
www.SoftGozar.com

Telerik WPF Controls Tutorial

Create powerful WPF applications using Telerik controls
with the help of real-world examples

Daniel R. Spalding

BIRMINGHAM - MUMBAI

www.SoftGozar.com

Telerik WPF Controls Tutorial

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2014

Production Reference: 1140214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-652-7

www.packtpub.com

Cover Image by Tony Shi (shihe99@hotmail.com)

www.SoftGozar.com

Credits

Author
Daniel R. Spalding

Reviewers
Dr. Brian Finnegan

Jiri Pik

Bill Youngman

Acquisition Editors
Amarabha Banerjee

Harsha Bharwani

Content Development Editor
Shaon Basu

Technical Editors
Abhishek Kanade

Menza Mathew

Copy Editors
Sayanee Mukherjee

Laxmi Subramanian

Project Coordinator
Aboli Ambardekar

Proofreader
Maria Gould

Indexers
Mehreen Deshmukh

Rekha Nair

Production Coordinator
Kyle Albuquerque

Cover Work
Kyle Albuquerque

www.SoftGozar.com

About the Author

Daniel R. Spalding is a software consultant who works with many companies
in the Delaware Valley area of Pennsylvania. His software has been used by several
companies as their primary source for running their businesses. He has consulted
with several large firms on software architecture and product prototypes using
Visual Studio and C#. He started his business in 1996, but worked for Bell Atlantic
for the first 5 years of his career where he was in charge of the Lotus Notes Center of
Excellence for Philadelphia.

He has also been an adjunct professor for the last 19 years at both Drexel University
and Peirce College working with students in all aspects of computing from software
development to networking certification.

I would like to thank my wife Cindy, and my family, for putting
up with the time and effort this book took to complete. I would
also like to thank the technical reviewers, Bill Youngman and Brian
Finnegan, for volunteering their time to review my work, and fix all
my mistakes.

www.SoftGozar.com

About the Reviewers

Dr. Brian Finnegan is an associate professor of Information Technology at
Peirce College where he teaches courses in database management, human-computer
interaction, and programming.

Jiri Pik is a finance and business intelligence consultant working with major
investment banks, hedge funds, and other financial players. He has architected
and delivered breakthrough trading, portfolio and risk management systems,
and decision-support systems across industries.

His consulting firm, WIXESYS, provides their clients with certified expertise,
judgment, and execution at the speed of light. The power tools of WIXESYS include
revolutionary Excel and Outlook add-ons available at http://spearian.com.

Bill Youngman graduated from the University of Kansas in 1983 with his BA in
Psychology and after that spent almost 10 years as a radar/computer technician in
the U.S. Navy. Upon leaving the Navy, he moved to Philadelphia where he began
his career as an application developer with a multimedia company.

He spent the next 20 years as a consultant working in the healthcare, pharmaceutical,
insurance, and financial industries working on web applications and computer-based
training systems before finally ending up at PJM Interconnection where he has been
working since 2008.

While at PJM, he earned his Master's degree in Software Engineering at Pennsylvania
State University and is currently a solutions architect in the System Planning and
Applied Solutions Applications group where he supports PJM's system planning
efforts for the electrical utility grid for the Mid-Atlantic region as well as working with
the Applied Solutions group researching and developing new technologies at PJM.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

Table of Contents
	 1
	 7

	 10
	 10
	 13
	 15
	 17

	 19
	 20
	 22
	 23
	 26
	 27

	 27
	 28
	 30
	 31
	 32
	 33
	 34

	 36
Chapter 3: Data Entry and Validation of Telerik Controls 39

	 40
	 40

	 41
	 43

www.SoftGozar.com

Table of Contents

[ii]

	 44
	 49
	 56

Chapter 4: Layout Organization and Display Functionality 59
	 60

	 60
	 61
	 64
	 64

	 67
	 71

	 73
	 74
	 74
	 74

	 75
	 78
	 80
	 83

	 84
RadOutlook with GenericList, DataBinding, and database security 85
RadOutlookBar using generic list binding with XML security 88

RadMenu 89
Summary 94

Chapter 6: Telerik Scheduling and Object Bound Loading 97
	 98

	 98
	 99

	 100
	 101
	 104

	 106
	 107

www.SoftGozar.com

Preface
This book aims to demonstrate the use of the Telerik RadControls within a
Windows Presentation Foundation (WPF) application. The book will work
with four aspects of RadControls:

•	 Data Entry Controls
•	 Navigation Controls
•	 Scheduling Controls
•	 Layout Organization Controls

The book will also review several key aspects of loading these controls using
data objects and XML serialization. The last feature the book will cover is how
to validate data within RadControls and Visual Studio controls.

What this book covers
Chapter 1, Getting Started with Telerik RadControls, discusses the process of installing
the Telerik controls, then verifying the installation and making sure the controls are
loaded into Visual Studio and the Control ToolBar. By the end of the chapter,
the Telerik controls should be available in Visual Studio and be ready for use in
a WPF project.

Chapter 2, Telerik Editors and How They Work, reviews the listed controls and
discusses how to load the values and properties in a bound and unbound
technique. The spell-check control is added to other controls to allow for
spell-check on several controls. By the end of this chapter, the reader should be
able to use the selected controls in both a bound and unbound mode. In addition,
the reader will be able to implement the spell-check controls for use with the
accompanying text editing controls.

Preface

[2]

Chapter 3, Data Entry and Validation of Telerik Controls, reviews the selected controls
and discusses the creation and loading of these controls. The chapter also discusses
how to validate data in each control, and how to allow an object class to act as the
validation tool for these controls. By the end of this chapter, the reader should be
able to load the data entry controls and validate data within the control for the
correct data. In addition, the reader should be able to use object attributes to validate
data within any control.

Chapter 4, Layout Organization and Display Functionality, discusses the Telerik
container controls and how to efficiently design with the container controls.
The chapter also discusses how to load this information in a dynamic format from
either the database or from configuration files. By the end of this chapter, the reader
should be able to design the Telerik container controls and allow the controls to be
built in a dynamic format.

Chapter 5, Navigation and Dynamic Event Handling, reviews the Telerik navigation
controls and how to take a DataSet or object list and bind the information to the
controls. The chapter will also cover how to handle dynamic creation of events
from data. By the end of the chapter, the reader should be able to create a collection
of objects or a DataSet and generate entries inside the Telerik navigation controls.
The reader should also be able to dynamically populate the events for handling
navigation based on the user selection.

Chapter 6, Telerik Scheduling and Object Bound Loading, reviews the scheduling
controls from Telerik and discusses how to load these controls from data in a
database. This chapter will also discuss how to take information from controls and
load the values into the new data repository. By the end of the chapter, the reader
should be able to create and load these controls from any data repository, and take
the information from the controls to load into another data repository.

What you will need for this book
You will need to download the Telerik RadControls trial version from the Telerik
website at http://www.telerik.com/products/wpf/download.aspx. It is
recommended to download the MSI installer. You would also have to register
yourself with Telerik to allow access to the MSI file.

The reader must have at least Visual Studio 2010 Express installed to take advantage
of the book's examples. The projects that are referred to in the book are in the .NET
Framework 4.5 version. Please make sure to set the projects to the 4.0 or 4.5 Framework
to ensure the best results. The operating system used in this book is Windows 7
Ultimate, but these examples should also run on Windows 7 or Windows 8.

www.SoftGozar.com

Preface

[3]

The database manager for the projects in this book will be SQL Server 2008 Express
and it also uses XML files. The Telerik installation process will install the SQL Server
as well. The book's code examples will include both a SQL Server backup file and the
SQL Server MDF file for use within the application.

Who this book is for
This book is targeted at developers and architects who currently have a working
knowledge of WPF, but are looking to work with the Telerik RadControls to build a
new application. The book reviews the Telerik RadControls as well as techniques for
using the controls. Also, it discusses advanced techniques for working with the WPF
Window DataContext property.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "...RadAutoCompleteBox, both in a Data
Bound and Object Bound mode".

A block of code is set as follows:

private void checkDataType_Click(object sender, RoutedEventArgs e) {
 try {
 if (checkDataType.IsChecked == true) {
 RadComboCustomer.DisplayMemberPath = "FullName";
 RadComboCustomer.SelectedValuePath = "Id";
 RadComboCustomer.ItemsSource = cust.Fetch().DefaultView;
 }
 else {
 cust.FetchList();
 this.DataContext = cust;
 }
 }
 catch (Exception ex) {
 // log your error
 }
}

Preface

[4]

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are highlighted in yellow:

New terms and important words are shown in bold. Words that you see on the
screen in menus or dialog boxes for example, appear in the text like this: "Right-click
on the Databases tree option and select Restore Database."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.SoftGozar.com

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
support-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list of
existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works, in any form, on the Internet,
please provide us with the location address or website name immediately so that
we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.SoftGozar.com

Getting Started with
Telerik RadControls

During my history as a developer and architect, I have always worked under the
assumption that the controls in Visual Studio would be enough to develop any
application. The reason I always worked with the common controls in Visual Studio
was that these controls are updated automatically with the .NET framework the
moment the version of the .NET framework is installed; so, there is never a problem
of having to maintain the control version. Third-party controls can tend to be
expensive, sometimes have a steep learning curve, and can be expensive to maintain
throughout the life cycle of the application. When I needed more functionality,
I extended the Visual Studio version of the control to meet the needs of the
application. This approach works fine if the application is meant for a small audience
such as an internal company application or small company application, where costs
need to be contained as much as possible. This scenario needs to be decided by the
developer in conjunction with the potential client.

If the plan for the application includes selling it to a wider audience, or if the
application needs additional functionality without the extra work of extending each
control, then using third party controls is a great way to cut the development time
of the application while gaining additional functionality required in the application.
Telerik RadControls can be a great option for this type of development. Telerik offers
a large suite of .NET controls for WinForms, ASP.NET, and WPF.

This book will cover Telerik RadControls for WPF. RadControls can cut
development time by 50 percent over the task of extending the existing Visual
Studio standard controls, and since the controls are styled, the look and feel of the
application will be enhanced by the use of RadControls.

Getting Started with Telerik RadControls

[8]

This book expects that you already have experience with WPF and Visual
Studio. You should also have some experience working with SQL Server and
SQL. This experience will be helpful when deploying the database from the
downloads in the book. The main focus of the book, along with RadControls,
will be the use of object classes to bind a data object to the WPF controls. Here are
the WPF concepts you should be familiar with in order to work with this book:

• Object Oriented Design as well as the concept of the DataContext property
in a WPF form. If you need to do a quick review of WPF and DataContext,
you can review the following page at the http://msdn.microsoft.com/
en-us/library/ms752347.aspx site. Also, if you are new to or lack the
knowledge of object oriented design, review this website before starting on
the book: http://cplus.about.com/od/introductiontoprogramming/a/
aboutoop.htm.

• DataContext binding information to support Telerik RadControls. These
projects are available for download from the http://www.packtpub.
com/support website along with the SQL Server database to support the
following projects:

° A class library that has object classes to support object data binding
using the DataContext property in the WPF.

° A class library that will act as the data layer for the application. This
library will be called directly when the DataContext property uses a
data object to bind. If the DataContext property uses an object from
this class library, the class object will call the data layer.

Please make sure to download these files before reviewing the chapters in this book
since the libraries are a major portion of the work with RadControls.

Telerik RadControls for WPF offer several different categories of RadControls for
use within WPF:

• Data Management: This category provides the editable options to
display data from a data store, which include options such as a GridView
and TreeListView

• Data Visualization: This category provides the static options to display
data, which include options such as a BarCode or Chart

• Editors: This category provides the data entry options to gather input from
the user, which include options such as a ComboBox or MaskedInput

www.SoftGozar.com

Chapter 1

[9]

•	 Layouts: This category provides the display options such as a Book
or TileList

•	 Navigation: This category provides the options to create navigation in the
application such as PanelBar or OutlookBar

•	 Interactivity: This category provides the options to handle special media
•	 Scheduling: This category provides the options to create scheduling

information with Timeline and ScheduleView
•	 Framework: This category provides the options for working with data with

PersistenceFramework and EntityFrameworkDataSource

RadControls give the developer a great option to create a fully functional,
well-styled, and full-featured application.

This book discusses the advantages of working with Telerik RadControls for WPF.
The design of this book is a step-by-step methodology for working with selected
Telerik controls. Each chapter discusses a different type of RadControl, such as
Editors, and breaks down how to use the control in both bound and unbound
methodologies.

The book will use C# as the language for the projects. We refer to VB.NET but the
examples will be in C# only. If you are not familiar with C#, but still want to use the
book, there is a great website for translating C# to VB.NET, which can be found at
http://www.harding.edu/fmccown/vbnet_csharp_comparison.html. Telerik also
has a site for handling the translation, which can be found at http://converter.
telerik.com/. This site allows you to take a snippet of code and translate the code
to VB.NET or C# depending on your preference.

Since this book is meant to be a tutorial for RadControls, we will stay away from
selecting a design pattern for the use of the controls, and focus on the use of the
controls. The choice of a design pattern should be based on the best option for the
type of application you are developing within WPF. The options for using a pattern
are discussed but we have decided to remove the discussion of design patterns.
The Model View View Model (MVVM) pattern is the most commonly used
design pattern for WPF applications. If you want to understand the pattern
further, please review the following page:

http://msdn.microsoft.com/en-us/library/gg405484(v=pandp.40).aspx.

Getting Started with Telerik RadControls

[10]

Prerequisites
The reader must have at least Visual Studio 2010 Express installed to take advantage
of the book's examples. The projects that are referred to in the book are in the
.NET framework 4.5 version. Please make sure to set the projects to the 4.0 or 4.5
framework, to ensure the best results. The example operating system is Windows 7
Ultimate, but these examples should run on Windows 7 or 8.

The sample projects in this book will use both, a SQL Server 2008 Express database
and XML files, as data sources for the examples. The database and XML files will
be included with the sample projects. The Telerik installation process will install
the SQL Server as part of the complete installation. The book consists of projects
to support the DataContext information in WPF. These projects, along with the
database files, can be downloaded from Packt Publishing's website at http://www.
packtpub.com/support.

The book will cover the 2013.2.0724 version of Telerik RadControls. At the time of
the development of this book, this version was the latest version of RadControls.

At the time of writing this book, the current version of Telerik RadControls was
Version 2013.2.0724.

The license for Telerik RadControls is a 30-day free trial license. The reader
will not be able to create an installation of any application without purchasing
the Telerik license.

Downloading the Telerik trial software
The first step to start using Telerik RadControls is to download the trial for
WPF from the Telerik website. There are over 55 controls from Telerik with this
license. The following is the link:

http://www.telerik.com/products/wpf/download.aspx

It is recommended that you download the MSI installer as shown in the
following screenshot:

www.SoftGozar.com

Chapter 1

[11]

The download requires registration with Telerik to allow access to the MSI file. Fill
in the information and the site will redirect you to the download page and begin to
download the demo MSI file.

Once the file is downloaded you can start the installation. The Telerik installation
will display the typical installation menu. Select the default installation making sure
that you select your version of Visual Studio as part of the installation.

