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Prefaces to the 1st edition

Part I

This small book addresses different kinds of data files, as commonly encountered in

clinical research and their data analysis on SPSS software. Some 15 years ago

serious statistical analyses were conducted by specialist statisticians using main-

frame computers. Nowadays, there is ready access to statistical computing using

personal computers or laptops, and this practice has changed boundaries between

basic statistical methods that can be conveniently carried out on a pocket calculator

and more advanced statistical methods that can only be executed on a computer.

Clinical researchers currently perform basic statistics without professional help

from a statistician, including t-tests and chi-square tests. With the help of user-

friendly software, the step from such basic tests to more complex tests has become

smaller and more easy to take.

It is our experience as masters’ and doctorate class teachers of the European

College of Pharmaceutical Medicine (EC Socrates Project, Lyon, France) that

students are eager to master adequate command of statistical software for that

purpose. However, doing so, albeit easy, it still takes 20–50 steps from logging in

to the final result, and all of these steps have to be learned in order for the

procedures to be successful.

The current book has been made intentionally small, avoiding theoretical dis-

cussions and highlighting technical details. This means that this book is unable to

explain how certain steps were made and why certain conclusions were drawn. For

that purpose additional study is required, and we recommend that the textbook

“Statistics Applied to Clinical Trials,” Springer 2009, Dordrecht, Netherlands, by

the same authors, be used for that purpose, because the current text is much

complementary to the text of the textbook.

We have to emphasize that automated data analysis carries a major risk of

fallacies. Computers cannot think and can only execute commands as given. As

an example, regression analysis usually applies independent and dependent
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variables, often interpreted as causal factors and outcome factors. For example,

gender or age may determine the type of operation or type of surgeon. The type of

surgeon does not determine the age and gender. Yet a software program does not

have difficulty to use nonsense determinants, and the investigator in charge of the

analysis has to decide what is caused by what, because a computer cannot do things

like that, although they are essential to the analysis. The same is basically true with

any statistical tests assessing the effects of causal factors on health outcomes.

At the completion of each test as described in this book, a brief clinical

interpretation of the main results is given in order to compensate for the abundance

of technical information. The actual calculations made by the software are not

always required for understanding the test, but some understanding may be helpful

and can also be found in the above textbook. We hope that the current book is small

enough for those not fond on statistics but fond on statistically proven hard data in

order to start on SPSS, a software program with an excellent state of the art for

clinical data analysis. Moreover, it is very satisfying to prove from your own data

that your own prior hypothesis was true, and it is even more satisfying if you are

able to produce the very proof yourself.

Lyon, France Ton J. Cleophas

December 2009 Aeilko H. Zwinderman

Part II

The small book “SPSS for Starters” issued in 2010 presented 20 chapters of

cookbook-like step by step data analyses of clinical research and was written to

help clinical investigators and medical students analyze their data without the help

of a statistician. The book served its purpose well enough, since 13,000 electronic

reprints were being ordered within 9 months of the edition.

The above book reviewed, e.g., methods for:

1. Continuous data, like t-tests, nonparametric tests, and analysis of variance

2. Binary data, like crosstabs, McNemar’s tests, and odds ratio tests

3. Regression data

4. Trend testing

5. Clustered data

6. Diagnostic test validation

The current book is a logical continuation and adds further methods fundamental

to clinical data analysis.

It contains, e.g., methods for:

1. Multistage analyses

2. Multivariate analyses

3. Missing data
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4. Imperfect and distribution free data

5. Comparing validities of different diagnostic tests

6. More complex regression models

Although a wealth of computationally intensive statistical methods is currently

available, the authors have taken special care to stick to relatively simple methods,

because they often provide the best power and fewest type I errors and are adequate

to answer most clinical research questions.

It is time for clinicians not to get nervous anymore with statistics and not to leave

their data anymore to statisticians running them through SAS or SPSS to see if

significances can be found. This is called data dredging. Statistics can do more for

you than produce a host of irrelevant p-values. It is a discipline at the interface of

biology and mathematics: mathematics is used to answer sound biological hypoth-

eses. We do hope that “SPSS for Starters 1 and 2” will benefit this process.

Two other publications from the same authors entitled Statistical Analysis of
Clinical Data on a Pocket Calculator 1 and 2 are rather complementary to the

above books and provide a more basic approach and better understanding of the

arithmetic.

Lyon, France Ton J. Cleophas

January 2012 Aeilko H. Zwinderman
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Preface to 2nd edition

Over 100,000 copies of various chapters of the first edition of SPSS for Starters

(Parts I (2010) and II (2012)) have been sold, and many readers have commented

and given their recommendations for improvements.

In this 2nd edition, all the chapters have been corrected for textual and arithmetic

errors, and they contain updated versions of the background information, scientific

question information, examples, and conclusions sections. In “notes section”,

updated references helpful to a better understanding of the brief descriptions in

the current text are given.

Instead of the, previously published, two-20-chapter Springer briefs, one for

simple and one for complex data, this 2nd edition is produced as a single 60-chapter

textbook.

The, previously used, rather arbitrary classification has been replaced with three

parts, according to the most basic differences in data file characteristics:

1. Continuous outcome data (36 chapters)

2. Binary outcome data (18 chapters)

3. Survival and longitudinal data (6 chapters)

The latter classification should be helpful to investigators for choosing the

appropriate class of methods for their data.

Each chapter now starts with a schematic overview of the statistical model to be

reviewed, including types of data (mainly continuous or binary (yes, no)) and types

of variables (mainly outcome and predictor variables).

Entire data tables of the examples are available through the Internet and are

redundant to the current text. Therefore, the first 10 rows of each data table have

now been printed only.

However, relevant details about the data have been inserted for improved

readability.
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Also simple explanatory graphs of the principles of the various methods applied

have been added.

Twenty novel chapters with methods, particularly, important to clinical research

and health care were still missing in the previous edition, and have been added.

The current edition focuses on the needs of clinical investigators and other

nonmathematical health professionals, particularly those needs, as expressed by

the commenters on the first edition.

The arithmetic is still more of a no-more-than high-school level, than that of the

first edition, while complex computations are described in an explanatory way.

With the help of several new hypothesized and real data examples, the current

book takes care to provide step-by-step data-analyses of the different statistical

methodologies with improved precision.

Finally, because of lack of time of this busy group of people, as expressed by

some readers, we have given additional efforts to produce a text as succinct as

possible, with chapters, sometimes, no longer than three pages, each of which can

be studied without the need to consult others.

Lyon, France Ton J. Cleophas

January 2015 Aeilko H. Zwinderman
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Part I

Continuous Outcome Data



Chapter 1

One-Sample Continuous Data (One-Sample
T-Test, One-Sample Wilcoxon Signed Rank
Test, 10 Patients)

1 General Purpose

Because biological processes are full of variations, statistical tests give no certain-

ties, only chances. Particularly, the chance that a prior hypothesis is true. What

hypothesis? Often, a nullhypothesis, which means no difference in your data from a

zero effect. A zero effect indicates that a factor, like an intervention or medical

treatment does not have any effect. The one sample t-test is adequate for

assessment.

2 Schematic Overview of Type of Data File

_________________
Outcome
.
.
.
.
.
.
.
__________________

3 Primary Scientific Question

Is the mean outcome value significantly different from the value zero.
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4 Data Example

The reduction of mean blood pressure after treatment is measured in a sample of

patients. We wish to know whether the mean reduction is significantly larger than

zero.

Outcome

3

4

�1

3

2

�2

4

3

�1

2

outcome¼ decrease of mean blood pressure after treatment (mm Hg)

5 Analysis: One-Sample T-Test

The data file is in extras.springer.com, and is entitled “chapter1onesample-

continuous”. Open it in SPSS. For analysis the module Compare Means is required.

It consists of the following statistical models:

Means,

One-Sample T-Test,

Independent-Samples T-Test,

Paired-Samples T-Test and

One Way ANOVA

Command:

Analyze....Compare Means....One-Sample T-Test....Test Variable(s): enter "mean

blood pressure reduction"....click OK.

In the output sheets is the underneath table.

One-sample test

Test value ¼ 0

t df Sig. (2-tailed) Mean difference

95 % confidence interval of the

difference

Lower Upper

VAR00001 2,429 9 ,038 1,70000 ,1165 3,2835

4 1 One-Sample Continuous Data (One-Sample T-Test, One-Sample Wilcoxon Signed. . .



It shows that the t-value equals 2,429, which means that with 10–1¼ 9 degrees

of freedom a significant effect is obtained at p¼ 0,038. The reduction of mean

blood pressure has an average value of 1,7000 mmHg, and this average reduction is

significantly larger than a reduction of 0,00 mm Hg.

6 Alternative Analysis: One-Sample Wilcoxon Signed
Rank Test

If the data do not follow a Gaussian distribution, this method will be required, but

with Gaussian distributions it may be applied even so.

Command:

Analyze....Nonparametric tests....One Sample Nonparametric Tests....click Fields

....Test Fields: enter "mean blood pressure reduction"....click Settings....click

Choose Tests....mark Customize Tests....mark Compare median to hypothesized

....Hypothesized median: type "0,00"....click Run.

The underneath table is in the output sheet. The median of the mean blood

pressure reductions is significantly different from zero. The treatment is, obviously,

successful. The p-value is very similar to that of the above one sample t-test.

Hypotheses test summary

Asymptotic significances are displayed. The significance level is ,05

7 Conclusion

The significant effects indicate that the nullhypothesis of no effect can be rejected.

The treatment performs better than no treatment. It may be prudent to use non-

parametric tests, if normality is doubtful or can not be proven like with small data

as those in the current example.

7 Conclusion 5



8 Note

The theories of null hypotheses and frequency distributions are reviewed in Statis-

tics applied to clinical studies 5th edition, Chaps. 1 and 2, entitled “Hypotheses data

stratification” and “The analysis of efficacy data”, Springer Heidelberg Germany,

2012, from the same authors.

6 1 One-Sample Continuous Data (One-Sample T-Test, One-Sample Wilcoxon Signed. . .



Chapter 2

Paired Continuous Data (Paired T-Test,
Wilcoxon Signed Rank Test, 10 Patients)

1 General Purpose

Studies where two outcomes in one patient are compared with one another are often

called crossover studies, and the observations are called paired observations.

As paired observations are usually more similar than unpaired observations,

special tests are required in order to adjust for a positive correlation between the

paired observations.

2 Schematic Overview of Type of Data File

__________________________
Outcome 1 outcome 2
. .
. .
. .
. .
. .
. .
. .
. .
. .
__________________________

3 Primary Scientific Question

Is the first outcome significantly different from second one.
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4 Data Example

The underneath study assesses whether some sleeping pill is more efficaceous than

a placcebo. The hours of sleep is the outcome value.

Outcome 1 Outcome 2

6,1 5,2

7,0 7,9

8,2 3,9

7,6 4,7

6,5 5,3

8,4 5,4

6,9 4,2

6,7 6,1

7,4 3,8

5,8 6,3

Outcome¼ hours of sleep after treatment

5 Analysis: Paired T-Test

The data file is in extras.springer.com and is entitled “chapter2pairedcontinuous”.

Open it in SPSS. We will start with a graph of the data.

Command:

Graphs....Bars....mark Summary separate variables....Define....Bars Represent:

enter "hours of sleep [outcomeone]"....enter "hours of sleep [outcometwo]"....

click Options....mark Display error bars....mark Confidence Intervals....Level

(%): enter 95,0....Continue....click OK.

effect treatment 2effect treatment 1

8,00

6,00

4,00

2,00

0,00

M
ea

n

Error bars: 95,00% CI

8 2 Paired Continuous Data (Paired T-Test, Wilcoxon Signed Rank Test, 10 Patients)



The above graph is in the output. It shows that the mean number of sleeping

hours after treatment 1 seems to be larger than that after treatment 2. The whiskers

represent the 95 % confidence intervals of the mean hours of sleep. They do not

overlap, indicating that the difference between the two means must be statistically

significant. The paired t-test can analyze the level of significance. For analysis the

module Compare Means is required. It consists of the following statistical models:

Means,

One-Sample T-Test,

Independent-Samples T-Test,

Paired-Samples T-Test and

One Way ANOVA

Command:

Analyze....Compare Means....Paired Samples T Test....Paired Variables: Variable

1: enter [outcomeone]....Variable 2: enter [outcometwo]....click OK.

Paired samples test

Paired differences

95 % confidence

interval of the

difference

Mean

Std.

Deviation

Std.

Error

mean Lower Upper t df

Sig.

(2-tailed)

Pair1 Hours of

sleep –

hours of

sleep

1,78000 1,76811 ,55913 ,51517 3,04483 3,184 9 ,011

The above table is in the output. The outcomeone performs significantly better

than does the outcometwo at a p-value of 0.011, which is much smaller than 0.05.

The difference is, thus, statistically highly significant.

6 Alternative Analysis: Wilcoxon Signed Rank Test

If the data do not have a Gaussian distribution, this method will be required, but

with Gaussian distributions it may be applied even so. For analysis 2 Related

Samples in Nonparametric Tests is required.

Command:

Analyze....Nonparametric....2 Related Samples....further as above (Wilcoxon has

already been marked in the dialog window).

6 Alternative Analysis: Wilcoxon Signed Rank Test 9



Test statisticsa

Hours of sleep – hours of sleep

Z �2,346b

Asymp. Sig. (2-tailed) ,019
aWilcoxon signed ranks test
bBased on positive ranks

As demonstrated in the above table, also according to the nonparametric

Wilcoxon’s test the outcomeone is significantly larger than the outcometwo. The

p-value of difference here equals p¼ 0.019. This p-value is larger than the p-value

of the paired t-test, but still a lot smaller than 0.05, and, so, the effect is still highly

significant. The larger p-value here is in agreement with the type of test. This test

takes into account more than the t-test, namely, that Nongaussian data are

accounted for. If you account more, then you will prove less. That’s why the

p-value is larger.

7 Conclusion

The significant effects indicate that the null hypothesis of no difference between the

two outcomes can be rejected. The treatment 1 performs better than the treatment

2. It may be prudent to use the nonparametric tests, if normality is doubtful like in

the current small data example given. Paired t-tests and Wilcoxon signed rank tests

need, just like multivariate data, more than a single outcome variable. However,

they can not assess the effect of predictors on the outcomes, because they do not

allow for predictor variables. They can only test the significance of difference

between the outcomes.

8 Note

The theories of null hypotheses and frequency distributions and additional exam-

ples of paired t-tests and Wilcoxon signed rank tests are reviewed in Statistics

applied to clinical studies 5th edition, Chaps. 1 and 2, entitled “Hypotheses data

stratification” and “The analysis of efficacy data”, Springer Heidelberg Germany,

2012, from the same authors.

10 2 Paired Continuous Data (Paired T-Test, Wilcoxon Signed Rank Test, 10 Patients)



Chapter 3

Paired Continuous Data with Predictors
(Generalized Linear Models, 50 Patients)

1 General Purpose

Paired t-tests and Wilcoxon signed rank tests (Chap. 2) require, just like multivar-

iate data, two outcome variables, like the effects of two parallel treatments.

However, they can not assess the effect of additional predictors like patient

characteristics on the outcomes, because they have no separate predictor variables

for that purpose. Generalized Linear Models can simultaneously assess the differ-

ence between two outcomes, and the overall effect of additional predictors on the

outcome data.

2 Schematic Overview of Type of Data File

Outcome 1 outcome 2 predictor…..
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .

Unlike pairedt -tests (Chap. 2) generalized linear models can
simultaneously test the difference between two paired continuous
outcomes and the paired outcomes for additional predictor effects.
For the purpose a normal distribution and a linear link function is
adequate.
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3 Primary Scientific Question

Can crossover studies of different treatments be adjusted for patients’ age and other
patient characteristics. Can this methodology also be used as training samples to

predict hours of sleep in groups and individuals. The data file has to be recoded for

the purpose.

4 Data Example

The underneath study assesses whether a sleeping pill is more efficaceous than a

placebo. The hours of sleep are the outcome values.

Outcome 1 Outcome 2 predictor

6,10 5,20 79,00

7,00 7,90 55,00

8,20 3,90 78,00

7,60 4,70 53,00

6,50 5,30 85,00

8,40 5,40 85,00

6,90 4,20 77,00

8,70 6,10 66,00

7,40 3,80 34,00

5,80 6,30 67,00

outcome¼ hours of sleep
predictor¼ years of age

5 Recoding the Data File

After recoding the data file is adequate for a generalized linear analysis.

12 3 Paired Continuous Data with Predictors (Generalized Linear Models, 50 Patients)



Outcome predictor pat. no. treatment

Outcome 1 6,10 79,00 1,00 1,00

outcome 2 5,20 79,00 1,00 2,00

outcome 1 7,00 55,00 2,00 1,00

outcome 2 7,90 55,00 2,00 2,00

outcome 1 8,20 78,00 3,00 1,00

outcome 2 3,90 78,00 3,00 2,00

outcome 1 7,60 53,00 4,00 1,00

outcome 2 4,70 53,00 4,00 2,00

outcome 1 6,50 85,00 5,00 1,00

outcome 2 5,30 85,00 5,00 2,00

outcome 1 8,40 85,00 6,00 1,00

outcome 2 5,40 85,00 6,00 2,00

the outcomes 1 and 2 are paired observations in one patient
predictor¼ patient age
treatment¼ treatment modality (1 or 2)

Note that in the lower one of the above two tables each patient has two, instead

of the usual one, row.

6 Analysis: Generalized Linear Models

The module Generalized Linear Modeling includes pretty sophisticated analysis of

variance methods with so called link functions. The data file is in extras.springer.

com, and is entitled “chapter4generalizedlmpairedcontinuous”. SPSS is used for

analysis, with the help of an XML (Extended Markup Language) file for future

predictive testing from this model. Start by opening the data file in SPSS.

For analysis the module Generalized Linear Models is required. It consists of

two submodules: Generalized Linear Models and Generalized Estimation Models.

The first submodule covers many statistical models like gamma regression

(Chap. 30), Tweedie regression (Chap. 31), Poisson regression (Chaps. 21 and

47), and the analysis of paired outcomes with predictors (current Chap.). The

second is for analyzing binary outcomes (Chap. 42). We will use the linear model

with age and treatment and as predictors. We will start with allowing SPSS to

prepare an export file for making predictions from novel data.

Command:

Click Transform. . ..click Random Number Generators. . ..click Set Starting Point

. . ..click Fixed Value (2000000). . ..click OK. . ..click Analyze. . ..Generalized
Linear Models. . ..again click Generalized Linear models. . ..click Type of

Model. . ..click Linear. . ..click Response. . ..Dependent Variable: enter

Outcome. . ..Scale Weight Variable: enter patientid. . ..click Predictors. . ..Fac-
tors: enter treatment. . .. Covariates: enter age. . ..click Model: Model: enter

treatment and age. . ..click Save: mark Predicted value of linear predictor. . ..
click Export. . ..click Browse. . ..File name: enter "exportpairedcontinuous". . ..
click Save. . ..click Continue. . ..click OK.

6 Analysis: Generalized Linear Models 13

http://dx.doi.org/10.1007/978-3-319-20600-4_30
http://dx.doi.org/10.1007/978-3-319-20600-4_31
http://dx.doi.org/10.1007/978-3-319-20600-4_21
http://dx.doi.org/10.1007/978-3-319-20600-4_47
http://dx.doi.org/10.1007/978-3-319-20600-4_42


Parameter estimates

Parameter B Std. Error

95% Wald

confidence interval Hypothesis test

Lower Upper Wald Chi-Square df Sig.

(Intercept) 6,178 ,5171 5,165 7,191 142,763 1 ,000

[treatment¼1,00] 2,003 ,2089 1,593 2,412 91,895 1 ,000

[treatment¼2,00] 0a

age �,014 ,0075 �,029 ,001 3,418 1 ,064

(Scale) 27,825b 3,9351 21,089 36,713

Dependent variable: outcome

Model: (Intercept), treatment, age
aSet to zero because this parameter is redundant.
bMaximum likelihood estimate.

The output sheets show that both treatment and age are significant predictors

at p< 0.10. Returning to the data file we will observe that SPSS has computed

predicted values of hours of sleep, and has given them in a novel variable

entitled XBPredicted (predicted values of linear predictor). The saved XML file

entitled “exportpairedcontinuous” will now be used to compute the predicted hours

of sleep in five novel patients with the following characteristics. For convenience

the XML file is given in extras.springer.com.

Age pat no.

Treatment

(1¼ sleeping pill, 2¼ placebo)

79,00 1,00 1,00

55,00 2,00 1,00

78,00 3,00 1,00

53,00 4,00 2,00

85,00 5,00 1,00

Enter the above data in a new SPSS data file.

Command:

Utilities. . ..click Scoring Wizard. . ..click Browse. . ..click Select. . ..Folder: enter
the exportpairedcontinuous.xml file. . ..click Select. . ..in Scoring Wizard click

Next . . ..click Use value substitution. . ..click Next. . ..click Finish.

The above data file now gives individually predicted hours of sleep as computed

by the linear model with the help of the XML file. Enter the above data in a new

SPSS data file.

Age pat no. Treatment Predicted values of hours of sleep in individual patient

79,00 1,00 1,00 7,09

55,00 2,00 1,00 7,42

78,00 3,00 1,00 7,10

53,00 4,00 2,00 5,44

85,00 5,00 1,00 7,00

14 3 Paired Continuous Data with Predictors (Generalized Linear Models, 50 Patients)



7 Conclusion

The module Generalized Linear Models can be readily trained to predict from

paired observations hours of sleep in future groups, and, with the help of an XML

file, in individual future patients. The module can simultaneously adjust the data for

patient characteristics other than their treatment modality, e.g., their age.

We should add, that, alternatively, repeated-measures analysis of variance

(ANOVA) with age as between-subject variable can be used for the analysis of

data files with paired outcomes and predictor variables. Just like in the current

model statistically significant treatment and age effects will be observed. In addi-

tion, interaction between treatment and age will be assessed. The repeated-

measures ANOVA does, however, not allow for predictive modeling with the

help of XML files. Repeated-measures ANOVA is in the module General Linear

Models, and will be reviewed in the Chaps. 9 and 10.

8 Note

Also binary paired outcome data with additional predictors can be analyzed with

Generalized Linear Models. However, the submodule Generalized Estimating

Equations should be applied for the purpose (see Chap. 42).

8 Note 15
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Chapter 4

Unpaired Continuous Data (Unpaired
T-Test, Mann-Whitney, 20 Patients)

1 General Purpose

Double-blind placebo-controlled studies often include two parallel groups receiv-

ing different treatment modalities. Unlike crossover studies (Chap. 3), they involve

independent treatment effects, i.e., with a zero correlation between the treatments.

The two samples t-test, otherwise called the independent samples t-test or unpaired

samples t-test, is appropriate for analysis.

2 Schematic Overview of Type of Data File

Outcome binary predictor
. .
. .
. .
. .
. .
. .
. .
. .
. .

Unpaired t-tests are for comparing two parallel-groups and use a
binary predictor, for the purpose, for example an active treatment
and a placebo. They can only include a single predictor variable.
Gaussian frequency distributions of the outcome data of each
parallel-group are assumed.

3 Primary Scientific Question

Is one treatment significantly more efficaceous than the other.
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4 Data Example

In a parallel-group study of 20 patients 10 of them are treated with a sleeping pill,

10 with a placebo. The first 11 patients of the 20 patient data file is given underneath.

Outcome group

6,00 ,00

7,10 ,00

8,10 ,00

7,50 ,00

6,40 ,00

7,90 ,00

6,80 ,00

6,60 ,00

7,30 ,00

5,60 ,00

5,10 1,00

the group variable has 0 for placebo group, 1 for sleeping pill group

outcome variable¼ hours of sleep after treatment

We will start with a graph of the data. The data file is entitled “chapter4unpair-

edcontinuous”, and is in extras.springer.com. Start by opening the data file in SPSS.

Command:

Graphs....Legacy Dialogs....Error Bar....click Simple....mark Summaries for groups

of cases....click Define....Variable: enter "effect treatment"....Category Axis:

enter "group"....Bars Represent: choose "Confidence interval for means"....

Level: choose 95%....click OK.

18 4 Unpaired Continuous Data (Unpaired T-Test, Mann-Whitney, 20 Patients)



The above graph shows that one group (the placebo group!!) performs much

better than the other. The difference must be statistically significant, because the

95 % confidence intervals do not overlap. In order to determine the appropriate

level of significance formal statistical testing will be performed next.

5 Analysis: Unpaired T-Test

For analysis the module Compare Means is required. It consists of the following

statistical models:

Means,

One-Sample T-Test,

Independent-Samples T-Test,

Paired-Samples T-Test, and

One Way ANOVA.

Command:

Analyze....Compare Means....Independent Samples T-test....in dialog box Grouping

Variable: Define Groups....Group 1: enter 0,00....Group 2: enter 1,00....click

Continue....click OK.

In the output sheet the underneath table is given.

Independent sample test

Levene’s
test for

equality of

variances t-test for equality of means

95% confidence

interval of the

difference

F Sig. t df

Sig.

(2-tailed)

Mean

difference

Std. Error

difference Lower Upper

Effect

treatment

Equal

variances

assumed

1,060 ,317 3,558 18 ,002 1,72000 ,48339 ,70443 2,73557

Equal

variances

not

assumed

3,558 15,030 ,003 1,72000 ,48339 ,88986 2,75014

It shows that a significant difference exists between the sleeping pill and the

placebo with a p-value of 0.002 and 0.003. Generally, it is better to use the largest of

the p-values given, because the smallest p-value makes assumptions that are not

always warranted, like, for example in the above table, the presence of equal

variances of the two sets of outcome values.

5 Analysis: Unpaired T-Test 19



6 Alternative Analysis: Mann-Whitney Test

Just like with the Wilcoxon’s test (Chap. 3) used for paired data, instead of the

paired t-test, the Mann-Whitney test is a nonparametric alternative for the unpaired

t-test. If the data have a Gaussian distribution, then it is appropriate to use this test

even so. More explanations about Gaussian or parametric distributions are given in

Statistics applied to clinical studies 5th edition, 2009, Chap. 2, Springer Heidelberg

Germany, 2012, from the same authors. For analysis Two-Independent-Samples

Tests in the module Nonparametric Tests is required.

Command:

Analyze....Nonparametric....Two-Independent-Samples Tests....Test Variable List:

enter ëffect treatment"....Group Variable: enter "group"....click group(??)....click

Define Groups....Group 1: enter 0,00....Group 2: enter 1,00....mark Mann-

Whitney U....click Continue....click OK.

Test Statisticsb

12,500
67,500
-2,836

,005

,003
a

Mann-Whitney U
Wilcoxon W
Z
Asymp. Sig. (2-tailed)
Exact Sig. [2*(1-tailed
Sig.)]

effect
treatment

Not corrected for ties.a. 

Grouping Variable: groupb. 

The nonparametric Mann-Whitney test produces approximately the same result

as the unpaired t-test. The p-value equals 0,005 corrected for multiple identical

values and even 0,003 uncorrected. The former result is slightly larger, because it

takes into account more, namely, that all tests are 2-tailed (not a single but two sides

of the Gaussian distribution is accounted). Which of the two results is in your final

report, will not make too much of a difference. Ties are rank numbers with multiple

values.

20 4 Unpaired Continuous Data (Unpaired T-Test, Mann-Whitney, 20 Patients)
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7 Conclusion

Statistical tests for assessing parallel-groups studies are given, both those that

assume normality, and those that account nonnormality. It may be prudent to use

the latter tests if your data are small, and, if nonnormality can not be ruled out.

Normality of your outcome data can be statistically tested by goodness of fit tests,

and can be graphically assessed with quantile-quantile plots (see Sect. 8).

8 Note

More explanations about Gaussian or parametric distributions are given in Statistics

applied to clinical studies 5th edition, 2012, Chaps. 1 and 2, Springer Heidelberg

Germany, from the same authors.

Normality of your outcome data can be statistically tested by goodness of fit tests

(Statistics applied to clinical studies 5th edition, 2012, Chap. 42, Springer Heidel-

berg Germany, from the same authors), and can be graphically assessed with

quantile-quantile plots (Machine Learning in Medicine a Complete Overview,

2015, Chap. 42, pp 253–260, Springer Heidelberg Germany, from the same

authors).

8 Note 21



Chapter 5

Linear Regression (20 Patients)

1 General Purpose

coronary artery diameter

plasma cholesterol

coronary artery risk

plasma cholesterol

Similarly to unpaired t-tests and Mann-Whitney tests (Chap. 4), linear regression

can be used to test whether there is a significant difference between two treatment

modalities. To see how it works, picture the above linear regression of cholesterol

levels and diameters of coronary arteries. It shows that the higher the cholesterol,

the narrower the coronary arteries. Cholesterol levels are drawn on the x-axis,

coronary diameters on the y-axis, and the best fit regression line about the data

can be calculated. If coronary artery diameter coronary artery risk is measured for

the y-axis, a positive correlation will be observed (right graph).
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hours of sleep

worse better

treatment

Instead of a continuous variable on the x-axis, a binary variable can be adequately

used, such as two treatment modalities, e.g. a worse and better treatment. With hours

of sleep on the y-axis, a nice linear regression analysis can be performed: the better

the sleeping treatment, the larger the numbers of sleeping hours. The treatment

modality is called the x-variable. Other terms for the x-variable are independent

variable, exposure variable, and predictor variable. The hours of sleep is called the

y-variable, otherwise called dependent or outcome variable. A limitation of linear

regression is, that the outcomes of the parallel-groups are assumed to be normally

distributed.

The above graph gives the assumed data patterns of a linear regression: the

measured y-values are assumed to follow normal probability distributions around

y-values

24 5 Linear Regression (20 Patients)



2 Schematic Overview of Type of Data File

Outcome binary predictor
. .

. .

. .

. .

. .

. .

. .

. .

. .

3 Primary Scientific Question

Is one treatment significantly more efficaceous than the other.

4 Data Example

In a parallel-group study of 20 patients 10 are treated with a sleeping pill, 10 with a

placebo. The first 11 patients of the 20 patient data file is given underneath.

Outcome Group

6,00 ,00

7,10 ,00

8,10 ,00

7,50 ,00

6,40 ,00

7,90 ,00

6,80 ,00

6,60 ,00

7,30 ,00

5,60 ,00

5,10 1,00

Group variable has 0 for placebo group, 1 for sleeping pill group

Outcome variable¼ hours of sleep after treatment

We will start with a graph of the data. The data file is entitled “chapter5linearre-

gression”, and is in extras.springer.com. Start by opening the data file in SPSS.
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Command:

Graphs....Legacy Dialogs....Error Bar....click Simple....mark Summaries for groups

of cases....click Define....Variable: enter "effect treatment"....Category Axis:

enter "group"....Bars Represent: choose "Confidence interval for means"....

Level: choose 95%....click OK.
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We used Google’s Paint program to draw a regression line.
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We will now try and statistically test, whether the data are closer to the

regression line than could happen by chance. If so, that would mean that the

treatment modalities are significantly different from one another, and that one

treatment is significantly better than the other.

5 Analysis: Linear Regression

For a linear regression the module Regression is required. It consists of at least ten

different statistical models, such as linear modeling, curve estimation, binary

logistic regression, ordinal regression etc. Here we will simply use the linear model.

Command:

Analyze....Regression....Linear....Dependent; enter treatment....Independent: enter

group....click OK.

Model summary

Model R R square Adjusted R square Std. Error of the estimate

1 ,643a ,413 ,380 1,08089
aPredictors: (Constant), group

ANOVAa

Model Sum of squares df Mean square F Sig.

1 Regression 14,792 1 14,792 12,661 ,002b

Residual 21,030 18 1,168

Total 35,822 19
aDependent variable: effect treatment
bPredictors: (Constant), group

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

B Std. Error Beta t Sig.

1 (Constant) 6,930 ,342 20,274 ,000

group �1,720 ,483 �,643 �3,558 ,002
aDependent variable: effect treatment

The upper table shows the correlation coefficient (R¼ 0.643¼ 64 %). The true

r-value should not be 0,643, but rather �0,643. However, SPSS only reports

positive r-values, as a measure for the strength of correlation.

R-square¼R2¼ 0.413¼ 41 %, meaning that, if you know the treatment modality,

you will be able to predict the treatment effect (hours of sleep) with 41 % certainty.

You will, then, be uncertain with 59 % uncertainty.
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The magnitude of R-square is important for making predictions. However, the

size of the study sample is also important: with a sample of say three subjects little

prediction is possible. This is, particularly, assessed in the middle table. It tests with

analysis of variance (ANOVA) whether there is a significant correlation between

the x and y-variables.

It does so by assessing whether the calculated R-square value is significantly

different from an R-square value of 0. The answer is yes. The p-value equals 0.002,

and, so, the treatment modality is a significant predictor of the treatment modality.

The bottom table shows the calculated B-value (the regression coefficient). The

B-value is obtained by counting/ multiplying the individual data values, and it

behaves in the regression model as a kind of mean result. Like many mean values

from random data samples, this also means, that the B-value can be assumed to

follow a Gaussian distribution, and that it can, therefore, be assessed with a t-test.

The calculated t-value from these data is smaller than �1.96, namely �3.558, and,

therefore, the p-value is <0.05. The interpretation of this finding is, approximately,

the same as the interpretation of the R-square value: a significant B-value means

that B is significantly smaller (or larger) than 0, and, thus, that the x-variable is a

significant predictor of the y-variable. If you square the t-value, and compare it with

the F-value of the ANOVA table, then you will observe that the values are identical.

The two tests are, indeed, largely similar. One of the two tests is somewhat

redundant.

6 Conclusion

The above figure shows that the sleeping scores after the placebo are generally

larger than after the sleeping pill. The significant correlation between the treatment

modality and the numbers of sleeping hours can be interpreted as a significant

difference in treatment efficacy of the two treatment modalities.

7 Note

More examples of linear regression analyses are given in Statistics applied to

clinical studies 5th edition, Chaps. 14 and 15, Springer Heidelberg Germany,

2012, from the same authors.
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Chapter 6

Multiple Linear Regression (20 Patients)

1 General Purpose

In the Chap. 5 linear regression was reviewed with one (binary) predictor and one

continuous outcome variable. However, not only a binary predictor like treatment

modality, but also patient characteristics like age, gender, and comorbidity may be

significant predictors of the outcome.

2 Schematic Overview of Type of Data File

Outcome binary predictor additional predictors…..
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .

3 Primary Scientific Question

Can multiple linear regression be applied to simultaneously assess the effects of

multiple predictors on one outcome.
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4 Data Example

In a parallel-group study patients are treated with either placebo or sleeping pill.

The hours of sleep is the outcome. De concomitant predictors are age, gender,

comorbidity.

Outcome Treatment Age Gender Comorbidity

6,00 ,00 65,00 ,00 1,00

7,10 ,00 75,00 ,00 1,00

8,10 ,00 86,00 ,00 ,00

7,50 ,00 74,00 ,00 ,00

6,40 ,00 64,00 ,00 1,00

7,90 ,00 75,00 1,00 1,00

6,80 ,00 65,00 1,00 1,00

6,60 ,00 64,00 1,00 ,00

7,30 ,00 75,00 1,00 ,00

5,60 ,00 56,00 ,00 ,00

5,10 1,00 55,00 1,00 ,00

8,00 1,00 85,00 ,00 1,00

3,80 1,00 36,00 1,00 ,00

4,40 1,00 47,00 ,00 1,00

5,20 1,00 58,00 1,00 ,00

5,40 1,00 56,00 ,00 1,00

4,30 1,00 46,00 1,00 1,00

6,00 1,00 64,00 1,00 ,00

3,70 1,00 33,00 1,00 ,00

6,20 1,00 65,00 ,00 1,00

Outcome¼ hours of sleep after treatment
Treatment¼ treatment modality (0¼ placebo, 1¼ sleeping pill)

5 Analysis, Multiple Linear Regression

The data file is entitled “chapter6linearregressionmultiple”, and is in extras.

springer.com. Open the data file in SPSS. For a linear regression the module

Regression is required. It consists of at least 10 different statistical models, such

as linear modeling, curve estimation, binary logistic regression, ordinal regression

etc. Here we will simply use the linear model.

Command:

Analyze....Regression....Linear....Dependent: treatment....Independent(s): group

and age....click OK.
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Model summary

Model R R Square Adjusted R Square Std. Error of the estimate

1 ,983a ,966 ,962 ,26684
aPredictors: (Constant), age, group

ANOVAa

Model Sum of squares df Mean square F Sig.

1 Regression 34,612 2 17,306 243,045 ,000b

Residual 1,210 17 ,071

Total 35,822 19
aDependent variable: effect treatment
bPredictors: (Constant), age, group

Coefficientsa

Unstandardized coefficients Standardized coefficients

Model B Std. Error Beta t Sig.

1 (Constant) ,989 ,366 2,702 ,015

group �,411 ,143 �,154 �2,878 ,010

age ,085 ,005 ,890 16,684 ,000
aDependent variable: effect treatment

In the above multiple regression two predictor variable have been entered:

treatment modality and age. The tables resemble strongly the simple linear regres-

sion tables. The most important difference is the fact that now the effect of two

x-variables is tested simultaneously. The R and the R-square values have gotten

much larger, because two predictors, generally, given more information about the

y-variable than a single one. R-square¼R2¼ 0.966¼ 97 %, meaning that, if you

know the treatment modality and age of a subject from this sample, then you can

predict the treatment effect (the numbers of sleeping hours) with 97 % certainty,

and that you are still uncertain at the amount of 3 %.

The middle table takes into account the sample size, and tests whether this

R-square value is significantly different from an R-square value of 0.0. The

p-value equals 0.0001, which means it is true. We can conclude that both variables

together significantly predict the treatment effect.

The bottom table now shows, instead of a single one, two calculated B-values

(the regression coefficients of the two predictors). They behave like means, and can,

therefore, be tested for their significance with two t-tests. Both of them are

statistically very significant with p-values of 0.010 and 0.0001. This means that

both B-values are significantly larger than 0, and that the corresponding predictors

are independent determinants of the y-variable. The older you are, the better you

will sleep, and the better the treatment, the better you will sleep.

We can now construct a regression equation for the purpose of making pre-

dictions for individual future patients.
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y ¼ aþ b1x1 þ b2x2

Treatment effect ¼ 0:99� 0:41*groupþ 0:085*age

with the sign * indicating the sign of multiplication. Thus, a patient of 75 years old

with the sleeping pill will sleep for approximately 6.995 h. This is what you can

predict with 97 % certainty.

Next we will perform a multiple regression with four predictor variables instead

of two.

Command:

Analyze....Regression....Linear....Dependent: treatment....Independent: group, age,

gender, comorbidity....click Statistics....mark Collinearity diagnostics....click

Continue....click OK.

If you analyze several predictors simultaneously, then multicollinearity has to be

tested prior to data analysis. Multicollinearity means that the x-variables correlate

too strong with one another. For the assessment of it Tolerance and VIF (variance

inflating factor) are convenient. Tolerance¼ lack of certainty¼ 1- R-square, where

R is the linear correlation coefficient between 1 predictor and the remainder of the

predictors. It should not be smaller than 0,20. VIF¼ 1/Tolerance should corre-

spondingly be larger than 5. The underneath table is in the output sheets. It shows

that the Tolerance and VIF values are OK. There is no collinearity, otherwise called

multicollinearity, in this data file.

Coefficientsa

Model

Unstandardized

coefficients

Standardized

coefficients

t Sig.

Collinearity

statistics

B

Std.

Error Beta Tolerance VIF

1 (Constant) ,727 ,406 1,793 ,093

Group �,420 ,143 �,157 �2,936 ,010 ,690 1,449

Age ,087 ,005 ,912 16,283 ,000 ,629 1,591

Male/female ,202 ,138 ,075 1,466 ,163 ,744 1,344

Comorbidity ,075 ,130 ,028 ,577 ,573 ,830 1,204
aDependent variable: effect treatment

Also, in the output sheets are the underneath tables.

Model summary

Model R R square Adjusted R square Std. Error of the estimate

1 ,985a ,970 ,963 ,26568
aPredictors: (Constant), comorbidity, group, male/female, age
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ANOVAa

Model Sum of Squares df Mean square F Sig.

1 Regression 34,763 4 8,691 123,128 ,000b

Residual 1,059 15 ,071

Total 35,822 19
aDependent variable: effect treatment
bPredictors: (Constant), comorbidity, group, male/female, age

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. Error Beta

1 (Constant) ,727 ,406 1,793 ,093

Group �,420 ,143 �,157 �2,936 ,010

Age ,087 ,005 ,912 16,283 ,000

Male/female ,202 ,138 ,075 1,466 ,163

Comorbidity ,075 ,130 ,028 ,577 ,573
aDependent variable: effect treatment

They show that the overall r-value has only slightly risen, from 0,983 to 0,985.

Obviously, the additional two predictors provided little additional predictive cer-

tainty about the predictive model. The overall test statistic (the F-value) even fell

from 243,045 to 123,128. The four predictor-variables-model fitted the data less

well, than did the two variables-model, probably due to some confounding or

interaction (Chaps. 21 and 22). The coefficients table shows that the predictors,

gender and comorbidity, were insignificant. They could, therefore, as well be

skipped from the analysis without important loss of statistical power of this

statistical model. Step down is a term used for skipping afterwards, step up is a

term used for entering novel predictor variables one by one and immediately

skipping them, if not statistically significant.

6 Conclusion

Linear regression can be used to assess whether predictor variables are closer to the

outcome than could happen by chance. Multiple linear regression uses

multidimensional modeling which means that multiple predictor variables have a

zero correlation, and are, thus, statistically independent of one another.

Multiple linear regression is often used for exploratory purposes. This means,

that in a data file of multiple variables the statistically significant independent

predictors are searched for. Exploratory research is at risk of bias, because the

data are often non-random or post-hoc, which means that the associations found

may not be due to chance, but, rather, to real effect not controlled for. Nonetheless,

it is interesting and often thought-provoking.
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Additional purposes ofmultiple linear regression are (1) increasing the precision of

your data, (2) assessing confounding and interacting mechanisms (Chaps. 21 and 22).

7 Note

More examples of the different purposes of linear regression analyses are given

in Statistics applied to clinical studies 5th edition, Chaps. 14 and 15, Springer

Heidelberg Germany, 2012, from the same authors. The assessment of exploratory

research, enhancing data precision (improving the p-values), and confounding and

interaction (Chaps. 22 and 23) are important purposes of linear regression

modeling.
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Chapter 7

Automatic Linear Regression (35 Patients)

1 General Purpose

Automatic linear regression is in the Statistics Base add-on module SPSS version

19 and up. X-variables are automatically transformed in order to provide an

improved data fit, and SPSS uses rescaling of time and other measurement values,

outlier trimming, category merging and other methods for the purpose.

2 Schematic Overview of Type of Data File

Outcome binary predictor additional predictors…..
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .

This chapter was previously partly published in “Machine learning in medicine a complete

overview” in the Chap. 31, 2015.
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3 Specific Scientific Question

Can automatic rescaling and outlier trimming as available in SPSS be used to

maximize linear relationships in multiple linear regression models.

4 Data Example

In a clinical crossover trial an old laxative is tested against a new one. Numbers of

stools per month is the outcome. The old laxative and the patients’ age are the

predictor variables. Does automatic linear regression provide better statistics of

these data than traditional multiple linear regression does.

Outcome Predictor Age category Patient id Predicted values

24,00 8,00 2,00 1,00 26,41

30,00 13,00 2,00 2,00 27,46

25,00 15,00 2,00 3,00 27,87

35,00 10,00 3,00 4,00 38,02

39,00 9,00 3,00 5,00 37,81

30,00 10,00 3,00 6,00 38,02

27,00 8,00 1,00 7,00 26,41

14,00 5,00 1,00 8,00 25,78

39,00 13,00 1,00 9,00 27,46

42,00 15,00 1,00 10,00 27,87

Outcome¼ new laxative

Predictor¼ old laxative

Only the first 10 patients of the 35 patients are shown above. The entire file is in

extras.springer.com and is entitled “chapter7automaticlinreg”. We will first per-

form a standard multiple linear regression. For analysis the module Regression is

required. It consists of at least 10 different statistical models, such as linear

modeling, curve estimation, binary logistic regression, ordinal regression etc.

Here we will simply use the linear model.

5 Standard Multiple Linear Regression

Command:

Analyze. . ..Regression. . ..Linear. . ..Dependent: enter newtreat. . ..Independent:
enter oldtreat and agecategories. . ..click OK.
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Model summary

Model R R square Adjusted R square Std. Error of the estimate

1 ,429a ,184 ,133 9,28255
aPredictors: (Constant), oldtreat, agecategories

ANOVAa

Model Sum of squares df Mean square F Sig.

1 Regression 622,869 2 311,435 3,614 ,038b

Residual 2757,302 32 86,166

Total 3380,171 34
aDependent variable: newtreat
bPredictors: (Constant), oldtreat, agecategories

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. Error Beta

1 (Constant) 20,513 5,137 3,993 ,000

Agecategories 3,908 2,329 ,268 1,678 ,103

Oldtreat ,135 ,065 ,331 2,070 ,047
aDependent variable: newtreat

6 Automatic Linear Modeling

The same commands are given, but, instead of the model Linear, click the model

Automatic Linear Modeling. The underneath interactive output sheets are given.

Automatic data preparation

Target:newtreat

An interactive graph shows the predictors as lines with thicknesses

corresponding to their predictive power and the outcome in the form of a

histogram with its best fit Gaussian pattern. Both of the predictors are now

statistically very significant with a correlation coefficient at p< 0,0001, and

regression coefficients at p-values of respectively 0,001 and 0,007.
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Coefficients

Target: newtreat

Intercept

Coefficients
Target: newtreat

agecategories_...

oldtreat_...

newtreat

Coefficient
Estimate

Positive
Negative

Coefficients

Target: newtreat

Effects

Target: newtreat
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Returning to the data view of the original data file, we now observe that SPSS

has provided a novel variable with values for the new treatment as predicted from

statistical model employed. They are pretty close to the real outcome values.

Outcome Predictor Age category Patient id Predicted values

24,00 8,00 2,00 1,00 26,41

30,00 13,00 2,00 2,00 27,46

25,00 15,00 2,00 3,00 27,87

35,00 10,00 3,00 4,00 38,02

39,00 9,00 3,00 5,00 37,81

30,00 10,00 3,00 6,00 38,02

27,00 8,00 1,00 7,00 26,41

14,00 5,00 1,00 8,00 25,78

39,00 13,00 1,00 9,00 27,46

42,00 15,00 1,00 10,00 27,87

Outcome¼ new laxative
Predictor¼ old laxative

7 The Computer Teaches Itself to Make Predictions

The modeled regression coefficients are used to make predictions about future data

using the Scoring Wizard and an XML (eXtended Markup Language) file (winRAR

ZIP file) of the data file. Like random intercept models (see Chap. 45) and other

generalized mixed linear models (see Chap. 12), automatic linear regression

includes the possibility to make XML files from the analysis, that can subsequently

be used for making outcome predictions in future patients. SPSS uses here software

called winRAR ZIP files that are “shareware”. This means that you pay a small fee

and be registered if you wish to use it. Note that winRAR ZIP files have an archive

file format consistent of compressed data used by Microsoft since 2006 for the

purpose of filing XML files. They are only employable for a limited period of time

like e.g. 40 days. Below the data of 9 future patients are given.

Newtreat Oldtreat Agecategory

4,00 1,00

13,00 1,00

15,00 1,00

15,00 1,00

11,00 2,00

80,00 2,00

10,00 3,00

18,00 2,00

13,00 2,00

7 The Computer Teaches Itself to Make Predictions 39



Enter the above data in a novel data file and command:

Utilities. . ..click Scoring Wizard. . ..click Browse. . ..Open the appropriate folder

with the XML file entitled "exportautomaticlinreg". . ..click on the latter and

click Select. . ..in Scoring Wizard double-click Next. . ..mark Predicted

Value. . ..click Finish.

Newtreat Oldtreat Agecategory Predicted new treat

4,00 1,00 25,58

13,00 1,00 27,46

15,00 1,00 27,87

15,00 1,00 27,87

11,00 2,00 27,04

80,00 2,00 41,46

10,00 3,00 38,02

18,00 2,00 28,50

13,00 2,00 27,46

In the data file SPSS has provided the novel variable as requested. The first

patient with only 4 stools per month on the old laxative and young of age will have

over 25 stools on the new laxative.

8 Conclusion

SPSS’ automatic linear regression can be helpful to obtain an improved precision of

analysis of clinical trials and provided in the example given better statistics than

traditional multiple linear regression did.

