ D 0

if jSj 2 f0; 1g one has:

f1; 2g \ f1; 3g \ f2; 3g \ f1; 2; 3g D ; D veto.v/

and

C.v/ D DC.v/ D ; :

(3) Let T be a nonempty coalition. For the T-unanimity game uT , which is the
simple game with uT.S/ D 1 if and only if T � S, veto.uT/ D T and

C.uT/ D DC.uT/ D convfei j i 2 Tg : �
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The following theorem shows that the core of a simple game is nonempty if and only
if the game has veto players. Furthermore, core elements divide the total amount
v.N/ D 1 of the grand coalition among the veto players. The D-core is equal to the
core for simple games except in one case where there is exactly one k 2 N with
v.k/ D 1 and k is not a veto player. See also Example 16.13 below.

Theorem 16.12 Let .N; v/ be a simple game. Then:

(1) C.v/ D convfei 2 R
n j i 2 veto.v/g.

(2) If veto.v/ D ; and fi 2 N j v.i/ D 1g D fkg, then C.v/ D ; and DC.v/ D
fekg. Otherwise, DC.v/ D C.v/.

Proof

(a) Suppose i 2 veto.v/. Let S 2 2N nf;g. If i 2 S then ei.S/ D 1 � v.S/, otherwise
ei.S/ D 0 D v.S/. Obviously, ei.N/ D 1 D v.N/. So ei 2 C.v/. This proves the
inclusion � in (1) because C.v/ is a convex set.

(b) To prove the inclusion � in (1), let x 2 C.v/. It is sufficient to prove: i 62
veto.v/ ) xi D 0. Suppose, to the contrary, that xi > 0 for some non-veto
player i. Take S with v.S/ D 1 and i 62 S (such an S exists otherwise i would be
a veto player). Then x.S/ D x.N/� x.N n S/ � 1� xi < 1, contradicting the fact
that x is a core element. This concludes the proof of (1).

(c) If veto.v/ D ; and k is the only player in the set fi 2 N j v.i/ D 1g, then
C.v/ D ; by part (1), whereas I.v/ D fekg, hence DC.v/ D fekg. If veto.v/ D
; and fi 2 N j v.i/ D 1g D ; then (16.1) is satisfied, so that core and D-core
are equal by Theorem 16.8. If veto.v/ D ; and jfi 2 N j v.i/ D 1gj � 2 then
I.v/ D ; so that C.v/ D DC.v/ D ;.

(d) To complete the proof of (2), suppose veto.v/ ¤ ;. Then C.v/ ¤ ; by part (1).
Hence C.v/ D DC.v/ by Remark 16.9. �

Example 16.13 Let N D f1; 2; 3g, v.1/ D v.2; 3/ D v.1; 2; 3/ D 1 and v.S/ D 0

for the other coalitions. Then veto.v/ D ;, C.v/ D ;, DC.v/ D fe1g. Note that
this simple game is not super-additive, and does not satisfy (16.1). �

16.4 Stable Sets

The definition of a stable set is again based on the concept of domination. By way
of example, let v be the three-person game with all worths equal to 1 except for the
one-person coalitions, which have worth equal to 0. Observe that the three vectors
. 1
2
; 1
2
; 0/, . 1

2
; 0; 1

2
/, and .0; 1

2
; 1
2
/ are imputations that do not dominate each other.

Moreover, each imputation other than one of these three is dominated by one of
these three (see Problem 16.5). For this reason, von Neumann and Morgenstern
called the set of these three imputations a ‘solution’ of the game.
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Definition 16.14 Let v be a game and let A � I.v/. The set A is called a stable
set if

(1) if x; y 2 A then x does not dominate y,
(2) if x 2 I.v/ n A then there is a y 2 A that dominates x. �

The first property in Definition 16.14 is called internal stability and the second one
external stability .

The three-person game described above has many stable sets: see Problem 16.5.
But even if a game has only one stable set then still a selection would have
to be made, for practical purposes; stability, however, is a property of sets, not
of single payoff distributions. The core does not suffer from this problem and,
moreover, in that case there exist some plausible choices (like the nucleolus, see
Chap. 19). Moreover, games with non-empty cores have been exactly characterized
(see Sect. 16.5), whereas the problem of existence of stable sets is only partially
solved.

Some partial existence results are given now. First, essential simple games always
have stable sets:

Theorem 16.15 Let v be a simple game and let S be a minimal winning coalition.

Let�S be the set of those imputations x with xi D 0 for every i 62 S. Then, if�S ¤ ;,

it is a stable set.

Proof Problem 16.8. �

A game .N; v/ is called a zero-one game if all one-person coalitions have worth 0
and the grand coalition N has worth 1. In the following example symmetric three-
person zero-one games are considered.

Example 16.16 Let .N; v/ be a game with N D f1; 2; 3g and v.i/ D 0 for all i 2 N,
v.N/ D 1, and v.S/ D ˛ for every two-person coalition S, where 0 � ˛ � 1. Then:

(a) Let ˛ � 2
3
. Then

f.x; x; 1� 2x/; .x; 1 � 2x; x/; .1 � 2x; x; x/ j ˛
2

� x � 1

2
g (16.3)

is a stable set.
(b) For ˛ < 2

3
, the set in (16.3) is internally but not externally stable. The union of

this set with the core of the game is a stable set.
(c) For ˛ � 1

2
the core is a (the unique) stable set.

For the proofs of these statements see Problem 16.9. �

The next theorem gives the relation between the domination core and stable sets.
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Theorem 16.17 Let .N; v/ be a game. Then:

.a/ The D-core of v is a subset of any stable set.

.b/ If A and B are stable sets and A ¤ B, then A 6� B.

.c/ Suppose the D-core of v is a stable set. Then it is the unique stable set of the

game.

Proof Problem 16.10. �

16.5 Balanced Games and the Core

In this section we derive the Bondareva-Shapley Theorem, which characterizes
games with non-empty cores in terms of balancedness. First, the concepts of
balanced maps, collections, and games are introduced.

Let N D f1; 2; : : : ; ng. A map � W 2N n f;g ! RC WD ft 2 R j t � 0g is called a
balanced map if

X

S22N nf;g

�.S/eS D eN :

Here eS 2 R
N is the characteristic vector for coalition S with

eS
i D 1 if i 2 S and eS

i D 0 if i 2 N n S :

A collection B of nonempty coalitions is called a balanced collection if there is a
balanced map � such that

B D fS 2 2N j �.S/ > 0g :

Example 16.18

(1) Let the nonempty coalitions N1;N2; : : : ;Nk form a partition of N, i.e., N DSk
rD1 Nr and Ns \ Nt D ; if s ¤ t. Then fN1;N2; : : : ;Nkg is a balanced

collection, corresponding to the balanced map � with �.S/ D 1 if S 2
fN1;N2; : : : ;Nkg and �.S/ D 0 otherwise.

(2) For N D f1; 2; 3g the set B D ff1; 2g; f1; 3g; f2; 3gg is balanced and corresponds
to the balanced map � with �.S/ D 0 if jSj 2 f1; 3g and �.S/ D 1

2
if jSj D 2. �

In order to have an interpretation of a balanced map, one can think of each player
having one unit of time (or energy, labor, . . . ) to spend. Each player can distribute
his time over the various coalitions of which he is a member. Such a distribution is
‘balanced’ if it corresponds to a balanced map �, where �.S/ is interpreted as the
length of time that the coalition S exists (‘cooperates’); balancedness of � means
that each player spends exactly his one unit of time over the various coalitions.
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Definition 16.19 A game .N; v/ is called a balanced game if for each balanced map
� W 2N n f;g ! RC we have

X

S

�.S/v.S/ � v.N/ : (16.4)

�

Extending the interpretation of a balanced map in terms of a distribution of time to
a game, balancedness of a game could be interpreted as saying that it is at least as
productive to have the grand coalition operate during one unit of time as to have a
balanced distribution of time over various smaller coalitions—worths of coalitions
being interpreted as productivities. Thus, in a balanced game, it seems advantageous
to form the grand coalition. Indeed, technically the importance of the notion of
balancedness follows from Theorem 16.22. This theorem characterizes games with
a nonempty core. Its proof is based on the following duality theorem.

For x; y 2 R
n, x � y denotes the usual inner product: x � y D

Pn
iD1 xiyi.

Theorem 16.20 Let A be an n � p-matrix, b 2 R
p and c 2 R

n, and let fx 2 R
n j

xA � bg ¤ ; and fy 2 R
p j Ay D c; y � 0g ¤ ;. Then

minfx � c j xA � bg D maxfb � y j Ay D c; y � 0g :

Proof Problem 16.13. �

Remark 16.21 In Theorem 16.20 also the following holds: if one of the programs
is infeasible (i.e., one of the two sets in the theorem is empty), then both programs
do not have an optimal solution (i.e., neither the minimum nor the maximum are
attained). See Problem 16.14 for a proof. �

Theorem 16.22 Let .N; v/ be a TU-game. Then the following two assertions are

equivalent:

(1) C.v/ ¤ ;,

(2) .N; v/ is a balanced game.

Proof First note that C.v/ ¤ ; if and only if

v.N/ D minf
nX

iD1

xi j x 2 R
N ; x.S/ � v.S/ for all S 2 2N n f;gg : (16.5)

By the duality theorem, Theorem 16.20, equality (16.5) holds if and only if

v.N/ D maxf
X

�.S/v.S/ j
X

�.S/eS D eN ;� � 0g : (16.6)
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(Take for A the matrix with the characteristic vectors eS as columns, let c WD eN and
let b be the vector of coalitional worths. Obviously, the non-emptiness conditions in
Theorem 16.20 are satisfied.) Now (16.6) holds if and only if (16.4) holds. Hence
(1) and (2) are equivalent. �

An alternative proof of Theorem 16.22 can be based directly on Farkas’ Lemma
(Lemma 22.5): see Problem 16.15.

16.6 Problems

16.1. Imputation Set of an Essential Game

Prove that for an essential game v, I.v/ is the convex hull of the points f1; f2; : : : ; fn,
as claimed in Sect. 16.1.

16.2. Convexity of the Domination Core

Prove that for each game the domination core is a convex set.

16.3. Dominated Sets of Imputations

(a) Prove that for each game .N; v/, D.S/ D ; if jSj 2 f1; ng.
(b) Determine for each S the set D.S/ for the cost savings game (three communities

game) in Chap. 1. Answer the same question for the glove game in Chap. 1.

16.4. The Domination Relation

(a) Prove that dom and domS are irreflexive relations and that domS is transitive
and antisymmetric.1

(b) Construct a game .N; v/ and imputations x and y such that x dom y and y dom x.
(c) Construct a game .N; v/ and x; y; z 2 I.v/ with x dom y and y dom z and not

x dom z.

16.5. Stable Sets in a Three-Person Game

Let .f1; 2; 3g; v/ be the game with all worths equal to 1 except for the one-person
and the empty coalitions, which have worth equal to 0.

(a) Prove that each element of the imputation set of this game is dominated by
another element.

(b) Prove that in this game each x 2 I.v/ n A is dominated by an element of A WD
f. 1
2
; 1
2
; 0/, . 1

2
; 0; 1

2
/, .0; 1

2
; 1
2
/g.

(c) If c 2 Œ0; 1
2
/ and B WD fx 2 I.v/ j x3 D cg, then each element of I.v/ n B is

dominated by an element of B. Show this.

16.6. Singleton Stable Set

1See Sect. 11.1 for definitions.
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Prove that if a game .N; v/ has a one-element stable set then v.N/ D
P

i2N v.i/.

16.7. A Glove Game

Consider the three-person simple game v defined by

v.S/ WD
�
1 if S D f1; 2g or f2; 3g or f1; 2; 3g
0 otherwise.

(a) Show that any imputation .x1; x2; x3/ that is not equal to e2 is dominated by
another imputation.

(b) Compute the core and the domination core.
(c) Show that the domination core is not a stable set.
(d) Show that

B WD f.�; 1 � 2�; �/ j 0 � � � 1

2
g

is a stable set.

16.8. Proof of Theorem 16.15

Prove Theorem 16.15.

16.9. Example 16.16

Prove the statements in Example 16.16.

16.10. Proof of Theorem 16.17

Prove Theorem 16.17. Does this theorem also hold for the core instead of the
D-core?

16.11. Core and D-Core

Is (16.1) also a necessary condition for equality of the core and the D-core? (Cf.
Theorem 16.8.)

16.12. Strategic Equivalence

Let .N;w/ be strategically equivalent to .N; v/, that is, there are k 2 R; k > 0 and
a 2 R

N such that for each coalition S: w.S/ D kv.S/C a.S/. Show that

(i) C.w/ D kC.v/C a .WD fx 2 R
N j x D ky C a for some y 2 C.v/g/

(ii) DC.w/ D kDC.v/C a.

[The equalities (i) and (ii) express that the core and the D-core are covariant w.r.t.
strategic equivalence.]

16.13. Proof of Theorem 16.20

Prove Theorem 16.20. [Hint: use Theorem 22.6.]

16.14. Infeasible Programs in Theorem 16.20

Prove the claim made in Remark 16.21. [Hint: Suppose, say, that there is no y � 0

with Ay D c. Then, certainly, the max-program does not have an optimal solution.
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Use Farkas’ Lemma (Lemma 22.5) to conclude that there exists a vector z with
zA � 0 and z � c < 0. Suppose the min-program is feasible, i.e., there is an x with
xA � b. Then, show that the min-program does not have an optimal solution by
considering the vectors x C tz for t 2 R, t > 0.]

16.15. Proof of Theorem 16.22 Using Lemma 22.5

Prove Theorem 16.22 with the aid of Lemma 22.5. [Hint: List the nonempty
coalitions S � N as S1; : : : ; Sp (p D 2n �1) with Sp D N. Define the .n C n C p/� p

matrix A as follows. Column k < p is .eSk ;�eSk ;�ek/ where: eSk 2 R
n, e

Sk

i D 1

if i 2 Sk, e
Sk

i D 0 if i … Sk. Column p is .eN ;�eN ; 0/. Then C.N; v/ ¤ ; iff there
exists .z; z0;w/ 2 R

n � R
n � R

p with .z; z0;w/ � 0 and .z; z0;w/A D b, where
b D .v.Sk//

p

kD1. This has the form as in (a) of Lemma 22.5.]

16.16. Balanced Maps and Collections

(a) Show that for any balanced map � one has
P

S �.S/ � 1, with equality if and
only if the corresponding balanced collection equals fNg.

(b) If B is a balanced collection unequal to fNg, then

Bc WD fS 2 2N n f;g j N n S 2 Bg

is also a balanced collection. Give the corresponding balanced map.
(c) Let S 2 2N n f;;Ng. Prove that fS; .N n fig/i2Sg is balanced collection.
(d) Prove that the balanced maps form a convex set �n.

16.17. Minimum of Balanced Games

Show that the minimum of two balanced games is again balanced.

16.18. Balanced Simple Games

A simple game has a non-empty core if and only if it has veto players, cf.
Theorem 16.12(1). Derive this result from Theorem 16.22.

16.7 Notes

The concepts of domination, imputation, and stable set were introduced by von
Neumann and Morgenstern (1944/1947). The core was introduced by Gillies (1953).

Lucas (1969) gives an example of a(n essential) game that does not have a stable
set; see also Owen (1995), p. 253. Theorem 16.22 is due to Bondareva (1962) and
Shapley (1967).

Problem 16.6 is taken from Morris (1994).
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17The Shapley Value

In Chap. 16 set-valued solution concepts for games with transferable utilities were
studied: the imputation set, core, domination core, and stable sets. In this chapter,
a one-point (single-valued) solution concept is discussed: the Shapley value. It may
again be helpful to first study the relevant parts of Chaps. 1 and 9.

Section 17.1 introduces the Shapley value by several formulas and presents (a
variation on) Shapley’s axiomatic characterization using additivity. In Sect. 17.2 we
present three other characterizations of the Shapley value: a description in terms
of Harsanyi dividends; an axiomatic characterization of Young based on strong
monotonicity; and Owen’s formula for the Shapley value based on a multilinear
extension of games. Section 11.3 discusses Hart and Mas-Colell’s approach to the
Shapley value based on potential and reduced games.

17.1 Definition and Shapley’s Characterization

Let .N; v/ be a TU-game and let � W N ! N be a permutation of the player set.
Imagine that the players enter a room one by one in the ordering �.1/, �.2/, : : :,
�.n/ and give each player the marginal contribution he creates in the game. To be
more specific, let the set of predecessors of i in � be the coalition

P�.i/ WD fr 2 N j ��1.r/ < ��1.i/g :

For example, if N D f1; 2; 3; 4; 5g and �.1/ D 2, �.2/ D 5, �.3/ D 4, �.4/ D 1,
and �.5/ D 3, player 2 enters first, next players 5, 4, 1, and 3. So P� .1/ D f2; 5; 4g.

Define the marginal vector m� by

m�
i D v.P� .i/ [ fig/ � v.P� .i// : (17.1)
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Thus, the marginal vector m� gives each player his marginal contribution to the
coalition formed by his entrance, according to the ordering � .1

Definition 17.1 The Shapley value ˆ.v/ of a game .N; v/ is the average of the
marginal vectors of the game, i.e.

ˆ.v/ WD 1

nŠ

X

�2….N/

m� : (17.2)

Here, ….N/ denotes the set of permutations of N. �

Example 17.2

(1) For a two-person game .N; v/ the Shapley value is

ˆ.v/ D
�
v.1/C v.N/ � v.1/ � v.2/

2
; v.2/C v.N/ � v.1/� v.2/

2

�
:

(2) Let .N; v/ be the three-person game with v.1/ D v.2/ D v.3/ D 0, v.1; 2/ D 4,
v.1; 3/ D 7, v.2; 3/ D 15, v.1; 2; 3/ D 20. Then the marginal vectors are given
in Table 17.1. The Shapley value of this game is equal to 1

6
.21; 45; 54/, as one

easily obtains from this table.
(3) The Shapley value ˆ.v/ for an additive game is equal to .v.1/; v.2/; : : : ;

v.n//. �

Based on (17.2), a probabilistic interpretation of the Shapley value is as follows.
Suppose we draw from an urn, containing the elements of ….N/, a permutation �
(probability .nŠ/�1). Then let the players enter a room one by one in the order � and
give each player the marginal contribution created by him. Then the i-th coordinate
ˆi.v/ ofˆ.v/ is the expected payoff to player i according to this random procedure.

Table 17.1
Example 17.2(2)

.�.1/; �.2/; �.3// m�
1 m�

2 m�
3

.1; 2; 3/ 0 4 16

.1; 3; 2/ 0 13 7

.2; 1; 3/ 4 0 16

.2; 3; 1/ 5 0 15

.3; 1; 2/ 7 13 0

.3; 2; 1/ 5 15 0P
21 45 54

1Of course, m� depends on the game v.
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Using (17.1) formula (17.2) can be rewritten as

ˆi.v/ D 1

nŠ

X

�2….N/

v.P� .i/ [ fig/ � v.P� .i// : (17.3)

The terms at the right hand side of the summation sign are of the form v.S [ fig/�
v.S/, where S is a subset of N not containing i. For how many orderings does
one have P� .i/ D S? The answer is jSjŠ.n � 1 � jSj/Š, where the first factor jSjŠ
corresponds to the number of orderings of S and the second factor .n � 1 � jSj/Š to
the number of orderings of N n .S [ fig/. Hence, (17.3) can be rewritten to obtain

ˆi.v/ D
X

SWi62S

jSjŠ.n � 1 � jSj/Š
nŠ

.v.S [ fig/ � v.S// : (17.4)

Note that

jSjŠ.n � 1 � jSj/Š
nŠ

D 1

n

�
n�1
jSj

��1

:

This gives rise to a second probabilistic interpretation of the Shapley value.
Construct a subset S to which i does not belong, as follows. First, draw at random
a number from the urn containing the numbers (possible sizes) 0; 1; 2; : : : ; n � 1,
where each number has probability n�1 to be drawn. If size s is chosen, draw a set
from the urn containing the subsets of N n fig of size s, where each set has the same

probability
�

n�1
s

��1
to be drawn. If S is drawn with jSj D s, then pay player i the

amount v.S [ fig/ � v.S/. Then, in view of (17.4), the expected payoff for player i

in this random procedure is the Shapley value for player i of the game .N; v/.
We next give an axiomatic characterization of the Shapley value. That is, we

formulate a number of properties that a one-point solution should (or might) have
and then show that the Shapley value is the only solution with these properties.

Definition 17.3 A value on GN is a map  W GN ! R
N .2 �

The following axioms for a value  W GN ! R
N are used in the announced

characterization of the Shapley value.

Efficiency (EFF):
Pn

iD1 i.v/ D v.N/ for all v 2 GN .

The efficiency (sometimes called Pareto optimality or Pareto efficiency) axiom
needs no further explanation.

Call a player i in a game .N; v/ a null-player if v.S [ i/ � v.S/ D 0 for every
coalition S 2 2N . Such a player does not contribute anything to any coalition, in

2Occasionally, also the word solution will be used.
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particular also v.i/ D 0. So it seems reasonable that such a player obtains zero
according to the value. This is what the following axiom requires.

Null-player Property (NP):  i.v/ D 0 for all v 2 GN and all null-players i in v.

Call players i and j symmetric in the game .N; v/ if v.S [ i/ D v.S [ j/ for
every coalition S � N n fi; jg. Symmetric players have the same contribution to
any coalition, and therefore it seems reasonable that they should obtain the same
payoff according to the value. That is the content of the following axiom.

Symmetry (SYM):  i.v/ D  j.v/ for all v 2 GN and all symmetric players i and j

in v.

In order to formulate the last axiom in the announced characterization, we define
the sum .N; v C w/ of two games .N; v/ and .N;w/ by .v C w/.S/ D v.S/C w.S/

for every S 2 2N .
This last axiom can be interpreted as follows. Suppose the game .N; v/ is played

today and the game .N;w/ tomorrow. If the value  is applied then player i obtains
in total:  i.N; v/C i.N;w/. One may also argue that, in total, the game .N; vC w/

is played and that, accordingly, player i should obtain  i.N; v C w/. The following
axiom expresses the possible point of view that these two evaluations should not
make a difference.

Additivity (ADD):  .v C w/ D  .v/C  .w/ for all v;w 2 GN .

The announced characterization is the following theorem.

Theorem 17.4 Let  W GN ! R
N be a value. Then  satisfies EFF, NP, SYM, and

ADD, if, and only if,  is the Shapley valueˆ.

The proof of Theorem 17.4 uses, through the additivity axiom, the fact that GN is
a linear space, with addition v C w and scalar multiplication .˛v/.S/ D ˛v.S/ for
all v;w 2 GN , S 2 2N , and ˛ 2 R. An obvious basis for GN is the set f1T 2 GN j
T 2 2N n f;gg, where 1T is the game defined by 1T.T/ D 1 and 1T.S/ D 0 for all
S ¤ T (cf. Problem 17.1). This basis is not very well suited for the present purpose
because the Shapley value ˆ.1T/ (T 2 2N n f;g) cannot easily be determined from
the axioms in Theorem 17.4: in particular, there is no null-player in the game 1T (cf.
Problem 17.1).

Another basis is the collection of unanimity games fuT 2 GN j T 2 2N n f;gg,
see Example 16.11(3) for the definition, and Problem 17.2. This basis is used in the
following proof.

Proof of Theorem 17.4 That the Shapley value satisfies the four axioms in the
theorem is the subject of Problem 17.3.
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Conversely, suppose  satisfies the four axioms. It has to be proved that  D ˆ.
Take v 2 GN . Then there are unique numbers cT (T ¤ ;) such that v D

P
T¤; cTuT .

(Cf. Problem 17.2.) By ADD of  and ˆ it follows that

 .v/ D
X

T¤;

 .cT uT/ ; ˆ.v/ D
X

T¤;

ˆ.cTuT/ :

So it is sufficient to show that for all T ¤ ; and c 2 R:

 .cuT/ D ˆ.cuT/ : (17.5)

Take T ¤ ; and c 2 R. Note first that for all i 2 N n T:

cuT.S [ fig/� cuT.S/ D 0 for all S ;

implying that i is a null-player in cuT . So, by NP of  and ˆ:

 i.cuT/ D ˆi.cuT/ D 0 for all i 2 N n T : (17.6)

Now suppose that i; j 2 T, i ¤ j. Then, for every coalition S � Nnfi; jg, cuT.S[i/ D
cuT.S [ j/ D 0, which implies that i and j are symmetric in cuT . Hence, by SYM of
 and ˆ:

ˆi.cuT/ D ˆj.cuT/ for all i; j 2 T (17.7)

and

 i.cuT/ D  j.cuT/ for all i; j 2 T : (17.8)

Then EFF and (17.6)–(17.8) imply that

 i.cuT/ D ˆi.cuT/ D jTj�1c for all i 2 T : (17.9)

Now (17.6) and (17.9) imply (17.5). �

The following two axioms (for a value  ) are stronger versions of the null-player
property and symmetry, respectively. Call a player i in a game .N; v/ a dummy
player if v.S [ i/ � v.S/ D v.i/ for all S � N n fig.

Dummy player Property (DUM):  i.v/ D v.i/ for all v 2 GN and all dummy
players i in v.

A dummy player only contributes his own worth to every coalition, and that is what
he should be payed according to the dummy property.
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For a permutation � 2 ….N/ define the game v� by

v� .S/ WD v.��1.S// for all S 2 2N

and define �� W RN ! R
N by .��.x//�.k/ WD xk for all x 2 R

N and k 2 N.

Anonymity (AN):  .v� / D ��. .v// for all v 2 GN and all � 2 ….N/.
Anonymity implies that a value does not discriminate between the players solely on
the basis of their ‘names’ (i.e., numbers).

The dummy player property implies the null-player property, and anonymity
implies symmetry. The Shapley value has the dummy player property. See Prob-
lem 17.4 for these claims.

The Shapley value is also anonymous.

Lemma 17.5 The Shapley value ˆ is anonymous.

Proof

(1) First we show that

��.m� .v// D m�� .v�/ for all v 2 GN ; �; � 2 �.N/ :

This follows because for all i 2 N:

m�� .v�/��.i/ D v�.f��.1/; : : : ; ��.i/g � v�.f��.1/; : : : ; ��.i � 1/g/
D v.f�.1/; : : : ; �.i/g/ � v.f�.1/; : : : ; �.i � 1/g/
D .m� .v//�.i/ D .��.m� .v///��.i/ :

(2) Take v 2 GN and � 2 ….N/. Then (1), the fact that � 7! �� is a surjection on
….N/ and the linearity of �� imply:

ˆ.v�/ D 1

nŠ

X

�2….N/

m� .v�/ D 1

nŠ

X

�

m�� .v�/ D

D 1

nŠ

X

�

��.m� .v// D ��.
1

nŠ

X

�

m� / D ��.ˆ.v// :

This proves the anonymity of ˆ. �

We have seen so far that the Shapley value has many appealing properties. In
the following sections even more properties and characterizations of the Shapley
value are considered. However, it also has some drawbacks. In a balanced game the
Shapley value does not necessarily assign a core element. Also, it does not have to
be individually rational (cf. Problem 17.5).
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Variations of the Shapley value, obtained by omitting the symmetry (or
anonymity) requirement in particular, are discussed in Chap. 18.

17.2 Other Characterizations

In this section three other characterizations of the Shapley value are discussed: the
dividend approach, an axiomatization based on a monotonicity condition, and the
so-called multilinear approach.

17.2.1 Dividends

With each game we can associate another game by computing the dividends of
coalitions.

Definition 17.6 Let .N; v/ be game. For each coalition T the dividend �v.T/ is
defined, recursively, as follows.

�v.;/ WD 0

�v.T/ WD v.T/ �
X

SWS T

�v.S/ if jTj � 1 :

�

The relation between dividends and the Shapley value is described in the next
theorem. The Shapley value of a player in a game turns out to be the sum of all
equally distributed dividends of coalitions to which the player belongs.

Theorem 17.7 Let v D
P

T22N nf;g cTuT .as in Problem 17.2/. Then:

(a) �v.T/ D cT for all T ¤ ;.

(b) The Shapley value ˆi.v/ for player i is equal to the sum of the equally

distributed dividends of the coalitions to which player i belongs i.e.,

ˆi.v/ D
X

TWi2T

�v.T/

jTj :

Proof In the proof of Theorem 17.4 it was shown that ˆ.cTuT/ D jTj�1cTeT for
each T, so by ADD, ˆ.v/ D

P
T¤; cT jTj�1eT . Hence, ˆi.v/ D

P
TWi2T cT jTj�1.

The only thing left to show is that

cT D �v.T/ for all T ¤ ; : (17.10)
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The proof of this is done by induction. If jTj D 1, say T D fig, then cT D
v.i/ D �v.T/. Suppose (17.10) holds for all S   T. Then �v.T/ D v.T/ �

P
S T

�v.S/ D v.T/ �
P

S T cS D cT because v.T/ D
P

S�T cS. �

17.2.2 Strong Monotonicity

The Shapley value obviously has the property that if a player contributes at least as
much to any coalition in a game v than in a game w, then his payoff from the Shapley
value in v is at least as large as that in w. Formally, the Shapley value satisfies the
following axiom for a value  W GN ! R

N ; a proof is immediate from (17.4).

Strong Monotonicity (SMON):  i.v/ �  i.w/ for all v, w 2 GN that satisfy

v.S [ fig/ � v.S/ � w.S [ fig/ � w.S/ for all S 2 2N :

We now show that together with efficiency and symmetry this axiom characterizes
the Shapley value. For T � N denote by eT 2 R

N the vector with eT
i D 1 if i 2 T

and eT
i D 0 if i … T.

Theorem 17.8 Let  W GN ! R
N be a value. Then  satisfies EFF, SYM, and

SMON, if and only if  is the Shapley value ˆ.

Proof Obviously, ˆ satisfies the three axioms. Conversely, suppose  satisfies the
three axioms.

(1) Let z be the game that is identically zero. In this game, all players are symmetric,
so SYM and EFF together imply  .z/ D 0.

(2) Let i be a null-player in a game v. Then the condition in SMON applies to z

and v with all inequalities being equalities. So SMON yields  i.v/ �  i.z/ and
 i.z/ �  i.v/. Hence by (1),  i.v/ D 0.

(3) Let c 2 R and T 2 2N n f;g. Then (2) implies  i.cuT/ D 0 for every i 2
N n T. This, SYM, and EFF imply  i.cuT/ D cjTj�1 for every i 2 T. Hence,
 .cuT/ D cjTj�1eT .

(4) Each v 2 GN can be written in a unique way as a linear combination of fuT j
T 2 2N n f;gg (see Problem 17.2). So v is of the form

P
cTuT . The proof of

 .v/ D ˆ.v/ will be completed by induction on the number ˛.v/ of terms inP
cTuT with cT ¤ 0.

From (1),  .v/ D ˆ.v/ D 0 if ˛.v/ D 0, and from (3),  .v/ D ˆ.v/ if ˛.v/ D 1

becauseˆ.cuT/ D cjTj�1eT . Suppose .w/ D ˆ.w/ for all w 2 GN with ˛.w/ < k,
where k � 2. Let v be a game with ˛.v/ D k. Then there are coalitions T1, T2, : : :,
Tk and real numbers c1, c2, : : :, ck, unequal to zero, such that v D

Pk
rD1 cruTr

. Let
D WD \k

rD1Tr.
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For i 2 N n D, define wi WD
P

rWi2Tr
cruTr

. Because ˛.wi/ < k, the induction
hypothesis implies:  i.w

i/ D ˆi.w
i/. Further, for every S 2 2N :

v.S [ i/ � v.S/ D
kX

rD1

cruTr
.S [ i/ �

kX

rD1

cruTr
.S/

D
X

rWi2Tr

cruTr
.S [ i/ �

X

rWi2Tr

cruTr
.S/

D wi.S [ i/ � wi.S/ ;

so that, by SMON of  and ˆ, it follows that  i.v/ D  i.w
i/ D ˆi.w

i/ D ˆi.v/.
So

 i.v/ D ˆi.v/ for all i 2 N n D : (17.11)

Equation (17.11) and EFF for  and ˆ yield

X

i2D

 i.v/ D
X

i2D

ˆi.v/ : (17.12)

Let i; j 2 D, then for every S � N n fi; jg:

.0 D/ v.S [ i/ D
kX

rD1

cruTr
.S [ i/ D

kX

rD1

cruTr
.S [ j/ D v.S [ j/ ;

so i and j are symmetric. Hence, by SYM of  and ˆ:

 i.v/ D  j.v/; ˆi.v/ D ˆj.v/ : (17.13)

Now  .v/ D ˆ.v/ follows from (17.11)–(17.13). �

17.2.3 Multilinear Extension

The Shapley value of a game may also be described by means of the multilinear
extension of a game. Let .N; v/ be game. Consider the function f W Œ0; 1�N ! R on
the hypercube Œ0; 1�N , defined by

f .x1; x2; : : : ; xn/ D
X

S22N

0
@Y

i2S

xi

Y

i2NnS

.1 � xi/

1
A v.S/ : (17.14)
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Observe that the set of extreme points3 of Œ0; 1�N , ext.Œ0; 1�N/, is equal to feS j S 2
2Ng. Clearly,

f .eS/ D v.S/ for each S 2 2N : (17.15)

So f can be seen as an extension of Qv: ext.Œ0; 1�N/ ! R with Qv.eS/ WD v.S/. In view
of Problem 17.8, f is called the multilinear extension of ( Qv or) v.

One can give a probabilistic interpretation of f .x/. Suppose that each of the
players i 2 N, independently, decides whether to cooperate (probability xi) or not
(probability 1�xi). So with probability

Q
i2S xi

Q
i2NnS .1�xi/ the coalition S forms,

which has worth v.S/. Then f .x/ as given in (17.14) can be seen as the expectation
of the worth of the formed coalition.

Another interpretation is to see x 2 Œ0; 1�N as a fuzzy set, where xi is the intensity
of availability of player i and to see f as a characteristic function, defined for fuzzy
coalitions in N.

Denote by Dkf .x/ the derivative of f w.r.t. the k-th coordinate in x. The following
result provides another description of the Shapley value, namely as the integral along
the main diagonal of Œ0; 1�N of Dkf .

Theorem 17.9 ˆk.v/ D
R 1
0
.Dkf /.t; t; : : : ; t/dt for each k 2 N.

Proof

Dkf .x/ D
X

TWk2T

2
4 Y

i2Tnfkg

xi

Y

i2NnT

.1 � xi/

3
5 v.T/

�
X

SWk 62S

2
4Y

i2S

xi

Y

i2Nn.S[fkg/

.1 � xi/

3
5 v.S/

D
X

SWk 62S

2
4Y

i2S

xi

Y

i2Nn.S[fkg/

.1 � xi/

3
5 .v.S [ fkg/ � v.S// :

Hence,
R 1
0
.Dkf /.t; t; : : : ; t/dt D

P
SWk 62S .

R 1
0

tjSj.1� t/n�jSj�1dt/ .v.S [ fkg/� v.S//.
Using the well-known (beta-)integral formula (cf. Problem 17.9)

Z 1

0

tjSj.1 � t/n�jSj�1dt D jSjŠ.n � jSj � 1/Š
nŠ

3Cf. Sect. 22.6.
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it follows that
R 1
0
.Dkf /.t; t; : : : ; t/dt D

P
SWk 62S

jSjŠ.n�jSj�1/Š
nŠ

.v.S [ fkg/ � v.S// D
ˆk.v/ by (17.4). �

Example 17.10 Let .N; v/ be the three-person game with v.1/ D v.2/ D v.3/ D
v.1; 2/ D 0, v.1; 3/ D 1, v.2; 3/ D 2, v.N/ D v.1; 2; 3/ D 4. Then f .x1; x2; x3/ D
x1.1� x2/x3 C 2.1� x1/ x2x3 C 4x1x2x3 D x1x3 C 2x2x3 C x1x2x3 for all x 2 Œ0; 1�N .

So D1f .x/ D x3 C x2x3, D2f .x/ D 2x3 C x1x3, D3f .x/ D x1 C 2x2 C x1x2.
Theorem 17.9 implies:

ˆ1.v/ D
Z 1

0

D1f .t; t; t/dt D
Z 1

0

.t C t2/dt D 5

6
;

ˆ2.v/ D
Z 1

0

.2t C t2/dt D 1
1

3
; ˆ3.v/ D

Z 1

0

.3t C t2/dt D 1
5

6
:

�

17.3 Potential and Reduced Game

This section starts with discussing the potential approach to the Shapley value. The
potential is, in a sense, dual to the concept of dividends. Next, reduced games are
considered, which leads to another axiomatic characterization of the Shapley value.

17.3.1 The Potential Approach to the Shapley Value

Denote by G the family of all games .N; v/ with an arbitrary finite (player) set N

(not necessarily the set of the first n natural numbers). It is convenient to include
also the game .;; v/, with empty player set. Thus,

G D
[

N�N; jNj<1

GN :

Definition 17.11 A potential is a function P W G ! R satisfying

P.;; v/ D 0 (17.16)
X

i2N

DiP.N; v/ D v.N/ for all .N; v/ 2 G : (17.17)

Here DiP.N; v/ WD P.N; v/ � P.N n fig; v/, where v in the last expression is the
restriction to N n fig. �
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If P is a potential then (17.17) says that the gradient grad P.N; v/ WD .DiP.N; v//i2N

is an efficient payoff vector for the game .N; v/.
Note that

P.fig; v/ D v.fig/

P.fi; jg; v/ D 1

2
.v.fi; jg/C v.fig/C v.fjg//

if P is a potential. More generally, it follows from (17.17) that

P.N; v/ D jNj�1.v.N/C
X

i2N

P.N n fig; v// : (17.18)

So the potential of .N; v/ is uniquely determined by the potential of subgames of
.N; v/, which implies with (17.16) the first assertion in Theorem 17.12 below. The
second assertion in this theorem connects the potential of a game to the dividends
(see Sect. 17.2.1) of a game. Further, the gradient of P in .N; v/ is equal to the
Shapley value of .N; v/. The theorem also provides an algorithm to calculate the
Shapley value, by calculating with (17.16) and (17.18) the potentials of the game
and its subgames and then using Theorem 17.12(c).

Theorem 17.12

(a) There is a unique potential P W G ! R.

(b) P.N; v/ D
P

;¤T�N cT jTj�1 for v D
P

;¤T�N cTuT .

(c) grad P.N; v/ D ˆ.N; v/.

Proof Part (a) follows immediately from (17.16) and (17.18). For (b) and (c), let
Q W G ! R be defined by Q.;; v/ WD 0 and Q.N; v/ WD

P
T22N nf;g cT jTj�1 for all

.N; v/, where v D
P

cTuT , if N ¤ ;. Further, for each .N; v/ and i 2 N

DiQ.N; v/ D
X

;¤T�N

cT jTj�1 �
X

;¤T�Nnfig

c0
T jTj�1 (17.19)

if v D
P

;¤T�N cTuT and v0 D
P

;¤T�Nnfig c0
TuT where v0 is the restriction of v to

2Nnfig. Since, for each S � N n fig, we have

X

;¤T�Nnfig

cTuT.S/ D v.S/ D v0.S/ D
X

;¤T�Nnfig

c0
TuT.S/
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we obtain by recursion that cT D c0
T for all ; ¤ T � N n fig. But then (17.19) and

Theorem 17.7 imply

DiQ.N; v/ D
X

TW i2T

cT jTj�1 D ˆi.N; v/ :

Further, by efficiency (EFF) of ˆ:

X

i2N

DiQ.N; v/ D
X

i2N

ˆi.N; v/ D v.N/ :

So Q is a potential. From (a) it follows that Q D P and then (c) holds. �

The potential of a game can also be expressed directly in terms of the coalitional
worths, as in the following theorem.

Theorem 17.13 For each game .N; v/ 2 G:

P.N; v/ D
X

S�N

.jSj � 1/Š.jNj � jSj/Š
jNjŠ v.S/ :

Proof Let for each .N; v/ 2 G,

Q.N; v/ WD
X

S�N

.jSj � 1/Š.jNj � jSj/Š
jNjŠ v.S/ :

Then Q.;; v/ D 0. It is sufficient for the proof of Q.N; v/ D P.N; v/, to show that
DiQ.N; v/ D ˆi.N; v/ for all i 2 N. Now

DiQ.N; v/ D Q.N; v/ � Q.N n fig; v/

D
X

T�N

.jTj � 1/Š.jNj � jTj/Š
jNjŠ v.T/

�
X

S�Nnfig

.jSj � 1/Š.jNj � 1 � jSj/Š
.jNj � 1/Š v.S/

D
X

S�Nnfig

jSjŠ.jNj � jSj � 1/Š

jNjŠ v.S [ fig/

C
X

S�Nnfig

.jSj � 1/Š.jNj � jSj/Š
jNjŠ v.S/
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�
X

S�Nnfig

.jSj � 1/Š.jNj � 1 � jSj/Š
.jNj � 1/Š v.S/

D
X

S�Nnfig

jSjŠ.jNj � jSj � 1/Š

jNjŠ .v.S [ fig/� v.S// D ˆi.N; v/

where the last equality follows from (17.4). �

A probabilistic interpretation of Theorem 17.13 is the following. The number
jNj�1P.N; v/ is the expectation of the normalized worth jSj�1v.S/ of the formed

coalition S � N if the probability that S forms is jNj�1
�jNj

jSj

��1
(corresponding to

drawing first a size s 2 f1; 2; : : : ; jNjg and then a set S with jSj D s).
Theorem 17.12 can be used to calculate the Shapley value, as the following

example shows.

Example 17.14 Consider the three-person game .N; v/ given in Table 17.2. The
dividends of the subcoalitions and the potential of the subgames are given in lines 3
and 4 of this table, respectively. It follows that

ˆ.N; v/ D .D1P.N; v/;D2P.N; v/;D3P.N; v//

D .10
1

3
� 7; 101

3
� 5; 10

1

3
� 4/ D .3

1

3
; 5
1

3
; 6
1

3
/

ˆ.f2; 3g; v/ D .7 � 3; 7 � 2/ D .4; 5/ :

�

17.3.2 Reduced Games

To introduce the concept of a reduced game, consider the game in Example 17.14.
Suppose that the players agree on using the Shapley value, and consider the coalition
f1; 2g. If players 1 and 2 pool their Shapley value payoffs then together they have
3 1
3

C 5 1
3

D 8 2
3
. Another way to obtain this amount is to take the worth of the grand

coalition, 15, and to subtract player 3’s payoff, 6 1
3
. Consider f1g as a subcoalition

of f1; 2g. Player 1 could form a coalition with player 3 and obtain the worth 6, but

Table 17.2 Example 17.14 S ; f1g f2g f3g f1; 2g f1; 3g f2; 3g f1; 2; 3g

v.S/ 0 1 2 3 5 6 9 15

�v.S/ 0 1 2 3 2 2 4 1

�v.S/=jSj 0 1 2 3 1 1 2 1
3

P.S; v/ 0 1 2 3 4 5 7 10 1
3

ˆ.N; v/ D .3 1
3
; 5 1

3
; 6 1

3
/
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he would have to pay player 3 according to the Shapley value of the two-player
game .f1; 3g; v/, which is the vector .2; 4/; recall that the players agree on using the
Shapley value. So player 1 is left with 6 � 4 D 2. Similarly, player 2 could form a
coalition with player 3 and obtain v.2; 3/ D 9 minus the Shapley value payoff for
player 3 in the game .f2; 3g; v/, which is 5. So player 2 is left with 9 � 5 D 4. So
a ‘reduced’ game .f1; 2g; Qv/ has been constructed with Qv.1/ D 2, Qv.2/ D 4, and
Qv.1; 2/ D 8 2

3
. The Shapley value of this game is the vector .3 1

3
; 5 1

3
/. Observe that

these payoffs are equal to the Shapley value payoffs in the original game. This is not
a coincidence; the particular way of constructing a reduced game as illustrated here
leaves the Shapley value invariant.

A general game theoretic principle is the following. Suppose in a game a subset
of the players consider the game arising among themselves; then, if they apply the
same ‘solution rule’ as in the original game, their payoffs should not change—they
should have no reason to renegotiate. Of course, the formulation of this principle
leaves open many ways to define ‘the game arising among themselves’. Different
definitions correspond to different solution rules. Put differently, there are many
ways to define reduced games, leading to many different ‘reduced game properties’
as specific instances of the above general game theoretic principle. Instead of
‘reduced game property’ also the term ‘consistency’ is used. This concept has been
very fruitful over the past decades—in cooperative as well as noncooperative game
theory. (For a reduced game approach to Nash equilibrium see Sect. 13.8.)

For the Shapley value the following reduced game turns out to be relevant. It is
the reduced game applied in the example above.

Definition 17.15 Let be a value, assigning to each .N; v/ 2 G a vector .N; v/ 2
R

N . For .N; v/ 2 G and U � N, U ¤ ;, the game .N n U; vU; / is defined by
vU; .;/ D 0 and

vU; .S/ WD v.S [ U/�
X

k2U

 k.S [ U; v/ for all S 2 2NnU n f;g :

vU; is called the .U;  /-reduced game of v. �

Thus, the worth of coalition S in the game vU; is obtained by subtracting from the
worth of S [ U in the game .S [ U; v/ the payoffs of the players in U according to
the value  . The reduced game property or consistency property for a value  on G

based on this reduced game is the following.

