Feedback Information
At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members from the professional technical community.

Readers' feedback is a natural continuation of this process. If you have any comments regarding how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through e-mail at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your message.
We greatly appreciate your assistance.

Publisher: Paul Boger
Associate Publisher: Dave Dusthimer
Executive Editor: Brett Bartow
Managing Editor: Sandra Schroeder
Project Editor: Mandie Frank
Editorial Assistant: Vanessa Evans
Composition: Mark Shirar
Proofreader: Sarah Kearns
About the Author

Wendell Odom, CCIE No. 1624, has been in the networking industry since 1981. He has worked as a network engineer, consultant, systems engineer, instructor, and course developer; he currently works writing and creating certification tools. He is author of all the previous editions of the Cisco Press CCNA Official Certification Guide series, as well as the CCNP ROUTE 642-902 Official Certification Guide, the CCIE Routing and Switching Official Certification Guide, Computer Networking First Step, the CCNA Video Mentor, IP Networking (a college textbook), and he is the primary networking consultant for the CCNA 640-802 Network Simulator from Pearson. He maintains study tools, links to his blogs, and other resources at www.certskills.com.
About the Technical Reviewers

Elan Beer is a senior consultant and Cisco instructor specializing in multi-protocol network design, network configuration, troubleshooting, and network maintenance. For the past 20 years, Elan has trained thousands of industry experts in routing, switching, and data center architectures. Elan has been instrumental in large-scale professional service efforts designing and troubleshooting internetworks, performing network audits, and assisting clients with their short- and long-term design objectives. Elan has a global perspective of network architectures via his international clientele. Elan has used his expertise to design and troubleshoot networks in Malaysia, North America, Europe, Australia, Africa, China, and the Middle East. Most recently, Elan has been focused on data center design, configuration, and troubleshooting, as well as service provider technologies.

In 1993, Elan was among the first to obtain Cisco’s Certified System Instructor (CCSI) certification, and in 1996, Elan was among the first to attain Cisco System’s highest technical certification: the Cisco Certified Internetworking Expert (CCIE). Since then, Elan has been involved in numerous large-scale telecommunications networking projects worldwide. Elan is known internationally as a leader in network architecture and training and has worked on many high-profile projects assisting companies with their goal of implementing leading-edge technologies in their corporate infrastructure.

Teri Cook (CCSI, CCDP, CCNP, CCDA, CCNA, MCT, and MCSE 2000/2003: Security) has more than ten years of experience in the IT industry. She has worked with different types of organizations in the private business and DoD sectors, providing senior-level network and security technical skills in the design and implementation of complex computing environments. Since obtaining her certifications, Teri has been committed to bringing quality IT training to IT professionals as an instructor. She is an outstanding instructor who uses real-world experience to present complex networking technologies. As an IT instructor, Teri has been teaching Cisco classes for more than five years.

Brian D’Andrea (CCNA, CCDA, MCSE, A+, and Net+) has 11 years of IT experience in both medical and financial environments, where planning and supporting critical networking technologies were his primary responsibilities. For the last five years, he has dedicated himself to technical training. Brian spends most of his time with The Training Camp, an IT boot camp provider. Using his real-world experience and his ability to break difficult concepts into a language that students can understand, Brian has successfully trained hundreds of students for both work and certification endeavors.

Stephen Kalman is a data security trainer. He is the author or tech editor of more than 20 books, courses, and CBT titles. His most recent book is *Web Security Field Guide*, published by Cisco Press. In addition to those responsibilities, he runs a consulting company, Esquire Micro Consultants, which specializes in network security assessments and forensics. Mr. Kalman holds SSCP, CISSP, ISSMP, CEH, CHFI, CCNA, CCSA (Checkpoint), A+, Network+, and Security+ certifications and is a member of the New York State Bar.
Dedication

For Hannah Odom, the best daughter I could ask for. I love you, my girl!
Acknowledgments

You know, after writing books for 13 years now, I would think that there would be something normal, something repetitive, and that each book would pretty much follow the same process as others. It now seems that normal is actually abnormal, and that requires everyone to think outside the box.

More so than probably any other editions of these books, these books really are the result of a team effort. The biggest news relates to all the extras Cisco Press added to the package. Thanks to Dave, Brett, Kourtnaye, Sandra, and all the folks at Cisco Press for going several extra miles to make this “extra” edition happen, and with so many extra valuable pieces. I think the readers will appreciate the added value. Now, on to the specifics.

First, my hat’s off to Drew Cupp. Wow. Between this book, the matching ICND2 Official Cert Guide, and another title, Drew and I went from having no books to working on three together all at once. And they all fell into the same 5-month stretch from start to finish. It makes my head hurt thinking about it. Besides taking on extra work to get it done, Drew’s clarity of thought about how to get from here to there through the process, with so many different print, DVD, and online elements, wow—no way this book gets done without Drew. Thanks, Drew: You da man!

Brian, Teri, and Steve all did a great job technical editing the book. Besides helping find mistakes and keeping the book accurate, each tech editor brought a different perspective to the process. I hope we can work together on future editions. And a special thanks to Elan Beer, the best tech editor in the business, for working on the new materials for this edition.

You know, it’s great when the person you rely on most at work is consistently helpful and always comes through, whether working on an opportunity or an issue. But, when that person actually works for a partner company, it’s all the more impressive. I am fortunate enough to have such an ally in Brett Bartow—thank you so much for walking this journey with me.

Mandie Frank gets the “hot potato” award for working as the project editor with this book and with ICND2. The nature of this project plus the ICND2 book at practically the same time can create some challenges. Mandie handled them all with grace and aplomb, and she seamlessly managed the entire process with the rest of the production team. Thanks, Mandie, and the whole group! And thanks especially for the extra attention to the pages review.

Thanks to Richard Bennett, who slaved on a short schedule on some figure improvements that I really wanted to include in this book and for his work on the question database. Dude, Robin Williams would be proud!
A special thank you goes to you readers, who write in with suggestions, possible errors, and especially those of you who post online at the Cisco Learning Network (CLN). Without question, the comments I receive directly and overhear by participating at CLN made this edition a better book.

Finally, thanks to my wife Kris for all her support with my writing efforts, her prayers, and understanding when the deadline didn’t quite match with our vacation plans this summer. (Yes, that’s twice in a row that when this book revved, we cancelled vacation—you’re a doll!) And thanks to Jesus Christ—all this effort is just striving after the wind without Him.
Contents at a Glance

Introduction xxvii

Part I: Networking Fundamentals 3
Chapter 1 Introduction to Computer Networking 5
Chapter 2 The TCP/IP and OSI Networking Models 17
Chapter 3 Fundamentals of LANs 47
Chapter 4 Fundamentals of WANs 77
Chapter 5 Fundamentals of IPv4 Addressing and Routing 99

Part II: LAN Switching 171
Chapter 7 Ethernet LAN Switching Concepts 173
Chapter 8 Operating Cisco LAN Switches 203
Chapter 9 Ethernet Switch Configuration 237
Chapter 10 Ethernet Switch Troubleshooting 273
Chapter 11 Wireless LANs 305

Part III: IPv4 Addressing and Subnetting 335
Chapter 12 Perspectives on IPv4 Subnetting 337
Chapter 13 Analyzing Classful IPv4 Networks 367
Chapter 14 Converting Subnet Masks 383
Chapter 15 Analyzing Existing Subnet Masks 397
Chapter 16 Designing Subnet Masks 411
Chapter 17 Analyzing Existing Subnets 427
Chapter 18 Finding All Subnet IDs 459

Part IV: IPv4 Routing 479
Chapter 19 Operating Cisco Routers 481
Chapter 20 Routing Protocol Concepts and Configuration 517
Chapter 21 Troubleshooting IP Routing 553

Part V: Wide-Area Networks 591
Chapter 22 WAN Concepts 593
Chapter 23 WAN Configuration 621
Contents

Introduction xxvii

Part I: Networking Fundamentals 3

Chapter 1 Introduction to Computer Networking 5
 Perspectives on Networking 5
 The Flintstones Network: The First Computer Network? 8

Chapter 2 The TCP/IP and OSI Networking Models 17
 “Do I Know This Already?” Quiz 17

Foundation Topics 21
 TCP/IP Networking Model 21
 History Leading to TCP/IP 21
 Overview of the TCP/IP Networking Model 23
 TCP/IP Application Layer 24
 HTTP Overview 25
 HTTP Protocol Mechanisms 25
 TCP/IP Transport Layer 26
 TCP Error Recovery Basics 27
 Same Layer and Adjacent Layer Interactions 28
 TCP/IP Internet Layer 29
 Internet Protocol and the Postal Service 29
 Internet Protocol Addressing Basics 31
 IP Routing Basics 32
 TCP/IP Network Access Layer 33
 TCP/IP Model and Terminology 34
 Comparing the Two TCP/IP Models 34
 Data Encapsulation Terminology 35
 Names of TCP/IP Messages 36
 OSI Networking Model 37
 Comparing OSI and TCP/IP 37
 Describing Protocols by Referencing the OSI Layers 38
 OSI Layers and Their Functions 39
 OSI Layering Concepts and Benefits 41
 OSI Encapsulation Terminology 42

Exam Preparation Tasks 43
 Review All the Key Topics 43
 Complete the Tables and Lists from Memory 43
 Definitions of Key Terms 43
 OSI Reference 44
Chapter 3 Fundamentals of LANs 47
“Do I Know This Already?” Quiz 47
Foundation Topics 51
An Overview of Modern Ethernet LANs 51
A Brief History of Ethernet 54
 The Original Ethernet Standards: 10BASE2 and 10BASE5 54
 Repeaters 56
 Building 10BASE-T Networks with Hubs 57
Ethernet UTP Cabling 58
 UTP Cables and RJ-45 Connectors 58
 Transmitting Data Using Twisted Pairs 60
 UTP Cabling Pinouts for 10BASE-T and 100BASE-TX 61
 1000BASE-T Cabling 64
Improving Performance by Using Switches Instead of Hubs 64
 Increasing Available Bandwidth Using Switches 67
 Doubling Performance by Using Full-Duplex Ethernet 68
 Ethernet Layer 1 Summary 69
Ethernet Data-Link Protocols 69
 Ethernet Addressing 70
 Ethernet Framing 71
 Identifying the Data Inside an Ethernet Frame 73
 Error Detection 74
Exam Preparation Tasks 75
 Review All the Key Topics 75
 Complete the Tables and Lists from Memory 75
 Definitions of Key Terms 75

Chapter 4 Fundamentals of WANs 77
“Do I Know This Already?” Quiz 77
Foundation Topics 80
OSI Layer 1 for Point-to-Point WANs 80
 WAN Connections from the Customer Viewpoint 83
 WAN Cabling Standards 84
 Clock Rates, Synchronization, DCE, and DTE 86
 Building a WAN Link in a Lab 87
 Link Speeds Offered by Telcos 88
OSI Layer 2 for Point-to-Point WANs 89
 HDLC 89
 Point-to-Point Protocol 91
 Point-to-Point WAN Summary 91
Frame Relay and Packet-Switching Services 92
 The Scaling Benefits of Packet Switching 92
 Frame Relay Basics 93
Exam Preparation Tasks 97
Review All the Key Topics 97
Complete the Tables and Lists from Memory 97
Definitions of Key Terms 97

Chapter 5 Fundamentals of IPv4 Addressing and Routing 99
“Do I Know This Already?” Quiz 99

Foundation Topics 104
Overview of Network Layer Functions 104
Routing (Forwarding) 105
PC1’s Logic: Sending Data to a Nearby Router 106
R1 and R2’s Logic: Routing Data Across the Network 106
R3’s Logic: Delivering Data to the End Destination 106
Network Layer Interaction with the Data Link Layer 107
IP Packets and the IP Header 108
Network Layer (Layer 3) Addressing 109
Routing Protocols 110

IP Addressing 111
IP Addressing Definitions 111
How IP Addresses Are Grouped 112
Classes of Networks 113
The Actual Class A, B, and C Network Numbers 115
IP Subnetting 116

IP Routing 120
Host Routing 120
Router Forwarding Decisions and the IP Routing Table 121

IP Routing Protocols 124
Network Layer Utilities 127
Address Resolution Protocol and the Domain Name System 127
DNS Name Resolution 128
The ARP Process 128
Address Assignment and DHCP 129
ICMP Echo and the ping Command 131

Exam Preparation Tasks 132
Review All the Key Topics 132
Complete the Tables and Lists from Memory 133
Definitions of Key Terms 133

“Do I Know This Already?” Quiz 135

Foundation Topics 139
TCP/IP Layer 4 Protocols: TCP and UDP 139
Transmission Control Protocol 140
Multiplexing Using TCP Port Numbers 141
Popular TCP/IP Applications 144
Error Recovery (Reliability) 146
Flow Control Using Windowing 147
Connection Establishment and Termination 148
Data Segmentation and Ordered Data Transfer 150
User Datagram Protocol 151
TCP/IP Applications 152
QoS Needs and the Impact of TCP/IP Applications 152
The World Wide Web, HTTP, and SSL 155
Universal Resource Locators 156
Finding the Web Server Using DNS 156
Transferring Files with HTTP 158
Network Security 159
Perspectives on the Sources and Types of Threats 160
Firewalls and the Cisco Adaptive Security Appliance (ASA) 164
Anti-x 166
Intrusion Detection and Prevention 166
Virtual Private Networks (VPN) 167
Exam Preparation Tasks 169
Review All the Key Topics 169
Complete the Tables and Lists from Memory 169
Definitions of Key Terms 169
Part II: LAN Switching 171
Chapter 7 Ethernet LAN Switching Concepts 173
“Do I Know This Already?” Quiz 173
Foundation Topics 177
LAN Switching Concepts 177
Historical Progression: Hubs, Bridges, and Switches 177
Switching Logic 180
The Forward Versus Filter Decision 181
How Switches Learn MAC Addresses 183
Flooding Frames 184
Avoiding Loops Using Spanning Tree Protocol 185
Internal Processing on Cisco Switches 186
LAN Switching Summary 188
LAN Design Considerations 189
Collision Domains and Broadcast Domains 189
Collision Domains 189
Broadcast Domains 190
The Impact of Collision and Broadcast Domains on LAN Design 191
Virtual LANs (VLAN) 193
Campus LAN Design Terminology 194
Ethernet LAN Media and Cable Lengths 197
Exam Preparation Tasks 200
Review All the Key Topics 200
Complete the Tables and Lists from Memory 200
Definitions of Key Terms 201

Chapter 8 Operating Cisco LAN Switches 203
“Do I Know This Already?” Quiz 203

Foundation Topics 206
Accessing the Cisco Catalyst 2960 Switch CLI 206
Cisco Catalyst Switches and the 2960 Switch 207
Switch Status from LEDs 208
Accessing the Cisco IOS CLI 211
CLI Access from the Console 212
Accessing the CLI with Telnet and SSH 214
Password Security for CLI Access 214
User and Enable (Privileged) Modes 216
CLI Help Features 217
The debug and show Commands 219
Configuring Cisco IOS Software 220
Configuration Submodes and Contexts 221
Storing Switch Configuration Files 223
Copying and Erasing Configuration Files 226
Initial Configuration (Setup Mode) 227

Exam Preparation Tasks 232
Review All the Key Topics 232
Complete the Tables and Lists from Memory 232
Definitions of Key Terms 232
Command References 232

Chapter 9 Ethernet Switch Configuration 237
“Do I Know This Already?” Quiz 237

Foundation Topics 241
Configuration of Features in Common with Routers 241
Securing the Switch CLI 241
Configuring Simple Password Security 242
Configuring Usernames and Secure Shell (SSH) 245
Password Encryption 248
The Two Enable Mode Passwords 250
Console and vty Settings 251
Banners 251
History Buffer Commands 252
The logging synchronous and exec-timeout Commands 253
LAN Switch Configuration and Operation 254
Configuring the Switch IP Address 254
Configuring Switch Interfaces 257
Deploying WLANs 321

Wireless LAN Implementation Checklist 321

- Step 1: Verify the Existing Wired Network 322
- Step 2: Install and Configure the AP’s Wired and IP Details 323
- Step 3: Configure the AP’s WLAN Details 323
- Step 4: Install and Configure One Wireless Client 324
- Step 5: Verify That the WLAN Works from the Client 325

Wireless LAN Security 326

WLAN Security Issues 326

The Progression of WLAN Security Standards 328

- Wired Equivalent Privacy (WEP) 328
- SSID Cloaking and MAC Filtering 329
- The Cisco Interim Solution Between WEP and 802.11i 330
- Wi-Fi Protected Access (WPA) 331
- IEEE 802.11i and WPA-2 331

Exam Preparation Tasks 333

- Review All the Key Topics 333
- Complete the Tables and Lists from Memory 333
- Definitions of Key Terms 333

Part III: IPv4 Addressing and Subnetting 335

Chapter 12 Perspectives on IPv4 Subnetting 337

- “Do I Know This Already?” Quiz 337

Foundation Topics 340

- Introduction to Subnetting 340
 - Subnetting Defined Through a Simple Example 340
 - Operational View Versus Design View of Subnetting 341
- Analyze Subnetting and Addressing Needs 342
 - Rules About Which Hosts Are in Which Subnet 342
 - Determining the Number of Subnets 344
 - Determining the Number of Hosts per Subnet 345
- One Size Subnet Fits All—Or Not 346
 - Defining the Size of a Subnet 346
 - One Size Subnet Fits All 347
 - Multiple Subnet Sizes (Variable Length Subnet Masks) 348
 - This Book: One Size Subnet Fits All 349
- Make Design Choices 349
 - Choose a Classful Network 350
 - Public IP Networks 350
 - Growth Exhausats the Public IP Address Space 351
 - Private IP Networks 352
 - Choosing an IP Network During the Design Phase 353
 - Choose the Mask 354
 - Classful IP Networks Before Subnetting 354
 - Borrowing Host Bits to Create Subnet Bits 355
- Exam Preparation Tasks 364

 Review All the Key Topics 364
 Complete the Tables and Lists from Memory 364
 Definitions of Key Terms 364

Chapter 13 Analyzing Classful IPv4 Networks 367

“Do I Know This Already?” Quiz 367

Foundation Topics 369

Classful Network Concepts 369
IPv4 Network Classes and Related Facts 369
Actual Class A, B, and C Networks 370
Address Formats 371
Default Masks 372
Number of Hosts per Network 373
Deriving the Network ID and Related Numbers 373
Unusual Network IDs and Network Broadcast Addresses 375

Practice with Classful Networks 376
Practice Deriving Key Facts Based on an IP Address 377
Practice Remembering the Details of Address Classes 377
Additional Practice 378

Exam Preparation Tasks 379

Review All the Key Topics 379
Complete the Tables and Lists from Memory 379
Definitions of Key Terms 379
Practice 379

Answers to Earlier Practice Problems 380
Answers to Practice Problem 7 380
Answers to Practice Problem 8 381
Answers to Practice Problem 9 381

Chapter 14 Converting Subnet Masks 383

“Do I Know This Already?” Quiz 383

Foundation Topics 366

Subnet Mask Conversion 386
Three Mask Formats 386
Converting Between Binary and Prefix Masks 387
Converting Between Binary and DDN Masks 388
Converting Between Prefix and DDN Masks 390
Chapter 15 Analyzing Existing Subnet Masks 397

“Do I Know This Already?” Quiz 397

Foundation Topics 400

Defining the Format of IPv4 Addresses 400
Masks Divide the Subnet's Addresses into Two Parts 401
Masks and Class Divide Addresses into Three Parts 402
Classless and Classful Addressing 403
Calculations Based on the IPv4 Address Format 403

Practice Analyzing Subnet Masks 405

Practice Problems for This Chapter 406
Additional Practice 407

Exam Preparation Tasks 408

Review All the Key Topics 408
Definitions of Key Terms 408
Practice 408
Answers to Earlier Practice Problems 408

Chapter 16 Designing Subnet Masks 411

“Do I Know This Already?” Quiz 411

Foundation Topics 414

Choosing the Mask(s) to Meet Requirements 414
Review: Choosing the Minimum Number of Subnet and Host Bits 414
No Masks Meet Requirements 416
One Mask Meets Requirements 417
Multiple Masks Meet Requirements 418
Finding All the Masks: Concepts 418
Finding All the Masks: Math 420
Choosing the Best Mask 421

The Formal Process 421

Practice Choosing Subnet Masks 422

Practice Problems for This Chapter 422
Additional Practice 423

Exam Preparation Tasks 424

Review All the Key Topics 424
Definitions of Key Terms 424
Practice 424
Answers to Earlier Practice Problems 425
Chapter 17 Analyzing Existing Subnets 427
“Do I Know This Already?” Quiz 427

Foundation Topics 430
- Defining a Subnet 430
- An Example with Network 172.16.0.0 and Four Subnets 430
- Subnet ID Concepts 432
- Subnet Broadcast Address 433
- Range of Usable Addresses 434
- Analyzing Existing Subnets: Binary 434
 - Finding the Subnet ID: Binary 435
 - Finding the Subnet Broadcast: Binary 437
 - Binary Practice Problems 438
 - Shortcut for the Binary Process 440
 - Brief Note About Boolean Math 442
 - Finding the Range of Addresses 442
- Analyzing Existing Subnets: Decimal 442
 - Analysis with Easy Masks 443
 - Predictability in the Interesting Octet 444
 - Finding the Subnet ID: Difficult Masks 446
 - Resident Subnet Example 1 446
 - Resident Subnet Example 2 447
 - Resident Subnet Practice Problems 448
 - Finding the Subnet Broadcast Address: Difficult Masks 449
 - Subnet Broadcast Example 1 449
 - Subnet Broadcast Example 2 450
 - Subnet Broadcast Address Practice Problems 451
- Practice Analyzing Existing Subnets 451
 - A Choice: Memorize or Calculate 451
 - Practice Problems for This Chapter 452
 - Additional Practice 452

Exam Preparation Tasks 453
- Review All the Key Topics 453
- Complete the Tables and Lists from Memory 453
- Definitions of Key Terms 453
- Practice 454
 - Answers to Earlier Practice Problems 454

Chapter 18 Finding All Subnet IDs 459
“Do I Know This Already?” Quiz 459

Foundation Topics 462
- Finding All Subnet IDs 462
 - First Subnet ID: The Zero Subnet 462
 - Finding the Pattern Using the Magic Number 463
- A Formal Process with Less Than 8 Subnet Bits 464
 - Example 1: Network 172.16.0.0, Mask 255.255.240.0 465
 - Example 2: Network 192.168.1.0, Mask 255.255.255.224 467
Finding All Subnets with Exactly 8 Subnet Bits 469
Finding All Subnets with More Than 8 Subnet Bits 469
Process with 9–16 Subnet Bits 470
Process with 17 or More Subnet Bits 471
Practice Finding All Subnet IDs 472
Practice Problems for This Chapter 473
Additional Practice 473
Exam Preparation Tasks 474
Review All the Key Topics 474
Definitions of Key Terms 474
Answers to Earlier Practice Problems 474
Answer, Practice Problem 1 474
Answer, Practice Problem 2 475
Answer, Practice Problem 3 476
Part IV: IPv4 Routing 479
Chapter 19 Operating Cisco Routers 481
“Do I Know This Already?” Quiz 481
Foundation Topics 485
Installing Cisco Routers 485
Installing Enterprise Routers 485
Cisco Integrated Services Routers 487
Physical Installation 488
Installing Internet Access Routers 489
A SOHO Installation with a Separate Switch, Router, and Cable Modem 489
A SOHO Installation with an Integrated Switch, Router, and DSL Modem 490
Regarding the SOHO Devices Used in This Book 491
Cisco Router IOS CLI 491
Comparisons Between the Switch CLI and Router CLI 492
Router Interfaces 493
Interface Status Codes 495
Router Interface IP Addresses 496
Bandwidth and Clock Rate on Serial Interfaces 497
Router Auxiliary (Aux) Port 499
Initial Configuration (Setup Mode) 499
Upgrading Cisco IOS Software and the Cisco IOS Software Boot Process 502
Upgrading a Cisco IOS Software Image into Flash Memory 502
The Cisco IOS Software Boot Sequence 505
The Three Router Operating Systems 507
The Configuration Register 507
How a Router Chooses Which OS to Load 508
The show version Command and Seeing the Configuration Register’s Value 511
Exam Preparation Tasks 513
Review All the Key Topics 513
Complete the Tables and Lists from Memory 513
Host Networking Commands 560
Troubleshooting Host Routing Problems 564
Finding the Matching Route on a Router 565
Troubleshooting Commands 567
The show ip arp Command 567
The traceroute Command 568
Telnet and Suspend 569
A Routing Troubleshooting Scenario 573
Scenario Part A: Tasks and Questions 573
Scenario Part A: Answers 576
Scenario Part B: Analyze Packet/Frame Flow 577
Scenario Part B: Answers 578
Scenario Part B: Question 1 579
Scenario Part B: Question 2 580
Scenario Part B: Question 3 581
Scenario Part B: Question 4 583
Scenario Part B: Question 5 583
Scenario Part B: Question 6 584
Scenario Part B: Question 7 585
Scenario Part C: Analyze Connected Routes 585
Scenario Part C: Answers 585
Exam Preparation Tasks 587
Review All the Key Topics 587
Complete the Tables and Lists from Memory 588
Command Reference 588
Part V: Wide-Area Networks 591
Chapter 22 WAN Concepts 593
“Do I Know This Already?” Quiz 593
Foundation Topics 596
WAN Technologies 596
Perspectives on the PSTN 596
Analog Modems 599
Digital Subscriber Line 601
DSL Types, Speeds, and Distances 603
DSL Summary 604
Cable Internet 605
Comparison of Remote-Access Technologies 607
ATM 607
Packet Switching Versus Circuit Switching 609
Ethernet as a WAN Service 609
IP Services for Internet Access 610
Address Assignment on the Internet Access Router 611
Routing for the Internet Access Router 612
NAT and PAT 613
Exam Preparation Tasks 618
 Review All the Key Topics 618
 Complete the Tables and Lists from Memory 618
 Definitions of Key Terms 619

Chapter 23 WAN Configuration 621
 “Do I Know This Already?” Quiz 621

Foundation Topics 624
 Configuring Point-to-Point WANs 624
 Configuring HDLC 624
 Configuring PPP 627
 Configuring and Troubleshooting Internet Access Routers 628
 Internet Access Router: Configuration Steps 629
 Step 1: Establish IP Connectivity 629
 Step 2: Install and Access SDM 630
 Step 3: Configure DHCP and PAT 631
 Step 4: Plan for DHCP Services 636
 Step 5: Configure the DHCP Server 638
 Internet Access Router Verification 639

Exam Preparation Tasks 642
 Review All the Key Topics 642
 Complete the Tables and Lists from Memory 642
 Definitions of Key Terms 642
 Command References 642

Part VI: Final Preparation 645

Chapter 24 Final Preparation 647
 Tools for Final Preparation 647
 Pearson Cert Practice Test Engine and Questions on the DVD 647
 Install the Software from the DVD 648
 Activate and Download the Practice Exam 649
 Activating Other Exams 649
 Premium Edition 650
 The Cisco Learning Network 650
 Subnetting Preparation Tools 650
 Scenarios 651
 Study Plan 651
 Recall the Facts 652
 Practice Subnetting 652
 Build Troubleshooting Skills Using Scenarios 654
 Studying for ICND1 640-822 or CCNA 640-802 654
 Summary 655
Part VII: Appendixes 657
Appendix A Answers to the “Do I Know This Already?” Quizzes 659
Appendix B Numeric Reference Tables 681
Appendix C ICND1 Exam Updates: Version 1.0 689
Glossary 693
Index 718

Part VIII: DVD-Only
Appendix D Practice for Chapter 13: Analyzing Classful IPv4 Networks
Appendix E Practice for Chapter 14: Converting Subnet Masks
Appendix F Practice for Chapter 15: Analyzing Existing Subnet Masks
Appendix G Practice for Chapter 16: Designing Subnet Masks
Appendix H Practice for Chapter 17: Analyzing Existing Subnets
Appendix I Practice for Chapter 18: Finding All Subnet IDs
Appendix J Additional Scenarios
Appendix K Subnetting Video Reference
Appendix L Memory Tables
Appendix M Memory Tables Answer Key
Appendix N ICND1 Open-Ended Questions
Icons Used in This Book

Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions used in the IOS Command Reference. The Command Reference describes these conventions as follows:

- **Boldface** indicates commands and keywords that are entered literally as shown. In actual configuration examples and output (not general command syntax), boldface indicates commands that are manually input by the user (such as a `show` command).
- **Italic** indicates arguments for which you supply actual values.
- Vertical bars (|) separate alternative, mutually exclusive elements.
- Square brackets ([]) indicate an optional element.
- Braces ({ }) indicate a required choice.
- Braces within brackets ({{ } }) indicate a required choice within an optional element.
Introduction

Congratulations! If you’re reading far enough to look at this book’s Introduction, then you’ve probably already decided to go for your Cisco certification. If you want to succeed as a technical person in the networking industry at all, you need to know Cisco. Cisco has a ridiculously high market share in the router and switch marketplace, with more than 80 percent market share in some markets. In many geographies and markets around the world, networking equals Cisco. If you want to be taken seriously as a network engineer, Cisco certification makes perfect sense.

Historically speaking, the first entry-level Cisco certification has been the Cisco Certified Network Associate (CCNA) certification, first offered in 1998. The first three versions of the CCNA certification required that you pass a single exam to become certified. However, over time, the exam kept growing, both in the amount of material covered, and the difficulty level of the questions. So, for the fourth major revision of the exams, announced in 2003, Cisco continued with a single certification (CCNA), but offered two options for the exams to get certified: a single exam option and a two-exam option. The two-exam option allowed people to study roughly half of the material, take and pass one exam, before they moved to the next one.

Structure of the Exams

For the current certifications, announced in June 2007, Cisco created the ICND1 (640-822) and ICND2 (640-816) exams, along with the CCNA (640-802) exam. (The exams just prior, from 2003 to 2007, were called INTRO and ICND.) To become CCNA certified, you can pass both the ICND1 and ICND2 exams or just pass the CCNA exam. The CCNA exam simply covers all the topics on the ICND1 and ICND2 exams, which gives you two options for gaining your CCNA certification. The two-exam path gives those people with less experience a chance to study for a smaller set of topics at a time, whereas the one-exam option provides a more cost-effective certification path for those who want to prepare for all the topics at once.

Although the two-exam option will be useful for some certification candidates, Cisco designed the ICND1 exam with a much more important goal in mind. The CCNA certification had grown to the point that it tested knowledge and skills beyond what an entry-level network technician would need to have. Cisco needed a certification that was more reflective of the skills required for entry-level networking jobs. So, Cisco designed its Interconnecting Cisco Networking Devices 1 (ICND1) course, and the corresponding ICND1 exam, to include the knowledge and skills most needed by an entry-level technician in a small enterprise network. To show that you have the skills required for those entry-level jobs, Cisco created a new certification: CCENT.
Figure I-1 shows the basic organization of the certifications and the exams used for getting your CCENT and CCNA certifications. (Note that there is no separate certification for passing the ICND2 exam.)

Figure I-1 Cisco Entry-Level Certifications and Exams

As you can see, although you can obtain the CCENT certification by taking the ICND1 exam, you do not have to be CCENT certified before you get your CCNA certification. You can choose to take the CCNA exam and bypass the CCENT certification.

The ICND1 and ICND2 exams cover different sets of topics with a minor amount of overlap. For example, ICND1 covers IP addressing and subnetting, while ICND2 covers a more complicated use of subnetting called variable-length subnet masking (VLSM), so ICND2 must then cover subnetting to some degree. The CCNA exam covers all the topics covered on both the ICND1 and ICND2 exams.

Although CCENT has slowly gained popularity over time, the Cisco CCNA certification remains the most popular entry-level networking certification program in the IT world. A CCNA certification proves that you have a firm foundation in the most important components of the Cisco product line—namely, routers and switches. It also proves that you have a broad knowledge of protocols and networking technologies.

New 2011 Editions, But Cisco Did Not Change the Exams

Unlike any previous editions of this book, this edition (Edition 3, 2011) was published even though Cisco did not revise the exams in 2011 and has not changed the exam topics or the exam numbers. The previous editions (Editions 2, 2007) still work well and include all the content related to the current 640-822, 640-816, and 640-802 exams. So, why come out with a 2011 edition when the content of the exam remains unchanged and the coverage of the topics in the 2007 editions still does a great job?

Two reasons. First, the publisher wanted to add value other than just what’s printed on the pages of the book. To that end, the publisher has added:
- A free copy of CCNA Simulator Lite. This product runs the same software as the full CCNA Network Simulator, but with some commands disabled compared to the full-price product. This is a wonderful addition, especially for those totally new to Cisco, because you can get some exposure to the user interface of Cisco gear before choosing from the many options of how to practice.

- A special offer to purchase the CCENT/CCNA ICND1 640-822 Official Cert Guide Premium Edition eBook and Practice Test at a 70 percent discount off the list price. This digital product provides you with two additional complete exams’ worth of practice questions in the powerful Pearson IT Certification Practice Test engine. It also includes two versions of the eBook version of this title: a PDF version to read on your computer and an EPUB version to read on your mobile device, tablet, or eReader. In addition to the eBook and extra practice questions, the Premium Edition eBook and Practice Test also has enhanced features in the Pearson IT Certification Practice Test, which provides you with direct links from every question to the specific section in the eBook, giving you in-depth insight into the concepts behind the questions. To take advantage of this special offer, simply refer to the instructions printed on the coupon card inserted into the DVD sleeve. This card contains a unique coupon code you can use when purchasing the Premium Edition eBook and Practice Test from one of Pearson IT Certification’s sites.

 Those changes alone make this new book, and the new library (that holds this book and the ICND2 Official Cert Guide), a much better deal than the earlier books. However, the books do change as well—not for new content, but for how the content is presented. I (Wendell) had already re-written and improved many topics, particularly subnetting, with an eye toward a consistent approach to exercises that help you overcome the big mental hurdles. And while we were updating the books, I also updated several small topics to improve figures, clarify a point, and make adjustments when a technology might have changed in the last four years.

 So, if you compare the new and the old books side by side, you will see a completely re-organized subnetting section (seven shorter chapters rather than one long one), updated figures in some chapters, and a few other changes here and there (often because of your feedback!). What you won’t see are a bunch of new topics, because the exams did not change at the same time, and the existing books already covered all the exam topics.

 So, how do you know that Cisco hasn’t changed the exams since the time this book came out? Well, first ignore online speculation that’s not from Cisco, because sometimes people like to guess. Second, look at Cisco’s website. In particular, use www.cisco.com/go/ccna, Cisco’s main page for the CCNA certification. If you see exam numbers other than the ones listed in the earlier figure, the exams have changed. (And if they have changed, go to www.ciscopress.com to learn about how to find the yet again new edition of this book!)
Format of the CCNA Exams

The ICND1, ICND2, and CCNA exams all follow the same general format. When you get to the testing center and check in, the proctor gives you some general instructions and then takes you into a quiet room with a PC. When you’re at the PC, you have a few things to do before the timer starts on your exam—for instance, you can take a sample quiz just to get accustomed to the PC and the testing engine. Anyone who has user-level skills in getting around a PC should have no problems with the testing environment. Additionally, Chapter 24, “Final Preparation,” points to a Cisco website at which you can see a demo of Cisco’s actual test engine.

- When you start the exam, you will be asked a series of questions. You answer the question and then move on to the next question. The exam engine does not let you go back and change your answer. Yes, that’s true—when you move on to the next question, that’s it for the earlier question.

- The exam questions can be in one of the following formats:
 - Multiple choice (MC)
 - Testlet
 - Drag-and-drop (DND)
 - Simulated lab (Sim)
 - Simlet

The first three types of questions are relatively common in many testing environments. The multiple choice format simply requires that you point and click a circle beside the correct answer(s). Cisco traditionally tells you how many answers you need to choose, and the testing software prevents you from choosing too many answers. Testlets are questions with one general scenario, with multiple MC questions about the overall scenario. Drag-and-drop questions require you to left-click and hold, move a button or icon to another area, and release the clicker to place the object somewhere else—typically into a list. So, for some questions, to get the question correct, you might need to put a list of five things in the proper order.

The last two types both use a network simulator to ask questions. Interestingly, the two types actually allow Cisco to assess two very different skills. First, Sim questions generally describe a problem, and your task is to configure one or more routers and switches to fix the problem. The exam then grades the question based on the configuration you changed or added. Interestingly, Sim questions are the only questions that Cisco (to date) has openly confirmed that partial credit is given.
The Simlet questions may well be the most difficult style of question on the exams. Simlet questions also use a network simulator, but instead of answering the question by changing the configuration, the question includes 1 or more MC questions. The questions require that you use the simulator to examine the current behavior of a network, interpreting the output of any `show` commands that you can remember in order to answer the question. While Sim questions require you to troubleshoot problems related to a configuration, Simlets require you to both analyze both working and broken networks, correlating `show` command output with your knowledge of networking theory and configuration commands.

What’s on the CCNA Exam(s)?

Ever since I was in grade school, whenever the teacher announced that we were having a test soon, someone would always ask, “What’s on the test?” Even in college, people would try to get more information about what would be on the exams. At heart, the goal is to know what to study hard, what to study a little, and what to not study at all.

Cisco wants the public to know both the variety of topics, and an idea about the kinds of knowledge and skills required for each topic, for every Cisco certification exam. To that end, Cisco publishes a set of exam objectives for each exam. The objectives list the specific topics, like IP addressing, RIP, and VLANs. The objectives also implies the kinds of skills required that that topic. For example, one objective might start with “Describe…” and another might begin with “Describe, configure, and troubleshoot…” The second objective clearly states that you need a thorough and deep understanding of that topic. By listing the topics and skill level, Cisco helps us all prepare for its exams.

Although the exam objectives are helpful, keep in mind that Cisco adds a disclaimer that the posted exam topics for all of its certification exams are guidelines. Cisco makes the effort to keep the exam questions within the confines of the stated exam objectives, and I know from talking to those involved that every question is analyzed for whether it fits within the stated exam topics.

ICND1 Exam Topics

Table I-1 lists the exam topics for the ICND1 exam, with the ICND2 exam topics following in Table I-2. Although Cisco’s posted exam topics are not numbered, Cisco Press numbers the exam topics for easier reference. Table I-1 also notes the book parts in which each exam topic is covered. Because it is possible that the exam topics may change over time, it may be worth the time to double-check the exam topics as listed on the Cisco website (www.cisco.com/go/ccna). If Cisco does happen to add exam topics at a later date, note that
Appendix C, “ICND1 Exam Updates: Version 1.0,” describes how to go to www.ciscopress.com and download additional information about those newly added topics.

Table I-1 ICND1 Exam Topics

<table>
<thead>
<tr>
<th>Reference Number</th>
<th>Book Parts</th>
<th>Exam Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>Describe the operation of data networks</td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>Describe the purpose and functions of various network devices</td>
</tr>
<tr>
<td>3</td>
<td>I, II, III, IV</td>
<td>Use the OSI and TCP/IP models and their associated protocols to explain how data flows in a network</td>
</tr>
<tr>
<td>4</td>
<td>I</td>
<td>Describe common networking applications including web applications</td>
</tr>
<tr>
<td>5</td>
<td>I</td>
<td>Describe the purpose and basic operation of the protocols in the OSI and TCP models</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>Describe the impact of applications (Voice over IP and Video over IP) on a network</td>
</tr>
<tr>
<td>7</td>
<td>I–V</td>
<td>Interpret network diagrams</td>
</tr>
<tr>
<td>8</td>
<td>I–V</td>
<td>Determine the path between two hosts across a network</td>
</tr>
<tr>
<td>9</td>
<td>I, III, IV, V</td>
<td>Describe the components required for network and Internet communications</td>
</tr>
<tr>
<td>10</td>
<td>I–V</td>
<td>Identify and correct common network problems at Layers 1, 2, 3, and 7 using a layered model approach</td>
</tr>
<tr>
<td>11</td>
<td>II, III, IV</td>
<td>Differentiate between LAN/WAN operation and features</td>
</tr>
<tr>
<td></td>
<td>Implement a small switched network</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>II</td>
<td>Select the appropriate media, cables, ports, and connectors to connect switches to other network devices and hosts</td>
</tr>
<tr>
<td>13</td>
<td>II</td>
<td>Explain the technology and media access control method for Ethernet technologies</td>
</tr>
<tr>
<td>14</td>
<td>II</td>
<td>Explain network segmentation and basic traffic management concepts</td>
</tr>
<tr>
<td>15</td>
<td>II</td>
<td>Explain the operation of Cisco switches and basic switching concepts</td>
</tr>
<tr>
<td>16</td>
<td>II</td>
<td>Perform, save, and verify initial switch configuration tasks including remote access management</td>
</tr>
<tr>
<td>17</td>
<td>II</td>
<td>Verify network status and switch operation using basic utilities (including ping, traceroute, telnet, SSH, arp, and ipconfig), show and debug commands</td>
</tr>
<tr>
<td>18</td>
<td>II</td>
<td>Implement and verify basic security for a switch (port security, deactivate ports)</td>
</tr>
<tr>
<td>19</td>
<td>II</td>
<td>Identify, prescribe, and resolve common switched network media issues, configuration issues, autonegotiation, and switch hardware failures</td>
</tr>
<tr>
<td>Reference Number</td>
<td>Book Parts</td>
<td>Exam Topic</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>20</td>
<td>I, III</td>
<td>Describe the need and role of addressing in a network</td>
</tr>
<tr>
<td>21</td>
<td>I, III</td>
<td>Create and apply an addressing scheme to a network</td>
</tr>
<tr>
<td>22</td>
<td>III, IV</td>
<td>Assign and verify valid IP addresses to hosts, servers, and networking devices in a LAN environment</td>
</tr>
<tr>
<td>23</td>
<td>IV</td>
<td>Explain the basic uses and operation of NAT in a small network connecting to one ISP</td>
</tr>
<tr>
<td>24</td>
<td>I, IV</td>
<td>Describe and verify DNS operation</td>
</tr>
<tr>
<td>25</td>
<td>III</td>
<td>Describe the operation and benefits of using private and public IP addressing</td>
</tr>
<tr>
<td>26</td>
<td>III, V</td>
<td>Enable NAT for a small network with a single ISP and connection using SDM and verify operation using CLI and ping</td>
</tr>
<tr>
<td>27</td>
<td>IV</td>
<td>Configure, verify, and troubleshoot DHCP and DNS operation on a router (including CLI/SDM)</td>
</tr>
<tr>
<td>28</td>
<td>IV</td>
<td>Implement static and dynamic addressing services for hosts in a LAN environment</td>
</tr>
<tr>
<td>29</td>
<td>III</td>
<td>Identify and correct IP addressing issues</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Implement a small routed network</td>
</tr>
<tr>
<td>30</td>
<td>I, III, IV</td>
<td>Describe basic routing concepts (including packet forwarding, router lookup process)</td>
</tr>
<tr>
<td>31</td>
<td>IV</td>
<td>Describe the operation of Cisco routers (including router bootup process, POST, and router components)</td>
</tr>
<tr>
<td>32</td>
<td>I, IV</td>
<td>Select the appropriate media, cables, ports, and connectors to connect routers to other network devices and hosts</td>
</tr>
<tr>
<td>33</td>
<td>IV</td>
<td>Configure, verify, and troubleshoot RIPv2</td>
</tr>
<tr>
<td>34</td>
<td>IV</td>
<td>Access and utilize the router CLI to set basic parameters</td>
</tr>
<tr>
<td>35</td>
<td>IV</td>
<td>Connect, configure, and verify operation status of a device interface</td>
</tr>
<tr>
<td>36</td>
<td>IV</td>
<td>Verify device configuration and network connectivity using ping, traceroute, telnet, SSH, or other utilities</td>
</tr>
<tr>
<td>37</td>
<td>IV</td>
<td>Perform and verify routing configuration tasks for a static or default route given specific routing requirements</td>
</tr>
<tr>
<td>38</td>
<td>IV</td>
<td>Manage IOS configuration files (including save, edit, upgrade, and restore)</td>
</tr>
<tr>
<td>39</td>
<td>IV</td>
<td>Manage Cisco IOS</td>
</tr>
</tbody>
</table>
Table I-1 ICND1 Exam Topics (Continued)

<table>
<thead>
<tr>
<th>Reference Number</th>
<th>Book Parts</th>
<th>Exam Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>IV</td>
<td>Implement password and physical security</td>
</tr>
<tr>
<td>41</td>
<td>IV</td>
<td>Verify network status and router operation using basic utilities (including ping, traceroute, telnet, SSH, arp, and ipconfig), show and debug commands</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Explain and select the appropriate administrative tasks required for a WLAN</td>
</tr>
<tr>
<td>42</td>
<td>II</td>
<td>Describe standards associated with wireless media (including IEEE, Wi-Fi Alliance, and ITU/FCC)</td>
</tr>
<tr>
<td>43</td>
<td>II</td>
<td>Identify and describe the purpose of the components in a small wireless network. (including SSID, BSS, and ESS)</td>
</tr>
<tr>
<td>44</td>
<td>II</td>
<td>Identify the basic parameters to configure on a wireless network to ensure that devices connect to the correct access point</td>
</tr>
<tr>
<td>45</td>
<td>II</td>
<td>Compare and contrast wireless security features and capabilities of WPA security (including open, WEP, and WPA-1/2)</td>
</tr>
<tr>
<td>46</td>
<td>II</td>
<td>Identify common issues with implementing wireless networks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identify security threats to a network and describe general methods to mitigate those threats</td>
</tr>
<tr>
<td>47</td>
<td>I</td>
<td>Explain today’s increasing network security threats and the need to implement a comprehensive security policy to mitigate the threats</td>
</tr>
<tr>
<td>48</td>
<td>I</td>
<td>Explain general methods to mitigate common security threats to network devices, hosts, and applications</td>
</tr>
<tr>
<td>49</td>
<td>I</td>
<td>Describe the functions of common security appliances and applications</td>
</tr>
<tr>
<td>50</td>
<td>I, II, IV</td>
<td>Describe security recommended practices including initial steps to secure network devices</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Implement and verify WAN links</td>
</tr>
<tr>
<td>51</td>
<td>V</td>
<td>Describe different methods for connecting to a WAN</td>
</tr>
<tr>
<td>52</td>
<td>V</td>
<td>Configure and verify a basic WAN serial connection</td>
</tr>
</tbody>
</table>
ICND2 Exam Topics

Table I-2 lists the exam topics for the ICND2 (640-816) exam, along with the book parts in the CCNA ICND2 Official Cert Guide in which each topic is covered.

<table>
<thead>
<tr>
<th>Reference Number</th>
<th>Book Part (ICND2 Book)</th>
<th>Exam Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>I</td>
<td>Configure, verify and troubleshoot a switch with VLANs and interswitch communications</td>
</tr>
<tr>
<td>102</td>
<td>I</td>
<td>Describe enhanced switching technologies (including VTP, RSTP, VLAN, PVSTP, and 802.1q)</td>
</tr>
<tr>
<td>103</td>
<td>I</td>
<td>Describe how VLANs create logically separate networks and the need for routing between them</td>
</tr>
<tr>
<td>104</td>
<td>I</td>
<td>Configure, verify, and troubleshoot trunking on Cisco switches</td>
</tr>
<tr>
<td>105</td>
<td>II</td>
<td>Configure, verify, and troubleshoot interVLAN routing</td>
</tr>
<tr>
<td>106</td>
<td>I</td>
<td>Configure, verify, and troubleshoot VTP</td>
</tr>
<tr>
<td>107</td>
<td>I</td>
<td>Configure, verify, and troubleshoot RSTP operation</td>
</tr>
<tr>
<td>108</td>
<td>I</td>
<td>Interpret the output of various show and debug commands to verify the operational status of a Cisco switched network</td>
</tr>
<tr>
<td>109</td>
<td>I</td>
<td>Implement basic switch security (including port security, unassigned ports, trunk access, etc.)</td>
</tr>
<tr>
<td>110</td>
<td>II</td>
<td>Implement an IP addressing scheme and IP services to meet network requirements in a medium-sized enterprise branch office network</td>
</tr>
<tr>
<td>111</td>
<td>II</td>
<td>Calculate and apply a VLSM IP addressing design to a network</td>
</tr>
<tr>
<td>112</td>
<td>V</td>
<td>Determine the appropriate classless addressing scheme using VLSM and summarization to satisfy addressing requirements in a LAN/WAN environment</td>
</tr>
<tr>
<td>113</td>
<td>V</td>
<td>Describe IPv6 addresses</td>
</tr>
<tr>
<td>114</td>
<td>II, III</td>
<td>Identify and correct common problems associated with IP addressing and host configurations</td>
</tr>
<tr>
<td>115</td>
<td>III</td>
<td>Compare and contrast methods of routing and routing protocols</td>
</tr>
<tr>
<td>116</td>
<td>III</td>
<td>Configure, verify, and troubleshoot OSPF</td>
</tr>
</tbody>
</table>
The CCNA 640-802 exam actually covers everything from both the ICND1 and ICND2 exams, at least based on the published exam topics. As of publication, the CCNA exam topics include all topics in Tables I-1 and I-2, except those topics that are highlighted in light gray in those tables. However, note that the gray topics are still covered on the CCNA 640-802 exam; those topics are just not listed in the CCNA exam topics because one of the other exam topics refers to the same topic. In short, CCNA = ICND1 + ICND2.

Table I-2 ICND2 Exam Topics (Continued)

<table>
<thead>
<tr>
<th>Reference Number</th>
<th>Book Part (ICND2 Book)</th>
<th>Exam Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>117</td>
<td>III</td>
<td>Configure, verify, and troubleshoot EIGRP</td>
</tr>
<tr>
<td>118</td>
<td>II, III</td>
<td>Verify configuration and connectivity using ping, traceroute, and telnet or SSH</td>
</tr>
<tr>
<td>119</td>
<td>II, III</td>
<td>Troubleshoot routing implementation issues</td>
</tr>
<tr>
<td>120</td>
<td>II, III, IV</td>
<td>Verify router hardware and software operation using show and debug commands</td>
</tr>
<tr>
<td>121</td>
<td>II</td>
<td>Implement basic router security</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Implement, verify, and troubleshoot NAT and ACLs in a medium-size enterprise branch office network</td>
</tr>
<tr>
<td>122</td>
<td>II</td>
<td>Describe the purpose and types of access control lists</td>
</tr>
<tr>
<td>123</td>
<td>II</td>
<td>Configure and apply access control lists based on network filtering requirements</td>
</tr>
<tr>
<td>124</td>
<td>II</td>
<td>Configure and apply an access control list to limit telnet and SSH access to the router</td>
</tr>
<tr>
<td>125</td>
<td>II</td>
<td>Verify and monitor ACL's in a network environment</td>
</tr>
<tr>
<td>126</td>
<td>II</td>
<td>Troubleshoot ACL implementation issues</td>
</tr>
<tr>
<td>127</td>
<td>V</td>
<td>Explain the basic operation of NAT</td>
</tr>
<tr>
<td>128</td>
<td>V</td>
<td>Configure Network Address Translation for given network requirements using CLI</td>
</tr>
<tr>
<td>129</td>
<td>V</td>
<td>Troubleshoot NAT implementation issues</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Implement and verify WAN links</td>
</tr>
<tr>
<td>130</td>
<td>IV</td>
<td>Configure and verify Frame Relay on Cisco routers</td>
</tr>
<tr>
<td>131</td>
<td>IV</td>
<td>Troubleshoot WAN implementation issues</td>
</tr>
<tr>
<td>132</td>
<td>IV</td>
<td>Describe VPN technology (including importance, benefits, role, impact, and components)</td>
</tr>
<tr>
<td>133</td>
<td>IV</td>
<td>Configure and verify the PPP connection between Cisco routers</td>
</tr>
</tbody>
</table>
ICND1 and ICND2 Course Outlines

Another way to get some direction about the topics on the exams is to look at the course outlines for the related courses. Cisco offers two authorized CCNA-related courses: Interconnecting Cisco Network Devices 1 (ICND1) and Interconnecting Cisco Network Devices 2 (ICND2). Cisco authorizes Certified Learning Solutions Providers (CLSP) and Certified Learning Partners (CLP) to deliver these classes. These authorized companies can also create unique custom course books using this material, in some cases to teach classes geared toward passing the CCNA exam.

About the CCNA ICND1 Official Cert Guide and CCNA ICND2 Official Cert Guide

As previously mentioned, Cisco separated the content covered by the CCNA exam into two parts: topics typically used by engineers that work in a small enterprise network (ICND1), with the additional topics commonly used by engineers in medium-sized enterprises being covered by the ICND2 exam. Likewise, the Cisco Press CCNA Exam Certification Guide series includes two books for CCNA: the CCENT/CCNA ICND1 Official Cert Guide and the CCNA ICND2 Official Cert Guide. These books cover the breadth of topics on each exam, typically a bit more in-depth than what is required for the exams, just to ensure the books prepare you for the more difficult exam questions.

This section lists the variety of book features in both this book and the CCNA ICND2 Official Cert Guide. Both books have the same basic features, so if you are reading both this book and the ICND2 book, there is no need to read the Introduction to the second book. Also, for those of you using both books to prepare for the CCNA 640-802 exam (rather than taking the two-exam option), the end of this Introduction lists a suggested reading plan.

Objectives and Methods

The most important and somewhat obvious objective of this book is to help you pass the ICND1 exam or the CCNA exam. In fact, if the primary objective of this book were different, the book’s title would be misleading! However, the methods used in this book to help you pass the exams are also designed to make you much more knowledgeable about how to do your job.

This book uses several key methodologies to help you discover the exam topics on which you need more review, to help you fully understand and remember those details, and to help you prove to yourself that you have retained your knowledge of those topics. So, this book does not try to help you pass the exams only by memorization, but by truly learning and understanding the topics. The CCNA certification is the foundation for many of the Cisco professional certifications, and it would be a disservice to you if this book did not help you
truly learn the material. Therefore, this book helps you pass the CCNA exam by using the following methods:

- Helping you discover which exam topics you have not mastered
- Providing explanations and information to fill in your knowledge gaps
- Supplying exercises that enhance your ability to recall and deduce the answers to test questions
- Providing practice exercises on the topics and the testing process via test questions on the DVD

Book Features

To help you customize your study time using these books, the core chapters have several features that help you make the best use of your time:

- **“Do I Know This Already?” Quizzes**—Each chapter begins with a quiz that helps you determine the amount of time you need to spend studying that chapter.

- **Foundation Topics**—These are the core sections of each chapter. They explain the protocols, concepts, and configuration for the topics in that chapter.

- **Exam Preparation Tasks**—At the end of the “Foundation Topics” section of each chapter, the “Exam Preparation Tasks” section lists a series of study activities that should be done at the end of the chapter. Each chapter includes the activities that make the most sense for studying the topics in that chapter. The activities include the following:

 - **Key Topics Review**—The Key Topics icon is shown next to the most important items in the “Foundation Topics” section of the chapter. The Key Topics Review activity lists the Key Topics from the chapter and their corresponding page numbers. Although the contents of the entire chapter could be on the exam, you should definitely know the information listed in each key topic.

 - **Complete Tables and Lists from Memory**—To help you exercise your memory and memorize some lists of facts, many of the more important lists and tables from the chapter are included in a document on the DVD. This document lists only partial information, allowing you to complete the table or list.
— **Definition of Key Terms**—Although the exams may be unlikely to ask a question like, “Define this term,” the CCNA exams require that you learn and know a lot of networking terminology. This section lists the most important terms from the chapter, asking you to write a short definition and compare your answer to the Glossary at the end of the book.

— **Command Reference Tables**—Some book chapters cover a large amount of configuration and EXEC commands. These tables list the commands introduced in the chapter, along with an explanation. For exam preparation, use it for reference, but also read the table once when performing the Exam Preparation Tasks to make sure you remember what all the commands do.

In addition to the features in each of the core chapters, this book, as a whole, has additional study resources, including

- **DVD-based practice exam**—The companion DVD contains the powerful Pearson IT Certification Practice Test exam engine. You can take simulated ICND1 exams, as well as simulated CCNA exams, with the DVD and activation code included in this book. (You can take simulated ICND2 and CCNA exams with the DVD in the *CCNA ICND2 Official Cert Guide*).

- **CCNA Simulator Lite**—This lite version of the best-selling CCNA Network Simulator from Pearson provides you with a means, right now, to experience the Cisco command-line interface (CLI). No need to go buy real gear or buy a full simulator to start learning the CLI. Just install it from the DVD in the back of this book.

- **eBook**—If you are interested in obtaining an eBook version of this title, we have included a special offer on a coupon card inserted in the DVD sleeve in the back of the book. This offer allows you to purchase the *CCENT/CCNA ICND1 640-822 Official Cert Guide Premium Edition* eBook and Practice Test at a 70 percent discount off the list price. In addition to two versions of the eBook (PDF and ePub), you will also receive additional practice test questions and enhanced practice test features.

- **Subnetting videos**—The companion DVD contains a series of videos that show you how to calculate various facts about IP addressing and subnetting (in particular, using the shortcuts described in this book).

- **Subnetting practice**—The companion DVD contains six appendices (D through I) that correspond to Chapters 13 through 18, respectively. Each appendix contains a set of subnetting practice problems, with the answers, and with explanations of how the answers were found. This is a great resource to get ready to do subnetting well and fast.
■ **DVD-based practice scenarios**—Appendix J, “Additional Scenarios,” on the companion DVD, contains several networking scenarios for additional study. These scenarios describe various networks and requirements, taking you through conceptual design, configuration, and verification. These scenarios are useful for building your hands-on skills, even if you do not have lab gear.

■ **Companion website**—The website www.ciscopress.com/title/1587204258 posts up-to-the-minute materials that further clarify complex exam topics. Check this site regularly for new and updated postings written by the author that provide further insight into the more troublesome topics on the exam.

If you are looking for more hands-on practice, you might want to consider purchasing the CCNA 640-802 Network Simulator. You can purchase a copy of this software from Pearson at http://www.ciscopress.com/series/series.asp?ser=2538752 or other retail outlets. To help you with your studies, I have created a mapping guide that maps each of the 250 labs in the simulator to the specific sections in these CCNA Cert Guides. You can get this mapping guide for free on the ”Extras” tab of the companion website.

■ **Author’s website and blogs**—The author maintains a website that hosts tools and links useful when studying for CCENT and CCNA. The site lists information to help you build your own lab, study pages that correspond to each chapter of this book and the ICND2 book, and links to the author’s CCENT Skills blog and CCNA Skills blog. Start at www.certskills.com; check the tabs for study and blogs in particular.

How This Book Is Organized

This book contains 24 core chapters—Chapters 1 through 24, with Chapter 24 including some summary materials and suggestions for how to approach the actual exams. Each core chapter covers a subset of the topics on the ICND1 exam. The core chapters are organized into sections. The core chapters cover the following topics:

Part I: Networking Fundamentals

■ **Chapter 1, “Introduction to Computer Networking,”** provides a basic introduction for those who are brand new to networking.

■ **Chapter 2, “The TCP/IP and OSI Networking Models,”** introduces the terminology surrounding two different networking architectures, namely Transmission Control Protocol/Internet Protocol (TCP/IP) and Open Systems Interconnection (OSI).

■ **Chapter 3, “Fundamental of LANs,”** covers the concepts and terms used for the most popular option for the data link layer for local-area networks (LAN), namely Ethernet.
Chapter 4, “Fundamentals of WANs,” covers the concepts and terms used for the most popular options for the data link layer for wide-area networks (WAN), including High-Level Data Link Control (HDLC), the Point-to-Point Protocol (PPP), and Frame Relay.

Chapter 5, “Fundamentals of IPv4 Addressing and Routing,” The Internet Protocol (IP) is the main network layer protocol for TCP/IP. This chapter introduces the basics of IP, including IP addressing and routing.

Chapter 6, “Fundamentals of TCP/IP Transport, Applications, and Security,” The Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are the main transport layer protocols for TCP/IP. This chapter introduces the basics of TCP and UDP.

Part II: LAN Switching

Chapter 7, “Ethernet LAN Switching Concepts,” deepens and expands the introduction to LANs from Chapter 3, completing most of the conceptual materials for Ethernet in this book.

Chapter 8, “Operating Cisco LAN Switches,” explains how to access, examine, and configure Cisco Catalyst LAN switches.

Chapter 9, “Ethernet Switch Configuration,” shows how to configure a variety of switch features, including duplex and speed, port security, securing the CLI, and the switch IP address.

Chapter 10, “Ethernet Switch Troubleshooting,” focuses on how to tell if the switch is doing what it is supposed to be doing, mainly through the use of show commands.

Chapter 11, “Wireless LANs,” explains the basic operation concepts of wireless LANs, along with addressing some of the most common security concerns.

Part III: IPv4 Addressing and Subnetting

Chapter 12, “Perspectives on IPv4 Subnetting,” walks through the entire concept of subnetting, from starting with a Class A, B, or C network, analyzing requirements, making choices, calculating the resulting subnets, assigning those on paper, all in preparation to deploy and use those subnets by configuring the devices.

Chapter 13, “Analyzing Classful IPv4 Networks,” IPv4 addresses originally fell into several classes, with unicast IP addresses being in Class A, B, and C. This chapter explores all things related to address classes and the IP network concept created by those classes.
Chapter 14, “Converting Subnet Masks,” Math, and only the math, with subnet masks. Subnet masks come in three formats. This chapter discusses how to quickly and easily convert between the formats, so you can practice before having to think more about what the mask does in the next two chapters.

Chapter 15, “Analyzing Existing Subnet Masks,” In most jobs, someone else came before you and chose the subnet mask used in a network. What does that mean? What does that mask do for you? This chapter focuses on how to look at the mask (and IP network) to discover key facts, like the size of a subnet (number of hosts) and the number of subnets in the network.

Chapter 16, “Designing Subnet Masks,” reverses the approach from Chapter 15, looking at subnet masks from a design perspective. If you could pick a mask to use in a network, what mask would you choose? What questions should you be asking in order to make a good choice? This chapter explores the questions, and the math to solve the problems.

Chapter 17, “Analyzing Existing Subnets,” Most troubleshooting of IP connectivity problems starts with an IP address and mask. This chapter takes that paired information and shows you how to find and analyze the subnet in which that IP address resides, including finding the subnet ID, range of addresses in the subnet, and subnet broadcast address.

Chapter 18, “Finding All Subnet IDs,” As part of the subnet design process, someone chose a network number and a mask. Then someone calculated and wrote down all the subnet IDs implied by those choices. This chapter shows you how to do the same thing: how to find all those subnet IDs, given a network number and a single mask used throughout the network.

Part IV: IPv4 Routing

Chapter 19, “Operating Cisco Routers,” is like Chapter 8, but it focuses on routers instead of switches.

Chapter 20, “Routing Protocol Concepts and Configuration,” explains how routers work to find all the best routes to each subnet. This chapter also shows how to configure IP addresses, static routes, and one routing protocol: RIP Version 2.

Chapter 21, “Troubleshooting IP Routing,” discusses several tools useful when troubleshooting IP routing issues. This chapter also features a scenario that examines the IP packet forwarding process.
Part V: Wide-Area Networks

- **Chapter 22, “WAN Concepts,”** completes the conceptual materials for WANs for this book, continuing the coverage in Chapter 4, by touching on Internet access technologies like DSL and cable. It also covers the concepts of Network Address Translation (NAT).

- **Chapter 23, “WAN Configuration,”** completes the main technical topics of the book, focusing on a few small WAN configuration tasks, plus NAT configuration using Cisco Security Device Manager (SDM).

Part VI: Final Preparation

- **Chapter 24, “Final Preparation,”** suggests a plan for final preparation once you have finished the core parts of the book, in particular explaining the many study options available in the book.

Part VII: Appendixes (In Print)

- **Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes”** includes the answers to all the questions from Chapters 2 through 23.

- **Appendix B, “Numeric Reference Tables,”** lists several tables of numeric information, including a binary-to-decimal conversion table and a list of powers of 2.

- **Appendix C, “ICND1 Exam Updates: Version 1.0,”** covers a variety of short topics that either clarify or expand upon topics covered earlier in the book. This appendix is updated from time to time, and posted at www.ciscopress.com/ccna, with the most recent version available at the time of printing included here as Appendix C. (The first page of the appendix includes instructions on how to check to see if a later version of Appendix C is available online.)

 http://www.pearsonitcertification.com/title/0132903822

- The **Glossary** contains definitions for all of the terms listed in the “Definitions of Key Terms” section at the conclusion of Chapters 1–23.

Part VIII: Appendices (on the DVD)

The following appendices are available in PDF format on the DVD that accompanies this book:

- **Appendix D, “Practice for Chapter 13: Analyzing Classful IPv4 Networks,”** lists practice problems associated with Chapter 13. In particular, the practice questions ask you to find the classful network number in which an address resides, and all other facts about that network.
Appendix E, “Practice for Chapter 14: Converting Subnet Masks,” lists practice problems associated with Chapter 14. In particular, the practice questions ask you to convert masks between the three formats.

Appendix F, “Practice for Chapter 15: Analyzing Existing Subnet Masks,” lists practice problems associated with Chapter 15. In particular, the practice questions ask you to examine an existing mask, determine the structure of the IP addresses, and calculate the number of hosts/subnet and number of subnets.

Appendix G, “Practice for Chapter 16: Designing Subnet Masks,” lists practice problems associated with Chapter 16. In particular, the practice questions ask you to examine a set of requirements, determine which mask (if any) meets those requirements, and choose the best mask based on the requirements.

Appendix H, “Practice for Chapter 17: Analyzing Existing Subnets,” lists practice problems associated with Chapter 17. In particular, the practice questions ask you to take an IP address and mask, and find the subnet ID, subnet broadcast address, and range of IP addresses in the subnet.

Appendix I, “Practice for Chapter 18: Finding All Subnet IDs,” lists practice problems associated with Chapter 18. In particular, the practice questions ask you to find all the subnet IDs in a classful network when given a single mask used throughout the network.

Appendix J, “Additional Scenarios”—One method to improve your troubleshooting and network analysis skills is to examine as many unique network scenarios as is possible, think about them, and then get some feedback as to whether you came to the right conclusions. This appendix provides several such scenarios.

Appendix K, “Video Reference”—The DVD includes several subetting videos that show how to use the processes covered in Chapter 12. This appendix contains copies of the key elements from those videos, which may be useful when watching the videos (so you do not have to keep moving back and forth in the video).

Appendix L, “Memory Tables,” holds the key tables and lists from each chapter, with some of the content removed. You can print this appendix and, as a memory exercise, complete the tables and lists. The goal is to help you memorize facts that can be useful on the exams.

Appendix M, “Memory Tables Answer Key,” contains the answer key for the exercises in Appendix L.

Appendix N, “ICND1 Open-Ended Questions,” is a hold-over from previous editions of this book. The older edition had some open-ended questions for the purpose of helping you study for the exam, but the newer features make these questions unnecessary. For convenience, the old questions are included here, unedited since the last edition.
How to Use This Book to Prepare for the ICND1 and CCNA Exams

This book was designed with two primary goals in mind: to help you study for the ICND1 exam and to help you study for the CCNA exam by using both this book and the ICND2 Exam Certification Guide. Using this book to prepare for the ICND1 exam is pretty straight-forward: read each chapter in succession and follow the study suggestions in Chapter 24.

For the core chapters of this book (Chapters 1–23), you have some choices as to how much of the chapter you read. In some cases, you may already know most or all of the information covered in a given chapter. To help you decide how much time to spend on each chapter, the chapters begin with a “Do I Know This Already?” quiz. If you get all the quiz questions correct, or just miss one question, you may want to skip to the end of the chapter and the “Exam Preparation Tasks” section, and do those activities. Figure I-2 shows the overall plan.

Figure I-2 How to Approach Each Chapter of This Book

When you complete Chapters 1–23, you can then use the guidance listed in Chapter 24 to detail the rest of the exam preparation tasks. That chapter includes the following suggestions:

- Check www.ciscopress.com for the latest copy of Appendix C, which may include additional topics for study.
- Practice subnetting using the tools available in the DVD appendices.
- Repeat the tasks in all chapters’ “Exam Preparation Tasks” chapter-ending sections.
- Review the scenarios in DVD Appendix J.
- Review all “Do I Know This Already?” questions using the exam engine.
- Practice the exam using the exam engine.

How to Use These Books to Prepare for the CCNA 640-802 Exam

If you plan to get your CCNA certification using the one-exam option of taking the CCNA 640-802 exam, you can use this book with the *CCNA ICND2 Official Cert Guide*. If you’ve not yet bought either book, you can generally get the pair cheaper by buying both books as a two-book set, called the *CCNA Certification Library*.

These two books were designed to be used together when studying for the CCNA exam. There are basically two good options for the order in which to read the two books. The first and most obvious option is to read this book, and then move on to the ICND2 book. The other option is to read all of ICND1’s coverage of one topic area, and then read ICND2’s coverage of the same topics, and then go back to ICND1 again. Figure I-3 outlines my suggested option for reading these two books.

![Figure I-3 Reading Plan When Studying for CCNA Exam](image)

Both reading plan options have some benefits. Moving back and forth between books helps you to focus on one general topic at a time. However, there is some overlap between the two exams, so there is some overlap between the two books as well. From reader comments about the previous edition of these books, those readers new to networking tended to do
better by completing the first book and then moving on to the second, while readers who had more experience and knowledge before starting the books tended to prefer to follow a reading plan like the one shown in Figure I-3.

Note that, for final preparation, you can use the final chapter (Chapter 20) of the ICND2 book instead of Chapter 24 of this book. Chapter 20 of ICND2 tells you about the same basic activities as does this book’s Chapter 24, with reminders of any exam-prep materials from this book that should be useful.

In addition to the flow shown in Figure I-3, when studying for the CCNA exam (rather than the ICND1 and ICND2 exams), it is important to study and practice IP subnetting before moving on to the IP routing and routing protocol parts of the ICND2 book. The ICND2 book does not review subnetting or the underlying math, assuming that you know how to find the answers. Those ICND2 chapters, particularly Chapter 5, “Variable Length Subnet Masks,” will be easier to understand if you can do the related subnetting math pretty easily.

For More Information

If you have any comments about the book, submit them via www.ciscopress.com. Just go to the website, select Contact Us, and type your message.

Cisco might make changes that affect the CCNA certification from time to time. You should always check www.cisco.com/go/ccna and www.cisco.com/go/ccent for the latest details.

The CCNA certification is arguably the most important Cisco certification, with the newer CCENT certification slowly gaining in popularity. CCNA certainly is the most popular Cisco certification, is required for several other certifications, and is the first step in distinguishing yourself as someone who has proven knowledge of Cisco.

The *CCENT/CCNA ICND1 Official Cert Guide* helps you attain both CCENT and CCNA certifications. This is the CCENT/CCNA ICND1 certification book from the only Cisco-authorized publisher. We at Cisco Press believe that this book certainly can help you achieve CCNA certification, but the real work is up to you! I trust that your time will be well spent.
Cisco Published ICND1 Exam Topics* Covered in This Part:

Describe the operation of data networks
- Describe the purpose and functions of various network devices
- Select the components required to meet a given network specification
- Use the OSI and TCP/IP models and their associated protocols to explain how data flows in a network
- Describe common networking applications including web applications
- Describe the purpose and basic operation of the protocols in the OSI and TCP models
- Describe the impact of applications (Voice Over IP and Video Over IP) on a network
- Describe the components required for network and Internet communications
- Identify and correct common network problems at Layers 1, 2, 3, and 7 using a layered model approach

Implement an IP addressing scheme and IP services to meet network requirements for a small branch office
- Describe the need for and role of addressing in a network
- Create and apply an addressing scheme to a network
- Describe and verify DNS operation

Implement a small routed network
- Describe basic routing concepts (including: packet forwarding, router lookup process)
- Select the appropriate media, cables, ports, and connectors to connect routers to other network devices and hosts

Identify security threats to a network and describe general methods to mitigate those threats
- Explain today’s increasing network security threats and the need to implement a comprehensive security policy to mitigate the threats
- Explain general methods to mitigate common security threats to network devices, hosts, and applications
- Describe the functions of common security appliances and applications
- Describe security recommended practices including initial steps to secure network devices

*Always check http://www.cisco.com for the latest posted exam topics.
Part I: Networking Fundamentals

Chapter 1 Introduction to Computer Networking
Chapter 2 The TCP/IP and OSI Networking Models
Chapter 3 Fundamentals of LANs
Chapter 4 Fundamentals of WANs
Chapter 5 Fundamentals of IPv4 Addressing and Routing
Chapter 6 Fundamentals of TCP/IP Transport and Application Protocols
Introduction to Computer Networking

This chapter gives you a light-hearted perspective about networks, how they were originally created, and why networks work the way they do. Although no specific fact from this chapter happens to be on any of the CCNA exams, this chapter helps you prepare for the depth of topics you will start to read about in Chapter 2, “The TCP/IP and OSI Networking Models.” If you are brand new to networking, this short introductory chapter will help you get ready for the details to follow. If you already understand some of the basics of TCP/IP, Ethernet, switches, routers, IP addressing, and the like, go ahead and skip on to Chapter 2. The rest of you will probably want to read through this short introductory chapter before diving into the details.

Perspectives on Networking

So, you are new to networking. You might have seen or heard about different topics relating to networking, but you are only just now getting serious about learning the details. Like many people, your perspective about networks might be that of a user of the network, as opposed to the network engineer who builds networks. For some, your view of networking might be based on how you use the Internet, from home, using a high-speed Internet connection. Others of you might use a computer at a job or at school, again connecting to the Internet; that computer is typically connected to a network via some cable. Figure 1-1 shows both perspectives of networking.

Figure 1-1 End-User Perspective on Networks

The top part of the figure shows a typical high-speed cable Internet user. The PC connects to a cable modem using an Ethernet cable. The cable modem then connects to a cable TV (CATV) outlet on the wall using a round coaxial cable—the same kind of cable used to connect your TV to the CATV wall outlet. Because cable Internet services provide service
continuously, the user can just sit down at the PC and start sending e-mail, browsing websites, making Internet phone calls, and using other tools and applications as well.

Similarly, an employee of a company or a student at a university views the world as a connection through a wall plug. Typically, this connection uses a type of local-area network (LAN) called Ethernet. Instead of needing a cable modem, the PC connects directly to an Ethernet-style socket in a wall plate (the socket is much like the typical socket used for telephone cabling today, but the connector is a little larger). As with high-speed cable Internet connections, the Ethernet connection does not require the PC user to do anything first to connect to the network—it is always there waiting to be used, similar to the power outlet.

From the end-user perspective, whether at home, at work, or at school, what happens behind the wall plug is magic. Just as most people do not really understand how cars work, how TVs work, and so on, most people who use networks do not understand how they work. Nor do they want to! But if you have read this much into Chapter 1, you obviously have a little more interest in networking than a typical end user. By the end of this book, you will have a pretty thorough understanding of what is behind that wall plug in both cases shown in Figure 1-1.

The CCNA exams, and particularly the ICND1 (640-822) exam, focus on two major branches of networking concepts, protocols, and devices. One of these two major branches is called enterprise networking. An enterprise network is a network created by one corporation, or enterprise, for the purpose of allowing its employees to communicate. For example, Figure 1-2 shows the same type of PC end-user shown in Figure 1-1, who is now communicating with a web server through the enterprise network (represented by a cloud) created by Enterprise #2. The end-user PC can communicate with the web server to do something useful for the company—for instance, the user might be on the phone with a customer, with the user typing in the customer’s new order in the ordering system that resides in the web server.

Figure 1-2 An Example Representation of an Enterprise Network
The second major branch of networking covered on the ICND1 exam is called small office/home office, or SOHO. This branch of networking uses the same concepts, protocols, and devices used to create enterprise networks, plus some additional features that are not needed for enterprises. SOHO networking allows a user to connect to the Internet using a PC and any Internet connection, such as the high-speed cable Internet connection shown in Figure 1-1. Because most enterprise networks also connect to the Internet, the SOHO user can sit at home, or in a small office, and communicate with servers at the enterprise network, as well as with other hosts in the Internet. Figure 1-3 shows the concept.

NOTE In networking diagrams, a cloud represents a part of a network whose details are not important to the purpose of the diagram. In this case, Figure 1-2 ignores the details of how to create an enterprise network.

The Internet itself consists of most every enterprise network in the world, plus billions of devices connecting to the Internet directly through Internet service providers (ISPs). In fact, the term itself—Internet—is formed by shortening the phrase “interconnected networks.” To create the Internet, ISPs offer Internet access, typically using either a cable TV line, a phone line using digital subscriber line (DSL) technology, or a telephone line with a modem. Each enterprise typically connects to at least one ISP, using permanent connections generally called wide-area network (WAN) links. Finally, the ISPs of the world also connect to each other. These interconnected networks—from the smallest single-PC home network, to cell phones and MP3 players, to enterprise networks with thousands of devices—all connect to the global Internet.
Most of the details about standards for enterprise networks were created in the last quarter of the 20th century. You might have become interested in networking after most of the conventions and rules used for basic networking were created. However, you might understand the networking rules and conventions more easily if you take the time to pause and think about what you would do if you were creating these standards. The next section takes you through a somewhat silly example of thinking through some imaginary early networking standards, but this example has real value in terms of exploring some of the basic concepts behind enterprise networking and some of the design trade-offs.

The Flintstones Network: The First Computer Network?
The Flintstones are a cartoon family that, according to the cartoon, lived in prehistoric times. Because I want to discuss the thought process behind some imaginary initial networking standards, the Flintstones seem to be the right group of people to put in the example.

Fred is the president of FedsCo, where his wife (Wilma), buddy (Barney), and buddy’s wife (Betty) all work. They all have phones and computers, but they have no network because no one has ever made up the idea of a network before. Fred sees all his employees exchanging data by running around giving each other disks with files on them, and it seems inefficient. So, Fred, being a visionary, imagines a world in which people can connect their computers somehow and exchange files, without having to leave their desks. The (imaginary) first network is about to be born.

Fred’s daughter, Pebbles, has just graduated from Rockville University and wants to join the family business. Fred gives her a job, with the title First-Ever Network Engineer. Fred says to Pebbles, “Pebbles, I want everyone to be able to exchange files without having to get up from their desks. I want them to be able to simply type in the name of a file and the name of the person, and poof! The file appears on the other person’s computer. And because everyone changes departments so often around here, I want the workers to be able to take their PCs with them and just have to plug the computer into a wall socket so that they can send and receive files from the new office to which they moved. I want this network thing to be like the electrical power thing your boyfriend, Bamm-Bamm, created for us last year—a plug in the wall near every desk, and if you plug in, you are on the network!”

Pebbles first decides to do some research and development. If she can get two PCs to transfer files in a lab, then she ought to be able to get all the PCs to transfer files, right? She writes a program called Fred’s Transfer Program, or FTP, in honor of her father.
The program uses a new networking card that Pebbles built in the lab. This networking card uses a cable with two wires in it—one wire to send bits and one wire to receive bits. Pebbles puts one card in each of the two computers and cables the computers together with a cable with two wires in it. The FTP software on each computer sends the bits that comprise the files by using the networking cards. If Pebbles types a command such as `ftp send filename`, the software transfers the file called filename to the computer at the other end of the cable. Figure 1-4 depicts the first network test at FredsCo.

Figure 1-4 Two PCs Transfer Files in the Lab

Pebbles’ new networking cards use wire 1 to send bits and wire 2 to receive bits, so the cable used by Pebbles connects wire 1 on PC1 to wire 2 on PC2, and vice versa. That way, both cards can send bits using wire 1, and those bits will enter the other PC on the other PC’s wire 2.

Bamm-Bamm stops by to give Pebbles some help after hearing about the successful test. “I am ready to start deploying the network!” she exclaims. Bamm-Bamm, the wizened one-year veteran of FredsCo who graduated from Rockville University a year before Pebbles, starts asking some questions. “What happens when you want to connect three computers together?” he asks. Pebbles explains that she can put two networking cards in each computer and cable each computer to each other. “So what happens when you connect 100 computers to the network, in each building?” Pebbles then realizes that she has a little more work to do. She needs a scheme that allows her network to scale to more than two users. Bamm-Bamm then offers a suggestion, “We ran all the electrical power cables from the wall plug at each cube back to the broom closet. We just send electricity from the closet out to the wall plug near every desk. Maybe if you did something similar, you could find a way to somehow make it all work.”

With that bit of input, Pebbles has all the inspiration she needs. Emboldened by the fact that she has already created the world’s first PC networking card, she decides to create a device that will allow cabling similar to Bamm-Bamm’s electrical cabling plan. Pebble’s solution to this first major hurdle is shown in Figure 1-5.
Pebbles follows Bamm-Bamm’s advice about the cabling. However, she needs a device into which she can plug the cables—something that will take the bits sent by a PC, and reflect, or repeat, the bits back to all the other devices connected to this new device. Because the networking cards send bits using wire 1, Pebbles builds this new device in such a way that when it receives bits coming in wire 1 on one of its ports, it repeats the same bits, but repeats them out wire 2 on all the other ports, so that the other PCs get those bits on the receive wire. (Therefore, the cabling does not have to swap wires 1 and 2—this new device takes care of that.) And because she is making this up for the very first time in history, she needs to decide on a name for this new device: She names the device a hub.

Before deploying the first hub and running a bunch of cables, Pebbles does the right thing: She tests it in a lab, with three PCs connected to the world’s first hub. She starts FTP on PC1, transfers the file called recipe.doc, and sees a window pop up on PC2 saying that the file was received, just like normal. “Fantastic!” she thinks, until she realizes that PC3 also has the same pop-up window on it. She has transferred the file to both PC2 and PC3! “Of course!” she thinks. “If the hub repeats everything out every cable connected to it, then when my FTP program sends a file, everyone will get it. I need a way for FTP to send a file to a specific PC!”

At this point, Pebbles thinks of a few different options. First, she thinks that she will give each computer the same name as the first name of the person using the computer. She will then change FTP to put the name of the PC that the file was being sent to in front of the file contents. In other words, to send her mom a recipe, she will use the `ftp Wilma recipe.doc` command. So, even though each PC will receive the bits because the hub repeats the signal to everyone connected to it, only the PC whose name is the one in front of the file should actually create the file. Then her dad walks in: “Pebbles, I want you to meet Barney Fife, our new head of security. He needs a network connection as well—you are going to be finished soon, right?”
So much for using first names for the computers, now that there are two people named Barney at FredsCo. Pebbles, being mathematically inclined and in charge of creating all the hardware, decides on a different approach. “I will put a unique numeric address on each networking card—a four-digit decimal number,” she exclaims. Because Pebbles created all the cards, she will make sure that the number used on each card is unique. Also, with a four-digit number, she will never run out of unique numbers—she has 10,000 (10^4) to choose from and only 200 employees at FredsCo.

By the way, because she is making all this up for the very first time, Pebbles calls these built-in numbers on the cards addresses. When anyone wants to send a file, they can just use the ftp command, but with a number instead of a name. For instance, \texttt{ftp 0002 recipe.doc} will send the recipe.doc file to the PC whose network card has the address 0002. Figure 1-6 depicts the new environment in the lab.

Now, with some minor updates to the Fred Transfer Program, the user can type \texttt{ftp 0002 recipe.doc} to send the file recipe.doc to the PC with address 0002. Pebbles tests the software and hardware in the lab again, and although the hub forwards the frames from PC1 to both PC2 and PC3, only PC2 processes the frames and creates a copy of the file. Similarly, when Pebbles sends the file to address 0003, only PC3 processes the received frames and creates a file. She is now ready to deploy the first computer network.

Pebbles now needs to build all the hardware required for the network. She first creates 200 network cards, each with a unique address. She installs the FTP program on all 200 PCs and installs the cards in each PC. Then she goes back to the lab and starts planning how many cables she will need and how long each cable should be. At this point, Pebbles
realizes that she will need to run some cables a long way. If she puts the hub in the bottom floor of building A, the PCs on the fifth floor of building B will need a really long cable to connect to the hub. Cables cost money, and the longer the cable is, the more expensive the cable is. Besides, she has not yet tested the network with longer cables; she has been using cables that are only a couple of meters long.

Bamm-Bamm walks by and sees that Pebbles is stressed. Pebbles vents a little: “Daddy wants this project finished, and you know how demanding he is. And I didn’t think about how long the cables will be—I will be way over budget. And I will be installing cables for weeks!” Bamm-Bamm, being a little less stressed, having just come from a lunchtime workout at the club, knows that Pebbles already has the solution—she is too stressed to see it. Of course, the solution is not terribly different from how Bamm-Bamm solved a similar problem with the electrical cabling last year. “Those hubs repeat everything they hear, right? So, why not make a bunch of hubs. Put one hub on each floor, and run cables from all the PCs. Then run one cable from the hub on each floor to a hub on the first floor. Then, run one cable between the two main hubs in the two buildings. Because they repeat everything, every PC should receive the signal when just one PC sends, whether they are attached to the same hub or are four hubs away.” Figure 1-7 depicts Bamm-Bamm’s suggested design.

Figure 1-7 Per-Floor Hubs, Connected Together
Pebbles loves the idea. She builds and connects the new hubs in the lab, just to prove the concept. It works! She makes the (now shorter) cables, installs the hubs and cables, and is ready to test. She goes to a few representative PCs and tests, and it all works! The first network has now been deployed.

Wanting to surprise Poppa Fred, Pebbles writes a memo to everyone in the company, telling them how to use the soon-to-be-famous Fred Transfer Program to transfer files. Along with the memo, she puts a list of names of people and the four-digit network address to be used to send files to each PC. She puts the memos in everyone’s mail slot and waits for the excitement to start.

Amazingly, it all works. The users are happy. Fred treats Pebbles and Bamm-Bamm to a nice dinner—at home, cooked by Wilma, but a good meal nonetheless.

Pebbles thinks she did it—created the world’s first computer network, with no problems—until a few weeks pass. “I can’t send files to Fred anymore!” exclaims Barney Rubble. “Ever since Fred got that new computer, he is too busy to go bowling, and now I can’t even send files to him to tell him how much we need him back on the bowling team!” Then it hits Pebbles—Fred had just received a new PC and a new networking card. Fred’s network address has changed. If the card fails and it has to be replaced, the address changes.

About that time, Wilma comes in to say hi. “I love that new network thing you built. Betty and I can type notes to each other, put them in a file, and send them anytime. It is almost like working on the same floor!” she says. “But I really don’t remember the numbers so well. Couldn’t you make that FTP thing work with names instead of addresses?”

In a fit of inspiration, Pebbles sees the answer to the first problem in the solution to her mom’s problem. “I will change FTP to use names instead of addresses. I will make everyone tell me what name they want to use—maybe Barney Rubble will use BarneyR, and Barney Fife will use BarneyF, for instance. I will change FTP to accept names as well as numbers. Then I will tell FTP to look in a table that I will put on each PC that correlates the names to the numeric addresses. That way, if I ever need to replace a LAN card, all I
have to do is update the list of names and addresses and put a copy on everyone’s PC, and no one will know that anything has changed!” Table 1-1 lists Pebbles’ first name table.

Table 1-1 Pebbles’ First Name/Address Table

<table>
<thead>
<tr>
<th>Person’s Name</th>
<th>Computer Name</th>
<th>Network Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fred Flintstone</td>
<td>Fred</td>
<td>0001</td>
</tr>
<tr>
<td>Wilma Flintstone</td>
<td>Wilma</td>
<td>0002</td>
</tr>
<tr>
<td>Barney Rubble</td>
<td>BarneyR</td>
<td>0011</td>
</tr>
<tr>
<td>Betty Rubble</td>
<td>Betty</td>
<td>0012</td>
</tr>
<tr>
<td>Barney Fife</td>
<td>BarneyF</td>
<td>0022</td>
</tr>
<tr>
<td>Pebbles Flintstone</td>
<td>Netguru</td>
<td>0030</td>
</tr>
<tr>
<td>Bamm-Bamm Rubble</td>
<td>Electrical-guy</td>
<td>0040</td>
</tr>
</tbody>
</table>

Pebbles tries out the new FTP program and name/address table in the lab, and it works. She deploys the new FTP software, puts the name table on everyone’s PC, and sends another memo. Now she can accommodate changes easily by separating the physical details, such as addresses on the networking cards, from what the end users need to know.

Like all good network engineers, Pebbles thought through the design and tested it in a lab before deploying the network. For the problems she did not anticipate, she found a reasonable solution to get around the problem.

So ends the story of the obviously contrived imaginary first computer network. What purpose did this silly example really serve? First, you have now been forced to think about some basic design issues that confronted the people who created the networking tools that you will be learning about for the CCNA exams. Although the example with Pebbles might have been fun, the problems that she faced are the same problems faced—and solved—by the people who created the original networking protocols and products.
The other big benefit to this story, particularly for those of you brand new to networking, is that you already know some of the more important concepts in networking:

Ethernet networks use cards inside each computer.

The cards have unique numeric addresses, similar to Pebbles’ networking cards.

Ethernet cables connect PCs to Ethernet hubs—hubs that repeat each received signal out all other ports.

The cabling is typically run in a star configuration—in other words, all cables run from a cubicle to a wiring (not broom!) closet.

Applications such as the contrived Fred Transfer Program or the real-life File Transfer Protocol (FTP) ask the underlying hardware to transfer the contents of files. Users can use names—for instance, you might surf a website called www.certskills.com—but the name gets translated into the correct address.

Now on to the real chapters, with real protocols and devices, with topics that you could see on the ICND1 exam.
This chapter covers the following subjects:

TCP/IP Networking Model: This section explains the terminology and concepts behind the world’s most popular networking model, TCP/IP, including several example protocols: HTTP, TCP, IP, and Ethernet.

OSI Networking Model: This section explains the terminology behind the OSI networking model in comparison to TCP/IP.
The TCP/IP and OSI Networking Models

You can think of a networking model as you think of a set of architectural plans for building a house. Sure, you can build a house without the architectural plans, but it will work better if you follow the plans. And because you probably have a lot of different people working on building your house, such as framers, electricians, bricklayers, painters, and so on, it helps if they can all reference the same plan. Similarly, you could build your own network, write your own software, build your own networking cards, and create a network without using any existing networking model. However, it is much easier to simply buy and use products that already conform to some well-known networking model. Because the networking product vendors use the same networking model, their products should work well together.

The CCNA exams include detailed coverage of one networking model: Transmission Control Protocol/Internet Protocol (TCP/IP). TCP/IP is the most pervasively used networking model in the history of networking. You can find support for TCP/IP on practically every computer operating system (OS) in existence today, from mobile phones to mainframe computers. Every network built using Cisco products today supports TCP/IP. And not surprisingly, the CCNA exams focus heavily on TCP/IP.

The ICND1 exam, and the ICND2 exam to a small extent, also covers a second networking model, called the Open System Interconnection (OSI) reference model. Historically, OSI was the first large effort to create a vendor-neutral networking model. Because of that timing, many of the terms used in networking today come from the OSI model, so this chapter’s section on OSI discusses OSI and the related terminology.

“Do I Know This Already?” Quiz
The “Do I Know This Already?” quiz allows you to assess if you should read the entire chapter. If you miss no more than one of these ten self-assessment questions, you might want to move ahead to the “Exam Preparation Tasks” section. Table 2-1 lists the major headings in this chapter and the “Do I Know This Already?” quiz questions covering the material in those headings so you can assess your knowledge of these specific areas.
answers to the “Do I Know This Already?” quiz appear in Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”

Table 2-1 Do I Know This Already? Foundation Topics Section-to-Question Mapping

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP/IP Networking Model</td>
<td>1–6</td>
</tr>
<tr>
<td>OSI Networking Model</td>
<td>7–10</td>
</tr>
</tbody>
</table>

1. Which of the following protocols are examples of TCP/IP transport layer protocols? (Choose two answers.)
 a. Ethernet
 b. HTTP
 c. IP
 d. UDP
 e. SMTP
 f. TCP

2. Which of the following protocols are examples of TCP/IP network access layer protocols? (Choose two answers.)
 a. Ethernet
 b. HTTP
 c. IP
 d. UDP
 e. SMTP
 f. TCP
 g. PPP

3. The process of HTTP asking TCP to send some data and making sure that it is received correctly is an example of what?
 a. Same-layer interaction
 b. Adjacent-layer interaction
 c. OSI model
 d. All of these answers are correct.
4. The process of TCP on one computer marking a TCP segment as segment 1, and the receiving computer then acknowledging the receipt of TCP segment 1 is an example of what?
 a. Data encapsulation
 b. Same-layer interaction
 c. Adjacent-layer interaction
 d. OSI model
 e. All of these answers are correct.

5. The process of a web server adding a TCP header to the contents of a web page, followed by adding an IP header, and then adding a data link header and trailer is an example of what?
 a. Data encapsulation
 b. Same-layer interaction
 c. OSI model
 d. All of these answers are correct.

6. Which of the following terms is used specifically to identify the entity created when encapsulating data inside data link layer headers and trailers?
 a. Data
 b. Chunk
 c. Segment
 d. Frame
 e. Packet
 f. None of these—there is no encapsulation by the data link layer.

7. Which OSI layer defines the functions of logical network-wide addressing and routing?
 a. Layer 1
 b. Layer 2
 c. Layer 3
 d. Layer 4
 e. Layer 5
 f. Layer 6
 g. Layer 7
8. Which OSI layer defines the standards for cabling and connectors?
 a. Layer 1
 b. Layer 2
 c. Layer 3
 d. Layer 4
 e. Layer 5
 f. Layer 6
 g. Layer 7

9. Which OSI layer defines the standards for data formats and encryption?
 a. Layer 1
 b. Layer 2
 c. Layer 3
 d. Layer 4
 e. Layer 5
 f. Layer 6
 g. Layer 7

10. Which of the following terms are not valid terms for the names of the seven OSI layers? (Choose two answers.)
 a. Application
 b. Data link
 c. Transmission
 d. Presentation
 e. Internet
 f. Session
TCP/IP Networking Model

A networking model, sometimes also called either a networking architecture or networking blueprint, refers to a comprehensive set of documents. Individually, each document describes one small function required for a network; collectively, these documents define everything that should happen for a computer network to work. Some documents define a protocol, which is a set of logical rules that devices must follow to communicate. Other documents define some physical requirements for networking. For example, a document could define the voltage and current levels used on a particular cable when transmitting data.

You can think of a networking model as you think of an architectural blueprint for building a house. Sure, you can build a house without the blueprint. However, the blueprint can ensure that the house has the right foundation and structure so it will not fall down, and it has the correct hidden spaces to accommodate the plumbing, electrical, gas, and so on. Also, the many different people that build the house using the blueprint—such as framers, electricians, bricklayers, painters, and so on—know that if they follow the blueprint, their part of the work should not cause problems for the other workers.

Similarly, you could build your own network—write your own software, build your own networking cards, and so on—to create a network. However, it is much easier to simply buy and use products that already conform to some well-known networking model or blueprint. Because the networking product vendors build their products with some networking model in mind, their products should work well together.

History Leading to TCP/IP

Today, the world of computer networking uses one networking model: TCP/IP (Transmission Control Protocol / Internet Protocol). However, the world has not always been so simple. Once upon a time, there were no networking protocols, including TCP/IP. Vendors created the first networking protocols; these protocols supported only that vendor’s computers. For instance, IBM published its Systems Network Architecture (SNA) networking model in 1974. Other vendors also created their own proprietary networking models. As a result, if your company bought computers from three vendors, network engineers often had to create three different networks based on the networking models created by each company, and then somehow connect those networks, making the combined networks much more complex. The left side of Figure 2-1 shows the general idea of what a company’s enterprise network might have looked back in the 1980s, before TCP/IP became common in enterprise internetworks.
Although vendor-defined proprietary networking models often worked well, having an open, vendor-neutral networking model would aid competition and reduce complexity. The International Organization for Standardization (ISO) took on the task to create such a model, starting as early as the late 1970s, beginning work on what would become known as the Open System Interconnection (OSI) networking model. ISO had a noble goal for the OSI model: to standardize data networking protocols to allow communication between all computers across the entire planet. ISO worked toward this ambitious and noble goal, with participants from most of the technologically developed nations on Earth participating in the process.

A second, less formal effort to create an open, vendor-neutral, public networking model sprouted forth from a U.S. Department of Defense (DoD) contract. Researchers at various universities volunteered to help further develop the protocols surrounding the original DoD work. These efforts resulted in a competing open networking model called TCP/IP.

During the 1990s, companies began adding OSI, TCP/IP, or both to their enterprise networks. However, by the end of the 1990s, TCP/IP had become the common choice, and OSI fell away. The center part of Figure 2-1 shows the general idea behind enterprise networks in that decade—still with networks built upon multiple networking models, but including TCP/IP.

Here in the 21st century, TCP/IP dominates. Proprietary networking models still exist, but they have mostly been discarded in favor of TCP/IP. The OSI model, whose development suffered in part because of a slower formal standardization process as compared with TCP/IP, never succeeded in the marketplace. And TCP/IP, the networking model originally created almost entirely by a bunch of volunteers, has become the most prolific network model ever, as shown on the right side of Figure 2-1.
In this chapter, you will read about some of the basics of TCP/IP. Although you will learn some interesting facts about TCP/IP, the true goal of this chapter is to help you understand what a networking model or networking architecture really is and how it works.

Also in this chapter, you will learn about some of the jargon used with OSI. Will any of you ever work on a computer that is using the full OSI protocols instead of TCP/IP? Probably not. However, you will often use terms relating to OSI. Also, the ICND1 exam covers the basics of OSI, so this chapter also covers OSI to prepare you for questions about it on the exam.

Overview of the TCP/IP Networking Model

The TCP/IP model both defines and references a large collection of protocols that allow computers to communicate. To define a protocol, TCP/IP uses documents called Requests for Comments (RFC). (You can find these RFCs using any online search engine.) The TCP/IP model also avoids repeating work already done by some other standards body or vendor consortium by simply referring to standards or protocols created by those groups. For example, the Institute of Electrical and Electronic Engineers (IEEE) defines Ethernet LANs; the TCP/IP model does not define Ethernet in RFCs, but refers to IEEE Ethernet as an option.

An easy comparison can be made between telephones and computers that use TCP/IP. You go to the store and buy a phone from one of a dozen different vendors. When you get home and plug in the phone to the same cable in which your old phone was connected, the new phone works. The phone vendors know the standards for phones in their country and build their phones to match those standards.

Similarly, when you buy a new computer today, it implements the TCP/IP model to the point that you can usually take the computer out of the box, plug in all the right cables, turn it on, and it connects to the network. You can use a web browser to connect to your favorite website. How? Well, the OS on the computer implements parts of the TCP/IP model. The Ethernet card, or wireless LAN card, built into the computer implements some LAN standards referenced by the TCP/IP model. In short, the vendors that created the hardware and software implemented TCP/IP.

To help people understand a networking model, each model breaks the functions into a small number of categories called *layers*. Each layer includes protocols and standards that relate to that category of functions. TCP/IP actually has two alternative models, as shown in Figure 2-2.
The model on the left, the original TCP/IP model, breaks TCP/IP into four layers. The top layers focus more on the applications that need to send and receive data, whereas the lower layers focus more on the need to somehow transmit the bits from one device to another. The model on the right is a newer version of the model, formed by expanding the network access layer on the left into two separate layers: data link and physical. Note that the model on the right is used more often today.

Many of you will have already heard of several TCP/IP protocols, like the examples listed in Table 2-2. Most of the protocols and standards in this table will be explained in more detail as you work through this book. Following the table, this section takes a closer look at the layers of the TCP/IP model.

Table 2-2 TCP/IP Architectural Model and Example Protocols

<table>
<thead>
<tr>
<th>TCP/IP Architecture Layer</th>
<th>Example Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>HTTP, POP3, SMTP</td>
</tr>
<tr>
<td>Transport</td>
<td>TCP, UDP</td>
</tr>
<tr>
<td>Internet</td>
<td>IP</td>
</tr>
<tr>
<td>Network Access</td>
<td>Ethernet, Point-to-Point Protocol (PPP), T/1</td>
</tr>
</tbody>
</table>

TCP/IP Application Layer

TCP/IP application layer protocols provide services to the application software running on a computer. The application layer does not define the application itself, but it defines services that applications need. For example, application protocol HTTP defines how web browsers can pull the contents of a web page from a web server. In short, the application layer provides an interface between software running on a computer and the network itself.
Arguably, the most popular TCP/IP application today is the web browser. Many major software vendors either have already changed or are changing their application software to support access from a web browser. And thankfully, using a web browser is easy: you start a web browser on your computer and select a website by typing the name of the website, and the web page appears.

HTTP Overview

What really happens to allow that web page to appear on your web browser?

Imagine that Bob opens his browser. His browser has been configured to automatically ask for web server Larry’s default web page, or *home page*. The general logic looks like Figure 2-3.

Figure 2-3 Basic Application Logic to Get a Web Page

So, what really happened? Bob’s initial request actually asks Larry to send his home page back to Bob. Larry’s web server software has been configured to know that the default web page is contained in a file called home.htm. Bob receives the file from Larry and displays the contents of the file in the web-browser window.

HTTP Protocol Mechanisms

Taking a closer look, this example shows how applications on each endpoint computer—specifically, the web-browser application and web-server application—use a TCP/IP application layer protocol. To make the request for a web page and return the contents of the web page, the applications use the Hypertext Transfer Protocol (HTTP).

HTTP did not exist until the Tim Berners-Lee created the first web browser and web server in the early 1990s. Berners-Lee gave HTTP functions to ask for the contents of web pages, specifically by giving the web browser the ability to request files from the server, and giving the server a way to return the content of those files. The overall logic matches what was shown in Figure 2-3; Figure 2-4 shows the same idea, but with details specific to HTTP.
To get the web page from Larry, at Step 1, Bob sends a message with an HTTP header. Generally, protocols use headers as a place to put information used by that protocol. This HTTP header includes the request to “get” a file. The request typically contains the name of the file (home.htm, in this case), or, if no filename is mentioned, the web server assumes that Bob wants the default web page.

Step 2 in Figure 2-4 shows the response from web server Larry. The message begins with an HTTP header, with a return code (200), which means something as simple as “OK” returned in the header. HTTP also defines other return codes, so the server can tell the browser whether the request worked or not. (As another example: If you ever looked for a web page that was not found, and then received an HTTP 404 “not found” error, you received an HTTP return code of 404.) The second message also includes the first part of the requested file.

Step 3 in Figure 2-4 shows another message from web server Larry to web browser Bob, but this time without an HTTP header. HTTP transfers the data by sending multiple messages, each with a part of the file. Rather than wasting space by sending repeated HTTP headers that list the same information, these additional messages simply omit the header.

TCP/IP Transport Layer

Although many TCP/IP application layer protocols exist, the TCP/IP transport layer includes a smaller number of protocols. The two most commonly used transport layer
protocols are the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP).

Transport layer protocols provide services to the application layer protocols that reside one layer higher in the TCP/IP model. How does a transport layer protocol provide a service to a higher layer protocol? This section introduces that general concept by focusing on a single service provided by TCP: error recovery. Later chapters examine the transport layer in more detail, and discuss more functions of the transport layer.

TCP Error Recovery Basics

To appreciate what the transport layer protocols do, you must think about the layer above the transport layer, the application layer. Why? Well, each layer provides a service to the layer above it, like the error-recovery service provided to application layer protocols by TCP.

For example, in Figure 2-3, Bob and Larry used HTTP to transfer the home page from web server Larry to Bob’s web browser. But what would have happened if Bob’s HTTP GET request had been lost in transit through the TCP/IP network? Or, what would have happened if Larry’s response, which included the contents of the home page, had been lost? Well, as you might expect, in either case, the page would not have shown up in Bob’s browser.

TCP/IP needs a mechanism to guarantee delivery of data across a network. Because many application layer protocols probably want a way to guarantee delivery of data across a network, the creators of TCP included an error recovery feature. To recover from errors, TCP uses the concept of acknowledgments. Figure 2-5 outlines the basic idea behind how TCP notices lost data and asks the sender to try again.

Figure 2-5 TCP Error Recovery Services as Provided to HTTP

![TCP Error Recovery Services as Provided to HTTP](image)
Figure 2-5 shows web server Larry sending a web page to web browser Bob, using three separate messages. Note that this figure shows the same HTTP headers as Figure 2-4, but it also shows a TCP header. The TCP header shows a sequence number (SEQ) with each message. In this example, the network has some problem so that the network fails to deliver the segment with sequence number 2. When Bob receives messages with sequence numbers 1 and 3, but does not receive a message with sequence number 2, Bob realizes that message 2 was lost. That realization by Bob’s TCP logic causes Bob to send a TCP segment back to Larry, asking Larry to send message 2 again.

Same Layer and Adjacent Layer Interactions

The example in Figure 2-4 also demonstrates a function called *adjacent-layer interaction*, which refers to the concepts of how adjacent layers in a networking model, on the same computer, work together. In this example, the higher-layer protocol (HTTP) needs to do something it cannot do (error recovery). The higher layer asks for the next lower-layer protocol (TCP) to perform the service; the lower layer provides a service to the layer above it.

Figure 2-4 also shows an example of a similar function called *same-layer interaction*. When a particular layer on one computer wants to communicate with the same layer on another computer, the two computers use headers to hold the information that they want to communicate. For example, in Figure 2-4, Larry set the sequence numbers to 1, 2, and 3, so that Bob could notice when some of the data did not arrive. Larry’s TCP process created that TCP header with the sequence number; Bob’s TCP process received and reacted to the TCP segments. This process through which two computers set and interpret the information in the header used by that layer is called *same-layer interaction*, and it occurs between different computers.

Table 2-3 summarizes the key points about how adjacent layers work together on a single computer and how one layer on one computer works with the same networking layer on another computer.

<table>
<thead>
<tr>
<th>Concept</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same-layer interaction on different computers</td>
<td>The two computers use a protocol to communicate with the same layer on another computer. The protocol defined by each layer uses a header that is transmitted between the computers to communicate what each computer wants to do.</td>
</tr>
<tr>
<td>Adjacent-layer interaction on the same computer</td>
<td>On a single computer, one layer provides a service to a higher layer. The software or hardware that implements the higher layer requests that the next lower layer perform the needed function.</td>
</tr>
</tbody>
</table>
TCP/IP Internet Layer

The application layer includes many protocols. The transport layer includes fewer, most notably, TCP and UDP. The TCP/IP Internet layer includes a small number of protocols, but only one major protocol: the Internet Protocol (IP). In fact, the name TCP/IP is simply the names of the two most common protocols (TCP and IP) separated by a /.

IP provides several features, most importantly, addressing and routing. This section begins by comparing IP’s addressing and routing with another commonly known system that uses addressing and routing: the postal service. Following that, this section introduces IP addressing and routing. (More details follow in Chapter 5, “Fundamentals of IPv4 Addressing and Routing.”)

Internet Protocol and the Postal Service

Imagine that you just wrote two letters: one to a friend on the other side of the country and one to a friend on the other side of town. You addressed the envelopes and put on the stamps, so both are ready to give to the postal service. Is there much difference in how you treat each letter? Not really. Typically, you would just put them in the same mailbox, and expect the postal service to deliver both letters.

The postal service, however, must think about each letter separately, and then make a decision of where to send each letter so it is delivered. For the letter sent across town, the people in the local post office probably just need to put the letter on another truck.

For the letter that needs to go across the country, the postal service sends the letter to another post office, then another, and so on, until the letter gets delivered across the country. At each post office, the postal service must process the letter and choose where to send it next.

To make it all work, the postal service has regular routes for small trucks, large trucks, planes, boats, and so on, to move letters between postal service sites. The service must be able to receive and forward the letters, and it must make good decisions about where to send each letter next, as shown in Figure 2-6.

Still thinking about the postal service, consider the difference between the person sending the letter and the work that the postal service does. The person sending the letters expects that the postal service will deliver the letter most of the time. However, the person sending the letter does not need to know the details of exactly what path the letters take. In contrast, the postal service does not create the letter, but they accept the letter from the customer. Then, the postal service must know the details about addresses, postal codes that group addresses into larger groups, and it must have the ability to deliver the letters.
The TCP/IP application and transport layers act like the person sending letters through the postal service. These upper layers work the same way regardless of whether the endpoint host computers are on the same LAN or are separated by the entire Internet. To send a message, these upper layers ask the layer below them, the Internet layer, to deliver the message.

The lower layers of the TCP/IP model, the Internet layer and the network access layer, act more like the postal service to deliver those messages to the correct destinations. To do so, these lower layers must understand the underlying physical network because they must choose how to best deliver the data from one host to another.

So, what does this all matter to networking? Well, the Internet layer of the TCP/IP networking model, primarily defined by the Internet Protocol (IP), works much like the postal service. IP defines addresses so that each host computer can have a different IP address, just as the postal service defines addressing that allows unique addresses for each house, apartment, and business. Similarly, IP defines the process of routing so that devices called routers can work like the post office to forward packets of data so that they are delivered to the correct destinations. Just as the postal service created the necessary infrastructure to be able to deliver letters—post offices, sorting machines, trucks, planes, and personnel—the Internet layer defines the details of how a network infrastructure should be created so that the network can deliver data to all computers in the network.
Internet Protocol Addressing Basics

IP defines addresses for several important reasons. First, each device that uses TCP/IP—each TCP/IP host—needs a unique address so that it can be identified in the network. IP also defines how to group addresses together, just like the postal system groups addresses based on postal codes (like ZIP codes in the U.S.).

To understand the basics, examine Figure 2-7, which shows the familiar web server Larry and web browser Bob; but now, instead of ignoring the network between these two computers, part of the network infrastructure is included.

![Figure 2-7](image_url)

First, note that Figure 2-7 shows some sample IP addresses. Each IP address has four numbers, separated by periods. In this case, Larry uses IP address 1.1.1.1, and Bob uses 2.2.2.2. This style of number is called a dotted-decimal notation (DDN).

Figure 2-7 also shows three groups of address. In this example, all IP address that begin with 1 must be on the upper left, as shown in shorthand in the figure as 1._._._. All addresses that begin with 2 must be on the right, as shown in shorthand as 2._._._. Finally, all IP addresses that begin with 3 must be on the bottom of the figure.

Additionally, Figure 2-7 also introduces icons that represent IP routers. Routers are networking devices that connect the parts of the TCP/IP network together for the purpose of routing (forwarding) IP packets to the correct destination. Routers do the equivalent of the work done by each post office site: they receive IP packets on various physical interfaces, make decisions based on the IP address included with the packet, and then physically forward the packet out some other network interface.
IP Routing Basics

The TCP/IP Internet layer, using the IP protocol, provides a service of forwarding IP packets from one device to another. Any device with an IP address can connect to the TCP/IP network and send packets. This section shows a basic IP routing example for perspective.

NOTE The term *IP host* refers to any device, regardless of size or power, that has an IP address and connects to any TCP/IP network.

Figure 2-8 repeats the familiar case in which web server Larry wants to send part of a web page to Bob, but now with details related to IP. On the lower left, note that server Larry has the familiar application data, HTTP header, and TCP header ready to send. Additionally, the message now also contains an IP header. The IP header includes a source IP address of Larry’s IP (1.1.1.1) and a destination IP address of Bob’s IP address (2.2.2.2).

Figure 2-8 Basic Routing Example

Step 1, on the left of Figure 2-8, begins with Larry being ready to send an IP packet. Larry’s IP process chooses to send the packet to some router—a nearby router on the same LAN—with the expectation that the router will know how to forward the packet. (This logic is much like you or me sending all of our letters by putting them in a nearby post office box.) Larry doesn’t need to know anything more about the topology or the other routers.

At Step 2, router R1 receives the IP packet, and R1’s IP process makes a decision. R1 looks at the destination address (2.2.2.2), compares that address to its known IP routes, and chooses to forward the packet to router R2. This process of forwarding the IP packet is called *IP routing* (or simply *routing*).

At Step 3, router R2 repeats the same kind of logic used by router R1. R2’s IP process will compare the packet’s destination IP address (2.2.2.2) to R2’s known IP routes and make a choice to forward the packet to the right, on to Bob.
All the CCNA exams cover IP fairly deeply. Practically half the chapters in this book discuss some feature that relates to addressing, IP routing, and how routers perform routing.

TCP/IP Network Access Layer

The TCP/IP model’s network access layer defines the protocols and hardware required to deliver data across some physical network. The term *network access* refers to the fact that this layer defines how to access or use the physical media over which data can be transmitted.

Just like every layer in any networking model, the TCP/IP network access layer provides services to the layer above it in the model. When a host or router’s IP process chooses to send an IP packet to another router or host, that host or router then uses network access layer details to send that packet to the next host/router.

Because each layer provides a service to the layer above it, take a moment to think about the IP logic related to Figure 2-8. In that example, host Larry’s IP logic chooses to send the IP packet to a nearby router (R1), with no mention of the underlying Ethernet. The Ethernet network, which implements access layer protocols, must then be used to deliver that packet from host Larry over to router R1. Figure 2-9 shows four steps of what occurs at the network access layer to allow Larry to send the IP packet to R1.

NOTE Figure 2-9 depicts the Ethernet as a series of lines. Networking diagrams often use this convention when drawing Ethernet LANs, in cases where the actual LAN cabling and LAN devices are not important to some discussion, as is the case here. The LAN would have cables and devices, like LAN switches, which are not shown in this figure.
Figure 2-9 shows four steps. The first two occur on Larry, and the last two occur on router R1, as follows:

Step 1 Larry encapsulates the IP packet between an Ethernet header and Ethernet trailer, creating an Ethernet *frame*.

Step 2 Larry physically transmits the bits of this Ethernet frame, using electricity flowing over the Ethernet cabling.

Step 3 Router R1 physically receives the electrical signal over a cable, and re-creates the same bits by interpreting the meaning of the electrical signals.

Step 4 Router R1 de-encapsulates the IP packet from the Ethernet frame by removing and discarding the Ethernet header and trailer.

By the end of this process, the network access processes on Larry and R1 have worked together to deliver the packet from Larry to router R1.

NOTE Protocols define both headers and trailers for the same general reason, but headers exist at the beginning of the message, and trailers exist at the end.

The network access layer includes a large number of protocols and standards. For instance, the network access layer includes all the variations of Ethernet protocols, along with several other LAN standards that were more popular in decades past. The network access layer includes WAN standards for different physical media, which differ significantly compared to LAN standards because of the longer distances involved in transmitting the data. This layer also includes the popular WAN standards that add headers and trailers as shown generally in Figure 2-7, protocols such as the Point-to-Point Protocol (PPP) and Frame Relay. Chapter 3, “Fundamentals of LANs,” and Chapter 4, “Fundamentals of WANs,” further develop these topics for LAN and WAN, respectively.

In short, the TCP/IP network access layer includes two distinct functions: functions related to the physical transmission of the data, plus the protocols and rules that control the use of the physical media. The five layer TCP/IP model simply splits out the network access layer into two layers (Data Link and Physical) to match this logic.

TCP/IP Model and Terminology

Before completing this introduction to the TCP/IP model, this section examines a few remaining details of the model and some related terminology.

Comparing the Two TCP/IP Models

The functions defined in the network access layer can be broken into two major categories: functions related directly to the physical transmission of data and those only indirectly
related to the physical transmission of data. For instance, in the four steps shown around Figure 2-9, Steps 2 and 3 were specific to sending the data, but Steps 1 and 4—encapsulation and de-encapsulation—were only indirectly related. This division will become clearer as you read about additional details of each protocol and standard.

The two alternative TCP/IP models exist. Comparing the two, the upper layers are identical. The lower layers differ in that the single network access layer in one model is split into two layers to match the division of physical transmission details from the other functions. Figure 2-10 shows the two models again, with emphasis on these distinctions.

Figure 2-10 Network Access Versus Data Link and Physical Layers

Data Encapsulation Terminology

As you can see from the explanations of how HTTP, TCP, IP, and Ethernet do their jobs, each layer adds its own header (and sometimes trailer) to the data supplied by the higher layer. The term *encapsulation* refers to the process of putting headers (and sometimes trailers) around some data.

Many of the examples in this chapter show the encapsulation process. For instance, web server Larry encapsulated the contents of the home page inside an HTTP header in Figure 2-4. The TCP layer encapsulated the HTTP headers and data inside a TCP header in Figure 2-5. IP encapsulated the TCP headers and the data inside an IP header in Figure 2-7. Finally, the Ethernet network access layer encapsulated the IP packets inside both a header and a trailer in Figure 2-9.

The process by which a TCP/IP host sends data can be viewed as a five-step process. The first four steps relate to the encapsulation performed by the four TCP/IP layers, and the last step is the actual physical transmission of the data by the host. In fact, if you use the
five-layer TCP/IP model, one step corresponds to the role of each layer. The steps are summarized in the following list:

Step 1 Create and encapsulate the application data with any required application layer headers. For example, the HTTP OK message can be returned in an HTTP header, followed by part of the contents of a web page.

Step 2 Encapsulate the data supplied by the application layer inside a transport layer header. For end-user applications, a TCP or UDP header is typically used.

Step 3 Encapsulate the data supplied by the transport layer inside an Internet layer (IP) header. IP defines the IP addresses that uniquely identify each computer.

Step 4 Encapsulate the data supplied by the Internet layer inside a data link layer header and trailer. This is the only layer that uses both a header and a trailer.

Step 5 Transmit the bits. The physical layer encodes a signal onto the medium to transmit the frame.

The numbers in Figure 2-11 correspond to the five steps in this list, graphically showing the same concepts. Note that because the application layer often does not need to add a header, the figure does not show a specific application layer header.

![Figure 2-11](image)

Names of TCP/IP Messages

Finally, take particular care to remember the terms *segment*, *packet*, and *frame*, and the meaning of each. Each term refers to the headers and possibly trailers defined by a particular layer, and the data encapsulated following that header. Each term, however, refers
to a different layer: segment for the transport layer, packet for the Internet layer, and frame for the network access layer. Figure 2-12 shows each layer along with the associated term.

Figure 2-12 *Perspectives on Encapsulation and “Data”*

<table>
<thead>
<tr>
<th>Layer</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>Data</td>
</tr>
<tr>
<td>IP</td>
<td>Data</td>
</tr>
<tr>
<td>LH</td>
<td>Data</td>
</tr>
<tr>
<td>LT</td>
<td></td>
</tr>
</tbody>
</table>

Segment
Packet
Frame

The letters LH and LT stand for link header and link trailer, respectively, and refer to the data link layer header and trailer.

Figure 2-12 also shows the encapsulated data as simply “data.” When focusing on the work done by a particular layer, the encapsulated data typically is unimportant. For example, an IP packet may indeed have a TCP header after the IP header, an HTTP header after the TCP header, and data for a web page after the HTTP header. However, when discussing IP, you probably just care about the IP header, so everything after the IP header is just called “data.” So, when drawing IP packets, everything after the IP header is typically shown simply as “data.”

OSI Networking Model

At one point in the history of the OSI model, many people thought OSI would win the battle of the networking models discussed earlier. If that had occurred, instead of running TCP/IP on every computer in the world, those computers would be running with OSI.

However, OSI did not win that battle. In fact, OSI no longer exists as a networking model that could be used instead of TCP/IP, although some of the original protocols referenced by the OSI model still exist.

So, why is OSI even in this book? Terminology. During those years in which many people thought the OSI model would become commonplace in the world of networking (mostly in the late 1980s and early 1990s), many vendors and protocol documents started using terminology from the OSI model. That terminology remains today. So, while you will never need to work with a computer that uses OSI, to understand modern networking terminology, you need to understand something about OSI.

Comparing OSI and TCP/IP

The OSI model has many similarities to the TCP/IP model from a basic conceptual perspective. It has (seven) layers, and each layer defines a set of typical networking
functions. As with TCP/IP, the OSI layers each refer to multiple protocols and standards that implement the functions specified by each layer. In other cases, just as for TCP/IP, the OSI committees did not create new protocols or standards, but instead referenced other protocols that were already defined. For instance, the IEEE defines Ethernet standards, so the OSI committees did not waste time specifying a new type of Ethernet; it simply referred to the IEEE Ethernet standards.

Today, the OSI model can be used as a standard of comparison to other networking models. Figure 2-13 compares the seven-layer OSI model with both the four-layer and five-layer TCP/IP models.

Figure 2-13 **OSI Model Compared to the Two TCP/IP Models**

Next, this section will examine two ways in which we still use OSI terminology today: to describe other protocols and to describe the encapsulation process. Along the way, the text will briefly examine each layer of the OSI model.

Describing Protocols by Referencing the OSI Layers

Even today, networking documents often describe TCP/IP protocols and standards by referencing OSI layers, both by layer number and layer name. For instance, a common description of a LAN switch is “layer 2 switch,” with “layer 2” referring to OSI layer 2. Because OSI did have a well-defined set of functions associated with each of its seven layers, if you know those functions, you can understand what people mean when they refer to a product or function by its OSI layer.

For another example, TCP/IP’s Internet layer, as implemented mainly by IP, equates most directly to the OSI network layer. So, most people say that IP is a network layer protocol, or a Layer 3 protocol, using OSI terminology and numbers for the layer. Of course, if you numbered the TCP/IP model, starting at the bottom, IP would be either Layer 2 or 3, depending on what version of the TCP/IP model you care to use. However, even though IP is a TCP/IP protocol, everyone uses the OSI model layer names and numbers when describing IP or any other protocol for that matter.
Although Figure 2-13 seems to imply that the OSI network layer and the TCP/IP Internet layer are at least similar, the figure does not point out why they are similar. To appreciate why the TCP/IP layers correspond to a particular OSI layer, you need to have a better understanding of the OSI layers. For example, the OSI network layer defines logical addressing and routing, as does the TCP/IP Internet layer. Although the details differ significantly, the TCP/IP Internet layer matches the overall goals and intent of the OSI network layer.

As another example, you may recall that the TCP/IP transport layer defines many functions, including error recovery. The OSI transport layer also defines these same functions as well, although with different details and different specific protocols. As a result, the networking industry refers to TCP as a Layer 4 protocol or a transport layer protocol, again based on the OSI layer number and name.

OSI Layers and Their Functions

Cisco requires that CCNAs demonstrate a basic understanding of the functions defined by each OSI layer, as well as remembering the names of the layers. It is also important that, for each device or protocol referenced throughout the book, you understand which layers of the OSI model most closely match the functions defined by that device or protocol.

Today, because most people happen to be much more familiar with TCP/IP functions than with OSI functions, one of the best ways to learn about the function of different OSI layers is to think about the functions in the TCP/IP model, and correlate those with the OSI model. If you use the five-layer TCP/IP model, the bottom four layers of OSI and TCP/IP map closely together. The only difference in these bottom four layers is the name of OSI Layer 3 (network) compared to TCP/IP (Internet). The upper three layers of the OSI reference model (application, presentation, and session—Layers 7, 6, and 5) define functions that all map to the TCP/IP application layer. Table 2-4 defines the functions of the seven layers.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Functional Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Layer 7 provides an interface between the communications software and any applications that need to communicate outside the computer on which the application resides. It also defines processes for user authentication.</td>
</tr>
<tr>
<td>6</td>
<td>This layer’s main purpose is to define and negotiate data formats, such as ASCII text, EBCDIC text, binary, BCD, and JPEG. Encryption is also defined by OSI as a presentation layer service.</td>
</tr>
<tr>
<td>5</td>
<td>The session layer defines how to start, control, and end conversations (called sessions). This includes the control and management of multiple bidirectional messages so that the application can be notified if only some of a series of messages are completed. This allows the presentation layer to have a seamless view of an incoming stream of data.</td>
</tr>
</tbody>
</table>
Table 2-5 lists most of the devices and protocols covered in the CCNA exams and their comparable OSI layers. Note that many network devices must actually understand the protocols at multiple OSI layers, so the layer listed in Table 2-5 actually refers to the highest layer that the device normally thinks about when performing its core work. For example, routers need to think about Layer 3 concepts, but they must also support features at both Layers 1 and 2.