9 Note

More background theoretical and mathematical information of linear regression is

available in Statistics applied to clinical studies 5th edition, Chap. 14, Linear

regression basic approach, and Chap. 15, Linear regression for assessing precision

confounding interaction, Chap. 18, Regression modeling for improved precision, pp

161–176, 177–185, 219–225, Springer Heidelberg Germany, 2012, from the same

authors.
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Chapter 8

Linear Regression with Categorical
Predictors (60 Patients)

1 General Purpose

Variable restructuring is a valuable method for minimizing important biases in your

everyday data analysis. In a study with a categorical predictor like races, the race

values 1–4 have no incremental function, and, therefore, linear regression is not

appropriate for assessing their effect on any outcome. Instead, restructuring the data

for categorical predictors does the job.

2 Schematic Overview of Type of Data File

Outcome predictor
. race 1
. race 1
. race 2
. race 3
. race 4
. race 3
. race 1
. race 2
. race 4
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After restructuring of the above data, the data file will look like underneath.

Outcome race 1 race 2 race  3 race  4
. yes no no no
. yes no no no
. no yes no no
. no no yes no
. no no no yes
. no no yes no
. yes no no no
. no yes no no
. no no no yes

3 Primary Scientific Question

Linear regression is not appropriate for assessing categorical predictors. Can linear

regression be appropriately used if the categorical predictors are restructured into

multiple binary variables.

4 Data Example

In a study the scientific question was: does race have an effect on physical strength.

The variable race has a categorical rather then linear pattern. The effects on

physical strength (scores 0–100) were assessed in 60 subjects of different races

(hispanics (1), blacks (2), asians (3),and whites (4)), ages (years), and genders

(0¼ female, 1¼male). The first 10 patients are in the table underneath.

patient physical race age gender
number strength
1 70,00 1,00 35,00 1,00
2 77,00 1,00 55,00 0,00
3 66,00 1,00 70,00 1,00
4 59,00 1,00 55,00 0,00
5 71,00 1,00 45,00 1,00
6 72,00 1,00 47,00 1,00
7 45,00 1,00 75,00 0,00
8 85,00 1,00 83,00 1,00
9 70,00 1,00 35,00 1,00
10 77,00 1,00 49,00 1,00

The entire data file is in extras.springer.com, and is entitled “chapter8ca-

tegorical-predictors”. Start by opening the data file in SPSS.
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Command:

click race....click Edit....click Copy....click a new "var"....click Paste....highlight the

values 2–4.. . .delete and replace with 0,00 values....perform the same procedure

subsequently for the other races.

patient physical race age gender race 1 race 2 race 3 race 4
number strength hispanics blacks asians whites
1 70,00 1,00 35,00 1,00 1,00 0,00 0,00 0,00
2 77,00 1,00 55,00 0,00 1,00 0,00 0,00 0,00
3 66,00 1,00 70,00 1,00 1,00 0,00 0,00 0,00
4 59,00 1,00 55,00 0,00 1,00 0,00 0,00 0,00
5 71,00 1,00 45,00 1,00 1,00 0,00 0,00 0,00
6 72,00 1,00 47,00 1,00 1,00 0,00 0,00 0,00
7 45,00 1,00 75,00 0,00 1,00 0,00 0,00 0,00
8 85,00 1,00 83,00 1,00 1,00 0,00 0,00 0,00
9 70,00 1,00 35,00 1,00 1,00 0,00 0,00 0,00
10 77,00 1,00 49,00 1,00 1,00 0,00 0,00 0,00

The result is shown above. For the analysis we will use multiple linear regres-

sion. First the inadequate analysis.

5 Inadequate Linear Regression

For analysis the module Compare Means is required. It consists of the following

statistical models:

Means,

One-Sample T-Test,

Independent-Samples T-Test,

Paired-Samples T-Test and

One Way ANOVA

Command:

Analyze. . ..Regression. . ..Linear. . ..Dependent: physical strength score. . ..Inde-
pendent: race, age, gender. . ..OK.

The table shows that age and gender are significant predictors but race is not.

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. Error Beta

1 (Constant) 79,528 8,657 9,186 ,000

race ,511 1,454 ,042 ,351 ,727

age �,242 ,117 �,260 �2,071 ,043

gender 9,575 3,417 ,349 2,802 ,007
aDependent variable: strengthscore
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The variable race is analyzed as a stepwise rising function from 1 to 4, and the

linear regression model assumes that the outcome variable will rise (or fall) simul-

taneously and linearly, but this needs not be necessarily so. Next a categorical

analysis will be performed.

6 Multiple Linear Regression for Categorical Predictors

The above commands are given once more, but now the independent variables are

entered slightly differently.

Command:

Analyze. . ..Regression. . ..Linear. . ..Dependent: physical strength score. . ..Inde-
pendent: race 2, race 3, race 4, age, gender. . ..click OK.

The above table shows that race 2–4 are significant predictors of physical

strength.

The results can be interpreted as follows.

The underneath regression equation is used:

y ¼ aþ b1x1 þ b2x2 þ b3x3 þ b4x4 þ b5x5

a ¼ intercept

b1 ¼ regression coefficient for blacks 0 ¼ no, 1 ¼ yesð Þ,
b2 ¼ asians

b3 ¼ whites

b4 ¼ age

b5 ¼ gender

If an individual is hispanic (race 1), then x1, x2, and x3 will turn into 0, and the

regression equation becomes y ¼ aþ b4x4 þ b5x5:

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. Error Beta

1 (Constant) 72,650 5,528 13,143 ,000

race2 17,424 3,074 ,559 5,668 ,000

race3 �6,286 3,141 �,202 �2,001 ,050

race4 9,661 3,166 ,310 3,051 ,004

age �,140 ,081 �,150 �1,716 ,092

gender 5,893 2,403 ,215 2,452 ,017
aDependent variable: strengthscore
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In summary:

if hispanic, y ¼ aþ b4x4 þ b5x5:
if black, y ¼ aþ b1 þ b4x4 þ b5x5:
if asian, y ¼ aþ b2 þ b4x4 þ b5x5:
if white, y ¼ aþ b3 þ b4x4 þ b5x5:

So, e.g., the best predicted physical strength score of a white male of 25 years of age

would equal

y ¼ 72:65þ 9:66� 0:14*25þ 5:89*1 ¼ 84:7 on a linear scale from 0 to 100ð Þ;
(*¼ sign of multiplication).

Compared to the presence of the hispanic race, the black and white races are

significant positive predictors of physical strength (p¼ 0.0001 and 0.004 respec-

tively), the asian race is a significant negative predictor (p¼ 0.050). All of these

results are adjusted for age and gender, at least if we use p¼ 0.10 as criterion for

statistical significance.

7 Conclusion

Multiple linear regression is adequate for testing categorical predictors after

restructuring them into multiple binary variables. Also with a binary outcome

variable categorical analysis of covariates is possible. Using logistic regression in

SPSS is convenient for the purpose, we need not manually transform the quantita-

tive estimator into a categorical one. For the analysis we apply the usual commands.

Command:

Analyze . . ..Regression. . ..Binary logistic. . ..Dependent variable. . .. Independent
variables. . ..then, open dialog box labeled Categorical Variables. . .. select the
categorical variable and transfer it to the box Categorical Variables. . ..then click
Continue. . ..click OK.

8 Note

More background, theoretical and mathematical information of categorical pre-

dictors is given in the Chap. 21, pp 243–252, in Statistics applied to clinical studies,

Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 9

Repeated Measures Analysis of Variance,
Friedman (10 Patients)

1 General Purpose

Just like paired t-tests (Chap. 2), repeated-measures-analysis of variance (ANOVA)

can assess data with more than a single continuous outcome. However, it allows for

more than two continuous outcome variables. It is, traditionally, used for comparing

crossover studies with more than two treatment modalities.

2 Schematic Overview of Type of Data File

____________________________________________
Outcome 1 outcome 2 outcome 3
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
_____________________________________________

The above repeated-measures-ANOVA does not include 
predictor variables, and the effects of a predictor on the outcomes 
can, therefore, not be assessed. Instead significances of 
differences between the paired observations can be tested. 
Gaussian frequency distributions of the outcomes are assumed.
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3 Primary Scientific Question

Do three different pills produce significantly different clinical outcome effects.

4 Data Example

In a crossover study of three different sleeping pills the significance of difference

between hours of sleep between the different treatments was assessed.

Hours of sleep after sleeping pill
one two three

6,10 6,80 5,20

7,00 7,00 7,90

8,20 9,00 3,90

7,60 7,80 4,70

6,50 6,60 5,30

8,40 8,00 5,40

6,90 7,30 4,20

6,70 7,00 6,10

7,40 7,50 3,80

5,80 5,80 6,30

5 Analysis, Repeated Measures ANOVA

The data file is in extras.springer.com, and is entitled “chapter9repeatedmea-

suresanova”. Open the data file in SPSS. For analysis the module General Linear

Model is required. It consists of 4 statistical models:

Univariate,

Multivariate,

Repeated Measures,

Variance Components.

We will use here Repeated Measures.

Command:

Analyze....General Linear Model....Repeated Measures....Repeated Measures

Define Factors....Within-subject Factor name: treat....Number of Levels: 3....

click Add....click Define: Within-Subjects Variables (treat): enter treatmenta,

treatmentb, treatment3....click OK.

The output sheets show a series of tables starting with the multivariate tests

table. This is to check the correlation of the predictors that are transiently made
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dependent. The nullhypothesis is no significance of difference between the repeated

measures.

Mauchlys Test of Sphericitya

Measure:MEASURE 1

Within

subjects effect

Mauchly’s
W

Approx.

Chi-Square df Sig.

Epsilonb

Greenhouse-

Geisser

Huynh-

Feldt

Lower-

bound

treat ,096 18,759 2 ,000 ,525 ,535 ,500

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed

dependent variables is proportional to an identity matrix
aDesign: Intercept within subjects design: treat
bMaybe used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests

are displayed in the tests of within-subjects effects table

Tests of within-subjects effects

Measure:MEASURE 1

Source

Type III sum of

squares df

Mean

square F Sig.

treat Sphericity

assumed

24,056 2 12,028 10,639 ,001

Greenhouse-

Geisser

24,056 1,050 22,903 10,639 ,009

Huynh-Feldt 24,056 1,070 22,489 10,639 ,008

Lower-bound 24,056 1,000 24,056 10,639 ,010

Error

(treat)

Sphericity

assumed

20,351 18 1,131

Greenhouse-

Geisser

20,351 9,453 2,153

Huynh-Feldt 20,351 9,627 2,114

Lower-bound 20,351 9,000 2,261

The repeated-measures ANOVA tests whether a significant difference exists

between three treatments. An important criterion for validity of the test is the

presence of sphericity in the data, meaning that all data come from Gaussian

distributions. It appears from the above upper table that this is not true, because

based on this table we are unable to reject the null-hypothesis of non-sphericity.

This means that an ANOVA test corrected for non-sphericity has to be performed.

There are three possibilities: the Greenhouse, Huynh, and Lower-bound methods.

All of them produce a much larger p-value than the uncorrected method, but the

result is still statistically highly significant with p-values of 0,009, 0,008, and 0,010.

A significant difference between the treatments has, thus, been demonstrated.

However, we do not yet know whether the significant difference is located between

the treatments 1 and 2, between the treatments 1 and 3, or between the treatments

2 and 3. In order to find out three separate paired t-tests have to be performed. Note,

that with multiple t-tests it is better to reduce the cut-off level for statistical
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significance to approximately 0.01 (more information about the adjustments

for multiple testing including the Bonferroni procedure is given in the textbook

“Statistics applied to clinical trials”, 5th edition, the Chaps. 8 and 9, 2012, Springer

Heidelberg Germany, from the same authors).

6 Alternative Analysis: Friedman Test

If the outcome data do not follow Gaussian patterns, or if your data are pretty small,

it will be more safe to perform a test, that allows for nonnormal data. The Friedman

test is adequate, but can also be applied with normal data. So, it is an excellent

choice, either way. For analysis the statistical model K Related Samples in the

module Nonparametric Tests is required.

Command:

Analyze....NonparametricTests....Legacy Dialogs....K Related Samples.... Test

Variables: enter treatmenta, treatmentb, treatmentc....Mark: Friedman....

click OK.

Test statisticsa N 10

Chi-Square 7,579

df 2

Asymp. Sig. ,023
aFriedman test

The result is significant, but the p-value is markedly larger than the p-value of

the ANOVA, i.e., 0,023. Just like with the above ANOVA we will have to perform

additional tests to determine, where the difference of the three treatments is located.

For that purpose three Wilcoxon’s tests could be performed (and adjustment for

multiple testing can be done similarly to the above procedure: using either a p-value

of 0,01 or a Bonferroni adjustment, see textbook “Statistics applied to clinical

studies”, the Chaps. 8 and 9, 5th edition, 2012, Springer Heidelberg Germany,

from the same authors).

7 Conclusion

In a crossover study of multiple different treatment modalities the significance of

difference between the outcomes of the different treatments can be tested with

repeated-measures ANOVA. The test result is an overall result, and does not tell

you where the difference is. E.g., with three treatments it may be a difference

between treatment 1 and 2, 2 and 3, or 1 and 3 or some combination of these three
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possibilities. In order to find out where it is additional paired t-tests or Wilcoxon

tests adjusted for Bonferroni inequalities have to be performed, and one might

consider to skip the overall tests and start with the paired t-tests or Wilcoxon tests

from the very beginning.

8 Note

More background, theoretical and mathematical information of repeated measures

ANOVA is given in Statistics applied to clinical studies 5th edition, Chap. 2,

Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 10

Repeated Measures Analysis of Variance
Plus Predictors (10 Patients)

1 General Purpose

Repeated-measures-analysis of variance (ANOVA) (Chap. 9) allows for more than

two continuous outcome variables, but does not include predictor variables. In this

chapter repeated-measures ANOVA with predictor variables is reviewed. In addi-

tion to testing differences between the paired observations, it can simultaneously

test the effects of the predictors on the outcome variables.

2 Schematic Overview of Type of Data File

Outcome 1 outcome 2 outcome 3 predictor
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .

3 Primary Scientific Question

Do three different pills produce significantly different clinical outcome effects.

Does the predictor have a significant effect on the outcomes.
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4 Data Example

In a crossover study of three different sleeping pills the significance of difference

between hours of sleep between the different treatments was assessed.

Hours of sleep after sleeping pill age (years)

a b c

6,10 6,80 6,20 55,00

7,00 7,00 7,90 65,00

8,20 9,00 6,90 84,00

7,60 7,80 6,70 56,00

6,50 6,60 6,30 44,00

8,40 8,00 6,40 85,00

6,90 7,30 6,20 53,00

6,70 7,00 6,10 65,00

7,40 7,50 6,80 66,00

5,80 5,80 6,30 63,00

6,20 6,70 6,10 55,00

6,90 6,00 7,80 65,00

8,10 8,90 6,80 83,00

7,50 7,80 6,80 56,00

6,40 6,50 6,20 44,00

8,40 7,90 6,30 86,00

6,90 7,40 6,20 53,00

6,60 7,10 6,20 65,00

7,30 6,90 6,90 65,00

5,90 5,90 6,40 62,00

5 Analysis, Repeated Measures ANOVA

The data file is in extras.springer.com, and is entitled “chapter10repeatedmea-

suresanova+predictor”. Open the data file in SPSS. For analysis the statistical

model Repeated Measures in the module General Linear Model is required.

Command:

Analyze....General Linear Model....Repeated Measures....Repeated Measures

Define Factors....Within-subject Factor name: treat....Number of Levels: 3....

click Add....click Define: Within-Subjects Variables (treat): enter treatmenta,

treatmentb, treatmentc....Between-Subjects Factors: enter "age"....click OK.
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The output sheets show the underneath tables.

Mauchly’s test of sphericitya

Measure:MEASURE_1

Within

subjects effect

Mauchly’s
W

Approx

Chi-Square df Sig.

Epsilonb

Greenhouse-

Geisser

Huynh-

Feldt

Lower-

bound

treat ,297 8,502 2 ,014 ,587 1,000 ,500

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed

dependent variables is proportional to an identity matrix
aDesign: Intercept + age. Within subjects design: treat
bMaybe used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests

are displayed in the tests of within-subjects effects table

Tests of within-subjects effects

Measure:MEASURE_1

Source

Type III sum of

squares df

Mean

square F Sig.

treat Sphericity

assumed

6,070 2 3,035 15,981 ,000

Greenhouse-

Geisser

6,070 1,174 5,169 15,981 ,002

Huynh-Feldt 6,070 2,000 3,035 15,981 ,000

Lower-bound 6,070 1,000 6,070 15,981 ,004

treat*age Sphericity

assumed

8,797 22 ,400 2,105 ,065

Greenhouse-

Geisser

8,797 12,917 ,681 2,105 ,129

Huynh-Feldt 8,797 22,000 ,400 2,105 ,065

Lower-bound 8,797 11,000 ,800 2,105 ,150

Error

(treat)

Sphericity

assumed

3,039 16 ,190

Greenhouse-

Geisser

3,039 9,394 ,323

Huynh-Feldt 3,039 16,000 ,190

Lower-bound 3,039 8,000 ,380

Tests of within-subjects contrasts

Measure:MEASURE_1

Source treat Type III sum of squares df Mean square F Sig.

treat Linear 3,409 1 3,409 23,633 ,001

Quadratic 2,661 1 2,661 11,296 ,010

treat*age Linear 5,349 11 ,486 3,371 ,048

Quadratic 3,448 11 ,313 1,331 ,350

Error(treat) Linear 1,154 8 ,144

Quadratic 1,885 8 ,236
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Tests of between-subjects effects

Measure:MEASURE_1

Transformed Variable:Average

Source Type III sum of squares df Mean square F Sig.

Intercept 2312,388 1 2312,388 17885,053 ,000

age 19,245 11 1,750 13,532 ,001

Error 1,034 8 ,129

The repeated-measures ANOVA tests whether a significant difference exists

between three treatments. An important criterion for validity of the test is the

presence of sphericity in the data, meaning that all data come from Gaussian

distributions. It appears from the above upper table that this is not true, because

based on this table we are unable to reject the null-hypothesis of non-sphericity.

This means that an ANOVA test corrected for non-sphericity has to be performed.

There are three possibilities: the Greenhouse, Huynh, and Lower-bound methods.

All of them produce virtually the same p-values, between 0,000 and 0,004. This

means that there is a very significant different between the magnitudes of the three

outcomes. The same table also shows that there is a tendency to interaction between

the three treatments and age (p¼ 0,065–0,150). The tests of within-subjects con-

trasts confirms the appropriateness of the linear model: the linear regressions

produce better p-values than did the quadratic regressions. The tests of between-

subjects table shows, that age is a very significant predictor of the outcomes a

p¼ 0,001. The elderly sleep better on the pills a and b, in the younger there is no

difference between the hours of sleep between the three pills.

Like with the repeated-measures without predictors (Chap. 9), Bonferroni-

adjusted post-hoc tests have to be performed in order to find out which of the

treatments performs the best, and what is the precise effect of age on separate

outcomes (more information about the adjustments for multiple testing including

the Bonferroni procedure is given in the textbook “Statistics applied to clinical

trials”, 5th edition, the Chaps. 8 and 9, 2012, Springer Heidelberg Germany, from

the same authors).

6 Conclusion

In a crossover study of multiple different treatment modalities plus predictor vari-

ables the significance of difference between the outcomes of the different treat-

ments can be tested simultaneously with the overall effects of the predictor

variables. The test results are overall results, and post-hoc tests must be performed

in order to find out, if differences exist between treatment 1 and 2, 2 and 3, or 1 and

3, and what effects the predictors have on the separate outcome measures. This

rapidly gets rather complex, and some would prefer to skip the overall assessments,

and start with Bonferroni adjusted one by one tests right away.
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7 Note

More background, theoretical and mathematical information of repeated measures

ANOVA is given in Statistics applied to clinical studies 5th edition, Chap. 2,

Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 11

Doubly Repeated Measures Analysis
of Variance (16 Patients)

1 General Purpose

Repeated-measures ANOVA, as reviewed in the Chaps. 9 and 10, uses repeated

measures of a single outcome variable in a single subject. If a second outcome

variable is included and measured in the same way, the doubly-repeated-measures

analysis of variance (ANOVA) procedure, available in the general linear models

module, will be adequate for analysis.

2 Schematic Overview of Type of Data File

Outcome 1 outcome 2 predictors..

Treat 1 2 3              treat  1 2 3

. . . . . . .

. . . . . . .

. . .    .    . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

This chapter was previously partly published in “Machine learning in medicine a complete

overview” as Chap. 45, 2015.
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3 Primary Scientific Question

Can doubly-repeated-measures ANOVA be used to simultaneously assess the

effects of three different treatment modalities on two outcome variables, and

include predictor variables in the analysis.

4 Data Example

Morning body temperatures in patients with sleep deprivation is lower than in

those without sleep deprivation. In 16 patients a three period crossover study of

three sleeping pills (treatment levels) were studied. The underneath table give the

data of the first 8 patients. The entire data file is entitled “chapter11doublyrepea-

tedmeasuresanova”, and is in extras.springer.com. Two outcome variables are

measured at three levels each. This study would qualify for a doubly multivariate

analysis.

Hours temp age gender
a b c a b c

6,10 6,80 5,20 35,90 35,30 36,80 55,00 ,00
7,00 7,00 7,90 37,10 37,80 37,00 65,00 ,00
8,20 9,00 3,90 38,30 34,00 39,10 74,00 ,00
7,60 7,80 4,70 37,50 34,60 37,70 56,00 1,00
6,50 6,60 5,30 36,40 35,30 36,70 44,00 1,00
8,40 8,00 5,40 38,30 35,50 38,00 49,00 1,00
6,90 7,30 4,20 37,00 34,10 37,40 53,00 ,00
6,70 7,00 6,10 36,80 36,10 36,90 76,00 ,00
7,40 7,50 3,80 37,30 33,90 37,40 67,00 1,00
5,80 5,80 6,30 35,70 36,30 35,90 66,00 1,00
6,10 6,80 5,20 35,90 35,30 36,80 55,00 ,00
7,00 7,00 7,90 37,10 37,80 37,00 65,00 ,00
8,20 9,00 3,90 38,30 34,00 39,10 74,00 ,00
6,90 7,30 4,20 37,00 34,10 37,40 53,00 ,00
6,70 7,00 6,10 36,80 36,10 36,90 76,00 ,00
8,40 8,00 5,40 38,30 35,50 38,00 49,00 1,00
hours = hours of sleep on sleeping pill
a, b, c = different sleeping pills (levels of treatment)
age = patient age
gen = gender
temp = different morning body temperatures on sleeping pill
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5 Doubly Repeated Measures ANOVA

We will start by opening the data file in SPSS. For analysis the statistical model

Repeated Measures in the module General Linear Model is required.

Command:

Analyze....General Linear Model....Repeated Measures....Within-Subject Factor

Name: type treatment....Number of Levels: type 3....click Add....Measure

Name: type hours....click Add....Measure Name: type temp....click Add....click

Define ....Within-Subjects Variables(treatment): enter hours a, b, c, and temp a,

b, c.... Between-Subjects Factor(s): enter gender....click Contrast....Change Con-

trast ....Contrast....select Repeated....click Change....click Continue....click

Plots.... Horizontal Axis: enter treatment....Separate Lines: enter gender....click

Add....click Continue....click Options....Display Means for: enter

gender*treatment....mark Estimates of effect size....mark SSCP matrices....

click Continue....click OK.

The underneath table is in the output sheets.

Multivariate testsa

Effect Value F

Hypothesis

df

Error

df Sig.

Partial

Eta

squared

Between

subjects

Intercept Pillai’s
trace

1,000 3,271E6 2,000 13,000 ,000 1,000

Wilks’
lambda

,000 3,271E6 2,000 13,000 ,000 1,000

Hotelling’s
trace

503211,785 3,271E6 2,000 13,000 ,000 1,000

Roys

largest root

503211,785 3,271E6 2,000 13,000 ,000 1,000

Gender Pillai’s
trace

,197 1,595b 2,000 13,000 ,240 ,197

Wilks’
lambda

,803 1,595b 2,000 13,000 ,240 ,197

Hotelling’s
trace

,245 1,595b 2,000 13,000 240 ,197

Roys

largest root

,245 1,595b 2,000 13,000 240 ,197

Within

subjects

Treatment Pillai’s
trace

,562 3,525b 4,000 11,000 ,044 ,562

Wilks’
lambda

,438 3,525b 4,000 11,000 ,044 ,562

Hotelling’s
trace

1,282 3,525b 4,000 11,000 ,044 ,562

Roys

largest root

1,282 3,525b 4,000 11,000 ,044 ,562

(continued)
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Effect Value F

Hypothesis

df

Error

df Sig.

Partial

Eta

squared

Treatment

* gender

Pillai’s
trace

,762 8,822b 4,000 11,000 ,002 ,762

Wilks’

lambda

,238 8,822b 4,000 11,000 ,002 ,762

Hotelling’s
trace

3,208 8,822b 4,000 11,000 ,002 ,762

Roys

largest root

3,208 8,822b 4,000 11,000 ,002 ,762

aDesign: Intercept + gender. Within subjects design: treatment
bExact statistic

Doubly multivariate analysis has two sets of repeated measures plus separate

predictor variables. For analysis of such data both between and within subjects tests

are performed. We are mostly interested in the within subject effects of the

treatment levels, but the above table starts by showing the not so interesting gender

effect on hours of sleep and morning temperatures. They are not significantly

different between the genders. More important is the treatment effects. The hours

of sleep and the morning temperature are significantly different between the

different treatment levels at p¼ 0,044. Also these significant effects are different

between males and females at p¼ 0,002.

Tests of within-subjects contrasts

Source Measure treatment

Type III sum

of squares df

Mean

square F Sig.

Partial Eta

squared

Treatment Hours Level 1 vs.

Level 2

,523 1 ,523 6,215 ,026 ,307

Level 2 vs.

Level 3

62,833 1 62,833 16,712 ,001 ,544

Temp Level 1 vs.

Level 2

49,323 1 49,323 15,788 ,001 ,530

Level 2 vs.

Level 3

62,424 1 62,424 16,912 ,001 ,547

Treatment

* gender

Hours Level 1 vs.

Level 2

,963 1 ,963 11,447 ,004 ,450

Level 2 vs.

Level 3

,113 1 ,113 ,030 ,865 ,002

Temp Level 1 vs.

Level 2

,963 1 ,963 ,308 ,588 ,022

Level 2 vs.

Level 3

,054 1 ,054 ,015 ,905 ,001

Error

(treatment)

Hours Level 1 vs.

Level 2

1,177 14 ,084

Level 2 vs.

Level 3

52,637 14 3,760

Temp Level 1 vs.

Level 2

43,737 14 3,124

Level 2 vs.

Level 3

51,676 14 3,691
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The above table shows, whether differences between levels of treatment were

significantly different from one another by comparison with the subsequent levels

(contrast tests). The effects of treatment levels 1 versus (vs) 2 on hours of sleep

were different at p¼ 0,026, levels 2 vs 3 at p¼ 0,001. The effects of treatments

levels 1 vs 2 on morning temperatures were different at p¼ 0,001, levels 2 vs 3 on

morning temperatures were also different at p¼ 0,001. The effects on hours of sleep

of treatment levels 1 vs 2 accounted for the differences in gender remained very

significant at p¼ 0,004.

Gender * treatment

Measure Gender Treatment Mean Std. Error

95 % confidence Interval

Lower bound Upper bound

hours ,00 1 6,980 ,268 6,404 7,556

2 7,420 ,274 6,833 8,007

3 5,460 ,417 4,565 6,355

1,00 1 7,350 ,347 6,607 8,093

2 7,283 ,354 6,525 8,042

3 5,150 ,539 3,994 6,306

temp ,00 1 37,020 ,284 36,411 37,629

2 35,460 ,407 34,586 36,334

3 37,440 ,277 36,845 38,035

1,00 1 37,250 ,367 36,464 38,036

2 35,183 ,526 34,055 36,311

3 37,283 ,358 36,515 38,051

The above table shows the mean hours of sleep and mean morning temperatures

for the different subsets of observations. Particularly, we observe the few hours of

sleep on treatment level 3, and the highest morning temperatures at the same level.

The treatment level 2, in contrast, pretty many hours of sleep and, at the same time,

the lowest morning temperatures (consistent with longer periods of sleep). The

underneath figures show the same.
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6 Conclusion

Doubly multivariate ANOVA is for studies with multiple paired observations with

more than a single outcome variable. For example, in a study with two or more

different outcome variables the outcome values are measured repeatedly during a

period of follow up or in a study with two or more outcome variables the outcome

values are measured at different levels, e.g., different treatment dosages or different

compounds. The multivariate approach prevents the type I errors from being

inflated, because we only have one test and, so, the p-values need not be adjusted

for multiple testing (see references in the underneath section).

7 Note

More background, theoretical and mathematical information of multiple treatments

and multiple testing is given in “Machine learning in medicine part three, the

Chap. 3, Multiple treatments, pp 19–27, and the Chap. 4, Multiple endpoints, pp

29–36, 2013, Springer Heidelberg Germany”, from the same authors.
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Chapter 12

Repeated Measures Mixed-Modeling
(20 Patients)

1 General Purpose

Mixed models uses repeated outcome measures as well as a predictor variable,

often a binary treatment modality. If the main purpose of your research is to

demonstrate a significant difference between two treatment modalities rather than

between the differences in repeated measures, then mixed models should be used

instead of repeated measures analysis of variance (ANOVA). The explanation

requires advanced statistics and is given in the next paragraph. It could be skipped

by the nonmathematiciens.

With mixed models repeated-measures-within-subjects receive fewer degrees of
freedom than they do with the classical general linear model (Chaps. 9, 10 and 11),

because they are nested in a separate layer or subspace. In this way better sensitivity

is left in the model to demonstrate differences between subjects. Therefore, if the

main aim of your research is to demonstrate differences between subjects, then the

mixed model should be more sensitive than the classical general linear models as

explained in the previous three chapters. However, the two methods should be

equivalent, if the main aim of your research is to demonstrate differences between

repeated measures, for example different treatment modalities in a single subject. A

limitation of the mixed model is, that it includes additional variances, and is,

therefore, more complex. More complex statistical models are, ipso facto, more

at risk of power loss, particularly, with small data (Statistics applied to clinical

studies 5th edition, Chap. 55, Springer Heidelberg Germany 2012, from the same

authors). Another limitation is, that the data have to be restructured in order to

qualify for the mixed linear analysis.
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2 Schematic Overview of Type of Data File

Outcome measures 1-5 predictor

In the above table each row presents a single patient with 5 measures. After
restructuring the above data , the first few patients of the above data file should
look like underneath. Each row now presents a single outcome measure instead of 5.

1st 2nd 3rd 4th 5th
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .

Patient id outcome outcome predictor
measure value

1 1 . .
1 2 . .
1 3 . .
1 4 . .
1 5 . .
2 1 . .
2 2 . .

2 3 . .

2 4 . .

2 5 . .
3 1 . .
. . . .

3 Primary Scientific Question

Is there a significant effect of the predictor after adjustment for the repeatedmeasures.

4 Data Example

Twenty patients are treated with two treatment modalities for cholesterol and levels

are measured after 1–5 weeks, once a week. We wish to know whether one

treatment modality is significantly better than the other after adjustment for the

repeated nature of the outcome variables
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patientno week 1 week 2 week 3 week 4 week 5 treatment modality

1 1,66 1,62 1,57 1,52 1,50 0,00
2 1,69 1,71 1,60 1,55 1,56 0,00
3 1,92 1,94 1,83 1,78 1,79 0,00
4 1,95 1,97 1,86 1,81 1,82 0,00
5 1,98 2,00 1,89 1,84 1,85 0,00
6 2,01 2,03 1,92 1,87 1,88 0,00
7 2,04 2,06 1,95 1,90 1,91 0,00
8 2,07 2,09 1,98 1,93 1,94 0,00
9 2,30 2,32 2,21 2,16 2,17 0,00
10 2,36 2,35 2,26 2,23 2,20 0,00
week 1 = hdl-cholesterol level after 1 week of trial (mmol/l)
treatment modality = treatment modality (0 = treatment 0, 1 = treatment 1)

The entire data file is in “chapter12repeatedmeasuresmixedmodel”, and is in

extras.springer.com. We will start by opening the data file in SPSS.

5 Analysis with the Restructure Data Wizard

Command:

click Data....click Restructure....mark Restructure selected variables into cases....

click Next....mark One (for example, w1, w2, and w3)....click Next....Name: id

(the patient id variable is already provided)....Target Variable: enter "firstweek,

secondweek...... fifthweek"....Fixed Variable(s): enter treatment....click Next....

How many index variables do you want to create?....mark One....click Next....

click Next again....click Next again....click Finish....Sets from the original data

will still be in use. . .click OK.

Return to the main screen, and observe that there are now 100 rows instead of

20 in the data file. The first 10 rows are given underneath.

Patient id treatment Index1 Trans1

1 0,00 1 1,66

1 0,00 2 1,62

1 0,00 3 1,57

1 0,00 4 1,52

1 0,00 5 1,50

2 0,00 1 1,69

2 0,00 2 1,71

2 0,00 3 1,60

2 0,00 4 1,55

2 0,00 5 1,56

treatment¼ treatment modality

Index1¼week of treatment (1–5)

Trans1¼ outcome values
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The above table is adequate to perform a mixed linear model analysis. For

readers’ convenience it is saved in extras.springer.com, and is entitled

“chapter12repeatedmeasuresmixedmodels2”. SPSS calls the levels “indexes”, and

the outcome values after restructuring “Trans” values, terms pretty confusing to us.

6 Mixed Model Analysis

The above table is adequate to perform a multilevel modeling analysis with mixed

linear model, and adjusts for the positive correlation between the presumably

positive correlation between the weekly measurements in one patient. The module

Mixed Models consists of two statistical models:

Linear,

Generalized Linear.

For analysis the statistical model Linear is required.

Command:

Analyze. . ..Mixed Models. . ..Linear. . ..Specify Subjects and Repeated. . ..Subject:
enter id . . ..Continue. . ..Linear Mixed Model. . ..Dependent Variables:

Trans1. . ..Factors: Index1, treatment. . ..Fixed. . ..Build Nested Term. . ..Treat-
ment . . ..Add. . ..Index1. . ..Add. . .. Index1 build term by* treatment. . ..Index1
*treatment. . ..Add. . ..Continue. . ..click OK (*¼ sign of multiplication).

The underneath table shows the result. SPSS has applied the effects of the cluster

levels and the interaction between cluster levels and treatment modality for

adjusting the effects of the correlation levels between the weekly repeated mea-

surements. The adjusted analysis shows that one treatment performs much better

than the other.

Type III tests of fixed effectsa

Source Numerator df Denominator df F Sig.

Intercept 1 90 6988,626 ,000

treatment 1 90 20,030 ,000

Index1 4 90 ,377 ,825

Index1 * treatment 4 90 1,603 ,181
aDependent variable: outcome

Sometimes better statistics can be obtained by random effects models. The

module Generalized Linear Mixed Models can be used for the purpose.
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7 Mixed Model Analysis with Random Interaction

For a mixed model with random effects the Generalized Mixed Linear Model in the

module Mixed Models is required.

Command:

Analyze. . ..Mixed Linear. . ..Generalized Mixed Linear Models. . ..click Data

Structure. . ..click left mouse and drag patient_id to Subjects part of the canvas

. . ..click left mouse and drag week to Repeated Measures part of the canvas. . ..
click Fields and Effects. . ..click Target. . ..check that the variable outcome is

already in the Target window. . ..check that Linear model is marked. . ..click
Fixed Effects. . ..drag treatment and week to Effect builder. . ..click Random

Effects. . ..click Add Block . . ..click Add a custom term. . ..move

week*treatment (* is symbol multiplication and interaction) to the Custom

term window. . ..click Add term. . ..click OK. . ..click Run.

Fixed Coefficients
Target:outcome

Intercept

treatment=0

week=1

week=2

week=3

week=4

outcome

Coefficient
Estimate

Positive
Negative
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Probability distribution:Normal

Link function:Identity

In the output sheet a graph is observed with the mean and standard errors of the

outcome value displayed with the best fit Gaussian curve. The F-value of 23,722

indicates that one treatment is very significantly better than the other with p

<0,0001. The thickness of the lines are a measure for level of significance, and so

the significance of the 5 week is very thin and thus very weak. Week 5 is not

shown. It is redundant, because it means absence of the other 4 weeks. If you click

at the left bottom of the graph panel, a table comes up providing similar

information in written form. The effect of the interaction variable is not shown, but

implied in the analysis.

The F-value of this random effect model is slightly better than the F-value of the

fixed effect mixed model (F¼ 20,030).

8 Conclusion

You might want to analyze the above data example in different ways. The averages

of the five repeated measures in one patient can be calculated and an unpaired t-test

may be used to compare these averages in the two treatment groups (like in

Chap. 6). The overall average in group 0 was 1,925 (SEM 0,0025), in group

1 2,227 (SE 0,227). With 18 degrees of freedom and a t-value of 1,99 the difference

did not obtain statistical significance, 0,05< p< 0,10. There seems to be, expect-

edly, a strong positive correlation between the five repeated measurements in one

patient. In order to take account of this strong positive correlation a mixed linear

model is used. This model showed that treatment 1 now performed significantly

better than did treatment 0, at p¼ 0,0001.

You might want to analyze the above data file also using a repeated measures

ANOVA (like in Chap. 10). However, repeated-measures ANOVA will produce

treatment modality effect with a p-value of only 0,048 instead of 0,0001. If you are

more interested in the effect of the predictor variables, and less so in the difference

between the repeated outcomes, then repeated-measures ANOVA is not an appro-

priate method for your purpose.
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9 Note

More background, theoretical and mathematical information of restructuring data

files is in the Chap.6, Mixed linear models, pp 65–77, in: Machine learning in

medicine part one, Springer Heidelberg Germany, 2013, from the same authors, and

the Chaps. 8 and 39 in the current volume.
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Chapter 13

Unpaired Continuous Data with Three
or More Groups (One Way Analysis
of Variance, Kruskal-Wallis, 30 Patients)

1 General Purpose

In studies of different treatments often parallel groups receiving different treat-

ments are included. Unlike repeated measures studies (Chaps. 9, 10, 11, 12), they

involve independent treatment effects with a zero correlation between the treat-

ments. One way analysis of variance (ANOVA) is appropriate for analysis.

2 Schematic Overview of Type of Data File

_________________________________________________________
Outcome predictor ( 3 or more categories, e.g., 1, 2, and 3)
. .
. .
. .
. .
. .
. .
. .
. .
. .
________________________________________________________

Just like unpaired t-tests, one way analyses of variance are for 
comparing parallel-groups. However, they allow for more than 
two parallel-groups. They can not include more than a single 
predictor in the analysis, often three or more parallel treatment 
modalities. The outcome data of the parallel-groups are assumed 
to be normally distributed. 
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3 Primary Scientific Question

Do parallel treatment modalities produce significantly different mean magnitudes

of treatment effects.

4 Data Example

Hours of sleep Group Age (years) Gender Co-morbidity

6,00 0,00 45,00 0,00 1,00

7,10 0,00 45,00 0,00 1,00

8,10 0,00 46,00 0,00 0,00

7,50 0,00 37,00 0,00 0,00

6,40 0,00 48,00 0,00 1,00

7,90 0,00 76,00 1,00 1,00

6,80 0,00 56,00 1,00 1,00

6,60 0,00 54,00 1,00 0,00

7,30 0,00 63,00 1,00 0,00

5,60 0,00 75,00 0,00 0,00

The entire data file is in extras.springer.com, and is entitled “chapter13unpair-

edcontinuousmultiplegroups”. Start by opening the data file in SPSS.

5 One Way ANOVA

For analysis the module Compare Means is required. It consists of the following

statistical models:

Means,

One-Sample T-Test,

Independent-Samples T-Test,

Paired-Samples T-Test and

One Way ANOVA.

Command:

Analyze....Compare Means....One-way Anova....Dependent lists: effect treat....

Factor: enter group....click OK.

ANOVA effect treatment

Sum of squares df Mean square F Sig.

Between groups 37,856 2 18,928 14,110 ,000

Within groups 36,219 27 1,341

Total 74,075 29
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A significant difference between the three treatments has been demonstrated

with a p-value of 0,0001. Like with the paired data of the previous chapter the

conclusion is drawn: a difference exists, but we don’t yet know whether the

difference is between treatments 1 and 2, 2 and 3, or 1 and 3. Three subsequent

unpaired t-tests are required to find out. Similarly to the tests of Chap. 5, a smaller

p-value for rejecting the null-hypothesis is recommended, for example, 0,01 instead

of 0,05. This is, because with multiple testing the chance of type 1 errors of finding

a difference where there is none is enlarged, and this chance has to be adjusted.

Like the Friedman test can be applied for comparing three or more paired

samples as a non-Gaussian alternative to the paired ANOVA test (see Chap. 6),

the Kruskal-Wallis test can be used as a non-Gaussian alternative to the above

unpaired ANOVA test.

6 Alternative Test: Kruskal-Wallis Test

For analysis the statistical model K Independent Samples in the module Nonpara-

metric Tests is required.

Command:

Analyze....Nonparametric....K Independent Samples....Test Variable List: effect

treatment....Grouping Variable: group....click Define range....Minimum: enter

0....Maximum: enter 2....Continue....mark: Kruskal-Wallis....click OK.

The Kruskal-Wallis test is significant with a p-value of no less than 0,001. This

means that the three treatments are very significantly different from one another.

7 Conclusion

The analyses show that a significant difference between the three treatments exists.

This is an overall result. We don’t know where the difference is. In order to find out

whether the difference is between the treatments 1 and 2, 2 and 3, or 1 and

Test statisticsa,b Effect treatment

Chi-Square 15,171

df 2

Asymp. Sig. ,001
aKruskal Wallis Test
bGrouping Variable: group
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3 additional one by one treatment analyses are required. With one way ANOVA the

advice is to perform three additional unpaired t-tests, with nonparametric testing the

advice is to perform three Mann-Whitney tests to find out. Again, a subsequent

reduction of the p-value or a Bonferroni test is appropriate.

8 Note

More background, theoretical, and mathematical information is available in Statis-

tics applied to clinical studies 5th edition, Chap. 2, Springer Heidelberg Germany,

2012, from the same authors.
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Chapter 14

Automatic Nonparametric Testing
(30 Patients)

1 General Purpose

If your data are pretty complex and involve both repeated outcomes and different

types of predictors including categorical ones, then multivariate methods

(Chaps. 17 and 18) would be required for an overall analysis. However, with

small samples, power is little, and an optimized univariate analysis testing the

outcomes separately is an alternative. Automatic nonparametric testing chooses

the best tests based on the data. Also, it takes account of nongaussian outcomes.

2 Schematic Overview of Type of Data File

outcome 1 outcome 2 predictor 1 predictor 2 pre...
___________________________________________________________________________
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
___________________________________________________________________________
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3 Primary Scientific Question

Can automatic nonparametric testing simultaneously assess the effect of multiple

predictors including categorical ones on repeated outcomes and at the same account

nonnormality in the outcomes.

4 Data Example

In a parallel-group study with three predictors (treatment 0, 1, and 2 correspond-

ingly given to the groups 0, 1, and 2), and two continuous outcomes (hours of sleep

and levels of side effects), assess whether the treatments are significantly different

from one another.

Outcome

efficacy

Outcome side

effect

Predictor

gender

Predictor

comorbidity

Predic.. group

6,00 45,00 ,00 1,00 0

7,10 35,00 ,00 1,00 0

8,10 34,00 ,00 ,00 0

7,50 29,00 ,00 ,00 0

6,40 48,00 ,00 1,00 0

7,90 23,00 1,00 1,00 0

6,80 56,00 1,00 1,00 0

6,60 54,00 1,00 ,00 0

7,30 33,00 1,00 ,00 0

5,60 75,00 ,00 ,00 0

Only the first ten patients are shown. The entire data file is in extras.springer.com

and is entitled “chap14automaticnonparametrictesting”. Automatic nonparametric

tests is available in SPSS 18 and up. Start by opening the above data file.

5 Automatic Nonparametric Testing

For analysis the statistical model Independent Samples in the module Nonparamet-

ric Tests is required.

Command:

Analyze. . ..Nonparametric Tests. . ..Independent Samples. . ..click Objective. . ..
mark Automatically compare distributions across groups. . ..click Fields. . ..in
Test fields: enter “hours of sleep” and “side effect score”. . ..in Groups: enter

“group”. . ..click Settings. . ..Choose Tests. . ..mark “Automatically choose the

tests based on the data”. . ..click Run.

In the interactive output sheets the underneath table is given. Both the distribu-

tion of hours of sleep and side effect score are significantly different across the three
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categories of treatment. By double-clicking the table you will obtain an interactive

set of views of various details of the analysis, entitled the Model Viewer.

One view provides the box and whiskers graphs (medians, quartiles, and ranges)

of hours of sleep of the three treatment groups. Group 0 seems to perform better

than the other two, but we don’t know where the significant differences are.

8,00

6,00

4,00

2,00
0 1

group

h
o

u
rs

 o
f 

sl
ee

p

2

Also the box and whiskers graph of side effect scores is given. Some groups

again seem to perform better than the other. However, we cannot see whether 0 vs

1, 1 vs 2, and /or 0 vs 2 are significantly different.

Hypothesis test summary

Asymptotic significances are displayed. The significance level is, 05

5 Automatic Nonparametric Testing 81



80,00

60,00

si
d

e 
ef

fe
ct

 s
co

re

40,00

20,00
0 1

group
2

In the view space at the bottom of the auxiliary view (right half of the Model

Viewer) several additional options are given. When clicking Pairwise Comparisons,

a distance network is displayed with yellow lines corresponding to statistically

significant differences, and black ones to insignificant ones. Obviously, the differ-

ences in hours of sleep of group 1 vs (versus) 0 and group 2 vs 0 are statistically

significant, and 1 vs 2 is not. Group 0 had significantly more hours of sleep than the

other two groups with p¼ 0,044 and 0,0001.

0
23,75

1

8,60
2

Pairwise Comparisons of group

14,15
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Each node shows the sample average rank of group.

Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions are the same.
Asymptotic significances (2-sided tests) are displayed. The significance level is, 05.

5,550 3,936 1,410

3,849

2,439

,158

,000

,015

,475

,000

,044

3,936

3,936

15,150

9,600

Sample1-Sample2
Test

Statistic
Std.
Error

2- 1

0

0

2-

1-

Std. Test
Statistic

Sig. Adj.Sig.

As shown below, the difference in side effect score of group 1 vs 0 is also

statistically significant, and 1 vs 0, and 1 vs 2 are not. Group 0 has a significantly

better side effect score than the 1 with p¼ 0,035, but group 0 vs 2 and 1 vs 2 are not

significantly different.

0
9,95

Pairwise Comparisons of group

19,85

16,70
2

1

Each node shows the sample average rank of group.

-6,750

-9,900

-3,150

3,931 -1,717

-2,518

,801

,086

,012

,423

,258

,035

1,0003,931

3,931

Sample1-Sample2
Test

Statistic
Std.
Error

Std. Test
Statistic

Sig. Adj.Sig.

0-

0-

2-

2

1

1

Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions are the same.
Asymptotic significances (2-sided tests) are displayed. The significance level is, 05.

5 Automatic Nonparametric Testing 83



6 Conclusion

If your data are pretty complex and involve both repeated outcomes and different

types of predictors including categorical ones, then multivariate methods

(Chaps. 17 and 18) would be required for an overall analysis. However with

small samples power is little, and an optimized univariate analysis testing the

outcomes separately is an alternative. Automatic nonparametric testing chooses

the best tests based on the data. Also it takes account of nongaussian outcomes. If

you wish to report the above data as a whole, then Bonferroni adjustments for

multiple testing should be performed (Statistics applied to clinical studies 5th

edition, Chaps. 8 and 9, Springer Heidelberg Germany, 2012, from the same

authors).

7 Note

More background theoretical and mathematical information of the Kruskal-Wallis

test is given in Statistics applied to clinical trials 5th edition, Chap. 2, Springer

Heidelberg, 2012, from the same authors.
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Chapter 15

Trend Test for Continuous Data (30 Patients)

1 General Purpose

Trend tests are wonderful, because they provide markedly better sensitivity for

demonstrating incremental effects from incremental treatment dosages, than tradi-

tional statistical tests.

2 Schematic Overview of Type of Data File

_______________________________
Outcome predictor
. .
. .
. .
. .
. .
. .
. .
. .
. .
________________________________

The outcome variable is continuous, the predictor variable is categorical, and can be

measured either as nominal (just like names) or as ordinal variable (a stepping

pattern not necessarily with equal intervals). In the Variable View of SPSS “Mea-

sure” may, therefore, be changed into nominal or ordinal, but, since we assume an

incremental function the default measure scale is OK as well.
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3 Primary Scientific Question

Do incremental treatment dosages cause incremental beneficial outcome effects.