HM-consistency (HMC)4: for all games .N; v/ and all U � N, U ¤ ;

 i.N n U; vU; / D  i.N; v/ for all i 2 N n U : (17.20)

The following lemma is used in the proof of HM-consistency of the Shapley value.

4Named after Hart and Mas-Colell.
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Lemma 17.16 Let .N; v/ 2 G. Suppose Q W 2N ! R satisfies

X

i2S

.Q.S/� Q.S n fig// D v.S/ for each S 2 2N n f;g :

Then for each S 2 2N:

Q.S/ D P.S; v/C Q.;/ : (17.21)

Proof The proof of (17.21) is by induction on jSj. Obviously, (17.21) holds if
jSj D 0. Take T with jTj > 0 and suppose (17.21) holds for all S with jSj < jTj.
Then

Q.T/ D jTj�1.v.T/C
X

i2T

Q.T n fig//

D jTj�1.v.T/C jTjQ.;/C
X

i2T

P.T n fig; v//

D Q.;/C jTj�1.v.T/C
X

i2T

P.T n fig; v//

D Q.;/C P.T; v/ ;

where the last equality follows from (17.18). �

Lemma 17.17 The Shapley valueˆ is HM-consistent.

Proof Take .N; v/ in G, and ; ¤ U � N. We have to prove that

ˆi.N n U; vU;ˆ/ D ˆi.N; v/ for all i 2 N n U : (17.22)

Note that, in view of the definition of vU;ˆ, efficiency of ˆ, and Theorem 17.12(c),
we have for all S � N n U:

vU;ˆ.S/ D v.S [ U/�
X

i2U

ˆi.S [ U; v/ D
X

i2S

ˆi.S [ U; v/

D
X

i2S

P.S [ U; v/ � P..S [ U/ n fig; v/ : (17.23)

For S 2 2NnU define Q.S/ WD P.S [ U; v/. Then, by Lemma 17.16, with N n U and
vU;ˆ in the roles of N and v, (17.23) implies:

Q.S/ D P.S; vU;ˆ/C Q.;/ D P.S; vU;ˆ/C P.U; v/
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for all S � N n U. Hence, by the definition of Q:

P.S [ U; v/ D P.S; vU;ˆ/C P.U; v/: (17.24)

Equation (17.24) and Theorem 17.12(c) imply

ˆi.N n U; vU;ˆ/ D P.N n U; vU;ˆ/ � P..N n U/ n fig; vU;ˆ/

D P.N; v/ � P.N n fig; v/ D ˆi.N; v/ :

So (17.22) holds. �

Call a value  standard for two-person games if for all .fi; jg; v/ 2 G

 i.fi; jg; v/ D 1

2
.v.i; j/C v.i/� v.j//;

 j.fi; jg; v/ D 1

2
.v.i; j/ � v.i/C v.j// :

Note that the Shapley value is standard for 2-person games. It turns out that this
property, together with HM-consistency, characterizes the Shapley value.

Theorem 17.18 Let  be a value on G. Then  is standard for two-person games

and HM-consistent if, and only if,  is the Shapley value.

Proof

(a) By Lemma 17.17, ˆ is HM-consistent. Further, ˆ is standard for two-person
games.

(b) For the proof of the converse, assume  has the two properties in the theorem.
It will first be proved that  is efficient. For two-person games this is true by
standardness. Let .fig; v/ be a one-person game. To prove that  i.fig; v/ D v.i/,
construct a two-person game .fi; jg; v�/ (with j ¤ i) by defining

v�.i/ WD v.i/; v�.j/ WD 0; v�.i; j/ WD v.i/ :

From the standardness of  it follows that

 i..i; j/; v
�/ D v.i/;  j..i; j/; v

�/ D 0 : (17.25)

The definition of v�
j; and (17.25) imply: v�

j; .i/ D v�.i; j/ �  j..i; j/; v
�/ D

v.i/ � 0 D v.i/. So

.fig; v�
j; / D .fig; v/ : (17.26)
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Then, by (17.26), the consistency of  and (17.25):

 i.fig; v/ D  i.fig; v�
j; / D  i.fi; jg; v�/ D v.i/ :

So for one- and two-person games the rule  is efficient. Take a game .S; v/
with jSj � 3 and suppose that for all games .T; v/ with jTj < jSj the rule  is
efficient. Take k 2 S. Then the consistency of  implies:

X

i2S

 i.S; v/ D  k.S; v/C
X

i2Snfkg

 i.S; v/

D  k.S; v/C
X

i2Snfkg

 i.S n fkg; vk; /

D  k.S; v/C vk; .S n fkg/
D v.S/ :

Hence,  is an efficient rule.
(c) If a Q W G ! R can be constructed with Q.;; v/ D 0 and

 i.N; v/ D Q.N; v/ � Q.N n fig; v/ (17.27)

for all .N; v/ in G and i 2 N, then by (b) and Theorem 17.12(a), Q D P and then
 i.N; v/ D ˆi.N; v/ by Theorem 17.12(c).

Hence, the proof is complete if we can construct such a Q. To achieve this, start
with Q.;; v/ WD 0, Q.fig; v/ WD v.i/, Q.fi; jg; v/ WD 1

2
.v.i; j/ C v.i/ C v.j// and

continue in a recursive way as follows. Let .N; v/ 2 G, jNj � 3 and suppose Q

with property (17.27) has been defined already for games with less than jNj players.
Then one can define Q.N; v/ WD ˛ if, and only if

˛ � Q.N n fig; v/ D  i.N; v/ for all i 2 N :

This implies that the proof is complete if it can be shown that

 i.N; v/C Q.N n fig; v/ D  j.N; v/C Q.N n fjg; v/ for all i; j 2 N : (17.28)

To prove (17.28) take k 2 N n fi; jg (jNj � 3). Then

 i.N; v/ �  j.N; v/ D  i.N n fkg; vk; / �  j.N n fkg; vk; /

D Q.N n fkg; vk; / � Q.N n fk; ig; vk; /

� Q.N n fkg; vk; /C Q.N n fk; jg; vk; /

D .�Q.N n fk; ig; vk; /C Q.N n fi; j; kg; vk; //
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C Q.N n fk; jg; vk; / � Q.N n fi; j; kg; vk; /

D �  j.N n fk; ig; vk; /C  i.N n fk; jg; vk; /

D �  j.N n fig; v/C  i.N n fjg; v/
D � Q.N n fig; v/C Q.N n fi; jg; v/

C Q.N n fjg; v/� Q.N n fi; jg; v/
D Q.N n fjg; v/� Q.N n fig; v/ ;

where HM-consistency of  is used in the first and fifth equality and (17.27) for
subgames in the second, fourth and sixth equality.

This proves (17.28). �

17.4 Problems

17.1. The Games 1T

(a) Show that f1T 2 GN j T 2 2N n f;gg is a basis for GN .
(b) Show that there is no null-player in a game .N; 1T/ (T ¤ ;).
(c) Determine the Shapley valueˆ.N; 1T/.

17.2. Unanimity Games

(a) Prove that the collection of unanimity games fuT j T 2 2N n f;gg is a
basis for GN . [Hint: In view of Problem 17.1(a) it is sufficient to show linear
independence.]

(b) Prove that for each game v 2 GN :

v D
X

T22N nf;g

cTuT with cT D
X

SWS�T

.�1/jTj�jSjv.S/:

17.3. If-Part of Theorem 17.4

Show that the Shapley value satisfies EFF, NP, SYM, and ADD.

17.4. Dummy Player Property and Anonymity

Show that DUM implies NP, and that AN implies SYM, but that the converses of
these implications do not hold. Show that the Shapley value has the dummy player
property.

17.5. Shapley Value, Core, and Imputation Set

Show that the Shapley value of a game does not have to be an element of the core or
of the imputation set, even if these sets are non-empty. How about the case of two
players?
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17.6. Shapley Value as a Projection

The Shapley value ˆ W GN ! R
N can be seen as a map from GN to the space AN of

additive games by identifying R
N with AN . Prove that ˆ W GN ! AN is a projection

i.e. ˆ ıˆ D ˆ.

17.7. Shapley Value of Dual Game

The dual game .N; v�/ of a game .N; v/ is defined by v�.S/ D v.N/� v.N n S/ for
every S � N. Prove that the Shapley value of v� is equal to the Shapley value of v.
[Hint: If v D

P
˛T uT , then v� D

P
˛T u�

T .]

17.8. Multilinear Extension

(a) Show that f in (17.14) is a multilinear function. [A function g W R
n ! R is

called multilinear if g is of the form g.x/ D
P

T�N cT

�Q
i2T xi

�
for arbitrary

real numbers cT .]
(b) Prove that f is the unique multilinear extension of Qv to Œ0; 1�N .

17.9. The Beta-Integral Formula

Prove the beta-integral formula used in the proof of Theorem 17.9.

17.10. Path Independence of ˆ

Let .N; v/ 2 GN with N D f1; 2; : : : ; ng. Prove that for each permutation � W N ! N

we have

nX

kD1

ˆ�.k/.f�.1/; �.2/; : : : ; �.k/g; v/ D
nX

kD1

ˆk.f1; 2; : : : ; kg; v/ :

17.11. An Alternative Characterization of the Shapley Value

Let  be a value on G. Prove:  D ˆ if and only if  has the following four
properties.

(a)  is HM-consistent.
(b)  is efficient for two-person games.
(c)  is anonymous for two-person games.
(d)  is relative invariant w.r.t. strategic equivalence for two-person games. [This

means: . i. Qv/;  j. Qv// D ˛. i.v/;  j.v//C .ˇi; ˇj/ whenever Qv.S/ D ˛v.S/CP
i2S ˇi for every coalition S, where ˛ > 0 and ˇi; ˇj 2 R.]

17.5 Notes

The Shapley value was introduced in Shapley (1953). This paper is the starting point
of a large literature on this solution concept and related concepts. For overviews see
Roth (1988) and Chaps. 53 and 54 in Aumann and Hart (2002).
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The coalitional dividend approach is due to Harsanyi (1959). The axiomatization
based on strong monotonicity (Theorem 17.8) is from Young (1985), and the
multilinear extension approach is from Owen (1972), see also Owen (1995).

Section 17.3 is based on Hart and Mas-Colell (1989).
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18Core, Shapley Value, and Weber Set

In Chap. 17 we have seen that the Shapley value of a game does not have to be
in the core of the game, nor even an imputation (Problem 17.5). In this chapter
we introduce a set-valued extension of the Shapley value, the Weber set, and show
that it always contains the core (Sect. 18.1). Next, we study so-called convex games
and show that these are exactly those games for which the core and the Weber set
coincide. Hence, for such games the Shapley value is an attractive core selection
(Sect. 18.2). Finally, we study random order values (Sect. 18.3), which fill out the
Weber set, and the subset of weighted Shapley values, which still cover the core
(Sect. 18.4).

18.1 The Weber Set

Let .N; v/ 2 GN . Recall the definition of a marginal vector from Sect. 17.1.

Definition 18.1 The Weber set of a game .N; v/ 2 GN is the convex hull of its
marginal vectors:

W.v/ WD convfm�.v/ j � 2 ….N/g :

�

Example 18.2 Consider the three-person game .f1; 2; 3g; v/ defined by v.12/ D
v.13/ D 1, v.23/ D �1, v.123/ D 3, and v.i/ D 0 for every i 2 f1; 2; 3g. The
marginal vectors of this game, the core and the Weber set are given in Fig. 18.1. �

We show now that the core is always a subset of the Weber set.

Theorem 18.3 Let .N; v/ 2 GN . Then C.v/ � W.v/.

© Springer-Verlag Berlin Heidelberg 2015
H. Peters, Game Theory, Springer Texts in Business and Economics,
DOI 10.1007/978-3-662-46950-7_18
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Fig. 18.1 Example 18.2. The core is the convex hull of the vectors .3; 0; 0/, .1; 2; 0/, .0; 2; 1/,
.0; 1; 2/, and .1; 0; 2/. The Weber set is the convex hull of the six marginal vectors

Proof Suppose there is an x 2 C.v/ n W.v/. By a separation theorem (Theo-
rem 22.1), there exists a vector y 2 R

N such that w � y > x � y for every w 2 W.v/.
In particular,

m� � y > x � y for every � 2 ….N/ : (18.1)

Let � 2 ….N/ with y�.1/ � y�.2/ � : : : � y�.n/. Since x 2 C.v/,

m� � y D
nX

iD1

y�.i/.v.�.1/; �.2/; : : : ; �.i// � v.�.1/; �.2/; : : : ; �.i � 1///

D y�.n/v.N/ � y�.1/v.;/C
n�1X

iD1

.y�.i/ � y�.iC1//v.�.1/; �.2/ : : : ; �.i//

� y�.n/

nX

jD1

x�.j/ C
n�1X

iD1

.y�.i/ � y�.iC1//

iX

jD1

x�.j/
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D
nX

iD1

y�.i/

iX

jD1

x�.j/ �
nX

iD2

y�.i/

i�1X

jD1

x�.j/

D
nX

iD1

y�.i/x�.i/ D x � y

contradicting (18.1). �

18.2 Convex Games

For the coincidence of core and Weber set the following possible property of a game
plays a crucial role.

Definition 18.4 A TU-game .N; v/ is convex if the following condition holds for
all S;T � N:

v.S/C v.T/ � v.S [ T/C v.S \ T/ : (18.2)

�

Observe that convexity of a game implies super-additivity [cf. (16.2)]: v is super-
additive if (18.2) holds whenever S and T have empty intersection. The intuition
is similar: larger coalitions have a relatively larger worth. This intuition is also
apparent in the following condition:

For all i 2 N and S � T � N n fig: v.S [ i/ � v.S/ � v.T [ i/� v.T/ : (18.3)

Lemma 18.5 A game .N; v/ 2 GN is convex if and only if it satisfies (18.3).

Proof Let v 2 GN . Obviously, (18.3) follows from (18.2) by taking, for S and T in
(18.2), S [ i and T from (18.3), respectively.

In order to derive (18.2) from (18.3), first take S0 � T0 � N and R � N n T0, say
R D fi1; : : : ; ikg. By repeated application of (18.3) one obtains

v.S0 [ i1/ � v.S0/ � v.T0 [ i1/� v.T0/

v.S0 [ i1i2/� v.S0 [ i1/ � v.T0 [ i1i2/ � v.T0 [ i1/

:::

v.S0 [ i1 � � � ik/ � v.S0 [ i1 � � � ik�1/ � v.T0 [ i1 � � � ik/ � v.T0 [ i1 � � � ik�1/ :
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Adding these inequalities yields

v.S0 [ R/� v.S0/ � v.T0 [ R/� v.T0/

for all R � N n T0. Applying this inequality to arbitrary S;T by setting S0 D S \ T,
T0 D T, and R D S n T, yields (18.2). �

The importance of convexity of a game for the relation between the core and the
Weber set follows from the following theorem.

Theorem 18.6 Let v 2 GN . Then v is convex if and only if C.v/ D W.v/.

Proof

(a) Suppose v is convex. For the ‘only if’ part it is, in view of Theorem 18.3 and
convexity of the core, sufficient to prove that each marginal vector m�.v/ of
v is in the core. In order to show this, assume for notational simplicity that
� is identity. Let S � N be an arbitrary coalition, say S D fi1; : : : ; isg with
i1 � : : : � is. Then, for 1 � k � s, by (18.3):

v.i1; : : : ; ik/� v.i1; : : : ; ik�1/ � v.1; 2; : : : ; ik/ � v.1; 2; : : : ; ik � 1/ D m�
ik
.v/ :

Summing these inequalities from k D 1 to k D s yields

v.S/ D v.i1; : : : ; is/ �
sX

kD1

m�
ik
.v/ D

X

i2S

m�
i .v/ ;

which shows m�.v/ 2 C.v/.
(b) For the converse, suppose that all marginal vectors of v are in the core. Let

S;T � N be arbitrary. Order the players of N as follows:

N D fi1; : : : ; ik„ ƒ‚ …
S\T

; ikC1; : : : ; i`„ ƒ‚ …
TnS

; i`C1; : : : ; is„ ƒ‚ …
SnT

; isC1; : : : ; in„ ƒ‚ …
Nn.S[T/

g :

This defines an ordering or permutation � , namely by �.j/ D ij for all j 2 N,
with corresponding marginal vector m.v/ D m�.v/. Since m.v/ 2 C.v/,

v.S/ �
X

i2S

mi.v/

D
kX

jD1

mij.v/C
sX

jD`C1

mij.v/

D v.i1; : : : ; ik/C
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Œv.i1; : : : ; i`C1/ � v.i1; : : : ; i`/�C
Œv.i1; : : : ; i`C2/ � v.i1; : : : ; i`C1�C : : :

Œv.i1; : : : ; is/ � v.i1; : : : ; is�1�
D v.S \ T/C v.S [ T/ � v.T/ ;

which implies (18.2). So v is a convex game. �

An immediate consequence of Theorem 18.6 and the definition of the Shapley value
(Definition 17.1) is the following corollary.

Corollary 18.7 Let v 2 GN be convex. Then ˆ.v/ 2 C.v/, i.e., the Shapley value

is in the core.

18.3 Random Order Values

A value  W GN ! R
N is called a random order value if there is a probability

distribution p over the set of permutations….N/ of N such that

 .N; v/ D
X

�2….N/

p.�/m�.N; v/

for every .N; v/ 2 GN . In that case, we denote  by ˆp. Observe that ˆp is the
Shapley valueˆ if p.�/ D 1=nŠ for every � 2 ….N/. Obviously,

W.v/ D fx 2 R
N j x D ˆp.v/ for some pg:

Random order values satisfy the following two conditions.

Monotonicity (MON):  .v/ � 0 for all monotonic games v 2 GN . [The game v is
monotonic if S � T implies v.S/ � v.T/ for all S;T � N.]

Linearity (LIN):  .˛v C ˇw/ D ˛ .v/C ˇ .w/ for all v;w 2 GN , and ˛; ˇ 2 R

[where, for each S, .˛v C ˇw/.S/ D ˛v.S/C ˇw.S/].

Monotonicity says that in a monotonic game, where larger coalitions have higher
worths, i.e., all marginal contributions are nonnegative, every player should receive a
nonnegative payoff. Linearity is a strengthening of additivity. The main result in this
section is the following characterization of random order values. (See Problem 18.7
for a strengthening of the ‘only if’ part of this theorem.)

Theorem 18.8 Let  W GN ! R
N be a value. Then  satisfies LIN, DUM, EFF,

and MON if and only if it is a random order value.
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The proof of Theorem 18.8 is based on a sequence of propositions and lemmas,
which are of independent interest.

Proposition 18.9 Let  W GN ! R
N be a linear value. Then there is a collection of

constants fai
T 2 R j i 2 N; ; ¤ T � Ng such that  i.v/ D

P
;¤T�N ai

Tv.T/ for

every v 2 GN and i 2 N.

Proof Let ai
T WD  i.1T/ for all i 2 N and ; ¤ T � N (cf. Problem 17.1). For every

v 2 GN we have v D
P

T¤; v.T/1T . The desired conclusion follows from linearity
of  . �

Proposition 18.10 Let  W GN ! R
N be a linear value satisfying DUM. Then there

is a collection of constants fpi
T 2 R j i 2 N; T � N n ig with

P
T�Nni pi

T D 1 for all

i 2 N, such that for every v 2 GN and every i 2 N:

 i.v/ D
X

T�Nni

pi
T Œv.T [ i/ � v.T/� :

Proof Let v 2 GN and i 2 N. By Proposition 18.9 there are ai
T such that  i.v/ DP

;¤T�N ai
Tv.T/. Then 0 D  i.uNni/ D ai

N C ai
Nni

, where the first equality follows

from DUM. Assume now as induction hypothesis that ai
T[iCai

T D 0 for all T � Nni

with jTj � k � 2 (we have just established this for k D n � 1), and let S � N n i

with jSj D k � 1. Then

0 D  i.uS/

D
X

TWS�T

ai
T

D
X

TWS T�Nni

.ai
T[i C ai

T/C ai
S[i C ai

S

D ai
S[i C ai

S ;

where the last equality follows by induction and the first one by DUM. Hence, we
have proved that ai

T[i C ai
T D 0 for all T � N n i with 0 < jTj � n � 1. Now define,

for all i 2 N and all such T, pi
T WD ai

T[i D �ai
T , and define pi

; WD ai
fig

. Then for

every v 2 GN and i 2 N:

 i.v/ D
X

;¤T�N

ai
Tv.T/

D
X

TW i2T

ai
Tv.T/C

X

;¤T�Nni

ai
Tv.T/
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D
X

TW i…T

ai
T[iv.T [ i/ �

X

T�Nni

.�ai
T/v.T/

D
X

T�Nni

pi
T Œv.T [ i/ � v.T/� :

Finally, by DUM,

1 D ufig.i/ D  i.ufig/ D
X

T�Nni

pi
T ;

which completes the proof of the proposition. �

Proposition 18.11 Let  W GN ! R
N be a linear value satisfying DUM and MON.

Then there is a collection of constants fpi
T 2 R j i 2 N; T � N n ig withP

T�Nni pi
T D 1 and pi

S � 0 for all S � N n i and i 2 N, such that for every

v 2 GN and every i 2 N:

 i.v/ D
X

T�Nni

pi
T Œv.T [ i/ � v.T/� :

Proof In view of Proposition 18.10 we only have to prove that the weights pi
T are

nonnegative. Let i 2 N and T � N n i and consider the game OuT assigning worth 1
to all strict supersets of T and 0 otherwise. Then  i.OuT/ D

P
S�Nni pi

SŒOuT.S [ i/ �
OuT.S/� by Proposition 18.10, hence  i.OuT/ D pi

T . Since OuT is a monotonic game,
this implies pi

T � 0. �

Lemma 18.12 Let  W GN ! R
N be a value and fpi

T 2 R j i 2 N; T � N n ig be a

collection of constants such that for every v 2 GN and every i 2 N:

 i.v/ D
X

T�Nni

pi
T Œv.T [ i/ � v.T/� :

Then  is efficient if and only if
P

i2N pi
Nni

D 1 and
P

i2T pi
Tni

D
P

j2NnT p
j

T for all

; ¤ T ¤ N.

Proof Let v 2 GN . Then

 .v/.N/ D
X

i2N

X

T�Nni

pi
T Œv.T [ i/ � v.T/�

D
X

i2N

0
@ X

T�NW i2T

pi
Tni
v.T/ �

X

T�NW i…T

pi
Tv.T/

1
A
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D
X

T�N

v.T/

0
@X

i2T

pi
Tni

�
X

i…T

pi
T

1
A

D
X

T�N

v.T/

0
@X

i2T

pi
Tni

�
X

j2NnT

p
j

T

1
A :

Clearly, this implies efficiency of  if the relations in the lemma hold. Conversely,
suppose that  is efficient. Let ; ¤ T � N and consider the games uT and OuT ,
where Ou was defined in the proof of Proposition 18.11. Then the preceding equation
implies that

 .uT/.N/ �  .OuT/.N/ D
X

S�N

.uT.S/ � OuT.S//

0
@X

i2S

pi
Sni

�
X

j2NnS

p
j

S

1
A

D
X

i2T

pi
Tni

�
X

j2NnT

p
j

T :

The relations in the lemma now follow by efficiency of  , since uT.N/ � OuT.N/ is
equal to 1 if T D N and equal to 0 otherwise. �

We are now sufficiently equipped to prove Theorem 18.8.

Proof of Theorem 18.8 We leave it to the reader to verify that random order values
satisfy the four axioms in the theorem. Conversely, let  satisfy these four axioms.
By Proposition 18.11 there is a collection of constants fpi

T 2 R j i 2 N; T � N n ig
with

P
T�Nni pi

T D 1 and pi
S � 0 for all S � N n i and i 2 N, such that for every

v 2 GN and every i 2 N:

 i.v/ D
X

T�Nni

pi
T Œv.T [ i/ � v.T/� :

For all i 2 N and T � N n i define A.T/ WD
P

j2NnT p
j

T and A.iI T/ WD pi
T=A.T/

if A.T/ ¤ 0, A.iI T/ WD 0 if A.T/ D 0. For any permutation � 2 ….N/ write
� D .i1; : : : ; in/ (that is, �.k/ D ik for all k 2 N). Define

p.�/ D p
i1
; A.i2I fi1g/A.i3I fi1; i2g/ � � � A.inI fi1; : : : ; in�1g/ :

Then we claim that

X

�2….N/

p.�/ D
X

i2N

pi
; : (18.4)
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In order to prove (18.4), note that when considering the sum
P

�2˘.N/ p.�/ we may
leave out any � with p.�/ D 0. This means in particular that in what follows all
expressions A.�I �/ are positive. Now

X

�2˘.N/

p.�/ D
X

i12N

X

i22Nni1

� � �
X

in�12Nni1���in�2

p
i1
; A.i2I fi1g/ � A.i3I fi1; i2g/ �

: : : � A.in�1I fi1; : : : ; in�2g/ � A.inI fi1; : : : ; in�1g/

D
X

i12N

X

i22Nni1

� � �
X

in�22Nni1���in�3

p
i1
; A.i2I fi1g/ � A.i3I fi1; i2g/ �

: : : � A.in�2I fi1; : : : ; in�3g/

�
 

p`
Nni1���in�2

p`
Nni1 ���in�2

C pk
Nni1 ���in�2

C
pk

Nni1���in�2

p`
Nni1 ���in�2

C pk
Nni1 ���in�2

!

D
X

i12N

X

i22Nni1

� � �
X

in�22Nni1���in�3

p
i1
; A.i2I fi1g/ � A.i3I fi1; i2g/ �

: : : � A.in�2I fi1; : : : ; in�3g/

D
X

i12N

X

i22Nni1

� � �
X

in�32Nni1���in�4

p
i1
; A.i2I fi1g/ � A.i3I fi1; i2g/ �

: : : � A.in�3I fi1; : : : ; in�4g/
D : : :

D
X

i12N

p
i1
; ;

where after the first equality sign, in 2 N n fi1; : : : ; in�1g, and A.inI fi1; : : : ; in�1g/
D 1 by definition; after the second equality sign `; k 2 N n fi1; : : : ; in�2g with
` ¤ k; the third equality sign follows since the sum involving ` and k is equal to 1;
the remaining equality signs follow from repetition of this argument. This concludes
the proof of (18.4).

We next claim that for every 0 � t � n � 1 we have

X

TWjTjDt

X

i2NnT

pi
T D 1 : (18.5)

To prove this, first let t D n�1. Then the sum on the left-hand side of (18.5) is equal
to
P

i2N pi
Nni

, which is equal to 1 by Lemma 18.12. Now as induction hypothesis
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assume that (18.5) holds for t C 1. Then

X

TW jTjDt

X

i2NnT

pi
T D

X

i2N

X

TW jTjDtC1; i2T

pi
Tni

D
X

TW jTjDtC1

X

i2T

pi
Tni

D
X

TW jTjDtC1

X

i2NnT

pi
T

D 1 ;

where the second equality follows by Lemma 18.12 and the last equality by
induction. This proves (18.5). In particular, for t D 0, we have

P
i2N pi

; D
1. Together with (18.4) this implies that p.�/ as defined above is a probability
distribution on ….N/.

In order to complete the proof of the theorem, it is sufficient to show that  D
ˆp. For every game v 2 GN and i 2 N we can write

ˆ
p

i .v/ D
X

�2….N/

p.�/Œv.P� .i/ [ i/ � v.P�.i//� ;

where P�.i/ denotes the set of predecessors of player i under the permutation � (cf.
Sect. 17.1). Hence, it is sufficient to prove that for all i 2 N and T � N n i we have

pi
T D

X

�2….N/W TDP� .i/

p.�/ : (18.6)

In order to prove (18.6), first let jTj D t. By using a similar argument as for the
proof of (18.4), we can write

X

�WTDP� .i/

p.�/ D
X

i12T

X

i22Tni1

: : :
X

it2Tni1 i2���it�1

p
i1
; A.i2I fi1g/ � � � A.itI T n fitg/ � A.iI T/ :

Hence,

X

�WTDP� .i/

p.�/ D pi
TP

j2NnT p
j

T

�
X

it2T

p
it
TnitP

j2.NnT/[it
p

j

Tnit

�
X

it�12Tnit

p
it�1
Tnit it�1P

j2.NnT/[it it�1
p

j

Tnit it�1

� � � � �
X

i12Tnit ���i2

p
i1
;
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D pi
TP

j2T p
j

Tnj

�
X

it2T

p
it
TnitP

j2Tnit
p

j

.Tnit/nj

�
X

it�12Tnit

p
it�1
Tnit it�1P

j2Tnit it�1
p

j

.Tnit it�1/nj

� � � � �
X

i12Tnit ���i2

p
i1
;

D pi
T :

Here, the first equality sign follows from rearranging terms and substituting the
expressions for A.�I �/; the second equality sign follows from Lemma 18.12; the
final equality sign follows from reading the preceding expression from right to left,
noting that the remaining sum in each enumerator cancels against the preceding
denominator. �

18.4 Weighted Shapley Values

The Shapley value is a random order value that distributes the dividend of each
coalition equally among all the members of that coalition (see Theorem 17.7). In this
sense, it treats players consistently over coalitions. This is not necessarily the case
for every random order value. To be specific, consider Example 18.2. The payoff
vector .2 1

2
;� 1

2
; 1/ is a point of the Weber set, namely the midpoint of the marginal

vectors .4;�1; 0/ and .1; 0; 2/. Thus, it can be obtained uniquely as ˆp.v/, where
the probability distribution p assigns weights 1=2 to the permutations .3; 2; 1/ and
.2; 1; 3/. In terms of dividends, the two marginal vectors can be written as

.�v.1/C�v.12/C�v.13/C�v.123/;�v.2/C�v.23/;�v.3//

for the permutation .3; 2; 1/ and

.�v.1/C�v.12/;�v.2/;�v.3/C�v.13/C�v.23/C�v.123//

for the permutation .2; 1; 3/. (Cf. Problem 18.1, where this is generalized.) Thus,
�v.123/ is split equally between players 1 and 3, whereas �v.23/ is split equally
between players 2 and 3. Hence, whereas player 2 has zero power compared to
player 3 in distributing �v.123/, they have equal power in distributing �v.23/. In
this respect, players 2 and 3 are not treated consistently by ˆp.

In order to formalize the idea of consistent treatment, we first define positively
weighted Shapley values. Let ! 2 R

N with ! > 0. The positively weighted Shapley
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value ˆ! is defined as the unique linear value which assigns to each unanimity game
.N; uS/:

ˆ!
i .uS/ D

�
!i=!.S/ for i 2 S

0 for i 2 N n S .
(18.7)

We will show that these positively weighted Shapley values are random order values.
Define independently distributed random variables Xi (i 2 N) on Œ0; 1� by their
cumulative distribution functions Œ0; 1� 3 t 7! t!i (that is, Xi � t with probability
t!i ). Then, define the probability distribution p! by

p!.�/ D
Z 1

0

Z tn

0

Z tn�1

0

� � �
Z t2

0

dt
!i1

1 : : : dt
!in�2

n�2 dt
!in�1

n�1 dt
!in
n (18.8)

for every permutation � D .i1; i2; : : : ; in/. That is, p!.�/ is defined as the
probability that i1 comes before i2, i2 before i3, etc., evaluated according to the
independent random variables Xi. It is straightforward to check that, indeed, p! is a
probability distribution over the set of permutations. Then we have:

Theorem 18.13 For every ! 2 R
N with ! > 0, ˆ! D ˆp!

.

Proof Let S be a nonempty coalition and i 2 S. Since ˆ! and ˆp!
are linear, it is

sufficient to prove that ˆp!

i .uS/ D !i=!.S/. Note that

ˆ
p!

i .uS/ D
X

�2….N/

p!.�/m�
i .uS/ D

X

�2….N/W Sni�P� .i/

p!.�/ ;

and the right-hand side of this identity is equal to

Z 1

0

Z ti

0

dt!.Sni/dt
!i

i :

Hence,

ˆ
p!

i .uS/ D
Z 1

0

Z ti

0

dt!.Sni/dt
!i

i D
Z 1

0

t
!.Sni/
i dt

!i

i D
Z 1

0

!it
!.S/�1dt D !i=!.S/

which concludes the proof of the theorem. �

Next, we extend the concept of weighted Shapley value to include zero weights.
Consider for instance, the three-person random order value that puts weight 1=2 on
the permutations .1; 2; 3/ and .1; 3; 2/. Then each of the marginal vectors

.�v.1/;�v.2/C�v.12/;�v.3/C�v.13/C�v.23/C�v.123//
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and

.�v.1/;�v.2/C�v.12/C�v.23/C�v.123/;�v.3/C�v.13//

gets weight 1=2. (Cf. again Problem 18.1.) The dividend �v.12/ goes to player
2, the dividend �v.13/ to player 3, and the dividends �v.23/ and �v.123/ are
split equally between players 2 and 3. Thus, this random order value treats players
consistently but we cannot just formalize this by giving player 1 weight 0 since
player 1 does obtain �v.1/.

To accommodate this kind of random order values we introduce the concept of a
weight system. A weight system w is an ordered partition .S1; : : : ; Sk/ of N together
with a vector ! 2 R

N such that ! > 0. The weighted Shapley value ˆw is defined
as the unique linear value which assigns to each unanimity game uS 2 GN , S ¤ ;:

ˆw
i .uS/ D

�
!i=!.S \ Sm/ for i 2 S \ Sm and m D maxfh W Sh \ S ¤ ;}
0 otherwise.

(18.9)

Hence, Sh is more powerful as h is larger; for each coalition S we consider the subset
of the most powerful players S \ Sm, where m is the largest index h such that the
intersection of Sh with S is nonempty, and they distribute the dividend of coalition
S according to their (relative) weights !i=!.S \ Sm/. Clearly, for k D 1 we obtain a
positively weighted Shapley value as defined above.

Weighted Shapley values are again random order values. For a weight system
w with ordered partition .S1; : : : ; Sk/ we only assign positive probability to those
permutations in which all players of S1 enter before all players of S2, all players
of S2 enter before all players of S3, etc. Given such a permutation we can assign
probability p1.�/ to the order induced by � on S1 in the same way as we did above in
Eq. (18.8); similarly, we assign probabilities p2.�/; : : : ; pk.�/ to the orders induced
on S2; : : : ; Sk, respectively. Then we define

pw.�/ D
kY

hD1

ph.�/ :

It can be shown again that ˆw D ˆpw

.
We conclude with an axiomatic characterization of weighted Shapley values. To

this end we consider the following axiom for a value  W GN ! R
N .

Partnership (PA):  i. .uT/.S/uS/ D  i.uT/ for all S � T � N and all i 2 S.

Theorem 18.14 Let  W GN ! R
N be a value. Then  satisfies LIN, DUM, EFF,

MON, and PA, if and only if it is a weighted Shapley value.

Proof Problem 18.8. �
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By Theorem 18.3 we know that the core of any game is included in the Weber set
and, thus, in any game any core element corresponds to at least one random order
value. The following theorem, included here without a proof, states that, in fact, the
core is always covered by the set of weighted Shapley values.

Theorem 18.15 Let v 2 GN and x 2 C.v/. Then there is a weight system w such

that x D ˆw.v/.

18.5 Problems

18.1. Marginal Vectors and Dividends

Let .N; v/ 2 GN .

(a) Show that

v.S/ D
X

T�S

�v.T/ (18.10)

where �v.T/ are the dividends defined in Sect. 17.1.
(b) Express each marginal vector m� in terms of dividends.

18.2. Convexity and Marginal Vectors

Prove that a game .N; v/ is convex if and only if for all T 2 2N n f;g:

v.T/ D min
�2….N/

X

i2T

m�
i .v/ :

18.3. Strictly Convex Games

Call a game .N; v/ strictly convex if all inequalities in (18.3) hold strictly. Show
that in a strictly convex game all marginal vectors are different.

18.4. Sharing Profits

Consider the following situation with nC1 players. Player 0 (the landlord) owns the
land and players 1; 2; : : : ; n are n identical workers who own their labor only. The
production f W f0; 1; : : : ; ng ! R describes how much is produced by the workers.
Assume that f is nondecreasing and that f .0/ D 0. We associate with this situation
a TU-game that reflects the production possibilities of coalitions. Without agent 0 a
coalition has zero worth, otherwise the worth depends on the number of workers.
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More precisely,

v.S/ WD
�
0 if 0 … S

f .jSj � 1/ if 0 2 S

for every coalition S � f0; 1; : : : ; ng.

(a) Compute the marginal vectors and the Shapley value of this game.
(b) Compute the core of this game.
(c) Give a necessary and sufficient condition on f such that the game is convex. [So

in that case, the core and the Weber set coincide and the Shapley value is in the
core.]

18.5. Sharing Costs

Suppose that n airlines share the cost of a runway. To serve the planes of company
i, the length of the runway must be ci, which is also the cost of a runway of that
length. Assume 0 � c1 � c2 � : : : � cn. The cost of coalition S is defined as
cS D maxi2S ci for every nonempty coalition S.

(a) Model this situation as a cost savings game (cf. the three communities game in
Chap. 1).

(b) Show that the resulting game is convex, and compute the marginal vectors, the
Shapley value, and the core.

18.6. Independence of the Axioms in Theorem 18.8

Show that the axioms in Theorem 18.8 are independent.

18.7. Null-Player in Theorem 18.8

Show that Theorem 18.8 still holds if DUM is replaced by NP.

18.8. Characterization of Weighted Shapley Values

Prove Theorem 18.14. Also show that the axioms are independent.

18.9. Core and Weighted Shapley Values in Example 18.2

In Example 18.2, determine for each x 2 C.v/ a weight system w such that x D
ˆw.v/.

18.6 Notes

The Weber set was introduced by Weber (1988), who also gave a proof of
Theorem 18.3 (the core is always a subset of the Weber set); our proof is due to
Derks (1992). Theorem 18.6 (coincidence of the core and Weber set of convex
games) is from Shapley (1971) and Ichiishi (1981). The proof of Theorem 18.13



342 18 Core, Shapley Value, and Weber Set

(positively weighted Shapley values are random order values) is from Owen (1972).
Theorem 18.14 (axiomatic characterization of weighted Shapley values) is from
Kalai and Samet (1987), see also Derks et al. (2000). Theorem 18.15 is due to
Monderer et al. (1992).

Problem 18.5 is based on Littlechild and Owen (1974).
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The core of a game with transferable utility can be a large set, but it can also be
empty. The Shapley value assigns to each game a unique point, which, however,
does not have to be in the core. The nucleolus assigns to each game with a nonempty
imputation set a unique element of that imputation set; moreover, this element is in
the core if the core of the game is nonempty. The pre-nucleolus exists for every
essential game (and does not have to be an imputation, even if the imputation set is
nonempty), but for balanced games it coincides with the nucleolus.

In this chapter we consider both the nucleolus and the pre-nucleolus. The reader
may want to read the relevant part of Chap. 9 first.

In Sect. 19.1 we start with an example illustrating the (pre-)nucleolus and
Kohlberg’s balancedness criterion. Section 19.2 introduces the lexicographic order,
on which the definition of the (pre-)nucleolus in Sect. 19.3 is based. Section 19.4
presents the Kohlberg criterion, which is a characterization of the (pre-)nucleolus in
terms of balanced collections of coalitions. Computational aspects are discussed in
Sect. 19.5, while Sect. 19.6 presents Sobolev’s characterization of the pre-nucleolus
based on a reduced game property.

19.1 An Example

Consider the three-person TU-game given by Table 19.1. It is easy to see that
this game has a nonempty core; for instance, .8; 8; 8/ is a core element. Let
x D .x1; x2; x3/ be an arbitrary efficient payoff distribution. For a nonempty
coalition S, define the excess of S at x as e.S; x/ WD v.S/ � x.S/. For an efficient
vector x the excess of the grand coalition N is always zero, and is therefore
omitted from consideration. The idea underlying the nucleolus is as follows. For
an arbitrary efficient vector consider the corresponding vector of excesses. Among
all imputations [and for the pre-nucleolus: among all efficient vectors] find those
where the maximal excess is minimal. If this set consists of one point, then this is the
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Table 19.1 The example of Sect. 19.1

S ; f1g f2g f3g f1; 2g f1; 3g f2; 3g f1; 2; 3g

v.S/ 0 4 4 4 8 12 16 24

e.S; .8; 8; 8// �4 �4 �4 �8 �4 0

e.S; .6; 9; 9// �2 �5 �5 �7 �3 �2

e.S; .6; 8; 10// �2 �4 �6 �6 �4 �2

(pre-)nucleolus. Otherwise, determine the coalitions for which this maximal excess
cannot be further decreased, and repeat the procedure for the remaining coalitions,
keeping the excesses of the other coalitions fixed. By successively minimizing
maximal excesses, the (pre-)nucleolus results. Note that if a game has a nonempty
core then every core element has by definition only non-positive excesses, whereas
efficient payoff vectors outside the core have at least one positive excess. This
implies that for balanced games the successive minimization of excesses can be
restricted to core elements, and the pre-nucleolus and the nucleolus coincide.

In order to illustrate these ideas, consider again Table 19.1, where the excesses
of some core vectors for this example are calculated. The highest excess for the
core vector .8; 8; 8/ is equal to zero, attained for the coalition f2; 3g. Obviously, this
excess can be decreased by increasing the payoff for players 2 and 3 together, at
the expense of player 1, who has an excess of �4. Thus, a next ‘try’ is the payoff
vector .6; 9; 9/, which indeed has maximal excess �2 reached for coalitions f1g and
f2; 3g. It is then obvious that this is indeed the minimal maximal excess, because the
excess for coalition f1g can only be decreased by increasing the excess for f2; 3g,
and vice versa. In particular, this implies that the excesses of these two coalitions
will indeed be fixed at �2. Observe that the collection ff1g; f2; 3gg is balanced (in
particular, it is a partition).1 At .6; 9; 9/ the second maximal excess is equal to �3,
reached by the coalition f1; 3g. Again, this might be decreased by improving the
payoff for players 1 and 3 together at the expense of player 2. Because the payoff
for player 1 has already been fixed at 6, this means that the payoff for player 3 has to
be increased and that of player 2 has to be decreased. These observations lead to the
next ‘try’ .6; 8; 10/, where the maximal excess is still equal to �2, and the second
maximal excess equals �4, reached by the coalitions f2g and f1; 3g. It is obvious
that this second maximal excess, as well as the third maximal excess of �6, cannot
be decreased any further. Observe that also the collections ff1g; f2; 3g; f2g; f1; 3gg
and ff1g; f2; 3g; f2g; f1; 3g; f3g; f1; 2gg are all balanced.

It follows that .6; 8; 10/ is the (pre-)nucleolus of this game. Moreover, the
excesses are closely related to balanced collections of coalitions; this will appear
to be a more general phenomenon, known as the Kohlberg criterion.

1See Chap. 16.
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19.2 The Lexicographic Order

The definition of the nucleolus is based on a comparison of vectors by means of
the lexicographic order. We briefly discuss this order and examine some of its
properties. Let Rk be the real vector space of dimension k. A binary relation �
on R

k that satisfies

(1) reflexivity: x � x for all x 2 R
k and

(2) transitivity: x � z for all x; y; z 2 R
k with x � y and y � z

is called a partial order. For a partial order �, we write x � y to indicate that x � y

and y 6� x. A partial order � is called a weak order if it satisfies

(3) completeness: x � y or y � x for all x; y 2 R
k with x ¤ y.

If it also satisfies

(4) antisymmetry: x D y for all x; y 2 R
k with x � y and y � x

the relation is called a linear order.2

On the vector space R
k we define the linear order �lex as follows. For any two

vectors x and y in R
k, x is lexicographically larger than or equal to y, notation:

x �lex y, if either x D y, or x ¤ y and for

i D minfj 2 f1; : : : ; kg j xj ¤ yjg

we have that xi > yi. In other words, x should assign a higher value than y to the
first coordinate at which x and y are different. For obvious reasons the order �lex is
called the lexicographic order on R

k.
The lexicographic order cannot be represented by a continuous utility function

(Problem 19.5). In fact, it can be shown that the lexicographic order on R
k cannot

be represented by any utility function (Problem 19.6).

19.3 The (Pre-)Nucleolus

Let .N; v/ be a TU-game and let X � R
N be some set of payoff distributions. For

every nonempty coalition S � N and every x 2 X the excess of S at x is the number

e.S; x; v/ WD v.S/ � x.S/ :

2See also Chap. 11. Here, we repeat some of the definitions for convenience.
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This number can be interpreted as the dissatisfaction (complaint, regret) of the
coalition S if x is the payoff vector. For every x 2 X let �.x/ denote the vector
of the excesses of all nonempty coalitions at x, arranged in non-increasing order,
hence

�.x/ D .e.S1; x; v/; : : : ; e.S2n�1; x; v//

such that e.St; x; v/ � e.Sp; x; v/ for all 1 � t � p � 2n � 1. Let �lex be the
lexicographic order on R

2n�1, as defined in Sect. 19.2. The generalized nucleolus of
.N; v/ with respect to X is the set

N .N; v;X/ WD fx 2 X j �.y/ �lex �.x/ for all y 2 Xg :

So the generalized nucleolus consists of all payoff vectors in X at which the excess
vectors are lexicographically minimized. The motivation for this is that we first try
to minimize the dissatisfaction of those coalitions for which this is maximal, next
for those coalitions that have second maximal excess, etc.