Besides remembering the basics of the features of each OSI layer (as in Table 2-4), and some example protocols and devices at each layer (as in Table 2-5), you should also...
memorize the names of the layers. You can simply memorize them, but some people like to use a mnemonic phrase to make memorization easier. In the following three phrases, the first letter of each word is the same as the first letter of an OSI layer name, in the order specified in parentheses:

- All People Seem To Need Data Processing (Layers 7 to 1)
- Please Do Not Take Sausage Pizzas Away (Layers 1 to 7)
- Pew! Dead Ninja Turtles Smell Particularly Awful (Layers 1 to 7)

OSI Layering Concepts and Benefits

While networking models use layers to help humans categorize and understand the many functions in a network, networking models use layers for many reasons. For example, consider another postal service analogy. A person writing a letter does not have to think about how the postal service will deliver a letter across the country. The postal worker in the middle of the country does not have to worry about the contents of the letter. Likewise, networking models that divide functions into different layers enables one software package or hardware device to implement functions from one layer, and assume that other software/hardware will perform the functions defined by the other layers.

The following list summarizes the benefits of layered protocol specifications:

- **Less complex**: Compared to not using a layered model, network models break the concepts into smaller parts.
- **Standard interfaces**: The standard interface definitions between each layer allow for multiple vendors to create products that fill a particular role, with all the benefits of open competition.
- **Easier to learn**: Humans can more easily discuss and learn about the many details of a protocol specification.
- **Easier to develop**: Reduced complexity allows easier program changes and faster product development.
- **Multivendor interoperability**: Creating products to meet the same networking standards means that computers and networking gear from multiple vendors can work in the same network.
- **Modular engineering**: One vendor can write software that implements higher layers—for example, a web browser—and another vendor can write software that implements the lower layers—for example, Microsoft’s built-in TCP/IP software in its OSs.
OSI Encapsulation Terminology

Like TCP/IP, each OSI layer asks for services from the next lower layer. To provide the services, each layer makes use of a header, and possibly a trailer. The lower layer encapsulates the higher layer’s data behind a header. The final topic of this chapter explains some of the terminology and concepts related to OSI encapsulation.

The TCP/IP model uses terms such as segment, packet, and frame to refer to various layers and their respective encapsulated data (refer to Figure 2-11). OSI uses a more generic term: protocol data unit (PDU).

A PDU represents the bits that include the headers and trailers for that layer, as well as the encapsulated data. For instance, an IP packet, as shown in Figure 2-10, using OSI terminology, is a PDU. In fact, an IP packet is a Layer 3 PDU (abbreviated L3PDU) because IP is a Layer 3 protocol. So, rather than use the terms segment, packet, or frame, OSI simply refers to the “Layer x PDU” (LxPDU), with “x” referring to the number of the layer being discussed.

Figure 2-14 represents the typical encapsulation process, with the top of the figure showing the application data and application layer header and the bottom of the figure showing the L2PDU that is transmitted onto the physical link.

Figure 2-14 OSI Encapsulation and Protocol Data Units
Exam Preparation Tasks

Review All the Key Topics

Review the most important topics from inside the chapter, noted with the key topics icon in the outer margin of the page. Table 2-6 lists a reference of these key topics and the page number on which each is found.

Table 2-6 Key Topics for Chapter 2

<table>
<thead>
<tr>
<th>Key Topic Elements</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2-3</td>
<td>Provides definitions of same-layer and adjacent-layer interaction</td>
<td>28</td>
</tr>
<tr>
<td>Figure 2-8</td>
<td>Shows the general concept of IP routing</td>
<td>32</td>
</tr>
<tr>
<td>Figure 2-9</td>
<td>Depicts the data-link services provided to IP for the purpose of delivering IP packets from host to host</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2-12</td>
<td>Shows the meaning of the terms segment, packet, and frame</td>
<td>37</td>
</tr>
<tr>
<td>Figure 2-13</td>
<td>Compares the OSI and TCP/IP network models</td>
<td>38</td>
</tr>
<tr>
<td>List</td>
<td>Lists the benefits of using a layered networking model</td>
<td>41</td>
</tr>
</tbody>
</table>

Complete the Tables and Lists from Memory

Print a copy of Appendix L, “Memory Tables,” (found on the DVD) or at least the section for this chapter, and complete the tables and lists from memory. Appendix M, “Memory Tables Answer Key,” includes completed tables and lists to check your work.

Definitions of Key Terms

Define the following key terms from this chapter, and check your answers in the Glossary:

- adjacent-layer interaction
- decapsulation
- encapsulation
- frame
- networking model
- packet
- protocol data unit (PDU)
- same-layer interaction
- segment
OSI Reference

You should memorize the names of the layers of the OSI model. Table 2-7 summarizes the OSI functions at each layer, along with some sample protocols at each layer.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Functional Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application (7)</td>
<td>Interfaces between network and application software. Also includes authentication services.</td>
</tr>
<tr>
<td>Presentation (6)</td>
<td>Defines the format and organization of data. Includes encryption.</td>
</tr>
<tr>
<td>Session (5)</td>
<td>Establishes and maintains end-to-end bidirectional flows between endpoints. Includes managing transaction flows.</td>
</tr>
<tr>
<td>Transport (4)</td>
<td>Provides a variety of services between two host computers, including connection establishment and termination, flow control, error recovery, and segmentation of large data blocks into smaller parts for transmission.</td>
</tr>
<tr>
<td>Network (3)</td>
<td>Logical addressing, routing, and path determination.</td>
</tr>
<tr>
<td>Data link (2)</td>
<td>Formats data into frames appropriate for transmission onto some physical medium. Defines rules for when the medium can be used. Defines means by which to recognize transmission errors.</td>
</tr>
<tr>
<td>Physical (1)</td>
<td>Defines the electrical, optical, cabling, connectors, and procedural details required for transmitting bits, represented as some form of energy passing over a physical medium.</td>
</tr>
</tbody>
</table>
This page intentionally left blank
This chapter covers the following subjects:

An Overview of Modern Ethernet LANs: Provides some perspectives for those who have used Ethernet at the office or school but have not examined the details.

A Brief History of Ethernet: Examines several old options for Ethernet cabling and devices as a point of comparison for today’s cabling, devices, and terminology.

Ethernet UTP Cabling: Explains the options for cabling and cable pinouts.

Improving Performance by Using Switches Instead of Hubs: A more detailed examination of the performance improvements made by using switches instead of older Ethernet hubs.

Ethernet Data-Link Protocols: Explains the meaning and purpose of the fields in the Ethernet header and trailer.
Fundamentals of LANs

Physical and data link layer standards work together to allow computers to send bits to each other over a particular type of physical networking medium. The Open Systems Interconnection (OSI) physical layer (Layer 1) defines how to physically send bits over a particular physical networking medium. The data link layer (Layer 2) defines some rules about the data that is physically transmitted, including addresses that identify the sending device and the intended recipient, and rules about when a device can send (and when it should be silent), to name a few.

This chapter explains some of the basics of local-area networks (LAN). The term LAN refers to a set of Layer 1 and 2 standards designed to work together for the purpose of implementing geographically small networks. This chapter introduces the concepts of LANs—in particular, Ethernet LANs. More-detailed coverage of LANs appears in Part II (Chapters 7 through 11).

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess whether you should read the entire chapter. If you miss no more than one of these 11 self-assessment questions, you might want to move ahead to the “Exam Preparation Tasks” section. Table 3-1 lists the major headings in this chapter and the “Do I Know This Already?” quiz questions covering the material in those sections. This helps you assess your knowledge of these specific areas. The answers to the “Do I Know This Already?” quiz appear in Appendix A.

Table 3-1 “Do I Know This Already?” Foundation Topics Section-to-Question Mapping

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>An Overview of Modern Ethernet LANs</td>
<td>1</td>
</tr>
<tr>
<td>A Brief History of Ethernet</td>
<td>2</td>
</tr>
<tr>
<td>Ethernet UTP Cabling</td>
<td>3, 4</td>
</tr>
<tr>
<td>Improving Performance by Using Switches Instead of Hubs</td>
<td>5–7</td>
</tr>
<tr>
<td>Ethernet Data-Link Protocols</td>
<td>8–11</td>
</tr>
</tbody>
</table>
1. Which one of the following answers is most accurate about the cabling of a typical modern Ethernet LAN?
 a. Connect each device in series using coaxial cabling
 b. Connect each device in series using UTP cabling
 c. Connect each device to a centralized LAN hub using UTP cabling
 d. Connect each device to a centralized LAN switch using UTP cabling

2. Which of the following is true about the cabling of a 10BASE2 Ethernet LAN?
 a. Connect each device in series using coaxial cabling
 b. Connect each device in series using UTP cabling
 c. Connect each device to a centralized LAN hub using UTP cabling
 d. Connect each device to a centralized LAN switch using UTP cabling

3. Which of the following is true about Ethernet crossover cables?
 a. Pins 1 and 2 are reversed on the other end of the cable.
 b. Pins 1 and 2 on one end of the cable connect to pins 3 and 6 on the other end of the cable.
 c. Pins 1 and 2 on one end of the cable connect to pins 3 and 4 on the other end of the cable.
 d. The cable can be up to 1000 meters long to cross over between buildings.
 e. None of the other answers is correct.

4. Each answer lists two types of devices used in a 100BASE-TX network. If these devices were connected with UTP Ethernet cables, which pairs of devices would require a straight-through cable? (Choose three answers.)
 a. PC and router
 b. PC and switch
 c. Hub and switch
 d. Router and hub
 e. Wireless access point (Ethernet port) and switch
5. Which of the following is true about the CSMA/CD algorithm?
 a. The algorithm never allows collisions to occur.
 b. Collisions can happen, but the algorithm defines how the computers should notice a collision and how to recover.
 c. The algorithm works with only two devices on the same Ethernet.
 d. None of the other answers is correct.

6. Which of the following is a collision domain?
 a. All devices connected to an Ethernet hub
 b. All devices connected to an Ethernet switch
 c. Two PCs, with one cabled to a router Ethernet port with a crossover cable and the other PC cabled to another router Ethernet port with a crossover cable
 d. None of the other answers is correct.

7. Which of the following describe a shortcoming of using hubs that is improved by instead using switches? (Choose two answers.)
 a. Hubs create a single electrical bus to which all devices connect, causing the devices to share the bandwidth.
 b. Hubs limit the maximum cable length of individual cables (relative to switches)
 c. Hubs allow collisions to occur when two attached devices send data at the same time.
 d. Hubs restrict the number of physical ports to at most eight.

8. Which of the following terms describe Ethernet addresses that can be used to communicate with more than one device at a time? (Choose two answers.)
 a. Burned-in address
 b. Unicast address
 c. Broadcast address
 d. Multicast address
9. Which of the following is one of the functions of OSI Layer 2 protocols?
 a. Framing
 b. Delivery of bits from one device to another
 c. Error recovery
 d. Defining the size and shape of Ethernet cards

10. Which of the following are true about the format of Ethernet addresses?
 (Choose three answers.)
 a. Each manufacturer puts a unique code into the first 2 bytes of the address.
 b. Each manufacturer puts a unique code into the first 3 bytes of the address.
 c. Each manufacturer puts a unique code into the first half of the address.
 d. The part of the address that holds this manufacturer’s code is called the MAC.
 e. The part of the address that holds this manufacturer’s code is called the OUI.
 f. The part of the address that holds this manufacturer’s code has no specific name.

11. Which of the following is true about the Ethernet FCS field?
 a. It is used for error recovery.
 b. It is 2 bytes long.
 c. It resides in the Ethernet trailer, not the Ethernet header.
 d. It is used for encryption.
 e. None of the other answers is correct.
A typical Enterprise network consists of several sites. The end-user devices connect to a LAN, which allows the local computers to communicate with each other. Additionally, each site has a router that connects to both the LAN and a wide-area network (WAN), with the WAN providing connectivity between the various sites. With routers and a WAN, the computers at different sites can also communicate.

This chapter describes the basics of how to create LANs today, with Chapter 4, “Fundamentals of WANs,” describing the basics of creating WANs. Ethernet is the undisputed king of LAN standards today. Historically speaking, several competing LAN standards existed, including Token Ring, Fiber Distributed Data Interface (FDDI), and Asynchronous Transfer Mode (ATM). Eventually, Ethernet won out over all the competing LAN standards, so that today when you think of LANs, no one even questions what type—it’s Ethernet.

An Overview of Modern Ethernet LANs

The term Ethernet refers to a family of standards that together define the physical and data link layers of the world’s most popular type of LAN. The different standards vary as to the speed supported, with speeds of 10 megabits per second (Mbps), 100 Mbps, and 1000 Mbps (1 gigabit per second, or Gbps) being common today. The standards also differ as far as the types of cabling and the allowed length of the cabling. For example, the most commonly used Ethernet standards allow the use of inexpensive unshielded twisted-pair (UTP) cabling, whereas other standards call for more expensive fiber-optic cabling. Fiber-optic cabling might be worth the cost in some cases, because the cabling is more secure and allows for much longer distances between devices. To support the widely varying needs for building a LAN—needs for different speeds, different cabling types (trading off distance requirements versus cost), and other factors—many variations of Ethernet standards have been created.

The Institute of Electrical and Electronics Engineers (IEEE) has defined many Ethernet standards since it took over the LAN standardization process in the early 1980s. Most of the standards define a different variation of Ethernet at the physical layer, with differences in speed and types of cabling. Additionally, for the data link layer, the IEEE separates the functions into two sublayers:

- The 802.3 Media Access Control (MAC) sublayer
- The 802.2 Logical Link Control (LLC) sublayer
In fact, MAC addresses get their name from the IEEE name for this lower portion of the data link layer Ethernet standards.

Each new physical layer standard from the IEEE requires many differences at the physical layer. However, each of these physical layer standards uses the exact same 802.3 header, and each uses the upper LLC sublayer as well. Table 3-2 lists the most commonly used IEEE Ethernet physical layer standards.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Speed</th>
<th>Alternative Name</th>
<th>Name of IEEE Standard</th>
<th>Cable Type, Maximum Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td>10 Mbps</td>
<td>10BASE-T</td>
<td>IEEE 802.3</td>
<td>Copper, 100 m</td>
</tr>
<tr>
<td>Fast Ethernet</td>
<td>100 Mbps</td>
<td>100BASE-TX</td>
<td>IEEE 802.3u</td>
<td>Copper, 100 m</td>
</tr>
<tr>
<td>Gigabit Ethernet</td>
<td>1000 Mbps</td>
<td>1000BASE-LX, 1000BASE-SX</td>
<td>IEEE 802.3z</td>
<td>Fiber, 550 m (SX) 5 km (LX)</td>
</tr>
<tr>
<td>Gigabit Ethernet</td>
<td>1000 Mbps</td>
<td>1000BASE-T</td>
<td>IEEE 802.3ab</td>
<td>100 m</td>
</tr>
</tbody>
</table>

The table is convenient for study, but the terms in the table bear a little explanation. First, beware that the term *Ethernet* is often used to mean “all types of Ethernet,” but in some cases it is used to mean “10BASE-T Ethernet.” (Because the term Ethernet sometimes can be ambiguous, this book refers to 10-Mbps Ethernet as 10BASE-T when the specific type of Ethernet matters to the discussion.) Second, note that the alternative name for each type of Ethernet lists the speed in Mbps—namely, 10 Mbps, 100 Mbps, and 1000 Mbps. The *T* and *TX* in the alternative names refer to the fact that each of these standards defines the use of UTP cabling, with the *T* referring to the T in *twisted pair*.

To build and create a modern LAN using any of the UTP-based types of Ethernet LANs listed in Table 3-2, you need the following components:

- Computers that have an Ethernet network interface card (NIC) installed
- Either an Ethernet hub or Ethernet switch
- UTP cables to connect each PC to the hub or switch

Figure 3-1 shows a typical LAN. The NICs cannot be seen, because they reside in the PCs. However, the lines represent the UTP cabling, and the icon in the center of the figure represents a LAN switch.
Most people can build a LAN like the one shown in Figure 3-1 with practically no real knowledge of how LANs work. Most PCs contain an Ethernet NIC that was installed at the factory. Switches do not need to be configured for them to forward traffic between the computers. All you have to do is connect the switch to a power cable and plug in the UTP cables from each PC to the switch. Then the PCs should be able to send Ethernet frames to each other.

You can use such a small LAN for many purposes, even without a WAN connection. Consider the following functions for which a LAN is the perfect, small-scale solution:

File sharing: Each computer can be configured to share all or parts of its file system so that the other computers can read, or possibly read and write, the files on another computer. This function typically is simply part of the PC operating system.

Printer sharing: Computers can share their printers as well. For example, PCs A, B, and C in Figure 3-1 could print documents on PC D’s printer. This function is also typically part of the PC’s operating system.

File transfers: A computer could install a file transfer server, thereby allowing other computers to send and receive files to and from that computer. For example, PC C could install File Transfer Protocol (FTP) server software, allowing the other PCs to use FTP client software to connect to PC C and transfer files.

Gaming: The PCs could install gaming software that allows multiple players to play in the same game. The gaming software would then communicate using the Ethernet.
The goal of the first half of this chapter is to help you understand much of the theory and practical knowledge behind simple LAN designs such as the one illustrated in Figure 3-1. To fully understand modern LANs, it is helpful to understand a bit about the history of Ethernet, which is covered in the next section. Following that, this chapter examines the physical aspects (Layer 1) of a simple Ethernet LAN, focusing on UTP cabling. Then this chapter compares the older (and slower) Ethernet hub with the newer (and faster) Ethernet switch. Finally, the LAN coverage in this chapter ends with the data-link (Layer 2) functions on Ethernet.

A Brief History of Ethernet

Like many early networking protocols, Ethernet began life inside a corporation that was looking to solve a specific problem. Xerox needed an effective way to allow a new invention, called the personal computer, to be connected in its offices. From that, Ethernet was born. (Go to http://inventors.about.com/library/weekly/aa111598.htm for an interesting story on the history of Ethernet.) Eventually, Xerox teamed with Intel and Digital Equipment Corp. (DEC) to further develop Ethernet, so the original Ethernet became known as DIX Ethernet, referring to DEC, Intel, and Xerox.

These companies willingly transitioned the job of Ethernet standards development to the IEEE in the early 1980s. The IEEE formed two committees that worked directly on Ethernet—the IEEE 802.3 committee and the IEEE 802.2 committee. The 802.3 committee worked on physical layer standards as well as a subpart of the data link layer called Media Access Control (MAC). The IEEE assigned the other functions of the data link layer to the 802.2 committee, calling this part of the data link layer the Logical Link Control (LLC) sublayer. (The 802.2 standard applied to Ethernet as well as to other IEEE standard LANs such as Token Ring.)

The Original Ethernet Standards: 10BASE2 and 10BASE5

Ethernet is best understood by first considering the two early Ethernet specifications, 10BASE5 and 10BASE2. These two Ethernet specifications defined the details of the physical and data link layers of early Ethernet networks. (10BASE2 and 10BASE5 differ in their cabling details, but for the discussion in this chapter, you can consider them as behaving identically.) With these two specifications, the network engineer installs a series of coaxial cables connecting each device on the Ethernet network. There is no hub, switch, or wiring panel. The Ethernet consists solely of the collective Ethernet NICs in the computers and the coaxial cabling. The series of cables creates an electrical circuit, called a bus, which is shared among all devices on the Ethernet. When a computer wants to send some bits to another computer on the bus, it sends an electrical signal, and the electricity propagates to all devices on the Ethernet.

Figure 3-2 shows the basic logic of an old Ethernet 10BASE2 network, which uses a single electrical bus, created with coaxial cable and Ethernet cards.
Figure 3-2 Small Ethernet 10BASE2 Network

The solid lines in the figure represent the physical network cabling. The dashed lines with arrows represent the path that Larry’s transmitted frame takes. Larry sends an electrical signal across his Ethernet NIC onto the cable, and both Bob and Archie receive the signal. The cabling creates a physical electrical bus, meaning that the transmitted signal is received by all stations on the LAN. Just like a school bus stops at every student’s house along a route, the electrical signal on a 10BASE2 or 10BASE5 network is propagated to each station on the LAN.

Because the network uses a single bus, if two or more electrical signals were sent at the same time, they would overlap and collide, making both signals unintelligible. So, unsurprisingly, Ethernet also defined a specification for how to ensure that only one device sends traffic on the Ethernet at one time. Otherwise, the Ethernet would have been unusable. This algorithm, known as the carrier sense multiple access with collision detection (CSMA/CD) algorithm, defines how the bus is accessed.

In human terms, CSMA/CD is similar to what happens in a meeting room with many attendees. It’s hard to understand what two people are saying at the same time, so generally, one person talks and the rest listen. Imagine that Bob and Larry both want to reply to the current speaker’s comments. As soon as the speaker takes a breath, Bob and Larry both try to speak. If Larry hears Bob’s voice before Larry makes a noise, Larry might stop and let Bob speak. Or, maybe they both start at almost the same time, so they talk over each other and no one can hear what is said. Then there’s the proverbial “Pardon me; go ahead with what you were saying,” and eventually Larry or Bob talks. Or perhaps another person jumps in and talks while Larry and Bob are both backing off. These “rules” are based on your culture; CSMA/CD is based on Ethernet protocol specifications and achieves the same type of goal.

Basically, the CSMA/CD algorithm can be summarized as follows:

- A device that wants to send a frame waits until the LAN is silent—in other words, no frames are currently being sent—before attempting to send an electrical signal.

- If a collision still occurs, the devices that caused the collision wait a random amount of time and then try again.
In 10BASE5 and 10BASE2 Ethernet LANs, a collision occurs because the transmitted electrical signal travels along the entire length of the bus. When two stations send at the same time, their electrical signals overlap, causing a collision. So, all devices on a 10BASE5 or 10BASE2 Ethernet need to use CSMA/CD to avoid collisions and to recover when inadvertent collisions occur.

Repeater\textit{s}

Like any type of LAN, 10BASE5 and 10BASE2 had limitations on the total length of a cable. With 10BASE5, the limit was 500 m; with 10BASE2, it was 185 m. Interestingly, the 5 and 2 in the names 10BASE5 and 10BASE2 represent the maximum cable length—with the 2 referring to 200 meters, which is pretty close to the actual maximum of 185 meters. (Both of these types of Ethernet ran at 10 Mbps.)

In some cases, the maximum cable length was not enough, so a device called a \textit{repeater} was developed. One of the problems that limited the length of a cable was that the signal sent by one device could attenuate too much if the cable was longer than 500 m or 185 m. \textit{Attenuation} means that when electrical signals pass over a wire, the signal strength gets weaker the farther along the cable it travels. It's the same concept behind why you can hear someone talking right next to you, but if that person speaks at the same volume and you are on the other side of a crowded room, you might not hear her because the sound waves have attenuated.

Repeaters connect to multiple cable segments, receive the electrical signal on one cable, interpret the bits as 1s and 0s, and generate a brand-new, clean, strong signal out the other cable. A repeater does not simply amplify the signal, because amplifying the signal might also amplify any noise picked up along the way.

\begin{table}[h]
\centering
\begin{tabular}{|l|}
\hline
\textbf{NOTE} & Because the repeater does not interpret what the bits mean, but it does examine and generate electrical signals, a repeater is considered to operate at Layer 1. \\
\hline
\end{tabular}
\end{table}

You should not expect to need to implement 10BASE5 or 10BASE2 Ethernet LANs today. However, for learning purposes, keep in mind several key points from this section as you move on to concepts that relate to today’s LANs:

- The original Ethernet LANs created an electrical bus to which all devices connected.
- Because collisions could occur on this bus, Ethernet defined the CSMA/CD algorithm, which defined a way to both avoid collisions and take action when collisions occurred.
- Repeaters extended the length of LANs by cleaning up the electrical signal and repeating it—a Layer 1 function—but without interpreting the meaning of the electrical signal.
Building 10BASE-T Networks with Hubs

The IEEE later defined new Ethernet standards besides 10BASE5 and 10BASE2. Chronologically, the 10BASE-T standard came next (1990), followed by 100BASE-TX (1995), and then 1000BASE-T (1999). To support these new standards, networking devices called hubs and switches were also created. This section defines the basics of how these three popular types of Ethernet work, including the basic operation of hubs and switches.

10BASE-T solved several problems with the early 10BASE5 and 10BASE2 Ethernet specifications. 10BASE-T allowed the use of UTP telephone cabling that was already installed. Even if new cabling needed to be installed, the inexpensive and easy-to-install UTP cabling replaced the old expensive and difficult-to-install coaxial cabling.

Another major improvement introduced with 10BASE-T, and that remains a key design point today, is the concept of cabling each device to a centralized connection point. Originally, 10BASE-T called for the use of Ethernet hubs, as shown in Figure 3-3.

When building a LAN today, you could choose to use either a hub or a switch as the centralized Ethernet device to which all the computers connect. Even though modern Ethernet LANs typically use switches instead of hubs, understanding the operation of hubs helps you understand some of the terminology used with switches, as well as some of their benefits.

Hubs are essentially repeaters with multiple physical ports. That means that the hub simply regenerates the electrical signal that comes in one port and sends the same signal out every other port. By doing so, any LAN that uses a hub, as in Figure 3-3, creates an electrical bus, just like 10BASE2 and 10BASE5. Therefore, collisions can still occur, so CSMA/CD access rules continue to be used.

10BASE-T networks using hubs solved some big problems with 10BASE5 and 10BASE2. First, the LAN had much higher availability, because a single cable problem could, and probably did, take down 10BASE5 and 10BASE2 LANs. With 10BASE-T, a cable connects each device to the hub, so a single cable problem affects only one device. As mentioned earlier, the use of UTP cabling, in a star topology (all cables running to a centralized connection device), lowered the cost of purchasing and installing the cabling.
Today, you might occasionally use LAN hubs, but you will more likely use switches instead of hubs. Switches perform much better than hubs, support more functions than hubs, and typically are priced almost as low as hubs. However, for learning purposes, keep in mind several key points from this section about the history of Ethernet as you move on to concepts that relate to today’s LANs:

■ The original Ethernet LANs created an electrical bus to which all devices connected.

■ 10BASE2 and 10BASE5 repeaters extended the length of LANs by cleaning up the electrical signal and repeating it—a Layer 1 function—but without interpreting the meaning of the electrical signal.

■ Hubs are repeaters that provide a centralized connection point for UTP cabling—but they still create a single electrical bus, shared by the various devices, just like 10BASE5 and 10BASE2.

■ Because collisions could occur in any of these cases, Ethernet defines the CSMA/CD algorithm, which tells devices how to both avoid collisions and take action when collisions do occur.

The next section explains the details of the UTP cabling used by today’s most commonly used types of Ethernet.

Ethernet UTP Cabling
The three most common Ethernet standards used today—10BASE-T (Ethernet), 100BASE-TX (Fast Ethernet, or FE), and 1000BASE-T (Gigabit Ethernet, or GE)—use UTP cabling. Some key differences exist, particularly with the number of wire pairs needed in each case, and in the type (category) of cabling. This section examines some of the details of UTP cabling, pointing out differences among these three standards along the way. In particular, this section describes the cables and the connectors on the ends of the cables, how they use the wires in the cables to send data, and the pinouts required for proper operation.

UTP Cables and RJ-45 Connectors
The UTP cabling used by popular Ethernet standards include either two or four pairs of wires. Because the wires inside the cable are thin and brittle, the cable itself has an outer jacket of flexible plastic to support the wires. Each individual copper wire also has a thin plastic coating to help prevent the wire from breaking. The plastic coating on each wire has a different color, making it easy to look at both ends of the cable and identify the ends of an individual wire.

The cable ends typically have some form of connector attached (typically RJ-45 connectors), with the ends of the wires inserted into the connectors. The RJ-45 connector has eight
specific physical locations into which the eight wires in the cable can be inserted, called *pin positions*, or simply *pins*. When the connectors are added to the end of the cable, the
ends of the wires must be correctly inserted into the correct pin positions.

NOTE If you have an Ethernet UTP cable nearby, it would be useful to closely examine the RJ-45 connectors and wires as you read through this section.

As soon as the cable has RJ-45 connectors on each end, the RJ-45 connector needs to be inserted into an RJ-45 receptacle, often called an *RJ-45 port*. Figure 3-4 shows photos of the cables, connectors, and ports.

Figure 3-4 RJ-45 Connectors and Ports

The figure shows three separate views of an RJ-45 connector on the left. The head-on view in the upper-left part of the figure shows the ends of the eight wires in their pin positions inside the UTP cable. The upper-right part of the figure shows an Ethernet NIC that is not yet installed in a computer. The RJ-45 port on the NIC would be exposed on the side of the

NOTE The RJ-45 connector is slightly wider, but otherwise similar, to the RJ-11 connectors commonly used for telephone cables in homes in North America.
computer, making it easily accessible as soon as the NIC has been installed into a computer. The lower-right part of the figure shows the side of a Cisco 2960 switch, with multiple RJ-45 ports, allowing multiple devices to easily connect to the Ethernet network.

Although RJ-45 connectors and ports are popular, engineers might want to purchase Cisco LAN switches that have a few physical ports that can be changed without having to purchase a whole new switch. Many Cisco switches have a few interfaces that use either Gigabit Interface Converters (GBIC) or Small-Form Pluggables (SFP). Both are small removable devices that fit into a port or slot in the switch. Because Cisco manufactures a wide range of GBICs and SFPs, for every Ethernet standard, the switch can use a variety of cable connectors and types of cabling and support different cable lengths—all by just switching to a different kind of GBIC or SFP. Figure 3-5 shows a 1000BASE-T GBIC, ready to be inserted into a LAN switch.

Figure 3-5 1000BASE-T GBIC with an RJ-45 Connector

If a network engineer needs to use an existing switch in a new role in a campus network, the engineer could simply buy a new 1000BASE-LX GBIC to replace the old 1000BASE-T GBIC and reduce the extra cost of buying a whole new switch. For example, when using a switch so that it connects only to other switches in the same building, the switch could use 1000BASE-T GBICs and copper cabling. Later, if the company moved to another location, the switch could be repurposed by using a different GBIC that supported fiber-optic cabling, and different connectors, using 1000BASE-LX to support a longer cabling distance.

Transmitting Data Using Twisted Pairs

UTP cabling consists of matched pairs of wires that are indeed twisted together—hence the name twisted pair. The devices on each end of the cable can create an electrical circuit using a pair of wires by sending current on the two wires, in opposite directions. When current passes over any wire, that current induces a magnetic field outside the wire; the magnetic field can in turn cause electrical noise on other wires in the cable. By twisting together the
wires in the same pair, with the current running in opposite directions on each wire, the magnetic field created by one wire mostly cancels out the magnetic field created by the other wire. Because of this feature, most networking cables that use copper wires and electricity use twisted pairs of wires to send data.

To send data over the electrical circuit created over a wire pair, the devices use an \textit{encoding scheme} that defines how the electrical signal should vary, over time, to mean either a binary 0 or 1. For example, 10BASE-T uses an encoding scheme that encodes a binary 0 as a transition from higher voltage to lower voltage during the middle of a 1/10,000,000th-of-a-second interval. The electrical details of encoding are unimportant for the purposes of this book. But it is important to realize that networking devices create an electrical circuit using each wire pair, and vary the signal as defined by the encoding scheme, to send bits over the wire pair.

\textbf{UTP Cabling Pinouts for 10BASE-T and 100BASE-TX}

The wires in the UTP cable must be connected to the correct pin positions in the RJ-45 connectors in order for communication to work correctly. As mentioned earlier, the RJ-45 connector has eight \textit{pin positions}, or simply \textit{pins}, into which the copper wires inside the cable protrude. The wiring \textit{pinouts}---the choice of which color wire goes into which pin position---must conform to the Ethernet standards described in this section.

Interestingly, the IEEE does not actually define the official standards for cable manufacturing, as well as part of the details of the conventions used for the cabling pinouts. The Telecommunications Industry Association (TIA) defines standards for UTP cabling, color coding for wires, and standard pinouts on the cables. (See http://www.tiaonline.org.) Figure 3-6 shows two pinout standards from the TIA, with the color coding and pair numbers listed.

\textbf{Figure 3-6} \textit{TIA Standard Ethernet Cabling Pinouts}
To understand the acronyms listed in the figure, note that the eight wires in a UTP cable have either a solid color (green, orange, blue, or brown) or a striped color scheme using white and one of the other four colors. Also, a single-wire pair uses the same base color. For example, the blue wire and the blue/white striped wire are paired and twisted. In Figure 3-6, the notations with a / refer to the striped wires. For example, “G/W” refers to the green-and-white striped wire.

NOTE A UTP cable needs two pairs of wires for 10BASE-T and 100BASE-TX and four pairs of wires for 1000BASE-T. This section focuses on the pinouts for two-pair wiring, with four-pair wiring covered next.

To build a working Ethernet LAN, you must choose or build cables that use the correct wiring pinout on each end of the cable. 10BASE-T and 100BASE-TX Ethernet define that one pair should be used to send data in one direction, with the other pair used to send data in the other direction. In particular, Ethernet NICs should send data using the pair connected to pins 1 and 2—in other words, pair 3 according to the T568A pinout standard shown in Figure 3-6. Similarly, Ethernet NICs should expect to receive data using the pair at pins 3 and 6—pair 2 according to the T568A standard. Knowing what the Ethernet NICs do, hubs and switches do the opposite—they receive on the pair at pins 1,2 (pair 3 per T568A), and they send on the pair at pins 3,6 (pair 2 per T568A).

Figure 3-7 shows this concept, with PC Larry connected to a hub. Note that the figure shows the two twisted pairs inside the cable, and the NIC outside the PC, to emphasize that the cable connects to the NIC and hub and that only two pairs are being used.

The network shown in Figure 3-7 uses a *straight-through* cable. An Ethernet straight-through cable connects the wire at pin 1 on one end of the cable to pin 1 at the other end of the cable; the wire at pin 2 needs to connect to pin 2 on the other end of the cable; pin 3 on one end connects to pin 3 on the other; and so on. (To create a straight-through cable, both ends of the cable use the same EIA/TIA pinout standard on each end of the cable.)
A straight-through cable is used when the devices on the ends of the cable use opposite pins when they transmit data. However, when connecting two devices that both use the same pins to transmit, the pinouts of the cable must be set up to swap the wire pair. A cable that swaps the wire pairs inside the cable is called a **crossover cable**. For example, many LANs inside an Enterprise network use multiple switches, with a UTP cable connecting the switches. Because both switches send on the pair at pins 3,6, and receive on the pair at pins 1,2, the cable must swap or cross the pairs. Figure 3-8 shows several conceptual views of a crossover cable.

![Crossover Ethernet Cable](image)

The top part of the figure shows the pins to which each wire is connected. Pin 1 on the left end connects to pin 3 on the right end, pin 2 on the left to pin 6 on the right, pin 3 on the left to pin 1 on the right, and pin 6 on the left to pin 2 on the right. The bottom of the figure shows that the wires at pins 3,6 on each end—the pins each switch uses to transmit—connect to pins 1,2 on the other end, thereby allowing the devices to receive on pins 1,2.

For the exam, you should be well prepared to choose which type of cable (straight-through or crossover) is needed in each part of the network. In short, devices on opposite ends of a cable that use the same pair of pins to transmit need a crossover cable. Devices that use an opposite pair of pins to transmit need a straight-through cable. Table 3-3 lists the devices mentioned in this book and the pin pairs they use, assuming that they use 10BASE-T and 100BASE-TX.

<table>
<thead>
<tr>
<th>Devices That Transmit on 1,2 and Receive on 3,6</th>
<th>Devices That Transmit on 3,6 and Receive on 1,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC NICs</td>
<td>Hubs</td>
</tr>
<tr>
<td>Routers</td>
<td>Switches</td>
</tr>
<tr>
<td>Wireless Access Point (Ethernet interface)</td>
<td>—</td>
</tr>
<tr>
<td>Networked printers (printers that connect directly to the LAN)</td>
<td>—</td>
</tr>
</tbody>
</table>
For example, Figure 3-9 shows a campus LAN in a single building. In this case, several straight-through cables are used to connect PCs to switches. Additionally, the cables connecting the switches—referred to as trunks—require crossover cables.

Figure 3-9 Typical Uses for Straight-Through and Crossover Ethernet Cables

1000BASE-T Cabling
As noted earlier, 1000BASE-T differs from 10BASE-T and 100BASE-TX as far as the cabling and pinouts. First, 1000BASE-T requires four wire pairs. Also, Gigabit Ethernet transmits and receives on each of the four wire pairs simultaneously.

However, Gigabit Ethernet does have a concept of straight-through and crossover cables, with a minor difference in the crossover cables. The pinouts for a straight-through cable are the same—pin 1 to pin 1, pin 2 to pin 2, and so on. The crossover cable crosses the same two-wire pair as the crossover cable for the other types of Ethernet—the pair at pins 1,2 and 3,6—as well as crossing the two other pairs (the pair at pins 4,5 with the pair at pins 7,8).

NOTE If you have some experience with installing LANs, you might be thinking that you have used the wrong cable before (straight-through or crossover), but the cable worked. Cisco switches have a feature called auto-mdix that notices when the wrong cabling pinouts are used. This feature readjusts the switch’s logic and makes the cable work. For the exams, be ready to identify whether the correct cable is shown in figures.

Next, this chapter takes a closer look at LAN hubs and the need for LAN switches.

Improving Performance by Using Switches Instead of Hubs
This section examines some of the performance problems created when using hubs, followed by explanations of how LAN switches solve the two largest performance problems encountered with hubs. To better appreciate the problem, consider Figure 3-10, which shows what happens when a single device sends data through a hub.
The figure outlines how a hub creates an electrical bus. The steps illustrated in Figure 3-10 are as follows:

Step 1 The network interface card (NIC) sends a frame.

Step 2 The NIC loops the sent frame onto its receive pair internally on the card.

Step 3 The hub receives the electrical signal, interpreting the signal as bits so that it can clean up and repeat the signal.
Step 4 The hub’s internal wiring repeats the signal out all other ports, but not back to the port from which the signal was received.

Step 5 The hub repeats the signal to each receive pair on all other devices.

In particular, note that a hub always repeats the electrical signal out all ports, except the port from which the electrical signal was received. Also, Figure 3-10 does not show a collision. However, if PC1 and PC2 sent an electrical signal at the same time, at Step 4 the electrical signals would overlap, the frames would collide, and both frames would be either completely unintelligible or full of errors.

CSMA/CD logic helps prevent collisions and also defines how to act when a collision does occur. The CSMA/CD algorithm works like this:

Step 1 A device with a frame to send listens until the Ethernet is not busy.

Step 2 When the Ethernet is not busy, the sender(s) begin(s) sending the frame.

Step 3 The sender(s) listen(s) to make sure that no collision occurred.

Step 4 If a collision occurs, the devices that had been sending a frame each send a jamming signal to ensure that all stations recognize the collision.

Step 5 After the jamming is complete, each sender randomizes a timer and waits that long before trying to resend the collided frame.

Step 6 When each random timer expires, the process starts over with Step 1.

CSMA/CD does not prevent collisions, but it does ensure that the Ethernet works well even though collisions may and do occur. However, the CSMA/CD algorithm does create some performance issues. First, CSMA/CD causes devices to wait until the Ethernet is silent before sending data. This process helps avoid collisions, but it also means that only one device can send at any one instant in time. As a result, all the devices connected to the same hub share the bandwidth available through the hub. The logic of waiting to send until the LAN is silent is called half duplex. This refers to the fact that a device either sends or receives at any point in time, but never both at the same time.

The other main feature of CSMA/CD defines what to do when collisions do occur. When a collision occurs, CSMA/CD logic causes the devices that sent the colliding data frames to wait a random amount of time, and then try again. This again helps the LAN to function, but again it impacts performance. During the collision, no useful data makes it across the LAN. Also, the offending devices have to wait longer before trying to use the LAN. Additionally, as the load on an Ethernet increases, the statistical chance for collisions increases as well. In fact, during the years before LAN switches became more affordable and solved some of these performance problems, the rule of thumb was that an Ethernet’s performance began to degrade when the load began to exceed 30 percent utilization, mainly as a result of increasing collisions.
Increasing Available Bandwidth Using Switches

The term collision domain defines the set of devices whose frames could collide. All devices on a 10BASE2, 10BASE5, or any network using a hub risk collisions between the frames that they send, so all devices on one of these types of Ethernet networks are in the same collision domain. For example, all four devices connected to the hub in Figure 3-10 are in the same collision domain. To avoid collisions, and to recover when they occur, devices in the same collision domain use CSMA/CD.

LAN switches significantly reduce, or even eliminate, the number of collisions on a LAN. Unlike hubs, switches do not create a single shared bus, forwarding received electrical signals out all other ports. Instead, switches do the following:

- Switches interpret the bits in the received frame so that they can typically send the frame out the one required port, rather than all other ports
- If a switch needs to forward multiple frames out the same port, the switch buffers the frames in memory, sending one at a time, thereby avoiding collisions

For example, Figure 3-11 illustrates how a switch can forward two frames at the same time while avoiding a collision. In Figure 3-11, both PC1 and PC3 send at the same time. In this case, PC1 sends a data frame with a destination address of PC2, and PC3 sends a data frame with a destination address of PC4. (More on Ethernet addressing is coming up later in this chapter.) The switch looks at the destination Ethernet address and sends the frame from PC1 to PC2 at the same instant as the frame is sent by PC3 to PC4. Had a hub been used, a collision would have occurred; however, because the switch did not send the frames out all other ports, the switch prevented a collision.

```
NOTE
The switch’s logic requires that the switch look at the Ethernet header, which is considered a Layer 2 feature. As a result, switches are considered to operate as a Layer 2 device, whereas hubs are Layer 1 devices.
```

Buffering also helps prevent collisions. Imagine that PC1 and PC3 both send a frame to PC4 at the same time. The switch, knowing that forwarding both frames to PC4 at the same time would cause a collision, buffers one frame (in other words, temporarily holds it in memory) until the first frame has been completely sent to PC4.

These seemingly simple switch features provide significant performance improvements as compared with using hubs. In particular:

- If only one device is cabled to each port of a switch, no collisions can occur.
- Devices connected to one switch port do not share their bandwidth with devices connected to another switch port. Each has its own separate bandwidth, meaning that a switch with 100-Mbps ports has 100 Mbps of bandwidth per port.
The second point refers to the concepts behind the terms shared Ethernet and switched Ethernet. As mentioned earlier in this chapter, shared Ethernet means that the LAN bandwidth is shared among the devices on the LAN because they must take turns using the LAN because of the CSMA/CD algorithm. The term switched Ethernet refers to the fact that with switches, bandwidth does not have to be shared, allowing for far greater performance. For example, a hub with 24 100-Mbps Ethernet devices connected to it allows for a theoretical maximum of 100 Mbps of bandwidth. However, a switch with 24 100-Mbps Ethernet devices connected to it supports 100 Mbps for each port, or 2400 Mbps (2.4 Gbps) theoretical maximum bandwidth.

Doubling Performance by Using Full-Duplex Ethernet

Any Ethernet network using hubs requires CSMA/CD logic to work properly. However, CSMA/CD imposes half-duplex logic on each device, meaning that only one device can send at a time. Because switches can buffer frames in memory, switches can completely eliminate collisions on switch ports that connect to a single device. As a result, LAN switches with only one device cabled to each port of the switch allow the use of full-duplex operation. Full duplex means that an Ethernet card can send and receive concurrently.
To appreciate why collisions cannot occur, consider Figure 3-12, which shows the full-duplex circuitry used with a single PC’s connection to a LAN switch.

Figure 3-12 Full-Duplex Operation Using a Switch

With only the switch and one device connected to each other, collisions cannot occur. When you implement full duplex, you disable CSMA/CD logic on the devices on both ends of the cable. By doing so, neither device even thinks about CSMA/CD, and they can go ahead and send data whenever they want. As a result, the performance of the Ethernet on that cable has been doubled by allowed simultaneous transmission in both directions.

Ethernet Layer 1 Summary

So far in this chapter, you have read about the basics of how to build the Layer 1 portions of Ethernet using both hubs and switches. This section explained how to use UTP cables, with RJ-45 connectors, to connect devices to either a hub or a switch. It also explained the general theory of how devices can send data by encoding different electrical signals over an electrical circuit, with the circuit being created using a pair of wires inside the UTP cable. More importantly, this section explained which wire pairs are used to transmit and receive data. Finally, the basic operations of switches were explained, including the potential elimination of collisions, which results in significantly better performance than hubs.

Next, this chapter examines the data link layer protocols defined by Ethernet.

Ethernet Data-Link Protocols

One of the most significant strengths of the Ethernet family of protocols is that these protocols use the same small set of data-link standards. For instance, Ethernet addressing works the same on all the variations of Ethernet, even back to 10BASE5, up through 10-Gbps Ethernet—including Ethernet standards that use other types of cabling besides UTP. Also, the CSMA/CD algorithm is technically a part of the data link layer, again applying to most types of Ethernet, unless it has been disabled.

This section covers most of the details of the Ethernet data-link protocols—in particular, Ethernet addressing, framing, error detection, and identifying the type of data inside the Ethernet frame.
Ethernet Addressing

Ethernet LAN addressing identifies either individual devices or groups of devices on a LAN. Each address is 6 bytes long, is usually written in hexadecimal, and, in Cisco devices, typically is written with periods separating each set of four hex digits. For example, 0000.0C12.3456 is a valid Ethernet address.

Unicast Ethernet addresses identify a single LAN card. (The term *unicast* was chosen mainly for contrast with the terms *broadcast*, *multicast*, and *group addresses*.) Computers use unicast addresses to identify the sender and receiver of an Ethernet frame. For instance, imagine that Fred and Barney are on the same Ethernet, and Fred sends Barney a frame. Fred puts his own Ethernet MAC address in the Ethernet header as the source address and uses Barney’s Ethernet MAC address as the destination. When Barney receives the frame, he notices that the destination address is his own address, so he processes the frame. If Barney receives a frame with some other device’s unicast address in the destination address field, he simply does not process the frame.

The IEEE defines the format and assignment of LAN addresses. The IEEE requires globally unique unicast MAC addresses on all LAN interface cards. (IEEE calls them MAC addresses because the MAC protocols such as IEEE 802.3 define the addressing details.) To ensure a unique MAC address, the Ethernet card manufacturers encode the MAC address onto the card, usually in a ROM chip. The first half of the address identifies the manufacturer of the card. This code, which is assigned to each manufacturer by the IEEE, is called the *organizationally unique identifier (OUI)*. Each manufacturer assigns a MAC address with its own OUI as the first half of the address, with the second half of the address being assigned a number that this manufacturer has never used on another card. Figure 3-13 shows the structure.

![Figure 3-13 Structure of Unicast Ethernet Addresses](image)

Many terms can be used to describe unicast LAN addresses. Each LAN card comes with a *burned-in address (BIA)* that is burned into the ROM chip on the card. BIAs sometimes are called *universally administered addresses (UAA)* because the IEEE universally (well, at least worldwide) administers address assignment. Regardless of whether the BIA is used or another address is configured, many people refer to unicast addresses as either LAN addresses, Ethernet addresses, hardware addresses, physical addresses, or MAC addresses.
Group addresses identify more than one LAN interface card. The IEEE defines two general categories of group addresses for Ethernet:

- **Broadcast addresses**: The most often used of the IEEE group MAC addresses, the broadcast address, has a value of FFFF.FFFF.FFFF (hexadecimal notation). The broadcast address implies that all devices on the LAN should process the frame.

- **Multicast addresses**: Multicast addresses are used to allow a subset of devices on a LAN to communicate. When IP multicasts over an Ethernet, the multicast MAC addresses used by IP follow this format: 0100.5exx.xxxx, where any value can be used in the last half of the address.

Table 3-4 summarizes most of the details about MAC addresses.

<table>
<thead>
<tr>
<th>LAN Addressing Term or Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC</td>
<td>Media Access Control. 802.3 (Ethernet) defines the MAC sublayer of IEEE Ethernet.</td>
</tr>
<tr>
<td>Ethernet address, NIC address, LAN address</td>
<td>Other names often used instead of MAC address. These terms describe the 6-byte address of the LAN interface card.</td>
</tr>
<tr>
<td>Burned-in address</td>
<td>The 6-byte address assigned by the vendor making the card.</td>
</tr>
<tr>
<td>Unicast address</td>
<td>A term for a MAC that represents a single LAN interface.</td>
</tr>
<tr>
<td>Broadcast address</td>
<td>An address that means “all devices that reside on this LAN right now.”</td>
</tr>
<tr>
<td>Multicast address</td>
<td>On Ethernet, a multicast address implies some subset of all devices currently on the Ethernet LAN.</td>
</tr>
</tbody>
</table>

Ethernet Framing

Framing defines how a string of binary numbers is interpreted. In other words, framing defines the meaning behind the bits that are transmitted across a network. The physical layer helps you get a string of bits from one device to another. When the receiving device gets the bits, how should they be interpreted? The term *framing* refers to the definition of the fields assumed to be in the data that is received. In other words, framing defines the meaning of the bits transmitted and received over a network.

For instance, you just read an example of Fred sending data to Barney over an Ethernet. Fred put Barney’s Ethernet address in the Ethernet header so that Barney would know that the Ethernet frame was meant for him. The IEEE 802.3 standard defines the location of the destination address field inside the string of bits sent across the Ethernet.
The framing used for Ethernet has changed a couple of times over the years. Xerox defined one version of the framing, which the IEEE then changed when it took over Ethernet standards in the early 1980s. The IEEE finalized a compromise standard for framing in 1997 that includes some of the features of the original Xerox Ethernet framing, along with the framing defined by the IEEE. The end result is the bottom frame format shown in Figure 3-14.

Figure 3-14 LAN Header Formats

- **DIX**
 - Preamble: 8
 - Destination: 6
 - Source: 6
 - Type: 2
 - Data and Pad: 46 – 1500
 - FCS: 4

- **IEEE 802.3 (Original)**
 - Preamble: 7
 - SFD: 1
 - Destination: 6
 - Source: 6
 - Length: 2
 - Data and Pad: 46 – 1500
 - FCS: 4

- **IEEE 802.3 (Revised 1997)**
 - Preamble: 7
 - SFD: 1
 - Destination: 6
 - Source: 6
 - Length/Type: 2
 - Data and Pad: 46 – 1500
 - FCS: 4

Most of the fields in the Ethernet frame are important enough to be covered at some point in this chapter. For reference, Table 3-5 lists the fields in the header and trailer, and a brief description, for reference.

Table 3-5 IEEE 802.3 Ethernet Header and Trailer Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Field Length in Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble</td>
<td>7</td>
<td>Synchronization</td>
</tr>
<tr>
<td>Start Frame Delimiter (SFD)</td>
<td>1</td>
<td>Signifies that the next byte begins the Destination MAC field</td>
</tr>
<tr>
<td>Destination MAC address</td>
<td>6</td>
<td>Identifies the intended recipient of this frame</td>
</tr>
<tr>
<td>Source MAC address</td>
<td>6</td>
<td>Identifies the sender of this frame</td>
</tr>
<tr>
<td>Length</td>
<td>2</td>
<td>Defines the length of the data field of the frame (either length or type is present, but not both)</td>
</tr>
<tr>
<td>Type</td>
<td>2</td>
<td>Defines the type of protocol listed inside the frame (either length or type is present, but not both)</td>
</tr>
</tbody>
</table>
The IEEE 802.3 specification limits the data portion of the 802.3 frame to a maximum of 1500 bytes. The Data field was designed to hold Layer 3 packets; the term maximum transmission unit (MTU) defines the maximum Layer 3 packet that can be sent over a medium. Because the Layer 3 packet rests inside the data portion of an Ethernet frame, 1500 bytes is the largest IP MTU allowed over an Ethernet.

Identifying the Data Inside an Ethernet Frame

Over the years, many different network layer (Layer 3) protocols have been designed. Most of these protocols were part of larger network protocol models created by vendors to support their products, such as IBM Systems Network Architecture (SNA), Novell NetWare, Digital Equipment Corporation’s DECnet, and Apple Computer’s AppleTalk. Additionally, the OSI and TCP/IP models also defined network layer protocols.

All these Layer 3 protocols, plus several others, could use Ethernet. To use Ethernet, the network layer protocol would place its packet (generically speaking, its L3 PDU) into the data portion of the Ethernet frame shown in Figure 3-14. However, when a device receives such an Ethernet frame, that receiving device needs to know what type of L3 PDU is in the Ethernet frame. Is it an IP packet? an OSI packet? SNA? and so on.

To answer that question, most data-link protocol headers, including Ethernet, have a field with a code that defines the type of protocol header that follows. Generically speaking, these fields in data-link headers are called Type fields. For example, to imply that an IP packet is inside an Ethernet frame, the Type field (as shown in Figure 3-14) would have a value of hexadecimal 0800 (decimal 2048). Other types of L3 PDUs would be implied by using a different value in the Type field.

Interestingly, because of the changes to Ethernet framing over the years, another popular option exists for the protocol Type field, particularly when sending IP packets. If the 802.3 Type/Length field (in Figure 3-14) has a value less than hex 0600 (decimal 1536), the Type/Length field is used as a Length field for that frame, identifying the length of the data field. In that case, another field is needed to identify the type of L3 PDU inside the frame.

To create a Type field for frames that use the Type/Length field as a Length field, either one or two additional headers are added after the Ethernet 802.3 header but before the...
Layer 3 header. For example, when sending IP packets, the Ethernet frame has two additional headers:

- An IEEE 802.2 Logical Link Control (LLC) header
- An IEEE Subnetwork Access Protocol (SNAP) header

Figure 3-15 shows an Ethernet frame with these additional headers. Note that the SNAP header Type field has the same purpose, with the same reserved values, as the Ethernet Type/Length field.

Figure 3-15 802.2 SNAP Headers

<table>
<thead>
<tr>
<th>Bytes</th>
<th>802.3 Header</th>
<th>802.2 LLC Header</th>
<th>SNAP Header</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble</td>
<td>7</td>
<td>SFD</td>
<td>OUI</td>
</tr>
<tr>
<td>SFD</td>
<td>6</td>
<td>Source</td>
<td>3</td>
</tr>
<tr>
<td>Destination</td>
<td>6</td>
<td>Length*</td>
<td>2</td>
</tr>
<tr>
<td>Source</td>
<td>6</td>
<td>DSAP</td>
<td>1</td>
</tr>
<tr>
<td>Length</td>
<td>2</td>
<td>SSAP</td>
<td>1</td>
</tr>
<tr>
<td>DSAP</td>
<td>1</td>
<td>CTL</td>
<td>1</td>
</tr>
<tr>
<td>SSAP</td>
<td>1</td>
<td>OUI</td>
<td>3</td>
</tr>
<tr>
<td>CTL</td>
<td>1</td>
<td>Type</td>
<td>2</td>
</tr>
<tr>
<td>OUI</td>
<td>3</td>
<td>Data and Pad</td>
<td>46 - 1500</td>
</tr>
<tr>
<td>Type</td>
<td>2</td>
<td>FCS</td>
<td>4</td>
</tr>
</tbody>
</table>

* To be a Length field, this value must be less than decimal 1536.

Error Detection

The final Ethernet data link layer function explained here is error detection. Error detection is the process of discovering if a frame’s bits changed as a result of being sent over the network. The bits might change for many small reasons, but generally such errors occur as a result of some kind of electrical interference. Like every data-link protocol covered on the CCNA exams, Ethernet defines both a header and trailer, with the trailer containing a field used for the purpose of error detection.

The Ethernet Frame Check Sequence (FCS) field in the Ethernet trailer—the only field in the Ethernet trailer—allows a device receiving an Ethernet frame to detect whether the bits have changed during transmission. To detect an error, the sending device calculates a complex mathematical function, with the frame contents as input, putting the result into the frame’s 4-byte FCS field. The receiving device does the same math on the frame; if its calculation matches the FCS field in the frame, no errors occurred. If the result doesn’t match the FCS field, an error occurred, and the frame is discarded.

Note that error detection does not also mean error recovery. Ethernet defines that the errored frame should be discarded, but Ethernet takes no action to cause the frame to be retransmitted. Other protocols, notably TCP (as covered in Chapter 6, “Fundamentals of TCP/IP Transport, Applications, and Security”), can notice the lost data and cause error recovery to occur.
Exam Preparation Tasks

Review All the Key Topics
Review the most important topics from this chapter, noted with the key topics icon. Table 3-6 lists these key topics and where each is discussed.

Table 3-6 Key Topics for Chapter 3

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3-2</td>
<td>The four most popular types of Ethernet LANs and some details about each</td>
<td>52</td>
</tr>
<tr>
<td>List</td>
<td>Summary of CSMA/CD logic</td>
<td>55</td>
</tr>
<tr>
<td>Figure 3-6</td>
<td>EIA/TIA standard Ethernet Cabling Pinouts</td>
<td>61</td>
</tr>
<tr>
<td>Figure 3-7</td>
<td>Straight-through cable concept</td>
<td>62</td>
</tr>
<tr>
<td>Figure 3-8</td>
<td>Crossover cable concept</td>
<td>63</td>
</tr>
<tr>
<td>Table 3-3</td>
<td>List of devices that transmit on wire pair 1,2 and pair 3,6</td>
<td>63</td>
</tr>
<tr>
<td>List</td>
<td>Detailed CSMA/CD logic</td>
<td>66</td>
</tr>
<tr>
<td>Figure 3-13</td>
<td>Structure of a unicast Ethernet address</td>
<td>70</td>
</tr>
<tr>
<td>Table 3-4</td>
<td>Key Ethernet addressing terms</td>
<td>71</td>
</tr>
</tbody>
</table>

Complete the Tables and Lists from Memory
Print a copy of Appendix L, “Memory Tables” (found on the DVD), or at least the section for this chapter, and complete the tables and lists from memory. Appendix M, “Memory Tables Answer Key,” also on the DVD, includes completed tables and lists for you to check your work.

Definitions of Key Terms
Define the following key terms from this chapter and check your answers in the glossary.

1000BASE-T, 100BASE-TX, 10BASE-T, crossover cable, CSMA/CD, full duplex, half duplex, hub, pinout, protocol type, shared Ethernet, straight-through cable, switch, switched Ethernet, twisted pair
This chapter covers the following subjects:

OSI Layer 1 for Point-to-Point WANs: This section explains the physical cabling and devices used to create the customer portions of a leased circuit.

OSI Layer 2 for Point-to-Point WANs: This section introduces the data link layer protocols used on point-to-point leased lines, namely HDLC and PPP.

Frame Relay and Packet-Switching Services: This section explains the concept of a WAN packet-switching service, with particular attention given to Frame Relay.
Fundamentals of WANs

In the previous chapter, you learned more details about how Ethernet LANs perform the functions defined by the two lowest OSI layers. In this chapter, you will learn about how wide-area network (WAN) standards and protocols also implement OSI Layer 1 (physical layer) and Layer 2 (data link layer). The OSI physical layer details are covered, along with three popular WAN data link layer protocols: High-Level Data Link Control (HDLC), Point-to-Point Protocol (PPP), and Frame Relay.

“Do I Know This Already?” Quiz
The “Do I Know This Already?” quiz allows you to assess if you should read the entire chapter. If you miss no more than one of these eight self-assessment questions, you might want to move ahead to the “Exam Preparation Tasks” section. Table 4-1 lists the major headings in this chapter and the “Do I Know This Already?” quiz questions covering the material in those headings so you can assess your knowledge of these specific areas. The answers to the “Do I Know This Already?” quiz appear in Appendix A.

Table 4-1 “Do I Know This Already?” Foundation Topics Section-to-Question Mapping

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSI Layer 1 for Point-to-Point WANs</td>
<td>1–4</td>
</tr>
<tr>
<td>OSI Layer 2 for Point-to-Point WANs</td>
<td>5, 6</td>
</tr>
<tr>
<td>Frame Relay and Packet-Switching Services</td>
<td>7, 8</td>
</tr>
</tbody>
</table>

1. Which of the following best describes the main function of OSI Layer 1 protocols?
 a. Framing
 b. Delivery of bits from one device to another
 c. Addressing
 d. Local Management Interface (LMI)
 e. DLCI
2. Which of the following typically connects to a four-wire line provided by a telco?
 a. Router serial interface without internal CSU/DSU
 b. CSU/DSU
 c. Router serial interface with internal transceiver
 d. Switch serial interface

3. Which of the following typically connects to a V.35 or RS-232 end of a cable when cabling a leased line?
 a. Router serial interface without internal CSU/DSU
 b. CSU/DSU
 c. Router serial interface with internal transceiver
 d. Switch serial interface

4. On a point-to-point WAN link using a leased line between two routers located hundreds of miles apart, what devices are considered to be the DTE devices?
 a. Routers
 b. CSU/DSU
 c. The central office equipment
 d. A chip on the processor of each router
 e. None of these answers are correct.

5. Which of the following functions of OSI Layer 2 is specified by the protocol standard for PPP, but is implemented with a Cisco proprietary header field for HDLC?
 a. Framing
 b. Arbitration
 c. Addressing
 d. Error detection
 e. Identifying the type of protocol that is inside the frame
6. Imagine that Router1 has three point-to-point serial links, one link each to three remote routers. Which of the following is true about the required HDLC addressing at Router1?
 a. Router1 must use HDLC addresses 1, 2, and 3.
 b. Router1 must use any three unique addresses between 1 and 1023.
 c. Router1 must use any three unique addresses between 16 and 1000.
 d. Router1 must use three sequential unique addresses between 1 and 1023.
 e. None of these answers are correct.

7. What is the name of the Frame Relay field used to identify Frame Relay virtual circuits?
 a. Data-link connection identifier
 b. Data-link circuit identifier
 c. Data-link connection indicator
 d. Data-link circuit indicator
 e. None of these answers are correct.

8. Which of the following is true about Frame Relay virtual circuits (VCs)?
 a. Each VC requires a separate access link.
 b. Multiple VCs can share the same access link.
 c. All VCs sharing the same access link must connect to the same router on the other side of the VC.
 d. All VCs on the same access link must use the same DLCI.
Foundation Topics

As you read in the previous chapter, the OSI physical and data link layers work together to deliver data across a wide variety of types of physical networks. LAN standards and protocols define how to network between devices that are relatively close together, hence the term local-area in the acronym LAN. WAN standards and protocols define how to network between devices that are relatively far apart—in some cases, even thousands of miles apart—hence the term wide-area in the acronym WAN.

LANs and WANs both implement the same OSI Layer 1 and Layer 2 functions, but with different mechanisms and details. This chapter points out the similarities between the two, and provides details about the differences.

The WAN topics in this chapter describe mainly how enterprise networks use WANs to connect remote sites. Part V of this book covers a broader range of WAN topics, including popular Internet access technologies such as digital subscriber line (DSL) and cable, along with a variety of configuration topics. The ICND2 Official Cert Guide covers Frame Relay in much more detail than this book, as well as the concepts behind Internet virtual private networks (VPN), which is a way to use the Internet instead of traditional WAN links.

OSI Layer 1 for Point-to-Point WANs

The OSI physical layer, or Layer 1, defines the details of how to move data from one device to another. In fact, many people think of OSI Layer 1 as “sending bits.” Higher layers encapsulate the data, as described in Chapter 2, “The TCP/IP and OSI Networking Models.” No matter what the other OSI layers do, eventually the sender of the data needs to actually transmit the bits to another device. The OSI physical layer defines the standards and protocols used to create the physical network and to send the bits across that network.

A point-to-point WAN link acts like an Ethernet trunk between two Ethernet switches in many ways. For perspective, look at Figure 4-1, which shows a LAN with two buildings and two switches in each building. As a brief review, remember that several types of Ethernet use one twisted pair of wires to transmit and another twisted pair to receive, in order to reduce electromagnetic interference. You typically use straight-through Ethernet cables between end-user devices and the switches. For the trunk links between the switches, you use crossover cables because each switch transmits on the same pair of pins on the connector, so the crossover cable connects one device’s transmit pair to the other device’s receive pair. The lower part of Figure 4-1 reminds you of the basic idea behind a crossover cable.
Now imagine that the buildings are 1000 miles apart instead of right next to each other. You are immediately faced with two problems:

- Ethernet does not support any type of cabling that allows an individual trunk to run for 1000 miles.
- Even if Ethernet supported a 1000-mile trunk, you do not have the rights-of-way needed to bury a cable over the 1000 miles of real estate between buildings.

The big distinction between LANs and WANs relates to how far apart the devices can be and still be capable of sending and receiving data. LANs tend to reside in a single building or possibly among buildings in a campus using optical cabling approved for Ethernet. WAN connections typically run longer distances than Ethernet—across town or between cities. Often, only one or a few companies even have the rights to run cables under the ground between the sites. So, the people who created WAN standards needed to use different physical specifications than Ethernet to send data 1000 miles or more (WAN).

NOTE Besides LANs and WANs, the term metropolitan-area network (MAN) is sometimes used for networks that extend between buildings and through rights-of-ways. The term MAN typically implies a network that does not reach as far as a WAN, generally in a single metropolitan area. The distinctions between LANs, MANs, and WANs are blurry—there is no set distance that means a link is a LAN, MAN, or WAN link.

To create such long links, or circuits, the actual physical cabling is owned, installed, and managed by a company that has the right of way to run cables under streets. Because a company that needs to send data over the WAN circuit does not actually own the cable or line, it is called a *leased line*. Companies that can provide leased WAN lines typically
started life as the local telephone company, or telco. In many countries, the telco is still a government-regulated or government-controlled monopoly; these companies are sometimes called public telephone and telegraph (PTT) companies. Today, many people use the generic term service provider to refer to a company that provides any form of WAN connectivity, including Internet services.

Point-to-point WAN links provide basic connectivity between two points. To get a point-to-point WAN link, you would work with a service provider to install a circuit. What the phone company or service provider gives you is similar to what you would have if you made a phone call between two sites, but you never hung up. The two devices on either end of the WAN circuit could send and receive bits between each other any time they want, without needing to dial a phone number. Because the connection is always available, a point-to-point WAN connection is sometimes called a **leased circuit** or **leased line** because you have the exclusive right to use that circuit, as long as you keep paying for it.

Now back to the comparison of the LAN between two nearby buildings versus the WAN between two buildings that are 1000 miles apart. The physical details are different, but the same general functions need to be accomplished, as shown in Figure 4-2.

![Conceptual View of Point-to-Point Leased Line](image)

Keep in mind that Figure 4-2 provides a conceptual view of a point-to-point WAN link. In concept, the telco installs a physical cable, with a transmit and a receive twisted pair, between the buildings. The cable has been connected to each router, and each router, in turn, has been connected to the LAN switches. As a result of this new physical WAN link and the logic used by the routers connected to it, data now can be transferred between the two sites. In the next section, you will learn more about the physical details of the WAN link.

NOTE Ethernet switches have many different types of interfaces, but all the interfaces are some form of Ethernet. Routers provide the capability to connect many different types of OSI Layer 1 and Layer 2 technologies. So, when you see a LAN connected to some other site using a WAN connection, you will see a router connected to each, as in Figure 4-2.
WAN Connections from the Customer Viewpoint

The concepts behind a point-to-point connection are simple. However, to fully understand what the service provider does to build its network to support your point-to-point line, you would need to spend lots of time studying and learning technologies outside the scope of the ICND1 exam. However, most of what you need to know about WANs for the ICND1 exam relates to how WAN connections are implemented between the telephone company and a customer site. Along the way, you will need to learn a little about the terminology used by the provider.

In Figure 4-2, you saw that a WAN leased line acts as if the telco gave you two twisted pairs of wires between the two sites on each end of the line. Well, it is not that simple. Of course, a lot more underlying technology must be used to create the circuit, and telcos use a lot of terminology that is different from LAN terminology. The telco seldom actually runs a 1000-mile cable for you between the two sites. Instead, it has built a large network already and even runs extra cables from the local central office (CO) to your building (a CO is just a building where the telco locates the devices used to create its own network). Regardless of what the telco does inside its own network, what you receive is the equivalent of a four-wire leased circuit between two buildings.

Figure 4-3 introduces some of the key concepts and terms relating to WAN circuits.

Typically, routers connect to a device called an external channel service unit/data service unit (CSU/DSU). The router connects to the CSU/DSU with a relatively short cable, typically less than 50 feet long, because the CSU/DSUs typically get placed in a rack near the router. The much longer four-wire cable from the telco plugs into the CSU/DSU. That cable leaves the building, running through the hidden (typically buried) cables that you sometimes see phone company workers fixing by the side of the road. The other end of that cable ends up in the CO, with the cable connecting to a CO device generically called a WAN switch.
The same general physical connectivity exists on each side of the point-to-point WAN link. In between the two COs, the service provider can build its network with several competing different types of technology, all of which is beyond the scope of any of the CCNA exams. However, the perspective in Figure 4-2 remains true—the two routers can send and receive data simultaneously across the point-to-point WAN link.

From a legal perspective, two different companies own the various components of the equipment and lines in Figure 4-3. For instance, the router cable and typically the CSU/DSU are owned by the telco’s customer, and the wiring to the CO and the gear inside the CO are owned by the telco. So, the telco uses the term demarc, which is short for demarcation point, to refer to the point at which the telco’s responsibility is on one side and the customer’s responsibility is on the other. The demarc is not a separate device or cable, but rather a concept of where the responsibilities of the telco and customer end.

In the United States, the demarc is typically where the telco physically terminates the set of two twisted pairs inside the customer building. Typically, the customer asks the telco to terminate the cable in a particular room, and most, if not all, the lines from the telco into that building terminate in the same room.

The term customer premises equipment (CPE) refers to devices that are at the customer site, from the telco’s perspective. For instance, both the CSU/DSU and the router are CPE devices in this case.

The demarc does not always reside where it is shown in Figure 4-3. In some cases, the telco actually could own the CSU/DSU, and the demarc would be on the router side of the CSU/DSU. In some cases today, the telco even owns and manages the router at the customer site, again moving the point that would be considered the demarc. Regardless of where the demarc sits from a legal perspective, the term CPE still refers to the equipment at the telco customer’s location.

WAN Cabling Standards

Cisco offers a large variety of different WAN interface cards for its routers, including synchronous and asynchronous serial interfaces. For any of the point-to-point serial links or Frame Relay links in this chapter, the router uses an interface that supports synchronous communication.

Synchronous serial interfaces in Cisco routers use a variety of proprietary physical connector types, such as the 60-pin D-shell connector shown at the top of the cable drawings in Figure 4-4. The cable connecting the router to the CSU/DSU uses a connector that fits the router serial interface on the router side, and a standardized WAN connector...
type that matches the CSU/DSU interface on the CSU/DSU end of the cable. Figure 4-4 shows a typical connection, with some of the serial cabling options listed.

Figure 4-4 Serial Cabling Options

The engineer who deploys a network chooses the cable based on the connectors on the router and the CSU/DSU. Beyond that choice, engineers do not really need to think about how the cabling and pins work—they just work! Many of the pins are used for control functions, and a few are used for the transmission of data. Some pins are used for clocking, as described in the next section.

NOTE The Telecommunications Industry Association (TIA) is accredited by the American National Standards Institute (ANSI) to represent the United States in work with international standards bodies. The TIA defines some of the WAN cabling standards, in addition to LAN cabling standards. For more information on these standards bodies, and to purchase copies of the standards, refer to the websites http://www.tiaonline.org and http://www.ansi.org.

The cable between the CSU/DSU and the telco CO typically uses an RJ-48 connector to connect to the CSU/DSU; the RJ-48 connector has the same size and shape as the RJ-45 connector used for Ethernet cables.

Many Cisco routers support serial interfaces that have an integrated internal CSU/DSU. With an internal CSU/DSU, the router does not need a cable connecting it to an external CSU/DSU because the CSU/DSU is internal to the router. In these cases, the serial cables
shown in Figure 4-4 are not needed, and the physical line from the telco is connected to a
port on the router, typically an RJ-48 port in the router serial interface card.

Clock Rates, Synchronization, DCE, and DTE

An enterprise network engineer who wants to install a new point-to-point leased line
between two routers has several tasks to perform. First, the network engineer contacts a
service provider and orders the circuit. As part of that process, the network engineer
specifies how fast the circuit should run, in kilobits per second (kbps). While the telco
installs the circuit, the engineer purchases two CSU/DSUs, installs one at each site, and
configures each CSU/DSU. The network engineer also purchases and installs routers, and
connects serial cables from each router to the respective CSU/DSU using the cables shown
in Figure 4-4. Eventually, the telco installs the new line into the customer premises, and the
line can be connected to the CSU/DSUs, as shown in Figure 4-3.

Every WAN circuit ordered from a service provider runs at one of many possible predefined
speeds. This speed is often referred to as the clock rate, bandwidth, or link speed. The
enterprise network engineer (the customer) must specify the speed when ordering a circuit,
and the telco installs a circuit that runs at that speed. Additionally, the enterprise network
engineer must configure the CSU/DSU on each end of the link to match the defined speed.

To make the link work, the various devices need to synchronize their clocks so that they run
at exactly the same speed—a process called synchronization. Synchronous circuits impose
time ordering at the link’s sending and receiving ends. Essentially, all devices agree to try
to run at the exact same speed, but it is expensive to build devices that truly can operate at
exactly the same speed. So, the devices operate at close to the same speed and listen to the
speed of the other device on the other side of the link. One side makes small adjustments in
its rate to match the other side.

Synchronization occurs between the two CSU/DSUs on a leased line by having one CSU/
DSU (the slave) adjust its clock to match the clock rate of the other CSU/DSU (the master).
The process works almost like the scenes in spy novels in which the spies synchronize their
watches; in this case, the networking devices synchronize their clocks several times per
second.

In practice, the clocking concept includes a hierarchy of different clock sources. The telco
provides clocking information to the CSU/DSUs based on the transitions in the electrical
signal on the circuit. The two CSU/DSUs then adjust their speeds to match the clocking
signals from the telco. The CSU/DSUs each supply clocking signals to the routers so that
the routers simply react, sending and receiving data at the correct rate. So, from the routers’
perspectives, the CSU/DSU is considered to be *clocking* the link.
A couple of other key WAN terms relate to the process of clocking. The device that provides clocking, typically the CSU/DSU, is considered to be the data communications equipment (DCE). The device receiving clocking, typically the router, is referred to as data terminal equipment (DTE).

Building a WAN Link in a Lab

On a practical note, when purchasing serial cables from Cisco, you can pick either a DTE or a DCE cable. You pick the type of cable based on whether the router is acting like DTE or DCE. In most cases with a real WAN link, the router acts as DTE, so the router must use a DTE cable to connect to the CSU/DSU.

You can build a serial link in a lab without using any CSU/DSUs, but to do so, one router must supply clocking. When building a lab to study for any of the Cisco exams, you do not need to buy CSU/DSUs or order a WAN circuit. You can buy two routers, a DTE serial cable for one router, and a DCE serial cable for the other, and connect the two cables together. The router with the DCE cable in it can be configured to provide clocking, meaning that you do not need a CSU/DSU. So, you can build a WAN in your home lab, saving hundreds of dollars by not buying CSU/DSUs. The DTE and DCE cables can be connected to each other (the DCE cable has a female connector and the DTE cable has a male connector) and to the two routers. With one additional configuration command on one of the routers (the **clock rate** command), you have a point-to-point serial link. This type of connection between two routers sometimes is called a back-to-back serial connection.

Figure 4-5 shows the cabling for a back-to-back serial connection and also shows that the combined DCE/DTE cables reverse the transmit and receive pins, much like a crossover Ethernet cable allows two directly connected devices to communicate.
As you see in Figure 4-5, the DTE cable, the same cable that you typically use to connect to a CSU/DSU, does not swap the Tx and Rx pins. The DCE cable swaps transmit and receive, so the wiring with one router’s Tx pin connected to the other router’s Rx, and vice versa, remains intact. The router with the DCE cable installed needs to supply clocking, so the \texttt{clock rate} command will be added to that router to define the speed.

Link Speeds Offered by Telcos

No matter what you call them—telcos, PTTs, service providers—these companies do not simply let you pick the exact speed of a WAN link. Instead, standards define how fast a point-to-point link can run.

For a long time, the telcos of the world made more money selling voice services than selling data services. As technology progressed during the mid-twentieth century, the telcos of the world developed a standard for sending voice using digital transmissions. Digital signaling inside their networks allowed for the growth of more profitable data services, such as leased lines. It also allowed better efficiencies, making the build-out of the expanding voice networks much less expensive.

The original mechanism used for converting analog voice to a digital signal is called pulse code modulation (PCM). PCM defines that an incoming analog voice signal should be sampled 8000 times per second, and each sample should be represented by an 8-bit code. So, 64,000 bits were needed to represent 1 second of voice. When the telcos of the world built their first digital networks, they chose a baseline transmission speed of 64 kbps because that was the necessary bandwidth for a single voice call. The term digital signal level 0 (DS0) refers to the standard for a single 64-kbps line.

Today, most telcos offer leased lines in multiples of 64 kbps. In the United States, the digital signal level 1 (DS1) standard defines a single line that supports 24 DS0s, plus an 8-kbps overhead channel, for a speed of 1.544 Mbps. (A DS1 is also called a T1 line.) Another option is a digital signal level 3 (DS3) service, also called a T3 line, which holds 28 DS1s. Other parts of the world use different standards, with Europe and Japan using standards that hold 32 DS0s, called an E1 line, with an E3 line holding 16 E1s.

| NOTE | The combination of multiple slower-speed lines and channels into one faster-speed line or channel—for instance, combining 24 DS0s into a single T1 line—is generally called time-division multiplexing (TDM). |

Table 4-2 lists some of the standards for WAN speeds. Included in the table are the type of line, plus the type of signaling (for example, DS1). The signaling specifications define the electrical signals that encode a binary 1 or 0 on the line. You should be aware of the general idea, and remember the key terms for T1 and E1 lines in particular, for the ICND1 exam.
The leased circuits described so far in this chapter form the basis for the WAN services used by many enterprises today. Next, this chapter explains the data link layer protocols used when a leased circuit connects two routers.

OSI Layer 2 for Point-to-Point WANs

WAN protocols used on point-to-point serial links provide the basic function of data delivery across that one link. The two most popular data link layer protocols used on point-to-point links are High-Level Data Link Control (HDLC) and Point-to-Point Protocol (PPP).

HDLC

Because point-to-point links are relatively simple, HDLC has only a small amount of work to do. In particular, HDLC needs to determine if the data passed the link without any errors; HDLC discards the frame if errors occurred. Additionally, HDLC needs to identify the type of packet inside the HDLC frame so the receiving device knows the packet type.

To achieve the main goal of delivering data across the link and to check for errors and identify the packet type, HDLC defines framing. The HDLC header includes an Address field and a Protocol Type field, with the trailer containing a frame check sequence (FCS) field. Figure 4-6 outlines the standard HDLC frame and the HDLC frame that is Cisco proprietary.

HDLC defines a 1-byte Address field, although on point-to-point links, it is not really needed. Having an Address field in HDLC is sort of like when I have lunch with my friend Gary, and only Gary. I do not need to start every sentence with “Hey Gary”—he knows I am talking to him. On point-to-point WAN links, the router on one end of the link knows that there is only one possible recipient of the data—the router on the other end of the link—so the address does not really matter today.
HDLC performs error detection just like Ethernet—it uses an FCS field in the HDLC trailer. And just like Ethernet, if a received frame has errors in it, the device receiving the frame discards the frame, with no error recovery performed by HDLC.

HDLC also performs the function of identifying the encapsulated data, just like Ethernet. When a router receives an HDLC frame, it wants to know what type of packet is held inside the frame. The Cisco implementation of HDLC includes a Protocol Type field that identifies the type of packet inside the frame. Cisco uses the same values in its 2-byte HDLC Protocol Type field as it does in the Ethernet Protocol Type field.

The original HDLC standards did not include a Protocol Type field, so Cisco added one to support the first serial links on Cisco routers, back in the early days of Cisco in the latter 1980s. By adding something to the HDLC header, Cisco made its version of HDLC proprietary. So, the Cisco implementation of HDLC will not work when connecting a Cisco router to another vendor’s router.

HDLC is very simple. There simply is not a lot of work for the point-to-point data link layer protocols to perform.
Point-to-Point Protocol

The International Telecommunications Union (ITU), previously known as the Consultative Committee for International Telecommunications Technologies (CCITT), first defined HDLC. Later, the Internet Engineering Task Force (IETF) saw the need for another data link layer protocol for use between routers over a point-to-point link. In RFC 1661, the IETF created the Point-to-Point Protocol (PPP).

Comparing the basics, PPP behaves much like HDLC. The framing looks identical to the Cisco proprietary HDLC framing. There is an Address field, but the addressing does not matter. PPP does discard errored frames that do not pass the FCS check. Additionally, PPP uses a 2-byte Protocol Type field. However, because the Protocol Type field is part of the standard for PPP, any vendor that conforms to the PPP standard can communicate with other vendor products. So, when connecting a Cisco router to another vendor’s router over a point-to-point serial link, PPP is the data link layer protocol of choice.

PPP was defined much later than the original HDLC specifications. As a result, the creators of PPP included many additional features that had not been seen in WAN data link layer protocols up to that time, so PPP has become the most popular and feature-rich of WAN data link layer protocols.

Point-to-Point WAN Summary

Point-to-point WAN leased lines and their associated data link layer protocols use another set of terms and concepts beyond those covered for LANs, as outlined in Table 4-3.

Table 4-3 WAN Terminology

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous</td>
<td>The imposition of time ordering on a bit stream. Practically, a device tries to use the same speed as another device on the other end of a serial link. However, by examining transitions between voltage states on the link, the device can notice slight variations in the speed on each end and can adjust its speed accordingly.</td>
</tr>
<tr>
<td>Clock source</td>
<td>The device to which the other devices on the link adjust their speed when using synchronous links.</td>
</tr>
<tr>
<td>CSU/DSU</td>
<td>Channel service unit/data service unit. Used on digital links as an interface to the telephone company in the United States. Routers typically use a short cable from a serial interface to a CSU/DSU, which is attached to the line from the telco with a similar configuration at the other router on the other end of the link.</td>
</tr>
<tr>
<td>Telco</td>
<td>Telephone company.</td>
</tr>
</tbody>
</table>

continues
Also, just for survival when talking about WANs, keep in mind that all the following terms may be used to refer to a point-to-point leased line as covered so far in this chapter:

- leased line, leased circuit, link, serial link, serial line, point-to-point link, circuit

Frame Relay and Packet-Switching Services

Service providers offer a class of WAN services, different from leased lines, that can be categorized as packet-switching services. In a packet-switching service, physical WAN connectivity exists, similar to a leased line. However, a company can connect a large number of routers to the packet-switching service, using a single serial link from each router into the packet-switching service. Once connected, each router can send packets to all the other routers—much like all the devices connected to an Ethernet hub or switch can send data directly to each other.

Two types of packet-switching service are very popular today, Frame Relay and Asynchronous Transfer Mode (ATM), with Frame Relay being much more common. This section introduces the main concepts behind packet-switching services, and explains the basics of Frame Relay.

The Scaling Benefits of Packet Switching

Point-to-point WANs can be used to connect a pair of routers at multiple remote sites. However, an alternative WAN service, Frame Relay, has many advantages over point-to-point links, particularly when you connect many sites via a WAN. To introduce you to Frame Relay, this section focuses on a few of the key benefits compared to leased lines, one of which you can easily see when considering the illustration in Figure 4-7.

Table 4-3 WAN Terminology (Continued)

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Four-wire circuit</td>
<td>A line from the telco with four wires, composed of two twisted-pair wires. Each pair is used to send in one direction, so a four-wire circuit allows full-duplex communication.</td>
</tr>
<tr>
<td>T1</td>
<td>A line from the telco that allows transmission of data at 1.544 Mbps.</td>
</tr>
<tr>
<td>E1</td>
<td>Similar to a T1, but used in Europe. It uses a rate of 2.048 Mbps and 32 64-kbps channels.</td>
</tr>
</tbody>
</table>

![Figure 4-7 Two Leased Lines to Two Branch Offices](image)
In Figure 4-7, a main site is connected to two branch offices, labeled BO1 and BO2. The main site router, R1, requires two serial interfaces and two separate CSU/DSUs. But what happens when the company grows to 10 sites? Or 100 sites? Or 500 sites? For each point-to-point line, R1 needs a separate physical serial interface and a separate CSU/DSU. As you can imagine, growth to hundreds of sites will take many routers, with many interfaces each, and lots of rack space for the routers and CSU/DSUs.

Now imagine that the phone company salesperson says the following to you when you have two leased lines, or circuits, installed (as shown in Figure 4-7):

You know, we can install Frame Relay instead. You will need only one serial interface on R1 and one CSU/DSU. To scale to 100 sites, you might need two or three more serial interfaces on R1 for more bandwidth, but that is it. And by the way, because your leased lines run at 128 kbps today, we will guarantee that you can send and receive that much data to and from each site. We will upgrade the line at R1 to T1 speed (1.544 Mbps). When you have more traffic than 128 kbps to a site, go ahead and send it! If we have capacity, we will forward it, with no extra charge. And by the way, did I tell you that it is cheaper than leased lines anyway?

You consider the facts for a moment: Frame Relay is cheaper, it is at least as fast as (probably faster than) what you have now, and it allows you to save money when you grow. So, you quickly sign the contract with the Frame Relay provider, before the salesperson can change his mind, and migrate to Frame Relay. Does this story seem a bit ridiculous? Sure. The cost and scaling benefits of Frame Relay, as compared to leased lines, however, are very significant. As a result, many networks moved from using leased lines to Frame Relay, particularly in the 1990s, with a significantly large installed base of Frame Relay networks today. In the next few pages, you will see how Frame Relay works and realize how Frame Relay can provide functions claimed by the fictitious salesperson.

Frame Relay Basics

Frame Relay networks provide more features and benefits than simple point-to-point WAN links, but to do that, Frame Relay protocols are more detailed. Frame Relay networks are multiaccess networks, which means that more than two devices can attach to the network, similar to LANs. To support more than two devices, the protocols must be a little more detailed. Figure 4-8 introduces some basic connectivity concepts for Frame Relay. Figure 4-8 reflects the fact that Frame Relay uses the same Layer 1 features as a point-to-point leased line. For a Frame Relay service, a leased line is installed between each router and a nearby Frame Relay switch; these links are called *access links*. The access links run at the same speed and use the same signaling standards as do point-to-point leased lines. However, instead of extending from one router to the other, each leased line runs from one router to a Frame Relay switch.
The difference between Frame Relay and point-to-point links is that the equipment in the telco actually examines the data frames sent by the router. Frame Relay defines its own data-link header and trailer. Each Frame Relay header holds an address field called a data-link connection identifier (DLCI). The WAN switch forwards the frame based on the DLCI, sending the frame through the provider’s network until it gets to the remote-site router on the other side of the Frame Relay cloud.

Because the equipment in the telco can forward one frame to one remote site and another frame to another remote site, Frame Relay is considered to be a form of packet switching. This term means that the service provider actually chooses where to send each data packet sent into the provider’s network, switching one packet to one device, and the next packet to another. However, Frame Relay protocols most closely resemble OSI Layer 2 protocols; the term usually used for the bits sent by a Layer 2 device is frame. So, Frame Relay is also called a frame-switching service, while the term packet switching is a more general term.

The terms DCE and DTE actually have a second set of meanings in the context of any packet-switching or frame-switching service. With Frame Relay, the Frame Relay switches are called DCE, and the customer equipment—routers, in this case—are called DTE. In this case, DCE refers to the device providing the service, and the term DTE refers to the device needing the frame-switching service. At the same time, the CSU/DSU provides clocking to the router, so from a Layer 1 perspective, the CSU/DSU is still the DCE and the router is still the DTE. It is just two different uses of the same terms.

Figure 4-8 depicted the physical and logical connectivity at each connection to the Frame Relay network. In contrast, Figure 4-9 shows the end-to-end connectivity associated with a virtual circuit (VC).
Figure 4-9 Frame Relay VC Concepts

The logical path that a frame travels between each pair of routers is called a Frame Relay VC. In Figure 4-9, a single VC is represented by the dashed line between the routers. Typically, the service provider preconfigures all the required details of a VC; these VCs are called permanent virtual circuits (PVC). When R1 needs to forward a packet to R2, it encapsulates the Layer 3 packet into a Frame Relay header and trailer and then sends the frame. R1 uses a Frame Relay address called a DLCI in the Frame Relay header, with the DLCI identifying the correct VC to the provider. This allows the switches to deliver the frame to R2, ignoring the details of the Layer 3 packet and looking at only the Frame Relay header and trailer. Recall that on a point-to-point serial link, the service provider forwards the frame over a physical circuit between R1 and R2. This transaction is similar in Frame Relay, where the provider forwards the frame over a logical VC from R1 to R2.

Frame Relay provides significant advantages over simply using point-to-point leased lines. The primary advantage has to do with VCs. Consider Figure 4-10 with Frame Relay instead of three point-to-point leased lines. Frame Relay creates a logical path (a VC) between two Frame Relay DTE devices. A VC acts like a point-to-point circuit, but physically it is not—it is virtual. For example, R1 terminates two VCs—one whose other endpoint is R2 and one whose other endpoint is R3. R1 can send traffic directly to either of the other two routers by sending it over the appropriate VC, although R1 has only one physical access link to the Frame Relay network.

VCs share the access link and the Frame Relay network. For example, both VCs terminating at R1 use the same access link. So, with large networks with many WAN sites that need to connect to a central location, only one physical access link is required from the main site router to the Frame Relay network. By contrast, using point-to-point links would require a physical circuit, a separate CSU/DSU, and a separate physical interface on the router for each point-to-point link. So, Frame Relay enables you to expand the WAN but add less hardware to do so.
Many customers of a single Frame Relay service provider share that provider’s Frame Relay network. Originally, people with leased-line networks were reluctant to migrate to Frame Relay because they would be competing with other customers for the provider’s capacity inside the service provider’s network. To address these fears, Frame Relay is designed with the concept of a committed information rate (CIR). Each VC has a CIR, which is a guarantee by the provider that a particular VC gets at least that much bandwidth. You can think of the CIR of a VC like the bandwidth or clock rate of a point-to-point circuit, except that it is the minimum value—you can actually send more, in most cases.

Even in this three-site network, it is probably less expensive to use Frame Relay than to use point-to-point links. Now imagine a much larger network, with a 100 sites, that needs any-to-any connectivity. A point-to-point link design would require 4950 leased lines! In addition, you would need 99 serial interfaces per router. By contrast, with a Frame Relay design, you could have 100 access links to local Frame Relay switches (1 per router) with 4950 VCs running over the access links. Also, you would need only one serial interface on each router. As a result, the Frame Relay topology is easier for the service provider to implement, costs the provider less, and makes better use of the core of the provider’s network. As you would expect, that makes it less expensive to the Frame Relay customer as well. For connecting many WAN sites, Frame Relay is simply more cost-effective than leased lines.
Exam Preparation Tasks

Review All the Key Topics

Review the most important topics from inside the chapter, noted with the key topics icon in the outer margin of the page. Table 4-4 lists a reference of these key topics and the page numbers on which each is found.

Table 4-4 Key Topics for Chapter 4

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 4-3</td>
<td>Shows typical cabling diagram of CPE for a leased line</td>
<td>83</td>
</tr>
<tr>
<td>Table 4-2</td>
<td>Typical speeds for WAN leased lines</td>
<td>89</td>
</tr>
<tr>
<td>Figure 4-6</td>
<td>HDLC framing</td>
<td>90</td>
</tr>
<tr>
<td>Table 4-3</td>
<td>List of key WAN terminology</td>
<td>91-92</td>
</tr>
<tr>
<td>Paragraph</td>
<td>List of synonyms for “point-to-point leased line”</td>
<td>92</td>
</tr>
<tr>
<td>Figure 4-10</td>
<td>Diagram of Frame Relay virtual circuits</td>
<td>96</td>
</tr>
</tbody>
</table>

Complete the Tables and Lists from Memory

Print a copy of Appendix L, “Memory Tables” (found on the DVD), or at least the section for this chapter, and complete the tables and lists from memory. Appendix M, “Memory Tables Answer Key,” also on the DVD, includes completed tables and lists to check your work.

Definitions of Key Terms

Define the following key terms from this chapter, and check your answers in the glossary.

access link, back-to-back link, clocking, DTE (Layer 1), CSU/DSU, DCE (Layer 1), DS0, DS1, Frame Relay, HDLC, leased line, packet switching, PPP, serial cable, synchronous, T1, virtual circuit
This chapter covers the following subjects:

Overview of Network Layer Functions: The first section introduces the concepts of routing, logical addressing, and routing protocols.

IP Addressing: Next, the basics of 32-bit IP addresses are explained, with emphasis on how the organization aids the routing process.

IP Routing: This section explains how hosts and routers decide how to forward a packet.

IP Routing Protocols: This brief section explains the basics of how routing protocols populate each router’s routing tables.

Network Layer Utilities: This section introduces several other functions useful to the overall process of packet delivery.
CHAPTER 5

Fundamentals of IPv4 Addressing and Routing

The OSI physical layer (Layer 1) defines how to transmit bits over a particular type of physical network. The OSI data link layer (Layer 2) defines the framing, addressing, error detection, and rules for when to use the physical medium. Although they are important, these two layers do not define how to deliver data between devices that exist far from each other, with many different physical networks sitting between the two computers.

This chapter explains the function and purpose of the OSI network layer (Layer 3): the end-to-end delivery of data between two computers. Regardless of the type of physical network to which each endpoint computer is attached, and regardless of the types of physical networks used between the two computers, the network layer defines how to forward, or route, data between the two computers.

This chapter covers the basics of how the network layer routes data packets from one computer to another. After reviewing the full story at a basic level, this chapter examines in more detail the network layer of TCP/IP, including IP addressing (which enables efficient routing), IP routing (the forwarding process itself), IP routing protocols (the process by which routers learn routes), and several other small but important features of the network layer.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess whether you should read the entire chapter. If you miss no more than one of these 13 self-assessment questions, you might want to move ahead to the “Exam Preparation Tasks” section. Table 5-1 lists the major headings in this chapter and the “Do I Know This Already?” quiz questions covering the material in those sections. This helps you assess your knowledge of these specific areas. The answers to the “Do I Know This Already?” quiz appear in Appendix A.
Table 5-1 “Do I Know This Already?” Foundation Topics Section-to-Question Mapping

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of Network Layer Functions</td>
<td>1 – 3</td>
</tr>
<tr>
<td>IP Addressing</td>
<td>4 – 8</td>
</tr>
<tr>
<td>IP Routing</td>
<td>9, 10</td>
</tr>
<tr>
<td>IP Routing Protocols</td>
<td>11</td>
</tr>
<tr>
<td>Network Layer Utilities</td>
<td>12, 13</td>
</tr>
</tbody>
</table>

1. Which of the following are functions of OSI Layer 3 protocols? (Choose two answers.)
 a. Logical addressing
 b. Physical addressing
 c. Path selection
 d. Arbitration
 e. Error recovery

2. Imagine that PC1 needs to send some data to PC2, and PC1 and PC2 are separated by several routers. What are the largest entities that make it from PC1 to PC2? (Choose two answers.)
 a. Frame
 b. Segment
 c. Packet
 d. L5 PDU
 e. L3 PDU
 f. L1 PDU

3. Imagine a network with two routers that are connected with a point-to-point HDLC serial link. Each router has an Ethernet, with PC1 sharing the Ethernet with Router1, and PC2 sharing the Ethernet with Router2. When PC1 sends data to PC2, which of the following is true?
 a. Router1 strips the Ethernet header and trailer off the frame received from PC1, never to be used again.
 b. Router1 encapsulates the Ethernet frame inside an HDLC header and sends the frame to Router2, which extracts the Ethernet frame for forwarding to PC2.
c. Router1 strips the Ethernet header and trailer off the frame received from PC1, which is exactly re-created by R2 before forwarding data to PC2.

d. Router1 removes the Ethernet, IP, and TCP headers and rebuilds the appropriate headers before forwarding the packet to Router2.

4. Which of the following are valid Class C IP addresses that can be assigned to hosts?
 a. 1.1.1.1
 b. 200.1.1.1
 c. 128.128.128.128
 d. 224.1.1.1
 e. 223.223.223.255

5. What is the range of values for the first octet for Class A IP networks?
 a. 0 to 127
 b. 0 to 126
 c. 1 to 127
 d. 1 to 126
 e. 128 to 191
 f. 128 to 192

6. PC1 and PC2 are on two different Ethernets that are separated by an IP router. PC1’s IP address is 10.1.1.1, and no subnetting is used. Which of the following addresses could be used for PC2? (Choose two answers.)
 a. 10.1.1.2
 b. 10.2.2.2
 c. 10.200.200.1
 d. 9.1.1.1
 e. 225.1.1.1
 f. 1.1.1.1
7. Each Class B network contains how many IP addresses that can be assigned to hosts?
 a. 16,777,214
 b. 16,777,216
 c. 65,536
 d. 65,534
 e. 65,532
 f. 32,768
 g. 32,766

8. Each Class C network contains how many IP addresses that can be assigned to hosts?
 a. 65,534
 b. 65,532
 c. 32,768
 d. 32,766
 e. 256
 f. 254

9. Which of the following does a router normally use when making a decision about routing TCP/IP packets?
 a. Destination MAC address
 b. Source MAC address
 c. Destination IP address
 d. Source IP address
 e. Destination MAC and IP address

10. Which of the following are true about a LAN-connected TCP/IP host and its IP routing (forwarding) choices? (Choose two answers.)
 a. The host always sends packets to its default gateway.
 b. The host sends packets to its default gateway if the destination IP address is in a different class of IP network than the host.
 c. The host sends packets to its default gateway if the destination IP address is in a different subnet than the host.
 d. The host sends packets to its default gateway if the destination IP address is in the same subnet as the host.
11. Which of the following are functions of a routing protocol? (Choose two answers.)
 a. Advertising known routes to neighboring routers.
 b. Learning routes for subnets directly connected to the router.
 c. Learning routes, and putting those routes into the routing table, for routes advertised to the router by its neighboring routers.
 d. To forward IP packets based on a packet’s destination IP address.

12. Which of the following protocols allows a client PC to discover the IP address of another computer based on that other computer’s name?
 a. ARP
 b. RARP
 c. DNS
 d. DHCP

13. Which of the following protocols allows a client PC to request assignment of an IP address as well as learn its default gateway?
 a. ARP
 b. RARP
 c. DNS
 d. DHCP
Foundation Topics

OSI Layer 3-equivalent protocols define how packets can be delivered from the computer that creates the packet all the way to the computer that needs to receive the packet. To reach that goal, an OSI network layer protocol defines the following features:

Routing: The process of forwarding packets (Layer 3 PDUs).

Logical addressing: Addresses that can be used regardless of the type of physical networks used, providing each device (at least) one address. Logical addressing enables the routing process to identify a packet’s source and destination.

Routing protocol: A protocol that aids routers by dynamically learning about the groups of addresses in the network, which in turn allows the routing (forwarding) process to work well.

Other utilities: The network layer also relies on other utilities. For TCP/IP, these utilities include Domain Name System (DNS), Dynamic Host Configuration Protocol (DHCP), Address Resolution Protocol (ARP), and ping.

NOTE The term path selection sometimes is used to mean the same thing as routing protocol, sometimes is used to refer to the routing (forwarding) of packets, and sometimes is used for both functions.

This chapter begins with an overview of routing, logical addressing, and routing protocols. Following that, the text moves on to more details about the specifics of the TCP/IP network layer (called the internetwork layer in the TCP/IP model). In particular, the topics of IP addressing, routing, routing protocols, and network layer utilities are covered.

Overview of Network Layer Functions

A protocol that defines routing and logical addressing is considered to be a network layer, or Layer 3, protocol. OSI does define a unique Layer 3 protocol called Connectionless Network Services (CLNS), but, as usual with OSI protocols, you rarely see it in networks today. In the recent past, you might have seen many other network layer protocols, such as Internet Protocol (IP), Novell Internetwork Packet Exchange (IPX), or AppleTalk Datagram Delivery Protocol (DDP). Today, the only Layer 3 protocol that is used widely is the TCP/IP network layer protocol—specifically, IP.

The main job of IP is to route data (packets) from the source host to the destination host. Because a network might need to forward large numbers of packets, the IP routing process is very simple. IP does not require any overhead agreements or messages before sending a packet, making IP a connectionless protocol. IP tries to deliver each packet, but if a router or host’s IP process cannot deliver the packet, it is discarded—with no error recovery. The
goal with IP is to deliver packets with as little per-packet work as possible, which allows for large packet volumes. Other protocols perform some of the other useful networking functions. For example, Transmission Control Protocol (TCP), which is described in detail in Chapter 6, “Fundamentals of TCP/IP Transport, Applications, and Security,” provides error recovery, resending lost data, but IP does not.

IP routing relies on the structure and meaning of IP addresses, and IP addressing was designed with IP routing in mind. This first major section of this chapter begins by introducing IP routing, with some IP addressing concepts introduced along the way. Then, the text examines IP addressing fundamentals.

Routing (Forwarding)
Routing focuses on the end-to-end logic of forwarding data. Figure 5-1 shows a simple example of how routing works. The logic illustrated by the figure is relatively simple. For PC1 to send data to PC2, it must send something to router R1, which sends it to router R2, and then to router R3, and finally to PC2. However, the logic used by each device along the path varies slightly.

![Routing Logic: PC1 Sending to PC2](image-url)
Chapter 5: Fundamentals of IPv4 Addressing and Routing

PC1’s Logic: Sending Data to a Nearby Router
In this example, illustrated in Figure 5-1, PC1 has some data to send to PC2. Because PC2 is not on the same Ethernet as PC1, PC1 needs to send the packet to a router that is attached to the same Ethernet as PC1. The sender sends a data-link frame across the medium to the nearby router; this frame includes the packet in the data portion of the frame. That frame uses data link layer (Layer 2) addressing in the data-link header to ensure that the nearby router receives the frame.

The main point here is that the computer that created the data does not know much about the network—just how to get the data to some nearby router. Using a post office analogy, it’s like knowing how to get to the local post office, but nothing more. Likewise, PC1 needs to know only how to get the packet to R1, not the rest of the path used to send the packet to PC2.

R1 and R2’s Logic: Routing Data Across the Network
R1 and R2 both use the same general process to route the packet. The routing table for any particular network layer protocol contains a list of network layer address groupings. Instead of a single entry in the routing table per individual destination network layer address, there is one routing table entry per group. The router compares the destination network layer address in the packet to the entries in the routing table and makes a match. This matching entry in the routing table tells this router where to forward the packet next. The words in the bubbles in Figure 5-1 point out this basic logic.

The concept of network layer address grouping is similar to the U.S. zip code system. Everyone living in the same vicinity is in the same zip code, and the postal sorters just look for the zip codes, ignoring the rest of the address. Likewise, in Figure 5-1, everyone in this network whose IP address starts with 168.1 is on the Ethernet on which PC2 resides, so the routers can have just one routing table entry that means “all addresses that start with 168.1.”

Any intervening routers repeat the same process: the router compares the packet’s destination network layer (Layer 3) address to the groups listed in its routing table, and the matched routing table entry tells this router where to forward the packet next. Eventually, the packet is delivered to the router connected to the network or subnet of the destination host (R3), as shown in Figure 5-1.

R3’s Logic: Delivering Data to the End Destination
The final router in the path, R3, uses almost the exact same logic as R1 and R2, but with one minor difference. R3 needs to forward the packet directly to PC2, not to some other router. On the surface, that difference seems insignificant. In the next section, when you read about how the network layer uses the data link layer, the significance of the difference will become obvious.
Network Layer Interaction with the Data Link Layer

When the network layer protocol is processing the packet, it decides to send the packet out the appropriate network interface. Before the actual bits can be placed onto that physical interface, the network layer must hand off the packet to the data link layer protocols, which, in turn, ask the physical layer to actually send the data. And as was described in Chapter 3, “Fundamentals of LANs,” the data link layer adds the appropriate header and trailer to the packet, creating a frame, before sending the frames over each physical network. The routing process forwards the packet, and only the packet, end-to-end through the network, *discarding data-link headers and trailers along the way*. The network layer processes deliver the packet end-to-end, using successive data-link headers and trailers just to get the packet to the next router or host in the path. Each successive data link layer just gets the packet from one device to the next. Figure 5-2 points out the key encapsulation logic on each device, using the same examples as in Figure 5-1.

Figure 5-2 Network Layer and Data Link Layer Encapsulation
Because the routers build new data-link headers and trailers (trailers not shown in the
figure), and because the new headers contain data-link addresses, the PCs and routers must
have some way to decide what data-link addresses to use. An example of how the router
determines which data-link address to use is the IP Address Resolution Protocol (ARP).
ARP is used to dynamically learn the data-link address of an IP host connected to a LAN.
You will read more about ARP later in this chapter.

Routing as covered so far has two main concepts:

- The process of routing forwards Layer 3 packets, also called *Layer 3 protocol data
 units (L3 PDU)*, based on the destination Layer 3 address in the packet.

- The routing process uses the data link layer to encapsulate the Layer 3 packets into
 Layer 2 frames for transmission across each successive data link.

IP Packets and the IP Header

The IP packets encapsulated in the data-link frames shown in Figure 5-2 have an IP header,
followed by additional headers and data. For reference, Figure 5-3 shows the fields inside
the standard 20-byte IPv4 header, with no optional IP header fields, as is typically seen in
most networks today.

Figure 5-3 IPv4 Header

<table>
<thead>
<tr>
<th>Version</th>
<th>Header Length</th>
<th>DS Field</th>
<th>Packet Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification</td>
<td>Flags (3 Bits)</td>
<td>Fragment Offset (13 Bits)</td>
<td></td>
</tr>
<tr>
<td>Time to Live</td>
<td>Protocol</td>
<td>Header Checksum</td>
<td></td>
</tr>
<tr>
<td>Source IP Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination IP Address</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Of the different fields inside the IPv4 header, this book, and the companion *ICND2 Official
Cert Guide*, ignore all the fields except the Time-To-Live (TTL) (covered in Chapter 21,
“Troubleshooting IP Routing”, in this book), protocol (Chapter 8, “Advanced IP Access
Control Lists”, of the ICND2 book), and the source and destination IP address fields
(scattered throughout most chapters). However, for reference, Table 5-2 briefly describes
each field.
Network Layer (Layer 3) Addressing

Network layer protocols define the format and meaning of logical addresses. (The term *logical address* does not really refer to whether the addresses make sense, but rather to contrast these addresses with physical addresses.) Each computer that needs to communicate will have (at least) one network layer address so that other computers can send data packets to that address, expecting the network to deliver the data packet to the correct computer.

One key feature of network layer addresses is that they were designed to allow logical grouping of addresses. In other words, something about the numeric value of an address implies a group or set of addresses, all of which are considered to be in the same grouping. With IP addresses, this group is called a *network* or a *subnet*. These groupings work just like USPS zip (postal) codes, allowing the routers (mail sorters) to speedily route (sort) lots of packets (letters).

Table 5-2 IPv4 Header Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHL</td>
<td>IP Header Length. Defines the length of the IP header, including optional fields.</td>
</tr>
<tr>
<td>DS Field</td>
<td>Differentiated Services Field. It is used for marking packets for the purpose of applying different quality-of-service (QoS) levels to different packets.</td>
</tr>
<tr>
<td>Packet length</td>
<td>Identifies the entire length of the IP packet, including the data.</td>
</tr>
<tr>
<td>Identification</td>
<td>Used by the IP packet fragmentation process; all fragments of the original packet contain the same identifier.</td>
</tr>
<tr>
<td>Flags</td>
<td>3 bits used by the IP packet fragmentation process.</td>
</tr>
<tr>
<td>Fragment offset</td>
<td>A number used to help hosts reassemble fragmented packets into the original larger packet.</td>
</tr>
<tr>
<td>TTL</td>
<td>Time to live. A value used to prevent routing loops.</td>
</tr>
<tr>
<td>Protocol</td>
<td>A field that identifies the contents of the data portion of the IP packet. For example, protocol 6 implies that a TCP header is the first thing in the IP packet data field.</td>
</tr>
<tr>
<td>Header Checksum</td>
<td>A value used to store an FCS value, whose purpose is to determine if any bit errors occurred in the IP header.</td>
</tr>
<tr>
<td>Source IP address</td>
<td>The 32-bit IP address of the sender of the packet.</td>
</tr>
<tr>
<td>Destination IP address</td>
<td>The 32-bit IP address of the intended recipient of the packet.</td>
</tr>
</tbody>
</table>
Just like postal street addresses, network layer addresses are grouped based on physical location in a network. The rules differ for some network layer protocols, but with IP addressing, the first part of the IP address is the same for all the addresses in one grouping. For example, in Figures 5-1 and 5-2, the following IP addressing conventions define the groups of IP addresses (IP networks) for all hosts on that internetwork:

- Hosts on the top Ethernet: Addresses start with 10
- Hosts on the R1-R2 serial link: Addresses start with 168.10
- Hosts on the R2-R3 Frame Relay network: Addresses start with 168.11
- Hosts on the bottom Ethernet: Addresses start with 168.1

Routing relies on the fact that Layer 3 addresses are grouped. The routing tables for each network layer protocol can have one entry for the group, not one entry for each individual address. Imagine an Ethernet with 100 TCP/IP hosts. A router that needs to forward packets to any of those hosts needs only one entry in its IP routing table, with that one routing table entry representing the entire group of hosts on the Ethernet. This basic fact is one of the key reasons that routers can scale to allow hundreds of thousands of devices. It’s very similar to the USPS zip code system. It would be ridiculous to have people in the same zip code live far from each other, or to have next-door neighbors be in different zip codes. The poor postman would spend all his time driving and flying around the country! Similarly, to make routing more efficient, network layer protocols group addresses.

Routing Protocols

Conveniently, the routers in Figures 5-1 and 5-2 somehow know the correct steps to take to forward the packet from PC1 to PC2. To make the correct choices, each router needs a routing table, with a route that matches the packet sent to PC2. The routes tell the router where to send the packet next.

In most cases, routers build their routing table entries dynamically using a routing protocol. Routing protocols learn about all the locations of the network layer “groups” in a network and advertise the groups’ locations. As a result, each router can build a good routing table dynamically. Routing protocols define message formats and procedures, just like any other protocol. The end goal of each routing protocol is to fill the routing table with all known destination groups and with the best route to reach each group.
The terminology relating to routing protocols sometimes can get in the way. A *routing protocol* learns routes and puts those routes in a routing table. A *routed protocol* defines the type of packet forwarded, or routed, through a network. In Figures 5-1 and 5-2, the figures represent how IP packets are routed, so IP would be the *routed protocol*. If the routers used Routing Information Protocol (RIP) to learn the routes, RIP would be the *routing protocol*. Later in this chapter, the section “IP Routing Protocols” shows a detailed example of how routing protocols learn routes.

Now that you have seen the basic function of the OSI network layer at work, the rest of this chapter examines the key components of the end-to-end routing process for TCP/IP.

IP Addressing

IP addressing is absolutely the most important topic for the CCNA exams. By the time you have completed your study, you should be comfortable and confident in your understanding of IP addresses, their formats, the grouping concepts, how to subdivide groups into subnets, how to interpret the documentation for existing networks’ IP addressing, and so on. Simply put, you had better know addressing and subnetting!

This section introduces IP addressing and subnetting and also covers the concepts behind the structure of an IP address, including how it relates to IP routing. In Part III of this book, you will read about the math behind IP addressing and subnetting.

IP Addressing Definitions

If a device wants to communicate using TCP/IP, it needs an IP address. When the device has an IP address and the appropriate software and hardware, it can send and receive IP packets. Any device that can send and receive IP packets is called an *IP host*.

NOTE

IP Version 4 (IPv4) is the most widely used version of IP. The *ICND2 Official Cert Guide* covers the newer version of IP, IPv6. This book only briefly mentions IPv6 and otherwise ignores it. So, all references to IP addresses in this book should be taken to mean “IP version 4” addresses.

IP addresses consist of a 32-bit number, usually written in *dotted-decimal notation*. The “decimal” part of the term comes from the fact that each byte (8 bits) of the 32-bit IP address is shown as its decimal equivalent. The four resulting decimal numbers are written in sequence, with “dots,” or decimal points, separating the numbers—hence the name *dotted decimal*. For instance, 168.1.1.1 is an IP address written in dotted-decimal form; the actual binary version is 10101000 00000001 00000001 00000001. (You almost never need to write down the binary version, but you will see how to convert between the two formats in Chapter 14.)
Each decimal number in an IP address is called an octet. The term octet is just a vendor-neutral term for byte. So, for an IP address of 168.1.1.1, the first octet is 168, the second octet is 1, and so on. The range of decimal numbers in each octet is between 0 and 255, inclusive.

Finally, note that each network interface uses a unique IP address. Most people tend to think that their computer has an IP address, but actually their computer’s network card has an IP address. If you put two Ethernet cards in a PC to forward IP packets through both cards, they both would need unique IP addresses. Also, if your laptop has both an Ethernet NIC and a wireless NIC working at the same time, your laptop will have an IP address for each NIC. Similarly, routers, which typically have many network interfaces that forward IP packets, have an IP address for each interface.

Now that you have some idea of the basic terminology, the next section relates IP addressing to the routing concepts of OSI Layer 3.

How IP Addresses Are Grouped

The original specifications for TCP/IP grouped IP addresses into sets of consecutive addresses called IP networks. The addresses in a single network have the same numeric value in the first part of all addresses in the network. Figure 5-4 shows a simple internetwork that has three separate IP networks.

![Sample Network Using Class A, B, and C Network Numbers](image)

The conventions of IP addressing and IP address grouping make routing easy. For example, all IP addresses that begin with 8 are in the IP network that contains all the hosts on the Ethernet on the left. Likewise, all IP addresses that begin with 130.4 are in another IP network that consists of all the hosts on the Ethernet on the right. Along the same lines, 199.1.1 is the prefix for all IP addresses on the network that includes the
addresses on the serial link. (The only two IP addresses in this last grouping will be the IP addresses on each of the two routers.) By following this convention, the routers build a routing table with three entries—one for each prefix, or network number. For example, the router on the left can have one route that refers to all addresses that begin with 130.4, with that route directing the router to forward packets to the router on the right.

The example indirectly points out a couple of key points about how IP addresses are organized. To be a little more explicit, the following two rules summarize the facts about which IP addresses need to be in the same grouping:

- All IP addresses in the same group must not be separated by a router.
- IP addresses separated by a router must be in different groups.

As mentioned earlier in this chapter, IP addressing behaves similarly to zip codes. Everyone in my zip code lives in a little town in Ohio. If some members of my zip code were in California, some of my mail might be sent to California by mistake. Likewise, IP routing relies on the fact that all IP addresses in the same group (called either a network or a subnet) are in the same general location. If some of the IP addresses in my network or subnet were allowed to be on the other side of the internetwork compared to my computer, the routers in the network might incorrectly send some of the packets sent to my computer to the other side of the network.

Classes of Networks

Figure 5-4 and the surrounding text claim that the IP addresses of devices attached to the Ethernet on the left all start with 8 and that the IP addresses of devices attached to the Ethernet on the right all start with 130.4. Why only one number (8) for the “prefix” on the Ethernet on the left and two numbers (130 and 4) on the Ethernet on the right? Well, it all has to do with IP address classes.

RFC 791 defines the IP protocol, including several different classes of networks. IP defines three different network classes for addresses used by individual hosts—addresses called unicast IP addresses. These three network classes are called A, B, and C. TCP/IP defines Class D (multicast) addresses and Class E (experimental) addresses as well.

By definition, all addresses in the same Class A, B, or C network have the same numeric value network portion of the addresses. The rest of the address is called the host portion of the address.

Using the post office example, the network part of an IP address acts like the zip (postal) code, and the host part acts like the street address. Just as a letter-sorting machine three states away from you cares only about the zip code on a letter addressed to you,
a router three hops away from you cares only about the network number that your address resides in.

Class A, B, and C networks each have a different length for the part that identifies the network:

- Class A networks have a 1-byte-long network part. That leaves 3 bytes for the rest of the address, called the host part.
- Class B networks have a 2-byte-long network part, leaving 2 bytes for the host portion of the address.
- Class C networks have a 3-byte-long network part, leaving only 1 byte for the host part.

For example, Figure 5-4 lists network 8.0.0.0 next to the Ethernet on the left. Network 8.0.0.0 is a Class A network, which means that only 1 octet (byte) is used for the network part of the address. So, all hosts in network 8.0.0.0 begin with 8. Similarly, Class B network 130.4.0.0 is listed next to the Ethernet on the right. Because it is a Class B network, 2 octets define the network part, and all addresses begin with 130.4 as the first 2 octets.

When listing network numbers, the convention is to write down the network part of the number, with all decimal 0s in the host part of the number. So, Class A network “8,” which consists of all IP addresses that begin with 8, is written as 8.0.0.0. Similarly, Class B network “130.4,” which consists of all IP addresses that begin with 130.4, is written as 130.4.0.0, and so on.

Now consider the size of each class of network. Class A networks need 1 byte for the network part, leaving 3 bytes, or 24 bits, for the host part. There are 2^{24} different possible values in the host part of a Class A IP address. So, each Class A network can have 2^{24} IP addresses—except for two reserved host addresses in each network, as shown in the last column of Table 5-3. The table summarizes the characteristics of Class A, B, and C networks.

Table 5-3 Sizes of Network and Host Parts of IP Addresses with No Subnetting

<table>
<thead>
<tr>
<th>Any Network of This Class</th>
<th>Number of Network Bytes (Bits)</th>
<th>Number of Host Bytes (Bits)</th>
<th>Number of Addresses Per Network*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 (8)</td>
<td>3 (24)</td>
<td>$2^{24} - 2$</td>
</tr>
<tr>
<td>B</td>
<td>2 (16)</td>
<td>2 (16)</td>
<td>$2^{16} - 2$</td>
</tr>
<tr>
<td>C</td>
<td>3 (24)</td>
<td>1 (8)</td>
<td>$2^8 - 2$</td>
</tr>
</tbody>
</table>

*There are two reserved host addresses per network.

Based on the three examples from Figure 5-4, Table 5-4 provides a closer look at the numeric version of the three network numbers: 8.0.0.0, 130.4.0.0, and 199.1.1.0.
Even though the network numbers look like addresses because of their dotted-decimal format, network numbers cannot be assigned to an interface to be used as an IP address. Conceptually, network numbers represent the group of all IP addresses in the network, much like a zip code represents the group of all addresses in a community. It would be confusing to have a single number represent a whole group of addresses and then also use that same number as an IP address for a single device. So, the network numbers themselves are reserved and cannot be used as an IP address for a device.

Besides the network number, a second dotted-decimal value in each network is reserved. Note that the first reserved value, the network number, has all binary 0s in the host part of the number (see Table 5-4). The other reserved value is the one with all binary 1s in the host part of the number. This number is called the network broadcast or directed broadcast address. This reserved number cannot be assigned to a host for use as an IP address. However, packets sent to a network broadcast address are forwarded to all devices in the network.

Also, because the network number is the lowest numeric value inside that network and the broadcast address is the highest numeric value, all the numbers between the network number and the broadcast address are the valid, useful IP addresses that can be used to address interfaces in the network.

The Actual Class A, B, and C Network Numbers

The Internet is a collection of almost every IP-based network and almost every TCP/IP host computer in the world. The original design of the Internet required several cooperating features that made it technically possible as well as administratively manageable:

- Each computer connected to the Internet needs a unique, nonduplicated IP address.
- Administratively, a central authority assigned Class A, B, or C networks to companies, governments, school systems, and ISPs based on the size of their IP network (Class A for large networks, Class B for medium networks, and Class C for small networks).
- The central authority assigned each network number to only one organization, helping ensure unique address assignment worldwide.
- Each organization with an assigned Class A, B, or C network then assigned individual IP addresses inside its own network.
By following these guidelines, as long as each organization assigns each IP address to only one computer, every computer in the Internet has a globally unique IP address.

NOTE The details of address assignment have changed over time, but the general idea described here is enough detail to help you understand the concept of different Class A, B, and C networks.

The organization in charge of universal IP address assignment is the Internet Corporation for Assigned Names and Numbers (ICANN, www.icann.org). (The Internet Assigned Numbers Authority (IANA) formerly owned the IP address assignment process.) ICANN, in turn, assigns regional authority to other cooperating organizations. For example, the American Registry for Internet Numbers (ARIN, www.arin.org) owns the address assignment process for North America.

Table 5-5 summarizes the possible network numbers that ICANN and other agencies could have assigned over time. Note the total number for each network class and the number of hosts in each Class A, B, and C network.

<table>
<thead>
<tr>
<th>Class</th>
<th>First Octet Range</th>
<th>Valid Network Numbers*</th>
<th>Total Number for This Class of Network</th>
<th>Number of Hosts Per Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 to 126</td>
<td>1.0.0.0 to 126.0.0.0</td>
<td>$2^7 - 2$ (126)</td>
<td>$2^{24} - 2$ (16,777,214)</td>
</tr>
<tr>
<td>B</td>
<td>128 to 191</td>
<td>128.0.0.0 to 191.255.0.0</td>
<td>2^{14} (16,384)</td>
<td>$2^{16} - 2$ (65,534)</td>
</tr>
<tr>
<td>C</td>
<td>192 to 223</td>
<td>192.0.0.0 to 223.255.255.0</td>
<td>2^{21} (2,097,152)</td>
<td>$2^8 - 2$ (254)</td>
</tr>
</tbody>
</table>

*The Valid Network Numbers column shows actual network numbers. Networks 0.0.0.0 (originally defined for use as a broadcast address) and 127.0.0.0 (still available for loopback testing) are reserved.

Memorizing the contents of Table 5-5 should be one of the first things you do in preparation for the CCNA exam(s). Engineers should be able to categorize a network as Class A, B, or C with ease. Also, memorize the number of octets in the network part of Class A, B, and C addresses, as shown in Table 5-4.

IP Subnetting

Subnetting is one of the most important topics on the ICND1, ICND2, and CCNA exams. You need to know how it works and how to “do the math” to figure out issues when subnetting is in use, both in real life and on the exam. Part III of this book covers the details of subnetting concepts, motivation, and math, but you should have a basic understanding of the concepts.
before covering the topics between here and Part III. IP subnetting takes a single Class A, B, or C network and subdivides it into a number of smaller groups of IP addresses. The Class A, B, and C rules still exist, but now, a single Class A, B, or C network can be subdivided into many smaller groups. Subnetting treats a subdivision of a single Class A, B, or C network as if it were a network itself. In fact, the name “subnet” is just shorthand for “subdivided network.”

You can easily discern the concepts behind subnetting by comparing one network topology that does not use subnetting with the same topology but with subnetting implemented. Figure 5-5 shows such a network, without subnetting.