4 Data Example

In a parallel-group study of three incremental dosages of antihypertensive

treatments.

The mean reduction of mean blood pressure per group is tested.

Outcome (mean blood pressure, mm Hg) Treatment group

113,00 1,00

131,00 1,00

112,00 1,00

132,00 1,00

114,00 1,00

130,00 1,00

115,00 1,00

129,00 1,00

122,00 1,00

118,00 2,00

5 Trend Analysis for Continuous Data

The entire data file is in extras.springer.com, and is entitled “chapter15trend-

continuous”. We will, first, perform a one way analysis of variance (ANOVA)

(see also Chap. 13) to see, if there are any significant differences in the data. If not,

we will perform a trend test using simple linear regression. For analysis the

statistical model One Way ANOVA in the module Compare Means is required.

Command:

Analyze....Compare Means....One-Way ANOVA....Dependent List: blood pressure

Factor: treatment. . .click OK.

ANOVA

VAR00002

Sum of squares df Mean square F Sig.

Between groups 246,667 2 123,333 2,035 ,150

Within groups 1636,000 27 60,593

Total 1882,667 29
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The above table shows that there is no significant difference in efficacy between

the treatment dosages, and so, sadly, this is a negative study. However, a trend test

having just 1� of freedom has more sensitivity than a usual one way ANOVA, and it

could, therefore, be statistically significant even so. For analysis the model Linear

in the module Regression is required.

Command:

Analyze....Regression....Linear....Dependent: blood pressure....Independent(s):

treatment....click OK.

Four tables are given, we will only use the third and fourth ones as shown above.

The tables show that treatment dosage is a significant predictor of treatment

response wit a p-value of 0,05. There is, thus, a significantly incremental response

with incremental dosages.

6 Conclusion

Trend tests are wonderful, because they provide markedly better sensitivity for

demonstrating incremental effects from incremental treatment dosages, than tradi-

tional statistical tests do. One way ANOVA using 2 degrees of freedom was not

significant in the example given, while linear regression using 1 degrees of freedom

was significant at p¼ 0,05.

ANOVAa

Model Sum of squares df Mean square F Sig.

1 Regression 245,000 1 245,000 4,189 ,050b

Residual 1637,667 28 58,488

Total 1882,667 29
aDependent Variable: VAR00002
bPredictors: (Constant), VAR00001

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) 125,333 3,694 33,927 ,000

Treatment �3,500 1,710 �,361 �2,047 ,050
aDependent Variable: blood pressure
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7 Note

More background, theoretical, and mathematical information of trend testing is

given in Statistics applied to clinical studies 5th edition, Chap. 27, Springer

Heidelberg Germany, 2012, from the same authors.
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Chapter 16

Multistage Regression (35 Patients)

1 General Purpose

The multistage regression assumes that an independent variable (x-variable) is

problematic, meaning that it is somewhat uncertain. An additional variable can be

argued to provide relevant information about the problematic variable, and is,

therefore, called instrumental variable, and included in the analysis.

2 Schematic Overview of Type of Data

__________________________________________________
Outcome problematic predictor instrumental predictor
. . .
. . .
. . .
. . .
. . .
. . .
. . .
_______________________________________________________________

3 Primary Scientific Question

Is multistage regression better for analyzing outcome studies with multiple pre-

dictors than multiple linear regression.
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4 Data Example

The effects of counseling frequencies and non-compliance (pills not used) on the

efficacy of a novel laxative drug is studied in 35 patients. The first 10 patients of the

data file is given below.

Pat no Efficacy of new laxative

(stools/month)

Pills not used

(n)

Counseling

(n)

1 24 25 8

2 30 30 13

3 25 25 15

4 35 31 14

5 39 36 9

6 30 33 10

7 27 22 8

8 14 18 5

9 39 14 13

10 42 30 15

The entire data file is in extras.springer.com, and is entitled “chapter16multis-

tageregression”. Start by opening the data file in SPSS. We will first perform a

multiple regression, and then a multistep regression.

5 Traditional Multiple Linear Regression

For analysis the model Linear in the module Regression is required.

Command:

Analyze....Regression....Linear....Dependent: ther eff....Independent(s): counseling,

non-compliance....click OK.

The above table shows the results of a linear regression assessing (1) the effects

of counseling and non-compliance on therapeutic efficacy.

Command:

Analyze....Regression....Linear....Dependent: counseling. . .Independent(s): non-

compliance....click OK.

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) 2,270 4,823 ,471 ,641

Counseling 1,876 ,290 ,721 6,469 ,000

Non-compliance ,285 ,167 ,190 1,705 ,098
aDependent Variable: ther eff
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The above table give the effect of non-compliance on counseling.

With p¼ 0,10 as cut-off p-value for statistical significance all the effects above

are statistically significant. Non-compliance is a significant predictor of counseling,

and at the same time a significant predictor of therapeutic efficacy at p¼ 0,024. This

would mean that non-compliance works two ways: it predicts therapeutic efficacy

directly and indirectly through counseling. However, the indirect way is not taken

into account in the usual one step linear regression. An adequate approach for

assessing both ways simultaneously is path statistics.

6 Multistage Regression

Multistage regression, otherwise called path analysis or path statistics, uses add-up

sums of regression coefficients for better estimation of multiple step relationships.

Because regression coefficients have the same unit as their variable, they cannot be

added up unless they are standardized by dividing them by their own variances.

SPSS routinely provides the standardized regression coefficients, otherwise called

path statistics, in its regression tables as shown above. The underneath figure gives a

path diagram of the data.

Counseling

Efficacy estimator

0.72 (p = 0.0001) 0.19 (p = 0.098)

0.38 (p = 0.024)

Non-compliance

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) 4,228 2,800 1,510 ,141

Non-compliance ,220 ,093 ,382 2,373 ,024
aDependent Variable: counseling
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The standardized regression coefficients are added to the arrows. Single path

analysis gives a standardized regression coefficient of 0.19. This underestimates the

real effect of non-compliance. Two step path analysis is more realistic and shows

that the add-up path statistic is larger and equals

0:19þ 0:38� 0:72 ¼ 0:46

The two-path statistic of 0.46 is a lot better than the single path statistic of 0.19 with

an increase of 60 %.

7 Alternative Analysis: Two Stage Least Square (2LS)
Method

Instead of path analysis the two stage least square (2LS) method is possible and is

available in SPSS. It works as follows. First, a simple regression analysis with

counseling as outcome and non-compliance as predictor is performed. Then the

outcome values of the regression equation are used as predictor of therapeutic

efficacy. For analysis the statistical model 2 Stage Least Squares in the module

Regression is required.

Command:

Analyze. . ..Regression. . ..2 Stage Least Squares. . ..Dependent: stool. . .. Explana-
tory: non-compliance. . ..Instrumental:counseling . . ..mark: include constant in

equation....click OK.

Model description Type of variable

Equation 1 Stool Dependent

Noncompliance Predictor

Counseling Instrumental

MOD_3

ANOVA

Sum of squares df Mean square F Sig.

Equation 1 Regression 1408,040 1 1408,040 4,429 ,043

Residual 10490,322 33 317,889

Total 11898,362 34

Coefficients

Unstandardized coefficients

Beta t Sig.B Std. error

Equation 1 (Constant) �49,778 37,634 �1,323 ,195

Noncompliance 2,675 1,271 1,753 2,105 ,043
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The above tables show the results of the 2LS method. As expected the final

p-value of the effect of non-compliance on stool is smaller than that of the

traditional linear regression with p-values of 0,043 instead 0,098.

8 Conclusion

Multistage regression methods often produce better estimations of multi-step rela-

tionships than standard linear regression methods do. Examples are given.

9 Note

More background, theoretical and mathematical information of multistep regres-

sion is given in Statistics applied to clinical studies 5th edition, Chap. 20, Springer

Heidelberg Germany, 2012, from the same authors.
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Chapter 17

Multivariate Analysis with Path Statistics
(35 Patients)

1 General Purpose

Multivariate analysis is a method that, simultaneously, assesses more than a single

outcome variable. It is different from repeated measures analysis of variance and

mixed models, that assess both the difference between the outcomes and the overall

effects of the predictors on the outcomes. Multivariate analysis, simultaneously,

assesses the separate effects of the predictors on one outcome adjusted for the other.

E.g., it can answer clinically important questions like: does drug-compliance not

only predict drug efficacy but also, independently of the first effect, predict quality

of life.

Path statistics can be used as an alternative approach to multivariate analysis of

variance (MANOVA) (Chap. 18), with a result similar to that of the more complex

mathematical approach used in MANOVA.

2 Schematic Overview of Type of Data File

Outcome 1 outcome 2 predictor 1 predictor 2
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
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3 Primary Scientific Question

Does the inclusion of additional outcome variables enable to make better use of

predicting variables.

4 Data Example

The effects of non compliance and counseling on treatment efficacy of a new laxative

was assessed in the Chap. 16. But quality of life scores are now added as additional

outcome variable. The first 10 patients of the data file is given underneath.

Stools Qol Counsel Compliance

24,00 69,00 8,00 25,00

30,00 110,00 13,00 30,00

25,00 78,00 15,00 25,00

35,00 103,00 10,00 31,00

39,00 103,00 9,00 36,00

30,00 102,00 10,00 33,00

27,00 76,00 8,00 22,00

14,00 75,00 5,00 18,00

39,00 99,00 13,00 14,00

42,00 107,00 15,00 30,00

stools¼ stools per month

qol¼ quality of life scores

counseling¼ counselings per month

compliance¼ non-compliance with drug treatment

5 Traditional Linear Regressions

The entire data file is entitled “chapter17multivariatewithpath”, and is in extras.

springer.com. Start by opening the data file in SPSS. For analysis the statistical

model Linear in the module Regression is required.

Command:

Analyze....Regression....Linear....Dependent: therapeutic efficacy....Independent

(s): counseling....OK.

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) 8,647 3,132 2,761 ,009

Counseling 2,065 ,276 ,794 7,491 ,000
aDependent Variable: ther eff
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The above table shows (1) the effect of counseling on therapeutic efficacy.

Similar commands produce

(2) the effect of counseling on quality of life (qol)

(3) the effect of compliance on qol

(4) the effect of compliance on therapeutic efficacy

(5) the effect of compliance on counseling.

Next similar commands are given to produce two multiple linear regressions:

(6) the effects of counseling and compliance on qol

(7) the effects of counseling and compliance on treatment efficacy.

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) 69,457 7,286 9,533 ,000

Counseling 2,032 ,641 ,483 3,168 ,003
aDependent Variable: qol

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) 10,202 6,978 1,462 ,153

Non-compliance ,697 ,231 ,465 3,020 ,005
aDependent Variable: ther eff

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) 4,228 2,800 1,510 ,141

Non-compliance ,220 ,093 ,382 2,373 ,024
aDependent Variable: counseling

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) 59,380 11,410 5,204 ,000

Non-compliance 1,079 ,377 ,446 2,859 ,007
aDependent Variable: qol

Model summary

Model R R square Adjusted R square Std. error of the estimate

1 ,560a ,313 ,270 13,77210
aPredictors: (Constant), non-compliance, counseling
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The above tables show the correlation coefficients of the two multiple regres-

sions (r¼ 0,813 and 0, 560), and their levels of significance. Both of them are

significant, meaning that the correlation coefficients are much larger than zero than

could happen by chance.

ANOVAa

Model Sum of squares df Mean square F Sig.

1 Regression 2766,711 2 1383,356 7,293 ,002b

Residual 6069,460 32 189,671

Total 8836,171 34
aDependent Variable: qol
bPredictors: (Constant), non-compliance, counseling

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) 52,866 11,092 4,766 ,000

Counseling 1,541 ,667 ,366 2,310 ,027

Non-compliance ,740 ,384 ,306 1,929 ,063
aDependent Variable: qol

Model summary

Model R R square Adjusted R square Std. error of the estimate

1 ,813a ,661 ,639 5,98832
aPredictors: (Constant), non-compliance, counseling

ANOVAa

Model Sum of squares df Mean square F Sig.

1 Regression 2232,651 2 1116,326 31,130 ,000b

Residual 1147,520 32 35,860

Total 3380,171 34
aDependent Variable: therapeutic efficacy
bPredictors: (Constant), non-compliance, counseling

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) 2,270 4,823 ,471 ,641

Counseling 1,876 ,290 ,721 6,469 ,000

Non-compliance ,285 ,167 ,190 1,705 ,098
aDependent Variable: therapeutic efficacy
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6 Using the Traditional Regressions for Multivariate
Analysis with Path Statistics

First, we have to check whether the relationship of either of the two predictors with

the two outcome variables, treatment efficacy and quality of life, is significant in the

usual simple linear regression: they were so with p-values of 0,0001, 0,005, 0,003

and 0,007. Then, a path diagram with standardized regression coefficients is

constructed. The underneath figure gives the decomposition of correlation between

treatment efficacy and qol.

The standardized regression coefficients of the residual effects are obtained by

taking the square root of (1- R Square). The standardized regression coefficient of

one residual effect versus another can be assumed to equal 1.00.

counseling

Frequency stools

Residual efficacy Residual quality of life

Quality of life score

compliance drug
treatment

0.38

0.48

0.79 0.45

0.830.58

1.00

0.47

1. Direct effect of counseling

0.79� 0.48 ¼ 0.38

2. Direct effect of non-compliance

0.45� 0.47 ¼ 0.21

3. Indirect effect of counseling and non-compliance

0.79� 0.38� 0.45 + 0.47� 0.38� 0.48 ¼ 0.22

4. Residual effects

1.00� 0.58� 0.83 ¼ 0.48 +

Total 1.29

A path statistic of 1.29 is considerably larger than that of the single outcome

model: 1.29 versus 0.46 (Chap. 16), 2.80 times larger. Obviously, two outcome

variables make better use of the predictors in our data than does a single one. An
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advantage of this nonmathematical approach to multivariate regression is that it

nicely summarizes all relationships in the model, and it does so in a quantitative

way as explained in the above figure.

7 Conclusion

Multivariate analysis is a linear model that works with more than a single outcome

variable. It, thus, simultaneously, assesses the separate effects of the predictors on

one outcome adjusted for the other. E.g., it can answer clinically important ques-

tions like: does drug-compliance not only predict drug efficacy but also, indepen-

dently of the first effect, predict quality of life. The current chapter shows that path

statistics can be used as an alternative approach to multivariate analysis of variance

(MANOVA) (Chap. 18), with a result similar to that of the more complex mathe-

matical approach used in MANOVA.

8 Note

More background, theoretical, and mathematical information of multivariate anal-

ysis with path statistics is given in Statistics applied to clinical trials 5th edition,

Chap. 25, Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 18

Multivariate Analysis of Variance
(35 and 30 Patients)

1 General Purpose

Multivariate analysis is a method that, simultaneously, assesses more than a single

outcome variable. It is different from repeated measures analysis of variance and

mixed models, that assess both the difference between the outcomes and the overall

effects of the predictors on the outcomes. Multivariate analysis, simultaneously,

assesses the separate effects of the predictors on one outcome adjusted for the other.

E.g., it can answer clinically important questions like: does drug-compliance not

only predict drug efficacy, but also, independently of the first effect, predict quality

of life. Path statistics can be used as an alternative approach to multivariate analysis

of variance (MANOVA) (Chap. 17). However, MANOVA is the real thing, because

it produces an overall level of significance of a predictive model with multiple

outcome and predictor variables.

2 Schematic Overview of Type of Data File

Outcome 1 outcome 2 predictor 1 predictor 2
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
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3 Primary Scientific Question

Does the inclusion of additional outcome variables enable to make better use of

predicting variables.

4 First Data Example

The effects of non compliance and counseling on treatment efficacy of a new

laxative were assessed in the Chap. 16. For multivariate analysis quality of life

scores were added as additional outcome variable. The first 10 patients of the data

file also used in Chap. 17 is given underneath.

Stools Qol Counsel Compliance

24,00 69,00 8,00 25,00

30,00 110,00 13,00 30,00

25,00 78,00 15,00 25,00

35,00 103,00 10,00 31,00

39,00 103,00 9,00 36,00

30,00 102,00 10,00 33,00

27,00 76,00 8,00 22,00

14,00 75,00 5,00 18,00

39,00 99,00 13,00 14,00

42,00 107,00 15,00 30,00

stools¼ stools per month

qol¼ quality of life scores
counseling¼ counselings per month
compliance¼ non-compliance with drug treatment

The entire data file is entitled “chapter17multivariatewithpath”, and is in extras.

springer.com. Start by opening the data file in SPSS. The module General Linear

Model consists of four statistical models:

Univariate,

Multivariate,

Repeated Measures,

Variance Components.

We will use here the statistical model Multivariate.

We will first assess whether counseling frequency is a significant predictor of

(1) both frequency improvement of stools and (2) improved quality of life.

Command:

Analyze.. . .General Linear Model.. . .Multivariate. . ..In dialog box Multivariate:

transfer “therapeutic efficacy” and “qol” to Dependent Variables and “counsel-

ing” to Fixed factors .. . .OK.
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The above table shows that MANOVA can be considered as another regression

model with intercepts and regression coefficients. Just like analysis of variance

(ANOVA) it is based on normal distributions and homogeneity of the variables.

SPSS has checked the assumptions, and the results as given indicate that the model

is adequate for the data. Generally, Pillai’s method gives the best robustness and

Roy’s the best p-values. We can conclude that counseling is a strong predictor of

both improvement of stools and improved quality of life. In order to find out which

of the two outcomes is most important, two ANOVAs with each of the outcomes

separately must be performed.

Command:

Analyze.. . .General Linear Model.. . .Univariate.. . .In dialog box Univariate trans-

fer “therapeutic efficacy” to Dependent Variables and “counseling” to Fixed

Factors.. . .OK.

Do the same for the predictor variable “compliance”.

Multivariant testsa

Effect Value F Hypothesis df Error df Sig.

Intercept Pillai’s Trace ,992 1185,131b 2,000 19,000 ,000

Wilks’ Lambda ,008 1185,131b 2,000 19,000 ,000

Hotelling’s Trace 124,751 1185,131b 2,000 19,000 ,000

Roys Largest Root 124,751 1185,131b 2,000 19,000 ,000

Counseling Pillai’s Trace 1,426 3,547 28,000 40,000 ,000

Wilks’ Lambda ,067 3,894b 28,000 38,000 ,000

Hotelling’s Trace 6,598 4,242 28,000 36,000 ,000

Roys Largest Root 5,172 7,389c 14,000 20,000 ,000
aDesign: Intercept + counseling
bExact statistic
cThe statistic is an upper bound on F that yields a lower bound on the significance level

Tests of between-subjects effects

Source Type III sum of squares df Mean square F Sig.

Corrected model 2733,005a 14 195,215 6,033 ,000

Intercept 26985,054 1 26985,054 833,944 ,000

Counseling 2733,005 14 195,215 6,033 ,000

Error 647,167 20 32,358

Total 36521,000 35

Corrected total 3380,171 34

Dependent Variable: therapeutic efficacy
aR Squared ¼ ,809 (Adjusted R Squared ¼ ,675)
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The above tables show that also in the ANOVAs counseling frequency is a

strong predictor of not only improvement of frequency of stools but also of

improved quality of life (improv freq stool¼ improvement of frequency of stools,

improve qol¼ improved quality of life scores)

In order to find out whether the compliance with drug treatment is a contributory

predicting factor, MANOVA with two predictors and two outcomes is performed.

Instead of “counseling” both “counseling” and “compliance” are transfered to

Fixed factors. The underneath table shows the results.

Tests of between-subjects effects

Source Type III sum of squares df Mean square F Sig.

Corrected model 6833,671a 14 488,119 4,875 ,001

Intercept 223864,364 1 223864,364 2235,849 ,000

Counseling 6833,671 14 488,119 4,875 ,001

Error 2002,500 20 100,125

Total 300129,000 35

Corrected total 8836,171 34

Dependent Variable:qol
aR Squared ¼ ,773 (Adjusted R Squared ¼ ,615)

Multivariate testsa

Effect Value F Hypothesis df Error df Sig.

Intercept Pillai’s Trace ,997 384,080b 1,000 1,000 ,032

Wilks’ Lambda ,003 384,080b 1,000 1,000 ,032

Hotelling’s Trace 384,080 384,080b 1,000 1,000 ,032

Roy’s Largest Root 384,080 384,080b 1,000 1,000 ,032

Counseling Pillai’s Trace ,933 1,392b 10,000 1,000 ,583

Wilks’ Lambda ,067 1,392b 10,000 1,000 ,583

Hotelling’s Trace 13,923 1,392b 10,000 1,000 ,583

Roy’s Largest Root 13,923 1,392b 10,000 1,000 ,583

Compliance Pillai’s Trace ,855 ,423b 14,000 1,000 ,854

Wilks’ Lambda ,145 ,423b 14,000 1,000 ,854

Hotelling’s Trace 5,917 ,423b 14,000 1,000 ,854

Roy’s Largest Root 5,917 ,423b 14,000 1,000 ,854

Counseling

*

compliance

Pillai’s Trace ,668 ,402b 5,000 1,000 ,824

Wilks’ Lambda ,332 ,402b 5,000 1,000 ,824

Hotelling’s Trace 2,011 ,402b 5,000 1,000 ,824

Roy’s Largest Root 2,011 ,402b 5,000 1,000 ,824
aDesign: Intercept + counseling + compliance + counseling * compliance
bExact statistic
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After including the second predictor variable the MANOVA is not significant

anymore. Probably, the second predictor is a confounder of the first one. The

analysis of this model stops here.

5 Second Data Example

As a second example we use the data from Field (Discovering SPSS, Sage London,

2005, p 571) assessing the effect of three treatment modalities on compulsive

behavior disorder estimated by two scores, a thought-score and an action-score

(Var¼ variable).

Action Thought Treatment

5,00 14,00 1,00

5,00 11,00 1,00

4,00 16,00 1,00

4,00 13,00 1,00

5,00 12,00 1,00

3,00 14,00 1,00

7,00 12,00 1,00

6,00 15,00 1,00

6,00 16,00 1,00

4,00 11,00 1,00

action¼ action outcome score

thought¼ thought outcome score

treatment¼ predictor with treatment modalities 0–2

The entire data file is in extras.springer.com, and is entitled “chapter18multivar-

iateanova”. Start by opening the data file. The module General Linear Model

consists of four statistical models:

Univariate,

Multivariate,

Repeated Measures,

Variance Components.

We will use here again the statistical model Multivariate.

Command:

Analyze. . ..General Linear Model.. . .Multivariate.. . .In dialog box Multivariate

transfer “action” and “thought” to Dependent Variables and “treatment” to

Fixed Factors .. . .OK.
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The Pillai test shows that the predictor (treatment modality) has a significant

effect on both thoughts and actions at p¼ 0,049. Roy’s test being less robust gives

an even better p-value of 0,020.

We will use again ANOVAs to find out which of the two outcomes is more

important.

Command:

Analyze.. . .General Linear Model. . ..Univariate.. . .In dialog box Univariate trans-

fer “actions” to Dependent variables and “treatment” to Fixed factors.. . .OK.

Do the same for variable “thought”.

Multivariate testsa

Effect Value F Hypothesis df Error df Sig.

Intercept Pillai’s Trace ,983 745,230b 2,000 26,000 ,000

Wilks’Lambda ,017 745,230b 2,000 26,000 ,000

Hotelling’s Trace 57,325 745,230b 2,000 26,000 ,000

Roy’s Largest Root 57,325 745,230b 2,000 26,000 ,000

treatment Pillai’s Trace ,318 2,557 4,000 54,000 ,049

Wilks’Lambda ,699 2,555b 4,000 52,000 ,050

Hotelling’s Trace ,407 2,546 4,000 50,000 ,051

Roy’s Largest Root ,335 4,520c 2,000 27,000 ,020
aDesign: Intercept + treatment
bExact statistic
cThe statistic is an upper bound on F that yields a lower bound on the significance level

Tests of between-subjects effects

Source Type III sum of squares df Mean square F Sig.

Corrected model 10,467a 2 5,233 2,771 ,080

Intercept 616,533 1 616,533 326,400 ,000

Treatment 10,467 2 5,233 2,771 ,080

Error 51,000 27 1,889

Total 678,000 30

Corrected total 61,467 29

Dependent Variable:action score
aR Squared ¼ ,170 (Adjusted R Squared ¼ ,109)

Tests of between-subjects effects

Source Type III sum of squares df Mean square F Sig.

Corrected model 19,467a 2 9,733 2,154 ,136

Intercept 6336,533 1 6336,533 1402,348 ,000

Treatment 19,467 2 9,733 2,154 ,136

Error 122,000 27 4,519

Total 6478,000 30

Corrected total 141,467 29

Dependent Variable:thought score
aR Squared ¼ ,138 (Adjusted R Squared ¼ ,074)
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The above two tables show that in the ANOVAs nor thoughts nor actions are

significant outcomes of treatment modality anymore at p< 0,05. This would mean

that the treatment modality is a rather weak predictor of either of the outcomes, and

that it is not able to significantly predict a single outcome, but that it significantly

predicts two outcomes pointing into a similar direction.

What advantages does MANOVA offer compared to multiple ANOVAs.

1. It prevents the type I error from being inflated.

2. It looks at interactions between dependent variables.

3. It can detect subgroup properties and includes them in the analysis.

4. It can demonstrate otherwise underpowered effects.

Multivariate analysis should not be used for explorative purposes and data

dredging, but should be based on sound clinical arguments.

A problem with multivariate analysis with binary outcome variables is that after

iteration the data often do not converse. Instead multivariate probit analysis avail-

able in STATA statistical software can be performed (see Chap. 25 in. Statistics

Applied to clinical studies 5th edition, Springer Heidelberg Germany, 2012, from

the same authors)

6 Conclusion

Multivariate analysis, simultaneously, assesses the separate effects of the predictors

on one outcome variable adjusted for another outcome variable. For example, it can

answer clinically important questions like: does drug-compliance not only predict

drug efficacy, but also, independently of the first effect, predict quality of life. Path

statistics can be used as an alternative approach to multivariate analysis of variance

(MANOVA) (Chap. 17). However, MANOVA is the real thing, because it produces

an overall level of significance of a predictive model with multiple outcome and

predictor variables. Post hoc ANOVAS are required to find out which of the

outcomes is more important.

7 Note

More background, theoretical, and mathematical information of multivariate anal-

ysis with path statistics is given in Statistics applied to clinical trials 5th edition,

Chap. 25, Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 19

Missing Data Imputation (35 Patients)

1 General Purpose

In clinical research missing data are common, and compared to demographics,

clinical research produces generally smaller files, making a few missing data more

of a problem than it is with demographic files. As an example, a 35 patient data file

of 3 variables consists of 3� 35¼ 105 values if the data are complete. With only

5 values missing (1 value missing per patient) 5 patients will not have complete

data, and are rather useless for the analysis. This is not 5 % but 15 % of this small

study population of 35 patients. An analysis of the remaining 85 % patients is likely

not to be powerful to demonstrate the effects we wished to assess. This illustrates

the necessity of data imputation.

2 Schematic Overview of Type of Data File

Outcome predictor predictor 
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .

3 Primary Scientific Question

Primary question: what is the effect of regression imputation and multiple imputa-

tions on the sensitivity of testing a study with missing data.
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4 Data Example

The effects of an old laxative and of age on the efficacy of a novel laxative is

studied. The data file with missing data is given underneath.

Outcome Predictor 1 Predictor 2

Efficacy new laxative (stools/mth) Efficacy old laxative (stools/mth) Age (years)

24,00 8,00 25,00

30,00 13,00 30,00

25,00 15,00 25,00

35,00 10,00 31,00

39,00 9,00

30,00 10,00 33,00

27,00 8,00 22,00

14,00 5,00 18,00

39,00 13,00 14,00

42,00 30,00

41,00 11,00 36,00

38,00 11,00 30,00

39,00 12,00 27,00

37,00 10,00 38,00

47,00 18,00 40,00

13,00 31,00

36,00 12,00 25,00

12,00 4,00 24,00

26,00 10,00 27,00

20,00 8,00 20,00

43,00 16,00 35,00

31,00 15,00 29,00

40,00 14,00 32,00

31,00 30,00

36,00 12,00 40,00

21,00 6,00 31,00

44,00 19,00 41,00

11,00 5,00 26,00

27,00 8,00 24,00

24,00 9,00 30,00

40,00 15,00

32,00 7,00 31,00

10,00 6,00 23,00

37,00 14,00 43,00

19,00 7,00 30,00
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5 Regression Imputation

First we will perform a multiple linear regression analysis of the above data. For

convenience the data file is in extras.springer.com, and is entitled “chapter19mis-

singdata”. We will start by opening the data file in SPSS. For a linear regression the

module Regression is required. It consists of at least ten different statistical models,

such as linear modeling, curve estimation, binary logistic regression, ordinal

regression etc. Here we will simply use the linear model.

Command:

Analyze....Regression....Linear....Dependent: Newlax....Independent(s): Bisacodyl,

Age....click OK.

The software program will exclude the patients with missing data from the

analysis. The analysis is given underneath.

Using the cut-off level of p¼ 0,15 for statistical significance both the efficacy of

the old laxative and patients’ age are significant predictors of the new laxative.

The regression equation is as follows

y ¼ aþ bx1 þ cx2

y ¼ 0, 975þ 1, 890x1 þ 0, 305x2

Using this equation, we use the y-value and x1-value to calculate the missing

x2-value. Similarly, the missing y- and x1 –values are calculated and imputed.

The underneath data file has the imputed values.

Newlax Oldlax Age

24,00 8,00 25,00

30,00 13,00 30,00

25,00 15,00 25,00

35,00 10,00 31,00

39,00 9,00 69,00

30,00 10,00 33,00

27,00 8,00 22,00

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients t Sig.

B Std. error Beta

1 (Constant) ,975 4,686 ,208 ,837

Bis acodyl 1,890 ,322 ,715 5,865 ,000

age ,305 ,180 ,207 1,698 ,101
aDependent Variable: new lax
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14,00 5,00 18,00

39,00 13,00 14,00

42,00 17,00 30,00

41,00 11,00 36,00

38,00 11,00 30,00

39,00 12,00 27,00

37,00 10,00 38,00

47,00 18,00 40,00

35,00 13,00 31,00

36,00 12,00 25,00

12,00 4,00 24,00

26,00 10,00 27,00

20,00 8,00 20,00

43,00 16,00 35,00

31,00 15,00 29,00

40,00 14,00 32,00

31,00 11,00 30,00

36,00 12,00 40,00

21,00 6,00 31,00

44,00 19,00 41,00

11,00 5,00 26,00

27,00 8,00 24,00

24,00 9,00 30,00

40,00 15,00 35,00

32,00 7,00 31,00

10,00 6,00 23,00

37,00 14,00 43,00

19,00 7,00 30,00

A multiple linear regression of the above data file with the imputed data included

produced b-values (regression coefficients) equal to those of the non-imputed data

file, but the standard errors fell, and, consequently, sensitivity of testing was

increased with a p-value falling from 0,101 to 0,005 (see the table on the next page).

6 Multiple Imputations

Multiple imputations is probably a better device for missing data imputation than

regression imputation. In order to perform the multiple imputation method the

SPSS add-on module “Missing Value Analysis” has to be used. First, the pattern

of the missing data must be checked using the command “Analyze Pattern”. If the

missing data are equally distributed and no “islands” of missing data exist, the

model will be appropriate. For analysis the statistical model Impute Missing Values

in the module Multiple Imputations is required.
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Command:

Analyze. . ..Missing Value Analysis. . ..Transform. . ..Random Number Generators

. . ..Analyze.. . .Multiple Imputations. . ..Impute Missing Data.. . .OK (the

imputed data file must be given a new name e.g. “study name imputed”).

Five or more times a file is produced by the software program in which the

missing values are replaced with simulated versions using the Monte Carlo method

(see also the Chaps. 27 and 50 for explanation of the Monte Carlo method). In our

example the variables are continuous, and, thus, need no transformation.

Command:

Split File. . ..click OK.

If you, subsequently, run a usual linear regression of the summary of your

“imputed” data files (commands as given above), then the software will automat-

ically produce pooled regression coefficients instead of the usual regression coef-

ficients. In our example the multiple imputation method produced a much larger

p-value for the predictor age than the regression imputation did as demonstrated in

the underneath table (p¼ 0,097 versus p¼ 0,005). The underneath table also shows

the result of testing after mean imputation and hot deck imputation as reviewed in

Chapter 3 of the e book “Statistics on a Pocket Calculator Part 2”, Springer

New York, 2012, from the same authors (B¼ regression coefficient, SE¼ standard

error, T¼ t-value, Sig¼ p-value).

B1 SE1 bisacodyl t Sig B2 SE2 age t Sig

Full data

1.82 0.29 6.3 0.0001 0.34 0.16 2.0 0.048

5 % Missing data

1.89 0.32 5.9 0.0001 0.31 0.19 1.7 0.101

Means imputation

1.82 0.33 5.6 0.0001 0.33 0.19 1.7 0.094

Hot deck imputation

1.77 0.31 5.7 0.0001 0.34 0.18 1.8 0.074

Regression imputation

1.89 0.25 7.6 0.0001 0.31 0.10 3.0 0.005

Multiple imputations

1.84 0.31 5.9 0.0001 0.32 0.19 1.7 0.097

The result of multiple imputations was, thus, less sensitive than that of regres-

sion imputation. Actually, the result was rather similar to that of mean and hot deck

imputation. Why do it then anyway. The argument is that, with the multiple

imputation method, the imputed values are not used as constructed real values,

but rather as a device for representing missing data uncertainty. This approach is a

safe and probably, scientifically, better alternative to the other methods.
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7 Conclusion

Regression imputation tends to overstate the certainty of the data testing. Multiple

imputations is, probably, a better alternative to regression imputation. However, it

is not in the basic SPSS program and requires the add-on module “Missing Value

Analysis”.

8 Note

More background, theoretical, and mathematical information of missing data man-

agements is given in Statistics applied to clinical trials 5th edition, Chap. 22,

Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 20

Meta-regression (20 and 9 Studies)

1 General Purpose

Heterogeneity in meta-analysis makes pooling of the overall data pretty meaning-

less. Instead, a careful examination of the potential causes has to be accomplished.

Regression analysis is generally very helpful for that purpose.

2 Schematic Overview of Type of Data File

____________________________________________________
Outcome predictor predictor predictor predictor study no.
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
____________________________________________________

3 Primary Scientific Question

The characteristics of the studies in a meta-analysis were pretty heterogeneous.

What were the causal factors of the heterogeneity.
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4 Data Example 1

Twenty studies assessing the incidence of ADEs (adverse drug effects) were meta-

analyzed (Atiqi et al.: Int J Clin Pharmacol Ther 2009; 47: 549–56). The studies

were very heterogenous. We observed that studies performed by pharmacists

(0) produced lower incidences than did the studies performed by internists (1).

Also the study magnitude and age was considered as possible causes of heteroge-

neity. The data file is underneath.

%ADEs Study magnitude Clinicians’
study yes¼ 1

Elderly study

yes¼ 1

Study no

21,00 106,00 1,00 1,00 1

14,40 578,00 1,00 1,00 2

30,40 240,00 1,00 1,00 3

6,10 671,00 0,00 0,00 4

12,00 681,00 0,00 0,00 5

3,40 28411,00 1,00 0,00 6

6,60 347,00 0,00 0,00 7

3,30 8601,00 0,00 0,00 8

4,90 915,00 0,00 0,00 9

9,60 156,00 0,00 0,00 10

6,50 4093,00 0,00 0,00 11

6,50 18820,00 0,00 0,00 12

4,10 6383,00 0,00 0,00 13

4,30 2933,00 0,00 0,00 14

3,50 480,00 0,00 0,00 15

4,30 19070,00 1,00 0,00 16

12,60 2169,00 1,00 0,00 17

33,20 2261,00 0,00 1,00 18

5,60 12793,00 0,00 0,00 19

5,10 355,00 0,00 0,00 20

For convenience the data file is in extras.springer.com, and is entitled

“chapter20metaregression1”. We will start by opening the data file in SPSS.

A multiple linear regression will be performed with percentage ADEs as out-

come variable and the study magnitude, the type of investigators (pharmacist or

internist), and the age of the study populations as predictors. For analysis the

statistical model Linear in the module Regression is required.

Command:

Analyze. . ..Regression. . ..Linear. . ..Dependent: % ADEs . . ..Independent(s):
Study magnitude, Age, and type of investigators. . ..click OK.
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The above table is in the output sheets, and shows the results. After adjustment

for the age of the study populations and study magnitude, the type of research group

was the single and very significant predictor of the heterogeneity. Obviously,

internists more often diagnose ADEs than pharmacists do.

5 Data Example 2

Nine studies of the risk of infarction of patients with coronary artery disease and

collateral coronary arteries were meta-analyzed. The studies were heterogeneous.

A meta-regression was performed with the odds ratios of infarction as dependent

and the odds ratios of various cardiovascular risk factors as independent variables.

For convenience the data file is in extras.springer.com. It is entitled

“chapter20metaregression2”. Simple linear regressions with the odds ratios of

infarction as dependent variable were performed. For analysis again the statistical

model Linear in the module Regression is required.

Coefficientsa

Model

Unstandardized

coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) 6,924 1,454 4,762 ,000

Study-magnitude �7,674E-5 ,000 �,071 �,500 ,624

Elderly¼ 1 �1,393 2,885 �,075 �,483 ,636

Clinicians¼ 1 18,932 3,359 ,887 5,636 ,000
aDependent Variable: percentageADEs

Infarct Diabetes Hypert Cholest Smoking

0,44 1,61 1,12 2,56 0,93

0,62 0,62 1,10 1,35 0,93

0,59 1,13 0,69 1,33 1,85

0,30 0,76 0,85 1,34 0,78

0,62 1,69 0,83 1,11 1,09

1,17 1,02 1,28 (two values were missing)

0,30 0,13 0,17 0,21 0,27

0,70 1,52 0,79 0,85 1,25

0,26 0,65 0,74 1,04 0,83

Inf¼ odds ratio of infarction on patients with collaterals versus patients without

diabetes¼ odds ratio of diabetes ” ” ”

hypert¼ odds ratio of hypertension ” ” ”

cholest¼ odds ratio of cholesterol ” ” ”

smoking¼ odds ratio of smoking ” ” ”
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Command:

Analyze. . ..Regression. . ..Linear. . ..Dependent: odds ratio of infarction . . ..
Independent:. . ..OK.

The underneath tables show, that, with p¼ 0,15 as cut-off value for significance,

only diabetes and smoking were significant covariates of the odds ratios of infarc-

tion in patients with coronary artery disease and collaterals. After mean imputation

of the missing values (Statistics on a Pocket Calculator Part 2, Springer New York

2012, from the same authors) the results were unchanged. In the multiple linear

regression none of the covariates remained significant. However, with no more than

nine studies multiple linear regression is powerless. The conclusion was that the

beneficial effect of collaterals on coronary artery disease was little influenced by the

traditional risk factors of coronary artery disease. Heterogeneity of this meta-

analysis was unexplained.

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) ,284 ,114 2,489 ,047

ORdiabetes ,192 ,100 ,616 1,916 ,104
aDependent Variable: ORinfarction

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) ,208 ,288 ,724 ,493

ORhypertension ,427 ,336 ,433 1,270 ,245
aDependent Variable: ORinfarction

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) ,447 ,148 3,021 ,023

ORcholesterol ,026 ,108 ,099 ,243 ,816
aDependent Variable: ORinfarction

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) ,184 ,227 ,810 ,445

ORsmoking ,363 ,206 ,554 1,760 ,122
aDependent Variable: ORinfarction
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6 Conclusion

A meta-analysis of studies assessing the incidence of emergency admissions due to

adverse drug effects (ADEs) was very heterogeneous. A meta-analysis of the risk of

infarction in patients with coronary heart disease and collateral coronary arteries

was heterogeneous. Meta-regressions are increasingly used as approach to sub-

group analysis to assess heterogeneity in meta-analyses. The advantage of meta-

regression compared to simple subgroup analyses is that multiple factors can be

assessed simultaneously and that confounders and interacting factors can be

adjusted.

7 Note

More background, theoretical and mathematical information of meta-regressions is

given in Statistics applied to clinical studies 5th edition, Chap. 34, Springer

Heidelberg Germany, 2012, from the same authors.
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Chapter 21

Poisson Regression for Outcome
Rates (50 Patients)

1 General Purpose

Poisson regression is different from linear en logistic regression, because it uses a

log transformed dependent variable. For rates, defined as numbers of events per

person per time unit, Poisson regression is very sensitive and probably better than

standard regression methods.

2 Schematic Overview of Type of Data File

_________________________________________
Outcome predictor predictor predictor weight

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .
___________________________
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3 Primary Scientific Question

Can a multiple poisson regression be used to estimate the effect of certain predictors

on numbers of clinical events.

4 Data Example

Fifty patients were followed for numbers of episodes of paroxysmal atrial fibrilla-

tion (PAF), while on treated with two parallel treatment modalities. The data file is

below. The scientific question was: do psychological and social factors affect the

rates of episodes of paroxysmal atrial fibrillation.

Paf Treat Psych Soc Weight

4 1 56,99 42,45 73

4 1 37,09 46,82 73

2 0 32,28 43,57 76

3 0 29,06 43,57 74

3 0 6,75 27,25 73

13 0 61,65 48,41 62

11 0 56,99 40,74 66

7 1 10,39 15,36 72

10 1 50,53 52,12 63

9 1 49,47 42,45 68

outcome¼ numbers of episodes of paroxysmal atrial fibrillation
(paf)
treat¼ treatment modality predictor
psych¼ psychological score predictor
soc¼ social score predictor
weight¼ days of observations

The entire data file is in extras.springer.com, and it is entitled “chapter21pois-

soncontinuous”. First, we will perform a linear regression analysis with paf as

outcome variable and the other variables as predictors. Start by opening the data

file in SPSS.

5 Multiple Linear Regression

For analysis the statistical model Linear in the module Regression is required.

Command:

Analyze. . ..Regression. . ..Linear. . ..Dependent Variable: episodes of paroxysmal

atrial fibrillation. . ..Independent: treatment modality, psychological score,

social score, days of observation. . ..click OK.
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The above table show that treatment modality is weakly significant, and psy-

chological and social score are not. Furthermore, days of observation is very

significant. However, it is not entirely appropriate to include this variable if your

outcome is the numbers of events per person per time unit. Therefore, we will

perform a linear regression, and adjust the outcome variable for the differences in

days of observation using weighted least square regression.

6 Weighted Least Squares Analysis

For analysis the statistical model Linear in the module Regression is required.

Command:

Analyze. . ..Regression. . ..Linear. . ..Dependent: episodes of paroxysmal atrial

fibrillation. . ..Independent: treatment modality, psychological score, social

score . . ..WLS Weight: days of observation. . .. click OK.

The above table shows the results. A largely similar pattern is observed, but

treatment modality is no more statistically significant. We will now perform a

Poisson regression which is probably more appropriate for rate data.

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) 49,059 5,447 9,006 ,000

Treat �2,914 1,385 �,204 �2,105 ,041

Psych ,014 ,052 ,036 ,273 ,786

Soc �,073 ,058 �,169 �1,266 ,212

Days �,557 ,074 �,715 �7,535 ,000
aDependent Variable: paf

Coefficientsa,b

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) 10,033 2,862 3,506 ,001

Treat �3,502 1,867 �,269 �1,876 ,067

Psych ,033 ,069 ,093 ,472 ,639

Soc �,093 ,078 �,237 �1,194 ,238
aDependent Variable: paf
bWeighted Least Squares Regression – Weighted by days
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7 Poisson Regression

For analysis the module Generalized Linear Models is required. It consists of two

submodules: Generalized Linear Models and Generalized Estimation Models. The

first submodule covers many statistical models like gamma regression (Chap. 30),

Tweedie regression (Chap. 31), Poisson regression (the current chapter and

Chap. 47), and the analysis of paired outcomes with predictors (Chap. 3). The

second submodule is for analyzing binary outcomes (Chap.42). For the current

analysis the statistical model Poisson regression in the module Generalized Linear

Models is required.

Command:

Analyze. . ..Generalized Linear Models. . ..mark: Custom. . ..Distribution: Poisson
. . ...Link function: Log. . ..Response: Dependent variable: numbers of episodes

of PAF. . ..Scale Weight Variable: days of observation. . ..Predictors: Main

Effect: treatment modality. . ..Covariates: psychological score, social score. . ..
Model: main effects: treatment modality, psychological score, social score. . ..
Estimation: mark Model-based Estimation. . ..click OK.

The above table gives the results. All of a sudden, all of the predictors including

treatment modality, psychological and social score are very significant predictors of

the paf rate.

Parameter estimates

Parameter B Std. error

95 % Wald confidence

interval Hypothesis test

Lower Upper Wald chi-square df Sig.

(Intercept) 1,868 ,0206 1,828 1,909 8256,274 1 ,000

[Treat¼ 0] ,667 ,0153 ,637 ,697 1897,429 1 ,000

[Treat¼ 1] 0a

Psych ,006 ,0006 ,005 ,008 120,966 1 ,000

Soc �,019 ,0006 �,020 �,017 830,264 1 ,000

(Scale) 1b

Dependent Variable: paf

Model: (Intercept), treat, psych, soc
aSet to zero because this parameter is redundant
bFixed at the displayed value
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8 Conclusion

Poisson regression is different from linear en logistic regression, because it uses a

log transformed dependent variable. For rate analysis Poisson regression is very

sensitive and probably better than standard regression methods. The methodology is

explained.

9 Note

More background, theoretical and mathematical information about Poisson regres-

sion is given in Statistics applied to clinical studies 5th edition, Chap. 23, Springer

Heidelberg Germany, 2012, from the same authors.
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Chapter 22

Confounding (40 Patients)

1 General Purpose

If in a parallel-group trial the patient characteristics are equally distributed between

the two treatment groups, then any difference in outcome can be attributed to the

different effects of the treatments. However, if not, we have a problem. The

difference between the treatment groups may be due, not only to the treatments

given, but also to differences in characteristics between the two treatment groups.

The latter differences are called confounders or confounding variables. Assessment

for confounding is explained.

2 Schematic Overview of Type of Data File

___________________________
Outcome predictor confounder
. . .
. . .
. . .
. . .
. . .
. . .
. . .
____________________________
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3 Primary Scientific Question

Is one treatment better than the other in spite of confounding in the study.

4 Data Example

A 40 patient parallel group study assesses the efficacy of a sleeping pill versus

placebo. We suspect that confounding may be in the data: the females may have

received the placebo more often than the males.

Outcome Treat Gender

3,49 0,00 0,00

3,51 0,00 0,00

3,50 0,00 0,00

3,51 0,00 0,00

3,49 0,00 0,00

3,50 0,00 0,00

3,51 0,00 0,00

3,49 0,00 0,00

3,50 0,00 0,00

3,49 0,00 0,00

outcome¼ treatment outcome
(hours of sleep)
treat¼ treatment modality
(0¼ placebo, 1¼ sleeping pill)
gender¼ gender (0¼ female,
1¼male)

The first 10 patients of the 40 patient study are given above. The entire data file is

in extras.springer.com, and is entitled “chapter22confounding”. Start by opening

the data file in SPSS.

5 Some Graphs of the Data

We will then draw the mean results of the treatment modalities with their error bars.

Command:

Graphs. . ..Legacy dialogs.. . .Error Bars.. . .mark Summaries for groups of cases.. . .
Define.. . .Variable: hoursofsleep.. . .Category Axis; treat.. . .Confidence Interval
for Means: 95 %....click OK.
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The above graph shows that the treatment 1 tended to perform a bit better than

treatment 0, but, given the confidence intervals (95 % CIs), the difference is not

significantly different. Females tend to sleep better than males, and we suspect that

confounding may be in the data: the females may have received the placebo more

often than the males. We, therefore, draw a graph with mean treatment results in the

genders.

Command:

Graphs. . ..Legacy dialogs. . ..Error Bars. . ..mark Summaries for groups of cases

.. . .Define.. . .Variable: hoursofsleep. . ..Category Axis: gender. . ..Confidence
Interval for Means: 95 %....click OK.
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The graph shows that the females tend to perform better than the males.

However, again the confidence intervals are wider than compatible with a statisti-

cally significant difference. We will, subsequently, perform simple linear regres-

sions with respectively treatment modality and gender as predictors.

6 Linear Regression Analyses

For analysis the statistical model Linear in the module Regression is required.

Command:

Analyze. . ..Regression. . ..Linear. . ..Dependent: hoursofsleep. . ..Independent:
treatment modality. . ..click OK.