Getting Started with Telerik RadControls

[12]

Once your version of Visual Studio has been selected, you can customize the location
of the installation as you see fit. The installation will not take more than 10 minutes,
but the process will require an Internet connection to verify the installation with the
Telerik licensing site.

The next step is to do a simple verification to see whether the installation of the
Telerik controls has been completed. The first step will be to create a new WPF
project in Visual Studio 2012. Once the project has been created, the Telerik controls
should display in the Visual Studio Toolbox as shown in the following screenshot:

If there is a problem with the installation and the controls are not displaying, you can
right-click on the Toolbox, select Choose Toolbox items, and navigate to the Telerik
installation to select the Telerik DLL libraries. If the Telerik libraries are not installed
within the selected Telerik folder, contact the Telerik support site at http://www.
telerik.com/support.aspx and enter a support ticket. Telerik does have very good
technical support and will contact you with a ticket number for your issue.

Telerik also has an excellent blog for contacting Telerik support or other Telerik
developers to discuss any issues that you may have as part of the development
process. The Telerik blog is located at http://blogs.telerik.com/. The blog
is broken down by the type of control or issue and can be very helpful when you
develop a problem during your working process.

If you need more than those 30 days, which the Telerik trial license allows to work
with RadControls, you can contact Telerik to extend the licensing. Telerik will often
give you up to 90 days to allow for a full evaluation of RadControls.

Chapter 1

[13]

Creating the first Telerik project
The next step in the installation process is to create a WPF project within Visual Studio
to handle the final verification that the Telerik installation has been successful.

First, open Visual Studio by right-clicking on the desktop icon or start menu option
and select Run as Administrator. This will allow you to access the registry during
the creation of the WPF project. The Telerik installation needs to access the registry
to set up the controls in the Toolbox.

Second, create a RadControls WPF/C# project in Visual Studio. To do this,
create a new project, select C# as the language, and the .NET framework should
be 4.5. Please refer to the following screenshot:

The Telerik project wizard should display in such a way that it allows you to select the
controls you want to use within the project. This project will only require the Telerik.
Windows.Controls and the Telerik.Windows.Controls.Input assemblies. If you
do not see the Telerik project wizard, the installation is not correct. In this case,
please uninstall the Telerik controls and retry the installation. If this problem persists,
create a support ticket with Telerik at http://support.telerik.com.

www.SoftGozar.com

Getting Started with Telerik RadControls

[14]

Once the project has been created, open the MainWindow.xaml file in the designer
within Visual Studio, then open the Toolbox and drag the RadMaskedEditTextInput
control from the Telerik Input 2013 Q2 NET 45 option in the Toolbox. Once this
control is dragged to the MainWindow.xaml (the Mask property should already be set
to a20) run the project from the debugger. The project should build without an issue,
and warn you that the Telerik controls are in demo mode.

Now that you have been able to create a project with Visual Studio and Telerik, the
next step is to add the projects from the book's website to the solution for the WPF
project. First, you right-click on the solution and select Add Project from the File
menu option. Then, go to the location of the projects that you have downloaded
from the Packt Publishing website at www.packtpub.com, and select the PacktPub
data layer project. The namespace should be PackTPub.DataLayer. Arrange the
hierarchy for the projects so that the PackTPub.DataLayer project should be
highest in the compile list. The next project is the PackTPub.ObjectsLayer project,
then the Telerik PackTPub.Windows.UI project. The solution should now look like
the following screenshot:

Chapter 1

[15]

There should be three projects in the solution. Once you have added the projects
to the solution, make sure to rebuild the project and verify that the projects
are complete. If there are any compile errors, please try to redownload the files
and step through the process again. If these problems persist, please contact
www.packtpub.com/support with the issue.

As a reminder, since the Telerik controls are demo versions, you will not be able to
create an installation or deployment for these examples. The Telerik installation will
not pass the licensing to the installation and the application will fail.

Telerik demo project
Telerik offers a complete Visual Studio project as a demo of all RadControls and
how to use the controls within WPF. You can download the demo project and
solution from the Telerik website at http://demos.telerik.com/wpf/.

www.SoftGozar.com

Getting Started with Telerik RadControls

[16]

Click on the Install button to download the Setup.exe file from the Telerik site.
The installation process will also install SQL Server 2008 Express as noted in the
previous section. Please make sure that your computer has enough space to install
the SQL Server instance. If you already have SQL Server 2008 Express installed,
select the launch link instead to bypass the demo project installation.

The demo installation will create the following icon on your desktop:

You can use this icon to launch the demo solution. This demo is executable and will
display examples of each control within the WPF RadControl library. Each control will
have an XAML and a C# example to illustrate how to use the control. The examples
are often displayed using the MVVM design pattern, but the examples are still capable
of displaying how to use each control even if you are not familiar with the MVVM
pattern. Here is an example of how the demo is formatted:

Chapter 1

[17]

Each XAML page displays a well-skinned page with the controls as an example.
This page is an example of using a ComboBox to filter the data. There are a few
points to review on this page:

• On the upper-right corner, you will notice the Example and Code toggles.
These toggles will allow you to view the code for the example displayed.

• The More <control> Examples option allows you to review additional
examples of the selected control by clicking on a drop-down list option of
your choice.

• The NEXT EXAMPLE button allows you to review each example one by one
rather than trying to determine which example to review.

Summary
This chapter has demonstrated how to create a WPF project with the Telerik controls
included within the Visual Studio Toolbox. Make sure that you have the capability
to create a WPF project and add controls to a WPF form. The subsequent chapters
rely on this functionality.

You should also have a complete Telerik solution with two supporting projects
from the book downloads. This solution should be able to be built in Visual Studio
without any compilation errors.

Please make sure to download the SQL Server database files, the supporting class
libraries, and ensure that SQL Server has been installed. The subsequent chapters
will rely on the capability to retrieve data from the SQL Server database to populate
the controls and the class libraries to pass the information to the WPF application
and the controls.

If you are light on experience with WPF, the concept of DataContext binding to an
object, object-oriented design, or C# here is the list of the web links from the previous
sections of the chapter for your review. Please make sure that you have a reasonable
understanding of these concepts when you review the websites mentioned in the
previous sections of this chapter. Here is the list of web links again for your review:

• For VB.NET to C# comparison: http://www.harding.edu/fmccown/vbnet_
csharp_comparison.html

• To convert C# to VB.NET: http://converter.telerik.com/
• For the Model View ViewModel (MVVM) design pattern: http://

vortexwolf.wordpress.com/2011/11/27/wpf-and-silverlight-design-
patterns/

www.SoftGozar.com

Getting Started with Telerik RadControls

[18]

• For object-oriented design overview: http://cplus.about.com/od/
introductiontoprogramming/a/aboutoop.html

• For WPF and DataContext overview: http://msdn.microsoft.com/en-
us/library/ms752347.aspx

• To download the SQL Server database and class libraries: http://www.
packtpub.com/support

You should also be able to review the Telerik Demo project and review the
examples from Telerik. Even though most of the examples use the MVVM
design pattern, the examples can still be helpful in working with the controls
not covered in this book.

Now that we have set up the projects for the book, let us discuss the topics in the
next chapter. We will be covering the simple data entry controls available from
Telerik, such as the RadAutoComplete and the RadMaskedEdit controls. We will also
be looking at the RadSpellCheck feature within Telerik to allow us to check spelling
within any text controls.

www.SoftGozar.com

Telerik Editors and
How They Work

In this chapter, we will discuss the use of Telerik controls in WPF and how to make
these controls handle the tasks for which they were designed. The reason I am
starting with these editing controls is that they are simple to use; then, I will develop
the concepts that will be used later on in the book.

The book will be working with the concepts of Data versus Object binding of Telerik
controls. The reason for using both of these concepts is to cover both bindings since
the architecture you may be using could use either the System.Data .NET libraries for
DataSet and DataTable, or use custom-developed class objects. The DataTable class
can often be used for sending data through a web service. This methodology allows
for changes to the returning data without making specific Web Service Definition
Language (WSDL) changes. The class object can act as a data contract in a WCF web
service. The controls we will start with will be the editor controls as listed:

•	 RadAutoCompleteBox: This control will be used both in the Data bound
and Object bound mode

•	 RadMaskedInput: This control will be described using currency, phone,
e-mail, and zip code masks

•	 RadSpellChecker: This control acts in collaboration with other data entry
controls to verify the spelling of the text inside the associated control

The first goal of this chapter is for you to understand these controls and how to use
them to create an effective application. This chapter will also introduce the database
and the two supporting class libraries for the book. These files are available at the
publisher's website located at http://support.packtpub.com. Please make sure
you have downloaded the files before moving forward in the chapter.

Telerik Editors and How They Work

[20]

The second goal of this chapter will be to set up the example SQL Server database.
This database will be used throughout the book; so once you have set up the
database, you will be set for the rest of the book. There may be some additional
data scripts to load more example data, but these scripts will be mentioned in each
chapter. This chapter will not require any additional data from the current database.

Database setup
The next step, before reviewing the controls in the chapter, will be to make sure that
the database is set up for the Telerik projects. In this chapter, you will be required
to create the database in SQL Server; then create a configuration setting in the App.
Config file of your WPF User Interface project.

The first step will be to make sure you have downloaded the SQL Server database
files from the PacktPub support website, you will have two separate options to
install the database in SQL Server.

The first option will be to take the PackTPubOrders.bak file and restore the
SQL Server database on your local SQL Server instance. The steps to do this are
as follows:

1.	 Open the SQL Server Mgmt Studio (SSMS).
2.	 Connect to the SQL Server instance you wish to use for the database.
3.	 Right-click on the Databases Tree option and select Restore Database.
4.	 Type in the name PackTPubOrders as the database name.
5.	 Select the name of the file from the location where you saved the

book downloads.
6.	 Click on the Restore button and the database should display in the list

of databases.

The second option will be to take the PackTPub.mdf and PackTPub.ldf files and
attach these files to a new SQL Server database. The steps to do this are as follows:

1.	 Open SQL Server Mgmt Studio (SSMS).
2.	 Connect to the SQL Server instance you wish to use for the database.
3.	 Right-click on the Databases Tree option and select Attach.
4.	 Select the MDF database file from the location where you saved the

book downloads.

Once the database is set up, you will need to create a ConnectionStrings setting in
your App.config file to match the database instance that you created previously in
the SQL Server instance.

Chapter 2

[21]

The first step will be to create an App.Config file. If you do not already have the
configuration file within your current project, right-click on the project and select
Add File from the menu. Select the Application Configuration option from the
pull-down menu and an App.config file should be created.

Within the App.Config file, you will need to create a section called
connectionStrings. The following connection string example should be used if you
have created a specific SQL Server username for the database. The section should
look like this:

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

If you are using your Windows login, then you can use this configuration setup:

Once you have this configuration setting complete, you are ready to start working
with the database.

If you are using another type of security or you are not sure which option to
choose, please use the link http://www.connectionstrings.com/sqlconnection/.
This site has several different options for connection strings and should have the
string that you will need to access SQL Server.

Now that the configuration is set up, you will need to test the connection to ensure
everything is correct. You will want to use the current solution created in the first
chapter. If you did not create a solution, refer back to the first chapter. The code for
the MainWindow.xaml.cs file should look like the following code snippet.

www.SoftGozar.com

Telerik Editors and How They Work

[22]

In the Window_Loaded event code place the following snippet:

Once you have created the code for the MainWindow.xaml.cs class, run the solution
through the debugger in Visual Studio. Make sure you place a breakpoint at the
IDBManager line of the Window_Loaded method. Check to make sure the code does
not cause an exception.

RadAutoCompleteBox with data binding
Now that the SQL Server connection is set up, we can start with the first control.
The RadAutoCompleteBox control works in a very similar way to the AutoComplete
search box, which you will see on the google.com site. The first step to working
with the RadAutoCompleteBox control will be to familiarize yourself with the main
properties and events that are associated with this control.

Chapter 2

[23]

•	 The events are as follows:
°° SelectionChanged: This event is fired when the user changes

the selection from within the RadAutoCompleteBox list. This event
can assist in changing other information based on the selection by
the user.

°° SearchTextChanged: This event is fired as the user types within the
RadAutoCompleteBox list.

•	 The main properties are as follows:

°° ItemSource: This property sets the searchable values within the
RadAutoCompleteBox list. Telerik recommends that the list object
be of the ObservableCollection class.

°° TextSearchMode: This property determines how the text searching
is performed within the RadAutoCompleteBox list. The options
are Contains, ContainsCaseSensitive, StartsWith (the default
setting), and StartsWithCaseSensitive.

°° SelectionMode: This property determines whether the user can
select one option from the RadAutoCompleteBox option list or
multiple options. The default is Single.

Now that you are familiar with the main events and properties, let's start to use
this control.

Binding to a System.Data.DataTable
The first exercise will be to incorporate the RadAutoCompleteBox control and create
a useable sample on the MainWindow.xaml file. We will be using RadGridView
to verify the selection information from the RadAutoCompleteBox control, and a
checkbox to determine how RadGridView will be populated. RadGridView will
populate with customer orders based on the selection of a customer from the
RadAutoCompleteBox control.

Telerik Editors and How They Work

[24]

The first step will be to add the RadAutoCompleteBox control and RadGridView
to your MainWindow.xaml window. Place the RadAutoCompleteBox control
above RadGridView on your MainWindow.xaml file, and a checkbox next to the
RadAutoCompleteBox control, as shown in the following screenshot:

There are several key properties that are set in the RadAutoCompleteBox control
that we need to focus on in order to understand how the RadAutoCompleteBox
control works:

•	 TextSearchMode: This is set to Contains. There are four settings for the
TextSearchMode property:

°° Contains: If the typed text matches any portion of the loaded values
°° ContainsCaseSensitive: If the typed text matches any portion

of the loaded values based on the case of the text
°° StartsWith: If the typed text matches the beginning of the

loaded values
°° StartsWithCaseSensitve: If the typed text matches the beginning

of the loaded values based on the case of the text

•	 TextSearchPath: This is set to LName. LName is the property in the
CustomerEntity class that we want to focus the search on.

Chapter 2

[25]

•	 SelectionMode: This is set to Single. There are two settings for this property:
°° Single: The RadAutoCompleteBox list will display a single option

based on the text that is entered
°° Multiple: The RadAutoCompleteBox list will display a list of options

based on the text that is entered

•	 WatermarkContent: This is set to Enter a Customer Last Name. This value
will display in the RadAutoCompleteBox control when the window is loaded.

The next step will be to gather the customer information from the database to
populate the ItemSource property on the RadAutoCompleteBox control. Inside the
Window_Loaded event code, you will need to add the following code:

The following is the Window_Loaded event code:

Notice in the example there are two different options. The option we want to
use will be the DataTable option. The DataTable object will be bound to the
ItemSource property of RadAutoCompleteBox named customerComp. We are
using the DefaultView property from the DataTable option since the DataTable
option cannot be directly bound to the ItemsSource property.