Figure 5-5 Backdrop for Discussing Numbers of Different Networks/Subnetworks

The design in Figure 5-5 requires six groups of IP addresses, each of which is a Class B network in this example. The four LANs each use a single Class B network. In other words, each of the LANs attached to routers A, B, C, and D is in a separate IP network. Additionally, the two serial interfaces composing the point-to-point serial link between routers C and D use one IP network because these two interfaces are not separated by a router. Finally, the three router interfaces composing the Frame Relay network with routers A, B, and C are not separated by an IP router and would use a sixth IP network.
Each Class B network has $2^{16} - 2$ host addresses—far more than you will ever need for each LAN and WAN link. For example, the upper-left Ethernet should contain all addresses that begin with 150.1. Therefore, addresses that begin with 150.1 cannot be assigned anywhere else in the network, except on the upper-left Ethernet. So, if you ran out of IP addresses somewhere else, you could not use the large number of unused addresses that begin with 150.1. As a result, the addressing design shown in Figure 5-5 wastes a lot of addresses.

In fact, this design would not be allowed if it were connected to the Internet. The ICANN member organization would not assign six separate registered Class B network numbers. In fact, you probably would not get even one Class B network, because most of the Class B addresses are already assigned. You more likely would get a couple of Class C networks with the expectation that you would use subnetting. Figure 5-6 illustrates a more realistic example that uses basic subnetting.

As in Figure 5-5, the design in Figure 5-6 requires six groups. Unlike Figure 5-5, this figure uses six subnets, each of which is a subnet of a single Class B network. This design subdivides the Class B network 150.150.0.0 into six subnets. To perform subnetting, the third octet (in this example) is used to identify unique subnets of network 150.150.0.0. Notice that each subnet number in the figure shows a different value in the third octet,
representing each different subnet number. In other words, this design numbers or identifies each different subnet using the third octet.

When subnetting, a third part of an IP address appears between the network and host parts of the address—namely, the subnet part of the address. This field is created by “stealing” or “borrowing” bits from the host part of the address. The size of the network part of the address never shrinks. In other words, Class A, B, and C rules still apply when defining the size of the network part of an address. The host part of the address shrinks to make room for the subnet part of the address. Figure 5-7 shows the format of addresses when subnetting, representing the number of bits in each of the three parts of an IP address.

Figure 5-7 Address Formats When Subnetting Is Used (Classful)

```
A
N=8 | S=| H=

B
N=16 | S= | H= 

C
N=24 | S= | H= 

N + S + H = 32 
```

Now, instead of routing based on the network part of an address, routers can route based on the combined network and subnet parts. For example, when Kris (150.150.4.2) sends a packet to Hannah (150.150.2.1), router C has an IP route that lists information that means “all addresses that begin with 150.150.2.” That same route tells router C to forward the packet to router B next. Note that the information in the routing table includes both the network and subnet part of the address, because both parts together identify the group.

Note that the concepts shown in Figure 5-7, with three parts of an IP address (network, subnet, and host), are called classful addressing. The term classful addressing refers to how you can think about IP addresses—specifically, that they have three parts. In particular, classful addressing means that you view the address as having a network part that is determined based on the rules about Class A, B, and C addressing—hence the word “classful” in the term.

Because the routing process considers the network and subnet parts of the address together, you can take an alternative view of IP addresses called classless addressing. Instead of three parts, each address has two parts:

- The part on which routing is based
- The host part
This first part—the part on which routing is based—is the combination of the network and subnet parts from the classful addressing view. This first part is often simply called the subnet part, or sometimes the prefix. Figure 5-8 shows the concepts and terms behind classless IP addressing.

Finally, IP addressing with subnetting uses a concept called a subnet mask. A subnet mask helps define the structure of an IP address, as shown in Figures 5-7 and 5-8. Chapters 14, 15, and 16 explain the details of subnet masks.

IP Routing

In the first section of this chapter, you read about the basics of routing using a network with three routers and two PCs. Armed with more knowledge of IP addressing, you now can take a closer look at the process of routing IP. This section focuses on how the originating host chooses where to send the packet, as well as how routers choose where to route or forward packets to the final destination.

Host Routing

Hosts actually use some simple routing logic when choosing where to send a packet. This two-step logic is as follows:

Step 1 If the destination IP address is in the same subnet as I am, send the packet directly to that destination host.

Step 2 If the destination IP address is not in the same subnet as I am, send the packet to my default gateway (a router’s Ethernet interface on the subnet).

For example, consider Figure 5-9, and focus on the Ethernet LAN at the top of the figure. The top Ethernet has two PCs, labeled PC1 and PC11, plus router R1. When PC1 sends a packet to 150.150.1.11 (PC11’s IP address), PC1 sends the packet over the Ethernet to PC11—there’s no need to bother the router.
Alternatively, when PC1 sends a packet to PC2 (150.150.4.10), PC1 forwards the packet to its default gateway of 150.150.1.4, which is R1’s Ethernet interface IP address according to Step 2 in the host routing logic. The next section describes an example in which PC1 uses its default gateway.

Router Forwarding Decisions and the IP Routing Table

Earlier in this chapter, Figures 5-1 and 5-2 (and the associated text) described generally how routers forward packets, making use of each successive physical network to forward packets to the next device. To better appreciate a router’s forwarding decision, this section uses an example that includes three different routers forwarding a packet.
A router uses the following logic when receiving a data-link frame—a frame that has an IP packet encapsulated in it:

Step 1 Use the data-link FCS field to ensure that the frame had no errors; if errors occurred, discard the frame.

Step 2 Assuming the frame was not discarded at step 1, discard the old data-link header and trailer, leaving the IP packet.

Step 3 Compare the IP packet’s destination IP address to the routing table, and find the route that matches the destination address. This route identifies the outgoing interface of the router, and possibly the next-hop router.

Step 4 Encapsulate the IP packet inside a new data-link header and trailer, appropriate for the outgoing interface, and forward the frame.

With these steps, each router sends the packet to the next location until the packet reaches its final destination.

Next, focus on the routing table and the matching process that occurs at Step 3. The packet has a destination IP address in the header, whereas the routing table typically has a list of networks and subnets. To match a routing table entry, the router thinks like this:

Network numbers and subnet numbers represent a group of addresses that begin with the same prefix. In which of the groups in my routing table does this packet’s destination address reside?

As you might guess, routers actually turn that logic into a math problem, but the text indeed shows what occurs. For example, Figure 5-10 shows the same network topology as Figure 5-9, but now with PC1 sending a packet to PC2.

NOTE Note that the routers all know in this case that “subnet 150.150.4.0” means “all addresses that begin with 150.150.4.”

The following list explains the forwarding logic at each step in the figure. (Note that all references to Steps 1, 2, 3, and 4 refer to the list of routing logic at the top of this page.)

Step A **PC1 sends the packet to its default gateway.** PC1 first builds the IP packet, with a destination address of PC2’s IP address (150.150.4.10). PC1 needs to send the packet to R1 (PC1’s default gateway) because the destination address is on a different subnet. PC1 places the IP packet into an Ethernet frame, with a destination Ethernet address of R1’s Ethernet address. PC1 sends the frame onto the Ethernet.
Figure 5-10 Simple Routing Example, with IP Subnets

Step B R1 processes the incoming frame and forwards the packet to R2.
Because the incoming Ethernet frame has a destination MAC of R1’s Ethernet MAC, R1 copies the frame off the Ethernet for processing. R1 checks the frame’s FCS, and no errors have occurred (Step 1). R1 then discards the Ethernet header and trailer (Step 2). Next, R1 compares the packet’s destination address (150.150.4.10) to the routing table and finds the entry for subnet 150.150.4.0—which includes addresses 150.150.4.0 through 150.150.4.255 (Step 3). Because the destination address is in this group, R1 forwards the packet out interface Serial0 to next-hop router R2 (150.150.2.7) after encapsulating the packet in an HDLC frame (step 4).

Step C R2 processes the incoming frame and forwards the packet to R3.
R2 repeats the same general process as R1 when R2 receives the HDLC frame. R2 checks the FCS field and finds that no errors occurred (Step 1). R2 then discards the HDLC header and trailer (Step 2). Next, R2 finds its
route for subnet 150.150.4.0—which includes the address range 150.150.4.0–150.150.4.255—and realizes that the packet’s destination address 150.150.4.10 matches that route (Step 3). Finally, R2 sends the packet out interface serial1 to next-hop router 150.150.3.1 (R3) after encapsulating the packet in a Frame Relay header (Step 4).

Step D R3 processes the incoming frame and forwards the packet to PC2.

Like R1 and R2, R3 checks the FCS, discards the old data-link header and trailer, and matches its own route for subnet 150.150.4.0. R3’s routing table entry for 150.150.4.0 shows that the outgoing interface is R3’s Ethernet interface, but there is no next-hop router, because R3 is connected directly to subnet 150.150.4.0. All R3 has to do is encapsulate the packet inside an Ethernet header and trailer, with a destination Ethernet address of PC2’s MAC address, and forward the frame.

The routing process relies on the rules relating to IP addressing. For instance, why does 150.150.1.10 (PC1) assume that 150.150.4.10 (PC2) is not on the same Ethernet? Well, because 150.150.4.0, PC2’s subnet, is different from 150.150.1.0, which is PC1’s subnet. Because IP addresses in different subnets must be separated by a router, PC1 needs to send the packet to a router—and it does. Similarly, all three routers list a route to subnet 150.150.4.0, which, in this example, includes IP addresses 150.150.4.1 to 150.150.4.254. What if someone tried to put PC2 somewhere else in the network, still using 150.150.4.10? The routers then would forward packets to the wrong place. So, Layer 3 routing relies on the structure of Layer 3 addressing to route more efficiently.

Part III covers IP addressing in much more detail. Next, this chapter briefly introduces the concepts behind IP routing protocols.

IP Routing Protocols

The routing (forwarding) process depends heavily on having an accurate and up-to-date IP routing table on each router. IP routing protocols fill the routers’ IP routing tables with valid, loop-free routes. Each route includes a subnet number, the interface out which to forward packets so that they are delivered to that subnet, and the IP address of the next router that should receive packets destined for that subnet (if needed) (as shown in the example surrounding Figure 5-10).

Before examining the underlying logic used by routing protocols, you need to consider the goals of a routing protocol. The goals described in the following list are common for any IP routing protocol, regardless of its underlying logic type:

- To dynamically learn and fill the routing table with a route to all subnets in the network.
If more than one route to a subnet is available, to place the best route in the routing table.

To notice when routes in the table are no longer valid, and to remove them from the routing table.

If a route is removed from the routing table and another route through another neighboring router is available, to add the route to the routing table. (Many people view this goal and the preceding one as a single goal.)

To add new routes, or to replace lost routes, with the best currently available route as quickly as possible. The time between losing the route and finding a working replacement route is called convergence time.

To prevent routing loops.

Routing protocols can become rather complicated, but the basic logic that they use is relatively simple. Routers follow these general steps for advertising routes in a network:

Step 1 Each router adds a route to its routing table for each subnet directly connected to the router.

Step 2 Each router’s routing protocol tells its neighbors about all the routes in its routing table, including the directly connected routes and routes learned from other routers.

Step 3 After learning a new route from a neighbor, the router’s routing protocol adds a route to its routing table, with the next-hop router typically being the neighbor from which the route was learned.

For example, Figure 5-11 shows the same sample network as in Figures 5-9 and 5-10, but now with focus on how the three routers each learned about subnet 150.150.4.0. Note that routing protocols do more work than is implied in the figure; this figure just focuses on how the routers learn about subnet 150.150.4.0.

Follow items A through F shown in the figure to see how each router learns its route to 150.150.4.0. All references to Steps 1, 2, and 3 refer to the list just before Figure 5-11.

Step A, B R3 learns a route for subnet 150.150.4.0, directly connected to its own E0 interface, and adds that route to its IP routing table.

Step C R3 sends a routing protocol message, called a routing update, to R2, causing R2 to learn about subnet 150.150.4.0 (Step 2).
Step D R3 adds a route for subnet 150.150.4.0 to its routing table (step 3).

Step E R2 sends a similar routing update to R1, causing R1 to learn about subnet 150.150.4.0 (Step 2).

Step F R1 adds a route for subnet 150.150.4.0 to its routing table (step 3). The route lists R1’s own Serial0 as the outgoing interface, and R2 as the next-hop router IP address (150.150.2.7).

Chapter 20, “Routing Protocol Concepts and Configuration,” covers routing protocols in more detail. Next, the final major section of this chapter introduces several additional functions related to how the network layer forwards packets from source to destination through an internetwork.
Network Layer Utilities

So far, this chapter has described the main features of the OSI network layer—in particular, the TCP/IP internetwork layer, which defines the same general features as OSI Layer 3. To close the chapter, this section covers four tools used almost every day in almost every TCP/IP network in the world to help the network layer with its task of routing packets from end to end through an internetwork:

- Address Resolution Protocol (ARP)
- Domain Name System (DNS)
- Dynamic Host Configuration Protocol (DHCP)
- Ping

Address Resolution Protocol and the Domain Name System

Network designers should try to make using the network as simple as possible. At most, users might want to remember the name of another computer with which they want to communicate, such as remembering the name of a website. They certainly do not want to remember the IP address, nor do they want to try to remember any MAC addresses! So, TCP/IP needs protocols that dynamically discover all the necessary information to allow communications, without the user knowing more than a name.

You might not even think that you need to know the name of another computer. For instance, when you open your browser, you probably have a default home page configured that the browser immediately downloads. You might not think of that universal resource locator (URL) string as a name, but the URL for the home page has a name embedded in it. For example, in a URL such as http://www.cisco.com/go/ccna, the www.cisco.com part is the name of the Cisco web server. So, whether you enter the name of another networked computer or it is implied by what you see on the screen, the user typically identifies a remote computer by using a name.

So, TCP/IP needs a way to let a computer find the IP address of another computer based on its name. TCP/IP also needs a way to find MAC addresses associated with other computers on the same LAN subnet. Figure 5-12 outlines the problem.

In this example, Hannah needs to communicate with a server on PC Jessie. Hannah knows her own name, IP address, and MAC address. *What Hannah does not know are Jessie’s IP and MAC addresses.* To find the two missing facts, Hannah uses DNS to find Jessie’s IP address and ARP to find Jessie’s MAC address.
Figure 5-12 Hannah Knows Jessie’s Name, Needs IP Address and MAC Address

Hannah knows the IP address of a DNS server because the address was either preconfigured on Hannah’s machine or was learned with DHCP, as covered later in this chapter. As soon as Hannah somehow identifies the name of the other computer (for example, jessie.example.com), she sends a DNS request to the DNS, asking for Jessie’s IP address. The DNS replies with the address, 10.1.1.2. Figure 5-13 shows the simple process.

Figure 5-13 DNS Request and Reply

Hannah simply sends a DNS request to the server, supplying the name jessie, or jessie.example.com, and the DNS replies with the IP address (10.1.1.2 in this case). Effectively, the same thing happens when you surf the Internet and connect to any website. Your PC sends a request, just like Hannah’s request for Jessie, asking the DNS to resolve the name into an IP address. After that happens, your PC can start requesting that the web page be sent.

The ARP Process

As soon as a host knows the IP address of the other host, the sending host may need to know the MAC address used by the other computer. For example, Hannah still needs to know the Ethernet MAC address used by 10.1.1.2, so Hannah issues something called an ARP
broadcast. An ARP broadcast is sent to a broadcast Ethernet address, so everyone on the LAN receives it. Because Jessie is on the same LAN, she receives the ARP broadcast. Because Jessie’s IP address is 10.1.1.2 and the ARP broadcast is looking for the MAC address associated with 10.1.1.2, Jessie replies with her own MAC address. Figure 5-14 outlines the process.

![Figure 5-14 Sample ARP Process](image)

Now Hannah knows the destination IP and Ethernet addresses that she should use when sending frames to Jessie, and the packet shown in Figure 5-12 can be sent successfully.

Hosts may or may not need to ARP to find the destination host’s MAC address based on the two-step routing logic used by a host. If the destination host is on the same subnet, the sending host sends an ARP looking for the destination host’s MAC address, as shown in Figure 5-14. However, if the sending host is on a different subnet than the destination host, the sending host’s routing logic results in the sending host needing to forward the packet to its default gateway. For example, if Hannah and Jessie had been in different subnets in Figures 5-12 through 5-14, Hannah’s routing logic would have caused Hannah to want to send the packet to Hannah’s default gateway (router). In that case, Hannah would have used ARP to find the router’s MAC address instead of Jessie’s MAC address.

Additionally, hosts need to use ARP to find MAC addresses only once in a while. Any device that uses IP should retain, or cache, the information learned with ARP, placing the information in its ARP cache. Each time a host needs to send a packet encapsulated in an Ethernet frame, it first checks its ARP cache and uses the MAC address found there. If the correct information is not listed in the ARP cache, the host then can use ARP to discover the MAC address used by a particular IP address. Also, a host learns ARP information when receiving an ARP as well. For example, the ARP process shown in Figure 5-14 results in both Hannah and Jessie learning the other host’s MAC address.

NOTE You can see the contents of the ARP cache on most PC Operating Systems by using the `arp -a` command from a command prompt.

Address Assignment and DHCP

Every device that uses TCP/IP—in fact, every interface on every device that uses TCP/IP—needs a valid IP address. For some devices, the address can and should be statically
assigned by configuring the device. For example, all commonly used computer operating systems that support TCP/IP allow the user to statically configure the IP address on each interface. Routers and switches typically use statically configured IP addresses as well.

Servers also typically use statically configured IP addresses. Using a statically configured and seldom-changed IP address helps because all references to that server can stay the same over time. This is the same concept that it’s good that the location of your favorite grocery store never changes. You know where to go to buy food, and you can get there from home, on the way home from work, or from somewhere else. Likewise, if servers have a static, unchanging IP address, the users of that server know how to reach the server, from anywhere, consistently.

However, the average end-user host computer does not need to use the same IP address every day. Again thinking about your favorite grocery store, you could move to a new apartment every week, but you’d still know where the grocery store is. The workers at the grocery store don’t need to know where you live. Likewise, servers typically don’t care that your PC has a different IP address today as compared to yesterday. End-user hosts can have their IP addresses dynamically assigned, and even change their IP addresses over time, because it does not matter if the IP address changes.

DHCP defines the protocols used to allow computers to request a lease of an IP address. DHCP uses a server, with the server keeping a list of pools of IP addresses available in each subnet. DHCP clients can send the DHCP server a message, asking to borrow or lease an IP address. The server then suggests an IP address. If accepted, the server notes that the address is no longer available for assignment to any other hosts, and the client has an IP address to use.

DHCP supplies IP addresses to clients, and it also supplies other information. For example, hosts need to know their IP address, plus the subnet mask to use, plus what default gateway to use, as well as the IP address(es) of any DNS servers. In most networks today, DHCP supplies all these facts to a typical end-user host.

Figure 5-15 shows a typical set of four messages used between a DHCP server to assign an IP address, as well as other information. Note that the first two messages are both IP broadcast messages in this particular topology.

Figure 5-15 shows the DHCP server as a PC, which is typical in an Enterprise network. However, as covered in Chapter 23, “WAN Configuration,” routers can and do provide DHCP services as well. In fact, routers can provide a DHCP server function, dynamically assigning IP addresses to the computers in a small or home office, using DHCP client functions to dynamically lease IP addresses from an Internet service provider (ISP). However, the need for these functions is closely related to features most often used with connections to the Internet, so more details about a router’s implementation of DHCP server and DHCP client functions are saved for Chapter 23.
DHCP has become a prolific protocol. Most end-user hosts on LANs in corporate networks get their IP addresses and other basic configuration via DHCP.

ICMP Echo and the ping Command

After you have implemented a network, you need a way to test basic IP connectivity without relying on any applications to be working. The primary tool for testing basic network connectivity is the **ping** command. **ping** (Packet Internet Groper) uses the *Internet Control Message Protocol (ICMP)*, sending a message called an *ICMP echo request* to another IP address. The computer with that IP address should reply with an *ICMP echo reply*. If that works, you successfully have tested the IP network. In other words, you know that the network can deliver a packet from one host to the other, and back. ICMP does not rely on any application, so it really just tests basic IP connectivity—Layers 1, 2, and 3 of the OSI model. Figure 5-16 outlines the basic process.

Chapter 21, “Troubleshooting IP Routing,” gives you more information about and examples of ping and ICMP.
Exam Preparation Tasks

Review All the Key Topics

Review the most important topics from this chapter, noted with the key topics icon. Table 5-6 lists these key topics and where each is discussed.

Table 5-6 Key Topics for Chapter 5

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>Two statements about how IP expects IP addresses to be grouped into networks or subnets</td>
<td>113</td>
</tr>
<tr>
<td>Table 5-3</td>
<td>List of the three types of unicast IP networks and the size of the network and host parts of each type of network</td>
<td>114</td>
</tr>
<tr>
<td>Paragraph</td>
<td>Explanation of the concept of a network broadcast or directed broadcast address</td>
<td>115</td>
</tr>
<tr>
<td>Table 5-5</td>
<td>Details about the actual Class A, B, and C networks</td>
<td>116</td>
</tr>
<tr>
<td>Figure 5-6</td>
<td>Conceptual view of how subnetting works</td>
<td>118</td>
</tr>
<tr>
<td>Figure 5-7</td>
<td>Structure of subnetted Class A, B, and C IP addresses, classful view</td>
<td>119</td>
</tr>
<tr>
<td>Figure 5-8</td>
<td>Structure of a subnetted unicast IP address, classless view</td>
<td>120</td>
</tr>
<tr>
<td>List</td>
<td>Two-step process of how hosts route (forward) packets</td>
<td>120</td>
</tr>
<tr>
<td>List</td>
<td>Four-step process of how routers route (forward) packets</td>
<td>122</td>
</tr>
<tr>
<td>Figure 5-10</td>
<td>Example of the IP routing process</td>
<td>123</td>
</tr>
<tr>
<td>Figure 5-11</td>
<td>Example that shows generally how a routing protocol can cause routers to learn new routes</td>
<td>126</td>
</tr>
<tr>
<td>Figure 5-13</td>
<td>Example that shows the purpose and process of DNS name resolution</td>
<td>128</td>
</tr>
<tr>
<td>Figure 5-14</td>
<td>Example of the purpose and process of ARP</td>
<td>129</td>
</tr>
<tr>
<td>Paragraph</td>
<td>The most important information learned by a host acting as a DHCP client</td>
<td>130</td>
</tr>
</tbody>
</table>
Complete the Tables and Lists from Memory

Print a copy of Appendix L, “Memory Tables” (found on the DVD), or at least the section for this chapter, and complete the tables and lists from memory. Appendix M, “Memory Tables Answer Key,” also on the DVD, includes completed tables and lists for you to check your work.

Definitions of Key Terms

Define the following key terms from this chapter, and check your answers in the glossary:

- ARP, default gateway/default router, DHCP, DNS, host part, IP address, logical address, network broadcast address, network number/network address, network part, routing table, subnet broadcast address, subnet number/subnet address, subnet part
This chapter covers the following subjects:

TCP/IP Layer 4 Protocols: TCP and UDP:
This section explains the functions and mechanisms used by TCP and UDP, including error recovery and port numbers.

TCP/IP Applications: This section explains the purpose of TCP/IP application layer protocols, focusing on HTTP as an example.

Network Security: This section provides some perspectives on the security threats faced by networks today, introducing some of the key tools used to help prevent and reduce the impact of those threats.
Fundamentals of TCP/IP
Transport, Applications, and Security

The CCNA exams focus mostly on a deeper and broader examination of the topics covered in Chapter 3 (LANs), Chapter 4 (WANs), and Chapter 5 (routing). This chapter explains the basics of a few topics that receive less attention on the exams: the TCP/IP transport layer, the TCP/IP application layer, and TCP/IP network security. Although all three topics are covered on the various CCNA exams, the extent of that coverage is much less compared to LANs, WANs, and routing.

“Do I Know This Already?” Quiz
The “Do I Know This Already?” quiz allows you to assess whether you should read the entire chapter. If you miss no more than one of these ten self-assessment questions, you might want to move ahead to the “Exam Preparation Tasks” section. Table 6-1 lists the major headings in this chapter and the “Do I Know This Already?” quiz questions covering the material in those sections. This helps you assess your knowledge of these specific areas. The answers to the “Do I Know This Already?” quiz appear in Appendix A.

Table 6-1 “Do I Know This Already?” Foundation Topics Section-to-Question Mapping

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP/IP Layer 4 Protocols: TCP and UDP</td>
<td>1–6</td>
</tr>
<tr>
<td>TCP/IP Applications</td>
<td>7, 8</td>
</tr>
<tr>
<td>Network Security</td>
<td>9, 10</td>
</tr>
</tbody>
</table>

1. PC1 is using TCP and has a window size of 4000. PC1 sends four segments to PC2 with 1000 bytes of data each, with sequence numbers 2000, 3000, 4000, and 5000. PC1 does not receive an acknowledgment within its current timeout value for this connection. What should PC1 do next?

 a. Increase its window to 5000 or more segments
 b. Send the next segment, with sequence number 6000
 c. Resend the segment whose sequence number was 5000
 d. Resend all four previously sent segments
2. Which of the following are not features of a protocol that is considered to match OSI Layer 4?
 a. Error recovery
 b. Flow control
 c. Segmenting of application data
 d. Conversion from binary to ASCII

3. Which of the following header fields identify which TCP/IP application gets data received by the computer? (Choose two answers.)
 a. Ethernet Type
 b. SNAP Protocol Type
 c. IP Protocol Field
 d. TCP Port Number
 e. UDP Port Number
 f. Application ID

4. Which of the following are not typical functions of TCP? (Choose two answers.)
 a. Windowing
 b. Error recovery
 c. Multiplexing using port numbers
 d. Routing
 e. Encryption
 f. Ordered data transfer

5. Which of the following functions is performed by both TCP and UDP?
 a. Windowing
 b. Error recovery
 c. Multiplexing using port numbers
 d. Routing
 e. Encryption
 f. Ordered data transfer
6. What do you call data that includes the Layer 4 protocol header, and data given to Layer 4 by the upper layers, not including any headers and trailers from Layers 1 to 3? (Choose two answers.)
 a. Bits
 b. Chunk
 c. Segment
 d. Packet
 e. Frame
 f. L4PDU
 g. L3PDU

7. In the URL http://www.certskills.com/name.html, which part identifies the web server?
 a. http
 b. www.certskills.com
 c. certskills.com
 d. http://www.certskills.com
 e. The file name.html includes the hostname.

8. When comparing VoIP with an HTTP-based mission-critical business application, which of the following statements are accurate about the quality of service needed from the network? (Choose two answers.)
 a. VoIP needs better (lower) packet loss.
 b. HTTP needs less bandwidth.
 c. HTTP needs better (lower) jitter.
 d. VoIP needs better (lower) delay.

9. Which of the following is a device or function whose most notable feature is to examine trends over time to recognize different known attacks as compared to a list of common attack signatures?
 a. VPN
 b. Firewall
 c. IDS
 d. NAC
10. Which of the following is a device or function whose most notable feature is to encrypt packets before they pass through the Internet?

a. VPN
b. Firewall
c. IDS
d. NAC
This chapter begins by examining the functions of Transmission Control Protocol (TCP), which are many, as compared to the functions of User Datagram Protocol (UDP), of which there are few. The second major section of the chapter examines the TCP/IP application layer, including some discussion of how DNS name resolution works. Finally, the third major section examines the importance and concepts of network security, introducing some of the core concepts, terminology, and functions important for security today.

TCP/IP Layer 4 Protocols: TCP and UDP

The OSI transport layer (Layer 4) defines several functions, the most important of which are error recovery and flow control. Likewise, the TCP/IP transport layer protocols also implement these same types of features. Note that both the OSI model and TCP/IP model call this layer the transport layer. But as usual, when referring to the TCP/IP model, the layer name and number are based on OSI, so any TCP/IP transport layer protocols are considered Layer 4 protocols.

The key difference between TCP and UDP is that TCP provides a wide variety of services to applications, whereas UDP does not. For example, routers discard packets for many reasons, including bit errors, congestion, and instances in which no correct routes are known. As you have read already, most data-link protocols notice errors (a process called error detection) but then discard frames that have errors. TCP provides for retransmission (error recovery) and help to avoid congestion (flow control), whereas UDP does not. As a result, many application protocols choose to use TCP.

However, do not let UDP’s lack of services make you think that UDP is worse than TCP. By providing few services, UDP needs fewer bytes in its header compared to TCP, resulting in fewer bytes of overhead in the network. UDP software does not slow down data transfer in cases where TCP may purposefully slow down. Also, some applications, notably today voice over IP (VoIP) and video over IP, do not need error recovery, so they use UDP. So, UDP also has an important place in TCP/IP networks today.

Table 6-2 lists the main features supported by TCP and/or UDP. Note that only the first item listed in the table is supported by UDP, whereas all items in the table are supported by TCP.
Next, this section describes the features of TCP, followed by a brief comparison to UDP.

Transmission Control Protocol

Each TCP/IP application typically chooses to use either TCP or UDP based on the application’s requirements. For instance, TCP provides error recovery, but to do so, it consumes more bandwidth and uses more processing cycles. UDP does not perform error recovery, but it takes less bandwidth and uses fewer processing cycles. Regardless of which of the two TCP/IP transport layer protocols the application chooses to use, you should understand the basics of how each of these transport layer protocols works.

TCP, as defined in RFC 793, accomplishes the functions listed in Table 6-2 through mechanisms at the endpoint computers. TCP relies on IP for end-to-end delivery of the data, including routing issues. In other words, TCP performs only part of the functions necessary to deliver the data between applications. Also, the role that it plays is directed toward providing services for the applications that sit at the endpoint computers. Regardless of whether two computers are on the same Ethernet or are separated by the entire Internet, TCP performs its functions the same way.

Figure 6-1 shows the fields in the TCP header. Although you don’t need to memorize the names of the fields or their locations, the rest of this section refers to several of the fields, so the entire header is included here for reference.
TCP provides a lot of features to applications, at the expense of requiring slightly more processing and overhead, as compared to UDP. However, TCP and UDP both use a concept called multiplexing. Therefore, this section begins with an explanation of multiplexing with TCP and UDP. Afterward, the unique features of TCP are explored.

Multiplexing by TCP and UDP involves the process of how a computer thinks when receiving data. The computer might be running many applications, such as a web browser, an e-mail package, or an Internet VoIP application (for example, Skype). TCP and UDP multiplexing enables the receiving computer to know which application to give the data to.

Some examples will help make the need for multiplexing obvious. The sample network consists of two PCs, labeled Hannah and Jessie. Hannah uses an application that she wrote to send advertisements that appear on Jessie’s screen. The application sends a new ad to Jessie every 10 seconds. Hannah uses a second application, a wire-transfer application, to send Jessie some money. Finally, Hannah uses a web browser to access the web server that runs on Jessie’s PC. The ad application and wire-transfer application are imaginary, just for this example. The web application works just like it would in real life.
Figure 6-2 shows the sample network, with Jessie running three applications:

- A UDP-based ad application
- A TCP-based wire-transfer application
- A TCP web server application

Figure 6-2 Hannah Sending Packets to Jessie, with Three Applications

Jessie needs to know which application to give the data to, but all three packets are from the same Ethernet and IP address. You might think that Jessie could look at whether the packet contains a UDP or TCP header, but, as you see in the figure, two applications (wire transfer and web) are using TCP.

TCP and UDP solve this problem by using a port number field in the TCP or UDP header, respectively. Each of Hannah’s TCP and UDP segments uses a different destination port number so that Jessie knows which application to give the data to. Figure 6-3 shows an example.

Multiplexing relies on a concept called a socket. A socket consists of three things:

- An IP address
- A transport protocol
- A port number
So, for a web server application on Jessie, the socket would be (10.1.1.2, TCP, port 80) because, by default, web servers use the well-known port 80. When Hannah’s web browser connects to the web server, Hannah uses a socket as well—possibly one like this: (10.1.1.1, TCP, 1030). Why 1030? Well, Hannah just needs a port number that is unique on Hannah, so Hannah sees that port 1030 is available and uses it. In fact, hosts typically allocate dynamic port numbers starting at 1024 because the ports below 1024 are reserved for well-known applications, such as web services.

In Figure 6-3, Hannah and Jessie use three applications at the same time—hence, three socket connections are open. Because a socket on a single computer should be unique, a connection between two sockets should identify a unique connection between two computers. This uniqueness means that you can use multiple applications at the same time, talking to applications running on the same or different computers. Multiplexing, based on sockets, ensures that the data is delivered to the correct applications. Figure 6-4 shows the three socket connections between Hannah and Jessie.

Port numbers are a vital part of the socket concept. Well-known port numbers are used by servers; other port numbers are used by clients. Applications that provide a service, such as FTP, Telnet, and web servers, open a socket using a well-known port and listen for connection requests. Because these connection requests from clients are required to include both the source and destination port numbers, the port numbers used by the servers must be
well-known. Therefore, each server has a hard-coded, well-known port number. The well-known ports are listed at http://www.iana.org/assignments/port-numbers.

Figure 6-4 Connections Between Sockets

On client machines, where the requests originate, any unused port number can be allocated. The result is that each client on the same host uses a different port number, but a server uses the same port number for all connections. For example, 100 web browsers on the same host computer could each connect to a web server, but the web server with 100 clients connected to it would have only one socket and, therefore, only one port number (port 80 in this case). The server can tell which packets are sent from which of the 100 clients by looking at the source port of received TCP segments. The server can send data to the correct web client (browser) by sending data to that same port number listed as a destination port. The combination of source and destination sockets allows all participating hosts to distinguish between the data's source and destination. Although the example explains the concept using 100 TCP connections, the same port numbering concept applies to UDP sessions in the same way.

NOTE You can find all RFCs online at http://www.isi.edu/in-notes/rfcxxxx.txt, where xxxx is the number of the RFC. If you do not know the number of the RFC, you can try searching by topic at http://www.rfc-editor.org/rfcsearch.html.

Popular TCP/IP Applications
Throughout your preparation for the CCNA exams, you will come across a variety of TCP/IP applications. You should at least be aware of some of the applications that can be used to help manage and control a network.
The World Wide Web (WWW) application exists through web browsers accessing the content available on web servers. Although it is often thought of as an end-user application, you can actually use WWW to manage a router or switch. You enable a web server function in the router or switch and use a browser to access the router or switch.

The Domain Name System (DNS) allows users to use names to refer to computers, with DNS being used to find the corresponding IP addresses. DNS also uses a client/server model, with DNS servers being controlled by networking personnel, and DNS client functions being part of most any device that uses TCP/IP today. The client simply asks the DNS server to supply the IP address that corresponds to a given name.

Simple Network Management Protocol (SNMP) is an application layer protocol used specifically for network device management. For instance, Cisco supplies a large variety of network management products, many of them in the CiscoWorks network management software product family. They can be used to query, compile, store, and display information about a network’s operation. To query the network devices, CiscoWorks software mainly uses SNMP protocols.

Traditionally, to move files to and from a router or switch, Cisco used Trivial File Transfer Protocol (TFTP). TFTP defines a protocol for basic file transfer—hence the word “trivial.” Alternatively, routers and switches can use File Transfer Protocol (FTP), which is a much more functional protocol, to transfer files. Both work well for moving files into and out of Cisco devices. FTP allows many more features, making it a good choice for the general end-user population. TFTP client and server applications are very simple, making them good tools as embedded parts of networking devices.

Some of these applications use TCP, and some use UDP. As you will read later, TCP performs error recovery, whereas UDP does not. For instance, Simple Mail Transport Protocol (SMTP) and Post Office Protocol version 3 (POP3), both used for transferring mail, require guaranteed delivery, so they use TCP. Regardless of which transport layer protocol is used, applications use a well-known port number so that clients know which port to attempt to connect to. Table 6-3 lists several popular applications and their well-known port numbers.

Table 6-3 Popular Applications and Their Well-Known Port Numbers

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Protocol</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>TCP</td>
<td>FTP data</td>
</tr>
<tr>
<td>21</td>
<td>TCP</td>
<td>FTP control</td>
</tr>
<tr>
<td>22</td>
<td>TCP</td>
<td>SSH</td>
</tr>
</tbody>
</table>

continues
TCP provides for reliable data transfer, which is also called reliability or error recovery, depending on what document you read. To accomplish reliability, TCP numbers data bytes using the Sequence and Acknowledgment fields in the TCP header. TCP achieves reliability in both directions, using the Sequence Number field of one direction combined with the Acknowledgment field in the opposite direction. Figure 6-5 shows the basic operation.

In Figure 6-5, the Acknowledgment field in the TCP header sent by the web client (4000) implies the next byte to be received; this is called forward acknowledgment. The sequence number reflects the number of the first byte in the segment. In this case, each TCP segment is 1000 bytes long; the Sequence and Acknowledgment fields count the number of bytes.

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Protocol</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>TCP</td>
<td>Telnet</td>
</tr>
<tr>
<td>25</td>
<td>TCP</td>
<td>SMTP</td>
</tr>
<tr>
<td>53</td>
<td>UDP, TCP</td>
<td>DNS</td>
</tr>
<tr>
<td>67, 68</td>
<td>UDP</td>
<td>DHCP</td>
</tr>
<tr>
<td>69</td>
<td>UDP</td>
<td>TFTP</td>
</tr>
<tr>
<td>80</td>
<td>TCP</td>
<td>HTTP (WWW)</td>
</tr>
<tr>
<td>110</td>
<td>TCP</td>
<td>POP3</td>
</tr>
<tr>
<td>161</td>
<td>UDP</td>
<td>SNMP</td>
</tr>
<tr>
<td>443</td>
<td>TCP</td>
<td>SSL</td>
</tr>
<tr>
<td>16,384–32,767</td>
<td>UDP</td>
<td>RTP-based Voice (VoIP) and Video</td>
</tr>
</tbody>
</table>

Error Recovery (Reliability)

TCP provides for reliable data transfer, which is also called *reliability* or *error recovery*, depending on what document you read. To accomplish reliability, TCP numbers data bytes using the Sequence and Acknowledgment fields in the TCP header. TCP achieves reliability in both directions, using the Sequence Number field of one direction combined with the Acknowledgment field in the opposite direction. Figure 6-5 shows the basic operation.

Figure 6-5 TCP Acknowledgment Without Errors

In Figure 6-5, the Acknowledgment field in the TCP header sent by the web client (4000) implies the next byte to be received; this is called *forward acknowledgment*. The sequence number reflects the number of the first byte in the segment. In this case, each TCP segment is 1000 bytes long; the Sequence and Acknowledgment fields count the number of bytes.
Figure 6-6 depicts the same scenario, but the second TCP segment was lost or is in error. The web client’s reply has an ACK field equal to 2000, implying that the web client is expecting byte number 2000 next. The TCP function at the web server then could recover lost data by resending the second TCP segment. The TCP protocol allows for resending just that segment and then waiting, hoping that the web client will reply with an acknowledgment that equals 4000.

Although not shown, the sender also sets a retransmission timer per segment, awaiting acknowledgment, just in case the acknowledgment is lost or all transmitted segments are lost. If that timer expires, the TCP sender sends the segment again.

Flow Control Using Windowing

TCP implements flow control by taking advantage of the Sequence and Acknowledgment fields in the TCP header, along with another field called the Window field. This Window field implies the maximum number of unacknowledged bytes that are allowed to be outstanding at any instant in time. The window starts small and then grows until errors occur. The size of the window changes over time, so it is sometimes called a *dynamic window*. Additionally, because the actual sequence and acknowledgment numbers grow over time, the window is sometimes called a *sliding window*, with the numbers sliding (moving) upward. When the window is full, the sender does not send, which controls the flow of data. Figure 6-7 shows windowing with a current window size of 3000. Each TCP segment has 1000 bytes of data.

Notice that the web server must wait after sending the third segment because the window is exhausted. When the acknowledgment has been received, another window can be sent. Because no errors have occurred, the web client grants a larger window to the server, so now 4000 bytes can be sent before the server receives an acknowledgment. In other words, the
receiver uses the Window field to tell the sender how much data it can send before it must stop and wait for the next acknowledgment. As with other TCP features, windowing is symmetrical. Both sides send and receive, and, in each case, the receiver grants a window to the sender using the Window field.

Windowing does not require that the sender stop sending in all cases. If an acknowledgment is received before the window is exhausted, a new window begins, and the sender continues sending data until the current window is exhausted. (The term Positive Acknowledgment and Retransmission [PAR] is sometimes used to describe the error recovery and windowing processes that TCP uses.)

Connection Establishment and Termination

TCP connection establishment occurs before any of the other TCP features can begin their work. Connection establishment refers to the process of initializing sequence and acknowledgment fields and agreeing on the port numbers used. Figure 6-8 shows an example of connection establishment flow.

This three-way connection establishment flow must end before data transfer can begin. The connection exists between the two sockets, although the TCP header has no single socket field. Of the three parts of a socket, the IP addresses are implied based on the source and destination IP addresses in the IP header. TCP is implied because a TCP header is in use,
as specified by the protocol field value in the IP header. Therefore, the only parts of the socket that need to be encoded in the TCP header are the port numbers.

Figure 6-8 TCP Connection Establishment

TCP signals connection establishment using 2 bits inside the flag fields of the TCP header. Called the SYN and ACK flags, these bits have a particularly interesting meaning. SYN means “Synchronize the sequence numbers,” which is one necessary component in initialization for TCP. The ACK field means “The Acknowledgment field is valid in this header.” Until the sequence numbers are initialized, the Acknowledgment field cannot be very useful. Also notice that in the initial TCP segment in Figure 6-8, no acknowledgment number is shown; this is because that number is not valid yet. Because the ACK field must be present in all the ensuing segments, the ACK bit continues to be set until the connection is terminated.

TCP initializes the Sequence Number and Acknowledgment Number fields to any number that fits into the 4-byte fields; the actual values shown in Figure 6-8 are simply sample values. The initialization flows are each considered to have a single byte of data, as reflected in the Acknowledgment Number fields in the example.

Figure 6-9 shows TCP connection termination. This four-way termination sequence is straightforward and uses an additional flag, called the FIN bit. (FIN is short for “finished,” as you might guess.) One interesting note: Before the device on the right sends the third TCP segment in the sequence, it notifies the application that the connection is coming down. It then waits on an acknowledgment from the application before sending the third segment in the figure. Just in case the application takes some time to reply, the PC on the right sends the second flow in the figure, acknowledging that the other PC wants to take down the connection. Otherwise, the PC on the left might resend the first segment repeatedly.
TCP establishes and terminates connections between the endpoints, whereas UDP does not. Many protocols operate under these same concepts, so the terms connection-oriented and connectionless are used to refer to the general idea of each. More formally, these terms can be defined as follows:

- **Connection-oriented protocol**: A protocol that requires an exchange of messages before data transfer begins or that has a required preestablished correlation between two endpoints.

- **Connectionless protocol**: A protocol that does not require an exchange of messages and that does not require a preestablished correlation between two endpoints.

Data Segmentation and Ordered Data Transfer

Applications need to send data. Sometimes the data is small—in some cases, a single byte. In other cases, such as with a file transfer, the data might be millions of bytes.

Each different type of data-link protocol typically has a limit on the maximum transmission unit (MTU) that can be sent inside a data link layer frame. In other words, the MTU is the size of the largest Layer 3 packet that can sit inside a frame’s data field. For many data-link protocols, Ethernet included, the MTU is 1500 bytes.

TCP handles the fact that an application might give it millions of bytes to send by segmenting the data into smaller pieces, called segments. Because an IP packet can often be no more than 1500 bytes because of the MTU restrictions, and because IP and TCP headers are 20 bytes each, TCP typically segments large data into 1460-byte chunks.

The TCP receiver performs reassembly when it receives the segments. To reassemble the data, TCP must recover lost segments, as discussed previously. However, the TCP receiver
must also reorder segments that arrive out of sequence. Because IP routing can choose to balance traffic across multiple links, the actual segments may be delivered out of order. So, the TCP receiver also must perform **ordered data transfer** by reassembling the data into the original order. The process is not hard to imagine: If segments arrive with the sequence numbers 1000, 3000, and 2000, each with 1000 bytes of data, the receiver can reorder them, and no retransmissions are required.

You should also be aware of some terminology related to TCP segmentation. The TCP header and the data field together are called a **TCP segment**. This term is similar to a data-link frame and an IP packet in that the terms refer to the headers and trailers for the respective layers, plus the encapsulated data. The term **L4PDU** also can be used instead of the term **TCP segment** because TCP is a Layer 4 protocol.

User Datagram Protocol

UDP provides a service for applications to exchange messages. Unlike TCP, UDP is connectionless and provides no reliability, no windowing, no reordering of the received data, and no segmentation of large chunks of data into the right size for transmission. However, UDP provides some functions of TCP, such as data transfer and multiplexing using port numbers, and it does so with fewer bytes of overhead and less processing required than TCP.

UDP data transfer differs from TCP data transfer in that no reordering or recovery is accomplished. Applications that use UDP are tolerant of the lost data, or they have some application mechanism to recover lost data. For example, VoIP uses UDP because if a voice packet is lost, by the time the loss could be noticed and the packet retransmitted, too much delay would have occurred, and the voice would be unintelligible. Also, DNS requests use UDP because the user will retry an operation if the DNS resolution fails. As another example, the Network File System (NFS), a remote file system application, performs recovery with application layer code, so UDP features are acceptable to NFS.

Figure 6-10 shows TCP and UDP header formats. Note the existence of both Source Port and Destination Port fields in the TCP and UDP headers, but the absence of Sequence Number and Acknowledgment Number fields in the UDP header. UDP does not need these fields because it makes no attempt to number the data for acknowledgments or resequencing.

UDP gains some advantages over TCP by not using the Sequence and Acknowledgment fields. The most obvious advantage of UDP over TCP is that there are fewer bytes of overhead. Not as obvious is the fact that UDP does not require waiting on acknowledgments or holding the data in memory until it is acknowledged. This means that UDP applications...
are not artificially slowed by the acknowledgment process, and memory is freed more quickly.

Figure 6-10 *TCP and UDP Headers*

TCP Header

<table>
<thead>
<tr>
<th>Source Port</th>
<th>Dest. Port</th>
<th>Sequence Number</th>
<th>Ack. Number</th>
<th>Offset</th>
<th>Reserved</th>
<th>Flags</th>
<th>Window Size</th>
<th>Checksum</th>
<th>Urgent</th>
<th>Options</th>
<th>PAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4 bits</td>
<td>6 bits</td>
<td>6 bits</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

UDP Header

<table>
<thead>
<tr>
<th>Source Port</th>
<th>Dest. Port</th>
<th>Length</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

* Unless Specified, Lengths Shown Are the Numbers of Bytes

TCP/IP Applications

The whole goal of building an Enterprise network, or connecting a small home or office network to the Internet, is to use applications—applications such as web browsing, text messaging, e-mail, file downloads, voice, and video. This section examines a few issues related to network design in light of the applications expected in an internetwork. This is followed by a much deeper look at one particular application—web browsing using Hypertext Transfer Protocol (HTTP).

QoS Needs and the Impact of TCP/IP Applications

The needs of networked applications have changed and grown significantly over the years. When networks first became popular in Enterprises in the 1970s, the network typically supported only data applications, mainly text-only terminals and text-only printers. A single user might generate a few hundred bytes of data for the network every time he or she pressed the Enter key, maybe every 10 seconds or so.

The term quality of service (QoS) refers to the entire topic of what an application needs from the network service. Each type of application can be analyzed in terms of its QoS requirements on the network, so if the network meets those requirements, the application will work well. For example, the older text-based interactive applications required only a small amount of bandwidth, but they did like low delay. If those early networks supported a round-trip delay of less than 1 second, users were generally happy, because they had to wait less than 1 second for a response.

The QoS needs of data applications have changed over the years. Generally speaking, applications have tended to need more bandwidth, with lower delay as well. From those
earlier days of networking to the present, here are some of the types of data applications that entered the marketplace, and their impact on the network:

- Graphics-capable terminals and printers, which increased the required bytes for the same interaction as the old text-based terminals and printers
- File transfers, which introduced much larger volumes of data, but with no significant response time requirements
- File servers, which allow users to store files on a server—which might require a large volume of data transfer, but with a much smaller end-user response time requirement
- The maturation of database technology, making vast amounts of data available to casual users, vastly increasing the number of users wanting access to data
- The migration of common applications to web browsers, which encourages more users to access data
- The general acceptance of e-mail as both a personal and business communications service, both inside companies and with other companies
- The rapid commercialization of the Internet, enabling companies to offer data directly to their customers via the data network rather than via phone calls

Besides these and many other trends in the progression of data applications over the years, voice and video are in the middle of a migration onto the data network. Before the mid-to-late 1990s, voice and video typically used totally separate networking facilities. The migration of voice and video to the data network puts even more pressure on the data network to deliver the required quality of network service. Most companies today have either begun or plan on a migration to use IP phones, which pass voice traffic over the data network inside IP packets using application protocols generally referred to as voice over IP (VoIP). Additionally, several companies sell Internet phone service, which sends voice traffic over the Internet, again using VoIP packets. Figure 6-11 shows a few of the details of how VoIP works from a home high-speed Internet connection, with a generic voice adapter (VA) converting the analog voice signal from the normal telephone to an IP packet.

Figure 6-11 Converting from Sound to Packets with a VA
A single VoIP call that passes over a WAN typically takes less than 30 kbps of bandwidth, which is not a lot compared with many data applications today. In fact, most data applications consume as much bandwidth as they can grab. However, VoIP traffic has several other QoS demands on the network before the VoIP traffic will sound good:

- **Low delay**: VoIP requires a very low delay between the sending phone and the receiving phone—typically less than 200 milliseconds (.2 seconds). This is a much lower delay than what is required by typical data applications.

- **Low jitter**: Jitter is the variation in delay. VoIP requires very low jitter as well, whereas data applications can tolerate much higher jitter. For example, the jitter for consecutive VoIP packets should not exceed 30 milliseconds (.03 seconds), or the quality degrades.

- **Loss**: If a VoIP packet is lost in transit because of errors or because a router doesn’t have room to store the packet while waiting to send it, the VoIP packet is not delivered across the network. Because of the delay and jitter issues, there is no need to try to recover the lost packet. It would be useless by the time it was recovered. Lost packets can sound like a break in the sound of the VoIP call.

Video over IP has the same performance issues, except that video requires either more bandwidth (often time 300 to 400 kbps) or a lot more bandwidth (3 to 10 Mbps per video). The world of video over IP is also going through a bit of transformation with the advent of high-definition video over IP, again increasing demands on the bandwidth in the network.

For perspective, Table 6-4 summarizes some thoughts about the needs of various types of applications for the four main QoS requirements—bandwidth, delay, jitter, and packet loss. Memorizing the table is not important, but it is important to note that although VoIP requires relatively little bandwidth, it also requires low delay/jitter/loss for high quality. It is also important to note that video over IP has the same requirements, except for medium to large amounts of bandwidth.

<table>
<thead>
<tr>
<th>Type of Application</th>
<th>Bandwidth</th>
<th>Delay</th>
<th>Jitter</th>
<th>Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>VoIP</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Two-way video over IP (such as videoconferencing)</td>
<td>Medium/high</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>One-way video over IP (such as security cameras)</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Interactive mission-critical data (such as web-based payroll)</td>
<td>Medium</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>
To support the QoS requirements of the various applications, routers and switches can be configured with a wide variety of QoS tools. They are beyond the scope of the CCNA exams (but are covered on several of the Cisco professional-level certifications). However, the QoS tools must be used for a modern network to be able to support high-quality VoIP and video over IP.

Next, we examine the most popular application layer protocol for interactive data applications today—HTTP and the World Wide Web (WWW). The goal is to show one example of how application layer protocols work.

The World Wide Web, HTTP, and SSL

The World Wide Web (WWW) consists of all the Internet-connected web servers in the world, plus all Internet-connected hosts with web browsers. Web servers, which consist of web server software running on a computer, store information (in the form of web pages) that might be useful to different people. Web browsers, which is software installed on an end user’s computer, provide the means to connect to a web server and display the web pages stored on the web server.

<table>
<thead>
<tr>
<th>Type of Application</th>
<th>Bandwidth</th>
<th>Delay</th>
<th>Jitter</th>
<th>Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactive business data (such as online chat with a coworker)</td>
<td>Low/medium</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>File transfer (such as backing up disk drives)</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Nonbusiness (such as checking the latest sports scores)</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

To support the QoS requirements of the various applications, routers and switches can be configured with a wide variety of QoS tools. They are beyond the scope of the CCNA exams (but are covered on several of the Cisco professional-level certifications). However, the QoS tools must be used for a modern network to be able to support high-quality VoIP and video over IP.

Next, we examine the most popular application layer protocol for interactive data applications today—HTTP and the World Wide Web (WWW). The goal is to show one example of how application layer protocols work.

The World Wide Web, HTTP, and SSL

The World Wide Web (WWW) consists of all the Internet-connected web servers in the world, plus all Internet-connected hosts with web browsers. Web servers, which consist of web server software running on a computer, store information (in the form of web pages) that might be useful to different people. Web browsers, which is software installed on an end user’s computer, provide the means to connect to a web server and display the web pages stored on the web server.

Although most people use the term web browser, or simply browser, web browsers are also called web clients, because they obtain a service from a web server.

For this process to work, several specific application-layer functions must occur. The user must somehow identify the server, the specific web page, and the protocol used to get the data from the server. The client must find the server’s IP address, based on the server’s name, typically using DNS. The client must request the web page, which actually consists of multiple separate files, and the server must send the files to the web browser. Finally, for electronic commerce (e-commerce) applications, the transfer of data, particularly sensitive financial data, needs to be secure, again using application layer features. The following sections address each of these functions.
Universal Resource Locators

For a browser to display a web page, the browser must identify the server that has the web page, plus other information that identifies the particular web page. Most web servers have many web pages. For example, if you use a web browser to browse http://www.cisco.com, and you click around that web page, you’ll see another web page. Click again, and you’ll see another web page. In each case, the clicking action identifies the server’s IP address and the specific web page, with the details mostly hidden from you. (These clickable items on a web page, which in turn bring you to another web page, are called links.)

The browser user can identify a web page when you click something on a web page or when you enter a Universal Resource Locator (URL) (often called a web address) in the browser’s address area. Both options—clicking a link and entering a URL—refer to a URL, because when you click a link on a web page, that link actually refers to a URL.

NOTE To see the hidden URL referenced by a link, open a browser to a web page, hover the mouse pointer over a link, right-click, and select Properties. The pop-up window should display the URL to which the browser would be directed if you clicked that link.

Each URL defines the protocol used to transfer data, the name of the server, and the particular web page on that server. The URL can be broken into three parts:

- The protocol is listed before the //.
- The hostname is listed between the // and the /.
- The name of the web page is listed after the /.

For example:

http://www.certskills.com/ICND1

In this case, the protocol is Hypertext Transfer Protocol (HTTP), the hostname is www.certskills.com, and the name of the web page is ICND1. (This URL happens to link to pages with reference information related to the chapters in this book.)

Finding the Web Server Using DNS

As mentioned in Chapter 5, “Fundamentals of IPv4 Addressing and Routing,” a host can use DNS to discover the IP address that corresponds to a particular hostname. Although URLs may include the IP address of the web server instead of the name of the web server, URLs typically list the hostname. So, before the browser can send a packet to the web server, the browser typically needs to resolve the name in the URL to that name’s corresponding IP address.
To pull together several concepts, Figure 6-12 shows the DNS process as initiated by a web browser, as well as some other related information. From a basic perspective, the user enters the URL (http://www.cisco.com/go/learningnetwork), resolves the www.cisco.com name into the correct IP address, and starts sending packets to the web server.

Figure 6-12 DNS Resolution and Requesting a Web Page

The steps shown in the figure are as follows:

1. The user enters the URL, http://www.cisco.com/go/learningnetwork, into the browser’s address area.

2. The client sends a DNS request to the DNS server. Typically, the client learns the DNS server’s IP address via DHCP. Note that the DNS request uses a UDP header, with a destination port of the DNS well-known port of 53. (See Table 6-3, earlier in this chapter, for a list of popular well-known ports.)

3. The DNS server sends a reply, listing IP address 198.133.219.25 as www.cisco.com’s IP address. Note also that the reply shows a destination IP address of 64.100.1.1, the client’s IP address. It also shows a UDP header, with source port 53; the source port is 53 because the data is sourced, or sent by, the DNS server.
4. The client begins the process of establishing a new TCP connection to the web server. Note that the destination IP address is the just-learned IP address of the web server. The packet includes a TCP header, because HTTP uses TCP. Also note the destination TCP port is 80, the well-known port for HTTP. Finally, the SYN bit is shown, as a reminder that the TCP connection establishment process begins with a TCP segment with the SYN bit turned on (binary 1).

At this point in the process, the web browser is almost finished setting up a TCP connection to the web server. The next section picks up the story at that point, examining how the web browser then gets the files that comprise the desired web page.

Transferring Files with HTTP

After a web client (browser) has created a TCP connection to a web server, the client can begin requesting the web page from the server. Most often, the protocol used to transfer the web page is HTTP. The HTTP application-layer protocol, defined in RFC 2616, defines how files can be transferred between two computers. HTTP was specifically created for the purpose of transferring files between web servers and web clients.

HTTP defines several commands and responses, with the most frequently used being the HTTP GET request. To get a file from a web server, the client sends an HTTP GET request to the server, listing the filename. If the server decides to send the file, the server sends an HTTP GET response, with a return code of 200 (meaning “OK”), along with the file’s contents.

```
| NOTE | Many return codes exist for HTTP requests. For instance, when the server does not have the requested file, it issues a return code of 404, which means “file not found.” Most web browsers do not show the specific numeric HTTP return codes, instead displaying a response such as “page not found” in reaction to receiving a return code of 404. |
```

Web pages typically consist of multiple files, called objects. Most web pages contain text as well as several graphical images, animated advertisements, and possibly voice or video. Each of these components is stored as a different object (file) on the web server. To get them all, the web browser gets the first file. This file may (and typically does) include references to other URLs, so the browser then also requests the other objects. Figure 6-13 shows the general idea, with the browser getting the first file and then two others.

In this case, after the web browser gets the first file—the one called “/go/ccna” in the URL—the browser reads and interprets that file. Besides containing parts of the web page, the file refers to two other files, so the browser issues two additional HTTP GET requests.
Note that, even though it isn’t shown in the figure, all these commands flow over one (or possibly more) TCP connections between the client and the server. This means that TCP would provide error recovery, ensuring that the data was delivered.

Figure 6-13 Multiple HTTP Get Requests/Responses

This chapter ends with an introduction to network security.

Network Security

In years past, security threats came from geniuses or nerdy students with lots of time. The numbers of these people were relatively small. Their main motivation was to prove that they could break into another network. Since then, the number of potential attackers and the sophistication of the attacks have increased exponentially. Attacks that once required attackers to have an advanced degree in computing now can be done with easily downloaded and freely available tools that the average junior-high student can figure out how to use. Every company and almost every person connects to the Internet, making essentially the whole world vulnerable to attack.

The biggest danger today may be the changes in attackers’ motivation. Instead of looking for a challenge, or to steal millions, today’s attackers can be much more organized and motivated. Organized crime tries to steal billions by extorting companies by threatening a denial of service (DoS) attack on the companies’ public web servers. Or they steal identity and credit card information for sometimes hundreds of thousands of people with one sophisticated attack. Attacks might come from nation-states or terrorists. Not only might they attack military and government networks, but they might try to disrupt infrastructure services for utilities and transportation and cripple economies.
Security is clearly a big issue, and one that requires serious attention. For the purposes of this book, and for the ICND1 exam, the goal is to know some of the basic terminology, types of security issues, and some of the common tools used to mitigate security risks. To that end, this final section of the chapter gives you some perspectives on attacks, and then it introduces four classes of security tools. Beyond this introduction, this book also examines device security—the securing of access to routers and switches in this case—as part of Chapter 8, “Operating Cisco LAN Switches,” and Chapter 19, “Operating Cisco Routers.”

Perspectives on the Sources and Types of Threats

Figure 6-14 shows a common network topology with a firewall. Firewalls are probably the best-known security appliance, sitting between the Enterprise network and the dark, cold, unsecure Internet. The firewall’s role is to stop packets that the network or security engineer has deemed unsafe. The firewall mainly looks at the transport layer port numbers and the application layer headers to prevent certain ports and applications from getting packets into the Enterprise.

Figure 6-14 Typical Enterprise Internet Connection with a Firewall

Figure 6-14 might give an average employee of the Enterprise a false sense of security. He or she might think the firewall provides protection from all the dangers of connecting to
the Internet. However, a perimeter firewall (a firewall on the edge, or perimeter, of the network) does not protect the Enterprise from all the dangers possible through the Internet connection. Not only that, a higher percentage of security attacks actually come from inside the Enterprise network, and the firewall does not even see those packets.

To appreciate a bit more about the dangers inside the Enterprise network, it helps to understand a bit more about the kinds of attacks that might occur:

- **Denial of service (DoS) attacks**: An attack whose purpose is to break things. DoS attacks called *destroyers* try to harm the hosts, erasing data and software. DoS attacks called *crashers* cause harm by causing hosts to fail or causing the machine to no longer be able to connect to the network. Also, DoS attacks called *flooders* flood the network with packets to make the network unusable, preventing any useful communications with the servers.

- **Reconnaissance attacks**: This kind of attack may be disruptive as a side effect, but its goal is gathering information to perform an access attack. An example is learning IP addresses and then trying to discover servers that do not appear to require encryption to connect to the server.

- **Access attacks**: An attempt to steal data, typically data for some financial advantage, for a competitive advantage with another company, or even for international espionage.

Computer viruses are just one tool that can be used to carry out any of these attacks. A virus is a program that is somehow transferred onto an unsuspecting computer, possibly through an e-mail attachment or website download. A virus could just cause problems on the computer, or it could steal information and send it back to the attacker.

Today, most computers use some type of anti-virus software to watch for known viruses and prevent them from infecting the computer. Among other activities, the anti-virus software loads a list of known characteristics of all viruses, with these characteristics being known as virus *signatures*. By periodically downloading the latest virus signatures, the anti-virus software knows about all the latest viruses. By watching all packets entering the computer, the anti-virus software can recognize known viruses and prevent the computer from being infected. These programs also typically run an automatic periodic scan of the entire contents of the computer disk drives, looking for any known viruses.

To appreciate some of the security risks inherent in an Enterprise network that already has a quality perimeter firewall, consider Figure 6-15. The list following the figure explains three ways in which the Enterprise network is exposed to the possibility of an attack from within.
The following types of problems could commonly occur in this Enterprise:

- **Access from the wireless LAN:** Wireless LANs allow users to access the rest of the devices in the Enterprise. The wireless radio signals might leave the building, so an unsecured wireless LAN allows the user across the street in a coffee shop to access the Enterprise network, letting the attacker (PC1) begin the next phase of trying to gain access to the computers in the Enterprise.

- **Infected mobile laptops:** When an employee brings his or her laptop (PC2) home, with no firewall or other security, the laptop may become infected with a virus. When the user returns to the office in the morning, the laptop connects to the Enterprise network, with the virus spreading to other PCs, such as PC3. PC3 may be vulnerable in part because the users may have avoided running the daily anti-virus software scans that, although useful, can annoy the user.

- **Disgruntled employees:** The user at PC4 is planning to move to a new company. He steals information from the network and loads it onto an MP3 player or USB flash drive. This allows him to carry the entire customer database in a device that can be easily concealed and removed from the building.
These attacks are just a few examples; a large number of variations and methods exist. To prevent such problems, Cisco suggests a security model that uses tools that automatically work to defend the network, with security features located throughout the network. Cisco uses the term *security in depth* to refer to a security design that includes security tools throughout the network, including features in routers and switches. Cisco also uses the term “self-defending network” to refer to automation in which the network devices automatically react to network problems.

For example, Network Admission Control (NAC) is one security tool to help prevent two of the attacks just described. Among other things, NAC can monitor when devices first connect to a LAN, be they wireless or wired. The NAC feature, partly implemented by features in the LAN switches, would prevent a computer from connecting to the LAN until its virus definitions were updated, with a requirement for a recent full virus scan. NAC also includes a requirement that the user supply a username and password before being able to send other data into the LAN, helping prevent the guy at the coffee shop from gaining access. However, NAC does not prevent a disgruntled employee from causing harm, because the employee typically has a working username/password to be authenticated with NAC.

Besides viruses, many other tools can be used to form an attack. The following list summarizes some of the more common terms for the tools in an attacker’s toolkit:

- **Scanner**: A tool that sends connection requests to different TCP and UDP ports, for different applications, in an attempt to discover which hosts run which IP services, and possibly the operating system used on each host.
- **Spyware**: A virus that looks for private or sensitive information, tracking what the user does with the computer, and passing the information back to the attacker in the Internet.
- **Worm**: A self-propagating program that can quickly replicate itself around Enterprise networks and the Internet, often performing DoS attacks, particularly on servers.
- **Keystroke logger**: A virus that logs all keystrokes, or possibly just keystrokes from when secure sites are accessed, reporting the information to the attacker. Loggers can actually capture your username and password to secure sites before the information leaves the computer, which could give the attacker access to your favorite financial websites.
■ **Phishing:** The attacker sets up a website that outwardly looks like a legitimate website, often for a bank or credit card company. The phisher sends e-mails listing the illegitimate website’s URL but making it look like the real company (for example, “Click here to update the records for your credit card to make it more secure.”). The phisher hopes that a few people will take the bait, connect to the illegitimate website, and enter information such as their name, address, credit card number, social security number (in the U.S.), or other national government ID number. The best defense for phishing attacks may well be better user training and more awareness about the exposure.

■ **Malware:** This refers to a broad class of malicious viruses, including spyware.

The solution to these and the many other security issues not mentioned here is to provide security in depth throughout the network. The rest of this section introduces a few of the tools that can be used to provide that in-depth security.

Firewalls and the Cisco Adaptive Security Appliance (ASA)

Firewalls examine all packets entering and exiting a network for the purpose of filtering unwanted traffic. Firewalls determine the allowed traffic versus the disallowed traffic based on many characteristics of the packets, including their destination and source IP addresses and the TCP and UDP port numbers (which imply the application protocol). Firewalls also examine the application layer headers.

The term *firewall* is taken from the world of building and architecture. A firewall in a building has two basic requirements. It must be made of fire-resistant materials, and the architect limits the number of openings in the wall (doors, conduits for wires and plumbing), limiting the paths through which the fire can spread. Similarly, a network firewall must itself be hardened against security attacks. It must disallow all packets unless the engineer has configured a firewall rule that allows the traffic—a process often called “opening a hole,” again with analogies to a firewall in a building.

Firewalls sit in the packet-forwarding path between two networks, often with one LAN interface connecting to the secure local network, and one to the other, less-secure network (often the Internet). Additionally, because some hosts in the Enterprise need to be accessible from the Internet—an inherently less secure practice—the firewall typically also has an interface connected to another small part of the Enterprise network, called the demilitarized zone (DMZ). The DMZ LAN is a place to put devices that need to be accessible, but that access puts them at higher risk. Figure 6-16 shows a sample design, with a firewall that has three interfaces.
To do its job, the firewall needs to be configured to know which interfaces are connected to the inside, outside, and DMZ parts of the network. Then, a series of rules can be configured that tell the firewall which traffic patterns are allowed and which are not. The figure shows two typically allowed flows and one typical disallowed flow, shown with dashed lines:

- Allow web clients on the inside network (such as PC1) to send packets to web servers (such as the www.example.com web server)
- Prevent web clients in the outside network (such as PC5) from sending packets to web servers in the inside network (such as the internal web server int.ciscopress.com)
- Allow web clients in the outside network (such as PC5) to connect to DMZ web servers (such as the www.ciscopress.com web server)

In years past, Cisco sold firewalls with the trade name PIX firewall. A few years ago, Cisco introduced a whole new generation of network security hardware using the trade name Adaptive Security Appliance (ASA). ASA hardware can act as a firewall, in other security roles, and in a combination of roles. So, when speaking about security, the term firewall still
refers to the functions, but today the Cisco product may be an older still-installed PIX firewall or a newer ASA. (Figure 6-16 shows the ASA icon at the bottom.)

Anti-x

A comprehensive security plan requires several functions that prevent different known types of problems. For example, host-based anti-virus software helps prevent the spread of viruses. Cisco ASA appliances can provide or assist in the overall in-depth security design with a variety of tools that prevent problems such as viruses. Because the names of several of the individual tools start with “anti-,” Cisco uses the term *anti-x* to refer to the whole class of security tools that prevent these various problems, including the following:

- **Anti-virus**: Scans network traffic to prevent the transmission of known viruses based on virus signatures.
- **Anti-spyware**: Scans network traffic to prevent the transmission of spyware programs.
- **Anti-spam**: Examines e-mail before it reaches the users, deleting or segregating junk e-mail.
- **Anti-phishing**: Monitors URLs sent in messages through the network, looking for the fake URLs inherent in phishing attacks, preventing the attack from reaching the users.
- **URL filtering**: Filters web traffic based on URL to prevent users from connecting to inappropriate sites.
- **E-mail filtering**: Provides anti-spam tools. Also filters e-mails containing offensive materials, potentially protecting the Enterprise from lawsuits.

The Cisco ASA appliance can be used to perform the network-based role for all these anti-x functions.

Intrusion Detection and Prevention

Some types of attacks cannot be easily found with anti-x tools. For example, if a known virus infects a computer solely through an e-mail attachment of a file called this-is-a-virus.exe, the anti-virus software on the ASA or the end-user computer can easily identify and delete the virus. However, some forms of attacks can be more sophisticated. The attacks may not even include the transfer of a file, instead using a myriad of other, more-challenging methods, often taking advantage of new bugs in the operating system.

The world of network security includes a couple of types of tools that can be used to help prevent the more sophisticated kinds of attacks: Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS). IDS and IPS tools detect these threats by watching for trends, looking for attacks that use particular patterns of messages, and other factors. For
instance, an IDS or IPS can track sequences of packets between hosts to look for a file being sent to more and more hosts, as might be done by a worm trying to spread inside a network.

IDS and IPS systems differ mainly in how they monitor the traffic and how they can respond to a perceived threat. IDS tools typically receive a copy of packets via a monitoring port, rather than being part of the packets’ forwarding path. The IDS can then rate and report on each potential threat, and potentially ask other devices, such as firewalls and routers, to help prevent the attack (if they can). IPS tools often sit in the packets’ forwarding path, giving the IPS the capability to perform the same functions as the IDS, but also to react and filter the traffic. The ability to react is important with some threats, such as the Slammer worm in 2003, which doubled the number of infected hosts every 9 seconds or so, infecting 75,000 hosts in the first 10 minutes of the attack. This kind of speed requires the use of reactive tools, rather than waiting on an engineer to see a report and take action.

Virtual Private Networks (VPN)

The last class of security tool introduced in this chapter is the virtual private network (VPN), which might be better termed a virtual private WAN. A leased line is inherently secure, effectively acting like an electrical circuit between the two routers. VPNs send packets through the Internet, which is a public network. However, VPNs make the communication secure, like a private leased line.

Without VPN technology, the packets sent between two devices over the Internet are inherently unsecure. The packets flowing through the Internet could be intercepted by attackers in the Internet. In fact, along with the growth of the Internet, attackers found ways to redirect packets and examine the contents, both to see the data and to find additional information (such as usernames and passwords) as part of a reconnaissance attack. Additionally, users and servers might not be able to tell the difference between a legitimate packet from an authentic user and a packet from an attacker who is trying to gain even more information and access.

VPNs provide a solution to allow the use of the Internet without the risks of unknowingly accepting data from attacking hosts and without the risk of others reading the data in transit. VPNs authenticate the VPN’s endpoints, meaning that both endpoints can be sure that the other endpoint of the VPN connection is legitimate. Additionally, VPNs encrypt the original IP packets so that even if an attacker managed to get a copy of the packets as they pass through the Internet, he or she cannot read the data. Figure 16-17 shows the general idea, with an intranet VPN and an access VPN.

The figure shows an example of two types of VPNs: an access VPN and a site-to-site intranet VPN. An access VPN supports a home or small-office user, with the remote office’s PC typically encrypting the packets. A site-to-site intranet VPN typically connects two sites of the same Enterprise, effectively creating a secure connection between two different
parts inside (intra) the same Enterprise network. For intranet VPNs, the encryption could be done for all devices using different kinds of hardware, including routers, firewalls, purpose-built VPN concentrator hardware, or ASAs, as shown in the main site of the Enterprise.

Figure 6-17 Sample VPNs

Figure 6-17 shows how VPNs can use end-to-end encryption, in which the data remains encrypted while being forwarded through one or more routers. Additionally, link encryption can be used to encrypt data at the data link layer, so the data is encrypted only as it passes over one data link. Chapter 11, “Wireless LANs,” shows an example of link encryption.
Exam Preparation Tasks

Review All the Key Topics

Review the most important topics from this chapter, noted with the key topics icon. Table 6-5 lists these key topics and where each is discussed.

Table 6-5 Key Topics for Chapter 6

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 6-2</td>
<td>Functions of TCP and UDP</td>
<td>140</td>
</tr>
<tr>
<td>Table 6-3</td>
<td>Well-known TCP and UDP port numbers</td>
<td>145-146</td>
</tr>
<tr>
<td>Figure 6-6</td>
<td>Example of TCP error recovery using forward acknowledgments</td>
<td>147</td>
</tr>
<tr>
<td>Figure 6-7</td>
<td>Example of TCP sliding windows</td>
<td>148</td>
</tr>
<tr>
<td>Figure 6-8</td>
<td>Example of TCP connection establishment</td>
<td>149</td>
</tr>
<tr>
<td>List</td>
<td>Definitions of connection-oriented and connectionless</td>
<td>150</td>
</tr>
<tr>
<td>List</td>
<td>QoS requirements for VoIP</td>
<td>154</td>
</tr>
<tr>
<td>List</td>
<td>Three types of attacks</td>
<td>161</td>
</tr>
<tr>
<td>Figure 6-15</td>
<td>Examples of common security exposures in an Enterprise</td>
<td>162</td>
</tr>
</tbody>
</table>

Complete the Tables and Lists from Memory

Print a copy of Appendix L, “Memory Tables” (found on the DVD), or at least the section for this chapter, and complete the tables and lists from memory. Appendix M, “Memory Tables Answer Key,” also on the DVD, includes completed tables and lists for you to check your work.

Definitions of Key Terms

Define the following key terms from this chapter and check your answers in the glossary:

Anti-x, connection establishment, DoS, error detection, error recovery, firewall, flow control, forward acknowledgment, HTTP, Intrusion Detection System, Intrusion Prevention System, ordered data transfer, port, Positive Acknowledgment and Retransmission (PAR), segment, sliding windows, URL, virtual private network, VoIP, web server
Cisco Published ICND1 Exam Topics* Covered in This Part:

Describe the operation of data networks
- Use the OSI and TCP/IP models and their associated protocols to explain how data flows in a network
- Interpret network diagrams
- Determine the path between two hosts across a network
- Identify and correct common network problems at Layers 1, 2, 3, and 7 using a layered model approach
- Differentiate between LAN/WAN operation and features

Implement a small switched network
- Select the appropriate media, cables, ports, and connectors to connect switches to other network devices and hosts
- Explain the technology and media access control method for Ethernet technologies
- Explain network segmentation and basic traffic management concepts
- Explain the operation of Cisco switches and basic switching concepts
- Perform, save, and verify initial switch configuration tasks including remote access management
- Verify network status and switch operation using basic utilities (including: ping, traceroute, Telnet, SSH, ARP, ipconfig), show and debug commands
- Implement and verify basic security for a switch (port security, deactivate ports)
- Identify, prescribe, and resolve common switched network media issues, configuration issues, autonegotiation, and switch hardware failures

Explain and select the appropriate administrative tasks required for a WLAN
- Describe standards associated with wireless media (including: IEEE Wi-Fi Alliance, ITU/FCC)
- Identify and describe the purpose of the components in a small wireless network (including: SSID, BSS, ESS)
- Identify the basic parameters to configure on a wireless network to ensure that devices connect to the correct access point
- Compare and contrast wireless security features and capabilities of WPA security (including: open, WEP, WPA-1/2)
- Identify common issues with implementing wireless networks

Identify security threats to a network and describe general methods to mitigate those threats
- Describe security recommended practices including initial steps to secure network devices

*Always recheck http://www.cisco.com for the latest posted exam topics.
Part II: LAN Switching

Chapter 7 Ethernet LAN Switching Concepts
Chapter 8 Operating Cisco LAN Switches
Chapter 9 Ethernet Switch Configuration
Chapter 10 Ethernet Switch Troubleshooting
Chapter 11 Wireless LANs
This chapter covers the following subjects:

LAN Switching Concepts: Explains the basic processes used by LAN switches to forward frames.

LAN Design Considerations: Describes the reasoning and terminology for how to design a switched LAN that operates well.
Ethernet LAN Switching Concepts

Chapter 3, “Fundamentals of LANs,” covered the conceptual and physical attributes of Ethernet LANs in a fair amount of detail. That chapter explains a wide variety of Ethernet concepts, including the basics of UTP cabling, the basic operation of and concepts behind hubs and switches, comparisons of different kinds of Ethernet standards, and Ethernet data link layer concepts such as addressing and framing.

The chapters in Part II, “LAN Switching,” complete this book’s coverage of Ethernet LANs, with one additional chapter (Chapter 11) on wireless LANs. This chapter explains most of the remaining Ethernet concepts that were not covered in Chapter 3. In particular, it contains a more detailed examination of how switches work, as well as the LAN design implications of using hubs, bridges, switches, and routers. Chapters 8 through 10 focus on how to access and use Cisco switches. Chapter 8, “Operating Cisco LAN Switches,” focuses on the switch user interface. Chapter 9, “Ethernet Switch Configuration,” shows you how to configure a Cisco switch. Chapter 10, “Ethernet Switch Troubleshooting,” shows you how to troubleshoot problems with Cisco switches. Chapter 11, “Wireless LANs,” concludes Part II with a look at the concepts behind wireless LANs.

“Do I Know This Already?” Quiz
The “Do I Know This Already?” quiz allows you to assess whether you should read the entire chapter. If you miss no more than one of these eight self-assessment questions, you might want to move ahead to the “Exam Preparation Tasks” section. Table 7-1 lists the major headings in this chapter and the “Do I Know This Already?” quiz questions covering the material in those sections. This helps you assess your knowledge of these specific areas. The answers to the “Do I Know This Already?” quiz appear in Appendix A.

| Table 7-1 “Do I Know This Already?” Foundation Topics Section-to-Question Mapping |
|--|----------------|
| Foundation Topics Section | Questions |
| LAN Switching Concepts | 1–5 |
| LAN Design Considerations | 6–8 |
1. Which of the following statements describes part of the process of how a switch decides to forward a frame destined for a known unicast MAC address?
 a. It compares the unicast destination address to the bridging, or MAC address, table.
 b. It compares the unicast source address to the bridging, or MAC address, table.
 c. It forwards the frame out all interfaces in the same VLAN except for the incoming interface.
 d. It compares the destination IP address to the destination MAC address.
 e. It compares the frame’s incoming interface to the source MAC entry in the MAC address table.

2. Which of the following statements describes part of the process of how a LAN switch decides to forward a frame destined for a broadcast MAC address?
 a. It compares the unicast destination address to the bridging, or MAC address, table.
 b. It compares the unicast source address to the bridging, or MAC address, table.
 c. It forwards the frame out all interfaces in the same VLAN except for the incoming interface.
 d. It compares the destination IP address to the destination MAC address.
 e. It compares the frame’s incoming interface to the source MAC entry in the MAC address table.

3. Which of the following statements best describes what a switch does with a frame destined for an unknown unicast address?
 a. It forwards out all interfaces in the same VLAN except for the incoming interface.
 b. It forwards the frame out the one interface identified by the matching entry in the MAC address table.
 c. It compares the destination IP address to the destination MAC address.
 d. It compares the frame’s incoming interface to the source MAC entry in the MAC address table.
4. Which of the following comparisons does a switch make when deciding whether a new MAC address should be added to its bridging table?
 a. It compares the unicast destination address to the bridging, or MAC address, table.
 b. It compares the unicast source address to the bridging, or MAC address, table.
 c. It compares the VLAN ID to the bridging, or MAC address, table.
 d. It compares the destination IP address’s ARP cache entry to the bridging, or MAC address, table.

5. PC1, with MAC address 1111.1111.1111, is connected to Switch SW1’s Fa0/1 interface. PC2, with MAC address 2222.2222.2222, is connected to SW1’s Fa0/2 interface. PC3, with MAC address 3333.3333.3333, connects to SW1’s Fa0/3 interface. The switch begins with no dynamically learned MAC addresses, followed by PC1 sending a frame with a destination address of 2222.2222.2222. If the next frame to reach the switch is a frame sent by PC3, destined for PC2’s MAC address of 2222.2222.2222, which of the following are true? (Choose two answers.)
 a. The switch forwards the frame out interface Fa0/1.
 b. The switch forwards the frame out interface Fa0/2.
 c. The switch forwards the frame out interface Fa0/3.
 d. The switch discards (filters) the frame.

6. Which of the following devices would be in the same collision domain as PC1?
 a. PC2, which is separated from PC1 by an Ethernet hub
 b. PC3, which is separated from PC1 by a transparent bridge
 c. PC4, which is separated from PC1 by an Ethernet switch
 d. PC5, which is separated from PC1 by a router

7. Which of the following devices would be in the same broadcast domain as PC1? (Choose three answers.)
 a. PC2, which is separated from PC1 by an Ethernet hub
 b. PC3, which is separated from PC1 by a transparent bridge
 c. PC4, which is separated from PC1 by an Ethernet switch
 d. PC5, which is separated from PC1 by a router
8. Which of the following Ethernet standards support a maximum cable length of longer than 100 meters? (Choose two answers.)
 a. 100BASE-TX
 b. 1000BASE-LX
 c. 1000BASE-T
 d. 100BASE-FX
This chapter begins by covering LAN concepts—in particular, the mechanics of how LAN switches forward Ethernet frames. Following that, the next major section focuses on campus LAN design concepts and terminology. It includes a review of some of the Ethernet types that use optical cabling and therefore support longer cabling distances than do the UTP-based Ethernet standards.

LAN Switching Concepts

Chapter 3 introduced Ethernet, including the concept of LAN hubs and switches. When thinking about how LAN switches work, it can be helpful to think about how earlier products (hubs and bridges) work. The first part of this section briefly looks at why switches were created. Following that, this section explains the three main functions of a switch, plus a few other details.

Historical Progression: Hubs, Bridges, and Switches

As mentioned in Chapter 3, Ethernet started out with standards that used a physical electrical bus created with coaxial cabling. 10BASE-T Ethernet came next. It offered improved LAN availability, because a problem on a single cable did not affect the rest of the LAN—a common problem with 10BASE2 and 10BASE5 networks. 10BASE-T allowed the use of unshielded twisted-pair (UTP) cabling, which is much cheaper than coaxial cable. Also, many buildings already had UTP cabling installed for phone service, so 10BASE-T quickly became a popular alternative to 10BASE2 and 10BASE5 Ethernet networks. For perspective and review, Figure 7-1 depicts the typical topology for 10BASE2 and for 10BASE-T with a hub.
Although using 10BASE-T with a hub improved Ethernet as compared to the older standards, several drawbacks continued to exist, even with 10BASE-T using hubs:

- Any device sending a frame could have the frame collide with a frame sent by any other device attached to that LAN segment.
- Only one device could send a frame at a time, so the devices shared the (10-Mbps) bandwidth.
- Broadcasts sent by one device were heard by, and processed by, all other devices on the LAN.

When these three types of Ethernet were introduced, a shared 10 Mbps of bandwidth was a huge amount! Before the introduction of LANs, people often used dumb terminals, with a 56-kbps WAN link being a really fast connection to the rest of the network—and that 56 kbps was shared among everyone in a remote building. So, in the days when 10BASE-T was first used, getting a connection to a 10BASE-T Ethernet LAN was like getting a Gigabit Ethernet connection for your work PC today. It was more bandwidth than you thought you would ever need.

Over time, the performance of many Ethernet networks started to degrade. People developed applications to take advantage of the LAN bandwidth. More devices were added to each Ethernet. Eventually, an entire network became congested. The devices on the same Ethernet could not send (collectively) more than 10 Mbps of traffic because they all shared the 10 Mbps of bandwidth. In addition, the increase in traffic volumes increased the number of collisions. Long before the overall utilization of an Ethernet approached 10 Mbps, Ethernet began to suffer because of increasing collisions.

Ethernet bridges were created to solve some of the performance issues. Bridges solved the growing Ethernet congestion problem in two ways:

- They reduced the number of collisions that occurred in the network.
- They added bandwidth to the network.

Figure 7-2 shows the basic premise behind an Ethernet transparent bridge. The top part of the figure shows a 10BASE-T network before adding a bridge, and the lower part shows the network after it has been segmented using a bridge. The bridge creates two separate collision domains. Fred’s frames can collide with Barney’s, but they cannot collide with Wilma’s or Betty’s. If one LAN segment is busy, and the bridge needs to forward a frame onto the busy segment, the bridge simply buffers the frame (holds the frame in memory) until the segment is no longer busy. Reducing collisions, and assuming no significant change in the number of devices or the load on the network, greatly improves network performance.
Adding a bridge between two hubs really creates two separate 10BASE-T networks—one on the left and one on the right. The 10BASE-T network on the left has its own 10 Mbps to share, as does the network on the right. So, in this example, the total network bandwidth is doubled to 20 Mbps, as compared with the 10BASE-T network at the top of the figure.

LAN switches perform the same basic core functions as bridges, but with many enhanced features. Like bridges, switches segment a LAN into separate parts, each part being a separate collision domain. Switches have potentially large numbers of interfaces, with highly optimized hardware, allowing even small Enterprise switches to forward millions of Ethernet frames per second. By creating a separate collision domain for each interface, switches multiply the amount of available bandwidth in the network. And, as mentioned in Chapter 3, if a switch port connects to a single device, that Ethernet segment can use full-duplex logic, essentially doubling the speed on that segment.

NOTE A switch’s effect of segmenting an Ethernet LAN into one collision domain per interface is sometimes called *microsegmentation*.

Figure 7-3 summarizes some of these key concepts, showing the same hosts as in Figure 7-2, but now connected to a switch. In this case, all switch interfaces are running at 100 Mbps, with four collision domains. Note that each interface also uses full duplex. This is possible...
because only one device is connected to each port, essentially eliminating collisions for the
network shown.

Figure 7-3 Switch Creates Four Collision Domains and Four Ethernet Segments

Each Circle Is 1 Collision Domain, 100 Mbps Each

The next section examines how switches forward Ethernet frames.

Switching Logic
Ultimately, the role of a LAN switch is to forward Ethernet frames. To achieve that goal,
switches use logic—logic based on the source and destination MAC address in each frame’s
Ethernet header. To help you appreciate how switches work, first a review of Ethernet
addresses is in order.

The IEEE defines three general categories of Ethernet MAC addresses:

- **Unicast addresses**: MAC addresses that identify a single LAN interface card.

- **Broadcast addresses**: A frame sent with a destination address of the broadcast address
 (FF:FF:FF:FF:FF:FF) implies that all devices on the LAN should receive and process the
 frame.

- **Multicast addresses**: Multicast MAC addresses are used to allow a dynamic subset of
 devices on a LAN to communicate.

NOTE The IP protocol supports the multicasting of IP packets. When IP multicast
packets are sent over an Ethernet, the multicast MAC addresses used in the Ethernet
frame follow this format: 01:00:5e:xx:xxx, where a value between 00.0000 and 7f.ffff can
be used in the last half of the address. Ethernet multicast MAC addresses are not covered
in this book.
The primary job of a LAN switch is to receive Ethernet frames and then make a decision: either forward the frame out some other port(s), or ignore the frame. To accomplish this primary mission, transparent bridges perform three actions:

1. Deciding when to forward a frame or when to filter (not forward) a frame, based on the destination MAC address.
2. Learning MAC addresses by examining the source MAC address of each frame received by the bridge.
3. Creating a (Layer 2) loop-free environment with other bridges by using Spanning Tree Protocol (STP).

The first action is the switch’s primary job, whereas the other two items are overhead functions. The next sections examine each of these steps in order.

The Forward Versus Filter Decision

To decide whether to forward a frame, a switch uses a dynamically built table that lists MAC addresses and outgoing interfaces. Switches compare the frame’s destination MAC address to this table to decide whether the switch should forward a frame or simply ignore it. For example, consider the simple network shown in Figure 7-4, with Fred sending a frame to Barney.

Figure 7-4 shows an example of both the forwarding decision and the filtering decision. Fred sends a frame with destination address 0200.2222.2222 (Barney’s MAC address). The switch compares the destination MAC address (0200.2222.2222) to the MAC address table, finding the matching entry. This is the interface out which a frame should be sent to deliver it to that listed MAC address (0200.2222.2222). Because the interface in which the frame arrived (Fa0/1) is different than the listed outgoing interface (Fa0/2), the switch decides to forward the frame out interface Fa0/2, as shown in the figure’s table.

NOTE A switch’s MAC address table is also called the switching table, or bridging table, or even the Content Addressable Memory (CAM), in reference to the type of physical memory used to store the table.

The key to anticipating where a switch should forward a frame is to examine and understand the address table. The table lists MAC addresses and the interface the switch should use when forwarding packets sent to that MAC address. For example, the table lists 0200.3333.3333 off Fa0/3, which is the interface out which the switch should forward frames sent to Wilma’s MAC address (0200.3333.3333).
Figure 7-5 shows a different perspective, with the switch making a filtering decision. In this case, Fred and Barney connect to a hub, which is then connected to the switch. The switch’s MAC address table lists both Fred’s and Barney’s MAC addresses off that single switch interface (Fa0/1), because the switch would forward frames to both Fred and Barney out its FA0/1 interface. So, when the switch receives a frame sent by Fred (source MAC address 0200.1111.1111) to Barney (destination MAC address 0200.2222.2222), the switch thinks like this: “Because the frame entered my Fa0/1 interface, and I would send it out that same Fa0/1 interface, do not send it (filter it), because sending it would be pointless.”
Note that the hub simply regenerates the electrical signal out each interface, so the hub forwards the electrical signal sent by Fred to both Barney and the switch. The switch decides to filter (not forward) the frame, noting that the MAC address table’s interface for 0200.2222.2222 (Fa0/1) is the same as the incoming interface.

How Switches Learn MAC Addresses

The second main function of a switch is to learn the MAC addresses and interfaces to put into its address table. With a full and accurate MAC address table, the switch can make accurate forwarding and filtering decisions.

Switches build the address table by listening to incoming frames and examining the *source MAC address* in the frame. If a frame enters the switch and the source MAC address is not in the MAC address table, the switch creates an entry in the table. The MAC address is placed in the table, along with the interface from which the frame arrived. Switch learning logic is that simple.
Figure 7-6 depicts the same network as Figure 7-4, but before the switch has built any address table entries. The figure shows the first two frames sent in this network—first a frame from Fred, addressed to Barney, and then Barney’s response, addressed to Fred.

As shown in the figure, after Fred sends his first frame (labeled “1”) to Barney, the switch adds an entry for 0200.1111.1111, Fred’s MAC address, associated with interface Fa0/1. When Barney replies in Step 2, the switch adds a second entry, this one for 0200.2222.2222, Barney’s MAC address, along with interface Fa0/2, which is the interface in which the switch received the frame. Learning always occurs by looking at the source MAC address in the frame.

Flooding Frames

Now again turn your attention to the forwarding process, using Figure 7-6. What do you suppose the switch does with Fred’s first frame in Figure 7-6, the one that occurred when there were no entries in the MAC address table? As it turns out, when there is no matching entry in the table, switches forward the frame out all interfaces (except the incoming interface). Switches forward these *unknown unicast frames* (frames whose destination MAC addresses are not yet in the bridging table) out all other interfaces, with the hope that the unknown device will be on some other Ethernet segment and will reply, allowing the switch to build a correct entry in the address table.

For example, in Figure 7-6, the switch forwards the first frame out Fa0/2, Fa0/3, and Fa0/4, even though 0200.2222.2222 (Barney) is only off Fa0/2. The switch does not forward the frame back out Fa0/1, because a switch never forwards a frame out the same
interface on which it arrived. (As a side note, Figure 7-6 does not show the frame being forwarded out interfaces Fa0/3 and Fa0/4, because this figure is focused on the learning process.) When Barney replies to Fred, the switch correctly adds an entry for 0200.2222.2222 (Fa0/2) to its address table. Any later frames sent to destination address 0200.2222.2222 will no longer need to be sent out Fa0/3 and Fa0/4, only being forwarded out Fa0/2.

The process of sending frames out all other interfaces, except the interface on which the frame arrived, is called flooding. Switches flood unknown unicast frames as well as broadcast frames. Switches also flood LAN multicast frames out all ports, unless the switch has been configured to use some multicast optimization tools that are not covered in this book.

Switches keep a timer for each entry in the MAC address table, called an inactivity timer. The switch sets the timer to 0 for new entries. Each time the switch receives another frame with that same source MAC address, the timer is reset to 0. The timer counts upward, so the switch can tell which entries have gone the longest time since receiving a frame from that device. If the switch ever runs out of space for entries in the MAC address table, the switch can then remove table entries with the oldest (largest) inactivity timers.

Avoiding Loops Using Spanning Tree Protocol

The third primary feature of LAN switches is loop prevention, as implemented by Spanning Tree Protocol (STP). Without STP, frames would loop for an indefinite period of time in Ethernet networks with physically redundant links. To prevent looping frames, STP blocks some ports from forwarding frames so that only one active path exists between any pair of LAN segments (collision domains). The result of STP is good: Frames do not loop infinitely, which makes the LAN usable. However, although the network can use some redundant links in case of a failure, the LAN does not load-balance the traffic.

To avoid Layer 2 loops, all switches need to use STP. STP causes each interface on a switch to settle into either a blocking state or a forwarding state. Blocking means that the interface cannot forward or receive data frames. Forwarding means that the interface can send and receive data frames. If a correct subset of the interfaces is blocked, a single currently active logical path exists between each pair of LANs.

NOTE STP behaves identically for a transparent bridge and a switch. Therefore, the terms bridge, switch, and bridging device all are used interchangeably when discussing STP.

A simple example makes the need for STP more obvious. Remember, switches flood frames sent to both unknown unicast MAC addresses and broadcast addresses.
Figure 7-7 shows that a single frame, sent by Larry to Bob, loops forever because the network has redundancy but no STP.

Figure 7-7 Network with Redundant Links But Without STP: The Frame Loops Forever

Larry sends a single unicast frame to Bob’s MAC address, but Bob is powered off, so none of the switches has learned Bob’s MAC address yet. Bob’s MAC address would be an unknown unicast address at this point in time. Therefore, frames destined for Bob’s MAC address are forwarded by each switch out every port. These frames loop indefinitely. Because the switches never learn Bob’s MAC address (remember, he’s powered off and can send no frames), they keep forwarding the frame out all ports, and copies of the frame go around and around.

Similarly, switches flood broadcasts as well, so if any of the PCs sent a broadcast, the broadcast would also loop indefinitely.

One way to solve this problem is to design the LAN with no redundant links. However, most network engineers purposefully design LANs to use physical redundancy between the switches. Eventually, a switch or a link will fail, and you want the network to still be available by having some redundancy in the LAN design. The right solution includes switched LANs with physical redundancy, while using STP to dynamically block some interface(s) so that only one active path exists between two endpoints at any instant in time.

Internal Processing on Cisco Switches

This chapter has already explained how switches decide whether to forward or filter a frame. As soon as a Cisco switch decides to forward a frame, the switch can use a couple of different types of internal processing variations. Almost all of the more recently released switches use store-and-forward processing, but all three types of these internal processing methods are supported in at least one type of currently available Cisco switch.
Some switches, and transparent bridges in general, use *store-and-forward processing*. With store-and-forward, the switch must receive the entire frame before forwarding the first bit of the frame. However, Cisco also offers two other internal processing methods for switches: *cut-through* and *fragment-free*. Because the destination MAC address occurs very early in the Ethernet header, a switch can make a forwarding decision long before the switch has received all the bits in the frame. The cut-through and fragment-free processing methods allow the switch to start forwarding the frame before the entire frame has been received, reducing time required to send the frame (the latency, or delay).

With *cut-through* processing, the switch starts sending the frame out the output port as soon as possible. Although this might reduce latency, it also propagates errors. Because the frame check sequence (FCS) is in the Ethernet trailer, the switch cannot determine if the frame had any errors before starting to forward the frame. So, the switch reduces the frame’s latency, but with the price of having forwarded some frames that contain errors.

Fragment-free processing works similarly to cut-through, but it tries to reduce the number of errored frames that it forwards. One interesting fact about Ethernet carrier sense multiple access with collision detection (CSMA/CD) logic is that collisions should be detected within the first 64 bytes of a frame. Fragment-free processing works like cut-through logic, but it waits to receive the first 64 bytes before forwarding a frame. The frames experience less latency than with store-and-forward logic and slightly more latency than with cut-through, but frames that have errors as a result of collisions are not forwarded.

With many links to the desktop running at 100 Mbps, uplinks at 1 Gbps, and faster application-specific integrated circuits (ASIC), today’s switches typically use store-and-forward processing, because the improved latency of the other two switching methods is negligible at these speeds.

The internal processing algorithms used by switches vary among models and vendors; regardless, the internal processing can be categorized as one of the methods listed in Table 7-2.

<table>
<thead>
<tr>
<th>Switching Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Store-and-forward</td>
<td>The switch fully receives all bits in the frame (store) before forwarding the frame (forward). This allows the switch to check the FCS before forwarding the frame.</td>
</tr>
<tr>
<td>Cut-through</td>
<td>The switch forwards the frame as soon as it can. This reduces latency but does not allow the switch to discard frames that fail the FCS check.</td>
</tr>
<tr>
<td>Fragment-free</td>
<td>The switch forwards the frame after receiving the first 64 bytes of the frame, thereby avoiding forwarding frames that were errored due to a collision.</td>
</tr>
</tbody>
</table>
LAN Switching Summary

Switches provide many additional features not offered by older LAN devices such as hubs and bridges. In particular, LAN switches provide the following benefits:

- Switch ports connected to a single device microsegment the LAN, providing dedicated bandwidth to that single device.
- Switches allow multiple simultaneous conversations between devices on different ports.
- Switch ports connected to a single device support full duplex, in effect doubling the amount of bandwidth available to the device.
- Switches support rate adaptation, which means that devices that use different Ethernet speeds can communicate through the switch (hubs cannot).

Switches use Layer 2 logic, examining the Ethernet data-link header to choose how to process frames. In particular, switches make decisions to forward and filter frames, learn MAC addresses, and use STP to avoid loops, as follows:

Step 1 Switches forward frames based on the destination address:

a. If the destination address is a broadcast, multicast, or unknown destination unicast (a unicast not listed in the MAC table), the switch floods the frame.

b. If the destination address is a known unicast address (a unicast address found in the MAC table):

 i. If the outgoing interface listed in the MAC address table is different from the interface in which the frame was received, the switch forwards the frame out the outgoing interface.

 ii. If the outgoing interface is the same as the interface in which the frame was received, the switch filters the frame, meaning that the switch simply ignores the frame and does not forward it.

Step 2 Switches use the following logic to learn MAC address table entries:

a. For each received frame, examine the source MAC address and note the interface from which the frame was received.

b. If they are not already in the table, add the address and interface, setting the inactivity timer to 0.

c. If it is already in the table, reset the inactivity timer for the entry to 0.

Step 3 Switches use STP to prevent loops by causing some interfaces to block, meaning that they do not send or receive frames.
LAN Design Considerations

So far, the LAN coverage in this book has mostly focused on individual functions of LANs. For example, you have read about how switches forward frames, the details of UTP cables and cable pinouts, the CSMA/CD algorithm that deals with the issue of collisions, and some of the differences between how hubs and switches operate to create either a single collision domain (hubs) or many collision domains (switches).

This section now takes a broader look at LANs—particularly, how to design medium to larger LANs. When building a small LAN, you might simply buy one switch, plug in cables to connect a few devices, and you’re finished. However, when building a medium to large LAN, you have more product choices to make, such as when to use hubs, switches, and routers. Additionally, you must weigh the choice of which LAN switch to choose (switches vary in size, number of ports, performance, features, and price). The types of LAN media differ as well. Engineers must weigh the benefits of UTP cabling, like lower cost and ease of installation, versus fiber optic cabling options, which support longer distances and better physical security.

This section examines a variety of topics that all relate to LAN design in some way. In particular, this section begins by looking at the impact of the choice of using a hub, switch, or router to connect parts of LANs. Following that, some Cisco design terminology is covered. Finishing this section is a short summary of some of the more popular types of Ethernet and cabling types, and cable length guidelines for each.

Collision Domains and Broadcast Domains

When creating any Ethernet LAN, you use some form of networking devices—typically switches today—a few routers, and possibly a few hubs. The different parts of an Ethernet LAN may behave differently, in terms of function and performance, depending on which types of devices are used. These differences then affect a network engineer’s decision when choosing how to design a LAN.

The terms collision domain and broadcast domain define two important effects of the process of segmenting LANs using various devices. This section examines the concepts behind Ethernet LAN design. The goal is to define these terms and to explain how hubs, switches, and routers impact collision domains and broadcast domains.

Collision Domains

As mentioned earlier, a collision domain is the set of LAN interfaces whose frames could collide with each other, but not with frames sent by any other devices in the network. To review the core concept, Figure 7-8 illustrates collision domains.
Each separate segment, or collision domain, is shown with a dashed-line circle in the figure. The switch on the right separates the LAN into different collision domains for each port. Likewise, both bridges and routers also separate LANs into different collision domains (although this effect with routers was not covered earlier in this book). Of all the devices in the figure, only the hub near the center of the network does not create multiple collision domains for each interface. It repeats all frames out all ports without any regard for buffering and waiting to send a frame onto a busy segment.

Broadcast Domains

The term *broadcast domain* relates to where broadcasts can be forwarded. A *broadcast domain* encompasses a set of devices for which, when one of the devices sends a broadcast, all the other devices receive a copy of the broadcast. For example, switches flood broadcasts and multicasts on all ports. Because broadcast frames are sent out all ports, a switch creates a single broadcast domain.

Conversely, only routers stop the flow of broadcasts. For perspective, Figure 7-9 provides the broadcast domains for the same network depicted in Figure 7-8.

Broadcasts sent by a device in one broadcast domain are not forwarded to devices in another broadcast domain. In this example, there are two broadcast domains. For instance, the router does not forward a LAN broadcast sent by a PC on the left to the network segment on the right. In the old days, the term *broadcast firewall* described the fact that routers did not forward LAN broadcasts.
General definitions for a collision domain and a broadcast domain are as follows:

- A **collision domain** is a set of network interface cards (NIC) for which a frame sent by one NIC could result in a collision with a frame sent by any other NIC in the same collision domain.

- A **broadcast domain** is a set of NICs for which a broadcast frame sent by one NIC is received by all other NICs in the same broadcast domain.

The Impact of Collision and Broadcast Domains on LAN Design

When designing a LAN, you need to keep in mind the trade-offs when choosing the number of devices in each collision domain and broadcast domain. First, consider the devices in a single collision domain for a moment. For a single collision domain:

- The devices share the available bandwidth.

- The devices may inefficiently use that bandwidth due to the effects of collisions, particularly under higher utilization.

For example, you might have ten PCs with 10/100 Ethernet NICs. If you connect all ten PCs to ten different ports on a single 100-Mbps hub, you have one collision domain, and the PCs in that collision domain share the 100 Mbps of bandwidth. That may work well and meet the needs of those users. However, with heavier traffic loads, the hub’s performance would be worse than it would be if you had used a switch. Using a switch instead of a hub, with the same topology, would create ten different collision domains, each with 100 Mbps of bandwidth. Additionally, with only one device on each switch interface, no collisions would occur. This means that you could enable full duplex on each interface, effectively giving each interface 200 Mbps, and a theoretical maximum of 2 Gbps of bandwidth—a considerable improvement!
Using switches instead of hubs seems like an obvious choice given the overwhelming performance benefits. Frankly, most new installations today use switches exclusively. However, vendors still offer hubs, mainly because hubs are still slightly less expensive than switches, so you may still see hubs in networks today.

Now consider the issue of broadcasts. When a host receives a broadcast, the host must process the received frame. This means that the NIC must interrupt the computer’s CPU, and the CPU must spend time thinking about the received broadcast frame. All hosts need to send some broadcasts to function properly. (For example, IP ARP messages are LAN broadcasts, as mentioned in Chapter 5, “Fundamentals of IPv4 Addressing and Routing.”) So, broadcasts happen, which is good, but broadcasts do require all the hosts to spend time processing each broadcast frame.

Next, consider a large LAN, with multiple switches, with 500 PCs total. The switches create a single broadcast domain, so a broadcast sent by any of the 500 hosts should be sent to, and then processed by, all 499 other hosts. Depending on the number of broadcasts, the broadcasts could start to impact performance of the end-user PCs. However, a design that separated the 500 PCs into five groups of 100, separated from each other by a router, would create five broadcast domains. Now, a broadcast by one host would interrupt only 99 other hosts, and not the other 400 hosts, resulting in generally better performance on the PCs.

The choice about when to use a hub versus a switch was straightforward, but the choice of when to use a router to break up a large broadcast domain is more difficult. A meaningful discussion of the trade-offs and options is beyond the scope of this book. However, you should understand the concepts behind broadcast domains—specifically, that a router breaks LANs into multiple broadcast domains, but switches and hubs do not.

More importantly for the CCNA exams, you should be ready to react to questions in terms of the benefits of LAN segmentation instead of just asking for the facts related to collision domains and broadcast domains. Table 7-3 lists some of the key benefits. The features in the table should be interpreted within the following context: “Which of the following benefits are gained by using a hub/switch/router between Ethernet devices?”

NOTE Using smaller broadcast domains can also improve security, due to limiting broadcasts, and due to robust security features in routers.
Virtual LANs (VLAN)

Most every Enterprise network today uses the concept of virtual LANs (VLAN). Before understanding VLANs, you must have a very specific understanding of the definition of a LAN. Although you can think about and define the term “LAN” from many perspectives, one perspective in particular will help you understand VLANs:

A LAN consists of all devices in the same broadcast domain.

Without VLANs, a switch considers all interfaces on the switch to be in the same broadcast domain. In other words, all connected devices are in the same LAN. (Cisco switches accomplish this by putting all interfaces in VLAN 1 by default.) With VLANs, a switch can put some interfaces into one broadcast domain and some into another based on some simple configuration. Essentially, the switch creates multiple broadcast domains by putting some interfaces into one VLAN and other interfaces into other VLANs. These individual broadcast domains created by the switch are called virtual LANs.

So, instead of all ports on a switch forming a single broadcast domain, the switch separates them into many, based on configuration. It’s really that simple.

The next two figures compare two LANs for the purpose of explaining a little more about VLANs. First, before VLANs existed, if a design specified two separate broadcast domains, two switches would be used—one for each broadcast domain, as shown in Figure 7-10.

Table 7-3 Benefits of Segmenting Ethernet Devices Using Hubs, Switches, and Routers

<table>
<thead>
<tr>
<th>Feature</th>
<th>Hub</th>
<th>Switch</th>
<th>Router</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater cabling distances are allowed</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Creates multiple collision domains</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Increases bandwidth</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Creates multiple broadcast domains</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Figure 7-10 Sample Network with Two Broadcast Domains and No VLANs
Alternately, you can create multiple broadcast domains using a single switch. Figure 7-11 shows the same two broadcast domains as in Figure 7-10, now implemented as two different VLANs on a single switch.

![Sample Network with Two VLANs Using One Switch](image)

In a network as small as the one shown in Figure 7-11, you might not really need to use VLANs. However, there are many motivations for using VLANs, including the following:

- To create more flexible designs that group users by department, or by groups that work together, instead of by physical location
- To segment devices into smaller LANs (broadcast domains) to reduce overhead caused to each host in the VLAN
- To reduce the workload for STP by limiting a VLAN to a single access switch
- To enforce better security by keeping hosts that work with sensitive data on a separate VLAN
- To separate traffic sent by an IP phone from traffic sent by PCs connected to the phones

The *CCNA ICND2 640-816 Official Cert Guide* explains VLAN configuration and troubleshooting.

Campus LAN Design Terminology

The term *campus LAN* refers to the LAN created to support larger buildings, or multiple buildings in somewhat close proximity to one another. For instance, a company might lease office space in several buildings in the same office park. The network engineers can then build a campus LAN that includes switches in each building, plus Ethernet links between the switches in the buildings, to create a larger campus LAN.

When planning and designing a campus LAN, the engineers must consider the types of Ethernet available and the cabling lengths supported by each type. The engineers also need to choose the speeds required for each Ethernet segment. Additionally, some thought needs
to be given to the idea that some switches should be used to connect directly to end-user
devices, whereas other switches might need to simply connect to a large number of these
end-user switches. Finally, most projects require that the engineer consider the type of
equipment that is already installed and whether an increase in speed on some segments is
worth the cost of buying new equipment.

For example, the vast majority of PCs that are already installed in networks today have
10/100 NICs, with many new PCs today having 10/100/1000 NICs built into the PC.
Assuming that the appropriate cabling has been installed, a 10/100/1000 NIC can use
autonegotiation to use either 10BASE-T (10 Mbps), 100BASE-TX (100 Mbps), or
1000BASE-T (1000 Mbps, or 1 Gbps) Ethernet, each using the same UTP cable. However,
one trade-off the engineer must make is whether to buy switches that support only 10/100
interfaces or that support 10/100/1000 interfaces. Spending the money on switches that
include 10/100/1000 interfaces allows you to connect pretty much any end-user device.
You’ll also be ready to migrate from 100 Mbps to the desktop device to 1000 Mbps
(gigabit) as new PCs are bought.

To sift through all the requirements for a campus LAN, and then have a reasonable
conversation about it with peers, most Cisco-oriented LAN designs use some common
terminology to refer to the design. For this book’s purposes, you should be aware of some
of the key campus LAN design terminology. Figure 7-12 shows a typical design of a large
campus LAN, with the terminology included in the figure. Explanations of the terminology
follow the figure.

Cisco uses three terms to describe the role of each switch in a campus design: access,
distribution, and core. The roles differ mainly in two main concepts:

- Whether the switch should connect to end-user devices
- Whether the switch should forward frames between other switches by connecting to
 multiple different switches

Access switches connect directly to end users, providing access to the LAN. Under normal
circumstances, access switches normally send traffic to and from the end-user devices to
which they are connected. However, access switches should not, at least by design, be
expected to forward traffic between two other switches. For example, in Figure 7-12, switch
Access1 normally would not forward traffic going from PCs connected to switch Access3
to a PC off switch Access4. Because access layer switches support only the traffic for the
locally attached PCs, access switches tend to be smaller and less expensive, often
supporting just enough ports to support a particular floor of a building.
In larger campus LANs, distribution switches provide a path through which the access switches can forward traffic to each other. By design, each of the access switches connects to at least one distribution switch. However, designs use at least two uplinks to two different distribution switches (as shown in Figure 7-12) for redundancy.

Using distribution switches provides some cabling advantages and potential performance advantages. For example, if a network had 30 access layer switches, and the network engineer decided that each access layer switch should be cabled directly to every other access layer switch, the LAN would need 435 cables between switches! Furthermore, that design includes only one segment between each pair of switches. A possibly worse side effect is that if a link fails, the access layer switches may forward traffic to and from other switches, stressing the performance of the access switch, which typically is a less expensive but less powerful switch. Instead, by connecting each of the 30 access switches to two different distribution switches, only 60 cables are required. Well-chosen distribution switches, with faster forwarding rates, can handle the larger amount of traffic between switches. Additionally, the design with two distribution switches, with two uplinks from
each access switch to the distribution switches, actually has more redundancy and therefore better availability.

Core switches provide even more aggregation benefits than do the distribution switches. Core switches provide extremely high forwarding rates—these days into the hundreds of millions of frames per second. The reasons for core switches are generally the same as for distribution switches. However, medium to smaller campus LANs often forego the concept of core switches.

The following list summarizes the terms that describe the roles of campus switches:

- **Access**: Provides a connection point (access) for end-user devices. Does not forward frames between two other access switches under normal circumstances.
- **Distribution**: Provides an aggregation point for access switches, forwarding frames between switches, but not connecting directly to end-user devices.
- **Core**: Aggregates distribution switches in very large campus LANs, providing very high forwarding rates.

Ethernet LAN Media and Cable Lengths

When designing a campus LAN, an engineer must consider the length of each cable run and then find the best type of Ethernet and cabling type that supports that length of cable. For example, if a company leases space in five buildings in the same office park, the engineer needs to figure out how long the cables between the buildings need to be and then pick the right type of Ethernet.

The three most common types of Ethernet today (10BASE-T, 100BASE-TX, and 1000BASE-T) have the same 100-meter cable restriction, but they use slightly different cables. The EIA/TIA defines Ethernet cabling standards, including the cable’s quality. Each Ethernet standard that uses UTP cabling lists a cabling quality category as the minimum category that the standard supports. For example, 10BASE-T allows for Category 3 (CAT3) cabling or better, whereas 100BASE-TX calls for higher-quality CAT5 cabling, and 1000BASE-TX requires even higher-quality CAT5e or CAT6 cabling. If an engineer plans on using existing cabling, he or she must be aware of the types of UTP cables and the speed restrictions implied by the type of Ethernet the cabling supports.

Several types of Ethernet define the use of fiber-optic cables. UTP cables include copper wires over which electrical currents can flow, whereas optical cables include ultra-thin strands of glass through which light can pass. To send bits, the switches can alternate between sending brighter and dimmer light to encode 0s and 1s on the cable.
Optical cables support a variety of much longer distances than the 100 meters supported by Ethernet on UTP cables. Optical cables experience much less interference from outside sources as compared to copper cables. Additionally, switches can use lasers to generate the light, as well as light-emitting diodes (LED). Lasers allow for even longer cabling distances, up to 100 km today, at higher cost, whereas less-expensive LEDs may well support plenty of distance for campus LANs in most office parks.

Finally, the type of optical cabling can also impact the maximum distances per cable. Of the two types, multimode fiber supports shorter distances, but it is generally cheaper cabling, and it works fine with less-expensive LEDs. The other optical cabling type, single-mode fiber, supports the longest distances but is more expensive. Also note that the switch hardware to use LEDs (often with multimode fiber) is much less expensive than the switch hardware to support lasers (often with single-mode fiber).

Table 7-4 lists the more common types of Ethernet and their cable types and length limitations.

Table 7-4 Ethernet Types, Media, and Segment Lengths (Per IEEE)

<table>
<thead>
<tr>
<th>Ethernet Type</th>
<th>Media</th>
<th>Maximum Segment Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>10BASE-T</td>
<td>TIA/EIA CAT3 or better, two pair</td>
<td>100 m (328 feet)</td>
</tr>
<tr>
<td>100BASE-TX</td>
<td>TIA/EIA CAT5 UTP or better, two pair</td>
<td>100 m (328 feet)</td>
</tr>
<tr>
<td>100BASE-FX</td>
<td>62.5/125-micron multimode fiber</td>
<td>400 m (1312.3 feet)</td>
</tr>
<tr>
<td>1000BASE-CX</td>
<td>STP</td>
<td>25 m (82 feet)</td>
</tr>
<tr>
<td>1000BASE-T</td>
<td>TIA/EIA CAT5e UTP or better, four pair</td>
<td>100 m (328 feet)</td>
</tr>
<tr>
<td>1000BASE-SX</td>
<td>Multimode fiber</td>
<td>275 m (853 feet) for 62.5-micron fiber</td>
</tr>
<tr>
<td></td>
<td></td>
<td>550 m (1804.5 feet) for 50-micron fiber</td>
</tr>
<tr>
<td>1000BASE-LX</td>
<td>Multimode fiber</td>
<td>550 m (1804.5 feet) for 50- and 62.5-micron fiber</td>
</tr>
<tr>
<td>1000BASE-LX</td>
<td>9-micron single-mode fiber</td>
<td>5 km (3.1 miles)</td>
</tr>
</tbody>
</table>
Most engineers simply remember the general distance limitations and then use a reference chart (such as Table 7-4) to remember each specific detail. An engineer must also consider the physical paths that the cables will use to run through a campus or building and the impact on the required cable length. For example, a cable might have to run from one end of the building to the other, and then through a conduit that connects the floors of the building, and then horizontally to a wiring closet on another floor. Often those paths are not the shortest way to get from one place to the other. So, the chart’s details are important to the LAN planning process and the resulting choice of LAN media.
Exam Preparation Tasks

Review All the Key Topics
Review the most important topics from this chapter, noted with the key topics icon. Table 7-5 lists these key topics and where each is discussed.

Table 7-5 Key Topics for Chapter 7

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>LAN switch actions</td>
<td>181</td>
</tr>
<tr>
<td>Figure 7-4</td>
<td>Example of switch forwarding logic</td>
<td>182</td>
</tr>
<tr>
<td>Figure 7-5</td>
<td>Example of switch filtering logic</td>
<td>183</td>
</tr>
<tr>
<td>Figure 7-6</td>
<td>Example of how a switch learns MAC addresses</td>
<td>184</td>
</tr>
<tr>
<td>Table 7-2</td>
<td>Summary of three switch internal forwarding options</td>
<td>187</td>
</tr>
<tr>
<td>List</td>
<td>Some of the benefits of switching</td>
<td>188</td>
</tr>
<tr>
<td>List</td>
<td>Summary of logic used to forward and filter frames and to learn MAC addresses</td>
<td>188</td>
</tr>
<tr>
<td>List</td>
<td>Definitions of collision domain and broadcast domain</td>
<td>191</td>
</tr>
<tr>
<td>Table 7-3</td>
<td>Four LAN design feature comparisons with hubs, switches, and routers</td>
<td>193</td>
</tr>
<tr>
<td>Figure 7-11</td>
<td>Illustration of the concept of a VLAN</td>
<td>194</td>
</tr>
</tbody>
</table>

Complete the Tables and Lists from Memory
Print a copy of Appendix L, “Memory Tables” (found on the DVD), or at least the section for this chapter, and complete the tables and lists from memory. Appendix M, “Memory Tables Answer Key,” also on the DVD, includes completed tables and lists for you to check your work.
Definitions of Key Terms

Define the following key terms from this chapter, and check your answers in the glossary:

broadcast domain, broadcast frame, collision domain, cut-through switching, flooding, fragment-free switching, microsegmentation, segmentation, Spanning Tree Protocol (STP), store-and-forward switching, unknown unicast frame, virtual LAN
This chapter covers the following subjects:

Accessing the Cisco Catalyst 2960 Switch CLI: This section examines Cisco 2960 switches and shows you how to gain access to the command-line interface (CLI) from which you can issue commands to the switch.

Configuring Cisco IOS Software: This section shows you how to tell the switch different operational parameters using the CLI.
Operating Cisco LAN Switches

LAN switches may be the most common networking device found in the Enterprise today. Most new end-user computers sold today include a built-in Ethernet NIC of some kind. Switches provide a connection point for the Ethernet devices so that the devices on the LAN can communicate with each other and with the rest of an Enterprise network or with the Internet.

Cisco routers also happen to use the exact same user interface as the Cisco Catalyst switches described in this chapter. So, even though this chapter is called “Operating Cisco LAN Switches,” keep in mind that the user interface of Cisco routers works the same way. Chapter 19, “Operating Cisco Routers,” begins by summarizing the features covered in this chapter that also apply to routers.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess whether you should read the entire chapter. If you miss no more than one of these seven self-assessment questions, you might want to move ahead to the “Exam Preparation Tasks” section. Table 8-1 lists the major headings in this chapter and the “Do I Know This Already?” quiz questions covering the material in those sections. This helps you assess your knowledge of these specific areas. The answers to the “Do I Know This Already?” quiz appear in Appendix A.

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessing the Cisco Catalyst 2960 Switch CLI</td>
<td>1–3</td>
</tr>
<tr>
<td>Configuring Cisco IOS Software</td>
<td>4–7</td>
</tr>
</tbody>
</table>
1. In what modes can you execute the command `show mac-address-table`? (Choose two answers.)
 a. User mode
 b. Enable mode
 c. Global configuration mode
 d. Setup mode
 e. Interface configuration mode

2. In which of the following modes of the CLI could you issue a command to reboot the switch?
 a. User mode
 b. Enable mode
 c. Global configuration mode
 d. Interface configuration mode

3. Which of the following is a difference between Telnet and SSH as supported by a Cisco switch?
 a. SSH encrypts the passwords used at login, but not other traffic; Telnet encrypts nothing.
 b. SSH encrypts all data exchange, including login passwords; Telnet encrypts nothing.
 c. Telnet is used from Microsoft operating systems, and SSH is used from UNIX and Linux operating systems.
 d. Telnet encrypts only password exchanges; SSH encrypts all data exchanges.

4. What type of switch memory is used to store the configuration used by the switch when it is up and working?
 a. RAM
 b. ROM
 c. Flash
 d. NVRAM
 e. Bubble
5. What command copies the configuration from RAM into NVRAM?
 a. copy running-config tftp
 b. copy tftp running-config
 c. copy running-config start-up-config
 d. copy start-up-config running-config
 e. copy startup-config running-config
 f. copy running-config startup-config

6. Which mode prompts the user for basic configuration information?
 a. User mode
 b. Enable mode
 c. Global configuration mode
 d. Setup mode
 e. Interface configuration mode

7. A switch user is currently in console line configuration mode. Which of the following would place the user in enable mode? (Choose two answers.)
 a. Using the exit command once
 b. Using the exit command twice in a row
 c. Pressing the Ctrl-z key sequence
 d. Using the quit command
Foundation Topics

When you buy a Cisco Catalyst switch, you can take it out of the box, power on the switch by connecting the power cable to the switch and a power outlet, and connect hosts to the switch using the correct UTP cables, and the switch works. You do not have to do anything else, and you certainly do not have to tell the switch to start forwarding Ethernet frames. The switch uses default settings so that all interfaces will work, assuming that the right cables and devices connect to the switch, and the switch forwards frames in and out of each interface.

However, most Enterprises will want to be able to check on the switch’s status, look at information about what the switch is doing, and possibly configure specific features of the switch. Engineers will also want to enable security features that allow them to securely access the switches without being vulnerable to malicious people breaking into the switches. To perform these tasks, a network engineer needs to connect to the switch’s user interface.

This chapter explains the details of how to access a Cisco switch’s user interface, how to use commands to find out how the switch is currently working, and how to configure the switch to tell it what to do. This chapter focuses on the processes, as opposed to examining a particular set of commands. Chapter 9, “Ethernet Switch Configuration,” then takes a closer look at the variety of commands that can be used from the switch user interface.

Cisco has two major brands of LAN switching products. The Cisco Catalyst switch brand includes a large collection of switches, all of which have been designed with Enterprises (companies, governments, and so on) in mind. The Catalyst switches have a wide range of sizes, functions, and forwarding rates. The Cisco Linksys switch brand includes a variety of switches designed for use in the home. The CCNA exams focus on how to implement LANs using Cisco Catalyst switches, so this chapter explains how to gain access to a Cisco Catalyst switch to monitor, configure, and troubleshoot problems. However, both the Catalyst and Linksys brands of Cisco switches provide the same base features, as covered earlier in Chapters 3 and 7.

Note that for the rest of this chapter, all references to a “Cisco switch” refer to Cisco Catalyst switches, not Cisco Linksys switches.