We first establish conditions under which the generalized nucleolus with respect
to a set X is non-empty.

Theorem 19.1 Let X � R
N be nonempty and compact. Then N .N; v;X/ is

nonempty and compact for every game v.

Proof First observe that all excess functions e.S; �; v/ are continuous and therefore
�.�/ is continuous. Define X0 WD X and, recursively,

Xt WD fx 2 Xt�1 j �t.y/ � �t.x/ for all y 2 Xt�1g

for all t D 1; : : : ; 2n � 1. Since �.�/ is continuous, Weierstrass’ Theorem implies
that every Xt is a non-empty compact subset of Xt�1. This holds in particular for
t D 2n � 1 and, clearly, X2n�1 D N .N; v;X/. �

We will show that, if X is, moreover, convex, then the generalized nucleolus with
respect to X consists of a single point. We start with the following lemma.

Lemma 19.2 Let X � R
N be convex, x; y 2 X, and 0 � ˛ � 1. Then

˛�.x/C .1 � ˛/�.y/ �lex �.˛x C .1 � ˛/y/ : (19.1)

Proof Let S1; : : : ; S2n�1 be an ordering of the non-empty coalitions such that

�.˛x C .1 � ˛/y/ D .e.S1; ˛x C .1 � ˛/y; v/; : : : ; e.S2n�1; ˛x C .1 � ˛/y; v// :

The right hand side of this equation is equal to ˛a C .1 � ˛/b, where
a D .e.S1; x; v/; : : : ; e.S2n�1; x; v// and b D .e.S1; y; v/; : : : ; e.S2n�1; y; v//. Since
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�.x/ �lex a and �.y/ �lex b it follows that

˛�.x/C .1 � ˛/�.y/ �lex ˛a C .1 � ˛/b D �.˛x C .1 � ˛/y/ ;

hence (19.1) holds. �

Theorem 19.3 Let X � R
N be nonempty, compact, and convex. Then, for every

game .N; v/, the generalized nucleolus with respect to X consists of a single point.

Proof By Theorem 19.1 the generalized nucleolus is nonempty. Let x; y 2
N .N; v;X/ and 0 < ˛ < 1. Then �.x/ D �.y/. Since on the one hand

�.˛x C .1 � ˛/y/ �lex �.x/ D �.y/

and on the other hand, by Lemma 19.2,

�.x/ D �.y/ D ˛�.x/C .1 � ˛/�.y/ �lex �.˛x C .1� ˛/y/

antisymmetry of the lexicographic order implies

�.˛x C .1 � ˛/y/ D �.x/ D �.y/ :

Therefore �.x/ D �.y/ D ˛aC.1�˛/b, with a and b as in the proof of Lemma 19.2.
Since �.x/ �lex a and �.y/ �lex b it follows that a D �.x/ and b D �.y/. In a and b

the coalitions are ordered in the same way and therefore this is also the case in �.x/
and �.y/. Hence x and y have all excesses equal, and thus x D y. �

Well-known choices for the set X are the imputation set I.N; v/ of a game .N; v/
and the set of efficient payoff distributions I�.N; v/ D fx 2 R

N j x.N/ D v.N/g.
For an essential game .N; v/ the set I.N; v/ is nonempty, compact and convex,
and therefore Theorem 19.3 implies that the generalized nucleolus with respect
to I.N; v/ consists of a single point, called the nucleolus of .N; v/, and denoted
by �.N; v/. Although the set I�.N; v/ is not compact, the generalized nucleolus
of .N; v/ with respect to this set exists and is also single-valued (Problem 19.7):
its unique member is called the pre-nucleolus of .N; v/, denoted by ��.N; v/. In
Problem 19.8 the reader is asked to show that both points are in the core of the game
if this set is nonempty, and then coincide.

19.4 The Kohlberg Criterion

In this section we derive the so-called Kohlberg criterion for the pre-nucleolus,
which characterizes this solution in terms of balanced sets (cf. Chap. 16). A similar
result can be derived for the nucleolus (Problem 19.9) but the formulation for the
pre-nucleolus is slightly simpler.
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We start, however, with Kohlberg’s characterization in terms of side-payments.
A side-payment is a vector y 2 R

N satisfying y.N/ D 0. Let .N; v/ be a game and
for every ˛ 2 R and x 2 R

N denote by

D.˛; x; v/ D fS � N n f;g j e.S; x; v/ � ˛g

the set of (nonempty) coalitions with excess at least ˛ at x.

Theorem 19.4 Let .N; v/ be a game and x 2 I�.N; v/. Then the following two

statements are equivalent.

(a) x D ��.N; v/.

(b) For every ˛ such that D.˛; x; v/ ¤ ; and for every side-payment y with y.S/ �
0 for every S 2 D.˛; x; v/ we have y.S/ D 0 for every S 2 D.˛; x; v/.

Proof Assume that x D ��.N; v/ and that the conditions in (b) are fulfilled for x,
˛, and y. Define z" D x C "y for every " > 0. Then z" 2 I�.N; v/. Choose "� > 0

such that, for all S 2 D.˛; x; v/ and nonempty T … D.˛; x; v/,

e.S; z"� ; v/ > e.T; z"� ; v/ : (19.2)

For every S 2 D.˛; x; v/,

e.S; z"� ; v/ D v.S/ � .x.S/C "�y.S//

D e.S; x; v/ � "�y.S/

� e.S; x; v/ : (19.3)

Assume, contrary to what we want to prove, that y.S/ > 0 for some S 2 D.˛; x; v/.
Then, by (19.2) and (19.3), �.x/ �lex �.z"�/ and x ¤ z"� , a contradiction.

Next, let x 2 I�.N; v/ satisfy (b). Let z D ��.N; v/. Denote

fe.S; x; v/ j S 2 2N n f;gg D f˛1; : : : ; ˛pg

with ˛1 > � � � > ˛p. Define y D z � x. Hence, y is a side-payment. Since �.x/ �lex

�.z/, we have e.S; x; v/ D ˛1 � e.S; z; v/ for all S 2 D.˛1; x; v/ and thus

e.S; x; v/ � e.S; z; v/ D .z � x/.S/ D y.S/ � 0 :

Therefore, by (b), y.S/ D 0 for all S 2 D.˛1; x; v/.
Assume now that y.S/ D 0 for all S 2 D.˛t; x; v/ for some 1 � t � p. Then, since
�.x/ �lex �.z/,

e.S; x; v/ D ˛tC1 � e.S; z; v/ for all S 2 D.˛tC1; x; v/ n D.˛t; x; v/ :
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Hence y.S/ � 0 and thus, by (b), y.S/ D 0 for all S 2 D.˛tC1; x; v/. We conclude
that y.S/ D 0 for all S 2 2N n f;g, so y D 0 and x D z. �

We can now prove Kohlberg’s characterization of the pre-nucleolus by balanced
collections.

Theorem 19.5 (Kohlberg) Let .N; v/ be a game and x 2 I�.N; v/. Then the

following two statements are equivalent.

(a) x D ��.N; v/.

(b) For every ˛, D.˛; x; v/ ¤ ; implies that D.˛; x; v/ is a balanced collection.

Proof Assume that x satisfies (b). Let ˛ 2 R such that D.˛; x; v/ ¤ ;, and let y

be a side-payment with y.S/ � 0 for all S 2 D.˛; x; v/. Since, by (b), D.˛; x; v/ is
balanced there are numbers �.S/ > 0, S 2 D.˛; x; v/, such that

X

S2D.˛;x;v/

�.S/eS D eN :

By taking the product on both sides with y this implies

X

S2D.˛;x;v/

�.S/y.S/ D y.N/ D 0 :

Therefore y.S/ D 0 for every S 2 D.˛; x; v/. Thus, Theorem 19.4 implies x D
��.N; v/.

Assume next that x D ��.N; v/. Let ˛ 2 R such that D.˛; x; v/ ¤ ;. Consider
the linear program

max
X

S2D.˛;x;v/

y.S/ subject to �y.S/ � 0; S 2 D.˛; x; v/, and y.N/ D 0 :

(19.4)
This program is feasible and, by Theorem 19.4, its value is 0. Hence (Problem 19.10)
its dual is feasible, that is, there are �.S/ � 0, S 2 D.˛; x; v/, and �.N/ 2 R such
that

�
X

S2D.˛;x;v/

�.S/eS C �.N/eN D
X

S2D.˛;x;v/

eS :

Hence �.N/eN D
P

S2D.˛;x;v/.1 C �.S//eS. Since 1 C �.S/ > 0 for every
S 2 D.˛; x; v/, we have �.N/ > 0 and thus D.˛; x; v/ is balanced, with balancing
weights .1C �.S//=�.N/ for S 2 D.˛; x; v/. �
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19.5 Computation of the Nucleolus

For two-person games, the (pre-)nucleolus is easy to compute (Problem 19.13).
In general, the computation of the nucleolus can be based on the subsequent
determination of the sets X0;X1;X2; : : : in Theorem 19.1, but this may not be easy,
as the following example shows.

Example 19.6 Consider the TU-game v with player set N D f1; 2; 3; 4g defined by3

v.S/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

20 if S D N

8 if S D f1; 2g
8 if S D f3; 4g
4 if S D f1g
2 if S D f3g
0 otherwise:

First observe that it is easy to find some imputation [e.g., x D .6; 4; 5; 5/] such
that the excesses of f1; 2g and f3; 4g are both equal to �2 and all other excesses
are at most �2. Clearly, this must be the minimal (over all imputations) maximal
excess attainable, since decreasing the excess of f1; 2g implies increasing the excess
of f3; 4g by efficiency, and vice versa. Thus,

X1 D fx 2 I.v/ j �.x/1 D �2g ;

and X2 D X1 since the excess of �2 is reached at the two coalitions f1; 2g and
f3; 4g. Consistently with the Kohlberg criterion, these coalitions form a balanced
collection. Next, observe that the remaining excesses are always at most as large as
at least one of the excesses of the four one-person coalitions. So we can find the
second-highest excess by minimizing ˛ subject to the constraints

8 � x1 � x2 D �2
8 � x3 � x4 D �2

4 � x1 � ˛

�x2 � ˛

2 � x3 � ˛

�x4 � ˛ :

3Observe that this game has a non-empty core and therefore the nucleolus and pre-nucleolus
coincide and are elements of the core. Cf. Problem 19.8.
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This can be rewritten as the system

x1 C x2 D 10

x3 C x4 D 10

x1 � 4 � ˛
x2 � �˛
x3 � 2 � ˛
x4 � �˛ :

By considering the equation and inequalities involving x1 and x2, we obtain ˛ � �3,
and those with x3 and x4 yield ˛ � �4. So the obvious minimum value is ˛ D �3.
Hence, the next two coalitions of which the excesses become fixed are f1g and f2g,
and, thus, the nucleolus allocates x1 D 7 to player 1 and x2 D 3 to player 2. The
third step in the computation is to minimize ˛ subject to the constraints

x3 C x4 D 10

x3 � 2 � ˛
x4 � �˛ :

(Note that the constraints that only refer to x1 and x2 have become superfluous.) This
linear program has the obvious solution ˛ D �4, which yields x3 D 6 and x4 D 4.
Thus, the (pre-)nucleolus of this game is

�.v/ D ��.v/ D .7; 3; 6; 4/ :

It is interesting to see that, even though at first glance player 4 does not seem to
have any noticeable advantage over player 2, he is still doing better in the nucleolus.
This is due to the fact that early on in the process player 4 was grouped together
with player 3, who has a lower individual worth than player 1, with whom player 2
becomes partnered. Thus, player 4 obtains a larger slice of the cake of size 10 that
he has to share with player 3, than player 2 does in a similar situation. �

This example raises the question how the nucleolus of a given TU-game can be
computed in a systematic way. More generally, let .N; v/ be a game. In order
to compute the nucleolus N .N; v;X/ for a compact polyhedral set X � R

N ,
determined by a system of linear (in)equalities, we can start by solving the linear
program4

Minimize ˛ subject to x.S/C ˛ � v.S/; 8 ; ¤ S 2 2N , x 2 X.

4Under appropriate restrictions this program is feasible and bounded.
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Let ˛1 denote the minimum of this program and let X1 � X be the set of points
where the minimum is obtained. If jX1j D 1 then N .N; v;X/ D X1. Otherwise, let
B1 be the set of coalitions S such that e.S; x; v/ D ˛1 for all x 2 X1, and solve the
linear program

Minimize ˛ subject to x.S/C ˛ � v.S/; 8 ; ¤ S 2 2N n B1, x 2 X1.

Continuing in this way, we eventually reach a unique point, which is the generalized
nucleolus of v with respect to X (cf. Theorem 19.3). The following example
illustrates this.

Example 19.7 Let N D f1; 2; 3; 4g and v.N/ D 100, v.123/ D 95, v.124/ D 85,
v.134/ D 80, v.234/ D 55, v.ij/ D 50 for all i ¤ j, v.i/ D 0 for all i.5 We compute
the pre-nucleolus (which will turn out to be an imputation and therefore equal to the
nucleolus). We start with the linear program

Minimize ˛ subject to

x1 C x2 C x3 C ˛ � 95

x1 C x2 C x4 C ˛ � 85

x1 C x3 C x4 C ˛ � 80

x2 C x3 C x4 C ˛ � 55

xi C xj C ˛ � 50

xi C ˛ � 0

x1 C x2 C x3 C x4 D 100

for all i; j 2 N with i ¤ j.
Solving this program results in ˛1 D 10, obtained over the set X1 given by

x1 C x2 D 60; x1 � 30; x2 � 25; x3 D 25; x4 D 15;

and

B1 D f123; 124; 34g;

which is a balanced set, as was to be expected (cf. Theorem 19.5).

5We write v.123/ instead of v.f1; 2; 3g/, etc.
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The second linear program is now

Minimize ˛ subject to

x1 C x3 C x4 C ˛ � 80

x2 C x3 C x4 C ˛ � 55

x1 C x3 C ˛ � 50

x1 C x4 C ˛ � 50

x2 C x3 C ˛ � 50

x2 C x4 C ˛ � 50

xi C ˛ � 0

x 2 X1

for all i 2 N.
By some simplifications this program reduces to

Minimize ˛ subject to

x1 C ˛ � 40

x2 C ˛ � 35

x1 C x2 D 60

x1 � 30

x2 � 25;

with solution ˛2 D 7:5, x1 D 32:5, x2 D 27:5. Hence, the (pre-)nucleolus of this
game is

�.N; v/ D ��.N; v/ D .32:5; 27:5; 25; 15/;

and B1 D f123; 124; 34g, B2 D f134; 234g. By Theorem 19.5 it can be verified that
we have indeed found the pre-nucleolus (Problem 19.15). �

19.6 A Characterization of the Pre-nucleolus

The pre-nucleolus is a single-valued solution concept, defined for any game .N; v/.
Hence, it is an example of a value on G (see Chap. 17). In this section we provide a
characterization based on a reduced game property. We will not give the complete
proof of this characterization but, instead, refer the reader to the literature.

Let  be a value on G, and let x 2 R
N . Let S be a non-empty coalition. The

Davis-Maschler reduced game for S at x is the game .S; vS;x/ 2 GS defined by

vS;x.T/ WD

8
<
:

0 if T D ;
v.N/ � x.N n S/ if T D S

maxQ�NnS v.T [ Q/ � x.Q/ otherwise.
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The interpretation of this reduced game is as follows. Suppose x is the payoff
vector for the grand coalition. The coalition S could renegotiate these payoffs
among themselves. Assume that the outside players are happy with x. Hence, S has
v.N/ � x.N n S/ to redistribute. Any smaller coalition T, however, could cooperate
with zero or more outside players and pay them according to x: then vS;x.T/ as
defined above is the maximum they could get. Hence, the redistribution game takes
the form vS;x.

The following axiom for a value onG requires the outcome of the redistribution
game for S to be equal to the original outcome.

Davis-Maschler consistency (DMC):  i.S; vS;x/ D  i.N; v/ for every .N; v/ 2 G,
; ¤ S � N, x D  .N; v/ and i 2 S.

The announced characterization is based on two other axioms, namely Anonymity
(AN, see Sect. 17.1) and the following axiom.

Covariance (COV):  .N; ˛v C b/ D ˛ .N; v/ C b for all .N; v/ 2 G, every
˛ 2 R; ˛ > 0, and every b 2 R

N , where .˛v C b/.S/ WD ˛v.S/ C b.S/ for every
non-empty coalition S � N.

Remark 19.8 Covariance requires that the value respects strategic equivalence of
games, cf. Problem 16.12.

We first prove that the pre-nucleolus is Davis-Maschler consistent.

Lemma 19.9 The pre-nucleolus, as a value on G, is Davis-Maschler consistent.

Proof Let .N; v/ 2 G, x D ��.N; v/ and ; ¤ S � N. Let xS 2 R
S be the

restriction of x to S, then we have to prove that xS D ��.S; vS;x/. Let ˛ 2 R

with D.˛; xS; vS;x/ ¤ ; and let yS 2 R
S be a side-payment with yS.R/ � 0 for

every R 2 D.˛; xS; vS;x/ then, in view of Theorem 19.4 it is sufficient to prove that
yS.R/ D 0 for every R 2 D.˛; xS; vS;x/. We claim that

fT \ S j T 2 D.˛; x; v/; ; ¤ T \ S ¤ Sg D D.˛; xS; vS;x/ n fSg : (19.5)

To see this, first assume T 2 D.˛; x; v/; ; ¤ T \ S ¤ S. Then

vS;x.T \ S/� xS.T \ S/ � v..T \ S/[ .T n S// � x.T n S/ � x.T \ S/

D v.T/ � x.T/

� ˛

which proves one direction. For the other direction, let S0 2 D.˛; xS; vS;x/, S0 ¤ S.
Then

max
Q�NnS

v.S0 [ Q/� x.Q/� xS.S
0/ � ˛
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hence

v.S0 [ Q0/ � x.Q0 [ S0/ � ˛

for some Q0 � N n S; now take T D S0 [ Q0 to establish the converse direction.
Extend yS to a vector y 2 R

N by setting yi D 0 for all i 2 N n S. Then y.N/ D
0 and, by (19.5), y.R/ � 0 for all R 2 D.˛; x; v/. By Theorem 19.4, it follows
that y.R/ D 0 for all R 2 D.˛; x; v/. Hence, by (19.5), yS.R/ D 0 for all R 2
D.˛; xS; vS;x/, which completes the proof. �

As an additional result, we prove that COV and DMC imply Efficiency (EFF).

Lemma 19.10 Let  be a value on G satisfying COV and DMC. Then  satisfies

EFF.

Proof Let .fig; v/ be a one-person game. If v.i/ D 0 then, by COV,  .fig; 0/ D
 .fig; 2 � 0/ D 2 .fig; 0/, hence  .fig; 0/ D 0. Again by COV,

 .fig; v/ D  .fig; 0C v/ D  .fig; 0/C v.i/ D v.i/ ;

so EFF on one-person games is satisfied. Now let .N; v/ 2 G with at least two
players. Let x D  .N; v/ and i 2 N. By DMC, xi D  .fig; vfig;x/. Hence, xi D
vfig;x.i/ D v.N/� x.N n fig/, where the second equality follows by definition of the
reduced game. Thus, x.N/ D v.N/ and the proof is complete. �

The announced characterization of the pre-nucleolus is as follows.

Theorem 19.11 A value  on G satisfies COV, AN, and DMC if and only if it is the

pre-nucleolus.

Proof COV and AN of the pre-nucleolus follow from Problem 19.17. DMC follows
from Lemma 19.9. For the only-if part see the Notes to this chapter. �

19.7 Problems

19.1. Binary Relations

Give an example of a relation that satisfies (1)–(3), but not (4) in Sect. 19.2. Also
find an example that only violates (3), and one that only violates (2). What about
(1)? Give an example of a partial order that is neither antisymmetric nor complete.

19.2. Linear Orders

Let � be a linear order. Show that x � y holds if and only if x � y and x ¤ y.
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19.3. The Lexicographic Order (1)

Show that �lex is indeed a linear order.

19.4. The Lexicographic Order (2)

Find the set of points .x1; x2/ in R
2 for which .x1; x2/ �lex .3; 1/. Draw this set in

the Cartesian plane. Is this set closed?

19.5. Representability of Lexicographic Order (1)

Let uWRn ! R be a continuous function. Define �u by x �u y if and only if
u.x/ � u.y/. Use Problem 19.4 to show that �u ¤ �lex.

19.6. Representability of Lexicographic Order (2)

Show that the lexicographic order cannot be represented by any utility function.
[Hint: take the lexicographic order on R

2 and argue that representability implies
that for each pair of real numbers t and s we can find rational numbers q.t/ and q.s/

such that q.t/ ¤ q.s/ whenever t ¤ s. Hence, we have uncountably many different
rational numbers, a contradiction.]

19.7. Single-Valuedness of the Pre-nucleolus

Prove that the nucleolus of any game .N; v/with respect to I�.N; v/ is single-valued.

19.8. (Pre-)Nucleolus and Core

Let .N; v/ be a game with C.N; v/ ¤ ;. Prove that �.N; v/ D ��.N; v/ 2 C.N; v/.

19.9. Kohlberg Criterion for the Nucleolus

Let .N; v/ be a game satisfying I.N; v/ ¤ ;, and let x 2 I.N; v/. Prove that x D
�.N; v/ if and only if for every ˛ 2 R: if D.˛; v; x/ ¤ ; then there exists a set
E.˛; x; v/ � ffjg j j 2 N; xj D v.j/g such that D.˛; x; v/ [ E.˛; x; v/ is balanced.

19.10. Proof of Theorem 19.5

In the proof of Theorem 19.5, determine the dual program and conclude that it is
feasible. Hint: use Theorem 16.20 and Remark 16.21.

19.11. Nucleolus of a Three-Person Game (1)

Compute the nucleolus of the three-person game v defined by

S f1g f2g f3g f1; 2g f1; 3g f2; 3g f1; 2; 3g
v.S/ 4 3 2 4 3 2 12
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19.12. Nucleolus of a Three-Person Game (2)

(a) Compute the nucleolus of the three-person TU-game defined by

S f1g f2g f3g f1; 2g f1; 3g f2; 3g f1; 2; 3g
v.S/ 0 0 1 7 5 3 10

(b) Make a graphical representation of the sets X0;X1; : : :

19.13. Nucleolus of a Two-Person Game

Compute the pre-nucleolus of a two-person game and the nucleolus of an essential
two-person game.

19.14. Individual Rationality Restrictions for the Nucleolus

Compute the nucleolus and the pre-nucleolus of the three-person TU-game defined
by v.12/ D v.13/ D 2, v.123/ D 1 and v.S/ D 0 for all other coalitions.

19.15. Example 19.7

Verify that .32:5; 27:5; 25; 15/ is indeed the pre-nucleolus of the game in Exam-
ple 19.7, by applying Theorem 19.5.

19.16. (Pre-)Nucleolus of a Symmetric Game

Let v be an essential game. Suppose that v is symmetric (meaning that there exists
a function f WR ! R such that v.S/ D f .jSj/ for every coalition S.)

(a) Prove that the (pre-)nucleolus is symmetric, that is, �.v/i D �.v/j and ��.v/i D
��.v/j for all players i; j 2 N. Give a formula for the (pre-)nucleolus.

(b) Suppose that D.˛; �.v/; v/ ¤ fNg, where ˛ is the maximal excess at the (pre-)
nucleolus. Prove that X1 (cf. Theorem 19.1) is a singleton set.

19.17. COV and AN of the Pre-nucleolus

Prove that the pre-nucleolus satisfies COV and AN.

19.18. Apex Game

Consider the 5-person apex game .N; v/ with N D f1; 2; 3; 4; 5g and v.S/ D 1

if 1 2 S and jSj � 2 or if jSj � 4, and v.S/ D 0 otherwise. Compute the (pre-)
nucleolus of this game.

19.19. Landlord Game

Consider the landlord game in Problem 18.4.

(a) Assume that for all i D 1; : : : ; n � 1 we have f .i/ � f .i � 1/ � f .i C 1/ � f .i/.
Show that the (pre-)nucleolus of this game assigns f .n/ � n

2
Œf .n/ � f .n � 1/� to

the landlord. Compare with the Shapley value.
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(b) Assume that for all i D 1; : : : ; n�1 we have f .i/� f .i�1/ � f .iC1/� f .i/, and
that 1

nC1
f .n/ � 1

2
Œf .n/ � f .n � 1/�. Show that the (pre-)nucleolus of this game

treats all players (including the landlord) equally.

19.20. Game in Sect. 19.1

Use the algorithm of solving successive linear programs to find the (pre-)nucleolus
of the game discussed in Sect. 19.1. Use Theorem 19.5 to verify that the (pre-)
nucleolus has been found.

19.21. The Prekernel

For a game .N; v/ define the pre-kernel K�.N; v/ � I�.N; v/ by

K�.N; v/ D fx 2I�.N; v/ j max
S�Nnfjg; i2S

e.S; x; v/

D max
S�Nnfig; j2S

e.S; x; v/ for all i; j 2 Ng :

Prove that ��.N; v/ 2 K�.N; v/.

19.8 Notes

The nucleolus was introduced in Schmeidler (1969). The treatment in the present
chapter is partially based on the treatment of the subject in Peleg and Sudhölter
(2003) and Owen (1995).

Theorem 19.5 is due to Kohlberg (1971). Example 19.7 is taken from Owen
(1995).

The Davis-Maschler reduced game stems from Davis and Maschler (1965).
The characterization of the pre-nucleolus in Theorem 19.11 is due to Sobolev

(1975). The reader may also consult Peleg and Sudhölter (2003) for a complete
proof of the theorem. Snijders (1995) provides a characterization of the nucleolus
on the class of all games with non-empty imputation set by modifying the Davis-
Maschler consistency condition.

For the landlord game in Problem 19.19 see also Moulin (1988).
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20Special Transferable Utility Games

In this chapter we consider a few classes of games with transferable utility which
are derived from specific economic (or political) models or combinatorial problems.
In particular, we study assignment and permutation games, flow games, and voting
games.

20.1 Assignment and Permutation Games

An example of a permutation game is the ‘dentist game’ described in Sect. 1.3.4. An
example of an assignment game is the following.

Example 20.1 Vladimir (player 1), Wanda (player 2), and Xavier (player 3) each
own a house that they want to sell. Yolanda (player 4) and Zarik (player 5) each
want to buy a house. Vladimir, Wanda, and Xavier value their houses at 1, 1.5, and
2, respectively (each unit is 100,000 Euros). The worths of their houses to Yolanda
and Zarik, respectively, are 0.8 and 1.5 for Vladimir’s house, 2 and 1.2 for Wanda’s
house, and 2.2 and 2.3 for Xavier’s house.

This situation gives rise to a five-player TU-game, where the worth of each
coalition is defined to be the maximal surplus that can be generated by buying and
selling within the coalition. For instance, in the coalition f2; 3; 5g the maximum
surplus is generated if Zarik buys the house of Xavier, namely 2:3�2 D 0:3, which
is greater than the 1:2 � 1:5 D �0:3 that results if Zarik buys Wanda’s house. Each
coalition can generate a payoff of at least 0 because it can refrain from trading at all.
The complete game is described in Table 20.1, where coalitions with only buyers or
only sellers are left out. A game like this is called an assignment game. �

We will examine such games in detail, starting with the basic definitions.
Let M and P be two finite, disjoint sets. For each pair .i; j/ 2 M � P the number

aij � 0 is interpreted as the value of the matching between i and j. With this situation
a cooperative game .N; v/ can be associated, as follows. The player set N is the set

© Springer-Verlag Berlin Heidelberg 2015
H. Peters, Game Theory, Springer Texts in Business and Economics,
DOI 10.1007/978-3-662-46950-7_20
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Table 20.1 Worths for the
assignment game in
Example 20.1

S v.S/ S v.S/ S v.S/

14 0 125 0.5 345 0.3

15 0.5 134 0.2 1,234 0.5

24 0.5 135 0.5 1,235 0.5

25 0 145 0.5 1,245 1

34 0.2 234 0.5 1,345 0.7

35 0.3 235 0.3 2,345 0.8

124 0.5 245 0.5 12,345 1

M[P. For each coalition S � N the worth v.S/ is the maximum that S can achieve by
making pairs among its own members. Formally, if S � M or S � P then v.S/ D 0,
because no pairs can be formed at all. Otherwise, v.S/ is equal to the value of the
following integer programming problem.

max
P

i2M

P
j2P aijxij

subject to
P

j2P xij � 1S.i/ for all i 2 M
P

i2M xij � 1S.j/ for all j 2 P (20.1)

xij 2 f0; 1g for all i 2 M; j 2 P.

Here, 1S.i/ WD 1 if i 2 S and equal to zero otherwise. Games defined by (20.1) are
called assignment games. The reader may verify that in Example 20.1 the numbers
aij are given by aij D maxfhij � ci; 0g, where hij is the value of the house of player i

to player j and ci is the value of the house of player i for himself.
As will become clear below, a more general situation is the following. For each

i 2 N D f1; 2; : : : ; ng let ki�.i/ be the value placed by player i on the permutation
� 2 ….N/. (The implicit assumption is that ki�.i/ D ki�.i/ whenever �.i/ D �.i/.)
Each coalition S � N may achieve a permutation � involving only the players of S,
that is, �.i/ D i for all i 62 S. Let….S/ denote the set of all such permutations. Then
a game v results by defining, for each nonempty coalition S, the worth by

v.S/ WD max
�2….S/

X

i2S

ki�.i/ : (20.2)

The game thus obtained is called a permutation game. Alternatively, the worth v.S/
in such a game can be defined by the following integer programming problem.

max
P

i2N

P
j2N kijxij

subject to
P

j2N xij D 1S.i/ for all i 2 N
P

i2N xij D 1S.j/ for all j 2 N (20.3)

xij 2 f0; 1g for all i; j 2 N.

The two definitions are equivalent, and both can be used to verify that the ‘dentist
game’ of Sect. 1.3.4 is indeed a permutation game (Problem 20.1).



20.1 Assignment and Permutation Games 363

The relation between the class of assignment games and the class of permutation
games is a simple one. The former class is contained in the latter, as the following
theorem shows.

Theorem 20.2 Every assignment game is a permutation game.

Proof Let v be an assignment game with player set N D M [ P. For all i; j 2 N

define

kij WD
�

aij if i 2 M; j 2 P

0 otherwise.

Let w be the permutation game defined by (20.3) with kij as above. Note that the
number of variables in the integer programming problem defining v.S/ is jMj � jPj,
while the number of variables in the integer programming problem defining w.S/

is .jMj C jPj/2. For S � M or S � P, w.S/ D 0 D v.S/. Let now S � N with
S 6� M and S 6� P. Let x 2 f0; 1gjMj�jPj be an optimal solution for (20.1). Define
Ox 2 f0; 1g.jMjCjPj/2 by

Oxij WD xij if i 2 M, j 2 P

Oxij WD xji if i 2 P, j 2 M

Oxii WD 1S.i/ �
X

j2P

xij if i 2 M

Oxjj WD 1S.j/ �
X

i2M

xij if j 2 P

Oxij WD 0 in all other cases.

Then Ox satisfies the conditions in problem (20.3). Hence, for every S,

w.S/ �
X

i2N

X

j2N

kij Oxij D
X

i2M

X

j2P

aijxij D v.S/ :

On the other hand, let z 2 f0; 1g.jMjCjPj/2 be an optimal solution for (20.3). Define
Oz 2 f0; 1gjMj�jPj by

Ozij WD zij for i 2 M; j 2 P :

Then Oz satisfies the conditions in problem (20.1). Hence, for every S,

v.S/ �
X

i2M

X

j2P

aijOzij D
X

i2M

X

j2P

kijzij D w.S/ :

Consequently, v D w . �
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The converse of Theorem 20.2 is not true, as the following example shows. As a
matter of fact, a necessary condition for a permutation game to be an assignment
game is the existence of a partition of the player set N of the permutation game into
two subsets N1 and N2, such that the value of a coalition S is 0 whenever S � N1 or
S � N2. The example shows that this is not a sufficient condition.

Example 20.3 Let N D f1; 2; 3g and let v be the permutation game with the
numbers kij given in the following matrix:

0
@
0 2 1

1 0 0

2 0 0

1
A :

Then v.i/ D 0 for every i 2 N, v.1; 2/ D v.1; 3/ D 3, v.2; 3/ D 0, and v.N/ D 4.
Note that this game satisfies the condition formulated above with N1 D f1g and
N2 D f2; 3g, but it is not an assignment game (Problem 20.2). �

The main purpose of this section is to show that permutation games and, hence,
assignment games are balanced and, in fact, totally balanced. A TU-game .N; v/
is totally balanced if the subgame .M; v/—where v is the restriction to M—is
balanced for every M � N. Balanced games are exactly those games that have a
non-empty core, see Chap. 16.

Theorem 20.4 Assignment games and permutation games are totally balanced.

Proof In view of Theorem 20.2, it is sufficient to prove that permutation games
are totally balanced. Because any subgame of a permutation game is again a
permutation game (see Problem 20.3), it is sufficient to prove that any permutation
game is balanced.

Let .N; v/ be a permutation game, defined by (20.3). By the Birkhoff–von
Neumann Theorem (Theorem 22.12) the integer restriction can be dropped so that
each v.S/ is also defined by the following program:

max
P

i2N

P
j2N kijxij

subject to
P

j2N xij D 1S.i/ for all i 2 N
P

i2N xij D 1S.j/ for all j 2 N (20.4)

xij � 0 for all i; j 2 N.
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Note that this is a linear programming problem of the same format as the
maximization problem in Theorem 16.20. Namely, with notations as there, take

y D .x11; : : : ; x1n; x21; : : : ; x2n; : : : ; xn1; : : : ; xnn/

b D .k11; : : : ; k1n; k21; : : : ; k2n; : : : ; kn1; : : : ; knn/

c D .1S; 1S/ :

Further, let A be the 2n � n2-matrix with row ` 2 f1; : : : ; ng containing a 1 at
columns `; `C n; `C 2n; : : : ; `C .n � 1/n and zeros otherwise; and with row `C n

(` 2 f1; : : : ; ng) containing a 1 at columns .`�1/n C1; : : : ; `n and zeros otherwise.
The corresponding dual problem, the minimization problem in Theorem 16.20, then
has the form:

min
P

i2N 1S.i/yi C
P

j2N 1S.j/zj

subject to yi C zj � kij for all i; j 2 N. (20.5)

Let .Oy; Oz/ be an optimal solution of problem (20.5) for S D N. Then, by
Theorem 16.20 and the fact that the maximum in problem (20.4) for S D N is
equal to v.N/ by definition, it follows that

X

i2N

.Oyi C Ozi/ D v.N/ :

Since .Oy; Oz/ satisfies the restrictions in problem (20.5) for every S � N, it
furthermore holds that for every S � N,

X

i2S

.Oyi C Ozi/ D
X

i2N

1S.i/Oyi C
X

i2N

1S.i/Ozi � v.S/ :

Therefore, u 2 R
N defined by ui WD Oyi C Ozi is in the core of v. �

20.2 Flow Games

In this section another class of balanced games is considered. These games are
derived from the following kind of situation. There is a given capacitated network,
the edges of which are controlled by subsets of players. These coalitions can send
a flow through the network. The flow is maximal if all players cooperate, and then
the question arises how to distribute the profits. One can think of an almost literal
example, where the edges represent oil pipelines, and the players are in power in
different countries through which these pipelines cross. Alternatively, one can think
of rail networks between cities, or information channels between different users.
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Fig. 20.1 Example 20.5
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Capacitated networks are treated in Sect. 22.7, which the reader may consult
before continuing.

Consider a capacitated network .V;E; k/ and a set of players N WD f1; : : : ; ng.
Suppose that with each edge in E a simple game (cf. Sect. 16.3.) is associated. The
winning coalitions in this simple game are supposed to control the corresponding
edge; the capacitated network is called a controlled capacitated network. For any
coalition S � N consider the capacitated network arising from the given network by
deleting the edges that are not controlled by S. A game can be defined by letting the
worth of S be equal to the value of a maximal flow through this restricted network.
The game thus arising is called a flow game.

Example 20.5 Consider the capacitated network in Fig. 20.1. This network has
three edges denoted e1, e2, and e3 with capacities 4, 5 and 10, respectively. The
control games are w1, w2, w3 with N D f1; 2; 3g and

w1.S/ D 1 if S 2 ff1; 2g;Ng and w1.S/ D 0 otherwise
w2.S/ D 1 if S 2 ff1; 3g;Ng and w2.S/ D 0 otherwise
w3.S/ D 1 if, and only if, 1 2 S.

The coalition f1; 2g can only use the edges e1 and e3, so the maximal flow (per
time unit) for f1; 2g is 4. This results in v.f1; 2g/ D 4 for the corresponding flow
game .N; v/. The complete game is given by v.i/ D 0 for all i 2 N, v.f1; 2g/ D 4,
v.f1; 3g/ D 5, v.f2; 3g/ D 0 and v.N/ D 9.

A minimum cut in this network corresponding to the grand coalition is .fqg;V n
fqg/. By the Max Flow Min Cut Theorem of Ford and Fulkerson (Theorem 22.16),
the sum of the capacities of e1 and e2 (4 C 5) is equal to v.N/. Divide v.N/ as
follows. Divide 4 equally among the veto players of w1, and 5 equally among the
veto players of w2. The result for the players is the payoff vector .4 1

2
; 2; 2 1

2
/. Note

that this vector is in C.v/. �

The next theorem shows that the non-emptiness of the core of the control games is
inherited by the flow game.

Theorem 20.6 Suppose all control games in a controlled capacitated network have

veto players. Then the corresponding flow game is balanced.
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Proof Take a maximal flow for the grand coalition and a minimum cut in the
network for the grand coalition, consisting of the edges

e1; e2; : : : ; ep with capacities k1; k2; : : : ; kp

and control games w1, w2, : : :, wp, respectively. Then Theorem 22.16 implies that
v.N/ D

Pp

rD1 kr. For each r take xr 2 C.wr/ and divide kr according to the division
key xr (i.e. krx

r
i is the amount for player i). Note that non-veto players get nothing.

Then
Pp

rD1 krx
r 2 C.v/. To see this, first note that

nX

iD1

pX

rD1

krx
r
i D

pX

rD1

kr

nX

iD1

xr
i D

pX

rD1

kr D v.N/ :

Next, for each coalition S, the set

ES WD fer W r 2 f1; : : : pg;wr.S/ D 1g

is associated with a cut of the network, governed by the coalition S. Hence,
P

i2S

.
Pp

rD1 krx
r
i / D

Pp

rD1 kr

P
i2S xr

i �
Pp

rD1 krwr .S/ D
P

er2ES
kr D

capacity.ES/ � v.S/, where the last inequality follows from Theorem 22.16. �

The next theorem is a partial converse to Theorem 20.6.

Theorem 20.7 Each nonnegative balanced game arises from a controlled capaci-

tated network where all control games possess veto players.

Proof See Problem 20.5. �

20.3 Voting Games: The Banzhaf Value

Voting games constitute another special class of TU-games. Voting games are simple
games which reflect the distribution of voting power within, for instance, political
systems. There is a large body of work on voting games within the political science
literature. In this section we restrict ourselves to a brief discussion of a well-known
example of a power index, to so-called Banzhaf–Coleman index and the associated
value, the Banzhaf value.

A power index is a value applied to voting (simple) games. The payoff vector
assigned to a game is interpreted as reflecting power distribution—e.g., the proba-
bility of having a decisive vote—rather than utility.

We start with an illustrating example.
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Example 20.8 Consider a parliament with three parties 1, 2, and 3. The numbers
of votes are, respectively, 50, 30, and 20. To pass any law, a two-third majority
is needed. This leads to a simple game with winning coalitions f1; 2g, f1; 3g, and
f1; 2; 3g. The Shapley value1 of this game is . 2

3
; 1
6
; 1
6
/, as can easily be checked. By

definition of the Shapley value this means that in four of the six orderings player
1 makes the coalition of his predecessors winning by joining them, whereas for
players 2 and 3 this is only the case in one ordering each. The coalitions that are
made winning by player 1 if he joins, are f2g, f3g, and f2; 3g. In the Shapley value
the last coalition is counted double. It might be more natural to count this coalition
only once. This would lead to an outcome . 3

5
; 1
5
; 1
5
/, instead of the Shapley value.

The associated value is called the normalized Banzhaf–Coleman index. �

For a simple game .N; v/ (see Sect. 16.3), the normalized Banzhaf–Coleman index
can be defined as follows. Define a swing for player i as a coalition S � N with
i 2 S, S wins, and S n fig looses. Let �i be the number of swings for player i, and
define the numbers

ˇi.N; v/ WD �iPn
jD1 �j

:

The vector ˇ.N; v/ is the normalized Banzhaf–Coleman index of the simple game
.N; v/.

For a general game .N; v/ write

�i.v/ WD
X

S�NW i62S

Œv.S [ i/ � v.S/� :

For a simple game v this number �i.v/ coincides with the number �i above.
Next, define the value � W GN ! R

N by

�i.v/ WD �i.v/

2jNj�1
D

X

S�NW i62S

1

2jNj�1
Œv.S [ i/ � v.S/� : (20.6)

The value � is called the Banzhaf value. The remainder of this section is devoted
to an axiomatic characterization of this value. This characterization uses the axioms
SYM (Symmetry), SMON (Strong Monotonicity), and DUM (Dummy Property),
which were all introduced in Chap. 17. Besides, it uses an ‘amalgamation’ property,
as follows.

1Also called the Shapley-Shubik power index in this context.
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For a game .N; v/ (with at least two players) and different players i; j put p D fi; jg
and define the game ..N n p/ [ fpg; vp/ by

vp.S/ D v.S/ and vp.S [ fpg/ D v.S [ p/; for any S � N n p : (20.7)

Thus, vp is an .n � 1/-person game obtained by amalgamating players i and j in v
into one player p in vp.

Let  be an arbitrary value (on the class G of all games with arbitrary player set).
The announced axiom is as follows.

2-Efficiency (2-EFF):  i.v/C  j.v/ D  p.vp/ for all v; i; j; p; vp as above.

The following theorem gives a characterization of the Banzhaf value.

Theorem 20.9 The value  on G satisfies 2-EFF, SYM, DUM, and SMON, if and

only if  is the Banzhaf value � .

Proof That the Banzhaf value satisfies the four axioms in the theorem is the subject
of Problem 20.9. For the converse, let  be a value satisfying the four axioms. We
prove that  D � .

Step 1

Let uT be a unanimity game. We first show that

 i.uT/ D 1=2jTj�1 if i 2 T and  i.uT/ D 0 if i 62 T : (20.8)

If jTj D 1 then every player is a dummy, so that (20.8) follows from DUM. Suppose
(20.8) holds whenever jTj � k or jNj � m, and consider a unanimity game uT where
now the number of players is m C 1, and T contains k C 1 players. Let i; j 2 T, put
p D fi; jg and consider the game .uT/p. Then .uT/p is the m-person unanimity game
of the coalition T 0 D .T n p/[ fpg, and jT 0j D k. By the induction hypothesis

 p..uT/p/ D 1=2jT0j�1 D 1=2k�1:

By 2-EFF this implies

 i.uT/C  j.uT/ D 1=2k�1:

From this and SYM it follows that

 i.uT/ D 1=2k D 1=2jTj�1

for all i 2 T, and by DUM,  j.uT/ D 0 for all j 62 T. Thus,  is the Banzhaf value
on unanimity games for any finite set of players. In the same way, one shows that
this is true for any real multiple cuT of a unanimity game.
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Step 2

For an arbitrary game v write v D
P

;¤T cTuT , and let ˛.v/ denote the number of
nonzero coefficients in this representation. The proof will be completed by induction
on the number ˛.v/ and the number of players. For ˛.v/ D 1 Step 1 implies .v/ D
�.v/ independent of the number of players. Assume that  .v/ D �.v/ on any
game v with at most n players, and also any game v with ˛.v/ � k for some natural
number k and with n C 1 players, and let v be a game with n C 1 players and with
˛.v/ D k C 1. There are k C 1 different nonempty coalitions T1; : : : ;TkC1 with

v D
kC1X

rD1

cTr
uTr

;

where all coefficients are nonzero. Let T WD T1 \ : : : \ TkC1. Because k C 1 � 2, it
holds that N n T ¤ ;. Assume i 62 T. Define the game w by

w D
X

rW i2Tr

cTr
uTr

:

Then ˛.w/ � k and v.S [ i/ � v.S/ D w.S [ i/ � w.S/ for every coalition S not
containing player i. By SMON and the induction hypothesis it follows that  i.v/ D
 i.w/ D �i.w/ D �i.v/. Hence,

 i.v/ D �i.v/ for every i 2 N n T. (20.9)

Let j 2 T and i 2 N n T, put p D fi; jg, and consider the game vp . Because the game
vp has n players the induction hypothesis implies

 p.vp/ D �p.vp/ : (20.10)

Applying 2-EFF to both  and � yields

 p.vp/ D  i.v/C  j.v/ and �p.vp/ D �i.v/C �j.v/ : (20.11)

Combining (20.9)–(20.11) implies  j.v/ D �j.v/ for every j 2 T. Together with
(20.9) this completes the induction argument, and therefore the proof. �

20.4 Problems

20.1. The Dentist Game

Show that (20.2) and (20.3) are equivalent, and use each of these to verify that the
dentist game of Sect. 1.3.4 is a permutation game.
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Fig. 20.2 The network of
Problem 20.4

q s

e1 e3

e2 e4

20.2. Example 20.3

Show that the game in Example 20.3 is not an assignment game.