Telerik Editors and How They Work

[26]

Once the code is in place, create a breakpoint on the line of code creating the
instance of the CustomerEntity class. The first time you run the code you can
move through the Fetch method to see how the DataTable option is populated.
Once AutoCompleteBox is populated with customer data, try to select a customer
by typing in the first few characters of the customer's last name. Once you select a
customer's last name, the orders for that customer should display in the grid.

Binding to the CustomerEntity object
Now that we have handled the binding of the RadAutoCompleteBox control to
the DataTable property through the code, the next option will be to have the
DataContext property of the WPF window handle the binding of the data.
This example will have the Window_Loaded event generate the CustomerEntity
class with the CustList property populated with a generic list of CustomerEntity
objects. This property will be bound to the RadAutoCompleteBox control using the
Binding value rather than using the C# code to set the value.

The changes we will be making to the form will be to change the ItemsSource
property in the MainWindow.xaml code. The first example of setting the
ItemsSource property is to set this property using the Window_Loaded event.
This example will set the property as follows:

This property setting will be used to populate the control once the DataContext
property for the window is set within the Window_Loaded event. Observe the
following line of code in the Window_Loaded event:

Chapter 2

[27]

This line sets the DataContext property of the window to the CustomerEntity
object. The AutoCompleteBox control then picks up the CustList generic list and
uses that data within the AutoCompleteBox control.

RadMaskedInput – currency, phone,
and zip
The next control I will review is the RadMaskedInput control. This control is
excellent for formatting data to make data entry easier for the user. This section will
review the simple format of the RadMaskedInput control. The examples will be using
the Mask property in the RadMaskedInput control to display how to create a mask for
currency, phone number, and zip code data.

RadMaskedInputCurrency
The first step will be to create a new window for displaying the
RadMaskedInput information. Once you have created the new window, add a
RadMaskedInputCurrency control to the window. The setup for the control
should look like the following screenshot:

Telerik Editors and How They Work

[28]

The properties that you should pay close attention to are highlighted in the example
XAML information.

•	 Mask: This property controls the format of the information within the textbox.
The mask "#6.2" means that the user can enter six numbers before the
decimal and two numbers after the decimal.

•	 Culture: This property determines the currency to be displayed within the
textbox. The default value is "en-US".

•	 IsCurrencySymbolVisible: This property displays a culture-based currency
symbol. The default value for this property is "True".

Once you have the setup for the control correct (based on the previous example) try
to test the control by running the application. The mask should allow you to input six
numbers before the decimal and two numbers after the decimal. There should be a
dollar sign in front of the entered data. Notice that if you change the Culture property
of the control, the currency symbol will change to reflect the correct currency type.
The control will also include a red cross symbol inside the control on the right side.
This allows the user to clear the data from the control. The control properties also
support binding to allow you to set up the controls based on configuration or
database information.

RadMaskedInputText – phone and zip
The control we will demonstrate next will be the RadMaskedInputText control.
This control can be used to format the text values of a textbox to allow a user to
view the information in a familiar format. The data that is saved will not—or at
least should not—be formatted. The first example will be to format the phone
number. The control XAML should look like the following screenshot:

Chapter 2

[29]

This format will support phone numbers in the U.S. after the mid 1960s. The phone
numbers before that would use the first two characters to identify the area of the
number. Let's setup the mask to allow the first two characters to be letters rather
than numbers. The Mask property should then look like the following screenshot:

Now we have a mask that should support any options for a U.S. phone number.
The next example will be to create a mask to support a U.S. zip code. The mask
should support the nine-character format used in the U.S. The mask should look
like the following screenshot:

The Culture property is available in this control, but the change in the value of this
property will not assist if the user information is from Canada. The Canadian zip
code is in a six-character format, so the mask will need to reflect this information
based on the culture setting in the Visual Studio project, or user input such as the
country. This mask should look like the following screenshot:

Telerik Editors and How They Work

[30]

RadMaskedInput – e-mail and validations
The examples we will be discussing next will show us how to use the RadMaskedInput
controls to act as validation for the values entered in the textbox. The purpose of this
section is to provide a sample of how to extend the control for additional functionality
without additional code. The validation of the data is handled at the class object level
by adding an attribute to the Class property. We will review the RadMaskedEdit
control, how to code the property associated to the control to pick up the validation,
and how to display the validation message on the screen. The first step will be to add
a RadMaskedTextInput control to your current masked edit window. This control will
be bound to the Product class in the PacktPub.ObjectLayer project. The binding
should be on the following properties:

Once you have added these property settings, you can then add a combobox to
select the product from the list. The selected product will be displayed in the three
RadMaskedTextInput controls by binding the product object to the window's
DataContext property. The following screenshot is an example:

In the Product class in the PackTPub.ObjectLayer.Products.Product class
file, the RegularExpression class allows only numbers and letters to be entered
as values:

Chapter 2

[31]

Once you have completed this code, you can try to run the example. Start to enter
data inside the masked edit textbox and you should see the selection generate the
information in the input boxes. The next step to test this functionality would be to
try and enter invalid data in these textboxes. If the data is invalid, you should see a
message displayed with the information from the attribute on the property.

SpellChecker – TextBox
The next control we will be reviewing is the RadSpellChecker control. This control
is a wrapper control that is associated with other controls to implement spell
checking within the associated control. The RadSpellChecker control works best
with the input controls from Telerik, but can be associated with the standard Visual
Studio input controls. The first associated control we will review is the TextBox
control from the Visual Studio standard System.Windows.Controls library.
We will review the RadRichTextBox control and RadDataGrid from the Telerik
control library. The reason we need to review the TextBox control is to allow you
to understand how to implement the spell check control with standard controls as
well as the Telerik controls. There is a key property and method that is set in the
RadSpellChecker control that we need to focus on, in order to understand how the
RadSpellChecker control works.

The SpellCheckMode property is used to determine the mode the spell
checker handles while spell checking. There are two modes: WordByWord
and AllWordsatOnce. The WordByWord mode allows the user to select
a word and check the spelling. The AllWordsatOnce mode reviews all
of the text within the current control.

The RadSpellChecker control requires that the WPF project has a reference
for Telerik.Windows.Documents.Proofing. This library contains the
RadSpellChecker control.

Telerik Editors and How They Work

[32]

RadSpellChecker with VS TextBox
We will review the RadSpellChecker control by associating the standard TextBox
control from Visual Studio. The first step will be to create a new window named
RadSpellWindow and add this window to the project. Once the window has been
created, you can drag a TextBox from the ToolBox on to the new window, and then
drag over a RadButton control. Here are the names of the controls:

•	 TextBox: Name this control textCheckData
•	 RadButton: Name this control RadButton

Once the controls are in place on your window, you will need to move to the code
view and set up the RadButton click event as follows:

The code should display the Telerik spell checking modal popup window.
The window should highlight any spelling issues as shown:

Chapter 2

[33]

The RadSpellChecker class has a static method named Check. This method takes
two parameters, the control to be spell checked, and the SpellCheckingMode
enumeration mentioned earlier in this section. The Check method will handle the
spell checking of the text value inside the control. Any spelling issues within the
control will cause the spell checking modal pop up to display. If there are no spelling
issues, the method will execute but not respond.

RadSpellChecker with RadRichTextBox
The next control we will associate with the RadSpellChecker control is the Telerik
RadRichTextBox control. The RadRichTextBox control is an extension of the
Visual Studio TextBox control, but one of the properties Telerik has added to the
TextBox is a Boolean property called IsSpellCheckingEnabled. This property
then implements the IControlSpellChecker interface class, and allows the
RadSpellChecker control to be implemented.

The next step will be to add a RadRichTextBox control to the current
SpellChecKWindow control in the project. Name the RadRichTextBox control
textSpellCheck. You can then set up the RadRichTextBox control to display
the data as large as you would like to display it. The following step would be to
add another RadButton to the window. This button will check the spelling on the
RadRichTextBox control. This button is optional, but will make validating the text in
the RadRichTextBox control easier. Once you have added the button, the next step
will be to add the code in the following figure. If you decide not to create the button,
you can add the code to the previous button click event from the TextBox example
from the previous section.

The next example we will document will work with the WordByWord mode of the
spell checking method. Let's add another button for the RadRichTextBox and add
the text into the Content property, WordByWord, for example. The next step will be
to add the following code into the click event of the new button:

Telerik Editors and How They Work

[34]

The WordByWord mode will load each word into the spell check modal window for
review by the user. This mode would work similar to how Microsoft Word would
evaluate the text of a document, rather than the entire content of the control.

The mode you should use depends on the use of the text control. If the text control
is meant to be used for a small amount of text, then the AllAtOnce mode would be a
better option since all the text data would be evaluated at once. If the text control is
meant to enter a large amount of data, then WordByWord will be easier to work with
for the user. The decision is based on the user and the content, but I believe these are
good rules of thumb to follow for the mode to use for the Spellchecker method.

RadSpellChecker with RadDataGrid
The next section in this chapter will discuss the use of the RadSpellChecker control
within a Telerik RadDataGrid control. The Telerik RadDataGrid control gives you
two different options for handling the spell checking within the grid.

•	 The first option allows the user to enable the spell checking manually.
A button to check the spelling is displayed below the text in the grid cell
to request the spell check.

•	 The second option is to automate the spell checking process. The spell check
modal displays when the user leaves the current cell within the grid.

Let's get started with the next control. We'll create two columns within a
RadDataGrid control. The first column will be an example of the manual spell
checking setup and the second will demonstrate the automated spell check.

Add a RadDataGrid control to the SpellCheckWindow class we created earlier in
the chapter. Once the RadDataGrid control is added, you will need to connect the
RadDataGrid control to the fetch method of the Order class to load data within the
grid. The code should look like the following screenshot:

Chapter 2

[35]

The next step should be to add the Telerik spell check information to the RadDataGrid
properties. The XAML for the RadDataGrid control should look like this:

Once you have set up the RadDataGrid xaml file, you will then need to add a
Telerik RadRichTextBox property inside the Grid section of the RadDataGrid
control. The XAML should look like the following code snippet. Note that the
IsSpellCheckingEnabled property is equal to False.

The first column will require a RadButton property below the RadRichTextBox
property. This button will be the way to have the user check the spelling within
the data cell. The XAML button should look like this:

The C# code for the button should look like this:

Telerik Editors and How They Work

[36]

Notice that the method I am using in the preceding section is the CheckChildControl
method. There are two parameters used in this method, the parent control, which in
our case is the RadDataGrid control, and the control to be evaluated by the spell
checker, which in this example is the RadRichTextBox control. When the user clicks
the button within the RadDataGrid control, the cell's text will be evaluated and the
Telerik spell check modal will be displayed.

The second column will be set up for automated spell checking so we
will do the same setup of the XAML in the column, except that we will
add the Telerik:DataGridSpellHelper.IsSpellCheckEnabled property
to DataGridTemplateColumn and set the column spell checking to True.
The XAML for the column should look like this:

Notice that the Telerik reference is created in the header of the XAML document
when Telerik is included as a reference in the WPF project.

Once you have finished the XAML setup, you can test the DataGrid spell checking
property. The first column will have the button display to check the spelling when
you double click on the cell. The second column should automatically evaluate the
spell checking once you move from the data grid.

Summary
In this chapter, you should now have the database set up and configured to work
with the system. All the example data should now be available and can be displayed
in the examples.

This chapter also covered three controls that you should now be able to include in a
WPF project. Let us review these controls again:

•	 RadAutoCompleteBox: You should now be able to create a Telerik
AutoComplete control, and bind the data to the control by using a DataTable
object or a class object. You should also be able to handle the selected index
event once the user selects an option from the AutoComplete control.

•	 RadMaskedEdit: You should now understand how to use the RadMaskedEdit
controls to handle formatting text for the database, as well as handling
validation on the information in the text control. This validation should be
handled using attributes on a class.

Chapter 2

[37]

•	 RadSpellChecker: Once you have finished the chapter, you should be able to
use the RadSpellChecker static class to work with the following controls:

°° TextBox: You should be able to use the spell checker with the
standard TextBox control from Visual Studio. You should be able
to set up the spell checker within a button control and you should
understand the two different modes of the spell checker: WordByWord
and AllContent.

°° RadRichTextBox: You should be able to use the spell checker on the
Telerik RadRichTextBox control using the IsSpellCheckingEnabled
property setting on the Telerik control.

°° RadDataGrid: You should be able to create a RadDataGrid and
use the spell checker functionality in either an automated or
manual process.

In this chapter, we also reviewed the concept of validation using property
attributes to handle the invalid message and format of the valid information.
This concept will be discussed in further detail in the next chapter. We will start
to create classes to handle the validation of the WPF controls using data binding
and the property attribute.

Data Entry and Validation
of Telerik Controls

In this chapter, we will review and enhance the validation information from the
previous chapter. If you remember, in the validation of the RadMaskedEdit control,
we created an attribute on the class property to handle validation so that the
information entered within the control was based on the format in the attribute and
correct. This chapter will further elaborate on this concept of creating validation for
each editor type of control.

This chapter will also enhance the concepts of the Data versus Object binding of the
Telerik controls. The binding works with the validation to create the link between the
form and the class object. We will add some additional classes to the base portion of
the project to allow for the attribute to be used with the class objects. This validation
class can be enhanced to include many different types of validation and can be
included within any WPF project. This chapter will review the following controls:

•	 RadComboBox: This control will be reviewed using the DataTable and
List<T> bindings with validation

•	 RadSpreadsheet: This control will be reviewed using the DataTable and
List<T> bindings and validation within the spreadsheet control

•	 Dynamic validation: This control will review the examples of the dynamic
validation through class objects

The first goal of this chapter is to work with the RadComboBox and RadSpreadsheet
controls using both DataTable and Object bindings. Understanding the flexibility
for binding data classes as well as object binding allows for multiple options when
connecting your application to all data sources.

Data Entry and Validation of Telerik Controls

[40]

The second goal of this chapter will be to further explore the dynamic validation
concept using attribute-validation examples. We will start to add additional
validation from different sources such as business logic (like an e-mail address) to
enhance the use of the validation attributes.

Database setup
The next step, before reviewing the controls in the chapter, will be to make sure
that the database is set up for the Telerik projects. The last chapter discussed the
PackTPub database setup to support the examples used in the previous chapter.
This chapter is supported by the same database information, so nothing new is
required for this chapter.

You should make sure that you can access the database. If you're not sure, or you
do not remember whether you have set up the database, please refer to the Database
setup section of Chapter 2, Telerik Editors and How They Work.

RadComboBox
The first control I will review in this chapter will be RadComboBox. This control
extends ComboBox from the Visual Studio standard toolbox by taking the base as
ComboBox and adding additional styles and data features. The first example I will
review will be to set the binding of the control's list values using both a DataTable
from the System.Data namespace and a list of customer class objects from the object
layer of the example solution. The first step will be to create a new window in the
current WPF project (name this new window Chap3Window.xaml). Once you have
created the new window, you will need to add the following controls:

•	 RadComboBox: Name the combobox RadComboCustomer
•	 RadDataGrid: Name the grid RadGridOrders
•	 CheckBox: Name the checkbox checkDataType
•	 Labels: Add labels to describe the controls:

°° The label for the combobox should say Select a Customer:
°° The label for the checkbox should say DataTable:
°° The label for DataGrid should say Orders for Customer:

The final appearance of the window should be the following screenshot:

Chapter 3

[41]

The next step will be to create the code to work with the data objects for populating
the combobox with the customer information.