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) 3,495 ,004 918,743 ,000

Treatment ,010 ,005 ,302 1,952 ,058
aDependent Variable: hours of sleep
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The above table shows that treatment modality is not a significant predictor of

the outcome at p< 0,050.

We will also use linear regression with gender as predictor and the same

outcome variable.

Command:

Analyze. . ..Regression. . ..Linear. . ..Dependent: hoursofsleep. . ..Independent:
gender. . ..click OK.

Also gender is not a significant predictor of the outcome, hours of sleep at

p< 0,050. Confounding between treatment modality and gender is suspected. We

will perform a multiple linear regression with both treatment modality and gender

as independent variables.

Command:

Analyze. . ..Regression. . ..Linear. . ..Dependent: hoursofsleep. . ..Independent:
treatment modality, gender. . ..click OK.

The above table shows, that, indeed, both gender and treatment are very signif-

icant predictors of the outcome after adjustment for one another.

Coefficientsa

Model

Unstandardized coefficients Standardized coefficient

t Sig.B Std. error Beta

1 (Constant) 3,505 ,004 921,504 ,000

Gender �,010 ,005 �,302 �1,952 ,058
aDependent Variable: hours of sleep

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) 3,500 ,003 1005,280 ,000

Gender �,021 ,005 �,604 �3,990 ,000

Treatment ,021 ,005 ,604 3,990 ,000
aDependent Variable: hours of sleep
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The above figure tries to explain what is going on. If one gender receives few

treatments 0 and the other gender receives few treatments 1, then an overall

regression line will be close to horizontal, giving rise to the erroneous conclusion

that no difference in the treatment efficacy exists between the treatment modalities.

This phenomenon is called confounding, and can be dealt with in several ways:

(1) subclassification (Statistics on a Pocket Calculator, Part 1, Chapter 17, Springer

New York, 2011, from the same authors), (2) propensity scores and propensity

score matching (Statistics on a Pocket Calculator, Part 2, Chapter 5, Springer

New York, 2012, from the same authors), and (3) multiple linear regression as

performed in this chapter. If there are multiple confounders like the traditional risk

factors for cardiovascular disease, then multiple linear regression is impossible,

because with many confounders this method loses power. Instead, propensity scores

of the confounders can be constructed, one propensity score per patient, and the

individual propensity scores can be used as covariate in a multiple regression model

(Statistics on a Pocket Calculator, Part 2, Chapter 5, Springer New York, 2012,

from the same authors).

7 Conclusion

If in a parallel-group trial the patient characteristics are equally distributed between

the two treatment groups, then any difference in outcome can be attributed to the

different effects of the treatments. However, if not, we have a problem. The

difference between the treatment groups may be due, not only to the treatments

given but, also to differences in characteristics between the two treatment groups.

The latter differences are called confounders or confounding variables. Assessment

for confounding is explained.
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8 Note

More background, theoretical, and mathematical information is available in Statis-

tics applied to clinical studies 5th edition, Chap. 28, Springer Heidelberg Germany,

2012, from the same authors.

8 Note 133



Chapter 23

Interaction, Random Effect Analysis
of Variance (40 Patients)

1 General Purpose

In pharmaceutical research and development, multiple factors like age, gender,

comorbidity, concomitant medication, genetic and environmental factors

co-determine the efficacy of the new treatment. In statistical terms we say, they

interact with the treatment efficacy.

Interaction is different from confounding. In a trial with interaction effects the

parallel groups have similar characteristics. However, there are subsets of patients

that have an unusually high or low response.

90

males

females

treatment modality
0 - control medicine
1 - new medicine

70

50

30

10

0 1
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The above figure shows the essence of interaction: the males perform better than

the females with the new medicine, with the control treatment the opposite (or no

difference between males and females) is true.

2 Schematic Overview of Type of Data File

_________________________
Outcome predictor predictor
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
_________________________

3 Primary Scientific Question

Are there not only independent effects of two predictors on the outcome, but also

interaction effects between two predictors on the outcome.

4 Data Example

In a 40 patient parallel-group study of the effect of verapamil and metoprolol on

paroxysmal atrial fibrillation (PAF) the possibility of interaction between gender

and treatment on the outcome was assessed. The numbers of episodes of paroxys-

mal atrial tachycardias per patient, are the outcome variable. The entire data file is

in extras.springer.com, and is entitled “chapter23interaction”. The first ten patients

of the data file is given below.

PAF Treat Gender

52,00 ,00 ,00

48,00 ,00 ,00

43,00 ,00 ,00

50,00 ,00 ,00

43,00 ,00 ,00
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44,00 ,00 ,00

46,00 ,00 ,00

46,00 ,00 ,00

43,00 ,00 ,00

49,00 ,00 ,00

PAF¼ outcome¼ numbers of episodes of PAF

treat¼ 0 verapamil, 1 metoprolol

gender¼ 0 female, 1 male

5 Data Summaries

Verapamil Metoprolol

Males

52 28

48 35

43 34

50 32

43 34

44 27

46 31

46 27

43 29

49 + 25 +

464 302 766

Females

38 43

42 34

42 33

35 42

33 41

38 37

39 37

34 40

33 36

34 + 35 +

368 378 746

832 680

Overall, metoprolol seems to perform better. However, this is only true for one

subgroup (males). The presence of interaction between gender and treatment

modality can be assessed several ways: (1) t-tests (see Chapter 18, Statistics on a

pocket calculator part one, Springer New York, 2011, from the same authors),
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(2) analysis of variance, and (3) regression analysis. The data file is given

underneath.

6 Analysis of Variance

We will first perform an analysis of variance. Open the data file in SPSS.

For analysis the General Linear Model is required. It consists of four statistical

models:

Univariate,

Multivariate,

Repeated Measures,

Variance Components.

We will use here Univariate.

Command:

Analyze. . ..General Linear Model. . ..Univariate Analysis of Variance . . .. Depen-
dent: PAF. . ..Fixed factors:treatment, gender. . ..click OK.

The above table shows that there is a significant interaction between gender and

treatment at p¼ 0,0001 (* is sign of multiplication). In spite of this, the treatment

modality is a significant predictor of the outcome. In situations like this it is often

better to use a socalled random effect model. The “sum of squares treatment” is,

then, compared to the “sum of squares interaction” instead of the “sum of squares

error”. This is a good idea, since the interaction was unexpected, and is a major

contributor to the error, otherwise called spread, in the data. This would mean, that

Tests of Between-Subjects Effects

Dependent Variable: outcome

Source Type III sum of squares df Mean square F Sig.

Corrected model 1327,200a 3 442,400 37,633 ,000

Intercept 57153,600 1 57153,600 4861,837 ,000

Treatment 577,600 1 577,600 49,134 ,000

Gender 10,000 1 10,000 ,851 ,363

Treatment * gender 739,600 1 739,600 62,915 ,000

Error 423,200 36 11,756

Total 58904,000 40

Corrected total 1750,400 39
aR Squared ¼ ,758 (Adjusted R Squared ¼ ,738)
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we have much more spread in the data than expected, and we will lose a lot

of power to prove whether or not the treatment is a significant predictor of the

outcome, episodes of PAF. Random effect analysis of variance requires the

following commands:

Command:

Analyze. . ..General Linear Model. . ..Univariate Analysis of Variance . . .. Depen-
dent: PAF. . ..Fixed Factors: treatment. . .. Random Factors: gender. . ..click OK

The underneath table shows the results. As expected the interaction effect

remained statistically significant, but the treatment effect has now lost its signifi-

cance. This is realistic, since in a trial with major interactions, an overall treatment

effect analysis is not relevant anymore. A better approach will be a separate

analysis of the treatment effect in the subgroups that caused the interaction.

As a contrast test we may use regression analysis for these data. For that purpose

we first have to add an interaction variable:

interaction variable¼ treatment modality * gender

(*¼ sign of multiplication).

Underneath the first 10 patients of the above data example is given, now

including the interaction variable.

Tests of between-subjects effects

Dependent Variable:outcome

Source

Type III sum of

squares df

Mean

square F Sig.

Intercept Hypothesis 57153,600 1 57153,600 5715,360 ,008

Error 10,000 1 10,000a

Treatment Hypothesis 577,600 1 577,600 ,781 ,539

Error 739,600 1 739,600b

Gender Hypothesis 10,000 1 10,000 ,014 ,926

Error 739,600 1 739,600b

Treatment *

gender

Hypothesis 739,600 1 739,600 62,915 ,000

Error 423,200 36 11,756c

aMS (gender)
bMS (treatment * gender)
cMS (Error)
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PAF Treat Gender Interaction

52,00 ,00 ,00 ,00

48,00 ,00 ,00 ,00

43,00 ,00 ,00 ,00

50,00 ,00 ,00 ,00

43,00 ,00 ,00 ,00

44,00 ,00 ,00 ,00

46,00 ,00 ,00 ,00

46,00 ,00 ,00 ,00

43,00 ,00 ,00 ,00

49,00 ,00 ,00 ,00

PAF¼ outcome¼ numbers of episodes of

PAF

treat¼ o verapamil, 1 metoprolol

gender¼ 0 female, 1 male

interaction¼ interaction between treat and

gender¼ treat * gender

7 Multiple Linear Regression

The interaction variable will be used together with treatment modality and gender

as independent variables in a multiple linear regression model. For analysis the

statistical model Linear in the module Regression is required.

Command:

Analyze. . ..Regression. . ..Linear. . ..Dependent: PAF . . .Independent (s): treat,

gender, interaction. . ..click OK.

The above table shows the results of the multiple linear regression. Like

with fixed effect analysis of variance, both treatment modality and interaction

are statistically significant. The t-value-interaction of the regression¼ 7,932. The

F-value-interaction of the fixed effect analysis of variance¼ 62,916 and this equals

7,9322. Obviously, the two approaches make use of a very similar arithmetic.

Unfortunately, for random effect regression SPSS has limited possibilities.

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) 46,400 1,084 42,795 ,000

Treatment �16,200 1,533 �1,224 �10,565 ,000

Gender �9,600 1,533 �,726 �6,261 ,000

Interaction 17,200 2,168 1,126 7,932 ,000
aDependent Variable: outcome
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8 Conclusion

Interaction is different from confounding (Chap. 22). In a trial with interaction

effects the parallel group characteristics are equally distributed between the groups.

However, there are subsets of patients that have an unusually high or low response

to one of the treatments. Assessments are reviewed.

9 Note

More background, theoretical, and mathematical information of interaction assess-

ments is given in Statistics applied to clinical studies 5th edition, Chap. 30, Springer

Heidelberg Germany, 2012, from the same authors.
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Chapter 24

General Loglinear Models for Identifying
Subgroups with Large Health Risks
(12 Populations)

1 General Purpose

Data files that assess the effect of discrete predictors on frequency counts of

morbidities/mortalities can be assessed with multiple linear regression. However,

the results do not mean too much, if the predictors interact with one another. In that

case they can be cross-classified in tables of multiple cells using general loglinear

modeling.

2 Schematic Overview of Type of Data File

____________________________________________
predictor
discrete

predictor
discrete

predictor
discrete

frequency
count

cell structure
variable

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .
____________________________________

Linear regresssion with frequency count as continuous 
outcome can test whether the predictors are independent 
determinants of the outcome. However, they do not tell 
you whether one predictor is significantly different from 
the other and whether interaction between the predictors is 
in the data.
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3 Primary Scientific Question

Can general loglinear modeling identify subgroups with significantly larger inci-

dent risks than other subgroups.

4 Data Example

In patients at risk of infarction with little soft drink consumption, and consumption

of wine and other alcoholic beverages the incident risk of infarction equals

240/930¼ 24.2 %, in those with lots of soft drinks, no wine, and no alcohol

otherwise it is 285/1043¼ 27.3 %.

Soft drink

(1¼ little)

Wine

(0¼ no)

Alc beverages

(0¼ no)

Infarcts number Population

number

1,00 1,00 1,00 240 993

1,00 1,00 ,00 237 998

2,00 1,00 1,00 236 1016

2,00 1,00 ,00 236 1011

3,00 1,00 1,00 221 1004

3,00 1,00 ,00 221 1003

1,00 ,00 1,00 270 939

1,00 ,00 ,00 269 940

2,00 ,00 1,00 274 979

2,00 ,00 ,00 273 966

3,00 ,00 1,00 284 1041

3,00 ,00 ,00 285 1043

We wish to identify the subgroups with particular high risks. The data file is

entitled “chapter24generalloglinear”, and is in extras.springer.com.

5 Traditional Linear Regression

Start by opening the data file in SPSS. For analysis the statistical model Linear in

the module Regression is required.

Command:

Analyze....Linear Regression....Dependent: infarcts....Independent(s): soft drink,

wine, other alc (alcoholic) beverages....WLS Weight: population....click OK.
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The above tables show that the three discrete predictors soft drink, wine, and

other alc beverages are very strong independent predictors of infarcts adjusted for

population size. We will now add interaction variables to the data.

wine * other alc beverages

soft drink * wine

soft drink * other alc beverages

Command:

The same commands as above with interaction variables as additional predictors.

ANOVAa,b

Model Sum of squares df Mean square F Sig.

1 Regression 5,937E9 3 1.979E9 39174,044 ,000c

Residual 6,025E8 11927 50514,056

Total 6,539E9 11930
aDependent Variable: infarcts
bWeighted Least Squares Regression-Weighted by population
cPredictors: (Constant), other alc beverages, soft drink, wine

Coefficientsa,b

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) 277,397 ,201 1381,647 ,000

Soft drink �,657 ,080 �,023 �8,213 ,000

Wine �44,749 ,131 �,953 �342,739 ,000

Other alc

beverages

,569 ,130 ,012 4,364 ,000

aDependent Variable: infarcts
bWeighted Least Squares Regression – Weighted by population

ANOVAa,b

Model Sum of squares df Mean square F Sig.

1 Regression 5,941E9 6 9.902E8 19757,821 ,000c

Residual 5.976E8 11924 50118,453

Total 6.539E9 11930
aDependent Variable: infarcts
bWeighted Least Squares Regression-Weighted by population
cPredictors: (Constant), soft *alc, wine, soft drink, soft*wine, wine*alc, other alc beverages
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The output sheets now show that soft drink is no longer a significant predictor of

infarcts, while several interactions were very significant. This leaves us with an

inconclusive analysis. Due to the interactions the meaning of the former discrete

predictors have no further meaning.

6 General Loglinear Modeling

The general loglinear model computes cell counts in cross-classification tables, and

can be simultaneously analyzed after logarithmic transformation in the form of

analysis of variance data (see also the Chaps. 51 and 52). In this way an overall

analysis of subgroup differences can be produced, and the significant differences

can be identified. For analysis the statistical model General Loglinear Analysis in

the module Loglinear is required.

Command:

Analyze....Loglinear ....General Loglinear Analysis....Factor(s): enter softdrink,

wine, other alc beverages....click “Data” in the upper textrow of your screen....

click Weigh Cases....mark Weight cases by....Frequency Variable: enter

“infarcts”....click OK....return to General Loglinear Analysis....Cell structure:

enter “population”.... Options ....mark Estimates....click Continue....Distribution

of Cell Counts: mark Poisson....click OK.

Coefficientsa,b

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) 275,930 ,272 1013,835 ,000

Soft drink ,118 ,115 ,004 1,026 ,305

Wine �45,619 ,224 �,972 �203,982 ,000

Other alc

beverages

3,762 ,407 ,080 9,240 ,000

Wine*alc ,103 ,269 ,002 ,385 ,700

Soft*wine ,487 ,096 ,024 5,088 ,000

Soft*alc �1,674 ,175 �,084 �9,561 ,000
aDependent Variable: infarcts
bWeighted Least Squares Regression – Weighted by population
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Parameter estimatesa,b

Parameter

95 % Confidence

interval

Estimate

Std.

error Z Sig.

Lower

bound

Upper

bound

Constant �1,513 ,067 �22,496 ,000 �1,645 �1,381

[softdrink¼ 1,00] ,095 ,093 1,021 ,307 �,088 ,278

[softdrink¼ 2,00] ,053 ,094 ,569 ,569 �,130 ,237

[softdrink¼ 3,00] 0c

[wine ¼ ,00] ,215 ,090 2,403 ,016 ,040 ,391

[wine¼ 1,00] 0c

[alcbeverages ¼ ,00] ,003 ,095 ,029 ,977 �,184 ,189

[alcbeverages¼ 1,00] 0c

[softdrink¼ 1,00] * [wine ¼ ,00] �,043 ,126 �,345 ,730 �,291 ,204

[softdrink¼ 1,00] * [wine¼ 1,00] 0c

[softdrink¼ 2,00] * [wine ¼ ,00] �,026 ,126 �,209 ,834 �,274 ,221

[softdrink¼ 2,00] * [wine¼ 1,00] 0c

[softdrink¼ 3,00] * [wine ¼ ,00] 0c

[softdrink¼ 3,00] * [wine¼ 1,00] 0c

[softdrink¼ 1,00]* [alcbeverages

¼ ,00]

�,021 ,132 �,161 ,872 �,280 ,237

[softdrink¼ 1,00]*

[alcbeverages¼ 1,00]

0c

[softdrink¼ 2,00]* [alcbeverages

¼ ,00]

,003 ,132 ,024 ,981 �,256 ,262

[softdrink¼ 2,00]*

[alcbeverages¼ 1,00]

0c

[softdrink¼ 3,00]* [alcbeverages

¼ ,00]

0c

[softdrink¼ 3,00] *

[alcbeverages¼ 1,00]

0c

[wine ¼ ,00] * [alcbeverages ¼
,00]

�,002 ,127 �,018 ,986 �,251 ,246

[wine ¼ ,00] *

[alcbeverages¼ 1,00]

0c

[wine¼ 1,00] * [alcbeverages ¼
,00]

0c

[wine¼ 1,00] *

[alcbeverages¼ 1,00]

0c

[softdrink¼ 1,00] * [wine¼ ,00] *

[alcbeverages ¼ ,00]

,016 ,178 ,089 ,929 �,334 ,366

[softdrink¼ 1,00] * [wine¼ ,00] *

[alcbeverages¼ 1,00]

0c

[softdrink¼ 1,00] * [wine¼ 1,00]

* [alcbeverages ¼ ,00]

0c

[softdrink¼ 1,00] * [wine¼ 1,00]

* [alcbeverages¼ 1,00]

0c

(continued)
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The above pretty dull table gives some wonderful information. The soft drink

classes 1 and 2 are not significantly different from zero. These classes have, thus, no

greater risk of infarction than class 3. However, the regression coefficient of no

wine is greater than zero at p¼ 0,016. No wine drinkers have a significantly greater

risk of infarction than the wine drinkers have. No “other alcoholic beverages” did

not protect from infarction better than the consumption of it. The three predictors

did not display any interaction effects.

7 Conclusion

Data files that assess the effects of discrete predictors on frequency counts of

morbidities / mortalities can be classified into multiple cells with varying incident

risks (like ,e.g., the incident risk of infarction) using general loglinear modeling.

They can identify subgroups with significantly larger or smaller incident risks

than other subgroups. Linear regression can also be used for the purpose. However,

possible interactions between the predictors require that interaction variables are

Parameter

95 % Confidence

interval

Estimate

Std.

error Z Sig.

Lower

bound

Upper

bound

[softdrink¼ 2,00] * [wine¼ ,00] *

[alcbeverages ¼ ,00]

,006 ,178 ,036 ,971 �,343 ,356

[softdrink¼ 2,00] * [wine¼ ,00] *

[alcbeverages¼ 1,00]

0c

[softdrink¼ 2,00] * [wine¼ 1,00]

* [alcbeverages ¼ ,00]

0c

[softdrink¼ 2,00] * [wine¼ *

[alcbeverages¼ 1.00]

0c

[softdrink¼ 3,00] * [wine¼ 00] *

[alcbeverages ¼ ,00]

0c

[softdrink¼ 3,00] * [wine¼ ,00] *

[alcbeverages¼ 1,00]

0c

[softdrink¼ 3,00] * [wine¼ 1,00]

* [alcbeverages ¼ ,00]

0c

[softdrink¼ 3,00] * [wine¼ 1,00]

* [alcbeverages¼ 1.00]

0c

aModel: Poisson
bDesign: Constant + softdrink +wine + alcbeverages + softdrink * wine + softdrink * alcbeverages

+wine * alcbeverages + softdrink * wine * alcbeverages
cThis parameter is set to zero because it is redundant
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computed and included in the linear model. Significant interaction variables render

the linear regression model pretty meaningless (see also Chap. 23).

8 Note

More background, theoretical and mathematical information of loglinear models

are given in the Chaps 51 and 52. Interaction effects are reviewed in the Chap. 23.
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Chapter 25

Curvilinear Estimation (20 Patients)

1 General Purpose

The general principle of regression analysis is that the best fit line/exponential-

curve/curvilinear-curve etc. is calculated, i.e., the one with the shortest distances to

the data, and that it is, subsequently, tested how far the data are from the curve. A

significant correlation between the y (outcome data) and the x (exposure data)

means that the data are closer to the model than will happen purely by chance. The

level of significance is usually tested, simply, with t-tests or analysis of variance.

The simplest regression model is a linear model.

2 Schematic Overview of Type of Data File

_________________
Outcome predictor
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
__________________
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3 Primary Scientific Question

Is curvilinear regression able to find a best fit regression model for data with both a

continuous outcome and predictor variable.

4 Data Example

In a 20 patient study the quantity of care estimated as the numbers of daily

interventions like endoscopies and small operations per doctor is tested against

the quality of care scores. The primary question was: if the relationship between

quantity of care and quality of care is not linear, does curvilinear regression help

find the best fit curve?

Quantityscore Qualityscore

19,00 2,00

20,00 3,00

23,00 4,00

24,00 5,00

26,00 6,00

27,00 7,00

28,00 8,00

29,00 9,00

29,00 10,00

29,00 11,00

quantityscore quantity of care (numbers

of daily intervention per doctor)

qualityscore quality of care scores.

The first ten patients of the data file is given above. The entire data file is in

extras.springer.com, and is entitled chapter25curvilinearestimation. Start by open-

ing that data file in SPSS. First, we will make a graph of the data.

5 Data Graph

Command:

Analyze. . ..Graphs. . ..Chart builder. . ..click: Scatter/Dot. . ..click quality of care

and drag to the Y-Axis. . ..click interventions per doctor and drag to the

X-Axis. . ..click OK.
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The above graph shows the scattergram of the data. A nonlinear relationship is

suggested. The curvilinear regression option in SPSS helps us identify the best fit

model.

6 Curvilinear Estimation

For analysis, the statistical model Curve Estimation in the module Regression is

required.

Command:

Analyze. . ..Regression. . ..Curve Estimation. . ..mark: Linear, Logarithmic, Inverse,

Quadratic, Cubic, Power, Exponential. . ..mark: Display ANOVA Table. . ..
click OK.
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The above graph is produced by the software program. It looks as though the

quadratic and cubic models produce the best fit models. All of the curves are tested

for goodness of fit using analysis of variance (ANOVA). The underneath tables

show the calculated B-values (regression coefficients). The larger the absolute

B-values, the better fit is provided by the model. The tables also test whether the

absolute B-values are significantly larger than 0,0. 0,0 indicates no relationship at

all. Significantly larger than 0,0 means, that the data are closer to the curve than

could happen by chance. The best fit linear, logarithmic, and inverse models are not

statistically significant. The best fit quadratic and cubic models are very significant.

The power models and exponential models are, again, not statistically significant.

(1) Linear

(2) Logarithmic

Coefficients

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

Interventions/doctor �,069 ,116 �,135 �,594 ,559

(Constant) 25,588 1,556 16,440 ,000

Coefficients

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

In(interventions/doctor) ,726 1,061 ,155 ,684 ,502

(Constant) 23,086 2,548 9,061 ,000
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(3) Inverse

(4) Quadratic

(5) Cubic

(6) Power

Coefficients

Unstandardized

coefficients Standardized coefficients

t Sig.B Std. error Beta

1/interventions/doctor �11,448 5,850 �,410 �1,957 ,065

(Constant) 26,229 ,989 26,512 ,000

Coefficients

Unstandardized

coefficients Standardized coefficients

t Sig.B Std. error Beta

Interventions/doctor �2,017 ,200 3,960 10,081 ,000

Interventions/doctor**2 �,087 ,008 �4,197 �10,686 ,000

(Constant) 16,259 1,054 15,430 ,000

Coefficients

Unstandardized

coefficients Standardized coefficients

t Sig.B Std. error Beta

Interventions/doctor 4,195 ,258 8,234 16,234 ,000

Interventions/doctor**2 �,301 ,024 �14,534 �12,437 ,000

Interventions/doctor**3 ,006 ,001 6,247 8,940 ,000

(Constant) 10,679 ,772 13,836 ,000

Coefficients

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

In(interventions/doctor) ,035 ,044 ,180 ,797 ,435

(Constant) 22,667 2,379 9,528 ,000

The dependent variable is ln (qual care score)
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(7) Exponential

The largest test statistics are given by (4) Quadratic and (5) Cubic. Now, we can

construct regression equations for these two best fit curves using the data from the

ANOVA tables.

(4) Quadratic

y ¼ aþ bxþ cx2 ¼ 16:259þ 2:017x� 0:087x2

¼ 16:3þ 2:0x� 0:09x2

(5) Cubic

y ¼ aþ bxþ cx2 þ dx3 ¼ 10:679þ 4:195x� 0:301x2 þ 0:006x3

¼ 10:7þ 4:2x� 0:3x2 þ 0:006x3

The above equations can be used to make a prediction about the best fit y-value

from a given x-value, e.g., with x¼ 10 you might expect an y-value of

y ¼ 16:3þ 20� 9 ¼ 27:3 according to the quadratic model

y ¼ 10:7þ 42� 30þ 6 ¼ 28:7 according to the cubic model:

Alternatively, predictions about the best fit y-values from x-values given can also

be fairly accurately extrapolated from the curves as drawn.

7 Conclusion

The relationship between quantity of care and quality of care is curvilinear.

Curvilinear regression has helped finding the best fit curve. If the standard curvi-

linear regression models do not yet fit the data, then there are other possibilities, like

logit and probit transformations, Box Cox transformations, ACE (alternating con-

ditional expectations)/AVAS (additive and variance stabilization) packages, Loess

(locally weighted scatter plot smoothing) and spline modeling (see also Chap. 26).

These methods are, however, increasingly complex, and, often, computationally

very intensive. But, for a computer this is no problem.

Coefficients

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

Interventions/doctor �,002 ,005 �,114 �,499 ,624

(Constant) 25,281 1,632 15,489 ,000

The dependent variable is ln (qual care score)
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8 Note

More background, theoretical, and mathematical information of curvilinear esti-

mation is given in Statistics applied to clinical studies 5th edition, Chaps. 16 and

24, Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 26

Loess and Spline Modeling (90 Patients)

1 General Purpose

Plasma concentration time curves are the basis of pharmacokinetics. If traditional

nonlinear models do not fit the data well, spline and loess (locally weighted scatter

plot smoothing) modeling will provide a possible solution.

2 Schematic Overview of Type of Data File

_______________________

_______________________

Outcome predictor (time)
. .
. .
. .
. .
. .
. .
. .
. .
. .
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3 Primary Scientific Question

Does loess and spline modeling produce a better fit model for the plasma

concentration – time relationships of medicines than traditional curvilinear

estimations (Chap. 25).

4 Data Example

In 90 patient a plasma concentration time curve study of intravenous administration

of zoledronic acid (ng/ml) was performed.

Conc Time

1,10 1,00

,90 1,00

,80 1,00

,78 2,00

,55 2,00

,65 3,00

,48 4,00

,45 4,00

,32 4,00

,30 5,00

conc¼ plasma concentration

of zoledromic acid (ng/ml)

time¼ hours

5 Some Background Information

Usually, the relationship between plasma concentration and time of a drug is described

in the form of an exponential model. This is convenient, because it enables to calculate

pharmacokinetic parameters like plasma half-life and equations for clearance. Using

the Non-Mem program of the University of San Francisco a non linear mixed effect

model of the data is produced (¼ multi-exponential model). The underneath figure of

the data shows the exponential model. There is a wide spread in the data, and, so, the

pharmacokinetic parameters derived from the model do not mean too much.
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6 Spline Modeling

If the traditional models do not fit your data very well, you may use a method called

spline modeling. The term spline stems from thin flexible wooden splines formerly

used by shipbuilders and cardesigners to produce smooth shapes. A spline model

consists of 4, 5 or more intervals with different cubic curves (¼ third order

polynomes, like y¼ a + bx3, see also Chap. 25) that have the same y-value, slope,

and curvature at the junctions.

Command:

Graphs. . ..Chart Builder. . ..click Scatter/Dot. . ..click in Simple Scatter and drag to

Chart Preview. . .. click plasma concentration and drag to the Y-Axis. . ..click
time and drag to the X-Axis. . ..OK. . ...double-click in GGraph . . ..Chart Editor
comes up. . ..click Elements. . ..click Interpolation. . ..dialog box Properties. . ..
mark Spline. . ..click Apply. . ..click Edit. . ..click Copy Chart.

The underneath figure shows the best fit spline model of the above data.
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7 Loess (Locally Weighted Scatter Plot Smoothing)
Modeling

Also loess modeling works with cubic curves (third order polynomes), but unlike

spline modeling it does not work with junctions, but, instead, it chooses the best fit

cubic curves for each value with outlier data given less weight.

Command:

Graphs. . ..Chart Builder. . ..click Scatter/Dot. . ..click in Simple Scatter and drag to

Chart Preview. . .. click plasma concentration and drag to the Y-Axis. . ..click
time and drag to the X-Axis. . ..OK. . ...double-click in GGraph . . ..Chart Editor
comes up. . ..click Elements. . ..Fit Line at Total. . ..in dialog box Properties. . ..
mark: Loess. . ..click: Apply. . .. click Edit. . ..click Copy Chart.

The underneath figure shows the best fit Loess model of the above data.
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8 Conclusion

Both spline and loess modeling are computationally very intensive methods that do

not produce simple regression equations like the ones given in the Chap. 25 on

curvilinear regression. They also require fairly large, densely sampled data sets in

order to produce good models. For making predictions from such models direct

interpolations / extrapolations from the graphs can be made, and, given the math-

ematical refinement of these methods, these predictions should, generally, give

excellent precision. We conclude.

1. Both spline and loess modeling are computationally intensive models that are

adequate, if the data plot leaves you with no idea about the relationship between

the y- and x-values.

2. They do not produce simple regression equations like the ones given in Chap. 25

on curvilinear regression.

3. For making predictions from such models direct interpolations / extrapolations

from the graphs can be made, and, given the mathematical refinement of these

methods, these predictions generally give excellent precision.

4. Maybe, the best fit for many types of nonlinear data is offered by loess.
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9 Note

More background, theoretical, and mathematical information of loess and spline

modeling is given in Statistics applied to clinical studies 5th edition, Chap. 24,

Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 27

Monte Carlo Tests for Continuous Data
(10 and 20 Patients)

1 General Purpose

Monte Carlo methods allows you to examine complex data more easily than

advanced mathematics like integrals and matrix algebra. It uses random numbers

from your own study rather than assumed Gaussian curves. For continuous data a

special type of Monte Carlo method is used called bootstrap which is based on

random sampling from your own data with replacement.

2 Schematic Overview of Type of Data File, Paired Data

__________________________
Outcome 1 outcome 2
. .
. .
. .
. .
. .
. .
. .
. .
. .
__________________________
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3 Primary Scientific Question, Paired Data

For paired data the paired t-test and the Wilcoxon test are appropriate (Chap. 3).

Does Monte Carlo analysis of the same data provide better sensitivity of testing.

4 Data Example, Paired Data

The underneath study assesses whether some sleeping pill is more efficaceous than

a placebo. The hours of sleep is the outcome value. This example was also used

in the Chap. 2.

Outcome 1 Outcome 2

6,1 5,2

7,0 7,9

8,2 3,9

7,6 4,7

6,5 5,3

8,4 5,4

6,9 4,2

6,7 6,1

7,4 3,8

5,8 6,3

outcome¼ hours of sleep after treatment

5 Analysis: Monte Carlo (Bootstraps), Paired Data

The data file is in extras.springer.com and is entitled “chapter2pairedcontinuous”.

Open it in SPSS. For analysis the statistical model Two Related Samples in the

module Nonparametric Tests is required.

Command:

Analyze....Nonparametric Tests....Legacy Dialogs....Two-Related-Samples....Test

Pairs:....Pair 1: Variable 1 enter hoursofsleepone....Variable 2 enter

hoursofsleeptwo....mark Wilcoxon....click Exact....mark Monte Carlo....set

Confidence Intervals: 99 %....set Numbers of Samples: 10000....click

Continue....click OK.
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Rank

N Mean rank Sum of rank

Hours of sleep-hours of sleep Negative ranks 8a 6,31 50,50

Positive ranks 2b 2,25 4,50

Tiles 0c

Total 10
aHours of sleep< hours of sleep
bHours of sleep> hours of sleep
cHours of sleep¼ hours of sleep

Test statisticsa, b

Hours of sleep – hours

of sleep

Z �2,346c

Asymp. Sig. (2-tailed) ,019

Monte Carlo Sig. (2-tailed) Sig. ,015

99 % confidence interval Lower

bound

,012

Upper bound ,018

Monte Carlo Sig. (1-tailed) Sig. ,007

99 % confidence interval Lower

bound

,005

Upper bound ,009
aWilcoxon Signed ranks test
bBased on 10,000 sampled tables with starting seed 2,000,000
cBased on positive ranks

The above tables are in the output sheets. The Monte Carlo analysis of the paired

continuous data produced a two-sided p-value of 0,015. This is a bit better than that

of the two-sided Wilcoxon (p¼ 0,019).

6 Schematic Overview of Type of Data File, Unpaired Data

_______________________________
Outcome binary predictor
. .
. .
. .
. .
. .
. .
. .
. .
. .
________________________________
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7 Primary Scientific Question, Unpaired Data

Unpaired t-tests and Mann-Whitney tests are for comparing two parallel-groups,

and use a binary predictor, for the purpose, for example an active treatment and a

placebo (Chap. 4). They can only include a single predictor variable. Does Monte

Carlo analysis of the same data provide better sensitivity of testing.

8 Data Example, Unpaired Data

We will use the same example as that of the Chap. 4. In a parallel-group study of

20 patients 10 are treated with a sleeping pill, 10 with a placebo. The first 11 patients

of the 20 patient data file is given underneath.

Outcome Group

6,00 ,00

7,10 ,00

8,10 ,00

7,50 ,00

6,40 ,00

7,90 ,00

6,80 ,00

6,60 ,00

7,30 ,00

5,60 ,00

5,10 1,00

The group variable has 0 for placebo

group, 1 for sleeping pill group

Outcome variable¼ hours of sleep

after treatment

The data file is entitled “chapter4unpairedcontinuous”, and is in extras.springer.

com. Start by opening the data file in SPSS.

9 Analysis: Monte Carlo (Bootstraps), Unpaired Data

For analysis the statistical model Two Independent Samples in the module Non-

parametric Tests is required.

Command:

Analyze....Nonparametric Tests....Legacy Dialogs....Two-Independent Samples

Test....Test Variable List: enter effect treatment....Grouping Variable: enter

group....mark Mann-Whitney U....Group 1: 0....Group 2: 1....click Exact....
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mark Monte Carlo....set Confidence Intervals: 99 %....set Numbers of Sam-

ples:10000....click Continue....click OK.

Ranks

Group N Mean rank Sum of ranks

Effect treatment ,00 10 14,25 142,50

1,00 10 6,75 67,50

Total 20

Test statisticsa

Effect treatment

Mann-Whitney U 12,500

Wilcoxon W 67,500

Z �2,836

Asymp. Sig. (2-tailed) ,005

Exact Sig. [2*(1-tailed Sig.)] ,003b

Monte Carlo Sig. (2-tailed) Sig. ,002c

99 % confidence interval Lower bound ,001

Upper bound ,003

Monte Carlo Sig. (1-tailed) Sig. ,001b

99 % confidence interval Lower bound ,000

Upper bound ,002
aGrouping variable: group
bNote corrected for ties
cBased on 10,000 sampled tables with starting seed 2,000,000

The above Monte Carlo method produced a two-sided p-value of p¼ 0,002, while

the Mann-Whitney test produced a two-sided p-value of only 0,005. Monte Carlo

analysis was, thus, again a bit better sensitive than traditional testing (Chap. 5).

10 Conclusion

Monte Carlo methods allow you to examine complex data more easily and more

rapidly than advanced mathematics like integrals and matrix algebra. It uses

random numbers from your own study. For continuous data a special type of

Monte Carlo method is used called bootstrap which is based on random sampling

from your own data with replacement. Examples are given.

11 Note

More background, theoretical, and mathematical information of Monte Carlo

methods for data analysis is given in Statistics applied to clinical studies 5th edition,

Chap. 57, Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 28

Artificial Intelligence Using Distribution
Free Data (90 Patients)

1 General Purpose

Artificial intelligence is an engineering method that simulates the structures and

operating principles of the human brain. The artificial neural network is a

distribution-free based on layers of artificial neurons that transduce imputed

information.

2 Schematic Overview of Type of Data File

Outcome predictor predictor predictor...
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
____________________________________

____________________________________
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3 Primary Scientific Question

Does artificial intelligence better predict nonlinear outcomes from multiple pre-

dictors than other models, like mathematical equations obtained from regression

models.

4 Data Example

Gender Age Weight Height Surfacemeas Surfacecomp

1,00 13,00 30,50 138,50 10072,90 10770,00

,00 5,00 15,00 101,00 6189,00 6490,00

,00 ,00 2,50 51,50 1906,20 1890,00

1,00 11,00 30,00 141,00 10290,60 10750,00

1,00 15,00 40,50 154,00 13221,60 13080,00

,00 11,00 27,00 136,00 9654,50 10000,00

,00 5,00 15,00 106,00 6768,20 6610,00

1,00 5,00 15,00 103,00 6194,10 6540,00

1,00 3,00 13,50 96,00 5830,20 6010,00

,00 13,00 36,00 150,00 11759,00 12150,00

Gender 1 male, 0 female
age years
weight kg
height meters (m)
surfacemeas¼ surface measured m2

surfacecomp¼ surface computed from Hancock equation (J Pediatr

1978).

We will use neural network instead of the Hancock equation for predicting the

body surface from the body height and weight. The above data file consists of a row

for the first 10 patients from a 90 patient study with different factors (left four

columns) and one dependent variable, the photometrically measured body surface

(variable 5). The entire data file is in extras.springer.com, and is entitled

“chapter28neuralnetwork”. Using SPSS with the neural network add-on module,

we will assess whether a neural network with two hidden layers of neurons is able to

adequately predict the measured body surfaces, and whether it outperforms the

mathematical model of Haycock (*¼ sign of multiplication):

body surface ¼ 0:024265 * height0:3964 * weight0:5378:

Start by opening the data file in SPSS.

172 28 Artificial Intelligence Using Distribution Free Data (90 Patients)



5 Neural Network Analysis

For analysis the statistical model Multilayer Perceptron in the module Neural

Networks is required.

Command:

Neural Networks. . .. Multilayer Perceptron. . ..Select Dependent Variable: the mea-

sured body surface. . .. Factors: body height and weight, and covariates, age and

gender....main dialog box....click Partitioning: set the Training Sample (70), Test

Sample (20)....click Architecture: set the Numbers of Hidden Layers (2)....click

Activation Function: click Hyperbolic Tangens....click Output: click Diagrams,

Descriptions, Synaptic Weights....click Training: Maximal Time for Calcula-

tions 15 min, Maximal Numbers of Iterations 2000....click OK.

The synaptic weights and body surfaces predicted by the neural network are

displayed in the main screen. The results are in the 7th column of the data file.

Gender Age Weight Height Surfacemeas Surfacecomp Surfacepred

1,00 13,00 30,50 138,50 10072,90 10770,00 10129,64

,00 5,00 15,00 101,00 6189,00 6490,00 6307,14

,00 ,00 2,50 51,50 1906,20 1890,00 2565,16

1,00 11,00 30,00 141,00 10290,60 10750,00 10598,32

1,00 15,00 40,50 154,00 13221,60 13080,00 13688,06

,00 11,00 27,00 136,00 9654,50 10000,00 9682,47

,00 5,00 15,00 106,00 6768,20 6610,00 6758,45

1,00 5,00 15,00 103,00 6194,10 6540,00 6533,28

1,00 3,00 13,50 96,00 5830,20 6010,00 6096,53

,00 13,00 36,00 150,00 11759,00 12150,00 11788,01

Gender 1 male, 0 female
age years
weight kg
height meters (m)
surfacemeas¼ surface measured m2

surfacecomp¼ surface computed from Hancock equation (J Pediatr 1978)
surfacepred¼ surface predicted from neural network

Both the predicted values from the neural network and from the Haycock

equation are close to the measured values. When performing a linear regression

with neural network as predictor, the r square value was 0,983, while the Haycock

produced an r square value of 0,995. Although the Hancock equation performed

slightly better, the neural network method produced adequate accuracy defined as

an r-square value larger than 0,95.
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6 Conclusion

We conclude that neural network is a very sensitive data modeling program,

particularly suitable for making predictions from non-Gaussian data. Like Monte

Carlo methods it is a distribution-free methodology, which is based on layers of

artificial neurons that transduce imputed information. It is available in the SPSS

add-on module Neural Network. Artificial intelligence, otherwise called neural

network, is a data producing methodology that simulates the structures and oper-

ating principles of the human brain. It can be used for modeling purposes, and is,

particularly, suitable for modeling distribution-free and nonnormal data patterns.

7 Note

More background, theoretical, and mathematical information of Artificial intelli-

gence is given in Statistics applied to clinical studies 5th edition, Chap. 58, Springer

Heidelberg Germany, 2012, from the same authors.
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Chapter 29

Robust Testing (33 Patients)

1 General Purpose

Robust tests are tests that can handle the inclusion into a data file of some outliers

without largely changing the overall test results. The following robust tests are

available.

1. Z-test for medians and median absolute deviations (MADs).

2. Z-test for Winsorized variances.

3. Mood’s test.
4. Z-test for M-estimators with bootstrap standard errors.

The first three can be performed on a pocket calculator and are reviewed in

Statistics on a Pocket Calculator Part 2, Chapter 8, Springer New York, 2011, from

the same authors. The fourth robust test is reviewed in this chapter.

2 Schematic Overview of Type of Data File

_________________
Outcome
.
.
.
.
.
.
.
__________________
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3 Primary Scientific Question

Is robust testing more sensitive than standard testing of imperfect data.

4 Data Example

The underneath study assesses whether physiotherapy reduces frailty. Frailty score

improvements after physiotherapy are measured. The data file is underneath.

Frailty score improvements after physiotherapy

_____________
-8,00
-8,00
-8,00
-4,00
-4,00
-4,00
-4,00
-1,00
0,00
0,00

The above data give the first 10 patients, the entire data file is in “chapter29ro-

busttesting”, and is in extras.springer.com. First, we will try and make a histogram

of the data.

5 Data Histogram Graph

Command:

Graph. . ..Legacy Dialogs. . ..Histogram. . ..Variable: frailty score improvement. . ..
Mark: Display normal Curve. . ..click OK.
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The above graph suggests the presence of some central tendency: the values

between 3,00 and 5,00 are observed more frequently than the rest. However, the

Gaussian curve calculated from the mean and standard deviation does not fit the

data very well with outliers on either side. Next, we will perform a one sample t-test

to see if the calculated mean is significantly different 0. For analysis the statistical

model One Sample T-Test in the module Compare Means is required.

Command:

Analyze. . ..Compare Meams. . ..One Sample T-Test. . ..Test Variable: frailty score

improvement. . ..click OK.

One-sample test

Test value¼ 0

95 % confidence interval

of the difference

t df Sig. (2-tailed) Mean difference Lower Upper

VAR00001 1,895 32 ,067 1,45455 �,1090 3,0181

The above table shows that the t-value based on Gaussian-like t-curves is not

significantly different from 0, p¼ 0,067.
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6 Robust Testing

M-estimators is a general term for maximum likelihood estimators (MLEs), which

can be considered as central values for different types of sampling distributions.

Huber (Proc 5th Berkeley Symp Stat 1967) described an approach to estimate

MLEs with excellent performance, and this method is, currently, often applied. The

Huber maximum likelihood estimator is calculated from the underneath equation

(MAD¼median absolute deviation, *¼ sign of multiplication)

X
0:6745 * x�medianð Þ

MAD

Command:

Analyze.. . .Descriptives. . ..Explore: enter variable into box dependent list. . ..
Statistics: mark M-estimators. . ..click OK.

In the output sheets the underneath result is given.

Huber’s M-estimator ¼ 2, 4011

Huber’s standard error ¼ not given:

Usually, the 2nd derivative of the M-estimator function is used to find the standard

error. However, the problem with the second derivative procedure in practice is that

it requires very large data files in order to be accurate. Instead of an inaccurate

estimate of the standard error, a bootstrap standard error can be calculated. This is

not provided in SPSS. Bootstrapping is a data based simulation process for statis-

tical inference. The basic idea is sampling with replacement in order to produce

random samples from the original data. Standard errors are calculated from the

95 % confidence intervals of the random samples [95 % confidence interval¼
(central value� 2 standard errors)]. We will use “R bootstrap Plot – Central

Tendency”, available on the Internet as a free calculator tool.

Enter your data.

Then command: compute.

The bootstrap standard error of the median is used.

Bootstrap standard error¼ 0,8619.

The z-test is used.

z-value¼Huber’s M-estimator/bootstrap standard error

z-value¼ 2,4011/ 0,8619¼ 2,7858

p-value¼ 0,005

Unlike the one sample t-test, the M-estimator with bootstraps produces a highly

significant effect. Frailty scores can, obviously, be improved by physiotherapy.
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7 Conclusion

Robust tests are wonderful for imperfect data, because they often produce statistically

significant results, when the standard tests do not.

8 Note

The robust tests that can be performed on a pocket calculator, are reviewed in

Statistics on a Pocket Calculator Part 2, Chapter 8, Springer New York, 2011, from

the same authors.
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Chapter 30

Nonnegative Outcomes Assessed
with Gamma Distribution (110 Patients)

1 General Purpose

The gamma frequency distribution is suitable for statistical testing of nonnegative

data with a continuous outcome variable and fits such data often better than does the

normal frequency distribution, particularly when magnitudes of benefits or risks is

the outcome, like costs. It is often used in marketing research. This chapter is to

assess whether gamma distributions are also helpful for the analysis of medical

data, particularly those with outcome scores.
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The upper graph gives a schematic view of a linear regression using normal

probability distributions around different y-values, the lower graph does equally so,

but uses probability distributions of the gamma type (skewed to the right). Skewed

data like quality of life (QOL) scores in sick populations (that are clustered towards

low QOL scores) better fit gamma distributions, than they do normal distributions.

More background and mathematical information of gamma distributions is given in

Machine learning in medicine a complete overview, Chap. 80, Heidelberg Springer

Germany, 2015, from the same authors.

2 General Overview of Type of Data File

__________________________________
Outcome predictor predictor predictor
nonnegative values
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
_____________________________
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3 Primary Scientific Question

Is gamma regression a worthwhile analysis model complementary to linear regres-

sion, can it elucidate effects unobserved in the linear models.

4 Data Example

In 110 patients the effects of age class, psychological and social score on health

scores were assessed. The first ten patients are underneath. The entire data file is

entitled “chapter30gamma”, and is in extras.springer.com.

Health score Age class Psychologic score Social score

8 3 5 4

7 1 4 8

4 1 5 13

6 1 4 15

10 1 7 4

6 1 8 8

8 1 9 12

2 1 8 16

6 1 12 4

8 1 13 1

age¼ age class 1–7
psychologicscore¼ psychological score 1–20
socialscore¼ social score 1–20
healthscore¼ health score 1–20.

Start by opening the data file in SPSS statistical software. We will first perform

linear regressions.

5 Linear Regressions

For analysis the statistical model Linear in the module Regression is required.

Command:

Analyze. . ..Regression. . ..Linear. . ..Dependent: enter healthscore. . ..Independent
(s): enter socialscore. . ..click OK.

The underneath table gives the result. Social score seems to be a very significant

predictor of health score.
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Similarly psychological score and age class are tested.

Linear regression with the three predictors as independent variables and health

scores as outcome suggests that both psychological and social scores are significant

predictors of health, but age class is not. In order to assess confounding and

interaction a multiple linear regression is performed.

Command:

Analyze. . ..Regression. . ..Linear. . ..Dependent: enter healthscore. . ..Independent
(s): enter socialscore, psychologicscore, age. . ..click OK.