20.3. Subgames of Permutation Games

Prove that subgames of permutation games are again permutation games. Is this also
true for assignment games?

20.4. A Flow Game

Consider the network in Fig. 20.2. Suppose that this is a controlled capacitated
network with player set N D f1; 2; 3; 4g, suppose that all edges have capacity 1
and that w1 D ı1, w2 D ı2, w3 D ı3 and w4.S/ D 1 iff S 2 ff3; 4g;Ng. [Here, ıi is
the simple game where a coalition is winning if, and only if, it contains player i.]

(a) Calculate the corresponding flow game .N; v/.
(b) Calculate C.v/.
(c) The proof of Theorem 20.6 describes a way to find core elements by looking at

minimum cuts and dividing the capacities of edges in the minimum cut in some
way among the veto players of the corresponding control game. Which elements
of C.v/ can be obtained in this way?

20.5. Every Nonnegative Balanced Game is a Flow Game

Prove that every nonnegative balanced game is a flow game. [Hint: You may use
the following result: every nonnegative balanced game can be written as a positive
linear combination of balanced simple games.]

20.6. On Theorem 20.6 (1)

(a) Consider a controlled capacitated network with a minimum cut, where all
control games corresponding to the edges in this minimum cut (connecting
vertices between the two sets in the cut) have veto players. Prove that the
corresponding flow game is balanced.

(b) Show that the flow game, corresponding to Fig. 20.3, where the winning
coalitions of w1 are f1; 3g, f2; 4g and N D f1; 2; 3; 4g, where the winning
coalitions of w2 are f1; 2g and N and of w3 f3; 4g and N and where the capacities
are 1, 10, 10 respectively, has a nonempty core. Note that there is no minimum
cut where all control games have veto players.
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Fig. 20.3 The network of
Problem 20.6 1

10

10

w1

w2

w3

Fig. 20.4 The network of
Problem 20.7

q s

w1

w2

w3

20.7. On Theorem 20.6 (2)

Prove that the two-person flow game corresponding to the controlled capacitated
network of Fig. 20.4 has an empty core, where w1 D ı1, w2 D ı2, w3.S/ D 1 if
S ¤ ;, and where the capacities of the edges are equal to 1.

20.8. Totally Balanced Flow Games

Let .N; v/ be the flow game corresponding to a controlled capacitated network
where all control games are dictatorial games (games of the form ıi, see Prob-
lem 20.4). Prove that each subgame .S; vS/ (where vS is the restriction of v to 2S)
has a nonempty core, i.e., that the game .N; v/ is totally balanced.

20.9. If-Part of Theorem 20.9

Prove that the Banzhaf value satisfies 2-EFF, SYM, DUM, and SMON. Is it possible
to weaken DUM to NP (the null-player property) in Theorem 20.9? Give an example
showing that the Banzhaf value is not efficient.

20.5 Notes

The presentation in Sect. 20.1 is mainly based on Curiel (1997, Chap. 3). Exam-
ple 20.1 is from this book. Assignment games were introduced by Shapley and
Shubik (1972). Permutation games were introduced by Tijs et al. (1984).

Theorem 20.6 on flow games is due to Curiel et al. (1986).
In the literature many characterizations of power indices are available. The one

presented in Sect. 20.3 is based on Nowak (1997).
For the result in the hint to Problem 20.5 see Derks (1987). Problem 20.8 refers

to Kalai and Zemel (1982).
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21Bargaining Problems

The game-theoretic literature on bargaining can be divided in two strands: the
cooperative and the noncooperative approach. Here, the focus is on the cooperative
approach, which was initiated by Nash (1950) and which is axiomatic in nature;
see Sect. 10.1 for a first discussion. A seminal article on noncooperative bargaining
is Rubinstein (1982). The basic idea of that paper is briefly repeated below, but
see Sect. 6.7 for a more elaborate discussion. We conclude the chapter with a few
remarks on games with nontransferable utility (NTU-games).

21.1 The Bargaining Problem

A 2-person bargaining problem is a pair .S;d/ where S is a compact convex
nonempty subset of R2 and d is an element of S such that x > d for some x 2 S.
The elements of S are called outcomes and d is the disagreement outcome. The
interpretation of such a problem .S;d/ is as follows. Two bargainers, 1 and 2, have
to agree on some outcome x 2 S, yielding utility xi to bargainer i. If they fail to
reach such an agreement, they end up with the disagreement utilities d D .d1; d2/.
B denotes the family of all 2-person bargaining problems.

A (bargaining) solution is a map F W B ! R
2 such that F.S;d/ 2 S for all

.S;d/ 2 B. Nash (1950) proposed to characterize such a solution by requiring it to
satisfy certain axioms. More precisely, he proposed the following axioms.1

Weak Pareto Optimality (WPO): F.S;d/ 2 W.S/ for all .S;d/ 2 B, where
W.S/ WD fx 2 S j 8y 2R

2 W y> x ) y 62 Sg is the weakly Pareto optimal subset of S.2

1See Fig. 10.2 for an illustration of these axioms. In Sect. 10.1 the stronger Pareto Optimality is
imposed instead of Weak Pareto Optimality. In the diagram—panel (a)—that does not make a
difference.
2The notation y > x means yi > xi for i D 1; 2.

© Springer-Verlag Berlin Heidelberg 2015
H. Peters, Game Theory, Springer Texts in Business and Economics,
DOI 10.1007/978-3-662-46950-7_21
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Symmetry (SYM): F1.S;d/ D F2.S;d/ for all .S;d/ 2 B that are symmetric, i.e.,
d1 D d2 and S D f.x2; x1/ 2 R

2 j .x1; x2/ 2 Sg.

Scale Covariance (SC): F.aS Cb; adCb/ D aF.S;d/Cb for all .S;d/ 2 B, where
b 2 R

2, a 2 R
2
CC, ax WD .a1x1; a2x2/ for all x 2 R

2, aS WD fax j x 2 Sg, and
aS C b WD fax C b j x 2 Sg.3

Independence of Irrelevant Alternatives (IIA): F.S;d/ D F.T; e/ for all .S;d/,
.T; e/ 2 B with d D e, S � T, and F.T; e/ 2 S.

Weak Pareto Optimality says that it should not be possible for both bargainers to
gain with respect to the solution outcome. If a game is symmetric, then there is
no way to distinguish between the bargainers, and a solution should not do that
either: that is what Symmetry requires. Scale Covariance requires the solution to be
covariant under positive affine transformations: the underlying motivation is that the
utility functions of the bargainers are usually assumed to be of the von Neumann–
Morgenstern type, which implies that they are representations of preferences unique
only up to positive affine transformations (details are omitted here). Independence
of Irrelevant Alternatives requires the solution outcome not to change when the set
of possible outcomes shrinks, the original solution outcome still remaining feasible.

The Nash (bargaining) solution N W B ! R
2 is defined as follows. For every

.S;d/ 2 B,

N.S;d/ D argmaxf.x1 � d1/.x2 � d2/ j x 2 S; x � dg :

That the Nash bargaining solution is well defined, follows from Problem 21.3.
The following theorem shows that the four conditions above characterize the

Nash bargaining solution.

Theorem 21.1 Let F W B ! R
2 be a bargaining solution. Then the following two

statements are equivalent:

(a) F D N .

(b) F satisfies WPO, SYM, SC, IIA.

Proof The implication (a))(b) is the subject of Problem 21.4. For the implication
(b))(a), assume F satisfies WPO, SYM, SC, and IIA. Let .S;d/ 2 B, and z WD
N.S;d/. Note that z > d. Let T WD f..z1 � d1/

�1, .z2 � d2/
�1/.x � d/ j x 2 Sg .

By SC,

F.T; 0/ D
�

F1.S;d/

z1 � d1
;

F2.S;d/

z2 � d2

�
�
�

d1

z1 � d1
;

d2

z2 � d2

�
(21.1)

3
R
2
CC

D fx D .x1; x2/ 2 R
2 j x1; x2 > 0g.
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Fig. 21.1 Proof of
Theorem 21.1

D

D

0

T

T
(1 , 1)

(−α, 2 + α)

(2 + α, −α)
(−α, −α)

and

N.T; 0/ D
�

z1 � d1

z1 � d1
;

z2 � d2

z2 � d2

�
D .1; 1/ : (21.2)

Hence, in order to prove F.S;d/ D N.S;d/, it is, in view of (21.1) and (21.2),
sufficient to show that F.T; 0/ D .1; 1/. By (21.2) and Problem 21.5, there is a
supporting line of T at .1; 1/ with slope �1. So the equation of this supporting line
is x1 C x2 D 2. Choose ˛ > 0 so large that T � D WD convf.�˛;�˛/, .�˛; 2C˛/,
.2C ˛;�˛/g . Cf. Fig. 21.1.

Then .D; 0/ 2 B, .D; 0/ is symmetric, and W.D/ D convf.�˛; 2 C ˛/, .2 C
˛;�˛/g . Hence by SYM and WPO of F:

F.D; 0/ D .1; 1/ : (21.3)

Since T � D and .1; 1/ 2 T, we have by IIA and (21.3): F.T; 0/ D .1; 1/ . This
completes the proof. �

21.2 The Raiffa–Kalai–Smorodinsky Solution

Kalai and Smorodinsky (1975) replaced Nash’s IIA (the most controversial axiom
in Theorem 21.1) by the following condition. For a problem .S;d/ 2 B,

u.S;d/ WD .maxfx1 j x 2 S; x � dg;maxfx2 j x 2 S; x � dg/

is called the utopia point of .S;d/.
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Individual Monotonicity (IM): Fj.S;d/ � Fj.T; e/ for all .S;d/, .T; e/ 2 B and
i; j 2 f1; 2g with i ¤ j, d D e, S � T, and ui.S;d/ D ui.T; e/.

The Raiffa–Kalai–Smorodinsky solution R W B ! R
2 is defined as follows. For

every .S;d/ 2 B, R.S;d/ is the point of intersection of W.S/ with the straight line
joining d and u.S; d/.

The following theorem presents a characterization of the Raiffa–Kalai–
Smorodinsky solution. In order to understand the proof it is recommended to
draw pictures, just as in the proof of the characterization of the Nash bargaining
solution.

Theorem 21.2 Let F W B ! R
2 be a bargaining solution. Then the following two

statements are equivalent:

(a) F D R .

(b) F satisfies WPO, SYM, SC, and IM :

Proof The implication (a))(b) is the subject of Problem 21.7. For the converse
implication, assume F has the four properties stated. Let .S;d/ 2 B and let T WD
fax C b j x 2 Sg with a WD ..u1.S;d/ � d1/

�1, .u2.S;d/ � d2/
�1/, b WD �ad. By

SC of R and F, R.T; 0/ D aR.S;d/ C b and F.T; 0/ D aF.S;d/ C b. Hence, for
F.S;d/ D R.S;d/, it is sufficient to prove that R.T; 0/ D F.T; 0/.

Since u.T; 0/ D .1; 1/, R.T; 0/ is the point of W.T/ with equal coordi-
nates, so R1.T; 0/ D R2.T; 0/. If R.T; 0/ D .1; 1/ D u.T; 0/, then let L WD
convf.0; 0/; .1; 1/g. Then by WPO, F.L; 0/ D .1; 1/, so by IM, F.T; 0/ � F.L; 0/,

hence F.T; 0/ D F.L; 0/ D R.T; 0/.
Next assume R.T; 0/ < .1; 1/. Let QT WD fx 2 R

2 j y � x � z for some y; z 2 Tg.
Clearly T � QT and u. QT; 0/ D u.T; 0/ D .1; 1/ so by IM:

F. QT; 0/ � F.T; 0/ ; (21.4)

and further, since R.T; 0/ 2 W.T/ and R1. QT; 0/ D R2. QT; 0/,

R. QT; 0/ D R.T; 0/ : (21.5)

Let V WD convf0;R.T; 0/; .1; 0/; .0; 1/g. By WPO and SYM, F.V; 0/ D R.T; 0/.
By V � QT , u.V; 0/ D u. QT; 0/ D .1; 1/, and IM, we have F. QT; 0/ � F.V; 0/ D
R.T; 0/, hence F. QT; 0/ D R.T; 0/. Combined with (21.4), this implies R.T; 0/ �
F.T; 0/, hence R.T; 0/ D F.T; 0/ by WPO and the fact R.T; 0/ < .1; 1/. This
completes the proof. �
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21.3 The Egalitarian Solution

Consider the following two properties for a bargaining solution F.

Pareto Optimality (PO): F.S;d/ 2 P.S/ for all .S;d/ 2 B, where P.S/ WD fx 2 S j
8y 2 S W y � x ) y D xg is the Pareto optimal subset of S.4

Monotonicity (MON): F.S;d/ � F.T; e/ for all .S;d/, .T; e/ 2 B with S � T and
d D e.

Clearly, P.S/ � W.S/ for every .S;d/ 2 B, and Pareto optimality is a
stronger requirement than Weak Pareto Optimality. The Nash and Raiffa–Kalai–
Smorodinsky solutions are Pareto optimal, and therefore WPO can be replaced by
PO in Theorems 21.1 and 21.2. Monotonicity is much stronger than Individual
Monotonicity or Restricted Monotonicity (see Problem 21.8 for the definition of
the last axiom) and in fact it is inconsistent with Weak Pareto Optimality. (See
Problem 21.10.)

Call a problem .S;d/ 2 B comprehensive if z � y � x implies y 2 S for all z,
x 2 S, y 2 R

2. By Bc we denote the subclass of comprehensive problems.
The egalitarian solution E W Bc ! R

2 assigns to each problem .S;d/ 2 Bc the
point E.S;d/ 2 W.S/ with E1.S;d/ � d1 D E2.S;d/� d2.

The following axiom is a weakening of Scale Covariance.

Translation Covariance (TC): F.S C e;d C e/ D F.S;d/C e for all .S;d/ 2 Bc and
all e 2 R

2.

The following theorem gives a characterization of the egalitarian solution based on
Monotonicity.

Theorem 21.3 Let F W Bc ! R
2 be a bargaining solution. Then the following two

statements are equivalent:

(a) F D E .

(b) F satisfies WPO, MON, SYM, and TC.

Proof The implication (a))(b) is the subject of Problem 21.11. For the converse
implication, let .S;d/ 2 Bc. We want to show F.S;d/ D E.S;d/.
In view of TC of F and E, we may assume d D 0. Let V WD fx 2 R

2 j 0 � x �
E.S; 0/g. Clearly, .V; 0/ 2 Bc is a symmetric problem, so F.V; 0/ D E.S; 0/ by
SYM and WPO of F. By MON,

F.S; 0/ � F.V; 0/ D E.S; 0/ : (21.6)

4The notation y � x means yi � xi for i D 1; 2.
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If E.S; 0/ 2 P.S/, then (21.6) implies F.S; 0/ D E.S; 0/, so we are done. Now
suppose E.S; 0/ 2 W.S/ n P.S/. Without loss of generality, assume E1.S; 0/ D
u1.S; 0/, i.e., E1.S; 0/ D maxfx1 j x 2 S, x � 0g. Hence, E1.S; 0/ D F1.S; 0/ by
(21.6).

Suppose F2.S; 0/ > E2.S; 0/. The proof will be finished by contradiction. Let
˛ > 0 with E2.S; 0/ < ˛ < F2.S; 0/. Let T WD conv.S [ f.˛; 0/, .˛; ˛/g/.
Then .T; 0/ 2 Bc and E.T; 0/ D .˛; ˛/ 2 P.T/, so F.T; 0/ D .˛; ˛/ by
our earlier argument [see the line below (21.6)]. On the other hand, by MON,
F2.T; 0/ � F2.S; 0/ > ˛, a contradiction. �

An alternative characterization of the egalitarian solution can be obtained by
considering the following axioms. For a bargaining problem .S;d/, denote Sd D
fx 2 S j x > dg.

Super-Additivity (SA): F.S C T;d C e/ � F.S;d/C F.T; e/ for all .S;d/, .T; e/ 2
Bc. Here, S C T WD fx C y j x 2 S, y 2 Tg .

Independence of Non-Individually Rational Alternatives (INIR): F.S;d/ D
F.Sd;d/ for all .S;d/ 2 Bc.

INIR is a stronger version of the following well-known axiom.

Individual Rationality (IR): F.S;d/ � d for all .S;d/ 2 Bc.

Observe, indeed, that INIR implies IR.

Theorem 21.4 Let F W Bc ! R
2 be a bargaining solution. Then the following two

statements are equivalent:

(a) F D E.

(b) F satisfies WPO, SA, SYM, INIR, and TC.

Proof (a))(b) follows from Theorem 21.3 and Problem 21.12. For the converse
implication, let .S;d/ 2 Bc. We wish to show F.S;d/ D E.S;d/. In view of TC of
F and E we may assume d D 0. For every 1 > " > 0 let V" WD fx 2 R

2 j 0 �
x � .1 � "/E.S; 0/g . Then .V"; 0/ 2 Bc and F.V"; 0/ D E.V"; 0/ D .1 � "/E.S; 0/

by WPO and SYM of F and E. Define W" D fx � .1 � "/E.S; 0/ j x 2 Sg and
S" D W" C V" for every 1 > " > 0. Then S0 D S"0 and by SA we have

F.S"; 0/ � .1 � "/E.S; 0/C F.W"; 0/ ;

hence by INIR

F.S; 0/ � .1� "/E.S; 0/C F.W"; 0/ (21.7)
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for all 1 > " > 0. Letting " decrease to 0, we obtain by (21.7) and IR (which is
implied by INIR):

F.S; 0/ � E.S; 0/ : (21.8)

If E.S; 0/ 2 P.S/, then (21.8) implies F.S; 0/ D E.S; 0/ and we are done. Otherwise,
suppose without loss of generality that E1.S; 0/ D maxfx1 j x 2 S; x � 0g. Let z

be the point of P.S/ with z1 D E1.S; 0/, hence ˛ WD E2.S; 0/ � z2 < 0 since, by
assumption, E.S; 0/ 62 P.S/. For " > 0, let R" WD convf.0; "/, .0; ˛/, ."; ˛/g. Then
.R"; 0/ 2 Bc. Further, let T" WD S C R". By construction, E.T"; 0/ 2 P.T"/, hence,
as before, F.T"; 0/ D E.T"; 0/. If " approaches 0, F.T"; 0/ converges to E.S; 0/ and
by SA and IR, F.T"; 0/ � F.S; 0/. So E.S; 0/ � F.S; 0/. Combined with (21.8), this
implies F.S; 0/ D E.S; 0/. �

21.4 Noncooperative Bargaining

A different approach to bargaining is obtained by studying it a as strategic process.
In this section we discuss the basics of the model of Rubinstein (1982) in an informal
manner. See also Sect. 6.7 for a more elaborate treatment.

Point of departure is a bargaining problem .S;d/ 2 B. Assume d D 0 and
write S instead of .S;d/. Suppose bargaining takes place over time, at moments
t D 0; 1; 2; : : : At even moments, player 1 makes some proposal x D .x1; x2/ 2
P.S/ and player 2 accepts or rejects it. At odd moments, player 2 makes some
proposal x D .x1; x2/ 2 P.S/ and player 1 accepts or rejects it. The game ends
as soon as a proposal is accepted. If a proposal x D .x1; x2/ is accepted at time t,
then the players receive payoffs .ıtx1; ı

tx2/. Here 0 < ı < 1 is a so called discount
factor; it reflects impatience of the players, for instance because of foregone interest
payments (‘shrinking cake’). If no proposal is ever accepted, then the game ends
with the disagreement payoffs of .0; 0/.

Suppose player 1 has in mind to make some proposal y D .y1; y2/ 2 P.S/, and
that player 2 has in mind to make some proposal z D .z1; z2/ 2 P.S/. So player 1
offers to player 2 the amount y2. Player 2 expects to get z2 if he rejects y, but he
will get z2 one round later. So player 1’s proposal y will be rejected by player 2 if
y2 < ız2; on the other hand, there is no need to offer strictly more than ız2. This
leads to the equation

y2 D ız2 : (21.9)

By reversing in this argument the roles of players 1 and 2 one obtains

z1 D ıy1 : (21.10)
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These two equations define unique points y and z in P.S/. The result of the
Rubinstein bargaining approach is that player 1 starts by offering y, player 2 accepts,
and the game ends with the payoffs y D .y1; y2/.

This description is informal. Formally, one defines a dynamic noncooperative
game and looks for the (in this case) subgame perfect Nash equilibria of this game.
It can be shown that all such equilibria result in the payoffs y (or in z if player 2
would start instead of player 1).

The surprising fact is that, although at first sight the Rubinstein approach is
quite different from the axiomatic approach by Nash (Theorem 21.1) the resulting
outcomes turn out to be closely related. From Eqs. (21.9) and (21.10) one derives
easily that y1y2 D z1z2, i.e., the points y and z are on the same level curve of
the function x D .x1; x2/ 7! x1x2, which appears in the definition of the Nash
bargaining solution. Moreover, if the discount factor ı approaches 1, the points y

and z converge to one another on the curve P.S/, and hence to the Nash bargaining
solution outcome. In words, as the players become more patient, the outcome of the
Rubinstein model converges to the Nash bargaining solution outcome.

21.5 Games with Nontransferable Utility

Both TU-games and bargaining problems are special cases of NTU-games, games
with nontransferable utility. In an NTU-game, the possibilities from cooperation for
each coalition are described by a set, rather than a single number. For a TU-game
.N; v/ those sets can be defined as

V.S/ D fx 2 R
S j x.S/ � v.S/g

for every coalition S. For a two-person bargaining problem .S;d/ the set of feasible
payoffs is S for the grand coalition f1; 2g and .�1; di� for each player i.

The core can be extended to NTU-games (for bargaining problems it is just the
part of the Pareto optimal set weakly dominating the disagreement outcome). Also
the balancedness concept can be extended; the main result here is that balanced
games have a nonempty core, but the converse is not true. For further remarks and
references see the Notes section.

21.6 Problems

21.1. Anonymity and Symmetry

Call a two-person bargaining solution anonymous if F1.S
0;d0/ D F2.S;d/ and

F2.S
0;d0/ D F1.S;d/ whenever .S;d/, .S0;d0/ 2 B with S0 D f.x2; x1/ 2 R

2 j
.x1; x2/ 2 Sg and .d0

1; d
0
2/ D .d2; d1/. Prove that Anonymity implies Symmetry but

not vice versa.
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21.2. Revealed Preference

Let B0 D f.S;d/ 2 B j d D .0; 0/g. For .S;d/ 2 B0 write S instead of .S; 0/. Let �
be a binary relation on R

2 and F W B0 ! R
2 a solution. Say that � represents F if

for every S 2 B0:

fF.S/g D fx 2 S j x � y for every y 2 Sg ;

i.e., if F uniquely maximizes � on S. Prove: F satisfies IIA if and only if F can be
represented by a binary relation �.

21.3. The Nash Solution Is Well-Defined

Show that N is well defined, i.e., that the function .x1 � d1/.x2 � d2/ takes its
maximum on fx 2 S j x � dg at a unique point.

21.4. .a/ ) .b/ in Theorem 21.1

Show that N satisfies the properties WPO, SYM, SC, and IIA.

21.5. Geometric Characterization of the Nash Bargaining Solution

Show that, for every .S;d/ 2 B, N.S;d/ D z > d if and only if there is a supporting
line of S at z with slope the negative of the slope of the straight line through d and z.

21.6. Strong Individual Rationality

Call a solution F strongly individually rational (SIR) if F.S;d/ > d for all .S;d/ 2
B. The disagreement solution D is defined by D.S;d/ WD d for every .S;d/ 2 B.
Show that the following two statements for a solution F are equivalent:

(a) F D N or F D D .
(b) F satisfies IR, SYM, SC, and IIA.

Derive from this that N is the unique solution with the properties SIR, SYM, SC,
and IIA. (Hint: For the implication (b))(a), show that, for every .S;d/ 2 B, either
F.S;d/ D d or F.S;d/ 2 W.S/. Also show that, if F.S;d/ D d for some .S;d/ 2 B,
then F.S;d/ D d for all .S;d/ 2 B.)

21.7. .a/ ) .b/ in Theorem 21.2

Show that the Raiffa–Kalai–Smorodinsky solution has the properties WPO, SYM,
SC, and IM.

21.8. Restricted Monotonicity

Call a solution F W B ! R
2 restrictedly monotonic (RM) if F.S;d/ � F.T; e/

whenever .S;d/, .T; e/ 2 B, d D e, S � T, u.S;d/ D u.T; e/.

(a) Prove that IM implies RM.
(b) Show that RM does not imply IM.
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21.9. Global Individual Monotonicity

For a problem .S;d/ 2 B, g.S/ WD .maxfx1 j x 2 Sg, maxfx2 j x 2 Sg/ is called
the global utopia point of S. Global Individual Monotonicity (GIM) is defined in
the same way as IM, with the condition “ui.S;d/ D ui.T; e/” replaced by: gi.S/ D
gi.T/. The solution G W B ! R

2 assigns to each .S;d/ 2 B the point of intersection
of W.S/ with the straight line joining d and g.S/. Show that G is the unique solution
with the properties WPO, SYM, SC, and GIM.

21.10. Monotonicity and (Weak) Pareto Optimality

(a) Show that there is no solution satisfying MON and WPO.
(b) Show that, on the subclass B0 introduced in Problem 21.2, there is no solution

satisfying MON and PO. Can you find a solution on this class with the properties
MON and WPO?

21.11. The Egalitarian Solution (1)

(a) Show that E satisfies MON, SYM, and WPO (on Bc).
(b) Show that E is translation covariant on Bc.

21.12. The Egalitarian Solution (2)

Show that the egalitarian solution is super-additive.

21.13. Independence of Axioms

In the characterization Theorems 21.1–21.4, show that none of the axioms used can
be dispensed with.

21.14. Nash and Rubinstein

Suppose two players (bargainers) bargain over the division of one unit of a perfectly
divisible good. Player 1 has utility function u1.˛/ D ˛ and player 2 has utility
function u2.˛/ D 1 � .1 � ˛/2 for amounts ˛ 2 Œ0; 1� of the good. If they do not
reach an agreement on the division of the good they both receive nothing.

(a) Determine the set of feasible utility pairs. Make a picture.
(b) Determine the Nash bargaining solution outcome, in terms of utilities as well as

of the physical distribution of the good.
(c) Suppose the players’ utilities are discounted by a factor ı 2 .0; 1/. Calculate the

Rubinstein bargaining outcome.
(d) Determine the limit of the Rubinstein bargaining outcome, for ı approaching 1,

in two ways: by using the result of (b) and by using the result of (c).
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21.7 Notes

The axiomatic study of bargaining problems was initiated by Nash (1950). For
comprehensive surveys see Peters (1992) or Thomson (1994). Theorem 21.1 is due
to Nash (1950).

The Raiffa–Kalai–Smorodinsky solution was introduced by Raiffa (1953) and
axiomatized by Kalai and Smorodinsky (1975). Theorem 21.2 is a modified version
of this characterization.

For the analysis of the noncooperative bargaining model in Sect. 21.4 see
Rubinstein (1982) or Sutton (1986). For an elaborate discussion of noncooperative
bargaining models see Muthoo (1999). The observation about the relation with the
Nash bargaining solution is due to Binmore et al. (1986).

The fact that balanced NTU-games have a nonempty core is due to Scarf (1976).
A complete characterization of NTU games with nonempty core based on a kind of
local balancedness condition is provided by Predtetchinski and Herings (2004).

Most other solution concepts for NTU-games—in particular the Harsanyi (1963)
and Shapley (1969) NTU-values, and the consistent value of Hart and Mas-Collel
(1996)—extend the Nash bargaining solution as well as the Shapley value for
TU-games. An exception are the monotonic solutions of Kalai and Samet (1985),
which extend the egalitarian solution of the bargaining problem. See de Clippel
et al. (2004) for an overview of various axiomatic characterizations of values for
NTU-games, and see Peters (2003) for an overview of NTU-games in general. An
extensive textbook treatment can be found in Peleg and Sudhölter (2003, Part II).

Most (though not all) results of this chapter on bargaining can be extended to
the n-person case without too much difficulty. This is not true for the Rubinstein
approach, the extension of which is not obvious. One possibility is presented by
Hart and Mas-Collel (1996).
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Part IV

Tools, Hints and Solutions



22Tools

This chapter collects some mathematical tools used in this book: (direct) convex
separation results in Sects. 22.2 and 22.6; Lemmas of the Alternative, in particular
Farkas’ Lemma in Sect. 22.3; the Linear Duality Theorem in Sect. 22.4; the Brouwer
and Kakutani Fixed Point Theorems in Sect. 22.5; the Krein–Milman Theorem and
the Birkhoff–von Neumann Theorem in Sect. 22.6; and the Max Flow Min Cut
Theorem of Ford and Fulkerson in Sect. 22.7.

22.1 Some Definitions

A subset Z � R
n is convex if with any two points x; y 2 Z, also the line segment

connecting x and y is contained in Z. Formally:

8 x; y 2 Z 8 0 � � � 1 W �x C .1 � �/y 2 Z :

If Z is a closed set1 then for convexity it is sufficient to check this condition for
� D 1=2 (see Problem 22.1). It is easy to see that a set Z � R

n is convex if and
only if

Pk
jD1 �jx

j 2 Z for all x1; : : : ; xk 2 Z and all nonnegative�1; : : : ; �k 2 R withPk
jD1 �j D 1. Such a sum

Pk
jD1 �jx

j is called a convex combination of the xj. For an
arbitrary subset D � R

n, the convex hull of D is the set of all convex combinations
of elements of D or, equivalently, the smallest (with respect to set inclusion) convex
subset of Rn containing D.

For vectors x D .x1; : : : ; xn/, y D .y1; : : : ; yn/ 2 R
n,

x � y WD
nX

iD1

xiyi

1A set Z � R
n is closed if it contains the limit of every converging sequence in Z.

© Springer-Verlag Berlin Heidelberg 2015
H. Peters, Game Theory, Springer Texts in Business and Economics,
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denotes the inner product of x and y, and

jjx � yjj WD

vuut
nX

iD1

.xi � yi/2

is the Euclidean distance between x and y. A set C � R
n is a (convex) cone if, with

each x; y 2 C and � 2 R, � � 0, also �x 2 C and x C y 2 C.

22.2 A Separation Theorem

In this section we derive the simplest version of a separation result, namely
separating a point from a convex set.

Theorem 22.1 Let Z � R
n be a closed convex set and let x 2 R

n n Z. Then there is

a y 2 R
n with y � z > y � x for every z 2 Z.

Thus, this theorem states the geometrically obvious fact that a closed convex set and
a point not in that set can be separated by a hyperplane (with normal y).

Proof of Theorem 22.1 Let z0 2 Z such that 0 < jjx � z0jj � jjx � zjj for all z 2 Z.
Such a z0 exists by the Theorem of Weierstrass, since the Euclidean distance from
x is a continuous function on the set Z, and for the minimum of z ! jjx � zjj
on Z attention can be restricted to a compact (i.e., bounded and closed) subset of
Z. Let y D z0 � x. Let z 2 Z. For any ˛, 0 � ˛ � 1, convexity of Z implies
z0 C ˛.z � z0/ 2 Z, and thus

jjz0 C ˛.z � z0/� xjj2 � jjz0 � xjj2 :

Hence,

2˛.z0 � x/ � .z � z0/C ˛2jjz � z0jj2 � 0 :

Thus, letting ˛ # 0, it follows that .z0 � x/ � .z � z0/ � 0. From this, .z0 � x/ � z �
.z0 � x/ � z0 D .z0 � x/ � x C .z0 � x/ � .z0 � x/ > .z0 � x/ � x.

Because z was arbitrary, it follows that y � z > y � x for every z 2 Z. �

Remark 22.2 A consequence of Theorem 22.1 is that there are real numbers ˛ and
ˇ satisfying y � z > ˛ and y � x < ˛, and y � z > ˇ and y � x D ˇ, for all z 2 Z

(notations as in the theorem). The last assertion is trivial. For the first assertion, note
that in the proof of the theorem we have y � z � y � z0 for all z 2 Z, so y � z0 is a lower
bound for y � z. Then take, for instance, ˛ D 1

2
.y � z0 C y � x/.



22.3 Lemmas of the Alternative 391

22.3 Lemmas of the Alternative

Theorem 22.1 can be used to derive several lemmas of the alternative. These lemmas
have in common that they describe two systems of linear inequalities and equations,
exactly one of which has a solution.

Lemma 22.3 (Theorem of the Alternative for Matrices) Let A be an m � n

matrix. Exactly one of the following two statements is true.

(a) There are y 2 R
n and z 2 R

m with .y; z/ � 0, .y; z/ ¤ 0 and Ay C z D 0.

(b) There is an x 2 R
m with x > 0 and xA > 0.

Proof We leave it to the reader to prove that at most one of the systems in (a) and
(b) has a solution (Problem 22.2).

Now suppose that (a) is not true. It is sufficient to prove that the system in (b)
must have a solution. Observe that (a) implies that 0 is a convex combination of the
columns of A and the set fe j 2 R

m j j D 1; : : : ;mg. This follows from dividing both
sides of the equation Ay C z D 0 by

Pn
jD1 yj C

Pm
iD1 zi. Hence, the assumption that

(a) is not true means that 0 … Z, where Z � R
m is the convex hull of the columns of

A and the set fe j 2 R
m j j D 1; : : : ;mg. By Theorem 22.1 and Remark 22.2 there

is an x 2 R
m and a number ˇ 2 R such that x � p > ˇ for all p 2 Z and x � 0 D ˇ.

Hence, ˇ D 0 and, in particular, xA > 0 and x > 0 since the columns of A and all
ej for j D 1; : : : ;m are elements of Z. Thus, (b) is true. �

Another lemma of the alternative is Farkas’ Lemma below. In its proof we use the
following result.

Lemma 22.4 Let A be an m � n matrix and let

Z D fz 2 R
n j there exists an x 2 R

m, x � 0 with z D xAg:

Then Z is closed.

Proof

(a) Suppose that the rank of the matrix A, r.A/, is equal to m. Then also r.AAT/ D
m, where AT is the transpose of A (Problem 22.3). Therefore, AAT is invertible.
Let .zn/n2N be a sequence in Z converging to z 2 R

n. Let zn D xnA, xn � 0,
for all n 2 N. Then xn D xnAAT.AAT/�1 for every n, hence xnA ! z implies
xn ! zAT.AAT/�1 DW x, and in particular x � 0. Thus, since xnA ! xA, we
obtain z D xA, so that z 2 Z.

(b) Let b 2 Znf0g and choose x 2 R
m, x � 0, with b D xA such that jSj is maximal,

where S WD fi 2 f1; : : : ;mg j xi > 0g. We show that the rows of A with numbers
in S are linearly independent. If not, then there is a � 2 R

m with �A D 0,
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�j ¤ 0 for some j 2 S, and �i D 0 for all i … S. Then .x � t�/A D xA D b

for every t 2 R. Choose Ot in such a way that xj � Ot�j � 0 for all j 2 S and
xj � Ot�j D 0 for some j 2 S. Then b D .x � Ot�/A, x � Ot� � 0, and jfi 2
f1; : : : ;mg j xi � t�i > 0gj � jSj � 1, a contradiction.

(c) In view of part (b) of the proof we can write

Z D
[

B

fxB j B a k � n submatrix of A, r.B/ D k � r.A/, 0 � x 2 R
kg :

By part (a), each of the sets at the right hand side of this equation is closed.
Hence, Z is the union of finitely many closed sets, and therefore is closed
itself. �

Lemma 22.5 (Farkas’ Lemma) Let A be an m�n matrix and b 2 R
n. Exactly one

of the following two statements is true.

(a) There is an x 2 R
m with x � 0 and xA D b.

(b) There is a y 2 R
n with Ay � 0 and b � y < 0.

Proof We leave it to the reader to show that at most one of the two systems in (a)
and (b) can have a solution (Problem 22.4). Assume that the system in (a) does not
have a solution. It is sufficient to prove that the system in (b) must have a solution.

The assumption that the system in (a) does not have a solution is equivalent to
the statement b 62 Z where

Z D fz 2 R
n j there exists an x 2 R

m, x � 0 with z D xAg:

Clearly, the set Z is convex, and it is closed by Lemma 22.4. By Theorem 22.1 and
Remark 22.2 it follows that there is a y 2 R

n and an ˛ 2 R with y � b < ˛ and
y � z > ˛ for all z 2 Z. Because 0 2 Z it follows that ˛ < y � 0 D 0, hence
y � b < ˛ < 0. To prove that the system in (b) has a solution, it is sufficient to prove
that Ay � 0. Suppose not, i.e., there is an i with .Ay/i < 0. Then eiAy < 0, so
.Mei/Ay ! �1 as R 3 M ! 1. Observe, however, that .Mei/A 2 Z for every
M > 0, so that .Mei/Ay > ˛ for every such M. This contradiction completes the
proof of the lemma. �

These lemmas can be interpreted geometrically. We show this for Farkas’ Lemma in
Fig. 22.1. Consider the row vectors ri of A as points in R

n. The set of all nonnegative
linear combinations of the ri forms a cone C. The statement that the system in (i) in
Lemma 22.5 has no nonnegative solution means that the vector b does not lie in C.
In this case, the lemma asserts the existence of a vector y which makes an obtuse
angle with b and a nonobtuse angle with each of the vectors ri. This means that the
hyperplane L orthogonal to y has the cone C on one side and the point b on the
other.
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Fig. 22.1 Geometric
interpretation of Farkas’
Lemma

L

C

r1

y

r2

r3

b

22.4 The Duality Theorem of Linear Programming

In this section we prove the following theorem.

Theorem 22.6 (Duality Theorem of Linear Programming) Let A be an n � p

matrix, b 2 R
p, and c 2 R

n. Suppose V WD fx 2 R
n j xA � b, x � 0g ¤ ; and

W WD fy 2 R
p j Ay � c, y � 0g ¤ ;. Then minfx �c j x 2 Vg D maxfb�y j y 2 Wg.

To prove this theorem, we first prove the following variant of Farkas’ Lemma.

Lemma 22.7 Let A be an m � n matrix and b 2 R
n. Exactly one of the following

two statements is true.

(a) There is an x 2 R
m with xA � b and x � 0.

(b) There is a y 2 R
n with Ay � 0, b � y < 0, and y � 0.

Proof Problem 22.5. �

The following two lemmas are further preparations for the proof of the Duality
Theorem.

Lemma 22.8 Let x 2 V and y 2 W (cf. Theorem 22.6). Then x � c � b � y.

Proof x � c � xAy � b � y. �

Lemma 22.9 Let Ox 2 V, Oy 2 W with Ox � c D b � Oy. Then Ox � c D minfx � c j x 2 Vg
and b � Oy D maxfb � y j y 2 Wg.

Proof By Lemma 22.8, for every x 2 V: x � c � b � Oy D Ox � c. Similarly, b � y �
Ox � c D b � Oy for every y 2 W. �
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Proof of Theorem 22.6 In view of Lemmas 22.8 and 22.9, it is sufficient to show
the existence of Ox 2 V and Oy 2 W with Ox � c � b � Oy. So it is sufficient to show that
the system

.x; y/

�
�A 0 c

0 AT �b

�
� .�b; c; 0/; x � 0; y � 0

has a solution. Suppose this is not the case. By Lemma 22.7, there exists a vector
.z;w; t/ 2 R

p � R
n � R with

�
�A 0 c

0 AT �b

�0
@

z

w

t

1
A � 0; .�b; c; 0/ � .z;w; t/ < 0; z � 0; w � 0; t � 0 :

Hence

Az � tc (22.1)

wA � tb (22.2)

c � w < b � z : (22.3)

If t D 0, then Az � 0 and wA � 0, hence, for x 2 V and y 2 W:

b � z � xAz � 0 � wAy � w � c

contradicting (22.3). If t > 0, then by (22.1) and (22.2), t�1z 2 W and t�1w 2 V .
By (22.3), b � .t�1z/ > .t�1w/ � c, which contradicts Lemma 22.8. Hence, the first
system above must have a solution. �

22.5 Some Fixed Point Theorems

Let Z � R
n be a nonempty convex and compact2 set. Let f W Z ! Z be a continuous

function. A point x� 2 Z is a fixed point of f if f .x�/ D x�.
If n D 1, then Z is a closed interval of the form Œa; b� � R, and then it is clear (by

drawing a picture) that f must have a fixed point: formally, this is a straightforward
implication of the intermediate-value theorem.

More generally, the following result holds.

2A set Z � R
n is compact if it is closed and bounded. A set Z � R

n is bounded if there is an
M > 0 such that jjxjj < M for all x 2 Z.
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Theorem 22.10 (Brouwer Fixed Point Theorem) Let Z � R
n be a nonempty

compact and convex set and let f W Z ! Z be a continuous function. Then f has

a fixed point.

A generalization of Brouwer’s fixed point theorem is Kakutani’s fixed point
theorem. Let F W Z ! Z be a correspondence, i.e., F.x/ is a nonempty subset
of Z for every x 2 Z. Call F convex-valued if F.x/ is a convex set for every x 2 Z.
Call F upper semi-continuous if the following holds: for every sequence .xk/k2N in
Z converging to x 2 Z and for every sequence .yk/k2N in Z converging to y 2 Z, if
yk 2 F.xk/ for every k 2 N, then y 2 F.x/. A point x� 2 Z is a fixed point of Z if
x� 2 F.x�/.

Theorem 22.11 (Kakutani Fixed Point Theorem) Let Z � R
n be a nonempty

compact and convex set and let F W Z ! Z be an upper semi-continuous and

convex-valued correspondence. Then F has a fixed point.

22.6 The Birkhoff–von Neumann Theorem

Let C be a convex set in a linear space V . An element e 2 C is called an extreme
point of C if for all x; y 2 C with e D 1

2
.x C y/ it holds that x D y .D e/. By

ext.C/ the set of extreme points of C is denoted. See Problem 22.6 for alternative
characterizations of extreme points.

An n�n-matrix D is called doubly stochastic if 0 � dij � 1 for all i; j D 1; : : : ; n,Pn
jD1 dij D 1 for all i, and

Pn
iD1 dij D 1 for all j. If moreover dij 2 f0; 1g for all

i; j D 1; : : : ; n, then D is called a permutation matrix. Let Dn�n denote the set of all
n � n doubly stochastic matrices, and let Pn�n denote the set of all n � n permutation
matrices. Note that Dn�n is a convex compact set, and that Pn�n is a finite subset of
Dn�n. The following theorem gives the exact relation.

Theorem 22.12 (Birkhoff–von Neumann)

(a) ext.Dn�n/ D Pn�n

(b) Dn�n D conv.Pn�n/ :

Part (b) of Theorem 22.12 follows from the Theorem of Krein–Milman (Theo-
rem 22.14 below). In the proof of the latter theorem the dimension of a subset of a
linear space V plays a role. A subset of V of the form a C L where a 2 V and L is
a linear subspace of V , is called an affine subspace. Check that a subset A of V is
affine if, and only if, with any two different elements x and y of A, also the straight
line through x and y is contained in A (Problem 22.7). For an affine subspace a C L

of V the dimension is defined to be the dimension of the linear subspace L. For an
arbitrary subset A of V , its dimension dim.A/ is defined to be the dimension of the
smallest affine subspace of V containing the set A.
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The following separation lemma is used in the proof of the Theorem of Krein–
Milman. By int.C/ and clo.C/ we denote the (topological) interior and closure of
the set C � R

n, respectively.

Lemma 22.13 Let C be a nonempty convex subset of Rn and a 2 R
n n int.C/. Then

there exists a p 2 R
n n f0g with p � a � p � c for every c 2 C.

Proof We distinguish two cases: (a) a … clo.C/ and (b) a 2 clo.C/.

(a) Suppose a 62 clo.C/. Then the result follows from Theorem 22.1, with clo.C/
in the role of the set Z there.

(b) Suppose a 2 clo.C/. Because a 62 int.C/, there is a sequence a1; a2; : : : 2
R

n n clo.C/ converging to a. By Theorem 22.1 again, for each k there is a
pk 2 R

nnf0g with pk �ak � pk �c for all c 2 clo.C/, and we can take these vectors
pk such that jjpkjj D 1 for every k (jj � jj denotes the Euclidean norm). Because
fx 2 R

n j jjxjj D 1g is a compact set, there exists a converging subsequence
pk.1/;pk.2/; : : : of p1;p2; : : : with limit, say, Op. Then Op �a D lim`!1 pk.`/ �ak.`/ �
lim`!1 pk.`/ � c D Op � c for all c 2 clo.C/. �

Theorem 22.14 (Krein–Milman) Let C be a nonempty compact and convex subset

of Rn. Then ext.C/ ¤ ; and C D conv. ext.C//.