Accessing the Cisco Catalyst 2960 Switch CLI

Cisco uses the same concept of a command-line interface (CLI) with its router products and most of its Catalyst LAN switch products. The CLI is a text-based interface in which the user, typically a network engineer, enters a text command and presses Enter. Pressing Enter
Accessing the Cisco Catalyst 2960 Switch CLI 207

sends the command to the switch, which tells the device to do something. The switch does what the command says, and in some cases, the switch replies with some messages stating the results of the command.

Before getting into the details of the CLI, this section examines the models of Cisco LAN switches typically referenced for CCNA exams. Then this section explains how a network engineer can get access to the CLI to issue commands.

Cisco Catalyst Switches and the 2960 Switch
Within the Cisco Catalyst brand of LAN switches, Cisco produces a wide variety of switch series or families. Each switch series includes several specific models of switches that have similar features, similar price-versus-performance trade-offs, and similar internal components.

Cisco positions the 2960 series (family) of switches as full-featured, low-cost wiring closet switches for Enterprises. That means that you would expect to use 2960 switches as access switches, as shown in Figure 7-12 in Chapter 7, “Ethernet LAN Switching Concepts.” Access switches provide the connection point for end-user devices, with cabling running from desks to the switch in a nearby wiring closet. 2960 access switches would also connect to the rest of the Enterprise network using a couple of uplinks, often connecting to distribution layer switches. The distribution layer switches are often from a different Cisco switch family, typically a more powerful and more expensive product family.

Figure 8-1 shows a photo of the 2960 switch series from Cisco. Each switch is a different specific model of switch inside the 2960 series. For example, the top switch in Figure 8-1 (model WS-2960-24TT-L) has 24 RJ-45 UTP 10/100 ports, meaning that these ports can negotiate the use of 10BASE-T or 100BASE-TX Ethernet. The WS-2960-24TT-L switch has two additional RJ-45 ports on the right that are 10/100/1000 interfaces, intended to connect to the core of an Enterprise campus LAN.

Cisco refers to a switch’s physical connectors as either interfaces or ports. Each interface has a number in the style x/y, where x and y are two different numbers. On a 2960, the number before the / is always 0. The first 10/100 interface on a 2960 is numbered starting at 0/1, the second is 0/2, and so on. The interfaces also have names; for example, “interface FastEthernet 0/1” is the first of the 10/100 interfaces. Any Gigabit-capable interfaces would be called “GigabitEthernet” interfaces. For example, the first 10/100/1000 interface on a 2960 would be “interface gigabitethernet 0/1.”
Cisco supports two major types of switch operating systems: Internetwork Operating System (IOS) and Catalyst Operating System (Cat OS). Most Cisco Catalyst switch series today run only Cisco IOS, but for some historical reasons, some of the high-end Cisco LAN switches support both Cisco IOS and Cat OS. For the purposes of the CCNA exams, you can ignore Cat OS, focusing on Cisco IOS. However, keep in mind that you might see terminology and phrasing such as “IOS-based switch,” referring to the fact that the switch runs Cisco IOS, not Cat OS.

NOTE For the real world, note that Cisco’s most popular core switch product, the 6500 series, can run either Cisco IOS or Cat OS. Cisco also uses the term *hybrid* to refer to 6500 switches that use Cat OS and the term *native* to refer to 6500 switches that use Cisco IOS.

Switch Status from LEDs

When an engineer needs to examine how a switch is working to verify its current status and to troubleshoot any problems, the vast majority of the time is spent using commands from the Cisco IOS CLI. However, the switch hardware does include several LEDs that provide some status and troubleshooting information, both during the time right after the switch has been powered on and during ongoing operations. Before moving on to discuss the CLI, this brief section examines the switch LEDs and their meanings.
Most Cisco Catalyst switches have some LEDs, including an LED for each physical Ethernet interface. For example, Figure 8-2 shows the front of a 2960 series switch, with five LEDs on the left, one LED over each port, and a mode button.

![Figure 8-2 2960 LEDs and a Mode Button](image)

The figure points out the various LEDs, with various meanings. Table 8-2 summarizes the LEDs, and additional explanations follow the table.

<table>
<thead>
<tr>
<th>Number in Figure 8-2</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SYST (system)</td>
<td>Implies the overall system status</td>
</tr>
<tr>
<td>2</td>
<td>RPS (Redundant Power Supply)</td>
<td>Suggests the status of the extra (redundant) power supply</td>
</tr>
<tr>
<td>3</td>
<td>STAT (Status)</td>
<td>If on (green), implies that each port LED implies that port’s status</td>
</tr>
<tr>
<td>4</td>
<td>DUPLX (duplex)</td>
<td>If on (green), each port LED implies that port’s duplex (on/green is full; off means half)</td>
</tr>
<tr>
<td>5</td>
<td>SPEED</td>
<td>If on (green), each port LED implies the speed of that port, as follows: off means 10 Mbps, solid green means 100 Mbps, and flashing green means 1 Gbps.</td>
</tr>
<tr>
<td>6</td>
<td>MODE</td>
<td>A button that cycles the meaning of the LEDs through three states (STAT, DUPLX, SPEED)</td>
</tr>
<tr>
<td>7</td>
<td>Port</td>
<td>Has different meanings, depending on the port mode as toggled using the mode button</td>
</tr>
</tbody>
</table>
A few specific examples can help make sense of the LEDs. For example, consider the SYST LED for a moment. This LED provides a quick overall status of the switch, with three simple states on most 2960 switch models:

- **Off**: The switch is not powered on
- **On (green)**: The switch is powered on and operational (Cisco IOS has been loaded)
- **On (amber)**: The switch’s Power-On Self Test (POST) process failed, and the Cisco IOS did not load.

So, a quick look at the SYST LED on the switch tells you whether the switch is working and, if it isn’t, whether this is due to a loss of power (the SYST LED is off) or some kind of POST problem (LED amber). In this last case, the typical response is to power the switch off and back on again. If the same failure occurs, a call to the Cisco Technical Assistance Center (TAC) is typically the next step.

Besides the straightforward SYST LED, the port LEDs—the LEDs sitting above or below each Ethernet port—means something different depending on which of three port LED modes is currently used on the switch. The switches have a mode button (labelled with number 6 in Figure 8-2) that, when pressed, cycles the port LEDs through three modes: STAT, DUPLX, and SPEED. The current port LED mode is signified by a solid green STAT, DUPLX, or SPEED LED (the lower three LEDs on the left part of Figure 8-2, labeled 3, 4, and 5). To move to another port LED mode, the engineer simply presses the mode button another time or two.

Each of the three port LED modes changes the meaning of the port LEDs associated with each port. For example, in STAT (status) mode, each port LED implies status information about that one associated port. For example:

- **Off**: The link is not working.
- **Solid green**: The link is working, but there’s no current traffic.
- **Flashing green**: The link is working, and traffic is currently passing over the interface.
- **Flashing amber**: The interface is administratively disabled or has been dynamically disabled for a variety of reasons.

In contrast, in SPEED port LED mode, the port LEDs imply the operating speed of the interface, with a dark LED meaning 10 Mbps, a solid green light meaning 100 Mbps, and flashing green meaning 1000 Mbps (1 Gbps).

The particular details of how each LED works differ between different Cisco switch families and with different models inside the same switch family. So, memorizing the
specific meaning of particular LED combinations is probably not required, and this chapter
does not attempt to cover all combinations for even a single switch. However, it is important
to remember the general ideas, the concept of a mode button that changes the meaning of
the port LEDs, and the three meanings of the SYST LED mentioned earlier in this section.

The vast majority of the time, switches power up just fine and load Cisco IOS, and then the
engineer simply accesses the CLI to operate and examine the switch. Next, the chapter
focuses on the details of how to access the CLI.

Accessing the Cisco IOS CLI

Cisco IOS Software for Catalyst switches implements and controls logic and functions
performed by a Cisco switch. Besides controlling the switch’s performance and behavior,
Cisco IOS also defines an interface for humans called the CLI. The Cisco IOS CLI allows
the user to use a terminal emulation program, which accepts text entered by the user. When
the user presses Enter, the terminal emulator sends that text to the switch. The switch
processes the text as if it is a command, does what the command says, and sends text back
to the terminal emulator.

The switch CLI can be accessed through three popular methods—the console, Telnet, and
Secure Shell (SSH). Two of these methods (Telnet and SSH) use the IP network in which
the switch resides to reach the switch. The console is a physical port built specifically to
allow access to the CLI. Figure 8-3 depicts the options.

![CLI Access Diagram]

Figure 8-3 **CLI Access**
Next, this section examines each of these three access methods in more detail.

CLI Access from the Console

The console port provides a way to connect to a switch CLI even if the switch has not been connected to a network yet. Every Cisco switch has a console port, which is physically an RJ-45 port. A PC connects to the console port using a UTP rollover cable, which is also connected to the PC’s serial port. The UTP rollover cable has RJ-45 connectors on each end, with pin 1 on one end connected to pin 8 on the other, pin 2 to pin 7, pin 3 to pin 6, and pin 4 to pin 5. In some cases, a PC’s serial interface does not use an RJ-45 connector, an adapter must be used to convert from the PC’s physical interface—typically either a nine-pin connector or a USB connector—to an RJ-45. Figure 8-4 shows the RJ-45 end of the console cable connected to a switch and the DB-9 end connected to a laptop PC.

Figure 8-4 Console Connection to a Switch

As soon as the PC is physically connected to the console port, a terminal emulator software package must be installed and configured on the PC. Today, terminal emulator software includes support for Telnet and Secure Shell (SSH), which can be used to access the switch CLI via the network, but not through the console.
Figure 8-5 shows the window created by the Tera Term Pro software package (available for free from http://www.ayera.com/teraterm). The emulator must be configured to use the PC’s serial port, matching the switch’s console port settings. The default console port settings on a switch are as follows:

- 9600 bits/second
- No hardware flow control
- 8-bit ASCII
- No parity bits
- 1 stop bit

Note that the last three parameters are referred to collectively as “8N1.”

Figure 8-5 Terminal Settings for Console Access

Figure 8-5 shows a terminal emulator window with some command output. It also shows the configuration window for the settings just listed.

The figure shows the window created by the emulator software. Note that the first highlighted portion shows the text **Emma#show mac address-table dynamic**. The **Emma#** part is the command prompt, which typically shows the hostname of the switch (Emma in this case). The prompt is text created by the switch and sent to the emulator. The **show mac address-table dynamic** part is the command that the user entered. The text
shown beneath the command is the output generated by the switch and sent to the emulator. Finally, the lower highlighted text Emma# shows the command prompt again, as sent to the emulator by the switch. The window would remain in this state until the user entered something else at the command line.

Accessing the CLI with Telnet and SSH

The TCP/IP Telnet application allows a terminal emulator to communicate with a device, much like what happens with an emulator on a PC connected to the console. However, Telnet uses an IP network to send and receive the data, rather than a specialized cable and physical port on the device. The Telnet application protocols call the terminal emulator a **Telnet client** and the device that listens for commands and replies to them a **Telnet server**. Telnet is a TCP-based application layer protocol that uses well-known port 23.

To use Telnet, the user must install a Telnet client software package on his or her PC. (As mentioned earlier, most terminal emulator software packages today include both Telnet and SSH client functions.) The switch runs Telnet server software by default, but the switch does need to have an IP address configured so that it can send and receive IP packets. (Chapter 9 covers switch IP address configuration in greater detail.) Additionally, the network between the PC and switch needs to be up and working so that the PC and switch can exchange IP packets.

Many network engineers habitually use a Telnet client to monitor switches. The engineer can sit at his or her desk without having to walk to another part of the building—or go to another state or country—and still get into the CLI of that device. Telnet sends all data (including any username and password for login to the switch) as clear-text data, which presents a potential security risk.

Secure Shell (SSH) does the same basic things as Telnet, but in a more secure manner by using encryption. Like the Telnet model, the SSH client software includes a terminal emulator and the capability to send and receive the data using IP. Like Telnet, SSH uses TCP, while using well-known port 22 instead of Telnet’s 23. As with Telnet, the SSH server (on the switch) receives the text from each SSH client, processes the text as a command, and sends messages back to the client. The key difference between Telnet and SSH lies in the fact that all the communications are encrypted and therefore are private and less prone to security risk.

Password Security for CLI Access

By default, a Cisco switch is very secure as long as the switch is locked inside a room. By default, a switch allows only console access, but no Telnet or SSH access. From the console, you can gain full access to all switch commands, and if so inclined, you can stop
all functions of the switch. However, console access requires physical access to the switch, so allowing console access for switches just removed from the shipping boxes is reasonable.

Regardless of the defaults, it makes sense to password-protect console access, as well as Telnet and SSH access. To add basic password checking for the console and for Telnet, the engineer needs to configure a couple of basic commands. The configuration process is covered a little later in this chapter, but you can get a general idea of the commands by looking in the last column of Table 8-3. The table lists the two commands that configure the console and vty passwords. After it is configured, the switch supplies a simple password prompt (as a result of the `login` command), and the switch expects the user to enter the password listed in the `password` command.

Table 8-3 CLI Password Configuration: Console and Telnet

<table>
<thead>
<tr>
<th>Access From</th>
<th>Password Type</th>
<th>Sample Configuration</th>
</tr>
</thead>
</table>
| Console | Console password | `line console 0`
 | | `login`
 | | `password faith` |
| Telnet | vty password | `line vty 0 15`
 | | `login`
 | | `password love` |

Cisco switches refer to the console as a console line—specifically, console line 0. Similarly, switches support 16 concurrent Telnet sessions, referenced as virtual terminal (vty) lines 0 through 15. (The term vty refers to an old name for terminal emulators.) The `line vty 0 15` configuration command tells the switch that the commands that follow apply to all 16 possible concurrent virtual terminal connections to the switch, which includes Telnet as well as SSH access.

NOTE Some older versions of switch software supported only five vty lines, 0 through 4.

After adding the configuration shown in Table 8-3, a user connecting to the console would be prompted for a password, and he or she would have to supply the word `faith` in this case. New Telnet users would also be prompted for a password, with `love` being the required password. Also, with this configuration, no username is required—just a simple password.

Configuring SSH requires a little more effort than the console and Telnet password configuration examples shown in Table 8-3. SSH uses public key cryptography to exchange
a shared session key, which in turn is used for encryption. Additionally, SSH requires slightly better login security, requiring at least a password and a username. The section “Configuring Usernames and Secure Shell (SSH)” in Chapter 9 shows the configuration steps and a sample configuration to support SSH.

User and Enable (Privileged) Modes
All three CLI access methods covered so far (console, Telnet, and SSH) place the user in an area of the CLI called user EXEC mode. User EXEC mode, sometimes also called user mode, allows the user to look around but not break anything. The “EXEC mode” part of the name refers to the fact that in this mode, when you enter a command, the switch executes the command and then displays messages that describe the command’s results.

Cisco IOS supports a more powerful EXEC mode called enable mode (also known as privileged mode or privileged EXEC mode). Enable mode is so named because the enable command is used to reach this mode, as shown in Figure 8-6. Privileged mode earns its name because powerful, or privileged, commands can be executed there. For example, you can use the reload command, which tells the switch to reinitialize or reboot Cisco IOS, only from enable mode.

Figure 8-6 User and Privileged Modes
The preferred configuration command for configuring the password for reaching enable mode is the `enable secret password` command, where `password` is the text of the password. Note that if the enable password is not configured (the default), Cisco IOS prevents Telnet and SSH users from getting into enable mode, but Cisco IOS does allow a console user to reach enable mode. This default action is consistent with the idea that, by default, users outside the locked room where the switch sits cannot get access without additional configuration by the engineer.

Table 8-4 summarizes command-recall help options available at the CLI. Note that, in the first column, `command` represents any command. Likewise, `parm` represents a command’s parameter. For instance, the third row lists `command ?`, which means that commands such as `show ?` and `copy ?` would list help for the `show` and `copy` commands, respectively.
218 Chapter 8: Operating Cisco LAN Switches

When you enter the `?`, the Cisco IOS CLI reacts immediately; that is, you don’t need to press the Enter key or any other keys. The device running Cisco IOS also redisplays what you entered before the `?` to save you some keystrokes. If you press Enter immediately after the `?`, Cisco IOS tries to execute the command with only the parameters you have entered so far.

`command` represents any command, not the word `command`. Likewise, `parm` represents a command’s parameter, not the word `parameter`.

The information supplied by using help depends on the CLI mode. For example, when `?` is entered in user mode, the commands allowed in user mode are displayed, but commands available only in enable mode (not in user mode) are not displayed. Also, help is available in configuration mode, which is the mode used to configure the switch. In fact, configuration mode has many different subconfiguration modes, as explained in the section “Configuration Submodes and Contexts.” So, you can get help for the commands available in each configuration submode as well.

Cisco IOS stores the commands that you enter in a history buffer, storing ten commands by default. The CLI allows you to move backward and forward in the historical list of commands and then edit the command before reissuing it. These key sequences can help you use the CLI more quickly on the exams. Table 8-5 lists the commands used to manipulate previously entered commands.

Table 8-4 Cisco IOS Software Command Help

<table>
<thead>
<tr>
<th>What You Enter</th>
<th>What Help You Get</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>Help for all commands available in this mode.</td>
</tr>
<tr>
<td>help</td>
<td>Text describing how to get help. No actual command help is given.</td>
</tr>
<tr>
<td>command ?</td>
<td>Text help describing all the first parameter options for the command.</td>
</tr>
<tr>
<td>com?</td>
<td>A list of commands that start with <code>com</code>.</td>
</tr>
<tr>
<td>command parm?</td>
<td>This style of help lists all parameters beginning with <code>parm</code>. (Notice that there is no space between <code>parm</code> and the <code>?</code>.)</td>
</tr>
<tr>
<td>command parm<Tab></td>
<td>If you press the Tab key midword, the CLI either spells the rest of this parameter at the command line or does nothing. If the CLI does nothing, it means that this string of characters represents more than one possible next parameter, so the CLI does not know which one to spell out.</td>
</tr>
<tr>
<td>command parm1 ?</td>
<td>If a space is inserted before the question mark, the CLI lists all the next parameters and gives a brief explanation of each.</td>
</tr>
</tbody>
</table>
The debug and show Commands
By far, the single most popular Cisco IOS command is the show command. The show command has a large variety of options, and with those options, you can find the status of almost every feature of Cisco IOS. Essentially, the show command lists the currently known facts about the switch’s operational status. The only work the switch does in reaction to show commands is to find the current status and list the information in messages sent to the user.

A less popular command is the debug command. Like the show command, debug has many options. However, instead of just listing messages about the current status, the debug command asks the switch to continue monitoring different processes in the switch. The switch then sends ongoing messages to the user when different events occur.

Table 8-5 Key Sequences for Command Edit and Recall

<table>
<thead>
<tr>
<th>Keyboard Command</th>
<th>What Happens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up arrow or Ctrl-p</td>
<td>This displays the most recently used command. If you press it again, the next most recent command appears, until the history buffer is exhausted. (The p stands for previous.)</td>
</tr>
<tr>
<td>Down arrow or Ctrl-n</td>
<td>If you have gone too far back into the history buffer, these keys take you forward to the more recently entered commands. (The n stands for next.)</td>
</tr>
<tr>
<td>Left arrow or Ctrl-b</td>
<td>This moves the cursor backward in the currently displayed command without deleting characters. (The b stands for back.)</td>
</tr>
<tr>
<td>Right arrow or Ctrl-f</td>
<td>This moves the cursor forward in the currently displayed command without deleting characters. (The f stands for forward.)</td>
</tr>
<tr>
<td>Backspace</td>
<td>This moves the cursor backward in the currently displayed command, deleting characters.</td>
</tr>
<tr>
<td>Ctrl-a</td>
<td>This moves the cursor directly to the first character of the currently displayed command.</td>
</tr>
<tr>
<td>Ctrl-e</td>
<td>This moves the cursor directly to the end of the currently displayed command.</td>
</tr>
<tr>
<td>Ctrl-r</td>
<td>This redisplays the command line with all characters. It’s useful when messages clutter the screen.</td>
</tr>
<tr>
<td>Ctrl-d</td>
<td>This deletes a single character.</td>
</tr>
<tr>
<td>Esc-b</td>
<td>This moves back one word.</td>
</tr>
<tr>
<td>Esc-f</td>
<td>This moves forward one word.</td>
</tr>
</tbody>
</table>
The effects of the `show` and `debug` commands can be compared to a photograph and a movie. Like a photo, a `show` command shows what's true at a single point in time, and it takes little effort. The `debug` command shows what's true over time, but it requires more effort. As a result, the `debug` command requires more CPU cycles, but it lets you watch what is happening in a switch while it is happening.

Cisco IOS handles the messages created with the `debug` command much differently than with the `show` command. When any user issues a `debug` command, the debug options in the command are enabled. The messages Cisco IOS creates in response to all `debug` commands, regardless of which user(s) issued the `debug` commands, are treated as a special type of message called a `log message`. Any remote user can view log messages by simply using the `terminal monitor` command. Additionally, these log messages also appear at the console automatically. So, whereas the `show` command lists a set of messages for that single user, the `debug` command lists messages for all interested users to see, requiring remote users to ask to view the `debug` and other log messages.

The options enabled by a single `debug` command are not disabled until the user takes action or until the switch is reloaded. A `reload` of the switch disables all currently enabled debug options. To disable a single debug option, repeat the same `debug` command with those options, prefaced by the word `no`. For example, if the `debug spanning-tree` command was been issued earlier, issue the `no debug spanning-tree` command to disable that same debug. Also, the `no debug all` and `undebug all` commands disable all currently enabled debugs.

Be aware that some `debug` options create so many messages that Cisco IOS cannot process them all, possibly resulting in a crash of Cisco IOS. You might want to check the current switch CPU utilization with the `show process` command before issuing any `debug` command. To be more careful, before enabling an unfamiliar `debug` command option, issue a `no debug all` command, and then issue the `debug` that you want to use. Then quickly retrieve the `no debug all` command using the up arrow or Ctrl-p key sequence twice. If the debug quickly degrades switch performance, the switch may be too busy to listen to what you are typing. The process described in this paragraph saves a bit of typing and may be the difference between preventing the switch from failing, or not.

Configuring Cisco IOS Software

You must understand how to configure a Cisco switch to succeed on the exam and in real networking jobs. This section covers the basic configuration processes, including the concept of a configuration file and the locations in which the configuration files can be stored. Although this section focuses on the configuration process, and not on the configuration commands themselves, you should know all the commands covered in this chapter for the exams, in addition to the configuration processes.
Configuration mode is another mode for the Cisco CLI, similar to user mode and privileged mode. User mode lets you issue nondisruptive commands and displays some information. Privileged mode supports a superset of commands compared to user mode, including commands that might harm the switch. However, none of the commands in user or privileged mode changes the switch’s configuration. Configuration mode accepts configuration commands—commands that tell the switch the details of what to do, and how to do it. Figure 8-7 illustrates the relationships among configuration mode, user EXEC mode, and privileged EXEC mode.

Figure 8-7 CLI Configuration Mode Versus Exec Modes

Commands entered in configuration mode update the active configuration file. These changes to the configuration occur immediately each time you press the Enter key at the end of a command. Be careful when you enter a configuration command!

Configuration Submodes and Contexts

Configuration mode itself contains a multitude of subcommand modes. Context-setting commands move you from one configuration subcommand mode, or context, to another. These context-setting commands tell the switch the topic about which you will enter the next few configuration commands. More importantly, the context tells the switch the topic you care about right now, so when you use the ? to get help, the switch gives you help about that topic only.

NOTE Context-setting is not a Cisco term—it’s just a term used here to help make sense of configuration mode.

The interface command is one of the most commonly used context-setting configuration commands. For example, the CLI user could enter interface configuration mode by entering the interface FastEthernet 0/1 configuration command. Asking for help in interface configuration mode displays only commands that are useful when configuring Ethernet interfaces. Commands used in this context are called subcommands—or, in this specific
case, *interface subcommands*. When you begin practicing with the CLI with real equipment, the navigation between modes can become natural. For now, consider Example 8-1, which shows the following:

- Movement from enable mode to global configuration mode by using the `configure terminal` EXEC command
- Using a *hostname* `Fred` global configuration command to configure the switch’s name
- Movement from global configuration mode to console line configuration mode (using the `line console 0` command)
- Setting the console’s simple password to `hope` (using the `password hope` line subcommand)
- Movement from console configuration mode to interface configuration mode (using the `interface` command)
- Setting the speed to 100 Mbps for interface Fa0/1 (using the `speed 100` interface subcommand)
- Movement from interface configuration mode back to global configuration mode (using the `exit` command)

Example 8-1 Navigating Between Different Configuration Modes

```plaintext
Switch#configure terminal
Switch(config)#hostname Fred
Fred(config)#line console 0
Fred(config-line)#password hope
Fred(config-line)#interface FastEthernet 0/1
Fred(config-if)#speed 100
Fred(config-if)#exit
Fred(config)#
```

The text inside parentheses in the command prompt identifies the configuration mode. For example, the first command prompt after you enter configuration mode lists (config), meaning global configuration mode. After the `line console 0` command, the text expands to (config-line), meaning line configuration mode. Table 8-6 shows the most common command prompts in configuration mode, the names of those modes, and the context-setting commands used to reach those modes.
No set rules exist for what commands are global commands or subcommands. Generally, however, when multiple instances of a parameter can be set in a single switch, the command used to set the parameter is likely a configuration subcommand. Items that are set once for the entire switch are likely global commands. For example, the `hostname` command is a global command because there is only one hostname per switch. Conversely, the `duplex` command is an interface subcommand to allow the switch to use a different setting on the different interfaces.

Both the Ctrl-z key sequence and the `end` command exit the user from any part of configuration mode and go back to privileged EXEC mode. Alternatively, the `exit` command backs you out of configuration mode one subconfiguration mode at a time.

Storing Switch Configuration Files

When you configure a switch, it needs to use the configuration. It also needs to be able to retain the configuration in case the switch loses power. Cisco switches contain Random Access Memory (RAM) to store data while Cisco IOS is using it, but RAM loses its contents when the switch loses power. To store information that must be retained when the switch loses power, Cisco switches use several types of more permanent memory, none of which has any moving parts. By avoiding components with moving parts (such as traditional disk drives), switches can maintain better uptime and availability.

The following list details the four main types of memory found in Cisco switches, as well as the most common use of each type:

- **RAM**: Sometimes called DRAM for Dynamic Random-Access Memory, RAM is used by the switch just as it is used by any other computer: for working storage. The running (active) configuration file is stored here.

- **ROM**: Read-Only Memory (ROM) stores a bootstrap (or boothelper) program that is loaded when the switch first powers on. This bootstrap program then finds the full Cisco IOS image and manages the process of loading Cisco IOS into RAM, at which point Cisco IOS takes over operation of the switch.

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Name of Mode</th>
<th>Command(s) to Reach This Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>hostname(config)#</td>
<td>Global</td>
<td>None—first mode after configure terminal</td>
</tr>
<tr>
<td>hostname(config-line)#</td>
<td>Line</td>
<td>line console 0 line vty 0 15</td>
</tr>
<tr>
<td>hostname(config-if)#</td>
<td>Interface</td>
<td>interface type number</td>
</tr>
</tbody>
</table>

Table 8-6 Common Switch Configuration Modes

- **Prompt**
- **Name of Mode**
- **Context-setting Command(s) to Reach This Mode**
Flash memory: Either a chip inside the switch or a removable memory card, Flash memory stores fully functional Cisco IOS images and is the default location where the switch gets its Cisco IOS at boot time. Flash memory also can be used to store any other files, including backup copies of configuration files.

NVRAM: Nonvolatile RAM (NVRAM) stores the initial or startup configuration file that is used when the switch is first powered on and when the switch is reloaded.

Figure 8-8 summarizes this same information in a briefer and more convenient form for memorization and study.

Cisco IOS stores the collection of configuration commands in a configuration file. In fact, switches use multiple configuration files—one file for the initial configuration used when powering on, and another configuration file for the active, currently used running configuration as stored in RAM. Table 8-7 lists the names of these two files, their purpose, and their storage location.

<table>
<thead>
<tr>
<th>Configuration Filename</th>
<th>Purpose</th>
<th>Where It Is Stored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup-config</td>
<td>Stores the initial configuration used any time the switch reloads Cisco IOS.</td>
<td>NVRAM</td>
</tr>
<tr>
<td>Running-config</td>
<td>Stores the currently used configuration commands. This file changes dynamically when someone enters commands in configuration mode.</td>
<td>RAM</td>
</tr>
</tbody>
</table>

Essentially, when you use configuration mode, you change only the running-config file. This means that the configuration example earlier in this chapter (Example 8-1) updates only the running-config file. However, if the switch lost power right after that example, all that configuration would be lost. If you want to keep that configuration, you have to copy the running-config file into NVRAM, overwriting the old startup-config file.
Example 8-2 demonstrates that commands used in configuration mode change only the running configuration in RAM. The example shows the following concepts and steps:

Step 1 The original hostname command on the switch, with the startup-config file matching the running-config file.

Step 2 The hostname command changes the hostname, but only in the running-config file.

Step 3 The show running-config and show startup-config commands are shown, with only the hostname commands displayed for brevity, to make the point that the two configuration files are now different.

Example 8-2 How Configuration Mode Commands Change the Running-config File, not the Startup-config File

```
! Step 1 next (two commands)  
!  
! hannah#show running-config  
! (lines omitted)  
hostname hannah  
! (rest of lines omitted)  

hannah#show startup-config  
! (lines omitted)  
hostname hannah  
! (rest of lines omitted)  
! Step 2 next. Notice that the command prompt changes immediately after  
! the hostname command.  
!hannah#configure terminal  
hannah(config)#hostname jessie  
jessie(config)#exit  
! Step 3 next (two commands)  
!  
! jessie#show running-config  
! (lines omitted)  
hostname jessie  
! (rest of lines omitted - notice that the running configuration reflects the  
! changed hostname)  
jessie# show startup-config  
! (lines omitted)  
hostname hannah  
! (rest of lines omitted - notice that the changed configuration is not  
! shown in the startup config)  
```
NOTE Cisco uses the term reload to refer to what most PC operating systems call rebooting or restarting. In each case, it is a reinitialization of the software. The reload exec command causes a switch to reload.

Copying and Erasing Configuration Files
If you reload the switch at the end of Example 8-2, the hostname reverts to Hannah, because the running-config file has not been copied into the startup-config file. However, if you want to keep the new hostname of jessie, you would use the command **copy running-config startup-config**, which overwrites the current startup-config file with what is currently in the running configuration file. The **copy** command can be used to copy files in a switch, most typically a configuration file or a new version of Cisco IOS Software. The most basic method for moving configuration files in and out of a switch is to use the **copy** command to copy files between RAM or NVRAM on a switch and a TFTP server. The files can be copied between any pair, as shown in Figure 8-9.

Figure 8-9 Locations for Copying and Results from Copy Operations

The commands for copying Cisco IOS configurations can be summarized as follows:

```
copy {tftp | running-config | startup-config} {tftp | running-config | startup-config}
```

The first set of parameters enclosed in braces ({}) is the “from” location; the next set of parameters is the “to” location.

The **copy** command always replaces the existing file when the file is copied into NVRAM or into a TFTP server. In other words, it acts as if the destination file was erased and the new file completely replaced the old one. However, when the **copy** command copies a configuration file into the running-config file in RAM, the configuration file in RAM is not replaced, but is merged instead. Effectively, any **copy** into RAM works just as if you entered the commands in the “from” configuration file in the order listed in the config file.
Who cares? Well, we do. If you change the running config and then decide that you want to revert to what’s in the startup-config file, the result of the `copy startup-config running-config` command may not cause the two files to actually match. The only way to guarantee that the two configuration files match is to issue the `reload` command, which reloads, or reboots, the switch, which erases RAM and then copies the startup-config into RAM as part of the reload process.

You can use three different commands to erase the contents of NVRAM. The `write erase` and `erase startup-config` commands are older, whereas the `erase nvram:` command is the more recent, and recommended, command. All three commands simply erase the contents of the NVRAM configuration file. Of course, if the switch is reloaded at this point, there is no initial configuration. Note that Cisco IOS does not have a command that erases the contents of the running-config file. To clear out the running-config file, simply erase the startup-config file, and then `reload` the switch.

NOTE Making a copy of all current switch and router configurations should be part of any network’s overall security strategy, mainly so that you can replace a device’s configuration if an attack changes the configuration.

Although startup-config and running-config are the most common names for the two configuration files, Cisco IOS defines a few other more formalized names for these files. These more formalized filenames use a format defined by the Cisco IOS File System (IFS), which is the name of the file system created by Cisco IOS to manage files. For example, the `copy` command can refer to the startup-config file as `nvram:startup-config`. Table 8-8 lists the alternative names for these two configuration files.

<table>
<thead>
<tr>
<th>Config File Common Name</th>
<th>Alternative Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>startup-config</td>
<td>nvram:</td>
</tr>
<tr>
<td></td>
<td>nvram:startup-config</td>
</tr>
<tr>
<td>running-config</td>
<td>system:running-config</td>
</tr>
</tbody>
</table>

Initial Configuration (Setup Mode)
Cisco IOS Software supports two primary methods of giving a switch an initial basic configuration—configuration mode, which has already been covered in this chapter, and setup mode. Setup mode leads a switch administrator to a basic switch configuration by using questions that prompt the administrator for basic configuration parameters. Because configuration mode is required for most configuration tasks, most networking
personnel do not use setup at all. However, new users sometimes like to use setup mode, particularly until they become more familiar with the CLI configuration mode.

Figure 8-10 and Example 8-3 describe the process used by setup mode. Setup mode is used most frequently when the switch boots, and it has no configuration in NVRAM. You can also enter setup mode by using the setup command from privileged mode.

Figure 8-10 Getting into Setup Mode

![Diagram of setup process]

Example 8-3 Initial Configuration Dialog Example

```plaintext
--- System Configuration Dialog ---

Would you like to enter the initial configuration dialog? [yes/no]: yes

At any point you may enter a question mark '?' for help.
Use ctrl-c to abort configuration dialog at any prompt.
Default settings are in square brackets '['].

Basic management setup configures only enough connectivity for management of the system, extended setup will ask you...
Example 8-3  Initial Configuration Dialog Example (Continued)

Would you like to enter basic management setup? [yes/no]: yes

Configuring global parameters:

Enter host name [Switch]: fred

The enable secret is a password used to protect access to privileged EXEC and configuration modes. This password, after entered, becomes encrypted in the configuration.

Enter enable secret: cisco

The enable password is used when you do not specify an enable secret password, with some older software versions, and some boot images.

Enter enable password: notcisco

The virtual terminal password is used to protect access to the switch over a network interface.

Enter virtual terminal password: wilma

Configure SNMP Network Management? [no]:

Current interface summary

Any interface listed with OK? value "NO" does not have a valid configuration

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP-Address</th>
<th>OK? Method</th>
<th>Status</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlan1</td>
<td>unassigned</td>
<td>NO unset</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>FastEthernet0/1</td>
<td>unassigned</td>
<td>YES unset</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>unassigned</td>
<td>YES unset</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>FastEthernet0/3</td>
<td>unassigned</td>
<td>YES unset</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>GigabitEthernet0/1</td>
<td>unassigned</td>
<td>YES unset</td>
<td>down</td>
<td>down</td>
</tr>
<tr>
<td>GigabitEthernet0/2</td>
<td>unassigned</td>
<td>YES unset</td>
<td>down</td>
<td>down</td>
</tr>
</tbody>
</table>

The following configuration command script was created:

```
hostname fred
enable secret 5 1wNE7$4JSktD3uN1Af5FpctmPz11
enable password notcisco
line vty 0 15
password wilma
no snmp-server
```
Setup behaves as shown in Example 8-3, regardless of whether Setup was reached by booting with an empty NVRAM or whether the `setup` privileged EXEC command was used. First, the switch asks whether you want to enter the initial configuration dialog. Answering `y` or `yes` puts you in setup mode. At that point, the switch keeps asking questions, and you keep answering, until you have answered all the setup questions.
When you are finished answering the configuration questions, the switch asks you to choose from one of three options:

0: Do not save any of this configuration, and go to the CLI command prompt.

1: Do not save any of this configuration, but start over in setup mode.

2: Save the configuration in both the startup-config and the running-config, and go to the CLI command prompt.

You can also abort the setup process before answering all the questions, and get to a CLI prompt, by pressing Ctrl-C. Note that answer 2 actually writes the configuration to both the startup-config and running-config file, whereas configuration mode changes only the running-config file.
Exam Preparation Tasks

Review All the Key Topics

Review the most important topics from this chapter, noted with the key topics icon. Table 8-9 lists these key topics and where each is discussed.

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>A Cisco switch’s default console port settings</td>
<td>213</td>
</tr>
<tr>
<td>Table 8-6</td>
<td>A list of configuration mode prompts, the name of the configuration mode, and the command used to reach each mode</td>
<td>223</td>
</tr>
<tr>
<td>Figure 8-8</td>
<td>Types of memory in a switch</td>
<td>224</td>
</tr>
<tr>
<td>Table 8-7</td>
<td>The names and purposes of the two configuration files in a switch or router</td>
<td>224</td>
</tr>
</tbody>
</table>

Complete the Tables and Lists from Memory

Print a copy of Appendix L, “Memory Tables” (found on the DVD), or at least the section for this chapter, and complete the tables and lists from memory. Appendix M, “Memory Tables Answer Key,” also on the DVD, includes completed tables and lists for you to check your work.

Definitions of Key Terms

Define the following key terms from this chapter and check your answers in the glossary:

- command-line interface (CLI), Secure Shell (SSH), enable mode, user mode, configuration mode, startup-config file, running-config file, setup mode

Command References

Table 8-10 lists and briefly describes the configuration commands used in this chapter.
### Table 8-10  Chapter 8 Configuration Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Mode and Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>line console 0</td>
<td>Global command that changes the context to console configuration mode.</td>
</tr>
<tr>
<td>line vty 1st-vty 2nd-vty</td>
<td>Global command that changes the context to vty configuration mode for the range of vty lines listed in the command.</td>
</tr>
<tr>
<td>login</td>
<td>Line (console and vty) configuration mode. Tells IOS to prompt for a password (no username).</td>
</tr>
<tr>
<td>password pass-value</td>
<td>Line (console and vty) configuration mode. Lists the password required if the login command (with no other parameters) is configured.</td>
</tr>
<tr>
<td>interface type port-number</td>
<td>Global command that changes the context to interface mode—for example, interface Fastethernet 0/1.</td>
</tr>
<tr>
<td>shutdown</td>
<td>Interface subcommand that disables or enables the interface, respectively.</td>
</tr>
<tr>
<td>no shutdown</td>
<td></td>
</tr>
<tr>
<td>hostname name</td>
<td>Global command that sets this switch’s hostname, which is also used as the first part of the switch’s command prompt.</td>
</tr>
<tr>
<td>enable secret pass-value</td>
<td>Global command that sets the automatically encrypted enable secret password. The password is used for any user to reach enable mode.</td>
</tr>
<tr>
<td>enable password pass-value</td>
<td>Global command that sets the clear-text enable password, which is used only when the enable secret password is not configured.</td>
</tr>
<tr>
<td>exit</td>
<td>Moves back to the next higher mode in configuration mode.</td>
</tr>
<tr>
<td>end</td>
<td>Exits configuration mode and goes back to enable mode from any of the configuration submodes.</td>
</tr>
<tr>
<td>Ctrl-Z</td>
<td>This is not a command, but rather a two-key combination (the Ctrl key and the letter z) that together do the same thing as the end command.</td>
</tr>
</tbody>
</table>
Table 8-11 lists and briefly describes the EXEC commands used in this chapter.

**Table 8-11  Chapter 8 EXEC Command Reference**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>no debug all</td>
<td>Enable mode EXEC command to disable all currently enabled debugs.</td>
</tr>
<tr>
<td>undebug all</td>
<td>EXEC command that lists statistics about CPU utilization.</td>
</tr>
<tr>
<td>show process</td>
<td>EXEC command that tells Cisco IOS to send a copy of all syslog messages, including debug messages, to the Telnet or SSH user who issues this command.</td>
</tr>
<tr>
<td>terminal monitor</td>
<td>EXEC command that tells Cisco IOS to send a copy of all syslog messages, including debug messages, to the Telnet or SSH user who issues this command.</td>
</tr>
<tr>
<td>reload</td>
<td>Enable mode EXEC command that reboots the switch or router.</td>
</tr>
<tr>
<td>copy from-location to-location</td>
<td>Enable mode EXEC command that copies files from one file location to another. Locations include the startup-config and running-config files, files on TFTP and RPC servers, and flash memory.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>Enable mode EXEC command that saves the active config, replacing the startup-config file used when the switch initializes.</td>
</tr>
<tr>
<td>copy startup-config running-config</td>
<td>Enable mode EXEC command that merges the startup config file with the currently active config file in RAM.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Lists the contents of the running-config file.</td>
</tr>
<tr>
<td>write erase</td>
<td>All three enable mode EXEC commands erase the startup-config file.</td>
</tr>
<tr>
<td>erase startup-config</td>
<td>All three enable mode EXEC commands erase the startup-config file.</td>
</tr>
<tr>
<td>erase nvram:</td>
<td>Enable mode EXEC command that places the user in setup mode, in which Cisco IOS asks the user for input on simple switch configurations.</td>
</tr>
<tr>
<td>setup</td>
<td>Enable mode EXEC command that places the user in setup mode, in which Cisco IOS asks the user for input on simple switch configurations.</td>
</tr>
<tr>
<td>quit</td>
<td>EXEC command that disconnects the user from the CLI session.</td>
</tr>
<tr>
<td>show system:running-config</td>
<td>Same as the show running-config command.</td>
</tr>
<tr>
<td>show startup-config</td>
<td>Lists the contents of the startup-config (initial config) file.</td>
</tr>
</tbody>
</table>
### Table 8-11  Chapter 8 EXEC Command Reference (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show nvram:startup-config</td>
<td>Same as the <code>show startup-config</code> command.</td>
</tr>
<tr>
<td>show nvram:</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Moves the user from user mode to enable (privileged) mode and prompts for an enable password if configured.</td>
</tr>
<tr>
<td>disable</td>
<td>Moves the user from enable mode to user mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enable mode command that moves the user into configuration mode.</td>
</tr>
</tbody>
</table>
This chapter covers the following subjects:

**Configuration Features in Common with Routers:** This section explains how to configure a variety of switch features that happen to be configured exactly like the same feature on Cisco routers.

**LAN Switch Configuration and Operation:** This section explains how to configure a variety of switch features that happen to be unique to switches, and are not used on routers, or are configured differently than the configuration on Cisco routers.
Ethernet Switch Configuration

Chapter 3, “Fundamentals of LANs,” and Chapter 7, “Ethernet LAN Switching Concepts,” have already explained the most common Ethernet LAN concepts. Those chapters explained how Ethernet cabling and switches work, including the concepts of how switches forward Ethernet frames based on the frames’ destination MAC addresses.

Cisco LAN switches perform their core functions without any configuration. You can buy a Cisco switch, plug in the right cables to connect various devices to the switch, plug in the power cable, and the switch works. However, in most networks, the network engineer needs to configure and troubleshoot various switch features. This chapter explains how to configure various switch features, and Chapter 10, “Ethernet Switch Troubleshooting,” explains how to troubleshoot problems on Cisco switches.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess whether you should read the entire chapter. If you miss no more than one of these eight self-assessment questions, you might want to move ahead to the “Exam Preparation Tasks” section. Table 9-1 lists the major headings in this chapter and the “Do I Know This Already?” quiz questions covering the material in those sections. This helps you assess your knowledge of these specific areas. The answers to the “Do I Know This Already?” quiz appear in Appendix A.

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration of Features in Common with Routers</td>
<td>1–3</td>
</tr>
<tr>
<td>LAN Switch Configuration and Operation</td>
<td>4–8</td>
</tr>
</tbody>
</table>
1. Imagine that you have configured the **enable secret** command, followed by the **enable password** command, from the console. You log out of the switch and log back in at the console. Which command defines the password that you had to enter to access privileged mode?
   a. **enable password**
   b. **enable secret**
   c. Neither
   d. The **password** command, if it’s configured

2. An engineer had formerly configured a Cisco 2960 switch to allow Telnet access so that the switch expected a password of **mypassword** from the Telnet user. The engineer then changed the configuration to support Secure Shell. Which of the following commands could have been part of the new configuration?
   a. A **username name password password** command in vty config mode
   b. A **username name password password** global configuration command
   c. A **transport input ssh** command in vty config mode
   d. A **transport input ssh** global configuration command

3. The following command was copied and pasted into configuration mode when a user was telnetted into a Cisco switch:

   ```
 banner login this is the login banner
   ```

   Which of the following are true about what occurs the next time a user logs in from the console?
   a. No banner text is displayed.
   b. The banner text “his is” is displayed.
   c. The banner text “this is the login banner” is displayed.
   d. The banner text “Login banner configured, no text defined” is displayed.

4. Which of the following is not required when configuring port security without sticky learning?
   a. Setting the maximum number of allowed MAC addresses on the interface with the **switchport port-security maximum** interface subcommand
   b. Enabling port security with the **switchport port-security** interface subcommand
c. Defining the allowed MAC addresses using the `switchport port-security mac-address` interface subcommand

d. All of the other answers list required commands

5. An engineer’s desktop PC connects to a switch at the main site. A router at the main site connects to each branch office via a serial link, with one small router and switch at each branch. Which of the following commands must be configured, in the listed configuration mode, to allow the engineer to telnet to the branch office switches?

a. The `ip address` command in VLAN 1 configuration mode
b. The `ip address` command in global configuration mode
c. The `ip default-gateway` command in VLAN 1 configuration mode
d. The `ip default-gateway` command in global configuration mode
e. The `password` command in console line configuration mode
f. The `password` command in vty line configuration mode

6. Which of the following describes a way to disable IEEE standard autonegotiation on a 10/100 port on a Cisco switch?

a. Configure the `negotiate disable` interface subcommand
b. Configure the `no negotiate` interface subcommand
c. Configure the `speed 100` interface subcommand
d. Configure the `duplex half` interface subcommand
e. Configure the `duplex full` interface subcommand
f. Configure the `speed 100` and `duplex full` interface subcommands

7. In which of the following modes of the CLI could you configure the duplex setting for interface fastethernet 0/5?

a. User mode
b. Enable mode
c. Global configuration mode
d. Setup mode
e. Interface configuration mode
8. The `show vlan brief` command lists the following output:

```
 2 my-vlan active Fa0/13, Fa0/15
```

Which of the following commands could have been used as part of the configuration for this switch?

a. The `vlan 2` global configuration command
b. The `name MY-VLAN` vlan subcommand
c. The `interface range Fa0/13 - 15` global configuration command
d. The `switchport vlan 2` interface subcommand
Foundation Topics

Many Cisco Catalyst switches use the same Cisco IOS Software command-line interface (CLI) as Cisco routers. In addition to having the same look and feel, the switches and routers sometimes support the exact same configuration and show commands. Additionally, as mentioned in Chapter 8, some of the same commands and processes shown for Cisco switches work the same way for Cisco routers.

This chapter explains a wide variety of configurable items on Cisco switches. Some topics are relatively important, such as the configuration of usernames and passwords so that any remote access to a switch is secure. Some topics are relatively unimportant, but useful, such as the ability to assign a text description to an interface for documentation purposes. However, this chapter does contain the majority of the switch configuration topics for this book, with the exception of Cisco Discovery Protocol (CDP) configuration commands in Chapter 10.

Configuration of Features in Common with Routers

This first of the two major sections of this chapter examines the configuration of several features that are configured the exact same way on both switches and routers. In particular, this section examines how to secure access to the CLI, plus various settings for the console.

Securing the Switch CLI

To reach a switch’s enable mode, a user must reach user mode either from the console or from a Telnet or SSH session, and then use the enable command. With default configuration settings, a user at the console does not need to supply a password to reach user mode or enable mode. The reason is that anyone with physical access to the switch or router console could reset the passwords in less than 5 minutes by using the password recovery procedures that Cisco publishes. So, routers and switches default to allow the console user access to enable mode.

NOTE To see the password recovery/reset procedures, go to Cisco.com and search on the phrase “password recovery.” The first listed item probably will be a web page with password recovery details for most every product made by Cisco.
To reach enable mode from a vty (Telnet or SSH), the switch must be configured with several items:

- An IP address
- Login security on the vty lines
- An enable password

Most network engineers will want to be able to establish a Telnet or SSH connection to each switch, so it makes sense to configure the switches to allow secure access. Additionally, although someone with physical access to the switch can use the password recovery process to get access to the switch, it still makes sense to configure security even for access from the console.

This section examines most of the configuration details related to accessing enable mode on a switch or router. The one key topic not covered here is the IP address configuration, which is covered later in this chapter in the section “Configuring the Switch IP Address.” In particular, this section covers the following topics:

- Simple password security for the console and Telnet access
- Secure Shell (SSH)
- Password encryption
- Enable mode passwords

**Configuring Simple Password Security**

An engineer can reach user mode in a Cisco switch or router from the console or via either Telnet or SSH. By default, switches and routers allow a console user to immediately access user mode after logging in, with no password required. With default settings, Telnet users are rejected when they try to access the switch, because a vty password has not yet been configured. Regardless of these defaults, it makes sense to password protect user mode for console, Telnet, and SSH users.

A user in user mode can gain access to enable mode by using the enable command, but with different defaults depending on whether the user is at the console or has logged in remotely using Telnet or SSH. By default, the **enable** command allows console users into enable mode without requiring a password, but Telnet users are rejected without even a chance to
supply a password. Regardless of these defaults, it makes sense to password protect enable mode using the `enable secret` global configuration command.

**NOTE** The later section “The Two Enable Mode Passwords” explains two options for configuring the password required by the `enable` command, as configured with the `enable secret` and `enable password` commands, and why the `enable secret` command is preferred.

Example 9-1 shows a sample configuration process that sets the console password, the vty (Telnet) password, the enable secret password, and a hostname for the switch. The example shows the entire process, including command prompts, which provide some reminders of the different configuration modes explained in Chapter 8, “Operating Cisco LAN Switches.”

**Example 9-1 Configuring Basic Passwords and a Hostname**

```
Switch>enable
Switch#configure terminal
Switch(config)#enable secret cisco
Switch(config)#hostname Emma
Emma(config)#line console 0
Emma(config-line)#password faith
Emma(config-line)#login
Emma(config-line)#exit
Emma(config)#line vty 0 15
Emma(config-line)#password love
Emma(config-line)#login
Emma(config-line)#exit
Emma(config)#exit
Emma#
! The next command lists the switch's current configuration (running-config)
Emma#show running-config
!
Building configuration...

Current configuration : 1333 bytes
!
version 12.2
no service pad
service timestamps debug uptime
service timestamps log uptime
!
hostname Emma
!
enable secret 5 1YXRN$11z0e1Lb0Lv/nHyTquobd.
```
Example 9-1  Configuring Basic Passwords and a Hostname (Continued)

Example 9-1 begins by showing the user moving from enable mode to configuration mode by using the `configure terminal` EXEC command. As soon as the user is in global configuration mode, he enters two global configuration commands (`enable secret` and `hostname`) that add configuration that applies to the whole switch.

For instance, the `hostname` global configuration command simply sets the one and only name for this switch (in addition to changing the switch’s command prompt). The `enable secret` command sets the only password used to reach enable mode, so it is also a global command. However, the `login` command (which tells the switch to ask for a text password,
but no username) and the **password** command (which defines the required password) are shown in both console and vty line configuration submodes. So, these commands are subcommands in these two different configuration modes. These subcommands define different console and vty passwords based on the configuration submodes in which the commands were used, as shown in the example.

Pressing the Ctrl-z key sequence from any part of configuration mode takes you all the way back to enable mode. However, the example shows how to repeatedly use the **exit** command to move back from a configuration submode to global configuration mode, with another **exit** command to exit back to enable mode. The **end** configuration mode command performs the same action as the Ctrl-z key sequence, moving the user from any part of configuration mode back to privileged EXEC mode.

The second half of Example 9-1 lists the output of the **show running-config** command. This command shows the currently used configuration in the switch, which includes the changes made earlier in the example. The output highlights in gray the configuration commands added due to the earlier configuration commands.

| NOTE | The output of the **show running-config** command lists five vty lines (0 through 4) in a different location than the rest (5 through 15). In earlier IOS releases, Cisco IOS routers and switches had five vty lines, numbered 0 through 4, which allowed five concurrent Telnet connects to a switch or router. Later, Cisco added more vty lines (5 through 15), allowing 16 concurrent Telnet connections into each switch and router. That’s why the command output lists the two vty line ranges separately. |

**Configuring Usernames and Secure Shell (SSH)**

Telnet sends all data, including all passwords entered by the user, as clear text. The Secure Shell (SSH) application provides the same function as Telnet, displaying a terminal emulator window and allowing the user to remotely connect to another host’s CLI. However, SSH encrypts the data sent between the SSH client and the SSH server, making SSH the preferred method for remote login to switches and routers today.

To add support for SSH login to a Cisco switch or router, the switch needs several configuration commands. For example, SSH requires that the user supply both a username and password instead of just a password. So, the switch must be reconfigured to use one of two user authentication methods that require both a username and password: one method with the usernames and passwords configured on the switch, and the other with the usernames and passwords configured on an external server called an Authentication, Authorization, and Accounting (AAA) server. (This book covers the configuration using locally configured usernames/passwords.) Figure 9-1 shows a diagram of the configuration and process required to support SSH.
The steps in the figure, explained with the matching numbered list that follows, detail the required transactions before an SSH user can connect to the switch using SSH:

**Step 1** Change the vty lines to use usernames, with either locally configured usernames or an AAA server. In this case, the `login local` subcommand defines the use of local usernames, replacing the `login` subcommand in vty configuration mode.

**Step 2** Tell the switch to accept both Telnet and SSH with the `transport input telnet ssh` vty subcommand. (The default is `transport input telnet`, omitting the `ssh` parameter.)

**Step 3** Add one or more `username name password pass-value` global configuration commands to configure username/password pairs.

**Step 4** Configure a DNS domain name with the `ip domain-name name` global configuration command.

**Step 5** Configure the switch to generate a matched public and private key pair, as well as a shared encryption key, using the `crypto key generate rsa` global configuration command.

**Step 6** Although no switch commands are required, each SSH client needs a copy of the switch’s public key before the client can connect.

---

**NOTE** This book contains several step lists that refer to specific configuration steps, such as the one shown here for SSH. You do not need to memorize the steps for the exams; however, the lists can be useful for study—in particular, to help you remember all the required steps to configure a certain feature.
Example 9-2 shows the same switch commands shown in Figure 9-1, entered in configuration mode.

Example 9-2  SSH Configuration Process

```
Example# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Example(config)# line vty 0 15
! Step 1's command happens next
Example(config-line)# login local
! Step 2's command happens next
Example(config-line)# transport input telnet ssh
Example(config-line)# exit
! Step 3's command happens next
Example(config)# username wendell password hope
! Step 4's command happens next
Example(config)# ip domain-name example.com
! Step 5's command happens next
Example(config)# crypto key generate rsa
The name for the keys will be: Emma.example.com
Choose the size of the key modulus in the range of 360 to 2048 for your General Purpose Keys. Choosing a key modulus greater than 512 may take a few minutes.

How many bits in the modulus [512]: 1024
% Generating 1024 bit RSA keys ...[OK]

% SSH-5-ENABLED: SSH 1.99 has been enabled
Example(config)#^Z
! Next, the contents of the public key are listed; the key will be needed by the SSH client.
Example# show crypto key mypubkey rsa
% Key pair was generated at: 00:03:58 UTC Mar 1 1993
Key name: Emma.example.com
Usage: General Purpose Key
Key is not exportable.
Key Data:
30819F30 0006092A 564F866F70 DD010101 05000301 80038819 8928B819 00DB43DC
49C258FA 8E08B8B2 0A6CB888 800029CE EAE6158B 456B66FD 491A9863 B39A4334
86F64E02 18320256 01941831 787304A2 720A57DA FBB3E75A 94517901 7764C332
A3A482B1 DB4F154E A84773B5 53378E8C B1F5E832 8213EE63 73B77006 BA8782DE
% Key pair was generated at: 00:04:01 UTC Mar 1 1993
Key name: Emma.example.com.server
Usage: Encryption Key
Key is not exportable.
```

continues
The example shows a gray highlighted comment just before the configuration commands at each step. Also, note the public key created by the switch, listed in the highlighted portion of the output of the `show crypto key mypubkey rsa` command. Each SSH client needs a copy of this key, either by adding this key to the SSH client’s configuration beforehand, or by letting the switch send this public key to the client when the SSH client first connects to the switch.

For even tighter security, you might want to disable Telnet access completely, requiring all the engineers to use SSH to remotely log in to the switch. To prevent Telnet access, use the `transport input ssh` line subcommand in vty configuration mode. If the command is given only the SSH option, the switch will no longer accept Telnet connections.

**Password Encryption**

Several of the configuration commands used to configure passwords store the passwords in clear text in the running-config file, at least by default. In particular, the simple passwords configured on the console and vty lines, with the `password` command, plus the password in the `username` command, are all stored in clear text by default. (The `enable secret` command automatically hides the password value.)

To prevent password vulnerability in a printed version of the configuration file, or in a backup copy of the configuration file stored on a server, you can encrypt or encode the passwords using the `service password-encryption` global configuration command. The presence or absence of the `service password-encryption` global configuration command dictates whether the passwords are encrypted as follows:

- **When the `service password-encryption` command is configured, all existing console, vty, and username command passwords are immediately encrypted.**
- **If the `service password-encryption` command has already been configured, any future changes to these passwords are encrypted.**
- **If the no `service password-encryption` command is used later, the passwords remain encrypted, until they are changed—at which point they show up in clear text.**

---

**Example 9-2  SSH Configuration Process (Continued)**

<table>
<thead>
<tr>
<th>Key Data:</th>
</tr>
</thead>
<tbody>
<tr>
<td>307c300d 06092a86 4886f70d 01010100 00003680 30680261 00ac339c d4916728</td>
</tr>
<tr>
<td>6ac627e a5ee2a5 00946af9 e63ff322 a2084994 9e379fda ab1c503e aaf69fb3</td>
</tr>
<tr>
<td>2a22a5f3 0a94454 b8242d72 a852e73 0b42cf2b c06e0710 ba0a6048 d90cb9e9</td>
</tr>
<tr>
<td>f0b88179 ec150e0 d551109d 69e39160 86c50122 9a37e954 85020301 0081</td>
</tr>
</tbody>
</table>
Example 9-3 shows an example of these details.

NOTE The show running-config | begin line vty command, as used in Example 9-3, lists the running configuration, beginning with the first line, which contains the text line vty. This is just a shorthand way to see a smaller part of the running configuration.

Example 9-3 Encryption and the service password-encryption Command

```
Switch3#show running-config | begin line vty
line vty 0 4
 password cisco
 login
Switch3#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch3(config)#service password-encryption
Switch3(config)#*Z
Switch3#show running-config | begin line vty
line vty 0 4
 password 7 070C285F4D06
 login
end
Switch3#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch3(config)#no service password-encryption
Switch3(config)#*Z
Switch3#show running-config | begin line vty
line vty 0 4
 password 7 070C285F4D06
 login
end
Switch3#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch3(config)#line vty 0 4
Switch3(config-line)#password cisco
Switch3(config-line)#*Z
Switch3#show running-config | begin line vty
line vty 0 4
 password cisco
 login
```

NOTE The encryption type used by the service password-encryption command, as noted with the “7” in the password commands, refers to one of several underlying password encryption algorithms. Type 7, the only type used by the service password-encryption command, is a weak encryption algorithm, and the passwords can be easily decrypted.
Chapter 9: Ethernet Switch Configuration

The Two Enable Mode Passwords

The `enable` command moves you from user EXEC mode (with a prompt of hostname>) to privileged EXEC mode (with a prompt of hostname#). A router or switch can be configured to require a password to reach enable mode according to the following rules:

- If the global configuration command `enable password actual-password` is used, it defines the password required when using the `enable` EXEC command. This password is listed as `clear text` in the configuration file by default.

- If the global configuration command `enable secret actual-password` is used, it defines the password required when using the `enable` EXEC command. This password is listed as a `hidden MD5 hash value` in the configuration file.

- If both commands are used, the password set in the `enable secret` command defines which password is required.

When the `enable secret` command is configured, the router or switch automatically hides the password. While it is sometimes referenced as being encrypted, the enable secret password is not actually encrypted. Instead, IOS applies a mathematical function to the password, called a Message Digest 5 (MD5) hash, storing the results of the formula in the configuration file. IOS references this style of encoding the password as type 5 in the output in Example 9-4. Note that the MD5 encoding is much more secure than the encryption used for other passwords with the `service password-encryption` command. The example shows the creation of the `enable secret` command, its format, and its deletion.

Example 9-4  Encryption and the `enable secret` Command

```
Switch3(config)#enable secret ?
0 Specifies an UNENCRYPTED password will follow
5 Specifies an ENCRYPTED secret will follow
LINE The UNENCRYPTED (cleartext) 'enable' secret
level Set exec level password

Switch3(config)#enable secret fred
Switch3(config)#^Z

Switch3#show running-config
! all except the pertinent line has been omitted!
enable secret 5 1ZGMA$e8cmvkz4UjiJhVp7.maLE1

Switch3#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch3(config)#no enable secret
Switch3(config)#^Z
```

When you use the (recommended) `enable secret` command, rather than the `enable password` command, the password is automatically encrypted. Example 9-4 uses the `enable secret fred` command, setting the password text to `fred`. However, the syntax `enable`
secret 0 fred could have been used, with the 0 implying that the password that followed was clear text. IOS then takes the command, applies the encryption type used by the enable secret command (type 5 in this case, which uses an MD5 hash), and stores the encrypted or encoded value in the running configuration. The show running-configuration command shows the resulting configuration command, listing encryption type 5, with the gobbledygook long text string being the encrypted/encoded password.

Thankfully, to delete the enable secret password, you can simply use the no enable secret command, without even having to enter the password value. For instance, in Example 9-4, the command no enable secret deletes the enable secret password. Although you can delete the enable secret password, more typically, you will want to change it to a new value, which can be done with the enable secret another-password command, with another-password simply meaning that you put in a new text string for the new password.

**Console and vty Settings**

This section covers a few small configuration settings that affect the behavior of the CLI connection from the console and/or vty (Telnet and SSH).

**Banners**

Cisco routers and switches can display a variety of banners depending on what a router or switch administrator is doing. A banner is simply some text that appears on the screen for the user. You can configure a router or switch to display multiple banners, some before login and some after. Table 9-2 lists the three most popular banners and their typical use.

<table>
<thead>
<tr>
<th>Banner</th>
<th>Typical Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message of the Day (MOTD)</td>
<td>Shown before the login prompt. For temporary messages that may change from time to time, such as “Router1 down for maintenance at midnight.”</td>
</tr>
<tr>
<td>Login</td>
<td>Shown before the login prompt but after the MOTD banner. For permanent messages such as “Unauthorized Access Prohibited.”</td>
</tr>
<tr>
<td>Exec</td>
<td>Shown after the login prompt. Used to supply information that should be hidden from unauthorized users.</td>
</tr>
</tbody>
</table>

The banner global configuration command can be used to configure all three types of these banners. In each case, the type of banner is listed as the first parameter, with MOTD being the default option. The first nonblank character after the banner type is called a beginning delimiter character. The banner text can span several lines, with the CLI user pressing Enter at the end of each line. The CLI knows that the banner has been configured as soon as the user enters the same delimiter character again.
Example 9-5 shows all three types of banners from Table 9-2, with a user login that shows the banners in use. The first banner in the example, the MOTD banner, omits the banner type in the `banner` command as a reminder that `motd` is the default banner type. The first two `banner` commands use a `#` as the delimiter character. The third `banner` command uses a `Z` as the delimiter, just to show that any character can be used. Also, the last `banner` command shows multiple lines of banner text.

Example 9-5  Banner Configuration

```
! Below, the three banners are created in configuration mode. Note that any
! delimiter can be used, as long as the character is not part of the message
! text.
SW1(config)#banner #
Enter TEXT message. End with the character ‘#’.
Switch down for maintenance at 11PM Today #
SW1(config)#banner login #
Enter TEXT message. End with the character ‘#’.
Unauthorized Access Prohibited!!!!
#
SW1(config)#banner exec Z
Enter TEXT message. End with the character ‘Z’.
Company picnic at the park on Saturday
Don’t tell outsiders!
Z
SW1(config)#Z
! Below, the user of this router quits the console connection, and logs back in,
! seeing the motd and login banners, then the password prompt, and then the
! exec banner.
SW1#quit

SW1 con0 is now available

Press RETURN to get started.

Switch down for maintenance at 11PM Today
Unauthorized Access Prohibited!!!!

User Access Verification

Username: fred
Password:
Company picnic at the park on Saturday
don’t tell outsiders!
SW1>
```

History Buffer Commands

When you enter commands from the CLI, the last several commands are saved in the history buffer. As mentioned in Chapter 8, you can use the up-arrow key, or Ctrl-p, to move
back in the history buffer stack to retrieve a command you entered a few commands ago. This feature makes it very easy and fast to use a set of commands repeatedly. Table 9-3 lists some of the key commands related to the history buffer.

Table 9-3 Commands Related to the History Buffer

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show history</td>
<td>Lists the commands currently held in the history buffer.</td>
</tr>
<tr>
<td>history size x</td>
<td>From console or vty line configuration mode, sets the default number of</td>
</tr>
<tr>
<td></td>
<td>commands saved in the history buffer for the user(s) of the console or vty</td>
</tr>
<tr>
<td></td>
<td>lines, respectively.</td>
</tr>
<tr>
<td>terminal history</td>
<td>From EXEC mode, this command allows a single user to set, just for this one</td>
</tr>
<tr>
<td>size x</td>
<td>connection, the size of his or her history buffer.</td>
</tr>
</tbody>
</table>

The logging synchronous and exec-timeout Commands

The console automatically receives copies of all unsolicited syslog messages on a switch or router; that feature cannot be disabled. The idea is that if the switch or router needs to tell the network administrator some important and possibly urgent information, the administrator may be at the console and may notice the message. Normally a switch or router puts these syslog messages on the console’s screen at any time—including right in the middle of a command you are entering, or in the middle of the output of a `show` command.

To make using the console a little easier, you can tell the switch to display syslog messages only at more convenient times, such as at the end of output from a `show` command or to prevent the interruption of a command text input. To do so, just configure the `logging synchronous` console line subcommand.

You can also make using the console or vty lines more convenient by setting a different inactivity timeout on the console or vty. By default, the switch or router automatically disconnects users after 5 minutes of inactivity, for both console users and users who connect to vty lines using Telnet or SSH. When you configure the `exec-timeout minutes seconds` line subcommand, the switch or router can be told a different inactivity timer. Also, if you set the timeout to 0 minutes and 0 seconds, the router never times out the console connection. Example 9-6 shows the syntax for these two commands.

Example 9-6 Defining Console Inactivity Timeouts and When to Display Log Messages

```plaintext
line console 0
login
password cisco
exec-timeout 0 0
logging synchronous
```
LAN Switch Configuration and Operation

One of the most convenient facts about LAN switch configuration is that Cisco switches work without any configuration. Cisco switches ship from the factory with all interfaces enabled (a default configuration of `no shutdown`) and with autonegotiation enabled for ports that run at multiple speeds and duplex settings (a default configuration of `duplex auto` and `speed auto`). All you have to do is connect the Ethernet cables and plug in the power cord to a power outlet, and the switch is ready to work—learning MAC addresses, making forwarding/filtering decisions, and even using STP by default.

The second half of this chapter continues the coverage of switch configuration, mainly covering features that apply only to switches and not routers. In particular, this section covers the following:

- Switch IP configuration
- Interface configuration (including speed and duplex)
- Port security
- VLAN configuration
- Securing unused switch interfaces

Configuring the Switch IP Address

To allow Telnet or SSH access to the switch, to allow other IP-based management protocols such as Simple Network Management Protocol (SNMP) to function as intended, or to allow access to the switch using graphical tools such as Cisco Device Manager (CDM), the switch needs an IP address. Switches do not need an IP address to be able to forward Ethernet frames. The need for an IP address is simply to support overhead management traffic, such as logging into the switch.

A switch’s IP configuration essentially works like a host with a single Ethernet interface. The switch needs one IP address and a matching subnet mask. The switch also needs to know its default gateway—in other words, the IP address of some nearby router. As with hosts, you can statically configure a switch with its IP address/mask/gateway, or the switch can dynamically learn this information using DHCP.

An IOS-based switch configures its IP address and mask on a special virtual interface called the VLAN 1 interface. This interface plays the same role as an Ethernet interface on a PC. In effect, a switch’s VLAN 1 interface gives the switch an interface into the default VLAN.
used on all ports of the switch—namely, VLAN 1. The following steps list the commands used to configure IP on a switch:

**Step 1** Enter VLAN 1 configuration mode using the `interface vlan 1` global configuration command (from any config mode).

**Step 2** Assign an IP address and mask using the `ip address ip-address mask` interface subcommand.

**Step 3** Enable the VLAN 1 interface using the `no shutdown` interface subcommand.

**Step 4** Add the `ip default-gateway ip-address` global command to configure the default gateway.

Example 9-7 shows a sample configuration.

**Example 9-7  Switch Static IP Address Configuration**

```plaintext
Emma#configure terminal
Emma(config)#interface vlan 1
Emma(config-if)#ip address 192.168.1.200 255.255.255.0
Emma(config-if)#no shutdown
00:25:07: %LINK-3-UPDOWN: Interface Vlan1, changed state to up
00:25:08: %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to up
Emma(config-if)#exit
Emma(config)#ip default-gateway 192.168.1.1
```

Of particular note, this example shows how to enable any interface, VLAN interfaces included. To administratively enable an interface on a switch or router, you use the `no shutdown` interface subcommand. To administratively disable an interface, you would use the `shutdown` interface subcommand. The messages shown in Example 9-7, immediately following the `no shutdown` command, are syslog messages generated by the switch stating that the switch did indeed enable the interface.

To verify the configuration, you can again use the `show running-config` command to view the configuration commands and confirm that you entered the right address, mask, and default gateway.

For the switch to act as a DHCP client to discover its IP address, mask, and default gateway, you still need to configure it. You use the same steps as for static configuration, with the following differences in Steps 2 and 4:

**Step 2:** Use the `ip address dhcp` command, instead of the `ip address ip-address mask` command, on the VLAN 1 interface.
Step 4: Do not configure the `ip default-gateway` global command.

Example 9-8 shows an example of configuring a switch to use DHCP to acquire an IP address.

**Example 9-8 Switch Dynamic IP Address Configuration with DHCP**

```
Emma(config)#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Emma(config)#interface vlan 1
Emma(config-if)#ip address dhcp
Emma(config-if)#no shutdown
Emma(config-if)#end
Emma#
00:38:20: %LINK-3-UPDOWN: Interface Vlan1, changed state to up
00:38:21: %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to up
Emma#
Interface Vlan1 assigned DHCP address 192.168.1.101, mask 255.255.255.0
Emma#show dhcp lease
Temp IP addr: 192.168.1.101 for peer on Interface: Vlan1
Temp sub net mask: 255.255.255.0
 DHCP Lease server: 192.168.1.1, state: 3 Bound
 DHCP transaction id: 1966
 Lease: 86400 secs, Renewal: 43200 secs, Rebind: 75600 secs
Temp default-gateway addr: 192.168.1.1
 Next timer fires after: 11:59:45
 Retry count: 0 Client-ID: cisco-0019.e86a.6fc0-Vl1
 Hostname: Emma
Emma#show interface vlan 1
Vlan1 is up, line protocol is up
 Hardware is EtherSVI, address is 0019.e86a.6fc0 (bia 0019.e86a.6fc0)
 Internet address is 192.168.1.101/24
 MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec,
 reliability 255/255, txload 1/255, rxload 1/255
! lines omitted for brevity
```

When configuring a static interface IP address, you can use the `show running-config` command to see the IP address. However, when using the DHCP client, the IP address is not in the configuration, so you need to use the `show dhcp lease` command to see the (temporarily) leased IP address and other parameters.

**NOTE** Some older models of Cisco IOS switches might not support the DHCP client function on the VLAN 1 interface. Example 9-8 was taken from a 2960 switch running Cisco IOS Software Release 12.2.
Finally, the output of the **show interface vlan 1** command, shown at the end of Example 9-8, lists two very important details related to switch IP addressing. First, this **show** command lists the interface status of the VLAN 1 interface—in this case, “up and up.” If the VLAN 1 interface is not up, the switch cannot use its IP address to send and receive traffic. Notably, if you forget to issue the **no shutdown** command, the VLAN 1 interface remains in its default shutdown state and is listed as “administratively down” in the **show** command output. Second, note that the output lists the interface’s IP address on the third line of the output. If the switch fails to acquire an IP address with DHCP, the output would instead list the fact that the address will (hopefully) be acquired by DHCP. As soon as an address has been leased using DHCP, the output of the command looks like Example 9-8. However, nothing in the **show interface vlan 1** command output mentions that the address is either statically configured or DHCP-leased.

### Configuring Switch Interfaces

IOS uses the term *interface* to refer to physical ports used to forward data to and from other devices. Each interface may be configured with several settings, each of which might differ from interface to interface.

IOS uses interface subcommands to configure these settings. For instance, interfaces can be configured to use the **duplex** and **speed** interface subcommands to configure those settings statically, or an interface can use autonegotiation (the default). Example 9-9 shows how to configure duplex and speed, as well as the **description** command, which is simply a text description of what an interface does.

#### Example 9-9  Interface Configuration Basics

```
 Enter configuration commands, one per line. End with CNTL/Z.
 # Interface FastEthernet 0/1
 # Description Server1 connects here
 # Interface range FastEthernet 0/1 - 20
 # Description end-users connect here

 Port Name Status Vlan Duplex Speed Type
 Fa0/1 Server1 connects notconnect 1 full 100 10/100BaseTX
 Fa0/2 notconnect 1 auto auto 10/100BaseTX
 Fa0/3 notconnect 1 auto auto 10/100BaseTX
```

continues
You can see some of the details of interface configuration with both the `show running-config` command (not shown in the example) and the handy `show interfaces status` command. This command lists a single line for each interface, the first part of the interface description, and the speed and duplex settings. Note that interface FastEthernet 0/1 (abbreviated as Fa0/1 in the command output) lists a speed of 100, and duplex full, as configured earlier in the example. Compare those settings with Fa0/2, which does not have any cable connected yet, so the switch lists this interface with the default setting of auto, meaning autonegotiate. Also, compare these settings to interface Fa0/4, which is physically connected to a device and has completed the autonegotiation process. The command output lists the results of the autonegotiation, in this case using 100 Mbps and full duplex. The `a-in a-full` and `a-100` refers to the fact that these values were autonegotiated.

Also, note that for the sake of efficiency, you can configure a command on a range of interfaces at the same time using the `interface range` command. In the example, the `interface range FastEthernet 0/11 - 20` command tells IOS that the next subcommand(s) apply to interfaces Fa0/11 through Fa0/20.
Port Security

If the network engineer knows what devices should be cabled and connected to particular interfaces on a switch, the engineer can use port security to restrict that interface so that only the expected devices can use it. This reduces exposure to some types of attacks in which the attacker connects a laptop to the wall socket that connects to a switch port that has been configured to use port security. When that inappropriate device attempts to send frames to the switch interface, the switch can issue informational messages, discard frames from that device, or even discard frames from all devices by effectively shutting down the interface.

Port security configuration involves several steps. Basically, you need to make the port an access port, which means that the port is not doing any VLAN trunking. You then need to enable port security and then configure the actual MAC addresses of the devices allowed to use that port. The following list outlines the steps, including the configuration commands used:

**Step 1** Make the switch interface an access interface using the `switchport mode access` interface subcommand.

**Step 2** Enable port security using the `switchport port-security` interface subcommand.

**Step 3** (Optional) Specify the maximum number of allowed MAC addresses associated with the interface using the `switchport port-security maximum number` interface subcommand. (Defaults to one MAC address.)

**Step 4** (Optional) Define the action to take when a frame is received from a MAC address other than the defined addresses using the `switchport port-security violation { protect | restrict | shutdown }` interface subcommand. (The default action is to shut down the port.)

**Step 5A** Specify the MAC address(es) allowed to send frames into this interface using the `switchport port-security mac-address mac-address` command. Use the command multiple times to define more than one MAC address.

**Step 5B** Alternatively, instead of Step 5A, use the “sticky learning” process to dynamically learn and configure the MAC addresses of currently connected hosts by configuring the `switchport port-security mac-address sticky` interface subcommand.

For example, in Figure 9-2, Server 1 and Server 2 are the only devices that should ever be connected to interfaces FastEthernet 0/1 and 0/2, respectively. When you configure port security on those interfaces, the switch examines the source MAC address of all frames...
received on those ports, allowing only frames sourced from the configured MAC addresses.
Example 9-10 shows a sample port security configuration matching Figure 9-2, with
interface Fa0/1 being configured with a static MAC address, and with interface Fa0/2 using
sticky learning.

Example 9-10 Using Port Security to Define Correct MAC Addresses of Particular Interfaces

```bash
fred#show running-config
(Lines omitted for brevity)
interface FastEthernet0/1
 switchport mode access
 switchport port-security
 switchport port-security mac-address 0200.1111.1111
!
interface FastEthernet0/2
 switchport mode access
 switchport port-security
 switchport port-security mac-address sticky

fred#show port-security interface FastEthernet 0/1
Port Security : Enabled
Port Status : Secure-shutdown
Violation Mode : Shutdown
Aging Time : 0 mins
Aging Type : Absolute
SecureStatic Address Aging : Disabled
Maximum MAC Addresses : 1
Total MAC Addresses : 1
Configured MAC Addresses : 1
Sticky MAC Addresses : 0
Last Source Address:Vlan : 0013.197b.5004:1
Security Violation Count : 1

fred#show port-security interface FastEthernet 0/2
```
For FastEthernet 0/1, Server 1’s MAC address is configured with the `switchport port-security mac-address 0200.1111.1111` command. For port security to work, the 2960 must think that the interface is an access interface, so the `switchport mode access` command is required. Furthermore, the `switchport port-security` command is required to enable port security on the interface. Together, these three interface subcommands enable port security, and only MAC address 0200.1111.1111 is allowed to use the interface. This interface uses defaults for the other settings, allowing only one MAC address on the interface, and causing the switch to disable the interface if the switch receives a frame whose source MAC address is not 0200.1111.111.

Interface FastEthernet 0/2 uses a feature called sticky secure MAC addresses. The configuration still includes the `switchport mode access` and `switchport port-security` commands for the same reasons as on FastEthernet 0/1. However, the `switchport port-security mac-address sticky` command tells the switch to learn the MAC address from the first frame sent to the switch and then add the MAC address as a secure MAC to the running configuration. In other words, the first MAC address heard “sticks” to the configuration, so the engineer does not have to know the MAC address of the device connected to the interface ahead of time.

The `show running-config` output at the beginning of Example 9-10 shows the configuration for Fa0/2, before any sticky learning occurred. The end of the example shows the configuration after an address was sticky-learned, including the `switchport`
port-security mac-address sticky 0200.2222.2222 interface subcommand, which the switch added to the configuration. If you wanted to save the configuration so that only 0200.2222.2222 is used on that interface from now on, you would simply need to use the copy running-config startup-config command to save the configuration.

As it turns out, a security violation has occurred on FastEthernet 0/1 in Example 9-10, but no violations have occurred on FastEthernet 0/2. The show port-security interface fastethernet 0/1 command shows that the interface is in a secure-shutdown state, which means that the interface has been disabled due to port security. The device connected to interface FastEthernet 0/1 did not use MAC address 0200.1111.1111, so the switch received a frame in Fa0/1 with a different source MAC, causing a violation.

The switch can be configured to use one of three actions when a violation occurs. All three configuration options cause the switch to discard the offending frame, but some of the configuration options include additional actions. The actions include the sending of syslog messages to the console and SNMP trap message to the network management station, as well as whether the switch should shut down (err-disable) the interface. The shutdown option actually puts the interface in an error disabled (err-disabled) state, making it unusable. An interface in err-disabled state requires that someone manually shutdown the interface and then use the no shutdown command to recover the interface. Table 9-4 lists the options on the switchport port-security violation command and which actions each option sets.

<table>
<thead>
<tr>
<th>Option on the switchport port-security violation Command</th>
<th>Protect</th>
<th>Restrict</th>
<th>Shutdown*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discards offending traffic</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sends log and SNMP messages</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Disables the interface, discarding all traffic</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

*shutdown is the default setting.

VLAN Configuration

Cisco switch interfaces are considered to be either access interfaces or trunk interfaces. By definition, access interfaces send and receive frames only in a single VLAN, called the access VLAN. Trunking interfaces send and receive traffic in multiple VLANs. The concept and configuration for VLAN trunking is beyond the scope of this book, but it is covered in detail in the CCNA ICND2 640-816 Official Cert Guide, Chapters 1 and 3. This book focuses on VLAN configuration for access interfaces, which by definition must be assigned to a single VLAN.
For a Cisco switch to forward frames on access interfaces in a particular VLAN, the switch must be configured to believe that the VLAN exists. Additionally, the switch must have one or more access interfaces assigned to the VLAN. By default, Cisco switches already have VLAN 1 configured, and all interfaces default to be assigned to VLAN 1. However, to add another VLAN, and assign access interfaces to be in that VLAN, you can follow these steps:

**Step 1** To configure a new VLAN:

a. From configuration mode, use the `vlan vlan-id` global configuration command to create the VLAN and move the user into VLAN configuration mode.

b. (Optional) Use the `name name` VLAN subcommand to list a name for the VLAN. If not configured, the VLAN name is VLANZZZZ, where ZZZZ is the four-digit decimal VLAN ID.

**Step 2** To configure a VLAN for each access interface:

a. Use the `interface` command to move into interface configuration mode for each desired interface.

b. Use the `switchport access vlan id-number` interface subcommand to specify the VLAN number associated with that interface.

c. (Optional) To disable trunking so that the switch will not dynamically decide to use trunking on the interface, and it will remain an access interface, use the `switchport mode access` interface subcommand.

Example 9-11 shows the configuration process to add a new VLAN and assign access interfaces to it. Figure 9-3 shows the network used in the example, with one LAN switch (SW1) and two hosts in each of two VLANs (1 and 2). Example 9-11 shows the details of the two-step configuration process for VLAN 2 and the two access interfaces assigned to VLAN 2.

**Figure 9-3  Network with One Switch and Two VLANs**
### Example 9-11  Configuring VLANs and Assigning Them to Interfaces

To begin, 5 VLANs exist, with all interfaces assigned to VLAN 1 (default setting):

```
SW1#show vlan brief
```

<table>
<thead>
<tr>
<th>VLAN Name</th>
<th>Status</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>default</td>
<td>Fa0/1, Fa0/2, Fa0/3, Fa0/4, Fa0/5, Fa0/6, Fa0/7, Fa0/8, Fa0/9, Fa0/10, Fa0/11, Fa0/12, Fa0/13, Fa0/14, Fa0/15, Fa0/16, Fa0/17, Fa0/18, Fa0/19, Fa0/20, Fa0/21, Fa0/22, Fa0/23, Fa0/24, Gi0/1, Gi0/2</td>
</tr>
</tbody>
</table>

1002 fddi-default         act/unsup
1003 token-ring-default   act/unsup
1004 fddinet-default      act/unsup
1005 trnet-default        act/unsup

Above, VLAN 2 did not yet exist. Below, VLAN 2 is added, with name Freds-vlan, with two interfaces assigned to VLAN 2.

```
SW1#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

SW1(config)#vlan 2
SW1(config-vlan)#name Freds-vlan
SW1(config-vlan)#exit

SW1(config-if)#interface range fastEthernet 0/13 - 14
SW1(config-if)#switchport access vlan 2
SW1(config-if)#exit

```

Below, the `show running-config` command lists the interface subcommands on interfaces Fa0/13 and Fa0/14. The `vlan 2` and `name Freds-vlan` commands do not show up in the running-config.

```
SW1#show running-config

lines omitted for brevity

interface FastEthernet0/13
 switchport access vlan 2
 switchport mode access

interface FastEthernet0/14
 switchport access vlan 2
 switchport mode access

```

```
SW1#show vlan brief
```

<table>
<thead>
<tr>
<th>VLAN Name</th>
<th>Status</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>default</td>
<td>Fa0/1, Fa0/2, Fa0/3, Fa0/4, Fa0/5, Fa0/6, Fa0/7, Fa0/8, Fa0/9, Fa0/10, Fa0/11, Fa0/12, Fa0/13, Fa0/14, Fa0/15, Fa0/16, Fa0/17, Fa0/18, Fa0/19, Fa0/20, Fa0/21, Fa0/22, Fa0/23, Fa0/24, Gi0/1, Gi0/2</td>
</tr>
</tbody>
</table>
The example begins with the `show vlan brief` command confirming the default settings of five nondeletable VLANs (VLANs 1 and 1002–1005), with all interfaces assigned to VLAN 1. In particular, note that this 2960 switch has 24 Fast Ethernet ports (Fa0/1–Fa0/24) and two Gigabit Ethernet ports (G0/1 and G0/2), all of which are listed as being assigned to VLAN 1.

Following the first `show vlan brief` command, the example shows the entire configuration process. The configuration shows the creation of VLAN 2, named “Freds-vlan,” and the assignment of interfaces Fa0/13 and Fa0/14 to VLAN 2. Note in particular that the example uses the `interface range` command, which causes the `switchport access vlan 2` interface subcommand to be applied to both interfaces in the range, as confirmed in the `show running-config` command output at the end of the example.

After the configuration has been added, to list the new VLAN, the example repeats the `show vlan brief` command. Note that this command lists VLAN 2, named “Freds-vlan,” and the interfaces assigned to that VLAN (Fa0/13 and Fa0/14).

### Securing Unused Switch Interfaces
Cisco originally chose the default interface configuration settings on Cisco switches so that the interfaces would work without any overt configuration. The interfaces automatically negotiate the speed and duplex, and each interface begins in an enabled (no shutdown) state, with all interfaces assigned to VLAN 1. Additionally, every interface defaults to negotiate to use VLAN features called VLAN trunking and VLAN Trunking Protocol (VTP), which are covered in more detail in Chapter 2 of the CCNA ICND2 640-816 Official Cert Guide.

The good intentions of Cisco for “plug and play” operation have an unfortunate side effect in that the defaults expose switches to some security threats. So, for any currently unused switch interfaces, Cisco makes some general recommendations to override the default
interface settings to make the unused ports more secure. The recommendations for unused interfaces are as follows:

- Administratively disable the interface using the `shutdown` interface subcommand.
- Prevent VLAN trunking and VTP by making the port a nontrunking interface using the `switchport mode access` interface subcommand.
- Assign the port to an unused VLAN using the `switchport access vlan number` interface subcommand.

Frankly, if you just shut down the interface, the security exposure goes away, but the other two tasks prevent any immediate problems if someone else comes around and enables the interface by configuring a `no shutdown` command.
Exam Preparation Tasks

Review All the Key Topics

Review the most important topics from this chapter, noted with the key topics icon. Table 9-5 describes these key topics and where each is discussed.

**NOTE** There is no need to memorize any configuration step list referenced as a key topic; these lists are just study aids.

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 9-1</td>
<td>Example showing basic password configuration</td>
<td>243-244</td>
</tr>
<tr>
<td>Figure 9-1</td>
<td>Five-step SSH configuration process example</td>
<td>246</td>
</tr>
<tr>
<td>List</td>
<td>Five-step list for SSH configuration</td>
<td>246</td>
</tr>
<tr>
<td>List</td>
<td>Key points about <code>enable secret</code> and <code>enable password</code></td>
<td>250</td>
</tr>
<tr>
<td>Table 9-3</td>
<td>List of commands related to the command history buffer</td>
<td>253</td>
</tr>
<tr>
<td>List</td>
<td>Configuration checklist for a switch’s IP address and default gateway configuration</td>
<td>255</td>
</tr>
<tr>
<td>List</td>
<td>Port security configuration checklist</td>
<td>259</td>
</tr>
<tr>
<td>Table 9-4</td>
<td>Port security actions and the results of each action</td>
<td>262</td>
</tr>
<tr>
<td>List</td>
<td>VLAN configuration checklist</td>
<td>263</td>
</tr>
<tr>
<td>List</td>
<td>Suggested security actions for unused switch ports</td>
<td>266</td>
</tr>
<tr>
<td>Table 9-7</td>
<td><code>show</code> and <code>debug</code> command reference (at the end of the chapter). This chapter describes many small but important commands!</td>
<td>271</td>
</tr>
</tbody>
</table>

Complete the Tables and Lists from Memory

Print a copy of Appendix L, “Memory Tables” (found on the DVD), or at least the section for this chapter, and complete the tables and lists from memory. Appendix M, “Memory Tables Answer Key,” also on the DVD, includes completed tables and lists for you to check your work.
Definitions of Key Terms

Define the following key terms from this chapter and check your answers in the glossary:

access interface, trunk interface

Command References

Table 9-6 lists and briefly describes the configuration commands used in this chapter.

<table>
<thead>
<tr>
<th>Command</th>
<th>Mode/Purpose/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Basic Password Configuration</strong></td>
<td>The following four commands are related to basic password configuration.</td>
</tr>
<tr>
<td>line console 0</td>
<td>Changes the context to console configuration mode.</td>
</tr>
<tr>
<td>line vty 1st-vty 2nd-vty</td>
<td>Changes the context to vty configuration mode for the range of vty lines listed in the command.</td>
</tr>
<tr>
<td>login</td>
<td>Console and vty configuration mode. Tells IOS to prompt for a password.</td>
</tr>
<tr>
<td>password pass-value</td>
<td>Console and vty configuration mode. Lists the password required if the login command (with no other parameters) is configured.</td>
</tr>
<tr>
<td><strong>Username/Password and SSH Configuration</strong></td>
<td>The following four commands are related to username/password and SSH configuration.</td>
</tr>
<tr>
<td>login local</td>
<td>Console and vty configuration mode. Tells IOS to prompt for a username and password, to be checked against locally configured username global configuration commands on this switch or router.</td>
</tr>
<tr>
<td>username name password pass-value</td>
<td>Global command. Defines one of possibly multiple usernames and associated passwords, used for user authentication. Used when the login local line configuration command has been used.</td>
</tr>
</tbody>
</table>
### Table 9-6  Chapter 9 Configuration Command Reference (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Mode/Purpose/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>crypto key generate rsa</td>
<td>Global command. Creates and stores (in a hidden location in flash memory) the keys required by SSH.</td>
</tr>
<tr>
<td>transport input {telnet</td>
<td>vty line configuration mode. Defines whether Telnet and/or SSH access is allowed into this switch. Both values can be configured on one command to allow both Telnet and SSH access (the default).</td>
</tr>
<tr>
<td></td>
<td>ssh}</td>
</tr>
</tbody>
</table>

**IP Address Configuration**
The following four commands are related to IP address configuration.

<table>
<thead>
<tr>
<th>Command</th>
<th>Mode/Purpose/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface vlan number</td>
<td>Changes the context to VLAN interface mode. For VLAN 1, allows the configuration of the switch’s IP address.</td>
</tr>
<tr>
<td>ip address ip-address subnet-mask</td>
<td>VLAN interface mode. Statically configures the switch’s IP address and mask.</td>
</tr>
<tr>
<td>ip address dhcp</td>
<td>VLAN interface mode. Configures the switch as a DHCP client to discover its IP address, mask, and default gateway.</td>
</tr>
<tr>
<td>ip default-gateway address</td>
<td>Global command. Configures the switch’s default gateway IP address. Not required if the switch uses DHCP.</td>
</tr>
</tbody>
</table>

**Interface Configuration**
The following six commands are related to interface configuration.

<table>
<thead>
<tr>
<th>Command</th>
<th>Mode/Purpose/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface type port-number</td>
<td>Changes context to interface mode. The type is typically FastEthernet or gigabitEthernet. The possible port numbers vary depending on the model of switch—for example, Fa0/1, Fa0/2, and so on.</td>
</tr>
<tr>
<td>interface range type port-range</td>
<td>Changes the context to interface mode for a range of consecutively numbered interfaces. The subcommands that follow then apply to all interfaces in the range.</td>
</tr>
<tr>
<td>shutdown</td>
<td>Interface mode. Disables or enables the interface, respectively.</td>
</tr>
<tr>
<td>no shutdown</td>
<td></td>
</tr>
<tr>
<td>speed [10</td>
<td>100</td>
</tr>
</tbody>
</table>
### Table 9-6 Chapter 9 Configuration Command Reference (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Mode/Purpose/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>duplex</strong> {auto</td>
<td>full</td>
</tr>
<tr>
<td><strong>description</strong> text</td>
<td>Interface mode. Lists any information text that the engineer wants to track for the interface, such as the expected device on the other end of the cable.</td>
</tr>
</tbody>
</table>

**Miscellaneous**

The remaining commands are related to miscellaneous configuration topics.

<table>
<thead>
<tr>
<th>Command</th>
<th>Mode/Purpose/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>hostname</strong> name</td>
<td>Global command. Sets this switch’s hostname, which is also used as the first part of the switch’s command prompt.</td>
</tr>
<tr>
<td><strong>enable secret</strong> pass-value</td>
<td>Global command. Sets this switch’s password that is required for any user to reach enable mode.</td>
</tr>
<tr>
<td><strong>history size</strong> length</td>
<td>Line config mode. Defines the number of commands held in the history buffer, for later recall, for users of those lines.</td>
</tr>
<tr>
<td><strong>switchport port-security mac-address</strong> mac-address</td>
<td>Interface configuration mode command that statically adds a specific MAC address as an allowed MAC address on the interface.</td>
</tr>
<tr>
<td><strong>switchport port-security mac-address sticky</strong></td>
<td>Interface subcommand that tells the switch to learn MAC addresses on the interface and add them to the configuration for the interface as secure MAC addresses.</td>
</tr>
<tr>
<td><strong>switchport port-security maximum</strong> value</td>
<td>Interface subcommand that sets the maximum number of static secure MAC addresses that can be assigned to a single interface.</td>
</tr>
<tr>
<td><strong>switchport port-security violation</strong> {protect</td>
<td>restrict</td>
</tr>
</tbody>
</table>
Table 9-7 lists and briefly describes the EXEC commands used in this chapter.

**Table 9-7  Chapter 9 EXEC Command Reference**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show mac address-table dynamic</code></td>
<td>Lists the dynamically learned entries in the switch’s address (forwarding) table.</td>
</tr>
<tr>
<td><code>show dhcp lease</code></td>
<td>Lists any information the switch acquires as a DHCP client. This includes IP address, subnet mask, and default gateway information.</td>
</tr>
<tr>
<td><code>show crypto key mypubkey rsa</code></td>
<td>Lists the public and shared key created for use with SSH using the <code>crypto key generate rsa</code> global configuration command.</td>
</tr>
<tr>
<td><code>show interfaces status</code></td>
<td>Lists one output line per interface, noting the description, operating state, and settings for duplex and speed on each interface.</td>
</tr>
<tr>
<td><code>show interfaces vlan 1</code></td>
<td>Lists the interface status, the switch’s IP address and mask, and much more.</td>
</tr>
<tr>
<td><code>show port-security interface type number</code></td>
<td>Lists an interface’s port security configuration settings and security operational status.</td>
</tr>
</tbody>
</table>
This chapter covers the following subjects:

**Perspectives on Network Verification and Troubleshooting:** This is the first chapter dedicated to troubleshooting, and this section introduces the concept of troubleshooting computer networks.

**Verifying the Network Topology with Cisco Discovery Protocol:** This section focuses on CDP—specifically, how it can be used to verify network documentation.

**Analyzing Layer 1 and 2 Interface Status:**
This section explains how to find and interpret interface status and how to find problems even when the interface appears to be working.

**Analyzing the Layer 2 Forwarding Path with the MAC Address Table:**
This section examines how to link the concepts of how switches forward frames with the output of switch `show` commands.
This chapter has two main goals. First, it covers the remaining Ethernet-oriented topics for this book—specifically, some of the commands and concepts related to verifying that a switched Ethernet LAN works. If the network doesn’t work, this chapter suggests tools you can use to find out why. Additionally, this chapter suggests some troubleshooting methods and practices that might improve your troubleshooting skills. Although the troubleshooting processes explained in this book are not directly tested on the exams, they can help you prepare to correctly answer some of the more difficult exam questions.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess whether you should read the entire chapter. If you miss no more than one of these eight self-assessment questions, you might want to move ahead to the “Exam Preparation Tasks” section. Table 10-1 lists the major headings in this chapter and the “Do I Know This Already?” quiz questions covering the material in those sections. This helps you assess your knowledge of these specific areas. The answers to the “Do I Know This Already?” quiz appear in Appendix A.

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perspectives on Network Verification and Troubleshooting</td>
<td>—</td>
</tr>
<tr>
<td>Verifying the Network Topology with Cisco Discovery Protocol</td>
<td>1, 2</td>
</tr>
<tr>
<td>Analyzing Layer 1 and 2 Interface Status</td>
<td>3–6</td>
</tr>
<tr>
<td>Analyzing the Layer 2 Forwarding Path with the MAC Address Table</td>
<td>7, 8</td>
</tr>
</tbody>
</table>
1. Imagine that a switch connects via an Ethernet cable to a router, and the router’s hostname is Hannah. Which of the following commands could tell you information about the IOS version on Hannah without establishing a Telnet connection to Hannah? (Choose two answers.)
   a. `show neighbor Hannah`
   b. `show cdp`
   c. `show cdp neighbor`
   d. `show cdp neighbor Hannah`
   e. `show cdp entry Hannah`
   f. `show cdp neighbor detail`

2. Which of the following CDP commands could identify a neighbor’s model of hardware? (Choose two answers.)
   a. `show neighbors`
   b. `show neighbors Hannah`
   c. `show cdp`
   d. `show cdp interface`
   e. `show cdp neighbors`
   f. `show cdp entry Hannah`

3. The output of the `show interfaces status` command on a 2960 switch shows interface Fa0/1 in a “disabled” state. Which of the following is true about interface Fa0/1? (Choose three answers.)
   a. The interface is configured with the `shutdown` command.
   b. The `show interfaces fa0/1` command will list the interface with two status codes of administratively down and down.
   c. The `show interfaces fa0/1` command will list the interface with two status codes of up and down.
   d. The interface cannot currently be used to forward frames.
   e. The interface can currently be used to forward frames.
4. Switch SW1 uses its gigabit 0/1 interface to connect to switch SW2’s gigabit 0/2 interface. SW2’s Gi0/2 interface is configured with the `speed 1000` and `duplex full` commands. SW1 uses all defaults for interface configuration commands on its Gi0/1 interface. Which of the following is true about the link after it comes up? (Choose two answers.)
   a. The link works at 1000 Mbps (1 Gbps).
   b. SW1 attempts to run at 10 Mbps because SW2 has effectively disabled IEEE standard autonegotiation.
   c. The link runs at 1 Gbps, but SW1 uses half duplex, and SW2 uses full duplex.
   d. Both switches use full duplex.

5. The following line of output was taken from a `show interfaces fa0/1` command:

```
Full-duplex, 100Mbps, media type is 10/100BaseTX
```

Which of the following is/are true about the interface? (Choose two answers.)
   a. The speed was definitely configured with the `speed 100` interface subcommand.
   b. The speed may have been configured with the `speed 100` interface subcommand.
   c. The duplex was definitely configured with the `duplex full` interface subcommand.
   d. The duplex may have been configured with the `duplex full` interface subcommand.

6. Switch SW1, a Cisco 2960 switch, has all default settings on interface Fa0/1, the `speed 100` command configured on Fa0/2, and both the `speed 100` and `duplex half` commands on Fa0/3. Each interface is cabled to a 10/100 port on different Cisco 2960 switches, with those switches using all default settings. Which of the following is true about the interfaces on the other 2960 switches? (Choose three answers.)
   a. The interface connected to SW1’s Fa0/1 runs at 100 Mbps and full duplex.
   b. The interface connected to SW1’s Fa0/2 runs at 100 Mbps and full duplex.
   c. The interface connected to SW1’s Fa0/3 runs at 100 Mbps and full duplex.
   d. The interface connected to SW1’s Fa0/3 runs at 100 Mbps and half duplex.
   e. The interface connected to SW1’s Fa0/2 runs at 100 Mbps and half duplex.
7. A frame just arrived on switch SW2’s interface Fa0/3, with source MAC 0200.1111.1111 and destination MAC address 0200.2222.2222. Interface Fa0/3 is assigned to VLAN 2. Considering the output from SW2 below, which of the following answers must be true regarding what the switch does with this frame?

```
SW2#show mac address-table
Mac Address Table

Vlan Mac Address Type Ports
------ ----------- -------- -----
1 0200.1111.1111 DYNAMIC Gi0/2
1 0200.2222.2222 DYNAMIC Fa0/13
Total Mac Addresses for this criterion: 2
```

a. The switch will discard the frame.
b. The switch will forward the frame out port Fa0/13.
c. The switch will change the existing entry for 0200.1111.1111 as seen in the command output, only changing the interface to Fa0/3.
d. The switch will forward the frame out both Gi0/2 and Fa0/13.
e. The switch will add a new entry to the MAC table for 0200.1111.1111.

8. Which of the following commands list the MAC address table entries for MAC addresses configured by port security? (Choose two answers.)

a. `show mac address-table dynamic`
b. `show mac address-table`
c. `show mac address-table static`
d. `show mac address-table port-security`
Foundation Topics

This chapter contains the first specific coverage of topics related to verification and troubleshooting. Verification refers to the process of examining a network to confirm that it is working as designed. Troubleshooting refers to examining the network to determine what is causing a particular problem so that it can be fixed.

As mentioned in the Introduction to this book, over the years, the CCNA exams have been asking more and more questions related to verification and troubleshooting. Each of these questions typically uses a unique topology. They typically require you to apply networking knowledge to unique problems, rather than just being ready to answer questions about lists of facts you’ve memorized. (For more information and perspectives on these types of exam questions, go back to the Introduction to this book, in the section titled “Format of the CCNA Exams.”)

To help you prepare to answer questions that require troubleshooting skills, this book and the CCNA ICND2 640-816 Official Cert Guide devote several chapters, plus sections of other chapters, to verification and troubleshooting. This chapter is the first such chapter in either book, so this chapter begins with some perspectives on troubleshooting networking problems. Following this coverage, the chapter examines three major topics related to troubleshooting networks built with LAN switches.

Perspectives on Network Verification and Troubleshooting

NOTE The information in this section is a means to help you learn troubleshooting skills. However, the specific processes and comments in this section, up to the next major heading (“Verifying the Network Topology with Cisco Discovery Protocol”), do not cover any specific exam objective for any of the CCNA exams.

You need several skills to be ready to answer the more challenging questions on today’s CCNA exams. However, the required skills differ when comparing the different types of questions. This section starts with some perspectives on the various question types, followed by some general comments on troubleshooting.

Attacking Sim Questions

Sim questions provide a text description of a network, a network diagram, and software that simulates the network. Regardless of the details, sim questions can be reduced to the following: “The network is not working completely, so either complete the configuration,
or find a problem with the existing configuration and fix it.” In short, the solution to a sim question is by definition a configuration change.

One plan of attack for these problems is to use a more formalized troubleshooting process in which you examine each step in how data is forwarded from the sending host to the destination host. However, studies and experience show that when engineers think that the configuration might have a problem, the first troubleshooting step is to look at the various configuration files. To find and solve Sim questions on the exam, quickly comparing the router and/or switch configuration to what you remember about the normal configuration needed (based on the question text) might be all you require.

Sim questions do allow you to have more confidence about whether your answer is correct, at least for the technologies covered on the CCNA exams. The correct answer should solve the original problem. For example, if the sim question essentially states “Router R1 cannot ping router R2; fix it,” you can use pings to test the network and confirm that your configuration changes solved the problem.

If you cannot find the problem by looking at the configuration, a more detailed process is required, mainly using show commands. The troubleshooting chapters and sections in this book and in the CCNA ICND2 640-816 Official Cert Guide combine to provide the details of the more complex processes for examining different types of problems.

**Simlet Questions**

Simlet questions can force the exam taker to interpret the meaning of various show and debug commands. Simlet questions might not tell you the enable password, so you cannot even look at the configuration, removing the option to simply look at the configuration to find the root cause of a problem. In that case, the question text typically states the details of the scenario, requiring you to remember or find the right show commands, use them, and then interpret the output. Also, because simlet questions might not allow you to change the configuration, you do not get the positive feedback that your answer is correct.

For example, a simlet question may show a diagram of a switched LAN, stating that PC1 can ping PC2 but not PC3. You would need to remember the correct show commands to use (or take the time to find the commands using the ? key) to find the root cause of the problem.

You can use several different approaches to attack these types of problems; no single way is necessarily better than another. The first step is to think about what should normally occur in the network, based on any network diagram and information in the question. Then, many people start by trying the show commands (that they remember) that are somehow related to the question. The question text probably gives some hints as to the problem area. For example, maybe the problem is related to port security. Many people then just try the
commands they know that are related to that topic, such as `show port-security`, just to see if the answer jumps out at them—and that’s a reasonable plan of attack. This plan uses common sense, and intuition to some degree, and it can work well and quickly.

If the answer does not become obvious when you look at the most obvious commands, a more organized approach may be useful. The troubleshooting chapters in this book, and large troubleshooting sections of other chapters, review technology and suggest a more organized approach to each topic—approaches that may be useful when the answer does not quickly become obvious.

**Multiple-Choice Questions**

Like simlets, multiple-choice questions can force the exam taker to interpret the meaning of various `show` and `debug` commands. Multiple-choice questions might simply list the output of some commands, along with a figure, and ask you to identify what would happen. For example, a multiple-choice question might show the `show mac address-table dynamic` command that lists a switch’s dynamically learned MAC table entries. The question may then require you to predict how that switch would forward a frame sent by one device, destined for another device. This would require you to apply the concepts of LAN switching to the output shown in the command.

Multiple-choice questions that list `show` and `debug` command output require much of the same thinking as simlet questions. As with simlet questions, the first step for some multiple-choice questions is to think about what should normally occur in the network, based on any network diagram and information in the question. Next, compare the information in the question text, including the sample command output, to see if it confirms that the network is working normally, or if there is a problem. (The network might be working correctly, and the question is designed to confirm that you know why a particular command confirms that a particular part of the network is working well.) The big difference in this case, however, is that the multiple-choice questions do not require you to remember the commands to use. The command output is either supplied in the question, or it is not.

**NOTE** Refer to [http://www.cisco.com/web/learning/wwtraining/certprog/training/cert_exam_tutorial.html](http://www.cisco.com/web/learning/wwtraining/certprog/training/cert_exam_tutorial.html) for a tutorial about the various types of CCNA exam questions.

**Approaching Questions with an Organized Troubleshooting Process**

If the answer to a sim, simlet, or multiple-choice question is not obvious after you use the more obvious and quicker options just discussed, you need to implement a more thorough and organized thought process. This more organized process may well be what a typical network engineer would do when faced with more complex real-world problems.
Unfortunately, the exams are timed, and thinking through the problem in more detail requires more time.

By thinking through the troubleshooting process as you prepare for the exam, you can be better prepared to attack problems on the exam. To that end, this book includes many suggested troubleshooting processes. The troubleshooting processes are not ends unto themselves, so you do not need to memorize them for the exams. They are a learning tool, with the ultimate goal being to help you correctly and quickly find the answers to the more challenging questions on the exams.

This section gives an overview of a general troubleshooting process. As you progress through this book, the process will be mentioned occasionally as it relates to other technology areas, such as IP routing. The three major steps in this book’s organized troubleshooting process are as follows:

**Step 1**  Analyzing/predicting normal operation: Predict the details of what should happen if the network is working correctly, based on documentation, configuration, and `show` and `debug` command output.

**Step 2**  Problem isolation: Determine how far along the expected path the frame/packet goes before it cannot be forwarded any further, again based on documentation, configuration, and `show` and `debug` command output.

**Step 3**  Root cause analysis: Identify the underlying causes of the problems identified in the preceding step—specifically, the causes that have a specific action with which the problem can be fixed.

Following this process requires a wide variety of learned skills. You need to remember the theory of how networks should work, as well as how to interpret the `show` command output that confirms how the devices are currently behaving. This process requires the use of testing tools, such as `ping` and `traceroute`, to isolate the problem. Finally, this approach requires the ability to think broadly about everything that could affect a single component.

For example, imagine a simple LAN with two switches connected to each other, and two PCs (PC1 and PC2) each connected to one of the switches. Originally, PC1 could ping PC2 successfully, but the ping now fails. You could examine the documentation, as well as `show` command output, to confirm the network topology and predict its normal working behavior based on your knowledge of LAN switching. As a result, you could predict where a frame sent by PC1 to PC2 should flow. To isolate the problem, you could look in the switch MAC tables to confirm the interfaces out which the frame should be forwarded, possibly then finding that the interface connected to PC2 has failed. However, knowing that the interface has failed does not identify the root cause of the problem. So you would then need to broaden your thinking to any and all reasons why an interface might fail—from an
unplugged cable, to electrical interference, to port security disabling the interface. *show* commands can either confirm that a specific root cause is the problem, or at least give some hints as to the root cause.

**Isolating Problems at Layer 3, and Then at Layers 1 and 2**

Before moving to the specific topics on Ethernet LAN troubleshooting, it is helpful to consider the larger picture. Most troubleshooting in real IP networks today begins with what the end user sees and experiences. From there, the analysis typically moves quickly to an examination of how well Layer 3 is working. For example, imagine that the user of PC1 in Figure 10-1 can usually connect to the web server on the right by entering www.example.com in PC1’s web browser, but the connection to the web server currently fails. The user calls the help desk, and the problem is assigned to a network engineer to solve.

![Layer 3 Problem Isolation](image)

After knowing about the problem, the engineer can work to confirm that PC1 can resolve the hostname (www.example.com) into the correct IP address. At that point, the Layer 3 IP problem isolation process can proceed, to determine which of the six routing steps shown in the figure has failed. The routing steps shown in Figure 10-1 are as follows:

**Step 1** PC1 sends the packet to its default gateway (R1) because the destination IP address is in a different subnet.

**Step 2** R1 forwards the packet to R2 based on R1’s routing table.

**Step 3** R2 forwards the packet to the web server based on R2’s routing table.

**Step 4** The web server sends a packet back toward PC1 based on the web server’s default gateway setting (R2).

**Step 5** R2 forwards the packet destined for PC1 by forwarding the packet to R1 according to R2’s routing table.

**Step 6** R1 forwards the packet to PC1 based on R1’s routing table.
Chapter 10, “Ethernet Switch Troubleshooting,” examines this process in much greater detail. For now, consider what happens if the Layer 3 problem isolation process discovers that Step 1, 3, 4, or 6 is the step that fails. Further isolating the problem would require more Layer 3 analysis. However, at some point, all the potential problems at Layer 3 might be ruled out, so the next problem isolation step would be to figure out why the Layer 1 and 2 details at that routing step do not work.

For example, imagine that the Layer 3 analysis determined that PC1 cannot even send a packet to its default gateway (R1), meaning that Step 1 in Figure 10-1 fails. To further isolate the problem and find the root causes, the engineer would need to determine the following:

- The MAC address of PC1 and of R1’s LAN interface
- The switch interfaces used on SW1 and SW2
- The interface status of each interface
- The expected forwarding behavior of a frame sent by PC1 to R1 as the destination MAC address

By gathering and analyzing these facts, the engineer can most likely isolate the problem’s root cause and fix it.

**Troubleshooting as Covered in This Book**

This book has three main troubleshooting chapters or sections, plus a few smaller troubleshooting sections interspersed in other chapters. The main coverage is as follows:

- Chapter 10, “Ethernet Switch Troubleshooting”
- Chapter 21, “Troubleshooting IP Routing”
- Chapter 23, “WAN Configuration”

Essentially, Chapter 21 covers the analysis of problems related to Layer 3, as generally shown in Figure 10-1. This chapter covers some of the details of how to attack problems as soon as you know that the problem may be related to a LAN. Chapter 23 covers the troubleshooting steps in cases where the problem might be with a WAN link.

These three troubleshooting chapters spend some time on the more formalized troubleshooting process, but as a means to an end—focusing on predicting normal behavior, isolating problems, and determining the root cause. The end goal is to help you know the tools, concepts, configuration commands, and how to analyze a network based on show commands to solve a problem.
Verifying the Network Topology with Cisco Discovery Protocol

If you have both this book and the *CCNA ICND2 640-816 Official Cert Guide*, the ICND2 book provides even more details about troubleshooting and how to use a more formalized troubleshooting process, if needed. The reason for putting more detail in the ICND2 book is that by the time you reach the troubleshooting topics in that book, you will have completed all the CCNA-level materials for a particular technology area. Because troubleshooting requires interpreting a broad range of concepts, configuration, and command output, the ICND2 book’s troubleshooting chapters/sections occur at the end of each major topic, summarizing the important materials and helping show how the topics are interrelated.

The rest of this chapter examines three major topics, each of which has something to do with at least one of the three major components of the formalized troubleshooting process:

- **Cisco Discovery Protocol (CDP):** Used to confirm the documentation, and learn about the network topology, to predict normal operation of the network.

- **Examining interface status:** Interfaces must be in a working state before a switch will forward frames on the interface. You must determine if an interface is working, as well as determine the potential root causes for a failed switch interface.

- **Analyzing where frames will be forwarded:** You must know how to analyze a switch’s MAC address table and how to then predict how a switch will forward a particular frame.

**Verifying the Network Topology with Cisco Discovery Protocol**

The proprietary Cisco Discovery Protocol (CDP) discovers basic information about neighboring routers and switches without needing to know the passwords for the neighboring devices. To discover information, routers and switches send CDP messages out each of their interfaces. The messages essentially announce information about the device that sent the CDP message. Devices that support CDP learn information about others by listening for the advertisements sent by other devices.

From a troubleshooting perspective, CDP can be used to either confirm or fix the documentation shown in a network diagram, or even discover the devices and interfaces used in a network. Confirming that the network is actually cabled to match the network diagram is a good step to take before trying to predict the normal flow of data in a network.

On media that support multicasts at the data link layer, CDP uses multicast frames; on other media, CDP sends a copy of the CDP update to any known data-link addresses. So, any CDP-supporting device that shares a physical medium with another CDP-supporting device can learn about the other device.
CDP discovers several useful details from the neighboring Cisco devices:

- **Device identifier**: Typically the hostname
- **Address list**: Network and data-link addresses
- **Local interface**: The interface on the router or switch issuing the `show cdp` command with which the neighbor was discovered
- **Port identifier**: Text that identifies the port used by the neighboring device to send CDP messages to the local device
- **Capabilities list**: Information on what type of device it is (for instance, a router or a switch)
- **Platform**: The model and OS level running in the device

Table 10-2 lists the `show cdp` EXEC commands that include at least some of the details from the preceding list.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show cdp neighbors [type number]</code></td>
<td>Lists one summary line of information about each neighbor, or just the neighbor found on a specific interface if an interface was listed.</td>
</tr>
<tr>
<td><code>show cdp neighbors detail</code></td>
<td>Lists one large set (approximately 15 lines) of information, one set for every neighbor.</td>
</tr>
<tr>
<td><code>show cdp entry name</code></td>
<td>Lists the same information as the <code>show cdp neighbors detail</code> command, but only for the named neighbor (case-sensitive).</td>
</tr>
</tbody>
</table>

Like many switch and router features that are enabled by default, CDP actually creates a security exposure when enabled. To avoid the possibility of allowing an attacker to learn details about each switch, CDP can be easily disabled. Cisco recommends that CDP be disabled on all interfaces that do not have a specific need for it. The most likely interfaces to need to use CDP are interfaces connected to other Cisco routers and switches and interfaces connected to Cisco IP Phones. Otherwise, CDP can be disabled per interface using the `no cdp enable` interface subcommand. (The `cdp enable` interface subcommand re-enables CDP.) Alternatively, the `no cdp run` global command disables CDP for the entire switch, with the `cdp run` global command re-enabling CDP globally.

Figure 10-2 shows a small network with two switches, one router, and a couple of PCs. Example 10-1 shows the `show` commands listed in Table 10-2, as well as several commands that list information about CDP itself, rather than about neighboring devices.
Figure 10-2  Small Network Used in CDP Examples

Example 10-1  show cdp Command Examples: SW2

```
show cdp ?
 entry Information for specific neighbor entry
 interface CDP interface status and configuration
 neighbors CDP neighbor entries
 traffic CDP statistics
 | Output modifiers
 <cr>

! Next, the `show cdp neighbors` command lists SW2's local interface, and both R1's
! and SW1's interfaces (in the 'port' column), along with other details.

SW2#show cdp neighbors
capability codes: r - router, t - trans bridge, b - source route bridge
 s - switch, h - host, i - igmp, r - repeater, p - phone

<table>
<thead>
<tr>
<th>Device ID</th>
<th>Local Intf</th>
<th>Holdtime</th>
<th>Capability</th>
<th>Platform</th>
<th>Port ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW1</td>
<td>Gig 0/2</td>
<td>173</td>
<td>S I</td>
<td>WS-C2960-2Gig 0/1</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>Fas 0/13</td>
<td>139</td>
<td>R S I</td>
<td>1841</td>
<td>Fas 0/1</td>
</tr>
</tbody>
</table>
```

continues
Example 10-1  show cdp Command Examples: SW2 (Continued)

```
Version :
Cisco IOS Software, C2960 Software (C2960-LANBASEK9-M), Version 12.2(25)SEE2, RELEASE SOFTWARE (fc1)
Copyright (c) 1986-2006 by Cisco Systems, Inc.
Compiled Fri 28-Jul-06 11:57 by yenanh

advertisement version: 2
Protocol Hello: OUI=0x00000C, Protocol ID=0x0112; payload len=27,
 value=00000000FFFFFFFF010221FF000
 000000000019E6A6F80FF0000
VTP Management Domain: 'fred'
Native VLAN: 1
Duplex: full
Management address(es):
 ! The info for router R1 follows.