RadComboBox with DataTable
The first example of populating the combobox with customer information will be to
use DataTable from the System.Data namespace. The reason for using DataTable
to populate the combobox is twofold:

•	 DataTable offers an option to gather data using a common interface for
the information.

•	 DataTable can be used in a web service call to allow the data to be passed
in a common format without making any WSDL changes.

The reason for the checkbox is that I want to use this control to determine the type of
data that will be loaded inside the combobox. This will be accomplished by clicking
on the checkbox.

Data Entry and Validation of Telerik Controls

[42]

The first step will be to create an instance of the Customer class from the PackTPub.
Objects project. This code should be added to the click event of the checkDataType
checkbox. You will need to add a using statement to the beginning of your code to
refer to the PackTPub.Objects project. Once the instance of the Customer class is
created, you need to use the checkDataType value to determine which data object to
display in the combobox. If the checkDataType property is IsChecked == true, we
will populate the combobox with the DataTable object. The code should appear like
the following screenshot:

Let's review the code in the preceding image. The DataTable version handles the
binding by setting the DisplayMemberPath property to the column in DataTable,
which should be displayed in the combobox. The SelectedValuePathV property is set
to the column in DataTable; this will be used as SelectedValue or the ID value for
the query. The ItemsSource property is set to DefaultView of DataTable. The reason
for using DefaultView rather than the actual DataTable is that the ItemsSource
property requires an object that implements the IEnumerable interface class.

Chapter 3

[43]

RadComboBox with a generic list
The next method for populating the RadComboBox control on the window will be
to use a generic list of objects; in this case it will be Customer objects. Using the
code from the previous example for loading DataTable, you will need to code the
else condition of the if statement for when the checkDataType checked value is
false. The CustomerEntity instance variable can now be used to retrieve the list of
CustomerEntity objects. The code should appear like the highlighted portion of the
following screenshot:

Let's review the code after the else statement. This time we execute the query
by using the FetchList method from the CustomerEntity class. This method
generates a generic list of CustomerEntity objects. We will then bind the instance
of the CustomerEntity class to the DataContext property of the WPF window.
The RadComboBox control has the ItemsSource property bound to the CustList
property within the CustomerEntity class, as shown in the following code snippet:

ItemsSource="{Binding CustList}"

Now that the code is set, let's run the debugger to verify that the code works. You can
set a breakpoint at the if statement in the event method.

Data Entry and Validation of Telerik Controls

[44]

Once you have verified that the code is working, the next step will be to take the
information from the combobox and retrieve the customer orders based on the
selected customer value in the combobox. You will need to create an event handler
for the SelectedValueChanged event from the combobox. When the user selects a
customer from the combobox, the event will fire and gather the customer ID from
the selected combobox value and query the database for the orders. The code should
appear like the following screenshot:

Notice the difference between the RadComboBox example and the RadAutoComplete
example from Chapter 2, Telerik Editors and How They Work. Since the RadComboBox
text and value are bound to the object, we are not worried about the type of binding
objects. The RadAutoComplete control binds the object directly, so retrieving the
value from the selected information requires knowledge of the type of bound object.
The RadComboBox control does not require that level of knowledge. You can simply
convert the SelectedValue property to an integer and pass the integer to the Order
class method's FetchList to retrieve the list of orders for the selected customer.

Now that we have finished this control, you should be able to populate a
RadComboBox with both DataTable and a generic list of objects. You should also
be able to gather the information from RadComboBox to be used for later processing
within your WPF window.

RadSpreadsheet
The next Telerik WPF control I will review will be the RadSpreadsheet control.
This control is very powerful since it allows the user to work with data in a way
similar to working with an Excel spreadsheet. This section will review binding
database information to the RadSpreadsheet control. Again, I will be working
with DataTable and a generic list of class objects to demonstrate the power of
RadSpreadsheet.

The first step will be to make sure that you have the reference libraries you need in
your WPF project. Go to the References section of your project, and then right click
to add new references. Here are the libraries from the Telerik folder that you will
need to add:

Chapter 3

[45]

•	 Telerik.Windows.Controls.Spreadsheet

•	 Telerik.Windows.Documents.Spreadsheet

•	 Telerik.Windows.Documents.Spreadsheet.FormatProviders.OpenXml

The next step will be to create a new window to display the spreadsheet and test the
code for this section. Go to your WPF project in the PackTPub solution, add a new WPF
window, and name the window SpreadsheetWindow.xaml. Once you have created
the new window, drag a RadSpreadsheet control from Toolbox on to the window.
Name the spreadsheet control RadSSControl to match the code examples. The next
step will be to add a checkbox control and name this control checkDataTable. The
checkbox will determine which type of data object will be bound to the spreadsheet
control. The window should appear like the following example:

Once you have finished setting up the interface in the window, you will need to
set up the code to work with the RadSpreadsheet control. The using statements
required to work with the code are as follows:

Data Entry and Validation of Telerik Controls

[46]

The first using statement will incorporate the class object for the example. The
Spreadsheet.Model library allows us to work with the Workbook class. This Workbook
class is the key to binding data to the RadSpreadsheet control. The RadSpreadsheet
control does not have data binding in the traditional definition. The way we will be
populating the data from our database information to the spreadsheet control will be
by creating an instance of a Workbook class, and then populating that object with the
data. The first step in creating the code to support the spreadsheet will be to create an
instance of the CustomerEntity class in the SpreadsheetWindow instance method.
This line of code should be placed right below the InitializeComponent() method
call. The code should appear like the following screenshot:

The next step will be to create the code to determine which data object will be used to
load the spreadsheet control. You will need to create an event handler for the Click
event of the checkDataTable checkbox control. The Click event will then determine
how to load the spreadsheet control. The event handler code should appear like the
following screenshot:

Chapter 3

[47]

Notice the two method calls, ConvertDataTable and ConvertList, in the
checkDataTable click event code. These methods will take the data object from the
CustomerEntity class and convert the object to a Workbook class that can be loaded
into the spreadsheet control. The next step will be to include these new methods
inside the SpreadsheetWindow class. Let's review what each of these methods does
for this window:

•	 ConvertDataTable: This method takes DataTable from the CustomerEntity
Fetch method, loops through the column names to create the headers for the
spreadsheet, and then loops through the rows of the DataTable to load the
data. The method creates a new Worksheet class from the Workbook class
and adds cells to the worksheet. The workbook is then returned to the event
method and applied to the spreadsheet control.

Data Entry and Validation of Telerik Controls

[48]

•	 ConvertList: This method takes the generic list of CustomerEntity objects
from the CustomerEntity FetchList method, loops through the list, takes
the property name to load the headers of the spreadsheet, loops through
the data objects to gather the values in the properties of the object, and then
loads the spreadsheet cells. The method creates a new Worksheet class from
the Workbook class and adds cells to the worksheet. The workbook is then
returned to the event method and applied to the spreadsheet control.

private Workbook ConvertList(List<CustomerEntity> custList)
{
 Workbook workbook = new Workbook();
 try
 {
 if (custList.Count > 0)
 {
 workbook.Worksheets.Add();
 Worksheet worksheet = workbook.ActiveWorksheet;
 bool headers = false;
 int rowCnt = 0;
 int col = 1;
 int headCol = 0;
 foreach (CustomerEntity cust in custList)
 {
 foreach (var prop in
 cust.GetType().GetProperties())
 {
 int curCnt = 0;
 Type type = prop.GetType();
 if (prop.GetType().
 AssemblyQualifiedName == "System.Collections.
 Generic.List")
 continue;
 if (!headers)
 worksheet.Cells[headCol,
 rowCnt].SetValue(prop.Name);
 worksheet.Cells[col,
 rowCnt].SetValue(prop.GetValue
 (cust, null).ToString());
 rowCnt++;
 }
 headers = true;
 rowCnt = 0;
 col++;
 }
 }
 }
 catch (Exception ex) { throw; }
 return workbook;
}

Chapter 3

[49]

Now that the code is complete, you can try to test the code. Place a breakpoint at
the creation of the Workbook instance and run the debugger. When you click on
the checkDataTable object, the DataTable portion of the if statement should be
executed. The spreadsheet should load with the customer data from the database.
When you remove the check from checkDataTable, the List<CustomerEntity>
else condition should be executed. You should notice a difference in the data that is
loaded into the spreadsheet control. Since the CustomerEntity class has properties
for CreatedBy, CreatedDate, LastUpdatedBy, and LastUpdatedDate, these
properties are loaded into the spreadsheet.

Now that we have finished the RadSpreadsheet control, you should be able to
populate a RadSpreadsheet control with both DataTable and a generic list of
objects. You should also be able to understand the differences between an object
loading and a DataTable load.

Dynamic validation
The next section of this chapter deals with checking of data within a Telerik or
standard control using custom validation. This section will not be specific to Telerik
controls—it can be used with any control. I will create examples with Telerik
controls, but I will also include standard Visual Studio controls.

The setup for this type of validation starts with the PackTPub.Object project.
Inside of the project is a folder named Validation. All the classes for handling
the validation are stored within this folder. The design of this validation is to use
a property attribute to handle the validation for that property. The control that is
bound to the property using the DataContext property from the WPF Window class
will pick up the validation and display the attribute message.

The beginning of this validation setup is the IValidationRule interface class. This
interface class has one implementation method called Validate. This method—for
those of you not familiar with interface classes—will be defined in each validation
class that will inherit with the interface class. The method will appear like the
following code:

public interface IValidationRule
{
 void Validate(object value, out bool isValid,
 out string errorMessage);
}

Data Entry and Validation of Telerik Controls

[50]

The object value parameter is the DataContext value from the control on the WPF
window. The output parameters isValid and errorMessage determine if the data
inside the control is valid; if the data is not valid, the errorMessage parameter
is displayed.

The next step will be to create a class to act as the validation attribute's check to verify
the data. The example Visual Studio project has two example classes to demonstrate
this concept. The ComboValidationAttribute and TextValidationAttribute
classes demonstrate how to set up a validation attribute class. The first aspect of these
classes, you will want to notice, is the inheritance. The following is an example:

public class TextValidationAttribute : Attribute, IValidationRule

There are two classes that the TextValidationAttribute class inherits from in the
previous example:

•	 Attribute: This class allows the class to be used as a property attribute
•	 IValidationRule: This interface class determines the setup for the

Validate method call

The next piece of code we want to review is the actual Validate method in the
TextValidationAttribute class. The class has a property called MinLength;
this property determines the length of the text value that is valid in the Validate
method. This property value is passed to the class using the class attribute.
There is an example of this attribute setup in the next section of this chapter.
The Validate method will review the current property value for two checks:
if there is a value in the property and if the length matches or exceeds the
MinLength property. The following is an example:

public void Validate(object value, out bool isValid,
 out string errorMessage)
{
 isValid = false;
 errorMessage = "";
 if (value != null && value.ToString()
 .Length >= MinLength)
 isValid = true;
 if (!isValid)
 errorMessage = value + " is not equal to
 or longer than " + MinLength;
}

The errorMessage parameter is returned to the class, and then to the WPF window
to display to the user. You can format the message as you see fit to make the
information display a user-friendly message.

Chapter 3

[51]

The following is an example of the TextValidationAttribute class defined with a
property in the Product class in the PackTPub.Objects project:

[TextValidation(MinLength = 10)]
 public string LastName

The attribute name TextValidation matches the class that was created in the
example. The MinLength property sets the property in the TextValidation class,
and the value is used to determine if the length of the string is long enough to pass
the validation test.

The next example of the validation will be to create a check for a combobox control. I
use the combobox validation to determine if a correct value has been selected inside
the combobox control. The combobox validation works in a fashion similar to the
textbox validation. The attribute for the combobox is set above the property to be
bound from the associated control on the WPF window. The selected value of the
combobox is then passed into the Validate method to verify that a correct value has
been selected. The following is an example of the ComboBoxValidation attribute:

[ComboBoxValidation(DefaultValue = 0)]
 public int CustomerType

The default value should be the default item in the combobox that you are validating.
When you are loading the combobox items, a default item should be selected inside
the combobox. This item will act as the default. I chose the number zero since this
number would not match type values in a database table. Once the attribute is set,
we need to review the Validate method from the ComboBox Validation class to
understand how this method works:

public void Validate(object value, out bool isValid, out string
errorMessage)
{
 int result = 0;
 isValid = false;
 if (value != null)
 isValid = Int32.TryParse(value.ToString(), out result);
 errorMessage = "";
 if (!isValid)
 errorMessage = "- *";
 else if (isValid & result == _defaultValue)
 {
 errorMessage = "- *";
 isValid = false;
 }
}

Data Entry and Validation of Telerik Controls

[52]

The Validate method in this example checks to see if the value is an integer. Once an
integer has been passed, the next check is to determine if the integer value is not
equal to the default value. If any of these conditions is false, the method returns the
errorMessage parameter with the user correction. Notice that the message is only an
asterisk in this example. You are more than welcome to incorporate your own message
into this method.

Now that we have the validation in place, let's create a window to use as an example
for validating the information in a WPF window. Go ahead and create a new window
in your WPF project and name the window ValidationTestWindow.xaml. Add a
textbox and a combobox to the window. Once you have completed adding the controls
to the window, we need to add the properties for CustomerEntity to the textbox and
the combobox. This setup will cause the class to bind to the objects. The following is
how the binding should appear in the textbox:

<TextBox
 x:Name="textLName"
 Text="{local:ValidationBinding Path=LName}"
 HorizontalAlignment="Left"
 Height="23"
 Margin="19,91,0,0"
 TextWrapping="Wrap"
 VerticalAlignment="Top"
 Width="120"/>

This is how the combobox binding should be done:

<telerik:RadComboBox
 x:Name="comboTestValue"
 SelectedValue="{local:ValidationBinding Path=ComboTest}"
 HorizontalAlignment="Left" Margin="19,37,0,0"
 VerticalAlignment="Top"
 Width="250"
 Grid.ColumnSpan="2"/>

The Path=value in the XAML code should be set to the CustomerEntity class
property that is to be bound to the selected control. In the case of TextBox, the LName
property in the CustomerEntity class will be bound to textLName TextBox. Once
you have the binding set up in the controls, the next step will be to create an instance
of the bound object and set the window's DataContext property to that object. The
following is how the code should appear in the window's instance method:

Chapter 3

[53]

The preceding code creates an instance of the CustomerEntity class, populating the
properties necessary, and then binding the instance of the class to the DataContext
property of the window. When you execute the debugger to run through the code,
the window will display the messages for the validation. When you enter/select the
correct values into the controls, the message should disappear from the window.
Now that we have the validation running on the common Visual Studio controls,
let's test this concept on the Telerik controls. Add the RadComboBox control to the
current validation window, and then take the binding from the current combobox
and add that binding to RadComboBox, as shown in the following example:

Once you have completed the binding to the RadComboBox step, try to run the system
through the debugger. The results should match the original window's results.