Proof

(1) Because C is compact and x 7! jjxjj (where jj � jj denotes the Euclidean norm)
is continuous, there exists by the Theorem of Weierstrass an e 2 C with jjejj D
maxx2C jjxjj. Then e 2 ext.C/, which can be proved as follows. Suppose that
e D 1

2
.x1 C x2/ for some x1; x2 2 C. Then

jjejj D jj1
2
.x1 C x2/jj � 1

2
jjx1jj C 1

2
jjx2jj � 1

2
jjejj C 1

2
jjejj

implies jjx1jj D jjx2jj D jj 1
2
.x1Cx2/jj. By definition of the Euclidean norm this

is only possible if x1 D x2 D e. This shows e 2 ext.C/. Hence, ext.C/ ¤ ;.
(2) The second statement in the theorem will be proved by induction on dim.C/.

(a) If dim.C/ D 0, then C D fag for some a 2 R
n, so ext.C/ D fag and

conv. ext.C// D fag D C.
(b) Let k 2 N, and suppose that conv. ext.D// D D for every nonempty

compact and convex subset D of R
n with dim.D/ < k. Let C be a k-

dimensional compact convex subset of Rn. Obviously, conv. ext.C// � C.
So to prove is still: C � conv. ext.C//. Without loss of generality assume
0 2 C (otherwise, shift the whole set C). Let W be the smallest affine (hence,
linear) subset of Rn containing C. Hence, dim.W/ D k. From part (1) of the
proof there is an e 2 ext.C/. Let x 2 C. If x D e then x 2 conv. ext.C//.
If x ¤ e then the intersection of the straight line through x and e with C is a
line segment of which one of the endpoints is e. Let b be the other endpoint.
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Then b is a boundary point of C. Then, by Lemma 22.13, there is a linear
function f W W ! R with f .b/ D minff .c/ j c 2 Cg and f ¤ 0 (check this).
Let D WD fy 2 C j f .y/ D f .b/g. Then D is a compact and convex subset of
C. Because f ¤ 0 it follows that dim.D/ < k. By the induction hypothesis,
D D conv. ext.D//. Also, ext.D/ � ext.C/, see Problem 22.8. Hence,
b 2 D D conv. ext.D// � conv. ext.C//. Further, e 2 ext.C/. Because
x 2 convfb; eg it follows that x 2 conv. ext.C//. So C � conv. ext.C//. �

Proof of Theorem 22.12 Because Dn�n is compact and convex, part (b) follows from
part (a) and Theorem 22.14. So only (a) still has to be proved.

(1) We first prove that Pn�n � ext.Dn�n/. Let P D Œpij�
n
i;jD1 be a permutation matrix

with P D 1
2
.ACB/ for some A;B 2 Dn�n. Then pij D 1

2
.aijCbij/ and pij 2 f0; 1g

for all i; j 2 f1; 2; : : : ; ng. If pij D 0 then aij D bij D 0 because aij; bij � 0.
If pij D 1 then aij D bij D 1 because aij; bij � 1. Hence, A D B, so that
P 2 ext.Dn�n/.

(2) Let now D D Œdij� 2 Dn�n such that D is not a permutation matrix. The proof is
complete if we show that D is not an extreme point. For this, it is sufficient to
show that there exists an n � n-matrix C ¤ Œ0� with

(i) cij D 0 whenever dij D 0 or dij D 1,
(ii)

Pn
iD1 cij D 0 for all j 2 f1; 2; : : : ; ng with dij ¤ 1 for every i,

(iii)
Pn

jD1 cij D 0 for all i 2 f1; 2; : : : ; ng with dij ¤ 1 for every j.
For in that case, for " > 0 sufficiently small, the matrices D C "C and D � "C

are two different doubly stochastic matrices with D D 1
2
..D C"C/C .D �"C//,

implying that D 62 ext.Dn�n/.
We are left to construct C. In order to satisfy (i), for those rows or columns of

D that contain a 1 the corresponding rows or columns of C contain only zeros.
Suppose there are k rows (and hence columns) of D that do not contain a 1.
Because D is not a permutation matrix, 2 � k � n. In these k rows there are at
least 2k elements unequal to 0 and 1. The corresponding 2k or more elements
of C are to be chosen such that they satisfy the system of 2k homogeneous
linear equations described in (ii) and (iii). Without loss of generality assume
that these equations correspond to the first k rows and the first k columns. Then,
if
Pk

jD1 cij D 0 for all i 2 f1; : : : ; k � 1g and
Pk

iD1 cij D 0 for all j 2 f1; : : : ; kg,

we have
Pk

jD1 ckj D 0 as well, so that this last equation is redundant. Thus, we
have a system with less than 2k independent equations and at least 2k variables.
Hence, it has a nonzero solution, which gives the required C ¤ Œ0�. �

22.7 The Max-Flow Min-Cut Theorem

A capacitated network is a triple .V;E; k/, where V is a finite set containing at least
two distinguished elements q; s 2 V called source (q) and sink (s); E is a subset of
V � V such that v ¤ w, v ¤ s, and w ¤ q for all .v;w/ 2 E; and k W E ! RC.
Elements of V are called vertices and elements of E are called edges. The number
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Fig. 22.2 A capacitated
network

q s
e1 e4

e2

e3
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6

8
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k.e/ is the capacity of the edge e; if e D .v;w/ then k.e/ is interpreted as the
maximal amount that can flow from v to w through edge e. The source has only
outgoing and the sink only incoming edges. See Fig. 22.2 for an example.

A flow in this network is a map f W E ! RC with f .e/ � k.e/ and such that for
all v 2 V n fq; sg

X

w2VW .w;v/2E

f .w; v/ D
X

w2VW .v;w/2E

f .v;w/ :

In other words, a flow satisfies the capacity constraints and for all vertices (except
source and sink) the ‘inflow’ equals the ‘outflow’.

The value of a flow f is defined as the inflow in the sink, i.e., as the number

X

v2VW .v;s/2E

f .v; s/ :

A flow is called maximal if it has maximal value among all possible flows.
Intuitively, the value of a maximal flow is determined by the ‘bottlenecks’ in the
network. In order to formalize this, define a cut in the network to be a partition of
V into two subsets V1 and V2 such that q 2 V1 and s 2 V2. Such a cut is denoted by
.V1;V2/. The capacity of a cut is the number

k.V1;V2/ WD
X

v2V1;w2V2W.v;w/2E

k.v;w/ ;

i.e., the total capacity along edges going from V1 to V2. A cut is called minimal if it
has minimal capacity among all possible cuts.

In the example in Fig. 22.2, a minimal cut has only the sink in V2, and its capacity
is equal to 3. Obviously, this is also the value of a maximal flow, but such a flow is
not unique.

Flows and cuts are, first of all, related as described in the following lemma.

Lemma 22.15 Let f be a flow in the capacitated network .V;E; k/, and let ' W E !
R be an arbitrary function. Then:

(a)
P
v2V

P
.w;v/W .w;v/2E

'.w; v/ D
P
v2V

P
.v;w/W .v;w/2E

'.v;w/ :



22.7 The Max-Flow Min-Cut Theorem 399

(b)
P

.q;v/W .q;v/2E

f .q; v/ D
P

.v;s/W .v;s/2E

f .v; s/ :

(c) For every cut .V1;V2/ the value of the flow f is equal to

X

.v;w/W .v;w/2E;v2V1;w2V2

f .v;w/ �
X

.v;w/W .v;w/2E;v2V2 ;w2V1

f .v;w/ :

Proof (a) follows because summation at both sides is taken over the same sets. Part
(a) moreover implies

X

.q;v/W .q;v/2E

f .q; v/C
X

.v;w/2EW v¤q

f .v;w/ D

X

.v;s/W .v;s/2E

f .v; s/C
X

.v;w/2EW w¤s

f .v;w/

which implies (b) because
P

.v;w/2EW v¤q f .v;w/ D
P

.v;w/2EW w¤s f .v;w/ by defini-
tion of a flow (‘inflow’ equals ‘outflow’ at every vertex that is not the source and not
the sink). For part (c), let .V1;V2/ be a cut of the network. Then

X

.v;w/2EW v2V1;w2V2

f .v;w/ D
X

.v;w/2EW v2V1

f .v;w/ �
X

.v;w/2EW v;w2V1

f .v;w/

D
X

.v;w/2EW vDq

f .v;w/C
X

.v;w/2EW w2V1

f .v;w/

�
X

.v;w/2EW v;w2V1

f .v;w/

D
X

.v;w/2EW vDq

f .v;w/C
X

.v;w/2EW v2V2;w2V1

f .v;w/

D
X

.v;w/2EW wDs

f .v;w/C
X

.v;w/2EW v2V2 ;w2V1

f .v;w/ ;

where the second equality follows since everything that leaves from a node of V1
also has entered that node, except for q; and the fourth equality follows from (b).
This implies part (c) of the lemma. �

The following theorem is the famous Max Flow Min Cut Theorem.

Theorem 22.16 Let .V;E; k/ be a capacitated network. Then the value of a

maximal flow is equal to the capacity of a minimal cut.

Proof Let f be a maximal flow. (Note that f is an optimal solution of a fea-
sible bounded linear program, so that existence of f is guaranteed.) Part (c) of
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Lemma 22.15 implies that the value of any flow f is smaller than or equal to

X

.v;w/W .v;w/2E;v2V1 ;w2V2

k.v;w/ �
X

.v;w/W .v;w/2E;v2V2;w2V1

f .v;w/

�
X

.v;w/W .v;w/2E;v2V1 ;w2V2

k.v;w/

for any cut .V1;V2/, so that it is sufficient to find a cut of which the capacity is equal
to the value of f .

For points v;w in the network define a path as a sequence of different non-
directed edges starting in v and ending in w; ‘non-directed’ means that for any edge
.x; y/ 2 E, .x; y/ as well as .y; x/ may be used in this path. Such a path may be
described by a sequence v D x1; x2; : : : ; xm D w with .xi; xiC1/ 2 E or .xiC1; xi/ 2 E

for every i D 1; : : : ;m � 1. Call such a path non-satiated if for every i D 1; : : : ;

m � 1 it holds that f .xi; xiC1/ < k.xi; xiC1/ if .xi; xiC1/ 2 E, and f .xiC1; xi/ > 0 if
.xiC1; xi/ 2 E. In other words, the flow is below capacity in edges that are traversed
in the ‘right’ way, and positive in edges that are traversed in the ‘wrong’ way.

Define V1 to be the set of vertices x for which there is a non-satiated path from
q to x, together with the vertex q, and let V2 be the complement of V1 in V . Then
s 2 V2 because otherwise there would be a non-satiated path from q to s, implying
that f would not be maximal; the flow f could be increased by increasing it in edges
on this path that are traversed in the right way and decreasing it in edges along the
path that are traversed in the wrong way, without violating the capacity constraints
or the inflow-outflow equalities. Hence .V1;V2/ is a cut in the network.

Let .x; y/ 2 E with x 2 V1 and y 2 V2. Then f .x; y/ D k.x; y/ because otherwise
there would be a non-satiated path from q to a vertex in V2. Similarly, f .x0; y0/ D 0

whenever .x0; y0/ 2 E with x0 2 V2 and y0 2 V1. By Lemma 22.15, part (c), the value
of the flow f is equal to

X

.v;w/W .v;w/2E;v2V1;w2V2

f .v;w/ �
X

.v;w/W .v;w/2E;v2V2 ;w2V1

f .v;w/

hence to
P

.v;w/W .v;w/2E;v2V1;w2V2

k.v;w/, which is by definition the capacity of the cut

.V1;V2/. This completes the proof. �

Observe that the proof of Theorem 22.16 suggests an algorithm to determine a
maximal flow, by starting with an arbitrary flow, looking for a non-satiated path,
and improving this path. By finding an appropriate cut, maximality of a flow can be
checked. Theorem 22.16 is actually a (linear) duality result, but the above proof is
elementary.
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22.8 Problems

22.1. Convex Sets

Prove that a closed set Z � R
n is convex if and only if 1

2
x C 1

2
y 2 Z for all x; y 2 Z.

22.2. Proof of Lemma 22.3

Prove that at most one of the systems in Lemma 22.3 has a solution.

22.3. Rank of AAT

Let A be an m � n matrix with rank k. Prove that the rank of AAT (where AT is the
transpose of A) is also equal to k.

22.4. Proof of Lemma 22.5

Prove that at most one of the systems in Lemma 22.5 has a solution.

22.5. Proof of Lemma 22.7

Prove Lemma 22.7.

22.6. Extreme Points

Let C be a convex set in a linear space V and let e 2 C. Prove that the following
three statements are equivalent.

(a) e 2 ext.C/.
(b) For all 0 < ˛ < 1 and all x; y 2 C, if x ¤ y then e ¤ ˛x C .1 � ˛/y.
(c) C n feg is a convex set.

22.7. Affine Subspaces

Prove that a subset A of a linear space V is affine if, and only if, with any two
different elements x and y of A, also the straight line through x and y is contained
in A.

22.8. The Set of Sup-points of a Linear Function on a Convex Set

Let f W Rn ! R
n be a linear function. Let C be a convex subset of Rn and ˛ WD

supff .x/ j x 2 Cg, D WD fx 2 C j f .x/ D ˛g. Show that D is convex and that
ext.D/ � ext.C/.

22.9 Notes

Theorem 22.10 is due to Brouwer (1912). For proofs, see also e.g. Scarf (1973) or
Vohra (2005).

Theorem 22.11 is from Kakutani (1941). One way to prove this theorem is to
derive it from the Brouwer Fixed Point Theorem: see, e.g., Hildenbrand and Kirman
(1976).
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A good source for results on convexity is Rockafellar (1970).
The Max Flow Min Cut Theorem (Theorem 22.16) is due to Ford and Fulkerson

(1956).
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23Review Problems for Part I

This chapter contains Review Problems to Chaps. 2–10, organized per chapter.

Chapter 2

RP 1 Matrix Games (1)

(a) Give the maximin rows and minimax columns in the following matrix game:

A D

0
@
0 1 1

2 2 0

0 0 2

1
A :

What can you infer from this about the value of the game?
(b) Calculate all (mixed) maximin and minimax strategies and the value of the

following matrix game:

A D

0
@
2 2 3

3 1 4

2 0 2

1
A :

(c) Answer the same questions as in (a) and (b) for the following game:

A D

0
@
1 0 2 3

4 2 1 3

3 1 3 3

1
A :
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RP 2 Matrix Games (2)

(a) Consider the following matrix game:

A D

0
BB@

4 2

1 3

0 5

5 1

1
CCA :

Determine all maximin rows and minimax columns, and also all saddlepoint(s),
if any. What can you conclude from this about the value of this game?

(b) Consider the six different 2 � 2-matrix games that can be obtained by choosing
two rows from A, as follows:

A1 D
�
4 2

1 3

�
A2 D

�
4 2

0 5

�
A3 D

�
4 2

5 1

�

A4 D
�
1 3

0 5

�
A5 D

�
1 3

5 1

�
A6 D

�
0 5

5 1

�
:

Determine the values of all these games. Which one must be equal to the value
of A? (Give an argument for your answer!)

(c) Determine all (possibly mixed) maximin and minimax strategies of A. [Hint:
Use your answer to (b).]

RP 3 Matrix Games (3)

(a) Consider the following matrix game:

A D

0
@
8 16 12

9 8 4

12 4 16

1
A :

Determine all maximin rows and minimax columns, and also all saddlepoint(s),
if any. What can you conclude from this about the value of this game?

(b) Give an argument why player 1 (the row player) will never put probability on
the second row in a maximin strategy. Give also an argument why, consequently,
player 2 will not put probability on the third column in a minimax strategy.

(c) Determine all maximin and minimax strategies and the value of A. [Hint: Use
part (b).]
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Chapter 3

RP 4 Bimatrix Games (1)

Consider the following bimatrix game:

0
@

L C R

U 0; 0 1; 1 2; 2

M 3; 1 0; 0 0; 1

D 1; 1 0; 0 1; 0

1
A :

(a) Simplify this game by iterated elimination of strictly dominated strategies. Each
time you eliminate a pure strategy, say by which pure or mixed strategy the
eliminated strategy is strictly dominated and why.

(b) Find all Nash equilibria in the remaining game by computing the best reply
functions and making a diagram.

(c) Determine all Nash equilibria in the original game.

RP 5 Bimatrix Games (2)

(a) Consider the following bimatrix game:

.A;B/ D
�

x; 1 x; 0

0; 0 2; 1

�
:

For every x 2 R, determine all Nash equilibria (in mixed and pure strategies) of
this game.

(b) Consider the following bimatrix game:

0
BB@

e f g h

a 8; 0 0; 1 0; 2 2; 10

b 1; 7 3; 2 2; 0 3; 1

c 3; 0 0; 3 4; 5 4; 0

d 0; 2 1; 1 1; 3 7; 7

1
CCA :

Show that strategy f for player 2 is strictly dominated by a mixed strategy, but
not by a pure strategy. Which strategies survive iterated elimination of strictly
dominated strategies in this game? Find all Nash equilibria in pure and mixed
strategies of this game.

RP 6 Voting

Two political parties, I and II, each have four votes that they can distribute over two
party-candidates each. A committee is to be elected, consisting of three members.
Each political party would like to see as many as possible of their own candidates
elected in the committee. Of the total of four candidates those three that have most
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of the votes will be elected; in case of ties, tied candidates are drawn with equal
probabilities.

(a) Model this situation as a bimatrix game between the two parties.
(b) Determine all (possibly mixed) Nash equilibria in this game.

Chapter 4

RP 7 A Bimatrix Game

Consider the following bimatrix game, where a can be any real number:

� L R

T a; 0 0; 1

B 0; 1 a; 0

�

(a) Determine the set of (mixed and pure) Nash equilibria of this game for every
value of a.
Suppose now that player 1 (the row player) chooses first, and that player 2 (the
column player) observes this move and chooses next.

(b) Write down the extensive form of this game, determine the associated strategic
form, and for every a 2 R determine all subgame perfect equilibria (in pure
strategies) in this game.

RP 8 An Ice-cream Vendor Game

Three ice-cream vendors choose a location on the beach. This beach has the
following form:

A B

C D

Each of the four regions has 300 customers. Each customer goes to the nearest ice-
cream vendor, but can only move vertically or horizontally (hence not diagonally).
In case of ties customers are distributed equally over vendors.

(a) Suppose the three vendors simultaneously and independently choose one of the
four regions. Determine the Nash equilibrium or equilibria of this game, if any.

(b) Suppose vendor 1 chooses first, vendor 2 observes this and chooses next, and
vendor 3 observes both choices and chooses last. Determine the subgame perfect
Nash equilibrium or equilibria of this game, if any.

RP 9 A Repeated Game

Consider the three player game where player 1 chooses between U and D,
player 2 between L and R, and player 3 between A and B. Choices are made
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simultaneously and independently, and only pure strategies are considered. The
payoffs are given by:

A W
� L R

U 2; 2; 0 5; 5; 5

D 8; 6; 8 0; 7; 4

�
B W

� L R

U 4; 4; 1 4; 2; 8

D 0; 2; 9 4; 2; 5

�
:

Hence, if player 3 plays A the left matrix applies and if player 3 plays B the right
matrix applies. The triples are the payoffs for players 1, 2, and 3, respectively.

(a) Find the (pure strategy) Nash equilibria of this game, if any.
(b) Consider the twice repeated game with as payoffs the sums of the payoffs in

the two periods. Suppose the players play a subgame perfect Nash equilibrium.
What can you say about the actions chosen in the second period?

(c) Consider again the twice repeated game of (b). Is there a subgame perfect Nash
equilibrium of the game in which .U;R;A/ is played in the first period? If not,
argue why not; otherwise, give a complete description of such an equilibrium.

(d) Answer the same question as in (b) for the combination .U;R;B/.

RP 10 Locating a Pub

Two pub owners, player 1 and player 2, must choose a location for their pubs in a
long street. In fact, player 1 wants to open two new pubs in the street, but player 2
only one. The possible locations are A, B and C, where A is right at the beginning of
the street, B is somewhere in between A and C, and C is at the very end. Between A

and B there are 200 potential customers (uniformly distributed), and between B and
C there are 300 potential customers (uniformly distributed as well). Every customer
will always go to the pub that is closest to his house.
The two pub owners have agreed on the following procedure. First, player 1 chooses
a location for his first pub. Next, player 2 observes player 1’s choice and chooses a
location for his pub. Player 2 must choose a different location than player 1. Finally,
player 1 obtains the remaining location for his second pub.
The objective for both pub owners is to maximize the number of customers.

(a) Formulate this situation as an extensive form game. How many strategies does
player 1 have? And player 2?

(b) Find the unique subgame perfect equilibrium for this game.

Suppose now that they change the procedure as follows. After player 1 has chosen
the location for his first pub, players 1 and 2 simultaneously choose one of the two
remaining locations. If they happen to choose the same location, then they will enter
into a fierce fight and the overall utility for both pub owners is 0.

(c) Formulate this situation as an extensive form game. How many strategies does
player 1 have? And player 2?



408 23 Review Problems for Part I

(d) Find a subgame perfect equilibrium in which player 1 starts by choosing A. Find
another subgame perfect equilibrium in which player 1 starts by choosing B.
Find yet another subgame perfect equilibrium in which player 1 starts by
choosing C.

RP 11 A Two-stage Game

Consider the two bimatrix games

G1 D
� L R

U 3; 3 0; 4

D 4; 0 1; 1

�
; G2 D

0
@

X Y Z

T 3; 1 0; 0 0; 0

M 0; 0 3; 3 0; 0

B 0; 0 0; 0 1; 3

1
A :

(a) Compute all the pure strategy Nash equilibria in G1 and all the pure strategy
Nash equilibria in G2.

Now suppose that G1 is played first, then the players learn the outcome of G1 and
next play the game G2. For each player the payoff is the sum of the payoffs of each
game separately.

(b) In this two-stage game, how many (pure) strategies does each player have?
(c) Is there a subgame perfect Nash equilibrium in which .U;L/ is played in G1? If

so, then describe such an equilibrium. If not, explain why.
(d) Now suppose that the order of play is reversed: first G2 is played, then G1.

Determine all subgame perfect Nash equilibria of this two-stage game.

Chapter 5

RP 12 Job Market Signaling1

A worker (W) has private information about his level of ability. With probability 1
3

he is a high type (H) and with probability 2
3

he is a low type (L). After observing his
own type, the worker decides whether to obtain a costly education (E) or not (N);
think of E as getting a degree. The firm (F) observes the worker’s education decision
but not the worker’s ability. The firm then decides whether to employ the worker in
an important managerial job (M) or in a much less important clerical job (C). The
payoffs are as follows. If the worker gets job M then he receives a payoff of 10 but
has to subtract the cost of education if he has chosen E: this is 4 for a worker of type
H but 7 for a worker of type L. If the worker gets job C then he receives a payoff of
4 minus the cost of education if he has chosen E. The firm has a payoff of 10 if it
offers the job M to a H type worker but 0 if it offers M to an L type worker; and it
has payoff 4 if it offers job C to any type worker.

1From Watson (2002).
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(a) Represent this game in extensive form.
(b) Find all the pure strategy Nash equilibria of this game, if any. (You may but do

not have to use the strategic form.)
(c) Which one(s) is (are) perfect Bayesian? Pooling or separating? Provide the

associated beliefs and discuss whether or not the intuitive criterion is satisfied.

RP 13 Second-hand Cars (1)

We consider the following variation on the ‘lemons’ (second hand car) market. A
seller wants to sell his car. He knows the quality, which can be good or bad with
equal probabilities. There is also a buyer, who does not know the quality. The seller
has the choice between offering a guarantee certificate or not, next the buyer has the
choice between buying the car or not, having observed the action of the seller. The
car has a fixed price of 15. The value of a bad or a good car for the buyer equals 10 or
20, respectively (some time after the sale, the buyer will discover the quality of the
car). The car does not have any value for the seller. Offering a guarantee certificate
represents an expected transfer from the seller to the buyer of 0 if the car is good,
and of 10 if the car is bad (if the buyer buys the car). If the buyer does not buy the
car then payoffs are 0 to both.

(a) Model this situation as a game in extensive form. Is this a signaling game? Why
or why not?

(b) Determine the strategic form of this game, and all Nash equilibria in pure
strategies, if any.

(c) Determine all perfect Bayesian Nash equilibria. Which ones are pooling or
separating, if any?

RP 14 Second-hand Cars (2)

You have seen a nice-looking second-hand car, and you are considering buying it.
The problem is that you do not know the precise value of the car. Suppose that there
is a 25 % chance that the value of the car is 2,000, and there is a 75 % chance that
the value is 4,000. You are aware of these probabilities. The car seller, on the other
hand, knows the precise value of the car. You and the car seller simultaneously name
a price, and a transaction only takes place if your price is higher or equal than the
price named by the seller. In that case, the eventual price to be paid will be the
average of your price and the price named by the seller.

For convenience, assume that both you and the seller can only name prices 1,000,
3,000 and 5,000. If you buy the car, your utility would be the value of the car minus
the price paid. For the seller the utility would be the price received minus the value
of the car. If no transaction takes place, the utility for both would be zero.

(a) Model this situation as a game with incomplete information.
(b) How many types and how many strategies do you have? What about the seller?
(c) One of your strategies is strictly dominated. Which one? Find a pure strategy, or

mixed strategy, for you that strictly dominates it.
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(d) Show that there is no Nash equilibrium in which you choose a price of 3,000.
(e) Find the Nash equilibrium, or equilibria, in pure strategies of this game. Will

you eventually buy the car?

RP 15 Signaling Games

Compute the strategic form and all the pure strategy equilibria in the games in (a)
and (b) below. Also determine all perfect Bayesian equilibria in pure strategies.
Which ones are pooling or separating, if any? Give the corresponding beliefs. Apply
the intuitive criterion.

(a)

(a)

d

d

u

u

d

d

u

u

L

L

R

R

t

t

Chance

.5

.5

1, 1

1, 0

2, 0

3, 2

0, 0

2, 1

0, 1

1, 0

[1 − α]

[α]

22

[1 − β]

[β]

(b)

(b)

d

d

u

u

d

d

u

u

L

L

R

R

t

t
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.5

.5

0, 1

3, 3

1, 1

3, 0

2, 0

1, 2

4, 1

0, 0

[1 − α]

[α]

22

[1 − β]

[β]
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RP 16 A Game of Incomplete Information

Consider the following two games G1 and G2.

G1 D
� C D E

A 5; 2 3; 2 2; 3

B 5; 2 3; 2 2; 3

�
G2 D

� C D E

A 1; 2 0; 1 3; 0

B 3; 3 2; 4 0; 0

�
:

At the beginning, a chance move determines whether the payoffs are as in G1 or
as in G2: Both events happen with probability 0.5. Player 1 knows whether G1 is
played or G2, but player 2 does not know which of the two games is played. Finally,
both players simultaneously choose an action.

(a) Draw the extensive form representation of this game. (That is, draw the game
tree.)

(b) Compute the strategic form of this game with incomplete information, and find
all Nash equilibria in pure strategies.

Suppose now that player 2 knows whether G1 or G2 is played, but that player 1 does
not know.

(c) Find all Nash equilibria in pure strategies of this new game with incomplete
information. Use reasoning to find these equilibria, without making the strategic
form.

RP 17 A Bayesian Game2

Two persons are involved in a dispute, and each person can either fight (F) or yield
(Y). Each person has a payoff of 0 from yielding, regardless of the other person’s
action, and a payoff of 1 from fighting if the other person yields. If both persons
fight, then the payoffs are �1 to person 1 and 1 to person 2. (This reflects the fact
that person 2 is strong.)

(a) Represent this game in bimatrix from and compute all the Nash equilibria (so,
in pure and mixed strategies).

Now assume that person 2 could also be weak, in which case the payoffs from both
persons fighting are equal to 1 for person 1 and �1 for person 2; all other payoffs
stay the same. Suppose that person 2 knows whether he is weak or strong, but person
1 only knows that person 2 is strong with probability ˛.

(b) Represent this game in extensive form.
(c) Determine the strategic form of the game in (b) and compute all Nash equilibria

in pure strategies, if any. (Your answer may depend on the value of ˛, so you
may have to distinguish cases.)

2From Osborne (2004).
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RP 18 Entry as a Signaling Game3

A challenger contests an incumbent’s market. The challenger is strong with
probability 1=4 and weak with probability 3=4; it knows its type, but the incumbent
does not. The challenger may either prepare itself for battle, or remain unprepared

(it does not have the option of staying out). The incumbent observes whether the
challenger is prepared or not, but not its type, and chooses whether to fight or
acquiesce. An unprepared challenger’s payoff is 5 if the incumbent acquiesces to
its entry. Preparations cost a strong challenger 1 unit of payoff and a weak one 3
units, and fighting entails a loss of 2 units for each type. The incumbent prefers to
fight (payoff 2) rather than to acquiesce to (payoff 0) a weak challenger (who is
quickly dispensed with), and prefers to acquiesce to (payoff 2) rather than to fight
(payoff 0) a strong one.

(a) Represent this game in extensive form.
(b) Find all the pure strategy Nash equilibria of this game, if any. (You may but do

not have to use the strategic form.)
(c) Which one(s) is (are) perfect Bayesian? Pooling or separating? Provide the

associated beliefs and discuss whether or not the intuitive criterion is satisfied.

Chapter 6

RP 19 Bargaining (1)

Consider the following two-player bargaining game. Player 1 owns an object which
has worth 0 to him. The object has worth v 2 Œ0; 1� to player 2: player 2 knows v
but player 1 only knows that v has been drawn according to the uniform distribution
over Œ0; 1�. There are two periods. In period 1, player 1 makes a price offer p1 and
player 2 responds with “yes” or “no”. If player 2 rejects player 1’s offer, then player
2 makes the price offer p2 in the second period, to which player 1 can say “yes” or
“no”. Agreement in the first period yields the payoff p1 to player 1 and v � p1 to
player 2. Agreement in the second period yields ıp2 to player 1 and ı.v � p2/ to
player 2 (0 < ı < 1 is a discount factor). No agreement yields 0 to both.

(a) Explain that this is a game of incomplete information. What are the type sets of
the players? Describe the strategy set of player 1.

(b) Describe the strategy set of player 2.
(c) Suppose player 1 offers a price p1 in period 1. Give the best response of player

2 (assume that players 1 and 2 accept in case of indifference).
(d) Compute the perfect Bayesian Nash equilibrium of this game.

RP 20 Bargaining (2)

Suppose two players (bargainers) bargain over the division of one unit of a
perfectly divisible good. Player 1 has utility function u1.˛/ D ˛ and player 2

3From Osborne (2004).
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has utility function u2.ˇ/ D 1 � .1 � ˇ/2 for amounts ˛; ˇ 2 Œ0; 1� of the
good.

(a) Determine the set of feasible utility pairs. Make a picture.
(b) Determine the Nash bargaining solution outcome, in terms of utilities as well as

of the physical distribution of the good.
(c) Suppose the players’ utilities are discounted by a factor ı 2 Œ0; 1/. Calculate the

Rubinstein bargaining outcome.
(d) Determine the limit of the Rubinstein bargaining outcome, for ı approaching 1,

in two ways: by using the result of (b) and by using the result of (c).

RP 21 Bargaining (3)

Suppose two players (bargainers) bargain over the division of one unit of a perfectly
divisible good. Assume that utilities are just equal to the amounts of the good
obtained, discounted by a common discount factor 0 < ı < 1. The players play
a finite Rubinstein bargaining game over three periods t D 0; 1; 2, player 1 starting
to make an offer at time t D 0, player 2 making an offer at time t D 1 (if reached),
and the game ending at time t D 2 (if reached) with equal split . 1

2
; 1
2
/.

(a) Calculate the backwards induction outcome of this game. Argue that player 1
has a beginner’s advantage.

Suppose again that two players (bargainers) bargain over the division of one unit of
a perfectly divisible good. Assume that player 1 has utility function u.x/ (0 � x � 1)
and player 2 has utility function v.x/ D 2u.x/ (0 � x � 1).

(b) Determine the physical distribution of the good according to the Nash bargain-
ing solution. Can you say something about the resulting utilities?

RP 22 Ultimatum Bargaining

Consider the ultimatum bargaining game where player 1 offers a division .1�m;m/

of one Euro, and player 2 can accept (receiving m whereas player receives 1� m) or
reject (in which both players receive zero). Suppose that player 1 only cares about
how much money he receives, but player 2 also cares about the division: specifically,
if the game results in monetary payoffs .x1; x2/, then the (utility) payoff to player 2
is x2 C a.x2 � x1/, where a is some positive constant.

(a) Represent this game in extensive form, writing the payoffs in terms of m and a.
(b) Determine the subgame perfect Nash equilibrium.
(c) What happens to the equilibrium monetary split as a becomes large? What is the

explanation for this?

RP 23 An Auction (1)

Two players (bidders) have valuations v1 > 0 and v2 > 0 for an object. They
simultaneously and independently announce bids b1; b2 2 Œ0;1/. The player with
the highest bid obtains the object and has a payoff vi � bi, the other player has
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payoff 0. If the bids are equal, then each obtains the object and associated payoff
with probability 1

2
.

(a) Does this game have perfect or imperfect information? Complete or incomplete
information?

(b) Suppose that v1 D v2. Determine all Nash equilibria (in pure strategies), if any.
(c) Suppose that v1 > v2. Determine all Nash equilibria (in pure strategies), if any.
(d) Suppose that v1 D 1 and v2 D 3. Also suppose that only integer numbers up

to 3 are allowed as bids: b1; b2 2 f0; 1; 2; 3g. Represent this game as a bimatrix
game and solve for all pure Nash equilibria.

RP 24 An Auction (2)

n � 4 players participate in an auction for an object for which their evaluations are
v1 > v2 > : : : > vn. It is a sealed-bid auction, and the highest bidder obtains the
object and pays the fourth-highest bid. In case of a tie among highest bidders, the
player with the lowest number among the highest bidders obtains the object.

(a) Show that for any player i the bid of vi weakly dominates any lower bid but does
not weakly dominate any higher bid.

(b) Show that a strategy profile in which each player bids his true valuation is not a
Nash equilibrium.

(c) Find all Nash equilibria in which all players submit the same bid.

RP 25 An Auction (3)

Two individuals (players) participate in the auction of a painting. The painting
has worth 6 for player 1 and 4 for player 2. The individuals simultaneously and
independently submit their bids b1 and b2, where these bids can only be whole
numbers: b1; b2 2 f0; : : : ; 6g (higher bids do not make sense). The highest bidder
wins the auction, receives the painting and pays his bid, whereas the other player
receives and pays nothing. In case of a draw player 1 wins. Hence, the payoff to
player 1 is 6 � b1 if b1 � b2 and 0 if b1 < b2, and the payoff to player 2 is 4 � b2 if
b2 > b1 and 0 if b2 � b1.

(a) Compute the best reply functions of both players, and draw a diagram.
(b) Compute the Nash equilibrium or equilibria of this game, if any.

RP 26 Quantity Versus Price Competition

Suppose, in the Cournot model, that the two firms produce heterogenous goods,
which have different market prices. Specifically, suppose that these market prices
are given by

p1 D maxf4� 2q1 � q2; 0g; p2 D maxf4� q1 � 2q2; 0g : (*)

These are the prices of the goods of firms 1 and 2, respectively. The firms compete
in quantities. Both fixed and marginal costs are assumed to be zero.
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(a) Write down the payoff ( = profit) functions of the two firms and compute the
Nash equilibrium quantities.

(b) Use (*) to show that

q1 D maxf1
3
.p2 � 2p1 C 4/; 0g; q2 D maxf1

3
.p1 � 2p2 C 4/; 0g : (**)

Assume now that the firms compete in prices, with demands given by (**).

(c) Write down the payoff ( = profit) functions of the two firms in terms of prices
and compute the Nash equilibrium prices.

(d) Compare the equilibria found under (a) and (c). Specifically, compare the
quantities and (associated) prices under (a) to the (associated) quantities and
prices under (c). What about the associated profits? Which is tougher: quantity
or price competition?

RP 27 An Oligopoly Game (1)

Three oligopolists operate in a market with inverse demand function given by
P.Q/ D a � Q, where Q D q1 C q2 C q3 and qi is the quantity produced by firm i.
Each firm has a constant marginal cost of production, 0 < c < a, and no fixed cost.
The firms choose their quantities as follows: (1) firm 1 chooses q1 � 0; (2) firms 2
and 3 observe q1 and then simultaneously choose q2 and q3, respectively.

(a) Draw a picture of the extensive form of this game. Also give the strategic form:
describe the strategy spaces of the players and the associated payoff functions.

(b) Determine the subgame perfect Nash equilibrium of this game.

RP 28 An Oligopoly Game (2)

Consider the Cournot model with three firms. Each firm i D 1; 2; 3 offers qi � 0,
and the market price of the good is P.q1; q2; q3/ D 10 � q1 � q2 � q3 (or zero if
this amount should be negative). Firms 1 and 2 have marginal costs equal to 0 while
firm 3 has marginal cost equal to 1. We assume that the firms are involved in Cournot
quantity competition.

(a) Derive the reaction functions of the three firms.
(b) Compute the Nash equilibrium of this game.
(c) Determine the maximal joint profit the three firms can achieve by making an

agreement on the quantities q1, q2, and q3. Is such an agreement unique?

RP 29 A Duopoly Game with Price Competition

Two firms (1 and 2) sell one and the same good. They engage in price competition
à la Bertrand. The demand for the good at price p is 100 � p. The firm that sets the
lower price gains the whole market; in case of equal prices the market is split evenly.
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The unit marginal cost for firm 1 is c1 D 30, whereas for firm 2 it is c2 D 50. Prices
are in whole units, i.e., p 2 f0; 1; : : :g. (So, e.g., a price of 20.5 is not allowed.)

(a) Write down the profit functions of both firms, and compute the monopoly prices.
(b) Derive the reaction functions of both firms.
(c) Compute the Nash equilibrium in which the price of firm 1 is minimal among

all Nash equilibria.
(d) Compute the Nash equilibrium in which the price of firm 1 is maximal among

all Nash equilibria.

RP 30 Contributing to a Public Good

Three people simultaneously decide whether or not to contribute to a public good.
At least two contributions are needed in order to provide the public good. Suppose
that the public good has a value of 8 units to every person if it is provided, and
that the contribution is fixed at 3 units. If a person decides to contribute, then the
contribution must be paid also if the good is not provided.

(a) Find all Nash equilibria in pure strategies of this game.
(b) Suppose now that players 2 and 3 use the same mixed strategy, in which

they contribute with probability p: Show that player 1’s expected payoff of
contributing is equal to

16p � 8p2 � 3 :

(c) Compute the two symmetric mixed strategy Nash equilibria of this game.

RP 31 A Demand Game

Three players divide one perfectly divisible Euro. The players simultaneously
submit their demands, x1, x2, and x3, respectively, where 0 � xi � 1 for each
player i D 1; 2; 3. If the sum of these demands is smaller than or equal to 1, i.e.,
x1 C x2 C x3 � 1, then each player i obtains his demand xi; otherwise, i.e., if
x1 C x2 C x3 > 1, then each player obtains 0.
First, for each of the following amounts, either exhibit a Nash equilibrium of
this game with sum of demands equal to that amount, or show that such a Nash
equilibrium does not exist.

(a) 0:9; (b) 1:2; (c) 1:5; (d) 1:8

(e) Determine all Nash equilibria of this game, i.e., all triples .x1; x2; x3/ with 0 �
x1; x2; x3 � 1 so that no player can do better given the demands of the other
players.
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Chapter 7

RP 32 A Repeated Game (1)

Consider the following bimatrix game

G D
� L R

T 16; 24 0; 25

B 0; 18 16; 16

�
:

(a) Which set of payoffs can be reached as the long run average payoffs in subgame
perfect Nash equilibria of the infinitely repeated discounted game G1.ı/ for
suitable choices of ı?

(b) Same question as under (a), but now for Nash equilibrium (not necessarily
subgame perfect).

(c) Describe a Nash equilibrium of G1.ı/ resulting in the long run average payoffs
.16; 20/. Is there any value of ı for which this equilibrium is subgame perfect?
Why or why not?

RP 33 A Repeated Game (2)

Consider the following stage game G:

0
@

L C R

U 8; 8 0; 9 4; 1

M 9; 1 2; 1 4; 2

D 10; 3 2; 4 4; 4

1
A :

Player 1 is the row player and player 2 the column player.

(a) Compute all the pure strategy Nash equilibria of G.
(b) Compute all mixed-strategy Nash equilibria of the game G.
(c) Suppose that the game G is played twice, with as payoffs the sums of the payoffs

of the two stages. Determine the number of (pure) strategies of each player. Is
there a subgame perfect (pure strategy) Nash equilibrium of the twice repeated
game in which .U;L/ is played in the first stage? (Describe such an equilibrium
or argue that it cannot exist.)

(d) Consider the infinite repetition of the game G in which the players use the
discounted sums of payoffs to evaluate the outcome. The players have a
common discount factor 0 < ı < 1. Describe a subgame perfect Nash
equilibrium of the repeated game in which always .U;L/ is played, using trigger
strategies. Also compute the minimal value of ı for which this equilibrium
exists.
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RP 34 A Repeated Game (3)

Consider the following stage game G:

0
@

L C R

U 0; 0 11; 0 6; 1

M 0; 12 10; 10 5; 5

D 1; 6 12; 4 6; 6

1
A:

Player 1 is the row player and player 2 the column player.

(a) Compute all the pure strategy Nash equilibria of G.
(b) Compute all mixed-strategy Nash equilibria of the game G.
(c) Suppose that the game G is played twice, with as payoffs the sums of the payoffs

of the two stages. Determine the number of (pure) strategies of each player. Is
there a subgame perfect (pure strategy) Nash equilibrium of the twice repeated
game in which .M;C/ is played in the first stage? (Describe such an equilibrium
or argue that it cannot exist.)

(d) Consider the infinite repetition of the game G in which the players use the dis-
counted sums of payoffs to evaluate the outcome. The players have a common
discount factor 0 < ı < 1. Describe a subgame perfect Nash equilibrium of the
repeated game in which always .M;C/ is played, using trigger strategies. Also
compute the minimal value of ı for which this equilibrium exists.

RP 35 A Repeated Game (4)

Consider the bimatrix game

G D
� L R

T 4; 10 3; 9

B 5; 5 3; 4

�
:

Suppose this game is played twice. After each play of the game the players learn the
outcome. The total payoff is the sum of the payoffs of each of the two plays of the
game.

(a) Describe the subgame perfect equilibrium or equilibria in pure strategies of this
twice repeated game, if any. Also give the associated outcome(s) and payoffs.

(b) Is there a Nash equilibrium of the twice repeated game in which the combination
.T;L/ is played the first time? If so, describe such an equilibrium and the
associated outcome and payoffs. If not, explain why.

Now assume that the game is repeated infinitely many times. Payoffs are the
discounted sums of stage payoffs, with common discount factor 0 < ı < 1.

(c) Which long run average payoffs can be obtained in a subgame perfect equilib-
rium in (pure) trigger strategies of this infinitely repeated game for a suitably
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chosen value of ı? Give an example of such a subgame perfect equilibrium, and
also give the associated outcome, payoffs, and long-run average payoffs, as well
as the values of ı for which this is an equilibrium.

RP 36 A Repeated Game (5)

Consider the following bimatrix game:

� L R

T 2; 1 5; 0

B 0; 6 1; 1

�
:

(a) Determine all Nash equilibria (in pure or mixed strategies) in this game.

Now suppose that the game is infinitely repeated, at times t D 0; 1; 2; : : :, and
that the players learn the outcome after each play of the game. There is a common
discount factor 0 < ı < 1, and the payoffs are the discounted streams of payoffs.

(b) Which pairs of payoffs can be reached as long-run average payoffs in a subgame
perfect equilibrium (in trigger strategies) in this game, assuming that we can take
ı as close to 1 as desired?

(c) Give a subgame perfect equilibrium of the infinitely repeated game resulting
in the average payoffs .2 1

2
; 3/. Give the values of ı for which your strategies

indeed form a subgame perfect equilibrium.

Chapter 8

RP 37 An Evolutionary Game

Consider the following matrix

A D
�C D

C 0 2

D 3 1

�
:

(a) Suppose this matrix represents an evolutionary game between animals of the
same species. Give an interpretation of a mixed strategy .p; 1� p/.

(b) Determine the replicator dynamics, rest points and stable rest points, and evolu-
tionary stable strategies. Include a phase diagram for the replicator dynamics.

(c) For the evolutionary stable strategy or strategies, show directly (that is, without
using the replicator dynamics) that the strategy (or strategies) is (or are)
evolutionary stable.

Chapter 9

RP 38 An Apex Game
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A voting committee consists of five members. Player 1 is a major player, called the
apex player. The other players are called minor players. In order to pass a decision
one needs the consent of either the apex player and at least one minor player, or of
the four minor players. Therefore, a coalition that contains either the apex player
and at least one minor player, or all minor players, is called winning. We model this
situation as a so-called simple game: winning coalitions obtain worth 1, all other
coalitions worth 0.

(a) Is the core of this game empty or not? If not, then compute it.
(b) Compute the Shapley value of this game. (Use the symmetry.)
(c) Compute the nucleolus of this game. (Use the symmetry.)

RP 39 A Three-person Cooperative Game (1)

A three-person cooperative game with player set f1; 2; 3g is described in the
following table:

S ; f1g f2g f3g f1; 2g f1; 3g f2; 3g f1; 2; 3g
v.S/ 0 0 1 0 3 3 a 10

(a) Determine all values of a for which the core of this game is not empty.
(b) Determine the Shapley value of this game. For which values of a is it in the

core?
(c) Determine all values of a, if any, for which the vector . 16�2a

3
; 7Ca

3
; 7Ca

3
/ is the

nucleolus of this game.