Device ID: R1
Entry address(es):
 IP address: 10.1.1.1
Platform: Cisco 1841, Capabilities: Router Switch IGMP
Interface: FastEthernet0/13, Port ID (outgoing port): FastEthernet0/1
Holdtime : 131 sec

Version :
Cisco IOS Software, 1841 Software (C1841-ADVENTERPRISEK9-M), Version 12.4(9)T, RELEASE SOFTWARE (fc1)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2006 by Cisco Systems, Inc.
Compiled Fri 16-Jun-06 21:26 by prod_rel_team

advertisement version: 2
VTP Management Domain: ''
Duplex: full
Management address(es):
 ! Note that the show cdp entry R1 command repeats the same information shown in
 ! the show cdp neighbors detail command, but just for R1.
SW2#show cdp entry R1

Device ID: R1
Entry address(es):
 IP address: 10.1.1.1
Platform: Cisco 1841, Capabilities: Router Switch IGMP
Interface: FastEthernet0/13, Port ID (outgoing port): FastEthernet0/1
Holdtime : 176 sec
```
Example 10-1  show cdp Command Examples: SW2 (Continued)

```
Version :
Cisco IOS Software, 1841 Software (C1841-ADVENTERPRISEK9-M), Version 12.4(9)T, RELEASE SOFTWARE (fc1)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2006 by Cisco Systems, Inc.
Compiled Fri 16-Jun-06 21:26 by prod_rel_team

advertisement version: 2
VTP Management Domain: '
Duplex: full
Management address(es):
SW2#show cdp
Global CDP information:
 Sending CDP packets every 60 seconds
 Sending a holdtime value of 180 seconds
 Sending CDPv2 advertisements is enabled
SW2#show cdp interfaces
FastEthernet0/1 is administratively down, line protocol is down
 Encapsulation ARPA
 Sending CDP packets every 60 seconds
 Holdtime is 180 seconds
FastEthernet0/2 is administratively down, line protocol is down
 Encapsulation ARPA
 Sending CDP packets every 60 seconds
 Holdtime is 180 seconds
!
! Lines omitted for brevity
!
SW2#show cdp traffic
CDP counters :
 Total packets output: 54, Input: 49
 Hdr syntax: 0, Chksum error: 0, Encaps failed: 0
 No memory: 0, Invalid packet: 0, Fragmented: 0
 CDP version 1 advertisements output: 0, Input: 0
 CDP version 2 advertisements output: 54, Input: 49
```

A little more than the first half of the example shows a comparison of the output of the three commands listed in Table 10-2. The show cdp neighbors command lists one line per neighbor, but with lots of key details such as the local device’s interface used to connect to the neighbor and the neighboring device’s interface (under the Port heading). For example, SW2’s show cdp neighbors command lists an entry for SW1, with SW2’s local interface of Gi0/2, and SW1’s interface of Gi0/1 (see Figure 10-2 for reference). The show cdp neighbors output also lists the platform, so if you know the Cisco product line to some degree, you know the specific model of the neighboring router or switch. So, even using this basic information, you could either construct a figure like Figure 10-2 or confirm that the details in the figure are correct.
Take a few moments to examine the output of the `show cdp neighbors detail` command and the `show cdp entry R1` commands in Example 10-1. Both commands supply the exact same messages, with the first supplying the information for all neighbors, rather than for one neighbor at a time. Note that the output of these two commands lists additional details, such as the full name of the model of switch (WS-2960-24TT-L) and the IP address configured on the 1841 router. (Had SW1’s IP address been configured, it would also have been displayed.)

The bottom portion of Example 10-1 lists sample output from some of the `show cdp` commands that identify information about how CDP is operating. These commands do not list any information about neighbors. Table 10-3 lists these commands and their purpose for easy reference.

### Table 10-3  Commands Used to Verify CDP Operations

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show cdp</code></td>
<td>States whether CDP is enabled globally, and lists the default update and holdtime timers.</td>
</tr>
<tr>
<td><code>show cdp interface [type number]</code></td>
<td>States whether CDP is enabled on each interface, or a single interface if the interface is listed, and states update and holdtime timers on those interfaces.</td>
</tr>
<tr>
<td><code>show cdp traffic</code></td>
<td>Lists global statistics for the number of CDP advertisements sent and received.</td>
</tr>
</tbody>
</table>

### Analyzing Layer 1 and 2 Interface Status

A Cisco switch interface must be in a working state before the switch will process frames received on the interface or send frames out the interface. Additionally, the interface might be in a working state, but intermittent problems might still be occurring. So, a somewhat obvious troubleshooting step is to examine the interface state, ensure that each interface is working, and also verify that no intermittent problems are occurring. This section examines the `show` commands you can use to determine the status of each interface, the reasons why an interface might not be working, and some issues that can occur even when the interfaces are in a working state.

### Interface Status Codes and Reasons for Nonworking States

Cisco switches actually use two different sets of interface status codes—one set of two codes (words) that use the same conventions as do router interface status codes, and another set with a single code (word). Both sets of status codes can determine whether an interface is working.
The switch `show interfaces` and `show interfaces description` commands list the two-code status just like routers. The two codes are named the `line status` and `protocol status`. They generally refer to whether Layer 1 is working (line status) and whether Layer 2 is working (protocol status). LAN switch interfaces typically show an interface with both codes with the same value, either “up” or “down.”

**NOTE** This book refers to these two status codes in shorthand by just listing the two codes with a slash between them, such as “up/up.”

The `show interfaces status` command lists a different single interface status code. This single interface status code corresponds to different combinations of the traditional two-code interface status codes and can be easily correlated to those codes. For example, the `show interfaces status` command lists a “connect” state for working interfaces. It corresponds to the up/up state seen with the `show interfaces` and `show interfaces description` commands.

Any interface state other than connect or up/up means that the switch will not forward or receive frames on the interface. Each nonworking interface state has a small set of root causes. Also, note that the exams could easily ask a question that showed only one or the other type of status code, so be prepared to see both types of status codes on the exams, and know the meanings of both. Table 10-4 lists the code combinations and some root causes that could have caused a particular interface status.

<table>
<thead>
<tr>
<th>Line Status</th>
<th>Protocol Status</th>
<th>Interface Status</th>
<th>Typical Root Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administratively Down</td>
<td>Down</td>
<td>disabled</td>
<td>The interface is configured with the <code>shutdown</code> command.</td>
</tr>
<tr>
<td>Down</td>
<td>Down</td>
<td>notconnect</td>
<td>No cable; bad cable; wrong cable pinouts; the speeds are mismatched on the two connected devices; the device on the other end of the cable is powered off or the other interface is <code>shutdown</code>.</td>
</tr>
<tr>
<td>Up</td>
<td>Down</td>
<td>notconnect</td>
<td>An interface up/down state is not expected on LAN switch interfaces.</td>
</tr>
<tr>
<td>Down</td>
<td>down (err-disabled)</td>
<td>err-disabled</td>
<td>Port security has disabled the interface.</td>
</tr>
<tr>
<td>Up</td>
<td>Up</td>
<td>connected</td>
<td>The interface is working.</td>
</tr>
</tbody>
</table>

Table 10-4   LAN Switch Interface Status Codes
Most of the reasons for the notconnect state were covered earlier in this book. For example, to troubleshoot problems, you should remember the cabling pinout details explained in Chapter 3, “Fundamentals of LANs.” However, one topic can be particularly difficult to troubleshoot—the possibility for both speed and duplex mismatches, as explained in the next section.

### Interface Speed and Duplex Issues

Switch interfaces can find their speed and duplex settings in several ways. Many interfaces that use copper wiring are capable of multiple speeds, and duplex settings use the IEEE standard (IEEE 802.3X) autonegotiation process. These same network interface cards (NIC) and interfaces can also be configured to use a specific speed or duplex setting rather than using autonegotiation. On switches and routers, the `speed {10 | 100 | 1000}` interface subcommand and the `duplex {half | full}` interface subcommand set these values. Note that configuring both speed and duplex on a switch interface disables the IEEE-standard autonegotiation process on that interface.

The `show interfaces` and `show interfaces status` commands list both the speed and duplex settings on an interface, as demonstrated in Example 10-2.

**Example 10-2  Displaying Speed and Duplex Settings on Switch Interfaces**

<table>
<thead>
<tr>
<th>Port</th>
<th>Name</th>
<th>Status</th>
<th>Vlan</th>
<th>Duplex</th>
<th>Speed</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fa0/1</td>
<td>notconnect</td>
<td>1</td>
<td>auto</td>
<td>auto</td>
<td>10/100BaseTX</td>
<td></td>
</tr>
<tr>
<td>Fa0/2</td>
<td>notconnect</td>
<td>1</td>
<td>auto</td>
<td>auto</td>
<td>10/100BaseTX</td>
<td></td>
</tr>
<tr>
<td>Fa0/3</td>
<td>notconnect</td>
<td>1</td>
<td>auto</td>
<td>auto</td>
<td>10/100BaseTX</td>
<td></td>
</tr>
<tr>
<td>Fa0/4</td>
<td>connected</td>
<td>1</td>
<td>a-full</td>
<td>a-100</td>
<td>10/100BaseTX</td>
<td></td>
</tr>
<tr>
<td>Fa0/5</td>
<td>connected</td>
<td>1</td>
<td>a-full</td>
<td>a-100</td>
<td>10/100BaseTX</td>
<td></td>
</tr>
<tr>
<td>Fa0/6</td>
<td>notconnect</td>
<td>1</td>
<td>auto</td>
<td>auto</td>
<td>10/100BaseTX</td>
<td></td>
</tr>
<tr>
<td>Fa0/7</td>
<td>notconnect</td>
<td>1</td>
<td>auto</td>
<td>auto</td>
<td>10/100BaseTX</td>
<td></td>
</tr>
<tr>
<td>Fa0/8</td>
<td>notconnect</td>
<td>1</td>
<td>auto</td>
<td>auto</td>
<td>10/100BaseTX</td>
<td></td>
</tr>
<tr>
<td>Fa0/9</td>
<td>notconnect</td>
<td>1</td>
<td>auto</td>
<td>auto</td>
<td>10/100BaseTX</td>
<td></td>
</tr>
<tr>
<td>Fa0/10</td>
<td>notconnect</td>
<td>1</td>
<td>auto</td>
<td>auto</td>
<td>10/100BaseTX</td>
<td></td>
</tr>
<tr>
<td>Fa0/11</td>
<td>connected</td>
<td>1</td>
<td>a-full</td>
<td>10</td>
<td>10/100BaseTX</td>
<td></td>
</tr>
<tr>
<td>Fa0/12</td>
<td>connected</td>
<td>1</td>
<td>half</td>
<td>100</td>
<td>10/100BaseTX</td>
<td></td>
</tr>
<tr>
<td>Fa0/13</td>
<td>connected</td>
<td>1</td>
<td>a-full</td>
<td>a-100</td>
<td>10/100BaseTX</td>
<td></td>
</tr>
<tr>
<td>Fa0/14</td>
<td>disabled</td>
<td>1</td>
<td>auto</td>
<td>auto</td>
<td>10/100BaseTX</td>
<td></td>
</tr>
<tr>
<td>Fa0/15</td>
<td>notconnect</td>
<td>3</td>
<td>auto</td>
<td>auto</td>
<td>10/100BaseTX</td>
<td></td>
</tr>
<tr>
<td>Fa0/16</td>
<td>notconnect</td>
<td>3</td>
<td>auto</td>
<td>auto</td>
<td>10/100BaseTX</td>
<td></td>
</tr>
<tr>
<td>Fa0/17</td>
<td>connected</td>
<td>1</td>
<td>a-full</td>
<td>a-100</td>
<td>10/100BaseTX</td>
<td></td>
</tr>
<tr>
<td>Fa0/18</td>
<td>notconnect</td>
<td>1</td>
<td>auto</td>
<td>auto</td>
<td>10/100BaseTX</td>
<td></td>
</tr>
<tr>
<td>Fa0/19</td>
<td>notconnect</td>
<td>1</td>
<td>auto</td>
<td>auto</td>
<td>10/100BaseTX</td>
<td></td>
</tr>
<tr>
<td>Fa0/20</td>
<td>notconnect</td>
<td>1</td>
<td>auto</td>
<td>auto</td>
<td>10/100BaseTX</td>
<td></td>
</tr>
<tr>
<td>Fa0/21</td>
<td>notconnect</td>
<td>1</td>
<td>auto</td>
<td>auto</td>
<td>10/100BaseTX</td>
<td></td>
</tr>
</tbody>
</table>
Although both commands in the example can be useful, only the `show interfaces status` command implies how the switch determined the speed and duplex settings. The command output lists autonegotiated settings with a prefix of `a-`. For example, `a-full` means full duplex as autonegotiated, whereas `full` means full duplex but as manually configured. The example shades the command output that implies that the switch’s Fa0/12 interface’s speed and duplex were not found through autonegotiation, but Fa0/13 did use autonegotiation. Note that the `show interfaces fa0/13` command (without the `status` option) simply lists the speed and duplex for interface FastEthernet0/13, with nothing implying that the values were learned through autoneegotiation.
When the IEEE autonegotiation process works on both devices, both devices agree to the fastest speed supported by both devices. Additionally, the devices use full duplex if it is supported by both devices, or half duplex if it is not. However, when one device has disabled autonegotiation, and the other device uses autonegotiation, the device using autonegotiation chooses the default duplex setting based on the current speed. The defaults are as follows:

- If the speed is not known, use 10 Mbps, half duplex.
- If the speed is somehow known to be 10 or 100 Mbps, default to use half duplex.
- If the speed is somehow known to be 1000 Mbps, default to use full duplex.

**NOTE** Ethernet interfaces using speeds faster than 1 Gbps always use full duplex.

Cisco switches can determine speed in a couple of ways even when IEEE standard autonegotiation fails. First, the switch knows the speed if the `speed` interface subcommand was manually configured. Additionally, even when IEEE autonegotiation fails, Cisco switches can automatically sense the speed used by the device on the other end of the cable, and can use that speed based on the electrical signals on the cable.

For example, in Figure 10-3, imagine that SW2’s Gi0/2 interface was configured with the `speed 100` and `duplex full` commands (not recommended settings on a gigabit-capable interface, by the way). SW2 would use those settings and disable the IEEE-standard autonegotiation process, because both the `speed` and `duplex` commands have been configured. If SW1’s Gi0/1 interface did not have a `speed` command configured, SW1 would still recognize the speed (100 Mbps)—even though SW2 would not use IEEE-standard negotiation—and SW1 would also use a speed of 100 Mbps. Example 10-3 shows the results of this specific case on SW1.

**Figure 10-3** Sample Network Showing Ethernet Autonegotiation Defaults

```plaintext
Port Name Status Vlan Duplex Speed Type
Gi0/1 connected trunk a-half a-100 10/100/1000BaseTX
```

**Example 10-3** Displaying Speed and Duplex Settings on Switch Interfaces

```
SW1#show interfaces gi0/1 status
Port Name Status Vlan Duplex Speed Type
Gi0/1 connected trunk a-half a-100 10/100/1000BaseTX
```
The speed and duplex still show up with a prefix of a- in the output, implying autonegotiation. The reason is that in this case, the speed was found automatically, and the duplex setting was chosen because of the default values used by the IEEE autonegotiation process. SW1 sensed the speed without using IEEE standard autonegotiation, because SW2 disabled autonegotiation. SW1 then defaulted to use half duplex based on the IEEE default recommendation for links running at 100 Mbps.

This example shows one case of a duplex mismatch, because SW1 uses half duplex and SW2 uses full duplex. Finding a duplex mismatch can be much more difficult than finding a speed mismatch, because if the duplex settings do not match on the ends of an Ethernet segment, the switch interface will still be in a connect (up/up) state. In this case, the interface works, but it may work poorly, with poor performance, and with symptoms of intermittent problems. The reason is that the device using half duplex uses CSMA/CD logic, waiting to send when receiving a frame, believing collisions occur when they physically do not—and actually stopping sending a frame because the switch thinks a collision occurred. With enough traffic load, the interface could be in a connect state, but it’s essentially useless for passing traffic.

To identify duplex mismatch problems, check the duplex setting on each end of the link, and watch for incrementing collision and late collision counters, as explained in the next section.

**Common Layer 1 Problems on Working Interfaces**

Some Layer 1 problems prevent a switch interface from ever reaching the connect (up/up) state. However, when the interface reaches the connect state, the switch tries to use the interface and keep various interface counters. These interface counters can help identify problems that can occur even though the interface is in a connect state. This section explains some of the related concepts and a few of the most common problems.

First, consider a couple of common reasons why Ethernet frames experience errors during transmission. When an Ethernet frame passes over a UTP cable, the electrical signal may encounter problems. The cable could be damaged, for example, if it lies under carpet. If the user’s chair keeps squashing the cable, eventually the electrical signal can degrade. Additionally, many sources of electromagnetic interference (EMI) exist; for example, a nearby electrical power cable can cause EMI. EMI can change the electrical signal on the Ethernet cable.

Regardless of the root cause, whenever the electrical signal degrades, the receiving device may receive a frame whose bits have changed value. These frames do not pass the error detection logic as implemented in the FCS field in the Ethernet trailer, as covered in Chapter 3. The receiving device discards the frame and counts it as some kind of input error.
Cisco switches list this error as a CRC error (cyclic redundancy check [CRC] is an older term referring to the frame check sequence [FCS] concept), as highlighted in Example 10-4.

**Example 10-4 Interface Counters for Layer 1 Problems**

```
SW1# show interfaces fa0/13
! lines omitted for brevity
 Received 284 broadcasts (0 multicast)
 0 runts, 0 giants, 0 throttles
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
 0 watchdog, 281 multicast, 0 pause input
 0 input packets with dribble condition detected
 95226 packets output, 10849674 bytes, 0 underruns
 0 output errors, 0 collisions, 1 interface resets
 0 babbles, 0 late collision, 0 deferred
 0 lost carrier, 0 no carrier, 0 PAUSE output
 0 output buffer failures, 0 output buffers swapped out
```

Next, consider the concept of an Ethernet collision versus a late collision, both of which are tracked with interface counters by Cisco switches. Collisions occur as a normal part of the half-duplex logic imposed by CSMA/CD, so a switch interface with an increasing collisions counter may not even have a problem. However, if a LAN design follows cabling guidelines, all collisions should occur by the end of the 64th byte of any frame. When a switch has already sent 64 bytes of a frame, and the switch receives a frame on that same interface, the switch senses a collision. In this case, the collision is a late collision, and the switch increments the late collision counter in addition to the usual CSMA/CD actions to send a jam signal, wait a random time, and try again. (Note that the collision counters are actually listed in the output counters section of the command output.)

Three common LAN problems can be found using these counters: excessive interference on the cable, a duplex mismatch, and jabber. Excessive interference on the cable can cause the various input error counters to keep growing larger, especially the CRC counter. In particular, if the CRC errors grow, but the collisions counters do not, the problem may simply be interference on the cable. (The switch counts each collided frame as one form of input error as well.)

Both duplex mismatches and jabber can be partially identified by looking at the collisions and late collision counters. Jabber refers to cases in which the NIC ignores Ethernet rules and sends frame after frame without a break between the frames. With both problems, the collisions and late collision counters could keep growing. In particular, a significant problem exists if the collision counters show that more than .1% of all the output frames have collided. Duplex mismatch problems can be further isolated by using the `show interface` command options shown in the earlier section “Interface Speed and Duplex
Analyzing the Layer 2 Forwarding Path with the MAC Address Table

Analyzing the Layer 2 Forwarding Path with the MAC Address Table

Issues.” Isolating jabber problems requires much more effort, typically using more specialized LAN cabling troubleshooting tools.

**NOTE** To find the percentage of collisions versus output frames, divide the collisions counter by the “packets output” counter, as highlighted in Example 10-4.

Finally, an incrementing late collisions counter typically means one of two things:

- The interface is connected to a collision domain whose cabling exceeds Ethernet cable length standards.
- The interface is using half duplex, and the device on the other end of the cable is using full duplex.

Table 10-5 summarizes the main points about these three general types of interface problems that occur even when the interface is in a connect (up/up) state.

<table>
<thead>
<tr>
<th>Type of Problem</th>
<th>Counter Values Indicating This Problem</th>
<th>Common Root Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive noise</td>
<td>Many input errors, few collisions</td>
<td>Wrong cable category (Cat 5, 5E, 6); damaged cables; EMI</td>
</tr>
<tr>
<td>Collisions</td>
<td>More than roughly .1% of all frames are collisions</td>
<td>Duplex mismatch (seen on the half-duplex side); jabber; DoS attack</td>
</tr>
<tr>
<td>Late collisions</td>
<td>Increasing late collisions</td>
<td>Collision domain or single cable too long; duplex mismatch</td>
</tr>
</tbody>
</table>

Analyzing the Layer 2 Forwarding Path with the MAC Address Table

As explained in Chapter 7, “Ethernet LAN Switching Concepts,” switches learn MAC addresses and then use the entries in the MAC address table to make a forwarding/filtering decision for each frame. To know exactly how a particular switch will forward an Ethernet frame, you need to examine the MAC address table on a Cisco switch.

The `show mac address-table` EXEC command displays the contents of a switch’s MAC address table. This command lists all MAC addresses currently known by the switch. The output includes some static overhead MAC addresses used by the switch and any statically configured MAC addresses, such as those configured with the port security feature. The command also lists all dynamically learned MAC addresses. If you want to see only the
dynamically learned MAC address table entries, simply use the show mac address-table dynamic EXEC command.

The more formal troubleshooting process begins with a prediction of what should happen in a network, followed by an effort to isolate any problems that prevent the normal expected results. As an exercise, go back and review Figure 10-2, and try to create a MAC address table on paper for each switch. Include the MAC addresses for both PCs, as well as the Fa0/1 MAC address for R1. Then predict which interfaces would be used to forward a frame sent by Fred, Barney, and R1 to every other device. Even though the path the frames should take may be somewhat obvious in this exercise, it might be worthwhile, because it forces you to correlate what you’d expect to see in the MAC address table with how the switches forward frames. Example 10-5 shows the MAC address tables on both switches from Figure 10-2 so that you can check your answers.

The next step in the troubleshooting process is to isolate any problems with forwarding frames. Example 10-5 shows an example using the small network depicted in Figure 10-2, with no problems occurring. This example shows the MAC address table of both SW1 and SW2. Also, for this example, SW1 has been configured to use port security on its Fa0/9 interface, for MAC address 0200.1111.1111 (Fred’s MAC address), just so the example can point out the differences between dynamically learned MAC addresses and statically configured MAC addresses.

Example 10-5  Examining SW1’s and SW2’s MAC Address Tables

<table>
<thead>
<tr>
<th>VLAN</th>
<th>MAC Address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0100.0ccc.cccc</td>
<td>STATIC</td>
<td>CPU</td>
</tr>
<tr>
<td>All</td>
<td>0100.0ccc.cccd</td>
<td>STATIC</td>
<td>CPU</td>
</tr>
<tr>
<td>All</td>
<td>0180.c200.0000</td>
<td>STATIC</td>
<td>CPU</td>
</tr>
<tr>
<td>All</td>
<td>0180.c200.0001</td>
<td>STATIC</td>
<td>CPU</td>
</tr>
<tr>
<td>All</td>
<td>0180.c200.0002</td>
<td>STATIC</td>
<td>CPU</td>
</tr>
<tr>
<td>All</td>
<td>0180.c200.0003</td>
<td>STATIC</td>
<td>CPU</td>
</tr>
<tr>
<td>All</td>
<td>0180.c200.0004</td>
<td>STATIC</td>
<td>CPU</td>
</tr>
<tr>
<td>All</td>
<td>0180.c200.0005</td>
<td>STATIC</td>
<td>CPU</td>
</tr>
<tr>
<td>All</td>
<td>0180.c200.0006</td>
<td>STATIC</td>
<td>CPU</td>
</tr>
<tr>
<td>All</td>
<td>0180.c200.0007</td>
<td>STATIC</td>
<td>CPU</td>
</tr>
<tr>
<td>All</td>
<td>0180.c200.0008</td>
<td>STATIC</td>
<td>CPU</td>
</tr>
<tr>
<td>All</td>
<td>0180.c200.0009</td>
<td>STATIC</td>
<td>CPU</td>
</tr>
<tr>
<td>All</td>
<td>0180.c200.000a</td>
<td>STATIC</td>
<td>CPU</td>
</tr>
<tr>
<td>All</td>
<td>0180.c200.000b</td>
<td>STATIC</td>
<td>CPU</td>
</tr>
</tbody>
</table>
### Example 10-5  Examining SW1’s and SW2’s MAC Address Tables (Continued)

<table>
<thead>
<tr>
<th>All</th>
<th>0180.c200.000c</th>
<th>STATIC</th>
<th>CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0180.c200.000d</td>
<td>STATIC</td>
<td>CPU</td>
</tr>
<tr>
<td>All</td>
<td>0180.c200.000e</td>
<td>STATIC</td>
<td>CPU</td>
</tr>
<tr>
<td>All</td>
<td>0180.c200.000f</td>
<td>STATIC</td>
<td>CPU</td>
</tr>
<tr>
<td>All</td>
<td>0180.c200.0010</td>
<td>STATIC</td>
<td>CPU</td>
</tr>
<tr>
<td>All</td>
<td>ffff.ffff.ffff</td>
<td>STATIC</td>
<td>CPU</td>
</tr>
<tr>
<td>1</td>
<td>0019.e859.539a</td>
<td>DYNAMIC</td>
<td>Gi0/1</td>
</tr>
</tbody>
</table>

! The next three entries are for Fred (statically-configured due to port security), Barney (dynamically learned), and router R1 (dynamically learned).

1	0200.1111.1111	STATIC	Fa0/9
1	0200.2222.2222	DYNAMIC	Fa0/12
1	0200.5555.5555	DYNAMIC	Gi0/1

Total Mac Addresses for this criterion: 24

! The same command on SW2 lists the same MAC addresses, but SW2’s interfaces used to reach those addresses.

### SW1#show mac address-table dynamic

*Mac Address Table*

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Mac Address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0019.e859.539a</td>
<td>DYNAMIC</td>
<td>Gi0/1</td>
</tr>
<tr>
<td>1</td>
<td>0200.2222.2222</td>
<td>DYNAMIC</td>
<td>Fa0/12</td>
</tr>
<tr>
<td>1</td>
<td>0200.5555.5555</td>
<td>DYNAMIC</td>
<td>Gi0/1</td>
</tr>
</tbody>
</table>

Total Mac Addresses for this criterion: 3

! The highlighted line above for 0200.5555.5555 will be used in the explanations following this example.
When predicting the MAC address table entries, you need to imagine a frame sent by a device to another device on the other side of the LAN and then determine which switch ports the frame would enter as it passes through the LAN. For example, if Barney sends a frame to router R1, the frame would enter SW1’s Fa0/12 interface, so SW1 has a MAC table entry that lists Barney’s 0200.2222.2222 MAC address with Fa0/12. SW1 would forward Barney’s frame to SW2, arriving on SW2’s Gi0/2 interface, so SW2’s MAC table lists Barney’s MAC address (0200.2222.2222) with interface Gi0/2.

After you predict the expected contents of the MAC address tables, you can then examine what is actually happening on the switches, as described in the next section.

Analyzing the Forwarding Path

To analyze the actual path taken by a frame in this network, a few reminders are necessary. As mentioned earlier, this book’s coverage of VLANs assumes that no trunks exist, so all interfaces are access interfaces—meaning that they are assigned to be in a single VLAN. So, although it isn’t shown in Example 10-5, assume that the `show vlan brief` command lists all the interfaces on each switch as being assigned to default VLAN 1.

The switch forwarding logic can be summarized as follows:

**Step 1** Determine the VLAN in which the frame should be forwarded. On access interfaces this is based on the access VLAN associated with the incoming interface.

**Step 2** Look for the frame’s destination MAC address in the MAC address table, but only for entries in the VLAN identified in Step 1. If the destination MAC is...

A. **Found (unicast),** forward the frame out the only interface listed in the matched address table entry.
B. Not found (unicast), flood the frame out all other access ports (except the incoming port) in that same VLAN.

C. Broadcast or multicast, flood the frame out all other access ports (except the incoming port) in that same VLAN.

**NOTE** Chapter 3 in the *CCNA ICND2 640-816 Official Cert Guide* includes a more extensive summary of the forwarding process, including comments on the impact of VLAN trunking and STP on the forwarding process.

Using this process as a guide, consider a frame sent by Barney to its default gateway, R1 (0200.5555.5555). Using the same switch forwarding logic steps, the following occurs:

**Step 1** SW1 receives the frame on its Fa0/12 interface and sees that it is assigned to access VLAN 1.

**Step 2** SW1 looks for its MAC table entry for 0200.5555.5555, in the incoming interface’s VLAN (VLAN 1), in its MAC address table.
   A. SW1 finds an entry, associated with VLAN 1, outgoing interface Gi0/1, so SW1 forwards the frame only out interface Gi0/1.

At this point, the frame with source 0200.2222.2222 (Barney) is on its way to SW2. You can then pick up SW2’s logic, with the following explanation numbered to match the forwarding process summary:

**Step 1** SW2 receives the frame on its Gi0/2 interface and sees that Gi0/2 is assigned to access VLAN 1.

**Step 2** SW2 looks for its MAC table entry for 0200.5555.5555, in the incoming interface’s VLAN (VLAN 1), in its MAC address table.
   A. SW2 finds an entry, associated with VLAN 1, outgoing interface Fa0/13, so SW2 forwards the frame only out interface Fa0/13.

At this point, the frame should be on its way, over the Ethernet cable between SW2 and R1.

**Port Security and Filtering**

Frankly, in real life, you seldom have to mentally trace the path a frame takes from one device to another through the LAN switches. However, the exam can easily test you on the forwarding logic used in switches.

When tracing the path a frame takes through LAN switches, filters can prevent the frame from being forwarded. Different kinds of filters can discard frames, even when all the interfaces are up. For instance, LAN switches can use filters called Access Control Lists
(ACLs) that filter based on the source and destination MAC address, discarding some frames. Additionally, routers can filter IP packets using IP ACLs. (Note that the only ACLs included in CCNA are router IP ACLs, which are covered in Chapters 7 and 8 of the ICND2 Official Cert Guide.)

Additionally, port security, which is included in the scope of this book, also filters frames. In some cases, you can easily tell that port security has taken action, but in other cases, the evidence is not so obvious. With the default mode of shutdown, the filtering becomes obvious, because port security reacts to a violation by shutting down the interface. However, with either the protect or restrict violation action configured, the switch discards the offending traffic, but it leaves the port in a connected (up/up) state. So, a simple show interface or show interface status command does not identify the reason for the problem.

For example, look back to Figure 10-2, with PC Barney connected to switch SW1’s Fa0/12 port. Say Barney has been working well, sending IP packets, using his 0200.2222.2222 MAC address as the source of the frames that encapsulate those packets. Then someone configures port security on SW1’s Fa0/12 interface, with the violation mode set to protect. And that configuration does not permit Barney’s MAC address, so frames from Barney’s source MAC address will be considered to be a violation.

What happens? SW1 now discards all frames sourced by Barney’s MAC address. But SW1 does not disable any interfaces. A quick show interfaces or show interfaces status command on SW1 shows no changes, and no evidence of what happened. You would need to look further at port security (show port-security interface) to find evidence that port security was discarding the frames sent by Barney.
Exam Preparation Tasks

Review All the Key Topics
Review the most important topics from this chapter, noted with the key topics icon. Table 10-6 describes these key topics and where each is discussed.

### Table 10-6  Key Topics for Chapter 10

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>Information gathered by CDP</td>
<td>284</td>
</tr>
<tr>
<td>Table 10-2</td>
<td>Three CDP <code>show</code> commands that list information about neighbors</td>
<td>284</td>
</tr>
<tr>
<td>Table 10-4</td>
<td>Two types of interface state terms and their meanings</td>
<td>289</td>
</tr>
<tr>
<td>List</td>
<td>Defaults for IEEE autonegotiation</td>
<td>292</td>
</tr>
<tr>
<td>Table 10-5</td>
<td>Common reasons for Layer 1 LAN problems even when the interface is up</td>
<td>295</td>
</tr>
<tr>
<td>List</td>
<td>Summary of switch forwarding steps</td>
<td>298</td>
</tr>
</tbody>
</table>

Complete the Tables and Lists from Memory
Print a copy of Appendix L, “Memory Tables” (found on the DVD), or at least the section for this chapter, and complete the tables and lists from memory. Appendix M, “Memory Tables Answer Key,” also on the DVD, includes completed tables and lists for you to check your work.

Definitions of Key Terms
Define the following key terms from this chapter, and check your answers in the glossary:

- CDP neighbor
- up and up
- error disabled
- problem isolation
- root cause

Command References
Tables 10-7 and 10-8 list only commands specifically mentioned in this chapter, but the command references at the end of Chapters 8 and 9 also cover some related commands. Table 10-7 lists and briefly describes the configuration commands used in this chapter.
### Table 10-7  Commands for Catalyst 2950 Switch Configuration

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>shutdown</td>
<td>Interface subcommands that administratively disable and enable an interface, respectively.</td>
</tr>
<tr>
<td>no shutdown</td>
<td></td>
</tr>
<tr>
<td>switchport port-security violation {protect</td>
<td>restrict</td>
</tr>
<tr>
<td>cdp run</td>
<td>Global commands that enable and disable, respectively, CDP for the entire switch or router.</td>
</tr>
<tr>
<td>no cdp run</td>
<td></td>
</tr>
<tr>
<td>cdp enable</td>
<td>Interface subcommands that enable and disable, respectively, CDP for a particular interface.</td>
</tr>
<tr>
<td>no cdp enable</td>
<td></td>
</tr>
<tr>
<td>speed {10</td>
<td>100</td>
</tr>
<tr>
<td>duplex {auto</td>
<td>full</td>
</tr>
</tbody>
</table>

Table 10-7 lists and briefly describes the EXEC commands used in this chapter.

### Table 10-8  Chapter 10 EXEC Command Reference

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mac address-table [dynamic</td>
<td>static] [address hw-addr] [interface interface-id] [vlan vlan-id]</td>
</tr>
<tr>
<td>show port-security [interface interface-id] [address]</td>
<td>Displays information about security options configured on an interface.</td>
</tr>
<tr>
<td>show cdp neighbors [type number]</td>
<td>Lists one summary line of information about each neighbor, or just the neighbor found on a specific interface if an interface was listed.</td>
</tr>
<tr>
<td>show cdp neighbors detail</td>
<td>Lists one large set of information (approximately 15 lines) for every neighbor.</td>
</tr>
<tr>
<td>show cdp entry name</td>
<td>Displays the same information as the show cdp neighbors detail command, but only for the named neighbor.</td>
</tr>
<tr>
<td>show cdp</td>
<td>States whether CDP is enabled globally, and lists the default update and holdtime timers.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td><code>show cdp interface [type number]</code></td>
<td>States whether CDP is enabled on each interface, or a single interface if the interface is listed, and states update and holdtime timers on those interfaces.</td>
</tr>
<tr>
<td><code>show cdp traffic</code></td>
<td>Displays global statistics for the number of CDP advertisements sent and received.</td>
</tr>
<tr>
<td><code>show interfaces [type number]</code></td>
<td>Displays detailed information about interface status, settings, and counters.</td>
</tr>
<tr>
<td><code>show interfaces status [type number]</code></td>
<td>Displays summary information about interface status and settings, including actual speed and duplex, and whether the interface was autonegotiated.</td>
</tr>
</tbody>
</table>
This chapter covers the following subjects:

**Wireless LAN Concepts:** This section explains the basic theory behind transmitting data with radio waves using wireless LAN standards.

**Deploying WLANs:** This section lists a set of generic steps for installing small WLANs, with no product-specific details.

**Wireless LAN Security:** This section explains the various WLAN security options that have progressed through the years.
Wireless LANs

So far, this book has dedicated a lot of attention to (wired) Ethernet LANs. Although they are vitally important, another style of LAN, wireless LANs (WLAN), fills a particularly important role in providing network access to end users. In particular, WLANs allow the user to communicate over the network without requiring any cables, enabling mobile devices while removing the expense and effort involved in running cables. This chapter examines the basic concepts, standards, installation, and security options for some of the most common WLAN technologies today.

As a reminder if you’re following the optional reading plan listed in the Introduction to this book, you will be moving on to Chapter 1 of the CCNA ICND2 640-816 Official Cert Guide following this chapter.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess whether you should read the entire chapter. If you miss no more than one of these nine self-assessment questions, you might want to move ahead to the “Exam Preparation Tasks” section. Table 11-1 lists the major headings in this chapter and the “Do I Know This Already?” quiz questions covering the material in those sections. This helps you assess your knowledge of these specific areas. The answers to the “Do I Know This Already?” quiz appear in Appendix A.

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless LAN Concepts</td>
<td>1–4</td>
</tr>
<tr>
<td>Deploying WLANs</td>
<td>5–7</td>
</tr>
<tr>
<td>Wireless LAN Security</td>
<td>8, 9</td>
</tr>
</tbody>
</table>
1. Which of the following IEEE wireless LAN standards uses only the U-NII band of frequencies (around 5.4 GHz)?
   a. 802.11a
   b. 802.11b
   c. 802.11g
   d. 802.11i

2. Which of the following answers is the correct maximum speed at which two IEEE WLAN devices can send data with a particular standard?
   a. 802.11b, using OFDM, at 54 Mbps
   b. 802.11g, using OFDM, at 54 Mbps
   c. 802.11a, using DSSS, at 54 Mbps
   d. 802.11a, using DSSS, at 11 Mbps

3. Which of the following lists the nonoverlapping channels when using 802.11b DSSS in the U.S.?
   a. 1, 2, 3
   b. 1, 5, 9
   c. 1, 6, 11
   d. a, b, g
   e. 22, 33, 44

4. Which of the following terms refers to a WLAN mode that allows a laptop to roam between different access points?
   a. ESS
   b. BSS
   c. IBSS
   d. None of the other answers are correct.

5. When configuring a wireless access point, which of the following are typical configuration choices?
   a. SSID
   b. The speed to use
c. The wireless standard to use
d. The size of the desired coverage area

6. Which of the following is true about an ESS's connections to the wired Ethernet LAN?
   a. The AP connects to the Ethernet switch using a crossover cable.
   b. The various APs in the same WLAN need to be assigned to the same VLAN by the Ethernet switches.
   c. The APs must have an IP address configured to forward traffic.
   d. The APs using mixed 802.11g mode must connect via a Fast Ethernet or faster connection to an Ethernet switch.

7. Which of the following are not common reasons why a newly installed WLAN does not allow a client to connect through the WLAN into the wired infrastructure?
   a. The AP is installed on top of a metal filing cabinet.
   b. The client is near a fast-food restaurant's microwave oven.
   c. The client is sitting on top of a big bundle of currently used Cat5 Ethernet cables.
   d. The AP was configured to use DSSS channel 1 instead of the default channel 6, and no one configured the client to use channel 6.

8. Which of the following WLAN security standards refer to the IEEE standard?
   a. WPA
   b. WPA2
   c. WEP
   d. 802.11i

9. Which of the following security features were not in the original WEP security standard but are now in the WPA2 security standard?
   a. Dynamic key exchange
   b. Preshared Keys (PSK)
   c. 802.1x authentication
   d. AES encryption
Foundation Topics

This chapter examines the basics of WLANs. In particular, the first section introduces the concepts, protocols, and standards used by many of the most common WLAN installations today. The chapter then examines some basic installation steps. The last major section looks at WLAN security, which is particularly important because the WLAN signals are much more susceptible to being intercepted by an attacker than Ethernet LANs.

Wireless LAN Concepts

Many people use WLANs on a regular basis today. PC sales continue to trend toward more laptop sales versus desktop computers, in part to support a more mobile workforce. PC users need to connect to whatever network they are near, whether at work, at home, in a hotel, or at a coffee shop or bookstore. And the proliferation of tablets and other devices that all connect through WLANs all conspire to drive growth in WLANs today. For example, Figure 11-1 shows the design of a LAN at a retail bookstore. The bookstore provides free Internet access via WLANs while also supporting the bookstore’s devices via a wired LAN.

Figure 11-1  Sample WLAN at a Bookstore
The wireless-capable customer laptops communicate with a WLAN device called an access point (AP). The AP uses wireless communications to send and receive frames with the WLAN clients (the laptops). The AP also connects to the same Ethernet LAN as the bookstore’s own devices, allowing both customers and employees to communicate with other sites.

This section begins the chapter by explaining the basics of WLANs, starting with a comparison of similarities between Ethernet LANs and WLANs. The rest of the section then explores some of the main differences.

**Comparisons with Ethernet LANs**

WLANs are similar to Ethernet LANs in many ways, the most important being that WLANs allow communications to occur between devices. The IEEE defines standards for both, using the IEEE 802.3 family for Ethernet LANs and the 802.11 family for WLANs. Both standards define a frame format with a header and trailer, with the header including a source and destination MAC address field, each 6 bytes in length. Both define rules about how the devices should determine when they should send frames and when they should not.

The biggest difference between the two lies in the fact that WLANs use radiated energy waves, generally called radio waves, to transmit data, whereas Ethernet uses electrical signals flowing over a cable (or light on optical cabling). Radio waves pass through space, so technically there is no need for any physical transmission medium. In fact, the presence of matter—in particular, walls, metal objects, and other obstructions—gets in the way of the wireless radio signals.

Several other differences exist as well, mainly as a side effect of the use of wireless instead of wires. For example, Chapter 7, “Ethernet LAN Switching Concepts,” explains how Ethernet can support full-duplex (FDX) communication if a switch connects to a single device. This removes the need to control access to the link using carrier sense multiple access collision detect (CSMA/CD). With wireless, if more than one device at a time sends radio waves in the same space at the same frequency, neither signal is intelligible, so a half-duplex (HDX) mechanism must be used. To arbitrate the use of the frequency, WLANs use the carrier sense multiple access with collision avoidance (CSMA/CA) algorithm to enforce HDX logic and avoid as many collisions as possible.
Wireless LAN Standards

The IEEE defines LAN standards as part of the 802.11 committee. This section lists the basic details of each of four different WLAN 802.11 standards: 802.11a, 802.11b, 802.11g, and 802.11n.

Four organizations have a great deal of impact on the standards used for wireless LANs today. Table 11-2 lists these organizations and describes their roles.

<table>
<thead>
<tr>
<th>Organization</th>
<th>Standardization Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITU-R</td>
<td>Worldwide standardization of communications that use radiated energy, particularly managing the assignment of frequencies</td>
</tr>
<tr>
<td>IEEE</td>
<td>Standardization of wireless LANs (802.11)</td>
</tr>
<tr>
<td>Wi-Fi Alliance</td>
<td>An industry consortium that encourages interoperability of products that implement WLAN standards through their Wi-Fi certified program</td>
</tr>
<tr>
<td>Federal Communications Commission (FCC)</td>
<td>The U.S. government agency that regulates the usage of various communications frequencies in the U.S.</td>
</tr>
</tbody>
</table>

Of the organizations listed in this table, the IEEE develops the specific standards for the different types of WLANs used today. Those standards must take into account the frequency choices made by the different worldwide regulatory agencies, such as the FCC in the U.S. and the ITU-R, which is ultimately controlled by the United Nations (UN).

The IEEE introduced WLAN standards with the creation of the 1997 ratification of the 802.11 standard. This original standard did not have a suffix letter, whereas later WLAN standards do. This naming logic, with no suffix letter in the first standard, followed by other standards with a suffix letter, is like the original IEEE Ethernet standard. That standard was 802.3, with later, more-advanced standards having a suffix, such as 802.3u for Fast Ethernet.

The original 802.11 standard has been replaced by more-advanced standards. In order of ratification, the standards are 802.11b, 802.11a, 802.11g, and 802.11n. Table 11-3 lists some key points about the currently ratified standards.
Modes of 802.11 Wireless LANs

WLANs can use one of two modes—ad hoc mode or infrastructure mode. With ad hoc mode, a wireless device wants to communicate with only one or a few other devices directly, usually for a short period of time. In these cases, the devices send WLAN frames directly to each other, as shown in Figure 11-2.

Figure 11-2  Ad Hoc WLAN

In infrastructure mode, each device communicates with an AP, with the AP connecting via wired Ethernet to the rest of the network infrastructure. Infrastructure mode allows the WLAN devices to communicate with servers and the Internet in an existing wired network, as shown earlier in Figure 11-1.

### Table 11-3  WLAN Standards

<table>
<thead>
<tr>
<th>Feature</th>
<th>802.11a</th>
<th>802.11b</th>
<th>802.11g</th>
<th>802.11n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year ratified</td>
<td>1999</td>
<td>1999</td>
<td>2003</td>
<td>2009</td>
</tr>
<tr>
<td>Maximum speed using DSSS</td>
<td>—</td>
<td>11 Mbps</td>
<td>11 Mbps</td>
<td>—</td>
</tr>
<tr>
<td>Maximum speed using OFDM</td>
<td>54 Mbps</td>
<td>—</td>
<td>54 Mbps</td>
<td>150 Mbps</td>
</tr>
<tr>
<td>Frequency band</td>
<td>5 GHz</td>
<td>2.4 GHz</td>
<td>2.4 GHz</td>
<td>Both</td>
</tr>
<tr>
<td>Non-overlapping Channels</td>
<td>23</td>
<td>3</td>
<td>3</td>
<td>9*</td>
</tr>
</tbody>
</table>

* Assumes 40 MHz channels

This table lists a couple of features that have not yet been defined but that are described later in this chapter.
Infrastructure mode supports two sets of services, called service sets. The first, called a Basic Service Set (BSS), uses a single AP to create the wireless LAN, as shown in Figure 11-1. The other, called Extended Service Set (ESS), uses more than one AP, often with overlapping cells to allow roaming in a larger area, as shown in Figure 11-3.

**Figure 11-3  Infrastructure Mode BSS and ESS WLANs**

The ESS WLANs allow roaming, which means that users can move around inside the coverage area and stay connected to the same WLAN. As a result, the user does not need to change IP addresses. All the device has to do is sense when the radio signals from the current AP are getting weaker; find a new, better AP with a stronger or better signal; and start using the new AP.
Table 11-4 summarizes the WLAN modes for easy reference.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Service Set Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ad hoc</td>
<td>Independent Basic Service Set (IBSS)</td>
<td>Allows two devices to communicate directly. No AP is needed.</td>
</tr>
<tr>
<td>Infrastructure (one AP)</td>
<td>Basic Service Set (BSS)</td>
<td>A single wireless LAN created with an AP and all devices that associate with that AP.</td>
</tr>
<tr>
<td>Infrastructure (more than one AP)</td>
<td>Extended Service Set (ESS)</td>
<td>Multiple APs create one wireless LAN, allowing roaming and a larger coverage area.</td>
</tr>
</tbody>
</table>

**Wireless Transmissions (Layer 1)**

WLANs transmit data at Layer 1 by sending and receiving radio waves. The WLAN network interface cards (NIC), APs, and other WLAN devices use a radio and its antenna to send and receive the radio waves, making small changes to the waves to encode data. Although the details differ significantly compared to Ethernet, the idea of encoding data by changing the energy signal that flows over a medium is the same idea as Ethernet encoding.

Similar to electricity on copper wires and light over optical cables, WLAN radio waves have a repeating signal that can be graphed over time, as shown in Figure 11-4. When graphed, the curve shows a repeating periodic waveform, with a frequency (the number of times the waveform repeats per second), amplitude (the height of the waveform, representing signal strength), and phase (the particular point in the repeating waveform). Of these items, frequency, measured in hertz (Hz), is the most important in discussions of WLANs.

**Figure 11-4  Graph of an 8-KHz Signal**

Many electronic devices radiate energy at varying frequencies, some related to the device’s purpose (for example, a wireless LAN or a cordless telephone). In other cases, the radiated energy is a side effect. For example, televisions give off some radiated energy.
the energy radiated by one device from interfering with other devices, national government agencies, regulate and oversee the frequency ranges that can be used inside that country. For example, the Federal Communications Commission (FCC) in the U.S. regulates the electromagnetic spectrum of frequencies.

The FCC or other national regulatory agencies specify some ranges of frequencies, called frequency bands. For example, in the U.S., FM and AM radio stations must register with the FCC to use a particular range (band) of frequencies. A radio station agrees to transmit its radio signal at or under a particular power level so that other radio stations in other cities can use the same frequency band. However, only that one radio station can use a particular frequency band in a particular location.

A frequency band is so named because it is actually a range of consecutive frequencies. An FM radio station needs about 200 kilohertz (KHz) of frequency in which to send a radio signal. When the station requests a frequency from the FCC, the FCC assigns a base frequency, with 100 KHz of bandwidth on either side of the base frequency. For example, an FM radio station that announces something like “The greatest hits are at 96.5 FM” means that the base signal is 96.5 megahertz (MHz), with the radio transmitter using the frequency band between 96.4 MHz and 96.6 MHz, for a total bandwidth of .2 MHz, or 200 KHz.

The wider the range of frequencies in a frequency band, the greater the amount of information that can be sent in that frequency band. For example, a radio signal needs about 200 KHz (.2 MHz) of bandwidth, whereas a broadcast TV signal, which contains a lot more information because of the video content, requires roughly 4.5 MHz.

**NOTE** The use of the term bandwidth to refer to speeds of network interfaces is just a holdover from the idea that the width (range) of a frequency band is a measurement of how much data can be sent in a period of time.

The FCC, and equivalent agencies in other countries, license some frequency bands, leaving some frequency bands unlicensed. Licensed bands are used for many purposes; the most common are AM and FM radio, Ultra High Frequency (UHF) radio (for example, for police department communications), and mobile phones. Unlicensed frequencies can be used by all kinds of devices; however, the devices must still conform to the rules set up by the regulatory agency. In particular, a device using an unlicensed band must use power levels at or below a particular setting. Otherwise, the device might interfere too much with other devices sharing that unlicensed band. For example, microwave ovens happen to radiate energy in the 2.4 gigahertz (GHz) unlicensed band as a side effect of cooking food. That same unlicensed band is used by some WLAN standards and by many cordless telephones. In some cases, you cannot hear someone on the phone or surf the Internet using a WLAN when someone’s heating up dinner.
The FCC defines three unlicensed frequency bands. The bands are referenced by a particular frequency in the band, although by definition, a frequency band is a range of frequencies. Table 11-5 lists the frequency bands that matter to some degree for WLAN communications.

### Table 11-5  *FCC Unlicensed Frequency Bands of Interest*

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Name</th>
<th>Sample Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>900 MHz</td>
<td>Industrial, Scientific, Medical (ISM)</td>
<td>Older cordless telephones</td>
</tr>
<tr>
<td>2.4 GHz</td>
<td>ISM</td>
<td>Newer cordless phones and 802.11, 802.11b, 802.11g, 802.11n WLANs</td>
</tr>
<tr>
<td>5 GHz</td>
<td>Unlicensed National Information Infrastructure (U-NII)</td>
<td>Newer cordless phones and 802.11a, 802.11n WLANs</td>
</tr>
</tbody>
</table>

**Wireless Encoding and Nonoverlapping DSSS Channels**

When a WLAN NIC or AP sends data, it can modulate (change) the radio signal’s frequency, amplitude, and phase to encode a binary 0 or 1. The details of that encoding are beyond the scope of this book. However, it is important to know the names of three general classes of encoding, in part because the type of encoding requires some planning and forethought for some WLANs.

*Frequency Hopping Spread Spectrum (FHSS)* uses all frequencies in the band, hopping to different ones. By using slightly different frequencies for consecutive transmissions, a device can hopefully avoid interference from other devices that use the same unlicensed band, succeeding at sending data at some frequencies. The original 802.11 WLAN standards used FHSS, but the current standards (802.11a, 802.11b, and 802.11g) do not.

Direct Sequence Spread Spectrum (DSSS) followed as the next general class of encoding type for WLANs. Designed for use in the 2.4 GHz unlicensed band, DSSS uses one of several separate channels or frequencies. This band has a bandwidth of 82 MHz, with a range from 2.402 GHz to 2.483 GHz. As regulated by the FCC, this band can have 11 different overlapping DSSS channels, as shown in Figure 11-5.

Although many of the channels shown in the figure overlap, three of the channels (the channels at the far left and far right, and the channel in the center) do not overlap, so they do not impact each other. These channels (channels 1, 6, and 11) can be used in the same space for WLAN communications, and they won’t interfere with each other.
The significance of the nonoverlapping DSSS channels is that when you design an ESS WLAN (more than one AP), APs with overlapping coverage areas should be set to use different nonoverlapping channels. Figure 11-6 shows the idea.

In this design, the devices in one BSS (devices communicating through one AP) can send at the same time as the other two BSSs and not interfere with each other, because each uses the slightly different frequencies of the nonoverlapping channels. For example, PC1 and PC2 could sit beside each other and communicate with two different APs using two different channels at the exact same time. This design is typical of 802.11b WLANs, with each cell running at a maximum data rate of 11 Mbps. With the nonoverlapping channels, each half-duplex BSS can run at 11 Mbps, for a cumulative bandwidth of 33 Mbps in this case. This cumulative bandwidth is called the WLAN’s capacity.

The last of the three categories of encoding for WLANs is called Orthogonal Frequency Division Multiplexing (OFDM). Like DSSS, WLANs that use OFDM can use multiple nonoverlapping channels. Table 11-6 summarizes the key points and names of the main three options for encoding.
Wireless Interference
WLANs can suffer from interference from many sources. The radio waves travel through space, but they must pass through whatever matter exists inside the coverage area, including walls, floors, and ceilings. Passing through matter causes the signal to be partially absorbed, which reduces signal strength and the size of the coverage area. Matter can also reflect and scatter the waves, particularly if there is a lot of metal in the materials, which can cause dead spots (areas in which the WLAN simply does not work), and a smaller coverage area.

Additionally, wireless communication is impacted by other radio waves in the same frequency range. The effect is the same as trying to listen to a radio station when you’re taking a long road trip. You might get a good clear signal for a while, but eventually you drive far enough from the radio station’s antenna that the signal is weak, and it is hard to hear the station. Eventually, you get close enough to the next city’s radio station that uses the same frequency range, and you cannot hear either station well because of the interference. With WLANs, the interference may simply mean that the data only occasionally makes it through the air, requiring lots of retransmissions, and resulting in poor efficiency.

One key measurement for interference is the Signal-to-Noise Ratio (SNR). This calculation measures the WLAN signal as compared to the other undesired signals (noise) in the same space. The higher the SNR, the better the WLAN devices can send data successfully.

Coverage Area, Speed, and Capacity
A WLAN coverage area is the space in which two WLAN devices can successfully send data. The coverage area created by a particular AP depends on many factors, several of which are explained in this section.

First, the transmit power by an AP or WLAN NIC cannot exceed a particular level based on the regulations from regulatory agencies such as the FCC. The FCC limits the transmit power to ensure fairness in the unlicensed bands. For example, if two neighbors bought Linksys APs and put them in their homes to create a WLAN, the products would conform

<table>
<thead>
<tr>
<th>Name of Encoding Class</th>
<th>What It Is Used By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Hopping Spread Spectrum (FHSS)</td>
<td>802.11</td>
</tr>
<tr>
<td>Direct Sequence Spread Spectrum (DSSS)</td>
<td>802.11b, 802.11g</td>
</tr>
<tr>
<td>Orthogonal Frequency Division Multiplexing (OFDM)</td>
<td>802.11a, 802.11g, 802.11n</td>
</tr>
</tbody>
</table>

**NOTE** The 802.11n standard uses OFDM as well as multiple antennas, a technology sometimes called multiple input multiple output (MIMO).
to FCC regulations. However, if one person bought and installed high-gain antennas for her AP, and greatly exceeded the FCC regulations, she might get a much wider coverage area—maybe even across the whole neighborhood. However, it might prevent the other person’s AP from working at all because of the interference from the overpowered AP.

**NOTE** The power of an AP is measured based on the Effective Isotropic Radiated Power (EIRP) calculation. This is the radio’s power output, plus the increase in power caused by the antenna, minus any power lost in the cabling. In effect, it’s the power of the signal as it leaves the antenna.

The materials and locations of the materials near the AP also impact an AP’s coverage area. For example, putting the AP near a large metal filing cabinet increases reflections and scattering, which shrinks the coverage area. Certainly, concrete construction with steel rebar reduces the coverage area in a typical modern office building. In fact, when a building’s design means that interference will occur in some areas, APs may use different types of antennas that change the shape of the coverage area from a circle to some other shape.

As it turns out, weaker wireless signals cannot pass data at higher speeds, but they can pass data at lower speeds. So, WLAN standards support the idea of multiple speeds. A device near the AP may have a strong signal, so it can transmit and receive data with the AP at higher rates. A device at the edge of the coverage area, where the signals are weak, may still be able to send and receive data—although at a slower speed. Figure 11-7 shows the idea of a coverage area, with varying speeds, for an IEEE 802.11b BSS.

The main ways to increase the size of the coverage area of one AP are to use specialized antennas and to increase the power of the transmitted signal. For example, you can increase the antenna gain, which is the power added to the radio signal by the antenna. To double the coverage area, the antenna gain must be increased to quadruple the original gain. Although this is useful, the power output (the EIRP) must still be within FCC rules (in the U.S.).

The actual size of the coverage area depends on a large number of factors that are beyond the scope of this book. Some of the factors include the frequency band used by the WLAN standard, the obstructions between and near the WLAN devices, the interference from other sources of RF energy, the antennas used on both the clients and APs, and the options used by DSSS and OFDM when encoding data over the air. Generally speaking, WLAN standards that use higher frequencies (U-NII band standards 802.11a and 802.11n) can send data faster, but with the price of smaller coverage areas. However, note the that newer 802.11n claims to support a wider coverage area than all the older standards. To cover all the required space, an ESS that uses higher frequencies would then require more APs, driving up the cost of the WLAN deployment.
Table 11-7 lists the main IEEE WLAN standards that had been ratified at the time this book was published, the maximum speed, and the number of nonoverlapping channels.

**Table 11-7  WLAN Speed and Frequency Reference**

<table>
<thead>
<tr>
<th>IEEE Standard</th>
<th>Max Stream Data Rate (Mbps)</th>
<th>Frequency</th>
<th>Nonoverlapping Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11b</td>
<td>11</td>
<td>2.4 GHz</td>
<td>3</td>
</tr>
<tr>
<td>802.11a</td>
<td>54</td>
<td>5 GHz</td>
<td>23</td>
</tr>
<tr>
<td>802.11g</td>
<td>54</td>
<td>2.4 GHz</td>
<td>3</td>
</tr>
<tr>
<td>802.11n</td>
<td>72.2</td>
<td>5 GHz</td>
<td>21</td>
</tr>
<tr>
<td>802.11n*</td>
<td>150</td>
<td>5 GHz</td>
<td>9</td>
</tr>
</tbody>
</table>

*When using a bonded 40 MHz channel, rather than a 20 MHz channel as in the other rows of the table.

**NOTE**  The original 802.11 standard supported speeds of 1 and 2 Mbps.

Finally, note that the number of nonoverlapping channels supported by a standard, as shown in Figures 11-5 and 11-6, affects the combined available bandwidth. For example, in a WLAN that exclusively uses 802.11g, the actual transmissions could occur at 54 Mbps. But three devices could sit beside each other and send at the same time, using three different channels,
to three different APs. Theoretically, that WLAN could support a throughput of 3 * 54 Mbps, or 162 Mbps, for these devices in that part of the WLAN. Along the same line of reasoning, an 802.11a WLAN can transmit data at 54 Mbps, but with 12 nonoverlapping channels, for a theoretical maximum of 12 * 54 Mbps = 648 Mbps of bandwidth capacity.

**Media Access (Layer 2)**

Ethernet LANs began life using a shared medium (a coaxial cable), meaning that only one device could send data at a time. To control access to this half-duplex (HDX) medium, Ethernet defined the use of the CSMA/CD algorithm. As Ethernet progressed with continually improved standards, it started using switches, with one device cabled to each switch port, allowing the use of full duplex (FDX). With FDX, no collisions can occur, so the CSMA/CD algorithm is disabled.

With wireless communications, devices cannot be separated onto different cable segments to prevent collisions, so collisions can always occur, even with more-advanced WLAN standards. In short, if two or more WLAN devices send at the same time, using overlapping frequency ranges, a collision occurs, and none of the transmitted signals can be understood by those receiving the signal. To make matters worse, the device that is transmitting data cannot concurrently listen for received data. So, when two WLAN devices send at the same time, creating a collision, the sending devices do not have any direct way to know the collision occurred.

The solution to the media access problem with WLANs is to use the *carrier sense multiple access with collision avoidance (CSMA/CA)* algorithm. The collision avoidance part minimizes the statistical chance that collisions could occur. However, CSMA/CA does not prevent collisions, so the WLAN standards must have a process to deal with collisions when they do occur. Because the sending device cannot tell if its transmitted frame collided with another frame, the standards all require an acknowledgment of every frame. Each WLAN device listens for the acknowledgment, which should occur immediately after the frame is sent. If no acknowledgment is received, the sending device assumes that the frame was lost or collided, and it resends the frame.

The following list summarizes the key points about the CSMA/CA algorithm, omitting some of the details for the sake of clarity:

**Step 1** Listen to ensure that the medium (space) is not busy (no radio waves currently are being received at the frequencies to be used).

**Step 2** Set a random wait timer before sending a frame to statistically reduce the chance of devices all trying to send at the same time.

**Step 3** When the random timer has passed, listen again to ensure that the medium is not busy. If it isn’t, send the frame.
Step 4  After the entire frame has been sent, wait for an acknowledgment.

Step 5  If no acknowledgment is received, resend the frame, using CSMA/CA logic to wait for the appropriate time to send again.

This concludes the brief introduction to wireless LAN concepts. Next, this chapter covers the basics of what you should do when installing a new wireless LAN.

Deploying WLANs

WLAN security is one of the more important features of WLANs, and for good reason. The same security exposures exist on WLANs as for Ethernet LANs, plus WLANs are exposed to many more vulnerabilities than wired Ethernet LANs. For example, someone could park outside a building and pick up the WLAN signals from inside the building, reading the data. Therefore, all production WLAN deployments should include the currently best security options for that WLAN.

Although security is vitally important, the installation of a new WLAN should begin with just getting the WLAN working. As soon as a single wireless device is talking to an AP, security configuration can be added and tested. Following that same progression, this section examines the process of planning and implementing a WLAN, with no security enabled. The final major section of this chapter, “Wireless LAN Security,” examines the concepts behind WLAN security.

Wireless LAN Implementation Checklist

The following basic checklist can help guide the installation of a new BSS WLAN:

Step 1  Verify that the existing wired network works, including DHCP services, VLANs, and Internet connectivity.

Step 2  Install the AP and configure/verify its connectivity to the wired network, including the AP’s IP address, mask, and default gateway.

Step 3  Configure and verify the AP’s wireless settings, including Service Set Identifier (SSID), but no security.

Step 4  Install and configure one wireless client (for example, a laptop), again with no security.

Step 5  Verify that the WLAN works from the laptop.

Step 6  Configure wireless security on the AP and client.

Step 7  Verify that the WLAN works again, in the presence of the security features.
This section examines the first five tasks. The last major section of this chapter discusses the concepts behind WLAN security but does not explain the large number of detailed options for configuring WLAN security.

**Step 1: Verify the Existing Wired Network**
Most of the other chapters in this book explain the details of how to understand, plan, design, and implement the switches and routers that create the rest of the network, so there is no need to repeat those details here. However, it can be helpful to consider a couple of items related to testing an existing wired network before connecting a new WLAN.

First, the Ethernet switch port to which the AP’s Ethernet port connects typically is a switch access port, meaning that it is assigned to a particular VLAN. Also, in an ESS design with multiple APs, all the Ethernet switch ports to which the APs attach should be in the same VLAN. Figure 11-8 shows a typical ESS design for a WLAN, with the VLAN IDs listed.

![Figure 11-8 ESS WLAN with All APs in Ethernet VLAN 2](image)

To test the existing network, you could simply connect a laptop Ethernet NIC to the same Ethernet cable that will be used for the AP. If the laptop can acquire an IP address, mask, and other information using DHCP, and communicate with other hosts, the existing wired network is ready to accept the AP.
Step 2: Install and Configure the AP's Wired and IP Details
Just like an Ethernet switch, wireless APs operate at Layer 2 and do not need an IP address to perform their main functions. However, just as an Ethernet switch in an Enterprise network should have an IP address so that it can be easily managed, APs deployed in an Enterprise network should also have an IP address.

The IP configuration details on an AP are the same items needed on an Ethernet switch, as covered in the section “Configuring the Switch IP Address” in Chapter 9, “Ethernet Switch Configuration.” In particular, the AP needs an IP address, subnet mask, default gateway IP address, and possibly the IP address of a DNS server.

The AP uses a straight-through Ethernet cable to connect to the LAN switch. Although any speed Ethernet interface works, when using the faster WLAN speeds, using a Fast Ethernet interface on a switch helps improve overall performance.

Step 3: Configure the AP's WLAN Details
Most of the time, WLAN APs can be installed with no configuration, and they work. For example, many homes have consumer-grade wireless APs installed, connected to a high-speed Internet connection. Often, the AP, router, and cable connection terminate in the same device, such as the Linksys Dual-Band Wireless A+G Broadband Router. (Linksys is a division of Cisco Systems that manufactures and distributes consumer networking devices.) Many people just buy these devices, plug in the power and the appropriate cables for the wired part of the connection, and leave the default WLAN settings, and the AP works.

Both consumer-grade and Enterprise-grade APs can be configured with a variety of parameters. The following list highlights some of the features mentioned earlier in this chapter that may need to be configured:

- IEEE standard (a, b, g, or multiple)
- Wireless channel
- Service Set Identifier (SSID, a 32-character text identifier for the WLAN)
- Transmit power

This chapter has already explained most of the concepts behind these four items, but the SSID is new. Each WLAN needs a unique name to identify the WLAN. Because a simple WLAN with a single AP is called a Basic Service Set (BSS), and a WLAN with multiple APs is called an Extended Service Set (ESS), the term for the identifier of a WLAN is the Service Set Identifier (SSID). The SSID is a 32-character ASCII text value. When you configure an ESS WLAN, each of the APs should be configured with the same SSID, which allows for roaming between APs, but inside the same WLAN.
Also note that many APs today support multiple WLAN standards. In some cases, they can support multiple standards on the same AP at the same time. However, these mixed-mode implementations, particularly with 802.11b/g in this same AP, tend to slow down the WLAN. In practice, deploying some 802.11g-only APs and some mixed-mode b/g APs in the same coverage area may provide better performance than using only APs configured in b/g mixed mode.

**Step 4: Install and Configure One Wireless Client**

A wireless client is any wireless device that associates with an AP to use a WLAN. To be a WLAN client, the device simply needs a WLAN NIC that supports the same WLAN standard as the AP. The NIC includes a radio, which can tune to the frequencies used by the supported WLAN standard(s), and an antenna. For example, laptop computer manufacturers typically integrate a WLAN NIC into every laptop, and you can then use a laptop to associate with an AP and send frames.

The AP has several required configuration settings, but the client may not need anything configured. Typically, clients by default do not have any security enabled. When the client starts working, it tries to discover all APs by listening on all frequency channels for the WLAN standards it supports by default. For example, if a client were using the WLAN shown in Figure 11-6, with three APs, each using a different channel, the client might actually discover all three APs. The client would then use the AP from which the client receives the strongest signal. Also, the client learns the SSID from the AP, again removing the need for any client configuration.

WLAN clients may use wireless NICs from a large number of vendors. To help ensure that the clients can work with Cisco APs, Cisco started the *Cisco Compatible Extensions Program (CCX)*. This Cisco-sponsored program allows any WLAN manufacturer to send its products to a third-party testing lab, with the lab performing tests to see if the WLAN NIC works well with Cisco APs.

With Microsoft operating systems, the wireless NIC may not need to be configured because of the Microsoft Auto Configuration Module (ACM) feature. This feature, part of the OS, allows the PC to automatically discover the SSIDs of all WLANs whose APs are within range of the NIC. ACM can also automatically detect and connect to the AP with the strongest signal without any action by the user. (This function replaced the older Microsoft Wireless Zero Configuration (WZC) feature.)

Note that most NIC manufacturers also provide software that can control the NIC instead of the operating system’s built-in tools such as Microsoft ACM.
Step 5: Verify That the WLAN Works from the Client

The first step to verify proper operation of the first WLAN client is to check whether the client can access the same hosts used for testing in Step 1 of this installation process. (The laptop’s wired Ethernet connection should be disconnected so that the laptop uses only its WLAN connection.) At this point, if the laptop can get a response from another host, such as by pinging or browsing a web page on a web server, the WLAN at least works.

If this test does not work, a wide variety of tasks could be performed. Some of the tasks relate to work that is often done in the planning stages, generally called a site survey. During a wireless site survey, engineers tour the site for a new WLAN, looking for good AP locations, transmitting and testing signal strength throughout the site. In that same line of thinking, if the new client cannot communicate, you might check the following:

- Is the AP at the center of the area in which the clients reside?
- Is the AP or client right next to a lot of metal?
- Is the AP or client near a source of interference, such as a microwave oven or gaming system?
- Is the AP’s coverage area wide enough to reach the client?

In particular, you could take a laptop with a wireless card and, using the NIC’s tools, walk around while looking at signal quality measurement. Most WLAN NIC software shows signal strength and quality, so by walking around the site with the laptop, you can gauge whether any dead spots exist and where clients should have no problems hearing from the AP.

Besides the site survey types of work, the following list notes a few other common problems with a new installation:

- Check to make sure that the NIC and AP’s radios are enabled. In particular, most laptops have a physical switch with which to enable or disable the radio, as well as a software setting to enable or disable the radio. This allows the laptop to save power (and extend the time before it must be plugged into a power outlet again). It also can cause users to fail to connect to an AP, just because the radio is turned off.
- Check the AP to ensure that it has the latest firmware. AP firmware is the OS that runs in the AP.
- Check the AP configuration—in particular, the channel configuration—to ensure that it does not use a channel that overlaps with other APs in the same location.
This completes the explanations of the first five steps of installing a simple wireless LAN. The final major section of this chapter examines WLAN security, which also completes the basic installation steps.

**Wireless LAN Security**

All networks today need good security, but WLANs have some unique security requirements. This section examines some of the security needs for WLANs and the progression and maturation of the WLAN security options. It also discusses how to configure the security features.

**WLAN Security Issues**

WLANs introduce a number of vulnerabilities that do not exist for wired Ethernet LANs. Some of these vulnerabilities give hackers an opportunity to cause harm by stealing information, accessing hosts in the wired part of the network, or preventing service through a denial-of-service (DoS) attack. Other vulnerabilities may be caused by a well-meaning but uninformed employee who installs an AP without the IT department’s approval, with no security. This would allow anyone to gain access to the rest of the Enterprise’s network.

The Cisco-authorized CCNA-related courses suggest several categories of threats:

- **War drivers:** The attacker often just wants to gain Internet access for free. This person drives around, trying to find APs that have no security or weak security. The attacker can use easily downloaded tools and high-gain directional antennas (easily purchased and installed).

- **Hackers:** The motivation for hackers is to either find information or deny services. Interestingly, the end goal may be to compromise the hosts inside the wired network, using the wireless network as a way to access the Enterprise network without having to go through Internet connections that have firewalls.

- **Employees:** Employees can unwittingly help hackers gain access to the Enterprise network in several ways. An employee could go to an office supply store and buy an AP for less than $100, install the AP in his office, using default settings of no security, and create a small wireless LAN. This would allow a hacker to gain access to the rest of the Enterprise from the coffee shop across the street. Additionally, if the client does not use encryption, company data going between the legitimate employee client PC and the Enterprise network can be easily copied and understood by attackers outside the building.

- **Rogue AP:** The attacker captures packets in the existing wireless LAN, finding the SSID and cracking security keys (if they are used). Then the attacker can set up her own AP, with the same settings, and get the Enterprise’s clients to use it. In turn, this can
cause the individuals to enter their usernames and passwords, aiding in the next phase of the attacker’s plan.

To reduce the risk of such attacks, three main types of tools can be used on a WLAN:

- Mutual authentication
- Encryption
- Intrusion tools

Mutual authentication should be used between the client and AP. The authentication process uses a secret password, called a key, on both the client and the AP. By using some sophisticated mathematical algorithms, the AP can confirm that the client does indeed know the right key value. Likewise, the client can confirm that the AP also has the right key value. The process never sends the key through the air, so even if the attacker is using a network analysis tool to copy every frame inside the WLAN, the attacker cannot learn the key value. Also, note that by allowing mutual authentication, the client can confirm that the AP knows the right key, thereby preventing a connection to a rogue AP.

The second tool is encryption. Encryption uses a secret key and a mathematical formula to scramble the contents of the WLAN frame. The receiving device then uses another formula to decrypt the data. Again, without the secret encryption key, an attacker may be able to intercept the frame, but he or she cannot read the contents.

The third class of tools includes many options, but this class generally can be called intrusion tools. These tools include Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS), as well as WLAN-specific tools. Cisco defines the Structured Wireless-Aware Network (SWAN) architecture. It includes many tools, some of which specifically address the issue of detecting and identifying rogue APs, and whether they represent threats. Table 11-8 lists the key vulnerabilities, along with the general solution.

Table 11-8  WLAN Vulnerabilities and Solutions

<table>
<thead>
<tr>
<th>Vulnerability</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>War drivers</td>
<td>Strong authentication</td>
</tr>
<tr>
<td>Hackers stealing information in a WLAN</td>
<td>Strong encryption</td>
</tr>
<tr>
<td>Hackers gaining access to the rest of the network</td>
<td>Strong authentication</td>
</tr>
<tr>
<td>Employee AP installation</td>
<td>Intrusion Detection Systems (IDS), including Cisco SWAN</td>
</tr>
<tr>
<td>Rogue AP</td>
<td>Strong authentication, IDS/SWAN</td>
</tr>
</tbody>
</table>
The Progression of WLAN Security Standards

WLAN standards have progressed over the years in response to a growing need for stronger security and because of some problems in the earliest WLAN security standard. This section examines four significant sets of WLAN security standards in chronological order, describing their problems and solutions.

**NOTE**  WLAN standards address the details of how to implement the authentication and encryption parts of the security puzzle, and they are covered in this section. The intrusion-related tools (IDS and IPS) fall more into an Enterprise-wide security framework and are not covered in this chapter.

The initial security standard for WLANs, called *Wired Equivalent Privacy (WEP)*, had many problems. The other three standards covered here represent a progression of standards whose goal in part was to fix the problems created by WEP. In chronological order, Cisco first addressed the problem with some proprietary solutions. Then the Wi-Fi Alliance, an industry association, helped fix the problem by defining an industry-wide standard. Finally, the IEEE completed work on an official public standard, 802.11i. Table 11-9 lists these four major WLAN security standards.

<table>
<thead>
<tr>
<th>Name</th>
<th>Year</th>
<th>Who Defined It</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wired Equivalent Privacy (WEP)</td>
<td>1997</td>
<td>IEEE</td>
</tr>
<tr>
<td>The interim Cisco solution while awaiting 802.11i</td>
<td>2001</td>
<td>Cisco, IEEE 802.1x Extensible Authentication Protocol (EAP)</td>
</tr>
<tr>
<td>Wi-Fi Protected Access (WPA)</td>
<td>2003</td>
<td>Wi-Fi Alliance</td>
</tr>
<tr>
<td>802.11i (WPA2)</td>
<td>2004</td>
<td>IEEE</td>
</tr>
</tbody>
</table>

The word *standard* is used quite loosely in this chapter when referring to WLAN security. Some of the standards are true open standards from a standards body—namely, the IEEE. Some of the standards flow from the Wi-Fi Alliance, making them de facto industry standards. Additionally, Cisco created several proprietary interim solutions for its products, making the use of the word more of a stretch. However, all of these standards helped improve the original WEP security, so the text will take a closer look at each standard.

**Wired Equivalent Privacy (WEP)**

WEP was the original 802.11 security standard, providing authentication and encryption services. As it turns out, WEP provided only weak authentication and encryption, to the
point that its authentication and encryption can be cracked by a hacker today, using easily downloaded tools. The main problems were as follows:

- **Static Preshared Keys (PSK):** The key value had to be configured on each client and each AP, with no dynamic way to exchange the keys without human intervention. As a result, many people did not bother to change the keys on a regular basis, especially in Enterprises with a large number of wireless clients.

- **Easily cracked keys:** The key values were short (64 bits, of which only 40 were the actual unique key). This made it easier to predict the key’s value based on the frames copied from the WLAN. Additionally, the fact that the key typically never changed meant that the hacker could gather lots of sample authentication attempts, making it easier to find the key.

Because of the problems with WEP, and the fact that the later standards include much better security features, WEP should not be used today.

**SSID Cloaking and MAC Filtering**

Because of WEP’s problems, many vendors included a couple of security-related features that are not part of WEP. However, many people associated these features with WEP just because of the timing with which the features were announced. Neither feature provides much real security, and they are not part of any standard, but it is worth discussing the concepts in case you see them mentioned elsewhere.

The first feature, **SSID cloaking**, changes the process by which clients associate with an AP. Before a client can communicate with the AP, it must know something about the AP—in particular, the AP’s SSID. Normally, the association process occurs like this:

**Step 1** The AP sends a periodic Beacon frame (the default is every 100 ms) that lists the AP’s SSID and other configuration information.

**Step 2** The client listens for Beacons on all channels, learning about all APs in range.

**Step 3** The client associates with the AP with the strongest signal (the default), or with the AP with the strongest signal for the currently preferred SSID.

**Step 4** The authentication process occurs as soon as the client has associated with the AP.

Essentially, the client learns about each AP and its associated SSIDs via the Beacon process. This process aids in the roaming process, allowing the client to move around and reassociate with a new AP when the old AP’s signal gets weaker. However, the Beacons allow an attacker to easily and quickly find out information about the APs to begin trying to associate and gain access to the network.
SSID cloaking is an AP feature that tells the AP to stop sending periodic Beacon frames. This seems to solve the problem with attackers easily and quickly finding all APs. However, clients still need to be able to find the APs. Therefore, if the client has been configured with a null SSID, the client sends a Probe message, which causes each AP to respond with its SSID. In short, it is simple to cause all the APs to announce their SSIDs, even with cloaking enabled on the APs, so attackers can still find all the APs.

**NOTE** Enterprizes often use SSID cloaking to prevent curious people from trying to access the WLAN. Public wireless hotspots tend to let their APs send Beacon frames so that the customers can easily find their APs.

The second extra feature often implemented along with WEP is MAC address filtering. The AP can be configured with a list of allowed WLAN MAC addresses, filtering frames sent by WLAN clients whose MAC address is not in the list. As with SSID cloaking, MAC address filtering may prevent curious onlookers from accessing the WLAN, but it does not stop a real attack. The attacker can use a WLAN adapter that allows its MAC address to be changed, copy legitimate frames out of the air, set its own MAC address to one of the legitimate MAC addresses, and circumvent the MAC address filter.

**The Cisco Interim Solution Between WEP and 802.11i**

Because of the problems with WEP, vendors such as Cisco, and the Wi-Fi Alliance industry association, looked to solve the problem with their own standards, concurrent with the typically slower IEEE standardization process. The Cisco answer included some proprietary improvements for encryption, along with the IEEE 802.1x standard for end-user authentication. The main features of Cisco enhancements included the following:

- Dynamic key exchange (instead of static preshared keys)
- User authentication using 802.1x
- A new encryption key for each packet

The use of a dynamic key exchange process helps because the clients and AP can then change keys more often, without human intervention. As a result, if the key is discovered, the exposure can be short-lived. Also, when key information is exchanged dynamically, a new key can be delivered for each packet, allowing encryption to use a different key each time. That way, even if an attacker managed to discover a key used for a particular packet, he or she could decrypt only that one packet, minimizing the exposure.

Cisco created several features based on the then-to-date known progress on the IEEE 802.11i WLAN security standard. However, Cisco also added user authentication to its suite of security features. User authentication means that instead of authenticating the
device by checking to see if the device knows a correct key, the user must supply a username and password. This extra authentication step adds another layer of security. That way, even if the keys are temporarily compromised, the attacker must also know a person’s username and password to gain access to the WLAN.

**Wi-Fi Protected Access (WPA)**

The Cisco solution to the difficulties of WEP included proprietary protocols as well as IEEE standard 802.1x. After Cisco integrated its proprietary WLAN security standards into Cisco APs, the Wi-Fi Alliance created a multivendor WLAN security standard. At the same time, the IEEE was working on the future official IEEE WLAN security standard, 802.11i, but the WLAN industry needed a quicker solution than waiting on the IEEE standard. So, the Wi-Fi alliance took the current work-in-progress on the 802.11i committee, made some assumptions and predictions, and defined a de facto industry standard. The Wi-Fi Alliance then performed its normal task of certifying vendors’ products as to whether they met this new industry standard, calling it *Wi-Fi Protected Access (WPA)*.

WPA essentially performed the same functions as the Cisco proprietary interim solution, but with different details. WPA includes the option to use dynamic key exchange, using the Temporal Key Integrity Protocol (TKIP). (Cisco used a proprietary version of TKIP.) WPA allows for the use of either IEEE 802.1X user authentication or simple device authentication using preshared keys. And the encryption algorithm uses the Message Integrity Check (MIC) algorithm, again similar to the process used in the Cisco-proprietary solution.

WPA had two great benefits. First, it improved security greatly compared to WEP. Second, the Wi-Fi Alliance’s certification program had already enjoyed great success when WPA came out, so vendors had great incentive to support WPA and have their products become WPA-certified by the Wi-Fi Alliance. As a result, PC manufacturers could choose from many wireless NICs, and customers could buy APs from many different vendors, with confidence that WPA security would work well.

**NOTE** The Cisco-proprietary solutions and the WPA industry standard are incompatible.

**IEEE 802.11i and WPA-2**

The IEEE ratified the 802.11i standard in 2005; additional related specifications arrived later. Like the Cisco-proprietary solution, and the Wi-Fi Alliance’s WPA industry standard, 802.11i includes dynamic key exchange, much stronger encryption, and user authentication. However, the details differ enough so that 802.11i is not backward-compatible with either WPA or the Cisco-proprietary protocols.
One particularly important improvement over the interim Cisco and WPA standards is the inclusion of the Advanced Encryption Standard (AES) in 802.11i. AES provides even better encryption than the interim Cisco and WPA standards, with longer keys and much more secure encryption algorithms.

The Wi-Fi Alliance continues its product certification role for 802.11i, but with a twist on the names used for the standard. Because of the success of the WPA industry standard and the popularity of the term “WPA,” the Wi-Fi Alliance calls 802.11i WPA2, meaning the second version of WPA. So, when buying and configuring products, you will more likely see references to WPA2 rather than 802.11i.

Table 11-10 summarizes the key features of the various WLAN security standards.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Key Distribution</th>
<th>Device Authentication</th>
<th>User Authentication</th>
<th>Encryption</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEP</td>
<td>Static</td>
<td>Yes (weak)</td>
<td>None</td>
<td>Yes (weak)</td>
</tr>
<tr>
<td>Cisco</td>
<td>Dynamic</td>
<td>Yes</td>
<td>Yes (802.1x)</td>
<td>Yes (TKIP)</td>
</tr>
<tr>
<td>WPA</td>
<td>Both</td>
<td>Yes</td>
<td>Yes (802.1x)</td>
<td>Yes (TKIP)</td>
</tr>
<tr>
<td>802.11i (WPA2)</td>
<td>Both</td>
<td>Yes</td>
<td>Yes (802.1x)</td>
<td>Yes (AES)</td>
</tr>
</tbody>
</table>
Exam Preparation Tasks

Review All the Key Topics

Review the most important topics from this chapter, noted with the key topics icon.
Table 11-11 lists these key topics and where each is discussed.

Table 11-11  *Key Topics for Chapter 11*

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 11-2</td>
<td>WLAN standards organizations and their roles</td>
<td>310</td>
</tr>
<tr>
<td>Table 11-3</td>
<td>Comparison of 802.11a, 802.11b, and 802.11g</td>
<td>311</td>
</tr>
<tr>
<td>Table 11-4</td>
<td>WLAN modes, their formal names, and descriptions</td>
<td>313</td>
</tr>
<tr>
<td>Table 11-5</td>
<td>Unlicensed bands, their general names, and the list of standards to use each band</td>
<td>315</td>
</tr>
<tr>
<td>Figure 11-6</td>
<td>DSSS frequencies, showing the three nonoverlapping channels</td>
<td>316</td>
</tr>
<tr>
<td>List</td>
<td>WLAN configuration checklist</td>
<td>321</td>
</tr>
<tr>
<td>List</td>
<td>Common WLAN installation problems related to the work done in the site survey</td>
<td>325</td>
</tr>
<tr>
<td>List</td>
<td>Other common WLAN installation problems</td>
<td>325</td>
</tr>
<tr>
<td>Table 11-8</td>
<td>Common WLAN security threats</td>
<td>327</td>
</tr>
<tr>
<td>Table 11-9</td>
<td>WLAN security standards</td>
<td>328</td>
</tr>
<tr>
<td>Table 11-10</td>
<td>Comparison of WLAN security standards</td>
<td>332</td>
</tr>
</tbody>
</table>

Complete the Tables and Lists from Memory

Print a copy of Appendix L, “Memory Tables” (found on the DVD), or at least the section for this chapter, and complete the tables and lists from memory. Appendix M, “Memory Tables Answer Key,” also on the DVD, includes completed tables and lists for you to check your work.

Definitions of Key Terms

Define the following key terms from this chapter and check your answers in the glossary:

802.11a, 802.11b, 802.11g, 802.11i, 802.11n, access point, ad hoc mode, Basic Service Set (BSS), CSMA/CA, Direct Sequence Spread Spectrum, Extended Service Set (ESS), Frequency Hopping Spread Spectrum, infrastructure mode, Orthogonal Frequency Division Multiplexing, Service Set Identifier (SSID), Wi-Fi Alliance, Wi-Fi Protected Access (WPA), wired equivalent privacy (WEP), WLAN client, WPA2
Cisco Published ICND1 Exam Topics*
Covered in This Part:

Implement an IP addressing scheme and IP services to meet network requirements for a small branch office

■ Describe the need and role of addressing in a network
■ Create and apply an addressing scheme to a network
■ Assign and verify valid IP addresses to hosts, servers, and networking devices in a LAN environment
■ Describe the operation and benefits of using private and public IP addressing
■ Identify and correct IP addressing issues

*Always recheck http://www.cisco.com for the latest posted exam topics.
Part III: IPv4 Addressing and Subnetting

Chapter 12  Perspectives on IPv4 Subnetting
Chapter 13  Analyzing Classful IPv4 Networks
Chapter 14  Converting Subnet Masks
Chapter 15  Analyzing Existing Subnet Masks
Chapter 16  Designing Subnet Masks
Chapter 17  Analyzing Existing Subnets
Chapter 18  Finding All Subnet IDs
This chapter covers the following subjects:

**An Introduction to Subnetting:** This section paints the big picture of how subnetting subdivides a network into smaller groups called subnets.

**Analyze Subnetting and Addressing Needs:** This section discusses where in you need subnets in a real network topology, along with the idea that subnets have a defined size—and the needs of the business define how big you should make the subnets.

**Make Design Choices:** IP addressing and subnetting rules give network engineers the right to make some design choices—in particular, what IP networks to use and what mask to use. This section discusses the things to consider when making both choices.

**Plan the Implementation:** This section completes the design discussion, and moves more towards the discussion of how to implement the design, by listing exactly what subnet IDs to use in which locations in the network topology, and exactly what IP addresses to use for different devices.
Most entry-level networking jobs require you to operate and troubleshoot a network using a pre-existing IP addressing and subnetting plan. The CCENT and CCNA exams assess your readiness to use pre-existing IP addressing and subnetting information to perform typical operations tasks, like monitoring the network, reacting to possible problems, and troubleshooting those problems.

Even if you did not design the network that you work with, the better you understand the design of the network, the better you can operate the network. The process of monitoring any network requires that you continually answer the question, “Is the network working as designed?” If a problem exists, you must consider questions such as, “What happens when the network works normally, and what is different right now?” Both questions require you to understand the intended design of the network, including details of the IP addressing and subnetting design.

This chapter examines the overall IP addressing and subnet design process. Following this chapter, Chapters 13–18 each examine a different aspect of subnetting. Each of these chapters takes one of two approaches to the topics: either an operational approach that requires you to analyze the existing addressing and subnetting, or a design approach that requires you to think about the choices you would make when designing the addressing and subnetting scheme for an enterprise network.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess if you should read the entire chapter. If you miss no more than one of these eight self-assessment questions, you might want to move ahead to the “Exam Preparation Tasks” section. Table 12-1 lists the major headings in this chapter and the “Do I Know This Already?” quiz questions covering the material in those headings so you can assess your knowledge of these specific areas. The answers to the “Do I Know This Already?” quiz appear in Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”
1. Host A is a PC, connected to switch SW1, and assigned to VLAN 1. Which of the following are typically assigned an IP address in the same subnet as host A? (Select two answers.)
   a. The local router’s WAN interface
   b. The local router’s LAN interface
   c. All other hosts attached to the same switch
   d. Other hosts attached to the same switch and also in VLAN 1

2. Why does the formula for the number of hosts per subnet \((2^H - 2)\) require the subtraction of 2 hosts?
   a. To reserve two addresses for redundant default gateways (routers)
   b. To reserve the two addresses required for DHCP operation
   c. To reserve addresses for the subnet ID and default gateway (router)
   d. To reserve addresses for the subnet broadcast address and subnet ID

3. A Class B network needs to be subnetted such that it supports 100 subnets and 100 hosts/subnet. Which of the following answers list a workable combination for the number of network, subnet, and host bits? (Select two answers.)
   a. Network = 16, subnet = 7, host = 7
   b. Network = 16, subnet = 8, host = 8
   c. Network = 16, subnet = 9, host = 7
   d. Network = 8, subnet = 7, host = 17

4. Which of the following are private IP networks? (Select two answers.)
   a. 172.31.0.0
   b. 172.32.0.0
   c. 192.168.255.0
   d. 192.1.168.0
   e. 11.0.0.0
5. Which of the following are public IP networks? (Select three answers.)
   a. 9.0.0.0
   b. 172.30.0.0
   c. 192.168.255.0
   d. 192.1.168.0
   e. 1.0.0.0

6. Before Class B network 172.16.0.0 is subnetted by a network engineer, what parts of
   the structure of the IP addresses in this network already exist, with a specific size?
   (Select two answers.)
   a. Network
   b. Subnet
   c. Host
   d. Broadcast

7. A network engineer spends time thinking about the entire Class B network 172.16.0.0,
   and how to subnet that network. He then chooses how to subnet this Class B network
   and creates an addressing and subnetting plan, on paper, showing his choices. If you
   compare his thoughts about this network before subnetting the network, to his thoughts
   about this network after mentally subnetting the network, which of the following
   occurred to the parts of the structure of addresses in this network?
   a. The subnet part got smaller.
   b. The host part got smaller.
   c. The network part got smaller.
   d. The host part was removed.
   e. The network part was removed.

8. Which of the following terms is not used to reference the one number in each subnet used to
   uniquely identify the subnet? (Select two answers.)
   a. Subnet ID
   b. Subnet number
   c. Subnet broadcast
   d. Subnet name
   e. Subnet address
Introduction to Subnetting

Say you just happened to be at the sandwich shop when they were selling the world’s longest sandwich. You’re pretty hungry, so you go for it. Now you have one sandwich, but at over 2 kilometers long, you realize it’s a bit more than you need for lunch all by yourself. To make the sandwich more useful (and more portable), you chop the sandwich into meal-size pieces, and give the pieces to other folks around you, who are also ready for lunch.

Huh? Well, subnetting, at least the main concept, is similar to this sandwich story. You start with one network, but it is just one large network. As a single large entity, it may not be useful. To make it useful, you chop it into smaller pieces, called subnets, and assign those subnets to be used in different parts of the enterprise internetwork.

This short section introduces IP subnetting. First, it shows the general ideas behind a completed subnet design that indeed chops (or subnets) one network into subnets. The rest of this section describes the many design steps that you would take to create just such a subnet design. By the end of this section, you should have the right context to then read through the subnetting design steps introduced throughout the rest of this chapter.

Subnetting Defined Through a Simple Example

An IP network—in other words, a Class A, B, or C network—is simply a set of consecutively numbered IP addresses that follows some pre-set rules. These Class A, B, and C rules, first introduced back in Chapter 5’s section, “Classes of Networks,” defines that for a given network, all the addresses in the network have the same value in some of the octets of the addresses. For example, Class B network 172.16.0.0 consists of all IP addresses that begin with 172.16: 172.16.0.0, 172.16.0.1, 172.16.0.2, and so on, through 172.16.255.255. Another example: Class A network 10.0.0.0 includes all addresses that begin with 10.

An IP subnet is simply a subset of a Class A, B, or C network. If fact, the word subnet is a shortened version of the phrase subdivided network. For example, one subnet of Class B network 172.16.0.0 could be the set of all IP addresses that begin with 172.16.1 would include 172.16.1.0, 172.16.1.1, 172.16.1.2, and so on, up through 172.16.1.255. Another subnet of that same Class B network could be all addresses that begin 172.16.2.

To give you a general idea, Figure 12-1 shows some basic documentation from a completed subnet design that could be used when an engineer subnets Class B network 172.16.0.0.
The design shows five subnets: one for each of the three LANs and one each for the two serial links. The small text note shows the rationale used by the engineer for the subnets: each subnet includes addresses that have the same value in the first three octets. For instance, for the LAN on the left, the number shows 172.16.1.__, meaning "all addresses that begin 172.16.1." Also, note that the design, as shown, does not use all the addresses in Class B network 172.16.0.0, so the engineer has left plenty of room for growth.

**Operational View Versus Design View of Subnetting**

Most IT jobs require you work with subnetting from an operational view. That is, someone else, before you got the job, designed how IP addressing and subnetting would work for that particular enterprise network. That design may change over time, but when you work with subnetting, you need to interpret what someone else has already chosen.

To fully understand IP addressing and subnetting, you need to think about subnetting from both a design and operational perspective. For instance, Figure 12-1 simply states that in all these subnets, the first three octets must be equal. Some engineer who came before you made that as a design choice. Why did they choose that convention? What alternatives exist? Would those alternatives be better for your internetwork today? All these questions relate more to subnetting design rather than operation.

To help you see both perspectives, some chapters in this part of the book focus more on design issues, while others focus more on operations by interpreting some existing design. This current chapter happens to move through the entire design process for the purpose of introducing the bigger picture of IP subnetting. Following this chapter, the rest of the chapters in this part of the book each take one topic from this chapter, and examine it more closely, either from an operational or design perspective.
The remaining three main sections of this chapter examine each of the steps listed in Figure 12-2, in sequence.

**Figure 12-2   Subnet Planning, Design, and Implementation Tasks**

![Diagram of subnet planning, design, and implementation tasks](image)

**AUTHOR’S NOTE** This chapter shows a subset of the functions included in Cisco’s formal design process, called PPDIOO: Prepare, Plan, Design, Implement, Operate, and Optimize.

### Analyze Subnetting and Addressing Needs

This section discusses the meaning of four basic questions that can be used to analyze the addressing and subnetting needs for any new or changing Enterprise network:

1. Which hosts should be grouped together into a subnet?
2. How many subnets does this network require?
3. How many host IP addresses does each subnet require?
4. Will we use a single subnet size for simplicity, or not?

### Rules About Which Hosts Are in Which Subnet

Every device that connects to an IP internetwork needs to have an IP address. These devices include computers used by end users; servers; mobile phones; laptops; IP phones; tablets; and networking devices like routers, switches, and firewalls. In short, any device that uses IP to send and receive packets needs an IP address.

**NOTE** When discussing IP addressing, the term *network* has specific meaning: a Class A, B, or C IP network. To avoid confusion with that use of the term *network*, this book uses the terms *internetwork* and *enterprise network* when referring to a collection of hosts, routers, switches, and so on.
The IP addresses must be assigned according to some basic rules, and for good reasons. To make routing work efficiently, IP addressing rules group addresses into groups called subnets. The rules are as follows:

- Addresses in the same subnet are not separated by a router.
- Addresses in different subnets are separated by at least one router.

Figure 12-3 shows the general concept, with hosts A and B in one subnet, and host C in another. In particular, note that hosts A and B are not separated from each other by any routers. However, host C, separated from A and B by at least one router, must be in a different subnet.

The idea that hosts on the same link must be in the same subnet is much like the postal code concept. All mailing addresses in the same town use the same postal code (ZIP codes in the USA.). Addresses in another town, whether relatively nearby or on the other side of the country, have a different postal code. The postal code gives the postal service a better ability to automatically sort the mail to deliver it to the right location. For the same general reasons, hosts on the same LAN are in the same subnet, and hosts in different LANs are in different subnets.

Note that the point-to-point WAN link in the figure also needs a subnet. Figure 12-3 shows router R1 connected to the LAN subnet on the left and to a WAN subnet on the right. Router R2 connects to that same WAN subnet. To do so, both R1 and R2 will have IP addresses on their WAN interfaces, and the addresses will be in the same subnet.

Finally, because the routers’ main job is to forward packets from one subnet to another, routers typically connect to multiple subnets. For instance, in this case, router R1 connects to one LAN subnet on the left, and one WAN subnet on the right. To do so, R1 will be configured with two different IP addresses, one per interface. These addresses will be in different subnets, because the interfaces connect the router to different subnets.
Determining the Number of Subnets

To determine the number of subnets required, the engineer must think about the internetwork as documented and apply the following rules. To do so, the engineer requires access to network diagrams, VLAN configuration details, and if you use Frame Relay WANs, details about the permanent virtual circuits (PVC). Based on this info, you should use these rules and plan for one subnet for every:

- VLAN
- Point-to-point serial link
- Frame Relay PVC

NOTE  Frame Relay allows for other options for subnetting besides one subnet per PVC, but to keep the focus on subnetting in this chapter, assume one subnet per PVC.

For example, imagine that the network planner has only Figure 12-4 on which to base the subnet design.

Figure 12-4  Four Site Internetwork with Small Central Site

The number of subnets required cannot be fully predicted with only this figure. Certainly, three subnets will be needed for the WAN links, one per link. However, each LAN switch may be configured with a single VLAN, or with multiple VLANs. You can be certain that you need at least one subnet for the LAN at each site, but you may need more.

Next, consider the more detailed version of the same figure shown in Figure 12-5. In this case, the figure shows VLAN counts in addition to the same Layer 3 topology (the routers and the links connected to the routers). It also shows that the central site has many more switches, but the key fact on the left, regardless of how many switches exist, is that the central site has a total of 12 VLANs. Similarly, the figure lists each branch as having two VLANs. Along with the same three WAN subnets, this internetwork requires 21 subnets.
Finally, in a real job, you would consider the needs today as well as how much growth you expect in the internetwork over time. Any subnetting plan should include a reasonable estimate to the number of subnets you need to meet future needs.

**Determining the Number of Hosts per Subnet**

Determining the number of hosts per subnet requires knowing a few simple concepts and then doing a lot of research and questioning. Every device that connects to a subnet needs an IP address. For a totally new network, you can look at business plans—numbers of people at the site, devices on order, and so on—to get some idea of the possible devices. When expanding an existing network to add new sites, you can use existing sites as a point of comparison, and then find out which sites will get bigger or smaller. And don’t forget to count the router interface IP address in each subnet and the switch IP address used to remotely manage the switch.

Instead of gathering data for each and every site, planners often just use a few typical sites for planning purposes. For example, maybe you have some large sales offices and some small sales offices. You might dig in and learn a lot about only one large sales office and only one small sales office. Add that analysis to the fact that point-to-point links need a subnet with just two addresses, plus any analysis of more one-of-a-kind subnets, and you have enough information to plan the addressing and subnetting design.
For example, in Figure 12-6, the engineer has built a diagram that shows the number of hosts per LAN subnet in the largest branch, B1. For the two other branches, the engineer did not bother to dig to find out the number of required hosts. As long as the number of required IP addresses at sites B2 and B3 stays below the estimate of 50, based on larger site B1, the engineer can plan for 50 hosts in each branch LAN subnet and have plenty of addresses per subnet.

**Figure 12-6  Large Branch B1 with 50 Hosts/Subnet**

---

**One Size Subnet Fits All—Or Not**

The final choice in the initial planning step is to decide whether you will use a simpler design by using a one-size-subnet-fits-all philosophy. A subnet’s size, or length, is simply the number of usable IP addresses in the subnet. A subnetting design can either use one size subnet, or varied sizes of subnets, with pros and cons for each choice.

**Defining the Size of a Subnet**

Before you finish this book, you will learn all the details of how to determine the size of the subnet. For now, you just need to know a few specific facts about the size of subnets. Chapters 13, 14, and 15 give you a progressively deeper knowledge of the details.

The engineer assigns each subnet a subnet mask, and that mask, among other things, defines the size of that subnet. The mask sets aside a number of host bits whose purpose is to number different host IP addresses in that subnet. Because you can number $2^x$ things with $x$ bits, if the mask defines $H$ host bits, the subnet contains $2^H$ unique numeric values.

However, the subnet’s size is not $2^H$, it’s $2^H - 2$, because two numbers in each subnet are reserved for other purposes. Each subnet reserves the numerically lowest value for the...
subnet number, and the numerically highest value as the subnet broadcast address. As a result, the number of usable IP addresses per subnet is \(2^H - 2\).

**NOTE** The terms subnet number, subnet ID, and subnet address all refer to the number that represents or identifies a subnet.

Figure 12-7 shows the general concept behind the three-part structure of an IP address, focusing on the host part and the resulting subnet size.

**Figure 12-7  Subnet Size Concepts**

One Size Subnet Fits All

To choose to use a single size subnet in a network, you must use the same mask for all subnets, because the mask defines the size of the subnet. But which mask?

One requirement to consider when choosing that one mask is this: That one mask must provide enough host IP addresses to support the largest subnet. To do so, the number of host bits (H) defined by the mask must be large enough so that \(2^H - 2\) is larger than (or equal to) the number of host IP addresses required in the largest subnet.

For example, consider Figure 12-8. It shows the required number of hosts per LAN subnet, ignoring the serial links. The branch subnets require only 50 host addresses, but the main site subnet requires 200 host addresses. To accommodate the largest subnet, you need at least 8 host bits. Seven host bits would not be enough, because \(2^7 - 2 = 126\). Eight host bits would be enough, because \(2^8 - 2 = 254\), which is more than enough to support 200 hosts in a subnet.
What’s the big advantage when using a single size subnet? Operational simplicity. In other words, keeping it simple. Everyone on the IT staff who has to work with networking can get used to working with one mask—and one mask only. They will be able to answer all the subnetting questions discussed in this book: finding the subnet ID, finding the range of addresses in a subnet, determining the number of hosts in a subnet, and so on, much more consistently than if the masks varied from subnet to subnet.

The big disadvantage for using a single size subnet is that it wastes IP addresses. For example, in Figure 12-8, all the branch LAN subnets support 254 addresses, while the largest branch subnet needs only 50 addresses. The WAN subnets only need two IP addresses, but each supports 254 addresses, again wasting more IP addresses.

The wasted IP addresses do not actually cause a problem in most cases, however. Most organizations use private IP networks in their enterprise internetworks, and a single Class A or Class B private network can supply plenty of IP addresses, even with the waste.

Multiple Subnet Sizes (Variable Length Subnet Masks)
To create multiple sizes of subnets in one Class A, B, or C network, the engineer must create some subnets using one mask, some with another, and so on. Different masks mean different numbers of host bits, making the \(2^H - 2\) formula result in a different number of hosts in those subnets.

For example, consider the requirements listed earlier in Figure 12-8. It showed one LAN subnet on the left that needs 200 host addresses, three branch subnets that need 50 addresses, and three serial links that need 2 addresses. To meet those needs, but waste fewer IP addresses, three subnet masks could be used, creating subnets of three different sizes, as shown in Figure 12-9.
The smaller subnets now waste fewer IP addresses compared to the design seen earlier in Figure 12-8. The subnets on the right that need 50 IP addresses have subnets with six host bits, for $2^6 - 2 = 62$ available addresses per subnet. The WAN links use masks with two host bits, for $2^2 - 2 = 2$ available addresses per subnet.

However, some are still wasted, because you cannot set the size of the subnet as some arbitrary size. All subnets will be a size based on the $2^H - 2$ formula, with $H$ being the number of host bits defined by the mask for each subnet.

This Book: One Size Subnet Fits All

This book explains subnetting with the understanding that inside a single classful IP network, the designer chooses to use a single mask, creating a single subnet size for all subnets. Why? First, it makes the process of learning subnetting easier. Second, some types of analysis that you can do about a network—specifically, calculating the number of subnets in the classful network—only make sense when a single mask is used. So, the rest of this book focuses on examples and descriptions using the assumption of a single mask in each classful IP network.

Variable length subnet masks (VLSM), which is the practice of using different masks for different subnets in the same classful IP network, is examined in the ICND2 book.

Make Design Choices

Now that you know how to analyze the IP addressing and subnetting needs, the next major step examines how to apply the rules of IP addressing and subnetting to those needs and mask some choices. In other words, now that you know how many subnets you need and how many host addresses you need in the largest subnet, how do you create a useful
subnetting design that meets those requirements? The short answer is that you need to do the three tasks shown on the right side of Figure 12-10.

**Figure 12-10  Input to the Design Phase, and Design Questions to Answer**

### Choose a Classful Network

In the original design for what we know of today as the Internet, companies used registered public classful IP networks when implementing TCP/IP inside the company. By the mid 1990s, an alternative became more popular: private IP networks. This section discusses the background behind these two choices, because it impacts the choice of what IP network a company will then subnet and implement in its enterprise internetwork.

**Public IP Networks**

The original design of the Internet required that any company that connected to the Internet had to use a registered public IP network. To do so, the company would complete some paperwork, describing the enterprise’s internetwork and the number of hosts existing, plus plans for growth. After submitting the paperwork, the company would receive an assignment of either a Class A, B, or C network.

Public IP networks, and the administrative processes surrounding them, ensure that all the companies that connect to the Internet all use unique IP addresses. In particular, once a public IP network is assigned to a company, only that company should use the addresses in that network. That guarantee of uniqueness means that Internet routing can work well, because there are no duplicate public IP addresses.

For example, consider the example shown in Figure 12-11. Company 1 has been assigned public Class A network 1.0.0.0, and company 2 has been assigned public Class A network 2.0.0.0. Per the original intent for public addressing in the Internet, after these public network assignments have been made, no other companies can use addresses in Class A networks 1.0.0.0 or 2.0.0.0.
This original address assignment process ensured unique IP addresses across the entire planet. The idea is much like the fact that your telephone number should be unique in the universe, your postal mailing address should also be unique, and your email address should also be unique. If someone calls you, your phone rings, but no one else’s phone rings. Similarly, if company 1 is assigned Class A network 1.0.0.0, and it assigns address 1.1.1.1 to a particular PC, that address should be unique in the universe. A packet sent through the Internet, to destination 1.1.1.1, should only arrive at this one PC inside company 1, instead of being delivered to some other host.

**Growth Exhausts the Public IP Address Space**

By the early 1990s, the world was running out of public IP networks that could be assigned. During most of the 1990s, the number of hosts newly connected to Internet was growing at double-digit pace, *per month*. Companies kept following the rules, asking for public IP networks, and it was clear that the current address-assignment scheme could not continue without some changes. Simply put, the number of Class A, B, and C networks supported by the 32-bit address in IP version 4 (IPv4) was not enough to support one public classful network per organization, while also providing enough IP addresses in each company.

**NOTE** From one perspective, the universe ran out of public IPv4 addresses in early 2011. IANA, which assigns public IPv4 address blocks to the five Internet registries around the globe, assigned the last of the IPv4 address space in early 2011.

The Internet community worked hard during the 1990s to solve this problem, coming up with several solutions, including the following:

- A new version of IP (IP Version 6 [IPv6]), with much larger addresses (128 bit)
- Assigning a subset of a public IP network to each company, instead of an entire public IP network, to reduce waste
- Network Address Translation (NAT), which allows the use of private IP networks
These three solutions matter to real networks today. However, to stay focused on the topic of subnet design, this chapter focuses on the third option, and in particular, the private IP networks that can be used by an enterprise when also using NAT.

NAT, which is detailed in Chapter 23, “WAN Configuration,” allows multiple companies to use the exact same private IP networks, using the same IP addresses as other companies, while still connecting to the Internet. For example, Figure 12-12 shows the same two companies connecting to the Internet as in Figure 12-10, but now with both using the same private Class A network 10.0.0.0.

Figure 12-12 Reusing the Same Private Network 10.0.0.0, with NAT

Both companies use the same classful IP network (10.0.0.0). Both companies can implement their subnet design internal to their respective enterprise internetworks, without discussing their plans. The two companies can even use the exact same IP addresses inside network 10.0.0.0. And amazingly, at the same time, both companies can even communicate with each other through the Internet.

The technology called Network Address Translation (NAT) makes it possible for companies to reuse the same IP networks, as shown in Figure 12-12. NAT does this by translating the IP addresses inside the packets as they go from the enterprise to the Internet, using a small number of public IP addresses to support tens of thousands of private IP addresses. That one bit of information is not enough to understand how NAT works; however, to keep the focus on subnetting, the book defers the discussion of how NAT works until Chapter 23. For now, accept that most companies use NAT, and therefore, they can use private IP networks for their internetworks.

Private IP Networks

RFC 1918 defines the set of private IP networks, as listed in Table 12-2. By definition, these private IP networks:

- Will never be assigned to an organization as a public IP network
- Can be used by organizations that will use NAT when sending packets into the Internet
- Can also be used by organizations that never need to send packets into the Internet
So, when using NAT—and almost every organization that connects to the Internet uses NAT—the company can simply pick one or more of the private IP networks from the list of reserved private IP network numbers. RFC 1918 defines the list, which is summarized in Table 12-2.

### Table 12-2  RFC 1918 Private Address Space

<table>
<thead>
<tr>
<th>Private IP Networks</th>
<th>Class of Networks</th>
<th>Number of Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.0</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>172.16.0.0 through 172.31.0.0</td>
<td>B</td>
<td>16</td>
</tr>
<tr>
<td>192.168.0.0 through 192.168.255.0</td>
<td>C</td>
<td>256</td>
</tr>
</tbody>
</table>

**NOTE**  According to an informal survey I ran in my blog back in late 2010, about half of the respondents said that their networks use private Class A network 10.0.0.0, as opposed to other private networks or public networks. Check the chapter page in the study section of my website for a link.

### Choosing an IP Network During the Design Phase

Today, some organizations use private IP networks along with NAT, and some use public IP networks. Most new enterprise internetworks use private IP addresses throughout the network, along with NAT, as part of the connection to the Internet. Those organizations that already have a registered public IP networks—often obtained before the address started running short in the early 1990s—may continue to use those public addresses throughout their enterprise networks.

Once the choice to use a private IP network has been made, just pick one that has enough IP addresses. You can have a small internetwork and still choose to use private Class A network 10.0.0.0. It may seem wasteful to choose a Class A network that has over 16 million IP addresses, especially if you only need a few hundred. However, there’s no penalty or problem with using a private network that is too large for your current or future needs.

For the purposes of this book, most examples use private IP network numbers. For the design step to choose a network number, just choose a private Class A, B, or C network from the list of RFC 1918 private networks.

Regardless, from a math and concept perspective, the methods to subnet a public IP network versus a private IP network are the same.
Choose the Mask

If a design engineer followed the topics in this chapter so far, in order, they would know the following:

- The number of subnets required
- The number of hosts/subnet required
- That a choice was made to use only one mask for all subnets, so that all subnets are the same size (same number of hosts/subnet)
- The classful IP network number that will be subnetted

This section completes the design process, at least the parts described in this chapter, by discussing how to choose that one mask to use for all subnets. First, this section examines default masks, used when a network is not subnetted, as a point of comparison. Next, the concept of borrowing host bits to create subnet bits is explored. Finally, this section ends with an example of how to create a subnet mask based on the analysis of the requirements.

Classful IP Networks Before Subnetting

Before an engineer subnets a classful network, the network is a single group of addresses. In other words, the engineer has not yet subdivided the network into many smaller subsets called subnets.

When thinking about an unsubnetted classful network, the addresses in a network have only two parts: the network part and host part. Comparing any two addresses in the classful network:

- The addresses have the same value in the network part.
- The addresses have different values in the host part.

The actual sizes of the network and host part of the addresses in a network can be easily predicted, as shown in Figure 12-13.

Figure 12-13  Format of Unsubnetted Class A, B, and C Networks

<table>
<thead>
<tr>
<th></th>
<th>N=8</th>
<th>H=24</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>N=16</td>
<td>H=16</td>
</tr>
<tr>
<td>C</td>
<td>N=24</td>
<td>H=8</td>
</tr>
</tbody>
</table>
In Figure 12-13, N and H represent the number of network and host bits, respectively. Class rules define the number of network octets (1, 2, or 3) for Classes A, B, and C, respectively. The number of host octets is 3, 2, or 1, respectively.

Continuing the analysis of classful network before subnetting, the number of addresses in the network can be calculated with the same $2^H - 2$ formula previously discussed. In particular, the size of an unsubnetted Class A, B, or C network is as follows:

- **Class A**: $2^{24} - 2 = 16,777,214$
- **Class B**: $2^{16} - 2 = 65,534$
- **Class C**: $2^8 - 2 = 254$

**Borrowing Host Bits to Create Subnet Bits**

To subnet a network, the designer thinks about the network and host parts, as shown in Figure 12-13, and then the engineer adds a third part in the middle: the subnet part. However, the designer cannot change the size of the network part or the size of the entire address (32 bits). To create a subnet part of the address structure, the engineer borrows bits from the host part. Figure 12-14 shows the general idea.

**Choosing Enough Subnet and Host Bits**

The design process requires a choice of where to place the dashed line shown in Figure 12-14. But what is the right choice? How many subnet and host bits should the designer
choose? The answers hinge on the requirements gathered in the early stages of the planning process:

- Number of subnets required
- Number of hosts/subnet

The bits in the subnet part create a way to uniquely number the different subnets that the design engineer wants to create. With 1 subnet bit, you can number $2^1$ or 2 subnets. With 2 bits, $2^2$ or 4 subnets, With 3 bits, $2^3$ or 8 subnets, and so on. The number of subnet bits must be large enough to uniquely number all the subnets, as determined during the planning process.

At the same time, the remaining number of host bits must also be large enough to number the host IP addresses in the largest subnet. Remember, in this chapter, we assume the use of a single mask for all subnets. This single mask must support both the required number of subnets and the required number of hosts in the largest subnet. Figure 12-15 shows the concept.

Figure 12-15  Borrowing Enough Subnet and Host Bits

Figure 12-15 shows the idea of the designer choosing a number of subnet (S) and host (H) bits and then checking the math. $2^S$ must be more than the number of required subnets or the mask will not supply enough subnets in this IP network. Also, $2^H - 2$ must be more than the required number of hosts/subnet.

**NOTE**  The idea of calculating the number of subnets as $2^S$ applies only in cases where a single mask is used for all subnets of a single classful network, as is being assumed in this chapter.

To effectively design masks, or to interpret masks that were chosen by someone else, you need a good working memory of the powers of 2. Table 12-3 lists the powers of 2 up through $2^{12}$, along with a column with $2^H - 2$, for perspective when calculating the number of hosts/subnet. Appendix B, “Numeric Reference Tables,” lists a table with powers of 2 up through $2^{24}$ for your reference.
Example Design: 172.16.0.0, 200 Subnets, 200 Hosts

To help make sense of the theoretical discussion so far, consider an example that focuses on the design choice for the subnet mask. In this case, the planning and design choices so far tell us the following:

- Use a single mask for all subnets.
- Plan for 200 subnets.
- Plan for 200 host IP addresses/subnet.
- Use private Class B network 172.16.0.0.

To choose the mask, the designer asks this question:

**How many subnet (S) bits do I need to number 200 subnets?**

From Table 12-3, you can see that $S = 7$ is not large enough ($2^7 = 128$), but $S = 8$ is enough ($2^8 = 256$). So, you need at least 8 subnet bits.

Next, the designer asks a similar question, based on the number of hosts per subnet:

**How many host (H) bits do I need to number 200 hosts/subnet?**
The math is basically the same, but the formula subtracts 2 when counting the number of hosts/subnet. From Table 12-3, you can see that $H = 7$ is not large enough ($2^7 - 2 = 126$), but $H = 8$ is enough ($2^8 - 2 = 254$). Figure 12-16 shows the resulting mask.

Figure 12-16  Example Mask Choice, $S = 8, H = 8$

<table>
<thead>
<tr>
<th></th>
<th>N = 16</th>
<th>S = 8</th>
<th>H = 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subnets</td>
<td>256</td>
<td>2^8</td>
<td>2^8 - 2</td>
</tr>
<tr>
<td>Need:</td>
<td>200</td>
<td>200</td>
<td>254</td>
</tr>
<tr>
<td>Excess:</td>
<td>56</td>
<td>54</td>
<td></td>
</tr>
</tbody>
</table>

**Masks and Mask Formats**

Although engineers think about IP addresses in three parts (network, subnet, and host), when making design choices, the subnet mask gives the engineer a way to communicate those design choices to all the devices in the subnet.

The subnet mask is a 32-bit binary number with a number of binary 1s on the left, and with binary 0s on the right. By definition, the number of binary 0s equals the number of host bits—in fact, that is exactly how the mask communicates the idea of the size of the host part of the addresses in a subnet. The beginning bits in the mask equal binary 1, with those bit positions representing the combined network and subnet parts of the addresses in the subnet.

Because the network part always comes first, then the subnet part, and then the host part, the subnet mask, in binary form, cannot have interleaved 1s and 0s. Each subnet mask has one unbroken string of binary 1s on the left, with the rest of the bits as binary 0s.

After the engineer chooses the classful network and the number of subnet and host bits in a subnet, creating the binary subnet mask is easy. Just write down N 1s, S 1s, and then H 0s (assuming N, S, and H represent the number of network, subnet, and host bits). Figure 12-17 shows the mask based on the previous example, which subnets a Class B network by creating 8 subnet bits, leaving 8 host bits.
In addition to the binary mask shown in Figure 12-17, masks can also be written in two other formats: the familiar *dotted-decimal notation (DDN)* seen in IP addresses and an even briefer *prefix notation*. Chapter 14, “Converting Subnet Masks,” discusses these formats and more importantly, how to convert between the different formats.

**Build a List of All Subnets**

This final task of the subnet design step determines the actual subnets that can be used, based on all the earlier choices. The earlier design work determined the Class A, B, or C network to use, and the (one) subnet mask to use that supplies enough subnets and enough host IP addresses per subnet. But what are those subnets? How do you identify or describe a subnet? This section answers these questions.

A subnet consists of a group of consecutive numbers. Most of these numbers can be used as IP addresses by hosts. However, each subnet reserves the first and last numbers in the group, and these two numbers cannot be used as IP addresses. In particular, each subnet contains the following:

**Subnet number:** Also called the *subnet ID* or *subnet address*, this number identifies the subnet. It is the numerically smallest number in the subnet. It cannot be used as an IP address by a host.

**Subnet broadcast:** Also called the *subnet broadcast address* or *directed broadcast address*, this is the last (numerically highest) number in the subnet. It also cannot be used as an IP address by a host.

**IP addresses:** All the numbers between the subnet ID and the subnet broadcast address can be used as a host IP address.

For example, consider the earlier case in which the design results were as follows:

Network 172.16.0.0 (Class B)

Mask 255.255.255.0 (for all subnets)
With some math, the facts about each subnet that exists in this network can be calculated. In this case, Table 12-4 shows the first ten such subnets. It then skips many subnets, and shows the last two (numerically largest) subnets.

Table 12-4  First Ten Subnets, Plus the Last Few, from 172.16.0.0, 255.255.255.0

<table>
<thead>
<tr>
<th>Subnet Number</th>
<th>IP Addresses</th>
<th>Broadcast Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.0.0</td>
<td>172.16.0.1 – 172.16.0.254</td>
<td>172.16.0.255</td>
</tr>
<tr>
<td>172.16.1.0</td>
<td>172.16.1.1 – 172.16.1.254</td>
<td>172.16.1.255</td>
</tr>
<tr>
<td>172.16.2.0</td>
<td>172.16.2.1 – 172.16.2.254</td>
<td>172.16.2.255</td>
</tr>
<tr>
<td>172.16.3.0</td>
<td>172.16.3.1 – 172.16.3.254</td>
<td>172.16.3.255</td>
</tr>
<tr>
<td>172.16.4.0</td>
<td>172.16.4.1 – 172.16.4.254</td>
<td>172.16.4.255</td>
</tr>
<tr>
<td>172.16.5.0</td>
<td>172.16.5.1 – 172.16.5.254</td>
<td>172.16.5.255</td>
</tr>
<tr>
<td>172.16.6.0</td>
<td>172.16.6.1 – 172.16.6.254</td>
<td>172.16.6.255</td>
</tr>
<tr>
<td>172.16.7.0</td>
<td>172.16.7.1 – 172.16.7.254</td>
<td>172.16.7.255</td>
</tr>
<tr>
<td>172.16.8.0</td>
<td>172.16.8.1 – 172.16.8.254</td>
<td>172.16.8.255</td>
</tr>
<tr>
<td>172.16.9.0</td>
<td>172.16.9.1 – 172.16.9.254</td>
<td>172.16.9.255</td>
</tr>
<tr>
<td>Skipping many…</td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.16.254.0</td>
<td>172.16.254.1 – 172.16.254.254</td>
<td>172.16.254.255</td>
</tr>
<tr>
<td>172.16.255.0</td>
<td>172.16.255.1 – 172.16.255.254</td>
<td>172.16.255.255</td>
</tr>
</tbody>
</table>

Once you have the network number and the mask, calculating the subnet IDs and other details for all subnets requires some math. For real life, most people use subnet calculators or subnet-planning tools. For the CCENT and CCNA exams, you need to be ready to find this kind of information; in this book, Chapter 18, “Finding All Subnet IDs,” shows you how to find all the subnets of a given network.

Plan the Implementation

The next step, planning the implementation, is the last step before actually configuring the devices to create a subnet. The engineer first needs to choose where to use each subnet. For instance, at a branch office in a particular city, which subnet from the subnet planning chart, as shown in Table 12-4, should be used for each VLAN at that site? Also, for any IP addresses that require static IP addresses, which addresses should be used in each case? Finally, what range from inside each subnet should be configured in the DHCP server, to be dynamically leased to hosts for use as their IP address? Figure 12-18 summarizes the list of implementation planning tasks.
Assigning Subnets to Different Locations

The job is simple: Look at your network diagram, identify each location that needs a subnet, and pick one from the table you made of all the possible subnets. Then, track it so you know which ones you use where, using a spreadsheet or some other purpose-built subnet-planning tool. That’s it! Figure 12-19 shows a sample of a completed design using Table 12-4, which happens to match the initial design sample shown way back in Figure 12-1.

Although this design could have used any five subnets from Table 12-4, in real networks, engineers usually give more thought to some strategy for assigning subnets. For instance, you might assign all LAN subnets lower numbers and WAN subnets higher numbers. Or you might slice off large ranges of subnets for different divisions. Or you might follow that same strategy, but ignore organizational divisions in the company, paying more attention to geographies.

For instance, for a U.S.-based company with a smaller presence in both Europe and Asia, you might plan to reserve ranges of subnets based on continent. This kind of choice is particularly useful when later trying to use a feature called route summarization, which is discussed in detail in Chapter 6, “Route Summarization,” of the ICND2 book. Figure 12-20 shows the general idea using the same subnets from Table 12-4 again.
Choose Static and Dynamic Ranges per Subnet

Devices receive their IP address and mask assignment in one of two ways: dynamically by using DHCP or statically through configuration. For DHCP to work, the network engineer must tell the DHCP server the subnets for which it must assign IP addresses. Additionally, that configuration limits the DHCP server to only a subset of the addresses in the subnet. For static addresses, you simply configure the device to tell it what IP address and mask to use.

To keep things as simple as possible, most shops use a strategy to separate the static IP addresses on one end of each subnet, and the DHCP-assigned dynamic addresses on the other. It does not really matter whether the static addresses sit on the low end of the range of addresses, or the high end.

For instance, imagine that the engineer decides that, for the LAN subnets in Figure 12-19, the DHCP pool comes from the high end of the range, namely, addresses that end in .101 through .254. (The address that ends in .255 is, of course, reserved.) The engineer also assigns static addresses from the lower end, with addresses ending in .1 through .100. Figure 12-21 shows the idea.
Figure 12-21  Static from the Low End, DHCP from the High End

Figure 12-21 shows all three routers with statically assigned IP addresses that end in .1. The only other static IP address in the figure is assigned to the server on the left, with address 172.16.1.11 (abbreviated simply as .11 in the figure).

On the right, each LAN has two PCs that use DHCP to dynamically lease their IP addresses. DHCP servers often begin by leasing the addresses at the bottom of the range of addresses, so in each LAN, the hosts have leased addresses that end in .101 and .102, which are at the low end of the range chosen by design.
Exam Preparation Tasks

Review All the Key Topics
Review the most important topics from this chapter, noted with the key topics icon. Table 12-5 lists these key topics and where each is discussed.

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>Key facts about subnets</td>
<td>343</td>
</tr>
<tr>
<td>List</td>
<td>Rules about what places in a network topology need a subnet</td>
<td>344</td>
</tr>
<tr>
<td>Figure 12-7</td>
<td>Locations of the network, subnet, and host parts of an IPv4 address</td>
<td>347</td>
</tr>
<tr>
<td>List</td>
<td>Features that extended the life of IPv4</td>
<td>351</td>
</tr>
<tr>
<td>Figure 12-14</td>
<td>Formats of Class A, B, and C addresses when subnetted</td>
<td>355</td>
</tr>
<tr>
<td>Figure 12-15</td>
<td>General logic when choosing the size of the subnet and host parts of addresses in a subnet</td>
<td>356</td>
</tr>
<tr>
<td>List</td>
<td>Items that together define a subnet</td>
<td>359</td>
</tr>
</tbody>
</table>

Complete the Tables and Lists from Memory
Print a copy of Appendix L, “Memory Tables” (found on the DVD), or at least the section for this chapter, and complete the tables and lists from memory. Appendix M, “Memory Tables Answer Key,” also on the DVD, includes completed tables and lists for you to check your work.

Definitions of Key Terms
Define the following key terms from this chapter, and check your answers in the Glossary:

subnet, network, classful network, variable length subnet masks (VLSM), network part, subnet part, host part, public IP network, private IP network, subnet mask
This page intentionally left blank
This chapter covers the following subjects:

**Classful Network Concepts:** This section examines the ideas related to Class A, Class B, and Class C networks (in other words, classful IP networks).

**Practice with Classful Networks:** This section helps readers prepare for the CCENT and CCNA exams by listing practice problems, tips, and suggestions for how to better review the math and logic used to analyze classful networks.
Analyzing Classful IPv4 Networks

When operating a network, you often start investigating a problem based on an IP address and mask. Based on the IP address alone, you should be able to determine several facts about the Class A, B, or C network in which the IP address resides. These facts can be useful when troubleshooting some networking problems.

This chapter lists the key facts about classful IP networks and explains how to discover these facts. Following that, this chapter lists some practice problems. Before moving to the next chapter, you should practice until you can consistently determine all these facts, quickly and confidently, based on an IP address.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess if you should read the entire chapter. If you miss no more than one of these six self-assessment questions, you might want to move ahead to the “Exam Preparation Tasks” section. Table 13-1 lists the major headings in this chapter and the “Do I Know This Already?” quiz questions covering the material in those headings so you can assess your knowledge of these specific areas. The answers to the “Do I Know This Already?” quiz appear in Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”

Table 13-1  “Do I Know This Already?” Foundation Topics Section-to-Question Mapping

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classful Network Concepts</td>
<td>1–6</td>
</tr>
</tbody>
</table>

5. Which of the following are not valid Class A network IDs? (Choose two answers.)
   a. 1.0.0.0
   b. 130.0.0.0
   c. 127.0.0.0
   d. 9.0.0.0
6. Which of the following are not valid Class B network IDs?
   a. 130.0.0.0.
   b. 191.255.0.0.
   c. 128.0.0.0.
   d. 150.255.0.0.
   e. All are valid Class B network IDs.

7. Which of the following is true about IP address 172.16.99.45’s IP network? (Select two answers.)
   a. The network ID is 172.0.0.0.
   b. The network is a Class B network.
   c. The default mask for the network is 255.255.255.0.
   d. The number of host bits in the unsubnetted network is 16.

8. Which of the following is true about IP address 192.168.6.7’s IP network? (Select two answers.)
   a. The network ID is 192.168.6.0.
   b. The network is a Class B network.
   c. The default mask for the network is 255.255.255.0.
   d. The number of host bits in the unsubnetted network is 16.

9. Which of the following is a network broadcast address?
   a. 10.1.255.255
   b. 192.168.255.1
   c. 24.1.1.255
   d. 172.30.255.255

10. Which of the following is a Class A, B, or C network ID?
    a. 10.1.0.0
    b. 192.168.1.0
    c. 127.0.0.0
    d. 72.20.0.1
Foundation Topics

Classful Network Concepts
Imagine that you have a job interview for your first IT job. As part of the interview, you’re given an IPv4 address and mask: 10.4.5.99, 255.255.255.0. What can you tell the interviewer about the classful network (in this case, the Class A network) in which the IP address resides?

This section, the first of two major sections in this chapter, reviews the concepts of classful IP networks (in other words, Class A, B, and C networks). In particular, this chapter examines how to begin with a single IP address and then determine the following facts:

- Class (A, B, or C)
- Default mask
- Number of network octets/bits
- Number of host octets/bits
- Number of host addresses in the network
- Network ID
- Network broadcast address
- First and last usable address in the network

IPv4 Network Classes and Related Facts
IP version 4 (IPv4) defines five address classes. Three of the classes, Classes A, B, and C, consist of unicast IP addresses. Unicast addresses identify a single host or interface, so that the address uniquely identifies the device. Class D addresses serve as multicast addresses, so that one packet sent to a Class D multicast IPv4 address may actually be delivered to multiple hosts. Finally, Class E addresses are experimental.

The class can be identified based on the value of the first octet of the address, as shown in Table 13-2.
CCENT and CCNA focus mostly on the unicast classes (A, B, and C) rather than Classes D and E. After you identify the class as either A, B, or C, many other related facts can be derived just through memorization. Table 13-3 lists that information for reference and later study; each of these concepts are described in this chapter.

### Table 13-2  IPv4 Address Classes Based on First Octet Values

<table>
<thead>
<tr>
<th>First Octet Values</th>
<th>Class</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–126</td>
<td>A</td>
<td>Unicast (large networks)</td>
</tr>
<tr>
<td>128–191</td>
<td>B</td>
<td>Unicast (medium-sized networks)</td>
</tr>
<tr>
<td>192–223</td>
<td>C</td>
<td>Unicast (small networks)</td>
</tr>
<tr>
<td>224–239</td>
<td>D</td>
<td>Multicast</td>
</tr>
<tr>
<td>240–255</td>
<td>E</td>
<td>Experimental</td>
</tr>
</tbody>
</table>

### Table 13-3  Key Facts for Classes A, B, and C

<table>
<thead>
<tr>
<th></th>
<th>Class A</th>
<th>Class B</th>
<th>Class C</th>
</tr>
</thead>
<tbody>
<tr>
<td>First octet range</td>
<td>1 – 126</td>
<td>128 – 191</td>
<td>192 – 223</td>
</tr>
<tr>
<td>Valid network numbers</td>
<td>1.0.0.0 – 126.0.0.0</td>
<td>128.0.0.0 – 191.255.0.0</td>
<td>192.0.0.0 – 223.255.255.0</td>
</tr>
<tr>
<td>Total networks</td>
<td>$2^7 - 2 = 126$</td>
<td>$2^{14} = 16,384$</td>
<td>$2^{21} = 2,097,152$</td>
</tr>
<tr>
<td>Hosts per network</td>
<td>$2^{24} - 2$</td>
<td>$2^{16} - 2$</td>
<td>$2^8 - 2$</td>
</tr>
<tr>
<td>Octets (bits) in network part</td>
<td>1 (8)</td>
<td>2 (16)</td>
<td>3 (24)</td>
</tr>
<tr>
<td>Octets (bits) in host part</td>
<td>3 (24)</td>
<td>2 (16)</td>
<td>1 (8)</td>
</tr>
<tr>
<td>Default mask</td>
<td>255.0.0.0</td>
<td>255.255.0.0</td>
<td>255.255.255.0</td>
</tr>
</tbody>
</table>

### Actual Class A, B, and C Networks

Table 13-3 lists the range of Class A, B, and C network numbers. However, some key points can be lost just referencing a table of information. This section examines the Class A, B, and C network numbers, focusing on the more important points and the exceptions and unusual cases.

First, the number of networks from each class significantly differs. Only 126 Class A networks exist: network 1.0.0.0, 2.0.0.0, 3.0.0.0, and so on, up through network 126.0.0.0. However, 16,384 Class B networks exist, with over 2 million Class C networks.
Next, note that the size of networks from each class also significantly differs. Each Class A networks is relatively large—over 16 million host IP addresses per network—so they were originally intended to be used by the largest companies and organizations. Class B networks are smaller, with over 65,000 hosts per network. Finally, Class C networks, intended for small organizations, have 254 hosts in each network. Figure 13-1 summarizes those facts.

Figure 13-1  Numbers and Sizes of Class A, B, and C Networks

<table>
<thead>
<tr>
<th>Class</th>
<th>Networks</th>
<th>Hosts/Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>126</td>
<td>16,777,214</td>
</tr>
<tr>
<td>B</td>
<td>16,384</td>
<td>65,534</td>
</tr>
<tr>
<td>C</td>
<td>2,097,152</td>
<td>254</td>
</tr>
</tbody>
</table>

Address Formats

In some cases, an engineer might need to think about a Class A, B, or C network as if the network has not been subdivided through the subnetworking process. In such a case, the addresses in the classful network has a structure with two parts: the network part (sometimes called the prefix), and the host part. Then, comparing any two IP addresses in one network, the following observations can be made:

The addresses in the same network have the same values in the network part.

The addresses in the same network have different values in the host part.

For instance, in Class A network 10.0.0.0, by definition, the network part consists of the first octet. As a result, all addresses have an equal value in the network part, namely a 10 in the first octet. If you then compare any two addresses in the network, the addresses have a different value in the last three octets (the host octets). For example, IP addresses 10.1.1.1 and 10.1.1.2 have the same value (10) in the network part, but different values in the host part.
Figure 13-2 shows the format and sizes (in number of bits) of the network and host parts of IP addresses in Class A, B, and C networks, before any subnetting has been applied.

**Figure 13-2  Sizes (Bits) of the Network and Host Parts of Unsubnetted Classful Networks**

<table>
<thead>
<tr>
<th>Class</th>
<th>Network (Bits)</th>
<th>Host (Bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>B</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>C</td>
<td>24</td>
<td>8</td>
</tr>
</tbody>
</table>

**Default Masks**

Although we humans may easily understand the concepts behind Figure 13-2, computers prefer numbers. To communicate those same ideas to computers, each network class has an associated default mask that defines the size of the network and host parts of an unsubnetted Class A, B, and C network. To do so, the mask lists binary 1s for the bits considered to be in the network part, and binary 0s for the bits considered to be in the host part.

For example, Class A network 10.0.0.0 has a network part of the first single octet (8 bits) and a host part of last three octets (24 bits). As a result, the Class A default mask is 255.0.0.0, which in binary is