This methodology for validation using the WPF binding context can be used with
any control—Telerik or otherwise. The Telerik's RadMaskedEdit control works in a
similar fashion, but a validation method is required to be placed in the set method
of each property to be validated. I feel that this validation is easier to use and allows
you to incorporate business rules as a part of the validation, if necessary. You can
also expand the validation types if you feel there is anything missing from the
current classes.

Data Entry and Validation of Telerik Controls

[54]

The next example will be on how to incorporate a new validation (e-mail validation)
into the current list of checks. The object layer project has a class file called Email.
cs that you can incorporate into the current project. Here are the steps to incorporate
this new class:

1.	 Right-click on the PackTPub.ObjectLayer project and click on Add
New Folder.

2.	 Enter the folder name as Util.
3.	 Right-click on the PackTPub.ObjectLayer project and click on Add

Existing Item.
4.	 In the Explorer window, select the Email.cs file and place it in the

Util folder.

Once the Email class is incorporated into the PackTPub.ObjectLayer project,
we can start to create the class to validate the e-mail address using the property
attribute. Let's start by creating a class in the Validation folder of the PackTPub.
ObjectLayer project called EmailValidationAttribute.cs. This class should be
set up like the following example:

The code in the example uses the ValidEmailAddress method in the Email class
to determine if the text value of the property is correctly formatted as an e-mail
address. The setup of the Validate method matches the examples that we created
earlier with the Text and Combo attributes. The design of this validation allows you
to incorporate additional business rules without a lot of additional coding.

Chapter 3

[55]

The next step will be to incorporate the new e-mail validation into one of the current
classes in the project. Go to the CustomerEntity class in the Customer folder. The
next step will be to add the using statement to include the attributes:

using PackTPub.ObjectLayer.Validation;

Once the using statement has been added, you can start to add the attributes to the
properties. The CustomerEntity class has a property named Email. You can now
add the validation attribute to the property, as shown in the following example:

[EmailValidation]
public string Email
{
 get { return _email; }
 set { _email = value; }
}

The next step will be to add the assembly information to the window namespaces for
allowing the validation to display on the window. The PackTPub.Window.UI project
already has the Validation classes included in it; you will only need to add the
assembly reference to the top of the window XAML, as shown in the following line
of code:

xmlns:local="clr-namespace:PackTPub.Windows.UI.Validation"

This reference will allow you to include the validation binding when you create
new controls on your window. The next step will be to create TextBox on
ValidationTestWindow.xaml and add the binding to TextBox, as shown in the
following example:

<TextBox
x:Name="textEMail"
Text="{local:ValidationBinding Path=Email}"
HorizontalAlignment="Left"
Height="23"
Margin="19,91,0,0"
TextWrapping="Wrap"
VerticalAlignment="Top"
Width="120"/>

Notice the highlighted portion of the XAML code; the local reference matches the
namespace addition we made in the assembly information. The binding reference
picks up the information for the assembly, and it will allow the attribute's validation
and messages to display in the window.

Data Entry and Validation of Telerik Controls

[56]

Now that the validation is in place, here is how the form will appear if the data
is invalid:

You will notice the red outline around the textbox with the Last Name: label when
the data is invalid. As you type data into the textbox, the validation will check the
data against the logic built into the Validate method. The following screenshot is an
example of the validation after the data is considered as valid:

Once the data is valid, the red outline is removed. You can test this on the e-mail
textbox as well. Remove .com from the dan@aol.com value, and the red outline
should appear. I hope you have found this methodology for validation helpful.
I think that this form of validation allows you to incorporate business rules in an
easier fashion than the Telerik method.

Summary
In this chapter, I covered two controls and a validation concept that can be used
with any input control to validate the data entry information. Let's review these
controls again:

•	 RadComboBox: You should now be able to create a Telerik RadComboBox
control, and bind the data to the control by using DataTable or a class object.
You should also be able to handle the selected index event once the user
selects an option from the RadComboBox control.

Chapter 3

[57]

•	 RadSpreadsheet: You should now understand how to use the
RadSpreadsheet control to handle the formatting of the information
from either a generic list or DataTable. You should be able to load
the spreadsheet with either type of data object.

The other WPF concept that I covered was the Dynamic Validation of any data input
controls—Telerik or otherwise. The concept of this validation uses the DataContext
property and the binding class object to determine the validation for the selected
control. This type of validation saves a tremendous amount of work in coding the
validation into each window. The concept also allows for sharing the validation
across several WPF projects, since the library could be used in several solutions.
Telerik's masked edit controls also apply a similar concept, but there are a few
differences that should be noted. These differences are as follows:

•	 The Telerik validation can only be used with Telerik controls
•	 The Telerik validation requires coding in the set method of the property

rather than using a property attribute
•	 The Telerik solution is not as portable

The biggest feature I want to reinforce with the validation is portability.
This methodology allows you to implement the validation in any WPF user
interface. If you have a Silverlight application as well as a WPF application
that supports your users, you can have the same validation for both the
applications without any additional coding.

In the next chapter, we will be working with the layout and design functionality
that Telerik's RadControls provides. I will specifically cover the RadTab control
and RadBook from Telerik. I will discuss how to load these controls from the
database and objects to create a more dynamic interface.

Layout Organization and
Display Functionality

In this chapter, we will demonstrate and discuss the use of the Telerik container
controls. At this point in the book, we have worked with standalone controls for
data entry on WPF windows. This chapter will start to work with container controls.
These are the controls that will handle the display of other controls. We will review
the best uses for the container controls we cover, then we will discuss the options for
dynamically populating these controls through the C# code, and either database or
XML configuration.

I have selected two controls that I feel give the best examples of the concepts that we
want to cover. We will be focusing our attention on the following controls:

•	 RadTabControl

•	 RadBook

We will be focusing our efforts on dynamically loading these controls to make
the user interface capable of external configuration for allowing dynamic content.
This concept will allow you to develop applications that require very few changes
once the initial development is complete. The concept would be to allow the power
users of the system to add information as needed to meet the user demand without
any additional coding for the development team.

This chapter will also continue discussions on the concepts of Data versus Object
binding of the Telerik controls. We will demonstrate the loading of the controls from
both the database and the configuration files to give the system the flexibility in the
handling of the dynamic information. I hope this chapter gives you a real-world
perspective on the use of these container controls, and how to handle the processing
of the controls in multiple data interfaces.

Layout Organization and Display Functionality

[60]

Database setup
The next step, before reviewing the controls in the chapter, will be to make sure
that the database is set up for the Telerik projects. The last chapter discussed the
PackTPub database setup to support the examples used in the previous chapter.
This chapter is supported by the same database information, so there is nothing
required for this chapter.

You should make sure that you can access the database. If you're not sure, or do
not remember if you have set up the database, please refer to the Database setup
section of Chapter 2, Telerik Editors and How They Work.

This chapter will also require the XML files to be stored on your machine. If you
haven't done so already, create a folder called LoadConfig inside the PackTPub
WPF project's bin folder. This folder will be read at the loading of the system to
gather the required information for generating the RadTabControl information.

RadTabControl
The first control I will review in this chapter will be the RadTabControl control.
This control extends the TabControl control from the Visual Studio standard
toolbox. The first example that I will review will be to set the binding of the control's
tabs using both a DataTable object from the System.Data namespace and a list of
class objects from the object layer of the example solution.

The DataContext property in the RadTabControl control only allows
for population of the tabs and not the content in the container.

The first step will be to create a new window in the current WPF project. Name this
new window Chap4TabWindow.xaml. Once you have created the new window,
you will need to add two controls:

•	 RadTabControl: Name the RadTabControl control RadTestTab
•	 ComboBox: Name the ComboBox control comboDataType

Add labels to describe the controls. The label for the checkbox should say:
Select Data Type:.

Chapter 4

[61]

The final look of the window should be like the following screenshot:

The next step will be to create the code to work with the data objects to populate the
tab control with the layout for the order processing.

RadTabControl with DataTable
The first example of populating the RadTabControl control with the customer tab
information will be to use a DataTable object from the System.Data namespace.
The reason for using a DataTable object to populate the combobox is twofold:

•	 The DataTable object offers an option to gather the data using a common
interface for the information.

•	 DataTable can be used in a web service call to allow data to be passed in a
common format without making any WSDL changes.

The reason for the combobox is that I want to use this control to determine the
type of data that will be loaded inside the tab control. This will be accomplished by
selecting the option on the combobox to determine the type of data to be loaded.

Layout Organization and Display Functionality

[62]

The first step will be to create an instance of the Customer class from the PackTPub.
Objects project. This code should be added to the SelectedIndexChanged event
of the comboDataType combobox. You will need to add a using statement to the
beginning of your code to reference the PackTPub.Objects project. Once the
instance of the Customer class is created, you need to use the comboDataType value
to determine which data object to display in the tab control. If the comboDataType
property is SelectedValue == "Table", we will populate the tab control with the
DataTable object. The code should look like the following screenshot:

Chapter 4

[63]

Let's review the code in the preceding screenshot. The DataTable version handles
the binding by setting the DisplayMemberPath property to the column in the
DataTable object that should be displayed in each tab on the TabControl control.
The ItemsSource property is set to DefaultView of the DataTable object. The reason
for using DefaultView rather than the actual DataTable is that the ItemsSource
property requires an object that implements the IEnumerable interface class. The SQL
Server table for the tab information also has the default selected tab set as a Boolean
value. We take the table and determine which tab is selected, and then set the
SelectedIndex property on the TabControl control to that index. The method for
determining the SelectedIndex property looks like the following screenshot:

This method determines which type of value is available (whether the generic list
or the DataTable object), and then loops through the values to determine which tab
index should be selected on the TabControl control. If the method cannot find a
selected tab, the default is the first tab or index 0.

Layout Organization and Display Functionality

[64]

RadTabControl with a generic list
The next method for populating the RadTabControl control on the window will be
to use a generic list of objects (in this case it will be the TabItem objects). Using the
code from the previous example, for loading the DataTable object, you will need to
code the else condition of the if statement for when the comboDataType checked
value is false. The Customer instance variable can now be used to retrieve the list of
the TabItem objects. The code should look like the highlighted portion of this code:

Let's review the code in the List section of the switch statement. This time we
execute the query by using the fetchTabs() method from the CustomerEntity
class. This method generates a generic list of TabItem objects. We will then bind the
instance of the TabItem class to the ItemsSource property of the RadTabControl
control. RadTabControl has the DisplayMemberPath property bound to the
HeaderText property within the TabItem class as shown:

RadTabControl with an XML file
The last step will be to create the tabs by using an XML file to gather the information.
There are several reasons for using an XML file, as opposed to a database, for this
type of configuration. The following are the reasons:

• The system can be moved without any changes in the system configuration
• The system becomes database-independent
• The configuration can be installed using an MSI installer without access to

a database

The XML files for the PackTPub system are stored in the project's bin\\XML folder.
The BaseEntity class has four methods to serialize and deserialize XML files. The
following are the methods:

• Serialize: This method generates an XML file from a single class object

www.SoftGozar.com

Chapter 4

[65]

•	 Deserialize: This method generates objects from the XML file
•	 SerializeList: This method generates an XML file from a generic list

of objects
•	 DeserializeList: This method generates a list of class objects from an

XML file

Serialization is the concept of taking a class and generating an XML file based on
the class information. Deserialization reverses that process and creates the object
from the XML file. Here is a link if you want to understand more about serialization;
you can review the web page at http://support.microsoft.com/kb/815813. The
following example reviews the simple process of serializing a class object to XML:

Layout Organization and Display Functionality

[66]

Now that we understand the concept and reasons for using serialization, let's review
the code for this portion of the example. The first difference we should discuss is the
line of the preceding code, the try statement. This statement creates the path to the
XML files. The BaseDirectory property is the executable path for the system. If you
want to locate this directory on your system, go to the directory where you have the
WPF project stored on your drive. Inside the project folder where the XAML files are
located, you will see a bin folder, as shown in the following screenshot:

Inside the bin folder will be a folder named XML. You will see a file called
CustomerEntity.xml. This XML file has the data for tab configuration.

Inside the event code for the combobox, the switch statement has an option for
XML. We will call the fetchXMLTabs method with the path to the XML file.
Unlike the other examples that used the database configuration from App.Config,
we need to pass the path of the XML file location to the method. Once we have
passed the file information, the code for binding the tab information matches the
List code. Since the serialization process returns a generic list of TabItem objects,
the code will match the List example with the exception of the path, of course.

Now that the code is set, let's run the debugger to verify that the code works.
You can set a breakpoint at the switch statement in the event method.

Chapter 4

[67]

One aspect of this method I would like to point out is //TODO:, which I marked
inside the catch portion of the try statement. You will notice that I have not added
any true error handling for the system. You should determine how you plan to
handle any exceptions. It's a very poor coding practice to have the catch block in
the try statement be empty.

RadBook
The next Telerik WPF control I will review will be the RadBook control. This control
is excellent for creating documentation for systems or classes. This section will
review the binding of the database information to the RadBook control. Again, I will
be working with a DataTable object and a generic list of class objects to demonstrate
the power of RadBook. We will also be reviewing the important properties and
events of RadBook to help you understand how to make the paging processing work
within the control.

First, let's review the important properties and events that are associated with the
RadBook control.These properties are as follows:

1.	 Events:
°° FoldActivated: This event fires when the user hovers fold with

the mouse
°° FoldDeactivated: This event fires when fold is not active
°° PageChanged: This event fires when the page set is changed

2.	 Main properties:

°° ItemSource: This property sets the binding page values within
the RadBook control. The recommended setup for the pages is to
use DataTemplate for the page setup. The binding is set up within
DataTemplate. Telerik recommends that the list object should be of
the ObservableCollection class.

°° LeftPageTemplate: This property determines which DataTemplate
is to be displayed on the left side of the book.

°° RightPageTemplate: This property determines which DataTemplate
is to be displayed on the right side of the book.

°° PageFlipMode: This property determines how the pages are moved
using the keyboard. The options are SingleClick, DoubleClick,
or None.

°° IsKeyboardNavigationEnabled: This property determines if the
keyboard can be used to have the book page instead of using the
page control.