RP 40 A Three-person Cooperative game (2)

For each a 2 R the three-person cooperative game .f1; 2; 3g; va/ is given by va.1/ D
a, va.2/ D va.3/ D 0, va.12/ D 2, va.13/ D 3, va.23/ D 4, and va.N/ D
va.123/ D 5.

(a) For which values of a is the core of va non-empty? For these values, compute
the core.

(b) Compute the Shapley value of va. For which values of a is it in the core of va?
(c) For which values of a are the maximal excesses at the nucleolus of va reached

by the two-person coalitions? For those values, compute the nucleolus.

RP 41 Voting

Suppose in Parliament there are four parties A;B;C;D with numbers of votes equal
to 40; 30; 20; 10, respectively. To pass any law an absolute majority (>50 %) is
needed.

(a) Formulate this situation as a four-person cooperative game where winning
coalitions (coalitions that have an absolute majority) have worth 1 and losing
coalitions worth 0. Determine the Shapley value of this game.
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For every party X in fA;B;C;Dg let pX denote the number of coalitions, containing
X, that are winning but would be losing without X. Define ˇ.X/ D pX

pACpBCpCCpD
for

every party X.

(b) Compute ˇ.X/ for every X 2 fA;B;C;Dg.

Consider now a Parliament with three parties A;B;C and numbers of votes equal to
20; 10; 10, respectively. To pass any law a two-third majority is needed.

(c) Answer the same questions as in (a) and (b) for this Parliament. (Of course, now
pX D pX

pACpBCpC
for X 2 fA;B;Cg.)

RP 42 An Airport Game

Three airline companies share the cost of a runway. To serve the planes of company
i 2 f1; 2; 3g the length of the runway must be ci, which is also the cost of a runway
of that length. The airline companies can form coalitions, and the cost of a coalition
is the cost of the smallest runway long enough to serve the planes of all companies
in the coalition. The costs ci are given by ci D i for each company i 2 f1; 2; 3g, and
we assume c1 � c2 � c3.

(a) Model this situation as a three-player cost savings (TU) game.
(b) Compute the core of this game.
(c) Compute the Shapley value of this game. Is it in the core?
(d) Suppose that at the nucleolus of this game the excesses of the two-person

coalitions are equal and maximal. What does this imply for c1, c2, and c3?

RP 43 A Glove Game

There are five players. Players 1 and 2 each possess a right-hand glove, while players
3, 4, and 5 each possess a left-hand glove. The players can form coalitions, and the
worth of each coalition is equal to the number of pairs of gloves that the coalition
can make.

(a) Compute the Shapley value of this game.
(b) Compute the core of this game.
(c) Compute the nucleolus of this game.

RP 44 A Four-person Cooperative Game

Consider the four-person game .N; v/ with N D f1; 2; 3; 4g, v.f1; 2g/ D
v.f3; 4g/ D 2, v.f1; 3g/ D 3, v.N/ D 4, and v.S/ D 0 for all other coalitions
S.

(a) Compute the core of this game. Plot the possible core payoffs of players 1 and
3 in a two-dimensional diagram with the payoffs of player 1 on the horizontal
axis and the payoffs of player 3 on the vertical axis.

(b) Compute the Shapley value of this game.



422 23 Review Problems for Part I

Chapter 10

RP 45 A Matching Problem

Let X D fx1; x2; x3; x4g and Y D fy1; y2; y3; y4g be two groups of people, and let
their preferences concerning possible partners be given by the following table.

x1 x2 x3 x4 y1 y2 y3 y4

y3 y3 y3 y4 x2 x3 x2 x1

y4 y2 y1 y1 x1 x4 x1 x4

y1 y4 y2 y2 x3 x2 x3 x2

y2 y1 y4 y3 x4 x1 x4 x3

(a) Apply the deferred acceptance procedure with proposals by members of X.
Which matching do you obtain?

(b) Apply the deferred acceptance procedure with proposals by members of Y.
Which matching do you obtain?

(c) Explain why the matching .x1; y1/; .x2; y3/; .x3; y2/; .x4; y4/ is not in the core.
(d) How many matchings are in the core? Explain your answer.

RP 46 House Exchange

Player i owns house hi, i D 1; 2; 3. The preferences of the players over the houses
are given by the following table:

Player 1 Player 2 Player 3

h2 h3 h1

h1 h2 h2

h3 h1 h3

(a) Compute all core allocations of this game.
(b) Which of these allocations are in the strong core?
(c) Give a new preference of player 1 such that the new game has a unique core

allocation.

RP 47 A Marriage Market

Consider a marriage market with four men (m1, m2, m3, and m4) and four women
(w1, w2, w3, and w4).

(a) Suppose that every woman has the same preference m1 > m2 > m3 > m4 over
the men. Argue that there is a unique matching in the core, and describe this
matching.
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For (b)–(d) assume that the preferences are given by the following table.

m1 m2 m3 m4 w1 w2 w3 w4

w1 w2 w3 w4 m4 m3 m2 m1

w2 w1 w4 w3 m3 m4 m1 m2

w3 w4 w1 w2 m2 m1 m4 m3

w4 w3 w2 w1 m1 m2 m3 m4

(b) Compute the core matching that is optimal from the point of view of the men.
(c) Compute the core matching that is optimal from the point of view of the women.
(d) Find a core matching in which m1 and w2 are coupled.
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Problems of Chapter 1

1.2 Variant of Matching Pennies

There are saddlepoint(s) if and only if x � �1.

1.3 Mixed Strategies

(b) .3=4; 1=4/.
(c) .1=2; 1=2/.
(d) By playing .3=4; 1=4/ player 1 obtains 10=4 D 2:5 for sure (independent of

what player 2 does). Similarly, by playing .1=2; 1=2/, player 2 is sure to pay
2:5. So 2:5 is the value of this game. Given a rational opponent, no player can
hope to do better by playing differently.

1.4 Sequential Cournot

(b) q1 D 1=3 and q2 D 1=6.

1.6 Glove Game

(a) .0; 0; 1/ is the unique vector in the core of the glove game.

1.7 Dentist Appointments

The Shapley value .9 1
2
; 6 1

2
; 8/ is not in the core of this game. The nucleolus is in the

core of the game.
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1.8 Nash Bargaining

(a) The problem to solve is max0�˛�1 ˛
p
1 � ˛. Obviously, the solution must be

interior: 0 < ˛ < 1. Set the first derivative equal to 0, solve, and check that the
second derivative is negative.

(b) In terms of utilities, the Nash bargaining solution is .2=3; .1=3/
p
3/.

1.9 Variant of Glove Game

The worth of a coalition S depends on the minimum of the numbers of right-hand
and left-hand players in the coalition.

Problems of Chapter 2

2.1 Solving Matrix Games

(a) The optimal strategies are .5=11; 6=11/ for player 1 and .5=11; 6=11/ for player
2. The value of the game is 30=11. In the original game the optimal strategies
are .5=11; 6=11; 0/ for player 1 and .5=11; 6=11; 0/ for player 2.

(b) The value of the game is 0. The unique maximin strategy is .0; 1; 0/. The
minimax strategies are .0; q; 1� q; 0/ for any 0 � q � 1.

(c) The value of the game is 1, the unique minimax strategy is .1=2; 0; 1=2/, and
the maximin strategies are: .p; .1� p/=2; .1� p/=2/ for 0 � p � 1.

(d) The value of the game is 9 and player 1’s maximin strategy is .1=2; 1=2; 0; 0/.
The set of all minimax strategies is f.˛; .7�14˛/=10; .3C4˛/=10/ 2 R

3 j 0 �
˛ � 1=2g.

(e) The value is 8=5. The unique maximin strategy is .2=5; 3=5/ and the unique
minimax strategy is .0; 4=5; 1=5; 0/.

(f) The value is equal to 1, player 2 has a unique minimax strategy namely .0; 1; 0/,
and the set of maximin strategies is f.0; p; 1� p/ j 0 � p � 1g.

2.2 Saddlepoints

(b) There are saddlepoints at .1; 4/ and at .4; 1/.

2.3 Maximin Rows and Minimax Columns

(c) The unique maximin strategy is . 4
7
; 0; 3

7
; 0/ and the unique minimax strategy is

. 4
7
; 0; 3

7
/.

2.4 Subgames of Matrix Games

(c) The unique minimax strategy is .0; 4=5; 1=5; 0/ and the unique maximin
strategy is .2=5; 3=5/.
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2.5 Rock-Paper-Scissors

The associated matrix game is:

0
@

R P S

R 0 �1 1

P 1 0 �1
S �1 1 0

1
A :

Problems of Chapter 3

3.1 Some Applications

(a) Let Smith be the row player and Brown the column player, then the bimatrix
game is:

� L S

L 2; 2 �1;�1
S �1;�1 1; 1

�
:

(b) Let the government be the row player and the pauper the column player. The
bimatrix game is:

� work not

aid 3; 2 �1; 3
not �1; 1 0; 0

�
:

(c) This game has two pure strategy Nash equilibria and one other (mixed
strategy) Nash equilibrium.

(e, f) This situation can be modelled as a 3� 3 bimatrix game. For (e), the expected
numbers of candidates in the committee can be taken as payoffs; for (f), the
payoff is the expected utility (using

p
c) of the lottery determining the number

of candidates in the committee.

3.2 Matrix Games

(a) You should find the same solution, namely .5=11; 6=11/ for player 1 and
.5=11; 6=11/ for player 2, as the unique Nash equilibrium.

(b) If player 2 plays a minimax strategy then 2’s payoff is at least �v, where v is
the value of the game. Hence, any strategy that gives player 1 at least v is a best
reply. So a maximin strategy is a best reply. Similarly, a minimax strategy is a
best reply against a maximin strategy, so any pair consisting of a maximin and
a minimax strategy is a Nash equilibrium.
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Conversely, in a Nash equilibrium the payoffs must be .v;�v/ otherwise one of
the players could improve by playing an optimal (maximin or minimax) strategy.
But then player 1’s strategy must be a maximin strategy since otherwise player
2 would have a better reply, and player 2’s strategy must be a minimax strategy
since otherwise player 1 would have a better reply.

(c) The appropriate definition for player 2 would be: a maximin strategy for player

2 in B, since now B represents the payoffs to player 2, and not what player 2 has
to pay to player 1.
The Nash equilibrium of Problem 3.1(b), for instance, does not consist of
maximin strategies of the players. The maximin strategy of player 1 in A is
.1=5; 4=5/, which is not part of a (the) Nash equilibrium. The maximin strategy
of player 2 (!) in B is .1; 0/, which is not part of a (the) Nash equilibrium.

3.3 Strict Domination

(c) There are three Nash equilibria: ..1; 0/; .1; 0; 0; 0//, ..0; 1/; .0; 0; 1; 0//, and
..3=7; 4=7/; .1=3; 0; 2=3; 0//.

3.4 Iterated Elimination (1)

(b) The unique equilibrium is .B;Y/.

3.5 Iterated Elimination (2)

The Nash equilibria are ..1=3; 2=3; 0/; .2=3; 0; 1=3//, ..0; 1; 0/; .1; 0; 0//, and
..1; 0; 0/; .0; 0; 1//.

3.6 Weakly Dominated Strategies

(b) Consecutive deletion of Z, C, A results in the Nash equilibria .B;X/ and .B;Y/.
Consecutive deletion of C, Y, B, Z results in the Nash equilibrium .A;X/.

3.7 A Parameter Game

Distinguish three cases: a > 2, a D 2, and a < 2.

3.8 Equalizing Property of Mixed Equilibrium Strategies

(a) Check by substitution.
(b) Suppose the expected payoff (computed by using q�) of row i played with

positive probability (p�
i ) in a Nash equilibrium .p�;q�/, hence the number

eiAq�, would not be maximal. Then player 1 would improve by adding the
probability p�

i to some row j with higher expected payoff ejAq� > eiAq�, and in
this way increase his payoff, a contradiction. A similar argument can be made
for player 2 and the columns.
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3.9 Voting

(a, b, c) Set the total number of voters equal to 10 (in order to avoid fractions). We
obtain a 6 � 6 bimatrix game in which the sum of the payoffs per entry is
always 10. This game has four Nash equilibria in pure strategies.

(d) Now we obtain a unique Nash equilibrium in pure strategies.
(e) In both games, subtract 5 from all payoffs.

3.10 Guessing Numbers

(d) The unique Nash equilibrium is the one where each player chooses each number
with equal probability.

(e) The value of this game is 1
K

.

3.11 Bimatrix Games

(b) e < a, b < d, c < g, h < f . Then there is a unique Nash equilibrium.

Problems of Chapter 4

4.1 Counting Strategies

White has 20 possible opening moves, and therefore also 20 possible strategies.
Black has many more strategies.

4.2 Extensive Versus Strategic Form

For the game with perfect information, start with a decision node of player 1. For
the game with imperfect information, start with a decision node of player 2.

4.4 Choosing Objects

(c) In any subgame perfect equilibrium the game is played as follows: player 1 picks
O3, then player 2 picks O2 or O1, and finally player 1 picks O4. These are the
(two) subgame perfect equilibrium outcomes of the game. Due to ties (of player
2) there is more than one subgame perfect equilibrium, namely eight in total.
All subgame perfect equilibria result in the same distribution of the objects.

(d) There is a Nash equilibrium in which player 1 obtains the objects O4 and O2.

4.5 A Bidding Game

(c) Due to ties, there are four different subgame perfect equilibria. They all result
in the same outcome.

4.6 An Extensive Form Game

There is a unique pure strategy Nash equilibrium, which is also subgame perfect.
This equilibrium is perfect Bayesian for an appropriate choice of player 2’s belief.
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4.7 Another Extensive Form Game

There is a unique Nash equilibrium (in pure strategies). This equilibrium is not
perfect Bayesian.

4.8 Still Another Extensive Form Game

(b) There are three Nash equilibria in pure strategies.
(c) There are two subgame perfect Nash equilibria in pure strategies.
(d) Both equilibria in (c) are perfect Bayesian.

4.9 A Centipede Game

(b) Consider any strategy combination. The last player who has continued when
playing his strategy could have improved by stopping if possible. Hence, in
equilibrium the play of the game must have stopped immediately.
To exhibit a non-subgame perfect Nash equilibrium, assume that player 1 always
stops, and that player 2 also always stops except at his second decision node.
Check that this is a Nash equilibrium. [One can also write down the strategic
form, which is an 8 � 8 bimatrix game.]

4.10 Finitely Repeated Prisoners’ Dilemma

(a) There are five subgames, including the entire game.
(b) There is a unique subgame perfect equilibrium.

4.11 A Twice Repeated 2 � 2 Bimatrix Game

(b) Player 1: play B at the first stage; if .B;L/ was played at the first stage play B at
the second stage, otherwise play T at the second stage.

4.12 Twice Repeated 3 � 3 Bimatrix Games

(a) There are ten subgames, including the entire game.
(b) Player 1: play T at the first stage. Player 2: play L at the first stage. Second stage

play is given by the following diagram:

0
@

L M R

T B;R C;R C;R

C B;M B;R B;R

B B;M B;R B;R

1
A :

For instance, if first stage play results in .C;L/, then player 1 plays B and player
2 plays M at stage 2. Verify that this defines a subgame perfect equilibrium in
which .T;L/ is played at the second stage. (Other solutions are possible, as long
as players 1 and 2 are punished for unilateral deviations at stage 1.)
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Problems of Chapter 5

5.1 Battle-of-the-Sexes

The strategic form is a 4 � 4 bimatrix game. List the strategies of the players as in
the text. We can then compute the expected payoffs. For example, if the first row
corresponds to strategy FF of player 1 and strategies FF, FB, BF, and BB of player
2, then the payoffs are, respectively, 1=6 times .8; 3/, .6; 9/, .6; 0/, and .4; 6/. The
(pure strategy) Nash equilibria are .FF;FB/ and .BF;BB/.

5.2 A Static Game of Incomplete Information

There are three pure Nash equilibria: .TT;L/, .TB;R/, and .BB;R/. (The first letter
in a strategy of player 1 applies to Game 1, the second letter to Game 2.)

5.3 Another Static Game of Incomplete Information

(b) The unique pure strategy Nash equilibrium is: t1 and t01 play B, t2 and t02 play R.

5.4 Job-Market Signaling

(b) There is a separating perfect Bayesian equilibrium. There is another Nash
equilibrium in which no worker takes education, but this is not perfect Bayesian.

5.5 A Joint Venture

(c) There is a unique Nash equilibrium (even in mixed strategies). This is also
subgame perfect and perfect Bayesian.

5.6 Entry Deterrence

For x � 100 the strategy combination where the entrant always enters and the
incumbent colludes is a perfect Bayesian equilibrium. For x � 50, the combination
where the entrant always stays out and the incumbent fights is a perfect Bayesian
equilibrium if the incumbent believes that, if the entrant enters, then fighting yields
0 with probability at most 1 � 50

x
. IC applies only to the second equilibrium, which

survives it.

5.7 The Beer-Quiche Game

(b) There are two perfect Bayesian equilibria, both of which are pooling. In the first
one, player 1 always eats quiche. This equilibrium does not survive IC. In the
second one, player 1 always drinks beer. This equilibrium does survive IC.

5.8 Issuing Stock

(b) There is a pooling equilibrium in which the manager never proposes to issue new
stock, and such a proposal would not be approved of by the existing shareholders
since they believe that this proposal signals a good state with high enough
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probability. [The background of this is that a new stock issue would dilute the
value of the stock of the existing shareholders in a good state of the world,
see the original article Myers and Majluf (1984) for details.] This equilibrium
survives the intuitive criterion.

There is also a separating equilibrium in which a stock issue is proposed in
the bad state but not in the good state. If a stock issue is proposed, then it is
approved of.

Finally, there is a separating equilibrium in which a stock issue is proposed
in the good state but not in the bad state. If a stock issue is proposed, then it is
not approved of.

(c) In this case, a stock issue proposal would always be approved of, so the
‘bad news effect’ of a stock issue vanishes. The reason is that the investment
opportunity is now much more attractive.

5.9 More Signaling Games

(a) IC does not apply, since it would rule out both types of player 1.
(b) There is a unique, pooling perfect Bayesian equilibrium. This equilibrium does

not survive the intuitive criterion.
(c) There are two strategy combinations that are perfect Bayesian.

Problems of Chapter 6

6.1 Cournot with Asymmetric Costs

The Nash equilibrium is q1 D .a � 2c1 C c2/=3 and q2 D .a � 2c2 C c1/=3, given
that these amounts are nonnegative.

6.2 Cournot Oligopoly

(b) The reaction function of player i is: ˇi.q1; : : : ; qi�1; qiC1; : : : ; qn/ D .a � c �P
j¤i qj/=2 if

P
j¤i qj � a�c, and ˇi.q1; : : : ; qi�1; qiC1; : : : ; qn/ D 0 otherwise.

(c) One should compute the point of intersection of the n reaction functions. This
amounts to solving a system of n linear equations in n unknowns q1; : : : ; qn.
Alternatively, one may guess that there is a solution q1 D q2 D : : : D qn.
Then q1 D .a � c � .n � 1/q1/=2, resulting in q1 D .a � c/=.n C 1/. Hence,
each firm producing .a � c/=.n C 1/ is a Nash equilibrium. If the number of
firms becomes large then this amount converges to 0, which is no surprise since
demand is bounded by a.

(d) To show that this equilibrium is unique, it is sufficient to show that the
determinant of the coefficient matrix associated with the system of n linear
equations in n unknowns (the reaction functions) is unequal to zero.
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6.3 Quantity Competition with Heterogenous Goods

(a) …i.q1; q2/ D qipi.q1; q2/ � cqi for i D 1; 2.
(b) The equilibrium is: q1 D .21� 4c/=33, q2 D .13� 3c/=22, p1 D .21C 7c/=11,

p2 D .39C 13c/=22. From this the profits are easily computed.
(c) q1 D .57� 10c/=95, q2 D .38� 10c/=95, p1 D .228C 50c/=95, p2 D .228C

45c/=95. From this the profits are easily computed.
(d) q1 D maxf1 � 1

2
p1 C 1

3
p2; 0g, q2 D maxf1 � 1

2
p2 C 1

4
p1g. The profit functions

are now …1.p1; p2/ D p1q1 � cq1 and …2.p1; p2/ D p2q2 � cq2, with q1 and q2
as given.

(e) The equilibrium is p1 D .16 C 8c/=11, p2 D .30 C 15c/=22. Note that these
prices are different from the ones in (c). Profits under price competition will be
lower than those under quantity competition.

(f) These are the same prices and quantities as under (c).
(g) See the answers to (e) and (f).

6.4 A Numerical Example of Cournot Competition with Incomplete Information

q1 D 18=48, qH D 9=48, qL D 15=48. In the complete information case with
low cost we have q1 D q2 D 16=48, with high cost it is q1 D 20=48 and q2 D
8=48. Note that the low cost firm ‘suffers’ from incomplete information since firm
1 attaches some positive probability to firm 2 having high cost and therefore has
higher supply. For the high cost firm the situation is reversed: it ‘benefits’ from
incomplete information.

6.5 Cournot Competition with Two-Sided Incomplete Information

Similar to (6.3) we derive:

q` D q`.qH; qL/ D a � c` � #qH � .1 � #/qL

2
;

qh D qh.qH; qL/ D a � ch � #qH � .1 � #/qL

2
;

qL D qL.qh; q`/ D a � cL � �qh � .1 � �/q`

2
;

qH D qH.qh; q`/ D a � cH � �qh � .1 � �/q`
2

:

Here, q` and qh correspond to the low and high cost types of firm 1 and qL, and
qH correspond to the low and high cost types of firm 2. The (Bayesian) Nash
equilibrium follows by solving these four equations in the four unknown quantities.
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6.6 Incomplete Information About Demand

The equilibrium is: q1 D .#aH C .1 � #/aL � c/=3, qH D .aH � c/=3 C ..1 �
#/=6/.aH �aL/, qL D .aL �c/=3�.#=6/.aH �aL/. (Assume that all these quantities
are positive.)

6.7 Variations on Two-Person Bertrand

(a) If c1 < c2 then there is no Nash equilibrium. (Write down the reaction functions
or—easier—consider different cases.)

(b) In both cases (i) and (ii), there are two equilibria.

6.8 Bertrand with More Than Two Firms

A strategy combination is a Nash equilibrium if and only if at least two firms charge
a price of c and the other firms charge prices higher than c.

6.9 Variations on Stackelberg

(a) With firm 1 as a leader we have q1 D .1=2/.a � 2c1 C c2/ and q2 D .1=4/.a C
2c1 � 3c2/. With firm 2 as a leader we have q2 D .1=2/.a � 2c2 C c1/ and
q1 D .1=4/.a C 2c2 � 3c1/.

(b) The leader in the Stackelberg game can always play the Cournot quantity: since
the follower plays the best reply, this results in the Cournot outcome. Hence, the
Stackelberg equilibrium—where the leader maximizes—can only give a higher
payoff. (This argument holds for an arbitrary game where one player moves first
and the other player moves next, having observed the move of the first player.)

(c) qi D .1=2i/.a � c/ for i D 1; 2; : : : ; n.

6.10 First-Price Sealed-Bid Auction

(b) Suppose that in some Nash equilibrium player i wins with valuation vi < v1.
Then the winning bid bi must be at most vi otherwise player i makes a negative
profit and therefore can improve by bidding (e.g.) vi. But then player 1 can
improve by bidding higher than bi (and win) but lower than v1 (and make
positive profit). Other Nash equilibria: .v1; v1; 0; 0; : : : ; 0/, .b; b; b; : : : ; b/ with
v1 � b � v2, etc.

(d) If not, then there would be a Nash equilibrium in which—in view of (c)—all
players bid below their valuations. By (b) a player with the highest valuation
wins the auction, so this must be player 1 if each player bids below his true
valuation. But then player 1 can improve if b1 � v2 and player 2 can improve if
b1 < v2.

6.11 Second-Price Sealed-Bid Auction

(d) Also .v1; 0 : : : ; 0/ is a Nash equilibrium.
(e) The equilibria are: f.b1; b2/ j b2 � v1; 0 � b1 � v2g [ f.b1; b2/ j b1 �

v2; b2 � b1g.
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6.12 Third-Price Sealed-Bid Auction

(b) Suppose v1 > v2 > v3 > : : : , then bidder 2 could improve by bidding higher
than v1.

(c) Everybody bidding the highest valuation v1 is a Nash equilibrium. Also
everybody bidding the second highest valuation v2 is a Nash equilibrium. (There
are many more!)

6.13 n-Player First-Price Sealed-Bid Auction with Incomplete Information

Suppose every player j ¤ i plays s�
j . If player i’s type is vi and he bids bi (which can

be assumed to be at most 1�1=n since no other bidder bids higher than this) then the
probability of winning the auction is equal to the probability that very bid bj, j ¤ i, is
at most bi (including equality since this happens with zero probability). In turn, this
is equal to the probability that vj � n=.n � 1/bi for every j ¤ i. Since the players’s
valuations are independently drawn from the uniform distribution, the probability
that player i wins the auction is equal to ..n=.n � 1//bi/

n�1, hence player i should
maximize the expression .vi � bi/..n=.n � 1//bi/

n�1, resulting in bi D .1� 1=n/vi.

6.14 Double Auction

(b) The probability of trade given that vs � vb is equal to 2x.1 � x/. Note that this
is maximal for x D 1=2, and then it is equal to 1=2.

(c) pb.vb/ D .2=3/vb C 1=12 and ps.vs/ D .2=3/vs C 1=4.
(d) Observe that no trade occurs if vs > vb. Suppose vs � vb. Then the (conditional)

probability that trade occurs is 9=16. Observe that this is larger than the maximal
probability in (b).

6.15 Mixed Strategies and Objective Uncertainty

(a) ..1=2; 1=2/; .2=5; 3=5//.

6.16 Variations on Finite Horizon Bargaining

(a) Adapt Table 6.1 for the various cases.
(b) The subgame perfect equilibrium outcome is: player 1 proposes .1 � ı2 C

ı1ı2; ı2 � ı1ı2/ at t D 0 and player 2 accepts.
(c) The subgame perfect equilibrium outcome in shares of the good is: player 1

proposes .1 � ı22 C ı1ı
2
2; ı

2
2 � ı1ı

2
2/ at t D 0 and player 2 accepts.

(d) The subgame perfect equilibrium outcome is: player 1 proposes .1 � ı C ı2 �
: : :C ıT�1 � ıTs1; ı � ı2 C : : : � ıT�1 C ıTs1/ at t D 0 and player 2 accepts.

(e) The limits are .1=.1C ı/; ı=.1C ı//, independent of s.
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6.17 Variations on Infinite Horizon Bargaining

(a) Conditions (6.10) are replaced by x�
2 D ı2y

�
2 and y�

1 D ı1x
�
1 . This implies

x�
1 D .1� ı2/=.1� ı1ı2/ and y�

1 D .ı1 � ı1ı2/=.1� ı1ı2/. In the strategies .��
1 /

and .��
2 /, replace ı by ı1 and ı2, respectively. The equilibrium outcome is that

player 1’s proposal x� at t D 0 is accepted.
(b) Nothing essential changes. Player 2’s proposal y� is accepted at t D 0.
(c) Nothing changes compared to the situation in the text, since s is only obtained

at t D 1.
(e) Let p denote the probability that the game ends. Then p is also the probability

that the game ends given that it does not end at t D 0. Hence, p D .1� ı/C ı p,
so that p D 1.

6.18 A Principal-Agent Game

(a) This is a game of complete information.
(b) The subgame perfect equilibrium can be found by backward induction. Dis-

tinguish two cases: (i) strategy h is optimal for the worker and (ii) strategy l

is optimal for the worker. Show that it is optimal for the employer to induce
high effort by a wage combination .wH ;wL/ with 8wH C 2wL D 50 and
wH � wL � 5.

6.19 The Market for Lemons

(b) There are many subgame perfect equilibria: the buyer offers p � 5;000 and the
seller accepts any price of at least 5,000 if the car is bad and of at least 15,000
if the car is good. All these equilibria result in expected payoff of zero for both.
There are no other subgame perfect equilibria.

6.20 Corporate Investment and Capital Structure

(b) Suppose the investor’s belief that � D L after observing s is equal to q. Then
the investor accepts s if and only if

sŒqL C .1 � q/H C R� � I.1C r/ : (*)

The entrepreneur prefers to receive the investment if and only if

s � R=.� C R/ ; (**)

for � 2 fL;Hg.
In a pooling equilibrium, q D p. Note that (**) is more difficult to satisfy for

� D H than for � D L. Thus, (*) and (**) imply that a pooling equilibrium
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exists only if

I.1C r/

pL C .1 � p/H C R
� R

H C R
:

A separating equilibrium always exists. The low-profit type offers s D I.1C
r/=.LCR/, which the investor accepts, and the high-profit type offers s < I.1C
r/=.H C R/, which the investor rejects.

6.21 A Poker Game

(a) The strategic form of this game is as follows:

� aa aq ka kq

believe �1; 1 �1=3; 1=3 �2=3; 2=3 0; 0

show 2=3;�2=3 1=3;�1=3 0; 0 �1=3; 1=3

�
:

Here, ‘believe’ and ‘show’ are the strategies of player I. The first letter in any
strategy of player II is what player II says if the dealt card is a King, the second
letter is what II says if the dealt card is a Queen—if the dealt card is an Ace
player II has no choice.

(b) Player I has a unique optimal (maximin) strategy and player 2 has a unique
optimal (minimax) strategy. The value of the game is �2=9.

6.22 A Hotelling Location Problem

(a) x1 D x2 D 1
2
.

(c) x1 D x2 D 1
2
.

6.23 Median Voting

(a) The strategy set of each player is the interval Œ0; 30�. If each player i plays xi,
then the payoff to each player i is �j..x1C : : :Cxn/=n/� tij. A Nash equilibrium
always exists.

(b) The payoff to player i is now �j med.x1; : : : ; xn/� tij, where med.�/ denotes the
median. For each player, proposing a temperature different from his true ideal
temperature either leaves the median unchanged or moves the median farther
away from the ideal temperature, whatever the proposals of the other players.
Hence, proposing one’s ideal temperature is a weakly dominant strategy.

6.24 The Uniform Rule

(b) M D 4 W .1; 3=2; 3=2/, M D 5 W .1; 2; 2/, M D 5:5 W .1; 2; 5=2/, M D 6 W
.1; 2; 3/, M D 7 W .2; 2; 3/, M D 8 W .5=2; 5=2; 3/, M D 9 W .3; 3; 3/.
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(c) If player i reports ti and receives si > ti then, apparently the total reported
quantity is above M and thus, player i can only further increase (hence, worsen)
his share by reporting a different quantity. If player i reports ti and receives
si < ti then, apparently the total reported quantity is below M and thus, player
i can only further decrease (hence, worsen) his share by reporting a different
quantity.

There exist other Nash equilibria, but they do not give different outcomes
(shares). For example, if M >

Pn
jD1 tj, then player 1 could just as well report 0

instead of t1.

6.25 Reporting a Crime

(b) p D 1 � .c=v/1=.n�1/.
(c) The probability of the crime being reported in this equilibrium is 1� .1� p/n D

1�.c=v/n=.n�1/. This converges to 1�.c=v/ for n going to infinity. Observe that
both p and the the probability of the crime being reported decrease if n becomes
larger.

6.26 Firm Concentration

Let, in equilibrium, n firms locate downtown and m firms in the suburbs, with n D 6

and m D 4.

6.27 Tragedy of the Commons

(d) Suppose, to the contrary, G� � G��. Then v.G�/ � v.G��/ since v0 < 0, and
0 > v0.G�/ � v0.G��/ since v00 < 0. Also, G�=n < G��. Hence

v.G�/C .1=n/G�v0.G�/ � c > v.G��/C G��v0.G��/ � c ;

a contradiction since both sides should be zero.

Problems of Chapter 7

7.1 Nash and Subgame Perfect Equilibrium in a Repeated Game (1)

(a) v.A/ D 1 and the minimax strategy in A is R; v.�B/ D �1 and the maximin
strategy in �B is D.

(d) Player 1 plays always U but after a deviation switches to D forever. Player 2
always plays L but after a deviation switches to R forever. We need ı � 1=2 to
make this a Nash equilibrium of G1.ı/.
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7.2 Nash and Subgame Perfect Equilibrium in a Repeated Game (2)

(a) The limiting average payoffs .2; 1/, .1; 2/, and .2=3; 2=3/, resulting from
playing, respectively, the Nash equilibria .U;L/, .D;R/, and ..2=3; 1=3/;

.1=3; 2=3// at every stage; and all payoffs .x1; x2/ with x1; x2 > 2=3.
(b) v.A/ D 2=3 and �v.�B/ D 2=3. Hence, all payoffs .x1; x2/ with x1; x2 > 2=3.
(c) The players play .U;L/ at even times and .D;R/ at odd times. Since at each time

they play a Nash equilibrium of the stage game, no trigger strategies (describing
punishment after a deviation) are needed.

(d) In this case a trigger strategy is needed. The players alternate between .U;L/,
.D;L/, and .D;R/.

7.3 Nash and Subgame Perfect Equilibrium in a Repeated Game (3)

(a) The stage game has a unique Nash equilibrium.
(b) v.A/ D 4 since .D;L/ is a saddlepoint in A. The minimax strategy of player 2 is

L. The value of �B is �1 and the maximin strategy of player 1 is .1=2; 1=2/.
(c) These limit average payoffs are obtained, for instance, by letting the players play

.U;L/ at even times and .D;R/ at odd times. After any deviation the players
switch to playing .D;L/ (or ..1=2; 1=2/;L/) forever.

7.4 Subgame Perfect Equilibrium in a Repeated Game

(c) Alternate between .T;L/ and .M;C/.

7.5 The Strategies Tr�
1 and Tr�

2

An optimal moment for player 1 to deviate would be t D 1. For player 2 it would be
t D 3.

7.6 Repeated Cournot and Bertrand

(a) Each player offers half of the monopoly quantity (half of .a�c/=2) at each time,
but if a deviation from this occurs, then each player offers the Cournot quantity
.a � c/=3 forever. This is a subgame perfect equilibrium for ı � 9=17.

(b) In this case, each player asks the monopoly price .a C c/=2 at each time; if
a deviation from this occurs, each player switches to the Bertrand equilibrium
price p D c forever. This is a subgame perfect equilibrium for ı � 1=2.

7.7 Repeated Duopoly

(b) The Nash equilibrium prices are p1 D p2 D 6.
(c) Joint profit is maximized at p1 D p2 D 5.
(d) Ask prices p1 D p2 D 5, but after a deviation switch to the equilibrium prices

p1 D p2 D 6. This is a subgame perfect equilibrium for ı � 25=49.
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7.8 On Discounting

See the solution to Problem 6.17(e).

7.9 On Limit Average

A sequence like 1; 3; 5; 7; : : : has a limit average of infinity. More interestingly, one
may construct a sequence containing only the numbers C1 and �1 of which the
finite averages ‘oscillate’, e.g, below �1=2 and above C1=2, so that the limit does
not exist.

Problems of Chapter 8

8.1 Symmetric Games

(a) .0; 1/ is the only ESS.
(b) Both .1; 0/ and .0; 1/ are ESS. The (Nash equilibrium) strategy .1=3; 2=3/ is not

an ESS.

8.2 More Symmetric Games

(a) The replicator dynamics is Pp D p.p�1/.p�1=2/, with rest points p D 0; 1; 1=2,
of which only p D 1=2 is stable. The game .A;AT/ has a unique symmetric Nash
equilibrium, namely ..1=2; 1=2/; .1=2; 1=2//. The unique ESS is .1=2; 1=2/.

8.3 Asymmetric Games

(b) The replicator dynamics is given by the equations Pp D pq.1 � p/ and Pq D
pq.1 � q/. There is one stable rest point, namely p D q D 1, corresponding
to the unique strict Nash equilibrium ..1; 0/; .1; 0// of the game. The other rest
points are all points in the set

f.p; q/ j p D 0 and 0 � q � 1 or q D 0 and 0 � p � 1g :

8.4 More Asymmetric Games

(a) The replicator dynamics are dx=dt D x.1 � x/.2 � 3y/ and dy=dt D 2y.1 �
2x/.y � 1/. There are no stable rest points.

(b) The replicator dynamics are dx=dt D x.x�1/.2y�1/ and dy=dt D y.y�1/.2x�
1/.

8.5 Frogs Call for Mates

Note that for (a) and (b) Proposition 8.5 can be used. Similarly, for (c) we can use
Proposition 8.8, by stating the conditions under which each of the four pure strategy
combinations is a strict Nash equilibrium: if z1 < P C m � 1 and z2 < P C m � 1

then (Call, Call) is a strict Nash equilibrium, etc.
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8.6 Video Market Game

There are four rest points, of which only one is stable.

Problems of Chapter 9

9.2 Computing the Core

(a) f.0; 0; 1/g; (b) polygon with vertices .15; 5; 4/, .9; 5; 10/, .14; 6; 4/, and
.8; 6; 10/.

9.4 The Core of the General Glove Game

The Shapley value is in the core.

9.6 Non-monotonicity of the Core

(b) The core of .N; v0/ is the set f.0; 0; 1; 1/g [use the fact that C.N; v0/ � C.N; v/].
Hence, player 1 can only obtain less in the core although the worth of coalition
f1; 3; 4g has increased.

9.7 Efficiency of the Shapley Value

Consider an order i1; i2; : : : ; in of the players. The sum of the coordinates of the
associated marginal vector is

Œv.fi1g/� v.;/�
CŒv.fi1; i2g/ � v.fi1g/�
CŒv.fi1; i2; i3g/� v.fi1; i2g/�
C : : :

CŒv.N/ � v.N n fing/�
D v.N/ � v.;/ D v.N/ :

Hence, every marginal vector is efficient, so the Shapley value is efficient since it is
the average of the marginal vectors.

9.8 Computing the Shapley Value

(a) ˆ.N; v/ D .1=6; 1=6; 2=3/ … C.N; v/; (b) .9 1
2
; 6 1

2
; 8/, not in the core.

9.9 The Shapley Value and the Core

(a) a D 3 (use Problem 9.5).
(b) .2:5; 2; 1:5/.
(c) The Shapley value is .a=3C 1=2; a=3; a=3� 1=2/. The minimal value of a for

which this is in the core is 15=4.
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9.10 Shapley Value in a Two-Player Game

ˆ.N; v/ D .v.f1g/C.v.f1; 2g/�v.f1g/�v.f2g//=2; v.f2g/C.v.f1; 2g/�v.f1g/�
v.f2g//=2/.
9.11 Computing the Nucleolus

(a) .0; 0; 1/.
(b) .11:5; 5:5; 7/.
(c) .1=5; 1=5; 1=5; 1=5; 1=5; 0; : : : ; 0/ 2 R

15.
(d) In .N; v/: .1=2; 1=2; 1=2; 1=2/; in .N; v0/: .0; 0; 1; 1/.

9.12 Nucleolus of Two-Player Games

The nucleolus is .v.f1g/C .v.f1; 2g/ � v.f1g/� v.f2g//=2; v.f2g/C .v.f1; 2g/�
v.f1g/� v.f2g//=2/.
9.13 Computing the Core, the Shapley Value, and the Nucleolus

(a) The nucleolus and Shapley value coincide and are equal to .1:5; 2; 2:5/.
(c) The maximal value of v.f1g/ is 2. For that value the core is the line segment

with endpoints .2; 1; 3/ and .2; 3; 1/.

9.14 Voting (1)

(a) The Shapley value is ˆ.N; v/ D .7=12; 3=12; 1=12; 1=12/.
(b) The nucleolus is .1; 0; 0; 0/.

9.15 Voting (2)

(c) ˆ.N; v/ D .1=60/.9; 9; 14; 14; 14/.
(d) The nucleolus is .0; 0; 1=3; 1=3; 1=3/.
(e) The nucleolus is not in the core (e.g., v.f1; 3; 4g D 1 > 2=3), so the core must

be empty. This can also be seen directly.

9.16 Two Buyers and a Seller

(c) ˆ.N; v/ D .1=6; 4=6; 7=6/.
(d) The nucleolus is .0; 1=2; 3=2/.

9.17 Properties of the Shapley Value

(a) In ˆi.N; v/ the term v.S [ fig/ � v.S/ occurs the same number of times as the
term v.S [ fjg/� v.S/ in ˆj.N; v/, for every coalition S � N n fi; jg. Let S be a
coalition with i 2 S and j … S. Then v.S n fig [ fjg/ D v.S n fig [ fig/, so that

v.S [ fjg/� v.S/ D v..S n fig [ fjg/ [ fig/ � v..S n fig/[ fig/
D v..S n fig [ fjg/ [ fig/ � v..S n fig/ [ fjg/ ;
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and also these expressions occur the same umber of times. Similarly for
coalitions S that contain j but not i.

(b) This is obvious from Definition 9.4.
(c) Observe that it is sufficient to show

P
SWi…S

jSjŠ.n�jSj�1/Š
nŠ

D 1. To show this, note that

jSjŠ.n�jSj�1/Š
nŠ

D 1
n

�
n � 1

jSj

��1

, so that

X

SWi…S

jSjŠ.n � jSj � 1/Š

nŠ
D 1

n

X

sD0;1;:::;n�1

�
n � 1

s

��
n � 1

s

��1

D 1

n
� n D 1 :

Problems of Chapter 10

10.1 A Division Problem (1)

(b) In terms of utilities: . 1
3

p
3; 2

3
/, in terms of distribution: . 1

3

p
3; 1 � 1

3

p
3/.

(c) The Rubinstein outcome is x� where x�
1 D

q
1

1CıCı2
and x�

2 D 1 � 1
1CıCı2

.

(d) limı!1 x�
1 D 1

3

p
3, consistent with what was found under (a).

10.2 A Division Problem (2)

Use symmetry, Pareto optimality and covariance of the Nash bargaining solution.

10.3 A Division Problem (3)

(a) The distribution of the good is
�
2 1�ı

3

1�ı4
; 2 � 2 1�ı3

1�ı4

�
. In utility terms this is

�
1�ı3

1�ı4
; 3

q
2 � 2 1�ı3

1�ı4

�
.

(b) By taking the limit for ı ! 1 in (b), we obtain .1:5; 0:5/ as the distribution
assigned by the Nash bargaining solution. In utilities: .0:75; 3

p
0:5/.

10.4 An Exchange Economy

(a) xA
1 .p1; p2/ D .3p2 C 2p1/=2p1, xA

2 D .4p1 � p2/=2p2, xB
1 D .p1 C 6p2/=2p1,

xB
2 D p1=2p2.

(b) .p1; p2/ D .9; 5/ (or any positive multiple thereof); the equilibrium allocation is
..33=18; 31=10/; .39=18; 9=10//.

(c) The (non-boundary part of the) contract curve is given by the equation xA
2 D

.17xA
1 C 5/=.2xA

1 C 8/. The core is the part of this contract curve such that
ln.xA

1 C 1/C ln.xA
2 C 2/ � ln 4C ln 3 D ln 12 (individual rationality constraint
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for A) and 3 ln.5�xA
1 /C ln.5�xA

2 / � 3 ln 2C ln 4 D ln 12 (individual rationality
constraint for B).

(d) The point xA D .33=18; 31=10/ satisfies the equation xA
2 D .17xA

1C5/=.2xA
1C8/.

(e) For the disagreement point d one can take the point .ln 12; ln 12/. The set S

contains all points u 2 R
2 that can be obtained as utilities from any distribution

of the goods that does not exceed total endowments e D .4; 4/. Unlike the
Walrasian equilibrium allocation, the allocation obtained by applying the Nash
bargaining solution is not independent of arbitrary monotonic transformations
of the utility functions. It is a ‘cardinal’ concept, in contrast to the Walrasian
allocation, which is ‘ordinal’.

10.5 The Matching Problem of Table 10.1 Continued

(a) The resulting matching is .w1;m1/, .w2;m2/, w3 and m3 remain single.

10.6 Another Matching Problem

(a) With the men proposing: .m1;w1/, .m2;w2/, .m3;w3/. With the women propos-
ing: .m1;w1/, .m2;w3/, .m3;w2/.

(b) Since in any stable matching we must have .m1;w1/, the matchings found in (a)
are the only stable ones.

(c) Obvious: every man weakly or strongly prefers the men proposing matching in
(a); and vice versa for the women.

10.7 Yet Another Matching Problem: Strategic Behavior

(b) There are no other stable matchings.
(c) The resulting matching is .m1;w1/, .m2;w3/, .m3;w2/. This is clearly better for

w1.

10.8 Core Property of Top Trading Cycle Procedure

All players in a top trading cycle get their top houses, and thus none of these players
can be a member of a blocking coalition, say S. Omitting these players and their
houses from the problem, by the same argument none of the players in a top trading
cycle in the second round can be a member of S: the only house that such a player
may prefer is no longer available in S; etc.

10.9 House Exchange with Identical Preferences

Without loss of generality, assume that each player has the same preference
h1h2 : : : hn. Show that in a core allocation each player keeps his own house.