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) 9.833 .535 18.388 .000

Social score �.334 .050 �.541 �6.690 .000
aDependent Variable: health score

Coefficientsa

Model

Unstandardized

coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) 5.152 .607 8.484 .000

Psychological score .140 .054 .241 2.575 .011
aDependent Variable: health score

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) 7.162 .588 12.183 .000

Age class �.149 .133 �.107 �1.118 .266
aDependent Variable: health score

Coefficientsa

Model

Unstandardized

coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) 9.388 .870 10.788 .000

Social score �.329 .049 �.533 �6.764 .000

Psychological score .111 .046 .190 2.418 0.17

Age class �.184 .109 �.132 �1.681 .096
aDependent Variable: health score
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Social score is again very significant. Psychological score also, but after

Bonferroni adjustment (rejection p-value¼ 0,05/4¼ 0,0125) it would be no more

so, because p¼ 0,017 is larger than 0,0125. Age class is again not significant.

Health score is here a continuous variable of nonnegative values, and, perhaps,

better fit of these data might be obtainable by a gamma regression. We will use

SPSS statistical software again.

For analysis the module Generalized Linear Models is required. It consists of

two submodules: Generalized Linear Models and Generalized Estimation Models.

The first submodule covers many statistical models like gamma regression (current

chapter), Tweedie regression (Chap. 31), Poisson regression (Chaps. 21 and 47),

and the analysis of paired outcomes with predictors (Chap. 3). The second is for

analyzing binary outcomes (Chap. 42). We will use the statistical model Gamma

Distribution in the submodule Generalized Linear Models.

6 Gamma Regression

Command:

Analyze. . ..click Generalized Linear Models. . ..click once again Generalized Lin-

ear Models. . ..mark Custom. . ..Distribution: select Gamma. . ..Link function:

select Power. . ..Power: type �1. . ..click Response. . ..Dependent Variable:

enter healthscore click Predictors. . ..Factors: enter socialscore, psycholo-

gicscore, age. . ..Model: enter socialscore, psychologicscore, age. . ..Estimation:

Scale Parameter Method: select Pearson chi-square. . ..click EM Means: Dis-

plays Means for: enter age, psychologicscore, socialscore. . ..click Save. . ..mark

Predict value of linear predictor. . ..Standardize deviance residual. . ..click OK.

The above table give the overall result: it is comparable with that of the multiple

linear regression with only social score as significant independent predictor.

Tests of model effects

Type III

Source Wald Chi-Square df Sig.

(Intercept) 216.725 1 .000

Ageclass 8.838 6 .183

Psychologicscore 18.542 13 .138

Socialscore 61.207 13 .000

Dependent Variable: health score

Model: (Intercept), ageclass, psychologicscore, socialscore
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Parameter estimates

95% Wald

confidence interval Hypothesis test

Parameter B

Std.

error Lower Upper

Wald

Chi-square df Sig.

(Intercept) .188 .0796 .032 .344 5.566 1 .018

[ageclass¼ 1] �.017 .0166 �.050 .015 1.105 1 .293

[ageclass¼ 2] �.002 .0175 �.036 .032 .010 1 .919

[ageclass¼ 3] �.015 .0162 �.047 .017 .839 1 .360

[ageclass¼ 4] .014 .0176 �.020 .049 .658 1 .417

[ageclass¼ 5] .025 .0190 �.012 .062 1.723 1 .189

[ageclass¼ 6] .005 .0173 �.029 .039 .087 1 .767

[ageclass¼ 7] 0a . . . . . .

[psychologies co

re¼ 3]

.057 .0409 �.023 .137 1.930 1 .165

[psychologies

core¼ 4]

.057 .0220 .014 .100 6.754 1 .009

[psychologies co

re¼ 5]

.066 .0263 .015 .118 6.352 1 .012

[psychologies

core¼ 7]

.060 .0311 �.001 .121 3.684 1 .055

[psychologies

core¼ 8]

.061 .0213 .019 .102 8.119 1 .004

[psychologies

core¼ 9]

.035 .0301 �.024 .094 1.381 1 .240

[psychologies

core¼ 11 ]

.057 .0325 �.007 .120 3.059 1 .080

[psychologies

core¼ 12]

.060 .0219 .017 .103 7492 1 .006

[psychologies

core¼ 13]

.040 .0266 �.012 .092 2.267 1 .132

[psychologies

core¼ 14]

.090 .0986 �.103 .283 .835 1 .361

[psychologies

core¼ 15]

.121 .0639 �.004 .247 3.610 1 .057

[psychologies

core¼ 16]

.041 .0212 �.001 .082 3.698 1 .054

[psychologies

core¼ 17]

.022 .0241 �.025 .069 .841 1 .359

[psychologies co

re¼ 18]

0a . . . . . .

[socialscore¼ 4] �.120 .0761 �.269 .029 2.492 1 .114

[socialscore¼ 6] �.028 .0986 �.221 .165 .079 1 .778

[socialscore¼ 8] �.100 .0761 �.249 .050 1.712 1 .191

[socialscore¼ 9] .002 .1076 �.209 .213 .000 1 .988

[socialscore¼ 10] �.123 .0864 �.293 .046 2.042 1 .153

[socialscore¼ 11] .015 .0870 �.156 .185 .029 1 .865

(continued)
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However, as shown above, gamma regression enables to test various levels of the

predictors separately. Age class was not a significant predictor. Of the psycholog-

ical scores, however, no less than 8 scores produced pretty small p-values, even as

small as 0,004–0,009. Of the social scores now none were significant.

In order to better understand what is going on, SPSS provides marginal means

analysis here.

The mean health scores of the different age classes were, indeed, hardly

different.

95% Wald

confidence interval Hypothesis test

Parameter B

Std.

error Lower Upper

Wald

Chi-square df Sig.

[socialscore¼ 12] �.064 .0772 �.215 .088 .682 1 .409

[socialscore¼ 13] �.065 .0773 �.216 .087 .703 1 .402

[socialseore¼ 14] .008 .0875 �.163 .180 .009 1 .925

[socialscore¼ 15] �.051 .0793 �.207 .104 .420 1 .517

[socialscore¼ 16] .026 .0796 �.130 .182 .107 1 .744

[socialscore¼ 17] �.109 .0862 �.277 .060 1.587 1 .208

[socialscore¼ 18] �.053 .0986 �.246 .141 .285 1 .593

[socialscore¼ 19] 0a . . . . . .

(Scale) .088b

Dependent Variable: health score

Model: (Intercept), ageclass, psychologicscore, socialscore
aSet to zero because this parameter is redundant
bComputed based on the Pearson chi-square

Estimates

Age class Mean Std. error

95% Wald confidence interval

Lower Upper

1 5.62 .531 4.58 6.66

2 5.17 .461 4.27 6.07

3 5.54 .489 4.59 6.50

4 4.77 .402 3.98 5.56

5 4.54 .391 3.78 5.31

6 4.99 .439 4.13 5.85

7 5.12 .453 4.23 6.01
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However, increasing psychological scores seem to be associated with increasing

levels of health.

In contrast, increasing social scores are, obviously, associated with decreasing

levels of health, with mean health scores close to 3 in the higher social score

patients, and close to 10 in the lower social score patients.

Estimates

Psychological score Mean Std. error

95% Wald confidence interval

Lower Upper

3 5.03 .997 3.08 6.99

4 5.02 .404 4.23 5.81

5 4.80 .541 3.74 5.86

7 4.96 .695 3.60 6.32

8 4.94 .359 4.23 5.64

9 5.64 .809 4.05 7.22

11 5.03 .752 3.56 6.51

12 4.95 .435 4.10 5.81

13 5.49 .586 4.34 6.64

14 4.31 1.752 .88 7.74

15 3.80 .898 2.04 5.56

16 5.48 .493 4.51 6.44

17 6.10 .681 4.76 7.43

18 7.05 1.075 4.94 9.15

Estimates

Social score Mean Std. error

95% Wald confidence interval

Lower Upper

4 8.07 .789 6.52 9.62

6 4.63 1.345 1.99 7.26

8 6.93 .606 5.74 8.11

9 4.07 1.266 1.59 6.55

10 8.29 2.838 2.73 13.86

11 3.87 .634 2.62 5.11

12 5.55 .529 4.51 6.59

13 5.58 .558 4.49 6.68

14 3.96 .711 2.57 5.36

15 5.19 .707 3.81 6.58

16 3.70 .371 2.98 4.43

17 7.39 2.256 2.96 11.81

18 5.23 1.616 2.06 8.40

19 4.10 1.280 1.59 6.61
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7 Conclusion

Gamma regression is a worthwhile analysis model complementary to linear regres-

sion, ands may elucidate effects unobserved in the linear models. The marginal

means procedure readily enables to observe trends in the data, e.g., decreasing

outcome score with increasing predictor scores.

8 Note

More background, theoretical and mathematical information of gamma regression

is given in Machine learning in medicine a complete overview, Chap. 80, Heidel-

berg Springer Germany, 2015, from the same authors.
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Chapter 31

Nonnegative Outcomes Assessed
with Tweedie Distribution (110 Patients)

1 General Purpose

Like the gamma regression (Chap. 30), Tweedie regression (named after Tweedie, a

statistician from Liverpool (1984)) is generally better adequate for nonnormal data

than the traditional linear regression. It can be used for statistical testing of

nonnegative data with a continuous outcome variable and fits such data often better

than does the normal frequency distribution, particularly when magnitudes of

benefits or risks is the outcome, like costs. It is often used in marketing research.

This chapter is to assess whether tweedie distributions are also helpful for the

analysis of medical data, particularly those with outcome health and quality of

life scores.
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The upper graph gives a schematic view of a linear regression using normal

probability distributions around different y-values, the lower graph does equally so,

but uses probability distributions of the gamma type (skewed to the right) with a

spike at its left end. Skewed data like quality of life (QOL) scores in sick

populations (that are clustered towards low QOL scores and may even rocket at

zero) better fit gamma and Tweedie distributions than they do normal distributions.

More background and mathematical information of gamma distributions is given in

Machine learning in medicine a complete overview, Chap. 80, Heidelberg Springer

Germany, 2015, from the same authors.

2 General Overview of Type of Data File

__________________________________
Outcome predictor predictor predictor
nonnegative values
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
_____________________________

192 31 Nonnegative Outcomes Assessed with Tweedie Distribution (110 Patients)



3 Primary Scientific Question

Is the Tweedie regression a worthwhile analysis model complementary to linear

and gamma regression, can it elucidate effects unobserved in the linear models.

4 Data Example

In 110 patients the effects of age class, psychological and social score on health

scores were assessed. The first ten patients are underneath. The entire data file is

entitled “chapter30gamma”, and is in extras.springer.com.

Health score Age class Psychologic score Social score

8 3 5 4

7 1 4 8

4 1 5 13

6 1 4 15

10 1 7 4

6 1 8 8

8 1 9 12

2 1 8 16

6 1 12 4

8 1 13 1

age¼ age class 1–7

psychologicscore¼ psychological score 1–20

socialscore¼ social score 1–20

healthscore¼ health score 1–20.

Start by opening the data file in SPSS statistical software.

5 Gamma Regression

For analysis the module Generalized Linear Models is required. It consists of two

submodules: Generalized Linear Models and Generalized Estimation Models. The

first submodule covers many statistical models like gamma regression (Chap. 30),

Tweedie regression (current chapter), Poisson regression (Chaps. 21 and 47), and

the analysis of paired outcomes with predictors (Chap. 3). The second submodule is

for analyzing binary outcomes (Chap. 42). We will use, in the submodule Gener-

alized Linear Models, the Gamma Distribution first, and the Tweedie Distribution

second.
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Command:

Analyze. . ..click Generalized Linear Models. . ..click once again Generalized Lin-

ear Models. . ..mark Custom. . ..Distribution: select Gamma. . ..Link function:

select Power. . ..Power: type �1. . ..click Response. . ..Dependent Variable:

enter healthscore click Predictors. . ..Factors: enter socialscore, psycholo-

gicscore, age. . ..Model: enter socialscore, psychologicscore, age. . ..Estimation:

Scale Parameter Method: select Pearson chi-square. . ..click EM Means: Dis-

plays Means for: enter age, psychologicscore, socialscore. . ..click Save. . ..mark

Predict value of linear predictor. . ..Standardize deviance residual. . ..click OK.

The above table give the overall result: it is comparable with that of the multiple

linear regression with only social score as significant independent predictor.

Tests of model effects

Type III

Source Wald Chi-square df Sig.

(Intercept) 216.725 1 .000

Ageclass 8.838 6 .183

Psychologicscore 18.542 13 .138

Socialscore 61.207 13 .000

Dependent Variable: health score

Model: (Intercept), ageclass, psychologicscore, socialscore

Parameter estimates

Parameter B Std. error

95 % Wald

confidence

interval Hypothesis test

Lower Upper

Wald

Chi-square df Sig.

(Intercept) .188 .0796 .032 .344 5.566 1 .018

[ageclass¼ 1] �.017 .0166 �.050 .015 1.105 1 .293

[ageclass¼ 2] �.002 .0175 �.036 .032 .010 1 .919

[ageclass¼ 3] �.015 .0162 �.047 .017 .839 1 .360

[ageclass¼ 4] .014 .0176 �.020 .049 .658 1 .417

[ageclass¼ 5] .025 .0190 �.012 .062 1.723 1 .189

[ageclass¼ 6] .005 .0173 �.029 .039 .087 1 .767

[ageclass¼ 7] 0a . . . . . .

[psychologiescore¼ 3] .057 .0409 �.023 .137 1.930 1 .165

[psychologiescore¼ 4] .057 .0220 .014 .100 6.754 1 .009

[psychologiescore¼ 5] .066 .0263 .015 .118 6.352 1 .012

[psychologiescore¼ 7] .060 .0311 �.001 .121 3.684 1 .055

[psychologiescore¼ 8] .061 .0213 .019 .102 8.119 1 .004

[psychologiescore¼ 9] .035 .0301 �.024 .094 1.381 1 .240

[psychologiescore¼ 11 ] .057 .0325 �.007 .120 3.059 1 .080

[psychologiescore¼ 12] .060 .0219 .017 .103 7.492 1 .006

(continued)
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However, as shown above, gamma regression enables to test various levels of the

predictors separately. Age class was not a significant predictor. Of the psycholog-

ical scores, however, 4 scores produced p-values< 0,050.

6 Tweedie Regression

Command:

Analyze....Generalized Linear Model....Generalized Linear Model....mar Tweedie

with log link....click Response....Dependent Variable: enter health score....click

Predictors....Factors: enter age class, psychological score, social score....click OK.

Parameter B Std. error

95 % Wald

confidence

interval Hypothesis test

Lower Upper

Wald

Chi-square df Sig.

[psychologiescore¼ 13] .040 .0266 �.012 .092 2.267 1 .132

[psychologiescore¼ 14] .090 .0986 �.103 .283 .835 1 .361

[psychologiescore¼ 15] .121 .0639 �.004 .247 3.610 1 .057

[psychologiescore¼ 16] .041 .0212 �.001 .082 3.698 1 .054

[psychologiescore¼ 17] .022 .0241 �.025 .069 .841 1 .359

[psychologiescore¼ 18] 0a . . . . . .

[socialscore¼ 4] �.120 .0761 �.269 .029 2.492 1 .114

[socialscore¼ 6] �.028 .0986 �.221 .165 .079 1 .778

[socialscore¼ 8] �.100 .0761 �.249 .050 1.712 1 .191

[socialscore¼ 9] .002 .1076 �.209 .213 .000 1 .988

[socialscore¼ 10] �.123 .0864 �.293 .046 2.042 1 .153

[socialscore¼ 11] .015 .0870 �.156 .185 .029 1 .865

[socialscore¼ 12] �.064 .0772 �.215 .088 .682 1 .409

[socialscore¼ 13] �.065 .0773 �.216 .087 .703 1 .402

[socialscore¼ 14] .008 .0875 �.163 .180 .009 1 .925

[socialscore¼ 15] �.051 .0793 �.207 .104 .420 1 .517

[socialscore¼ 16] .026 .0796 �.130 .182 .107 1 .744

[socialscore¼ 17] �.109 .0862 �.277 .060 1.587 1 .208

[socialscore¼ 18] �.053 .0986 �.246 .141 .285 1 .593

[socialscore¼ 19] 0a . . . . . .

(scale) .088b

Dependent Variable: health score

Model: (Intercept), ageclass, psychologicscore, socialscore
aSet to zero because this parameter is redundant
bComputed based on the Pearson chi-square
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The underneath table shows the results. TheWald test statistics are somewhat better

than those of the Gamma regression. The Wald Chi-squares values rose respec-

tively from 8,8 to 9,3, 18,5 to 22,8 and 61,2 to 90,7. The Parameter Estimates table

showed that 7 instead 4 p-values for psychological scores were< 0,05.

Tests of model effects

Source

Type III

Wald Chi-square df Sig.

(Intercept) 776,671 1 ,000

Ageclass 9,265 6 ,159

Psychologicscore 22,800 13 ,044

Socialscore 90,655 13 ,000

Dependent Variable: health score

Model: (Intercept), ageclass, psychologicscore, socialscore

Parameter estimates

Parameter B Std. error

95 % Wald

confidence interval Hypothesis test

Lower Upper

Wald

Chi-square df Sig.

(Intercept) 1,848 ,3442 1,173 2,523 28,818 1 ,000

[ageclass¼ 1] ,085 ,1056 �,122 ,292 ,647 1 ,421

[ageclass¼ 2] ,008 ,1083 �,204 ,220 ,006 1 ,940

[ageclass¼ 3] ,113 ,1039 �,091 ,317 1,185 1 ,276

[ageclass¼ 4] �,072 ,1046 �.277 ,133 ,470 1 ,493

[ageclass¼ 5] �,157 ,1087 �,370 ,056 2,089 1 ,148

[ageclass¼ 6] �,038 ,1043 �,243 ,166 ,136 1 ,712

[ageclass¼ 7] 0a . . . . . .

[psychologiescore¼ 3] �,395 ,2072 �,801 ,011 3,640 1 ,056

[psychologiescore¼ 4] �,423 ,1470 �,711 �,135 8,293 1 ,004

[psychologiescore¼ 5] �,503 ,1721 �,840 �,166 8,539 1 ,003

[psychologiescore¼ 7] �,426 ,2210 �,859 ,007 3,713 1 ,054

[psychologiescore¼ 8] �,445 ,1420 �,723 �,166 9,807 1 ,002

[psychologiescore¼ 9] �,255 ,1942 �,636 ,125 1,729 1 ,189

[psychologiescore¼ 11] �,435 ,1870 �,802 �,069 5,416 1 ,020

[psychologiescore¼ 12] �,437 ,1466 �,725 �,150 8,904 1 ,003

[psychologiescore¼ 13] �,299 ,1748 �,641 ,044 2,922 1 ,087

[psychologiescore¼ 14] �,522 ,4349 �1,374 ,330 1,440 1 ,230

[psychologiescore¼ 15] �,726 ,2593 �1,234 �,218 7,839 1 ,005

[psychologiescore¼ 16] �,340 ,1474 �,629 �,051 5,329 1 ,021

[psychologiescore¼ 17] �,154 ,1682 �,484 ,175 ,842 1 ,359

[psychologiescore¼ 18] 0a . . . . . .

[socialscore¼ 4] ,677 ,3062 ,077 1,277 4,885 1 ,027

(continued)
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7 Conclusion

Gamma and Tweedie regressions are worthwhile analysis models complementary

to linear regression, ands may elucidate effects unobserved in the linear models.

The marginal means procedure readily enables to observe trends in the data, e.g.,

decreasing outcome score with increasing predictor scores. In the example given

Tweedie regression provided a somewhat better sensitivity of testing than gamma

regression did.

8 Note

More background, theoretical and mathematical information of gamma regression

is given in Machine learning in medicine a complete overview, Chap. 80, Heidel-

berg Springer Germany, 2015, from the same authors.

Parameter B Std. error

95 % Wald

confidence interval Hypothesis test

Lower Upper

Wald

Chi-square df Sig.

[socialscore¼ 6] ,060 ,4310 �,785 ,905 ,020 1 ,889

[socialscore¼ 8] ,513 ,3062 �,087 1,114 2,811 1 ,094

[socialscore¼ 9] �,017 ,4332 �,866 ,832 ,002 1 ,969

[socialscore¼ 10] ,676 ,4040 �,115 1,468 2,803 1 ,094

[socialscore¼ 11] �,162 ,3587 �,865 ,541 ,203 1 ,652

[socialscore¼ 12] ,289 ,3124 �,323 ,902 ,858 1 ,354

[socialscore¼ 13] ,272 ,3149 �,345 ,889 ,745 1 ,388

[socialscore¼ 14] �,036 ,3505 �,723 ,651 ,010 1 ,919

[socialscore¼ 15] ,212 ,3240 �,423 ,848 ,430 1 ,512

[socialscore¼ 16] �,089 ,3127 �,702 ,524 ,081 1 ,776

[socialscore¼ 17] ,563 ,4030 �,227 1,353 1,953 1 ,162

[socialscore¼ 18] ,217 ,4287 �,623 1,058 ,257 1 ,612

[socialscore¼ 19] 0a . . . . . .

(Scale) ,167b ,0223 ,129 ,217

Dependent Variable: health score

Model: (Intercept), ageclass, psychologicscore, socialscore
aSet to zero because this parameter is redundant
bMaximum likelihood estimate
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Chapter 32

Validating Quantitative Diagnostic Tests
(17 Patients)

1 General Purpose

The usual method for testing the strength of association between the x-data and

y-data in a linear regression model, although widely applied for validating quanti-

tative diagnostic tests, is inaccurate. Stricter criteria have to be applied for valida-

tion (For background information check Statistics applied to clinical studies 5th

edition, Chap. 50, Springer Heidelberg, Germany, from the same authors). A

stricter method to test the association between the new-test-data (the x-data) and

the control-test-data (y-values) is required. First, from the equation y¼ a + bx it is

tested whether the b-value is significantly different from 1,000, and the a-value is

significantly different from 0,000.

2 Schematic Overview of Type of Data File

_________________
Outcome predictor
. .
. .
. .
. .
. .
. .
. .
. .
. .
__________________
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3 Primary Scientific Question

Are the regression coefficient significantly different from 1,000 and the intercept

significantly different from 0,000. If so, then the new test can not be validated.

4 Data Example

In a study of 17 patients the scientific question was: is angiographic volume an

accurate method for demonstrating the real cardiac volume. The first ten patients of

the data file are given underneath. The entire data file in extras.springer.com, and is

entitled “chapter32validatingquantitative”. Start by opening the data in SPSS.

Cast cardiac volume (ml) Angiographic cardiac volume (ml)

494,00 512,00

395,00 430,00

516,00 520,00

434,00 428,00

476,00 500,00

557,00 600,00

413,00 364,00

442,00 380,00

650,00 658,00

433,00 445,00

5 Validating Quantitative Diagnostic Tests

For analysis the statistical model Linear in the module Regression is required.

Command:

Analyze....Regression....Linear....Dependent: cast cardiac volume....Independent

(s): angiographic cardiac volume....click OK .

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) 39,340 38,704 1,016 ,326

VAR0000 ,917 ,083 ,943 11,004 ,000
aDependent Variable: VAR00002
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Four tables are given, but we will use the bottom table entitled “coefficients”

only.

B¼ regression coefficient¼ 0,917� 0,083 (std error)

A¼ intercept (otherwise called B0 or Constant)¼ 39,340� 38,704 (std error)

95 % confidence intervals of B

should not be different from 1,000.

¼0,917� 1,96� 0,0813

¼ between 0.751 and 1.08.

95 % confidence intervals of A

should not be different from 0,000.

¼39,340� 1,96� 38,704

¼ between �38,068 and 116,748.

Both the confidence intervals of B and A are adequate for validating this

diagnostic test. This diagnostic test is, thus, accurate.

6 Conclusion

Quantitative diagnostic tests can be validated using linear regression. If both the

regression coefficient and the intercept are not significantly different from 1,000

and 0,000, then the diagnostic test is valid. Alternative methods are reviewed in the

references given below.

7 Note

More background, theoretical and mathematical information about validating quan-

titative diagnostic test are given in Statistics applied to clinical studies 5th edition,

the Chaps. 50 and 51, Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 33

Reliability Assessment of Quantitative
Diagnostic Tests (17 Patients)

1 General Purpose

In statistics the term reliability is synonymous to reproducibility, like validity to

accuracy, and precision to robustness (small-errors). For testing the reproducibility

of quantitative diagnostic tests incorrect methods are often applied, like small mean

differences between the first and second assessment, or a strong linear correlation

between the first and second test but no direction coefficient of 45�. Correct
methods include duplicate standard deviations, repeatability coefficients, and

large intraclass correlations. In this chapter the incraclass correlation procedure is

explained.

2 Schematic Overview of Type of Data File

_________________
Outcome predictor
. .
. .
. .
. .
. .
. .
. .
__________________
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3 Primary Scientific Question

Are the first and second assessment of an experimental sample reproducible. Is

intraclass correlation an adequate procedure to answer this question.

4 Data Example

In 17 patients quality of life scores were assessed twice. The primary scientific

question: is the underneath quantitative diagnostic test adequately reproducible.

The entire data file is entitled “chapter33reliabilityquantitative”, and is in extras.

springer.com.

Quality of life score

at first assessment

Quality of life

at second assessment

10,00 10,00

9,00 10,00

7,00 6,00

5,00 6,00

3,00 7,00

8,00 8,00

7,00 7,00

8,00 7,00

7,00 8,00

8,00 8,00

7,00 9,00

10,00 11,00

5 Intraclass Correlation

For analysis the statistical model Reliability Analysis in the module Scale is

required.

Command:

Analyze....Scale....Reliability Analysis....Items: enter quality of life first, quality of

life second....Statistics.....mark: Intraclass Correlation Coefficient....Model:

Two-way Mixed....Type: Consistency....Test value: 0....click Continue....

click OK.
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The above tables show that the intraclass correlation ( ¼ SS between subjects/

(SS between subjects + SS within subjects), SS¼ sum of squares), otherwise called

Cronbach’s alpha, equals 0,832 (¼83 %),if interaction is not taken into account, and

0,712 (¼71 %), if interaction is accounted. An intraclass correlation of 0 means,

that the reproducibility/agreement between the two assessments in the same subject

is 0, 1 indicates 100 % reproducibility / agreement. An agreement of 40 % is

moderate and of 80 % is excellent. In the above example there is, thus, a very good

agreement with a p-value much smaller than 0,05, namely 0,003. The agreement is,

thus, significantly better than an agreement of 0 %.

6 Conclusion

Intraclass correlations otherwise called Cronbach’s alphas are used for estimating

reproducibilities of novel quantitative diagnostic tests. An intraclass correlation of

0 means, that the reproducibility/agreement between the two assessments in the

same subject is as poor as 0, 1 indicates 100 % reproducibility / agreement.

7 Note

More background, theoretical, and mathematical information about reliabilities

of quantitative diagnostic tests is given in Statistics applied to clinical studies

5th edition, Chap. 45, Springer Heidelberg Germany, 2012, from the same authors.

Reliability statistics Crobach’s Alpha N of Items

,832 2

Intraclass correlation coefficient

Intraclass

correlationa
95 % confidence interval F test with true value 0

Lowe bound Upper bound Value df1 df2 Sig

Single measures ,712b ,263 ,908 5,952 11 11 ,003

Average measures ,832c ,416 ,952 5,952 11 11 ,003

Two-way mixed effects model where people effects are random and measures effects are fixed
aType C intraclass correlation coefficients using a consistency definition-the between-measure

variance is excluded from the denominator variance
bThe estimator is the same, whether the interaction effect is present or not
cThis estimate is computed assuming the interaction effects is absent, because it is not estimable

otherwise
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Part II

Binary Outcome Data



Chapter 34

One-Sample Binary Data (One-Sample
Z-Test, Binomial Test, 55 Patients)

1 General Purpose

In clinical studies the outcome is often assessed with numbers of responders and

nonresponders to some treatment. If the proportion of responders is statistically

significantly larger than zero, then the treatment is efficaceous.

2 Schematic Overview of Type of Data File

_____________
Outcome 
binary
.

.

.

.

.

.

.

.

_____________
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3 Primary Scientific Question

Is the proportion of responders significantly larger or smaller than zero.

4 Data Example

Underneath are the first 10 patients of a 55 patient file of patients responding to

hypertensive treatment or not. We wish to test whether the number of patients who

respond is significantly larger than a number of 0.

Outcome

0

0

0

0

0

0

0

0

outcome¼ responder to antihypertensive-drug-treatment or not (1 or 0)

5 Analysis: One-Sample Z-Test

The 55 patient data file is in extras.springer.com, and is entitled “chapter

34onesamplebinary”. Open it in SPSS.

Command:

Analyze....Descriptive statistics....Descriptives....Variable(s): responder....Options:

mark: mean, sum, SE, mean....click Continue....click OK.

Descriptive statistic

N Sum Mean

Statistic Statistic Statistic Std. error

afdeling 55 20,00 ,3636 ,06546

Valid N (listwise) 55
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The z-value as obtained equals 0,3636/0,06546¼ 5,5545. This value is much

larger than 1,96, and, therefore, the nullhypothesis of no difference from 0 can be

rejected at p< 0,001. A proportion of 20/55 is significantly larger than 0.

6 Alternative Analysis: Binomial Test

If the data do not follow a Gaussian distribution, this method will be required, but,

with Gaussian distributions, it may be applied even so. For analysis the statistical

model One Sample in the module Nonparametric Tests is required.

Command:

Analyze....Nonparametric Tests....click One Sample....click Fields....Test Fields:

enter “responder”....click Settings....click Choose Tests....mark Customize tests

....mark Compare observed binary probability. . .(Binomial test)....click Options

....Hypothesized proportion: enter 0,00....click OK.....a warning comes up: SPSS

does not accept 0,00....click Fix....replace 0,00 with 0,00001....click OK....

click Run.

The underneath table is in the output. The proportion observed is significantly

different from 0,00 at p< 0,0001. This result is similar to that of the above z-test.

7 Conclusion

The significant results indicate that the nullhypothesis of no effect can be rejected.

The proportion of responders is significantly larger 0,00. It may be prudent to use

nonparametric tests, if normality is doubtful, like in the small data example given.

8 Note

The theories of nullhypotheses and frequency distributions for binary outcome data

are reviewed in Statistics applied to clinical studies 5th edition, Chap. 3, Springer

Heidelberg Germany, 2012, from the same authors.

Hypothesis test summary

Asymptotic significances are displayed. The significance level is ,05
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Chapter 35

Unpaired Binary Data (Chi-Square Test,
55 Patients)

1 General Purpose

2� 2 Crosstabs, otherwise called 2� 2 contingency table or 2� 2 interaction

matrices, are data file that consist of two binary variables, one outcome and one

predictor variable. They are used to assess whether one treatment or the presence of

one particular patient characteristic is at risk of a particular outcome. The method-

ology is very popular in clinical research. E.g., safety assessments of new medicines

make often use of it.

2 Schematic Overview of Type of Data File

__________________
Outcome predictor
binary binary
. .
. .
. .
. .
. .
. .
. .
____________
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3 Primary Scientific Question

Is a treatment or the presence of a particular patient-characteristic at risk of a

particular outcome.

4 Data Example

In 55 hospitalized patients the risk of falling out of bed was assessed. The question

to be answered was: is there a significant difference between the risk of falling out

of bed at the departments of surgery and internal medicine. The first 10 patients of

the 55 patient file is underneath.

Fall out of bed Department

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

fall out bed 0¼ no, 1¼ yes
department 0¼ surgery, 1¼ internal medicine

5 Crosstabs

The data file is in extras.springer.com, and is entitled “chapter35unpairedbinary”.

We will start by opening the data in SPSS. For analysis the statistical model

Crosstabs in the module Descriptive Statistics is required.

Command:

Analyze....Descriptive Statistics....Crosstabs....Row(s): enter department....

Column(s): enter falloutofbed....click OK.

Department * falloutofbed crosstabulation

Count

Falloutofbed

,00 1,00 Total

Department ,00 20 15 35

1,00 5 15 20

Total 25 30 55
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The output sheet shows a 2� 2 contingency table. It shows that at both depart-

ments the same numbers of patients fall out of bed. However, at the department of

surgery many more patients do not fall out of bed than at the internal department.

6 3-D Bar Chart

Next we will try and draw a three dimensional graph of the data.

Command:

Graphs....3-d Bar Charts....X-axis represents: mark Groups of Cases....Z-axis rep-

resents: mark Group of Cases....click Define....X-Category Axis: enter

department....Z-Category Axis: enter falloutofbed....click OK.

The above graph is in the output. At both departments approximately the same

numbers of patients fall out of bed. However, at department-0 (surgery) many more

patients do not fall out of bed than at department-1 (internal medicine).

7 Statistical Analysis: Chi-Square Test

For analysis the statistical model Crosstabs in the module Descriptive Statistics is

required.
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Command:

Analyze....Descriptive Statistics....Crosstabs....Row(s): enter department.... Col-

umn(s): enter falloutofbed....click Statistics....mark Chi-square....click Con-

tinue....click OK.

The above chi-square test (Pearson Chi-Square) table shows that a significant

difference between the surgical and internal departments exists in patterns of

patients falling out of bed. The p-value equals 0,021, and this is much smaller

than 0,05. Several contrast tests are given in the table. They produce approximately

similar p-values. This supports the accuracy of the chi-square test for these data.

8 Conclusion

2� 2 Crosstabs consist of two binary variables, one outcome and one predictor

variable. They are used to assess whether the presence of one particular patient

characteristic is at risk of a particular outcome. The methodology is very popular in

clinical research. E.g., safety assessments of new medicines make often use of it.

9 Note

More background, theoretical, and mathematical information of binary data and

crosstabs is given in Statistics applied to clinical studies 5th edition, Chap. 3,

Springer Heidelberg Germany, 2012, from the same authors.

Chi-square tests

Value df

Asy

mp. Sig.

(2-sided)

Exact Sig.

(2-sided)

Exact Sig.

(1-sided)

Pearson Chi-Square 5,304a 1 ,021

Continuity Correctionb 4,086 1 ,043

Likelihood Ratio 5,494 1 ,019

Fisher’s Exact Test ,027 ,021

Linear-by-Linear Association 5,207 1 ,022

N of Valid Cases 55
a0 cells (,0 %) have expected count less than 5. The minimum expected count is 9,09
bComputed only f or a 2� 2 table

216 35 Unpaired Binary Data (Chi-Square Test, 55 Patients)



Chapter 36

Logistic Regression with a Binary Predictor
(55 Patients)

1 General Purpose

Similarly to chi-square tests, logistic regression can be used to test whether there is

a significant difference between two treatment modalities. To see how it works

review the linear regression example from Chap. 5. The linear regression model

with treatment modality as independent variable (x-variable), and hours of sleep as

dependent variable (y-variable¼ outcome variable) showed that the treatment

modality was a significant predictor of the hours of sleep, and, thus, that there

was a significant difference between the two treatments. If your treatment is not a

medicine but rather a type of hospital department, and your outcome is not hours of

sleep, but, rather, the chance of falling out of bed, then we will have a largely

similar situation.

hours of sleep

worse better
treatment

chance of falling
out of bed

worse better department
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The type of department is assumed to predict the risk of falling out of bed, and is

defined as a binary x-variable. The risk of falling out of bed is the y-variable, but,

unlike hours of sleep like in Chap. 6, falling out of bed is not a continuous variable,

but rather a binary variable: you either fall or you don’t. With binary y-variables

linear regression is impossible, and logistic regression is required. Otherwise, the

analysis and interpretation is pretty much similar to that of the linear regression.

2 Schematic Overview of Type of Data File

__________________
Outcome predictor
binary binary
. .
. .
. .
. .
. .
. .
. .
____________

3 Primary Scientific Question

In clinical research the predictor is often a treatment modality or the presence of a

patient characteristic, the outcome is often responding yes or no. If your chance of

responding is large, then your treatment is excellent. With logistic regression the

chance of responding is calculated as the odds of responding ( ¼ ratio of number of

responders / number of nonresponders) or rather the log odds (logarithmically

transformed odds). The larger the logodds of responding, the better the treatment.

4 Data Example

The example of Chap. 35 is used once more. In 55 hospitalized patients the risk of

falling out of bed was assessed. The question to be answered was: is there a

significant difference between the risk of falling out of bed at the departments of

surgery and internal medicine. The first 10 patients of the 55 patient file is underneath.
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Fall out of bed Department

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

fall out bed 0¼ no, 1¼ yes
department 0¼ surgery, 1¼ internal medicine

5 Crosstabs

The data file is in extras.springer.com, and is entitled “chapter35unpairedbinary”.

We will start by opening the data in SPSS.

Command:

Analyze....Descriptive Statistics....Crosstabs....Row(s): enter department.... Column(s):

enter falloutofbed....click OK.

The output sheet shows a 2�2 contingency table. It shows that at both departments

the same numbers of patients fall out of bed. However, at the department of surgery

many more patients do not fall out of bed than at the internal department.

6 Logistic Regression

For analysis the statistical model Binary Logistic Regression in the module Regression

is required.

Command:

Analyze....Regression....Binary Logistic Regression....Dependent: enter falloutofbed....

Covariates: enter department....click OK.

Department * falloutofbed crosstabulation

Count

Falloutofbed

Total,00 1,00

Department ,00 20 15 35

1,00 5 15 20

Total 25 30 55
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The above results table of the logistic regression shows that B (the regression

coefficient) for the variable department (which is the hospital department) is a

significant predictor of the chance of falling out of bed with a p-value of 0,025. This

is a p-value largely similar to that of the chi-square test from Chap. 35. The meaning

of this logistic regression is also largely the same as that of the chi-square test.

A nice thing about logistic regression is that, unlike with chi-square tests, an odds

ratio is given. The odds ratio, equals 4,000, which can interpreted as follows. The

chance of falling out of bed is four times larger at the department of surgery than it is

at the department of internal medicine. The odds ratio equals eB, with e¼Euler’s
number¼mathematical constant¼ 2,783 and B¼ regression coefficient), and is

written in the table as “exp (B)”.

The significant correlation between the type of department and the risk of falling

out of bed can be interpreted as a significant difference in safety at the two

departments.

7 Conclusion

Similarly to chi-square tests, logistic regression can be used to test whether there is

a significant difference between two treatment modalities. E.g, a better and worse

treatment on a better and worse outcome can be tested. Or the effect of a better or

worse hospital department on a better or worse chance of falling out of bed. A nice

thing about logistic regression is that it does not only provide p-values but also,

unlike chi-square testing, odds ratios, which can be interpreted as the ratio of

success in the better as compared to that of the worse response group.

8 Note

More background, theoretical, and mathematical information about logistic regression

is given in Statistics applied to clinical studies 5th edition, Chaps. 17 and 65, Springer

Heidelberg Germany, 2012, from the same authors.

Variables in the equation

B S.E. Wald Df Sig. Exp(B)

Step 1a Department 1,386 ,619 5,013 1 ,025 4,000

Constant �,288 ,342 ,709 1 ,400 ,750
aVariable(s) entered on step 1: department
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Chapter 37

Logistic Regression with a Continuous
Predictor (55 Patients)

1 General Purpose

Logistic regression with a binary predictor and binary outcome variable can predict

the effect of a better treatment on a better outcome (see previous chapter). If your

predictor is continuous, like age, it can predict the odds of responding ( ¼ ratio of

responders/non responders per subgroup, e.g., per year).

2 Schematic Overview of Type of Data File

__________________
Outcome predictor
binary continuous
. .
. .
. .
. .
. .
. .
. .
____________
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3 Primary Scientific Question

In clinical research the outcome is often responding yes or no. If your predictor is

continuous like age, body weight, health score etc, then logistic regression calcu-

lates whether the predictors have a significant effect on the odds of responding, and,

in addition, it calculates the odds values to be interpreted as chance of responding

for each year of age, kg of body weight and score level of health score.

4 Data Example

The example of Chap. 35 is used once more. In 55 hospitalized patients the risk of

falling out of bed was assessed. The question to be answered was: is age an

independent predictor of the odds or rather logodds to be interpreted as chance of

“falloutofbed”. The first 10 patients of the 55 patient file is underneath.

Fall out of bed Year of age

1,00 60,00

1,00 86,00

1,00 67,00

1,00 75,00

1,00 56,00

1,00 46,00

1,00 98,00

1,00 66,00

1,00 54,00

1,00 86,00

fall out of bed 1¼ yes, 0¼ no

The data file is in extras.springer.com, and is entitled “chapter35unpairedbinary”.

We will start by opening the data in SPSS.

5 Logistic Regression with a Continuous Predictor

For analysis the statistical model Binary Logistic Regression in the module Regres-

sion is required.

Command:

Analyze....Regression....Binary Logistic Regression....Dependent: falloutofbed....

Covariate: age....click OK.
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The correct conclusion is, that age is, indeed, a very significant predictor of the

chance of falling out of bed, with a p-value of< 0.0001.

6 Using the Logistic Equation for Making Predictions

The logistic model makes use of the underneath equation (ln¼ natural logarithm).

ln ods ¼ aþ bx

By replacing the values a and b with the respective intercept and regression coeffi-

cient, we can calculate the odds (“risk”) of falling out of bed for each age class.

ln odds ¼ �6, 442þ , 106*age

This would mean that for a patient 40 years old

ln odds ¼ �6, 442þ , 106*40
¼ �2, 202

odds ¼ 0, 11:

However, for somebody aged 60 it would mean

In odds ¼ �6, 442þ , 106*60
¼ 0, 92:

7 Conclusion

Logistic regression with a binary predictor and binary outcome variable can predict

the effect of a better treatment on a better outcome. If your predictor is, however,

continuous, like age, then the odds of responding can be predicted for multiple

subgroups (odds¼ ratio of responders / non responders per subgroup of, e.g., 1 year).

8 Note

More background, theoretical, and mathematical information about logistic regres-

sion is given in Statistics applied to clinical studies 5th edition, Chaps. 17 and

65, Springer Heidelberg Germany, 2012, from the same authors.

Variables in the equation

B S.E. Wald df Sig. Exp(B)

Step 1a age ,106 ,027 15,363 1 ,000 1,112

Constant �6,442 1,718 14,068 1 ,000 ,002
aVariable(s) entered on step 1: age
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Chapter 38

Logistic Regression with Multiple Predictors
(55 Patients)

1 General Purpose

In the Chaps. 36 and 37 logistic regression with a single binary or continuous

predictor was explained. Just like linear regression, logistic regression can also be

performed on data with multiple predictors. In this way the effects on the outcome

of not only treatment modalities, but also of additional predictors like age, gender,

comorbidities etc. can be tested simultaneously.

2 Schematic Overview of Type of Data File

___________________________________
Outcome predictor predictor predictor...
binary binary continuous
. . .
. . .
. . .
. . .
. . .
. . .
. . .
________________________
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3 Primary Scientific Question

Do all of the predictors independently of one another predict the outcome.

4 Data Example

The example of Chap. 35 is used once more. In 55 hospitalized patients the risk of

falling out of bed was assessed. The question to be answered was: is there a

significant difference between the risk of falling out of bed at the departments of

surgery and internal medicine. The first 10 patients of the 55 patient file is

underneath.

Fall Dept Age Gender Lett of complaint

1,00 ,00 60,00 ,00 1,00

1,00 ,00 86,00 ,00 1,00

1,00 ,00 67,00 1,00 1,00

1,00 ,00 75,00 ,00 1,00

1,00 ,00 56,00 1,00 1,00

1,00 ,00 46,00 1,00 1,00

1,00 ,00 98,00 ,00 ,00

1,00 ,00 66,00 1,00 ,00

1,00 ,00 54,00 ,00 ,00

1,00 ,00 86,00 1,00 1,00

fall¼ fallout of bed 0¼ no 1¼ yes

dept¼ department 0¼ surgery, 1¼ internal medicine

age – years of age

gender¼ 0 female, 1 male

lett of complaint¼ patient letter of complaint 1 yes, 0 no

5 Multiple Logistic Regression

The entire data file is entitled “chapter35unpairedbinary” and is in extras.springer.

com. We will start by opening the data file in SPSS. First, simple logistic regression

with department as predictor and falloutofbed as outcome will be performed. For

analysis the statistical model Binary Logistic Regression in the module Regression

is required.

Command:

Analyze....Regression....Binary Logistic Regression....Dependent: enter

falloutofbed....Covariates: enter department....click OK.
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The above results table of the logistic regression shows that the department is a

significant predictor at p¼ 0,025.

Next, we will test whether age is a significant predictor of falloutofbed.

Also age is a significant predictor of falling out of bed at p< 0,0001.

Subsequently, we will test all of the predictors simultaneously, and, in addition,

will test the possibility of interaction between age and department on the outcome.

Clinically, this could very well exist. Therefore, we will add an interaction-variable

of the two as an additional predictor.

Command:

Analyze....Regression....Binary Logistic Regression....Dependent: falloutofbed....

Covariates: age, department, gender, lettereof complaint, and interaction vari-

able “age by department” (click for that “> a*b> ”in the dialog window)....

click OK.

The above table shows the output of the multiple logistic regression. Interaction

is not observed, and the significant effect of the department has disappeared, while

age as single variable is a statistically significant predictor of falling out of bed with

a p-value of 0,016 and an odds ratio of 1,069 per year.

Variables in the equation

B S.E. Wald df Sig. Exp(B)

Step 1a Department 1,386 ,619 5,013 1 ,025 4,000

Constant �,288 ,342 ,709 1 ,400 ,750
aVariable(s) entered on step 1: department

Variables in the equation

B S.E. Wald df Sig. Exp(B)

Step 1a Age ,106 ,027 15,363 1 ,000 1,112

Constant �6,442 1,718 14,068 1 ,000 ,002
aVariable(s) entered on step 1: age

Variables in the equation

B S.E. Wald df Sig. Exp(B)

Step 1a Age ,067 ,028 5,830 1 ,016 1,069

Department �276,305 43760,659 ,000 1 ,995 ,000

Gender ,235 1,031 ,052 1 ,819 1,265

Letter complaint 1,582 1,036 2,331 1 ,127 4,862

Age by department 4,579 720,744 ,000 1 ,995 97,447

Constant �4,971 1,891 6,909 1 ,009 ,007
aVariable(s) entered on step 1: age, department, gender, letter complaint, age * department
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The initial significant effect of the difference in department is, obviously, not

caused by a real difference, but rather by the fact that at one department many more

elderly patients had been admitted than those at the other department. After

adjustment for age the significant effect of the department had disappeared.

6 Conclusion

In the Chaps. 36 and 37 logistic regression with a single binary or continuous

predictor was explained. Just like linear regression, logistic regression can also be

performed on data with multiple predictors. In this way the effects on the outcome

of not only treatment modalities, but also of additional predictors like age, gender,

comorbidities etc. can be tested simultaneously. If you have clinical arguments for

interactions, then interaction variables can be added to the data. The above analysis

shows that department was a confounder rather than a real effect (Confounding is

reviewed in the Chap. 22).

7 Note

More background, theoretical, and mathematical information about logistic regres-

sion is given in Statistics applied to clinical studies 5th edition, Chaps. 17 and

65, Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 39

Logistic Regression with Categorical
Predictors (60 Patients)

1 General Purpose

In the Chap. 8 the effect of categorical predictors on an continuous outcome has

been assessed. Linear regression could be used for the purpose. However, the

categorical predictor variable had to be restructured prior to the analysis. If your

outcome is binary, the analysis of categorical predictors is more easy, because SPSS

provides an automatic restructure procedure.

2 Schematic Overview of Type of Data File

______________________
Outcome predictor predictor predictor
binary categorical

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .
_____________________
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3 Primary Scientific Question

Is logistic regression appropriate for assessing categorical predictors with binary

outcomes.

4 Data Example

In 60 patients of four races the effect of the race category, age, and gender on the

physical strength class was tested. We will use the example of the Chap. 8. The

effect of race, gender, and age on physical strength was assessed. Instead of

physical strength as continuous outcome, a binary outcome (physical

strength< or� 70 points) was applied.

Race Age Gender Strength score

1,00 35,00 1,00 1,00

1,00 55,00 ,00 1,00

1,00 70,00 1,00 ,00

1,00 55,00 ,00 ,00

1,00 45,00 1,00 1,00

1,00 47,00 1,00 1,00

1,00 75,00 ,00 ,00

1,00 83,00 1,00 1,00

1,00 35,00 1,00 1,00

1,00 49,00 1,00 1,00

race 1¼ hispanic, 2¼ black, 3¼ asian, 4¼white

age¼ years of age

gender 0¼ female, 1¼male

strength score 1¼�70 points, 0¼<70 points

The entire data file is in “chapter39categoricalpredictors”, and is in extras.

springer.com. We will start by opening the data file in SPSS.