Layout Organization and Display Functionality

[68]

Now that you are familiar with the main events and properties, which we will
be covering, let's start working with the RadBook control. The next step in the
process will be to create a new window in our WPF project and name the window
BookWindow.xaml. Once you have created the new window, the next step will be to
add a RadBook control to the window from the toolbox. The window design should
look like the following screenshot:

Once you have finished setting up the interface in the window, you will need to set
up the code to work with the RadBook control. The using statement required to work
with the code is as follows:

www.SoftGozar.com

Chapter 4

[69]

The first using statement will incorporate the class object for the example. The first
step in creating the code to support the book will be to create an instance of the
Product class in the BookWindow instance method. This line of code should be placed
right below the InitializeComponent() method call. The code should look like the
following screenshot:

The next step will be to create the buttons to flip the pages when the user clicks the
button bar below the book control. The RadBook control has integrated commands to
handle the movement of the pages using any button control. Our example will use a
RadButton control from Telerik, but any button control will work. Here is an XAML
example of one of the buttons:

Layout Organization and Display Functionality

[70]

Notice the two properties in the button, Command and CommandTarget, in the
RadButton xaml code. The CommandTarget property binds the RadBook control on
the window to the button. The Command property uses the command from the Telerik
RadBook command to move to the first page of the book. There are four options for
BookCommands. They are as follows:

•	 FirstPage: This option moves to the first page of the bound book control
•	 LastPage: This option moves to the last page of the bound book control
•	 NextPage: This option moves to the next page of the bound book control
•	 PrevPage: This option moves to the previous page of the bound book control

The book should create five pages, one for each product from the database. Once
the book is loaded, you should be able to move through the pages. The following
screenshot is an example of how the book should look:

Chapter 4

[71]

At this point you should have the pages loaded. Use the buttons on the right to
move forward and the buttons on the left to navigate backward in the book. The first
button on the left will navigate you to the first page, and the last button on the right
will navigate you to the last page.

Summary
In this chapter, I have covered two container controls that can be used to display the
information in a attractive presentation for users to enter the data. Let's review these
controls again:

• RadTabControl: You should now be able to create a Telerik RadTabControl
control, and bind the data to the control by using a DataTable or a class
object. You should also be able to serialize and deserialize XML for the class
objects to load the RadTabControl control.

• RadBook: You now should understand how to use the RadBook control to
handle formatting of information from a generic list. You should also be able
to navigate through the book using the Telerik book commands with the
RadButton control.

During this chapter, we discussed the concept of serialization of XML into class
objects through C#. Serialization and Deserialization concepts allow you, as the
developer, to create XML files that map to your object classes. This concept can allow
you to save information from your class object into a file for use later in processing,
or bypass the database entirely and store the object class information in XML files.

As an architect, I like to use XML configuration files to build the system controls,
similar to the concept of creating RadTabControl, as shown in this chapter. I prefer
to allow the users to then populate the information in the control as they see fit
for their business. My concept is to give the users as much power as they need,
and eliminate as much re-coding as possible.

This chapter also covered two container controls from Telerik, RadTabControl and
RadBook. A great way to divide information for user input is by using RadTabControl.
The design of RadTabControl allows you to break up the information into logical
pieces for the user to review as they see fit. RadBook is a great container for
documentation such as a user guide or help documentation. The presentation of the
RadBook control allows the user to move through the information in a logical format.

In the next chapter, we will be working with the navigation functionality that the
RadControls from Telerik provide. Specifically, I will cover the Outlook Bar and
Menu from Telerik. I will discuss how to load these controls from the database and
objects to create a more dynamic interface.

www.SoftGozar.com

Navigation and Dynamic
Event Handling

In this chapter, we will demonstrate the use of the Telerik navigation controls and
how to configure Telerik controls for dynamic event handling. The navigation
controls are used to allow users to navigate through the system to other portions
loaded in the system control by using links. We will review the best uses of the
navigation controls which we want to cover, then we will discuss the options for
dynamically populating these controls through the C# code, and either the database
or the XML configuration.

I have selected two controls that I feel give the best examples of the concepts that
we want to cover. We will be focusing our attention on the following controls:

• RadOutlookBar

• RadMenu

We will be concentrating our efforts on dynamically loading these controls to
make the user interface capable of external configuration to allow for dynamic
content. This chapter will also focus on loading these controls based on the security
information of the application-authenticated user. The purpose of this design is to
allow the options inside the navigation to be determined by the current access level
of the user. We will discuss different security methods for handling this information
using both Active Directory user groups, and database security where the database is
loaded with the access information.

We will also demonstrate the loading of the controls from both the database
and configuration files to give the system flexibility in the handling of the
dynamic information.

www.SoftGozar.com

Navigation and Dynamic Event Handling

[74]

Database setup
The next step, before reviewing the controls in the chapter, will be to make sure
that the database is set up for the Telerik projects. The last chapter discussed the
PackTPub database setup to support the examples used in the previous chapter.
This chapter is supported by the same database information and so there is nothing
required for this chapter.

You should make sure that you can access the database. If you're not sure, or do
not remember if you set up the database, please refer to the Database setup section of
Chapter 2, Telerik Editors and How They Work.

This chapter will also require the XML files to be stored on your machine. If you
haven't done so already, create a folder called LoadConfig inside the PackTPub WPF
project's bin folder. This folder will be read during the loading of the system to gather
the required information for generating the RadMenu and RadOutlookBar information.

Additional prerequisites
This chapter will require you to have additional resources set up to work with
the security code examples. The security for this chapter will have two different
types, Active Directory and database security. In order to use the Active Directory
examples, you will need to have an Active Directory domain created within the
network, which you are using in your development environment. You will also need
to add the library, System.DirectorySerivces, as a reference to your project. The
security example uses the DirectoryServices library to gather Active Directory
information for the Windows domain user on the current system. The code example
will gather the group and authentication information for the user's domain account.
Once you have added the reference and created the Active Directory domain, you
should be able to work with the code examples for this chapter.

New WPF concepts
In the first four chapters, we covered the very simple concepts of binding DataTable
or a list of objects to a Telerik control. In this chapter, we will start to move to
more complex concepts such as extending the WPF Window class, persisting a class
throughout the life of the application (a class to map the Telerik navigation items),
and creating a user object for application authentication. The next section will review
these concepts and discuss how to use these concepts in a true application.

www.SoftGozar.com

Chapter 5

[75]

BaseWindow
The first concept we want to cover is extending the WPF Window class to include
application-specific information for each window. We want to extend the WPF
Window class to allow for creating methods and properties that can be accessed
throughout our application. Extending the WPF Window class allows us to do the
following for our application:

•	 Create a method for building the navigation control based on our
UserEntity class

•	 Create a method for logging exceptions that can be used in each
subsequent window

•	 Create a method for handling the loading of a new window based on the
selected item in the Telerik navigation control

The next step is to set up the BaseWindow class to incorporate the class into each
subsequent Window class we create in the WPF project. Inside the current WPF
project, create a folder called Controls, and then create a class called BaseWindow in
that folder. The result of this process should look like the following screenshot:

Once we've created the BaseWindow class, we need to inherit the WPF Window class,
as shown in the following screenshot:

Navigation and Dynamic Event Handling

[76]

The first step is to extend the Window class to the BaseWindow class. The example for
this change is on the last line of the preceding example. We will also need to add
the three using statements for use in the new BaseWindow class. Now that we have
the BaseWindow class, we will now want to include the class in all the windows we
create in the WPF project. Let's create a new window called OutlookBarWindow.
xaml. This window will have the base class of the Window class. We will want to
change this in two places to allow for our new base window class to be included.
The first change will be in the XAML file. The following is an example:

Now, we replace the <Window> tag with the <src:BaseWindow> tag. The src
reference is created in the second highlighted namespace reference of the preceding
code. This reference allows us to use the BaseWindow class that we created as the
base class for this window. The next steps will be to create the inheritance in the
xaml.cs file, as shown in the following screenshot:

www.SoftGozar.com

Chapter 5

[77]

Notice the highlighted portion of the preceding code where we have replaced the
Window reference with the BaseWindow class. If you try to do a build now, you should
not get any compile errors from the build process. The most common compile error
is the lack of the src reference in the namespace references of the XAML file. If you
get a "namespace prefix src not defined" compile error, please make sure that you
review the second screenshot in this section for how to create the reference in the
XAML file.

The BaseWindow class also has methods for generating the Telerik Navigation control
information and other Telerik controls. These methods are as follows:

•	 LoadRadOutlook: This method generates a RadOutlookBar control with
RadTreeView for the links from a list of BarItem objects

•	 LoadRadMenu: This method generates RadMenu from a list of the
BarItem objects

•	 treeSubItem_Click: This method is meant to be an event handler to take
the click event from the navigation control and open a window based on the
selected item in the navigation control

•	 RefreshGrid: This method reloads RadDataGrid with a list of generic objects
•	 LogException: This method is used to handle the logging and user display

of any error that occurs during the execution of the system

These methods are designed to be common methods that could be used on any WPF
Window class in your application. The purpose of this BaseWindow class is to create
methods and properties that could be reused throughout your application.

Navigation and Dynamic Event Handling

[78]

The AppRequest persistence class
The next new concept we should cover is the idea of persisting application
information during the life of the application session. Inside of the WPF project
for this book is a class file named Request.cs. An instance of this class is created
when the application is started by creating an instance in the Application_Startup
method, as shown below:

Chapter 5

[79]

Notice the highlighted line that creates the instance of the AppRequest class. This class
is a public class that allows this instance to be persisted throughout the application.
When we create a new window, we also add and pass the instance of the AppRequest
class into the instance of the window to allow for any possible changes to the class
instance in each window. This instance is passed in the constructor of the Window
class. We create a second instance method with the AppRequest class as a parameter
in the method. We then add : this() to the end of the method call, as shown in the
following screenshot:

This setup for the instance method creates a call to the default instance method to
load the InitializeComponent method.

www.SoftGozar.com

Navigation and Dynamic Event Handling

[80]

The UserEntity class
The last new concept of this chapter will be the user class called UserEntity.
This class will be used by the application to authenticate the user based on
information in the database or in Active Directory. We will use the UserEntity
class to persist the user information during the life of the application. The following
is the class diagram of the UserEntity class:

Chapter 5

[81]

The Authenticate methods are the overloaded methods that allow the two types
of security, database and Active Directory, in the application. The database version
of the Authenticate method reads the database to gather the user information from
it, and then compares the information to the user input to authenticate the user.
There are three exceptions created to work with the authentication process:

• DisabledException: This exception is thrown when the user is disabled in
the database

• ExceedsLimitException: This exception is thrown if the user exceeds the
amount of allotted attempts to enter his/her password

• NotPermittedException: This exception is thrown if the username does not
exist or the password is incorrect

The second Authenticate method uses Active Directory to determine the user access.
The method takes the UserPrincipal object from the Windows class. This class is
populated through the .NET framework to gather the current Windows domain
user information. The method first determines if the current user is locked out of the
Windows domain. The method sets the UserLoggedIn property to false and returns
control to the application. If the user account is not locked, the system gathers the
group information from Active Directory as well as the user's name, information,
and e-mail for notification purposes.

The FetchMenuItems and FetchXMLMenuItems methods retrieve a list of BarItem
objects based on the user-level security. This list is later used to populate the
RadNavigation controls.

The FetchMenuItems method queries the database using the user level from the user
database information to determine the access list for the current user. The method
loops through the access list, generating the BarItem classes to later be loaded into
the navigation control.

The FetchXMLMenuItems method retrieves the access list from an XML file in the bin
folder of the application. The method takes the path of the XML file and generates
an XDocument object to load the XML information. The reason we are using an
XDocument object rather than an XMLDocument object is that we plan to use a Linq
query to retrieve the proper list information based on the user's group information.
The Linq query takes the group information and queries the XDocument object for
the user items in the XML file. This XML file is a serialized version of the BarItem
list of objects. The method then returns the list of the BarItem objects to the calling
program for loading into the proper control.

www.SoftGozar.com

Navigation and Dynamic Event Handling

[82]

The Request class has a property for the UserEntity class. This property is set
during the authentication process. If the user is not authenticated, the system
will simply shut down and not allow access to the main window. The following
screenshot is the code for this process:

Chapter 5

[83]

Notice that when we call the authenticate method, the system checks if the user
information should be logged into the system. The authenticate method is an
overloaded method. There are two different options based on the type of security
we plan to use in the system. The first method reads the database to determine if the
user has access to the system and if the password is correct. The second option uses
Active Directory to read the user group information to determine if the user is in an
Active Directory group that has access to the system.

The BarItem class
The next aspect of the system we want to review is the BarItem class. The design of
this class is set up to be used by the RadOutlookBarItem and RadMenuItem classes.
The reason for this setup was to match the properties of the Telerik item classes. The
following is a screenshot of the class design:

www.SoftGozar.com

Navigation and Dynamic Event Handling

[84]

The main properties include Header, Position, and ReferId. The Header property is
set up to match the Header property from the RadOutlookBarItem and RadmenuItem
classes. The Position property orders the items on the system for proper display,
and the ReferId property creates the structure of the view. The ReferId values are set
up so that if the value of the ReferId property is zero, this item becomes the header,
otherwise the rest of the items become the subitems of the main item.

Now that we've covered the new concepts within this chapter, let's start to work with
the navigation containers for Telerik. The next sections of this chapter will cover the
RadOutlookBar and RadMenu controls using the concepts from this section to load
these controls based on the level of user access.

RadOutlookBar
The first control I will review in this chapter will be the RadOutlookBar control.
This control is unique to the Telerik toolset. The standard Visual Studio control
library does not contain a control like the RadOutlookBar control. The first example
I will review will be to set the binding of the control's tabs using both a list of class
objects from the object layer, and the database to populate the list of objects and
authenticate the user.

The first step will be to create a new window in the current WPF project; name this
new window Chap5OutlookWindow.xaml. Once you have created the new window,
you will need to add the RadOutlookBar control:

•	 RadOutlookBar: Name the outlook bar RadTestOutlook

The final appearance of the window should be the following screenshot:

Notice that the RadOutlookBar control is already loaded with the options. This is
the fully functioning example, but gives you an idea of how the window should look
once we've finished this section.

Chapter 5

[85]

RadOutlook with GenericList, DataBinding,
and database security
This is the first example of populating the RadOutlookBar control with the menu
links from the database. The concept we are demonstrating is that the menu
links inside the RadOutlookBar control will be populated based on the user that
is authenticated into the system. In this example, we will be using the database
security. This means that the database will store the username, password, and
security link information for the RadOutlookBar control.

Since we don't have a login form to gather the username and password, we will
create the user information within the App.xaml.cs file instead. This will allow
us to simulate the login process and authenticate the user in the system.

This should not be done for a production application—this setup is for
demonstration purposes only. Hard-coding a username and password
is always a bad practice in a real-world application.

The following screenshot shows how the code should look inside the App.xaml.cs file:

www.SoftGozar.com

Navigation and Dynamic Event Handling

[86]

Let's review the preceding code. The first step is to create an instance of the
UserEntity class. The next step is to determine the type of security the system will
be using to authenticate the user. The app.config class has a setting for the type of
security, as shown in the following line of code:

<add key="SecurityType" value="DB"/>

This key value is passed to the system and used by the system to determine which
type of security is used in the App.xaml.cs class. The value is read by the system;
it sets an enum property from the UserEntity class called SecurityType. This
enumeration is then evaluated to determine the security setup for the system. The
next step is to set the UserName and UserChkPwd properties. Once these properties
are set, we can call the Authenticate method to verify the user information
against the database. The next step will be to set the CurrentUser property in
the application request class. This object is passed to each window to persist base
application information to each window.