10.10 A House Exchange Problem

There are three core allocations namely: (i) 1 W h3, 2 W h4, 3 W h1, 4 W h2; (ii) 1 W h2,
2 W h4, 3 W h1, 4 W h3; (iii) 1 W h3, 2 W h1, 3 W h4, 4 W h2. Allocation (i) is in the strong
core.
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10.11 Cooperative Oligopoly

(a)–(c) Analogous to Problems 6.1, 6.2. Parts (d) and (f) follow directly from (c).
For parts (e) and (g) use the methods of Chap. 9.

Problems of Chapter 11

11.1 Preferences

(a) If a ¤ b and aRb and bRa then neither aPb nor bPa, so P is not necessarily
complete.

(b) I is not complete unless aRb for all a; b 2 A. I is only antisymmetric if R is a
linear order.

11.2 Pairwise Comparison

(a) C.r/ is reflexive and complete but not antisymmetric.
(c) There is no Condorcet winner in this example.

11.3 Independence of the Conditions in Theorem 11.1

The social welfare function based on the Borda scores is Pareto efficient but does
not satisfy IIA and is not dictatorial (cf. Sect. 11.1). The social welfare function that
assigns to each profile of preferences the reverse preference of agent 1 satisfies IIA
and is not dicatorial but also not Pareto efficient.

11.4 Independence of the Conditions in Theorem 11.2

A constant social welfare function (i.e., always assigning the same fixed alternative)
is strategy-proof and nondictatorial but not surjective. The social welfare function
that always assigns the bottom element of agent 1 is surjective, nondictatorial, and
not strategy-proof.

11.5 Independence of the Conditions in Theorem 11.3

A constant social welfare function (i.e., always assigning the same fixed alternative)
is monotonic and nondictatorial but not unanimous. A social welfare function that
assigns the common top alternative to any profile where all agents have the same
top alternative, and a fixed constant alternative to any other profile, is unanimous
and nondictatorial but not monotonic.

11.6 Copeland Score and Kramer Score

(a) The Copeland ranking is a preference. The Copeland ranking is not antisym-
metric. It is easy to see that the Copeland ranking is Pareto efficient. By Arrow’s
Theorem therefore, it does not satisfy IIA.

(b) The Kramer ranking is a preference. The Kramer ranking is not antisymmetric
and not Pareto efficient. It violates IIA.
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11.7 Two Alternatives

Consider the social welfare function based on majority rule, i.e., it assigns aPb if
jN.a; b; r/j > jN.b; a; r/j; bPa if jN.a; b; r/j < jN.b; a; r/j; and aIb if jN.a; b; r/j D
jN.b; a; r/j.

Problems of Chapter 12

12.1 Solving a Matrix Game

(c) v.A/ D 12=5 and the unique optimal strategies of players 1 and 2 are,
respectively, .0; 4=5; 1=5; 0/ and .0; 2=5; 0; 3=5/.

(d) The answer is independent of y and the same as in (c).

12.3 2 � 2 Games

(a) To have no saddlepoints we need a11 > a12 or a11 < a12. By assume the first,
the other inequalities follow.

(b) For optimal strategies p D .p; 1�p/ and q D .q; 1�q/we must have 0 < p < 1

and 0 < q < 1. Then use that p should be such that player 2 is indifferent
between the two columns and q such that player 1 is indifferent between the two
rows.

12.4 Symmetric Games

Let x be optimal for player 1. Then xAy � v.A/ for all y; hence yAx D �xAy �
�v.A/ for all y; hence (take y D x) v.A/ � �v.A/, so v.A/ � 0. Similarly, derive
the converse inequality by considering an optimal strategy for player 2.

12.5 The Duality Theorem Implies the Minimax Theorem

Let A be an m � n matrix game. Without loss of generality assume that all entries of
A are positive. Consider the associated LP as in Sect. 12.2.

Consider the vector Nx D .1=m; : : : ; 1=m; �/ 2 R
mC1 with � > 0. Since all entries

of A are positive it is straightforward to check that Nx 2 V if � �
Pm

iD1 aij=m for
all j D 1; : : : ; n. Since Nx � c D �� < 0, it follows that the value of the LP must be
negative.

Let x 2 Omin and y 2 Omax be optimal solutions of the LP. Then �xmC1 D
�ynC1 < 0 is the value of the LP. We have xi � 0 for every i D 1; : : : ;m,Pm

iD1 xi � 1, and .x1; : : : ; xm/Aej � xmC1 .> 0/ for every j D 1; : : : ; n. Optimality
in particular implies

Pm
iD1 xi D 1, so that v1.A/ � .x1; : : : ; xm/Aej � xmC1 for all

j, hence v1.A/ � xmC1. Similarly, it follows that v2.A/ � ynC1 D xmC1, so that
v2.A/ � v1.A/. The Minimax Theorem now follows.

12.6 Infinite Matrix Games

(a) A is an infinite matrix game with for all i; j 2 N: aij D 1 if i > j, aij D 0 if i D j,
and aij D �1 if i < j.
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(b) Fix a mixed strategy p D .p1; p2; : : :/ for player 1 with pi � 0 for all i 2 N

and
P1

iD1 pi D 1. If player 2 plays pure strategy j, then the expected payoff

for player 1 is equal to �
Pj�1

iD1 pi C
P1

iDjC1 pi. Since
P1

iD1 pi D 1, this
expected payoff converges to �1 as j approaches 1. Hence, infq pAq D �1,
so supp infq pAq D �1. Similarly, one shows infq supp pAq D 1, hence the
game has no ‘value’.

12.7 Equalizer Theorem

Assume, without loss of generality, v D 0. It is sufficient to show that there exists
q 2 R

n with q � 0, Aq � 0, and qn D 1. The required optimal strategy is then
obtained by normalization.

This is equivalent to existence of a vector .q;w/ 2 R
nCm with q � 0, w � 0,

such that

�
A I

en 0

��
q

w

�
D
�

0

1

�
;

where row vector en 2 R
n, I is the m � m identity matrix, 0 is an 1 � m vector on

the left hand side and an m � 1 vector on the right hand side. Thus, we have to show
that the vector x WD .0; 1/ 2 R

mC1 is in the cone spanned by the columns of the
.m C 1/� .n C m/ matrix on the left hand side. Call this matrix B and call this cone
Z. Assume x … Z and derive a contradiction using Theorem 22.1.

Problems of Chapter 13

13.1 Existence of Nash Equilibrium Using Brouwer

(c) Let �� 2
Q

i2N �.Si/. If �� is a Nash equilibrium of G then

��
i .si/ D ��

i .si/C maxf0; ui.si; �
�
�i/ � ui.�

�/g
1C

P
s0

i 2Si

maxf0; ui.s
0
i; �

�
�i/� ui.��/g (*)

for all i 2 N and si 2 Si, so that �� is a fixed point of f . Conversely, let �� be a
fixed point of f . Then (*) holds for all i 2 N and si 2 Si. Hence

��
i .si/

X

s0
i 2Si

maxf0; ui.s
0
i; �

�
�i/� ui.�

�/g D maxf0; ui.si; �
�
�i/ � ui.�

�/g :

Multiply both sides of this equation by ui.si; �
�
�i/ � ui.�

�/ and next sum over
all si 2 Si.
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13.2 Existence of Nash Equilibrium Using Kakutani

For upper semi-continuity of ˇ, take a sequence �k converging to � , a sequence
� k 2 ˇ.�k/ converging to � , and show � 2 ˇ.�/.
13.3 Lemma 13.2

The only-if direction is straightforward from the definition of best reply.

13.4 Lemma 13.3

Take i such that eiAq � ekAq for all k D 1; : : : ;m. Then, clearly, eiAq � p0Aq for
all p0 2 �m, so ei 2 ˇ1.q/. The second part is analogous.

13.5 Dominated Strategies

(b) Denote by NE.A;B/ the set of Nash equilibria of .A;B/. Then

.p�;q�/ 2 NE.A;B/ , .p�; .q0; 0// 2 NE.A;B/ where .q0; 0/ D q�

, 8p 2 �m;q 2 �n�1Œp�A.q0; 0/ � pA.q0; 0/;

p�B.q0; 0/ � p�B.q; 0/�

, 8p 2 �m;q 2 �n�1Œp�A0q0 � pA0q0;

p�B0q0 � p�B0q�

, .p�;q0/ 2 NE.A0;B0/ :

Note that the first equivalence follows by part (a).

13.6 A 3 � 3 Bimatrix Game

(c) The unique Nash equilibrium is ..0; 0; 1/; .0; 0; 1//.

13.7 A 3 � 2 Bimatrix Game

The set of Nash equilibria is f.p;q/ 2 �3 � �2 j p1 D 0; q1 � 1
2
g [

f..1; 0; 0/; .0; 1//g.

13.8 The Nash Equilibria in Example 13.18

(a) Let p D .p1; p2; p3/ be the strategy of player 1. We distinguish two cases: (i)
p2 D 0 (ii) p2 > 0.

In case (i), reduce the game to

� q1 q2 q3

p1 1; 1 0; 0 2; 0

p3 0; 0 1; 1 1; 1

�
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where q D .q1; q2; q3/ is player 2’s strategy. Solve this game graphically. As
long as player 1 gets at least 1 (the payoff from playing M) theobtained equilibria
are also equilibria of the original game G.

In case (ii), R gives a lower expected payoff to player 2 than C, so the game
can be reduced to

0
@

q1 q2

p1 1; 1 0; 0

p2 1; 2 1; 2

p3 0; 0 1; 1

1
A :

Solve this game graphically and extend to G.
(b) Consider again the perturbed games G."/ as in Example 13.18. For q D 0

consider the strategy combination .."; 1 � 2"; "/; ."; 1 � 2"; "// in G."/. For
q D 1 consider, similarly, .."; 1 � 2"; "/; .1 � 2"; "; "// in G."/; for 0 < q < 1

consider .."; 1 � 2"; "/; .q � "=2; 1� q � "=2; "//.

13.9 Proof of Theorem 13.8

‘If’: conditions (13.1) are satisfied and f D 0, which is optimal since f � 0 always.

‘Only-if’: clearly we must have a D pAq and b D pBq (otherwise f < 0 which
cannot be optimal). From the conditions (13.1) we have p0Aq � a D pAq and
pBq0 � b D pBq for all p0 2 �m and q0 2 �n, which implies that .p;q/ is a Nash
equilibrium.

13.10 Matrix Games

This is a repetition of the proof of Theorem 12.5. Note that the solutions of program
(13.3) give exactly the value of the game a and the optimal (minimax) strategies of
player 2. The solutions of program (13.4) give exactly the value of the game �b and
the optimal (maximin) strategies of player 1.

13.11 Tic-Tac-Toe

(a) Start by putting a cross in the center square. Then player 2 has essentially two
possibilities for the second move, and it is easy to see that in each of the two
cases player 1 has a forcing third move. After this, it is equally easy to see that
player 1 can always enforce a draw.

(b) If player 1 does not start at the center, then player 2 can put his first circle at
the center and then can place his second circle in such a way that it becomes
forcing. If player 1 starts at the center then either a pattern as in (a) is followed,
leading to a draw, or player 2’s second circle becomes forcing, also resulting in
a draw.

13.12 Iterated Elimination in a Three-Player Game

The resulting strategy combination is .D; l;L/.
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13.13 Never a Best Reply and Domination

First argue that strategy Y is not strictly dominated. Next assume that Y is a best
reply to strategies .p; 1 � p/ of player 1 and .q; 1 � q/ of player 2, and derive a
contradiction.

13.15 A 3-Player Game with an Undominated But Not Perfect Equilibrium

(a) First observe that the set of Nash equilibria is f..p; 1 � p/; l;L/ j 0 � p � 1g,
where p is the probability with which player 1 plays U.

13.16 Existence of Proper Equilibrium

Tedious but straightforward.

13.17 Strictly Dominated Strategies and Proper Equilibrium

(a) The only Nash equilibria are .U; l.;L// and .D; r.;L//. Obviously, only the first
one is perfect and proper.

(b) .D; r;L/, is a proper Nash equilibrium.

13.18 Strictly Perfect Equilibrium

(a) Identical to the proof of Lemma 13.16, see Problem 13.14: note that any
sequence of perturbed games converging to the given game must eventually
contain any given completely mixed Nash equilibrium � .

(c) The set of Nash equilibria is f..p; 1 � p/;L/ j 0 � p � 1g, where p is the
probability on U. Every Nash equilibrium of the game .A;B/ is perfect and
proper. No Nash equilibrium is strictly perfect.

13.19 Correlated Equilibria in the Two-Driver Example (1)

Use inequalities (13.5) and (13.6) to derive the conditions: p11Cp12Cp21Cp22 D 1,
pij � 0 for all i; j 2 f1; 2g, p11 � 3

5
minfp12; p21g, p22 � 5

3
minfp12; p21g.

13.20 Nash Equilibria are Correlated

Check that (13.5) and (13.6) are satisfied for P.

13.21 The Set of Correlated Equilibria is Convex

Let P and Q be correlated equilibria and 0 � t � 1. Check that (13.5) and (13.6) are
satisfied for tP C .1 � t/Q.

13.22 Correlated vs. Nash Equilibrium

(a) The Nash equilibria are: ..1; 0/; .0; 1//, ..0; 1/; .1; 0//, and ..2=3; 1=3/,
.2=3; 1=3//.
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13.23 Correlated Equilibria in the Two-Driver Example (2)

The matrix C is:

0
BB@

.1; 2/ .2; 1/ .10; 20/ .20; 10/

.1; 10/ �10 0 �10 0

.1; 20/ 6 0 0 10

.2; 10/ 0 10 6 0

.2; 20/ 0 �6 0 �6

1
CCA :

13.24 Finding Correlated Equilibria

There is a unique correlated equilibrium

P D
 
1
3

1
3

1
6

1
6

!
:

13.25 Nash, Perfect, Proper, Strictly Perfect, and Correlated Equilibria

(d) f..0; 1; 0; .q1; q2; q3// j q3 � 2q1 � 4q3g [ f..p1; p2; p3/; .0; 1; 0// j 0 < p1 �
2p3 � 4p1g.

(e) The only perfect equilibrium is ..0; 1; 0/; .0; 1; 0//.
(f) ..0; 1; 0/; .0; 1; 0// is also the only proper and strictly perfect equilibrium.
(h) For instance ˇ D  D 3=8, ˛ D ı D 1=8.

13.26 Independence of the Axioms in Corollary 13.40

Not OPR: take the set of all strategy combinations in every game. Not CONS: in
games with maximal player set take all strategy combinations, in other games take
the set of Nash equilibria. Not COCONS: drop a Nash equilibrium in some game
with maximal player set, but otherwise always take the set of all Nash equilibria.

13.27 Inconsistency of Perfect Equilibria

First show that the perfect equilibria in G0 are all strategy combinations where
player 2 plays L, player 3 plays D, and player 1 plays any mixture between T and B.
Next consider the reduced game by fixing player 3’s strategy at D.

Problems of Chapter 14

14.2 An Extensive Form Structure without Perfect Recall

(a) The paths f.x0; x1/g and f.x0; x2/g contain different player 1 actions.

14.3 Consistency Implies Bayesian Consistency

With notations as in Definition 14.13, for h 2 H with Pb.h/ > 0 and x 2 h we
have: ˇh.x/ D limm!1 ˇm

h .x/ D limm!1 Pbm.x/=Pbm.h/ D Pb.x/=Pb.h/. Here,
the second equality follows from Bayesian consistency of the .bm; ˇm/.
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14.4 (Bayesian) Consistency in Signaling Games

The idea of the proof is as follows. Let .b; ˇ/ be a Bayesian consistent assessment.
This means that ˇ is determined on every information set of player 2 that is reached
with positive probability, given b1. Take m 2 N. Assign the number 1=m2 to action
a of a type i of player 1 if that type does not play a but some other type of player 1
plays a with positive probability. Assign the number 1=m2 also to action a of type i

if no type of player 1 plays a and player 2 attaches zero belief probability to type i

conditional on player 1 having played a. To every other action of a of player 1, assign
the number ˇ.i; a/=m, where ˇ.i; a/ is the (positive) belief that player 2 attaches to
player 1 being of type i conditional on having played a. Next, normalize all these
numbers to behavioral strategies bm

1 of player 1. For player 2, just take completely
mixed behavioral strategies bm

2 converging to b2. Then .bm; ˇm/ ! .b; ˇ/, where
the ˇm are determined by Bayesian consistency.

14.5 Sequential Equilibria in a Signaling Game

There is one pure and one completely mixed sequential equilibrium.

14.6 Computation of Sequential Equilibrium (1)

The unique sequential equilibrium consists of the behavioral strategies where player
1 plays B with probability 1 and C with probability 1=2, and player 2 plays L with
probability 1=2; and player 1 believes that x3 and x4 are equally likely.

14.7 Computation of Sequential Equilibrium (2)

(b) The Nash equilibria are .L; l/, and .R; .˛; 1 � ˛// for all ˛ � 1=2, where ˛ is
the probability with which player 2 plays l.

(c) Let � be the belief player 2 attaches to node y1. Then the sequential equilibria
are: .L; l/ with belief � D 1; .R; r/ with belief � � 1=2; and .R; .˛; 1 � ˛// for
any ˛ � 1=2 with belief � D 1=2.

14.8 Computation of Sequential Equilibrium (3)

(b) The Nash equilibria are .R; .q; 1� q// with 1=3 � q � 2=3. (The conditions on
q keep player 1 from deviating to L or M.)

14.9 Computation of Sequential Equilibrium (4)

The Nash equilibria in this game are: .R; .q1; q2; q3// with q3 � 1=3 and q1 �
1=2� .3=4/q3, where q1; q2; q3 are the probabilities put on l;m; r, respectively; and
..1=4; 3=4; 0/; .1=4; 0; 3=4// (probabilities on L;M;R and l;m; r, respectively).

Let � be the belief attached by player 2 to y1. Then with � D 1=4 the equilibrium
..1=4; 3=4; 0/; .1=4; 0; 3=4//becomes sequential. The first set of equilibria contains
no equilibrium that can be extended to a sequential equilibrium.

14.10 Computation of Sequential Equilibrium (5)

The Nash equilibria are: .DB; r/; ..R; .s; 1 � s//; .q; 1 � q// with 0 � s � 1 and
q � 1=3, where s is the probability on A and q is the probability on l. The subgame
perfect equilibria are: .DB; r/; .RA; l/; ..R; .3=4; 1=4//; .3=5; 2=5//. The first one
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becomes sequential with ˇ D 0; the second one with ˇ D 1; and the third one with
ˇ D 3=5.

Problems of Chapter 15

15.1 Computing ESS in 2 � 2 Games (1)

ESS.A/ can be computed using Proposition 15.4.
(a) ESS.A/ D fe2g. (b) ESS.A/ D fe1; e2g. (c) ESS.A/ D f.2=3; 1=3/g.

15.2 Computing ESS in 2 � 2 Games (2)

Case (1): ESS.A0/ D fe2g; case (2): ESS.A0/ D fe1; e2g; case (3): ESS.A0/ D fOxg D
f.a2=.a1 C a2/; a1=.a1 C a2//g.

15.3 Rock-Paper-Scissors (1)

The unique Nash equilibrium is ..1=3; 1=3; 1=3/; .1=3; 1=3; 1=3//, which is sym-
metric. But .1=3; 1=3; 1=3/ is not an ESS.

15.4 Uniform Invasion Barriers

Case (1), e2: maximal uniform invasion barrier is 1.
Case (2), e1: maximal uniform invasion barrier is a1=.a1 C a2/.
Case (2), e2: maximal uniform invasion barrier is a2=.a1 C a2/.
Case (3), Ox: maximal uniform invasion barrier is 1.

15.5 Replicator Dynamics in Normalized Game (1)

Straightforward computation.

15.6 Replicator Dynamics in Normalized Game (2)

The replicator dynamics can be written as Px D Œx.a1 C a2/ � a2�x.1 � x/, where
Px D Px1. So x D 0 and x D 1 are always stationary points. In case (1) the graph of
Px on .0; 1/ is below the horizontal axis. In case (2) there is another stationary point,
namely at x D a2=.a1 C a2/; on .0; a2=.a1 C a2// the function Px is negative, on
.a2=.a1 C a2/; 1/ it is positive. In case (3) the situation of case (2) is reversed: the
function Px is positive on .0; a2=.a1 C a2// and negative on ..a2=.a1 C a2/; 1/.

15.7 Weakly Dominated Strategies and Replicator Dynamics

(b) The stationary points are e1, e2, e3, and all points with x3 D 0. Except e3,
all stationary points are Lyapunov stable. None of these points is asymptotically
stable. Also, e3 is strictly dominated (by e1/). [One can also derive d.x1=x2/=dt D
x1x3=x2 > 0 at completely mixed strategies, i.e., at the interior of �3. Hence, the
share of subpopulation 1 grows faster than that of 2 but this difference goes to zero
if x3 goes to zero (e2 is weakly dominated by e1).]

15.8 Stationary Points and Nash Equilibria (1)

(a) NE.A/ D f.˛; ˛; 1� 2˛/ j 0 � ˛ � 1=2g.
(b) By Proposition 15.18 and (a) it follows that f.˛; ˛; 1 � 2˛/ j 0 � ˛ � 1=2g [

fe1; e2; e3g � ST.A/, and that possibly other stationary points must be boundary



454 24 Hints, Answers and Solutions

points of�3. By considering the replicator dynamics it follows that there are no
additional stationary points. All stationary points except e1 and e2 are Lyapunov
stable, but no point is asymptotically stable.

15.9 Stationary Points and Nash Equilibria (2)

(a) The Nash equilibrium strategies are: .0; 1; 0/, .1=2; 0; 1=2/, .0; 2=3; 1=3/, and
.0; 0; 1/.

(b) Use Proposition 15.18. This implies that .1; 0; 0/, .0; 1; 0/, .0; 0; 1/, .1=2; 0;
1=2/, and .0; 2=3; 1=3/ all are stationary states. Any other stationary state must
be on the boundary of �3 and have exactly one zero coordinate. Using this it
can be shown that there are no other stationary states.

(c) The state .0; 0; 1/ is asymptotically stable. All other stationary states are not
Lyapunov stable.

15.10 Lyapunov Stable States in 2 � 2 Games

Case (1): e2; case (2): e1 and e2; case (3): Ox. (Cf. Problem 15.6.)

15.11 Nash Equilibrium and Lyapunov Stability

NE.A/ D fe1g. If we start at a completely mixed strategy close to e1, then first x3
increases, and we can make the solution trajectory pass e3 as closely as desired. This
shows that e1 is not Lyapunov stable.

15.12 Rock-Paper-Scissors (2)

(e) Follows from (d). If a > 0 then any trajectory converges to the maximum point
of x1x2x3, i.e. to .1=3; 1=3; 1=3/. If a D 0 then the trajectories are orbits (x1x2x3
constant) around .1=3; 1=3; 1=3/. If a < 0 then the trajectories move outward,
away from .1=3; 1=3; 1=3/.

Problems of Chapter 16

16.1 Imputation Set of an Essential Game

Note that I.v/ is a convex set and fi 2 I.v/ for every i D 1; : : : ; n. Thus,
I.v/ contains the convex hull of ffi j i 2 Ng. Now let x 2 I.v/, and write
x D .v.1/; : : : ; v.n//C .˛1; : : : ; ˛n/, where

P
i2N ˛i D v.N/ �

P
i2N v.i/ DW ˛.

16.2 Convexity of the Domination Core

First prove the following claim: For each x 2 I.v/ and ; ¤ S � N we have

9z 2 I.v/ W z domSx , x.S/ < v.S/ and x.S/ < v.N/ �
X

i…S

v.i/ :

Use this claim to show that I.v/nD.S/ is a convex set. Finally, conclude that DC.v/

must be convex.
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16.3 Dominated Sets of Imputations

(b) In both games, D.ij/ D fx 2 I.v/ j xi C xj < v.ij/g, i; j 2 f1; 2; 3g, i ¤ j.

16.7 A Glove Game

(b) The core and the domination core are both equal to f.0; 1; 0/g, cf. Theo-
rem 16.12.

16.11 Core and D-Core

Condition (16.1) is not a necessary condition for equality of the core and the D-
core. To find a counterexample, first note that if C.v/ ¤ ; then (16.1) must hold.
Therefore, a counterexample has to be some game with empty core and D-core.

16.12 Strategic Equivalence

Straightforward using the definitions.

16.13 Proof of Theorem 16.20

Write B D
�

A

�A

�
. Then

maxfb � y j Ay D c; y � 0g D maxfb � y j By � .c;�c/; y � 0g
D minf.c;�c/ � .x; z/ j .x; z/B � b; .x; z/ � 0g
D minfc � .x � z/ j .x � z/A � b; .x; z/ � 0g
D minfc � x0 j x0A � bg :

The second equality follows from Theorem 22.6.

16.14 Infeasible Programs in Theorem 16.20

Follow the hint.

16.15 Proof of Theorem 16.22 Using Lemma 22.5

Follow the hint and investigate (b) of Lemma 22.5.

16.17 Minimum of Balanced Games

Follows by using the definition of balancedness or by Theorem 16.22.

16.18 Balanced Simple Games

Let .N; v/ be a simple game.
Suppose i is a veto player. Let B be a balanced collection with balanced map �.

Then

X

S2B

�.S/v.S/ D
X

S2BWi2S

�.S/v.S/ � 1 D v.N/ ;

since i is a veto player. Hence, v is balanced.
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For the converse, suppose v is balanced, and distinguish two cases:

Case 1: There is an i with v.fig/ D 1. Show that i is a veto player.
Case 2: v.fig/ D 0 for every i 2 N. Show that also in this case v has veto players.

Problems of Chapter 17

17.1 The Games 1T

(c) For i 2 T: ˚i.1T/ D .jTj�1/Š.n�jTj/Š
nŠ

.

17.2 Unanimity Games

(a) Suppose
P

T¤; ˛T uT D 0, where 0 means the zero-game, for some ˛T 2 R.
Show that all ˛T are zero by induction, starting with one-person coalitions.

(b) Let W 2 2N , then show

X

T¤;

cTuT.W/ D v.W/C
X

SW S W

v.S/
X

TWS�T�W

.�1/jTj�jSj :

It is sufficient to show that the second term of the last expression is equal to 0,
hence that

P
TWS�T�W .�1/jTj�jSj D 0.

17.3 If-Part of Theorem 17.4

EFF, NP and ADD are straightforward. SYM needs more attention. Let i; j be
symmetric in v. Note that for S � N with i … S and j 2 S we have v..S[i/nj/ D v.S/

by symmetry of i and j, since v..S [ i/n j/ D v..S n j/[ i/ and v.S/ D v..S n j/[ j/.
Use this to show ˆi.v/ D ˆj.v/ by collecting terms in a clever way.

17.4 Dummy Player Property and Anonymity

That DUM implies NP and the Shapley value satisfies DUM is straightforward. AN
implies SYM: Let i and j be symmetric players, and let the value  satisfy AN.
Then consider the permutation � with �.i/ D j, �.j/ D i, and �.k/ D k otherwise.

17.5 Shapley Value, Core, and Imputation Set

In the case of two players the core and the imputation set coincide. If the core is not
empty then the Shapley value is in the core, cf. Example 17.2. In general, consider
any game with v.1/ D 2, v.N/ D 3, and v.S/ D 0 otherwise. Then the Shapley
value is not even in the imputation set as soon as n � 3.

17.6 Shapley Value as a Projection

If a is an additive game then ˆ.a/ D .a.1/; a.2/; : : : ; a.n//. For a general game v
let av be the additive game generated by ˆ.v/. Thenˆ.av/ D .av.1/; : : : ; av.n// D
ˆ.v/.

17.7 Shapley Value of Dual Game

Follow the hint, or give a direct proof by using (17.4).
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17.8 Multilinear Extension

(b) Let g be another multilinear extension of Qv to Œ0; 1�n, say g.x/ DP
T�N bT

�Q
i2T xi

�
. Show bT D cT for all T by induction, starting with one-

player coalitions.

17.9 The Beta-Integral Formula

Apply partial integration.

17.10 Path Independence of ˆ

Use Theorem 17.12(c).

17.11 An Alternative Characterization of the Shapley Value

The Shapley value satisfies all these conditions. Conversely, (b)–(d) imply standard-
ness for two-person games, so the result follows from Theorem 17.18.

Problems of Chapter 18

18.1 Marginal Vectors and Dividends

(b) For each i 2 N, m�
i D

P
T�P� .i/[i; i2T �v.T/.

18.2 Convexity and Marginal Vectors

Use Theorems 18.3 and 18.6.

18.3 Strictly Convex Games

Let � and � be two different permutations and suppose that k � 1 is the minimal
number such that �.k/ ¤ �.k/. Then show that m�

�.k/.v/ < m�
�.k/.v/. Hence,

m� ¤ m� .

18.4 Sharing Profits

(a) For the landlord:ˆ0.v/ D 1
nC1

�Pn
sD0 f .s/

�
.

(c) Extend f to a piecewise linear function on Œ0; n�. Then v is convex if and only if
f is convex.

18.5 Sharing Costs

(a) For every nonempty coalition S, v.S/ D
P

i2S ci � maxfci j i 2 Sg. If we
regard c D .c1; : : : ; c2/ as an additive game we can write v D c � cmax, where
cmax.S/ D maxfci j i 2 Sg.

18.6 Independence of the Axioms in Theorem 18.8

(a) Consider the value which, for every game v, gives each dummy player his
individual worth and distributes the rest, v.N/�

P
i2D v.i/ where D is the subset
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of dummy players, evenly among the players. This value satisfies all axioms
except LIN.

(b) Consider the value which, for every game v, distributes v.N/ evenly among all
players. This value satisfies all axioms except DUM.

(c) The value which gives each player his individual worth satisfies all axioms
except EFF.

(d) Consider any set of weights f˛� j � 2 ….N/g with ˛� 2 R for all � andP
�2….N/ ˛� D 1. The value

P
�2….N/ ˛�m� satisfies LIN, DUM and EFF, but

not MON unless all weights are nonnegative.

18.7 Null-Player in Theorem 18.8

Check that the dummy axiom in the proof of this theorem is only used for unanimity
games. In those games, dummy players are also null-players, so it is sufficient to
require NP. Alternatively, one can show that DUM is implied by ADD (and, thus,
LIN), EFF and NP.

18.8 Characterization of Weighted Shapley Values

Check that every weighted Shapley value satisfies the Partnership axiom. Con-
versely, let  be a value satisfying the Partnership axiom and the four other axioms.
Let S1 WD fi 2 N j  i.uN/ > 0g and for every i 2 S1 let !i WD  i.uN/. Define,
recursively, Sk WD fi 2 N n .S1 [ : : : [ Sk�1/ j  i.uNn.S1[:::[Sk�1// > 0g and for
every i 2 Sk let !i WD  i.uNn.S1[:::[Sk�1//. This results in a partition .S1; : : : ; Sm/ of
N. Now define the weight system w by the partition .S1; : : : ; Sm/ with S1 WD Sm,
S2 WD Sm�1, : : :, Sm WD S1, and the weights !. Then it is sufficient to prove
that for each coalition S and each player i 2 S we have  i.uS/ D ˆw

i .uS/. Let
h WD maxfj j S \ Sj ¤ ;g, then with T D N n .ShC1 [ : : : [ Sm/ we have by
the Partnership axiom:  i.uS/ D 1

 .uT /.S/
 i.uT/. If i … Sh then  i.uT/ D 0, hence

 i.uS/ D 0 D ˆw
i .uS/. If i 2 Sh then  i.uS/ D !iP

j2S\Sh
!j

D ˆw
i .uS/.

18.9 Core and Weighted Shapley Values in Example 18.2

First write the game as a sum of unanimity games:

v D uf1;2g C uf1;3g � uf2;3g C 2uN :

Then consider all possible ordered partitions of N, there are 13 different ones,
and associated weight vectors. This results in a description of all payoff vectors
associated with weighted Shapley values, including those in the core of the game.

Problems of Chapter 19

19.1 Binary Relations

Not (4): � on R defined by x � y , x2 � y2.
Not (3): � on R

2.
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Not (2): � on R defined by: for all x; y, x � y, let x � y if x � y � 1, and let y � x

if x � y < 1.
Not (1): > on R.

The ordering on R, defined by Œx � y� , Œx D y or 0 � x; y � 1� is reflexive and
transitive but not complete and not anti-symmetric.

19.2 Linear Orders

If x � y then by definition x � y and not y � x: hence x ¤ y since otherwise y � x

by reflexivity.
If x � y and x ¤ y then not y � x since otherwise x D y by anti-symmetry. Hence
x � y.

19.3 The Lexicographic Order (1)

Check (1)–(4) in Sect. 19.2 for �lex. Straightforward.

19.4 The Lexicographic Order (2)

This is the set f.x1; x2/ 2 R
2 j Œx1 D 3; x2 � 1� or Œx1 > 3�g. This set is not closed.

19.5 Representability of Lexicographic Order (1)

Consider Problem 19.4. Since .˛; 0/ �lex .3; 1/ for all ˛ > 3, we have u.˛; 0/ �
u.3; 1/ for all ˛ > 3 and hence, by continuity of u, lim˛#3 u.˛; 0/ � u.3; 1/.
Therefore .3; 0/ �lex .3; 1/, a contradiction.

19.6 Representability of Lexicographic Order (2)

Suppose that u represents �lex on R
2, that is, x �lex y if and only if u.x/ � u.y/

for all x; y 2 R
2. Then for any t 2 R let q.t/ be a rational number in the interval

Œu.t; 0/; u.t; 1/�. Since .t; ˛/ �lex .s; ˇ/ and hence u.t; ˛/ > u.s; ˇ/ for all t > s and
all ˛; ˇ 2 Œ0; 1�, we have Œu.t; 0/; u.t; 1/�\ Œu.s; 0/; u.s; 1/� D ; for all t ¤ s. Hence,
q.t/ ¤ q.s/ for all t ¤ s. Therefore, we have found uncountably many different
rational numbers, a contradiction.

19.7 Single-Valuedness of the Pre-nucleolus

Consider the pre-nucleolus on a suitable compact convex subset and apply Theo-
rem 19.3.

19.8 (Pre-)Nucleolus and Core

Use the fact that core elements have all excesses non-positive.

19.9 Kohlberg Criterion for the Nucleolus

First observe that the following modification of Theorem 19.4 holds:
Theorem 19.40 Let .N; v/ be a game and x 2 I.N; v/. Then the following two

statements are equivalent.

.1/ x D �.N; v/.

.2/ For every ˛ such that D.˛; x; v/ ¤ ; and for every side-payment y with y.S/ �
0 for every S 2 D.˛; x; v/ and with yi � 0 for all i 2 N with xi D v.i/ we have

y.S/ D 0 for every S 2 D.˛; x; v/.
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The proof of this theorem is almost identical to the proof of Theorem 19.4. In the
second sentence of the proof, note that z" 2 I.N; v/ for " small enough. In the
second part of the proof, (2))(1), note that yi D zi � xi � 0 whenever xi D v.i/.

For the ‘if’-part of the statement in this problem, let x 2 I.N; v/, D.˛; x; v/ ¤ ;,
and E.˛; x; v/ such that D.˛; x; v/[E.˛; x; v/ is balanced. Consider a side-payment
y with y.S/ � 0 for every S 2 D.˛; x; v/ and yi � 0 for every i with xi D v.i/ [hence
in particular for every i with fig 2 E.˛; x; v/]. The argument in the first part of the
proof of Theorem 19.5 now applies to D.˛; x; v/ [ E.˛; x; v/, and Theorem 19.40

implies x D �.N; v/.
For the ‘only-if’ part, consider the program (19.4) in the second part of the proof

of Theorem 19.5 but add the constraints �yi � 0 for every i 2 N with xi D v.i/.
Theorem 19.40 implies that the dual of this program is feasible, that is, there are
�.S/ � 0, S 2 D.˛; x; v/, �.fig/ � 0, i such that xi D v.i/, and �.N/ 2 R such that

�
X

i2NW xiDv.i/

�.fig/efig �
X

S2D.˛;x;v/

�.S/eS C �.N/eN D
X

S2D.˛;x;v/

eS :

Hence �.N/eN D
P

S2D.˛;x;v/.1C �.S//eS C
P

i2NW xiDv.i/
�.fig/efig. Let E.˛; x; v/

consist of those one-person coalitions fig with xi D v.i/ and �.fig/ > 0, then
D.˛; x; v/ [ E.˛; x; v/ is balanced.

19.10 Proof of Theorem 19.5

To formulate the dual program, use for instance the formulation in Theorem 16.20.
For instance, the primal (19.4) can be converted to the minimization problem
in Theorem 16.20; then the dual corresponds to the maximization problem in
Theorem 16.20. Feasibility of the dual follows from Problem 16.14.

19.11 Nucleolus of a Three-Person Game (1)

The nucleolus is .5; 4; 3/.

19.12 Nucleolus of a Three-Person Game (2)

The (pre-)nucleolus is .5; 3; 2/.

19.14 Individual Rationality Restrictions for the Nucleolus

The nucleolus is .1; 0; 0/. The pre-nucleolus is .5=3;�1=3;�1=3/.
19.15 Example 19.7

The set B1 D f123; 124; 34g is balanced with weights all equal to 1=2. The set
B1 [B2 D f123; 124; 34; 134; 234g is balanced with weights, respectively, equal to
5=12, 5=12, 3=12, 2=12, 2=12.

19.16 (Pre-)Nucleolus of a Symmetric Game

(a) �.v/ D ��.v/ D .v.N/=n/eN .

19.17 COV and AN of the Pre-nucleolus
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Covariance of the pre-nucleolus follows since applying a transformation as in
the definition of this property changes all excesses (only) by the same positive
(multiplicative) factor.
Anonymity of the pre-nucleolus follows since a permutation of the players does
not change the ordered vectors �.x/, but only permutes the coalitions to which the
excesses correspond.

19.18 Apex Game

The (pre-)nucleolus is .3=7; 1=7; 1=7; 1=7; 1=7/. This can easily be verified using
the Kohlberg criterion.

19.19 Landlord Game

(a) By anonymity, each worker is assigned 1
2
Œf .n/ � f .n � 1/�. By computing the

excesses, it follows that among all coalitions containing the landlord, with this
payoff vector the maximal excesses are reached by the coalitions containing
n � 1 workers, and further also by the coalitions consisting of a single worker
and not the landlord. By the Kohlberg criterion this immediately implies that the
given vector is the (pre-)nucleolus. For the Shapley value, see Problem 18.4.

(b) Compute the excesses for the payoff vector f .n/

nC1
ef0;1;:::;ng, and apply the Kohlberg

criterion.

19.20 Game in Sect. 19.1

The first linear program is: minimize ˛ subject to the constraints xi C ˛ � 4 for
i D 1; 2; 3, x1Cx2C˛ � 8, x1Cx3C˛ � 12, x2Cx3C˛ � 16, x1Cx2Cx3 D 24.
The program has optimal value ˛ D �2, reached for x1 D 6 and x2; x3 � 6.

In the second program x1 has been eliminated. This program reduces to:
minimize ˛ subject to x2 C ˛ � 4, x2 � 12 C ˛, x2 C x3 D 18. This has optimal
value ˛ D �4, reached for x2 D 8, x3 D 10.

19.21 The Prekernel

For i; j 2 N denote by Tij those coalitions that contain player i and not player j. For
a payoff vector x denote by sij.x; v/ the maximum of e.S; x; v/ over all S 2 Tij.

Let now x be the pre-nucleolus and suppose, contrary to what has to be proved,
that there are two distinct players k; ` such that sk`.x; v/ > s`k.x; v/. Let ı D
.sk`.x; v/ � s`k.x; v//=2 and define y by yk D xk C ı, y` D x` � ı, and yi D xi

for all i ¤ k; `. Denote S D fS 2 2N n Tk` j e.S; x; v/ � skl.x; v/g and s D jSj. Then
�sC1.x/ D sk`.x; v/. For S 2 2N n .Tk` [ T`k/, we have e.S; x; v/ D e.S; y; v/. For
S 2 Tk` we have e.S; y; v/ D e.S; x; v/ � ı. Finally, for S 2 T`k we have

e.S; y; v/ D e.S; x; v/C ı � s`k.x; v/C ı D sk`.x; v/ � ı :

Thus, �t.y/ D �t.x/ for all t � s and �sC1.y/ < sk`.x; v/ D �sC1.x/. Hence
�.x/ �lex �.y/, a contradiction.
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Problems of Chapter 20

20.2 Example 20.3

Argue that a12 D a13 D 3 if v were an assignment game. Use this to derive a
contradiction.

20.3 Subgames of Permutation Games

That a subgame of a permutation game is again a permutation game follows
immediately from the definition: in (20.3) the worth v.S/ depends only on the
numbers kij for i; j 2 S. By a similar argument [consider (20.1)] this also holds
for assignment games.

20.4 A Flow Game

(c) .1; 1; 0; 0/, corresponding to the minimum cut through e1 and e2; f.0; 0; 1 C
˛; 1 � ˛/ j 0 � ˛ � 1g, corresponding to the minimum cut through e3 and e4.

20.5 Every Nonnegative Balanced Game is a Flow Game

Let v be a nonnegative balanced game, and write (following the hint to the problem)
v D

Pk
rD1 ˛rwr , where ˛r > 0 and wr a balanced simple game for each r D

1; : : : ; k. Consider the controlled capacitated network with two vertices, the source
and the sink, and k edges connecting them, where each edge er has capacity ˛r and
is controlled by wr . Then show that the associated flow game is v.

20.6 On Theorem 20.6 (1)

(a) This follows straightforwardly from the proof of Theorem 20.6.
(b) For example, each player receiving 5 1

4
is a core element.

20.7 On Theorem 20.6 (2)

In any core element, player should 1 receive at least 1 and player 2 also, but v.N/ D
1. Hence the game has an empty core.

20.8 Totally Balanced Flow Games

This follows immediately from Theorem 20.6, since every dictatorial game is
balanced, i.e., has veto players.

20.9 If-Part of Theorem 20.9

We show that the Banzhaf value satisfies 2-EFF (the other properties are obvious).
With notations as in the formulation of 2-EFF, we have

 p.vp/ D
X

S�.Nnp/[fpgW p…S

1

2jNj�2

�
vp.S [ fpg/� vp.S/

�

D
X

S�Nnfi;jg

1

2jNj�2
Œv.S [ fijg/� v.S/�
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D
X

S�Nnfi;jg

1

2jNj�1
Œ2v.S [ fijg/� 2v.S/� :

The term in brackets can be written as

Œv.S [ fi; jg/ � v.S [ fig/C v.S [ fjg/� v.S/�
C Œv.S [ fi; jg/ � v.S [ fjg/C v.S [ fig/� v.S/� ;

hence  p.vp/ D  j.v/C  i.v/.
Show that DUM cannot be weakened to NP by finding a different value satisfying
2-EFF, SYM, NP, and SMON.

Problems of Chapter 21

21.1 Anonymity and Symmetry

An example of a symmetric but not anonymous solution is as follows. To symmetric
problems, assign the point in W.S/ with equal coordinates; otherwise, assign the
point of S that is lexicographically (first player 1, then player 2) maximal.

21.3 The Nash Solution is Well-Defined

The function x 7! .x1�d1/.x2�d2/ is continuous on the compact set fx 2 S j x � dg
and hence attains a maximum on this set. We have to show that this maximum is
attained at a unique point. In general, consider two points z; z0 2 fx 2 S j x � dg
with .z1 � d1/.z2 � d2/ D .z0

1 � d1/.z
0
2 � d2/ D ˛. Then one can show that at the

point w D 1
2
.z C z0/ 2 S one has .w1 � d1/.w2 � d2/ > ˛. This implies that the

maximum is attained at a unique point.

21.4 .a/ ) .b/ in Theorem 21.1

WPO and IIA are straightforward by definition, and SC follows from an easy
computation. For SYM, note that if N.S;d/ D z for a symmetric problem .S;d/,
then also .z2; z1/ D N.S;d/ by definition of the Nash bargaining solution. Hence,
z1 D z2 by uniqueness.

21.5 Geometric Characterization of the Nash Bargaining Solution

Let .S;d/ 2 B and N.S;d/ D z. The slope of the tangent line ` to the graph of
the function x1 7! .z1 � d1/.z2 � d2/=.x1 � d1/C d2 (which describes the level set
of x 7! .x1 � d1/.x2 � d2/ through z) at z is equal to �.z2 � d2/=.z1 � d1/, i.e.,
the negative of the slope of the straight line through d and z. Clearly, ` supports
S at z: this can be seen by invoking a separating hyperplane theorem, but also as
follows. Suppose there were some point z0 of S on the other side of ` than d. Then
there is a point w on the line segment connecting z0 and z (hence, w 2 S) with
.w1 � d1/.w2 � d2/ > .z1 � d1/.z2 � d2/, contradicting z D N.S;d/. The existence
of such a point w follows since otherwise the straight line through z0 and z would
also be a tangent line to the level curve of the Nash product at z.
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For the converse, suppose that at a point z there is a supporting line of S with
slope �.z2 � d2/=.z1 � d1/. Clearly, this line is tangent to the graph of the function
x1 7! .z1 � d1/.z2 � d2/=.x1 � d1/C d2 at z. It follows that z D N.S;d/.