```
11111111 00000000 00000000 00000000
```

Figure 13-3 shows default masks for each network class, both in binary and dotted-decimal format.

**Figure 13-3  Default Masks for Classes A, B, and C**
Number of Hosts per Network
Calculating the number of hosts per network requires some basic binary math. First, consider a case where you have a single binary digit. How many unique values are there? There are, of course, two values: 0 and 1. With 2 bits, you can make four combinations: 00, 01, 10, and 11. As it turns out, the total combination of unique values you can make with \( \text{N} \) bits is \( 2^{\text{N}} \).

Host addresses—the IP addresses assigned to hosts—must be unique. The host bits exist for the purpose of giving each host a unique IP address by virtue of having a different value in the host part of the addresses. So, with \( \text{H} \) host bits, \( 2^{\text{H}} \) unique combinations exist.

However, the number of hosts in a network is not \( 2^{\text{H}} \); instead, it is \( 2^{\text{H}} - 2 \). Each network reserves two numbers: one for the network ID and one for the network broadcast address. As a result, the formula to calculate the number of hosts per Class A, B, or C network is

\[
2^{\text{H}} - 2
\]

where \( \text{H} \) is the number of host bits.

Deriving the Network ID and Related Numbers
Each classful network has four key numbers that describe the network. You can derive these four numbers if you start with just one IP address in the network. The numbers are as follows

- Network number
- First (numerically lowest) usable address
- Last (numerically highest) usable address
- Network broadcast address

First, consider both the network number and first usable IP address. The network number, also called the network ID or network address, identifies the network. By definition, the network number is the numerically lowest number in the network. However, to prevent any ambiguity, the people that made up IP addressing added the restriction that the network number cannot be assigned as an IP address. So, the lowest number in the network is the network ID, and the first (numerically lowest) number usable as an IP address is one larger than the network number.
Next, consider the network broadcast address along with the last (numerically highest) usable IP address. The TCP/IP RFCs define a network broadcast address as a special address in each network. This broadcast address could be used as the destination address in a packet, and the routers would forward a copy of that one packet to all hosts in that classful network. Numerically, a network broadcast address is always the highest (last) number in the network. As a result, the highest (last) number usable as an IP address is the address that is simply \textit{one less than} the network broadcast address.

Simply put, if you can find the network number and network broadcast address, finding the first and last usable IP addresses in the network is easy. For the exam, you should be able to find all four values with ease; the process is as follows:

\textbf{Step 1} Determine the class (A, B, or C) based on the first octet.

\textbf{Step 2} Mentally divide the network and host octets based on the class.

\textbf{Step 3} To find the network number, change the IP address’s host octets to 0.

\textbf{Step 4} To find the first address, add 1 to the fourth octet of the network ID.

\textbf{Step 5} To find the broadcast address, change the network ID’s host octets to 255.

\textbf{Step 6} To find the last address, subtract 1 from the fourth octet of the network broadcast address.

The written process actually looks harder than it is. Figure 13-4 shows an example of the process, using Class A IP address 10.1.2.3, with the circled numbers matching the process.

\textbf{Figure 13-4} \textit{Example of Deriving the Network ID and Other Values from 10.17.18.21}

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Network</th>
<th>Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Class</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>Divide</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Make Host=0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Add 1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Make Host=255</td>
<td>10</td>
<td>255</td>
</tr>
<tr>
<td>6</td>
<td>Subtract 1</td>
<td>10</td>
<td>255</td>
</tr>
</tbody>
</table>

Figure 13-4 shows the identification of the class as Class A (Step 1), and the number of network/host octets as 1 and 3, respectively. So, to find the Network ID at Step 3, the figure
copies only the first octet, and setting the last three (host) octets to 0. At Step 4, just copy the network ID and add 1 to the fourth octet. Similarly, to find the broadcast address at Step 5, copy the network octets, but set the host octets to 255. Then, at Step 6, subtract 1 from the fourth octet to find the last usable IP address.

Just to show an alternative example, consider IP address 172.16.8.9. Figure 13-5 shows the process applied to this IP address.

Figure 13-5  Example Deriving the Network ID and Other Values from 172.16.8.9

<table>
<thead>
<tr>
<th>Class</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divide</td>
<td>②</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network</td>
<td>Host</td>
<td></td>
<td></td>
</tr>
<tr>
<td>172 . 16</td>
<td>8 . 9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Make Host=0 ③ 172 . 16 | 0 . 0 +1 |
- Add ④ 172 . 16 | 0 . 1 |
- Make Host=255 ⑤ 172 . 16 | 255 . 255 -1 |
- Subtract ⑥ 172 . 16 | 255 . 254 |

Figure 13-5 shows the identification of the class as Class B (Step 1), and the number of network/host octets as 2 and 2, respectively. So, to find the network ID at Step 3, the figure copies only the first two octets, setting the last two (host) octets to 0. Similarly, Step 5 shows the same action, but with the last two (host) octets being set to 255.

Unusual Network IDs and Network Broadcast Addresses

Some of the more unusual numbers in and around the range of Class A, B, and C network numbers can cause some confusion. This section lists some examples of unusual-looking valid numbers and normal-looking valid numbers.

For Class A, the first odd fact is that the range of values in the first octet omits the numbers 0 and 127. As it turns out, what would be Class A network 0.0.0.0 was originally reserved for some broadcasting requirements, so all addresses that begin with 0 in the first octet are reserved. What would be Class A network 127.0.0.0 is still reserved because of a special address used in software testing, called the loopback address (127.0.0.1).

For Class B (and C), some of the network numbers can look odd, particularly if you fall into a habit of thinking that 0s at the end means the number is a network ID, and 255s at the end means it’s a network broadcast address. First, Class B network numbers range from 128.0.0.0 to 191.255.0.0, for a total of $2^{14}$ networks. However, even the very first (lowest
number) Class B network number (128.0.0.0) looks a little like a Class A network number, because it ends with three 0s. However, the first octet is 128, making it a Class B network with a two-octet network part (128.0).

For another Class B example, the high end of the Class B range also may look strange at first glance (191.255.0.0), but this is indeed the numerically highest of the valid Class B network numbers. This network’s broadcast address, 199.255.255.255, may look a little like a Class A broadcast address because of the three 255s at the end, but it is indeed the broadcast address of a Class B network.

Other valid Class B network IDs that look unusual include 130.0.0.0, 150.0.0.0, 155.255.0.0, and 190.0.0.0. All these follow the convention of a value from 128 to 191 in the first octet, a value from 0 to 255 in the second octet, and two more 0s, so they are indeed valid Class B network IDs.

Class C networks follow the same general rules as Class B, but with the first three octets defining the network. The network numbers range from 192.0.0.0 to 223.255.255.0, with all addresses in a single network sharing the same value in the first three octets. Similar to Class B networks, some of the valid Class C network numbers do look strange. For instance, Class C network 192.0.0.0 looks a little like a Class A network because of the last three octets being 0, but because it is a Class C network, it consists of all addresses that begin with three octets equal to 192.0.0. Similarly, Class C network 223.255.255.0, another valid Class C network, consists of all addresses that begin 223.255.255.

Other valid Class C network IDs that look unusual include 200.0.0.0, 220.0.0.0, 205.255.255.0, and 199.255.255.0. All these follow the convention of a value from 192 to 223 in the first octet, a value from 0 to 255 in both the second and third octets, and a 0 in the fourth octet.

**Practice with Classful Networks**

As with all areas of IP addressing and subnetting, you need to practice to be ready for the CCENT and CCNA exams. Before the exam, you should master the concepts and processes in this chapter and be able to get the right answer every time—with speed. I cannot overemphasize the importance of mastering IP addressing and subnetting for the exams: know the topics, and know them well.

However, you do not need to completely master everything in this chapter right now. You should practice some now to make sure you understand the processes, but you can use your notes, use this book, or whatever. Once you practice enough to confirm you can get the right answers using any help available, you understand the topics in this chapter well enough to move to the next chapter.
Then, before the exam, practice until you master the topics in this chapter and can move pretty fast. Table 13-4 summarizes the key concepts and suggestions for this two-phase approach.

**Table 13-4  Keep Reading and Take Exam Goals for This Chapter’s Topics**

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>After Reading this Chapter</th>
<th>Before Taking the Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus On...</td>
<td>Learning how</td>
<td>Being correct and fast</td>
</tr>
<tr>
<td>Tools Allowed</td>
<td>All</td>
<td>Your brain and a notepad</td>
</tr>
<tr>
<td>Goal: Accuracy</td>
<td>90% correct</td>
<td>100% correct</td>
</tr>
<tr>
<td>Goal: Speed</td>
<td>Any speed</td>
<td>10 seconds</td>
</tr>
</tbody>
</table>

**Practice Deriving Key Facts Based on an IP Address**
Practice finding the various facts that can be derived from an IP address, as discussed throughout this chapter. To do so, complete Table 13-5.

**Table 13-5  Practice Problems: Find the Network ID and Network Broadcast**

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Class</th>
<th>Number Network Octets</th>
<th>Number Host Octets</th>
<th>Network ID</th>
<th>Network Broadcast Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>128.1.6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>200.1.2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>192.192.1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>126.5.4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>200.1.9.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>192.0.0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>191.255.1.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>223.223.0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The answers are listed under this chapter’s last heading, “Answers to Earlier Practice Problems.”

**Practice Remembering the Details of Address Classes**
Tables 13-2 and 13-3, shown earlier in this chapter, summarized some key information about IPv4 address classes. Tables 13-6 and 13-7 show sparse versions of these same tables. To practice recalling those key facts, particularly the range of values in the first octet that identifies the address class, complete these tables. Then, refer to Tables 13-2 and 13-3 to
check your answers. Repeat this process until you can recall all the information in the tables.

**Table 13-6**  *Sparse Study Table Version of Table 13-2*

<table>
<thead>
<tr>
<th>First Octet Values</th>
<th>Class</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Table 13-7**  *Sparse Study Table Version of Table 13-3*

<table>
<thead>
<tr>
<th>First octet range</th>
<th>Class A</th>
<th>Class B</th>
<th>Class C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valid network numbers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total networks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hosts per network</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Octets (bits) in network part</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Octets (bits) in host part</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default mask</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Additional Practice**

For additional practice with classful networks, consider the following:

- Appendix D, “Practice for Chapter 13: Analyzing Classful IPv4 Networks,” has additional practice problems. This appendix also includes explanations about how to find the answer of each problem. It exists as a PDF on this book’s accompanying DVD.

- Create your own problems. You can randomly choose any IP address and try to find the same information asked for by the practice problems in this section. Then, to check your work, use any subnet calculator. Most subnet calculators list the class and network ID. (Check the author’s web pages for this book, as listed in the Introduction, for some suggested calculators.)

- The Subnet Prep app “Analyze Networks” provides review videos and almost limitless practice problems; it’s a great way to review and improve your speed when idle moments happen.
# Exam Preparation Tasks

## Review All the Key Topics

This chapter contains just a few key topics, mainly facts about classes of IPv4 addresses and classful networks, plus a process to determine the network ID and associated values for a classful network. Table 13-8 lists these key topics.

<table>
<thead>
<tr>
<th>Table 13-8</th>
<th>Key Topics for Chapter 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Topic Elements</td>
<td>Description</td>
</tr>
<tr>
<td>Table 13-2</td>
<td>Address classes</td>
</tr>
<tr>
<td>Table 13-3</td>
<td>Key facts about Class A, B, and C</td>
</tr>
<tr>
<td>List</td>
<td>Comparisons of network and host parts of addresses in the same classful network</td>
</tr>
<tr>
<td>Figure 13-3</td>
<td>Default masks</td>
</tr>
<tr>
<td>List</td>
<td>Steps to find information about a classful network</td>
</tr>
</tbody>
</table>

## Complete the Tables and Lists from Memory

Print a copy of Appendix L, “Memory Tables” (found on the DVD), or at least the section for this chapter, and complete the tables and lists from memory. Appendix M, “Memory Tables Answer Key,” also on the DVD, includes completed tables and lists for you to check your work.

## Definitions of Key Terms

Define the following key terms from this chapter and check your answers in the Glossary:

- network, classful network, network number, network ID, network address, network broadcast address, first address, last address, network part, host part, default mask

## Practice

If you have not done so already, practice discovering the details of a classful network as discussed in this chapter. Refer to the section, “Practice with Classful Networks,” for suggestions.
Answers to Earlier Practice Problems

Table 13-5, shown earlier, listed several practice problems. Table 13-9 lists the answers.

Table 13-9  Practice Problems: Find the Network ID and Network Broadcast

<table>
<thead>
<tr>
<th></th>
<th>IP Address</th>
<th>Class</th>
<th>Number Network Octets</th>
<th>Number Host Octets</th>
<th>Network ID</th>
<th>Network Broadcast</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1.1.1</td>
<td>A</td>
<td>1</td>
<td>3</td>
<td>1.0.0.0</td>
<td>1.255.255.255</td>
</tr>
<tr>
<td>2</td>
<td>128.1.6.5</td>
<td>B</td>
<td>2</td>
<td>2</td>
<td>128.1.0.0</td>
<td>128.1.255.255</td>
</tr>
<tr>
<td>3</td>
<td>200.1.2.3</td>
<td>C</td>
<td>3</td>
<td>1</td>
<td>200.1.2.0</td>
<td>200.1.2.255</td>
</tr>
<tr>
<td>4</td>
<td>192.192.1.1</td>
<td>C</td>
<td>3</td>
<td>1</td>
<td>192.192.1.0</td>
<td>192.192.1.255</td>
</tr>
<tr>
<td>5</td>
<td>126.5.4.3</td>
<td>A</td>
<td>1</td>
<td>3</td>
<td>126.0.0.0</td>
<td>126.255.255.255</td>
</tr>
<tr>
<td>6</td>
<td>200.1.9.8</td>
<td>C</td>
<td>3</td>
<td>1</td>
<td>200.1.9.0</td>
<td>200.1.9.255</td>
</tr>
<tr>
<td>7</td>
<td>192.0.0.1</td>
<td>C</td>
<td>3</td>
<td>1</td>
<td>192.0.0.0</td>
<td>192.0.0.255</td>
</tr>
<tr>
<td>8</td>
<td>191.255.1.47</td>
<td>B</td>
<td>2</td>
<td>2</td>
<td>191.255.0.0</td>
<td>191.255.255.255</td>
</tr>
<tr>
<td>9</td>
<td>223.223.0.1</td>
<td>C</td>
<td>3</td>
<td>1</td>
<td>223.223.0.0</td>
<td>223.223.0.255</td>
</tr>
</tbody>
</table>

The class, number of network octets, and number of host octets, all require you to look at the first octet of the IP address to determine the class. If a value is between 1–126, inclusive, the address is a Class A address, with one network and three host octets. If a value is between 128–191 inclusive, the address is a Class B address, with two network and two host octets. If a value is between 192–223, inclusive, it is a Class C address, with three network and one host octet.

The last two columns can be found based on Table 13-3, specifically the number of network and host octets along with the IP address. To find the network ID, copy the IP address, but change the host octets to 0. Similarly, to find the network broadcast address, copy the IP address, but change the host octets to 255.

The last three problems can be confusing, and were included on purpose so you could see an example of these unusual cases, as follows.

Answers to Practice Problem 7

Consider IP address 192.0.0.1. First, 192 is on the lower edge of the first octet range for Class C; as such, this address has three network and one host octet. To find the network ID, copy the address, but change the single host octet (the fourth octet) to 0, for a network ID of 192.0.0.0. It looks strange, but it is indeed the network ID.
The network broadcast address choice for problem 7 can also look strange. To find the broadcast address, copy the IP address (192.0.0.1), but change the last octet (the only host octet) to 255, for a broadcast address of 192.0.0.255. In particular, if you decide that the broadcast should be 192.255.255.255, you may have fallen into the trap of logic, like, “Change all 0s in the network ID to 255s,” which is not the correct logic. Instead, change all host octets in the IP address (or network ID) to 255s.

Answers to Practice Problem 8
The first octet of problem 8 (191.255.1.47) sits on the upper edge of the Class B range for the first octet (128–191). As such, to find the network ID, change the last two octets (host octets) to 0, for a network ID of 191.255.0.0. This value sometimes gives people problems, because they are used to thinking that 255 somehow means the number is a broadcast address.

The broadcast address, found by changing the two host octets to 255, means that the broadcast address is 191.255.255.255. It looks more like a broadcast address for a Class A network, but it is actually the broadcast address for Class B network 191.255.0.0.

Answers to Practice Problem 9
The last problem with IP address 223.223.0.1 is that it’s near the high end of the Class C range. As a result, only the last (host) octet is changed to 0 to form the network ID 223.223.0.0. It looks a little like a Class B network number at first glance, because it ends in two octets of 0. However, it is indeed a Class C network ID (based on the value in the first octet).
This chapter covers the following subjects:

**Subnet Mask Conversion**: This section explains how to convert subnet masks between the three formats: binary, dotted decimal, and prefix.

**Practice Converting Subnet Masks**: This section provides practices problems and tips for converting between the three subnet mask formats.
Subnet masks serve many important roles in the world of IPv4 addressing and subnetting. However, this chapter ignores those roles. Instead, this chapter focuses on the numbers used as subnet masks, focusing on the three different formats for subnet masks:

- Binary
- Dotted-decimal notation (DDN)
- Prefix (also called CIDR)

This chapter focuses on the numbers, and converting between three different numbering formats, so that in later chapters, you can work with the masks without the math getting in the way.

**“Do I Know This Already?” Quiz**

The “Do I Know This Already?” quiz allows you to assess if you should read the entire chapter. If you miss no more than one of these six self-assessment questions, you might want to move ahead to the “Exam Preparation Tasks” section. Table 14-1 lists the major headings in this chapter and the “Do I Know This Already?” quiz questions covering the material in those headings so you can assess your knowledge of these specific areas. The answers to the “Do I Know This Already?” quiz appear in Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”

<table>
<thead>
<tr>
<th>Table 14-1</th>
<th>“Do I Know This Already?” Foundation Topics Section-to-Question Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Foundation Topics Section</strong></td>
<td><strong>Questions</strong></td>
</tr>
<tr>
<td>Subnet Mask Conversion</td>
<td>1–6</td>
</tr>
</tbody>
</table>
11. Which of the following answers list the prefix (CIDR) format equivalent of 255.255.254.0?
   e. /19
   f. /20
   g. /23
   h. /24
   i. /25

12. Which of the following answers list the prefix (CIDR) format equivalent of 255.255.255.240?
   a. /26
   b. /28
   c. /27
   d. /30
   e. /29

13. Which of the following answers list the prefix (CIDR) format equivalent of 255.255.192.0?
   a. /18
   b. /19
   c. /20
   d. /21
   e. /22

14. Which of the following answers list the dotted-decimal notation (DDN) equivalent of /24?
   a. 255.255.240.0
   b. 255.255.252.0
   c. 255.255.255.0
   d. 255.255.255.192
   e. 255.255.255.240
15. Which of the following answers list the dotted-decimal notation (DDN) equivalent of 
   /30?
   a. 255.255.255.192
   b. 255.255.255.252
   c. 255.255.255.240
   d. 255.255.254.0
   e. 255.255.255.0

16. Which of the following answers list the dotted-decimal notation (DDN) equivalent of 
   /21?
   a. 255.255.240.0
   b. 255.255.248.0
   c. 255.255.252.0
   d. 255.255.254.0
   e. 255.255.255.0
Subnet Mask Conversion

This section describes how to convert between different formats for the subnet mask. You can then use these processes when you practice. If you already know how to convert from one format to the other, go ahead and move to the section, “Practice Converting Subnet Masks.”

Three Mask Formats

Subnet masks may be written as 32-bit binary numbers, but not just any binary number. In particular, the binary subnet mask must follow these rules:

- The value must not interleave 1s and 0s.
- If 1s exist, they are on the left.
- If 0s exist, they are on the right.

For instance, the following values would be illegal. The first is illegal because the value interleaves 0s and 1s, and the second is illegal because it lists 0s on the left and 1s on the right:

10101010 01010101 11110000 00001111
00000000 00000000 00000000 11111111

The following two binary values meet the requirements, in that they have all 1s on the left, followed by all 0s, with no interleaving of 1s and 0s:

11111111 00000000 00000000 00000000
11111111 11111111 11111111 00000000

Two alternate subnet mask formats exist so that we humans do not have to work with 32-bit binary numbers. One format, *dotted-decimal notation* (DDN), converts each set of 8 bits into the decimal equivalent. For example, the two previous binary masks would convert to the following DDN subnet masks, because binary 11111111 converts to decimal 255, and binary 00000000 converts to decimal 0:

255.0.0.0
255.255.255.0
Although the DDN format has been around since the beginning of IPv4 addressing, the third mask format was added later, in the early 1990s: the prefix format. This format takes advantage of the rule that the subnet mask starts with some number of 1s, and then the rest of the digits are 0s. Prefix format lists a slash (/) followed by the number of binary 1s in the binary mask. Using the same two examples as earlier in this section, the prefix format equivalent masks are as follows:

/8
/24

Note that although the terms prefix or prefix mask may be used, the terms CIDR mask or slash mask may also be used. This newer prefix style mask was created around the same time as the Classless Interdomain Routing (CIDR) specification back in the early 1990s, and the acronym CIDR grew to be used for anything related to CIDR, including prefix-style masks. Additionally, the term slash mask is sometimes used because the value includes a slash mark (/).

Both in real life and on the Cisco CCENT and CCNA exams, you need to be able to think about masks in different formats. The rest of this section examines how to convert between the three formats.

### Converting Between Binary and Prefix Masks

Converting between binary and prefix masks should be relatively intuitive once you know that the prefix value is simply the number of binary 1s in the binary mask. For the sake of completeness, the processes to convert in each direction are:

**Binary to prefix**: Count the number of binary 1s in the binary mask, and write the total, in decimal, after a /.

**Prefix to binary**: Write P binary 1s, where P is the prefix value, followed by as many binary 0s as required to create a 32-bit number.

Tables 14-2 and 14-3 show some examples.

| Table 14-2  Example Conversions: Binary to Prefix |
|------------------------------|------------------------|------------------------|
| **Binary Mask**   | **Logic**              | **Prefix Mask**        |
| 11111111 11111111 11000000 00000000 | Count 8 + 8 + 2 = 18 binary 1s | /18                     |
| 11111111 11111111 11111111 11110000 | Count 8 + 8 + 8 + 4 = 28 binary 1s | /28                     |
| 11111111 11111000 00000000 00000000 | Count 8 + 5 = 13 binary 1s | /13                     |
Converting Between Binary and DDN Masks

By definition, a dotted-decimal number (DDN) used with IPv4 addressing contains four decimal numbers, separated by dots. Each decimal number represents 8 bits. So, a single DDN shows four decimal numbers that together represent some 32-bit binary number.

Conversion from a DDN mask to the binary equivalent is relatively simple to describe, but may be laborious to perform. First, to do the conversion, the process is as follows:

For each octet, perform a decimal-to-binary conversion.

However, depending on your comfort level with doing decimal-to-binary conversions, that process may be difficult or time-consuming. If you want to think about masks in binary for the exam, consider picking one of the following methods to do the conversion and practicing until you can do it quickly and accurately:

- Do the decimal-binary conversions, but practice your decimal-binary conversions to get fast. If you choose this path, consider Cisco’s Binary Game, which you can find by searching its name at the Cisco Learning Network (CLN) (learningnetwork.cisco.com).
- Use the decimal-binary conversion chart in Appendix B, “Numeric Reference Tables.” This lets you find the answer more quickly now, but you cannot use the chart on exam day.
- Memorize the nine possible decimal values that can be in a decimal mask, and practice using a reference table with those values.

The third method, which is the method recommended in this book, takes advantage of the fact that any and every decimal mask octet must be one of only nine values. Why? Well, remember how a binary mask cannot interleave 1s and 0s, and the 0s must be on the right? Well, it turns out that only nine different 8-bit binary numbers conform to these rules. Table 14-4 lists the values, along with other relevant information.
Many subnetting processes that are done using binary math can also be done without the binary math. Some of those processes—mask conversion included—use the information in Table 14-4. You should plan to memorize the information in the table. I recommend making a copy of the table to keep handy while you practice. (You will likely memorize the contents of this table simply by practicing the conversion process enough to get both good and fast at the conversion.)

Using the table, the conversion processes in each direction with binary and decimal masks are as follows:

**Binary to decimal:** For each octet, find the binary value in the table, and write down the corresponding decimal value.

**Decimal to binary:** For each octet, find the decimal value in the table, and write down the corresponding binary value.

Tables 14-5 and 14-6 show some examples.

**Table 14-4**  *Nine Possible Values in One Octet of a Subnet Mask*

<table>
<thead>
<tr>
<th>Binary Mask Octet</th>
<th>Decimal Equivalent</th>
<th>Number of Binary 1s</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10000000</td>
<td>128</td>
<td>1</td>
</tr>
<tr>
<td>11000000</td>
<td>192</td>
<td>2</td>
</tr>
<tr>
<td>11100000</td>
<td>224</td>
<td>3</td>
</tr>
<tr>
<td>11110000</td>
<td>240</td>
<td>4</td>
</tr>
<tr>
<td>11111000</td>
<td>248</td>
<td>5</td>
</tr>
<tr>
<td>11111100</td>
<td>252</td>
<td>6</td>
</tr>
<tr>
<td>11111110</td>
<td>254</td>
<td>7</td>
</tr>
<tr>
<td>11111111</td>
<td>255</td>
<td>8</td>
</tr>
</tbody>
</table>

**Table 14-5**  *Example Conversions: Binary to Decimal*

<table>
<thead>
<tr>
<th>Binary Mask</th>
<th>Logic</th>
<th>Decimal Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>11111111 11111111 11000000 00000000</td>
<td>11111111 maps to 255 11000000 maps to 192 00000000 maps to 0</td>
<td>255.255.192.0</td>
</tr>
<tr>
<td>11111111 11111111 11111111 11100000</td>
<td>11111111 maps to 255 11110000 maps to 240</td>
<td>255.255.255.240</td>
</tr>
<tr>
<td>11111111 11111000 00000000 00000000</td>
<td>11111111 maps to 255 11111000 maps to 248 00000000 maps to 0</td>
<td>255.248.0.0</td>
</tr>
</tbody>
</table>
Converting Between Prefix and DDN Masks

When learning, the best way to convert between the prefix and decimal formats is to first convert to binary. For instance, to move from decimal to prefix, first convert decimal to binary, and then from binary to prefix.

For the exams, set a goal to master these conversions doing the math in your head. While learning, you will likely want to use paper. To train yourself to do all this without writing it down, instead of writing each octet of binary, just write the number of binary 1s in that octet.

Figure 14-1 shows an example with a prefix-to-decimal conversion. The left side shows the conversion to binary as an interim step. For comparison, the right side shows the binary interim step in shorthand that just lists the number of binary 1s in each octet of the binary mask.

Similarly, when converting from decimal to prefix, mentally convert to binary along the way, and as you improve, just think of the binary as the number of 1s in each octet. Figure 14-2 shows an example of such a conversion.

<table>
<thead>
<tr>
<th>Decimal Mask</th>
<th>Logic</th>
<th>Binary Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>255.255.192.0</td>
<td>255 maps to 11111111, 192 maps to 11000000, 0 maps to 00000000</td>
<td>11111111 11111111 11000000 00000000</td>
</tr>
<tr>
<td>255.255.255.240</td>
<td>255 maps to 11111111, 240 maps to 11110000</td>
<td>11111111 11111111 11111111 11110000</td>
</tr>
<tr>
<td>255.248.0.0</td>
<td>255 maps to 11111111, 248 maps to 11110000, 0 maps to 00000000</td>
<td>11111111 11111000 00000000 00000000</td>
</tr>
</tbody>
</table>

Figure 14-1  Conversion from Prefix to Decimal: Full Binary Versus Shorthand

/18
---
11111111 11111111 11000000 00000000
---
8 + 8 + 2 + 0
---
255 . 255 . 192 . 0

/18
---
0-32
---
11110000
---
255 . 255 . 192 . 0
Practice Converting Subnet Masks

Before moving to the next chapter, practice the processes discussed in this chapter until you get the right answer most of the time. Use any tools you want, and take all the time you need. Then, you can move on with your reading. However, before taking the exam, practice until you master the topics in this chapter and can move pretty fast. Table 14-7 summarizes the key concepts and suggestions for this two-phase approach.

### Table 14-7  Keep Reading and Take Exam Goals for This Chapter’s Topics

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Before Moving to the Next Chapter</th>
<th>Before Taking the Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus On...</td>
<td>Learning how</td>
<td>Being correct and fast</td>
</tr>
<tr>
<td>Tools Allowed</td>
<td>All</td>
<td>Your brain and a notepad</td>
</tr>
<tr>
<td>Goal: Accuracy</td>
<td>90% correct</td>
<td>100% correct</td>
</tr>
<tr>
<td>Goal: Speed</td>
<td>Any speed</td>
<td>10 seconds</td>
</tr>
</tbody>
</table>

### Practice Problems for This Chapter

Table 14-8 lists three headings: Prefix, Binary Mask, and Decimal. Each row lists a mask in one of the three formats. Your job is to find the mask’s value in the other two formats for each row. Table 14-10, located in the section, “Exam Preparation Tasks,” lists the answers.
For additional practice converting subnet masks, consider the following:

- Appendix E, “Practice for Chapter 14: Converting Subnet Masks,” has some additional practice problems listed. This section also includes explanations as to how to find the answer of each problem.

- Create your own problems. Only 33 legal subnet masks exist, so pick one, and convert that mask to the other two formats. Then, check your work based on Appendix B, which lists all mask values in all three formats. (Recommendation: think of a prefix and convert to binary and then decimal. Then, think of a DDN mask and convert it to binary and to prefix format.)

- The Subnet Prep iPhone app “Convert Masks” (www.subnetprep.com) provides review videos and practice problems; it’s a great way to review and improve your speed when you have a spare moment.

Note that many other subnetting problems will require you to do these conversions, so you will get extra practice as well.
Exam Preparation Tasks

Review All the Key Topics

The narrow focus of this chapter means that all the key topics have something to do with the three mask formats and converting between the formats (see Table 14-9). Review the key topics as part of your study, but know that you will likely come to know all the information in these key topics through practice and repetition.

Table 14-9 Key Topics for Chapter 14

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>Rules for binary subnet mask values</td>
<td>386</td>
</tr>
<tr>
<td>List</td>
<td>Rules to convert between binary and prefix masks</td>
<td>387</td>
</tr>
<tr>
<td>List</td>
<td>Rules to convert between binary and DDN masks</td>
<td>389</td>
</tr>
</tbody>
</table>

Definitions of Key Terms

Define the following key terms from this chapter and check your answers in the Glossary:

- binary mask
- dotted-decimal notation (DDN)
- decimal mask
- prefix mask
- slash mask
- CIDR mask

Practice

If you have not done so already, practice converting subnet masks as discussed in this chapter. Refer to the section, “Practice Converting Subnet Masks,” for suggestions.
### Answers to Earlier Practice Problems

Table 14-8, shown earlier, listed several practice problems. Table 14-10 lists the answers.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Binary Mask</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>/18</td>
<td>11111111 11111111 11000000 00000000</td>
<td>255.255.192.0</td>
</tr>
<tr>
<td>/30</td>
<td>11111111 11111111 11111111 11111100</td>
<td>255.255.255.252</td>
</tr>
<tr>
<td>/25</td>
<td>11111111 11111111 11111111 10000000</td>
<td>255.255.255.128</td>
</tr>
<tr>
<td>/16</td>
<td>11111111 11111111 00000000 00000000</td>
<td>255.255.0.0</td>
</tr>
<tr>
<td>/8</td>
<td>11111111 00000000 00000000 00000000</td>
<td>255.0.0.0</td>
</tr>
<tr>
<td>/22</td>
<td>11111111 11111111 11111100 00000000</td>
<td>255.255.252.0</td>
</tr>
<tr>
<td>/15</td>
<td>11111111 11111110 00000000 00000000</td>
<td>255.254.0.0</td>
</tr>
<tr>
<td>/27</td>
<td>11111111 11111111 11111111 11000000</td>
<td>255.255.255.224</td>
</tr>
</tbody>
</table>
This page intentionally left blank
This chapter covers the following subjects:

**Defining the Format of IPv4 Addresses:** This section explains how subnet masks and address class separate IP addresses into parts called network, subnet, and host.

**Practice Analyzing Subnet Masks:** This section supplies suggestions for how to practice the math related to this chapter.
Analyzing Existing Subnet Masks

When you examine an existing subnet design, you can learn a lot about the subnetting design by analyzing the subnet mask. First, the mask divides addresses into two parts: prefix and host. Then, the network class further subdivides the addresses, breaking the prefix part into the network and subnet parts.

Once you know the size of the three parts of an IP address, you can make some generalizations about the subnet and the entire classful network. This chapter helps you reverse-engineer some of the design choices made when someone else chose a particular mask. To do so, this chapter examines the process of breaking IP addresses into the three parts (network, subnet, and host), based on the class and the subnet mask, along with the additional facts that can then be calculated based on that information.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess if you should read the entire chapter. If you miss no more than one of these six self-assessment questions, you might want to move ahead to the “Exam Preparation Tasks” section. Table 15-1 lists the major headings in this chapter and the “Do I Know This Already?” quiz questions covering the material in those headings so you can assess your knowledge of these specific areas. The answers to the “Do I Know This Already?” quiz appear in Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”

Table 15-1  Do I Know This Already?  Foundation Topics Section-to-Question Mapping

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defining the Format of IPv4 Addresses</td>
<td>1–6</td>
</tr>
</tbody>
</table>
17. Working at the help desk, you receive a call and learn a user’s PC IP address and mask (10.55.66.77, mask 255.255.255.0). When thinking about this using classful logic, you determine the number of network (N), subnet (S), and host (H) bits. Which of the following are true in this case?

a. N=12
b. S=12
c. H=8
d. S=8
e. N=24

18. Working at the help desk, you receive a call and learn a user’s PC IP address and mask (192.168.9.0/27). When thinking about this using classful logic, you determine the number of network (N), subnet (S), and host (H) bits. Which of the following are true in this case?

a. N=24
b. S=24
c. H=8
d. H=7

e. N=24

19. Working at the help desk, you receive a call and learn a user’s PC IP address and mask (172.28.99.101, mask 255.255.255.128). When thinking about this using classful logic, you determine the number of network (N), subnet (S), and host (H) bits. Which of the following are true in this case?

a. N=12
b. S=12
c. H=8
d. S=8
e. N=16
20. An engineer is thinking about the following IP address and mask using classless IP addressing logic: 10.55.66.77, 255.255.255.0. Which of the following statements are true when using classless addressing logic? (Choose two.)
   a. The network part’s size is 8 bits.
   b. The prefix length is 24 bits.
   c. The prefix length is 16 bits.
   d. The host part’s size is 8 bits.

21. Which of the following statements is true about classless IP addressing concepts?
   a. Uses a 128-bit IP address
   b. Applies only for Class A and B networks
   c. Separates IP addresses into network, subnet, and host parts
   d. Ignores Class A, B, and C network rules

22. Which of the following masks, when used as the only mask within a Class B network, would supply enough subnet bits to support 100 subnets? (Choose two.)
   a. /24
   b. 255.255.255.252
   c. /20
   d. 255.255.252.0
Defining the Format of IPv4 Addresses

Subnet masks have many purposes. For example, the mask defines the prefix part of the IP addresses in a subnet, and the prefix part must be the same value for all addresses in a subnet.

Figure 15-1 shows a figure, focusing on two subnets: a subnet of all addresses that begin 172.16.2 and another subnet made of all addresses that begin with 172.16.3. In this example, the addresses in a subnet happen to have the same value in the first three octets. But how do the computers and other network devices know that fact? By knowing the subnet mask—in this case, /24, which defines the prefix part as the first three octets of the addresses.

Figure 15-1  Simple Subnet Design, with Mask /24

Subnet masks define some fundamental concepts about a subnet, plus they can be used in different math operations related to addressing and subnetting. In fact, the subnet mask used in a given subnet:

- Defines the size of the prefix (combined network and subnet) part of the addresses in a subnet
- Defines the size of the host part of the addresses in the subnet
- Can be used to calculate the number of hosts in the subnet
Defining the Format of IPv4 Addresses

- Provides a means for the network designer to communicate the design details—the number of subnet and host bits—to the devices in the network.
- Under certain assumptions, can be used to calculate the number of subnets in the entire classful network.
- Can be used in binary calculations of both the subnet ID and the subnet broadcast address.

This chapter examines the first four items in the list. Chapters 16 and 17 discuss the remaining roles for the subnet mask.

**Masks Divide the Subnet’s Addresses into Two Parts**

The subnet mask subdivides the IP addresses in a subnet into two parts: the *prefix* or *subnet part*, and the *host part*.

The prefix part identifies the addresses that reside in the same subnet, because all IP addresses in the same subnet have the same value in the prefix part of their addresses. The idea is much like the postal code (ZIP codes in the U.S.) in mailing addresses. All mailing addresses in the same town have the same postal code. Likewise, all IP addresses in the same subnet have identical values in the prefix part of their addresses.

The host part of an address identifies the host uniquely inside the subnet. If you compare any two IP addresses in the same subnet, their host parts will differ, even though the prefix parts of their addresses have the same value. To summarize these key comparisons:

- **Prefix (subnet) part**: Equal in all addresses in the same subnet.
- **Host part**: Different in all addresses in the same subnet.

For instance, imagine a subnet that, in concept, includes all addresses whose first three octets are 10.1.1. So, the following list shows several addresses in this subnet:

1. 10.1.1.1
2. 10.1.1.2
3. 10.1.1.3

In this list, the prefix or subnet part (the first three octets of 10.1.1) are equal. The host part (the last octet [in bold]) are different. So, the prefix or subnet part of the address identifies the group, and the host part identifies the specific member of the group.

The subnet mask defines the dividing line between the prefix and the host part. To do so, the mask creates a conceptual line between the binary 1s in the binary mask and the binary
0s in the mask. In short, if a mask has P binary 1s, the prefix part is P bits long, and the rest of the bits are host bits. Figure 15-2 shows the general concept.

**Figure 15-2**  Prefix (Subnet) and Host Parts Defined by Mask’s 1s and 0s

![Diagram](image)

Figure 15-2 shows the general concept, and Figure 15-3 shows the same concept, but specifically with mask 255.255.255.0. As shown in Figure 15-3, mask 255.255.255.0 (/24) has 24 binary 1s, meaning that the first three octets of each IP address must have the same value—just like the example earlier in this section.

**Figure 15-3**  Mask 255.255.255.0: P=24, H=8

![Diagram](image)

**Masks and Class Divide Addresses into Three Parts**

In addition to the two-part view of IPv4 addresses, you can also think about IPv4 addresses as having three parts. To do so, just apply Class A, B, and C rules to the address format to define the network part at the beginning of the address. This added logic divides the prefix into two parts: the network part and the subnet part. The class defines the length of the network part, with the subnet part simply being the rest of the prefix. Figure 15-4 shows the idea.

**Figure 15-4**  Class Concepts Applied to Create Three Parts

![Diagram](image)

The combined network and subnet parts act like the prefix because all addresses in the same subnet must have identical values in the network and subnet parts. The host part remains unchanged, whether viewing the addresses as having two parts or three parts.

To be complete, Figure 15-5 shows the same example as in the previous section, with the subnet of “all addresses that begin with 10.1.1.” In that example, the subnet uses mask
255.255.255.0, and the addresses are all in Class A network 10.0.0.0. The class defines 8 network bits, and the mask defines 24 prefix bits, meaning that 24 - 8 = 16 subnet bits exist. The host part remains as 8 bits per the mask.

**Figure 15-5**  *Subnet 10.1.1.0, Mask 255.255.255.0: N=8, S=16, H=8*

<table>
<thead>
<tr>
<th></th>
<th>11111111</th>
<th>11111111</th>
<th>11111111</th>
<th>00000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 8</td>
<td></td>
<td></td>
<td></td>
<td>8 0s</td>
</tr>
<tr>
<td>S = 24 - 8 = 16</td>
<td></td>
<td></td>
<td></td>
<td>H = 8</td>
</tr>
</tbody>
</table>

Based on
Class

### Classless and Classful Addressing

The terms *classless addressing* and *classful addressing* refer to the two different ways to think about IPv4 addresses as described so far in this chapter. Classful addressing means that you think about Class A, B, and C rules, so the prefix is separated into the network and subnet parts, as in Figures 15-4 and 15-5. Classless addressing means that you ignore the Class A, B, and C rules, and treat the prefix part as one part, as shown in Figures 15-2 and 15-3. The following more formal definitions are listed for reference and study:

**Classless addressing:** The concept that an IPv4 address has two parts—the prefix part plus the host part—as defined by the mask, with *no consideration of the class* (A, B, or C).

**Classful addressing:** The concept that an IPv4 address has three parts—network, subnet, and host—as defined by the mask and *Class A, B, and C rules*.

**NOTE**  The scope of the CCNA certification includes two other related topics that are (unfortunately) also referenced as *classless* and *classful*. In addition to the classless and classful addressing described here, the terms *classless routing* and *classful routing* refer to some details of how Cisco routers forward (route) packets using the default route. Additionally, each routing protocol can be categorized as either a *classless routing protocol* or a *classful routing protocol*. As a result, these terms can be easily confused and misused. So, when you see the words *classless* and *classful*, be careful to note the context: addressing, routing, or routing protocols.

### Calculations Based on the IPv4 Address Format

Once you know how to break an address down using both classless and classful addressing rules, you can easily calculate a couple of important facts using some basic math formulas.

First, for any subnet, once you know the number of host bits, you can calculate the number of host IP addresses in the subnet. Next, if you know the number of subnet bits (using
classful addressing concepts), and you know that only one subnet mask is used throughout the network, you can also calculate the number of subnets in the network. The formulas just require that you know the powers of 2:

- **Hosts in the subnet**: \(2^H - 2\), where \(H\) is the number of host bits.
- **Subnets in the network**: \(2^S\), where \(S\) is the number of subnet bits. Only use this formula if only one mask is used throughout the network.

The sizes of the parts of IPv4 addresses can also be calculated. The math is basic, but the concepts are important. Keeping in mind that IPv4 addresses are 32-bits long, the two parts with classless addressing must add up to 32 (\(P + H = 32\)), and with classful addressing, the three parts must add up to 32 (\(N + S + H = 32\)). Figure 15-6 shows the relationships.

![Figure 15-6](image)

The sizes of the parts of IPv4 addresses can also be calculated. The math is basic, but the concepts are important. Keeping in mind that IPv4 addresses are 32-bits long, the two parts with classless addressing must add up to 32 (\(P + H = 32\)), and with classful addressing, the three parts must add up to 32 (\(N + S + H = 32\)). Figure 15-6 shows the relationships.

**Figure 15-6** *Relationship Between /P, N, S, and H*

You often begin with an IP address and mask, both when answering questions on the CCENT and CCNA exams, and when examining problems that occur in real networks. Based on the information in this chapter and earlier chapters, you should be able to find all the information in Figure 15-6, and then calculate the number of hosts/subnet and the number of subnets in the network. For reference, the following process spells out the steps:

**Step 1** Convert the mask to prefix format (/P) as needed. (See Chapter 14, “Converting Subnet Masks,” for review.)

**Step 2** Determine N based on the class. (See Chapter 13, “Analyzing Classful IPv4 Networks,” for review.)

**Step 3** Calculate \(S = P - N\).

**Step 4** Calculate \(H = 32 - P\).

**Step 5** Calculate hosts/subnet: \(2^H - 2\).
Step 6 Calculate number of subnet: $2^S$.

For example, consider the case of IP address 8.1.4.5 with mask 255.255.0.0. Following the process:

Step 1 $255.255.0.0 = /16$, so $P=16$.
Step 2 8.1.4.5 is in the range 1–126 in the first octet, so it is Class A; so $N=8$.
Step 3 $S = P - N = 16 - 8 = 8$.
Step 4 $H = 32 - P = 32 - 16 = 16$.
Step 5 $2^{16} - 2 = 65,534$ hosts/subnet.
Step 6 $2^8 = 256$ subnets.

For another example, consider address 200.1.1.1, mask 255.255.255.252. Following the process:

Step 1 $255.255.255.252 = /30$, so $P=30$.
Step 2 200.1.1.1 is in the range 192–223 in the first octet, so it is Class C; so $N=24$.
Step 3 $S = P - N = 30 - 24 = 6$.
Step 4 $H = 32 - P = 32 - 30 = 2$.
Step 5 $2^2 - 2 = 2$ hosts/subnet
Step 6 $2^6 = 64$ subnets.

This example uses a popular mask for serial links, because serial links only require two host addresses, and the mask supports only two host addresses.

Practice Analyzing Subnet Masks

Before moving to the next chapter, practice until you get the right answer most of the time, but use any tools you want and take all the time you need. Then, you can move on with your reading.

However, before taking the exam, practice until you master the topics in this chapter and can move pretty fast. As for time, you should be to find the entire answer—the size of the three parts, plus the formulas to calculate the number of subnets and hosts—in around 15 seconds. Table 15-2 summarizes the key concepts and suggestions for this two-phase approach.
Practice Problems for This Chapter

On a piece of scratch paper, answer the following questions. In each case:

- Determine the structure of the addresses in each subnet based on the class and mask, using classful IP addressing concepts. In other words, find the size of the network, subnet, and host parts of the addresses.
- Calculate the number of hosts in the subnet.
- Calculate the number of subnets in the network, assuming the same mask is used throughout.

The answers are listed in the section, “Exam Preparation Tasks.”

1. 8.1.4.5, 255.255.254.0
2. 30.4.102.1, 255.255.255.0
3. 199.1.1.100, 255.255.255.0
4. 130.4.102.1, 255.255.252.0
5. 199.1.1.100, 255.255.255.224
Additional Practice

For additional practice analyzing subnet masks, consider the following:

- Appendix F, “Practice for Chapter 15: Analyzing Existing Subnet Masks,” has some additional practice problems listed. This section also includes explanations as to how to find the answer of each problem.

- Appendix H, “Practice for Chapter 17: Analyzing Existing Subnets,” actually has another 25 practice problems related to this chapter. Although Appendix F focuses on the topics in this chapter, the problems in Appendix F and Appendix H both begin with an IP address and mask. So, Appendix H also includes commentary and answers for items such as the number of network, subnet, and host bits, and other topics related to this chapter.

- Create your own problems. Many subnet calculators show the number of network, subnet, and host bits when you type in an IP address and mask, so make up an IP address and mask on paper, and find N, S, and H. Then, to check your work, use any subnet calculator. Most subnet calculators list the class and network ID. (Check the author’s web pages for this book, as listed in the Introduction, for some suggested calculators.)
Exam Preparation Tasks

Review All the Key Topics

The narrow focus of this chapter means that all the key topics have something to do with the three mask formats and converting between the formats. Review the key topics shown in Table 15-3 as part of your study, but know that you will likely come to know all the information in these key topics through practice and repetition.

Table 15-3  Key Topics for Chapter 15

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>Some functions of a subnet mask</td>
<td>400</td>
</tr>
<tr>
<td>List</td>
<td>Comparisons of IP addresses in the same subnet</td>
<td>401</td>
</tr>
<tr>
<td>Figure 15-2</td>
<td>Two-part classless view of an IP address</td>
<td>402</td>
</tr>
<tr>
<td>Figure 15-4</td>
<td>Three-part classful view of an IP address</td>
<td>402</td>
</tr>
<tr>
<td>List</td>
<td>Definitions of classful addressing and classless addressing</td>
<td>403</td>
</tr>
<tr>
<td>List</td>
<td>Formal steps to analyze and calculate values discussed in this chapter</td>
<td>404</td>
</tr>
</tbody>
</table>

Definitions of Key Terms

Define the following key terms from this chapter and check your answers in the Glossary:

- classful addressing, classless addressing

Practice

If you have not done so already, practice analyzing subnet masks as discussed in this chapter. Refer to the section, “Practice Analyzing Subnet Masks,” for suggestions.

Answers to Earlier Practice Problems

The section, “Practice Problems for This Chapter,” listed several practice problems. The answers are listed here so that the answers are nearby, but not visible from the list of problems. Table 15-4 lists the answers.
The following list reviews the problems:

1. 8.1.4.5, the first octet (8) is in the 1–126 range, so it is a Class A address, with 8 network bits. Mask 255.255.254.0 converts to /23, so P – N = 15, for 15 subnet bits. H can be found by subtracting /P (23) from 32, for 9 host bits.

2. 130.4.102.1 is in the 128–191 range in the first octet, making it a Class B address, with N = 16 bits. 255.255.255.0 converts to /24, so the number of subnet bits is 24 – 16 = 8. With 24 prefix bits, the number of host bits is 32 – 24 = 8.

3. The third problem purposely shows a case where the mask does not create a subnet part of the address. The address, 199.1.1.100, has a first octet between 192–223, making it a Class C address with 24 network bits. The prefix version of the mask is /24, so the number of subnet bits is 24 – 24 = 0. The number of host bits is 32 minus the prefix length (24), for a total of 8 host bits. So in this case, the mask shows that the network engineer is using the default mask, which creates no subnet bits, and no subnets.

4. With the same address as the second problem, 130.4.102.1 is a Class B address with N = 16 bits. This problem uses a different mask, 255.255.252.0, which converts to /22. This makes the number of subnet bits 22 – 16 = 6. With 22 prefix bits, the number of host bits is 32 – 22 = 10.

5. With the same address as the third problem, 199.1.1.100 is a Class C address with N = 24 bits. This problem uses a different mask, 255.255.255.224, which converts to /27. This makes the number of subnet bits 27 – 24 = 3. With 27 prefix bits, the number of host bits is 32 – 27 = 5.
This chapter covers the following subjects:

Choosing the Mask(s) to Meet Requirements: This section discusses the ideas behind choosing a subnet mask, in particular making sure the mask meets requirements.

Practice Choosing Subnet Masks: This section supplies suggestions for how to practice the math related to this chapter.
Chapter 12, “Perspectives on IPv4 Subnetting,” provided an overall view of the subnet design and implementation process. To begin, the engineer analyzes the needs to decide the required number of subnets and hosts/subnet. During the second major step, the engineer chooses a particular classful network, and then picks a single subnet mask to use: a mask that meets the requirements identified at the first step. Figure 16-1 shows the main steps, just as a reminder.

This chapter examines the choice of subnet mask in more depth. In particular, it reviews how to determine the minimum required subnet and host bits to meet the requirements. The text first examines cases in which no mask meets the requirements. It then examines cases for which only one mask meets the requirements, and other cases for which multiple subnet masks meet the requirements. Finally, this chapter examines the tradeoffs to consider when choosing masks when multiple options exist.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess if you should read the entire chapter. If you miss no more than one of these seven self-assessment questions, you might want to move ahead to the “Exam Preparation Tasks” section. Table 16-1 lists the major headings in this chapter and the “Do I Know This Already?” quiz questions covering the material in those headings so you can assess your knowledge of these specific areas. The answers to the “Do I Know This Already?” quiz appear in Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”
6. An IP subnetting design effort is underway at a company. So far, the senior engineer has decided to use Class B network 172.23.0.0. The design calls for 100 subnets, with the largest subnet needing 500 hosts. Management requires that the design accommodate 50 percent growth in the number of subnets and the size of the largest subnet. The requirements also state that a single mask must be used throughout the Class B network. How many masks meet the requirements?

a. 0
b. 1
c. 2
d. 3+

7. An IP subnetting design effort is underway at a company. So far, the senior engineer has decided to use Class C network 192.168.8.0. The design calls for 12 subnets, with the largest subnet needing 8 hosts. The requirements also state that a single mask must be used throughout the Class C network. How many masks meet the requirements?

a. 0
b. 1
c. 2
d. 3+

8. An IP subnetting design requires 200 subnets, 120 hosts/subnet for the largest subnets, and requires that a single mask be used throughout the one private IP network that will be used. The design also requires planning for 20 percent growth in the number of subnets and number of hosts/subnet in the largest subnet. Which of the following answers list a private IP network and mask that, if chosen, would meet the requirements?

a. 10.0.0.0/25
b. 10.0.0.0/22
c. 172.16.0.0/23
d. 192.168.7.0/24
9. A subnet design uses Class A network 10.0.0.0, and the engineer must choose a single mask to use throughout the network. The design requires 1200 subnets, with the largest subnet needing 300 hosts. Which of the following masks meets the requirements and maximizes the number of hosts per subnet?
   a. /16
   b. /19
   c. /21
   d. /23

10. An engineer has planned to use Class B network 172.19.0.0 and a single subnet mask throughout the network. The answers list the masks considered by the engineer. Choose the mask that, among the answers, supplies the largest number of hosts per subnet, while also supplies enough subnet bits to support 1000 subnets.
   a. 255.255.255.0
   b. /26
   c. 255.255.252.0
   d. /28

11. An engineer has planned to use Class C network 192.168.2.0 and a single subnet mask throughout the network. The answers list all the masks considered by the engineer. Choose the mask that, among the answers, supplies the largest number of hosts per subnet, while supplying enough subnet bits to support ten subnets.
   a. 255.255.255.0
   b. /25
   c. 255.255.255.192
   d. /27
   e. 255.255.255.248

12. A subnet design uses Class A network 10.0.0.0, and the engineer must choose a single mask to use throughout the network. The design requires 1000 subnets, with the largest subnet needing 200 hosts. Which of the following masks meets the requirements and also maximizes the number of subnets?
   a. /18
   b. /20
   c. /22
   d. /24
Choosing the Mask(s) to Meet Requirements

This chapter examines how to find all the masks that meet the stated requirements for the number of subnets and the number of hosts per subnet. To that end, this chapter assumes that the designer has already determined these requirements and has chosen the network number to be subnetted. The designer has also made the choice to use a single subnet mask value throughout the classful network.

Armed with the information in this chapter, you can answer questions such as the following, a question that matters both for real engineering jobs and the Cisco exams:

You are using Class B network 172.16.0.0. You need 200 subnets and 200 hosts/subnet. Which of the following subnet mask(s) meet the requirements? (This question is then followed by several answers that list different subnet masks.)

To begin, this section reviews the concepts in Chapter 12’s section, “Choose the Mask.” That section introduced the main concepts about how an engineer, when designing subnet conventions, must choose the mask based on the requirements.

After reviewing the related concepts from Chapter 12, this chapter examines this topic in more depth. In particular, this chapter looks at three general cases:

- No masks meet the requirements.
- One and only one mask meets the requirements.
- Multiple masks meet the requirements.

For this last case, the text discusses how to determine all masks that meet the requirements and the tradeoffs related to choosing which one mask to use.

Review: Choosing the Minimum Number of Subnet and Host Bits

The network designer must examine the requirements for the number of subnets and number of hosts/subnet, and then choose a mask. As discussed in detail in Chapter 15, “Analyzing Existing Subnet Masks,” a classful view of IP addresses defines the three-part structure of an IP address: network, subnet, and host. The network designer must choose the mask such that the number of subnet and host bits (S and H in Figure 16-2, respectively) meet the requirements.
Basically, the designer must choose \( S \) subnet bits so the number of subnets that can be uniquely numbered with \( S \) bits \((2^S)\) is at least as large as the required number of subnets. The designer applies similar logic to the number of host bits \( H \), while noting that the formula is \( 2^H - 2 \), because of the two reserved numbers in each subnet. So, keeping the powers of two handy, as shown in Table 16-2, will be useful when working through these problems.

**Table 16-2  Powers of 2 Reference for Designing Masks**

<table>
<thead>
<tr>
<th>Number of Bits</th>
<th>( 2^X )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
</tr>
<tr>
<td>11</td>
<td>2048</td>
</tr>
<tr>
<td>12</td>
<td>4096</td>
</tr>
<tr>
<td>13</td>
<td>8192</td>
</tr>
<tr>
<td>14</td>
<td>16,384</td>
</tr>
<tr>
<td>15</td>
<td>32,768</td>
</tr>
<tr>
<td>16</td>
<td>65,536</td>
</tr>
</tbody>
</table>
More formally, the process must determine the minimum values for both $S$ and $H$ that meet the requirements. The following list summarizes the initial steps to choose the mask:

**Step 7**  Determine the number of network bits ($N$) based on the class.

**Step 8**  Determine the smallest value of $S$, so that $2^S \geq X$, where $X$ represents the required number of subnets.

**Step 9**  Determine the smallest value of $H$, so that $2^H - 2 \geq Y$, where $Y$ represents the required number of hosts/subnet.

The next three sections examine how to use these initial steps to choose a subnet mask.

**No Masks Meet Requirements**

After you determine the required number of subnet and host bits, those bits may not fit into a 32-bit IPv4 subnet mask. Remember, the mask always has a total of 32 bits, with binary 1s in the network and subnet parts, and binary 0s in the host part. For the exam, a question might provide a set of requirements that simply cannot be met with 32 total bits.

For example, consider the following sample exam question:

A network engineer is planning a subnet design. The engineer plans to use Class B network 172.16.0.0. The network has a need for 300 subnets and 280 hosts per subnet.

Which of the following masks could the engineer choose?

The three-step process shown in the previous section shows that these requirements mean that a total of 34 bits will be needed, so no mask meets the requirements. First, as a Class B network, 16 network bits exist, with 16 host bits from which to create the subnet part and to leave enough host bits to number the hosts in each subnet. For the number of subnet bits, $S=8$ does not work, because $2^8 = 256 < 300$. However, $S=9$ works, because $2^9 = 512 \geq 300$. Similarly, because $2^8 - 2 = 254 < 280$, 8 host bits are not enough, but 9 host bits ($2^9 - 2 = 510 \geq 280$) are just enough.

These requirements do not leave enough space to number all the hosts and subnet, because the network, subnet, and host parts add up to more than 32:

$N=16$, because as a Class B network, 16 network bits exist.

The minimum $S=9$, because $S=8$ provides too few subnets ($2^8 = 256 < 300$), but $S=9$ provides $2^9 = 512$ subnets.

The minimum $H=9$, because $H=8$ provides too few hosts ($2^8 - 2 = 254 < 280$), but $H=9$ provides $2^9 - 2 = 510$ hosts/subnet.
Figure 16-3 shows the resulting format for the IP addresses in this subnet, after the engineer has allocated 9 subnet bits on paper. Only 7 host bits remain, but the engineer needs 9 host bits.

**Figure 16-3  Too Few Bits for the Host Part, Given the Requirements**

-One Mask Meets Requirements-

The process discussed in this chapter in part focuses on finding the smallest number of subnet bits and the smallest number of host bits to meet the requirements. If the engineer tries to use these minimum values, and the combined network, subnet, and host parts add up to exactly 32 bits, then exactly one mask meets the requirements.

For example, consider a revised version of the example in the previous section, with smaller numbers of subnet and hosts, as follows:

A network engineer is planning a subnet design. The engineer plans to use Class B network 172.16.0.0. The network has need for 200 subnets and 180 hosts per subnet. Which of the following masks could the engineer choose?

The three-step process to determine the numbers of network, minimum subnet, and minimum host bits results in a need for 16, 8, and 8 bits, respectively. As before, with a Class B network, 16 network bits exist. With a need for only 200 hosts, S=8 does work, because $2^8 = 256 \Rightarrow 200$; 7 subnet bits would not supply enough subnets ($2^7 = 128$). Similarly, because $2^8 - 2 = 254 \Rightarrow 180$, 8 host bits meet the requirements; 7 host bits (for 126 total hosts/subnet) would not be enough.

Figure 16-4 shows the resulting format for the IP addresses in this subnet.
Figure 16-4  One Mask That Meets Requirements

Figure 16-4 shows the mask conceptually. To find the actual mask value, simply record the mask in prefix format (/P), where P = N+S or, in this case, /24.

Multiple Masks Meet Requirements
Depending on the requirements and choice of network, several masks may meet the requirements for the numbers of subnets and hosts/subnet. In these cases, you need to find all the masks that could be used. Then, you have a choice, but what should you consider when choosing one mask among all those that meet your requirements? This section shows how to find all the masks, as well as the facts to consider when choosing one mask from the list.

Finding All the Masks: Concepts
To help you better understand how to find all the subnet masks in binary, this section uses two major steps. In the first major step, you build the 32-bit binary subnet mask on paper. You write down binary 1s for the network bits, binary 1s for the subnet bits, and binary 0s for the host bits, just as always. However, you will use the minimum values for S and H. And when you write down these bits, you will not have 32 bits yet!

For example, consider the following problem, similar to the earlier examples in this chapter, but with some changes in the requirements:

A network engineer is planning a subnet design. The engineer plans to use Class B network 172.16.0.0. The network has need for 50 subnets and 180 hosts per subnet. Which of the following masks could the engineer choose?

This example is similar to an earlier example, except that only 50 subnets are needed in this case. Again, the engineer is using private IP network 172.16.0.0, meaning 16 network bits. The design requires only 6 subnet bits in this case, because $2^6 = 64 => 50$, and with only 5 subnet bits, $2^5 = 32 < 50$. The design then requires a minimum of 8 host bits.
One way to discuss the concepts and find all the masks that meet these requirements is to write down the bits in the subnet mask: binary 1s for the network and subnet parts and binary 0s for the host part. However, think of the 32-bit mask as 32-bit positions and, when writing the binary 0s, write them on the far right. Figure 16-5 shows the general idea.

**Figure 16-5  Incomplete Mask with N=16, S=6, and H=8**

Figure 16-5 shows 30 bits of the mask, but the mask must have 32 bits. The two remaining bits might become subnet bits, being set to binary 1. Alternately, these two bits could be made host bits, being set to binary 0. The engineer simply needs to choose based on whether he would like more subnet bits, to number more subnets, or more host bits, to number more hosts/subnet.

However, the engineer cannot just choose any value for these two bits. The mask must still follow this rule:

A subnet mask begins with all binary 1s, followed by all binary 0s, with no interleaving of 1s and 0s.

With the example shown in Figure 16-5, with two open bits, one value (binary 01) breaks this rule. However, the other three combinations of two bits (00, 10, and 11) do not break the rule. As a result, three masks meet the requirements in this example, as shown in Figure 16-6.
Figure 16-6  *Three Masks That Meet the Requirements*

[S = 6  H = 8](#)

<table>
<thead>
<tr>
<th>Mask</th>
<th>S</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>/22</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>/23</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>/24</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Legend: [minimum value](#)

In the three masks, the first has the least number of subnet bits among the three masks, but therefore has the most number of host bits. So, the first mask maximizes the number of hosts/subnet. The last mask uses the minimum value for the number of host bits, therefore using the most number of subnet bits allowed while still meeting the requirements. As a result, the last mask maximizes the number of subnets allowed.

**Finding All the Masks: Math**

Although the concepts related to the example shown in Figures 16-5 and 16-6 are important, you can find the range of masks that meets requirements more easily just using some simple math. The process to find the masks just requires a few steps, once you know $N$ and the minimum values of $S$ and $H$. The process finds the value of $/P$ when using the least number of subnet bits, and when using the least number of host bits, as follows:

**Step 1**  Calculate the shortest prefix mask ($/P$) based on the *minimum value of $S$*, where $P = N + S$.

**Step 2**  Calculate the longest prefix mask ($/P$) based on the *minimum value of $H$*, where $P = 32 - H$.

**Step 3**  The range of valid masks includes all $/P$ values between the two values calculated in the previous steps.

For instance, in the example shown in Figure 16-6, $N= 16$, the minimum $S = 6$, and the minimum $H=8$. The first step identifies the shortest prefix mask (the $/P$ with the smallest value of $P$) of /22, by adding $N$ and $S$ ($16 + 6$). The second step identifies the longest prefix mask that meets requirements by subtracting the smallest possible value for $H$ (8, in this case) from 32, for a mask of /24. The third step reminds us that the range is from /22 to /24, meaning that /23 is also an option.
Choosing the Best Mask

When multiple possible masks meet the stated requirements, the engineer has a choice of masks. That, of course, begs some questions: Which mask should you choose? Why would one mask be better than the other? The reasons can be summarized into three main options:

To maximize the number of hosts/subnet: To make this choice, use the shortest prefix mask (that is, the mask with the smallest /P value), because this mask has the largest host part.

To maximize the number of subnets: To make this choice, use the longest prefix mask (that is, the mask with the largest /P value), because this mask has the largest subnet part.

To increase both the numbers of supported subnets and hosts: To make this choice, choose a mask in the middle of the range, which gives you both more subnet bits and more host bits.

For example, in Figure 16-6, the range of masks that meet the requirements is /22 - /24. The shortest mask, /22, has the least subnet bits but the largest number of host bits (10) of the three answers, maximizing the number of hosts/subnet. The longest mask, /24, maximizes the number of subnet bits (8), maximizing the number of subnets, at least among the options that meet the original requirements. The mask in the middle, /23, provides for some growth in both subnets and hosts/subnet.

The Formal Process

Although this chapter has explained various steps in finding a subnet mask to meet the design requirements, it has not yet collected these concepts into a list for the entire process. The following list collects all these steps into one place for reference. Note that the following list does not introduce any new concepts compared to the rest of this chapter—it just puts all the ideas in one place:

**Step 1** Find the number of network bits (N) per class rules.

**Step 2** Calculate the minimum number of subnet bits (S) so that $2^S \geq$ the number of required subnets.

**Step 3** Calculate the minimum number of host bits (H) so that $2^H - 2 \geq$ the number of required hosts/subnet.

**Step 4** If $N+S+H > 32$, no mask meets the need.

**Step 5** If $N+S+H = 32$, one mask meets the need. Calculate the mask as /P, where $P = N+S$.

**Step 6** If $N+S+H < 32$, multiple masks meet the need:
Step A Calculate mask (/P) based on the minimum value of S, where 
P = N+S. This mask maximizes the number of hosts/subnet.

Step B Calculate mask (/P) based on the minimum value of H, where 
P = 32 - H. This mask maximizes the number of possible subnets.

Step C Note the complete range of masks includes all prefix length 
between the two values calculated in Steps 6A and 6B.

Practice Choosing Subnet Masks
Before moving on to the next chapter, practice until you get the right answer most of the time—but use any tools you want and take all the time you need. Then, you can move on with your reading.

However, before taking the exam, practice until you master the topics in this chapter and can move pretty fast. As for time, you should try to find the entire answer—all the masks that meet the requirements, which maximizes the number of subnets, and which maximizes the number of hosts—in around 15 seconds. Table 16-3 summarizes the key concepts and suggestions for this two-phase approach.

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Before Moving to the Next Chapter</th>
<th>Before Taking the Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus On...</td>
<td>Learning how</td>
<td>Being correct and fast</td>
</tr>
<tr>
<td>Tools Allowed</td>
<td>All</td>
<td>Your brain and a notepad</td>
</tr>
<tr>
<td>Goal: Accuracy</td>
<td>90% correct</td>
<td>100% correct</td>
</tr>
<tr>
<td>Goal: Speed</td>
<td>Any speed</td>
<td>15 seconds</td>
</tr>
</tbody>
</table>

Practice Problems for This Chapter
The following list shows three separate problems, each with a classful network number and a required number of subnets and hosts/subnet. For each problem, determine the minimum number of subnet and host bits that meet the requirements. If more than one mask exists, note which mask maximizes the number of hosts/subnet and which maximizes the number of subnets. If only one mask meets the requirements, simply list that mask. List the masks in prefix format:

1. Network 10.0.0.0, need 1500 subnets, need 300 hosts/subnet
2. Network 172.25.0.0, need 130 subnets, need 127 hosts/subnet
3. Network 192.168.83.0, need 8 subnets, need 8 hosts/subnet

Table 16-5, found in the section, “Exam Preparation Tasks,” lists the answers.
Additional Practice

This section lists several options for additional practice:

- Appendix G, “Practice for Chapter 16: Designing Subnet Masks,” has some additional practice problems listed with explanations.

- Create your own problems. Many subnet calculators let you type the Class A, B, or C network and choose the mask, and the calculator then lists the number of subnets and hosts/subnet created by that network/mask. Make up a network number and required numbers of subnets and hosts, derive the answers, and check the math with the calculator. This may take a little more work with a calculator as compared with some of the other subnetting chapters in this book.
Exam Preparation Tasks

Review All the Key Topics

Review the key topics as part of your study (see Table 16-4), but know that you will likely come to know all the information in these key topics through practice and repetition.

Table 16-4  Key Topics for Chapter 16

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Facts about binary values in subnet masks</td>
<td>419</td>
</tr>
<tr>
<td>List</td>
<td>The shorter three-step process to find all prefix masks that meet certain requirements</td>
<td>420</td>
</tr>
<tr>
<td>List</td>
<td>Reasons to choose one subnet mask versus another</td>
<td>421</td>
</tr>
<tr>
<td>List</td>
<td>The complete process for finding and choosing masks to meet certain requirements</td>
<td>421</td>
</tr>
</tbody>
</table>

Definitions of Key Terms

This chapter does not introduce any new terms.

Practice

If you have not done so already, practice finding all subnet masks, based on requirements, as discussed in this chapter. Refer to the earlier section, “Practice Choosing Subnet Masks,” for suggestions.
Answers to Earlier Practice Problems

The section, “Practice Problems for This Chapter,” listed three practice problems. The answers are listed here so that the answers are nearby, but not visible from the list of problems. Table 16-5 lists the answers, with notes related to each problem following the table.

Table 16-5  Practice Problems: Find the Masks That Meet Requirements

<table>
<thead>
<tr>
<th>Problem</th>
<th>Class</th>
<th>Minimum Subnet Bits</th>
<th>Minimum Host Bits</th>
<th>Prefix Range</th>
<th>Prefix to Maximize Subnets</th>
<th>Prefix to Maximize Hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>11</td>
<td>9</td>
<td>/19 – /23</td>
<td>/23</td>
<td>/19</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>8</td>
<td>8</td>
<td>/16</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>3</td>
<td>4</td>
<td>/27 – /28</td>
<td>/28</td>
<td>/27</td>
</tr>
</tbody>
</table>

1. N=8, because the problem lists Class A network 10.0.0.0. With a need for 1500 subnets, 10 subnet bits supply only 1024 subnets (per Table 16-2), but 11 subnet bits (S) would provide for 2048 subnets—more than the required 1500. Similarly, the smallest number of host bits would be 9, because $2^9 - 2 = 254$, and the design requires 300 hosts/subnet. The shortest prefix mask would then be /19, found by adding N (8) and the smallest usable number of subnet bits S (11). Similarly, with a minimum H value of 9, the longest prefix mask, maximizing the number of subnets, is $32 - H = /23$.

2. N=16, because the problem lists Class B network 172.25.0.0. With a need for 130 subnets, 7 subnet bits supply only 128 subnets (per Table 16-2), but 8 subnet bits (S) would provide for 256 subnets—more than the required 130. Similarly, the smallest number of host bits would be 8, because $2^8 - 2 = 126$ – close to the required 127, but not quite enough, making $H = 8$ the smallest number of host bits that meets requirements. Note that the network, minimum subnet bits, and minimum host bits add up to 32, so only one mask meets the requirements, namely /24, found by adding the number of network bits (16) to the minimum number of subnet bits (8).

3. N=24, because the problem lists Class C network 192.168.83.0. With a need for 8 subnets, 3 subnet bits supplies enough, but just barely. The smallest number of host bits would be 4, because $2^3 - 2 = 6$, and the design requires 8 hosts/subnet. The shortest prefix mask would then be /27, found by adding N (24) and the smallest usable number of subnet bits S (3). Similarly, with a minimum H value of 4, the longest prefix mask, maximizing the number of subnets, is $32 - H = /28$. 
This chapter covers the following subjects:

**Defining a Subnet:** This section discusses the concept of a subnet and the key numbers that define a subnet: the subnet ID, the subnet broadcast address, plus the range of usable IP addresses in the subnet.

**Analyzing Existing Subnets: Binary:** This section examines the key numbers that define a subnet by analyzing the binary values.

**Analyzing Existing Subnets: Decimal:** This section examines the key numbers that define a subnet by analyzing the decimal values.

**Practice Analyzing Existing Subnets:** This section gives tips and suggestions for where to find more practice for the topics in this chapter.
Analyzing Existing Subnets

Most networking jobs require that you work from an operational perspective, beginning the process with existing IP addresses, masks, and the subnets. Often, a networking task begins with the discovery of the IP address and mask used by some host. Then, to understand how the internetwork routes packets to that host, you must find key pieces of information about the subnet, specifically:

- Subnet ID
- Subnet broadcast address
- Subnet’s range of usable unicast IP addresses

This chapter discusses the concepts and math to take a known IP address and mask, and then fully describe a subnet by finding the values in this list. These specific tasks may well be the most important IP skills in the entire IP addressing and subnetting topics in this book, because these tasks may be the most commonly used tasks when operating and troubleshooting real networks.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess if you should read the entire chapter. If you miss no more than one of these seven self-assessment questions, you might want to move ahead to the “Exam Preparation Tasks” section. Table 17-1 lists the major headings in this chapter and the “Do I Know This Already?” quiz questions covering the material in those headings so you can assess your knowledge of these specific areas. The answers to the “Do I Know This Already?” quiz appear in Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”

Table 17-1  “Do I Know This Already?” Foundation Topics Section-to-Question Mapping

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defining a Subnet</td>
<td>1</td>
</tr>
<tr>
<td>Analyzing Existing Subnets: Binary</td>
<td>2</td>
</tr>
<tr>
<td>Analyzing Existing Subnets: Decimal</td>
<td>3–7</td>
</tr>
</tbody>
</table>
5. When thinking about an IP address using classful addressing rules, an address can have three parts: network, subnet, and host. If you examined all the addresses in one subnet, in binary, which of the following answers correctly states which of the three parts of the addresses will be equal among all addresses? Pick the best answer.
   f. Network part only
   g. Subnet part only
   h. Host part only
   i. Network and subnet parts
   j. Subnet and host parts

6. Which of the following statements are true regarding the binary subnet ID, subnet broadcast address, and host IP address values in any single subnet? (Choose two.)
   a. The host part of the broadcast address is all binary 0s.
   b. The host part of the subnet ID is all binary 0s.
   c. The host part of a usable IP address may have all binary 1s.
   d. The host part of any usable IP address must not be all binary 0s.

7. Which of the following is the resident subnet ID for IP address 10.7.99.133/24?
   a. 10.0.0.0
   b. 10.7.0.0
   c. 10.7.99.0
   d. 10.7.99.128

8. Which of the following is the resident subnet for IP address 192.168.44.97/30?
   a. 192.168.44.0
   b. 192.168.44.64
   c. 192.168.44.96
   d. 192.168.44.128
9. Which of the following is the subnet broadcast address for the subnet in which IP address 172.31.77.201/27 resides?
   a. 172.31.201.255
   b. 172.31.255.255
   c. 172.31.77.223
   d. 172.31.77.207

10. A fellow engineer tells you to configure the DHCP server to lease the last 100 usable IP addresses in subnet 10.1.4.0/23. Which of the following IP addresses could be leased as a result of your new configuration?
    a. 10.1.4.156
    b. 10.1.4.254
    c. 10.1.5.200
    d. 10.1.7.200
    e. 10.1.255.200

11. A fellow engineer tells you to configure the DHCP server to lease the first 20 usable IP addresses in subnet 192.168.9.92/27. Which of the following IP addresses could be leased as a result of your new configuration?
    a. 192.168.9.126
    b. 192.168.9.110
    c. 192.168.9.1
    d. 192.168.9.119
Foundation Topics

Defining a Subnet

An IP subnet is a subset of a classful network, created by choice of some network engineer. However, that engineer cannot pick just any arbitrary subset of addresses; instead, the engineer must follow certain rules, such as the following:

- The subnet contains a set of consecutive numbers.
- The subnet holds $2^H$ numbers, where $H$ is the number of host bits defined by the subnet mask.
- Two special numbers in the range cannot be used as IP addresses:
  - The first (lowest) number acts as an identifier for the subnet (subnet ID).
  - The last (highest) number acts as a subnet broadcast address.
- The remaining addresses, whose values sit between the subnet ID and subnet broadcast address, are used as unicast IP addresses.

This section reviews and expands the basic concepts of the subnet ID, subnet broadcast address, and range of addresses in a subnet.

An Example with Network 172.16.0.0 and Four Subnets

Imagine that you work at the customer support center, where you receive all initial calls from users who have problems with their computer. You coach the user through finding her IP address and mask: 172.16.150.41, mask 255.255.192.0. One of the first and most common tasks you will do based on that information is to find the subnet ID of the subnet in which that address resides. (In fact, this subnet ID is sometimes called the resident subnet, because the IP address exists in or resides in that subnet.)

Before getting into the math, examine the mask (255.255.192.0) and classful network (172.16.0.0) for a moment. From the mask, based on what you learned in Chapter 15, “Analyzing Existing Subnet Masks,” you can find the structure of the addresses in the subnet, including the number of host and subnet bits. That analysis tells you that two subnet bits exist, meaning that there should be four ($2^2$) subnets. (If these concepts are not yet clear, review Chapter 15’s section, “How Masks Define the Format of Addresses.”) Figure 17-1 shows the idea.
Figure 17-1  *Address Structure: Class B Network, /18 Mask*

172.16.150.41, 255.255.192.0 (/18)

| N = 16 | S = 2 | H = 14 |

\[ P = N + S = /18 \]

Subnets = \(2^2\)

Hosts = \(2^{14} - 2\)

So far, this book assumes that only one mask is used throughout a single Class A, B, or C network. Continuing with that assumption, all subnets of a single network must be the same size, because all subnets have the same structure. For instance, in the example begun in Figure 17-1, all four subnets will have the structure shown in the figure, so all four subnets will have \(2^{14} - 2\) host addresses.

Next, focus on two concepts related to this example: that four subnets exist in this network and that they are all the same size. Conceptually, if you represent the entire Class B network as a number line, and four equal-sized subnets exist, each subnet contains essentially one-fourth of the network, and each subnet consumes one-fourth of the number line, as shown in Figure 17-2.

Figure 17-2  *Network 172.16.0.0, Divided into Four Equal Subnets*

Figure 17-2 also shows the concept of the four subnets on a number line at the top of the figure, and the entire Class B network 172.16.0.0 on a number line at the bottom. Each subnet has a subnet ID on the far left (the smallest number in that subnet) and a subnet broadcast address on the right (the highest number in the subnet).

As previously mentioned, you often begin a task with an IP address and mask, and you then need to find the subnet in which the address resides. Again, using IP address 172.16.150.41
as an example, Figure 17-3 shows the resident subnet, along with the subnet ID and subnet broadcast address that bracket the subnet.

Figure 17-3  Resident Subnet for 172.16.150.41, 255.255.192.0

<table>
<thead>
<tr>
<th>172.16.128.0</th>
<th>172.16.191.255</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subnet 1</td>
<td>Subnet 2</td>
</tr>
<tr>
<td>172.16.150.41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subnet 4</td>
</tr>
</tbody>
</table>

Legend:  
- Subnet ID  
- Subnet Broadcast Address  

**Subnet ID Concepts**  
A subnet ID is simply a number used to succinctly represent a subnet. When listed along with its matching subnet mask, the subnet ID identifies the subnet and can be used to derive the subnet broadcast address and range of addresses in the subnet. Rather than having to write down all these details about a subnet, you simply need to write down the subnet ID and mask, and you have enough information to fully describe the subnet.

The subnet ID appears in many places, but it is seen most often in IP routing tables. For instance, when an engineer configures a router with its IP address and mask, the router calculates the subnet ID, and puts a route into its routing table for that subnet. The router typically then advertises the subnet ID/mask combination to neighboring routers with some IP routing protocol. Eventually, all the routers in an enterprise learn about the subnet—again using the subnet ID and subnet mask combination—and display it in their routing tables. (You can display the contents of a router’s IP routing table using the `show ip route` command.)

Unfortunately, the terminology related to subnets can sometimes cause problems. First, the terms *subnet ID*, *subnet number*, and *subnet address* are synonyms. Additionally, people sometimes simply say *subnet* when referring to both the idea of a subnet and the number that is used as the subnet ID. When talking about routing, people sometimes use the term *prefix* instead of *subnet*. The term prefix refers to the same idea as subnet; it just uses terminology from the classless addressing way to describe IP addresses, as discussed in Chapter 15’s section, “Classless and Classful Addressing.”

The biggest terminology confusion arises between the terms *network* versus *subnet*. In the real world, people often use these terms synonymously, and that is perfectly reasonable in
some cases, the specific meaning of these terms, and their differences, matter to what is being discussed.

For instance, people often might say, “What is the network ID?” when they really want to know the subnet ID. In another case, they might want to know the Class A, B, or C network ID. So, when one engineer asks something like, “What’s the net-ID for 172.16.150.41 slash 18?,” use the context to figure out if he wants the literal classful network ID (172.16.0.0, in this case) or the literal subnet ID (172.16.128.0, in this case).

For the exams, be ready to notice when the terms subnet and network are used, and then use the context to figure out the specific meaning of the term in that case.

Table 17-2 summarizes the key facts about the subnet ID, along with the possible synonyms, for easier review and study.

**Table 17-2  Summary of Subnet ID Key Facts**

<table>
<thead>
<tr>
<th>Definition</th>
<th>Number that represents the subnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric Value</td>
<td>First (smallest) number in the subnet</td>
</tr>
<tr>
<td>Literal Synonyms</td>
<td>Subnet number, subnet address, prefix, resident subnet</td>
</tr>
<tr>
<td>Common-Use Synonyms</td>
<td>Network, network ID, network number, network address</td>
</tr>
<tr>
<td>Typically Seen In...</td>
<td>Routing tables, documentation</td>
</tr>
</tbody>
</table>

**Subnet Broadcast Address**

The subnet broadcast address has two main roles: to be used as a destination IP address for the purpose of sending packets to all hosts in the subnet, and as a means to find the high end of the range of addresses in a subnet.

The original purpose for the subnet broadcast address was to give hosts a way to send one packet to all hosts in a subnet, and to do so efficiently. For instance, a host in subnet A could send a packet with a destination address of subnet B’s subnet broadcast address. The routers would forward this one packet just like a packet sent to a host in subnet B. Once the packet arrives at the router connected to subnet B, that last router would then forward the packet to all hosts in subnet B, typically by encapsulating the packet in a data link layer broadcast frame. As a result, all hosts in host B’s subnet would receive a copy of the packet.

Although the subnet broadcast address has little practical use today, you will probably use it a lot for CCENT and CCNA, because the broadcast address is the last (highest) number in a subnet’s range of addresses. To find the low end of the range, calculate the subnet ID; to find the high end of the range, calculate the subnet broadcast address.
Table 17-3 summarizes the key facts about the subnet broadcast address, along with the possible synonyms, for easier review and study.

**Table 17-3  Summary of Subnet Broadcast Address Key Facts**

<table>
<thead>
<tr>
<th>Definition</th>
<th>A reserved number in each subnet that, when used as the destination address of a packet, causes the routers to forward the packet to all hosts in that subnet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric Value</td>
<td>Last (highest) number in the subnet.</td>
</tr>
<tr>
<td>Literal Synonyms</td>
<td>Directed broadcast address.</td>
</tr>
<tr>
<td>Broader-Use Synonyms</td>
<td>Network broadcast.</td>
</tr>
<tr>
<td>Typically Seen in...</td>
<td>In calculations of the range of addresses in a subnet.</td>
</tr>
</tbody>
</table>

**Range of Usable Addresses**

The engineers implementing an IP internetwork need to know the range of unicast IP addresses in each subnet. Before you can plan which addresses to use as statically assigned IP addresses, which to configure to be leased by the DHCP server, and which to reserve for later use, you need to know the range of usable addresses.

To find the range of usable IP addresses in a subnet, first find the subnet ID and the subnet broadcast address. Then, just add 1 to the fourth octet of the subnet ID to get the first (lowest) usable address, and subtract one from the fourth octet of the subnet broadcast address to get the last (highest) usable address in the subnet.

For example, Figure 17-3 showed subnet ID 172.16.128.0, mask /18. The first usable address is simply one more than the subnet ID (in this case, 172.16.128.1). That same figure showed subnet broadcast address of 172.16.191.255, so the last usable address is one less, or 172.16.191.254.

Now that this section has described the concepts behind the numbers that collectively define a subnet, the rest of this chapter focuses on the math used to find these values.

**Analyzing Existing Subnets: Binary**

What does it mean to “analyze a subnet?” For this book, it means that you should be able to start with an IP address and mask and then define key facts about the subnet in which that address resides. Specifically, that means discovering the subnet ID, subnet broadcast address, and range of addresses. The analysis can also include the calculation of the number of addresses in the subnet as discussed in Chapter 15, but this chapter does not review those concepts.
Many methods exist to calculate the details about a subnet based on the address/mask. This section begins by discussing some calculations that use binary math, with the next section showing alternatives that use only decimal math. Although many people prefer the decimal method for going fast on the exams, the binary calculations ultimately give you a better understanding of IPv4 addressing. In particular, if you plan to move on to attain Cisco certifications beyond CCNA, you should take the time to understand the binary methods discussed in this section, even if you use the decimal methods for the exams.

**Finding the Subnet ID: Binary**

To start this section that uses binary, first consider a simple decimal math problem. The problem: Find the smallest three-digit decimal number that begins with 4. The answer, of course, is 400. And although most people would not have to break down the logic into steps, you know that 0 is the lowest value digit you can use for any digit in a decimal number. You know that the first digit must be a 4, and the number is a three-digit number, so you just use the lowest value (0) for the last two digits, and find the answer: 400.

This same concept, applied to binary IP addresses, gives you the subnet ID. You have seen all the related concepts in other chapters, so if you already intuitively know how to find the subnet ID in binary, great! If not, the following key facts should help you see the logic:

- All numbers in the subnet (subnet ID, subnet broadcast address, and all usable IP addresses) have the same value in the prefix part of the numbers.
- The subnet ID is the lowest numeric value in the subnet, so its host part, in binary, is all 0s.

To find the subnet ID in binary, you take the IP address in binary, and change all host bits to binary 0. To do so, you need to convert the IP address to binary. You also need to identify the prefix and host bits, which can be easily done by converting the mask (as needed) to prefix format. (Note that Appendix B, “Numeric Reference Tables,” includes a decimal-binary conversion table.) Figure 17-4 shows the idea, using the same address/mask as in the earlier examples in this chapter: 172.16.150.41, mask /18.
Figure 17-4  Binary Concept: Convert the IP Address to the Subnet ID

Starting at the top of Figure 17-4, the format of the IP address is represented with 18 prefix (P) and 14 host (H) bits in the mask (Step 1). The second row (Step 2) shows the binary version of the IP address, converted from the dotted-decimal notation (DDN) value 172.16.150.41. (If you have not used the conversion table in Appendix B yet, it might be useful to double-check the conversion of all four octets based on the table.)

The next two steps show the action to copy the IP address’ prefix bits (Step 3) and give the host bits a value of binary 0 (Step 4). This resulting number is the subnet ID (in binary).

The last step, not shown in Figure 17-4, is to convert the subnet ID from binary to decimal. This book shows that conversion as a separate step, in Figure 17-5, mainly because many people make a mistake at this step in the process. When converting a 32-bit number (like an IP address or IP subnet ID) back to an IPv4 DDN, you must follow this rule:

Convert 8 bits at a time from binary to decimal, regardless of the line between the prefix and host parts of the number.

Figure 17-5 shows this final step. Note that the third octet (the third set of 8 bits) has two bits in the prefix and six bits in the host part of the number, but the conversion occurs for all eight bits.
Analyzing Existing Subnets: Binary  

Finding the Subnet Broadcast: Binary

Finding the subnet broadcast address uses a similar process. To find the subnet broadcast address, use the same binary process used to find the subnet ID, but instead of setting all the host bits to the lowest value (all binary 0s), set the host part to the highest value (all binary 1s). Figure 17-6 shows the concept.
Chapter 17: Analyzing Existing Subnets

Figure 17-6  Finding a Subnet Broadcast Address: Binary

The process in Figure 17-6 demonstrates the same first three steps shown Figure 17-4. Specifically, it shows the identification of the prefix and host bits (Step 1), the results of converting the IP address 172.16.150.41 to binary (Step 2), and the copying of the prefix bits (first 18 bits, in this case). The difference occurs in the host bits on the right, changing all host bits (the last 14, in this case) to the largest possible value (all binary 1s). The final step converts the 32-bit subnet broadcast address to DDN format. Also, remember that with any conversion from DDN to binary or vice versa, the process always converts using 8 bits at a time. In particular, in this case, the entire third octet of binary 10111111 is converted back to decimal 191.

Binary Practice Problems

Figures 17-4 through 17-6 demonstrate a process to find the subnet ID using binary math. The following written process summarizes those steps in written form for easier reference and practice:

**Step 1** Convert the mask to prefix format to find the length of the prefix (/P) and the length of the host part (32 - P).

**Step 2** Convert the IP address to its 32-bit binary equivalent.

**Step 3** Copy the prefix bits of the IP address.

**Step 4** Write down 0s for the host bits.

**Step 5** Convert the resulting 32-bit number, 8 bits at a time, back to decimal.
The process to find the subnet broadcast address is exactly the same, except in Step 4, set
the bits to 1s.

Take a few moments and run through the following five practice problems on scratch paper.
In each case, find both the subnet ID and subnet broadcast address. Also, record the prefix
style mask:

1. 8.1.4.5, 255.255.0.0
2. 130.4.102.1, 255.255.255.0
3. 199.1.1.100, 255.255.255.0
4. 130.4.102.1, 255.255.252.0
5. 199.1.1.100, 255.255.255.224

Tables 17-4 through 17-8 show the results for the five different examples. The tables show
the host bits in bold, and include the binary version of the address and mask, and the binary
version of the subnet ID and subnet broadcast address.

Table 17-4  Subnet Analysis for Address 8.1.4.5, Mask 255.255.0.0

<table>
<thead>
<tr>
<th>Prefix Length</th>
<th>Address</th>
<th>Subnet ID</th>
<th>Broadcast Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>/16</td>
<td>8.1.4.5</td>
<td>8.1.0.0</td>
<td>8.1.255.255</td>
</tr>
<tr>
<td></td>
<td>00001000 00000001</td>
<td>00000100 000000001</td>
<td>00000100 00000001</td>
</tr>
<tr>
<td></td>
<td>0000000000000000</td>
<td>00000000000000000</td>
<td>1111111111111111</td>
</tr>
</tbody>
</table>

Table 17-5  Subnet Analysis for Subnet with Address 130.4.102.1, Mask 255.255.255.0

<table>
<thead>
<tr>
<th>Prefix Length</th>
<th>Address</th>
<th>Subnet ID</th>
<th>Broadcast Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>/24</td>
<td>130.4.102.1</td>
<td>130.4.102.0</td>
<td>130.4.102.255</td>
</tr>
<tr>
<td></td>
<td>10000010 00001000 01100110 00000001</td>
<td>10000010 00001000 01100110 00000000</td>
<td>10000010 00001000 01100110 11111111</td>
</tr>
</tbody>
</table>

Table 17-6  Subnet Analysis for Subnet with Address 199.1.1.100, Mask 255.255.255.0

<table>
<thead>
<tr>
<th>Prefix Length</th>
<th>Address</th>
<th>Subnet ID</th>
<th>Broadcast Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>/24</td>
<td>199.1.1.100</td>
<td>199.1.1.0</td>
<td>199.1.1.255</td>
</tr>
<tr>
<td></td>
<td>11000111 00000001 00000001 01100100</td>
<td>11000111 00000001 00000001 00000000</td>
<td>11000111 00000001 00000001 11111111</td>
</tr>
</tbody>
</table>
The binary process described in this section so far requires that all four octets be converted to binary, and then back to decimal. However, you can easily predict the results in at least three of the four octets, based on the DDN mask. You can then avoid the binary math in all but one octet, and reduce the number of binary conversions you need to do.

First, consider an octet whose DDN mask value is 255. Decimal 255 converts to binary 11111111, which means that all eight bits are prefix bits. Now think through the five-step process listed in this chapter, but just in that one octet. With the binary process to find the subnet ID, you will spend time converting the corresponding octet of the IP address to binary (Step 2). But, what happens at Step 3? You copy them! Then, at Step 4, you convert the exact same 8-bit value back to decimal, ending up with the exact same decimal value you started with! So, there was no point in converting that octet in the first place.

For example, consider the familiar case of 172.16.150.41, mask 255.255.192.0, as shown in Figures 17-4 through 17-6. In this example, the first two octets of the mask are 255. If you look back at the earlier figures, they show that the first two octets of the subnet ID and the subnet broadcast address are 172.16. In short, because the mask in each of the first two octets was 255, all you have to do is copy the decimal IP address values for those octets.

Another shortcut exists for octets whose DDN mask value is decimal 0. Decimal 0 converts to the 8-bit binary value 00000000. A mask octet with 8 binary 0s means that all 8 bits in this octet are host bits. Again, thinking through the five-step process, you convert the IP address value to binary (Step 2), but at Step 4, you convert all eight of these bits, whatever they are, to binary 00000000. At Step 5 in this octet, you convert binary 00000000 back to decimal, for a value of decimal 0. As it turns out, if the DDN mask is decimal 0 in some

### Table 17-7  Subnet Analysis for Subnet with Address 130.4.102.1, Mask 255.255.252.0

<table>
<thead>
<tr>
<th>Prefix Length</th>
<th>/22</th>
<th>11111111 11111111 11110000 00000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>130.4.102.1</td>
<td>10000010 00000100 01100110 00000000</td>
</tr>
<tr>
<td>Subnet ID</td>
<td>130.4.100.0</td>
<td>10000010 00000100 01100100 00000000</td>
</tr>
<tr>
<td>Broadcast Address</td>
<td>130.4.103.255</td>
<td>10000010 00000100 01100111 11111111</td>
</tr>
</tbody>
</table>

### Table 17-8  Subnet Analysis for Subnet with Address 199.1.1.100, Mask 255.255.255.224

<table>
<thead>
<tr>
<th>Prefix Length</th>
<th>/27</th>
<th>11111111 11111111 11111111 11100000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>199.1.1.100</td>
<td>11000111 00000001 00000001 01100100</td>
</tr>
<tr>
<td>Subnet ID</td>
<td>199.1.1.96</td>
<td>11000111 00000001 00000001 01100000</td>
</tr>
<tr>
<td>Broadcast Address</td>
<td>199.1.1.127</td>
<td>11000111 00000001 00000001 01111111</td>
</tr>
</tbody>
</table>

### Shortcut for the Binary Process

The binary process described in this section so far requires that all four octets be converted to binary, and then back to decimal. However, you can easily predict the results in at least three of the four octets, based on the DDN mask. You can then avoid the binary math in all but one octet, and reduce the number of binary conversions you need to do.
The subnet ID will be decimal 0 in that octet, and you can avoid the binary math in that octet.

The following revised process steps take these two shortcuts into account. However, when the mask is neither 0 nor 255, the process requires the same conversions. At most, you have to do only one octet of the conversions. To find the subnet ID, apply the logic in these steps for each of the four octets:

**Step 1**  If the mask = 255, copy the decimal IP address for that octet.

**Step 2**  If the mask = 0, write down a decimal 0 for that octet.

**Step 3**  If the mask is neither 0 nor 255 in this octet, use the same binary logic as shown in the section, “Finding the Subnet ID: Binary.”

Figure 17-7 shows an example of this process, again using 172.16.150.41, 255.255.192.0.

A similar shortcut exists when finding the subnet broadcast address. For DDN mask octets equal to decimal 0, set the decimal subnet broadcast address value to 255 instead of 0, as noted in the following list:

**Step 1**  If the mask = 255, copy the decimal IP address for that octet.

**Step 2**  If the mask = 0, write down a decimal 255 for that octet.

**Step 3**  If the mask is neither 0 nor 255 in this octet, use the same binary logic as shown in the section, “Finding the Subnet Broadcast Address: Binary.”

---

**Figure 17-7  Binary Shortcut Example**

<table>
<thead>
<tr>
<th>Action</th>
<th>IP</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy</td>
<td>172</td>
<td>172</td>
</tr>
<tr>
<td>Copy</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Binary</td>
<td>192</td>
<td>150</td>
</tr>
<tr>
<td>Zero</td>
<td>0</td>
<td>41</td>
</tr>
</tbody>
</table>

**Legend:**

- **DDN Mask**
- **IP Address**
- **Subnet ID**
Brief Note About Boolean Math
So far, this chapter has described how humans can use binary math to find the subnet ID and subnet broadcast address. However, computers typically use an entirely different binary process to find the same values, using a branch of mathematics called Boolean Algebra. Computers already store the IP address and mask in binary form, so they do not have to do any conversions to and from decimal. Then, certain Boolean operations allow the computers to calculate the subnet ID and subnet broadcast address with just a few CPU instructions.

You do not need to know Boolean math to have a good understanding of IP subnetting. However, in case you are interested, computers use the following Boolean logic to find the subnet ID and subnet broadcast address, respectively:

- Perform a Boolean AND of the IP address and mask. This process converts all host bits to binary 0.
- Invert the mask, and then perform a Boolean OR of the IP address and inverted subnet mask. This process converts all host bits to binary 1s.

Finding the Range of Addresses
Finding the range of usable addresses in a subnet, once you know the subnet ID and subnet broadcast address, requires only simple addition and subtraction. To find the first (lowest) usable IP address in the subnet, simply add 1 to the fourth octet of the subnet ID. To find the last (highest) usable IP address, simply subtract 1 from the fourth octet of the subnet broadcast address.

Analyzing Existing Subnets: Decimal
Analyzing existing subnets using the binary process works well. However, some of the math takes time for most people, particularly the decimal-binary conversions. And you need to do the math quickly for the Cisco CCENT and CCNA exams. For the exams, you really should be able to take an IP address and mask, and calculate the subnet ID and range of usable addresses within about 15 seconds. When using binary methods, most people require a lot of practice to be able to find these answers, even when using even the abbreviated binary process.
This section discusses how to find the subnet ID and subnet broadcast address using only decimal math. Most people can find the answers more quickly using this process, at least after a little practice, as compared with the binary process. However, the decimal process does not tell you anything about the meaning behind the math. So, if you have not read through the previous section, “Analyzing Existing Subnets: Binary,” it is worthwhile to read for the sake of understanding subnetting. This section focuses on getting the right answer using a method that, once practiced, should be faster.

**Analysis with Easy Masks**

With three easy subnet masks in particular, finding the subnet ID and subnet broadcast address requires only easy logic and literally no math. Three easy masks exist:

- 255.0.0.0
- 255.255.0.0
- 255.255.255.0

These easy masks have only 255 and 0 in decimal. In comparison, difficult masks have one octet that has neither a 255 nor a 0 in the mask, which makes the logic more challenging.

---

**NOTE** The terms *easy mask* and *difficult mask* are terms created for use in this book to describe the masks and the level of difficulty when working with each.

---

When the problem uses an easy mask, you can quickly find the subnet ID based on the IP address and mask in DDN format. Just use the following process for each of the four octets to find the subnet ID:

**Step 1** If the mask octet = 255, copy the decimal IP address.

**Step 2** If the mask octet = 0, write a decimal 0.

A similar simple process exists to find the subnet broadcast address, as follows:

**Step 1** If the mask octet = 255, copy the decimal IP address.

**Step 2** If the mask octet = 0, write a decimal 255.

Before moving to the next section, take some time to fill in the blanks in Table 17-9. Check your answers against Table 17-14 in the section, “Exam Preparation Tasks.” Complete the table by listing the subnet ID and subnet broadcast address.
Predictability in the Interesting Octet

Although three masks are easier to work with (255.0.0.0, 255.255.0.0, and 255.255.255.0), the rest make the decimal math a little more difficult, so we call these masks difficult masks. With difficult masks, one octet is neither a 0 nor a 255. The math in the other three octets is easy and boring, so this book calls the one octet with the more difficult math the interesting octet.

If you take some time to think about different problems and focus on the interesting octet, you will begin to see a pattern. This section takes you through that examination so that you can learn how to predict the pattern, in decimal, and find the subnet ID.

First, the subnet ID value has a predictable decimal value because of the assumption that a single subnet mask is used for all subnets of a single classful network. Remember, this book still assumes that, for a given classful network, the design engineer chooses to use a single subnet mask to use for all subnets. (Refer to Chapter 12’s section, “One Size Subnet Fits All—Or Not,” for more details.)

To see that predictability, consider Figure 17-8, which shows some ideas considered by a design engineer when subnetting Class B network 172.16.0.0. Figure 17-8 shows some comparisons of using masks 255.255.128.0, 255.255.192.0, 255.255.224.0, and 255.255.240.0. Each mask is difficult because of having neither a 255 or 0 in the third octet, which makes the third octet interesting. Figure 17-8 shows the decimal values in the third octet of all the subnet IDs of this network and the number of subnets, based on each competing choice for the mask.

### Table 17-9 Practice Problems: Find Subnet ID and Broadcast, Easy Masks

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Mask</th>
<th>Subnet ID</th>
<th>Broadcast Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.77.55.3</td>
<td>255.255.255.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.30.99.4</td>
<td>255.255.255.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.6.54</td>
<td>255.255.255.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.77.3.14</td>
<td>255.255.0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.22.55.77</td>
<td>255.255.0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.99.53.76</td>
<td>255.0.0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
First, look closely at the top of the figure, where the results of using mask 255.255.128.0 are shown. Visually, the original Class B network is represented by the entire width of the lines, and with the 255.255.128.0 mask, the network has been broken into two equal halves. Why two subnets? Only one subnet bit exists, so $2^1$ (or 2) subnets exist. Figure 17-8 shows only the values in the interesting octet to emphasize the patterns, but the full subnet IDs are 172.16.0.0 and 172.16.128.0.

Next, move down to the example using mask 255.255.192.0. Using this mask, and only this mask, subnets the Class B network into four equal-sized subnets, because two subnet bits exist, meaning four ($2^2$) subnets exist. The subnet IDs are 172.16.0.0, 172.16.64.0, 172.16.128.0, and 172.16.192.0.

Finally, for the last two examples: The example with mask 255.255.224.0 has 8 subnets, dividing the network into eight equal parts. The example with mask 255.255.240.0 subnets the network into 16 equal parts. Figure 17-8 shows the interesting octet values (third octet, in this case), with all subnets following the format 172.16.____.0 for this example.

The patterns in Figure 17-8 are obvious. No matter which subnet mask the design engineer chooses, the subnet ID values follow a pattern. To find the subnet ID, you just need a way to figure out what the pattern is. If you start with an IP address, just find the subnet ID closest to the IP address without going over, as discussed in the next section.
Finding the Subnet ID: Difficult Masks

The following written process lists all the steps for find the subnet ID, using only decimal math. This process adds to the earlier process used with easy masks. For each octet:

**Step 1** If the mask octet = 255, copy the decimal IP address.

**Step 2** If the mask octet = 0, write a decimal 0.

**Step 3** If the mask is neither, refer to this octet as the *interesting octet*:

**Step A** Calculate the *magic number* as 256 – mask.

**Step B** Set the subnet ID’s value to the multiple of the magic number that is closest to the IP address without going over.

The process uses two new terms created for this book: *magic number* and *interesting octet*. The term *interesting octet* refers to the octet identified at Step 3 in the process; in other words, the octet with the mask that is neither 255 nor 0. Step 3A then uses the term *magic number*, which is derived from the DDN mask. Conceptually, the magic number is the number you add to one subnet ID to get the next subnet ID in order, as shown in Figure 17-8. Numerically, it can be found by subtracting the DDN mask’s value, in the interesting octet, from 256, as mentioned in Step 3A.

The best way to learn this process is to see it happen. In fact, if you can, stop reading now, use the DVD accompanying this book, and watch the videos about finding the subnet ID with a difficult mask. These videos demonstrate this process. You can also use the examples in the next few pages, which show the process being used on paper. Then, follow the practice opportunities outlined in the section, “Practice Analyzing Existing Subnets.”

**Resident Subnet Example 1**

For example, consider the requirement to find the resident subnet for IP address 130.4.102.1, mask 255.255.240.0. The process does not require you to think about prefix bits versus host bits, convert the mask, think about the mask in binary, or convert the IP address to and from binary. Instead, for each of the four octets, choose an action based on the value in the mask. Figure 17-9 shows the results; the circled numbers in the figure refer to the step numbers in the written process to find the subnet ID, as listed in the previous few pages.
First, examine the three uninteresting octets (1, 2, and 4). The process keys on the mask, and the first two octets have a mask value of 255, so simply copy the IP address to the place where you intend to write down the subnet ID. The fourth octet has a mask value 0, so write down a 0 for the fourth octet of the subnet ID.

The most challenging logic occurs in the interesting octet, which is the third octet in this example, because of the mask value 240 in that octet. For this octet, Step 3A asks you to calculate the magic number as $256 - \text{mask}$. That means you take the mask’s value in the interesting octet (240, in this case) and subtract it from 256: $256 - 240 = 16$. The subnet ID’s values in this octet must be a multiple of decimal 16, in this case.

Step 3B then asks you to find the multiples of the magic number (16, in this case), and choose the one closest to the IP address without going over. Specifically, that means that you should mentally calculate the multiples of the magic number, starting at 0. (Do not forget to start at 0!) Counting, starting at 0: 0, 16, 32, 48, 64, 80, 96, 112, and so on. Then, find the multiple closest to the IP address value in this octet (102, in this case), without going over 102. So, as shown in Figure 17-9, you make the third octet’s value 96 to complete the subnet ID of 130.4.96.0.

**Resident Subnet Example 2**
Consider another example: 192.168.5.77, mask 255.255.255.224. Figure 17-10 shows the results.
The three uninteresting octets (1, 2, and 3, in this case) require only a little thought. For each octet, each with a mask value of 255, just copy the IP address.

For the interesting octet, at Step 3A, the magic number is $256 - 224 = 32$. The multiples of the magic number are 0, 32, 64, 96, and so on. Because the IP address value in the fourth octet is 77, in this case, the multiple must be the number closest to 77 without going over; therefore, the subnet ID ends with 64, for a value of 192.168.5.64.

**Resident Subnet Practice Problems**

Before moving to the next section, take some time to fill in the blanks in Table 17-10. Check your answers against Table 17-15 in the section, “Exam Preparation Tasks.” Complete the table by listing the subnet ID in each case. The text following Table 17-15 also lists explanations for each problem.

**Table 17-10  Practice Problems: Find Subnet ID, Difficult Masks**

<table>
<thead>
<tr>
<th>Problem</th>
<th>IP Address</th>
<th>Mask</th>
<th>Subnet ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.77.55.3</td>
<td>255.248.0.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>172.30.99.4</td>
<td>255.255.192.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>192.168.6.54</td>
<td>255.255.255.252</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10.77.3.14</td>
<td>255.255.128.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>172.22.55.77</td>
<td>255.255.254.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.99.53.76</td>
<td>255.255.255.248</td>
<td></td>
</tr>
</tbody>
</table>
Finding the Subnet Broadcast Address: Difficult Masks

To find a subnet’s broadcast address, a similar process can be used. For simplicity, this process begins with the subnet ID, rather than the IP address. If you happen to start with an IP address instead, use the processes in this chapter to first find the subnet ID, and then use the following process to find the subnet broadcast address for that same subnet. For each octet:

**Step 1**  If the mask octet = 255, copy the subnet ID.

**Step 2**  If the mask octet = 0, write a 255.

**Step 3**  If the mask is neither, identify this octet as the *interesting octet*:

- **Step A**  Calculate the *magic number* as $256 - \text{mask}$.
- **Step B**  Take the subnet ID’s value, add the magic number, and subtract 1 ($\text{ID} + \text{magic} - 1$).

As with the similar process used to find the subnet ID, you have several options for how to best learn and internalize the process. If you can, stop reading now, use the DVD accompanying this book, and watch the videos about finding the subnet broadcast address with a difficult mask. Also, look at the examples in this section, which show the process being used on paper. Then, follow the practice opportunities outlined in the section, “Practice Problems for This Chapter.”

**Subnet Broadcast Example 1**

The first example continues the first example from the section, “Find the Subnet ID: Difficult Masks,” as demonstrated in Figure 17-9. That example started with the IP address/mask of 130.4.102.1, 255.255.240.0, and showed how to find subnet ID 130.4.96.0. Figure 17-11 now begins with that subnet ID, and the same mask.

**Figure 17-11  Find the Subnet Broadcast: 130.4.96.0, 255.255.240.0**
First, examine the three uninteresting octets (1, 2, and 4). The process keys on the mask, and the first two octets have a mask value of 255, so simply copy the subnet ID to the place where you intend to write down the subnet broadcast address. The fourth octet has a mask value 0, so write down a 255 for the fourth octet.

The logic related to the interesting octet occurs in the third octet in this example, because of the mask value 240. First, Step 3A asks you to calculate the magic number, as 256 – mask. (If you had already calculated the subnet ID using the decimal process in this book, you should already know the magic number.) At Step 3B, you take the subnet ID’s value (96), add magic (16), and subtract 1, for a total of 111. That makes the subnet broadcast address 130.4.111.255.

**Subnet Broadcast Example 2**

Again, this example continues an earlier example, from the section, “Resident Subnet Example 2,” as demonstrated in Figure 17-10. That example started with the IP address/mask of 192.168.5.77, mask 255.255.255.224, and showed how to find subnet ID 192.168.5.64. Figure 17-12 now begins with that subnet ID, and the same mask.

**Figure 17-12  Find the Subnet Broadcast: 192.168.5.64, 255.255.255.224**

First, examine the three uninteresting octets (1, 2, and 3). The process keys on the mask, and the first three octets have a mask value of 255, so simply copy the subnet ID to the place where you intend to write down the subnet broadcast address.

The interesting logic occurs in the interesting octet, the fourth octet in this example, because of the mask value 224. First, Step 3A asks you to calculate the magic number, as 256 – mask. (If you had already calculated the subnet ID, it is the same magic number, because the same mask is used.) At Step 3B, you take the subnet ID’s value (64), add magic (32), and subtract 1, for a total of 95. That makes the subnet broadcast address 192.168.5.95.
Subnet Broadcast Address Practice Problems
Before moving to the next section, take some time to do several practice problems on a
scratch piece of paper. Go back to Table 17-10, which lists IP addresses and masks, and
practice by finding the subnet broadcast address for all the problems in that table. Then,
check your answers against Table 17-16 in the section, “Exam Preparation Tasks.”

Practice Analyzing Existing Subnets
Before moving to the next chapter, practice until you get the right answer most of the
time—but use any tools you want and take all the time you need. Then, you can move on
with your reading.

However, before taking the exam, practice until you master the topics in this chapter and
can move pretty fast. As for time, you should be to find the subnet ID, based on an IP
address and mask, in around 15 seconds. You should also strive to start with a subnet
ID/mask, and find the broadcast address and range of addresses, in another 10–15 seconds.
Table 17-11 summarizes the key concepts and suggestions for this two-phase approach.

Table 17-11  Keep Reading and Take Exam Goals for This Chapter’s Topics

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Before Moving to the Next Chapter</th>
<th>Before Taking the Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus On...</td>
<td>Learning how</td>
<td>Being correct and fast</td>
</tr>
<tr>
<td>Tools Allowed</td>
<td>All</td>
<td>Your brain and a notepad</td>
</tr>
<tr>
<td>Goal: Accuracy</td>
<td>90% correct</td>
<td>100% correct</td>
</tr>
<tr>
<td>Goal: Speed</td>
<td>Any speed</td>
<td>20–30 seconds</td>
</tr>
</tbody>
</table>

A Choice: Memorize or Calculate
As described in this chapter, the decimal processes to find the subnet ID and subnet
broadcast address do require some calculation, including the calculation of the magic
number (256 – mask). These same processes assume that you start with a DDN mask, so to
use the processes listed in this book, you have to take the time to convert the mask to DDN
format before, but the exam may list questions with prefix masks.

Over the years, some people have told me they prefer to memorize a table to find the magic
number. These tables could list the magic number for different masks and list prefix masks,
so you avoid converting from the prefix mask to DDN. Table 17-12 shows an example of
such a table. Feel free to ignore this table, use it, or make your own.
Practice Problems for This Chapter
Unlike the other subnetting chapters in this part of the book, this chapter spreads the practice problems throughout this chapter, so this section does not list any additional practice. For reference, the practice problems are found in the following sections:

- Binary Practice Problems
- Resident Subnet Practice Problems
- Subnet Broadcast Address Practice Problems

Additional Practice
This section lists several options for additional practice:

- Appendix H, “Practice for Chapter 17: Analyzing Existing Subnets,” has some additional practice problems. This appendix also includes explanations about how to find the answer of each problem.

- Create your own problems. Many subnet calculators list the number of network, subnet, and host bits when you type in an IP address and mask, so make up an IP address and mask on paper, and find the subnet ID and range of addresses. Then, to check your work, use any subnet calculator. (Check the author’s web pages for this book, as listed in the Introduction, for some suggested calculators.)

- The Subnet Prep apps “Find a Subnet ID” and “Find the Address Range” provide review videos and practice problems related to this chapter. The first app focuses on finding the subnet ID, and the second app focuses on finding the range of addresses in a subnet.

Table 17-12  Reference Table: DDN Mask Values, Binary Equivalent, Magic Numbers, and Prefixes

<table>
<thead>
<tr>
<th>Prefix, interesting octet 2</th>
<th>/9</th>
<th>/10</th>
<th>/11</th>
<th>/12</th>
<th>/13</th>
<th>/14</th>
<th>/15</th>
<th>/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix, interesting octet 3</td>
<td>/17</td>
<td>/18</td>
<td>/19</td>
<td>/20</td>
<td>/21</td>
<td>/22</td>
<td>/23</td>
<td>/24</td>
</tr>
<tr>
<td>Prefix, interesting octet 4</td>
<td>/25</td>
<td>/26</td>
<td>/27</td>
<td>/28</td>
<td>/29</td>
<td>/30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magic number</td>
<td>128</td>
<td>64</td>
<td>32</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>DDN mask in the interesting octet</td>
<td>128</td>
<td>192</td>
<td>224</td>
<td>240</td>
<td>248</td>
<td>252</td>
<td>254</td>
<td>255</td>
</tr>
</tbody>
</table>
Exam Preparation Tasks

Review All the Key Topics
Review the key topics as part of your study (see Table 17-13), but know that you will likely come to know all the information in these key topics through practice and repetition.

Table 17-13  Key Topics for Chapter 17

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 17-1</td>
<td>Key facts about the subnet ID</td>
<td>433</td>
</tr>
<tr>
<td>Table 17-2</td>
<td>Key facts about the subnet broadcast address</td>
<td>433</td>
</tr>
<tr>
<td>List</td>
<td>Steps to use binary math to find the subnet ID</td>
<td>438</td>
</tr>
<tr>
<td>List</td>
<td>General steps to use binary and decimal math to find the subnet ID</td>
<td>441</td>
</tr>
<tr>
<td>List</td>
<td>Steps to use decimal and binary math to find the subnet broadcast address</td>
<td>441</td>
</tr>
<tr>
<td>List</td>
<td>Steps to use only decimal math to find the subnet ID</td>
<td>446</td>
</tr>
<tr>
<td>List</td>
<td>Steps to use only decimal math to find the subnet broadcast address</td>
<td>449</td>
</tr>
</tbody>
</table>

Complete the Tables and Lists from Memory
Print a copy of Appendix L, “Memory Tables” (found on the DVD), or at least the section for this chapter, and complete the tables and lists from memory. Appendix M, “Memory Tables Answer Key,” also on the DVD, includes completed tables and lists for you to check your work.

Definitions of Key Terms
Define the following key terms from this chapter and check your answers in the Glossary:

- resident subnet
- subnet ID
- subnet number
- subnet address
- subnet broadcast address
Practice

If you have not done so already, practice finding the subnet ID, range of addresses, and subnet broadcast address associated with an IP address and mask. Refer to the section, “Practice Analyzing Existing Subnets,” for suggestions.

Answers to Earlier Practice Problems

This chapter includes practice problems spread around different locations in the chapter. The answers are located in Tables 17-14, 17-15, and 17-16.

Table 17-14  Answers to Problems in Table 17-9

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Mask</th>
<th>Subnet ID</th>
<th>Broadcast Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.77.55.3</td>
<td>255.255.255.0</td>
<td>10.77.55.0</td>
</tr>
<tr>
<td>2</td>
<td>172.30.99.4</td>
<td>255.255.255.0</td>
<td>172.30.99.0</td>
</tr>
<tr>
<td>3</td>
<td>192.168.6.54</td>
<td>255.255.255.0</td>
<td>192.168.6.0</td>
</tr>
<tr>
<td>4</td>
<td>10.77.3.14</td>
<td>255.255.0.0</td>
<td>10.77.0.0</td>
</tr>
<tr>
<td>5</td>
<td>172.22.55.77</td>
<td>255.255.0.0</td>
<td>172.22.0.0</td>
</tr>
<tr>
<td>6</td>
<td>1.99.53.76</td>
<td>255.0.0.0</td>
<td>1.0.0.0</td>
</tr>
</tbody>
</table>

Table 17-15  Answers to Problems in Table 17-10

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Mask</th>
<th>Subnet ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.77.55.3</td>
<td>255.248.0.0</td>
</tr>
<tr>
<td>2</td>
<td>172.30.99.4</td>
<td>255.255.192.0</td>
</tr>
<tr>
<td>3</td>
<td>192.168.6.54</td>
<td>255.255.255.252</td>
</tr>
<tr>
<td>4</td>
<td>10.77.3.14</td>
<td>255.255.128.0</td>
</tr>
<tr>
<td>5</td>
<td>172.22.55.77</td>
<td>255.255.254.0</td>
</tr>
<tr>
<td>6</td>
<td>1.99.53.76</td>
<td>255.255.255.248</td>
</tr>
</tbody>
</table>

The following list explains the answers for Table 17-15:

1. The second octet is the interesting octet, with magic number $256 - 248 = 8$. The multiples of 8 include 0, 8, 16, 24, ..., 64, 72, and 80. 72 is closest to the IP address value in that same octet (77) without going over, making the subnet ID 10.72.0.0.

2. The third octet is the interesting octet, with magic number $256 - 192 = 64$. The multiples of 64 include 0, 64, 128, and 192. 64 is closest to the IP address value in that same octet (99) without going over, making the subnet ID 172.30.64.0.
3. The fourth octet is the interesting octet, with magic number $256 - 252 = 4$. The multiples of 4 include 0, 4, 8, 12, 16, ..., 48, and 52, 56. 52 is the closest to the IP address value in that same octet (54) without going over, making the subnet ID 192.168.6.52.

4. The third octet is the interesting octet, with magic number $256 - 128 = 128$. Only two multiples exist that matter: 0 and 128. 0 is the closest to the IP address value in that same octet (3) without going over, making the subnet ID 10.77.0.0.

5. The third octet is the interesting octet, with magic number $256 - 254 = 2$. The multiples of 2 include 0, 2, 4, 6, 8, and so on, essentially all even numbers. 54 is closest to the IP address value in that same octet (55) without going over, making the subnet ID 172.22.54.0.

6. The fourth octet is the interesting octet, with magic number $256 - 248 = 8$. The multiples of 8 include 0, 8, 16, 24, ..., 64, 72, and 80. 72 is closest to the IP address value in that same octet (76) without going over, making the subnet ID 1.99.53.72.

<table>
<thead>
<tr>
<th>Subnet ID</th>
<th>Mask</th>
<th>Broadcast Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.72.0.0</td>
<td>255.248.0.0</td>
</tr>
<tr>
<td>2</td>
<td>172.30.64.0</td>
<td>255.255.192.0</td>
</tr>
<tr>
<td>3</td>
<td>192.168.6.52</td>
<td>255.255.255.252</td>
</tr>
<tr>
<td>4</td>
<td>10.77.0.0</td>
<td>255.255.128.0</td>
</tr>
<tr>
<td>5</td>
<td>172.22.54.0</td>
<td>255.255.254.0</td>
</tr>
<tr>
<td>6</td>
<td>1.99.53.72</td>
<td>255.255.255.248</td>
</tr>
</tbody>
</table>

The following list explains the answers for Table 17-16:

1. The second octet is the interesting octet. Completing the three easy octets means that the broadcast address in the interesting octet will be 10.___.255.255. With a magic number $256 - 248 = 8$, the second octet will be 72 (from the subnet ID) plus 8, minus 1, or 79.

2. The third octet is the interesting octet. Completing the three easy octets means that the broadcast address in the interesting octet will be 172.30.___.255. With magic number $256 - 192 = 64$, the interesting octet will be 64 (from the subnet ID) plus 64 (the magic number), minus 1, for 127.
3. The fourth octet is the interesting octet. Completing the three easy octets means that the broadcast address in the interesting octet will be 192.168.6.___. With magic number 256 – 252 = 4, the interesting octet will be 52 (the subnet ID value) plus 4 (the magic number), minus 1, or 55.

4. The third octet is the interesting octet. Completing the three easy octets means that the broadcast address will be 10.77.___.255. With magic number 256 – 128 = 128, the interesting octet will be 0 (the subnet ID value) plus 128 (the magic number), minus 1, or 127.

5. The third octet is the interesting octet. Completing the three easy octets means that the broadcast address will be 172.22.___.255. With magic number 256 – 254 = 2, the broadcast address in the interesting octet will be 54 (the subnet ID value) plus 2 (the magic number), minus 1, or 55.

6. The fourth octet is the interesting octet. Completing the three easy octets means that the broadcast address will be 1.99.53.___. With magic number 256 – 248 = 8, the broadcast address in the interesting octet will be 72 (the subnet ID value) plus 8 (the magic number), minus 1, or 79.
This page intentionally left blank
This chapter covers the following subjects:

**Finding All Subnet IDs:** This section explains the process to make a list of all subnet IDs in a network, based on a classful IP network and the one mask to use throughout the network.

**Practice Finding All Subnet IDs:** This section provides tips on how to practice the process to find all subnets of a network.
Finding All Subnet IDs

As described in Chapter 12, “Perspectives on IPv4 Subnetting,” the IP subnetting design process requires several choices. The designer must choose a specific private IP network, or obtain a registered public IP network. The designer may choose to use either a single mask or multiple masks when subnetting the network. (This book assumes a choice to use a single mask.) Finally, the designer must choose which single mask to use.

This chapter takes the result of these choices—a network ID and one subnet mask—and shows how to calculate all the subnet IDs for all the subnets that exist in that network when using that one mask.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess if you should read the entire chapter. If you miss no more than one of these seven self-assessment questions, you might want to move ahead to the “Exam Preparation Tasks” section. Table 18-1 lists the major headings in this chapter and the “Do I Know This Already?” quiz questions covering the material in those headings so you can assess your knowledge of these specific areas. The answers to the “Do I Know This Already?” quiz appear in Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes.”

Table 18-1  “Do I Know This Already?” Foundation Topics Section-to-Question Mapping

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finding All Subnet IDs</td>
<td>1–7</td>
</tr>
</tbody>
</table>

7. Which of the following are valid subnet IDs for network 10.0.0.0, assuming mask 255.240.0.0 is used throughout network 10.0.0.0? (Choose two.)

   e. 10.1.16.0
   f. 10.0.0.0
   g. 10.240.0.0
   h. 10.0.0.32
8. An engineer has calculated the list of subnet IDs, in consecutive order, for network 172.30.0.0/22, assuming the /22 mask is used throughout the network. Which of the following is true? (Choose two.)
   a. Any two consecutive subnet IDs differ by a value of 22 in the third octet.
   b. Any two consecutive subnet IDs differ by a value of 16 in the fourth octet.
   c. The list contains 64 subnet IDs.
   d. The last subnet ID is 172.30.252.0.

9. Which of the following are valid subnet IDs for network 192.168.9.0, using mask /29, assuming mask /29 is used throughout the network?
   a. 192.168.9.144
   b. 192.168.9.58
   c. 192.168.9.242
   d. 192.168.9.9

10. An engineer using Class B network 172.20.0.0 correctly claims that the following are valid subnet IDs: 172.20.128.0, 172.20.192.0, and 172.20.80.0. That engineer also confirms that they use a single mask throughout network 172.20.0.0. Which of the following masks could this company be using?
    a. 255.255.252.0
    b. 255.255.192.0
    c. 255.255.224.0
    d. 255.255.0.0

11. Which of the following are not valid subnet IDs for network 172.19.0.0, using mask /24, assuming mask /24 is used throughout the network?
    a. 172.19.0.0
    b. 172.19.1.0
    c. 172.19.255.0
    d. 172.19.0.16
12. Which of the following are not valid subnet IDs for network 172.19.0.0, using mask /27, assuming mask /27 is used throughout the network?
   a. 172.19.0.0
   b. 172.19.160.16
   c. 172.19.255.64
   d. 172.19.192.192

13. Which of the following are not valid subnet IDs for network 10.0.0.0, using mask /25, assuming this mask is used throughout the network?
   a. 10.0.0.0
   b. 10.255.255.0
   c. 10.255.127.128
   d. 10.1.1.192
Chapter 18: Finding All Subnet IDs

Finding All Subnet IDs

This chapter focuses on a single question:

Given a single Class A, B, or C network, and the single subnet mask to use for all subnets, what are all the subnet IDs?

When learning how to answer this question, you can think about the problem in either binary or decimal. This chapter approaches the problem using decimal. Although the process itself requires only simple math, the process requires practice before most people can confidently answer this question.

The decimal process begins by identifying the first, or numerically lowest, subnet ID. After that, the process identifies a pattern in all subnet IDs for a given subnet mask, so that you can find each successive subnet ID through simple addition. This section examines the key ideas behind this process first; then, you are given a formal definition of the process.

NOTE Some videos included in the accompanying DVD describe the same fundamental processes to find all subnet IDs. You may view those videos before or after reading this section, or even instead of reading this section, as long as you learn how to independently find all subnet IDs. The process step numbering in the videos may not match the steps shown in this edition of the book.

First Subnet ID: The Zero Subnet

The first step in finding all subnet IDs of one network is incredibly simple: copy the network ID. That is, take the Class A, B, or C network ID—in other words, the classful network ID—and write it down as the first subnet ID. No matter what Class A, B, or C network you use, and no matter what subnet mask you use, the first (numerically lowest) subnet ID is equal to the network ID.

For example, if you begin with classful network 172.20.0.0, no matter what the mask is, the first subnet ID is 172.20.0.0.

This first subnet ID in each network goes by two special names: either subnet zero or the zero subnet. The origin of these names is related to the fact that a network’s zero subnet, when viewed in binary, has a subnet part of all binary 0s. In decimal, the zero subnet can
be easily identified, because the zero subnet always has the exact same numeric value as the network ID itself.

**NOTE**  In years past, IP subnet designs typically avoided the use of the zero subnet because of the confusion that might arise with a network ID and subnet ID that were the exact same numbers.

**Finding the Pattern Using the Magic Number**

Subnet IDs follow a predictable pattern, at least when using our assumption of a single subnet mask for all subnets of a network. The pattern uses the *magic number*, as discussed in Chapter 17, “Analyzing Existing Subnets.” To review, the magic number is 256, minus the mask’s decimal value, in a particular octet that this book refers to as the *interesting octet*.

Figure 18-1 shows four number lines, one each for masks /17 – /20. The number lines show the pattern of values in the third octet of the subnet IDs when using these masks. The left side of the figure shows the dotted-decimal notation (DDN) mask and the calculated magic number. The right side of the figure shows the numeric values in the third octet for each of the subnets of any Class B network that used these masks, respectively.

For example, if subnetting Class B network 172.16.0.0, with the top mask in the figure (/17 or 255.255.128.0), the subnet IDs would be 172.16.0.0 and 172.16.128.0. In particular, note that the third octets of each subnet ID are multiples of the magic number (128), calculated as 256 – 128 = 128. The second row in Figure 18-1 shows another mask, 255.255.192.0, with magic number 64 (256 – 192 = 64). If used with network 172.16.0.0, the subnet IDs would be 172.16.0.0, 172.16.64.0, 172.16.128.0, and 172.16.192.0, with the pattern in the third octet showing multiples of 64. The same holds true with the other two examples in the

---

**Figure 18-1  Patterns with Magic Numbers for Masks /17 – /20**

<table>
<thead>
<tr>
<th>Mask</th>
<th>Magic Number</th>
<th>Subnet IDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>255.255.128.0</td>
<td>128</td>
<td>172.16.0.0, 172.16.128.0</td>
</tr>
<tr>
<td>255.255.192.0</td>
<td>64</td>
<td>172.16.0.0, 172.16.64.0, 172.16.128.0, 172.16.192.0</td>
</tr>
<tr>
<td>255.255.224.0</td>
<td>32</td>
<td>172.16.0.0, 172.16.32.0, 172.16.64.0, 172.16.96.0, 172.16.128.0, 172.16.160.0, 172.16.192.0, 172.16.224.0</td>
</tr>
<tr>
<td>255.255.240.0</td>
<td>16</td>
<td>172.16.0.0, 172.16.16.0, 172.16.32.0, 172.16.48.0, 172.16.64.0, 172.16.80.0, 172.16.96.0, 172.16.112.0, 172.16.128.0, 172.16.144.0, 172.16.160.0, 172.16.176.0, 172.16.192.0, 172.16.208.0, 172.16.224.0, 172.16.240.0</td>
</tr>
</tbody>
</table>

---
A Formal Process with Less Than 8 Subnet Bits

Although it may be easy to see the patterns in Figure 18-1, it may not be as obvious as to exactly how to apply those concepts to find all the subnet IDs in every case. This section outlines a specific process to find all the subnet IDs.

To simplify the explanations, this section assumes that less than 8 subnet bits exist. Later, the section, “Finding All Subnets with More Than 8 Subnet Bits,” describes the full process that can be used in all cases.

First, to organize your thoughts, you may want to organize the data into a table like Table 18-2. The book refers to this chart as the list-all-subnets chart.

<table>
<thead>
<tr>
<th>Table 18-2</th>
<th>Generic List-All-Subnets Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octet</td>
<td>1</td>
</tr>
<tr>
<td>Mask</td>
<td></td>
</tr>
<tr>
<td>Magic Number</td>
<td></td>
</tr>
<tr>
<td>Network Number/Zero Subnet</td>
<td></td>
</tr>
<tr>
<td>Next Subnet</td>
<td></td>
</tr>
<tr>
<td>Next Subnet</td>
<td></td>
</tr>
<tr>
<td>Last Subnet</td>
<td></td>
</tr>
<tr>
<td>Broadcast Subnet</td>
<td></td>
</tr>
<tr>
<td>Out of Range—Used by Process</td>
<td></td>
</tr>
</tbody>
</table>

A formal process to find all subnet IDs, given a network and a single subnet mask, is as follows:

**Step 1** Write down the subnet mask, in decimal, in the first empty row of the table.

**Step 2** Identify the interesting octet, which is the one octet of the mask with a value other than 255 or 0. Draw a rectangle around the column of the interesting octet.

**Step 3** Calculate and write down the magic number by subtracting the subnet mask’s interesting octet from 256.
Step 4 Write down the classful network number, which is the same number as the zero subnet, in the next empty row of the list-all-subnets chart.

Step 5 To find each successive subnet number:

**Step A** For the three uninteresting octets, copy the previous subnet number’s values.

**Step B** For the interesting octet, add the magic number to the previous subnet number’s interesting octet.

Step 6 Once the sum calculated in Step 5B reaches 256, stop the process. The number with the 256 in it is out of range, and the previous subnet number is the broadcast subnet.

Although the written process is long, with practice, most people can find the answers much more quickly with this decimal-based process than by using binary math. As usual, most people learn this process best by seeing it in action, exercising it, and then practicing it. To that end, review the two following examples and watch any videos that came with this book that show additional examples. You can also use the Subnet Prep applications “Find All Subnets” for more practice (www.subnetprep.com).

**Example 1: Network 172.16.0.0, Mask 255.255.240.0**

To begin this example, focus on the first four of the six steps, when subnetting network 172.16.0.0 using mask 255.255.240.0. Figure 18-2 shows the results of these first four steps:

**Step 1** Record mask 255.255.240.0, which was given as part of the problem statement. (Figure 18-2 also shows the network ID, 172.16.0.0, for easy reference.)

**Step 2** The mask’s third octet is neither 0 nor 255, which makes the third octet interesting.

**Step 3** Because the mask’s value in the third octet is 240, the magic number = 256 – 240 = 16.

**Step 4** Because the network ID is 172.16.0.0, the first subnet ID, the zero subnet, is also 172.16.0.0.
These first four steps discover the first subnet (the zero subnet), and get you ready to do the remaining steps by identifying the interesting octet and the magic number. Step 5 in the process tells you to copy the three boring octets and add the magic number (16, in this case) in the interesting octet (octet 3, in this case). Keep repeating this step until the interesting octet value equals 256 (per Step 6). Once the total is 256, you have listed all the subnet IDs, and the line with 256 on it is not a correct subnet ID. Figure 18-3 shows the results of the results of these steps.
Example 2: Network 192.168.1.0, Mask 255.255.255.224

With a Class C network and a mask of 255.255.255.224, this example makes the fourth octet the interesting octet. However, the process works the same, with the same logic, just with the interesting logic applied in a different octet. As with the previous example, the following list outlines the first four steps, with Figure 18-4 showing the results of the first four steps:

**Step 1**  Record mask 255.255.255.224, which was given as part of the problem statement, and optionally record the network number (192.168.1.0).

**Step 2**  The mask’s fourth octet is neither 0 nor 255, which makes the fourth octet interesting.

**Step 3**  Because the mask’s value in the fourth octet is 224, the magic number = 256 – 224 = 32.

**Step 4**  Because the network ID is 192.168.1.0, the first subnet ID, the zero subnet, is also 192.168.1.0.
From this point, Step 5 in the process tells you to copy the values in the first three octets and then add the magic number (32, in this case) in the interesting octet (octet 4, in this case). Keep doing so until the interesting octet value equals 256 (per Step 6). Once the total is 256, you have listed all the subnet IDs, and the line with 256 on it is not a correct subnet ID. Figure 18-5 shows the results of the results of these steps.
Finding All Subnets with Exactly 8 Subnet Bits

The formal process in the previous section, “A Formal Process with Less Than 8 Subnet Bits,” identified the interesting octet as the octet whose mask value is neither a 255 nor a 0. If the mask defines exactly 8 subnet bits, you have to use a different logic to identify the interesting octet; otherwise, the same process can be used. In fact, the actual subnet IDs can be a little more intuitive.

Only two cases exist with exactly eight subnet bits:

A Class A network with mask 255.255.0.0; the entire second octet contains subnet bits.

A Class B network with mask 255.255.255.0; the entire third octet contains subnet bits.

In each case, use the same process as with less than 8 subnet bits, but identify the interesting octet as the one octet that contains subnet bits. Also, because the mask’s value is 255, the magic number will be 256 – 255 = 1, so the subnet IDs are each 1 larger than the previous subnet ID.

For example, for 172.16.0.0, mask 255.255.255.0, the third octet is the interesting octet, and the magic number is 256 – 255 = 1. You start with the zero subnet, equal in value to network number 172.16.0.0, and then add 1 in the third octet. For example, the first four subnets are as follows:

172.16.0.0 (zero subnet)
172.16.1.0
172.16.2.0
172.16.3.0

Finding All Subnets with More Than 8 Subnet Bits

Earlier, the section, “A Formal Process with Less Than 8 Subnet Bits,” assumed less than 8 subnet bits for the purpose of simplifying the discussions while you learn. In real life, you need to be able to find all subnet IDs with any valid mask, so you cannot assume less than 8 subnet bits.

The examples that have at least 9 subnet bits have a minimum of 512 subnet IDs, so writing down such a list would take a lot of time. To conserve space, the examples will use shorthand, rather than list hundreds or thousands of subnet IDs.

The process with less than eight subnet IDs told you to count in increments of the magic number in one octet. With more than 8 subnet bits, the new expanded process must tell you how to count in multiple octets. So, this section breaks down two general cases: when 9–16 subnet bits exist, which means that the subnet field exists in only two octets; and cases with 17 or more subnet bits, which means that the subnet field exists in three octets.
Process with 9–16 Subnet Bits
To understand the process, you need to know a few terms that the process will use. Figure 18-6 shows the details, with an example that uses Class B network 130.4.0.0 and mask 255.255.255.192. The lower part of the figure details the structure of the addresses per the mask: a network part of two octets because it is a Class B address, a 10 bit subnet part per the mask (/26), and 6 host bits.

Figure 18-6  Fundamental Concepts and Terms for >8 Subnet Bit Process

<table>
<thead>
<tr>
<th>Network Octets</th>
<th>Just-Left Octet</th>
<th>Interesting Octet</th>
</tr>
</thead>
<tbody>
<tr>
<td>255</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>192</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

N = 16 S = 10 H = 6
/26

In this case, subnet bits exist in two octets: octets 3 and 4. For the purposes of the process, the right-most of these octets is the interesting octet, and the octet just to the left is the cleverly named just-left octet.

The updated process tells you to count in increments of the magic number in the interesting octet, but count by ones in the just-left octet. Formally:

**Step 1**  Calculate subnet IDs using the 8-subnet-bits-or-less process. However, when the total adds up to 256, move to the next step; consider the subnet IDs listed so far as a subnet block.

**Step 2**  Copy the previous subnet block, but add 1 to the just-left octet in all subnet IDs in the new block.

**Step 3**  Repeat Step 2 until you create the block with a just-left octet of 255, but go no further.

To be honest, the formal concept may cause you problems until you work through some examples, so even if the process remains a bit unclear in your mind, you should work through the following examples instead of re-reading the formal process.

First, consider an example based on Figure 18-6, with network 130.4.0.0 and mask 255.255.255.192. Figure 18-6 already showed the structure, and Figure 18-7 shows the subnet ID block created at Step 1.
The logic at Step 1, to create this subnet ID block of four subnet IDs, follow the same magic number process seen before. The first subnet ID, 130.4.0.0, is the zero subnet. The next three subnet IDs are each 64 bigger, because the magic number, in this case, is 256 – 192 = 64.

Steps 2 and 3 from the formal process tell you how to create 256 subnet blocks, and by doing so, you will list all 1024 subnet IDs. To do so, create 256 total subnet blocks: one with a 0 in the just-left octet, one with a 1 in the just-left octet, and another with a 2 in the just-left octet, up through 255. The process continues through the step at which you create the subnet block with 255 in the just-left octet (third octet, in this case). Figure 18-8 shows the idea, with the addition of the first few subnet blocks.

This example, with 10 total subnet bits, creates 256 blocks of 4 subnets each, for a total of 1024 subnets. This math matches the usual method of counting subnets, because $2^{10} = 1024$.

**Process with 17 or More Subnet Bits**

To create a subnet design that allows 17 or more subnet bits to exist, the design must use a Class A network. Additionally, the subnet part will consist of the entire second and third octets, plus part of the fourth octet. That means a lot of subnet IDs: at least $2^{17}$ (or 131,072) subnets. Figure 18-9 shows an example of just such a structure, with a Class A network and a /26 mask.
To find all the subnet IDs in this example, you use the same general process as with 9–16 subnet bits, but with many more subnet blocks to create. In effect, you have to create a subnet block for all combinations of values (0–255, inclusive) in both the second and third octet. Figure 18-10 shows the general idea. Note that with only 2 subnet bits in the fourth octet in this example, the subnet blocks will have four subnets each.

**Practice Finding All Subnet IDs**

Before moving to the next chapter, practice until you get the right answer most of the time—but use any tools you want and take all the time you need. Then, you can move on with your reading.

However, before taking the exam, practice until you master the topics in this chapter. Gauging a reasonable speed goal is difficult, because some combinations of network ID and mask may yield hundreds or thousands of subnets, while others may yield a much smaller number. So, for speed, before the exam, you should be able to do the first four subnets,
which includes the zero subnet, in 45 seconds. Table 18-3 summarizes the key concepts and suggestions for this two-phase approach.

### Table 18-3  Keep Reading and Take Exam Goals for This Chapter’s Topics

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Before Moving to the Next Chapter</th>
<th>Before Taking the Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus On...</td>
<td>Learning how</td>
<td>Being correct and fast</td>
</tr>
<tr>
<td>Tools Allowed</td>
<td>All</td>
<td>Your brain and a notepad</td>
</tr>
<tr>
<td>Goal: Accuracy</td>
<td>90% correct</td>
<td>100% correct</td>
</tr>
<tr>
<td>Goal: Speed</td>
<td>Any speed</td>
<td>45 seconds</td>
</tr>
</tbody>
</table>

**Practice Problems for This Chapter**

The following list shows three separate problems, each with a classful network number and prefix-style mask. Find all subnet IDs for each problem:

1. 192.168.9.0/27
2. 172.30.0.0/20
3. 10.0.0.0/17

The section, “Answers to Earlier Practice Problems,” lists the answers.

**Additional Practice**

This section lists several options for additional practice:

- Appendix I, “Practice for Chapter 18: Finding All Subnet IDs,” has some additional practice problems listed with explanations.
- Create your own problems. Some subnet calculators let you type an IP network and mask, and the calculator lists all the subnet IDs. Simply make up a network ID and mask, find the answer on paper, and then plug the values into the calculator to check your work.
- The Subnet Prep app “Find All Subnets” (www.subnetprep.com) provides review videos, but more importantly, practice problems after practice problems. As usual, they guide you to learn the process described here, but give you space to practice without being boxed into any particular process.
- Watch the videos on the DVD that demonstrate the processes described in this chapter.
Exam Preparation Tasks

Review All the Key Topics

Review the key topics as part of your study (see Table 18-4), but know that you will likely come to know all the information in these key topics through practice and repetition.

Table 18-4  Key Topics for Chapter 18

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step list</td>
<td>Formal steps to find all subnet IDs when less than 8 subnet bits exist</td>
<td>464</td>
</tr>
<tr>
<td>Figure 18-3</td>
<td>An example of adding the magic number in the interesting octet to find all subnet IDs</td>
<td>466</td>
</tr>
<tr>
<td>Step list</td>
<td>Formal steps to find all subnet IDs when more than 8 subnet bits exist</td>
<td>470</td>
</tr>
</tbody>
</table>

Definitions of Key Terms

Define the following key terms from this chapter and check your answers in the Glossary:

- zero subnet
- subnet zero
- broadcast subnet

Answers to Earlier Practice Problems

The section, “Practice Problems for This Chapter” listed three practice problems. The answers are listed here so that they are not visible from the same page as the list of problems.

Answer, Practice Problem 1

Problem 1 lists network 192.168.9.0, mask /27. The mask converts to DDN mask 255.255.255.224. When used with a Class C network, which has 24 network bits, only 3 subnet bits exist, and they all sit in the fourth octet. So, this problem is a case of less than 8 subnet bits, with the fourth octet as the interesting octet.

To get started listing subnets, first write down the zero subnet, and then start adding the magic number in the interesting octet. The zero subnet equals the network ID (192.168.9.0,
in this case). The magic number, calculated as $256 - 224 = 32$, should be added to the previous subnet ID’s interesting octet. Table 18-5 lists the results.

### Table 18-5  List-All-Subnets Chart: 192.168.9.0/27

<table>
<thead>
<tr>
<th>Octet</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>224</td>
</tr>
<tr>
<td>Magic Number</td>
<td></td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>Classful Network/Subnet Zero</td>
<td>192</td>
<td>168</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>First Nonzero Subnet</td>
<td>192</td>
<td>168</td>
<td>9</td>
<td>32</td>
</tr>
<tr>
<td>Next Subnet</td>
<td>192</td>
<td>168</td>
<td>9</td>
<td>64</td>
</tr>
<tr>
<td>Next Subnet</td>
<td>192</td>
<td>168</td>
<td>9</td>
<td>96</td>
</tr>
<tr>
<td>Next Subnet</td>
<td>192</td>
<td>168</td>
<td>9</td>
<td>128</td>
</tr>
<tr>
<td>Next Subnet</td>
<td>192</td>
<td>168</td>
<td>9</td>
<td>160</td>
</tr>
<tr>
<td>Next Subnet</td>
<td>192</td>
<td>168</td>
<td>9</td>
<td>192</td>
</tr>
<tr>
<td>Broadcast Subnet</td>
<td>192</td>
<td>168</td>
<td>9</td>
<td>224</td>
</tr>
<tr>
<td>Invalid— Used by Process</td>
<td>192</td>
<td>168</td>
<td>9</td>
<td>256</td>
</tr>
</tbody>
</table>

### Answer, Practice Problem 2

Problem 2 lists network 172.30.0.0, mask /20. The mask converts to DDN mask 255.255.240.0. When used with a Class B network, which has 16 network bits, only 4 subnet bits exist, and they all sit in the third octet. So, this problem is a case of less than 8 subnet bits, with the third octet as the interesting octet.

To get started listing subnets, first write down the zero subnet, and then start adding the magic number in the interesting octet. The zero subnet equals the network ID (or 172.30.0.0, in this case). The magic number, calculated as $256 - 240 = 16$, should be added to the previous subnet ID’s interesting octet. Table 18-6 lists the results.
Answer, Practice Problem 3

Problem 3 lists network 10.0.0.0, mask /17. The mask converts to DDN mask 255.255.128.0. When used with a Class A network, which has 8 network bits, 9 subnet bits exist. Using the terms unique to this chapter, octet 3 is the interesting octet, with only 1 subnet bit in that octet, and octet 2 is the just-left octet, with 8 subnet bits.

In this case, begin by finding the first subnet block. The magic number is 256 – 128 = 128. The first subnet (zero subnet) equals the network ID. So, the first subnet ID block includes the following:

10.0.0.0
10.0.128.0
Then, you create a subnet block for all 256 possible values in the just-left octet, or octet 2 in this case. The following list shows the first three subnet ID blocks, plus the last subnet ID block, rather than listing page upon page of subnet IDs:

- 10.0.0.0 (zero subnet)
- 10.0.128.0
- 10.1.0.0
- 10.1.128.0
- 10.2.0.0
- 10.2.128.0
- ...
- 10.255.0.0
- 10.255.128.0 (broadcast subnet)
Cisco Published ICND1 Exam Topics* Covered in This Part:

Describe the operation of data networks
- Use the OSI and TCP/IP models and their associated protocols to explain how data flows in a network
- Interpret network diagrams
- Determine the path between two hosts across a network
- Describe the components required for network and Internet communications
- Identify and correct common network problems at Layers 1, 2, 3, and 7 using a layered model approach
- Differentiate between LAN/WAN operation and features

Implement an IP addressing scheme and IP services to meet network requirements for a small branch office
- Describe and verify DNS operation
- Enable NAT for a small network with a single ISP and connection using SDM and verify operation using CLI and ping
- Configure, verify, and troubleshoot DHCP and DNS operation on a router (including: CLI/SDM)
- Implement static and dynamic addressing services for hosts in a LAN environment

Implement a small routed network
- Describe basic routing concepts (including: packet forwarding, router lookup process)
- Describe the operation of Cisco routers (including: router bootup process, POST, router components)
- Select the appropriate media, cables, ports, and connectors to connect routers to other network devices and hosts
- Configure, verify, and troubleshoot RIPv2
- Access and utilize the router CLI to set basic parameters
- Connect, configure, and verify operation status of a device interface
- Verify device configuration and network connectivity using ping, traceroute, Telnet, SSH, or other utilities
- Perform and verify routing configuration tasks for a static or default route given specific routing requirements
- Manage IOS configuration files (including: save, edit, upgrade, restore)
- Manage Cisco IOS
- Implement password and physical security
- Verify network status and router operation using basic utilities (including: ping, traceroute, Telnet, SSH, ARP, ipconfig), show and debug commands

Identify security threats to a network and describe general methods to mitigate those threats
- Describe security recommended practices including initial steps to secure network devices

*Always recheck http://www.cisco.com for the latest posted exam topics.
Part IV: IPv4 Routing

Chapter 19  Operating Cisco Routers
Chapter 20  Routing Protocol Concepts and Configuration
Chapter 21  Troubleshooting IP Routing
This chapter covers the following subjects:

**Installing Cisco Routers:** This section gives some perspectives on the purpose of enterprise-class routers and consumer-grade routers, and how the routers connect users to a network.

**Cisco Router IOS CLI:** This section examines the similarities between the Cisco IOS router CLI and the Cisco IOS switch CLI (introduced in Chapter 8, “Operating Cisco LAN Switches”) and also covers some of the features that are unique to routers.

**Upgrading Cisco IOS Software and the Cisco IOS Software Boot Process:** This section examines how a router boots, including how a router chooses which Cisco IOS software image to load.
Routers differ from switches in terms of their core purposes. Switches forward Ethernet frames by comparing the frame’s destination MAC address to the switch’s MAC address table, whereas routers forward packets by comparing the destination IP address to the router’s IP routing table. Ethernet switches today typically have only one or more types of Ethernet interfaces, whereas routers have Ethernet interfaces, serial WAN interfaces, and other interfaces with which to connect via cable and digital subscriber line (DSL) to the Internet. Routers understand how to forward data to devices connected to these different types of interfaces, whereas Ethernet switches focus solely on forwarding Ethernet frames to Ethernet devices. So, while both switches and routers forward data, the details of what can be forwarded, and to what devices, differ significantly.

Even though their core purposes differ, Cisco routers and switches use the same CLI. This chapter covers the CLI features on routers that differ from the features on switches, particularly features that differ from the switch CLI features as covered in Chapter 8. This chapter also explains more details about the physical installation of Cisco routers, along with some details about how routers choose and load IOS.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess if you should read the entire chapter. If you miss no more than one of these nine self-assessment questions, you might want to move ahead to the “Exam Preparation Tasks” section. Table 19-1 lists the major headings in this chapter and the “Do I Know This Already?” quiz questions covering the material in those headings so you can assess your knowledge of these specific areas. The answers to the “Do I Know This Already?” quiz appear in Appendix A.

Table 19-1   “Do I Know This Already?” Foundation Topics Section-to-Question Mapping

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installing Cisco Routers</td>
<td>1, 2</td>
</tr>
<tr>
<td>Cisco Router IOS CLI</td>
<td>3–7</td>
</tr>
<tr>
<td>Upgrading Cisco IOS Software and the Cisco IOS Software Boot Process</td>
<td>8, 9</td>
</tr>
</tbody>
</table>
1. Which of the following installation steps are typically required on a Cisco router, but not typically required on a Cisco switch? (Choose two answers.)
   a. Connect Ethernet cables
   b. Connect serial cables
   c. Connect to the console port
   d. Connect the power cable
   e. Turn the on/off switch to “on”

2. Which of the following roles does a SOHO router typically play in regards to IP address assignment? (Choose two answers.)
   a. DHCP server on the interface connected to the ISP
   b. DHCP server on the interface connected to the PCs at the home/office
   c. DHCP client on the interface connected to the ISP
   d. DHCP client on the interface connected to the PCs at the home/office

3. Which of the following features would you typically expect to be associated with the router CLI, but not with the switch CLI?
   a. The `clock rate` command
   b. The `ip address address mask` command
   c. The `ip address dhcp` command
   d. The `interface vlan 1` command

4. You just bought two Cisco routers for use in a lab, connecting each router to a different LAN switch with their Fa0/0 interfaces. You also connected the two routers’ serial interfaces using a back-to-back cable. Which of the following steps is not required to be able to forward IP on both routers’ interfaces? (Choose two answers.)
   a. Configuring an IP address on each router’s FastEthernet and serial interfaces
   b. Configuring the `bandwidth` command on one router’s serial interface
   c. Configuring the `clock rate` command on one router’s serial interface
   d. Setting the interface `description` on both the FastEthernet and serial interface of each router
5. The output of the `show ip interface brief` command on R1 lists interface status codes of “down” and “down” for interface Serial 0/0. Which of the following could be true?
   a. The `shutdown` command is currently configured for that interface.
   b. R1’s serial interface has been configured to use Frame Relay, but the router on the other end of the serial link has been configured to use PPP.
   c. R1’s serial interface does not have a serial cable installed.
   d. Both routers have been cabled to a working serial link (CSU/DSUs included), but only one router has been configured with an IP address.

6. Which of the following commands does not list the IP address and mask of at least one interface? (Choose two answers.)
   a. `show running-config`
   b. `show protocols type number`
   c. `show ip interface brief`
   d. `show interfaces`
   e. `show version`

7. Which of the following is different on the Cisco switch CLI as compared with the Cisco router CLI? (Choose two answers.)
   a. The commands used to configure simple password checking for the console
   b. The number of IP addresses configured
   c. The types of questions asked in setup mode
   d. The configuration of the device’s host name
   e. The configuration of an interface description

8. Which of the following could cause a router to change the IOS that is loaded when the router boots? (Choose two answers.)
   a. `reload` EXEC command
   b. `boot` EXEC command
   c. `reboot` EXEC command
   d. `boot system` configuration command
   e. `reboot system` configuration command
   f. configuration register
9. Which of the following hexadecimal values in the last nibble of the configuration register would cause a router to not look in Flash memory for an IOS?

   a. 0
   b. 2
   c. 4
   d. 5
   e. 6
Installing Cisco Routers

Routers collectively provide the main feature of the network layer—the capability to forward packets end-to-end through a network. As introduced in Chapter 5, “Fundamentals of IPv4 Addressing and Routing,” routers forward packets by connecting to various physical network links, like Ethernet, serial links, and Frame Relay, and then using Layer 3 routing logic to choose where to forward each packet. As a reminder, Chapter 3, “Fundamentals of LANs,” covered the details of making those physical connections to Ethernet networks, while Chapter 4, “Fundamentals of WANs,” covered the basics of cabling with WAN links.

This section examines some of the details of router installation and cabling, first from the enterprise perspective, and then from the perspective of connecting a typical small office/home office (SOHO) to an ISP using high-speed Internet.

Installing Enterprise Routers

A typical enterprise network has a few centralized sites as well as lots of smaller remote sites. To support devices at each site (the computers, IP phones, printers, and other devices), the network includes at least one LAN switch at each site. Additionally, each site has a router, which connects to the LAN switch and to some WAN link. The WAN link provides connectivity from each remote site, back to the central site, and to other sites via the connection to the central site.

Figure 19-1 shows one way to draw part of an enterprise network. The figure shows a typical branch office on the left, with a router, some end-user PCs, and a nondescript generic drawing of an Ethernet. The central site, on the right, has basically the same components, with a point-to-point serial link connecting the two routers. The central site includes a server farm with two servers, with one of the main purposes of this internetwork being to provide remote offices with access to the data stored on these servers.

Figure 19-1 purposefully omits several details to show the basic concepts. Figure 19-2 shows the same network, but now with more detail about the cabling used at each site.
Figure 19-2 shows the types of LAN cables (UTP), with a couple of different WAN cables. The LAN connections all use UTP straight-through cabling pinouts, except for the UTP cable between the two switches, which is a crossover cable.

The serial link in the figure shows the two main options for where the channel service unit/data service unit (CSU/DSU) hardware resides: either outside the router (as shown at the branch office in this case) or integrated into the router’s serial interface (as shown at the central site).
central site). Most new installations today include the CSU/DSU in the router’s serial interface. The WAN cable installed by the telco typically has an RJ-48 connector, which is the same size and shape as an RJ-45 connector. The telco cable with the RJ-48 connector inserts into the CSU/DSU, meaning it connects directly into the central site router in this case, but into the external CSU/DSU at the branch office router. At the branch, the external CSU/DSU would then be cabled, using a serial cable, to the branch router’s serial port. (See Figure 4-4 in Chapter 4 for a reminder of WAN serial cables.)

**Cisco Integrated Services Routers**

Product vendors, including Cisco, typically provide several different types of router hardware, including some routers that just do routing, with other routers that serve other functions in addition to routing. A typical enterprise branch office needs a router for WAN/LAN connectivity, and a LAN switch to provide a high-performance local network and connectivity into the router and WAN. Many branches also need Voice over IP (VoIP) services, and several security services as well. (One popular security service, virtual private networking (VPN), is covered in Chapter 6, “Fundamentals of TCP/IP Transport, Applications, and Security.”) Rather than require multiple separate devices at one site, as shown in Figure 19-2, Cisco offers single devices that act as both router and switch, and provide other functions as well.

Following that concept further, Cisco offers several router model series in which the routers support many other functions. In fact, Cisco has several router product series called Integrated Services Routers (ISR), with the name emphasizing the fact that many functions are integrated into a single device. If you have not seen Cisco routers before, you can go to [http://www.cisco.com/go/isr](http://www.cisco.com/go/isr) and click any of the 3D Product Demonstration links to see interactive views of a variety of Cisco ISR routers. However, for the sake of learning and understanding the different functions, the CCNA exams focus on using a separate switch and separate router, which provides a much cleaner path for learning the basics.

Figure 19-3 shows a couple of pictures taken from the interactive demo of the Cisco 1841 ISR, with some of the more important features highlighted. The top part of the figure shows a full view of the back of the router. It also shows a magnified view of the back of the router, with a clearer view of the two FastEthernet interfaces, the console and auxiliary ports, and a serial card with an internal CSU/DSU. (You can find the interactive demo from which these photos were taken at the same ISR web page mentioned in the previous paragraph.)
Physical Installation

Armed with the planning information shown in Figure 19-2, and the perspectives shown in Figure 19-3, you can physically install a router. To install a router, follow these steps:

**Step 1** Connect any LAN cables to the LAN ports.

**Step 2** If using an external CSU/DSU, connect the router’s serial interface to the CSU/DSU, and the CSU/DSU to the line from the telco.

**Step 3** If using an internal CSU/DSU, connect the router’s serial interface to the line from the telco.

**Step 4** Connect the router’s console port to a PC (using a rollover cable), as needed, to configure the router.

**Step 5** Connect a power cable from a power outlet to the power port on the router.

**Step 6** Turn on the router.

Note that the steps generally follow the same steps used for installation of LAN switches—install the cables for the interfaces, connect the console (as needed), and connect the power. However, note that most of the Cisco Catalyst switches do not have a power on/off switch—once the switch is connected to power, the switch is on. However, Cisco routers do have on/off switches.
Installing Internet Access Routers

Routers play a key role in SOHO networks, connecting the LAN-attached end-user devices to a high-speed Internet access service. Once connected to the Internet, SOHO users can send packets to and from their enterprise network at their company or school.

As in the enterprise networking market, product vendors tend to sell integrated networking devices that perform many functions. However, in keeping with the CCNA strategy of understanding each function separately, this section first examines the various networking functions needed at a typical SOHO network, using a separate device for each function. Following that, a more realistic example is shown, with the functions combined into a single device.

A SOHO Installation with a Separate Switch, Router, and Cable Modem

Figure 19-4 shows an example of the devices and cables used in a SOHO network to connect to the Internet using cable TV (CATV) as the high-speed Internet service. For now, keep in mind that the figure shows one alternative for the devices and cables, whereas many variations are possible.

Figure 19-4  Devices in a SOHO Network with High-Speed CATV Internet

This figure has many similarities to Figure 19-2, which shows a typical enterprise branch office. The end-user PCs still connect to a switch, and the switch still connects to a router’s Ethernet interface. The router still provides routing services, forwarding IP packets. The voice details differ slightly between Figure 19-2 and Figure 19-4, mainly because
Figure 19-4 shows a typical home-based Internet phone service, which uses a normal analog phone and a voice adapter to convert from analog voice to IP.

The main differences between the SOHO connection in Figure 19-4 and the enterprise branch in Figure 19-2 relate to the connection into the Internet. An Internet connection that uses CATV or DSL needs a device that converts between the Layer 1 and 2 standards used on the CATV cable or DSL line, and the Ethernet used by the router. These devices, commonly called cable modems and DSL modems, respectively, convert electrical signals between an Ethernet cable and either CATV or DSL.

In fact, while the details differ greatly, the purpose of the cable modem and DSL modem is similar to a CSU/DSU on a serial link. A CSU/DSU converts between the Layer 1 standards used on a telco’s WAN circuit and a serial cable’s Layer 1 standards—and routers can use serial cables. Similarly, a cable modem converts between CATV signals and a Layer 1 (and Layer 2) standard usable by a router—namely, Ethernet. Similarly, DSL modems convert between the DSL signals over a home telephone line and Ethernet.

To physically install a SOHO network with the devices shown in Figure 19-4, you basically need the correct UTP cables for the Ethernet connections, and either the CATV cable (for cable Internet services) or a phone line (for DSL services). Note that the router used in Figure 19-4 simply needs to have two Ethernet interfaces—one to connect to the LAN switch, and one to connect to the cable modem. Thinking specifically just about the router installation, you would need to use the following steps to install this SOHO router:

**Step 1** Connect a UTP straight-through cable from the router to the switch.

**Step 2** Connect a UTP straight-through cable from the router to the cable modem.

**Step 3** Connect the router’s console port to a PC (using a rollover cable), as needed, to configure the router.

**Step 4** Connect a power cable from a power outlet to the power port on the router.

**Step 5** Turn on the router.

**A SOHO Installation with an Integrated Switch, Router, and DSL Modem**

Today, most new SOHO installations use an integrated device rather than the separate devices shown in Figure 19-4. In fact, you can buy SOHO devices today that include all of these functions:

- Router
- Switch
- Cable or DSL modem
- Voice Adapter
- Wireless AP
- Hardware-enabled encryption

The CCNA exams do indeed focus on separate devices to aid the learning process. However, a newly installed high-speed SOHO Internet connection today probably looks more like Figure 19-5, with an integrated device.

**Figure 19-5  SOHO Network, Using Cable Internet and an Integrated Device**

**Regarding the SOHO Devices Used in This Book**
Cisco sells products to both enterprise customers and consumers. Cisco sells its consumer products using the Linksys brand. These products are easily found online and in office supply stores. Cisco mainly sells enterprise products either directly to its customers or through Cisco Channel Partners (resellers). However, note that the CCNA exams do not use Linksys products or their web-based user interface, instead focusing on the IOS CLI used by Cisco enterprise routing products.

**Cisco Router IOS CLI**
Cisco routers use the same switch IOS CLI as described in Chapter 8. However, because routers and switches perform different functions, the actual commands differ in some cases. This section begins by listing some of the key features that work exactly the same on both switches and routers, and then lists and describes in detail some of the key features that differ between switches and routers.
Comparisons Between the Switch CLI and Router CLI

The following list details the many items covered in Chapter 8 for which the router CLI behaves the same. If these details are not fresh in your memory, it might be worthwhile to spend a few minutes briefly reviewing Chapter 8.

The configuration commands used for the following features are the same on both routers and switches:

- User and Enable (privileged) mode
- Entering and exiting configuration mode, using the `configure terminal`, `end`, and `exit` commands, and the Ctrl-Z key sequence
- Configuration of console, Telnet, and enable secret passwords
- Configuration of SSH encryption keys and username/password login credentials
- Configuration of the host name and interface description
- Configuration of Ethernet interfaces that can negotiate speed, using the `speed` and `duplex` commands
- Configuring an interface to be administratively disabled (`shutdown`) and administratively enabled (`no shutdown`)
- Navigation through different configuration mode contexts using commands like `line` `console 0` and `interface`
- CLI help, command editing, and command recall features
- The meaning and use of the startup-config (in NVRAM), running-config (in RAM), and external servers (like TFTP), along with how to use the `copy` command to copy the configuration files and IOS images
- The process of reaching setup mode either by reloading the router with an empty startup-config or by using the `setup` command

At first glance, this list seems to cover most everything covered in Chapter 8—and it does cover most of the details. However, a couple of topics covered in Chapter 8 do work differently with the router CLI as compared to the switch CLI, namely:

- The configuration of IP addresses differs in some ways.
- The questions asked in setup mode differ.
- Routers have an auxiliary (Aux) port, intended to be connected to an external modem and phone line, to allow remote users to dial into the router, and access the CLI, by making a phone call.
Beyond these three items from Chapter 8, the router CLI does differ from a switch CLI just because switches and routers do different things. For instance, Example 10-5 in Chapter 10, “Ethernet Switch Troubleshooting,” shows the output of the `show mac address-table dynamic` command, which lists the most important table that a switch uses for forwarding frames. The router IOS does not support this command—instead, routers support the `show ip route` command, which lists the IP routes known to the router, which of course is the most important table that a router uses for forwarding packets. As you might imagine, the Cisco Layer 2 switches covered on the CCNA exams do not support the `show ip route` command because they do not do any IP routing.

The rest of this section explains a few of the differences between the router IOS CLI and the switch IOS CLI. Chapter 20, “Routing Protocol Concepts and Configuration,” goes on to show even more items that differ, in particular how to configure router interface IP addresses and IP routing protocols. For now, this chapter examines the following items:

- Router interfaces
- Router IP address configuration
- Router setup mode

**Router Interfaces**

The CCNA exams refer to two general types of physical interfaces on routers: Ethernet interfaces and serial interfaces. The term *Ethernet interface* refers to any type of Ethernet interface. However, on Cisco routers, the name referenced by the CLI refers to the fastest speed possible on the interface. For example, some Cisco routers have an Ethernet interface capable of only 10 Mbps, so to configure that type of interface, you would use the `interface ethernet number` command. However, other routers have interfaces capable of 100 Mbps, or even of auto-negotiating to use 10 Mbps or 100 Mbps, so routers refer to these interfaces by the fastest speed, with the `interface fastethernet number` command. Similarly, interfaces capable of Gigabit Ethernet speeds are referenced with the `interface gigabitethernet number` command.

Serial interfaces are the second major type of physical interface on routers. As you may recall from Chapter 4, point-to-point leased lines and Frame Relay access links both use the same underlying Layer 1 standards. To support those same standards, Cisco routers use serial interfaces. The network engineer then chooses which data link layer protocol to use, such as High-Level Data Link Control (HDLC) or Point-to-Point Protocol (PPP) for leased lines or Frame Relay for Frame Relay connections, and configures the router to use the correct data link layer protocol. (Serial interfaces default to use HDLC as the data link layer protocol.)
Routers use numbers to distinguish between the different interfaces of the same type. On routers, the interface numbers might be a single number, or two numbers separated by a slash, or three numbers separated by slashes. For example, all three of the following configuration commands are correct on at least one model of Cisco router:

```
interface ethernet 0
interface fastEthernet 0/1
interface serial 1/0/1
```

You can view information about interfaces by using several commands. To see a brief list of interfaces, use the `show ip interface brief` command. To see brief details about a particular interface, use the `show protocols type number` command. (Note that the `show protocols` command is not available in all versions of Cisco IOS Software.) You can also see a lot of detail about each interface, including statistics about the packets flowing in and out of the interface, by using the `show interfaces` command. Optionally, you can include the interface type and number on many commands—for example, `show interfaces type number`—to see details for just that interface. Example 19-1 shows sample output from these three commands.

```
Example 19-7 Listing the Interfaces in a Router

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP-Address</th>
<th>OK? Method</th>
<th>Status</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>FastEthernet0/0</td>
<td>unassigned</td>
<td>YES unset</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>FastEthernet0/1</td>
<td>unassigned</td>
<td>YES unset</td>
<td>administratively down</td>
<td>down</td>
</tr>
<tr>
<td>Serial0/0/0</td>
<td>unassigned</td>
<td>YES unset</td>
<td>administratively down</td>
<td>down</td>
</tr>
<tr>
<td>Serial0/0/1</td>
<td>unassigned</td>
<td>YES unset</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>Serial0/1/0</td>
<td>unassigned</td>
<td>YES unset</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>Serial0/1/1</td>
<td>unassigned</td>
<td>YES unset</td>
<td>administratively down</td>
<td>down</td>
</tr>
</tbody>
</table>

Albuquerque#show interfaces fa0/0
FastEthernet0/0 is up, line protocol is up
Albuquerque#show interfaces sa0/1/0
Serial0/1/0 is up, line protocol is up

Hardware is GT96K Serial
MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec,
 reliability 255/255, txload 1/255, rxload 1/255
Encapsulation HDLC, loopback not set
Keepalive set (10 sec)
CRC checking enabled
Last input 00:00:03, output 00:00:01, output hang never
Last clearing of "show interface" counters never
Input queue: 0/75/0 (size/max/drops/flushes); Total output drops: 0
Queueing strategy: weighted fair
Output queue: 0/1000/64/0 (size/max total/threshold/drops)
 Conversations 0/1/256 (active/max active/max total)
 Reserved Conversations 0/0 (allocated/max allocated)
Available Bandwidth 1158 kilobits/sec
```
Interface Status Codes

Each of the commands in Example 19-1 lists two interface status codes. For a router to use an interface, the two interface status codes on the interface must be in an “up” state. The first status code refers essentially to whether Layer 1 is working, and the second status code mainly (but not always) refers to whether the data link layer protocol is working. Table 19-2 summarizes these two status codes.

Table 19-2  Interface Status Codes and Their Meanings

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>General Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line status</td>
<td>First status code</td>
<td>Refers to the Layer 1 status—for example, is the cable installed, is it the right/wrong cable, is the device on the other end powered on?</td>
</tr>
<tr>
<td>Protocol status</td>
<td>Second status code</td>
<td>Refers generally to the Layer 2 status. It is always down if the line status is down. If the line status is up, a protocol status of down usually is caused by mismatched data link layer configuration.</td>
</tr>
</tbody>
</table>

Four combinations of settings exist for the status codes when troubleshooting a network. Table 19-3 lists the four combinations, along with an explanation of the typical reasons why an interface would be in that state. As you review the list, note that if the line status (the first status code) is not “up,” the second will always be “down,” because the data link layer functions cannot work if the physical layer has a problem.
Chapter 19: Operating Cisco Routers

Router Interface IP Addresses

As has been mentioned many times throughout this book, routers need an IP address on each interface. If no IP address is configured, even if the interface is in an up/up state, the router will not attempt to send and receive IP packets on the interface. For proper operation, for every interface a router should use for forwarding IP packets, the router needs an IP address.

The configuration of an IP address on an interface is relatively simple. To configure the address and mask, simply use the `ip address address mask` interface subcommand.

Example 19-2 shows an example configuration of IP addresses on two router interfaces, and the resulting differences in the `show ip interface brief` and `show interfaces` commands from Example 19-1. (No IP addresses were configured when the output in Example 19-1 was gathered.)

### Example 19-7 Configuring IP Addresses on Cisco Routers

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP-Address</th>
<th>OK? Method Status</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>FastEthernet0/0</td>
<td>10.1.1.1</td>
<td>YES manual up</td>
<td>up</td>
</tr>
<tr>
<td>FastEthernet0/1</td>
<td>unassigned</td>
<td>YES NVRAM administratively down down</td>
<td></td>
</tr>
<tr>
<td>Serial0/0/0</td>
<td>unassigned</td>
<td>YES NVRAM administratively down down</td>
<td></td>
</tr>
<tr>
<td>Serial0/0/1</td>
<td>10.1.2.1</td>
<td>YES manual up</td>
<td>up</td>
</tr>
<tr>
<td>Serial0/1/0</td>
<td>unassigned</td>
<td>YES NVRAM up</td>
<td>up</td>
</tr>
<tr>
<td>Serial0/1/1</td>
<td>unassigned</td>
<td>YES NVRAM administratively down down</td>
<td></td>
</tr>
</tbody>
</table>

### Table 19-3 Typical Combinations of Interface Status Codes

<table>
<thead>
<tr>
<th>Line and Protocol Status</th>
<th>Typical Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administratively down, down</td>
<td>The interface has a <code>shutdown</code> command configured on it.</td>
</tr>
<tr>
<td>down, down</td>
<td>The interface has a <code>no shutdown</code> command configured, but the physical layer has a problem. For example, no cable has been attached to the interface, or with Ethernet, the switch interface on the other end of the cable is shut down, or the switch is powered off.</td>
</tr>
<tr>
<td>up, down</td>
<td>Almost always refers to data link layer problems, most often configuration problems. For example, serial links have this combination when one router was configured to use PPP, and the other defaults to use HDLC.</td>
</tr>
<tr>
<td>up, up</td>
<td>All is well, interface is functioning.</td>
</tr>
</tbody>
</table>
Bandwidth and Clock Rate on Serial Interfaces

Ethernet interfaces use either a single speed or one of a few speeds that can be auto-negotiated. However, as mentioned in Chapter 4, WAN links can run at a wide variety of speeds. To deal with the wide range of speeds, routers physically slave themselves to the speed as dictated by the CSU/DSU through a process called clocking. As a result, routers can use serial links without the need for additional configuration or autonegotiation to sense the serial link’s speed. The CSU/DSU knows the speed, the CSU/DSU sends clock pulses over the cable to the router, and the router reacts to the clocking signal. In effect, the CSU/DSU tells the router when to send the next bit over the cable, and when to receive the next bit, with the router just blindly reacting to the CSU/DSU for that timing.

The physical details of how clocking works prevent routers from sensing and measuring the speed used on a link with CSU/DSUs. So, routers use two different interface configuration commands that specify the speed of the WAN link connected to a serial interface, namely the clock rate and bandwidth interface subcommands.

The clock rate command dictates the actual speed used to transmit bits on a serial link, but only when the physical serial link is actually created with cabling in a lab. The lab networks used to build the examples in this book, and probably in any labs engineers use to do proof-of-concept testing, or even labs you use in CCNA classes, use back-to-back serial cables (see the Chapter 4 section “Building a WAN Link in a Lab” for a reminder). Back-to-back WAN connections do not use a CSU/DSU, so one router must supply the clocking, which defines the speed at which bits are transmitted. The other router works as usual when CSU/DSUs are used, slaving itself to the clocking signals received from the other router. Example 19-3 shows an example configuration for a router named Albuquerque, with a couple of important commands related to WAN links.

NOTE Example 19-3 omits some of the output of the show running-config command, specifically the parts that do not matter to the information covered here.
The *clock rate speed* interface subcommand sets the rate in bits per second on the router that has the DCE cable plugged into it. If you do not know which router has the DCE cable in it, you can find out by using the `show controllers` command, which lists whether the attached cable is DCE (as shown in Example 19-3) or DTE. Interestingly, IOS accepts the *clock rate* command on an interface only if the interface already has a DCE cable installed, or if no cable is installed. If a DTE cable has been plugged in, IOS silently rejects the command, meaning that IOS does not give you an error message, but IOS ignores the command.

The second interface subcommand that relates to the speed of the serial link is the *bandwidth speed* command, as shown on interface serial 0/1/0 in Example 19-3. The *bandwidth* command tells IOS the speed of the link, in kilobits per second, regardless of whether the router is supplying clocking. However, the *bandwidth* setting does not change the speed at which bits are sent and received on the link. Instead, the router uses it for documentation purposes, in calculations related to the utilization rates of the link, and for many other purposes. In particular, the EIGRP and OSPF routing protocols use the interface *bandwidth* settings to set their default metrics, with the metrics impacting a router’s choice of the best IP route to reach each subnet. (The *CCNA ICND2 640-816 Official Cert Guide* covers these two routing protocols, including how the *bandwidth* command impacts the routing protocol metrics.)

Every router interface has a default setting of the *bandwidth* command that is used when there is no *bandwidth* command configured on the interface. For serial links, the default bandwidth is 1544, meaning 1544 kbps, or 1.544 Mbps—in other words, the speed of a T1 line. Router Ethernet interfaces default to a bandwidth setting that reflects the current speed of the interface. For example, if a router’s FastEthernet interface is running at 100 Mbps, the bandwidth is 100,000 (kbps); if the interface is currently running at 10 Mbps, the router automatically changes the bandwidth to 10,000 kbps. Note that the configuration of the *bandwidth* command on an interface overrides these defaults.
Router Auxiliary (Aux) Port

Routers have an auxiliary (Aux) port that allows access to the CLI by using a terminal emulator. Normally, the Aux port is connected via a cable (RJ-45, 4 pair, with straight-through pinouts) to an external analog modem. The modem connects to a phone line. Then, the engineer uses a PC, terminal emulator, and modem to call the remote router. Once connected, the engineer can use the terminal emulator to access the router CLI, starting in user mode as usual.

Aux ports can be configured beginning with the `line aux 0` command to reach aux line configuration mode. From there, all the commands for the console line, covered mostly in Chapter 8, can be used. For example, the `login` and `password passvalue` commands could be used to set up simple password checking when a user dials in.

Cisco switches do not have an Aux port.

Initial Configuration (Setup Mode)

The processes related to setup mode in routers follow the same rules as for switches. You can refer to the Chapter 8 section “Initial Configuration Using Setup Mode” for more details, but the following statements summarize some of the key points, all of which are true on both switches and routers:

- Setup mode is intended to allow basic configuration by prompting the CLI user via a series of questions.
- You can reach setup mode either by booting a router after erasing the startup-config file or by using the `setup enable-mode` EXEC command.
- At the end of the process, you get three choices (0, 1, or 2), to either ignore the answers and go back to the CLI (0); ignore the answers but begin again in setup mode (1); or to use the resulting configuration (2).
- If you tire of the process, the Ctrl-C key combination will eject the user out of setup mode and back to the previous CLI mode.
- If you select to use the resulting configuration, the router writes the configuration to the startup-config file, as well as the running-config file.

The main difference between the setup mode on switches and routers relates to the information requested while in setup mode. For example, routers need to know the IP
address and mask for each interface on which you want to configure IP, whereas switches have only one IP address. To be complete, Example 19-4 demonstrates the use of setup mode. If you do not have a router with which to practice setup mode, take the time to review the example, and see the kinds of information requested in the various questions.

**NOTE** The questions asked, and the default answers, differ on some routers in part due to the IOS revision, feature set, and router model.

--- System Configuration Dialog ---

Would you like to enter the initial configuration dialog? [yes/no]: yes

At any point you may enter a question mark '?' for help.
Use ctrl-c to abort configuration dialog at any prompt.
Default settings are in square brackets '[]'. Basic management setup configures only enough connectivity for management of the system, extended setup will ask you to configure each interface on the system.

Would you like to enter basic management setup? [yes/no]: no

First, would you like to see the current interface summary? [yes]:

Any interface listed with OK? value 'NO' does not have a valid configuration.

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP-Address</th>
<th>OK? Method Status</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet0</td>
<td>unassigned</td>
<td>NO unset up</td>
<td>down</td>
</tr>
<tr>
<td>Serial0</td>
<td>unassigned</td>
<td>NO unset down</td>
<td>down</td>
</tr>
<tr>
<td>Serial1</td>
<td>unassigned</td>
<td>NO unset down</td>
<td>down</td>
</tr>
</tbody>
</table>

Configuring global parameters:

Enter host name [Router]: R1

The enable secret is a password used to protect access to privileged EXEC and configuration modes. This password, after entered, becomes encrypted in the configuration.

Enter enable secret: cisco

The enable password is used when you do not specify an enable secret password, with some older software versions, and some boot images.

Enter enable password: fred

The virtual terminal password is used to protect access to the router over a network interface.

Enter virtual terminal password: barney

Configure SNMP Network Management? [yes]: no

Configure bridging? [no]:

Configure DECnet? [no]:

Configure AppleTalk? [no]:

Configure IPX? [no]:

---
Example 19-7  Router Setup Configuration Mode (Continued)

Configure IP? [yes]:
Configure RIP routing? [yes]:
Configure CLNS? [no]:
Configure bridging? [no]:

Configuring interface parameters:
Do you want to configure Ethernet0 interface? [yes]:
Configure IP on this interface? [yes]:
IP address for this interface: 172.16.1.1
Subnet mask for this interface [255.255.0.0]: 255.255.255.0
Class B network is 172.16.0.0, 24 subnet bits; mask is /24
Do you want to configure Serial0 interface? [yes]:
Configure IP on this interface? [yes]:
Configure IP unnumbered on this interface? [no]:
IP address for this interface: 172.16.12.1
Subnet mask for this interface [255.255.0.0]: 255.255.255.0
Class B network is 172.16.0.0, 24 subnet bits; mask is /24
Do you want to configure Serial1 interface? [yes]:
Configure IP on this interface? [yes]:
Configure IP unnumbered on this interface? [no]:
IP address for this interface: 172.16.13.1
Subnet mask for this interface [255.255.0.0]: 255.255.255.0
Class B network is 172.16.0.0, 24 subnet bits; mask is /24

The following configuration command script was created:

hostname R1
enable secret 5 $1$VOLh$pkIe0Xjx2sgjgZ/Y6Gt1s.
enable password fred
line vty 0 4
password barney
no snmp-server
!
ip routing
!
interface Ethernet0
ip address 172.16.1.1 255.255.255.0
!
interface Serial0
ip address 172.16.12.1 255.255.255.0
!
interface Serial1
ip address 172.16.13.1 255.255.255.0
!
routing rip
network 172.16.0.0

continues
Upgrading Cisco IOS Software and the Cisco IOS Software Boot Process

Engineers need to know how to upgrade IOS to move to a later release or version of IOS. Typically, a router has one IOS image in Flash memory, and that is the IOS image that is used. (The term IOS image simply refers to a file containing IOS.) The upgrade process might include steps such as copying a newer IOS image into Flash memory, configuring the router to tell it which IOS image to use, and deleting the old one when you are confident that the new release works well. Alternately, you could copy a new image to a TFTP server, with some additional configuration on the router to tell it to get the new IOS from the TFTP server the next time the router is reloaded.

This section shows how to upgrade IOS by copying a new IOS file into Flash memory and telling the router to use the new IOS. Because the router decides which IOS to use when the router boots, this is also a good place to review the process by which routers boot (initialize). Switches follow the same basic process as described here, with some minor differences, as specifically noted.

Upgrading a Cisco IOS Software Image into Flash Memory

Routers and switches typically store IOS images in Flash memory. Flash memory is rewriteable, permanent storage, which is ideal for storing files that need to be retained when the router loses power. Cisco purposefully uses Flash memory instead of disk drives in its products because there are no moving parts in Flash memory, so there is a smaller chance of failure as compared with disk drives. Additionally, the IOS image can be placed on an
external TFTP server, but using an external server typically is done for testing; in production, practically every Cisco router loads an IOS image stored in the only type of large, permanent memory in a Cisco router—Flash memory.

Figure 19-6 illustrates the process to upgrade an IOS image into Flash memory:

**Step 1** Obtain the IOS image from Cisco, typically by downloading the IOS image from Cisco.com using HTTP or FTP.

**Step 2** Place the IOS image into the default directory of a TFTP server that is accessible from the router.

**Step 3** Issue the `copy` command from the router, copying the file into Flash memory.

You also can use an FTP or remote copy (rcp) server, but the TFTP feature has been around a long time and is a more likely topic for the exams.

**Figure 19-6  Complete Cisco IOS Software Upgrade Process**
Example 19-5 provides an example of the final step, copying the IOS image into Flash memory. Note that the `copy tftp flash` command shown here works much like the `copy tftp startup-config` command that can be used to restore a backup copy of the configuration file into NVRAM.

**Example 19-7  `copy tftp flash` Command Copies the IOS Image to Flash Memory**

```
R1#copy tftp flash

System flash directory:
File Length Name/status
 1 7530760 c4500-d-mz.120-2.bin
[7530824 bytes used, 857784 available, 8388608 total]
Address or name of remote host [255.255.255.255]? 134.141.3.33
Source file name? c4500-d-mz.120-5.bin
Destination file name [c4500-d-mz.120-5.bin]?
Accessing file c4500-d-mz.120-5.bin ' on 134.141.3.33...
Loading c4500-d-mz.120-5.bin from 134.141.3.33 (via Ethernet0): ! [OK]
Erase flash device before writing? [confirm]
Flash contains files. Are you sure you want to erase? [confirm]
Copy 'c4500-d-mz.120-5.bin ' from server
 as 'c4500-d-mz.120-5.bin ' into Flash WITH erase? [yes/no]y
Erasing device... eeeeeeeeeeeeeeeeeeeeeeeeee ...erased
Loading c4500-d-mz.120-5.bin from 134.141.3.33 (via Ethernet0):
 !!
 !!
 !!
 !!
 !!
 !!
 !!
 !!
 !!
 !!
 !!
 !!
 !!
 !!
[OK 7530760/8388608 bytes]
Verifying checksum... OK (0xA93E)
Flash copy took 0:04:26 [hh:mm:ss]
```

During this process of copying the IOS image into Flash memory, the router needs to discover several important facts:

1. What is the IP address or host name of the TFTP server?
2. What is the name of the file?
3. Is space available for this file in Flash memory?
4. Does the server actually have a file by that name?
5. Do you want the router to erase the old files?

The router will prompt you for answers, as necessary. For each question, you should either type an answer or press Enter if the default answer (shown in square brackets at the end
of the question) is acceptable. Afterward, the router erases Flash memory if directed, copies the file, and then verifies that the checksum for the file shows that no errors occurred in transmission. You can then use the `show flash` command to verify the contents of Flash memory, as demonstrated in Example 19-6. (The `show flash` output can vary among router families. Example 19-6 is output from a 2500 series router.)

Example 19-7  Verifying Flash Memory Contents with the `show flash` Command

<table>
<thead>
<tr>
<th>Fred# show flash</th>
</tr>
</thead>
<tbody>
<tr>
<td>System flash directory:</td>
</tr>
<tr>
<td>File Length Name/status</td>
</tr>
<tr>
<td>1 13385352 c2500-ds-l.122-1.bin</td>
</tr>
<tr>
<td>[13385416 bytes used, 3471800 available, 16777216 total]</td>
</tr>
<tr>
<td>16384K bytes of processor board System flash (Read ONLY)</td>
</tr>
</tbody>
</table>

The shaded line in Example 19-6 lists the amount of Flash memory, the amount used, and the amount of free space. When copying a new IOS image into Flash, the `copy` command will ask you if you want to erase Flash, with a default answer of [yes]. If you reply with an answer of `no`, and IOS realizes that not enough available Flash memory exists, the copy will fail. Additionally, even if you answer `yes`, and erase all of Flash memory, the new Flash IOS image must be of a size that fits into flash memory; if not, the `copy` command will fail.

Once the new IOS has been copied into Flash, the router must be reloaded to use the new IOS image. The next section, which covers the IOS boot sequence, explains the details of how to configure a router so that it loads the right IOS image.

The Cisco IOS Software Boot Sequence

Cisco routers perform the same types of tasks that a typical computer performs when you power it on or reboot (reload) it. Most computers have a single operating system (OS) installed, and that OS boots by default. However, a router can have multiple IOS images available both in Flash memory and on external TFTP servers, so the router needs to know which IOS image to load. This section examines the entire boot process, with extra emphasis on the options that impact a router’s choice of what IOS image to load.

**NOTE**  The boot sequence details in this section, particularly those regarding the configuration register and the ROMMON OS, differ from Cisco LAN switches, but they do apply to most every model of Cisco router. This book does not cover the equivalent options in Cisco switches.
When a router first powers on, it follows these four steps:

1. The router performs a power-on self-test (POST) to discover the hardware components and verify that all components work properly.

2. The router copies a bootstrap program from ROM into RAM, and runs the bootstrap program.

3. The bootstrap program decides which IOS image (or other OS) to load into RAM, and loads that OS. After loading the IOS image, the bootstrap program hands over control of the router hardware to the newly loaded OS.

4. If the bootstrap program loaded IOS, IOS finds the configuration file (typically the startup-config file in NVRAM) and loads it into RAM as the running-config.

All routers attempt all four steps each time that the router is powered on or reloaded. The first two steps do not have any options to choose; these steps either work or the router initialization fails and you typically need to call the Cisco Technical Assistance Center (TAC) for support. However, Steps 3 and 4 have several configurable options that tell the router what to do next. Figure 19-7 depicts those options, referencing Steps 2 through 4 shown in the earlier boot process.

Figure 19-7  Loading the Cisco IOS

As you can see, the router can get the IOS image from three locations and can get the initial configuration from three locations as well. Frankly, routers almost always load the configuration from NVRAM (the startup-config file), when it exists. There is no real advantage to storing the initial configuration anywhere else except NVRAM. So, this chapter will not look further into the options of Step 4. However, there are good reasons for putting multiple IOS images in Flash, and keeping images on external servers, so
the rest of this section examines Step 3 in more detail. In particular, the next few pages explain a few facts about some alternate router operating systems besides IOS, and a router feature called the configuration register, before showing how a router chooses which IOS image to load.

**NOTE** The IOS image is typically a compressed file so that it consumes less space in Flash memory. The router decompresses the IOS image as it is loaded into RAM.

### The Three Router Operating Systems

A router typically loads and uses a Cisco IOS image that allows the router to perform its normal function of routing packets. However, Cisco routers can use a different OS to perform some troubleshooting, to recover router passwords, and to copy new IOS files into Flash when Flash has been inadvertently erased or corrupted. In the more recent additions to the Cisco router product line (for example, the various Cisco ISR routers), Cisco routers use only one other OS, whereas older Cisco routers (for example, 2500 series routers) actually had two different operating systems to perform different subsets of these same functions. Table 19-4 lists the other two router operating systems, and a few details about each.

<table>
<thead>
<tr>
<th>Operating Environment</th>
<th>Common Name</th>
<th>Stored In</th>
<th>Used in…</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROM Monitor</td>
<td>ROMMON</td>
<td>ROM</td>
<td>Old and new routers</td>
</tr>
<tr>
<td>Boot ROM</td>
<td>RxBoot, boot helper</td>
<td>ROM</td>
<td>Only in older routers</td>
</tr>
</tbody>
</table>

Because the RxBoot OS is only available in older routers and is no longer needed in the newer routers, this chapter will mainly refer to the OS that continues to be available for these special functions, the ROMMON OS.

### The Configuration Register

The configuration register is a special 16-bit number that can be set on any Cisco router. The configuration register’s bits control different settings for some low-level operating characteristics of the router. For example, the console runs at a speed of 9600 bps by default, but that console speed is based on the default settings of a couple of bits in the configuration register.

You can set the configuration register value with the `config-register` global configuration command. Engineers set the configuration register to different values for many reasons, but the most common are to help tell the router what IOS image to load, as
explained in the next few pages, and in the password recovery process. For example, the command `config-register 0x2100` sets the value to hexadecimal 2100, which causes the router to load the ROMMON OS instead of IOS. Interestingly, this value is automatically saved when you press Enter at the end of the `config-register` command—you do not need to save the running-config file into the startup-config file after changing the configuration register. However, the configuration register’s new value is not used until the next time the router is reloaded.

<table>
<thead>
<tr>
<th>TIP</th>
<th>The <code>show version</code> command, shown near the end of this chapter in Example 19-7, shows the configuration register’s current value and, if different, the value that will be used once the router is reloaded.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>NOTE</th>
<th>On most Cisco routers, the default configuration register setting is hexadecimal 2102.</th>
</tr>
</thead>
</table>

How a Router Chooses Which OS to Load

A router chooses the OS to load based on the low-order 4 bits in the configuration register and the details configured in any boot system global configuration commands found in the startup-config file. The low-order 4 bits (the 4th hex digit) in the configuration register are called the boot field, with the value of these bits being the first value a router examines when choosing which OS to try and load. The boot field’s value when the router is powered on or reloaded tells the router how to proceed with choosing which OS to load.

<table>
<thead>
<tr>
<th>NOTE</th>
<th>Cisco represents hexadecimal values by preceding the hex digit(s) with 0x—for example, 0xA would mean a single hex digit A.</th>
</tr>
</thead>
</table>

The process to choose which OS to load, on more modern routers that do not have an RxBoot OS, happens as follows (note that “boot” refers to the boot field in the configuration register):

**Step 1** If boot field = 0, use the ROMMON OS.

**Step 2** If boot field = 1, load the first IOS file found in Flash memory.

**Step 3** If boot field = 2-F:

a. Try each boot system command in the startup-config file, in order, until one works.

b. If none of the boot system commands work, load the first IOS file found in Flash memory.
The first two steps are pretty straightforward, but Step 3 then tells the router to look to the second major method to tell the router which IOS to load: the `boot system` global configuration command. This command can be configured multiple times on one router, with details about files in Flash memory, and filenames and IP addresses of servers, telling the router where to look for an IOS image to load. The router tries to load the IOS images, in the order of the configured `boot system` commands. Once the router succeeds in loading one of the referenced IOS images, the process is complete, and the router can ignore the remaining `boot system` commands. If the router fails to load an IOS based on the `boot` system commands, the router then tries what Step 2 suggests, which is to load the first IOS file found in Flash memory.

Both Step 2 and Step 3b refer to a concept of the “first” IOS file, a concept which needs a little more explanation. Routers number the files stored in Flash memory, with each new file typically getting a higher and higher number. When a router tries Step 2 or Step 3b from the preceding list, the router will look in Flash memory, starting with file number 1, and then file number 2, and so on, until it finds the lowest numbered file that happens to be an IOS image. The router will then load that file.

Interestingly, most routers end up using Step 3b to find their IOS image. From the factory, Cisco routers do not have any `boot system` commands configured; in fact, they do not have any configuration in the startup-config file at all. Cisco loads Flash memory with a single IOS when it builds and tests the router, and the configuration register value is set to 0x2102, meaning a boot field of 0x2. With all these settings, the process tries Step 3 (because `boot = 2`), finds no `boot system` commands (because the startup-config is empty), and then looks for the first file in Flash memory at Step 3b.

Figure 19-8 shows a diagram that summarizes the key concepts behind how a router chooses the OS to load.
The **boot system** commands need to refer to the exact file that the router should load. Table 19-5 shows several examples of the commands.

### Table 19-5  **Sample boot system Commands**

<table>
<thead>
<tr>
<th>Boot System Command</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>boot system flash</code></td>
<td>The first file from Flash memory is loaded.</td>
</tr>
<tr>
<td><code>boot system flash filename</code></td>
<td>IOS with the name <code>filename</code> is loaded from Flash memory.</td>
</tr>
<tr>
<td><code>boot system tftp filename 10.1.1.1</code></td>
<td>IOS with the name <code>filename</code> is loaded from the TFTP server.</td>
</tr>
</tbody>
</table>

In some cases, a router fails to load OS based on the three-step process listed earlier in this section. For example, someone might accidentally erase all the contents of Flash, including the IOS image. So, routers need more options to help recover from these unexpected but possible scenarios. If no OS is found by the end of Step 3, the router will send broadcasts looking for a TFTP server, guess at a filename for the IOS image, and load
an IOS image (assuming that a TFTP server is found). In practice, it is highly unlikely to work. The final step is to simply load ROMMON, which is designed in part to provide tools to recover from these unexpected types of problems. For example, an IOS image can be copied into Flash from a TFTP server while using ROMMON.

For older models of Cisco routers that have an RxBoot (boot helper) OS in ROM, the process to choose which OS to load works generally the same, with two differences. When the boot field is 0x1, the router loads the RxBoot OS stored in ROM. Also, in the final efforts to find an OS as described in the previous paragraph, if the effort to find an image from a TFTP server fails, and the router has an RxBoot image, the router first tries to load RxBoot before trying to load the ROM Monitor OS.

The show version Command and Seeing the Configuration Register’s Value

The show version command supplies a wide variety of information about a router, including both the current value of the configuration register and the expected value at the next reload of the router. The following list summarizes some of the other very interesting information in this command:

1. The IOS version
2. The uptime (the length of time that has passed since the last reload)
3. The reason for the last reload of IOS (reload command, power off/on, software failure)
4. The time of the last loading of IOS (if the router’s clock has been set)
5. The source from which the router loaded the current IOS
6. The amount of RAM memory
7. The number and types of interfaces
8. The amount of NVRAM memory
9. The amount of Flash memory
10. The configuration register’s current and future setting (if different)

Example 19-7 demonstrates output from the show version command, highlighting the key pieces of information. Note that the preceding list is in the same order in which the highlighted information appears in the example.

Example 19-7 show version Command Output

<table>
<thead>
<tr>
<th>Albuquerque#show version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Software, 1841 Software (C1841-ADVENTERPRISEK9-M), Version 12.4(9)T, RELEASE SOFTWARE (fc1)</td>
</tr>
<tr>
<td>Technical Support: <a href="http://www.cisco.com/techsupport">http://www.cisco.com/techsupport</a></td>
</tr>
<tr>
<td>Copyright (c) 1986-2006 by Cisco Systems, Inc.</td>
</tr>
</tbody>
</table>

continues
Most of the information highlighted in the example can be easily found in comparison to the list preceding Example 19-7. However, note that the amount of RAM, listed as 354304K/38912K, shows the RAM in two parts. The sum of these two parts is the total amount of available RAM, about 384 MB in this case.
Exam Preparation Tasks

Review All the Key Topics

Review the most important topics from inside the chapter, noted with the key topics icon in the outer margin of the page. Table 19-6 lists a reference of these key topics and the page numbers on which each is found.

Table 19-6  Key Topics for Chapter 19

<table>
<thead>
<tr>
<th>Key Topic</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>Steps required to install a router</td>
<td>488</td>
</tr>
<tr>
<td>List</td>
<td>Similarities between router CLI and switch CLI</td>
<td>492</td>
</tr>
<tr>
<td>List</td>
<td>Items covered for switches in Chapter 8 that differ in some way on routers</td>
<td>492</td>
</tr>
<tr>
<td>Table 19-2</td>
<td>Router interface status codes and their meanings</td>
<td>495</td>
</tr>
<tr>
<td>Table 19-3</td>
<td>Combinations of the two interface status codes and the likely reasons for each combination</td>
<td>496</td>
</tr>
<tr>
<td>List</td>
<td>Summary of important facts about the initial configuration dialog (setup mode)</td>
<td>499</td>
</tr>
<tr>
<td>List</td>
<td>The four steps a router performs when booting</td>
<td>506</td>
</tr>
<tr>
<td>Table 19-4</td>
<td>Comparison of ROMMON and RxBoot operating systems</td>
<td>507</td>
</tr>
<tr>
<td>List</td>
<td>Steps a router uses to choose which IOS image to load</td>
<td>508</td>
</tr>
<tr>
<td>Figure 19-8</td>
<td>Diagram of how a router chooses which IOS image to load</td>
<td>510</td>
</tr>
<tr>
<td>List</td>
<td>A list of the many important facts that can be seen in the output from the <code>show version</code> command</td>
<td>511</td>
</tr>
</tbody>
</table>

Complete the Tables and Lists from Memory

Print a copy of Appendix L, “Memory Tables” (found on the DVD), or at least the section for this chapter, and complete the tables and lists from memory. Appendix M, “Memory Tables Answer Key,” also on the DVD, includes completed tables and lists to check your work.
Definitions of Key Terms

Define the following key terms from this chapter and check your answers in the glossary.

bandwidth, boot field, clock rate, configuration register, IOS image, power-on self-test (POST), ROMMON, RxBoot

Read Appendix J Scenario 2

Appendix J, “Additional Scenarios,” contains two detailed scenarios that give you a chance to analyze different designs, problems, and command output, as well as show you how concepts from several different chapters interrelate. At this point in your reading, Appendix J scenario 2, which shows how to use Cisco Discovery Protocol (CDP), would be particularly useful to read.

Command References

Although you should not necessarily memorize the information in the tables in this section, this section does include a reference for the configuration commands (Table 19-7) and EXEC commands (Table 19-8) covered in this chapter. Practically speaking, you should memorize the commands as a complement to reading the chapter and doing all the activities in this exam preparation section. To check to see how well you have memorized the commands, cover the left side of the table with a piece of paper, read the descriptions in the right side, and see if you remember the command.

Table 19-7  Chapter 19 Configuration Command Reference

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bandwidth kbps</td>
<td>Interface command that sets the router’s perception of bandwidth of the interface, in a unit of kbps.</td>
</tr>
<tr>
<td>clock rate rate</td>
<td>Interface command that sets the speed at which the router supplies a clocking signal, applicable only when the router has a DCE cable installed. The unit is bits/second.</td>
</tr>
<tr>
<td>config-register value</td>
<td>Global command that sets the hexadecimal value of the configuration register.</td>
</tr>
<tr>
<td>boot system {file-url [filename]}</td>
<td>Global command that identifies an externally located IOS image using a URL.</td>
</tr>
<tr>
<td>boot system flash [flash-fs:] [filename]</td>
<td>Global command that identifies the location of an IOS image in Flash memory.</td>
</tr>
</tbody>
</table>
Command References  515

Table 19-7  Chapter 19 Configuration Command Reference (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>boot system rom</code></td>
<td>Global command that tells the router to load the RxBoot OS found in ROM, if one exists.</td>
</tr>
<tr>
<td>`boot system {rcp</td>
<td>tftp</td>
</tr>
</tbody>
</table>

Table 19-8  Chapter 19 EXEC Command Reference

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces [type number]</code></td>
<td>Lists a large set of informational messages about each interface, or about the one specifically listed interface.</td>
</tr>
<tr>
<td><code>show ip interface brief</code></td>
<td>Lists a single line of information about each interface, including the IP address, line and protocol status, and the method with which the address was configured (manual or DHCP).</td>
</tr>
<tr>
<td><code>show protocols type number</code></td>
<td>Lists a single line of information about the listed interface, including the IP address, mask, and line/protocol status.</td>
</tr>
<tr>
<td><code>show controllers [type number]</code></td>
<td>Lists many lines of information per interface, or for one interface, for the hardware controller of the interface. On serial interfaces, this command identifies the cable as either a DCE or DTE cable.</td>
</tr>
<tr>
<td><code>show version</code></td>
<td>Lists the IOS version, as well as a large set of other useful information (see Example 19-7).</td>
</tr>
<tr>
<td><code>setup</code></td>
<td>Starts the setup (initial configuration) dialog in which the router prompts the user for basic configuration settings.</td>
</tr>
<tr>
<td><code>copy source-url destination-url</code></td>
<td>Copies a file from the first listed URL to the destination URL.</td>
</tr>
<tr>
<td><code>show flash</code></td>
<td>Lists the names and size of the files in Flash memory, as well as noting the amount of Flash memory consumed and available.</td>
</tr>
<tr>
<td><code>reload</code></td>
<td>Enable mode command that reinitializes (reboots) the router.</td>
</tr>
</tbody>
</table>
This chapter covers the following subjects:

**Connected and Static Routes:** This section covers the basics of how routers learn routes to connected subnets and how to configure static routes.

**Routing Protocol Overview:** This section explains the terminology and theory related to routing protocols in general and Routing Information Protocol (RIP) in particular.

**Configuring and Verifying RIP-2:** This section explains how to configure RIP Version 2 (RIP-2) and how to confirm that RIP-2 is working correctly.
The United States Postal Service routes a huge number of letters and packages each day. To do so, the postal sorting machines run fast, sorting lots of letters. Then the letters are placed in the correct container and onto the correct truck or plane to reach the final destination. However, if no one programs the letter-sorting machines to know where letters to each ZIP code should be sent, the sorter cannot do its job. Similarly, Cisco routers can route many packets, but if the router does not know any routes—routes that tell the router where to send the packets—the router cannot do its job.

This chapter introduces the basic concepts of how routers fill their routing tables with routes. Routers learn routes by being directly connected to local subnets, by being statically configured with information about routes, and by using dynamic routing protocols.

As you might guess by now, to fully appreciate the nuances of how routing protocols work, you need a thorough understanding of routing—the process of forwarding packets—as well as subnetting. So, this chapter includes a few additional comments on routing and subnetting, to link the ideas from Chapter 5, “Fundamentals of IPv4 Addressing and Routing,” all the chapters in Part III, and Chapter 19, “Operating Cisco Routers,” together so you can better understand dynamic routing protocols.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess if you should read the entire chapter. If you miss no more than one of these ten self-assessment questions, you might want to move ahead to the “Exam Preparation Tasks” section. Table 20-1 lists the major headings in this chapter and the “Do I Know This Already?” quiz questions covering the material in those headings so you can assess your knowledge of these specific areas. The answers to the “Do I Know This Already?” quiz appear in Appendix A.

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected and Static Routes</td>
<td>1, 2</td>
</tr>
<tr>
<td>Routing Protocol Overview</td>
<td>3–6</td>
</tr>
<tr>
<td>Configuring and Verifying RIP-2</td>
<td>7–10</td>
</tr>
</tbody>
</table>
1. Which of the following must be true for a static route to be installed in a router’s IP routing table? (Choose two answers.)
   a. The outgoing interface associated with the route must be in an “up and up” state.
   b. The router must receive a routing update from a neighboring router.
   c. The `ip route` command must be added to the configuration.
   d. The outgoing interface’s `ip address` command must use the `special` keyword.

2. Which of the following commands correctly configures a static route?
   a. `ip route 10.1.3.0 255.255.255.0 10.1.130.253`
   b. `ip route 10.1.3.0 serial 0`
   c. `ip route 10.1.3.0 /24 10.1.130.253`
   d. `ip route 10.1.3.0 /24 serial 0`

3. Which of the following routing protocols are considered to use distance vector logic? (Choose two answers.)
   a. RIP
   b. IGRP
   c. EIGRP
   d. OSPF

4. Which of the following routing protocols are considered to use link-state logic? (Choose two answers.)
   a. RIP
   b. RIP-2
   c. IGRP
   d. EIGRP
   e. OSPF
   f. Integrated IS-IS
5. Which of the following routing protocols support VLSM? (Choose four answers.)
   a. RIP
   b. RIP-2
   c. IGRP
   d. EIGRP
   e. OSPF
   f. Integrated IS-IS

6. Which of the following routing protocols are considered to be capable of converging quickly? (Choose three answers.)
   a. RIP
   b. RIP-2
   c. IGRP
   d. EIGRP
   e. OSPF
   f. Integrated IS-IS

7. Router1 has interfaces with addresses 9.1.1.1 and 10.1.1.1. Router2, connected to Router1 over a serial link, has interfaces with addresses 10.1.1.2 and 11.1.1.2. Which of the following commands would be part of a complete RIP Version 2 configuration on Router2, with which Router2 advertises out all interfaces, and about all routes? (Choose four answers.)
   a. router rip
   b. router rip 3
   c. network 9.0.0.0
   d. version 2
   e. network 10.0.0.0
   f. network 10.1.1.1
   g. network 10.1.1.2
   h. network 11.0.0.0
   i. network 11.1.1.2
8. Which of the following network commands, following a router rip command, would cause RIP to send updates out two interfaces whose IP addresses are 10.1.2.1 and 10.1.1.1, mask 255.255.255.0?
   a. network 10.0.0.0
   b. network 10.1.1.0 10.1.2.0
   c. network 10.1.1.1 10.1.2.1
   d. network 10.1.0.0 255.255.0.0
   e. network 10
   f. You cannot do this with only one network command.

9. What command(s) list(s) information identifying the neighboring routers that are sending routing information to a particular router?
   a. show ip
   b. show ip protocols
   c. show ip routing-protocols
   d. show ip route
   e. show ip route neighbor
   f. show ip route received

10. Review the snippet from a show ip route command on a router:
    R* 10.1.2.0 [120/1] via 10.1.128.252, 00:00:13, Serial0/0/1
    Which of the following statements are true regarding this output?
    (Choose two answers.)
    a. The administrative distance is 1.
    b. The administrative distance is 120.
    c. The metric is 1.
    d. The metric is not listed.
    e. The router added this route to the routing table 13 seconds ago.
    f. The router must wait 13 seconds before advertising this route again.
Connected and Static Routes

Routers need to have routes in their IP routing tables for the packet forwarding process (routing) to work. Two of the most basic means by which a router adds routes to its routing table are by learning about the subnets connected to its interfaces, and by configuring a route by using a global configuration command (called a static route). This section explains both, with the remainder of the chapter focusing on the third method of learning routes—dynamic routing protocols.

Connected Routes

A router adds routes to its routing table for the subnets connected to each of the router’s interfaces. For this to occur, the router must have an IP address and mask configured on the interface (statically with the `ip address` command or dynamically using Dynamic Host Configuration Protocol [DHCP]) and both interface status codes must be “up.” The concept is simple: If a router has an interface in a subnet, the router has a way to forward packets into that subnet, so the router needs a route in its routing table.

Figure 20-1 illustrates a sample internetwork that will be used in Example 20-1 to show some connected routes and some related `show` commands. Figure 20-1 shows an internetwork with six subnets, with each of the three routers having three interfaces in use. Each of the LANs in this figure could consist of one switch, one hub, or lots of switches and/or hubs together—but for the purposes of this chapter, the size of the LAN does not matter. Once the interfaces have been configured as shown in the figure, and once each interface is up and working, each of the routers should have three connected routes in their routing tables.

Example 20-1 shows the connected routes on Albuquerque after its interfaces have been configured with the addresses shown in Figure 20-1. The example includes several comments, with more detailed comments following the example.
Figure 20-1  Sample Internetwork Used Throughout Chapter 20

![Sample Internetwork Used Throughout Chapter 20](image)

Example 20-1  Albuquerque Connected Routes

The following command just lists the IP address configuration on Albuquerque. The output has been edited to show only the three interfaces used in Figure 20-1.

```console
Albuquerque#sh conf
interface FastEthernet0/0
 ip address 10.1.128.251 255.255.255.0

interface Serial 0/0/1
 ip address 10.1.129.252 255.255.255.0

interface Serial 0/1/0
 ip address 10.1.130.253 255.255.255.0
```
Example 20-1  Albuquerque Connected Routes (Continued)

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP-Address</th>
<th>OK? Method Status</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>FastEthernet0/0</td>
<td>10.1.1.251</td>
<td>YES manual up</td>
<td>up</td>
</tr>
<tr>
<td>FastEthernet0/1</td>
<td>unassigned</td>
<td>YES manual administratively down down</td>
<td></td>
</tr>
<tr>
<td>Serial0/0/0</td>
<td>unassigned</td>
<td>YES NVRAM administratively down down</td>
<td></td>
</tr>
<tr>
<td>Serial0/0/1</td>
<td>10.1.128.251</td>
<td>YES NVRAM up</td>
<td>up</td>
</tr>
<tr>
<td>Serial0/1/0</td>
<td>10.1.130.251</td>
<td>YES NVRAM up</td>
<td>up</td>
</tr>
<tr>
<td>Serial0/1/1</td>
<td>unassigned</td>
<td>YES NVRAM administratively down down</td>
<td></td>
</tr>
</tbody>
</table>

! The next command lists the routes known by Albuquerque – all connected routes

Albuquerque#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
      * - candidate default, U - per-user static route, o - ODR
      P - periodic downloaded static route

Gateway of last resort is not set

    10.0.0.0/24 is subnetted, 3 subnets
    C 10.1.1.0 is directly connected, FastEthernet0/0
    C 10.1.130.0 is directly connected, Serial0/1/0
    C 10.1.128.0 is directly connected, Serial0/0/1

! The next command changes the mask format used by the show ip route command

Albuquerque#terminal ip netmask-format decimal

Albuquerque#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
      * - candidate default, U - per-user static route, o - ODR
      P - periodic downloaded static route

Gateway of last resort is not set

    10.0.0.0 255.255.255.0 is subnetted, 3 subnets
    C 10.1.1.0 is directly connected, FastEthernet0/0
    C 10.1.130.0 is directly connected, Serial0/1/0
    C 10.1.128.0 is directly connected, Serial0/0/1
To begin, the `show ip interface brief` command in Example 20-1 confirms that Albuquerque’s three interfaces meet the requirements to have their connected subnets added to the routing table. Note that all three interfaces are in an “up and up” state and have an IP address configured.

The output of the `show ip route` command confirms that Albuquerque indeed added a route to all three subnets to its routing table. The output begins with a single-letter code legend, with “C” meaning “connected.” The individual routes begin with a code letter on the far left—in this case, all three routes have the letter C. Also, note that the output lists the mask in prefix notation by default. Additionally, in cases when one mask is used throughout a single classful network—in other words, static-length subnet masking (SLSM) is used—the `show ip route` command output lists the mask on a heading line above the subnets of that classful network. For example, the lines with 10.1.1.0, 10.1.128.0, and 10.1.130.0 do not show the mask, but the line just above those three lines does list classful network 10.0.0.0 and the mask, as highlighted in the example.

Finally, you can change the format of the display of the subnet mask in `show` commands, for the duration of your login session to the router, using the `terminal ip netmask-format decimal` EXEC command, as shown at the end of Example 20-1.

**NOTE** To be well prepared for the exams, you should look at all items in the output of the `show ip interface brief` and `show ip route` commands in each example in this chapter. Example 20-6, later in this chapter, provides more detailed comments about the `show ip route` command’s output.

### Static Routes

Although the connected routes on each router are important, routers typically need other routes to forward packets to all subnets in an internetwork. For example, Albuquerque can successfully ping the IP addresses on the other end of each serial link, or IP addresses on its local connected LAN subnet (10.1.1.0/24). However, a ping of an IP address in a subnet besides the three connected subnets will fail, as demonstrated in Example 20-2. Note that this example assumes that Albuquerque still only knows the three connected routes shown in Example 20-1.

**Example 20-2  Albuquerque Pings—Works to Connected Subnets Only**

```plaintext
! This first ping is a ping of Yosemite's S0/0/1 interface
Albuquerque#ping 10.1.128.252
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.1.128.252, timeout is 2 seconds:
!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/8 ms
```
The ping command sends an ICMP echo request packet to the stated destination address. The TCP/IP software at the destination then replies to the ping echo request packet with a similar packet, called an ICMP echo reply. The ping command sends the first packet and waits on the response. If a response is received, the command displays a “!”. If no response is received within the default timeout of 2 seconds, the ping command displays a “.”. The Cisco IOS software ping command sends five of these packets by default.

In Example 20-2, the ping 10.1.128.252 command works (showing all '!'), because Albuquerque’s route to 10.1.128.0/24 matches the destination address of 10.1.128.252. However, the ping to 10.1.2.252 does not work, because Albuquerque does not have a route for the subnet in which 10.1.2.252 resides, subnet 10.1.2.0/24. As a result, Albuquerque cannot even send the five ping packets, so the output lists five periods.

The simple and typical solution to this problem is to configure a routing protocol on all three routers. However, you can configure static routes instead. Example 20-3 shows two ip route global configuration commands on Albuquerque, which add static routes for the two LAN subnets connected to Yosemite and Seville. The addition of the first of the two ip route commands makes the failed ping from Example 20-2 work.

Example 20-3  Static Routes Added to Albuquerque

```
Example 20-3 Static Routes Added to Albuquerque

Albuquerque#configure terminal
Albuquerque(config)#ip route 10.1.2.0 255.255.255.0 10.1.128.252
Albuquerque(config)#ip route 10.1.3.0 255.255.255.0 10.1.130.253
Albuquerque#show ip route static
 10.0.0.0/24 is subnetted, 5 subnets
 S 10.1.3.0 [1/0] via 10.1.130.253
 S 10.1.2.0 [1/0] via 10.1.128.252

The ip route global configuration command supplies the subnet number, mask, and the next-hop IP address. One ip route command defines a route to 10.1.2.0 (mask 255.255.255.0), which is located off Yosemite, so the next-hop IP address as configured on Albuquerque is 10.1.128.252, which is Yosemite’s Serial0/0/1 IP address. Similarly, Albuquerque’s route to 10.1.3.0/24, the subnet off Seville, points to Seville’s Serial0/0/1 IP address, 10.1.130.253. Note that the next-hop IP address should be an IP address in
a directly connected subnet. Now Albuquerque knows how to forward routes to both subnets.

Whereas you can see all routes using the \texttt{show ip route} command, the \texttt{show ip route static} command lists only statically configured IP routes. The “S” in the first column means that these two routes were statically configured. Also, to actually be added to the IP routing table, the \texttt{ip route} command must be configured, and the outgoing interface implied by the next-hop router IP address must be in an “up and up” state. For example, the next-hop address on the first \texttt{ip route} command is 10.1.128.252, which is in the subnet connected to Albuquerque’s S0/0/1 interface. If Albuquerque’s S0/0/1 interface is not currently in an “up and up” state, this static route would not be listed in the IP routing table.

The \texttt{ip route} command allows a slightly different syntax on point-to-point serial links. For such links, you can configure the outgoing interface instead of the next-hop IP address. For instance, you could have configured \texttt{ip route 10.1.2.0 255.255.255.0 serial0/0/1} for the first route in Example 20-3.

Unfortunately, adding these two static routes to Albuquerque does not solve all the network’s routing problems—you would also need to configure static routes on the other two routers as well. Currently, the static routes help Albuquerque deliver packets to these two remote LAN subnets, but the other two routers do not have enough routing information to forward packets back toward Albuquerque’s LAN subnet (10.1.1.0/24). For instance, PC Bugs cannot ping PC Sam in this network yet. The problem is that although Albuquerque has a route to subnet 10.1.2.0, where Sam resides, Yosemite does not have a route to 10.1.1.0, where Bugs resides. The ping request packet goes from Bugs to Sam correctly, but Sam’s ping response packet cannot be routed by the Yosemite router back through Albuquerque to Bugs, so the ping fails.

Extended ping Command

In real life, you might not be able to find a user, like Bugs, to ask to test your network by pinging, and it might be impractical to physically travel to some other site just to type a few \texttt{ping} commands on some end-user PCs. A better alternative might be to telnet to a router connected to that user’s subnet, and use the IOS \texttt{ping} command to try similar tests.

However, to make the \texttt{ping} command on the router more closely resemble a \texttt{ping} issued by the end user requires the extended \texttt{ping} command.

The extended IOS \texttt{ping} command, available from privileged EXEC mode, allows the CLI user to change many options for what the \texttt{ping} command does, including the source IP address used for the ICMP echo requests sent by the command. To see the significance of this option, Example 20-4 shows Albuquerque with the working standard \texttt{ping 10.1.2.252} command, but with an extended \texttt{ping} command that works similarly to a \texttt{ping} from Bugs.
to Sam—a **ping** that fails in this case, because router Yosemite cannot send the ICMP echo reply back to Albuquerque.

Example 20-4 Albuquerque: Working Ping After Adding Default Routes, Plus Failing Extended ping

<table>
<thead>
<tr>
<th>Command Output</th>
</tr>
</thead>
</table>
| **Example 20-4**
Albuquerque: Working Ping After Adding Default Routes, Plus Failing Extended ping
| **Albuquerque**
| **show ip route static**
10.0.0.0/24 is subnetted, 5 subnets
S 10.1.3.0 [1/0] via 10.1.130.253
S 10.1.2.0 [1/0] via 10.1.128.252
| **ping 10.1.2.252**
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.1.2.252, timeout is 2 seconds:
!!!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/8 ms
| **ping**
Protocol [ip]:
Target IP address: 10.1.2.252
Repeat count [5]:
Datagram size [100]:
Timeout in seconds [2]:
Extended commands [n]: y
Source address or interface: 10.1.128.251
Type of service [0]:
Set DF bit in IP header? [no]:
Validate reply data? [no]:
Data pattern [0xABCD]:
Loose, Strict, Record, Timestamp, Verbose[none]:
Sweep range of sizes [n]:
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.1.2.252, timeout is 2 seconds:
. Success rate is 0 percent (0/5) |

The simple (standard) **ping 10.1.2.252** command works for one obvious reason and one not-so-obvious reason. First, Albuquerque can forward a packet to subnet 10.1.2.0 because of the static route. The return packet, sent by Yosemite, is sent to address 10.1.128.251—Albuquerque’s Serial0/0/1 IP address. Why? Well, the following points are true about the **ping** command on a Cisco router:

- The Cisco **ping** command uses, by default, the output interface’s IP address as the packet’s source address, unless otherwise specified in an extended **ping**. The first ping in Example 20-4 uses a source of 10.1.128.251, because Albuquerque’s route used to send the packet to 10.1.2.252 refers to interface Serial0/0/1 as the outgoing interface—and Albuquerque’s S0/0/1 interface IP address is 10.1.128.251.
■ Ping response packets reverse the IP addresses used in the original ping request. So, in this example, Albuquerque used 10.1.128.251 as the source IP address of the original packet, so Yosemite uses 10.1.128.251 as the destination of the ping response packet—and Yosemite has a connected route to reach subnet 10.1.128.0/24, which includes address 10.1.128.251.

When you troubleshoot this internetwork, you can use the extended ping command to act like you issued a ping from a computer on that subnet, without having to call a user and ask to enter a ping command for you on the PC. The extended version of the ping command can be used to refine the problem’s underlying cause by changing several details of what the ping command sends in its request. In real networks, when a ping from a router works, but a ping from a host does not, the extended ping could help you re-create the problem without needing to work with the end user on the phone.

For example, in Example 20-4, the extended ping command on Albuquerque uses a source IP address of 10.1.1.251 (Albuquerque’s Fa0/0 interface IP address), destined to 10.1.2.252 (Yosemite’s Fa0/0 IP address). According to the command output, no ping response was received by Albuquerque. Normally, Albuquerque’s ping would be sourced from the IP address of the outgoing interface. With the use of the extended ping source address option, the source IP address of the echo packet is set to Albuquerque’s Fa0/0 IP address, 10.1.1.251. Because the ICMP echo generated by the extended ping is sourced from an address in subnet 10.1.1.0, the packet looks more like a packet from an end user in that subnet. Yosemite builds a reply, with destination 10.1.1.251—but Yosemite does not have a route to subnet 10.1.1.0/24. So, Yosemite cannot send the ping reply packet back to Albuquerque, causing the ping to fail.

The solution in this case is pretty simple: either add a static route on Yosemite for subnet 10.1.1.0/24, or enable a routing protocol on all three routers.

Default Routes

As part of the routing (forwarding) process, a router compares each packet’s destination IP address to the router’s routing table. If the router does not match any routes, the router discards the packet, and makes no attempt to recover from the loss.

A default route is a route that is considered to match all destination IP addresses. With a default route, when a packet’s destination IP address does not match any other routes, the router uses the default route for forwarding the packet.

Default routes work best when only one path exists to a part of the network. For example, in Figure 20-2, R1 is a branch office router with a single serial link connecting it to the rest of the enterprise network. There may be hundreds of subnets located outside R1’s
branch office. The engineer has three main options for helping R1 know routes to reach all the rest of the subnets:

- Configure hundreds of static routes on R1—but all of those routes would use S0/1 as R1’s outgoing interface, with next-hop IP address 172.16.3.2 (R2).
- Enable a routing protocol on the routers to learn the routes.
- Add a default route to R1 with outgoing interface S0/1.

Figure 20-2 Sample Network in Which a Default Route Is Useful

By coding a special static route called a default route, R1 can have a single route that forwards all packets out its S0/1 interface toward R2. The `ip route` command lists a special subnet and mask value, each 0.0.0.0, which means “match all packets.” Example 20-5 shows the default static route on R1, pointing to R2 (172.16.3.2) as the next-hop router.

Example 20-5 R1 Static Default Route Configuration and Routing Table

```
R1(config)#ip route 0.0.0.0 0.0.0.0 172.16.3.2
R1#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route
```

continues
The `show ip route` command shows a couple of interesting facts about this special default route. The output lists a code of “S” just like other static routes, but with an * as well. The * means that the route might be used as the default route, meaning it will be used for packets that do not match any other routes in the routing table. Without a default route, a router discards packets that do not match the routing table. With a default route, the router forwards packets that do not match any other routes, as in the case in this example.

You could use static routes, including static default routes, on all routers in an internetwork. However, most enterprises use a dynamic routing protocol to learn all the routes. The next section covers some additional concepts and terminology for routing protocols, with the remainder of the chapter focusing on how to configure RIP-2.

Routing Protocol Overview

IP routing protocols have one primary goal: to fill the IP routing table with the current best routes it can find. The goal is simple, but the process and options can be complicated.

Routing protocols help routers learn routes by having each router advertise the routes it knows. Each router begins by knowing only connected routes. Then, each router sends messages, defined by the routing protocol, that list the routes. When a router hears a routing update message from another router, the router hearing the update learns about the subnets and adds routes to its routing table. If all the routers participate, all the routers can learn about all subnets in an internetwork.

When learning routes, routing protocols must also prevent loops from occurring. A loop occurs when a packet keeps coming back to the same router due to errors in the routes in the collective routers’ routing tables. These loops can occur with routing protocols, unless the routing protocol makes an effort to avoid the loops.

This section starts by explaining how RIP-2 works in a little more detail than was covered in Chapter 5. Following that, the various IP routing protocols are compared.
RIP-2 Basic Concepts

Routers using RIP-2 advertise a small amount of simple information about each subnet to their neighbors. Their neighbors in turn advertise the information to their neighbors, and so on, until all routers have learned the information. In fact, it works a lot like how rumors spread in a neighborhood, school, or company. You might be out in the yard, stop to talk to your next-door neighbor, and tell your neighbor the latest gossip. Then, that neighbor sees his other next-door neighbor, and tells them the same bit of gossip—and so on, until everyone in the neighborhood knows the latest gossip. Distance vector protocols work the same way, but hopefully, unlike rumors in a real neighborhood, the rumor has not changed by the time everyone has heard about it.

For example, consider what occurs in Figure 20-3. The figure shows RIP-2 advertising a subnet number, mask (shown in prefix notation), and metric to its neighbors.

Figure 20-3 Example of How RIP-2 Advertises Routes

For the sake of keeping the figure less cluttered, Figure 20-3 only shows how the routers advertise and learn routes for subnet 172.16.3.0/24, even though the routers do advertise about other routes as well. Following the steps in the figure:

1. Router R2 learns a connected route for subnet 172.16.3.0/24.
2. R2 sends a routing update to its neighbors, listing a subnet (172.16.3.0), mask (/24), and a distance, or metric (1 in this case).
3. R3 hears the routing update, and adds a route to its routing table for subnet 172.16.3.0/24, referring to R2 as the next-hop router.

4. Around the same time, R1 also hears the routing update sent directly to R1 by R2. R1 then adds a route to its routing table for subnet 172.16.3.0/24, referring to R2 as the next-hop router.

5. R1 and R3 then send a routing update to each other, for subnet 172.16.3.0/24, metric 2.

By the end of this process, both R1 and R3 have heard of two possible routes to reach subnet 172.16.3.0/24—one with metric 1, and one with metric 2. Each router uses its respective lower-metric (metric 1) routes to reach 172.16.3.0.

Interestingly, distance vector protocols such as RIP-2 repeat this process continually on a periodic basis. For example, RIP routers send periodic routing updates about every 30 seconds by default. As long as the routers continue to hear the same routes, with the same metrics, the routers’ routing tables do not need to change. However, when something changes, the next routing update will change or simply not occur due to some failure, so the routers will react and converge to use the then-best working routes.

Now that you have seen the basics of one routing protocol, the next section explains a wide variety of features of different routing protocols for the sake of comparison.

Comparing and Contrasting IP Routing Protocols

IP’s long history and continued popularity has driven the need for several different competing routing protocols over time. So, it is helpful to make comparisons between the different IP routing protocols to see their relative strengths and weaknesses. This section describes several technical points on which the routing protocols can be compared. Then, this chapter examines RIP-2 in more detail; the *CCNA ICND2 640-816 Official Cert Guide* explains OSPF and EIGRP in more detail.

One of the first points of comparison is whether the protocol is defined in RFCs, making it a public standard, or whether it is Cisco proprietary. Another very important consideration is whether the routing protocol supports variable-length subnet masking (VLSM). Although the details of VLSM are not covered in this book, but instead are covered in the *CCNA ICND2 640-816 Official Cert Guide*, VLSM support is an important consideration today. This section introduces several different terms and concepts used to compare the various IP routing protocols, with Table 20-4 at the end of this section summarizing the comparison points for many of the IP routing protocols.
Interior and Exterior Routing Protocols

IP routing protocols fall into one of two major categories:

- **Interior Gateway Protocol (IGP)**: A routing protocol that was designed and intended for use inside a single autonomous system
- **Exterior Gateway Protocol (EGP)**: A routing protocol that was designed and intended for use between different autonomous systems

NOTE The terms IGP and EGP include the word *gateway* because routers used to be called gateways.

These definitions use another new term: *autonomous system*. An autonomous system is an internetwork under the administrative control of a single organization. For instance, an internetwork created and paid for by a single company is probably a single autonomous system, and an internetwork created by a single school system is probably a single autonomous system. Other examples include large divisions of a state or national government, where different government agencies may be able to build their own separate internetworks.

Some routing protocols work best inside a single autonomous system, by design, so these routing protocols are called IGPs. Conversely, only one routing protocol, *Border Gateway Protocol (BGP)*, is used today to exchange routes between routers in different autonomous systems, so it is called an EGP.

Each autonomous system can be assigned a number, called (unsurprisingly) an *autonomous system number (ASN)*. Like public IP addresses, the Internet Corporation for Assigned Network Numbers (ICANN) controls the worldwide rights to assign ASNs, delegating that authority to other organizations around the planet, typically to the same organizations that assign public IP addresses. By assigning each autonomous organization an ASN, BGP can ensure that packets do not loop around the global Internet by making sure that packets do not pass through the same autonomous system twice.

Figure 20-4 shows a small view into the worldwide Internet. Two companies and three ISPs use IGPs (OSPF and EIGRP) inside their own networks, with BGP being used between the ASNs.
Routing Protocol Types/Algorithms

Each IGP can be classified as using a particular class, or type, of underlying logic. Table 20-2 lists the three options, noting which IGPs use which class of algorithm.

<table>
<thead>
<tr>
<th>Class/Algorithm</th>
<th>IGPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance vector</td>
<td>RIP-1, RIP-2, IGRP</td>
</tr>
<tr>
<td>Link-state</td>
<td>OSPF, Integrated IS-IS</td>
</tr>
<tr>
<td>Balanced hybrid (also called advanced distance vector)</td>
<td>EIGRP</td>
</tr>
</tbody>
</table>

The CCNA ICND2 640-816 Official Cert Guide covers the theory behind each of these classes of routing protocols. However, because the only IGP this book covers to any level of detail is RIP-2, most of the conceptual materials in this chapter actually show how distance vector protocols work.

Metrics

Routing protocols must have some way to decide which route is best when a router learns of more than one route to reach a subnet. To that end, each routing protocol defines a metric that gives an objective numeric value to the “goodness” of each route. The lower the metric, the better the route. For example, earlier, in Figure 20-3, R1 learned a metric 1 route for subnet 172.16.3.0/24 from R2, and a metric 2 route for that same subnet from R3, so R1 chose the lower-metric (1) route through R2.
Some metrics work better than others. To see why, consider Figure 20-5. The figure shows two analyses of the same basic internetwork, focusing on router B’s choice of a route to reach subnet 10.1.1.0, which is on the LAN on the left side of router A. In this case, the link between A and B is only a 64-kbps link, whereas the other two links are T1s, running at 1.544 Mbps each. The top part of the figure shows router B’s choice of route when using RIP (Version 1 or Version 2), whereas the bottom part of the figure shows router B’s choice when the internetwork uses EIGRP.

Figure 20-5 Comparing the Effect of the RIP and EIGRP Metrics

RIP, Regardless of Bandwidth

RIP uses a metric called hop count, which measures the number of routers (hops) between a router and a subnet. With RIP, router B would learn two routes to reach subnet 10.1.1.0: a one-hop route through router A, and a two-hop route first through router C and then to router A. So, router B, using RIP, would add a route for subnet 10.1.1.0 pointing to router A as the next-hop IP address (represented as the dashed line in Figure 20-5).

EIGRP

EIGRP, on the other hand, uses a metric that (by default) considers both the interface bandwidth and interface delay settings as input into a mathematical formula to calculate the metric. If routers A, B, and C were configured with correct **bandwidth** interface...
subcommands, as listed in Figure 20-5, EIGRP would add a route for subnet 10.1.1.0 to its routing table, but with router C as the next-hop router, again shown with a dashed line.

NOTE For a review of the bandwidth command, refer to the section “Bandwidth and Clock Rate on Serial Interfaces” in Chapter 19, “Operating Cisco Routers.”

Autosummarization and Manual Summarization

Routers generally perform routing (forwarding) more quickly with smaller routing tables, and less quickly with larger routing tables. Route summarization helps shorten the routing table while retaining all the needed routes in the network.

Two general types of route summarization can be done, with varying support for these two types depending on the routing protocol. The two types, both of which are introduced in this section, are called *autosummarization* and *manual summarization*. Manual summarization gives the network engineer a great deal of control and flexibility, allowing the engineer to choose what summary routes to advertise, instead of just being able to summarize with a classful network. As a result, support for manual summarization is the more useful feature as compared to autosummarization.

Chapter 6, “Route Summarization,” in the *CCNA ICND2 640-816 Official Cert Guide* explains both autosummarization and manual summarization.

Classless and Classful Routing Protocols

Some routing protocols must consider the Class A, B, or C network number that a subnet resides in when performing some of its tasks. Other routing protocols can ignore Class A, B, and C rules altogether. Routing protocols that must consider class rules are called *classful routing protocols*; those that do not need to consider class rules are called *classless routing protocols*.

Classless routing protocols and classful routing protocols are identified by the same three criteria, as summarized in Table 20-3.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Classless</th>
<th>Classful</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supports VLSM</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Sends subnet mask in routing updates</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Supports manual route summarization</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Convergence
The term convergence refers to the overall process that occurs with routing protocols when something changes in a network topology. When a link comes up or fails, or when a router fails or is first turned on, the possible routes in the internetwork change. The processes used by routing protocols to recognize the changes, to figure out the now-best routes to each subnet, and to change all the routers’ routing tables, is called convergence.

Some routing protocols converge more quickly than others. As you might imagine, the capability to converge quickly is important, because in some cases, until convergence completes, users might not be able to send their packets to particular subnets. (Table 20-4 in the next section summarizes the relative convergence speed of various IP routing protocols, along with other information.)

Miscellaneous Comparison Points
Two other minor comparison points between the various IGP s are interesting as well. First, the original routing protocol standards defined that routing updates should be sent to the IP all-local-hosts broadcast address of 255.255.255.255. After those original routing protocols were defined, IP multicast emerged, which allowed newer routing protocols to send routing updates only to other interested routers by using various IP multicast IP addresses.

The earlier IGP s did not include any authentication features. As time went on, it became obvious that attackers could form a denial-of-service (DoS) attack by causing problems with routing protocols. For example, an attacker could connect a router to a network and advertise lots of lower-metric routes for many subnets, causing the packets to be routed to the wrong place—and possibly copied by the attacker. The later-defined IGP s typically support some type of authentication, hoping to mitigate the exposure to these types of DoS attacks.

Summary of Interior Routing Protocols
For convenient comparison and study, Table 20-4 summarizes the most important features of interior routing protocols. Note that the most important routing protocol for the ICND1 exam is RIP, specifically RIP-2. The ICND2 and CCNA exams include more detailed coverage of RIP-2 theory, as well as the theory, configuration, and troubleshooting of OSPF and EIGRP.
1. EIGRP is often described as a balanced hybrid routing protocol, instead of link-state or distance vector. Some documents refer to EIGRP as an advanced distance vector protocol.

Configuring and Verifying RIP-2

RIP-2 configuration is actually somewhat simple as compared to the concepts related to routing protocols. The configuration process uses three required commands, with only one command, the `network` command, requiring any real thought. You should also know the more-popular `show` commands for helping you analyze and troubleshoot routing protocols.

RIP-2 Configuration

The RIP-2 configuration process takes only the following three required steps, with the possibility that the third step might need to be repeated:

Step 1 Use the `router rip` configuration command to move into RIP configuration mode.

Step 2 Use the `version 2` RIP subcommand to tell the router to use RIP Version 2 exclusively.
Step 3 Use one or more `network net-number` RIP subcommands to enable RIP on the correct interfaces.

Step 4 (Optional) As needed, disable RIP on an interface using the `passive-interface type number` RIP subcommand.

Of the required first three steps, only the third step—the RIP `network` command—requires much thought. Each RIP `network` command enables RIP on a set of interfaces. The RIP `network` command only uses a classful network number as its one parameter. For any of the router’s interface IP addresses in that entire classful network, the router does the following three things:

- The router multicasts routing updates to a reserved IP multicast IP address, 224.0.0.9.
- The router listens for incoming updates on that same interface.
- The router advertises about the subnet connected to the interface.

Sample RIP Configuration

Keeping these facts in mind, now consider how to configure RIP on a single router. Examine Figure 20-6 for a moment and try to apply the first three configuration steps to this router and anticipate the configuration required on the router to enable RIP on all interfaces.

Figure 20-6 RIP-2 Configuration: Sample Router with Four Interfaces

The first two configuration commands are easy, `router rip`, followed by `version 2`, with no parameters to choose. Then you need to pick which `network` commands need to be configured at Step 3. To match interface S0/0, you have to figure out that address 199.1.1.1 is in Class C IP network 199.1.1.0, meaning you need a `network 199.1.1.0` RIP subcommand. Similarly, to match interface S0/1, you need a `network 199.1.2.0` command, because IP address 199.1.2.1 is in Class C network 199.1.2.0. Finally, both of the LAN interfaces have an IP address in Class A network 10.0.0.0, so a single `network 10.0.0.0` command matches both interfaces. Example 20-6 shows the entire configuration process, with all five configuration commands.
With this configuration, R1 starts using RIP—sending RIP updates, listening for incoming RIP updates, and advertising about the connected subnet—on each of its four interfaces. However, imagine that for some reason you wanted to enable RIP on R1’s Fa0/0 interface, but did not want to enable RIP on Fa0/1’s interface. Both interfaces are in network 10.0.0.0, so both are matched by the `network 10.0.0.0` command.

RIP configuration does not provide a way to enable RIP on only some of the interfaces in a single Class A, B, or C network. So, if you needed to enable RIP only on R1’s Fa0/0 interface, and not on the Fa0/1 interface, you would actually need to use the `network 10.0.0.0` command to enable RIP on both interfaces, and then disable the sending of RIP updates on Fa0/1 using the `passive-interface` type number RIP subcommand. For example, to enable RIP on all interfaces of router R1 in Figure 20-6, except for Fa0/1, you could use the same configuration in Example 20-6, but then also add the `passive-interface fa0/1` subcommand while in RIP configuration mode. This command tells R1 to stop sending RIP updates out its Fa0/1 interface, disabling one of the main functions of RIP.

```
R1#configure terminal
R1(config)#router rip
R1(config-router)#version 2
R1(config-router)#network 199.1.1.0
R1(config-router)#network 199.1.2.0
R1(config-router)#network 10.0.0.0
```

RIP configuration does not provide a way to enable RIP on only some of the interfaces in a single Class A, B, or C network. So, if you needed to enable RIP only on R1’s Fa0/0 interface, and not on the Fa0/1 interface, you would actually need to use the `network 10.0.0.0` command to enable RIP on both interfaces, and then disable the sending of RIP updates on Fa0/1 using the `passive-interface` type number RIP subcommand. For example, to enable RIP on all interfaces of router R1 in Figure 20-6, except for Fa0/1, you could use the same configuration in Example 20-6, but then also add the `passive-interface fa0/1` subcommand while in RIP configuration mode. This command tells R1 to stop sending RIP updates out its Fa0/1 interface, disabling one of the main functions of RIP.

```
NOTE  The `passive-interface` command only stops the sending of RIP updates on the interface. Other features outside the scope of this book could be used to disable the processing of received updates and the advertisement of the connected subnet.
```

One final note on the `network` command: IOS will actually accept a parameter besides a classful network number on the command, and IOS does not supply an error message, either. However, IOS, knowing that the parameter must be a classful network number, changes the command. For example, if you typed `network 10.1.2.3` in RIP configuration mode, IOS would accept the command, with no error messages. However, when you look at the configuration, you would see a `network 10.0.0.0` command, and the `network 10.1.2.3` command that you had typed would not be there. The `network 10.0.0.0` command would indeed match all interfaces in network 10.0.0.0.

RIP-2 Verification

IOS includes three primary `show` commands that are helpful to confirm how well RIP-2 is working. Table 20-5 lists the commands and their main purpose.
To better understand these commands, this section uses the internetwork shown in Figure 20-1. First, consider the RIP-2 configuration required on each of the three routers. All three interfaces on all three routers are in classful network 10.0.0.0. So each router needs only one network command, network 10.0.0.0, to match all three of its interfaces. The configuration needs to be the same on all three routers, as follows:

```
router rip
version 2
network 10.0.0.0
```

Now, to focus on the show commands, Example 20-7 lists a couple of variations of the show ip route command, with some explanations in the example, and some following the example. Following that, Example 20-8 focuses on the show ip protocols command. Note that Example 20-1, earlier in this chapter, shows the output from the show ip interfaces brief command on the Albuquerque router, so it is not repeated here.