The final step will be to create an instance of the OutlookBarWindow class to open the
window. Notice the code for the instance; we are passing the AppRequest object to
the window using the instance method of the window. The following screenshot is of
the instance code:

Now that the window code is set up, let's review the LoadRadOutlook method from
the BaseWindow class. This method requires two values: the OutlookBar object
to be loaded and a generic list of BarItem objects. The BarItem class takes the
information from the database and loads the RadOutlookBar control using BarItems
to create the RadOutlookBarItem objects to load the RadOutlookBar control. The
LoadRadOutlook method also creates a RadTreeView control of the options within
each RadOutlookBarItem object.

Chapter 5

[87]

The database version then handles the gathering BarItem and loads the
RadOutlookBar control using a method called FetchMenuOptions. This method
takes BarItems from the database query and creates a RadOutlookBar object with
all the menu options for the current user.

This method gathers the menu information based on the current username and
generates a generic list of the BarItem classes. This list is used by the BaseWindow
class to load the RadOutlookBar control.

Navigation and Dynamic Event Handling

[88]

RadOutlookBar using generic list binding with
XML security
The next method for populating the RadOutlookBar control on the window
will be to use serialized XML to populate the generic list of objects to load the
RadOutlookBar control. The XML file has the group information and pulls the
BarItem objects based on the user's group information. The example we will be
using has the group information hard-coded into the group list, but this is just an
example. You should not hard-code the groups in a real-world application. Here is
the method for gathering the menu items from the XML file:

Notice that we first load the XDocument object, then deserialize the XDocument
object to gather the list of BarItem objects. Once the full list is loaded, we use a Linq
query to gather the items based on the user group for the current user. Now that
we have that new list, we can populate the UserMenuItems property for use in the
application. The application then calls the LoadOutlookBar method to generate the
RadOutlookBar control again.

Chapter 5

[89]

RadMenu
The next Telerik WPF control I will review will be the RadMenu control. This control
will be used to create a menu system at the top of a WPF window to create access
to the requested information based on the current authenticated user. The design of
the app.xaml.cs class will be the same as the work we did in the RadOutlookBar
control's setup, but we will add one additional method to generate the RadMenuItem
objects to load the menu on the new window.

The first step will be to create a new window for the menu. This window will
contain only one control, and that control will be the RadMenu control from the
toolkit. The new window should look like the following screenshot:

The menu should be empty when you add the control from the Toolkit. The window
shown in the preceding screenshot is an example of what it will look like after being
loaded using the example code.

This example will use Active Directory rather than the database to handle the
security. The first change will be to set the app.config setting for SecurityType
to AD, rather than DB, as shown in the following line of code:

<add key="SecurityType" value="AD"/>

www.SoftGozar.com

Navigation and Dynamic Event Handling

[90]

This change will cause the system to use the Active Directory security setup
instead of the database setup. The App.xaml.cs code picks up the SecurityType
setting, and then determines the security call to the UserEntity class. In this case,
the Authenticate method for Active Directory is called. The code for the Active
Directory portion of the security system is highlighted in the following screenshot:

The first difference we need to notice is that no username or password is set for Active
Directory security. Since we expect the user to already be authenticated in Active
Directory, we use the UserPrincipal object to determine if the user is currently
logged in to the domain. If the user is not logged in to the domain, an exception will be
triggered. We add the Order group to the list of groups to force the system to pick up
the security information from the XML file. There are three options for the groups to
test the security. They are as follows:

•	 Order
•	 Customer
•	 Admin

Chapter 5

[91]

The UserEntity class has three methods that support the Active Directory security.
They are as follows:

•	 Authenticate: This method takes UserPrincipal, which is an object
populated with the current Windows domain information, and populates
the UserEntity object with the user information.

•	 isADAccountLocked: This method queries Active Directory to determine
if the current user's account is locked. If so, the user is denied access to the
system by setting the UserLoggedIn property to false.

•	 getUserGroups: This method queries Active Directory for the
group information for the current user. This method populates the
UserADGroups property.

The following is the example code of these methods from the UserEntity class:

Navigation and Dynamic Event Handling

[92]

There are three steps in the Authenticate method to gather the domain information
for the current user. First we verify that the user's account is not locked. If the account
is locked, we force the user out of the system. Next we gather the user information
from the UserPrincipal object to populate the UserEntity properties. Lastly, we
generate a list of the Active Directory groups the user belongs to in the domain. This
list is used later to set up the security for the RadMenu control. If you would like to read
further about the UserPrincipal class from the .NET framework, here is an excellent
article from MSDN:

http://msdn.microsoft.com/en-us/library/system.directoryservices.
accountmanagement.userprincipal(v=vs.110).aspx

You must include the System.DirectoryServices and System.
DirectoryServices.AccountManagement libraries in your
PackTPub.ObjectLayer project.

The next step will be to create the code for loading the RadMenu objects to display
the menu information based on the current user. We will be using the same method
from the RadOutlookBar information to gather the BarItem object list, but this time
we will call the LoadRadMenu method to create the menu based on the BarItem object
list from the UserEntity class. The following screenshot is the example code for the
MenuWindow class:

Chapter 5

[93]

Notice that the code for the RadMenu control is the same as the code for the
RadOutlookBar control. This setup is by design. We want a consistent process
for handling user security so that our choice of navigation should not impact the
security setup for the application. The LoadRadMenu method takes the list of BarItem
objects and creates the RadMenuItem objects to be loaded into the RadMenu control.
This method takes the list of BarItem objects and creates RadMenuItem to display the
heading information, then creates a menu subitem based on the level of the BarItem
class. The ReferId property determines the level of the menu item to generate the
menu in the correct format.

Once we have the menu loaded, the window should load like the following screenshot:

Notice that the menu now displays the user-level category information exactly like
the RadOutlookBar example from the previous section in the chapter. The menu
should display two categories in the main links of the menu and two options under
each main menu link. If you would like to test this concept further, you can change
the group in the App.xaml.cs file on line 40. The options for the groups are Admin,
Order, and Customer. The Admin group should return three main menu links,
including an Admin option as the last option. The Customer group should only
create one main menu link.

Navigation and Dynamic Event Handling

[94]

Summary
In this chapter, I covered two navigation controls that can be used to display user
access information based on the access level of the current user who has logged in to
the application. The navigation controls are loaded with the navigation links based
on the group information from the user authentication process. Let's review these
controls again:

•	 RadOutlookBar: You should now be able to create a Telerik RadOutlookBar
control and bind the data to the control by using a database query or an XML
file to gather the information. You should also be able to create a Linq query
to gather information from an XML file to create a list of class objects to load
the RadOutlookBar control.

•	 RadMenu: You should now understand how to use and load the RadMenu
control to handle formatting the information from a generic list with Active
Directory security. You should also be able to understand how to create a class
to handle the loading of both the controls with the common information.

In the course of this chapter we discussed the concept of serialization of XML into
class objects through C#. Serialization and deserialization concepts allow you, as the
developer, to create XML files that map to your object classes. This concept can allow
you to save information from your class object into a file for use later in processing,
or bypass the database entirely and store the object class information in XML files.

This chapter also introduced the concepts of securing an application using two
different methods, database information and Active Directory. The database
security demonstrated how the user SQL Server tables store the username, password,
and user-level information, as well as access the information for the application.
The Active Directory example showed us how we can create access levels (based on
the AD groups which are assigned to a domain user) in the Active Directory.

As I discussed in the previous chapter, I like to use the XML configuration files to
build for security information, similar to the concept in this chapter for creating the
RadOutlookBar and RadMenu controls. I like to allow the users to then populate the
information in the control as they see fit for their business. My concept is to give the
users as much power as they need, and eliminate as much re-coding as possible.

Chapter 5

[95]

This chapter also covered two navigation controls from Telerik, RadOutlookBar and
RadMenu. The RadOutlookBar control is a nice way to create a fancy presentation
of your system navigation. The RadOutlookBar control gives the user a familiar
navigation if they are already acquainted with Outlook, and gives you flexibility
in the presentation since you can add any control inside the RadOutlookBarItem
class. We used a RadTreeView control to display the navigation items, but this
is just an example. You are more than welcome to try other controls inside the
RadOutlookBarItem class. The RadMenu control looks like this typical Windows
menu, so it's very familiar to most Windows users.

In the next chapter, we will be working with the Scheduling functionality that
RadControls from Telerik provides. I will specifically cover the Gantt chart and the
calendar from Telerik. I will discuss how to load these controls from the database
and objects to create a more dynamic interface.

www.SoftGozar.com

Telerik Scheduling and
Object Bound Loading

In this chapter, we will demonstrate and discuss the use of the Telerik scheduling
control, RadGanttView, and how to load this control for acquiring the data from a
database. At this point in the book, we have worked with standalone and container
controls for data entry on WPF windows. The RadGanttView control allows users
to work with scheduling tracking information that is based on the system. We will
review a method for setting up a class to populate the RadGanttView control,
and then we will discuss the options for dynamically populating this control
through the C# code from the database.

We will be focusing our efforts on loading the information into the RadGanttView
control from the database based on the currently authenticated user and the
overall tasks with summary categorization. We will discuss the organization of this
information and the use of the IGanttTask interface class from Telerik.

We will also demonstrate the loading of the control from the database to give the
system flexibility in the handling of the dynamic information. I hope this chapter
gives you a real-world perspective on the use of this scheduling control.

www.SoftGozar.com

Telerik Scheduling and Object Bound Loading

[98]

New object-oriented concepts
In the first five chapters, we covered very simple object-oriented concepts of creating
classes and simple class inheritance. In this chapter, we will start to move to more
complex concepts such as using an interface class to inherit a base for a class.

An interface class is a required blueprint for a class. The methods and properties of
an interface class cannot be used alone, but they determine how all classes that inherit
this class should be designed. When an interface class is inherited, the Visual Studio
complier will compare the interface class to the new class. If the new class does not
include all the public methods and properties of the interface class, the complier will
consider this as an error. Here is a link from MSDN to give you further information:
http://msdn.microsoft.com/en-us/library/ms173156.aspx.

The IGanttTask interface class
The first aspect we want to cover is using the IGanttTask interface as a secondary
base for our new CommonTask. The IGanttTask class is the basis for all the objects
that can be loaded into the RadGanttView control.

The first step will be to create the proper references for the interface class. This is
shown in the following screenshot:

When we create a new CommonTask class, we use the BaseEntity and IGanttTask
classes as inheritance for the CommonTask class. We want to include the data-layer
assemblies to allow database access, and we want the RadGanttView and
ScheduleView assemblies to allow for the CommonTask class to include the proper
information. Notice that we have the BaseEntity class listed before the IGanttTask
class in the inheritance list. This alignment is required by the C# compiler. C# does
not support multiple base class inheritance.

Chapter 6

[99]

You can inherit from one base class, but all other inheritance classes must be the
interface classes. Here is a great link to read over and understand C# inheritance:
http://www.tutorialspoint.com/csharp/csharp_inheritance.htm.

The CommonTask class
The next aspect of the system we want to review is the CommonTask class. The design
of this class is set up to be used by the RadGanttView control. The reason for this
setup was to match the properties of the Telerik item classes. The following is a
screenshot of the class design:

www.SoftGozar.com

Telerik Scheduling and Object Bound Loading

[100]

Notice that the BaseEntity class is identified under the CommonTask class name, but
the IGanttTask interface class is marked above the class in the diagram. This design
shows how the interface class can be implemented in multiple classes.

The only property in the CommonTask class that is not in the IGanttTask interface
is the IsSummary property. We will use this property to display a hierarchy in the
RadGanttView control. The RadGanttView control allows the developer to create a
tree view-like structure for displaying the summary tasks at the top of the tree and
the subtasks under the summary task. The database tables created for this chapter
were designed with this hierarchy in mind.

Now that we've covered the new concepts within this chapter, let's start to work with
the RadGanttView control for Telerik. The next sections of this chapter will cover
this control using the concepts from this section to load the control for user-based
information and an overall view of the tasks in the RadGanttView control.

RadGanttBar
The Telerik control that I will review in this chapter will be the RadGanttView control.
This control is unique to the Telerik toolset. The standard Visual Studio control library
does not contain a control like the RadGanttView control. The first example I will
review will be to set the binding of the control's TasksSource property. This loads the
control with tasks based on the user assigned to these tasks for giving the illustration
of the RadGanttView control to look like a Microsoft Project.

The first step will be to create a new window in the current WPF project (name this
new window Chap6GanttWindow.xaml). Once you have created the new window,
you will need to add the following controls to it:

• RadGanttView: Name the gantt view radGanttExmaple
• RadComboBox: Name the combobox radComboUser
• CheckBox: Name the checkbox checkAllTasks
• Label: Set the content to User:

The final appearance of the window should be like the following screenshot:

www.SoftGozar.com

Chapter 6

[101]

The purpose of the checkbox is to determine the manner in which we will load the
RadGanttView control. If the checkbox is checked, we will load all the tasks with a
summary task example. Otherwise, we will load the RadGanttView control based on
the user information from the combobox.

RadGanttView with user task filtering
The first example of populating the RadGanttView control will be to create a filtering
of the current tasks in the RadGanttView control based on the current authenticated
user. We will accomplish this by populating the combobox on the window with a
list of users from the database. We will use this list to load the RadGanttView control
with the tasks assigned to the selected user.

The first step in the code will be to query the database for the current users in the
database and load that list into the combobox. We will determine whether to load
the combobox based on the checkbox on the window. The following screenshot is the
Window_Loaded event from the C# code, as an example:

Telerik Scheduling and Object Bound Loading

[102]

Let's review the code for the Window_Loaded event. The loadGanttControl method
will be used to load the data into the RadGanttView control based on the checkbox.
If you need a refresher on how to load the combobox, please refer to Chapter 2,
Telerik Editors and How They Work. The FetchUsers method returns a generic list of
user objects to be loaded into the combobox from the database.

Now that we've reviewed how to load the combobox, next we need to create the code
to handle the selection of the user from the combobox. This code will be very similar
to the code from Chapter 2, Telerik Editors and How They Work, where we loaded the
combobox with customer information and then loaded RadGridView with the Order
information from the database. The following example will take UserId from the
combobox and query the database for the current tasks:

Let's review the preceding code; the first step is to gather SelectedValue from the
combobox and convert that value to an integer to be passed to the LoadTasks method
in the CommonTask class. The LoadTasks method queries the database based on the
selected UserId and passes back a generic list of CommonTask objects. Since these
objects inherit the IGanttTask interface, the list can be attached to the TasksSource
property of the radGanttExample control on the window. The following is the code
for the LoadTasks method:

Chapter 6

[103]

The key component of this method is the creation of ObservableCollection
of the CommonTask objects. The reason for using ObservableCollection rather
than a simple generic list is that ObservableCollection implements the
INotifyCollectionChanged interface class. This allows you to create event
handling through WPF binding. When an object in the collection changes, you can
create an event handler to determine what should be done (with the change) to that
object. The rest of the code is based on the examples that we created in Chapter 2,
Telerik Editors and How They Work.

www.SoftGozar.com

Telerik Scheduling and Object Bound Loading

[104]

RadGanttView displaying the tasks with a
summary task
The next method for populating the RadGanttView control on the window will be
to display the tasks with a summary task. This example will take the advantage of
the TreeView display in the RadGanttView control. The display we want to replicate
is the view in Microsoft Project, where a summary task is displayed above the tasks
that the task summarizes. The first step is to set up the XAML for the window to
bind the properties of the CommonTask class to the radGanttExample control on the
window, as shown in the following screenshot:

Notice the highlighted areas of the XAML code for the control in the preceding
screenshot. The TreeColumnDefinition template allows the control to use the
IsSummary property to create a tree structure of the tasks. If the task object is a
summary task, the tasks after that point are treated as subtasks until the next summary
task is found in the collection. The rest of the binding handles the properties of the
CommonTask class to display the property information in the control.