5 Logistic Regression with Categorical Predictors

For analysis the statistical model Binary Logistic Regression in the module Regres-

sion is required.

Command:

Analyze....Regression....Binary Logistic Regression....Dependent: strengthbinary....

Covariates: race, gender, age....click Categorical....Categorical Covariates: enter

race....Reference Category: mark Last....click Continue....click OK.
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The above table shows the results of the analysis. As compared to the hispanics

(used as reference category),

blacks are significantly more strengthy (at p¼ 0,039)

asians are significantly less strengthy (at p¼ 0,030)

whites are not significantly different from hispanics.

Age is not a significant predictor of the presence of strength.

Gender is a significant predictor of the presence of strength.

The above results are less powerful than those of the continuous outcome data.

Obviously with binary outcome procedures some statistical power is lost. None-

theless they show patterns similar to those with the continuous outcomes.

6 Conclusion

In the Chap. 8 the effect of categorical predictors on an continuous outcome was

shown to be applicable for categorical predictors. However, the categorical predic-

tor variable had to be restructured prior to the analysis. If your outcome is binary,

the analysis of categorical predictors is more easy, because SPSS provides an

automatic restructure procedure. The analysis is presented above.

7 Note

More background, theoretical and mathematical information of categorical pre-

dictors is given in the Chap. 21, pp 243–252, in Statistics applied to clinical studies,

Springer Heidelberg Germany, 2012, from the same authors.

Variables in the equation

B S.E. Wald df Sig. Exp(B)

Step 1a Race 13,140 3 ,004

Race(1) 2,652 1,285 4,256 1 ,039 14,176

Race(2) �2,787 1,284 4,715 1 ,030 ,062

Race(3) 1,423 1,066 1,782 1 ,182 4,149

Age �,043 ,029 2,199 1 ,138 ,958

Gender 1,991 ,910 4,791 1 ,029 7,323

Constant 1,104 1,881 ,345 1 ,557 3,017
aVariable(s) entered on step 1: race, age, gender
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Chapter 40

Trend Tests for Binary Data (106 Patients)

1 General Purpose

Trend tests are wonderful, because they provide markedly better sensitivity for

demonstrating incremental effects from incremental treatment dosages, than tradi-

tional statistical tests. In the Chap. 15 trend tests for continuous outcome data are

reviewed. In the current chapter trend tests for binary outcome data are assessed.

2 Schematic Overview of Type of Data File

_________________
Outcome predictor
binary
. .
. .
. .
. .
. .
. .
. .
. .
. .
__________________

3 Primary Scientific Question

Do incremental dosages of a medicine cause incremental numbers of patients to

become responders.
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4 Data Example

In a 106 patient study the primary scientific question was: do incremental dosages

of an antihypertensive drug cause incremental numbers of patients to become

normotensive. The entire data file is in extras.springer.com, and is entitled

“chapter40trendbinary”.

Responder Treatment

1,00 1,00

1,00 1,00

1,00 1,00

1,00 1,00

1,00 1,00

1,00 1,00

1,00 1,00

1,00 1,00

1,00 1,00

1,00 1,00

1,00 2,00

responder: normotension 1, hypertension 0
treatment: incremental treatment dosages 1–3

5 A Contingency Table of the Data

The underneath contingency table shows that with incremental dosages the odds of

responding rises from 0.67 to 1.80.

Dosage 1 Dosage 2 Dosage 3

Numbers responders 10 20 27

Numbers non-responders 15 19 15

Odds of responding 0.67(10/15) 1.11(20/19) 1.80(27/15)

First, we will try and summarize the data in a graph. Start by opening the data file

in SPSS.

6 3-D Bar Charts

Command:

Graphs....Legacy Dialogs....3-D Bar Charts....X-axis represents....mark Groups of

cases....Z-axis represents....mark Groups of cases....click Define....X Category

Axis: treatment....Z Category Axis: responders....click OK.
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The above graph is shown in the output sheets. The treatment-1-responder-0 bar

is invisible.

Command:

Double-click the graph in order to activate it....“Chart Editor” comes up....click

Rotating 3-D chart....3-D Rotation....Horizontal: enter 125....the underneath

graph comes up showing the magnitude of the treatment-1-responder-zero bar.

30

20

C
o
u
n
t

10

0

3,00 2,00
treatment responde

r
1,00 ,00

1,00

6 3-D Bar Charts 235



The above two graphs show, that incremental treatment dosages of an antihy-

pertensive drug seem to cause incremental numbers of responders (patients becom-

ing normotensive). However, the numbers of non-responders are the controls, and

their pattern is, equally, important. We, first, will perform a multiple groups

chi-square test in order to find out, whether there is any significant difference in

the data.

7 Multiple Groups Chi-Square Test

For analysis the statistical model Crosstabs in the module Descriptive Statistics is

required.

Command:

Analyze....Descriptive Statistics....Crosstabs....Row(s): responder....Column(s):

treatment....Statistics....Chi-Square Tests....click OK.

The above table shows that, indeed, the Pearson chi-square value for multiple

groups testing is not significant with a chi-square value of 3,872 and a p-value of

0,144, and we have to conclude that there is, thus, no significant difference between

the odds of responding to the three dosages.

8 Chi-Square Test for Trends

Subsequently, a chi-square test for trends can be executed, a test, that, essentially,

assesses, whether the above odds of responding (number of responder/numbers of

non-responders per treatment group) increase significantly. The “linear-by-linear

association” from the same table is appropriate for the purpose. It has approxi-

mately the same chi-square value, but it has only 1 degree of freedom, and,

therefore, it reaches statistical significance with a p-value of 0,050. There is, thus,

a significant incremental trend of responding with incremental dosages.

Chi-square tests

Value df Asy mp. Sig. (2-sided)

Pearson chi-square 3,872a 2 ,144

Likelihood ratio 3,905 2 ,142

Linear-by-linear association 3,829 1 ,050

N of valid cases 106
a0 cells (,0%) have expected count less than 5. The minimum expected count is 11,56
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The trend in this example can also be tested using logistic regression with

responding as outcome variable and treatment as independent variable (enter the

latter as covariate, not as categorical variable).

9 Conclusion

Trend tests provide markedly better sensitivity for demonstrating incremental

effects from incremental treatment dosages, than traditional statistical tests. In the

Chap. 16 trend tests for continuous outcome data are reviewed. In the current

chapter trend tests for binary outcome data are assessed.

10 Note

More background, theoretical, and mathematical information of trend testing is

given in Statistics applied to clinical studies 5th edition, Chap. 27, Springer

Heidelberg Germany, 2012, from the same authors.

Chi-square tests

Value df Asy mp. Sig. (2-sided)

Pearson chi-square 3,872a 2 ,144

Likelihood ratio 3,905 2 ,142

Linear-by-linear association 3,829 1 ,050

N of valid cases 106
a0 cells (,0%) have expected count less than 5. The minimum expected count is 11,56
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Chapter 41

Paired Binary (McNemar Test)
(139 General Practitioners)

1 General Purpose

Paired proportions have to be assessed when e.g. different diagnostic tests are

performed in one subject. E.g., 315 subjects are tested for hypertension using

both an automated device (test-1) and a sphygmomanometer (test-2). 184 subjects

scored positive with both tests and 63 scored negative with both tests. These

247 subjects, therefore, give us no information about which of the tests is more

likely to score positive. The information we require is entirely contained in the

68 subjects for whom the tests did not agree (the discordant pairs). McNemar’s
chi-square test is appropriate for analysis.

2 Schematic Overview of Type of Data File

__________________________
Outcome-1 outcome 2
binary binary
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
____________________________
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3 Primary Scientific Question

Is the number of yes-responders of outcome-1 significantly different from that of

outcome-2.

4 Data Example

In a study of 139 general practitioners the primary scientific question was: is there a

significant difference between the numbers of practitioners who give lifestyle

advise in the periods before and after (postgraduate) education.

Life style advise after education

No Yes

0 1

Life style advise No 0 65 28

Before education Yes 1 12 34

The above table summarizes the numbers of practitioners giving lifestyle advise

in the periods prior to and after postgraduate education. Obviously, before educa-

tion 65 + 28¼ 93 did not give lifestyle, while after education this number fell to 77.

It looks as though the education was somewhat sucessful.

Lifestyle advise-1 Lifestlye advise-2

,00 ,00

,00 ,00

,00 ,00

,00 ,00

,00 ,00

,00 ,00

,00 ,00

,00 ,00

,00 ,00

,00 ,00

0¼ no, 1¼ yes

The first ten patients of the data file is given above. The entire data file is in

extras.springer.com, and is entitled “chapter41paired binary”. Start by opening the

data file in SPSS.

5 3-D Chart of the Data

Command:

Graphs....3D Bar Chart....X-axis represents: Groups of cases....Z-axis represents:

Groups of cases....Define....X Category Axis: lifestyleadvise after....Z Category

Axis: lifestyleadvise before....click OK.
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The paired observations show that twice no lifestyleadvise was given by 65 prac-

titioners, twice yes lifestyleadvise by 34 practitioners. Furthermore, 28 practitioners

started to give lifestyleadvise after postgraduate education, while, in contrast,

12 stopped giving lifestyleadvise after the education program. McNemar’s test is
used to statistically test the significance of difference.

6 Data Analysis: McNemar’s Test

For analysis the statistical model Two Related Samples in the module Nonpara-

metric Tests is required.

Command:

Analyze....Nonparametric....Two Related Samples....Test Pairs....Pair 1....Variable

1: enter lifestyleadvise after....Variable 2: enter lifestytleadvise before....mark

McNemar....click OK.

Lifestyleadvise before &

lifestyleadvise after
Lifestyleadvise before

Lifestyleadvise after

,00 1,00

,00 65 28

1,00 12 34
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The above tables show that the McNemar test is statistically significant at a

p-value of 0,018, which is a lot smaller than 0,05. The conclusion can be drawn, that

a real difference between the numbers of practitioners giving lifestyle advise after

and before postgraduate education is observed. The postgrade education has,

obviously, been helpful.

7 Conclusion

Paired proportions have to be assessed when e.g. different diagnostic procedures are

performed in one subject. McNemar’s chi-square test is appropriate for analysis.

Mc Nemar’s test can not include predictor variables, and is not feasible for more

than two outcomes. For that purpose Cochran’s tests are required (Chap. 43). The

analysis of paired outcome proportions including predictor variables requires the

module generalized estimating equations to be reviewed in the Chap. 42.

8 Note

More background, theoretical and mathematical information of paired binary out-

comes are given in Statistics applied to clinical studies 5th edition, Chap.3, Springer

Heidelberg Germany, 2012, from the same authors.

Test statisticsa Lifestyleadvise before & lifestyleadvise after

N 139

Chi-squareb 5,652

Asymp. Sig. ,018
aMcNemar Test
bContinuity Corrected
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Chapter 42

Paired Binary Data with Predictor
(139 General Practitioners)

1 General Purpose

Paired proportions have to be assessed when e.g. different diagnostic procedures are

performed in one subject. McNemar’s chi-square test is appropriate for analysis.

Mc Nemar’s test can not include predictor variables. The analysis of paired

outcome proportions including predictor variables requires the module generalized

estimating equations. The difference between the two outcomes and the indepen-

dent effects of the predictors variables on the outcomes are simultaneously tested.

2 Schematic Overview of Type of Data File

___________________________________________
Outcome-1 outcome-2 predictor
binary binary
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
___________________________________________
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3 Primary Scientific Questions

Fist, is the numbers of yes-responders of outcome-1 significantly different from that

of outcome-2. Second, are the predictor variables significant predictors of the

outcomes.

4 Data Example

In a study of 139 general practitioners the primary scientific question was: is there a

significant difference between the numbers of practitioners who give lifestyle advise

in the periods before and after (postgraduate) education. The second question was, is

age an independent predictor of the outcomes.

Lifestyle advise-1 Lifestyle advise-2 Age (years)

,00 ,00 89,00

,00 ,00 78,00

,00 ,00 79,00

,00 ,00 76,00

,00 ,00 87,00

,00 ,00 84,00

,00 ,00 84,00

,00 ,00 69,00

,00 ,00 77,00

,00 ,00 79,00

0¼ no, 1¼ yes

The first ten patients of the data file is given above. We will use the data of the

Chap. 41 once more. The entire data file is in extras.springer.com, and is entitled

“chapter41paired binary”.

5 2�2 Contingency Table of the Effect
of Postgraduate Education

Lifestyleadvise after education

No Yes

0 1

Lifestyleadvise No 0 65 28

Before education Yes 1 12 34

244 42 Paired Binary Data with Predictor (139 General Practitioners)

http://dx.doi.org/10.1007/978-3-319-20600-4_41


The above table summarizes the numbers of practitioners giving lifestyle advise

in the periods prior to and after postgraduate education. Obviously, before educa-

tion 65 + 28¼ 93 did not give lifestyle, while after education this number fell to 77.

It looks as though the education was somewhat successful. According to the

McNemar’s test this effect was statistically significant (Chap. 41). In this chapter

we will assess, if the effect still exists after adjustment for doctors’ ages.
Start by opening the data file in SPSS. Prior to a generalized estimation equation

analysis which includes additional predictors to a model with paired binary out-

comes, the data will have to be restructured. For that purpose the Restructure Data

Wizard will be used. The procedure is also applied in the Chap. 12.

6 Restructure Data Wizard

Command:

click Data....click Restructure....mark Restructure selected variables into cases....

click Next....mark One (for example, w1, w2, and w3)....click Next....Name: id

(the patient id variable is already provided)....Target Variable: enter

“lifestyleadvise 1, lifestyleadvise 2 ”....Fixed Variable(s): enter age....click

Next.... How many index variables do you want to create?....mark One....click

Next....click Next again....click Next again....click Finish....Sets from the origi-

nal data will still be in use. . .click OK.

Return to the main screen and observe that there are now 278 rows instead of

139 in the data file. The first 10 rows are given underneath.

Id Age Index 1 Trans 1

1 89,00 1 ,00

1 89,00 2 ,00

2 78,00 1 ,00

2 78,00 2 ,00

3 79,00 1 ,00

3 79,00 2 ,00

4 76,00 1 ,00

4 76,00 2 ,00

5 87,00 1 ,00

5 87,00 2 ,00

id: patient identity number

age: age in years

Index 1: 1¼ before postgraduate education, 2¼ after postgraduate education

trans 1: lifestyleadvise no¼ 1, lifestyle advise yes¼ 2

The above data file is adequate to perform a generalized estimation equation

analysis. Save the data file. For convenience of the readers it is given in extras.

springer.com, and is entitled “chapter42pairedbinaryrestructured”.
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7 Generalized Estimation Equation Analysis

For analysis the module Generalized Linear Models is required. It consists of two

submodules: Generalized Linear Models and Generalized Estimation Models. The

first submodule covers many statistical models like gamma regression (Chap. 30),

Tweedie regression (Chap. 31), Poisson regression (Chaps. 21 and 47), and the

analysis of paired outcomes with predictors (Chap. 3). The second is for analyzing

binary outcomes (current chapter).

Command:

Analyze....Generalized Linear Models....Generalized Estimation Equations....click

Repeated....transfer id to Subject variables....transfer Index 1 to Within-subject

variables....in Structure enter Unstructured....click Type of Model....mark Binary

logistic....click Response....in Dependent Variable enter lifestyleadvise....click

Reference Category....click Predictors....in Factors enter Index 1....in Covariates

enter age....click Model....in Model enter lifestyleadvise and age....click OK.

In the output sheets the above tables are observed. They show that both the index

1 (postgraduate education) and age are significant predictors of lifestyleadvise. The

interpretations of the two significant effects are slightly different from one another.

The effect of postgraduate education is compared with no postgraduate education at

all, while the effect of age is an independent effect of age on lifestyleadvise, the

Tests of model effects

Source

Type III

Wald chi-square df Sig.

(Intercept) 8,079 1 ,004

Index1 6,585 1 ,010

age 10,743 1 ,001

Dependent Variable: lifestyleadvise before

Model: (Intercept), Index1, age

Parameter estimates

95% Wald confidence

interval Hypothesis test

Parameter B Stri. Error Lower Upper Wald chi-square df Sig.

(Intercept) �2,508 ,8017 �4,079 �,936 9,783 1 ,002

[Indexl ¼ 1] ,522 ,2036 ,123 ,921 6,585 1 ,010

[Indexl ¼ 2] 0a

Age ,043 ,0131 ,017 ,069 10,743 1 ,001

(Scale) 1

Dependent Variable: lifestyleadvise before

Model: (Intercept), Index1, age
aSet to zero because this parameter is redundant
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older the doctors the better lifestyle advise given irrespective of the effect of the

postgraduate education.

8 Conclusion

Paired proportions have to be assessed when e.g. different diagnostic procedures are

performed in one subject. McNemar’s chi-square test is appropriate for analysis.

Mc Nemar’s test can not include predictor variables, and is not feasible for more

than two outcomes. For that purpose Cochran’s tests are required (Chap. 43). The

analysis of paired outcome proportions including predictor variables requires the

module generalized estimating equations as reviewed in the current chapter.

9 Note

More background, theoretical and mathematical information of paired binary out-

comes are given in Statistics applied to clinical studies 5th edition, Chap. 3,

Springer Heidelberg Germany, 2012, from the same authors. More information of

generalized linear models for paired outcome data is given in Machine learning in

medicine a complete overview, Chap. 20, Springer Heidelberg Germany, 2015,

from the same authors.
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Chapter 43

Repeated Measures Binary Data (Cochran’s
Q Test), (139 Patients)

1 General Purpose

With repeated observations in one patient, the paired property of the observations

has to be taken into account because of the, generally, positive correlation between

paired observations in one person. with two repeated observations Mc Nemar’s test
is adequate (Chap. 41). However, with three or more observations Cochran’s Q test

should be applied.

2 Schematic Overview of Type of Data File

_________________________
Outcome outcome outcome
binary binary binary
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
_________________________
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3 Primary Scientific Question

Is there a significant difference between the numbers of responders who have been

treated differently three times.

4 Data Example

In 139 patients three treatments are given in a three period crossover design. The

scientific question was: is there a significant difference between the numbers of

responders who have been treated differently three times.

Treatment 1 Treatment 2 Treatment 3

,00 ,00 ,00

,00 ,00 1,00

,00 ,00 1,00

,00 ,00 1,00

,00 ,00 1,00

,00 ,00 ,00

,00 1,00 ,00

,00 1,00 1,00

,00 1,00 1,00

,00 ,00 1,00

0¼ no responder, 1¼ yes responder

The above table gives three paired observations in each patient (each row). The

paired property of these observations has to be taken into account, because of the,

generally, positive correlation between paired observations. Cochran’s Q test is

appropriate for that purpose.

5 Analysis: Cochran’s Q Test

The data file is in extras.springer.com, and is entitled “chapter43repeatedmeasur-

esbinary”. Start by opening the data file in SPSS. For analysis the statistical model

K Related Samples in the module Nonparametric Tests is required.

Command:

Analyze....Nonparametric Tests....Legacy Dialogs....K Related Samples....mark

Cochran’s Q....Test Variables: treat 1, treat 2, treat 3....click OK.

Frequencies Value

0 1

Treat 1 93 46

Treat 2 75 64

Treat 3 67 72
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The above tables, in the output sheets show that the test is, obviously, highly

significant with a p-value of 0,006. This means, that there is a significant difference

between the treatment responses. However, we do not yet know where: between the

treatments 1 and 2, 2 and 3, or between 1 and 3. For that purpose three separate

McNemar’s tests have to be carried out.

6 Subgroups Analyses with McNemar’s Tests

Command:

Analyze....Nonparametric Tests....Legacy Dialogs....2 Related Samples....mark

McNemar....Test Pairs; Pair 1....Variable 1: enter treat 1....Variable 2: enter

treat 2....click OK.

The above output table shows that the difference between treatment 1 and 2 is

statistically significant at p¼ 0,036. Subsequently, treatment 1 and 3, and 2 and

3 have to be tested against one another.

Test statistics N 139

Cochran’s Q 10,133a

df 2

Asymp. Sig. ,006
a0 is treated as a success

Test statisticsa Treat 1 & treat 2

N 139

Chi-squareb 4,379

Asymp. Sig. ,036
aMcNemar Test
bContinuity Corrected

Test statisticsa Treat 1 & treat 3

N 139

Chi-squareb 8,681

Asymp. Sig. ,003
aMcNemar Test
bContinuity Corrected

Test statisticsa Treat 2 & treat 3

N 139

Chi-squareb ,681

Asymp. Sig. ,409
aMcNemar Test
bContinuity Corrected
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The above three separate McNemar’s tests show, that there is no difference

between the treatments 2 and 3, but there are significant differences between 1 and

2, and 1 and 3. If we adjust the data for multiple testing, for example, by using

p¼ 0,01 instead of p¼ 0,05 for rejecting the null-hypotheses, then the difference

between 1 and 2 loses its significance, but the difference between treatment 1 and

3 remains statistically significant.

7 Conclusion

With repeated observations in one patient, the paired property of the observations

has to be taken into account. With two repeated observations Mc Nemar’s test is
adequate. However, with three or more observations Cochran’s Q test should be

applied.

8 Note

McNemar’s test for comparing two repeated binary outcomes is reviewed in the

Chap. 41.
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Chapter 44

Multinomial Regression for Outcome
Categories (55 Patients)

1 General Purpose

In clinical research it is not uncommon that outcome variables are categorical, e.g.,

the choice of food, treatment modality, type of doctor etc. If such outcome variables

are binary, then binary logistic regression is appropriate (Chaps. 36, 37, 38, 39). If,

however, we have three or more alternatives, then multinomial logistic regression

must be used. It works, essentially, similarly to the recoding procedure reviewed in

Chap. 8 on categorical predictors variables. Multinomial logistic regression should

not be confounded with ordered logistic regression, which is used in case the

outcome variable consists of categories, that can be ordered in a meaningful way,

e.g., anginal class or quality of life class (Chap. 48).

2 Schematic Overview of Type of Data File

_________________________
Outcome predictor
categorical
. .
. .
. .
. .
. .
. .
. .
. .
. .
_________________________
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3 Primary Scientific Question

Do the predictor values significantly predict the outcome categories.

4 Data Example

In a study of 55 hospitalized patients the primary question was the following. The

numbers of patients falling out of bed with and without injury were assessed in two

hospital departments. It was expected that the department of internal medicine

would have higher scores. Instead of binary outcomes, “yes or no falling out of

bed”, we have three possible outcomes

no falling,

falling without injury,

falling with injury.

Because the outcome scores may indicate increasing severities of falling from

the scores 0 to 2, a linear or ordinal regression may be adequate (Chap.48).

However, the three possible outcomes may also relate to different types of patients

and different types of morbidities, and may, therefore, be presented with nominal

rather than increasing values like increasing severities. A multinomial logistic

regression may, therefore, be an adequate choice.

Fall out of bed cats 0, 1, 2 Department

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

2,00 ,00

cats 0¼ no fall out of bed, 1¼ fall out of bed without injury, 2¼ fall out of bed with

injury; department 0¼ internal medicine, 1¼ surgery

The entire data file is entitled “chapter44multinomialregression”, and is in

extras.springer.com. Start by opening the data file in SPSS.
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5 3-D Bar Chart

We will first draw a graph of the data.

Command:

Graphs. . .. Legacy Dialogs....3-D Charts. . ...X-Axis: Groups of cases. . ...Z-Axis:
Groups of cases. . ..Define. . ..X Category Axis: falloutofbed. . ..Z Category

Axis: department. . ..click OK.

The above graph shows that at the department of surgery fewer no-falls and

fewer fall with injury are observed. In order to test these data we will first perform a

linear regression with fall as outcome and department as predictor variable.

6 Linear Regression

For analysis the statistical model Linear in the module Regression is required.

Command:

Analyze. . ..Regression. . ..Linear. . ..Dependent: falloutofbed. . ..Independent (s):

department. . ..click OK.
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The above graph shows that difference between the departments is not statisti-

cally significant. However, the linear model applied assumes increasing severities

of the outcome variable, while categories without increasing severities may be a

better approach to this variable. For that purpose a multinomial logistic regression

is performed.

7 Multinomial Regression

For analysis the statistical model Multinomial Logistic Regression in the module

Regression is required.

Command:

Analyze. . ..Regression. . ..Multinomial Logistic Regression. . .. Dependent:

falloutofbed. . ..Factor: department. . ..click OK.

The above graph shows that the odds of falling with injury versus no falling is

smaller at surgery than at internal medicine with an odds ratio of 0.371 (p¼ 0.274),

and that the odds of falling with injury versus falling without injury is also smaller

at surgery than at internal medicine with and odds ratio of 0.154 (p¼ 0.034).

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1 (Constant) ,909 ,132 6,874 ,000

Department �,136 ,209 �,089 �,652 ,517
aDependent Variable: fall with/out injury

Parameter estimates

Fall with/out injurya B

Std.

error Wald df Sig. Exp(B)

95 % confidence

interval for Exp (B)

Lower

bound

Upper

bound

,00 Intercept 1,253 ,802 2,441 1 ,118

[VAR00001¼,00] �,990 ,905 1,197 1 ,274 ,371 ,063 2,191

[VAR00001¼ 1,00] 0b . . 0 . . . .

1,00 Intercept 1,872 ,760 6,073 1 ,014 .

[VAR00001¼,00] �1,872 ,881 4,510 1 ,034 ,154 ,027 ,866

[VAR00001¼ 1,00] 0b . . 0 . . . .
aThe reference category is: 2,00.
bThis parameter is set to zero because it is redundant.
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And, so, surgery seems to perform better, when injuries are compared with no

injuries. This effect was not observed with linear regression.

8 Conclusion

In research it is not uncommon that outcome variables are categorical, e.g., the

choice of food, treatment modality, type of doctor etc. If such outcome variables are

binary, then binary logistic regression is appropriate. If, however, we have three or

more alternatives, then multinomial logistic regression must be used. It works,

essentially, similarly to the recoding procedure reviewed in Chap. 8 on categorical

predictors variables. It can be considered a multivariate technique, because the

dependent variable is recoded from a single categorical variable into multiple

dummy variables (see Chap. 8 for explanation). More on multivariate techniques

are reviewed in the Chaps. 17 and 18. Multinomial logistic regression should not be

confounded with ordered logistic regression which is used in case the outcome

variable consists of categories, that can be ordered in a meaningful way, e.g., anginal

class or quality of life class. Also ordered logistic regression is readily available in the

regression module of SPSS (Chap. 48).

9 Note

More background, theoretical and mathematical information of categorical variables is

given Statistics applied to clinical studies 5th edition, Chap. 21, Springer Heidelberg

Germany, 2012, and in Machine learning in medicine a complete overview, chaps

9–11 and 28–30, Springer Heidelberg Germany, 2015, from the same authors.
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Chapter 45

Random Intercept for Categorical Outcome
and Predictor Variables (55 Patients)

1 General Purpose

Categories are very common in medical research. Examples include age classes,

income classes, education levels, drug dosages, diagnosis groups, disease severities,

etc. Statistics has generally difficulty to assess categories, and traditional models

require either binary or continuous variables. If in the outcome, categories can be

assessed with multinomial regression (Chap. 44). If as predictors, they can be

assessed with linear regression for categorical predictors (Chap. 8). However,

with multiple categories or with categories both in the outcome and as predictors,

random intercept models may provide better sensitivity of testing. The latter models

assume that for each predictor category or combination of categories x1, x2,. . .
slightly different a-values can be computed with a better fit for the outcome

category y than a single a-value.

y ¼ aþ b1x1 þ b2x2 þ . . . :

We should add that, instead of the above linear equation, even better results were

obtained with log-transformed outcome variables (log¼ natural logarithm).

log y ¼ aþ b1x1 þ b2x2 þ . . . :

This chapter was previously partly published in “Machine learning in medicine-cookbook 2” as

Chap. 6, 2014.
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2 Schematic Overview of Type of Data File

_____________________________
outcome predictor predictor
category category category
. . .
. . .
. . .
. . .
. . .
. . .
. . .
_____________________________

3 Primary Scientific Question

Are in a study of exposure and outcome categories the exposure categories signif-

icant predictors of the outcome categories. Does a random intercept provide better

test-statistics than does a fixed effects analysis.

4 Data Example

In a study, three hospital departments (no surgery, little surgery, lot of surgery), and

three patient age classes (young, middle, old) were the predictors of the risk class of

falling out of bed (fall out of bed no, yes but no injury, yes and injury). Are the

predictor categories significant determinants of the risk of falling out of bed with or

without injury. Does a random intercept provide better statistics.

Outcome fall out of

bed

Predictor

department

Predictor

ageclass

Patient_id

1 0 1,00 1,00

1 0 1,00 2,00

1 0 2,00 3,00

1 0 1,00 4,00

1 0 1,00 5,00

1 0 ,00 6,00

1 1 2,00 7,00
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1 0 2,00 8,00

1 1 2,00 9,00

1 0 ,00 10,00

department¼ department class (0¼ no surgery, 1¼ little surgery, 2¼ lot

of surgery)

falloutofbed¼ risk of falling out of bed (0¼ fall out of bed no, 1¼ yes

but no injury, 2¼ yes and injury)

ageclass¼ patient age classes (young, middle , old)

patient_id¼ patient identification

5 Data Analysis with a Fixed Effect Generalized Linear
Mixed Model

Only the first 10 patients of the 55 patient file is shown above. The entire data file is in

extras.springer.com and is entitled “chapter45randomintercept.sav”. SPSS version

20 and up can be used for analysis. First, we will perform a fixed intercept model.

The module Mixed Models consists of two statistical models:

Linear,

Generalized Linear.

For analysis the statistical model Generalized Linear Mixed Models is required.

First we will perform a fixed effects model analysis, then a random effects model.

Command:

Click Analyze. . ..Mixed Models....Generalized Linear Mixed Models....click Data

Structure. . ..click “patient_id” and drag to Subjects on the Canvas. . ..click
Fields and Effects. . ..click Target. . ..Target: select “fall with/out injury”. . ..
click Fixed Effects . . ..click “agecat” and “department” and drag to Effect

Builder:. . ..mark Include intercept. . ..click Run.

The underneath results show that both the various regression coefficients as well

as the overall correlation coefficients between the predictors and the outcome are,

generally, statistically significant.
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6 Data Analysis with a Random Effect Generalized
Linear Mixed Model

Subsequently, a random intercept analysis is performed.

Command:

Analyze. . ..Mixed Models....Generalized Linear Mixed Models....click Data

Structure. . ..click “patient_id” and drag to Subjects on the Canvas. . ..click
Fields and Effects. . ..click Target. . ..Target: select “fall with/out injury”. . ..
click Fixed Effects . . ..click “agecat” and “department” and drag to Effect

Builder:. . ..mark Include intercept. . ..click Random Effects. . ..click Add

Block. . .mark Include intercept . . ..Subject combination: select patient_id. . ..
click OK. . ..click Model Options. . ..click Save Fields. . .mark

PredictedValue. . ..mark PredictedProbability. . ..click Save ....click Run.
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The underneath results show the test-statistics of the random intercept model.

The random intercept model shows better statistics:

p¼ 0.007 and 0.013 overall for age,

p¼ 0.001 and 0.004 overall for department,

p¼ 0.003 and 0.005 regression coefficients for age class 0 versus 2,

p¼ 0.900 and 0.998 for age class 1 versus 2,

p¼ 0.004 and 0.008 for department 0 versus 2, and

p¼ 0.0001 and 0.0002 for department 1 versus 2.
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In the random intercept model we have also commanded predicted values

(variable 7) and predicted probabilities of having the predicted values as computed

by the software (variables 5 and 6).

1 2 3 4 5 6 7 (variables)

0 1 1,00 1,00 ,224 ,895 1

0 1 1,00 2,00 ,224 ,895 1

0 1 2,00 3,00 ,241 ,903 1

0 1 1,00 4,00 ,224 ,895 1

0 1 1,00 5,00 ,224 ,895 1

0 1 ,00 6,00 ,007 ,163 2

1 1 2,00 7,00 ,185 ,870 1

0 1 2,00 8,00 ,241 ,903 1

1 1 2,00 9,00 ,185 ,870 1

0 1 ,00 10,00 ,007 ,163 2

Variable 1: department

Variable 2: falloutofbed

Variable 3: agecat

Variable 4: patient_id

Variable 5: predicted probability of predicted value of target accounting the

department score only

Variable 6: predicted probability of predicted value of target accounting both

department and agecat scores

Variable 7: predicted value of target

Like automatic linear regression (see Chap. 7), and other generalized mixed linear

models (see Chap. 12), random intercept models include the possibility to make XML

files from the analysis, that can subsequently be used for making predictions about the

chance of falling out of bed in future patients. However, SPSS uses here slightly

different software called winRAR ZIP files that are “shareware”. This means that you

pay a small fee and be registered if you wish to use it. Note that winRAR ZIP files

have an archive file format consistent of compressed data used by Microsoft since

2006 for the purpose of filing XML (eXtended Markup Language) files. They are

only employable for a limited period of time like e.g. 40 days.

7 Conclusion

Generalized linear mixed models are suitable for analyzing data with multiple

categorical variables. Random intercept versions of these models provide better

sensitivity of testing than fixed intercept models.

8 Note

More information on statistical methods for analyzing data with categories is, e.g.,

in the Chaps. 8, 39, and 44.
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Chapter 46

Comparing the Performance of Diagnostic
Tests (650 and 588 Patients)

1 General Purpose

Both logistic regression and c-statistics can be used to evaluate the performance of

novel diagnostic tests (see also Machine learning in medicine part two, Chap. 6, pp

45–52, Springer Heidelberg Germany, 2013, from the same authors). This chapter

is to assess whether one method can outperform the other.

2 Schematic Overview of Type of Data Files

_________________________
Outcome predictor
binary
. .
. .
. .
. .
. .
. .
. .
. .
. .
_________________________

This chapter was previously partly published in “Machine learning in medicine a complete

overview”, Chap. 41, Springer Heidelberg Germany, 2015, from the same authors.
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3 Primary Scientific Question

Is logistic regression with the odds of disease as outcome and test scores as

covariate a better alternative to concordance (c)-statistics using the area under the

curve of ROC (receiver operated characteristic) curves.

4 Data Sample One

In 650 patients with peripheral vascular disease a noninvasive vascular lab test was

performed. The results of the first ten patients are underneath.

Presence of peripheral

vascular disease (0¼ no, 1¼ yes)

Test score

,00 1,00

,00 1,00

,00 2,00

,00 2,00

,00 3,00

,00 3,00

,00 3,00

,00 4,00

,00 4,00

,00 4,00

The entire data file is in extras.springer.com, and is entitled “chapter46-

1performancediagnostictest”. Start by opening the data file in SPSS.

5 Data Histogram Graph from Sample One

Then Command:

Graphs....Legacy Dialogs....Histogram....Variable(s): enter “score”....Row(s): enter

“disease”....click OK.

The underneath figure shows the output sheet. On the x-axis we have the vascular

lab scores, on the y-axis “how often”. The scores in patients with (1) and without

(0) the presence of disease according to the gold standard (angiography) are

respectively in the lower and upper graph.
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6 Data Sample Two

The second data file is obtained from a parallel-group population of 588 patients

after the noninvasive vascular test has been improved. The first ten patients are

underneath.

Presence of peripheral

vascular disease (0¼ no, 1¼ yes)

Test score

,00 1,00

,00 2,00

,00 2,00

,00 3,00

,00 3,00

,00 3,00

,00 4,00

,00 4,00

,00 4,00

,00 4,00

The entire data file is in extras.springer.com, and is entitled “chapter46-

2performancediagnostictest”. Start by opening the data file in SPSS.

6 Data Sample Two 267



7 Data Histogram Graph from Sample Two

Command:

Graphs....Legacy Dialogs....Histogram....Variable(s): enter “score”....Row(s): enter

“disease”....click OK.

The above figure is in the output sheet. The first test (upper figure) seems to

perform less well than the second test (lower figure), because there may be more

risk of false positives (the 0 disease curve is more skewed to the right in the upper

than in the lower figure).

8 Performance Assessment with Binary Logistic
Regression

For analysis the statistical model Binary Logistic Regression in the module Regres-

sion is required.

Binary logistic regression is used for assessing this question. The following

reasoning is used. If we move the threshold for a positive test to the right, then the

proportion of false positive will decrease. The steeper the logistic regression line

the faster this will happen. In contrast, if we move the threshold to the left, the

proportion of false negatives will decrease. Again, the steeper the logistic
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regression line, the faster it will happen. And so, the steeper the logistic regression

line, the fewer false negatives and false positives, and, thus, the better the

diagnostic test.

For both data files the above analysis is performed, using the model Binary

Logistic in the module Regression.

Command:

Analyze. . .. Regression.. . .Binary Logistic. . .. Dependent variable: disease. . ..
Covariate: score.. . .OK.

The output sheets show the best fit regression equations.

Data file 1: log odds of having the disease¼�8.003 + 0.398 times the score

Data file 2: log odds of having the disease¼�10.297 + 0.581 times the score.

The regression coefficient of data file 2 is much steeper than that of data file

1, 0.581 and 0.398.

Both regression equations produce highly significant regression coefficients with

standard errors of respectively 0.032 and 0.051 and p-values of< 0.0001. The two

regression coefficients are tested for significance of difference using the z – test (the

z-test is in Chap. 2 of Statistics on a Pocket Calculator part 2, pp 3–5, Springer

Heidelberg Germany, 2012, from the same authors):

z ¼ 0:398� 0:581ð Þ=√ 0:0322 þ 0:0512
� � ¼ �0:183=0:060 ¼ �3:05;which corre-

sponds with a p-value of< 0.01.

Obviously, test 2 produces a significantly steeper regression model, which

means that it is a better predictor of the risk of disease than test 1. We can,

additionally, calculate the odds ratios of successfully testing with test 2 versus

test 1. The odds of disease with test 1 equals e0.398¼ 1.488, and with test 2 it equals

e0.581¼ 1.789. The odds ratio¼ 1.789/1.488¼ 1.202, meaning that the second test

produces a 1.202 times better chance of rightly predicting the disease than test

1 does.

Variables in the equation

B S.E. Wald df Sig. Exp(B)

Step 1a VAR00001 ,398 ,032 155,804 1 ,000 1,488

Constant �8,003 ,671 142,414 1 ,000 ,000
aVariable(s) entered on step 1: VAR00001

Variables in the equation

B S.E. Wald df Sig. Exp(B)

Step 1a VAR00001 ,581 ,051 130,715 1 ,000 1,789

Constant �10,297 ,915 126,604 1 ,000 ,000
aVariable(s) entered on step 1: VAR00001
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9 Performance Assessment with C-statistics

C-statistics is used as a contrast test. Open the first data file again. For analysis the

module ROC Curve must be used.

Command:

Analyze....ROC Curve....Test Variable: enter “score”....State Variable: enter “dis-

ease”....Value of State Variable: type “1”....mark ROC Curve....mark Standard

Error and Confidence Intervals....click OK.

1,0

0,8

0,6

0,4

0,2

0,0
0,0 0,2 0,4

Diagonal segments are produced by ties.

1 - Specificity

ROC Curve

S
en

si
ti

vi
ty

0,6 0,8 1,0

Area under the curve

Test result variable(s): score

Area Std. errora Asymptotic sig.b
Asymptotic 95 % confidence interval

Lower bound Upper bound

,945 ,009 ,000 ,928 ,961

The test result variable(s): score has at least one tie between the positive actual state group and the

negative actual state group

Statistics maybe biased
aUnder the nonparametric assumption
bNull hypothesis: true area¼ 0.5
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Subsequently the same procedure is followed for the second data file.

1,0

0,8

0,6

0,4

0,2

0,0
0,0 0,2 0,4

Diagonal segments are produced by ties.

1 - Specificity

ROC Curve
S

en
si

ti
vi

ty

0,6 0,8 1,0

Area under the curve

Test result variable(s): score

Area Std. errora Asymptotic sig.b
Asymptotic 95 % confidence interval

Lower bound Upper bound

,974 ,005 ,000 ,965 ,983

The test result variable(s): score has at least one tie between the positive actual state group and the

negative actual state group

Statistics maybe biased
aUnder the nonparametric assumption
bNull hypothesis: true area¼ 0.5
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The Area under curve of data file 2 is larger than that of data file 1. The test

2 seems to perform better. The z-test can again be used to test for significance of

difference.

z ¼ 0:974� 0:945ð Þ=√ 0:0092 þ 0:0052
� � ¼ 2:90

p5 0:01:

10 Conclusion

Both logistic regression with the presence of disease as outcome and test scores of

as predictor and c-statistics can be used for comparing the performance of qualita-

tive diagnostic tests. However, c-statistics may perform less well with very large

areas under the curve, and it assesses relative risks while in practice absolute risk

levels may be more important

11 Note

More background, theoretical and mathematical information of logistic regression

and c-statistics is in Machine learning in medicine part two, Chap. 6, pp 45–52,

Springer Heidelberg Germany, 2013, from the same authors.
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Chapter 47

Poisson Regression for Binary Outcomes
(52 Patients)

1 General Purpose

Poisson regression cannot only be used for counted rates but also for binary

outcome variables. Poisson regression of binary outcome data is different from

logistic regression, because it uses a log instead of logit (log odds) transformed

dependent variable. It tends to provide better statistics.

2 Schematic Overview of Type of Data File

________________________
Outcome predictor weight
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
________________________

3 Primary Scientific Question

Can Poisson regression be used to estimate the presence of an illness. Presence

means a rate of 1, absence means a rate of 0. If each patient is measured within the

same period of time, no weighting variable has to be added to the model. Rates of
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0 or 1, do, after all, do exist in practice. We will see how this approach performs as

compared to the logistic regression, traditionally, used for binary outcomes. The

data file is below.

4 Data Example

In 52 patients with parallel-groups of two different treatments the presence or not of

torsades de pointes was measured. The first ten patients of the data file given below.

The entire data file is entitled chapter47poissonbinary, and is in extras.springer.

com. We will start by opening the data file in SPSS.

Treat Presence of torsade de pointes.

,00 1,00

,00 1,00

,00 1,00

,00 1,00

,00 1,00

,00 1,00

,00 1,00

,00 1,00

,00 1,00

,00 1,00

5 Data Analysis, Binary Logistic Regression

First, we will perform a traditional binary logistic regression with torsade de pointes

as outcome and treatment modality as predictor.

For analysis the statistical model Binary Logistic Regression in the module

Regression is required.

Command:

Analyze. . ..Regression. . ..Binary Logistic. . ..Dependent: torsade. . ..Covariates:
treatment. . ..click OK.

Variables in the equation

B S.E. Wald df Sig. Exp(B)

Step 1a VAR00001 1,224 ,626 3,819 1 ,051 3,400

Constant �,125 ,354 ,125 1 ,724 ,882
aVariable(s) entered on step 1: VAR00001
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The above table shows that the treatment is not statistically significant. A

Poisson regression will performed subsequently.

6 Data Analysis, Poisson Regression

For analysis the module Generalized Linear Models is required. It consists of two

submodules: Generalized Linear Models and Generalized Estimation Models. The

first submodule covers many statistical models like gamma regression (Chap. 30),

Tweedie regression (Chap. 31), Poisson regression (Chaps. 21 and the current

chapter), and the analysis of data files with both paired continuous outcomes and

predictors (Chap. 3). The second is for analyzing paired binary outcomes

(Chap. 42).

Command:

Analyze....Generalized Linear Models....Generalized Linear Models . . ..mark

Custom. . ..Distribution: Poisson . . ..Link Function: Log. . ..Response: Depen-
dent Variable: torsade. . .. Predictors: Factors: treat....click Model....click Main

Effect: enter “treat”. . ...click Estimation: mark Robust Tests. . ..click OK.

The above table shows the results of the Poisson regression. The predictor

treatment modality is statistically significant at p¼ 0.039. According to the Poisson

model the treatment modality is a significant predictor of torsades de pointes.

Parameter estimates

95 % Wald

confidence interval Hypothesis test

Parameter B Std. error Lower Upper Wald chi-square df Sig.

(Intercept) �,288 ,1291 �.541 �,035 4,966 1 ,026

[VAR00001¼,00] �,470 ,2282 �,917 �,023 4,241 1 ,039

[VAR00001¼ 1,00] 0a

(Scale) 1b

Dependent Variable: torsade

Model: (Intercept), VAR00001
aSet to zero because this parameter is redundant
bFixed at the displayed value
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7 Graphical Analysis

We will check with a 3-dimensional graph of the data if this result is in agreement

with the data as observed.

Command:

Graphs. . ..Legacy Dialog. . ..3-D Bar: X-Axis mark: Groups of Cases, Z-Axis

mark: Groups of Cases. . .Define 3-D Bar: X Category Axis: treatment, Z

Category Axis: torsade. . ..OK.

The above graph shows that in the 0-treatment (placebo) group the number of

patients with torsades de pointe is virtually equal to that of the patients without.

However, in the 1-treatment group the number is considerably smaller. The treat-

ment seems to be efficacious.

8 Conclusion

Poisson regression is different from linear en logistic regression, because it uses a

log transformed dependent variable. For the analysis of yes/no rates Poisson

regression is very sensitive and probably better than standard regression methods.

The methodology is explained.
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9 Note

More background, theoretical and mathematical information about Poisson regres-

sion is given in Statistics applied to clinical studies 5th edition, Chap. 23, Springer

Heidelberg Germany, 2012, from the same authors.
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Chapter 48

Ordinal Regression for Data
with Underpresented Outcome Categories
(450 Patients)

1 General Purpose

Clinical studies often have categories as outcome, like various levels of health or

disease. Multinomial regression is suitable for analysis (see Chap. 44). However, if

one or two outcome categories in a study are severely underpresented, multinomial

regression is flawed, and ordinal regression including specific link functions may

provide a better fit for the data. Strictly, ordinal data are, like nominal data, discrete

data, however, with a stepping pattern, like severity scores, intelligence levels,

physical strength scores. They are usually assessed with frequency tables and bar

charts. Unlike scale data, that also have a stepping pattern, they do not necessarily

have to have steps with equal intervals. This causes some categories to be

underpresented compared to others.

2 Schematic Overview of the Type of Data File

__________________________________
Outcome predictor predictor predictor
categories
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
___________________________
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3 Primary Scientific Question

This chapter is to assess how ordinal regression performs in studies where clinical

scores have inconsistent frequencies.

4 Data Example

This chapter assesses the effect of the levels of satisfaction with the doctor on the

levels of quality of life (qol). In 450 patients with coronary artery disease the

satisfaction level of patients with their doctor was assumed to be an important

predictor of patient qol (quality of life).

Qol (outcome) Treatment Counseling Sat doctor

4 3 1 4

2 4 0 1

5 2 1 4

4 3 0 4

2 2 1 1

1 2 0 4

4 4 0 1

4 3 0 1

4 4 1 4

3 2 1 4

qol¼ quality of life score (1¼ very low, 5¼ vey high)

treatment¼ treatment modality (1¼ cardiac fitness, 2¼ physiotherapy,
3¼wellness, 4¼ hydrotherapy, 5¼ nothing)
counseling¼ counseling given (0¼ no, 1¼ yes)

sat doctor¼ satisfaction with doctor (1¼ very low, 5¼ very high)

The above table gives the first 10 patients of a 450 patients study of the effects of

doctors’ satisfaction level and qol. The entire data file is in extras.springer.com and

is entitled “chapter48ordinalregression”. Start by opening the data file in SPSS.

5 Table Qol Score Frequencies

Command:

Analyze. . ..Descriptive Statistics....Frequencies....Variable(s): enter “qol score”....

click OK.
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The above table shows that the frequencies of the qol scores are pretty hetero-

geneous with 111 patients very high scores and only 71 patients medium scores.

This could mean that multinomial regression is somewhat flawed and that ordinal

regression including specific link functions may provide a better fit for the data.

6 Multinomial Regression

For analysis the statistical model Multinomial Logistic Regression in the module

Regression is required.

Command:

Analyze....Regression....Multinomial Regression....Dependent: enter qol.... Factor

(s): enter treatment, counseling, sat (satisfaction) with doctor....click OK.

The next page table is in the output sheets. It shows that the effects of several

factors on different qol scores are very significant, like the effect of counseling on

very low qol, and the effects of satisfaction with doctor levels 1 and 2 on very low

qol. However, other effects were insignificant, like the effects of treatments on very

low qol, and the effects of satisfaction with doctor levels 3 and 4 on very low qol. In

order to obtain a more general overview of what is going-on an ordinal regression

will be performed.

7 Ordinal Regression

For analysis the statistical model Ordinal Regression in the module Regression is

required.

Command:

Analyze....Regression....Ordinal Regression....Dependent: enter qol....Factor(s):

enter “treatment”, “counseling”, “sat with doctor”....click Options....Link: click

Complementary Log-log....click Continue....click OK.