21.6 Strong Individual Rationality

The implication .a/ ) .b/ is straightforward. For .b/ ) .a/, if F is also weakly
Pareto optimal, then F D N by Theorem 21.1. So it is sufficient to show that,
if F is not weakly Pareto optimal then F D D. Suppose that F is not weakly
Pareto optimal. Then there is an .S;d/ 2 B with F.S;d/ … W.S/. By IR,
F.S;d/ � d. Suppose F.S;d/ ¤ d. By SC, we may assume w.l.o.g. d D .0; 0/.
Let ˛ > 0 be such that F.S; .0; 0// 2 W..˛; ˛/S/. Since F.S; .0; 0// … W.S/,
˛ < 1. So .˛; ˛/S � S. By IIA, F..˛; ˛/S; .0; 0// D F.S; .0; 0//, so by SC,
F..˛; ˛/S; .0; 0// D .˛; ˛/F.S; .0; 0// D F.S; .0; 0//, contradicting ˛ < 1. So
F.S; .0; 0// D .0; 0/. Suppose F.T; .0; 0// ¤ .0; 0/ for some .T; .0; 0// 2 B. By
SC we may assume .0; 0/ ¤ F.T; .0; 0// 2 S. By IIA applied twice, .0; 0/ D
F.S \ T; .0; 0// D F.T; .0; 0// ¤ .0; 0/, a contradiction. Hence, F D D.

21.7 .a/ ) .b/ in Theorem 21.2

Straightforward. Note in particular that in a symmetric game the utopia point is also
symmetric, and that the utopia point is ‘scale covariant’.

21.8 Restricted Monotonicity

(a) Follows from applying IM twice.
(b) For .S;d/ with d D .0; 0/ and u.S;d/ D .1; 1/, let F.S;d/ be the lexicograph-

ically (first player 1, then player 2) maximal point of S \ R
2
C. Otherwise, let F

be equal to R. This F satisfies RM but not IM.

21.9 Global Individual Monotonicity

It is straightforward to verify that G satisfies WPO, SYM, SC, and GIM. For the
converse, suppose that F satisfies these four axioms, let .S;d/ 2 B and z WD G.S;d/.
By SC, w.l.o.g. d D .0; 0/ and g.S/ D .1; 1/. Let ˛ � 0 such that S � QS where
QS WD fx 2 R

2 j .˛; ˛/ � x � y for some y 2 Sg. In order to prove F.S; .0; 0// D
G.S; .0; 0// it is sufficient to prove that F.QS; .0; 0// D G.QS; .0; 0// (in view of GIM
and WPO). Let T D convfz; .˛; g2.QS//; .g1.QS/; ˛/g D convfz; .˛; 1/; .1; ˛/g. By
SYM and WPO, F.T; .0; 0// D z. By GIM, F.QS; .0; 0// � F.T; .0; 0// D z D
G.S; .0; 0// D G.QS; .0; 0//, so by WPO: F.QS; .0; 0// D G.QS; .0; 0//. (Make pictures.
Note that this proof is analogous to the proof of Theorem 21.2.)

21.10 Monotonicity and (Weak) Pareto Optimality

(a) Consider problems of the kind ( convfd; ag;d) for some a > d.
(b) The egalitarian solution E satisfies MON and WPO on B0.

21.11 The Egalitarian Solution (1)

Straightforward.
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21.12 The Egalitarian Solution (2)

Let z WD E.S;d/ C E.T; e/. Then it is straightforward to derive that z1 � .d1 C
e1/ D z2 � .d2 C e2/. Since E.S C T; d C e/ is the maximal point x such that
x1 � .d1 C e1/ D x2 � .d2 C e2/, it follows that E.S C T; d C E/ � z.

21.13 Independence of Axioms

Theorem 21.1:
WPO, SYM, SC: F D R; WPO, SYM, IIA: F D L, where L.S;d/ is the point of

P.S/ nearest to the point z � d with z1 � d1 D z2 � d2 measured along the boundary
of S; WPO, SC, IIA: F D D1, where D1.S;d/ is the point of fx 2 P.S/ j x � dg
with maximal first coordinate; SYM, SC, IIA: F D D (disagreement solution).
Theorem 21.2:

WPO, SYM, SC: F D N; WPO, SYM, IM: F D L; WPO, SC, IM: if d D .0; 0/

and u.S;d/ D .1; 1/, let F assign the point of intersection of W.S/ and the line
segment connecting .1=4; 3=4/ and .1; 1/ and, otherwise, let F be determined by
SC; SYM, SC, IM: F D D.
Theorem 21.3:

WPO, MON, SYM: F.S;d/ is the maximal point of S on the straight line through
d with slope 1=3 if d D .1; 0/, F.S;d/ D E.S;d/ otherwise; WPO, MON, TC:
F.S;d/ is the maximal point of S on the straight line through d with slope 1=3;
WPO, SYM, TC: F D N; MON, SYM, TC: F D D.

21.14 Nash and Rubinstein

(b) The Nash bargaining solution outcome is . 1
3

p
3; 2

3
/, hence . 1

3

p
3; 1 � 1

3

p
3/ is

the resulting distribution of the good.

(c) The Rubinstein bargaining outcome is

�q
1�ı
1�ı3

; ı�ı
3

1�ı3

�
.

(d) The outcome in (c) converges to the outcome in (b) if ı converges to 1.

Problems of Chapter 22

22.1 Convex Sets

The only-if part is obvious. For the if-part, for any two vectors x and y in Z the
condition implies that k

2m x C 2m�k
2m y 2 Z for every m 2 N and k 2 f0; 1; : : : ; 2mg. By

closedness of Z, this implies that convfx; yg � Z, hence Z is convex.

22.2 Proof of Lemma 22.3

Suppose that both systems have a solution, say .y; z/ � 0, .y; z/ ¤ 0, Ay C z D 0,
x > 0, xA > 0. Then xAy C x � z D x.Ay C z/ D 0, hence y D 0 and z D 0 since
x > 0, xA > 0. This contradicts .y; z/ ¤ 0.

22.3 Rank of AAT

This follows from basic linear algebra. Prove that the null spaces of A and ATA are
equal and use the Rank Theorem to conclude that the rank of ATA, and thus that of
AAT , is equal to the rank of A.
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22.4 Proof of Lemma 22.5

Suppose that both systems have a solution, say x > 0, xA D b, Ay � 0, b � y < 0.
Then xAy < 0, contradicting x > 0 and Ay � 0.

22.5 Proof of Lemma 22.7

(a) If x � 0, xA � b, y � 0 and b � y < 0 then xAy � b � y < 0, so Ay 6� 0. This
shows that at most one of the two systems has a solution.

(b) Suppose the system in (a) has no solution. Then also the system xA C zI D b,

x � 0, z � 0 has no solution. Hence, by Farkas’ Lemma the system

�
A

I

�
y � 0,

b � y < 0 has a solution. Therefore, the system in (b) has a solution.

22.6 Extreme Points

The implication (b) ) (a) follows by definition of an extreme point.
For the implication (a) ) (c), let x; y 2 Cnfeg and 0 < � < 1. Let z D �xC.1��/y.
If z ¤ e then z 2 C n feg by convexity of C. Suppose now that z D e. W.l.o.g. let
� � 1=2. Then e D �xC.1��/y D .1=2/xC.1=2/Œ�xC.1��/y� for � D 2��1.
Since�xC.1��/y 2 C, this implies that e is not an extreme point of C. This proves
the implication (a) ) (c).
For the implication (c) ) (b), let x; y 2 C, x ¤ y, and 0 < ˛ < 1. If x D e or y D e

then clearly ˛x C .1 � ˛/y ¤ e. If x ¤ e and y ¤ e then ˛x C .1 � ˛/y 2 C n feg
by convexity of C n feg, hence ˛x C .1 � ˛/y ¤ e as well.

22.7 Affine Subspaces

Let A D a C L be an affine subspace, x; y 2 A, and � 2 R. Write x D a C Nx and
y D a C Ny for Nx; Ny 2 L, then �x C .1 � �/y D a C �Nx C .1 � �/Ny 2 A since
�Nx C .1 � �/Ny 2 L (L is a linear subspace).
Conversely, suppose that A contains the straight line through any two of its elements.
Let a be an arbitrary element of A and let L WD fx � a j x 2 Ag. Then it follows
straightforwardly that L is a linear subspace of V , and thus A D a C L is an affine
subspace.

22.8 The Set of Sup-points of a Linear Function on a Convex Set

In general, linearity of f implies that, if f .x/ D f .y/, then f .�xC.1��/y/ D f .x/ D
f .y/ for any two points of C and 0 < � < 1. It follows, in particular, that the set D

is convex.
Let e 2 ext.D/ and suppose e D .1=2/x C .1=2/y for some x; y 2 C. Then by
linearity of f , f .e/ D .1=2/f .x/ C .1=2/f .y/, hence x; y 2 D since e 2 D. So
e D x D y since e is an extreme point of D. Thus, e is also an extreme point of C.
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Problems of Chapter 23

RP 1 Matrix Games (1)

(a) All rows are (pure) maximin strategies (with minimum 0) and all columns are
pure minimax strategies (with maximum 2). The value of the game is between
0 and 2 (which is obvious anyway in this case).

(b) The third column is strictly dominated by the second column and the third row
is strictly dominated by the second row. Entry .1; 2/ is a saddlepoint, hence
the value of the game is 2. The unique maximin strategy is .1; 0; 0/, and the
minimax strategies are the strategies in the set f.q; 1� q; 0/ j 0 � q � 1=2g.

(c) The second and third rows are the maximin rows. The second column is the
unique minimax column. From this we can conclude that the value of the
game is between 1 and 2. The first and fourth columns are strictly dominated
by the second. Next, the first row is strictly dominated by the last row. The
unique maximin strategy is .0; 2=3; 1=3/ and the unique minimax strategy is
.0; 2=3; 1=3; 0/. The value of the game is 5=3.

RP 2 Matrix Games (2)

(a) The first row is the unique maximin row (with minimum 2) and both columns
are minimax columns (with maximum 5). So the value is between 2 and 5. The
game has no saddlepoint.

(b) v.A1/ D 5=2, v.A2/ D 20=7, v.A3/ D 2 (saddlepoint), v.A4/ D 1

(saddlepoint), v.A5/ D 7=3, v.A6/ D 25=9. Since player 1 can pick rows, the
value must be the maximum of these amounts, hence 20=7, the value of A2.

(c) The unique maximin strategy is .5=7; 0; 2=7; 0/ and the unique minimax strategy
is .3=7; 4=7/.

RP 3 Matrix Games (3)

(a) The unique maximin row is the first row, with minimum 8. The unique minimax
column is the first column, with maximum 12. So the value of the game is
between 8 and 12. The game has no saddlepoint.

(b) The second row is strictly dominated by for instance putting probability 1=2 on
the first row and 1=2 on the third row. After eliminating the second row, the third
column is strictly dominated by the first column.

(c) The unique maximin strategy is .1=2; 0; 1=2/ and the unique minimax strategy
is .3=4; 1=4; 0/. The value of the game is 10.

RP 4 Bimatrix Games (1)

(a) D is strictly dominated by 3=5 � U C 2=5 � M. Next, C is strictly dominated by R.
(b) In the reduced (two by two) game, the best reply function of player 1 is: play

U if player 2 puts less than probability 2=5 on L, play M if player 2 puts more



468 24 Hints, Answers and Solutions

than probability 2=5 on L, and play any combination of U and M if player 2 puts
probability 2=5 on L. The best reply function of player 2 is: play R if player 1
puts positive probability on U, and play any combination of L and R if player 1
plays M. The set of Nash equilibria is: f..1; 0/; .0; 1//g [ f..0; 1/; .q; 1 � q// j
1 � q � 2=5g.

(c) The set of Nash equilibria in the original game is: f..1; 0; 0/; .0; 0; 1//g [
f..0; 1; 0/; .q; 0; 1� q// j 1 � q � 2=5g.

RP 5 Bimatrix Games (2)

(a) For x > 2: f..1; 0/; .1; 0//g. For x D 2: f..1; 0/; .1; 0//g [ f..p; 1� p/; .0; 1// j
0 � p � 1=2g. For 0 < x < 2: f..1=2; 1=2/; ..2 � x/=2; x=2//g. For
x D 0: f..0; 1/; .0; 1//g [ f..p; 1 � p/; .1; 0// j 1 � p � 1=2g. For x < 0:
f..0; 1/; .0; 1//g.

(b) f is strictly dominated by 1=3 �eC2=3 �g. Next: b is strictly dominated by c, e by
g, a by d. The remaining two by two game has a unique Nash equilibrium. In the
original game the unique Nash equilibrium is ..0; 0; 4=9; 5=9/; .0; 0; 1=2; 1=2//.

RP 6 Voting

(a)

0
@

.4; 0/ .3; 1/ .2; 2/

.4; 0/ 3=2; 3=2 1; 2 1; 2

.3; 1/ 2; 1 3=2; 3=2 1; 2

.2; 2/ 2; 1 2; 1 3=2; 3=2

1
A:

(b) By iterated elimination of strictly dominated strategies it follows that the unique
Nash equilibrium in this game is ..2; 2/; .2; 2//. (This is a constant sum game:
.2; 2/ is the optimal strategy for each party.)

RP 7 A Bimatrix Game

(a) For a ¤ 0 the unique Nash equilibrium is ..1=2; 1=2/; .1=2; 1=2//. For a D 0

the set of Nash equilibria is f..p; 1 � p/; .0; 1// j 1 � p > 1=2g [ f..p; 1 �
p/; .1; 0// j 0 � p < 1=2g [ f..1=2; 1=2/; .q; 1� q// j 0 � q � 1g.

(b) The strategic form of this game is

� LL LR RL RR

T a; 0 a; 0 0; 1 0; 1

B 0; 1 a; 0 0; 1 a; 0

�
:

There are two subgame perfect equilibria in pure strategies: player 1 plays T and
player 2 plays RL (i.e., R after T and L after B); and player 1 plays B and player
2 plays RL.
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RP 8 An Ice-Cream Vendor Game

(a) There are four different situations: (i) all vendors in the same location: each gets
400; (ii) two in the same location and the third vendor in a neighboring location:
the first two get 300 and the third gets 600; (iii) two in the same location and the
third vendor in the opposite location: the first two get 300 and the third gets 600;
and (iv) all vendors in different locations: the middle one gets 300 and the others
get 450 each. From this it is easily seen that (iii) and (iv) are Nash equilibria but
(i) and (ii) are not Nash equilibria.

(b) There are many subgame perfect Nash equilibria, but they can be reduced
to three types: (i) player 1 chooses arbitrarily, player 2 chooses the opposite
location of player 1, and player 3 chooses a remaining optimal open location; (ii)
player 1 chooses arbitrarily, player 2 chooses one of the neighboring locations
of player 1, and player 3 chooses the opposite location of player 2 if that is
unoccupied, and otherwise the same location as player 2; (iii) player 1 chooses
arbitrarily, player 2 chooses the same location as player 1, and player 3 chooses
the opposite location of player 1.

RP 9 A Repeated Game

(a) .U;L;B/ and .D;R;B/.
(b) In the second period, after each action combination of the first period, one of the

two equilibria in (a) has to be played.
(c) In the first period player 1 plays U, player 2 plays R, and player 3 plays A. In

the second period, if the first period resulted in .U;R;A/ then player 1 plays
D, player 2 plays R, and player 3 plays B; in all other cases, player 1 plays U,
player 2 plays L, and player 3 plays B.

(d) In the first period player 1 plays U, player 2 plays R, and player 3 plays B. In
the second period, if the first period resulted in .U;R;B/ then player 1 plays U,
player 2 plays L, and player 3 plays B; in all other cases, player 1 plays D, player
2 plays R, and player 3 plays B.

RP 10 Locating a Pub

(a) Player 1 has three pure strategies and player 2 has eight pure strategies.
(b) Player 1 chooses B. Player 2 chooses B, C, B, if player 1 chooses A, B, C

respectively.
(c) Player 1 has 24 pure strategies and player 2 has 8 pure strategies.
(d) (i) Player 1 plays A; after A the subgame equilibrium .B;C/ is played, after B

the subgame equilibrium .A;C/, and after C the subgame equilibrium .A;B/.
(ii) Player 1 plays B; after A the subgame equilibrium .B;C/ is played, after B

the subgame equilibrium .C;A/, and after C the subgame equilibrium .A;B/.
(iii) Player 1 plays C; after A the subgame equilibrium .B;C/ is played, after B

the subgame equilibrium .C;A/, and after C the subgame equilibrium .B;A/.
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RP 11 A Two-Stage Game

(a) In G1: .D;R/; in G2: .T;X/, .M;Y/, and .B;Z/.
(b) Each player has 2 � 34 D 162 pure strategies.
(c) In G1 player 1 plays U and player 2 plays L. In G2 the players play as follows.

If .U;L/ was played, then player 1 plays M and player 2 plays Y. If .D;L/ was
played, then player 1 plays B and player 2 plays Z. If .U;R/ was played, then
player 1 plays T and player 2 plays X. If .D;R/ was played, then player 1 plays
M and player 2 plays Y.

(d) In the second stage (in G1) always .U;L/ has to be played. Hence, there are three
subgame perfect equilibria, corresponding to the three Nash equilibria of G2.

RP 12 Job Market Signaling

(a)

(a)

C

C

M

M

C

C

M

M

E

E

N

N

L

H

Chance

1/3

2/3

3,4

3,0

0,4

6,10

4,4

10,0

4,4

10,10

[1 − α]

[α]

FF

[1 − β]

[β]

(b) The Nash equilibria are: (i) type H plays E, type L plays N, F plays M after E

and C after N; (ii) both types play N, F always plays C.
(c) The equilibrium in (i) is separating with (forced) beliefs ˛ D 1 and ˇ D 0. The

equilibrium in (ii) is pooling with ˇ D 1=3 (forced) and ˛ � 2=5. According to
the intuitive criterion we must have ˛ D 1, so that the intuitive criterion is not
satisfied by the latter equilibrium. (It does not apply to the first equilibrium.)
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RP 13 Second-Hand Cars (1)

(a, b) The extensive form of this signaling game is as follows:

n

n

b

b

n

n

b

b

C

C

N

N

B

G

Chance

.5

.5

0,0

5,5

0,0

15,5

0,0

15,−5

0,0

15,5

[1 − α]

[α]

22

[1 − β]

[β]

The strategic form is:

0
BB@

bb bn nb nn

CC 10; 5 10; 5 0; 0 0; 0

CN 15; 0 7:5; 2:5 7:5;�2:5 0; 0

NC 10; 5 2:5; 2:5 7:5; 2:5 0; 0

NN 15; 0 0; 0 15; 0 0; 0

1
CCA:

The Nash equilibria are: .CC; bn/, .NN; bb/, .NN; nb/, .NN; nn/.
(c) .CC; bn/ is pooling with ˇ � 1=2, .NN; bb/ is pooling for all ˛. The other

two equilibria are not perfect Bayesian, since player 2 will play b after C.

RP 14 Second-Hand Cars (2)

(a) This is a static game of incomplete information, represented by the pair G1;G2:

G1 D

0
@

1 3 5

1 1;�1 0; 0 0; 0

3 0; 0 �1; 1 0; 0

5 �1; 1 �2; 2 �3; 3

1
A G2 D

0
@

1 3 5

1 3;�3 0; 0 0; 0

3 2;�2 1;�1 0; 0

5 1;�1 0; 0 �1; 1

1
A

where G1 is played with probability 25 % and G2 with probability 75 %. (The
numbers should be multiplied by 1,000, the buyer is the row and the seller the
column player.)

(b) The buyer has one type and three pure strategies, the seller has two types and
nine pure strategies.

(c) Strategy “5” is strictly dominated by strategy “3”.
(d) Against strategy “3” of the buyer the best reply of the seller is the combination

.3; 5/, but against this combination the best reply of the buyer is “1”.



472 24 Hints, Answers and Solutions

(e) Against strategy “1” of the buyer the seller has four best replies: .3; 3/, .3; 5/,
.5; 3/, and .5; 5/. In turn, (only) against .3; 5/ and .5; 5/ is “1” a best reply.
Hence there are two Nash equilibra in pure stategies: (i) .1; .3; 5// and (ii)
.1; .5; 5//. No trade is going to take place.

RP 15 Signaling Games

(a) The strategic form with best replies underlined is:

0
BB@

uu ud du dd

LL 2; 1 2; 1 1:5; 0:5 1:5; 0:5

LR 2:5; 1:5 1:5; 1 2; 0:5 1; 0

RL 1; 0 0:5; 0:5 1; 0:5 0:5; 1

RR 1:5; 0:5 0; 0:5 1:5; 0:5 0; 0:5

1
CCA:

.LR; uu/ is a separating perfect Bayesian equilibrium with beliefs ˛ D 1 and
ˇ D 0. .LL; ud/ is a pooling Bayesian equilibrium with beliefs ˛ D 1=2 and
ˇ � 1=2. For the latter, the intuitive criterion requires ˇ D 0, so that this
equilibrium does not satisfy it.

(b) The strategic form with best replies underlined is:

0
BB@

uu ud du dd

LL 3; 1:5 3; 1:5 0:5; 1 0:5; 1

LR 2; 1 2:5; 0 1; 1:5 1:5; 0:5

RL 1:5; 1:5 3:5; 2 0; 0:5 2; 1

RR 0:5; 1 3; 0:5 0:5; 1 3; 0:5

1
CCA:

.LL; uu/ is a pooling perfect Bayesian equilibrium with beliefs ˛ D 1=2 and
ˇ � 2=3. The intuitive criterion requires ˇ D 1, so this pooling equilibrium
does not satisfy it. .LR; du/ is a separating perfect Bayesian equilibrium with
beliefs ˛ D 1 and ˇ D 0, and .RL; ud/ is a separating perfect Bayesian
equilibrium with beliefs ˛ D 0 and ˇ D 1.

RP 16 A Game of Incomplete Information

(a) Start with the decision node of player 1. Player 1 has four actions/strategies: AA,
AB, BA, BB. All these actions lead to one and the same information set of player
2, who has three actions/strategies: C, D, E.
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(b) The strategic form is:

0
BB@

C D E

AA 3; 2 1:5; 1:5 2:5; 1:5

AB 4; 2:5 2:5; 3 1; 1:5

BA 3; 2 1:5; 1:5 2:5; 1:5

BB 4; 2:5 2:5; 3 1; 1:5

1
CCA:

The Nash equilibria in pure strategies are .AB;D/ and .BB;D/.
(c) Player 1 has now two pure strategies, namely A and B. If player 1 plays A then

the best reply of player 2 is EC. Against EC, the payoff of A is 1.5 and the payoff
of B is 2.5, so that A is not a best reply against EC. Against B, the best reply of
player 2 is ED. In turn, B is player 1’s best reply against ED (yields 2 whereas
A only yields 1). So the unique Nash equilibrium in pure strategies is .B;ED/.

RP 17 A Bayesian Game

(a) This is the game

� F Y

F �1; 1 1; 0

Y 0; 1 0; 0

�

with .Y;F/ as unique Nash equilibrium (also in mixed strategies).
(b) Start with the decision node for player 1, who has two actions/strategies: F and

Y. Player 2 has a singe information set and four actions/strategies: FF, FY, YF,
YY.

(c) The strategic form is:

� FF FY YF YY

F 1 � 2˛; 2˛ � 1 1 � 2˛; ˛ 1; ˛ � 1 1; 0

Y 0; 1 0; ˛ 0; 1 � ˛ 0; 0

�
:

For ˛ D 0 the Nash equilibria in pure strategies are .F;FY/ and .F;YY/. For
0 < ˛ < 1=2: .F;FY/. For ˛ D 1=2: .F;FY/ and .Y;FF/. For 1=2 < ˛ < 1:
.Y;FF/. For ˛ D 1: .Y;FF/ and .Y;FY/.
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RP 18 Entry as a Signaling Game

(a) The extensive form of this signaling game is:

a

a

f

f

a

a

f

f

p

p

u

u

w

s

Chance

0.25

0.75

2,0

0,2

4,2

2,0

5,0

3,2

5,2

3,0

[1 − α]

[α]

Inc.Inc.

[1 − β]

[β]

(b, c) The strategy combination .pu; af / (strong type p, incumbent a after p) is a
Nash equilibrium. It is a separating perfect Bayesian equilibrium for ˛ D 1

and ˇ D 0. Also .uu; ff / is a Nash equilibrium. It is pooling perfect Bayesian
for ˇ D 1=2 and ˛ � 1=2. It does not satisfy the intuitive criterion since that
requires ˛ D 1.

RP 19 Bargaining (1)

(a) Player 1 has only one type. Player 2 has infinitely many types, namely each
v 2 Œ0; 1� is a possible type of player 2. A typical strategy of player 1 consists
of a price p1 2 Œ0; 1� and a yes/no decision depending on the price p2 of player
2 if that player rejects p1—in principle, the yes/no decision may also depend on
p1.

(b) A typical strategy of player 2 consists, for every type v 2 Œ0; 1�, of a yes/no
decision depending on the price p1 asked by player 1 and a price p2 in case
the decision was ‘no’. In principle, p2 may also depend on p1 (not only via the
yes/no decision).

(c) Player 2 accepts if v � p1 � ıv (noting that he can offer p2 D 0 if he does not
accept the price p1 of player 1); rejects and offers p2 D 0 if v � p1 < ıv.

(d) Using (c) player 1 asks the price p1 that maximizes p1 � PrŒp1 � .1 � ı/v�, i.e.,
his expected payoff—note that his payoff is 0 if player 2 rejects. Hence, player
1 solves maxp12Œ0;1� p1 � Œ1� p1=.1� ı/�, which has solution p1 D .1� ı/=2. So
the equilibrium is, that player 1 asks this price and accepts any price of player
2; and player 2 accepts any price at most .1� ı/=2, and rejects any higher price
and then offers p2 D 0.
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RP 20 Bargaining (2)

(a) The (Pareto) boundary of the feasible set consists of all pairs .x; 1 � x2/ for
x 2 Œ0; 1�.

(b) The Nash bargaining solution outcome is found by maximizing the expression
x.1 � x2/ over all x 2 Œ0; 1�. The solution is ..1=3/

p
3; 2=3/. In distribution

of the good: ..1=3/
p
3; 1 � .1=3/

p
3/.

(c, d) Let .x; 1 � x2/ be the proposal of player 1 and .y; 1 � y2/ that of player 2.
Then the equations 1 � x2 D ı.1 � y2/ and y D ıx hold for the Rubinstein
outcome. This results in x D 1=

p
1C ı C ı2; taking the limit for ı ! 1 gives

.1=3/
p
3, which is indeed the Nash bargaining solution outcome for player 1.

RP 21 Bargaining (3)

(a) Player 1 proposes .1� ıC .1=2/ı2; ı � .1=2/ı2/ at t D 0 and player 2 accepts.
Note that 1 � ı C .1=2/ı2 > ı � .1=2/ı2, so the beginning player has an
advantage.

(b) If the utility function of player 2 were the same as that of player 1, then the
Nash bargaining solution would result in equal split. This is still the case if
player 2’s utility function is multiplied by 2, as is the case here: the maximum
of u.x/�2u.1�x/ is attained at the same point as the maximum of u.x/ � u.1� x/.
So the division of the good is .1=2; 1=2/. In terms of utilities, this gives
.u.1=2/; 2u.1=2//. (The Nash bargaining solution is symmetric, Pareto optimal,
and scale covariant: see Chap. 10.)

RP 22 Ultimatum Bargaining

(a) Player 1 chooses an action/strategy .1�m;m/. Player 2 decides for each strategy
of player 1 whether to accept or reject the offer. If he accepts, the payoffs are
.1 � m;m C a.2m � 1//, otherwise the payoffs are .0; 0/.

(b) Player 1 proposes .1�a=.1C2a/; a=.1C2a//, and player 2 accepts .1�m;m/ if
and only if m � a=.1C2a/. Hence, the outcome is .1�a=.1C2a/; a=.1C2a//.

(c) If a becomes large, then this outcome converges to equal split: this is because
then player 2 cares mainly about the division and not so much about what he
gets.

RP 23 An Auction (1)

(a) The game has imperfect but complete information.
(b) The unique Nash equilibrium is each bidder bidding v1 D v2.
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(c) There is no Nash equilibrium.
(d) The associated bimatrix game is:

0
BB@

0 1 2 3

0 1=2; 3=2 0; 2 0; 1 0; 0

1 0; 0 0; 1 0; 1 0; 0

2 �1; 0 �1; 0 �1=2; 1=2 0; 0

3 �2; 0 �2; 0 �2; 0 �1; 0

1
CCA:

The Nash equilibria are .0; 1/, .1; 1/, and .1; 2/.

RP 24 An Auction (2)

(a) Let bi < vi. If bi wins then vi is equally good. If bi loses and the winning bid
is below vi then vi is a strict improvement. If bi loses and the winning bid is at
least vi then vi is at least as good. If, on the other hand, bi > vi, then, if bi wins,
the fourth-highest bid is below vi and the second highest bid is above vi, then
bidding vi results in zero instead of positive payoff.

(b) For instance, player 2 can improve by any bid above v1.
(c) All bidders bid Qv where Qv 2 Œv2; v1�.

RP 25 An Auction (3)

(a) The best reply function b2 of player 2 is given by: b2.0/ D f1g, b2.1/ D f2g,
b2.2/ D f3g, b2.3/ D b2.4/ D f0; : : : ; 4g, b2.5/ D f0; : : : ; 5g, b2.6/ D
f0; : : : ; 6g. The best reply function b1 of player 1 is given by: b1.0/ D f0g,
b1.1/ D f1g, b1.2/ D f2g, b1.3/ D f3g, b1.4/ D f4g, b1.5/ D f5g,
b1.6/ D f0; : : : ; 6g.

(b) The Nash equilibria are: .3; 3/, .4; 4/, .5; 5/, and .6; 6/.

RP 26 Quantity Versus Price Competition

(a) The profit functions are q1.4 � 2q1 � q2/ and q2.4 � q1 � 2q2/ respectively
(or zero in case an expression is negative). The first-order conditions (best
reply functions) are q1 D .4 � q2/=4 and q2 D .4 � q1/=4 (or zero) and the
equilibrium is q1 D q2 D 4=5 with associated prices equal to 8=5 and profits
equal to 32=25.

(b) Follows by substitution.
(c, d) The profit functions are .1=3/p1.p2 � 2p1 C 4/ and .1=3/p2.p1 � 2p2 C 4/

(or zero) respectively. The first-order conditions (best reply functions) are
p1 D .p2 C 4/=4 and p2 D .p1 C 4/=4. The equilibrium is p1 D p2 D 4=3

with associated quantities q1 D q2 D 8=9 and profits equal to 32=27. Price
competition is tougher.
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RP 27 An Oligopoly Game (1)

(a, b) Player 1 chooses q1 � 0. Players 2 and 3 then choose q2 and q3 simultane-
ously, depending on q1. The best reply functions of players 2 and 3 in the
subgame following q1 are q2 D .a�q1�q3�c/=2 and .a�q1�q2�c/=2 (or
zero), and the equilibrium in the subgame is q2 D q3 D .a�q1�c/=3. Player
1 takes this into account and maximizes q1.a�c�q1�2.a�q1�c/=3), which
gives q1 D .a � c/=2. Hence, the subgame perfect equilibrium is: player 1
plays q1 D .a � c/=2; players 2 and 3 play q2 D q3 D .a � q1 � c/=3. The
outcome is player 1 playing .a � c/=6 and players 2 and 3 playing .a � c/=6.

RP 28 An Oligopoly Game (2)

(a) The best-reply functions are q1 D .10 � q2 � q3/=2, q2 D .10 � q1 � q3/=2,
q3 D .9 � q1 � q2/=2.

(b) The equilibrium is q1 D q2 D 11=4, q3 D 7=4.
(c) To maximize joint profit, q3 D 0 and q1 C q2 D 5. (This follows by using

intuition: firm 3 has higher cost, or by solving the problem as a maximization
problem under nonnegativity constraints.)

RP 29 A Duopoly Game with Price Competition

(a) The monopoly price of firm 1 is p1 D 65 and the monopoly price of player 2 is
p2 D 75.

(b)

p1.p2/ D

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

fx j x > p2g if p2 < 30

fx j x � 30g if p2 D 30

f31g if p2 D 31

fp2 � 1g if p2 2 Œ32; 65�
f65g if p2 � 66

p2.p1/ D

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

fx j x > p1g if p1 < 50

fx j x � 50g if p1 D 50

f51g if p1 D 51

fp1 � 1g if p1 2 Œ52; 75�
f75g if p1 � 76

(c) .p1; p2/ D .31; 32/.
(d) .p1; p2/ D .50; 51/.

RP 30 Contributing to a Public Good

(a) The Nash equilibria in pure strategies are all strategy combinations where
exactly two persons contribute.

(b) The expected payoff of contributing is equal to �3C 8.1� .1 � p/2/, which in
turn is equal to 16p � 8p2 � 3.

(c) A player should be indifferent between contributing or not if the other two
players contribute, hence 16p � 8p2 � 3 D 8p2. This holds for p D 1=4 and
for p D 3=4.
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RP 31 A Demand Game

(a) Not possible: each player can gain by raising his demand by 0:1. (b) Not
possible: at least one player has xi > 0:2 and can gain by decreasing his
demand by 0:2. (c) The unique Nash equilibrium is .0:5; 0:5; 0:5/. (d) A Nash
equilibrium is for instance .0:6; 0:6; 0:6/.

(e) All triples with sum equal to one, and all triples such that the sum of each pair
is at least one.

RP 32 A Repeated Game (1)

(a) The unique Nash equilibrium in the stage game is ..2=3; 1=3/; .1=2; 1=2//,
with payoffs .8; 22/. Therefore, all payoffs pairs in the quadrangle with vertices
.16; 24/, .0; 25/, .0; 18/, and .16; 16/ which are strictly larger than .8; 22/, as
well as .8; 22/, can be reached as long run average payoffs in a subgame perfect
equilibrium in the repeated game, for suitable choices of ı.

(b) Write G D .A;B/, then v.A/ D 8 and �v.�B/ D 18. Therefore, all payoffs
pairs in the quadrangle with vertices .16; 24/, .0; 25/, .0; 18/, and .16; 16/

which are strictly larger than .8; 20/, can be reached as long run average payoffs
in a Nash equilibrium in the repeated game, for suitable choices of ı.

(c) The players alternate between .T;L/ and .B;R/. Player 1 has no incentive
to deviate, but uses the eternal punishment strategy B to keep player 2 from
deviating. Player 2 will not deviate provided

25C 18ı=.1� ı/ � 24=.1� ı2/C 16ı=.1� ı2/

and

18C 18ı=.1� ı/ � 16=.1� ı2/C 24ı=.1� ı2/ :

The first inequality is satisfied if ı is at least (approximately) 0:55, and the
second inequality if ı � 1=3. Hence, this is a Nash equilibrium for ı � 0:55. It
is not subgame perfect since player 2 can obtain 22 by playing the stage game
equilibrium strategy.

RP 33 A Repeated Game (2)

(a) .D;C/, .D;R/, and .M;R/.
(b) Let ..p1; p2; p3/; .q1; q2; q3// be a Nash equilibrium. First consider the case q3 <

1. Then p1 D 0 and therefore q1 D 0. If p2 > 0 then q2 D 0 and q3 D 1, a
contradiction. Hence, p2 D 0, and then p3 D 1. We obtain the set of Nash
equilibria f..0; 0; 1/; .0; q2; q3// j q2; q3 � 0; q2 C q3 D 1; q3 < 1g.

Next, consider the case q3 D 1. Then 9p1Cp2C4p3 � p1C2p2C4p3, hence
8p1 � p2. We obtain another set of Nash equilibria f..p1; p2; p3/; .0; 0; 1// j
p1 � 0; 8p1 � p2; p1 C p2 D 1g.
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(c) Each player has 3 � 39 D 310 pure strategies. In the first stage the players play
.U;L/ and in the second stage they play (for instance) according to the table

0
@

L C R

U D;R M;R D;R

M D;C D;R D;R

D D;C D;R D;R

1
A :

(d) Always play .U;L/ but after a deviation by player 1, player 2 reverts to C

forever, to which player 1 replies by D, and after a deviation by player 2, player
1 reverts to M forever, to which player 2 replies by R. This is a subgame perfect
equilibrium provided that

10C 2ı=.1� ı/ � 8=.1� ı/ , ı � 1=4

and

9C 2ı=.1� ı/ � 8=.1� ı/ , ı � 1=7

hence if ı � 1=4.

RP 34 A Repeated Game (3)

(a) .D;L/, .U;R/, and .D;R/.
(b) The second row and next the second column can be deleted by iterated elimina-

tion of strictly dominated strategies. This results in the sets of Nash equilibria
f..0; 0; 1/; .q1; 0; q3// j q1; q3 � 0; q1 C q3 D 1g and f..p1; 0; p3/; .0; 0; 1// j
p1; p3 � 0; p1 C p3 D 1g.

(c) In the first stage the players play .M;C/ and in the second stage they play (for
instance) according to the table

0
@

L C R

U D;R D;L D;R

M U;R D;R D;R

D D;R D;L D;R

1
A :

(d) Always play .M;C/ but after a deviation by player 1 player 2 reverts to L forever,
to which player 1 replies by D, and after a deviation by player 2 player 1 reverts
to U, to which player 2 replies by R. This is a subgame perfect equilibrium
provided that

12C ı=.1� ı/ � 10=.1� ı/

which holds for ı � 2=11.
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RP 35 A Repeated Game (4)

(a) Player 1 plays B and player 2 plays L in both stages.
(b) They play .T;L/ in the first stage. If player 1 would deviate to B, then player 2

plays R in the second stage, otherwise L. Player 1 plays B in the second stage.
(c) Since .B;L/ is the unique Nash equilibrium in the stage game and there are no

payoff pairs better for both players, the only possibility is that player 1 plays
B and player 2 plays L forever. This is a subgame perfect equilibrium for any
value of ı, with long run average payoffs .5; 5/.

RP 36 A Repeated Game (5)

(a) Only .T;L/.
(b) The payoff pair .2; 1/, and all payoff pairs larger for both players in the triangle

with vertices .5; 0/, .0; 6/, and .1; 1/.
(c) At even times play .B;L/ and at odd times play .T;R/. After a deviation revert to

T (player 1) and L (player 2) forever. This is a subgame perfect Nash equilibrium
provided that

2C 2ı=.1� ı/ � 5ı=.1� ı2/

and

1C ı=.1� ı/ � 6ı=.1� ı2/

which is equivalent to ı � maxf2=3; 1=5g D 2=3.

RP 37 An Evolutionary Game

(a) The species consists of 100p% animals of type C and 100.1 � p/% animals of
type D.

(b) Pp D p.0pC2.1�p/�2p.1�p/�3.1�p/p�.1�p/2/ which after simplification
yields Pp D 4p.p � 1/.p � 1=4/. Hence the rest points are p D 0; 1=4; 1 and
p D 1=4 is stable.

(c) The unique symmetric Nash equilibrium strategy is .1=4; 3=4/. One has to check
that .1=4; 3=4/A.q; 1�q/ > .q; 1�q/A.q; 1�q/ for all q ¤ 1=4, which follows
readily by computation.

RP 38 An Apex Game

(a) Suppose .x1; : : : ; x5/ is in the core. Since x1C x2 � 1, and all xi are nonnegative
and sum to one, we must have x3 D x4 D x5 D 0. Similarly, x2 D 0, but this
contradicts x2 C : : :C x5 � 1. So the core is empty.

(b) ˚2.v/ D 1Š3Š=5Š C 3Š1Š=5Š D 1=10, hence ˚.v/ D .6=10; 1=10; 1=10; 1=10;

1=10/.
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(c) Let .1 � 4a; a; a; a; a/ be the nucleolus of this game. The relevant (maximal)
excesses to consider are 1�.1�4a/�a D 3a (e.g., f1; 2g) and 1�4a (f2; : : : ; 5g).
Equating these yields a D 1=7.

RP 39 A Three-person Cooperative Game (1)

(a) For a > 10 the core is empty. For a D 10, a core element is for instance .0; 5; 5/.
Hence, a � 10.

(b) The Shapley value is ..25 � 2a/=6; .19C a/=6; .16C a/=6/. By writing down
the core constraints, it follows that this is in the core for �13 � a � 8:75.

(c) At this vector, the excesses of the three two-player coalitions are equal, namely
to .a � 14/=3. For this tobe the nucleolus we need that the excesses of the one-
person coalitions are not larger than this, i.e.,

.2a � 16/=3 � .a � 14/=3; .�a � 4/=3 � .a � 14/=3; .�a � 7/=3 � .a � 14/=3

and it is straightforward to check that this is true for no value of a.

RP 40 A Three-person Cooperative Game (2)

(a) The core is nonempty for a � 1. In that case, the core is the quadrangle (or line
segment if a D 1) with vertices .1; 2; 2/, .a; 2; 3� a/, .1; 1; 3/, and .a; 2� a; 3/.

(b) The Shapley value is ..2a C 7/=6; .10� a/=6; .13� a/=6/, which is in the core
for �2 � a � �1=2.

(c) By equating the excesses of the two-person coalitions we obtain the vector
.2=3; 5=3; 8=3/ with excess �1=3. This is the nucleolus if a � 2=3 � �1=3,
hence if a � 1=3.

RP 41 Voting

(a) The winning coalitions (omitting set braces) are AB, AC, ABC, ABD, ACD,
ABCD, and BCD. Then ˚A.v/ D 1Š2Š=4Š C 1Š2Š=4Š C 2Š1Š=4Š C 2Š1Š=4Š C
2Š1Š=4Š D 5=12. Similarly, one computes the other values to obtain ˚.v/ D
.1=12/.5; 3; 3; 1/. (In fact, it is sufficient to compute˚B.v/ and ˚C.v/.)

(b) pA D 5, pB D 3, pC D 3, pD D 1; ˇ.A/ D 5=12, ˇ.B/ D 3=12, ˇ.C/ D 3=12,
ˇ.D/ D 1=12.

(c) The winning coalitions are AB, AC, ABC. The Shapley value is .2=3; 1=6; 1=6/.
Further, pA D 3, pB D pC D 1; ˇ.A/ D 3=5, ˇ.B/ D ˇ.C/ D 1=5.

RP 42 An Airport Game

(a) v.1/ D v.2/ D v.3/ D 0, v.12/ D v.13/ D c1, v.23/ D c2, and v.N/ D
c1 C c2.

(b) The core is the quadrangle with vertices .c1; c2; 0/, .0; c2; c1/, .0; c1; c2/, and
.c1; 0; c2/.
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(c) ˚.v/ D .1=6/.4c1; 3c2 C c1; 3c2 C c1/. This is a core element (check the
constraints).

(d) The nucleolus is of the form .a; .c1 C c2 � a/=2; .c1 C c2 � a/=2/. By equating
the excesses of the two-person coalitions it follows that a D .3c1�c2/=3, hence
the nucleolus would be ..3c1 � c2/=3; 2c2=3; 2c2=3/ and the excess of the two-
person coalitions is then �c2=3. We need that the excesses of the one-person
coalitions are not larger, that is, �.3c1�c2/=3 � �c2=3 and �.2=3/c2 � �c2=3.
This results in the condition c1 � 2c2=3.

RP 43 A Glove Game

(a) By straightforward computation, ˚.v/ D .1=60/.39; 39; 14; 14; 14/: note that
it is sufficient to compute one of these values.

(b) C.v/ D f.1; 1; 0; 0; 0/g.
(c) By (b) and the fact that the nucleolus is in the core whenever the core is

nonempty, the nucleolus is .1; 1; 0; 0; 0; /.

RP 44 A Four-Person Cooperative Game

(a) C.v/ D fx 2 R
4 j xi � 08i; x1 C x2 D x3 C x4 D 2; x1 C x3 � 3g. In the

intended diagram, the core is a triangle with vertices .2; 1/, .2; 2/, and .1; 2/.
(b) ˚.v/ D .1=4/.5; 3; 5; 3/ (it is sufficient to compute one of these values).

RP 45 A Matching Problem

(a) The resulting matching is .x1; y4/, .x2; y3/, .x3; y2/, .x4; y1/.
(b) The resulting matching is .x1; y4/, .x2; y3/, .x3; y1/, .x4; y2/.
(c) x1 prefers y4 over y1 and y4 prefers x1 over y4.
(d) In any core matching, x2 and y3 have to be paired, since they are each other’s

top choices. Given this, x1 and y4 have to be paired. This leaves only the two
matchings in (a) and (b).

RP 46 House Exchange

(a) There are two core allocations: 1 W h1; 2 W h3; 3 W h2 and 1 W h2; 2 W h3; 3 W h1.
(b) The unique top trading cycle is 1; 2; 3, with allocation 1 W h2; 2 W h3; 3 W h1.
(c) Take preference h1; h2; h3 with unique core allocation 1 W h1; 2 W h3; 3 W h2.

RP 47 A Marriage Market

(a) m1 must be paired to his favorite woman in the core. Next, m2 must be paired to
his favorite of the remaining women, etc.

(b) .m1;w1/, .m2;w2/, .m3;w3/, .m4;w4/.
(c) .m1;w4/, .m2;w3/, .m3;w2/, .m4;w1/.
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(d) .m1;w2/, .m2;w1/, .m3;w3/, .m4;w4/ (one can reason about this but also just try
the six possibilities).

Reference

Myers, S. C., & Majluf, N. S. (1984). Corporate financing and investment decisions when firms
have information that investors do not have. Journal of Financial Economics, 13, 187–221.
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