Now that we have the RadGanttView control set up for the summary task, we need
to create the code to return ObservableCollection to display the summary task
inside the control. The CommonTask class has two methods that support the summary
task structure. These two methods are as follows:

•	 LoadSummaryTasks: This method queries the database for summary tasks.
This method returns ObservableCollection of the CommonTask objects,
similar to the LoadTasks method.

•	 LoadChildTasks: This method queries the database for tasks that
are the children of the summary task. This method is called from the
LoadSummaryTasks method to gather the child tasks of the current summary
task. The method creates ObservableCollection of the child tasks to be
loaded into the CommonTask property, Children.

Chapter 6

[105]

The code will create the hierarchy of tasks that we require to load the RadGanttView
control with the proper structure for the summary tasks. The next step is to load
the information into the RadGanttView control. The following screenshot shows the
difference in the coding for the summary tasks. We are no longer concerned with the
user, but we want all the tasks to display the summary information.

Please notice the last line of the loadGanttControl method. We use the
LoadSummaryTasks method to populate the TasksSource property of the
radGanttExample control. This code setup will display the tasks in the
hierarchical structure shown below:

Telerik Scheduling and Object Bound Loading

[106]

The image displays the new, hierarchical structure of the tasks based on the
IsSummary task property. You should also notice that the summary task can be
expanded and collapsed with the small tree control to the left of the summary
task text. This method for loading the tasks would be great for the overall project
manager to review all the tasks, rather than the original example, which would
be user-based.

Summary
In this chapter, we have covered the scheduling control RadGanttView. We have
reviewed how to load this control using both a user-based model as well as a
summary-tasks-based model. We also discussed how to use the database to load the
RadGanttView control with a hierarchical display to show the summary tasks.

In this chapter, we discussed and elaborated further on the use of an interface class
and how you must implement an interface class if you choose to inherit the class
information. Remember that the inheritance of an interface class requires you to
implement each method and property in the class. This setup is different from
inheriting a base class. You simply inherit the class, and all the properties and
methods become available in the inheriting class. We also learned that you can
not only inherit from one base class in C#, but you can also inherit from as many
interface classes as you wish.

Last but not least, we discussed what the differences between
ObservableCollection and a generic list are, and why you might want to use
ObservableCollection. The INotifyCollectionChanged interface class is
implemented by ObservableCollection. This interface allows you to create an
event handler to work with any changes to the collection while the information is
loaded inside of a control or window. This difference makes the handling changes
to the collection more straightforward than a normal generic list.

Well, we've come to the end of the last chapter in the book. I hope you have found
the information contained within this book to be helpful and informative. I have
tried to create exercises that I felt reflected real-world examples so that the book
would be relevant to any work you may be doing in your professional development.
Thank you for your patronage and I hope you will read my next book, coming soon!

www.SoftGozar.com

Index
A
Application Configuration option 21
Application_Startup method 79
AppRequest class

about 79
used, for application information

persisting 78, 79
App.xaml.cs class 86
authenticate method 83

B
BarItem class

about 83
design 84
properties 84

BaseDirectory property 66
BaseEntity class 98
BaseWindow class

methods 77
setting up 75
WPF Window class, inheriting 75-77

BaseWindow class methods
LoadRadMenu method 77
LoadRadOutlook method 77
LogException method 77
RefreshGrid method 77
treeSubItem_Click method 77

BookCommands options
FirstPage 70
LastPage 70
NextPage 70
PrevPage 70

BookWindow method 69

C
CheckChildControl method 36
checkDataType property 42
Click event 46
comboDataType combobox 62
comboDataType property 62
ComboValidationAttribute 50
Command property 70
CommandTarget property 70
CommonTask class

about 99
IsSummary property 100
RadGanttView control 100

ConvertDataTable method 47
ConvertList method 48
CurrentUser property 86
CustList property 26, 43
CustomerEntity class 26, 49, 55, 64
CustomerEntity FetchList method 48
CustomerEntity object

binding to 26, 27

D
database

RadBook control 67-71
RadTabControl control 60-67
setting up 20-22, 40, 60

DataContext property 8, 27, 43, 52
DataTable

using, for populating RadComboBox 41, 42
DataTable class 19
DataTable object

used, for combobox populating 61-63
DataTable portion 49

[108]

DataTable property 26
Deserialization 65
DirectoryServices library

used, for Active Directory information
gathering 74

DisabledException 81
DisplayMemberPath property 42, 63, 64
dynamic validation

about 49
example 51
setup 49
TextValidationAttribute class 50
using 52-55

Dynamic Validation control 39

E
errorMessage parameter 50, 52
event method 43
ExceedsLimitException 81

F
FetchMenuItems method 81
FetchMenuOptions method 87
fetchTabs() method 64
FetchXMLMenuItems method 81
fetchXMLTabs method 66

H
Header property 84
HeaderText property 64

I
IEnumerable interface class 63
IGanttTask interface class

about 98
references, creating for 98

InitializeComponent() method 69, 79
INotifyCollectionChanged class 103
Install button 16
instance method 79
IsSpellCheckingEnabled property 35
ItemSource property 23, 42, 63
ItemsSource property

L
LoadChildTasks method 104
loadGanttControl method 102, 105
LoadRadMenu method 77
LoadRadOutlook method 77
LoadSummaryTasks method 104
LoadTasks method 102
LogException method 77

M
MainWindow.xaml.cs class 22
Mask property 14
MinLength property 51
Model View ViewModel (MVVM)

pattern 9
More <control> Examples option 17

N
NEXT EXAMPLE button 17
NotPermittedException 81

O
object generic list

used, for RadTabControl populating 64
object-oriented concepts

about 98
CommonTask class 99, 100
IGanttTask interface class 98

ObservableCollection class 23, 67
OutlookBarWindow class 86

P
Position property 84
Product class 30

R
RadAutoCompleteBox control

about 19
events 23
properties 23
working with 22

[109]

RadAutoCompleteBox control events
SearchTextChanged 23
SelectionChanged 23

RadAutoCompleteBox control properties
ItemSource 23
SelectionMode 23-25
TextSearchMode 23, 24
TextSearchPath 24
WatermarkContent 25

RadBook control
about 67
events 67
properties 67, 68
working with 69-71

RadBook control events
FoldActivated 67
FoldDeactivated 67
PageChanged 67

RadBook control properties
IsKeyboardNavigationEnabled 67
ItemSource 67
LeftPageTemplate 67
PageFlipMode 67
RightPageTemplate 67

RadButton property 35
RadComboBox control

about 39, 40
ComboTestWindow 41
DataTable, using 41, 42
new window, controls 40
object generic list, using 43, 44

RadDataGrid
RadSpellChecker control,

associating with 34-36
RadGanttView control

about 100, 101
populating, user task filtering used 101-103
tasks, displaying with summary task 104,

105
RadMaskedEdit control 53
RadMaskedInput control

about 19, 27
RadMaskedInputCurrency 27, 28
RadMaskedInputText control 28, 29
RadSpellChecker control 31
reviewing , with VS TextBox 32, 33
used, for data validating 30, 31

RadMaskedInputCurrency control
about 27, 28
Culture property 28
IsCurrencySymbolVisible property 28
Mask property 28

RadMaskedInputText control 28, 29
RadMenu control

about 89
working 89-93

RadOutlookBar control
about 84
database security 85-87
generic list, binding with XML security 88
populating, with menu links 85-87

RadRichTextBox
RadSpellChecker control,

associating with 33, 34
RadSpellChecker control

about 19, 31
associating, with RadDataGrid 34-36
associating, with RadRichTextBox 33, 34
associating, with VS TextBox 32, 33

RadSpreadsheet control
about 39, 44-46
ConvertDataTable method 47-49
new window, creating 45

RadTabControl control
about 60, 61
DataTable object used, for combobox

populating 61-63
populating, object generic list used 64
populating, XML file used 64-67

RadTreeView control 86
ReferId property 84
RefreshGrid method 77
RegularExpression class 30
Request class 82

S
SearchTextChanged event 23
SelectedIndexChanged event 62
SelectedIndex property 63
SelectedValueChanged event 44
SelectedValuePathV property 42
SelectedValue property 44
SelectionChanged event 23

[110]

SelectionMode property 23
Serialization 65
Spellchecker method 34
SpellCheckMode property 31
SpellCheckWindow class 34
SpreadsheetWindow class 47
SQL Server Mgmt Studio (SSMS) 20
System.Data.DataTable

binding to 23-26

T
TabItem class 64
TasksSource property 100
Telerik

demo project, installing 15-17
navigation containers, working with 84-93
project, creating 13-15

Telerik dynamic event handling controls 73
Telerik navigation controls 73
Telerik project

database, setting up 20-22
Telerik RadControls

about 7
advantages 9
categories 8
prerequisites 10
WPF trial, downloading 10-12

Telerik RadControls categories
Data Management 8
Data Visualization 8
Editors 8
Framework 9
Interactivity 9
Layouts 9
Navigation 9
Scheduling 9

Telerik trial software
downloading 10-12
URL 10

Telerik WPF control
RadBook 67-71
RadTabControl 60-67

TextSearchMode property 23
TextValidationAttribute class 50, 51
TreeColumnDefinition template 104
treeSubItem_Click method 77

U
UserADGroups property 91
UserChkPwd property 86
UserEntity class 75

about 80
authentication process exceptions 81
methods, for Active Directory security 91
used, for user information persisting 80-83

UserEntity class methods
Authenticate 91
getUserGroups 91
isADAccountLocked 91

UserLoggedIn property 81, 91
UserMenuItems property 88
UserName property 86
UserPrincipal object 81
user task filtering

creating, to populate
RadGanttView 101-103

V
Validate method 54, 56
Validation classes 55
ValidEmailAddress method 54
VS TextBox

RadSpellChecker control,
associating with 32, 33

W
Web Service Definition Language changes.

See WSDL changes
Window class

extending 75
Window_Loaded event 22, 26, 101, 102
Window_Loaded method 22
Windows Presentaion Foundation See WPF
Workbook class 47
Worksheet class 48
WPF

concepts 8
Telerik RadControls 7
Telerik RadControls advantages 9
Telerik RadControls categories 8

[111]

WPF concepts
AppRequest persistence class 78, 79
BarItem class 83, 84
BaseWindow class 75-77
UserEntity class 80-83
Window class, extending 75

WSDL changes 19

X
XDocument object

using 81
XML file

used, for RadTabControl populating 64-66

Thank you for buying
Telerik WPF Controls Tutorial

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.SoftGozar.com

Learning Kendo UI Web
Development
ISBN: 978-1-84969-434-6 Paperback: 288 pages

An easy-to-follow practical tutorial to add
exciting features to your web pages without being
a JavaScript expert

1. Learn from clear and specific examples on how
to utilize the full range of the Kendo UI tool set
for the web.

2. Add powerful tools to your website supported
by a familiar and trusted name in innovative
technology.

3. Learn how to add amazing features with
clear examples and make your website more
interactive without being a JavaScript expert.

Visual Studio 2012 and .NET 4.5
Expert Development Cookbook
ISBN: 978-1-84968-670-9 Paperback: 380 pages

Over 40 recipes for successfully mixing the powerful
capabilities of .NET 4.5 and Visual Studio 2012

1. Step-by-step instructions to learn the power of
.NET development with Visual Studio 2012.

2. Filled with examples that clearly illustrate
how to integrate with the technologies and
frameworks of your choice.

3. Each sample demonstrates key concepts to
build your knowledge of the architecture in
a practical and incremental way.

Please check www.PacktPub.com for information on our titles

www.SoftGozar.com

ASP.NET Web API
Build RESTful web applications and
services on the .NET framework
ISBN: 978-1-84968-974-8 Paperback: 224 pages

Master ASP.NET Web API using .NET Framework
4.5 and Visual Studio 2013

1. Clear and concise guide to the ASP.NET Web
API with plentiful code examples.

2. Learn about the advanced concepts of the
WCF-windows communication foundation.

3. Explore ways to consume Web API services
using ASP.NET, ASP.NET MVC, WPF,
and Silverlight clients.

Windows Presentation
Foundation 4.5 Cookbook
ISBN: 978-1-84968-622-8 Paperback: 464 pages

Over 80 recipes to effectively and efficiently
develop rich Windows client applications on the
Windows platforms

1. Full of illustrations, diagrams, and tips
with clear step-by-step instructions and
real world examples.

2. Gain a strong foundation of WPF features
and patterns.

3. Leverage the MVVM pattern to build
decoupled, maintainable apps.

Please check www.PacktPub.com for information on our titles

www.SoftGozar.com

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with
Telerik RadControls
	Prerequisites
	Downloading the Telerik trial software
	Creating the first Telerik project
	Telerik demo project
	Summary

	Chapter 2: Telerik Editors and
How They Work
	Database setup
	RadAutoCompleteBox with data binding
	Binding to a System.Data.DataTable
	Binding to the CustomerEntity object
	RadMaskedInput – currency, phone,
and zip
	RadMaskedInputCurrency
	RadMaskedInputText – phone and zip
	RadMaskedInput – e-mail and validations
	SpellChecker – TextBox
	RadSpellChecker with VS TextBox
	RadSpellChecker with RadRichTextBox
	RadSpellChecker with RadDataGrid

	Summary

	Chapter 3: Data Entry and Validation
of Telerik Controls
	Database setup
	RadComboBox
	RadComboBox with DataTable
	RadComboBox with a generic list

	RadSpreadsheet
	Dynamic validation
	Summary

	Chapter 4: Layout Organization and Display Functionality
	Database setup
	RadTabControl
	RadTabControl with DataTable
	RadTabControl with a generic list
	RadTabControl with an XML file

	RadBook
	Summary

	Chapter 5: Navigation and Dynamic
Event Handling
	Database setup
	Additional prerequistes
	New WPF concepts
	BaseWindow
	The AppRequest persistence class
	The UserEntity class
	The BarItem class

	RadOutlookBar
	RadOutlook with GenericList, DataBinding, and database security
	RadOutlookBar using generic list binding with XML security

	RadMenu
	Summary

	Chapter 6: Telerik Scheduling and
Object Bound Loading
	New object-oriented concepts
	The IGanttTask interface class
	The CommonTask class

	RadGanttBar
	RadGanttView with user task filtering
	RadGanttView displaying the tasks with a summary task

	Summary

	Index