Qol score

Frequency Percent Valid percent Cumulative percent

Valid Very low 86 19,1 19,1 19,1

Low 73 16,2 16,2 35,3

Medium 71 15,8 15,8 51,1

High 109 24,2 24,2 75,3

Very high 111 24,7 24,7 100,0

Total 450 100,0 100,0
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The above tables are in the output sheets of the ordinal regression. The model

fitting information table tells that the ordinal model provides an excellent overall fit

for the data. The parameter estimates table gives an overall function of all pre-

dictors on the outcome categories. Treatment is not a significant factor, but

counseling, and the satisfaction with doctor levels 1–3 are very significant pre-

dictors of the quality of life of these 450 patients. The negative values of the

estimates can be interpreted as follows: the less counseling, the less effect on

quality of life, and the less satisfaction with doctor, the less quality of life.

Model fitting information

Model �2 Log likelihood Chi-square df Sig.

Intercept only 578,352

Final 537,075 41,277 8 ,000

Link function: Complementary Log-log

Parameter estimates

Estimate

Std.

error Wald df Sig.

95 % confidence

interval

Lower

bound

Upper

bound

Threshold [qol¼ 1] �2,207 ,216 103,925 1 ,000 �2,631 �1,783

[qol¼ 2] �1,473 ,203 52,727 1 ,000 �1,871 �1,075

[qol¼ 3] �,959 ,197 23,724 1 ,000 �1,345 �,573

[qol¼ 4] �,249 ,191 1,712 1 ,191 �,623 ,124

Location [treatments] ,130 ,151 ,740 1 ,390 �,167 ,427

[treatment¼ 2] �,173 ,153 1,274 1 ,259 �.473 ,127

[treatment¼ 3] �,026 ,155 ,029 1 ,864 �,330 ,277

[treatment¼ 4] 0a . . 0 . . .

[counseling¼ 0] �.289 ,112 6,707 1 ,010 �,508 �,070

[counseling¼ 1] 0a . . 0 . . .

[satdoctor¼ 1] �,947 ,222 18,214 1 ,000 �1,382 �,512

[satdoctor¼ 2] �,702 ,193 13,174 1 ,000 �1,081 �,323

[satdoctor¼ 3] �,474 ,195 5,935 1 ,015 �,855 �,093

[satdoctor¼ 4] �,264 ,195 1,831 1 ,176 �,646 ,118

[satdoctor¼ 5] 0a . . 0 . . .

Link function: Complementary Log-log
aThis parameter is set to zero because it is redundant
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8 Conclusion

Clinical studies often have categories as outcome, like various levels of health or

disease. Multinomial regression is suitable for analysis, but, if one or two outcome

categories in a study are severely underpresented, ordinal regression including

specific link functions may better fit the data. The current chapter also shows

that, unlike multinomial regression, ordinal regression tests the outcome categories

as an overall function.

9 Note

More background, theoretical and mathematical information of ordinal regression

and ordinal data is given in Machine learning in medicine a complete overview,

Chaps. 11 and 37, Springer Heidelberg Germany, 2015, from the same authors.
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Chapter 49

Probit Regression, Binary Data as Response
Rates (14 Tests)

1 General Purpose

Probit regression is for estimating the effect of predictors on yes/no outcomes. If

your predictor is multiple pharmacological treatment dosages, then probit regres-

sion may be more convenient than logistic regression, because your results will be

reported in the form of response rates instead of odds ratios. The dependent variable

of the two methods log odds (otherwise called logit) and log prob (otherwise called

probit) are closely related to one another. It can be shown that the log odds of

responding� (π/√3) � log probability of responding (see Chap. 7, Machine learn-

ing in medicine part three, Probit regression, pp 63–68, 2013, Springer Heidelberg

Germany, from the same authors).

2 Schematic Overview of Type of Data File

_____________________________________________________
Outcome total predictor predictor
response observations
frequency
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
____________________________________

© Springer International Publishing Switzerland 2016

T.J. Cleophas, A.H. Zwinderman, SPSS for Starters and 2nd Levelers,
DOI 10.1007/978-3-319-20600-4_49
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3 Primary Scientific Question

This chapter will assess whether probit regression is able to test whether different

predictor levels can adequately predict response rates.

4 Data Example

In 14 test sessions the effect measured as the numbers of mosquitos gone after

administration of different dosages of a chemical repellent was assessed. The first

seven sessions are in the underneath table. The entire data file is entitled

“chapter49probit”, and is in extras.springer.com. Start by opening the data file in

SPSS statistical software.

Mosquitos

gone

n mosquitos Repellent

nonchem

Repellent

chem

1000 18000 1 ,02

1000 18500 1 ,03

3500 19500 1 ,03

4500 18000 1 ,04

9500 16500 1 ,07

17000 22500 1 ,09

20500 24000 1 ,10

5 Simple Probit Regression

For analysis the statistical model Probit Regression in the module Regression is

required.

Command:

Analyze....Regression....Probit Regression....Response Frequency: enter “mosqui-

tos gone”....Total Observed: enter “n mosquitos”....Covariate(s): enter “chemi-

cal”....Transform: select “natural log”....click OK.

Chi-square tests

Chi-square dfa Sig.

PROBIT Pearson goodness-of-fit test 7706,816 12 ,000b

aStatistics based on individual cases differ from statistics based on aggregated cases
bSince the significance level is less than ,150, a heterogeneity factor is used in the calculation of

confidence limits
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In the output sheets the above table shows that the goodness of fit tests of the data

is significant, and, thus, the data do not fit the probit model very well. However,

SPSS is going to produce a heterogeneity correction factor, and we can proceed.

The underneath shows that chemical dilution levels are a very significant predictor

of proportions of mosquitos gone.

The above table shows that according to chi-square tests the differences between

observed and expected proportions of mosquitos gone is several times statistically

significant.

It does, therefore, make sense to make some inferences using the underneath

confidence limits table.

Parameter estimates

Parameter

95 % confidence interval

Estimate

Std.

error Z Sig.

Lower

bound

Upper

bound

PROBITa chemical

(dilution)

1,649 ,006 286,098 ,000 1,638 1,660

Intercept 4,489 ,017 267,094 ,000 4,472 4,506
aPROBIT model: PROBIT(p)¼ Intercept +BX (Covariates X are transformed using the base

2.718 logarithm)

Cell counts and residuals

Number

Chemical

(dilution)

Number

of subjects

Observed

responses

Expected

responses Residual Probability

PROBIT 1 �3,912 18000 1000 448,194 551,806 ,025

2 �3,624 18500 1000 1266,672 �266,672 ,068

3 �3,401 19500 3500 2564,259 935,741 ,132

4 �3,124 18000 4500 4574,575 �74,575 ,254

5 �2,708 16500 9500 8405,866 1094,134 ,509

6 �2,430 22500 17000 15410,676 1589,324 ,685

7 �2,303 24000 20500 18134,992 2365,008 ,756

8 �3,912 22500 500 560,243 �60,243 ,025

9 �3,624 18500 1500 1266,672 233,328 ,068

10 �3,401 19000 1000 2498,508 �1498,508 ,132

11 �3,124 20000 5000 5082,861 �82,861 ,254

12 �2,708 22000 10000 11207,821 �1207,821 ,509

13 �2,430 16500 8000 11301,162 �3301,162 ,685

14 �2,303 18500 13500 13979,056 �479,056 ,756
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Confidence limits

Probability

95 % confidence limits for

chemical (dilution)

95 % confidence limits for log

(chemical (dilution))a

Estimate

Lower

bound

Upper

bound Estimate

Lower

bound

Upper

bound

PROBITb ,010 ,016 ,012 ,020 �4,133 �4,453 �3,911

,020 ,019 ,014 ,023 �3,968 �4,250 �3,770

,030 ,021 ,016 ,025 �3,863 �4,122 �3,680

,040 ,023 ,018 ,027 �3,784 �4,026 �3,612

,050 ,024 ,019 ,029 �3,720 �3,949 �3,557

,060 ,026 ,021 ,030 �3,665 �3,882 �3,509

,070 ,027 ,022 ,031 �3,617 �3,825 �3.468

,080 ,028 ,023 ,032 �3,574 �3,773 �3,430

,090 ,029 ,024 ,034 �3,535 �3,726 �3,396

,100 ,030 ,025 ,035 �3,500 �3,683 �3,365

,150 ,035 ,030 ,039 �3,351 �3,506 �3,232

,200 ,039 ,034 ,044 �3,233 �3,368 �3,125

,250 ,044 ,039 ,048 �3,131 �3,252 �3,031

,300 ,048 ,043 ,053 �3,040 �3,150 �2,943

,350 ,052 ,047 ,057 �2,956 �3,059 �2,860

,400 ,056 ,051 ,062 �2,876 �2,974 �2,778

,450 ,061 ,055 ,067 �2,799 �2,895 �2,697

,500 ,066 ,060 ,073 �2,722 �2,819 �2,614

,550 ,071 ,064 ,080 �2,646 �2,745 �2,529

,600 ,077 ,069 ,087 �2,569 �2,672 �2/442

,650 ,083 ,074 ,095 �2,489 �2,598 �2,349

,700 ,090 ,080 ,105 �2,404 �2,522 �2,251

,750 ,099 ,087 ,117 �2,313 �2,441 �2,143

,800 ,109 ,095 ,132 �2,212 �2,351 �2,022

,850 ,123 ,106 ,153 �2,094 �2,248 �1,879

,900 ,143 ,120 ,183 �1,945 �2,120 �1,699

,910 ,148 ,124 ,191 �1,909 �2,089 �1,655

,920 ,154 ,128 ,200 �1,870 �2,055 �1,608

,930 ,161 ,133 ,211 �1,827 �2,018 �1,556

,940 ,169 ,138 ,224 �1,780 �1,977 �1,497

,950 ,178 ,145 ,239 �1,725 �1,931 �1,430

,960 ,190 ,153 ,259 �1,661 �1,876 �1,352

,970 ,206 ,164 ,285 �1,582 �1,809 �1,255

,980 ,228 ,179 ,324 �1,477 �1,719 �1,126

,990 ,269 ,206 ,397 �1,312 �1,579 �,923
aLogarithm base¼ 2.718
bA heterogeneity factor is used
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E.g., one might conclude that a 0,143 dilution of the chemical repellent causes

0,900 (¼90 %) of the mosquitos to have gone. And 0,066 dilution would mean that

0,500 (¼50 %) of the mosquitos disappeared.

6 Multiple Probit Regression

For analysis again the statistical model Probit regression in the module Regression

is required.

Like multiple logistic regression using multiple predictors, probit regression can

also be applied with multiple predictors. We will add as second predictor to the

above example the nonchemical repellents ultrasound (¼1) and burning candles

(¼2) (see uppermost table of this chapter).

Command:

Analyze....Regression....Probit Regression....Response Frequency: enter “mosqui-

tos gone”....Total Observed: enter “n mosquitos”....Covariate(s): enter “chemi-

cal, nonchemical”....Transform: select “natural log”....click OK.

Again, the goodness of fit is not what it should be, but SPSS adds a correction

factor for heterogeneity. The underneath table shows the regression coefficients for

the multiple model. The nonchemical repellents have significantly different effects

on the outcome.

Chi-square tests

Chi-square dfa Sig.

PROBIT Pearson goodness-of-fit test 3863,489 11 ,000b

aStatistics based on individual cases differ from statistics based on aggregated cases
bSince the significance level is less than ,150, a heterogeneity factor is used in the calculation of

confidence limits

Parameter estimates

Parameter Estimate

Std.

error Z Sig.

95 % confidence

interval

Lower

bound

Upper

bound

PROBITa Chemical (dilution) 1,654 ,006 284,386 ,000 1,643 1,665

Interceptb Ultrasound 4,678 ,017 269,650 ,000 4,661 4,696

Burning

candles

4,321 ,017 253,076 ,000 4,304 4,338

aPROBIT model: PROBIT(p)¼ Intercept +BX (Covariates X are transformed using the base

2.718 logarithm.)
bCorresponds to the grouping variable repellentnonchemical
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In the Cell Counts table on page 292, it is shown that according to the chi-square

tests the differences of observed and expected proportions of mosquitos gone were

statistically significant several times. The table on pages 293–295 gives interesting

results. E.g., a 0,128 dilution of the chemical repellent causes 0,900 (¼90 %) of the

mosquitos to have gone in the ultrasound tests. And 0,059 dilution would mean that

0,500 (¼50 %) of the mosquitos disappeared. The results of burning candles were

less impressive. 0,159 dilution caused 90 % of the mosquitos to disappear, 0,073

dilution 50 %.

7 Conclusion

Probit regression is, just like logistic regression, for estimating the effect of pre-

dictors on yes/no outcomes. If your predictor is multiple pharmacological treatment

dosages, then probit regression may be more convenient than logistic regression,

because your results will be reported in the form of response rates instead of odds

ratios.

This chapter shows that probit regression is able to find response rates of

different dosages of mosquito repellents.

8 Note

More background, theoretical and mathematical information of probit regression is

given in the Chap. 7, Machine learning in medicine part three, Probit regression, pp

63–68, 2013, Springer Heidelberg Germany, from the same authors.
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Chapter 50

Monte Carlo Tests for Binary Data
(139 Physicians and 55 Patients)

1 General Purpose

Monte Carlo methods allows you to examine complex data more easily than

advanced mathematics like integrals and matrix algebra. It uses random numbers

from your own study rather than assumed Gaussian curves. Monte Carlo analyses of

continuous outcome data are reviewed in the Chap. 27. In this chapter we will

review Monte Carlo analyses for paired and unpaired binary data.

2 Schematic Overview of Type of Data File, Paired Data

_______________________
Outcome 1 outcome 2
binary binary
. .
. .
. .
. .
. .
. .
. .
. .
. .
_______________________

© Springer International Publishing Switzerland 2016

T.J. Cleophas, A.H. Zwinderman, SPSS for Starters and 2nd Levelers,
DOI 10.1007/978-3-319-20600-4_50
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3 Primary Scientific Question, Paired Data

For paired data McNemar tests is adequate (Chap. 41). Does Monte Carlo analysis

of the same data provide better sensitivity of testing.

4 Data Example, Paired Data

In a study of 139 general practitioners the primary scientific question was, is there a

significant difference between the numbers of practitioners who give lifestyle

advise in the periods before and after postgraduate education.

Lifestyle advise-1 Lifestyle advise-2 Age

,00 ,00 89,00

,00 ,00 78,00

,00 ,00 79,00

,00 ,00 76,00

,00 ,00 87,00

,00 ,00 84,00

,00 ,00 84,00

,00 ,00 69,00

,00 ,00 77,00

,00 ,00 79,00

0¼ no, 1¼ yes

The first 10 physicians of the data file is given above. The entire data file is in

extras.springer.com, and is entitled “chapter41pairedbinary”.

5 Analysis: Monte Carlo, Paired Data

For analysis the statistical model Two Related Samples in the module Nonpara-

metric Tests is required.

Command:

Analyze....Nonparametric....Two Related Samples....Test Pairs....Pair 1....Variable

1: enter lifestyleadvise after....Variable 2: enter lifestytleadvise before....mark

McNemar....click Exact....click Monte Carlo....set Confidence Intervals: 99 %....

set Number of Samples: 10000....click Continue. . .click OK.
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The above table is in the output. The two sided level of statistical significance is

0,016. This is slightly smaller than the p-value produced by the nonparametric Mc

Nemar test (Chap. 41), p¼ 0,018, and, so, a slightly better fit for the data was

obtained by the Monte Carlo method.

6 Schematic Overview of Type of Data File, Unpaired Data

_______________________
Outcome predictor
binary
. .
. .
. .
. .
. .
. .
. .
. .
. .
_______________________

lifestyleadvise before & lifestyleadvise after

Lifestyleadvise before

Lifestyleadvise after

,00 1,00

,00 65 28

1,00 12 34

Test Statisticsa,b

Lifestyle after 1 year –

lifestyle

Z �2,530c

Asymp. Sig. (2-tailed) ,011

Monte Carlo Sig.

(2-tailed)

Sig. ,016

95 % Confidence

Interval

Lower

bound

,008

Upper

bound

,024

Monte Carlo Sig.

(1-tailed)

Sig. ,010

95 % Confidence

Interval

Lower

bound

,004

Upper

bound

,016

aWilcoxon Signed Ranks Test
bBased on 1000 sampled tables with starting seed 2000000
cBased on negative ranks
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7 Primary Scientific Question, Unpaired Data

For unpaired binary data Pearson chi-square is adequate. Is Monte Carlo testing

better sensitive for the analysis of such data.

8 Data Example, Unpaired Data

In 55 patients the effect of the hospital department on the risk of falling out of bed

was assessed. The entire data file is in “chapter35unpairedbinary”, and is in extras.

springer.com.

Fall out of bed Department

1¼ yes, 0¼ no 0¼ surgery, 1¼ internal medicine

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

1,00 ,00

9 Data Analysis, Monte Carlo, Unpaired Data

For analysis the statistical model Chi-square in the module Nonparametric Tests is

required.

Command:

Analyze. . ..Nonparametric tests. . ..Chi-square. . ..Test variable list: enter depart-

ment and fall out of bed. . ..click “Exact”. . ..Click: Monte Carlo method. . ..set
Confidence Interval, e.g., 99 %, and set Numbers of Samples, e.g., 10 000. . ..
click Continue. . ..OK.
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The Monte Carlo analysis provided a larger p -value than did the Pearson

chi-square test (Chap. 35) with p-values of respectively 0,064 and 0,021.

10 Conclusion

Monte Carlo methods allow you to examine complex data more easily and more

rapidly than advanced mathematics like integrals and matrix algebra. It uses

random numbers from your own study. Often, but not always, better p-values are

produced.

11 Note

More background, theoretical, and mathematical information of Monte Carlo

methods for data analysis is given in Statistics applied to clinical studies 5th edition,

Chap. 57, Springer Heidelberg Germany, 2012, from the same authors.

Test statistics

Department Fall out of bed

Chi-Square 4,091a ,455a

df 1 1

Asymp.Sig. ,043 ,500

Monte Carlo Sig. Sig. ,064b ,595b

99 % confidence interval Lower bound ,057 ,582

Upper bound ,070 ,608
a0 cells (,0 %) have expected frequencies less than 5. The minimum expected cell frequency is 27,5
bBased on 10000 sampled tables with starting seed 926214481
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Chapter 51

Loglinear Models, Logit Loglinear
Models (445 Patients)

1 General Purpose

Multinomial regression is adequate for identifying the main predictors of outcome

categories, like levels of injury or quality of life (QOL). An alternative approach is

logit loglinear modeling. It does not use continuous predictors on a case by case basis,

but rather the weighted means of subgroups formed with the help of predictors. This

approach may allow for relevant additional conclusions from your data.

2 Schematic Overview of Type of Data File

_____________________________  
Outcome predictor predictor predictor covariate(s)
cat cat cat cat
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
______________________________
cat = categorical

This chapter was previously partly published in “Machine learning in medicine a complete

overview” as Chap. 39, Springer Heidelberg Germany, 2015.

© Springer International Publishing Switzerland 2016

T.J. Cleophas, A.H. Zwinderman, SPSS for Starters and 2nd Levelers,
DOI 10.1007/978-3-319-20600-4_51
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3 Primary Scientific Question

Does logit loglinear modeling allow for relevant additional conclusions from your

categorical data as compared to polytomous/multinomial regression?

4 Data Example

Qol Gender Married Lifestyle Age

2 1 0 0 55

2 1 1 1 32

1 1 1 0 27

3 0 1 0 77

1 1 1 0 34

1 1 0 1 35

2 1 1 1 57

2 1 1 1 57

1 0 0 0 35

2 1 1 0 42

3 0 1 0 30

1 0 1 1 34

age (years)

gender (0¼ female)

married (0¼ no)

lifestyle (0¼ poor)

qol (quality of life levels, 1¼ low, 3¼ high)

The above table shows the data of the first 12 patients of a 445 patient data file of

qol (quality of life) levels and patient characteristics. The characteristics are the

predictor variables of the qol levels (the outcome variable). The entire data file is in

extras.springer.com, and is entitled “chapter51loglinear”. We will first perform a

traditional multinomial regression in order to test the linear relationship between

the predictor levels and the chance (actually the odds, or to be precise logodds) of

having one of the three qol levels. Start by opening SPSS, and entering the data file.

5 Multinomial Logistic Regression

For analysis the statistical model Multinomial Logistic Regression in the module

Regression is required.

Command:

Analyze....Regression....Multinomial Logistic Regression....Dependent: enter

“qol”.... Factor(s): enter “gender, married, lifestyle”....Covariate(s): enter

“age”....click OK.
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The underneath table shows the main results.

The following conclusions are appropriate.

1. The unmarried subjects have a greater chance of QOL level 1 than the married

ones (the b-value is positive here).

2. The higher the age, the less chance of having the low QOL levels 1 and 2 (the

b-values (regression coefficients) are negative here). If you wish, you may also

report the odds ratios (Exp (B) values) here.

6 Logit Loglinear Modeling

We will now perform a logit loglinear analysis. For analysis the statistical model

Logit in the module Loglinear is required.

Command:

Analyze.... Loglinear....Logit....Dependent: enter “qol”....Factor(s): enter “gender,

married, lifestyle”....Cell Covariate(s): enter: “age”....Model: Terms in Model:

enter: “gender, married, lifestyle, age”....click Continue....click Options....mark

Estimates....mark Adjusted residuals....mark normal probabilities for adjusted

residuals....click Continue....click OK.

Parameter estimates

Qola B

Std.

error Wald df Sig.

Exp

(B)

95 % confidence

interval for Exp

(B)

Lower

bound

Upper

bound

Low Intercept 28,027 2,539 121,826 1 ,000

age �,559 ,047 143,158 1 ,000 ,572 ,522 ,626

[gender¼ 0] ,080 ,508 ,025 1 ,875 1,083 ,400 2,930

[gender¼ 1] 0b . . 0 . . . .

[married¼ 0] 2,081 ,541 14,784 1 ,000 8,011 2,774 23,140

[married¼ 1] 0b . . 0 . . . .

[lifestyle¼ 0] �,801 ,513 2,432 1 ,119 ,449 ,164 1,228

[lifestyle¼ 1] 0b . . 0 . . . .

Medium Intercept 20,133 2,329 74,743 1 ,000

age �,355 ,040 79,904 1 ,000 ,701 ,649 ,758

[gender¼ 0] ,306 ,372 ,674 1 ,412 1,358 ,654 2,817

[gender¼ 1] 0b . . 0 . . . .

[married¼ 0] ,612 ,394 2,406 1 ,121 1,843 ,851 3,992

[married¼ 1] 0b . . 0 . . . .

[lifestyle¼ 0] �,014 ,382 ,001 1 ,972 ,987 ,466 2,088

[lifestyle¼ 1] 0b . . 0 . . . .
aThe reference category is: high
bThis parameter is set to zero because it is redundant

6 Logit Loglinear Modeling 305



C
el
l
co
u
n
ts

an
d
re
si
d
u
al
sa
,b

O
b
se
rv
ed

E
x
p
ec
te
d

G
en
d
er

M
ar
ri
ed

L
if
es
ty
le

Q
o
l

C
o
u
n
t

%
C
o
u
n
t

%
R
es
id
u
al

S
ta
n
d
ar
d
iz
ed

re
si
d
u
al

A
d
ju
st
ed

re
si
d
u
al

D
ev
ia
n
ce

M
al
e

U
n
m
ar
ri
ed

In
ac
ti
v
e

L
o
w

7
2
3
,3

%
9
,1
1
1

3
0
,4

%
�2

,1
1
1

�,
8
3
8

�1
,1
2
5

�1
,9
2
1

M
ed
iu
m

1
6

5
3
,3

%
1
4
,1
2
4

4
7
,1

%
1
,8
7
6

,6
8
6

,8
8
8

1
,9
9
8

H
ig
h

7
2
3
,3

%
6
,7
6
5

2
2
,6

%
,2
3
5

,1
0
3

,1
2
7

,6
9
1

A
ct
iv
e

L
o
w

2
9

6
1
,7

%
2
5
,8
4
0

5
5
,0

%
3
,1
6
0

,9
2
7

2
,0
1
8

2
,5
8
7

M
ed
iu
m

5
1
0
,6

%
1
0
,0
8
7

2
1
,5

%
�5

,0
8
7

�1
,8
0
7

�2
,9
3
3

�2
,6
4
9

H
ig
h

1
3

2
7
,7

%
1
1
,0
7
4

2
3
,6

%
1
,9
2
6

,6
6
2

2
,0
1
9

2
,0
4
2

M
ar
ri
ed

In
ac
ti
v
e

L
o
w

9
1
1
,0

%
1
0
,6
3
6

1
3
,0

%
�1

,6
3
6

�,
5
3
8

�,
8
2
6

�1
,7
3
4

M
ed
iu
m

4
1

5
0
,0

%
4
3
,4
5
4

5
3
,0

%
�2

,4
5
4

�,
5
4
3

�1
,0
6
2

�2
,1
8
3

H
ig
h

3
2

3
9
,0

%
2
7
,9
1
0

3
4
,0

%
4
,0
9
0

,9
5
3

2
,0
0
6

2
,9
5
8

A
ct
iv
e

L
o
w

1
5

2
3
,8

%
1
4
,4
1
3

2
2
,9

%
,5
8
7

,1
7
6

,7
5
4

1
,0
9
4

M
ed
iu
m

2
7

4
2
,9

%
2
1
,3
3
6

3
3
,9

%
5
,6
6
4

1
,5
0
8

2
,7
6
1

3
,5
6
6

H
ig
h

2
1

3
3
,3

%
2
7
,2
5
1

4
3
,3

%
�6

,2
5
1

�1
,5
9
0

�2
,8
6
8

�3
,3
0
8

F
em

al
e

U
n
m
ar
ri
ed

In
ac
ti
v
e

L
o
w

1
2

2
6
,1

%
1
1
,1
1
9

2
4
,2

%
,8
8
1

,3
0
3

,6
2
7

1
,3
5
3

M
ed
iu
m

2
6

5
6
,5

%
2
2
,9
9
1

5
0
,0

%
3
,0
0
9

,8
8
7

1
,6
0
1

2
,5
2
9

H
ig
h

8
1
7
,4

%
1
1
,8
9
0

2
5
,8

%
�3

,8
9
0

�1
,3
1
0

�1
,9
9
4

�2
,5
1
8

A
ct
iv
e

L
o
w

1
8

5
4
,5

%
1
9
,9
3
0

6
0
,4

%
�1

,9
3
0

�,
6
8
7

�,
9
7
8

�1
,9
1
5

M
ed
iu
m

6
1
8
,2

%
5
,7
9
9

1
7
,6

%
,2
0
1

,0
9
2

,1
3
8

,6
3
9

H
ig
h

9
2
7
,3

%
7
,2
7
1

2
2
,0

%
1
,7
2
9

,7
2
6

1
,0
6
4

1
,9
5
9

M
ar
ri
ed

In
ac
ti
v
e

L
o
w

1
5

1
8
,5

%
1
2
,1
3
4

1
5
,0

%
2
,8
6
6

,8
9
2

1
,6
7
0

2
,5
2
2

M
ed
iu
m

2
7

3
3
,3

%
2
9
,4
3
2

3
6
,3

%
�2

,4
3
2

�,
5
6
2

�1
,7
8
1

�2
,1
5
8

H
ig
h

3
9

4
8
,1

%
3
9
,4
3
4

4
8
,7

%
�.

4
3
4

�,
0
9
7

�,
3
5
8

�,
9
2
9

A
ct
iv
e

L
o
w

1
6

2
5
,4

%
1
7
,8
1
7

2
8
,3

%
�1

,8
1
7

�,
5
0
8

�1
,1
2
3

�1
,8
5
5

M
ed
iu
m

2
4

3
8
,1

%
2
4
,7
7
9

3
9
,3

%
�,

7
7
9

�,
2
0
1

�,
8
8
2

�1
,2
3
8

H
ig
h

2
3

3
6
,5

%
2
0
,4
0
4

3
2
,4

%
2
,5
9
6

,6
9
9

1
,4
0
7

2
,3
4
7

a
M
o
d
el
:
M
u
lt
in
o
m
ia
l
L
o
g
it

b
D
es
ig
n
:
C
o
n
st
an
t+

q
o
l+

q
o
l*

g
en
d
er
+
q
o
l*

m
ar
ri
ed

+
q
o
l*

li
fe
st
y
le
+
q
o
l*

ag
e

306 51 Loglinear Models, Logit Loglinear Models (445 Patients)



The table on page 306 shows the observed frequencies per cell, and the frequen-

cies to be expected, if the predictors had no effect on the outcome.

The underneath table shows the results of the statistical tests of the data.

Parameter estimatesa,b

Parameter Estimate

Std.

error Z Sig.

95 % confidence

interval

Lower

bound

Upper

bound

Constant [gender¼ 0]*

[married¼ 0] *

[lifestyle¼ 0]

�7,402c

[gender¼ 0]*

[married¼ 0]*

[lifestyle¼ 1]

�7,409c

[gender¼ 0]*

[married¼ 1]*

[lifestyle¼ 0]

�6,088c

[gender¼ 0]*

[married¼ 1]*

[lifestyle¼ 1]

�6,349c

[gender¼ 1]*

[married¼ 0] *

[lifestyle¼ 0]

�6,825c

[gender¼ 1]*

[married¼ 0]*

[lifestyle¼ 1]

�7,406c

[gender¼ 1]*

[married¼ 1]*

[lifestyle¼ 0]

�5,960c

[gender¼ 1]*

[married¼ 1] *

[lifestyle¼ 1]

�6,567c

[qol¼ 1] 5,332 8,845 ,603 ,547 �12,004 22,667

[qol¼ 2] 4,280 10,073 ,425 ,671 �15,463 24,022

[qol¼ 3] 0d . . . . .

[qol¼ 1]* [gender¼ 0] ,389 ,360 1,079 ,280 �,317 1,095

[qol¼ 1]* [gender¼ 1] 0d . . . . .

[qol¼ 2]* [gender¼ 0] �,140 ,265 �,528 ,597 �,660 ,380

[qol¼ 2]* [gender¼ 1] 0d . . . . .

[qol¼ 3]* [gender¼ 0] 0d . . . . .

[qol¼ 3]* [gender¼ 1] 0d . . . . .

[qol¼ 1]* [married¼ 0] 1,132 ,283 4,001 ,000 ,578 1,687

[qol¼ 1]* [married¼ 1] 0d . . . . .

[qol¼ 2]* [married¼ 0] �,078 ,294 �,267 ,790 �,655 ,498

[qol¼ 2]* [married¼ 1] 0d . . . . .

(continued)
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The following conclusions are appropriate.

1. The unmarried subjects have a greater chance of QOL 1 (low QOL) than their

married counterparts.

2. The inactive lifestyle subjects have a greater chance of QOL 1 (low QOL) than

their adequate-lifestyle counterparts.

3. The higher the age the more chance of QOL 2 (medium level QOL), which is

neither very good nor very bad, nut rather in-between (as you would expect).

We may conclude that the two procedures produce similar results, but the latter

method provides some additional information about the lifestyle.

7 Conclusion

Multinomial regression is adequate for identifying the main predictors of outcome

categories, like levels of injury or quality of life. An alternative approach is logit

loglinear modeling. The latter method does not use continuous predictors on a case

by case basis, but rather the weighted means of subgroups formed with the help of

the discrete predictors. This approach allowed for relevant additional conclusions in

the example given.

Parameter Estimate

Std.

error Z Sig.

95 % confidence

interval

Lower

bound

Upper

bound

[qol¼ 3]* [married¼ 0] 0d . . . . .

[qol¼ 3]* [married¼ 1] 0d . . . . .

[qol¼ 1]* [lifestyle¼ 0] �1,004 ,311 �3,229 ,001 �1,613 �,394

[qol¼ 1]* [lifestyle¼ 1] 0d . . . . .

[qol¼ 2] * [lifestyle¼ 0] ,016 ,271 ,059 ,953 �,515 ,547

[qol¼ 2]* [lifestyle¼ 1] 0d . . . . .

[qol¼ 3]* [lifestyle¼ 0] 0d . . . . .

[qol¼ 3]* [lifestyle¼ 1] 0d . . . . .

[qol¼ 1]* age ,116 ,074 1,561 ,119 �,030 ,261

[qol¼ 2]* age ,114 ,054 2,115 ,034 ,008 ,219

[qol¼ 3]* age ,149 ,138 1,075 ,282 �,122 ,419
aModel: Multinomial Logit
bDesign: Constant + qol + qol* gender + qol* married + qol* lifestyle + qol* age
cConstants are not parameters under the multinomial assumption. Therefore, their standard errors

are not calculated
dThis parameter is set to zero because it is redundant

308 51 Loglinear Models, Logit Loglinear Models (445 Patients)



8 Note

More background, theoretical and mathematical information of polytomous/multi-

nomial regression is given in the Chap.44. More information of loglinear modeling

is in the Chaps. 24 and 52.
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Chapter 52

Loglinear Models, Hierarchical Loglinear
Models (445 Patients)

1 General Purpose

The Pearson chi-square test is traditionally used for analyzing two dimensional

contingency tables, otherwise called crosstabs or interaction matrices. They can

answer questions like: is the risk of falling out of bed different between the

departments of surgery and internal medicine (Chap. 35). The analysis is very

limited, because the interaction between two variables, e.g., (1) falling out of bed

(yes, no) and (2) department (one or the other) is assessed only. However, in an

observational data set we may be interested in the effects of the two variables

separately:

1. is there a significant difference between the numbers of patients falling out of

bed and the patients who don’t (the main effect of variable 1),

2. is there a difference between the numbers of patients being in one department

and those being in the other (the main effect of variable 2).

The Pearson test is unable to answer such questions. Also, in practice higher

order contingency tables do exist. E.g, we may want to know, whether variables like

ageclass, gender, and other patient characteristics interact with the variables (1) and

(2). Pearson is unable to assess higher order contingency tables. The next section is

needed for understanding the methodology applied with loglinear modeling, but

may be skipped by nonmathematicians not fond on mathematical reasoning.

In order to find a solution for this analytical problem, ANOVA (analysis of

variance) might be considered. In ANOVA with two predictor factors and one

outcome, outcome observations are often modeled as a linear combination of:

1. the grand mean

2. the main effect of the first predictor

3. the main effect of the second predictor

4. the interaction effect of the first and the second predictor

© Springer International Publishing Switzerland 2016

T.J. Cleophas, A.H. Zwinderman, SPSS for Starters and 2nd Levelers,
DOI 10.1007/978-3-319-20600-4_52
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However, ANOVA includes continuous variables and contingency tables consist

of counted data like numbers of patients falling out of bed.

With cell counts data, like interaction matrices, traditional ANOVA is impossi-

ble, because the outcome-observations must be modeled as the product of the above

four effects, rather than their linear add-up sum. The trick is to transform the

multiplicative model into a linear model using logarithmic transformation

(ln¼ natural logarithm is always used).

Outcome¼ 1*2*3*4 (*¼ symbol of multiplication)

Log outcome¼ log 1 + log 2 + log 3 + log 4

A simple 2� 2 contingency table is given with two treatment groups as row

variable and the presence of sleeplessness as column variable. A

loglinear analysis is given underneath. Loglikelihood ratio tests are used for the

computations (Statistical analysis of clinical data on a pocket calculator part one,

Chap. 13, Springer Heidelberg Germany, 2011, from the same authors).

Column 1 2

Row 1 50 150 200

2 90 60 150

140 210 350

All counts have to be logarithmically transformed (ln 50¼ 3,912 etc.).

Column 1 2

Row 1 3,912 5,011 5,298

2 4,500 4,049 5,011

4,942 5,347 5,848

First order models:
Is there a significant main effect of the column variable.

Expected log frequencies log(350/2)¼ 5,165.

The loglikelihood ratio (LLR) chi-square test is used for testing (df = degree of

freedom).

LLRcolumn ¼ 2*
�
140* 4, 942� 5, 165ð Þ þ 210* 5, 347� 5, 165ð Þ

¼ 140, 0,

1d f, p < 0:01:

*¼ symbol of multiplication.

Is there a significant main effect of the row variable.

Expected log frequencies log(350/2)¼ 5,165.

LLRrow ¼ 2*
�
200* 5, 298� 5, 165ð Þ þ 150* 5, 011� 5, 165ð Þ

¼ 7, 0,

1d f, p < 0:01:
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Second order models:
Is there a significant interaction between the row and column variable.

The loglikelihood ratio (LLR) chi-square test is again used for testing.

LLRcolumn � row ¼ 2*
��
200* 5, 298� 5, 165ð Þ þ 150* 5, 011� 5, 165ð Þ

þ 140* 4, 942� 5, 165ð Þ þ 210* 5, 347� 5, 165ð Þ�
¼ 21, 0,

1d f, p < 0, 001:

The traditional Pearson chi-square test for “row x column” is similarly very

significant, although with a larger chi-square value. We use the pocket calculator

method (Statistical analysis of clinical data on a pocket calculator part one,

Chap. 11, Springer Heidelberg Germany, 2011, from the same authors).

Pearson chi-squarecolumn� row ¼ 50*60� 90*150ð Þ^2*350� �
=

140*210*150*200ð Þ
¼ 43, 75,

1d f, P < 0, 0001:

^ ¼ symbol of power.

The above methodology will now be applied for analyzing larger and higher

order contingency tables. For that purpose SPSS has no menu, but with help of a

few syntax commands the analysis is pretty straightforward.

2 Schematic Overview of Type of Data File

__________________________________
Outcome
cat

predictor 
cat

predictor 
cat

predictor
cat

. . . .  

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .
_________________________________
cat = categories
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3 Primary Scientific Question

Can hierarchical loglinear modeling test all of the variable effects in

multidimensional contingency tables.

4 Data Example

In 445 patients the effect of lifestyle (0 inactive, 1 active) on quality of life (qol)

(0 low, 1 medium, 2 high) was studied. The marital status was considered to also

affect the qol.

Qol outcome Age Gender Married Lifestyle

2 55 1 0 0

2 32 1 1 1

1 27 1 1 0

3 77 0 1 0

1 34 1 1 0

1 35 1 0 1

2 57 1 1 1

2 57 1 1 1

1 35 0 0 0

2 42 1 1 0

The entire data file is in extras.springer.com, and is entitled

“chapter51loglinear”. Start by opening the data file in SPSS.

5 Analysis: First and Second Order Hierarchical Loglinear
Modeling

For analysis no Menu commands are available. However, the syntax commands to

be given for the purpose are easy.

Command:

click File....click New....click Syntax....Syntax Editor....enter: hiloglinear qol(1,3)

lifestyle (0,1)/criteria ¼ delta (0)/design ¼ qol*lifestyle/print¼estim....click

Run....click All.
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K-way and higher-order effects

K df

Likelihood ratio Pearson

Number of

iterations

Chi-

square Sig.

Chi-

square Sig.

K-way and higher order effectsa 1 5 35,542 ,000 35,391 ,000 0

2 2 24,035 ,000 23,835 ,000 2

K-way effectsb 1 3 11,507 ,009 11,556 ,009 0

2 2 24,035 ,000 23,835 ,000 0
aTests that k-way and higher order effects are zero
bTests that k-way effects are zero

Parameter estimates

Effect Parameter Estimate

Std.

error Z Sig.

95 % confidence interval

Lower

bound

Upper

bound

Qol*lifestyle 1 �,338 ,074 �4,580 ,000 �,483 �,193

2 ,246 ,067 3,651 ,000 ,114 ,378

Qol 1 �,206 ,074 �2,789 ,005 �,351 �,061

2 ,149 ,067 2,208 ,027 ,017 ,281

Lifestyle 1 ,040 ,049 ,817 ,414 �,057 ,137

The above tables in the output sheets show the most important results of the

loglinear analysis.

1. There is a significant interaction “qol times lifestyle” at p ¼ 0,0001, meaning

that the qol levels in the inactive lifestyle group is different from those of the

active lifestyle group.

2. There is also a significant qol effect at p¼ 0,005, meaning that medium and high

qol is observed significantly more often than low qol.

3. There is no significant lifestyle effect, meaning that inactive and active lifestyles

are equally distributed in the data.

6 Analysis: Third Order Hierarchical Loglinear Modeling

Command:

click File....click New....click Syntax....Syntax Editor....enter: hiloglinear qol(1,3)

lifestyle (0,1) married(0,1) / criteria¼ delta (0) / design¼ qol*lifestyle*married/

print¼estim....click Run....click All.
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K-way and higher-order effects

K df

Likelihood ratio Pearson

Number of

iterations

Chi-

square Sig.

Chi-

square Sig.

K-way and higher order effectsa 1 11 120,711 ,000 118,676 ,000 0

2 7 68,839 ,000 74,520 ,000 2

3 2 15,947 ,000 15,429 ,000 3

K-way effectsb 1 4 51,872 ,000 44,156 ,000 0

2 5 52,892 ,000 59,091 ,000 0

3 2 15,947 ,000 15,429 ,000 0
aTests that k-way and higher order effects are zero
bTests that k-way effects are zero

Parameter estimates

Effect Parameter Estimate

Std.

error Z Sig.

95 % confidence

interval

Lower

bound

Upper

bound

qol*lifestyle*married 1 �,124 ,079 �1,580 ,114 �,278 ,030

2 ,301 ,079 3,826 ,000 ,147 ,456

qol*lifestyle 1 �,337 ,079 �4,291 ,000 �,491 �,183

2 ,360 ,079 4,573 ,000 ,206 ,514

qol*married 1 ,386 ,079 4,908 ,000 ,232 ,540

2 �,164 ,079 �2,081 ,037 �,318 �,010

lifestyle*married 1 �,038 ,056 �,688 ,492 �,147 ,071

qol 1 �,110 ,079 �1,399 ,162 �,264 ,044

2 ,110 ,079 1,398 ,162 �,044 ,264

lifestyle 1 ,047 ,056 ,841 ,401 �,062 ,156

married 1 �,340 ,056 �6,112 ,000 �,449 �,231

The above tables give the main results, and show that the analysis allows for

some wonderful conclusions.

1. In the married subjects the combined effect of qol and lifestyle is different at p¼
0,0001.

2. In the active lifestyle subjects qol scores are significantly different from those of

the inactive lifestyle subjects at p ¼ 0,0001.

3. In the married subjects the qol scores are significantly different from those of the

unmarried ones at p ¼ 0,037.

4. In the married subjects the lifestyle is not different from that of the unmarried

subjects (p ¼ 0,492).

5. The qol scores don’t have significantly different counts (p ¼ 0,162).

6. Lifestyles don’t have significantly different counts (p ¼ 0,401).

7. The married status is significantly more frequent than the unmarried status

(p ¼ 0,0001).
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The many p-values need not necessarily be corrected for multiple testing,

because of the hierarchical structure of the overall analysis. It start with testing

first order models. If significant, then second order. If significant, then third

order etc.

7 Analysis: Fourth Order Hierarchical Loglinear
Modeling

Command:

click File....click New....click Syntax....Syntax Editor....enter: hiloglinear qol(1,3)

lifestyle (0,1) married (0,1) gender (0,1) / criteria ¼ delta (0) / design ¼
qol*lifestyle*married*gender/ print¼estim....click Run....click All.

K-way and higher-order effects

K df

Likelihood ratio Pearson

Number of

iterations

Chi-

square Sig.

Chi-

square Sig.

K-way and higher

order effectsa
1 23 133,344 ,000 133,751 ,000 0

2 18 81,470 ,000 90,991 ,000 2

3 9 25,896 ,002 25,570 ,002 3

4 2 ,042 ,979 ,042 ,979 3

K-way effectsb 1 5 51,874 ,000 42,760 ,000 0

2 9 55,573 ,000 65,421 ,000 0

3 7 25,855 ,001 25,528 ,001 0

4 2 ,042 ,979 ,042 ,979 0
aTests that k-way and higher order effects are zero
bTests that k-way effects are zero

Parameter estimates

Effect Parameter Estimate

Std.

error Z Sig.

95 % confidence

interval

Lower

bound

Upper

bound

Qol*lifestyle*married*

gender

1 �,006 ,080 �,074 ,941 �,163 ,151

2 �,010 ,080 �,127 ,899 �,166 ,146

Qol*lifestyle*married 1 �,121 ,080 �1,512 ,130 �,278 ,036

2 ,297 ,080 3,726 ,000 ,141 ,453

Qol*lifestyle*gender 1 �,096 ,080 �1,202 ,229 �,254 ,061

2 ,086 ,080 1,079 ,281 �,070 ,242

Qol*married*gender 1 ,071 ,080 ,887 ,375 �,086 ,228

2 �,143 ,080 �1,800 ,072 �,300 ,013

Lifestyle*married*

gender

1 �,065 ,056 �1,157 ,247 �,176 ,045

(continued)
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Effect Parameter Estimate

Std.

error Z Sig.

95 % confidence

interval

Lower

bound

Upper

bound

Qol*lifestyle 1 �,341 ,080 4,251 ,000 �,498 -,184

2 ,355 ,080 4,455 ,000 ,199 ,511

Qol*married 1 ,382 ,080 4,769 ,000 ,225 ,540

2 �,162 ,080 �2,031 ,042 �,318 -,006

Lifestyle*married 1 �,035 ,056 �,623 ,533 �,146 ,075

Qol*gender 1 �,045 ,080 �,565 ,572 �,203 ,112

2 ,018 ,080 ,223 ,823 �,138 ,174

Lifestyle*gender 1 �,086 ,056 �1,531 ,126 �,197 ,024

Married*gender 1 �,007 ,056 �,123 ,902 �,118 ,104

Qol 1 �,119 ,080 �1,488 ,137 �,276 ,038

2 ,111 ,080 1,390 ,164 �,045 ,267

Lifestyle 1 ,041 ,056 ,720 ,472 �,070 ,151

Married 1 �,345 ,056 �6,106 ,000 �,455 �,234

Gender 1 �,034 ,056 �,609 ,543 �,145 ,076

The above tables show, that the results of the 4th order model are very much

similar to that of the 3rd order model, and that the interaction gender*lifestyle*

married*qol was not statistically significant. And, so, we can conclude here.

1. In the separate genders the combined effects of lifestyle, married status and

quality of life were not significantly different.

2. In the married subjects the combined effect of qol and lifestyle is different at p¼
0,0001.

3. In the active lifestyle subjects qol scores are significantly different from those of

the inactive lifestyle at p ¼ 0,0001.

4. The difference in married status is significant a p ¼ 0,0001.

5. The qol scores don’t have significantly different counts (p ¼ 0,164).

The many p-values in the above analyses need not necessarily be corrected for

multiple testing, because of its hierarchical structure. It start with testing first order

models. If significant, then second order. If significant, then third order etc.

8 Conclusion

Pearson chi-square test can answer questions like: is the risk of falling out of bed

different between the departments of surgery and internal medicine. The analysis is

very limited, because the interaction between two variables is assessed only.

However, we may also be interested in the effect of the two variables separately.

Also, higher order contingency tables do exist. E.g, we may want to know,

whether variables like ageclass, gender, and other patient characteristics interact
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with the former two variables. Pearson is unable to assess higher order contingency

tables.

Hiloglinear modeling enables to assess both main variable effects, and higher

order (¼multidimensional) contingency tables. For SPSS hiloglinear modeling the

syntax commands are given in this chapter.

Hiloglinear modeling is the basis of a very new and broad field of data analysis,

concerned with the associations between multidimensional categorical inputs.

9 Note

SPSS Version 22 has started to provide an automated model for association analysis

of multiple categorical inputs, and for producing multiway contingency tables.

However, the syntax commands, already available in earlier versions, are pretty

easy, and SPSS minimizes the risk of typos by providing already written

commands.
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Chapter 53

Validating Qualitative Diagnostic Tests
(575 Patients)

1 General Purpose

Clinical trials of disease management require accurate tests for making a diagnosis/

patient follow-up. Whatever test, screening, laboratory or physical, investigators

involved need to know how good it is. The goodness of a diagnostic test is a

complex question that is usually estimated according to three criteria: (1) its

reproducibility, (2) precision, and (3) validity. Reproducibility is synonymous to

reliability, and is, generally, assessed by the size of differences between duplicate

measures. Precision of a test is synonymous to the spread in the test results, and can

be estimated, e.g., by standard deviations / standard errors. Validity is synonymous

to accuracy, and can be defined as a test’s ability to show which individuals have the

disease in question and which do not. Unlike the first two criteria, the third is hard to

quantify, first, because it is generally assessed by two estimators rather than one,

namely sensitivity and specificity, defined as the chance of a true positive and true

negative test, respectively.
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2 Schematic Overview of Type of Data File

______________
Outcome predictor
binary lab score
. .
. .
. .
. .
. .
. .
. .
_____________

3 Primary Scientific Question

Is some lab score an accurate predictor of the presence of a disease.

4 Data Example

The primary scientific question of the data file was: is the underneath vascular lab

score test accurate for demonstrating the presence of peripheral vascular disease.

What cutoff score does provide the best sensitivity/specificity.

presence peripheral vascular disease

(0¼ no, 1¼ yes)

vascular lab score

,00 1,00

,00 2,00

,00 2,00

,00 3,00

,00 3,00

,00 3,00

,00 4,00

,00 4,00

,00 4,00

,00 4,00
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The entire data file is in extras.springer.com, and is entitled “chapter53valida-

tingqualit”. First, we will try and make a graph of the data.

5 Drawing Histograms

Command:

Analyze....Graphs....Legacy Dialogs....Histogram....Variable:score....Rows: dis-

ease ....click OK.
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The above histograms summarize the data. The upper graph shows the frequencies

of various scores of all patients with vascular disease as confirmed by angiograms,

the lower graph of the patients without. The scores of the diseased patients are

generally much larger, but there is also a considerable overlap. The overlap can be

expressed by sensitivity (number of true positive/number of false positive patients)

and specificity (number of true negative patients / number of false negative

patients). The magnitude of the sensitivity and specificity depends on the cutoff

level used for defining patients positive or negative. sensitivities and specificities

continually change as we move the cutoff level along the x-axis. A Roc (receiver

operating characteristic) curve summarizes all sensitivities and specificities

obtained by this action. With help of the Roc curve the best cutoff for optimal

diagnostic accuracy of the test is found.
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6 Validating the Qualitative Diagnostic Test

For analysis the SPSS module ROC Curve is required.

Command:

Graphs....ROC Curve....Test Variable Score....State Variable: disease....Value of

State: Variable 1....mark: ROC Curve....mark: With diagonal reference line....

mark: Coordinate points of ROC Curve....click OK.

1,00,80,60,40,20,0

1 - Specificity

1,0

0,8

0,6

0,4

0,2

0,0

S
en

si
ti

vi
ty

Diagonal segments are produced by ties.

ROC Curve

The best cutoff value of the sensitivity and 1-specificity is the place on the curve

with the shortest distance to the top ofy-axis where both sensitivity and 1-specificity

equal 1 (100 %). The place is found by adding up sensitivities and specificities as

summarized in the table on the next page.

Coordinates of the curve

Test result variable(s): score

Positive if greater than or equal toa Sensitivity 1-Specificity

,0000 1,000 1,000

1,5000 1,000 ,996

2,5000 1,000 ,989

3,5000 1,000 ,978

4,5000 1,000 ,959

5,5000 1,000 ,929

6,5000 1,000 ,884

(continued)
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Positive if greater than or equal toa Sensitivity 1-Specificity

7,5000 1,000 ,835

8,5000 1,000 ,768

9,5000 1,000 ,697

10,5000 1,000 ,622

11,5000 1,000 ,543

12,5000 1,000 ,464

13,5000 1,000 ,382

14,5000 1,000 ,307

15,5000 ,994 ,240

16,5000 ,984 ,172

17,5000 ,971 ,116

18,5000 ,951 ,071

19,5000 ,925 ,049

20,5000 ,893 ,030

21,5000 ,847 ,019

22,5000 ,789 ,007

23,5000 ,724 ,000

24,5000 ,649 ,000

25,5000 ,578 ,000

26,5000 ,500 ,000

27,5000 ,429 ,000

28,5000 ,354 ,000

29,5000 ,282 ,000

30,5000 ,214 ,000

31,5000 ,153 ,000

32,5000 ,101 ,000

33,5000 ,062 ,000

34,5000 ,036 ,000

35,5000 ,019 ,000

36,5000 ,010 ,000

37,5000 ,003 ,000

39,0000 ,000 ,000

The test result variable(s): score has at least one tie between the positive actual state group and the

negative actual state group.
aThe smallest cutoff value is the minimum observed test value minus 1, and the largest cutoff value

is the maximum observed test value plus 1. All the other cutoff values are the averages of two

consecutive ordered observed test values

The best cutoff value of the sensitivity and 1-specificity is the place on the curve

with the shortest distance to the top of y-axis where both sensitivity and

1-specificity equal 1 (100 %). The place is found by adding up sensitivities and

specificities as summarized in the underneath table.
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Sensitivity 1-specificity sensitivity� (1-specificity)

(¼ sensitivity + specificity-1)

0.971 0.116 0.855

0.951 0.071 0.880

0.925 0.049 0.876

At a sensitivity of 0.951 and a “1-specificity” (¼ false positives) of 0.071 the best

add-up sum is found (1.880). Looking back at the first column of the table from the

previous page the cutoff score> 18.5 is the best cutoff, which means a score of

19 produces the fewest false positive and fewest false negative tests.

7 Conclusion

Clinical trials of disease management require accurate tests for making a diagnosis/

for patient follow-up. Accuracy of qualitative diagnostic tests is assessed with two

estimators, sensitivity and specificity. Roc curves are convenient for summarizing

the data, and finding the best fit cutoff values for your data. A problem is that

sensitivity and specificity are severely dependent on one another. If one is high, the

other is, as a rule, low.

8 Note

More background, theoretical and mathematical information of validation of qual-

itative data is given in Statistics applied to clinicals studies 5th edition, Chaps. 50

and 51, Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 54

Reliability Assessment of Qualitative
Diagnostic Tests (17 Patients)

1 General Purpose

Poor reproducibility, otherwise called poor reliability, of diagnostic criteria is

seldom acknowledged as a cause for low precision in clinical research. Also very

few clinical reports communicate the levels of reproducibility of the diagnostic

criteria they use. For example, of 11–13 original research papers published per issue

in the 10 last 2004 issues of the journal Circulation, none did, and of 5–6 original

research papers published per issue in the 10 last 2004 issues of the Journal of the

American Association only one out of 12 did (Statistics applied to clinical studies

5th edition, Chap. 45, Springer Heidelberg Germany, 2012, from the same editors).

This chapter assesses methods for assessment.

2 Schematic Overview of Type of Data File

__________________
Outcome 1 outcome 2
binary binary

. .

. .

. .

. .

. .

. .

. .

. .
__________________
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3 Primary Scientific Question

Is a qualitative diagnostic test (yes/no test) adequately reproducible.

4 Data Example

Seventeen Patients were tested twice for the presence of hypertension yes or

no. The primary scientific question was: is the qualitative diagnostic test performed

for that purpose adequately reproducible.

Test 1 Test 2

0¼ non responder, 1¼ responder

1,00 1,00

1,00 1,00

1,00 1,00

1,00 1,00

1,00 1,00

1,00 1,00

1,00 1,00

1,00 1,00

1,00 1,00

1,00 1,00

1,00 ,00

The data file is entitled “chapter54reliabilityqualit”, and is in extras.springer.com.

Start by opening it in SPSS.

5 Analysis: Calculate Cohen’s Kappa

For analysis the statistical model Crosstabs in the module Descriptive Statistics is

required.

Command:

Analyze....Descriptive Statistics....Crosstabs....Row(s): enter responder test 1....

Column(s): enter responder test 2....click Statistics....mark Kappa....click Con-

tinue....click Cells....Cell Display: mark Observed (under Counts) and Total

(under Percentages)....click Continue....click OK.

Symmetric measures

Value Asymp. std. errora Approx Tb Approx sig.

Measure of agreement Kappa ,400 ,167 2,196 ,028

N of valid cases 30
aNot assuming the null hypothesis
bUsing the asymptotic standard error assuming the null hypothesis
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The above table is given in the output sheets, and shows that the kappa-value

equals 0,400. A kappa-value of 0 means poor reproducibility, otherwise called poor

agreement, a kappa-value of 1 means excellent. This result of 0,400 is moderate. It

is, though, significantly different from an agreement of 0 at p¼ 0,028.

6 Conclusion

Poor reliability of qualitative diagnostic tests (yes no tests) can be assessed with

Cohen’s kappas. A kappa-value of 0 means no reliability at all, a kappa of 1 means a

perfect reliability.

7 Note

More background, theoretical, and mathematical information about reliability

assessments of diagnostic tests is given in Statistics applied to clinical studies 5th

edition, Chap. 45, Springer Heidelberg Germany, 2012, from the same editors.
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Chapter 55

Log Rank Testing (60 Patients)

1 General Purpose

Survival curves plot the percentages of survival as a function of time. With the

Kaplan-Meier method, survival is recalculated every time a patient dies To

calculate the fraction of patients who survive a particular day, simply divide the

numbers still alive after the day by the number alive before the day. Also exclude

those who are lost (¼ censored) on the very day and remove from both the

numerator and denominator. To calculate the fraction of patients who survive

from day 0 until a particular day, multiply the fraction who survive day-1, times

the fraction of those who survive day-2, etc.
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Survival is essentially expressed in the form of proportions or odds, and statis-

tical testing whether one treatment modality scores better than the other in terms of

providing better survival can be effectively done by using multiple chi-square tests.
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An example is in the above figure. In the i-th 2-month period we have left alive the

following numbers: ai and bi in curve 1, ci and di in curve 2,

Numbers of      numbers 
Contingency table deaths               alive

_____________________ 
Curve 1           a i b i
curve 2            c i d i

i = 1, 2, 3,...

Odds ratio ¼ ai=bi
ci=di

¼ aidi

bici

Significance of difference between the curves is calculated according to the added

products “ad” divided by “bc”. This can be readily carried out by the Mantel-

Haenszl summary chi-square test:

χ2M-H ¼
� X

ai �
X��

ai þ bi
��
ai þ ci

�
=
�
ai þ bi þ ci þ di

���
2

X
ai þ bið Þ�ci þ di

� �
ai þ cið Þ bi þ dið Þ= ai þ bi þ ci þ dið Þ3�

where we thus have multiple 2� 2 contingency tables e.g. one for every last day of a

subsequent month of the study. With 18 months follow-up the procedure would yield

18 2� 2-contingency-tables. This Mantel Haenszl summary chi square test is more

routinelycalled logranktest(thisnameisratherconfusingbecausethereisnologarithm

involved). Log rank testing ismore general thanCox regression (Chaps. 56 and 57) for

survivalanalysis,anddoesnotrequiretheKaplan-Meierpatternstobeexponential.

2 Schematic Overview of Type of Data File

___________________________________
Time to event treatment predictor predictor predictor
event 0 = no, modality

1 = yes (0 or 1)
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
____________________________________
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3 Primary Scientific Question

Does the log rank test provide a significant difference in survival between the two

treatment groups in a parallel-group study.

4 Data Example

Time to event Event Treat Age Gender

1¼ yes 0 or 1 years 0¼ female

1,00 1 0 65,00 ,00

1,00 1 0 66,00 ,00

2,00 1 0 73,00 ,00

2,00 1 0 54,00 ,00

2,00 1 0 46,00 ,00

2,00 1 0 37,00 ,00

2,00 1 0 54,00 ,00

2,00 1 0 66,00 ,00

2,00 1 0 44,00 ,00

3,00 0 0 62,00 ,00

In 60 patients the effect of treatment modality on time to event was estimated

with the log rank tests. The entire data file is in extras.springer.com, and is entitled

“chapter55logrank”. Start by opening the data file in SPSS.

5 Log Rank Test

For analysis the statistical model Kaplan-Meier in the module Survival is required.

Command:

Analyze. . ..Survival. . ..Kaplan-Meier. . ..Time: follow months. . ..Status: event. . ..
Define Event: enter 1. . ..click Continue....click Factor: enter treatment. . ..Com-

pare Factor Levels. . ..mark: Log rank. . ..click Continue. . .. click Options....click
Plots. . .. mark: Hazard. . ..mark: Survival. . ..click Continue. . ..click OK.

The underneath tables and graphs are in the output sheets.

Case processing summary

treatment Total N N of events

Censored

N Percent

0 30 22 8 26,7 %

1 30 18 12 40,0 %

Overall 60 40 20 33,3 %
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Overall comparisons

Chi-square df Sia.

Log rank (Mantel-Cox) 9,126 1 ,003

Test of equality of survival distributions for the different levels of treat

The log rank test is statistically significant at p¼ 0.003. In Chap. 57, a Cox

regression of the same data will be performed and will provide a p-value of only

0.02. Obviously, the log rank test better fits the data than does Cox regression.
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The above figures show on the y-axis % of survivors, on the x-axis the time

(months). The treatment 1 (indicated in the graph as 0) seems to cause fewer

survivors than does treatment 2 (indicated in the graph as 1). The above figure

shows that with treatment 1 few patients died in the first months. With treatment

2 the patients stopped dying after 18 months. These patterns are not very exponen-

tial, and, therefore, may not fit the exponential Cox model very well. The logrank

test may be more appropriate for these data. The disadvantage of log rank tests is

that it can not be easily adjusted for relevant prognostic factors like age and gender.

Multiple Cox regression has to be used for that purpose.

6 Conclusion

Log rank testing is generally more appropriate for testing survival data than Cox

regression. The log rank test calculates a summary chi-square p-value and is more

sensitive than Cox regression. The advantage of Cox regression is that it can adjust

relevant prognostic factors, while log rank cannot. Yet the log rank is a more

appropriate method, because it does not require the Kaplan-Meier patterns to be

exponential. The above curves are not exponential at all, and so the Cox model may

not fit the data very well.

7 Note

More background, theoretical, and mathematical information about survival ana-

lyses is given in Statistics applied to clinical studies 5th edition, Chaps. 3 and

17, Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 56

Cox Regression With/Without Time
Dependent Variables (60 Patients)

1 General Purpose of Cox Regression

proportion of survivors

1.0

0.5

y = 1/2 t

1 2 3 t (days)

Cox regression is very popular for describing survival research. It uses an expo-

nential model like in the above figure. Instead of 1/2t¼ 2�t, e�t better matches

biological data (e¼Euler’s number). If you have two treatment groups, then the

proportion survivors can be described by Kaplan Meier curves, and Cox computes

the best fit exponential curves of them with help of the equation e-kt-bx with

k¼ constant for species, and b¼ regression coefficient. The underneath figure

gives an example. The fitted curves are, then, used for statistical testing of the

data. A major flaw of Cox methodology is, that sometimes the Kaplan Meier curves

do not follow exponential patterns (see also Chap. 55). A major advantage is that,

like most regression technologies, it is extremely flexible and allows for simulta-

neous adjustment for multiple predictor variables in a single analysis.
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2 Schematic Overview of Type of Data File

___________________________________
Time to event treatment predictor predictor predictor
event 0 = no, modality

1 = yes (0 or 1)
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
____________________________________

3 Primary Scientific Question

Is there a significant difference in survival between the group treated with one

treatment versus the other.
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4 Data Example

Time to event Event Treat Age Gender

1¼ yes 0 or 1 years 0¼ female

1,00 1 0 65,00 ,00

1,00 1 0 66,00 ,00

2,00 1 0 73,00 ,00

2,00 1 0 54,00 ,00

2,00 1 0 46,00 ,00

2,00 1 0 37,00 ,00

2,00 1 0 54,00 ,00

2,00 1 0 66,00 ,00

2,00 1 0 44,00 ,00

3,00 0 0 62,00 ,00

treat¼ treatment

In 60 patients the effect of treatment modality on time to event was estimated

with the log rank tests. The entire data file is in extras.springer.com, and is entitled

“chapter56coxandcoxtimedependent”. Start by opening the data file in SPSS.

5 Simple Cox Regression

For analysis the statistical model Cox Regression in the module Survival is

required.

Command:

Analyze....Survival....Cox Regression....Time: follow months....Status: event....

Define event: enter 1....Covariates: enter treat....click Categorical.... Categorical

Covariates: enter treat....click Continue....Plots....mark Survival....mark Hazard

....Separate Lines for: enter treat....click Continue....click OK.

Variables in the equation

B SE Wald df Sig. Exp(B)

Treat ,930 ,325 8,206 1 ,004 2,535

The regression coefficient, the B-value, is significantly larger than 0. The treat-

ment modalities, treatments 1 and 2, have a significantly different effect on the

chance of survival with a p-value of 0,004. The hazard ratio equals 2,535 which

means that the chance of survival of one treatment is over twice as large that of the

other treatment.
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On the above y-axis % of deaths, on the x-axis the time in months. The treatment

1 (indicated in the graph as 0) seems to cause more deaths than treatment 2

(indicated as 1).
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On the y-axes % of survivors in the above figure is given, on the x-axes the

time (months). The treatment 1 (indicated in the graph as 0) seems to cause fewer

survivors than does the treatment 2 (indicated in the graph as 1).

We should emphasize that the above figures given by SPSS are slightly different

from the Kaplan Meier curves produced in the Chap. 55 from the same data. This is,

because the current figures do not picture the absolute numbers of survivors but

rather the averages of the categories of the two treatment groups.

The interesting thing about Cox regression is that, just like with linear and

logistic regression, we can use patient characteristics as additional predictors of

better survival.

6 Multiple Cox Regression

Before the multiple regression we will first perform a simple Cox regression to find

out whether gender is a significant predictor of survival. For analysis the statistical

model Cox Regression in the module Survival is required.

Command:

Analyze....Survival....Cox Regression....Time: follow months....Status: event

Define Event: enter 1....Covariates: enter gender....click OK.

Variables in the equation

B SE Wald df Sig. Exp(B)

VAR00005 �7,168 3,155 5,161 1 ,023 ,001

The above table shows that, if a simple Cox regression is performed with gender

as x-variable, then, there is, just like with treatment modality, a significant effect on

survival / deaths. Gender, obviously, is also a predictor of survival. Males perform

much better than females. We will now use both gender and treatment modality as

predictors in order to find out whether both of them are independent determinants of

the chance of surviving.

Command:

Analyze....Survival....Cox Regression....Time: follow months....Status: event

Define Event: enter 1....Covariates: enter gender and treat....click OK.

Variables in the equation

B SE Wald df Sig. Exp(B)

Gender �13,806 62,604 ,049 1 ,825 ,000

Treat �,781 ,626 1,558 1 ,212 ,458

The above multiple Cox regression with gender and treatment modality as

predictors, appear not to produce any significant effects. Both predictors assessed

simultaneously appear not to be significant factors anymore. The conclusion should

be, that the beneficial effect of treatment is based on confounding: if you adjust for
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the difference in gender, then the significant effect on survival will disappear. And

so, the socalled beneficial effect of the treatment modality is, in fact, caused by the

fact that many more females are in one of the treatment groups.

7 Cox Regression with Time Dependent Variables
Explained

Cox regression assumes that the proportional hazard of a predictor regarding

survival works time-independently. However, in practice time-dependent dispro-

portional hazards are not uncommon. E.g., the level of LDL cholesterol is a strong

predictor of cardiovascular survival. However, in a survival study virtually no one

will die from elevated values in the first decade of observation. LDL cholesterol

may be, particularly, a killer in the second decade of observation. Then, in the third

decade those with high levels may all have died, and other reasons for dying may

occur. In other words the deleterious effect of 10 years elevated LDL-cholesterol

may be different from that of 20 years. The traditional Cox regression model is not

appropriate for analyzing the effect of LDL cholesterol on survival, because it

assumes that the relative hazard of dying is the same in the first, second and third

decade. Thus, there seems to be a time-dependent disproportional hazard, and if you

want to analyze such data, an extended Cox regression model allowing for

non-proportional hazards must be applied, and is available in SPSS.

8 Data Example of Time Dependent Variables

We will use the above data example once more, but this time LDL-cholesterol is

added as time-dependent covariate.

Time to event Event Treat Age Gender LDL-cholesterol

1¼ yes 0 or 1 years 0¼ female 0¼<3,9, 1¼> 3,9 mmol/l

1,00 1 0 65,00 ,00 2,00

1,00 1 0 66,00 ,00 2,00

2,00 1 0 73,00 ,00 2,00

2,00 1 0 54,00 ,00 2,00

2,00 1 0 46,00 ,00 2,00

2,00 1 0 37,00 ,00 2,00

2,00 1 0 54,00 ,00 2,00

2,00 1 0 66,00 ,00 2,00

2,00 1 0 44,00 ,00 2,00

3,00 0 0 62,00 ,00 2,00
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9 Cox Regression Without Time Dependent Variables

Command:

Analyze....Survival....Cox Regression....time: follow years....status: event....Define

Event: enter 1....Covariates....click Categorical....Categorical Covariates: enter

elevated LDL-cholesterol....click Continue....click Plots....mark Survival....mark

Hazard....click Continue....click OK.

Variables in the equation

B SE Wald df Sig. Exp(B)

Cholesterol �,544 ,332 2,682 1 ,102 ,581

Var 00006 is a binary variable for LDL-cholesterol. It is not a significant

predictor of survival with a p-value and a hazard ratio of only 0,102 and 0.581

respectively, as demonstrated above by a simple Cox regression with event as

outcome variable and LDL cholesterol as predictor. The investigators believe that

the presence of LDL-cholesterol must be a determinant of survival. And if we look

at the data, we will observe that something very special is going on: in the first

decade virtually no one with elevated LDL-cholesterol dies. In the second decade

virtually everyone with an elevated LDL-cholesterol does: LDL-cholesterol seems

to be particularly a killer in the second decade. Then, in the third decade other

reasons for dying seem to have taken over. In order to assess whether elevated

LDL-cholesterol adjusted for time has a significant effect on survival, a time-

dependent Cox regression will be performed. For that purpose the time–dependent

covariate is defined as a function of both the variable time (called “T_” in SPSS)

and the LDL-cholesterol variable, while using the product of the two. This product

is applied as “time-dependent predictor of survival”, and a usual Cox model is,

subsequently, performed (Cov¼ covariate).

10 Cox Regression with Time Dependent Variables

For analysis the statistical model Cox Time Dependent in the module Survival is

required.

Command:

Analyze....Survival....Cox w/Time-Dep Cov....Compute Time-Dep Cov....Time

(T_) transfer to box Expression for T_Cov....add the sign *....add the

LDL-cholesterol variable....Model....Time: follow months....Status: event - ?:

Define Event: enter 1....click Continue....T_Cov transfer to box Covariates....

click OK.
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Variables in the equation

B SE Wald df Sig. Exp(B)

T_COV_ �,131 ,033 15,904 1 ,000 ,877

The above results table of the “Cox regression with time-dependent variables”

shows that the presence of an elevated LDL-cholesterol adjusted for differences in

time is a highly significant predictor of survival.

11 Conclusion

Cox regression is very popular for describing survival research. It uses an expo-

nential model. A major flaw of Cox methodology is, that sometimes the Kaplan

Meier curves do not follow exponential patterns (see also Chap. 55). A major

advantage is that, like most regression technologies, it is extremely flexible and

allows for simultaneous adjustment for multiple predictor variables in a single

analysis. Time dependent Cox regression is convenient if some of your predictors

are time dependent like in the above data example explained.

12 Note

More background, theoretical, and mathematical information about survival ana-

lyses is given in Statistics applied to clinical studies 5th edition, Chaps. 3, 17, and

31, Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 57

Segmented Cox Regression (60 Patients)

1 General Purpose

Cox regression assesses time to events, like death or cure, and the effects of

predictors like comorbidity and frailty. If a predictor is not significant, then time-

dependent Cox regression may be a relevant approach. It assesses whether the

predictor interacts with time. Time dependent Cox has been explained in Chap. 56.

The current chapter explains segmented time-dependent Cox regression. This

method goes one step further and assesses, whether the interaction with time is

different at different periods of the study.

2 Schematic Overview of Type of Data File

_____________________________________
Time to event predictor predictor predictor predictor....
event 0 = no, time time time

1 = yes dependent dependent dependent
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
_____________________________________
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3 Primary Scientific Question

Primary question: is frailty a time-dependently changing variable in patients admit-

ted to hospital for exacerbation of chronic obstructive pulmonary disease (COPD).

4 Data Example

A simulated data file of 60 patients admitted to hospital for exacerbation of COPD

is given underneath. All of the patients are assessed for frailty scores once a week.

The frailty scores run from 0 to 100 (no frail to very frail)

Variables
1 2 3 4 5 6
Days to Cured Gender Frailty Frailty Frailty
discharge 1st 2nd 3rd week
___________________________________________
1,00 1,00 1,00 15,00
1,00 1,00 1,00 18,00
1,00 1,00 1,00 16,00
1,00 1,00 1,00 17,00
2,00 1,00 1,00 15,00
2,00 1,00 1,00 20,00
2,00 1,00 1,00 16,00
2,00 1,00 1,00 15,00
3,00 1,00 ,00 18,00
3,00 1,00 ,00 15,00
3,00 1,00 1,00 16,00
4,00 1,00 1,00 15,00
4,00 1,00 1,00 18,00
5,00 1,00 1,00 19,00
5,00 1,00 1,00 19,00
5,00 1,00 1,00 19,00
6,00 1,00 1,00 18,00
6,00 1,00 1,00 17,00
6,00 1,00 ,00 19,00
7,00 1,00 ,00 16,00
8,00 1,00 ,00 60,00 15,00
8,00 1,00 ,00 69,00 16,00
8,00 1,00 ,00 67,00 17,00
9,00 1,00 1,00 60,00 19,00
9,00 1,00 1,00 86,00 24,00
10,00 1,00 1,00 87,00 16,00
10,00 1,00 ,00 75,00 10,00
10,00 1,00 ,00 76,00 20,00
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10,00 1,00 ,00 67,00 32,00
11,00 1,00 1,00 56,00 24,00
11,00 1,00 1,00 78,00 25,00
12,00 1,00 1,00 58,00 26,00
12,00 1,00 ,00 59,00 25,00
13,00 1,00 ,00 77,00 20,00
13,00 1,00 1,00 66,00 16,00
13,00 1,00 1,00 65,00 18,00
13,00 1,00 1,00 68,00 10,00
14,00 1,00 1,00 85,00 16,00
14,00 1,00 ,00 65,00 23,00
14,00 1,00 ,00 65,00 20,00
15,00 1,00 ,00 54,00 60,00 14,00
16,00 1,00 ,00 43,00 68,00 15,00
Variable1 = days to discharge from hospital
Variable
Variable3 = gender

Variable6 = frailty index third week (0-100).
Variable5 = frailty index second week (0-100)
Variable4 = frailty index first week (0-100)

2 = cured or lost from observation (1 = cured)

The missing values in the variables 5 and 6 are those from patients already 
discharged from hospital.

The above table gives the first 42 patients of 60 patients assessed for their frailty

scores after 1, 2 and 3 weeks of clinical treatment. It can be observed that in the first

week frailty scores at discharge were 15–20, in the second week 15–32, and in the

third week 14–24. Patients with scores over 32 were never discharged. Frailty

scores were probably a major covariate of time to discharge. The entire data file

is in extras.springer.com, and is entitled “chapter57segmentedcox”. We will first

perform a simple time dependent Cox regression. Start by opening the data file

in SPSS.

5 Simple Time Dependent Cox Regression

For analysis the statistical model Cox Time Dependent in the module Survival is

required.

Command:

Analyze. . ..Survival. . ..Cox w/Time-Dep Cov. . ..Compute Time-Dep Cov. . ..Time

(T_); transfer to box Expression for T_Cov. . ..add the sign *. . ..add the frailty

variable third week. . ..Model. . ..Time: day of discharge. . ..Status: cured or

lost. . ..Define: cured¼ 1. . ..Continue. . ..T_Cov: transfer to Covariates. . ..
click OK.
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Variables in the equation

B SE Wald df Sig. Exp(B)

T_COV_ ,000 ,001 ,243 1 ,622 1,000

The above table shows the result: frailty is not a significant predictor of day of

discharge. However, patients are generally not discharged from hospital until they

are non-frail at a reasonable level, and this level may be obtained at different

periods of time. Therefore, a segmented time dependent Cox regression may be

more adequate for analyzing these data.

6 Segmented Time Dependent Cox Regression

For analysis the statistical model Cox Time Dependent in the module Survival is

again required.

Command:

Survival. . ...Cox w/Time-Dep Cov. . ..Compute Time-Dependent Covariate. . ..
Expression for T_COV_: enter (T_>¼ 1 & T_< 11) * VAR00004 + (T_>¼ 11 &

T_< 21) * VAR00005 + (T_>¼ 21 & T_< 31). . ..Model. . ..Time: enter Var

1. . ..Status: enter Var 2 (Define events enter 1). . ..Covariates: enter T_COV_ ....
click OK).

Variables in the equation

B SE Wald df Sig. Exp(B)

T_COV_ �,056 ,009 38,317 1 ,000 ,945

The above table shows that the independent variable, segmented frailty variable

T_COV_, is, indeed, a very significant predictor of the day of discharge. We will,

subsequently, perform a multiple segmented time dependent Cox regression with

treatment modality as second predictor variable.

7 Multiple Segmented Time Dependent Cox Regression

Command:

same commands as above, except for Covariates: enter T_COV and treatment. . ..
click OK.

Variables in the equation

B SE Wald df Sig. Exp(B)

T_COV_ �,060 ,009 41,216 1 ,000 ,942

VAR00003 ,354 ,096 13,668 1 ,000 1,424
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The above table shows that both the frailty (variable T_COV_) and treatment

(variable 3) are very significant predictors of the day of discharge with hazard ratios

of 0,942 and 1,424. The new treatment is about 1,4 times better and the patients are

doing about 0,9 times worse per frailty score point. If treatment is used as a single

predictor unadjusted for frailty, then it is no longer a significant factor.

Command:

Analyze. . ..Survival. . ..Cox regression. . .. Time: day of discharge . . ..Status: cured
or lost. . ..Define: cured¼ 1. . ..Covariates: treatment. . ..click OK.

Variables in the equation

B SE Wald df Sig. Exp(B)

VAR00003 ,131 ,072 3,281 1 ,070 1,140

The p-value of treatment (variable 3) has risen from p¼ 0,0001 to 0,070.

Probably, frailty has a confounding effect on treatment efficacy, and after adjust-

ment for it the treatment effect is, all of a sudden, a very significant factor.

8 Conclusion

Cox regression assesses time to events, like death or cure, and the effects on it of

predictors like treatment efficacy, comorbidity, and frailty. If a predictor is not

significant, then time dependent Cox regression may be a relevant approach. It

assess whether the time-dependent predictor interacts with time. Time dependent

Cox has been explained in Chap. 56. The current chapter explains segmented time

dependent Cox regression. This method goes one step further and assesses whether

the interaction with time is different at different periods of the study. It is shown

that a treatment variable may be confounded with time dependent factors and that

after adjustment for it a statistically significant treatment efficacy can be

demonstrated.

9 Note

More background, theoretical and mathematical information of segmented Cox

regression is given in Statistics applied to clinical studies 5th edition, Chap. 31,

Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 58

Assessing Seasonality (24 Averages)

1 General Purpose

For a proper assessment of seasonality, information of a second year of observation

is needed, as well as information not only of, e.g., the months of January and July,

but also of adjacent months. In order to unequivocally demonstrate seasonality, all

of this information included in a single test is provided by autocorrelation.
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The above graph gives a simulated seasonal pattern of C-reactive protein levels

in a healthy subject. Lagcurves (dotted) are partial copies of the datacurve moved to

the left as indicated by the arrows.

First-row graphs: the datacurve and the lagcurve have largely simultaneous posi-

tive and negative departures from the mean, and, thus, have a strong positive

correlation with one another (correlation coefficient� +0.6).

Second-row graphs: this lagcurve has little correlation with the datacurve anymore

(correlation coefficient� 0.0).

Third-row graphs: this lagcurve has a strong negative correlation with the datacurve
(correlation coefficient��1.0).

Fourth-row graphs: this lagcurve has a strong positive correlation with the

datacurve (correlation coefficient� +1.0).

2 Schematic Overview of Type of Data File

_________
Outcome time
. .
. .
. .
. .
. .
. .
. .
. .
. .
__________

3 Primary Scientific Question

Do repeatedly measured outcome value follow a seasonal pattern.
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4 Data Example

Primary question: do repeatedly measured CRP values in a healthy subject follow a

seasonal pattern. If the datacurve values are averaged values with their se (standard

error), then xi will change into (xi + se), and xi+1 into (xi+1 + se). This is no problem,

since the se-values will even out in the regression equation, and the overall

magnitude of the autocorrelation coefficient will remain unchanged, irrespective

of the magnitude of the se. And, so, se-values need not be further taken into account

in the autocorrelation of time series with means, unless they are very large. A data

file is given below.

Average C-reactive protein in group

of healthy subjects (mg/l)

Month

1,98 1

1,97 2

1,83 3

1,75 4

1,59 5

1,54 6

1,48 7

1,54 8

1,59 9

1,87 10

The entire data file is in extras.springer.com, and is entitled “chapter58sea-

sonality”. Start by opening the data file in SPSS. We will first try and make a

graph of the data.

5 Graphs of Data

Command:

Graphs. . ..Chart Builder. . ..click Scatter/Dot. . ..click mean C-reactive protein level

and drag to the Y-Axis. . ..click time and drag to the X-Axis. . ..click OK. . ...
double-click in Chart Editor. . ..click Interpolation Line. . ..Properties: click

Straight Line.
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The above graph shows that the average monthly C-reactive protein levels look

inconsistent. A graph of bi-monthly averages is drawn. The data are already in the

above data file.

Average C-reactive protein in group

of healthy subjects (mg/l)

Month

1,90 2,00

1,87 4,00

1,56 6,00

1,67 8,00

1,73 10,00

1,84 12,00

1,89 14,00

1,84 16,00

1,61 18,00

1,67 20,00

1,67 22,00

1,90 24,00

Command:

Graphs. . ..Chart Builder. . ..click Scatter/Dot. . ..click mean C-reactive protein level

and drag to the Y-Axis. . ..click time and drag to the X-Axis. . ..click OK. . ...
double-click in Chart Editor. . ..click Interpolation Line. . ..Properties: click

Straight Line.
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The above bi-monthly graph shows a rather seasonal pattern. Autocorrelation is,

subsequently, used to test significant seasonality of these data. SPSS Statistical

Software is used.

6 Assessing Seasonality with Autocorrelations

For analysis the statistical model Autocorrelations in the module Forecasting is

required.

Command:

Analyze. . ..Forecasting.. . .Autocorrelations. . ..move monthly percentages into

Variable Box.. . .mark Autocorrelations. . ..mark Partial Autocorrelations.. . .OK.
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The above graph of monthly autocorrelation coefficients with their 95 % confi-

dence intervals is given by SPSS, and it shows that the magnitude of the monthly

autocorrelations changes sinusoidally. The significant positive autocorrelations at

the month no. 13 (correlation coefficients of 0,42 (SE 0,14, t-value 3,0, p< 0,01))

further supports seasonality, and so does the pattern of partial autocorrelation

coefficients (not shown): it gradually falls, and a partial autocorrelation coefficient

of zero is observed one month after month 13. The strength of the seasonality is

assessed using the magnitude of r2¼ 0,422¼ 0,18. This would mean that the

lagcurve predicts the datacurve by only 18 %, and, thus, that 82 % is unexplained.

And so, the seasonality may be statistically significant, but it is pretty weak, and a

lot of unexplained variability, otherwise called noise, is in these data.

7 Conclusion

Autocorrelation is able to demonstrate statistically significant seasonality of dis-

ease, and it does so even with imperfect data.

8 Note

More background, theoretical and mathematical information about seasonality

assessments is given in Statistics applied to clinical studies 5th edition, Chap. 64,

Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 59

Interval Censored Data Analysis
for Assessing Mean Time to Cancer Relapse
(51 Patients)

1 General Purpose

In survival studies often time to first outpatient clinic check instead of time to

event is measured. Somewhere in the interval between the last and current visit

an event may have taken place. For simplicity such data are often analyzed using

the proportional hazard model of Cox (Chaps. 56 and 57). However, this analysis

is not entirely appropriate here. It assumes that time to first outpatient check is

equal to time to relapse. Instead of a time to relapse, an interval is given, in which

the relapse has occurred, and so this variable is somewhat more loose than the

usual variable time to event. An appropriate statistic for the current variable

would be the mean time to relapse inferenced from a generalized linear model

with an interval censored link function, rather than the proportional hazard

method of Cox.

Previously partly published in Machine learning in medicine a complete overview, Chap. 79,

Springer Heidelberg Germany, 2015, from the same authors.
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2 Schematic Overview of Type of Data File

____________________________
Time relapse treatment
to 1st 0 = no modality
check 1 = yes 1 or 2
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
_____________________________

3 Primary Scientific Question

This chapter is to assess whether an appropriate statistic for the variable “time to

first check” in survival studies would be the mean time to relapse, as inferenced

from a generalized linear model with an interval censored link function.

4 Data Example

In 51 patients in remission their status at the time-to-first-outpatient-clinic-control

was checked (mths¼months).

Time to 1st check

(month)

Result relapse

0¼ no

Treatment modality 1 or 2

(0 or 1)

11 0 1

12 1 0

9 1 0

12 0 1

12 0 0

12 0 1

5 1 1

12 0 1

12 0 1

12 0 0
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The first ten patients are above. The entire data file is entitled “chapter59inter-

valcensored”, and is in extras.springer.com. Cox regression was first applied. Start

by opening the data file in SPSS statistical software.

5 Cox Regression

For analysis the statistical model Cox Regression in the module Survival is

required.

Command:

Analyze. . ..Survival. . ..Cox Regression. . ..Time : time to first check. . ..Status :

result. . ..Define Event. . ..Single value: type 1. . ..click Continue. . ..Covariates:
enter treatment. . ..click Categorical. . ..Categorical Covariates: enter

treatment. . ..click Continue. . ..click Plots. . ..mark Survival. . ..Separate Lines

for: enter treatment. . ..click Continue. . ..click OK.

Variables in the equation

B SE Wald df Sig. Exp(B)

Treatment .919 .477 3.720 1 .054 2.507
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The above table is in the output. It shows that treatment is not a significant

predictor for relapse. In spite of the above Kaplan-Meier curves, suggesting the

opposite, the treatments are not significantly different from one another because

p> 0,05. However, the analysis so far is not entirely appropriate. It assumes that

time to first outpatient check is equal to time to relapse. However, instead of a time

to relapse an interval is given between 2 and 12 months in which the relapse has

occurred, and so this variables is somewhat more loose than the usual variable time

to event. An appropriate statistic for the current variable would be the mean time to

relapse inferenced from a generalized linear model with an interval censored link

function, rather than the proportional hazard method of Cox.

6 Interval Censored Analysis in Generalized Linear
Models

For analysis the module Generalized Linear Models is required. It consists of two

submodules: Generalized Linear Models and Generalized Estimation Models. The

first submodule covers many statistical models like gamma regression (Chap. 30),

Tweedie regression (Chap. 31), Poisson regression (Chaps. 21 and 47), and the

analysis of paired outcomes with predictors (Chap. 3). The second is for analyzing

binary outcomes (Chap. 42). For the censored data analysis the Generalized Linear

Models submodule of the Generalized Linear Models module is required.

Command:

Analyze. . ..click Generalized Linear Models. . ..click once again Generalized Lin-

ear Models. . ..Type of Model. . ..mark Interval censored survival. . ..click
Response. . .. Dependent Variable: enter Result. . ..Scale Weight Variable:

enter “time to first check”. . ..click Predictors. . ..Factors: enter “treatment”. . ..
click Model. . ..click once again Model: enter once again “treatment”. . ..click
Save. . ..mark Predicted value of mean of response. . ..click OK.

Parameter estimates

Parameter B Std. Error

95 % Wald confidence

interval Hypothesis test

Lower Upper Wald Chi-Square df Sig.

(Intercept) .467 .0735 .323 .611 40.431 1 .000

[treatment¼ 0] �.728 .1230 �.969 �.487 35.006 1 .000

[treatment¼ 1] 0a

(Scale) 1b

Dependent variable: Result

Model: (Intercept), treatment
aSet to zero because this parameter is redundant
bFixed at the displayed value
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The generalized linear model shows, that, after censoring the intervals, the

treatment 0 is, compared to treat 1, a very significant better maintainer of remission.

When we return to the data, we will observe as a novel variable, the mean predicted

probabilities of persistent remission for each patient. This is shown underneath for

the first ten patients. For the patients on treatment 1 it equals 79,7 %, for the patients

on treatment 0 it is only 53,7 %. And so, treatment 1 performs, indeed, a lot better

than does treatment 0 (mths¼months).

Time to first check

(mths)

Result

(0 = remission 1 = relapse)

Treatment

(0 or 1)

Mean

Predicted

11 0 1 ,797

12 1 0 ,537

9 1 0 ,537

12 0 1 ,797

12 0 0 ,537

12 0 1 ,797

5 1 1 ,797

12 0 1 ,797

12 0 1 ,797

12 0 0 ,537

7 Conclusion

This chapter assesses, whether an appropriate statistic for the variable “time to first

check” in survival studies is the mean time to relapse, as inferenced from a

generalized linear model with an interval censored link function. The current

example shows that, in addition, more sensitivity of testing is obtained with

p-values of 0,054 versus 0,0001. Also, predicted probabilities of persistent remis-

sion or risk of relapse for different treatment modalities are given. This method is an

important tool for analyzing such data.

8 Note

More background, theoretical and mathematical information of survival analyses is

given in Statistics applied to clinical studies 5th edition, Chaps. 17, 31, and

64, Springer Heidelberg Germany, 2012, from the same authors.
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Chapter 60

Polynomial Analysis of Circadian Rhythms
(1 Patient with Hypertension)

1 General Purpose

Ambulatory blood pressure measurements and other circadian phenomena are

traditionally analyzed using mean values of arbitrarily separated daytime hours.

The poor reproducibility of these mean values undermines the validity of this

diagnostic tool. In 1998 our group demonstrated that polynomial regression lines

of the 4th to 7th order generally provided adequate reliability to describe the best fit

circadian sinusoidal patterns of ambulatory blood pressure measurements (Van de

Luit et al., Eur J Intern Med 1998; 9: 99–103 and 251–256).

We should add that the terms multinomial and polynomial are synonymous.

However, in statistics terminology is notoriously confusing, and multinomial ana-

lyses are often, though not always, used to indicate logistic regression models with

multiple outcome categories. In contrast, polynomial regression analyses are often

used to name the extensions of simple linear regression models with multiple

instead of first order relationships between the x and y values (Chap. 16, Curvilinear

regression, pp 187–198, in: Statistics applied to clinical studies 5th edition,

Springer Heidelberg Germany 2012, from the same authors as the current work).

Underneath polynomial regression equations of the first-fourth order are given with

y as dependent and x as independent variables.

Previously partly published in Machine learning in medicine a complete overview, Chap. 79,

Springer Heidelberg Germany, 2015, from the same authors.
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y ¼ aþ bx first order linearð Þ relationship
y ¼ aþ bxþ cx2 second order parabolicð Þ relationship
y ¼ aþ bxþ cx2 þ dx3 third order hyperbolicð Þ relationship
y ¼ aþ bxþ cx2 þ dx3 þ ex4 fourth order sinusoidalð Þ relationship
y ¼ aþ bxþ cx2 þ dx3 þ ex4 þ fx5 fifth order relationship

This chapter is to assess whether this method can readily visualize circadian

patterns of blood pressure in individual patients with hypertension, and, thus, be

helpful for making a precise diagnosis of the type of hypertension, like borderline,

diastolic, systolic, white coat, no dipper hypertension.

2 Schematic Overview of Type of Data File

_____________
Outcome time
. .
. .
. .
. .
. .
. .
. .
. .
________

3 Primary Scientific Question

Can higher order polynomes visualize longitudinal observations in clinical

research.

4 Data Example

In an untreated patient with mild hypertension ambulatory blood pressure measure-

ment was performed using a light weight portable equipment (Space Lab Medical

Inc, Redmond WA) every 30 min for 24 h. The question was, can 5th order

polynomes readily visualize the ambulatory blood pressure pattern of individual
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patients? The first ten measurements are underneath, the entire data file is entitled

“chapter60polynomes”, and is in extras.springer.com.

Blood Time
pressure (30 min intervals)
mm Hg
____________
205,00 1,00
185,00 2,00
191,00 3,00
158,00 4,00
198,00 5,00
135,00 6,00
221,00 7,00
170,00 8,00
197,00 9,00
172,00 10,00
188,00 11,00
173,00 12,00

SPSS statistical software will be used for polynomial modeling of these data.

Open the data file in SPSS.

5 Polynomial Analysis

For analysis the module General Linear Model is required. It consists of four

statistical models:

Univariate,

Multivariate,

Repeated Measures,

Variance Components.

We will use here Univariate.

Command:

Analyze....General Linear Model....Univariate....Dependent: enter y (mm Hg)....

Covariate(s): enter x (min)....click: Options....mark: Parameter Estimates....

click Continue....click Paste....in “/Design¼ x.” replace x with a 5th order

polynomial equation tail (* is sign of multiplication)

x x*x x*x*x x*x*x*x x*x*x*x*x

....then click the green triangle in the upper graph row of your screen.

5 Polynomial Analysis 367



The underneath table is in the output sheets, and gives you the partial regression

coefficients (B values) of the 5th order polynomial with blood pressure as outcome

and with time as independent variable (�7,135E-6 indicates 0.000007135, which is

a pretty small B value). However, in the equation it will have to be multiplied with

x5, and a large very large term will result even so.

Parameter estimates

Dependent Variables: y

Parameter B Std. error t Sig.

95 % confidence interval

Lower bound Upper bound

Intercept 206,653 17,511 11,801 ,000 171,426 241,881

x �9,112 6,336 �1,438 ,157 �21,858 3,634

x*x ,966 ,710 1,359 ,181 �,463 2,395

x*x*x �,047 ,033 �1,437 ,157 �,114 ,019

x*x*x*x ,001 ,001 1,471 ,148 ,000 ,002

x*x*x*x*x �7,135E-6 4.948E-6 �1,442 ,156 �1.709E-5 2,819E-6

Parameter estimates

Dependent variable:yy

Parameter B Std. error t Sig.

95 % confidence interval

Lower bound Upper bound

Intercept 170,284 11,120 15,314 ,000 147,915 192,654

x �7,034 4,023 �1,748 ,087 �15,127 1,060

x*x ,624 ,451 1,384 ,173 �,283 1,532

x*x*x �,027 ,021 �1,293 ,202 �,069 ,015

x*x*x*x ,001 ,000 1,274 ,209 ,000 ,001

x*x*x*x*x �3,951 E-6 3.142E-6 �1,257 ,215 �1,027E-5 2,370E-6

The entire equations can be written from the above B values:

y ¼ 206:653� 9, 112xþ 0:966x2 � 0:47x3 þ 0:001x4 þ 0:000007135x5

This equation is entered in the polynomial grapher of David Wees available on the

internet at “davidwees.com/polygrapher/”, and the underneath graph is drawn. This

graph is speculative as none of the x terms is statistically significant. Yet, the actual

data have a definite patterns with higher values at daytime and lower ones at night.

Sometimes even better fit curves are obtained by taking higher order polynomes

like 5th order polynomes as previously tested by us (see the above section General

Purpose). We should add that in spite of the insignificant p-values in the above

tables the two polynomes are not meaningless. The first one suggests some white
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coat effect, the second one suggests normotension and a normal dipping pattern.

With machine learning meaningful visualizations can sometimes be produced of

your data, even if statistics are pretty meaningless.

240,00

220,00

200,00

180,00

160,00

140,00

120,00
,00 10,00 20,00 30,00

x

y

40,00 50,00 60,00

24 h ABPM recording (30 min measures) of untreated subject with hypertension

and 5th order polynome (suggesting some white coat effect)
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180,00

170,00

160,00

150,00

140,00

130,00

120,00

110,00
,00 10,00 20,00 30,00

x

yy

40,00 50,00 60,00

24 h ABPM recording (30 min measures) of the above subject treated and 5th

order polynome (suggesting normotension and a normal dipping pattern).

6 Conclusion

Polynomes of ambulatory blood pressure measurements can be applied for visual-

izing not only hypertension types but also treatment effects, see underneath graphs

of circadian patterns in individual patients (upper row) and groups of patients on

different treatments (Figure from Cleophas et al, Chap. 16, Curvilinear regression,
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pp 187–198, in: Statistics applied to clinical studies 5th edition, Springer Heidel-

berg Germany 2012, with permission from the editor).

(mm Hg)

180

140

80

di
as

to
lic

 a
nd

 s
ys

to
lic

 b
lo

od
 p

re
ss

ur
e

placebo enalapril amlodipine carvedilol celiprolol
8 - 8 hours AM

Polynomes can of course be used for studying any other circadian rhythm like

physical, mental and behavioral changes following a 24 hour cycle.

7 Note

More background, theoretical and mathematical information of polynomes is given

in Chap. 16, Curvilinear regression, pp 187–198, in: Statistics applied to clinical

studies 5th edition, Springer Heidelberg Germany 2012, from the same authors.
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