Example 20-7 The show ip route Command

```
Albuquerque#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
I - IS-IS inter area, * - candidate default, U - per-user static route
O - ODR, P - periodic downloaded static route
Gateway of last resort is not set

10.0.0.0/24 is subnetted, 6 subnets
R 10.1.3.0 [120/1] via 10.1.130.253, 00:00:16, Serial0/1/0
R 10.1.2.0 [120/1] via 10.1.128.252, 00:00:09, Serial0/0/1
C 10.1.1.0 is directly connected, FastEthernet0/0
```

```
continues
```
Example 20-7 The show ip route Command (Continued)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>10.1.130.0 is directly connected, Serial0/1/0</td>
</tr>
<tr>
<td>R</td>
<td>10.1.129.0 [120/1] via 10.1.130.253, 00:00:16, Serial0/1/0</td>
</tr>
<tr>
<td></td>
<td>[120/1] via 10.1.128.252, 00:00:09, Serial0/0/1</td>
</tr>
<tr>
<td>C</td>
<td>10.1.128.0 is directly connected, Serial0/0/1</td>
</tr>
</tbody>
</table>

The next command lists just the RIP routes, so no code legend is listed.

Albuquerque#show ip route rip

10.0.0.0/24 is subnetted, 6 subnets
| R | 10.1.3.0 [120/1] via 10.1.130.253, 00:00:20, Serial0/1/0 |
| R | 10.1.2.0 [120/1] via 10.1.128.252, 00:00:13, Serial0/0/1 |
| R | 10.1.129.0 [120/1] via 10.1.130.253, 00:00:20, Serial0/1/0 |
| | [120/1] via 10.1.128.252, 00:00:13, Serial0/0/1 |

The next command lists the route matched by this router for packets going to the listed IP address 10.1.2.1.

Albuquerque#show ip route 10.1.2.1
Routing entry for 10.1.2.0/24
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Known via "rip", distance 120, metric 1</td>
<td></td>
</tr>
<tr>
<td>Redistributing via rip</td>
<td></td>
</tr>
<tr>
<td>Last update from 10.1.128.252 on Serial0/0/1, 00:00:18 ago</td>
<td></td>
</tr>
</tbody>
</table>

Routing Descriptor Blocks:

* 10.1.128.252, from 10.1.128.252, 00:00:18 ago, via Serial0/0/1

Route metric is 1, traffic share count is 1

The same command again, but for an address that does not have a matching route in the routing table.

Albuquerque#show ip route 10.1.7.1
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>% Subnet not in table</td>
<td></td>
</tr>
</tbody>
</table>

Albuquerque#

Interpreting the Output of the show ip route Command

Example 20-7 shows the `show ip route` command, which lists all IP routes, the `show ip route rip` command, which lists only RIP-learned routes, and the `show ip route address` command, which lists details about the route matched for packets sent to the listed IP address. Focusing on the `show ip route` command, note that the legend lists “R,” which means that a route has been learned by RIP, and that three of the routes list an R beside them. Next, examine the details in the route for subnet 10.1.3.0/24, highlighted in the example. The important details are as follows:

- The subnet number is listed, with the mask in the heading line above.
- The next-hop router’s IP address, 10.1.130.253, which is Seville’s S0/0/1 IP address.
■ Albuquerque’s S0/1/0 interface is the outgoing interface.

■ The length of time since Albuquerque last heard about this route in a periodic RIP update, 20 seconds ago in this case.

■ The RIP metric for this route (1 in this case), listed as the second number in the square brackets. For example, between Albuquerque and subnet 10.1.3.0/24, one other router (Seville) exists.

■ The administrative distance of the route (120 in this case; the first number in brackets).

Take the time now to review the other two RIP routes, noting the values for these various items in those routes. As you can see, the `show ip route rip` command output lists the routes in the exact same format, the difference being that only RIP-learned routes are shown, and the legend is not displayed at the top of the command output. The `show ip route address` command lists more detailed output about the route that matches the destination IP address listed in the command, with the command output supplying more detailed information about the route.

Administrative Distance

When an internetwork has redundant links, and uses a single routing protocol, each router may learn multiple routes to reach a particular subnet. As stated earlier in this chapter, the routing protocol then uses a metric to choose the best route, and the router adds that route to its routing table.

In some cases, internetworks use multiple IP routing protocols. In such cases, a router might learn of multiple routes to a particular subnet using different routing protocols. In these cases, the metric does not help the router choose which route is best, because each routing protocol uses a metric unique to that routing protocol. For example, RIP uses the hop count as the metric, but EIGRP uses a math formula with bandwidth and delay as inputs. A route with RIP metric 1 might need to be compared to an EIGRP route, to the same subnet, but with metric 4,132,768. (Yes, EIGRP metrics tend to be large numbers.) Because the numbers have different meanings, there is no real value in comparing the metrics.

The router still needs to choose the best route, so IOS solves this problem by assigning a numeric value to each routing protocol. IOS then chooses the route whose routing protocol has the lower number. This number is called the *administrative distance (AD)*. For example, EIGRP defaults to use an AD of 90, and RIP defaults to use the value of 120, as seen in the routes in Example 20-7. So, an EIGRP route to a subnet would be chosen instead of a competing RIP route. Table 20-6 lists the AD values for the most common sources of routing information.
While this may be a brief tangent away from RIP and routing protocols, now that this chapter has explained administrative distance, the concept behind a particular type of static route, called a backup static route, can be explained. Static routes have a default AD that is better than all routing protocols, so if a router has a static route defined for a subnet, and the routing protocol learns a route to the same subnet, the static route will be added to the routing table. However, in some cases, the static route is intended to be used only if the routing protocol fails to learn a route. In these cases, an individual static route can be configured with an AD higher than the routing protocol, making the routing protocol more believable.

For example, the `ip route 10.1.1.0 255.255.255.0 10.2.2.2 150` command sets this static route’s AD to 150, which is higher than all the default AD settings in Table 20-6. If RIP-2 learned a route to 10.1.1.0/24 on this same router, the router would place the RIP-learned route into the routing table, assuming a default AD of 120, which is better than the static route’s AD in this case.

The show ip protocols Command

The final command for examining RIP operations is the `show ip protocols` command. This command identifies some of the details of RIP operation. Example 20-8 lists the output of this command, again on Albuquerque. Due to the variety of information in the command output, the example includes many comments inside the example.
Of particular importance for real-life troubleshooting and for the exam, focus on both the version information and the routing information sources. If you forget to configure the version 2 command on one router, that router will send only RIP-1 updates by default, and the column labeled “Send” would list a 1 instead of a 2. The other routers, only listening for Version 2 updates, could not learn routes from this router.
Also, a quick way to find out if the local router is hearing RIP updates from the correct routers is to look at the list of routing information sources listed at the end of the `show ip protocols` command. For example, given the internetwork in Figure 20-1, you should expect Albuquerque to receive updates from two other routers (Yosemite and Seville). The end of Example 20-8 shows exactly that, with Albuquerque having heard from both routers in the last 30 seconds. If only one router was listed in this command’s output, you could figure out which one Albuquerque was hearing from, and then investigate the problem with the missing router.

Examining RIP Messages with debug

The best way to understand whether RIP is doing its job is to use the `debug ip rip` command. This command enables a debug option that tells the router to generate log messages each time the router sends and receives a RIP update. These messages include information about every subnet listed in those advertisements as well, and the meaning of the messages is relatively straightforward.

Example 20-9 shows the output generated by the `debug ip rip` command on the Albuquerque router, based on Figure 20-1. Note that to see these messages, the user needs to be connected to the console of the router, or use the `terminal monitor privileged mode` EXEC command if using Telnet or SSH to connect to the router. The notes inside the example describe some of the meaning of the messages, in five different groups. The first three groups of messages describe Albuquerque’s updates sent on each of its three RIP-enabled interfaces; the fourth group includes messages generated when Albuquerque receives an update from Seville; and the last group describes the update received from Yosemite.

Example 20-9 Example RIP Debug Output

```
Albuquerque#debug ip rip
RIP protocol debugging is on
Albuquerque#

! Update sent by Albuquerque out Fa0/0:
! The next two messages tell you that the local router is sending a version 2 update
! on Fa0/0, to the 224.0.0.9 multicast IP address. Following that, 5 lines list the
! 5 subnets listed in the advertisement:
*Jun  9 14:35:08.855: RIP: sending v2 update to 224.0.0.9 via FastEthernet0/0 (10.1.1.251)
*Jun  9 14:35:08.855: RIP: build update entries
  *Jun  9 14:35:08.855:   10.1.2.0/24 via 0.0.0.0, metric 2, tag 0
  *Jun  9 14:35:08.855:   10.1.3.0/24 via 0.0.0.0, metric 2, tag 0
  *Jun  9 14:35:08.855:   10.1.128.0/24 via 0.0.0.0, metric 1, tag 0
  *Jun  9 14:35:08.855:   10.1.129.0/24 via 0.0.0.0, metric 2, tag 0
  *Jun  9 14:35:08.855:   10.1.130.0/24 via 0.0.0.0, metric 1, tag 0
Albuquerque#```
First, if you take a broader look at the five sets of messages, it helps reinforce the expected updates that Albuquerque should both send and receive. The messages state that Albuquerque is sending updates on Fa0/0, S0/0/1, and S0/1/0, on which RIP should be enabled. Additionally, other messages state that the router received updates on interface S0/1/0, which is the link connected to Seville, and S0/0/1, which is the link connected to Yosemite.
Most of the details in the messages can be easily guessed. Some messages mention “v2,” for RIP Version 2, and the fact that the messages are being sent to multicast IP address 224.0.0.9. (RIP-1 sends updates to the 255.255.255.255 broadcast address.) The majority of the messages in the example describe the routing information listed in each update, specifically the subnet and prefix length (mask), and the metric.

A close examination of the number of subnets in each routing update shows that the routers do not advertise all routes in the updates. In Figure 20-1, six subnets exist. However, the updates in the example have either three or five subnets listed. The reason has to do with the theory behind RIP, specifically a feature called split horizon. This loop-avoidance feature, which is described in Chapter 10 of the ICND2 book, limits which subnets are advertised in each update to help avoid some forwarding loops.


Finally, a few comments about the `debug` command itself can be helpful. First, before using the `debug` command, it is helpful to look at the router’s CPU utilization with the `show process` command, as shown at the end of Example 20-9. This command lists the router’s CPU utilization as a rolling average over three short time periods. On routers with a higher CPU utilization, generally above 30 to 40 percent, be very cautious when enabling debug options, as this may drive the CPU to the point of impacting packet forwarding. Also, you might have noticed the time stamps on the debug messages; to make the router generate time stamps, you need to configure the `service timestamps` global configuration command.
Exam Preparation Tasks

Review All the Key Topics
Review the most important topics in the chapter, noted with the key topics icon in the outer margin of the page. Table 20-7 lists a reference of these key topics and the page numbers on which each is found.

Table 20-7  Key Topics for Chapter 20

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 20-3</td>
<td>Shows how to configure static routes</td>
<td>525</td>
</tr>
<tr>
<td>Definitions</td>
<td>IGP and EGP</td>
<td>533</td>
</tr>
<tr>
<td>Table 20-2</td>
<td>List of IGP algorithms and the IGPs that use them</td>
<td>534</td>
</tr>
<tr>
<td>Table 20-3</td>
<td>Comparison points for classless and classful routing protocols</td>
<td>536</td>
</tr>
<tr>
<td>Table 20-4</td>
<td>Summary of comparison points for IGPs</td>
<td>538</td>
</tr>
<tr>
<td>List</td>
<td>RIP-2 configuration checklist</td>
<td>538-539</td>
</tr>
<tr>
<td>List</td>
<td>The three things that occur on an interface matched by a RIP network command</td>
<td>539</td>
</tr>
<tr>
<td>Table 20-6</td>
<td>List of routing protocols and other routing sources and their default administrative distance settings</td>
<td>544</td>
</tr>
<tr>
<td>Example 20-8</td>
<td>Lists the <code>show ip protocol</code> command and how it can be used to troubleshoot RIP problems</td>
<td>545</td>
</tr>
</tbody>
</table>

Complete the Tables and Lists from Memory
Print a copy of Appendix L, “Memory Tables” (found on the DVD), or at least the section for this chapter, and complete the tables and lists from memory. Appendix M, “Memory Tables Answer Key,” also on the DVD, includes completed tables and lists to check your work.
Definitions of Key Terms

Define the following key terms from this chapter and check your answers in the glossary.

administrative distance, autonomous system, backup static route, balanced hybrid, classful routing protocol, classless routing protocol, convergence, default route, distance vector, Exterior Gateway Protocol (EGP), Interior Gateway Protocol (IGP), link state, metric, routing update, variable-length subnet masking (VLSM)

Command References

Although you should not necessarily memorize the information in the tables in this section, this section does include a reference for the configuration commands (Table 20-8) and EXEC commands (Table 20-9) covered in this chapter. Practically speaking, you should memorize the commands as a side effect of reading the chapter and doing all the activities in this exam preparation section. To check to see how well you have memorized the commands, cover the left side of the table with a piece of paper, read the descriptions in the right side, and see if you remember the command.

Table 20-8  Chapter 20 Configuration Command Reference

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>router rip</td>
<td>Global command that moves the user into RIP configuration mode.</td>
</tr>
<tr>
<td>network network-number</td>
<td>RIP subcommand that lists a classful network number, enabling RIP on all of that router’s interfaces in that classful network.</td>
</tr>
<tr>
<td>version {1</td>
<td>2}</td>
</tr>
<tr>
<td>passive-interface [default] {interface-type interface-number}</td>
<td>RIP subcommand that tells RIP to no longer advertise RIP updates on the listed interface.</td>
</tr>
<tr>
<td>ip address ip-address mask</td>
<td>Interface subcommand that sets the router’s interface IP address and mask.</td>
</tr>
<tr>
<td>ip route prefix mask [ip-address</td>
<td>Global command that defines a static route.</td>
</tr>
<tr>
<td>interface-type interface-number]</td>
<td></td>
</tr>
<tr>
<td>service timestamps</td>
<td>Global command that tells the router to put a timestamp on log messages, including debug messages.</td>
</tr>
</tbody>
</table>
### Table 20-9  Chapter 20 EXEC Command Reference

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip interface brief</td>
<td>Lists one line per router interface, including the IP address and interface status; an interface must have an IP address, and be in an “up and up” status, before RIP begins to work on the interface.</td>
</tr>
<tr>
<td>show ip route [rip</td>
<td>static</td>
</tr>
<tr>
<td>show ip route ip-address</td>
<td>Lists details about the route the router would match for a packet sent to the listed IP address.</td>
</tr>
<tr>
<td>show ip protocols</td>
<td>Lists information about the RIP configuration, plus the IP addresses of neighboring RIP routers from which the local router has learned routes.</td>
</tr>
<tr>
<td>show process</td>
<td>Lists information about the various processes running in IOS, and most importantly, overall CPU utilization statistics.</td>
</tr>
<tr>
<td>terminal ip netmask-format decimal</td>
<td>For the length of the user’s session, causes IOS to display mask information in dotted-decimal format instead of prefix format.</td>
</tr>
<tr>
<td>debug ip rip</td>
<td>Tells the router to generate detailed messages for each sent and received RIP update.</td>
</tr>
</tbody>
</table>
This chapter covers the following subjects:

**IP Troubleshooting Tips and Tools:** This section suggests some tips for how to approach host routing issues, routing related to routers, and IP addressing problems, including how to use several additional tools not covered elsewhere in this book.

**A Troubleshooting Scenario:** This section shows a three-part scenario, with tasks for each part that can be performed before seeing the answers.
This chapter has two main goals. First, this chapter covers some topics that are not covered elsewhere in this book, namely some troubleshooting commands on both hosts and routers. Second, this chapter reviews the core concepts of addressing and routing, but with a focus on how to approach new problems to analyze and understand how to troubleshoot any problems. Additionally, this chapter includes a troubleshooting scenario that shows how to use some of the tools and concepts from earlier in this chapter, with an opportunity for you to try and discover the problems before the text explains the answers.

For those of you following the reading plan using both this book and the CCNA ICND2 640-816 Official Cert Guide, note that after this chapter, you should proceed to the ICND2 book and read the chapters in Parts II and III.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess if you should read the entire chapter. If you miss no more than one of these nine self-assessment questions, you might want to move ahead to the “Exam Preparation Tasks” section. Table 21-1 lists the major headings in this chapter and the “Do I Know This Already?” quiz questions covering the material in those headings so you can assess your knowledge of these specific areas. The answers to the “Do I Know This Already?” quiz appear in Appendix A.

Table 21-1  “Do I Know This Already?” Foundation Topics Section-to-Question Mapping

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Troubleshooting Tips and Tools</td>
<td>1–6</td>
</tr>
<tr>
<td>A Routing Troubleshooting Scenario</td>
<td>7–9</td>
</tr>
</tbody>
</table>
1. An internetwork diagram shows a router, R1, with the `ip subnet-zero` command configured. The engineer has typed several configuration commands into a word processor for later pasting into the router’s configuration. Which of the following IP addresses could not be assigned to the router’s Fa0/0 interface? (Choose two answers.)
   a. 172.16.0.200 255.255.255.128
   b. 172.16.0.200 255.255.255.0
   c. 225.1.1.1 255.255.255.0
   d. 10.43.53.63 255.255.255.192

2. Which of the following is a useful command on some Microsoft OSs for discovering a host’s current IP address and mask?
   a. `tracert`
   b. `ipconfig /all`
   c. `arp –a`
   d. `ipconfig /displaydns`

3. Examine the following command output. If the user typed the `resume` command, what would happen?

   a. The command would be rejected, and the R1 CLI command prompt would be displayed again.
   b. The CLI user would be connected to a suspended Telnet connection to the router with IP address 10.1.1.1.
   c. The CLI user would be connected to a suspended Telnet connection to the router with IP address 10.1.2.1.
   d. The result cannot be accurately predicted from the information shown.

Refer to the following figure for questions 4–9:
4. If PC3 were added to the LAN on the left, with IP address 10.1.1.130/25, default gateway 10.1.1.1, which of the following would be true? (Choose two answers.)
   a. If PC1 issued a \texttt{ping 10.1.1.130} command, PC1 would use ARP to learn PC3’s MAC address.
   b. If PC3 issued a \texttt{ping 10.1.1.10} command, PC3 would ARP trying to learn PC1’s MAC address.
   c. If PC1 issued a \texttt{ping 10.1.13.1} command, PC1 would ARP trying to learn the MAC address of 10.1.13.1.
   d. If R1 issued a \texttt{ping 10.1.1.130} command, R1 would ARP trying to learn the MAC address of 10.1.1.130.

5. A new network engineer is trying to troubleshoot a problem for the user of PC1. Which of the following tasks and results would most likely point to a Layer 1 or 2 Ethernet problem on the LAN on the left side of the figure?
   a. A \texttt{ping 10.1.1.1} command on PC1 did not succeed.
   b. A \texttt{ping 10.1.13.2} command from PC1 succeeded, but a \texttt{ping 172.16.2.4} did not.
   c. A \texttt{ping 10.1.1.1} command from PC1 succeeded, but a \texttt{ping 10.1.13.1} did not.
   d. A \texttt{ping 10.1.1.10} command from PC1 succeeded.

6. The PC2 user issues the \texttt{tracert 10.1.1.10} command. Which of the following IP addresses could be shown in the command output? (Choose three answers.)
   a. 10.1.1.10
   b. 10.1.1.1
   c. 10.1.13.1
   d. 10.1.13.2
   e. 172.16.2.4

7. All the devices in the figure just booted, and none of the devices has yet sent any data frames. Both PCs use statically configured IP addresses. Then PC1 successfully pings PC2. Which of the following ARP table entries would you expect to see? (Choose two answers.)
   a. An entry on PC1’s ARP cache for IP address 172.16.2.7
   b. An entry on PC1’s ARP cache for IP address 10.1.1.1
   c. An entry on R1’s ARP cache for IP address 10.1.1.10
   d. An entry on R1’s ARP cache for IP address 172.16.2.7
8. All the devices in the figure just booted, and none of the devices has yet sent any data frames. Both PCs use statically configured IP addresses. Then PC1 successfully pings PC2. Which of the following ARP requests would you expect to occur? (Choose two answers.)
   a. PC1 would send an ARP broadcast looking for R1’s MAC address of the interface with IP address 10.1.1.1.
   b. PC2 would send an ARP broadcast looking for R2’s MAC address of the interface with IP address 172.16.2.4.
   c. R1 would send an ARP broadcast looking for PC1’s MAC address.
   d. R2 would send an ARP broadcast looking for PC2’s MAC address.
   e. PC1 would send an ARP broadcast looking for PC2’s MAC address.

9. PC1 is successfully pinging PC2 in the figure. Which of the following is true about the packets? (Choose three answers.)
   a. The frame going left-to-right, as it crosses the left-side LAN, has a destination MAC address of R1’s MAC address.
   b. The frame going left-to-right, as it crosses the right-side LAN, has a destination MAC address of R2’s MAC address.
   c. The frame going left-to-right, as it crosses the serial link, has a destination IP address of PC2’s IP address.
   d. The frame going right-to-left, as it crosses the left-side LAN, has a source MAC address of PC2’s MAC address.
   e. The frame going right-to-left, as it crosses the right-side LAN, has a source MAC address of PC2’s MAC address.
   f. The frame going right-to-left, as it crosses the serial link, has a source MAC address of R2’s MAC address.
Foundation Topics

IP Troubleshooting Tips and Tools
The primary goal of this chapter is to better prepare you for the more challenging exam problems that involve potential Layer 3 problems. These problems often require the same thought processes and tools that you would use to troubleshoot networking problems in a real job. The first half of this chapter reviews the main types of problems that can occur, mainly related to addressing, host routing, and a router's routing logic. The second half of the chapter shows a scenario that explains one internetwork that has several problems, giving you a chance to first analyze the problems, and then showing how to solve the problems.

IP Addressing
This section includes some reminders relating to some of the basic features of IP addressing. More importantly, the text includes some tips on how to apply this basic knowledge to a given exam question, helping you know how to attack a particular type of problem.

Avoiding Reserved IP Addresses
One of the first things to check in an exam question that includes a larger scenario is whether the IP addresses are reserved and should not be used as unicast IP addresses. These reserved addresses can be categorized into one of three groups:

- Addresses that are always reserved
- Two addresses that are reserved in each subnet
- Addresses in two special subnets of each classful network, namely the zero subnet and broadcast subnet.

The first category of reserved addresses includes two Class A networks that are always reserved, plus all Class D (multicast) and Class E (experimental) IP addresses. You can easily recognize these IP addresses based on the value of their first octet, as follows:

- 0 (because network 0.0.0.0 is always reserved)
- 127 (because network 127.0.0.0 is always reserved)
- 224–239 (all Class D multicast IP addresses)
- 240–255 (all Class E experimental IP addresses)
The second category of reserved IP addresses includes the two reserved addresses inside each subnet. When subnetting, each subnet reserves two numbers—the smallest and largest numbers in the subnet—otherwise known as the following:

- The subnet number
- The subnet’s broadcast address

So, the ability to quickly and confidently determine the subnet number and subnet broadcast address has yet another application, when attempting to confirm that the addresses shown in a question can be legally used.

The third category of reserved IP addresses may or may not apply to a particular internetwork or question. For a given classful network, depending on several factors, the following two subnets may not be allowed to be used:

- The zero subnet
- The broadcast subnet

If an exam question includes an address in the zero subnet or broadcast subnet, you must then consider whether the question allows neither subnet to be used, or both. Table 21-2 summarizes the clues to look for in exam questions to determine whether a question allows the use of both subnets or not.

<table>
<thead>
<tr>
<th>Clues in the Question</th>
<th>Subnets Reserved?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Says nothing about it (default for the exam)</td>
<td>No</td>
</tr>
<tr>
<td>Lists the <code>ip subnet-zero</code> configuration command</td>
<td>No</td>
</tr>
<tr>
<td>Uses a classless routing protocol (RIP-2, EIGRP, OSPF)</td>
<td>No</td>
</tr>
<tr>
<td>Lists the <code>no ip subnet-zero</code> configuration command</td>
<td>Yes</td>
</tr>
<tr>
<td>Uses a classful routing protocol (RIP-1)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

**Table 21-2  Determining Whether a Question Allows the Use of the Zero and Broadcast Subnets**

**One Subnet, One Mask, for Each LAN**

The hosts on a single LAN or VLAN (a single broadcast domain) should all be in the same subnet. As a result, each host, each router interface attached to the LAN, and each switch management address in that LAN should also use the same mask.
For the exam, you should check all the details documented in the question to determine the mask used by the various devices on the same LAN. Often, a question that is intended to test your knowledge will not just list all the information in a nice organized figure. Instead, you might have to look at the configuration and diagrams and use `show` commands to gather the information, and then apply the subnetting math explained in Part III, “IPv4 Addressing and Subnetting.”

Figure 21-1 shows an example of a LAN that could be part of a test question. For convenience, the figure lists several details about IP addresses and masks, but for a given question, you might have to gather some of the facts from a figure, a simulator, and from an exhibit that lists command output.

![Figure 21-1](image)

From the information in Figure 21-1, you can quickly tell that the two PCs use different masks (listed in prefix notation). In this case, you would need to know to look in the configuration for the subnet mask in the `ip address` interface subcommand, and then convert that mask to prefix notation to compare it with the other masks in this example. Table 21-3 lists the three differing opinions about the subnet.

**Table 21-3 Different Opinions About the Subnet in Figure 21-1**

<table>
<thead>
<tr>
<th>Mask</th>
<th>R1 Fa0/0</th>
<th>PC1</th>
<th>PC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subnet number</td>
<td>255.255.255.128</td>
<td>255.255.255.0</td>
<td>255.255.255.128</td>
</tr>
<tr>
<td>Broadcast address</td>
<td>172.16.1.128</td>
<td>172.16.1.0</td>
<td>172.16.1.127</td>
</tr>
</tbody>
</table>

In this case, several problem symptoms occur. For example, PC1 thinks 172.16.1.253 (R1) is in the same subnet, and PC1 thinks that it can forward packets to R1 over the LAN. However, R1 does not think that PC1 (172.16.1.1) is in the same subnet, so R1’s connected
route on the LAN interface (172.16.1.128/25) will not provide a route that R1 can use to forward packets back to PC1. For the exam, recognizing the fact that the hosts on the same LAN do not have the same opinion about the subnet should be enough to either answer the question, or to know what to fix in a Sim question. Table 21-7, found a little later in this chapter, summarizes the router commands that can be used to find the information required to analyze such problems.

**Summary of IP Addressing Tips**

Generally speaking, keep the following tips and facts in mind when you approach the exam questions that include details about IP addresses:

1. Check the mask used on each device in the same LAN; if different, then the devices cannot have the same view of the range of addresses in the subnet.
2. On point-to-point WAN links, check the IP addresses and masks on both ends of the link, and confirm that the two IP addresses are in the same subnet.
3. When checking to confirm that hosts are in the same subnet, do not just examine the subnet number. Also check the subnet mask, and the implied range of IP addresses.
4. Be ready to use the commands summarized in Table 21-4 to quickly find the IP addresses, masks, and subnet numbers.

The next section, in addition to reviewing a host’s routing logic, introduces some commands on Microsoft operating systems that list the host’s IP address and mask.

**Host Networking Commands**

Chapter 5, “Fundamentals of IPv4 Addressing and Routing,” explained the simple two-step logic a host uses when forwarding packets, in addition to how a host typically uses DHCP, DNS, ARP, and ICMP. These details can be summarized as follows:

**Routing:** If the packet’s destination is on the same subnet, send the packet directly; if not, send the packet to the default gateway.

**Address assignment:** Before sending any packets, the host may use DHCP client services to learn its IP address, mask, default gateway, and DNS IP addresses. The host could also be statically configured with these same details.

**Name resolution:** When the user directly or indirectly references a host name, the host typically uses DNS name resolution requests to ask a DNS to identify that host’s IP address unless the host already has that information in its name cache.

**IP-to-MAC resolution:** The host uses ARP requests to find the other host’s MAC address, or the default gateway’s IP address, unless the information is already in the host’s ARP cache.
Of these four items, note that only the routing (forwarding) process happens for each packet. The address assignment function usually happens once, soon after booting. Name resolution and ARPs occur as needed, typically in reaction to something done by the user.

To analyze how well a host has accomplished these tasks, to troubleshoot problems, and to do the equivalent for exam questions, it is helpful to know a few networking commands on a host. Table 21-4 lists several of the commands on Microsoft operating systems, but other similar commands exist for other operating systems. Example 21-1 following the table shows the output from some of these commands.

**Table 21-4 Microsoft Network Command Reference**

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipconfig /all</td>
<td>Displays detailed IP configuration information for all interfaces, including IP address, mask, default gateway, and DNS IP addresses</td>
</tr>
<tr>
<td>ipconfig /release</td>
<td>Releases any DHCP-leased IP addresses</td>
</tr>
<tr>
<td>ipconfig /renew</td>
<td>Acquires an IP address and related information using DHCP</td>
</tr>
<tr>
<td>nslookup name</td>
<td>Sends a DNS request for the listed name</td>
</tr>
<tr>
<td>arp –a</td>
<td>Lists the host’s ARP cache</td>
</tr>
<tr>
<td>ipconfig /displaydns</td>
<td>Lists the host’s name cache</td>
</tr>
<tr>
<td>ipconfig /flushdns</td>
<td>Removes all DNS-found name cache entries</td>
</tr>
<tr>
<td>arp -d</td>
<td>Flushes (empties) the host’s ARP cache</td>
</tr>
<tr>
<td>netstat -rn</td>
<td>Displays a host’s routing table</td>
</tr>
</tbody>
</table>

Example 21-1 shows an example of the ping **www.cisco.com** command on a host running Windows XP, just after the ARP cache and hostname cache have been deleted (flushed). The example first shows the DHCP-learned addressing and DNS details, and then shows the flushing of the two caches. At that point, the example shows the ping **www.cisco.com** command, which forces the host to use DNS to learn the IP address of the Cisco web server, and then ARP to learn the MAC address of the default gateway, before sending an ICMP echo request to the Cisco web server.

**NOTE** The ping fails in this example, probably due to ACLs on routers or firewalls in the Internet. However, the ping command still drives the DNS and ARP processes as shown in the example. Also, these same commands can be used from the command prompt on most any Windows OS.
Example 21-1  Example Use of Host Networking Commands

C:\>ipconfig /all
! Some lines omitted for brevity
Ethernet adapter Local Area Connection:

    Connection-specific DNS Suffix .: cinci.rr.com
    Description . . . . . . . . . . . .: Broadcom NetXtreme 57xx Gigabit Cont
    role
    Physical Address . . . . . . . . . . .: 00-11-11-96-B5-13
    Dhcp Enabled. . . . . . . . . . . . : Yes
    Autoconfiguration Enabled . . . . : Yes
    IP Address. . . . . . . . . . . . : 192.168.1.102
    Subnet Mask . . . . . . . . . . . : 255.255.255.0
    Default Gateway . . . . . . . . . : 192.168.1.1
    DHCP Server . . . . . . . . . . . : 192.168.1.1
    DNS Servers . . . . . . . . . . . : 65.24.7.3
    65.24.7.6
    Lease Obtained. . . . . . . . . . : Thursday, March 29, 2007 6:32:59 AM
    Lease Expires . . . . . . . . . . . : Friday, March 30, 2007 6:32:59 AM
! Next, the ARP and name cache are flushed.
C:\>arp -d
C:\>ipconfig /flushdns
Windows IP Configuration

Successfully flushed the DNS Resolver Cache.

! The ping command lists the IP address (198.133.219.25), meaning that the DNS request worked.
! However, the ping does not complete, probably due to ACLs filtering ICMP traffic.
C:\>ping www.cisco.com

Pinging www.cisco.com [198.133.219.25] with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.

Ping statistics for 192.133.219.25:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

! Next, the ARP cache lists an entry for the default gateway.
C:\>arp -a

Interface: 192.168.1.102 ... 0x2
  Internet Address    Physical Address    Type
  192.168.1.1         00-13-10-00-07-00   dynamic
! Next, the local name cache lists the name used in the ping command and the IP address continues
In addition to these commands, Figure 21-2 shows an example of the windows used to statically configure a host’s IP address, mask, default gateway, and DNS server IP addresses. These details can be configured with commands as well, but most people prefer the easier graphical interface.

**Figure 21-2  Configuring Static IP Addresses on Windows**
Troubleshooting Host Routing Problems

Troubleshooting host routing problems should begin with the same two-step routing logic used by a host. The first question to ask is whether the host can ping other hosts inside the same subnet. If a ping of a same-subnet host fails, the root cause typically falls into one of two categories:

- The two hosts have incorrect IP address and mask configurations, typically so that at least one of the two hosts thinks it is in a different subnet.
- The two hosts have correct IP address and mask configurations, but the underlying Ethernet has a problem.

For the exam, start by looking at the host’s addresses and masks, and determine the subnet number and range of addresses for each. If the subnets are the same, then move on to Layer 1 and 2 Ethernet troubleshooting as covered in Chapter 10, “Ethernet Switch Troubleshooting,” and in the CCNA ICND2 640-816 Official Cert Guide, Chapter 3, “Troubleshooting LAN Switching.”

If the host can ping other hosts in the same subnet, the next step is to confirm if the host can ping IP addresses in other subnets, thereby testing the second branch of a host’s routing logic. Two different pings can be helpful at this step:

- Ping the default gateway IP address to confirm that the host can send packets over the LAN to and from the default gateway.
- Ping a different IP address on the default gateway/router, but not the IP address on the same LAN.

For example, in Figure 21-1 earlier in this chapter, PC1 could first issue the ping 172.16.1.253 command to confirm whether PC1 can send packets to and from its presumed default gateway. If the ping was successful, PC1 could use a ping 172.16.2.253 command, which forces PC1 to use its default gateway setting, because PC1 thinks that 172.16.2.253 is in a different subnet.

So, when a host can ping other hosts in the same subnet, but not hosts in other subnets, the root cause typically ends up being one of a few items, as follows:

- There is some mismatch between the host’s default gateway configuration and the router acting as default gateway. The problems include mismatched masks between the host and the router, which impacts the perceived range of addresses in the subnet, or the host simply referring to the wrong router IP address.
- If the default gateway settings are all correct, but the ping of the default gateway IP address fails, there is probably some Layer 1 or 2 problem on the LAN.
If the default gateway settings are all correct and the ping of the default gateway works, but the ping of one of the other router interface IP addresses fails (like the ping **172.16.2.253** command based on Figure 21-1), then the router’s other interface may have failed.

Although all the details in this section can be helpful when troubleshooting problems on hosts, keep in mind that many of the problems stem from incorrect IP address and mask combinations. For the exam, be ready to find the IP address and masks, and apply the math from Part III to quickly determine where these types of problems exist.

**Finding the Matching Route on a Router**

Chapter 5 summarized the process by which a router forwards a packet. A key part of that process is how a router compares the destination IP address of each packet with the existing contents of that router’s IP routing table. The route that matches the packet’s destination tells the router out which interface to forward the packet and, in some cases, the IP address of the next-hop router.

In some cases, a particular router’s routing table might have more than one route that matches an individual destination IP address. Some legitimate and normal reasons for the overlapping routes in a routing table include auto-summary, route summarization, and the configuration of static routes.

The exams can test your understanding of IP routing by asking questions about which route would be matched for a packet sent to particular IP addresses. To answer such questions, you should keep the following important facts in mind:

- When a particular destination IP address matches more than one route in a router’s routing table, the router uses the most specific route—in other words, the route with the longest prefix length.
- Although the router uses binary math to compare the destination IP address to the routing table entries, you can simply compare the destination IP address to each subnet in the routing table. If a subnet’s implied address range includes the packet’s destination address, the route matches the packet’s destination.
- If the question includes a simulator, you can easily find the matched route by using the **show ip route address** command, which lists the route matched for the IP address listed in the command.

Example 21-2 shows a sample IP routing table for a router, with many overlapping routes. Read the example, and before reading the explanations after the example, predict which route this router would match for packets destined to the following IP addresses: 172.16.1.1, 172.16.1.2, 172.16.2.2, and 172.16.4.3.
For the exam, to find the matching route, all you need to know is the destination IP address of the packet and the router’s IP routing table. By examining each subnet and mask in the routing table, you can determine the range of IP addresses in each subnet. Then, you can compare the packet’s destination to the ranges of addresses, and find all matching routes. In cases where a particular destination IP address falls within the IP address range for multiple routes, then you pick the route with the longest prefix length. In this case:

- Destination address 172.16.1.1 matches all five routes, but the host route for specific IP address 172.16.1.1, prefix length /32, has the longest prefix length.
- Destination address 172.16.1.2 matches four of the routes (all except the host route for 172.16.1.1), but the route to 172.16.1.0/24 has the longest prefix.
- Destination address 172.16.2.2 matches the last three routes listed in R1’s routing table in the example, with the route for 172.16.0.0/22 having the longest prefix length.
- Destination address 172.16.4.3 matches the last two routes listed in R1’s routing table in the example, with the route for 172.16.0.0/16 having the longest prefix length.
Finally, note the output of the `show ip route 172.16.4.3` command at the end of Example 21-2. This command shows which route the router would match to reach IP address 172.16.4.3—a very handy command for both real life and for Sim questions on the exams. In this case, a packet sent to IP address 172.16.4.3 would match the route for the entire Class B network 172.16.0.0/16, as highlighted near the end of the example.

**Troubleshooting Commands**

The most popular troubleshooting command on a router or switch is the `ping` command. Chapter 20, “Routing Protocol Concepts and Configuration,” already introduced this command, in both its standard form and the extended form. Basically, the `ping` command sends a packet to another host, and the receiving host sends back a packet to the original host, testing to see if packets can be routed between the two hosts.

This section introduces three additional Cisco IOS commands that can be useful when troubleshooting routing problems, namely the `show ip arp`, `traceroute`, and `telnet` commands.

**The show ip arp Command**

The `show ip arp` command lists the contents of a router’s ARP cache. Example 21-3 lists sample output from this command, taken from router R1 in Figure 21-1, after the router and hosts were changed to all use a /24 mask.

**Example 21-3  Sample show ip arp Command Output**

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Address</th>
<th>Age (min)</th>
<th>Hardware Addr</th>
<th>Type</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet</td>
<td>172.16.1.1</td>
<td>8</td>
<td>0013.197b.2f58</td>
<td>ARPA</td>
<td>FastEthernet0/0</td>
</tr>
<tr>
<td>Internet</td>
<td>172.16.1.253</td>
<td>-</td>
<td>0013.197b.5004</td>
<td>ARPA</td>
<td>FastEthernet0/0</td>
</tr>
<tr>
<td>Internet</td>
<td>172.16.2.253</td>
<td>-</td>
<td>0013.197b.5005</td>
<td>ARPA</td>
<td>FastEthernet0/1</td>
</tr>
</tbody>
</table>

The most important parts of each entry are the IP address, MAC address, and interface. When a router needs to send a packet out a particular interface, the router will only use entries associated with that interface. For example, for R1 to send a packet to host PC1 in Figure 21-1 (address 172.16.1.1), R1 needs to forward the packet out its Fa0/0 interface, so R1 will only use ARP cache entries associated with Fa0/0.

Additionally, the Age heading includes a few interesting facts. If it lists a number, the Age value represents the number of minutes since the router last received a packet from the host. For example, it had been 8 minutes since R1 had received a packet from host PC1, source IP address 172.16.1.1, source MAC address 0013.197b.2f58. The Age does not mean how long it has been since the ARP request/reply; the timer is reset to 0 each time a matching packet is received. If the Age is listed as a dash, the ARP entry actually represents an IP address assigned to the router—for example, R1’s Fa0/0 interface in Figure 21-1 is shown as 172.16.1.253, which is the second entry in Example 21-3.
The traceroute Command

The Cisco IOS traceroute command, like the Cisco IOS ping command, tests the route between a router and another host or router. However, the traceroute command also identifies the IP addresses of the routers in the route. For example, consider Figure 21-3 and Example 21-4. The figure shows an internetwork with three routers, with the traceroute 172.16.2.7 command being used on router R1. The arrowed lines show the three IP addresses identified by the command output, which is shown in Example 21-4.

Figure 21-3  Internetwork Used in traceroute Example

![Internetwork Diagram]

Example 21-4  Sample traceroute Command Output

```
R1#traceroute 172.16.2.7

Type escape sequence to abort.
Tracing the route to 172.16.2.7

1 10.1.13.3 8 msec 4 msec 4 msec
2 172.16.1.4 24 msec 25 msec 26 msec
3 172.16.2.7 26 msec 26 msec 28 msec
```

The example shows a working traceroute command. However, if a routing problem exists, the command will not complete. For example, imagine that R1 had a route that matched 172.16.2.7, so R1 could forward packets to R2. However, R2 does not have a route that matches destination 172.16.2.7. In that case, the traceroute command would list the first line that refers to a router (highlighted in Example 21-4). However, no other routers would be listed, and the user would have to stop the command, typically by pressing the Ctrl-Shift-6 key sequence a few times. However, 10.1.13.3 is an IP address on the router that has a routing problem (R2), so the next step would be to telnet to R2 and find out why it does not have a route matching destination 172.16.2.7.

It is important to note that the traceroute command lists the IP addresses considered to be the next-hop device. For example, in Example 21-4, the first IP address (R2, 10.1.13.3) is the next-hop IP address in the route R1 uses to route the packet. Similarly, the next IP
address (R3, 172.16.1.4) is the next-hop router in the route used by R2. (Chapter 9, “Troubleshooting IP Routing,” in the CCNA ICND2 640-816 Official Cert Guide explains how the \texttt{traceroute} command finds these IP addresses.)

| NOTE | Many operating systems have a similar command, including the Microsoft OS \texttt{tracert} command, which achieves the same goal. |

**Telnet and Suspend**

Many engineers troubleshoot network problems sitting at their desks. To get access to a router or switch, the engineer just needs to use Telnet or SSH on their desktop PC to connect to each router or switch, often opening multiple Telnet or SSH windows to connect to multiple devices. As an alternative, the engineer could connect to one router or switch using a Telnet or SSH client on their desktop computer, and then use the \texttt{telnet} or \texttt{ssh} Cisco IOS EXEC commands to connect to other routers and switches. These commands act as a Telnet or SSH client, respectively, so that you can easily connect to other devices when troubleshooting. When finished, the user could just use the \texttt{exit} command to disconnect the Telnet or SSH session.

Frankly, many people who rarely troubleshoot just use multiple windows on their desktop and ignore the Cisco IOS \texttt{telnet} and \texttt{ssh} commands. However, those who do a lot more troubleshooting tend to use these commands because, with practice, they enable you to move between routers and switches more quickly.

One of the most important advantages of using the Cisco IOS \texttt{telnet} and \texttt{ssh} commands is the suspend feature. The suspend feature allows a Telnet or SSH connection to remain active while creating another Telnet or SSH connection, so that you can make many concurrent connections, and then easily switch between the connections. Figure 21-4 shows a sample internetwork with which the text will demonstrate the suspend feature and its power.

The router administrator is using the PC named Bench to telnet into the Cincy router. When connected to the Cincy CLI, the user telnets to router Milwaukee. When in Milwaukee, the user suspends the Telnet session by pressing Ctrl-Shift-6, followed by pressing the letter x. (Note that Ctrl-Shift-6 sends a break character and some international keyboards may map a different key sequence to send a break character.) The user then telnets to New York and again suspends the connection. At the end of the example, the user is concurrently telnetted into all three routers, with the ability to switch between the connections with just a few keystrokes. Example 21-5 shows example output, with annotations to the side.
Figure 21-4  Telnet Suspension

Example 21-5  Telnet Suspensions

Cincy#telnet milwaukee  (User issues command to Telnet to Milwaukee)
Trying Milwaukee (10.1.4.252)... Open

User Access Verification

Password:                 (User plugs in password, can type commands at Milwaukee)
Milwaukee>
Milwaukee>
Milwaukee>  (Note: User pressed Ctrl-Shift-6 and then x)
Cincy#telnet NewYork  (User back at Cincy because Telnet was suspended)
Trying NewYork (10.1.6.253)... Open
          (User is getting into New York now, based on telnet NewYork command)

User Access Verification

continues
Example 21-5  
Telnet Suspensions (Continued)

Password:
NewYork>  (User can now type commands on New York)
NewYork>  (Note: User pressed Ctrl-Shift-6 and then x)
NewYork>  
Cincy#show sessions  (This command lists suspended Telnet sessions)
Conn Host          Address         Byte  Idle Conn Name
  1 Milwaukee      10.1.4.252       0     0 Milwaukee
*  2 NewYork       10.1.6.253       0     0 NewYork

Cincy#where  (where does the same thing as show sessions)
Conn Host          Address         Byte  Idle Conn Name
  1 Milwaukee      10.1.4.252       0     0 Milwaukee
*  2 NewYork       10.1.6.253       0     0 NewYork

Cincy#resume 1  (Resume connection 1 (see show session) to Milwaukee)
[Resuming connection 1 to milwaukee ... ]
Milwaukee>  (User can type commands on Milwaukee)
Milwaukee>  
Milwaukee>  !  (Note: User pressed Ctrl-Shift-6 and then x, because the user wants to go back to Cincy)
Cincy# (WOW! User just pressed Enter and resumes the last Telnet)
[Resuming connection 1 to milwaukee ... ]
Milwaukee>  
Milwaukee>  
Cincy#disconnect 1  (No more need to use Milwaukee  Telnet terminated!)
Closing connection to milwaukee [confirm]  (User presses Enter to confirm)
Cincy#  
[Resuming connection 2 to NewYork ... ]
(Pressing Enter resumes most recently suspended active Telnet)

NewYork>  
NewYork>  
NewYork>  (Note: User pressed Ctrl-Shift-6 and then x)
Cincy#disconnect 2  (Done with New York, terminate Telnet)
Closing connection to NewYork [confirm]  (Just press Enter to confirm)
Cincy#
The play-by-play notes in the example explain most of the details. Example 21-5 begins with the Cincy command prompt that would be seen in the Telnet window from host Bench. After telnetting to Milwaukee, the Telnet connection was suspended because the user pressed Ctrl-Shift-6, let go, and then pressed x and let go. Then, after establishing a Telnet connection to New York, that connection was suspended with the same key sequence.

The two connections can be suspended or resumed easily. The `resume` command can be used to resume any suspended connection. To reconnect to a particular session, the `resume` command can list a connection ID, which is shown in the `show sessions` command. (The `where` command provides the same output.) If the `resume` command is used without a connection ID, the command reconnects the user to the most recently suspended connection. Also, instead of using the `resume` command, you can just use the session number as a command. For instance, just typing the command 2 does the same thing as typing the command `resume 2`.

The interesting and potentially dangerous nuance here is that if a Telnet session is suspended and you simply press Enter, Cisco IOS Software resumes the connection to the most recently suspended Telnet connection. That is fine, until you realize that you tend to press the Enter key occasionally to clear some of the clutter from the screen. With a suspended Telnet connection, pressing Enter a few times to unclutter the screen might reconnect to another router. This is particularly dangerous when you are changing the configuration or using potentially damaging EXEC commands, so be careful about what router you are actually using when you have suspended Telnet connections.

If you want to know which session has been suspended most recently, look for the session listed in the `show sessions` command that has an asterisk (*) to the left of the entry. The asterisk marks the most recently suspended session.

In addition to the commands in Example 21-5 that show how to suspend and resume Telnet and SSH connections, two other commands can list useful information about sessions for users logged into a router. The `show users` command lists all users logged into the router on which the command is used. This command lists all sessions, including users at the console, and those connecting using both Telnet and SSH. The `show ssh` command lists the same kind of information, but only for users that connected using SSH. Note that these commands differ from the `show sessions` command, which lists suspended Telnet/SSH sessions from the local router to other devices.

This concludes the first half of the chapter. The remainder of the chapter focuses on how to apply many of the troubleshooting tips covered earlier in this chapter by analyzing an internetwork that has a few problems.
A Routing Troubleshooting Scenario

This section describes a three-part scenario. Each part (A, B, and C) uses figures, examples, and text to explain part of what is happening in an internetwork and asks you to complete some tasks and answer some questions. For each part, the text shows sample answers for the tasks and questions.

The goal of this scenario is to demonstrate how to use some of the troubleshooting tips covered earlier in this chapter. The scenario is not designed to match any particular type of question you might see on the CCNA exams. Instead, it is just one more tool to help you learn how to apply your knowledge to new unique scenarios, which is exactly what the exam will require you to do.

Note that Appendix J, “Additional Scenarios,” has two additional scenarios about other topics in this book. Appendix G, “Additional Scenarios,” in the CCNA ICND2 640-816 Official Cert Guide has five additional scenarios, again with the goal of providing more practice with troubleshooting and analysis skills for new scenarios.

Scenario Part A: Tasks and Questions

The scenario begins with an internetwork that has just been installed, but the documentation is incomplete. Your job is to examine the existing documentation (in the form of an internetwork diagram), along with the output of several show commands. From that information, you should

■ Determine the IP address and subnet mask/prefix length of each router interface.

■ Calculate the subnet number for each subnet in the diagram.

■ Complete the internetwork diagram, listing router IP addresses and prefix lengths, as well as the subnet numbers.

■ Identify any existing problems with the IP addresses or subnets shown in the existing figure.

■ Suggest solutions to any problems you find.

Examples 21-6 through 21-8 list command output from routers R1, R2, and R3 in Figure 21-5. Example 21-9 lists commands as typed into a text editor, which were later pasted into R4’s configuration mode.
Figure 21-5  
Scenario 3: Incomplete Network Diagram

Example 21-6  
Scenario Output: Router R1

```
R1#show ip interface brief
Interface IP-Address OK? Method Status Protocol
FastEthernet0/0 10.10.24.1 YES NVRAM up up
FastEthernet0/1 10.10.15.1 YES NVRAM up up
Serial0/0/0 unassigned YES NVRAM administratively down down
Serial0/0/1 192.168.1.1 YES NVRAM up up
Serial0/1/0 unassigned YES NVRAM administratively down down
Serial0/1/1 192.168.1.13 YES NVRAM up up

R1#show protocols
Global values:
 Internet Protocol routing is enabled
 FastEthernet0/0 is up, line protocol is up
 Internet address is 10.10.24.1/21
 FastEthernet0/1 is up, line protocol is up
 Internet address is 10.10.15.1/21
 Serial0/0/0 is administratively down, line protocol is down
 Serial0/0/1 is up, line protocol is up
 Internet address is 192.168.1.1/30
 Serial0/1/0 is administratively down, line protocol is down
 Serial0/1/1 is up, line protocol is up
 Internet address is 192.168.1.13/30
```
Example 21-7  Scenario Output: Router R2

R2#show protocols
Global values:
  Internet Protocol routing is enabled
  FastEthernet0/0 is up, line protocol is up
    Internet address is 192.168.4.29/28
  FastEthernet0/1 is administratively down, line protocol is down
  Serial0/0/0 is administratively down, line protocol is down
  Serial0/0/1 is up, line protocol is up
    Internet address is 192.168.1.2/30
  Serial0/1/0 is up, line protocol is up
    Internet address is 192.168.1.6/30
  Serial0/1/1 is administratively down, line protocol is down

Example 21-8  Scenario Output: Router R3

R3#show interface brief
Interface     IP-Address      OK? Method Status       Protocol
FastEthernet0/0  172.31.5.1    YES NVRAM  up                up
FastEthernet0/1  unassigned     YES NVRAM administratively down down
Serial0/0/0      unassigned     YES NVRAM administratively down down
Serial0/0/1      unassigned     YES NVRAM administratively down down
Serial0/1/0  192.168.1.5     YES NVRAM  up                up
Serial0/1/1  192.168.1.18    YES NVRAM  up                up

R3#show ip route connected
  172.31.0.0/25 is subnetted, 1 subnets
  C    172.31.5.0 is directly connected, FastEthernet0/0
  C    192.168.1.0/24 is variably subnetted, 5 subnets, 2 masks
  C    192.168.1.4/30 is directly connected, Serial0/1/0
  C    192.168.1.16/30 is directly connected, Serial0/1/1

Example 21-9  Scenario Output: Router R4

! The following commands are in a text editor, and will be pasted into
! configuration mode on R4.
interface fa0/1
  ip address 192.168.4.30 255.255.255.240
!
interface serial 0/0/1
  ip address 192.168.1.14 255.255.255.252
!
interface serial 0/1/1
  ip address 192.168.1.19 255.255.255.252
!
! The following three lines correctly configure RIP Version 2
router rip
  version 2
  network 192.168.1.0
  network 192.168.4.0
Scenario Part A: Answers
Examples 21-6, 21-7, and 21-8 list the IP addresses of each interface on routers R1, R2, and R3, respectively. However, some of the commands used in the examples do not provide mask information. In particular, the `show ip interface brief` command—a great command for getting a quick look at interfaces, their IP addresses, and the status—does not list the mask. The `show protocols` command lists that same information, as well as the subnet mask.

Example 21-8 (R3) does list the mask information directly, but it may take a little work to find it. You can see the interfaces and their configured IP addresses in the `show ip interfaces brief` command output, and then compare that information to the output of the `show ip route connected` command. This command does list the mask information, and the subnet number connected to an interface. A router determines the subnet number and mask for each connected route based on the configured `ip address` interface subcommand on each interface. From these facts, you can determine the mask used on each of R3’s interfaces.

Finally, Example 21-9 lists configuration commands that will be pasted into router R4. These commands explicitly list the IP addresses and subnet masks in the various `ip address` configuration commands.

Figure 21-6 shows the answers to the first three tasks in Part A, listing the IP addresses and masks of each interface, as well as the subnet numbers.
With all the information listed in one internetwork diagram, you can use the suggestions and tips from earlier in this chapter to analyze the IP addresses and subnets. In this case, you should have found two different addressing problems.

The first IP addressing problem occurs because PC31 and PC32 disagree about the subnet on the lower-left LAN in Figure 21-6. In this case, PC32, with IP address 172.31.5.200 and a prefix length of /25, thinks it is in subnet 172.31.5.128/25, with a range of addresses from 172.31.5.129 to 172.31.5.254. PC31 and R3, attached to the same LAN, correctly think they are attached to subnet 172.31.5.0/25, with the range of addresses being 172.31.5.1-172.31.5.126.

This particular mismatch prevents R3 from being able to forward packets to PC32. R3 has a connected route for 172.31.5.0/25, and the implied range of addresses does not include PC32’s address that ends in .200, so R3 simply does not have a route that matches PC32's IP address. Additionally, PC32’s setting for its default gateway IP address (172.31.5.1) is invalid, because the default gateway IP address should be in the same subnet as the host.

The second addressing problem in this scenario exists on the serial link between R3 and R4. R4’s configuration lists a subnet broadcast address (192.168.1.19/30) for subnet 192.168.1.16/30. This subnet has an address range of 192.168.1.17 - 192.168.1.18, with 192.168.1.19 as the subnet broadcast address. Note that the scenario suggested that the commands in Example 21-9 would be pasted into R4’s configuration mode; R4 would actually reject the `ip address 192.168.1.19 255.255.255.252` command because it is a subnet broadcast address.

Several possible working solutions exist for both problems, but the simple solution in each case is to assign a valid but unused IP address from the correct subnets. In PC32’s case, any IP address between 172.31.5.1 and 172.31.5.126, not already used by PC31 or R3, would work fine. For R4, IP address 192.168.1.17 would be the only available IP address, because R3 has already been assigned 192.168.1.18.

**Scenario Part B: Analyze Packet/Frame Flow**

Part B of this scenario continues with the network shown in Figure 21-6—including the IP addressing errors from Part A. However, no other problems exist. In this case, all physical connections and links are working, and RIP-2 has been correctly configured, and is functional.

With those assumptions in mind, answer the following questions. Note that to answer some questions, you need to refer to MAC addresses that are not otherwise specified. In these cases, a pseudo MAC address is listed—for example, R1-Fa0/1-MAC for R1’s Fa0/1 interface’s MAC address.
1. PC12 successfully pings PC21, with the packet flowing over the R1-R2 link. What ARP table entries are created to support the forwarding of the ICMP Echo Request packet?

2. Assume when PC12 pings PC23 that the ICMP echo request goes over the R1-R4 path. What ARP table entries are required on PC12? R1? R4?

3. Assume when PC12 pings PC23 that the ICMP echo request goes over the R1-R2 path. What ARP table entries are required in support of the ICMP echo reply from PC23, on PC23? R2? R4? R1?

4. PC31 sends a packet to PC22. When the packet passes over the Ethernet on the right side of the figure, what is the source MAC address? Destination MAC address? Source IP address? Destination IP address?

5. PC31 sends a packet to PC22. When the packet passes over the serial link between R3 and R2, what is the source MAC address? Destination MAC address? Source IP address? Destination IP address?

6. PC21 sends a packet to PC12, with the packet passing over the R2-R1 path. When the packet passes over the Ethernet on the right side of the figure, what is the source MAC address? Destination MAC address? Source IP address? Destination IP address?

7. PC21 sends a packet to PC12, with the packet passing over the R2-R1 path. When the packet passes over the Ethernet on the left side of the figure, what is the source MAC address? Destination MAC address? Source IP address? Destination IP address?

**Scenario Part B: Answers**

Scenario Part B requires that you think about the theory behind the IP forwarding process. That process includes many details covered in Chapter 5. In particular, to answer the questions in Part B correctly, you need to remember the following key facts:

- The IP packet flows from the sending host to the receiving host.
- The data link header and trailer, which encapsulate the packet, do not flow over the complete end-to-end route—instead, each individual data link helps move the packet from a host to a router, between two routers, or from a router to the destination host.
- For the process to work, the data link frame’s destination address lists the next device’s data link address.
The IP header lists the IP address of the sending host and receiving host.

Routers discard the data link header and trailer for received frames and build a new data link header and trailer—appropriate for the outgoing interface—before forwarding the frame.

On LANs, hosts and routers use ARP to discover the Ethernet MAC address used by other devices on the same LAN.

On point-to-point WAN links, ARP is not needed, and the data link addressing is uninteresting and can be ignored.

If your reading of this list caused you to doubt some of your answers, feel free to go back and re-evaluate your answers before looking at the actual answers.

Scenario Part B: Question 1

This question focuses on the packet flow from PC12 to PC21, assuming the packet passes over the R1-R2 link. The fact that the packet is created due to a ping command, and contains an ICMP echo request, does not impact the answer at all. The question specifically asks about which ARP table entries must be used by each device.

To answer the question, you need to remember how a host or router will choose to which device it sends the frame. PC12 sends the frame to R1 because the destination IP address is in a different subnet than PC12. R1 then sends a new frame to R2. Finally, R2 sends yet another new frame (with new data link header and trailer) to PC21. Figure 21-7 shows the frames, with just the destination MAC address and destination IP address shown.

To analyze the frame sent by PC12, remember that PC12’s logic is basically “the destination IP address is on another subnet, so send this packet to my default gateway.” To do so, PC12 needs to encapsulate the IP packet in an Ethernet frame so that the frame arrives at R1, PC12’s default gateway. So, PC12 must find the MAC address of its default gateway (10.10.15.1) in PC12’s ARP table. If the ARP table entry exists, PC12 can immediately build the frame shown in Figure 21-7 at step 1. If not, PC12 must first send an ARP broadcast, and receive a reply, to build the correct entry in its ARP table.

Also, note that PC12 does not need to know PC21’s MAC address, because PC12 is not trying to send the packet directly to PC21. Instead, PC12 is trying to send the packet to its default gateway, so PC12 needs to know its default gateway’s MAC address.
Step 2, as marked in Figure 21-7, shows the frame after R1 has stripped off the incoming frame’s Ethernet header and trailer, R1 has decided to forward the packet out R1’s S0/0/1 interface to R2 next, and R1 has added a (default) HDLC header and trailer to encapsulate the IP packet. The packet’s destination IP address (192.168.4.21) is unchanged. HDLC, used only on point-to-point links, does not use MAC addresses, so it does not need ARP at all. So, no ARP table entries are needed on R1 for forwarding this packet.

Finally, step 3 again shows the frame after the router (R2) has stripped off the incoming HDLC frame’s header and trailer and built the new Ethernet header and trailer. R2 needs to forward the packet out R2’s Fa0/0 interface, directly to PC21, so R2 builds a header with PC21’s MAC address as the destination. To make that happen, R2 needs an ARP table entry listing PC21’s IP address (192.168.4.21) and its corresponding MAC address. Again, if R2 does not have an ARP table entry for IP address 192.168.4.21, R2 will send an ARP request (broadcast), and wait for a reply, before R2 would forward the packet.

Scenario Part B: Question 2

The answer to question 2 uses the same logic and reasoning as the answer to question 1. In this case, PC12, R1, and R4 will forward the packet in three successive steps, as follows:

1. PC12 decides to send the packet to its default gateway, because the destination (192.168.4.23) is on a different subnet than PC12. So, PC12 needs an ARP table entry listing the MAC address of its default gateway (10.10.15.1, or R1).
2. R1 receives the frame, strips off the data link header and trailer, and decides to forward the packet over the serial link to R4. The link uses HDLC, so R1 does not need ARP at all.

3. R4 receives the frame and strips off the incoming frame’s HDLC header and trailer. R4 then decides to forward the packet directly to PC23, out R4’s Fa0/1 interface, so R4 needs an ARP table entry listing the MAC address of host 192.168.4.23 (PC23).

Figure 21-8 shows the ARP table entries required for the flow of a packet from PC12 to PC23. Note that the figure also shows the correlation between the next-hop IP address and the MAC address, with the MAC address then being added to a new Ethernet data link header.

**Figure 21-8  Required ARP Table Entries: Question 2**

PC12 ARP Table:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>MAC Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.15.1</td>
<td>R1-Fa0/1-MAC</td>
</tr>
</tbody>
</table>

R4 ARP Table:

<table>
<thead>
<tr>
<th>IP Address</th>
<th>MAC Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.4.23</td>
<td>PC23-MAC</td>
</tr>
</tbody>
</table>

**Scenario Part B: Question 3**

The tricky part of this particular question relates to the fact that two routers connect to the subnet on the right of Figure 21-6, so PC23 appears to have two possible routers to use as its default gateway. The question suggests that an ICMP echo request packet goes from PC12, through R1, then R2, and over the LAN to PC23. PC23 then needs to send the ICMP echo reply to PC12, so to answer the question fully, you need to understand where the packet flows, and then determine the required ARP table entries on each device.

PC23 still uses the same familiar host logic when sending a packet—if the destination is on a different subnet, PC23 will send the packet to its default gateway. In this case, PC23
needs to send the ICMP echo reply to PC12, which is in another subnet, so PC23 will send the packet to 192.168.4.30 (R4)—PC23’s configured default gateway. Presumably, R4 would then forward the packet to R1, and then R1 would forward the packet directly to PC12.

The ARP entries required for sending packets from PC23, to R4, to R1, and then to PC12 are as follows:

1. PC23 decides to send the packet to its default gateway, R4. So, PC23 needs an ARP table entry listing the MAC address of its default gateway (192.168.4.30).
2. R4 receives the frame, strips off the data link header and trailer, and decides to forward the packet over the serial link to R1. This link uses HDLC, so R4 does not need ARP at all.
3. R1 receives the frame from R4 and strips off the incoming frame’s HDLC header and trailer. R1 then decides to forward the packet directly to PC12, out R1’s Fa0/1 interface, so R1 needs an ARP table entry listing the MAC address of host 10.10.10.12 (PC12).

Figure 21-9 shows the ARP table entries required for the flow of a packet from PC23 to PC12. Note that the figure also shows the correlation between the next-hop IP address and the MAC address, with the MAC address then being added to a new Ethernet data link header.

**Figure 21-9  Required ARP Table Entries: Question 3**
Scenario Part B: Question 4
This question uses a packet sent from PC31 to PC22, but with the question focusing on the packet as it crosses the LAN on the right side of Figure 21-6. To answer this question fully, you need to recall that while the source and destination IP addresses of the packet remain unchanged from sending host to receiving host, the data link source and destination addresses change each time a router builds a new data link header when forwarding a packet. Additionally, you need to realize that the R3→R4 serial link has been misconfigured (R4’s proposed IP address of 192.168.1.19 was invalid), so no IP packets can be forwarded over the link between R3 and R4. As a result, the packet will go over this path: PC31→R3→R2→PC22.

The packet in question here (from PC31 to PC22) passes over the LAN on the right side of the figure when R2 forwards the packet over the LAN to PC22. In this case, R2 will build a new Ethernet header, with a source MAC address of R2’s Fa0/0 interface MAC address. The destination MAC address will be PC22’s MAC address. The source and destination IP addresses of 172.31.5.100 (PC31) and 192.168.4.22 (PC22), respectively, remain unchanged.

Figure 21-10 shows both data link addresses and both network layer addresses in each frame sent from PC31 to PC22. Note that the figure shows the addresses in the data link and network layer headers for each stage of its passage from PC31 to PC22.

Scenario Part B: Question 5
This question uses the same packet flow as question 4, but it focuses on the frame that passes the serial link between R3 and R2. The question can be easily answered as long as you remember that the router discards the data link headers of received frames, and then encapsulates the packet in a new data link header and trailer before forwarding the packet. This new data link header and trailer must be appropriate for the outgoing interface.

In this case, the routers use HDLC, which is the default point-to-point serial data link protocol on Cisco routers. HDLC headers do not include MAC addresses at all—in fact, HDLC addressing is completely uninteresting, because any frame sent by R3 on that link must be destined for R2, because R2 is the only other device on the other end of the link. As a result, there are no MAC addresses, but the source and destination IP addresses of 172.31.5.100 (PC31) and 192.168.4.22 (PC22), respectively, remain unchanged. Figure 21-9, found in the previous answer, shows a representation of the HDLC frame, mainly pointing out that it does not contain MAC addresses.
**Scenario Part B: Question 6**

This question focuses on a packet sent from PC21 to PC12, as the packet crosses the LAN on the right side of Figure 21-6. Also, the question tells you that the packet goes from PC21 to R2, then to R1, then to PC12.

In this case, PC21 forwards the packet, encapsulated in an Ethernet frame, to R2. To do so, the Ethernet header lists PC21 as the source MAC address, and R2’s Fa0/0 interface MAC address as the destination MAC address. The IP addresses—a source of 192.168.4.21 (PC21) and a destination of 10.10.10.12 (PC12)—remain the same for the entire journey from PC21 to PC12. Figure 21-11 summarizes the frame contents for both this question and the next.
Scenario Part B: Question 7

Question 7 continues question 6 by examining the same packet, sent from PC21 to PC12, as the packet crosses the LAN on the upper-left part of Figure 21-6. The route taken by this packet is from PC21 to R2, then to R1, then to PC12.

To begin, PC21 sends the IP packet, with a source of 192.168.4.21 (PC21) and a destination of 10.10.10.12 (PC12). To send this packet, PC21 encapsulates the packet in an Ethernet frame to deliver the packet to its default gateway (R2). R2 strips off the Ethernet header of the received frame, and before forwarding the packet to R1, R2 encapsulates the packet in an HDLC frame. When R1 receives the HDLC frame, R1 removes the HDLC header and trailer, deciding to forward the packet out R1’s Fa0/1 interface to PC12. As usual, the packet’s source and destination address do not change at all during this process.

Before R1 forwards the packet out its Fa0/1 interface, R1 adds an Ethernet header and trailer. The source MAC address is R1’s Fa0/1 interface MAC address, and the destination, found in R1’s ARP table, is PC12’s MAC address. Note that Figure 21-11, shown in the previous section, shows this frame on the left side of the figure.

Scenario Part C: Analyze Connected Routes

For Part C of this scenario, predict the output that would be displayed of the `show ip route connected` command on R4 and R1. You may continue to assume that any IP addressing problems found in Part A still have not been corrected. You may refer back to Example 21-5 through Example 21-9, as well as the completed IP address reference of Figure 21-6, for reference.

Scenario Part C: Answers

Routers add connected IP routes to their IP routing tables, referencing the subnet that is connected to an interface, assuming the following are true:

- The interface’s two status codes are “up” and “up.”
- The interface has an IP address correctly configured.

For each interface meeting these two requirements, the router calculates the subnet number based on the IP address and subnet mask listed in the `ip address` interface subcommand. Based on details included in Parts A and B of this scenario, all router interfaces shown in Figure 21-5 have an IP address and are up/up, with the exception of R4’s S0/1/1 interface. This one serial interface was to be assigned an IP address that was really a subnet broadcast address, so the router would have rejected the `ip address` command. Table 21-5 lists the location and connected routes added to R1 and R4.
To see the connected routes in a concise command, you can use the `show ip route connected` EXEC command. This command simply lists a subset of the routes in the routing table—those that are connected routes. Example 21-10 and Example 21-11 show the contents of the `show ip route connected` command on both R1 and R4, respectively.

**Example 21-10  show ip route connected Command Output for R1**

```
R1#show ip route connected
10.0.0.0/21 is subnetted, 2 subnets
 C 10.10.8.0 is directly connected, FastEthernet0/1
 C 10.10.24.0 is directly connected, FastEthernet0/0
192.168.1.0/24 is variably subnetted, 5 subnets, 2 masks
 C 192.168.1.12/30 is directly connected, Serial0/1/1
 C 192.168.1.0/30 is directly connected, Serial0/0/1
```

**Example 21-11  show ip route connected Command on R4**

```
R4#show ip route connected
192.168.4.0/28 is subnetted, 1 subnets
 C 192.168.4.16 is directly connected, FastEthernet0/1
192.168.1.0/24 is variably subnetted, 5 subnets, 2 masks
 C 192.168.1.12/30 is directly connected, Serial0/0/1
```

If you compare the highlighted portions of Example 21-11 with Example 21-9’s `ip address 192.168.4.30 255.255.255.240` command, a subcommand under R4’s Fa0/1 interface, you can correlate the information. The mask from the `ip address` command can be used to determine the prefix notation version of the same mask—/28. The address and mask together can be used to determine the subnet number of 192.168.4.16. These same pieces of information are highlighted in the output of the `show ip route connected` command in Example 21-11.
Exam Preparation Tasks

Review All the Key Topics

Review the most important topics from inside the chapter, noted with the key topics icon in the outer margin of the page. Table 21-6 lists a reference of these key topics and the page numbers on which each is found.

Table 21-6  Key Topics for Chapter 21

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>First octet values of addresses that are always reserved and cannot be assigned to hosts</td>
<td>557</td>
</tr>
<tr>
<td>Table 21-2</td>
<td>Summary of reasons why an exam question should or should not allow the use of the zero and broadcast subnets</td>
<td>558</td>
</tr>
<tr>
<td>List</td>
<td>Summary of four tips when approaching IP addressing related questions on the exams</td>
<td>560</td>
</tr>
<tr>
<td>List</td>
<td>Summary of how a host thinks about routing, address assignment, name resolution, and ARP</td>
<td>560</td>
</tr>
<tr>
<td>List</td>
<td>Two typical reasons why a host cannot ping other hosts in the same subnet</td>
<td>564</td>
</tr>
<tr>
<td>List</td>
<td>Three typical reasons why a host can ping other hosts in the same subnet, but not hosts in other subnets</td>
<td>564-565</td>
</tr>
<tr>
<td>List</td>
<td>Tips regarding how a router matches a packet’s destination IP address as part of the routing process</td>
<td>565</td>
</tr>
<tr>
<td>Figure 21-3</td>
<td>Shows the IP addresses discovered by the Cisco IOS traceroute command</td>
<td>568</td>
</tr>
<tr>
<td>List</td>
<td>Reminders that are helpful when thinking about the source and destination MAC and IP addresses used at various points in an internetwork</td>
<td>578</td>
</tr>
<tr>
<td>List</td>
<td>Two key requirements for a router to add a connected route</td>
<td>585</td>
</tr>
</tbody>
</table>
Complete the Tables and Lists from Memory

Print a copy of Appendix L, “Memory Tables” (found on the DVD), or at least the section for this chapter, and complete the tables and lists from memory. Appendix M, “Memory Tables Answer Key,” also on the DVD, includes completed tables and lists to check your work.

Command Reference

Table 21-7 lists the EXEC commands used in this chapter and a brief description of their use. Additionally, you might want to review the host commands listed earlier in the chapter in Table 21-4. (This chapter did not introduce any new configuration commands.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show sessions</td>
<td>Lists the suspended Telnet and SSH session on the router from which the Telnet and SSH sessions were created</td>
</tr>
<tr>
<td>where</td>
<td>Does the same thing as the show sessions command</td>
</tr>
<tr>
<td>telnet [hostname</td>
<td>ip_address]</td>
</tr>
<tr>
<td>ssh –l username [hostname</td>
<td>ip_address]</td>
</tr>
<tr>
<td>disconnect [connection_number]</td>
<td>Disconnects a currently suspended Telnet or SSH connection, based on the connection number as seen with the show sessions command</td>
</tr>
<tr>
<td>resume [connection_number]</td>
<td>Connects the CLI to a currently suspended Telnet or SSH connection, based on the connection number as seen with the show sessions command</td>
</tr>
<tr>
<td>traceroute [hostname</td>
<td>ip_address]</td>
</tr>
<tr>
<td>Ctrl-Shift-6, x</td>
<td>The key sequence required to suspend a Telnet or SSH connection</td>
</tr>
<tr>
<td>show ip arp</td>
<td>Lists the contents of the router’s ARP cache</td>
</tr>
<tr>
<td>show arp</td>
<td>Lists the contents of the router’s ARP cache</td>
</tr>
<tr>
<td>show ssh</td>
<td>Lists information about the users logged in to the router using SSH</td>
</tr>
<tr>
<td>show users</td>
<td>Lists information about users logged in to the router, including Telnet, SSH, and console users</td>
</tr>
</tbody>
</table>
Cisco Published ICND1 Exam Topics* Covered in This Part:

Describe the operation of data networks

- Interpret network diagrams
- Determine the path between two hosts across a network
- Describe the components required for network and Internet communications
- Identify and correct common network problems at Layers 1, 2, 3, and 7 using a layered model approach
- Differentiate between LAN/WAN operation and features

Implement an IP addressing scheme and IP services to meet network requirements for a small branch office

- Explain the basic uses and operation of NAT in a small network connecting to one ISP
- Describe the operation and benefits of using private and public IP addressing
- Enable NAT for a small network with a single ISP and connection using SDM and verify operation using CLI and ping

Implement and verify WAN links

- Describe different methods for connecting to a WAN
- Configure and verify a basic WAN serial connection

*Always recheck http://www.cisco.com for the latest posted exam topics.
Part V: Wide-Area Networks

Chapter 22  WAN Concepts
Chapter 23  WAN Configuration
This chapter covers the following subjects:

**WAN Technologies:** This section examines several additional WAN technologies that were not covered in Chapter 4, namely modems, DSL, cable, and ATM.

**IP Services for Internet Access:** This section examines how an Internet access router uses DHCP client and server functions, as well as NAT.
Chapter 4, “Fundamentals of WANs,” introduced two important WAN technologies common in enterprise networks today:

- Leased lines, which use either High-Level Data Link Control (HDLC) or Point-to-Point Protocol (PPP)
- Frame Relay

Part IV of this book covers the remainder of the WAN-specific topics in this book. In particular, this chapter examines a broader range of WAN technologies, including commonly used Internet access technologies. Chapter 23, “WAN Configuration,” focuses on how to implement several features related to WAN connections, including several Layer 3 services required for a typical Internet connection from a small office or home (SOHO) today.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess if you should read the entire chapter. If you miss no more than one of these eight self-assessment questions, you might want to move ahead to the “Exam Preparation Tasks” section. Table 22-1 lists the major headings in this chapter and the “Do I Know This Already?” quiz questions covering the material in those headings so you can assess your knowledge of these specific areas. The answers to the “Do I Know This Already?” quiz appear in Appendix A.

| Table 22-1 “Do I Know This Already?” Foundation Topics Section-to-Question Mapping |
|-------------------------------|------------------|
| Foundation Topics Section     | Questions        |
| WAN Technologies              | 1–5              |
| IP Services for Internet Access | 6–8              |
1. Which of the following best describes the function of demodulation by a modem?
   a. Encoding an incoming analog signal from the PC as a digital signal for transmission into the PSTN
   b. Decoding an incoming digital signal from the PSTN into an analog signal
   c. Encoding a set of binary digits as an analog electrical signal
   d. Decoding an incoming analog electrical signal from the PSTN into a digital signal
   e. Encoding a set of binary digits as a digital electrical signal

2. Which of the following standards has a limit of 18,000 feet for the length of the local loop?
   a. ADSL
   b. Analog modems
   c. ISDN
   d. Cable Internet service

3. Which of the following is true regarding the location and purpose of a DSLAM?
   a. Typically used at a home or small office to connect the phone line to a DSL router
   b. Typically used at a home or small office instead of a DSL router
   c. Typically used inside the telco’s CO to prevent any voice traffic from reaching the ISP’s router
   d. Typically used inside the telco’s CO to separate the voice traffic from the data traffic

4. Which of the following remote-access technologies support specifications that allow both symmetric speeds and asymmetric speeds? (Choose two answers.)
   a. Analog modems
   b. WWW
   c. DSL
   d. Cable modems
5. Which of the following remote-access technologies, when used to connect to an ISP, is considered to be an “always on” Internet service? (Choose two answers.)
   a. Analog modems
   b. DSL
   c. Cable modems
   d. All of these answers are correct.

6. For a typical Internet access router, using either cable or DSL, which of the following does the router typically do on the router interface connected to the LAN with the PCs in the small or home office?
   a. Acts as a DHCP server
   b. Acts as a DHCP client
   c. Performs NAT/PAT for the source address of packets that exit the interface
   d. Acts as DNS server

7. For a typical Internet access router, using either cable or DSL, which of the following does the router typically do on the router interface connected toward the Internet? (Choose two answers.)
   a. Acts as a DHCP server
   b. Acts as a DHCP client
   c. Performs NAT/PAT for the source address of packets that exit the interface
   d. Acts as DNS server

8. This question examines a home-based network with a PC, a DSL router, and a DSL line. The DSL router uses typical default settings and functions. The PC connected to the router has IP address 10.1.1.1. This PC opens a browser and connects to the www.cisco.com web server. Which of the following are true in this case? (Choose two answers.)
   a. The web server can tell it is communicating with a host at IP address 10.1.1.1.
   b. The PC learns the IP address of the www.cisco.com web server as a public IP address.
   c. The 10.1.1.1 address would be considered an inside local IP address.
   d. The 10.1.1.1 address would be considered an inside global IP address.
Foundation Topics

WANs differ from LANs in several ways. Most significantly, WAN links typically go much longer distances, with the WAN cabling being installed underground in many cases to prevent accidental damage by people walking on them or cars driving over them. Governments typically do not let the average person dig around other people’s property, so WAN connections use cabling installed by a service provider, with the service provider having permission from the appropriate government agencies to install and maintain the cabling. The service provider then sells the WAN services to various enterprises. This difference between WANs and LANs can be summed up with the old adage “You own LANs, but you lease WANs.”

This chapter has two major sections. The first section examines a broad range of WAN connectivity options, including switched circuits, DSL, cable, and ATM. The second half then explains how Internet connections from a home or small office often need several Layer 3 services before the WAN connection can be useful. The second section goes on to explain why DHCP and NAT are needed for routers connecting to the Internet, with particular attention to the NAT function.

WAN Technologies

This section introduces four different types of WAN technologies in addition to the leased-line and Frame Relay WANs introduced in Chapter 4. The first of these technologies, analog modems, can be used to communicate between most any two devices, and can be used to connect to the Internet through an ISP. The next two technologies, DSL and cable Internet, are almost exclusively used for Internet access. The last of these, ATM, is a packet-switching service used like Frame Relay to connect enterprise routers, as well as for other purposes not discussed in this book.

Before introducing each of these types of WANs, this section starts by explaining a few details about the telco’s network, particularly because modems and DSL use the phone line installed by the telco.

Perspectives on the PSTN

The term Public Switched Telephone Network (PSTN) refers to the equipment and devices that telcos use to create basic telephone service between any two phones in the world. This term refers to the combined networks of all telephone companies. The “public” part of PSTN refers to the fact that it is available for public use (for a fee), and the “switched” part refers to the fact that you can change or switch between phone calls
with different people at will. Although the PSTN was originally built to support voice traffic, two of the three Internet access technologies covered in this chapter happen to use the PSTN to send data, so a basic understanding of the PSTN can help you appreciate how modems and DSL work.

Sound waves travel through the air by vibrating the air. The human ear hears the sound because the ear vibrates as a result of the air inside the ear moving, which, in turn, causes the brain to process the sounds that were heard by the ear.

The PSTN, however, cannot forward sound waves. Instead, a telephone includes a microphone, which simply converts the sound waves into an analog electrical signal. (The electrical signal is called analog because it is analogous to the sound waves.) The PSTN can send the analog electrical signal between one phone and another using an electrical circuit. On the receiving side, the phone converts the analog electrical signal back to sound waves using a speaker that is inside the part of the phone that you put next to your ear.

The original PSTN predated the invention of the digital computer by quite a while, with the first telephone exchanges being created in the 1870s, soon after the invention of the telephone by Alexander Graham Bell. In its original form, a telephone call required an electrical circuit between the two phones. With the advent of digital computers, however, in the mid-1950s telcos began updating the core of the PSTN to use digital electrical signals, which gave the PSTN many advantages in speed, quality, manageability, and capability to scale to a much larger size.

Next, consider what the telco has to do to make your home phone work. Between your home and some nearby telco central office (CO), the telco typically installs a cable with a pair of wires, called the local loop. (In the United States, if you have ever seen a two- to three-foot-high light-green post in your neighborhood, that is the collection point for the local loop cables that connect to the houses on that street.) One end of the cable enters your house and connects to the phone outlets in your house. The other end (possibly miles away) connects to a computer in the CO, generically called a voice switch. Figure 22-1 shows the concept, along with some other details.

The local loop supports analog electrical signals to create a voice call. The figure shows two local loops, one connected to Andy’s phone, and the other connected to Barney’s. Andy and Barney happen to live far enough apart that their local loops connect to different COs.
When Andy calls Barney, the phone call works, but the process is more complicated than just setting up an electrical circuit between the two phones. In particular, note that

- The phones use analog electrical signals only.
- The voice switches use a digital circuit to forward the voice (a T1 in this case).
- The voice switch must convert between analog electricity and digital electricity in both directions.

To make it all work, the phone company switch in the Mayberry CO performs analog-to-digital (A/D) conversion of Andy’s incoming analog voice. When the switch in Raleigh gets the digital signal from the Mayberry switch, before sending it out the analog line to Barney’s house, the Raleigh switch reverses the A/D process, converting the digital signal back to analog. The analog signal going over the local line to Barney’s house is roughly the same analog signal that Andy’s phone sent over his local line; in other words, it is the same sounds.

The original standard for converting analog voice to a digital signal is called pulse-code modulation (PCM). PCM defines that an incoming analog voice signal should be sampled 8000 times per second by the A/D converter, using an 8-bit code for each sample. As a result, a single voice call requires 64,000 bits per second—which amazingly fits perfectly into 1 of the 24 available 64-kbps DS0 channels in a T1. (As you may recall from Chapter 4, a T1 holds 24 separate DS0 channels, 64 kbps each, plus 8 kbps of management overhead, for a total of 1.544 Mbps.)
The details and complexity of the PSTN as it exists today go far beyond this brief introduction. However, these few pages do introduce a few key points that will give you some perspectives on how other WAN technologies work. In summary:

- The telco voice switch in the CO expects to send and receive analog voice over the physical line to a typical home (the local loop).
- The telco voice switch converts the received analog voice to the digital equivalent using a codec.
- The telco converts the digital voice back to the analog equivalent for transmission over the local loop at the destination.
- The voice call, with the PCM codec in use, consumes 64 kbps through the digital part of the PSTN (when using links like T1s and T3s inside the telco).

**Analog Modems**

Analog modems allow two computers to send and receive a serial stream of bits over the same voice circuit normally used between two phones. The modems can connect to a normal local phone line (local loop), with no physical changes required on the local loop cabling and no changes required on the voice switch at the telco’s CO. Because the switch in the CO expects to send and receive analog voice signals over the local loop, modems simply send an analog signal to the PSTN and expect to receive an analog signal from the PSTN. However, that analog signal represents some bits that the computer needs to send to another computer, instead of voice created by a human speaker. Similar in concept to a phone converting sound waves into an analog electrical signal, a modem converts a string of binary digits on a computer into a representative analog electrical signal.

To achieve a particular bit rate, the sending modem could modulate (change) the analog signal at that rate. For instance, to send 9600 bps, the sending modem would change the signal (as necessary) every 1/9600th of a second. Similarly, the receiving modem would sample the incoming analog signal every 1/9600th of a second, interpreting the signal as a binary 1 or 0. (The process of the receiving end is called demodulation. The term modem is a shortened version of the combination of the two words modulation and demodulation.)

Because modems represent data as an analog electrical signal, modems can connect to a PSTN local loop, make the equivalent of a phone call to another site that has a modem connected to its phone line, and send data. As a result, modems can be used at most any location that has a phone line installed.

The PSTN refers to a communications path between the two modems as a circuit. Because the modems can switch to a different destination just by hanging up and dialing another
phone number, this type of WAN service is called a *switched circuit*. Figure 22-2 shows an example, now with Andy and Barney connecting their PCs to their home phone lines using a modem.

**Figure 22-2  Basic Operation of Modems over PSTN**

Once the circuit has been established, the two computers have a Layer 1 service, meaning that they can pass bits between each other. The computers also need to use some data link layer protocol on the circuit, with PPP being a popular option today. The telco has no need to try and interpret what the bits sent by the modem mean—in fact, the telco does not even care to know if the signal represents voice or data.

To be used as an Internet access WAN technology, the home-based user connects via a modem to a router owned by an ISP. The home user typically has a modem in their computer (internal modem) or outside the computer (external modem). The ISP typically has a large bank of modems. The ISP then publishes a phone number for the phone lines installed into the ISP router’s modem bank, and the home user dials that number to connect to the ISP’s router.

The circuit between two modems works and acts like a leased line in some regards; however, the link differs in regards to clocking and synchronization. The CSU/DSUs on the ends of a leased line create what is called a synchronous circuit, because not only do the CSU/DSUs try to run at the same speed, they adjust their speeds to match or synchronize with the other CSU/DSU. Modems create an asynchronous circuit, which means that the two modems try to use the same speed, but they do not adjust their clock rates to match the other modem.
Modems have the great advantage of being the most pervasively available remote-access technology, usable most anywhere that a local phone line is available. The cost is relatively low, particularly if the phone line is already needed for basic voice service; however, modems run at a relatively slow speed. Even with modern compression technologies, the bit rate for modems is only a little faster than 100 kbps. Additionally, you cannot concurrently talk on the phone and send data with a modem on the same phone line.

**Digital Subscriber Line**

By the time *digital subscriber line (DSL)* came around in the mid- to late 1990s, the main goal for remote-access WAN technology had changed. The need to connect to any other computer anywhere had waned, but the need to connect to the Internet was growing quickly. In years past, modems were used to dial a large variety of different computers, which was useful. Today you can think of the Internet as a utility, just like you think of the electric company, the gas company, and so on. The Internet utility provides IP connectivity to the rest of the world, so if you can just get connected to the Internet, you can communicate with anyone else in the world.

Because most people today just want access to the utility—in other words, the Internet—DSL was defined a little differently than modems. In fact, DSL was designed to provide high-speed access between a home or business and the local CO. By limiting the scope of where DSL needed to work, design engineers were able to define DSL to support much faster speeds than modems.

DSL’s basic services have some similarities, as well as differences, to analog modems. Some of the key features are as follows:

- DSL allows analog voice signals and digital data signals to be sent over the same local loop wiring at the same time.
- The local loop must be connected to something besides a traditional voice switch at the local CO, in this case—a device called a *DSL access multiplexer (DSLAM)*.
- DSL allows for a concurrent voice call to be up at the same time as the data connection.
- Unlike modems, DSL’s data component is always on; in other words, you do not have to signal or dial a phone number to set up a data circuit.

DSL really does provide some great benefits—you can use the same old phones that you already have, you can keep the same phone number, and, once DSL is installed, you can just sit down and start using your “always on” Internet service without having to dial a number. Figure 22-3 shows some of the details of a typical DSL connection.
The figure shows a generic-looking device labeled “DSL Router/Modem” which connects via a standard telephone cable to the same phone jack on the wall. Many options exist for the DSL hardware at the home: There could be a separate router and DSL modem, the two could be combined as shown in the figure, or the two could be combined along with a LAN switch and a wireless AP. (Figure 19-4 and Figure 19-5 in Chapter 19, “Operating Cisco Routers,” show a couple of the cabling options for the equivalent design when using cable Internet, which has the same basic hardware options.)

In the home, a DSL modem or DSL-capable router is connected to the phone line (the local loop) using a typical telephone cable, as shown on the left side of Figure 22-3. The same old analog telephones can be connected to any other available phone jacks, at the same time. The cable from the phone or DSL modem to the telephone wall jack uses RJ-11 connectors, as is typical for a cable for an analog phone or a modem.

DSL supports concurrent voice and data, so you can make a phone call without disrupting the always-on DSL Internet connection. The phone generates an analog signal at frequency ranges between 0 and 4000 Hz; the DSL modem uses frequencies higher than 4000 Hz so that the phone and DSL signals do not interfere with each other very much. You typically need to put a filter, a small device about the size of a small packet of chewing gum, between each phone and the wall socket (not shown) to prevent interference from the higher-frequency DSL signals.
The DSLAM at the local CO plays a vitally important role in allowing the digital data and analog voice to be processed correctly. When migrating a customer from just using voice to instead support voice and DSL, the phone company has to disconnect the local loop cable from the old voice switch and move it to a DSLAM. The local loop wiring itself does not have to change. The DSLAM directs (multiplexes) the analog voice signal—the frequency range between 0 Hz and 4000 Hz—to a voice switch, and the voice switch treats that signal just like any other analog voice line. The DSLAM multiplexes the data traffic to a router owned by the ISP providing the service in Figure 22-3.

The design with a local loop, DSLAM, and ISP router enables a business model in which you buy Internet services from an ISP that is not the local phone company. The local telco owns the local loop. However, many ISPs that are not a local telco sell DSL Internet access. The way it works is that you pay the ISP a monthly fee for DSL service, and the ISP works with the telco to get your local loop connected to the telco’s DSLAM. The telco then configures the DSLAM to send data traffic from your local loop to that ISP’s router. You pay the ISP for high-speed DSL Internet service, and the ISP keeps part of the money and gives part of the money to the local telco.

**DSL Types, Speeds, and Distances**

DSL technology includes many options at many speeds, with some variations getting more attention in the marketplace. So, it is helpful to consider at least a few of the options.

One key difference in the types of DSL is whether the DSL service is symmetric or asymmetric. *Symmetric* DSL means that the link speed in each direction is the same, whereas *asymmetric* means that the speeds are different. As it turns out, SOHO users tend to need to receive much more data than they need to send.

For example, a home user might type in a URL in a browser window, sending a few hundred bytes of data to the ISP. The web page returned from the Internet may be many megabytes large. Asymmetric DSL allows for much faster downstream (Internet toward home) speeds, but with lower upstream (home toward Internet) speeds, as compared with symmetric DSL. To better match the traffic pattern, and to provide more downstream bandwidth, an ADSL connection might use a 1.5-Mbps speed downstream (toward the end user), and a 384-Kbps speed upstream toward the Internet. Table 22-2 lists some of the more popular types of DSL, and whether each is asymmetric or symmetric.

**Table 22-2  DSL Types**

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Spelled Out</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADSL</td>
<td>Asymmetric DSL</td>
<td>Asymmetric</td>
</tr>
<tr>
<td>CDSL (G.lite)</td>
<td>Consumer DSL</td>
<td>Asymmetric</td>
</tr>
<tr>
<td>VDSL</td>
<td>Very-high-data-rate DSL</td>
<td>Asymmetric</td>
</tr>
</tbody>
</table>

*continues*
The speed used by DSL varies based on many factors. Most types of DSL have been through several iterations of improved specifications. For example, when you order and use DSL in the United States, you probably use ADSL, but it may be based on ADSL2 or ADSL2+ standards. Beyond the actual standard used by the provider, several other factors impact what truly occurs between you and the provider, including:

- The distance between the CO and the consumer (the longer the distance, the slower the speed)
- The quality of the local loop cabling (the worse the wiring, the slower the speed)
- The type of DSL (each standard has different maximum theoretical speeds)
- The DSLAM used in the CO (older equipment may not have recent improvements that allow for faster speeds on lower-grade local loops)

For example, the ADSL2 standard, a follow-on to the ADSL standard, lists a maximum theoretical download speed of 12 Mbps. Its successor, ADSL2Plus, lists a maximum of 24 Mbps. Commerically, at press time, an informal survey of the largest DSL providers in the U.S. showed the typical maximum downstream speed of 6 Mbps. Regardless of the actual speeds, these speeds are significantly faster than modem speeds, making DSL very popular in the marketplace for high-speed Internet access.

Besides the factors that limit the speed, DSL lines typically do not work at all if the local loop exceeds that particular DSL standard’s maximum cabling length. For example, ADSL has become popular in part because it supports local loops that are up to 18,000 feet (a little over 3 miles/5 kilometers). However, if you live in the country, far away from the CO, chances are DSL is not an option.

**DSL Summary**

DSL brings high-speed remote-access capabilities to the home. It supports concurrent voice and data, using the same old analog phones and same old local loop cabling. The Internet data service is always on—no dialing required. Furthermore, the speed of the DSL service itself does not degrade when more users are added to the network.
DSL has some obvious drawbacks. DSL simply will not be available to some people, particularly those in rural areas, based on the distance from the home to the CO. The local telco must have DSL equipment in the CO before it, or any ISP, can offer DSL services. Even when the home is close enough to the CO, sites farther from the CO might run slower than sites closer to the CO.

**Cable Internet**

Of all the Internet access technologies covered in this chapter, cable modem technology is the only one that does not use a phone line from the local telco for physical connectivity. Many homes also have a cable TV service supplied by a coaxial cable—in other words, over the cable TV (CATV) cabling. Cable modems provide an always-on Internet access service, while allowing you to surf the Internet over the cable and make all the phone calls you want over your telephone line—and you can watch TV at the same time!

| NOTE | Cable companies today also offer digital voice services, competing with the local telcos. The voice traffic also passes over the same CATV cable. |

Cable modems (and cable routers with integrated cable modems, similar in concept to DSL) use some of the capacity in the CATV cable that otherwise might have been allocated for new TV channels, using those frequency bands for transferring data. It is a little like having an “Internet” channel to go along with CNN, TBS, ESPN, The Cartoon Network, and all your other favorite cable channels.

To appreciate how cable modems work, you need a little perspective on some cable TV terminology. Cable TV traditionally has been a one-way service—the cable provider sends electrical signals down the cable for all the channels. All you have to do, after the physical installation is complete, is choose the channel you want to watch. While you are watching The Cartoon Network, the electrical signals for CNN still are coming into your house over the cable—your TV is just ignoring that part of the signal. If you have two TVs in your house, you can watch two different channels because the signals for all the channels are being sent down the cable.

Cable TV technology has its own set of terminology, just like most of the other access technologies covered in this chapter. Figure 22-4 outlines some of the key terms.

The cable modem or cable router connects to the CATV cable, shown as a dotted line in the figure. In a typical house or apartment, there are several cable wall plates installed, so the cable modem/router just connects to one of those wall jacks. And like DSL modems/routers, the cable modem/router connects to the PCs in the home using an Ethernet connection.
The other end of the cable connects to equipment in the cable company’s facilities, generally called the head-end. Equipment on the head-end can split the channels used for Internet over to an ISP router, much like a DSLAM splits data off the telco local loop over to an ISP’s router. That same equipment collects TV signals (typically from a satellite array) and feeds those over other channels on the cable to provide TV service.

Cable Internet service has many similarities to DSL services. It is intended to be used to access some ISP’s router, with that service being always on and available. It is asymmetric, with much faster downstream speeds. The SOHO user needs a cable modem and router, which may be in a single device or in separate devices.

There are some key differences, as you might imagine. Cable Internet service runs faster than DSL. Cable speeds also keep progressing at a similar pace with DSL speeds, with many providers offering 15 Mbps, and some as fast as 50 Mbps. Cable speeds do not degrade due to the length of the cable (distance from the cable company’s facilities).
However, the effective speed of cable Internet does degrade as more and more traffic is sent over the cable by other users, because the cable is shared among users in certain parts of the CATV cable plant, whereas DSL does not suffer from this problem. To be fair, the cable companies can engineer around these contention problems and improve the effective speed for those customers.

**NOTE** Pinning down a specific speed number for DSL or cable Internet is difficult. However, you can test connections with several tools. I personally like CNET’s bandwidth meter (http://reviews.cnet.com/internet-speed-test/).

### Comparison of Remote-Access Technologies

This chapter scratches the surface of how modems, cable, and DSL work. Consumers choose between these options for Internet access all the time, and network engineers choose between these options for supporting their work-at-home users as well. So, Table 22-3 lists some of the key comparison points for these options.

**Table 22-3  Comparison of Modems, DSL, and Cable**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Analog Modems</th>
<th>DSL</th>
<th>Cable Modems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport</td>
<td>Telco local loop</td>
<td>Telco local loop</td>
<td>CATV cable</td>
</tr>
<tr>
<td>Supports symmetric speeds</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Supports asymmetric speeds</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Typical practical speeds (may vary)</td>
<td>Up to 100 kbps</td>
<td>6 Mbps downstream</td>
<td>15 to 20 Mbps downstream</td>
</tr>
<tr>
<td>Allows concurrent voice and data</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Always-on Internet service</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Local loop distance issues</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Throughput degrades under higher loads</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

### ATM

The other WAN technologies introduced in this book can all be used for Internet access from the home or a small office. Asynchronous Transfer Mode (ATM) is most often used today either as a packet-switching service, similar in purpose to Frame Relay, or as a
switching technology used inside the core network built by telcos. This section introduces ATM as a packet-switching service.

To use ATM, routers connect to an ATM service via an access link to an ATM switch inside the service provider’s network—basically the same topology as Frame Relay. For multiple sites, each router would need a single access link to the ATM network, with a virtual circuit (VC) between sites as needed. ATM can use permanent VCs (PVC) like Frame Relay.

Of course, there are differences between Frame Relay and ATM; otherwise, you would not need both! First, ATM typically supports much higher-speed physical links, especially those using a specification called Synchronous Optical Network (SONET). The other big difference is that ATM does not forward frames—it forwards **cells**. A cell, just like a packet or frame, is a string of bits sent over some network. The difference is that while packets and frames can vary in size, ATM cells are always a fixed 53 bytes in length.

ATM cells contain 48 bytes of payload (data) and a 5-byte header. The header contains two fields that together act like the data-link connection identifier (DLCI) for Frame Relay by identifying each VC. The two fields are named **Virtual Path Identifier (VPI)** and **Virtual Channel Identifier (VCI)**. Just like Frame Relay switches forward frames based on the DLCI, devices called ATM switches, resident in the service provider network, forward cells based on the VPI/VCI pair.

The end users of a network typically connect using Ethernet, and Ethernet devices do not create cells. So, how do you get traffic off an Ethernet and onto an ATM network? A router connects both to the LAN and to the ATM WAN service via an access link. When a router receives a packet from the LAN and decides to forward the packet over the ATM network, the router creates the cells by breaking the packet into smaller pieces. This cell-creation process involves breaking up a data link layer frame into 48-byte-long segments. Each segment is placed in a cell along with the 5-byte header. Figure 22-5 shows the general idea, as performed on R2.

**Figure 22-5  ATM Segmentation and Reassembly**
R1 actually reverses the segmentation process after receiving all the cells—a process called *reassemble*. The entire concept of segmenting a frame into cells, and reassembling them, is called *segmentation and reassembly (SAR)*. Cisco routers use specialized ATM interfaces to support ATM. The ATM cards include special hardware to perform the SAR function quickly. They also often include special hardware to support SONET.

Because of its similar function to Frame Relay, ATM also is considered to be a type of packet-switching service. However, because it uses fixed-length cells, it more often is called a *cell-switching* service.

**Packet Switching Versus Circuit Switching**

Many WAN technologies can be categorized as either a circuit-switching service or a packet-switching service. In traditional telco terminology, a circuit provides the physical ability to send voice or data between two endpoints. The origins of the term circuit relate to how the original phone systems actually created an electrical circuit between two telephones in order to carry the voice signal. The leased lines explained in Chapter 4 are circuits, providing the physical ability to transfer bits between two endpoints.

Packet switching means that the devices in the WAN do more than pass the bits or electrical signal from one device to another. With packet switching, the provider’s networking devices interpret the bits sent by the customers by reading some type of address field in the header. The service makes choices, switching one packet to go in one direction, and the next packet to go in another direction to another device. Table 22-4 summarizes a few of the key comparison points between these two types of WANs.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Circuits</th>
<th>Packet Switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service implemented as OSI layer</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Point-to-point (two devices) or more</td>
<td>Point-to-point</td>
<td>Multipoint (more than two)</td>
</tr>
</tbody>
</table>

**Ethernet as a WAN Service**

Before moving on to a discussion of some Internet access issues, it is useful to note a major development in WAN services: Ethernet as a WAN service, or Metropolitan Ethernet (Metro E). To supply a Metro E service, the service provider provides an Ethernet cable, oftentimes optical to meet the longer distance requirements, into the customer site. The customer can then connect the cable to a LAN switch or router.

Additionally, the service provider can offer both Fast Ethernet and Gigabit Ethernet speeds, but, like Frame Relay, offer a lower committed information rate (CIR). For example, a
customer might need 20 Mbps of bandwidth between routers located at large data centers on either side of a city. The provider installs a Fast Ethernet link between the sites, contracting with the customer for 20 Mbps. The customer then configures the routers so that they will purposefully send only 20 Mbps, on average, using a feature called shaping. The end result is that the customer gets the bandwidth, typically at a better price than other options (like using a T3).

Metro E offers many design options as well, including simply connecting one customer site to an ISP, or connecting all of a customer’s sites to each other using various VLANs over a single Ethernet access link. Although the details are certainly beyond the CCNA exams, it is an interesting development to watch as it becomes more popular in the marketplace.

Next, this chapter changes focus completely, examining several features that are required for a typical Internet connection using DSL and cable.

**IP Services for Internet Access**

DSL and cable Internet access have many similar features. In particular, both use a router, with that router being responsible for forwarding packets from the computers in the home or office to a router on the other side of the cable/DSL line, and vice versa. This second major section of this chapter examines several IP-related functions that must be performed by the DSL/cable router, in particular a couple of ways to use DHCP, as well as a feature called Network Address Translation (NAT).

The equipment used at a SOHO to connect to the Internet using DSL or cable may be a single integrated device, or several separate devices, as introduced in Figures 19-4 and 19-5 in Chapter 19. For the sake of explaining the details in this chapter, the figures will show separate devices, as in Figure 22-6.
Thinking about the flow of data left-to-right in the figure, a PC sends data to its default gateway, which is the local access router. The LAN switch just forwards frames to the access router. The router makes a routing decision to forward the packet to the ISP router as the next-hop router. Then, the cable modem converts the Ethernet frame received from the router to meet cable specifications, the details of which are beyond the scope of this book. Finally, the ISP router has a routing table for all routes in the Internet, so it can forward the packet to wherever the packet needs to go.

Of the three devices at the small office, this section examines the router in detail. Besides basic routing, the access router needs to perform three additional important functions, as will be explained in this section: assign addresses, learn routes, and translate addresses (NAT).

**Address Assignment on the Internet Access Router**

The Internet access router in Figure 22-6 has two LAN interfaces—one facing the Internet and one facing the devices at that site. As was mentioned in Part III of this book on many occasions, to be able to route packets on those two interfaces, the router needs an IP address on each interface. However, instead of choosing and statically configuring the IP addresses with the `ip address` interface subcommand, the IP addresses are chosen per the following rules:

- The Internet-facing interface needs one public IP address so that the routers in the Internet know how to route packets to the access router.
- The ISP typically assigns that public (and globally routable) IP address dynamically, using DHCP.
- The local PCs typically need to dynamically learn IP addresses with DHCP, so the access router will act as a DHCP server for the local hosts.
- The router needs a statically configured IP address on the local subnet, using a private network number.
- The local LAN subnet will use addresses in a private network number.

**NOTE** The section “Private IP Networks” in Chapter 12, “Perspectives on IPv4 Subnetting,” introduces the concept of private networks and lists the ranges of addresses in private networks.

Figure 22-7 shows the net results of the DHCP exchanges between the various devices, ignoring some of the cabling details.
For the process in Figure 22-7 to work, the access router (R1) needs a statically configured IP address on the local interface, a DHCP server function enabled on that interface, and a DHCP client function enabled on the Internet interface. R1 learns its Internet interface IP address from the ISP, in this case—64.100.1.1. After being configured with IP address 192.168.1.1/24 on the local interface, R1 starts answering DHCP requests, assigning IP addresses in that same subnet to PC1 and PC2. Note that R1’s DHCP messages list the DNS IP address (198.133.219.2) learned from the ISP’s DHCP server.

**Routing for the Internet Access Router**

Besides the IP address details, router R1 needs to be able to route packets to and from the Internet. R1 has two connected routes, as normal. However, instead of learning all the routes in the global Internet using a routing protocol, R1 can use a default route. In fact, the topology is a classic case for using a default route—the access router has one possible physical route to use to reach the rest of the Internet, namely the route connecting the access router to the ISP’s router.

Instead of requiring a static route configuration, the access router can add a default route based on the default gateway learned by the DHCP client function. For example, in Figure 22-7, R1 learned a default gateway IP address of 64.100.1.2, which is router ISP1’s interface connected to the DSL or cable service. The access router creates a default route with that default gateway IP address as the next-hop router. Figure 22-8 shows this default route, along with a few other important routes, as solid lines with arrows.
The default gateway settings on the local PCs, along with the default route on the access router (R1), allow the PCs to send packets that reach the Internet. At that point, the Internet routers should be able to forward the packets anywhere in the Internet. However, the routes pointing in the reverse direction, from the Internet back to the small office, seem incomplete at this point. Because R1’s Internet-facing IP address (64.100.1.1 in Figure 22-8) is from the public registered IP address range, all the routers in the Internet should have a matching route, enabling them to forward packets to that address. However, Internet routers should never have any routes for private IP addresses, like those in private networks, such as private network 192.168.1.0/24 as used in Figure 22-8.

The solution to this problem is not related to routing; instead, the solution is to make the local hosts on the LAN look as if they are using R1’s publicly registered IP address by using NAT and PAT. Hosts in the Internet will send the packets to the access router’s public IP address (64.100.1.1 in Figure 22-8), and the access router will translate the address to match the correct IP address on the hosts on the local LAN.

**NAT and PAT**

Before getting to the details of how NAT and Port Address Translation (PAT) solve this last part of the puzzle, a few other related perspectives can help you to understand NAT and PAT—one related to IP address conservation, and one related to how TCP and UDP use ports.
First, the Internet Corporation for Assigned Names and Numbers (ICANN) manages the process of assigning public IP addresses in the global IPv4 address space—and we are slowly running out of addresses. So, when an ISP adds a new DSL or cable customer, the ISP wants to assign as few public IP addresses to that customer as possible. Additionally, the ISP prefers to assign the address dynamically, so if a customer decides to move to another ISP, the ISP can quickly reclaim and reuse the IP address for another customer. So, for a typical DSL or cable connection to the Internet, the ISP assigns a single publicly routable IP address, using DHCP, as was shown earlier in Figure 22-7. In particular, the ISP does not want to assign multiple public IP addresses to each PC (like PC1 and PC2 in Figure 22-7), again to conserve the public IPv4 address space.

The second thing to think about is that, from a server’s perspective, there is no important difference between some number of TCP connections from different hosts, versus the same number of TCP connections from the same host. Figure 22-9 details an example that helps make the logic behind PAT more obvious.

**Figure 22-9** Three TCP Connections: From Three Different Hosts, and from One Host

Three Connections from Three PCs

Three Connections from One PC
The top part of the figure shows a network with three different hosts connecting to a web server using TCP. The bottom half of the figure shows the same network later in the day, with three TCP connections from one client. All six connections connect to the server IP address (128.107.1.1) and port (80, the well-known port for web services). In each case, the server is able to differentiate between the various connections because each has a unique combination of IP address and port number.

Keeping the address conservation and port number concepts in mind, next examine how PAT allows the local hosts to use private IP addresses while the access router uses a single public IP address. PAT takes advantage of the fact that a server really does not care if it has one connection each to three different hosts or three connections to a single host IP address. So, to support lots of local hosts at the small office, using a single publicly routable IP address on the router, PAT translates the local hosts’ private IP addresses to the one registered public IP address. To tell which packets need to be sent back to which local host, the router keeps track of both the IP address and TCP or UDP port number. Figure 22-10 shows an example, using the same IP addresses and routers shown previously in Figure 22-7.

Figure 22-10  PAT Function on an Internet Access Router

The figure shows a packet sent by PC1 to the server in the Internet on the right. The top part of the figure (steps 1 and 2) shows the packet’s source IP address and source port both
Chapter 22: WAN Concepts

before and after R1 performs PAT. The lower part of the figure (steps 3 and 4) shows the return packet from the server, which shows the destination IP address and destination port, again both before and after R1 performs the PAT function. (The server, when replying to a packet with a particular source IP address and port, uses those same values in the response packet.) The numbered steps in the figure follow this logic:

1. PC1 sends a packet to server 128.107.1.1 and, per PC1’s default gateway setting, sends the packet to access router R1.

2. R1 performs PAT, based on the details in the router’s NAT translation table, changing the local host’s IP from the private IP address used on the local LAN to the one globally routable public IP address available to R1, namely 64.100.1.1 in this case. R1 forwards the packet based on its default route.

3. When the server replies to the packet sent from PC1, the server sends the packet to destination address 64.100.1.1, destination port 1024, because those were the values in the source fields of the packet at step 2. The Internet routers know how to forward this packet back to R1, because the destination is a globally routable public IP address.

4. R1 changes the destination IP address and port per the NAT table, switching from destination address/port 64.100.1.1/1024 to 192.168.1.101/1024. R1 knows a route to reach 192.168.1.101, because this address is in a subnet connected to R1.

More generally, the PAT feature causes the router to translate the source IP address and port for packets leaving the local LAN, and to translate the destination IP address and port on packets returning to the local LAN. The end result is that, as far as hosts in the Internet are concerned, all the packets coming from this one customer are from one host (64.100.1.1 in Figure 22-10), for which all the routers in the Internet should have a matching route. This allows the ISP to conserve public IPv4 addresses.

The terms inside local and inside global, as listed in the NAT translation table in Figure 22-10, have some very specific and important meanings in the world of NAT. When speaking of NAT, the terms have the perspective of the enterprise network engineer, rather than someone working at the ISP. Keeping that in mind, NAT uses the following terms (and many others):

**Inside host:** Refers to a host in the enterprise network, like PC1 and PC2 in the last few figures.

**Inside local:** Refers to an IP address in an IP header, with that address representing a local host as the packet passes over the local enterprise network (not the Internet). In this case, 192.168.1.101 and .102 are inside local IP addresses, and the packets at steps 1 and 4 in Figure 22-10 show inside local IP addresses.
**Inside global:** Refers to an IP address in an IP header, with that address representing a local host as the packet passes over the global Internet (not the enterprise). In this case, 64.100.1.1 is the one inside global IP address, and the packets at steps 2 and 3 in Figure 22-10 show the inside global IP address.

**Inside interface:** The router interface connected to the same LAN as the inside hosts.

**Outside interface:** The router interface connected to the Internet.

Now that you have seen an example of how PAT works, a more exact definition of the terms NAT and PAT can be described. So, when using the terms in a very specific, formal manner, NAT refers to the translation of network layer (IP) addresses, with no translation of ports, whereas PAT refers to the translation of IP addresses as well as transport layer (TCP and UDP) port numbers. However, with a broader definition of the term NAT, PAT is simply one of several ways to configure and use NAT. In real life, in fact, most people refer to this broader definition of NAT. So, an engineer might say “we use NAT with our Internet connection to conserve our public IP addresses”; technically the function is PAT, but most everyone simply calls it NAT.

In closing, some of you who have installed a cable router or DSL router in your home may have found that it was easy to get that router to work—much easier than trying to understand the details explained in this chapter. If you buy a consumer-grade cable router or DSL router, it comes preconfigured to use a DHCP client, DHCP server, and PAT as described in this section. (In fact, your product may have one RJ-45 port labeled “Internet” or “Uplink”—that is the port that by default acts as a DHCP client, and it would be the Internet-facing interface in the figures presented toward the end of this chapter.) So, these functions happen, but they happen with no effort required on your part. However, to do the same functions with an enterprise-class Cisco router, the router needs to be configured, because the Cisco enterprise routers ship from the factory with no initial configuration. Chapter 23 will show how to configure the features described in this section on Cisco routers.
Exam Preparation Tasks

Review All the Key Topics

Review the most important topics from inside the chapter, noted with the key topics icon in the outer margin of the page. Table 22-5 lists a reference of these key topics and the page numbers on which each is found.

Table 22-5  Key Topics for Chapter 22

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>Comparison points between DSL and modems</td>
<td>601</td>
</tr>
<tr>
<td>Figure 22-3</td>
<td>Typical topology and devices used for DSL</td>
<td>602</td>
</tr>
<tr>
<td>List</td>
<td>Factors that affect the speed of a DSL line</td>
<td>604</td>
</tr>
<tr>
<td>Figure 22-4</td>
<td>Typical topology and devices used for cable</td>
<td>606</td>
</tr>
<tr>
<td>Table 22-3</td>
<td>Comparison points for Internet access technologies</td>
<td>607</td>
</tr>
<tr>
<td>Table 22-4</td>
<td>Comparison of circuit switching and packet switching</td>
<td>609</td>
</tr>
<tr>
<td>List</td>
<td>Factors that impact the IP addresses used by Internet access routers</td>
<td>611</td>
</tr>
<tr>
<td>Figure 22-7</td>
<td>Depicts DHCP client and server functions in an Internet access router</td>
<td>612</td>
</tr>
<tr>
<td>Figure 22-10</td>
<td>Shows how PAT translates IP addresses in Internet access routers</td>
<td>615</td>
</tr>
<tr>
<td>List</td>
<td>Definitions of several key NAT terms</td>
<td>616</td>
</tr>
</tbody>
</table>

Complete the Tables and Lists from Memory

Print a copy of Appendix L, “Memory Tables” (found on the DVD), or at least the section for this chapter, and complete the tables and lists from memory. Appendix M, “Memory Tables Answer Key,” also on the DVD, includes completed tables and lists to check your work.
Definitions of Key Terms

Define the following key terms from this chapter and check your answers in the glossary:

ADSL, asymmetric, ATM, DSL, inside global, inside local, modem, NAT, PAT, PSTN, symmetric, telco
This chapter covers the following subjects:

**Configuring Point-to-Point WANs:** This section examines how to configure leased lines between two routers using HDLC and PPP.

**Configuring and Troubleshooting Internet Access Routers:** This section shows how to configure DHCP client, DHCP server, and PAT functions on an Internet access router using SDM.
This chapter examines the configuration details for how to configure a few of the types of wide-area networks (WANs) covered in Chapter 4, “Fundamentals of WANs,” and Chapter 22, “WAN Concepts.” The first section of this chapter examines leased-line configuration using both High-Level Data Link Control (HDLC) and Point-to-Point Protocol (PPP). The second section of the chapter shows how to configure the Layer 3 features required for an Internet access router to connect to the Internet, specifically Dynamic Host Configuration Protocol (DHCP) and Network Address Translation/Port Address Translation (NAT/PAT). However, the configuration in the second half of the chapter does not use the command-line interface (CLI), but instead focuses on using the web-based router Security Device Manager (SDM) interface.

For those of you preparing specifically for the CCNA 640-802 exam by using the reading plan in the introduction to this book, note that you should move on to Part IV of the CCNA ICND2 640-816 Official Cert Guide after completing this chapter.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess if you should read the entire chapter. If you miss no more than one of these seven self-assessment questions, you might want to move ahead to the “Exam Preparation Tasks” section. Table 23-1 lists the major headings in this chapter and the “Do I Know This Already?” quiz questions covering the material in those headings so you can assess your knowledge of these specific areas. The answers to the “Do I Know This Already?” quiz appear in Appendix A.

<table>
<thead>
<tr>
<th>Foundation Topics Section</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring and Troubleshooting Point-to-Point WANs</td>
<td>1–3</td>
</tr>
<tr>
<td>Configuring and Troubleshooting Internet Access Routers</td>
<td>4–7</td>
</tr>
</tbody>
</table>
1. Routers R1 and R2 connect using a leased line, with both routers using their respective Serial 0/0 interfaces. The routers can currently route packets over the link, which uses HDLC. Which of the following commands would be required to migrate the configuration to use PPP?
   a. encapsulation ppp
   b. no encapsulation hdlc
   c. clock rate 128000
   d. bandwidth 128000

2. Routers R1 and R2 have just been installed in a new lab. The routers will connect using a back-to-back serial link, using interface serial 0/0 on each router. Which of the following is true about how to install and configure this connection?
   a. If the DCE cable is installed in R1, the clock rate command must be configured on R2’s serial interface.
   b. If the DTE cable is installed in R1, the clock rate command must be configured on R2’s serial interface.
   c. If the clock rate 128000 command is configured on R1, the bandwidth 128 command must be configured on R2.
   d. None of the answers are correct.

3. Two brand new Cisco routers have been ordered and installed in two different sites, 100 miles apart. A 768-kbps leased line has been installed between the two routers. Which of the following commands is required on at least one of the routers in order to forward packets over the leased line, using PPP as the data link protocol?
   a. no encapsulation hdlc
   b. encapsulation ppp
   c. clock rate 768000
   d. bandwidth 768
   e. description this is the link

4. When configuring a DHCP server on an Internet access router using SDM, which of the following settings is typically configured on the Internet access router? (Choose two answers.)
   a. The MAC addresses of the PCs on the local LAN
   b. The IP address of the ISP’s router on the common cable or DSL link
c. The range of IP addresses to be leased to hosts on the local LAN

d. The DNS server IP address(es) learned via DHCP from the ISP

5. When configuring an access router with SDM, to use DHCP client services to learn an IP address from an ISP, and configure PAT at the same time, which of the following is true?

a. The SDM configuration wizard requires PAT to be configured if the DHCP client function has been chosen to be configured.
b. The SDM configuration wizard considers any interfaces that already have IP addresses configured as candidates to become inside interfaces for PAT.
c. The SDM configuration wizard assumes the interface on which DHCP client services have been enabled should be an inside interface.
d. None of the answers are correct.

6. Which of the following is true about the configuration process using SDM?

a. SDM uses an SSH connection via the console or an IP network to configure a router.
b. SDM uses a web interface from the IP network or from the console.
c. SDM loads configuration commands into a router at the end of each wizard (after the user clicks the Finish button), saving the configuration in the running-config and startup-config files.
d. None of these answers are correct.

7. Which of the following are common problems when configuring a new Internet access router’s Layer 3 features? (Choose two answers.)

a. Omitting commonly used but optional information from the DHCP server features—for example, the IP address(es) of the DNS server(s)
b. Setting the wrong interfaces as the NAT inside and outside interfaces
c. Forgetting to configure the same routing protocol that the ISP uses
d. Forgetting to enable CDP on the Internet-facing interface
This brief section explains how to configure leased lines between two routers, using both HDLC and PPP. The required configuration is painfully simple—for HDLC, do nothing, and for PPP, add one interface subcommand on each router’s serial interface (encapsulation ppp). However, several optional configuration steps can be useful, so this section explains those optional steps and their impact on the links.

### Configuring HDLC

Considering the lowest three layers of the OSI reference model on router Ethernet interfaces for a moment, there are no required configuration commands related to Layers 1 and 2 for the interface to be up and working, forwarding IP traffic. The Layer 1 details occur by default once the cabling has been installed correctly. Router IOS defaults to use Ethernet as the data link protocol on all types of Ethernet interfaces, so no Layer 2 commands are required. To make the interface operational for forwarding IP packets, the router needs one command to configure an IP address on the interface, and possibly a `no shutdown` command if the interface is in an “administratively down” state.

Similarly, serial interfaces on Cisco routers that use HDLC typically need no specific Layer 1 or 2 configuration commands. The cabling needs to be completed as described in Chapters 4 and 22, but there are no required configuration commands related to Layer 1. IOS defaults to use HDLC as the data link protocol, so there are no required commands that relate to Layer 2. As on Ethernet interfaces, the only required command to get IP working on the interface is the `ip address` command and possibly the `no shutdown` command.

However, many optional commands exist for serial links. The following list outlines some configuration steps, listing the conditions for which some commands are needed, plus commands that are purely optional:

**Step 1** Configure the interface IP address using the `ip address` interface subcommand.

**Step 2** The following tasks are required only when the specifically listed conditions are true:

a. If an encapsulation protocol interface subcommand that lists a protocol besides HDLC already exists on the interface, use the `encapsulation hdlc` interface subcommand to enable HDLC.
b. If the interface line status is administratively down, enable the interface using the `no shutdown` interface subcommand.

c. If the serial link is a back-to-back serial link in a lab (or a simulator), configure the clocking rate using the `clock rate speed` interface subcommand, but only on the one router with the DCE cable (per the `show controllers serial number` command).

Step 3 The following steps are always optional, and have no impact on whether the link works and passes IP traffic:

a. Configure the link’s speed using the `bandwidth speed-in-kbps` interface subcommand.

b. For documentation purposes, configure a description of the purpose of the interface using the `description text` interface subcommand.

In practice, when you configure a Cisco router with no pre-existing interface configuration, and install a normal production serial link with CSU/DSUs, the `ip address` command is likely the one configuration command you would need. Figure 23-1 shows a sample internetwork, and Example 23-1 shows the configuration. In this case, the serial link was created with a back-to-back serial link in a lab, requiring Steps 1 (`ip address`) and 2c (`clock rate`) from the preceding list, plus optional Step 3b (`description`).

Figure 23-1 Typical Serial Link Between Two Routers

Example 23-1 HDLC Configuration

```
R1#show running-config
! Note – only the related lines are shown
interface FastEthernet0/0
 ip address 192.168.1.1 255.255.255.0
!
interface Serial0/1/1
 ip address 192.168.2.1 255.255.255.0
description link to R2
 clockrate 1536000
```

continues
Example 23-1  HDLC Configuration (Continued)

```bash
! router rip
 version 2
 network 192.168.1.0
 network 192.168.2.0
!
R1# show controllers serial 0/1/1
Interface Serial0/1/1
 Hardware is GT96K
 DCE V.35, clock rate 1536000
! lines omitted for brevity
R1# show interfaces s0/1/1
Serial0/1/1 is up, line protocol is up
 Hardware is GT96K Serial
 Description: link to R2
 Internet address is 192.168.2.1/24
 MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec,
 reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation HDLC, loopback not set
 Keepalive set (10 sec)
 Last input 00:00:06, output 00:00:03, output hang never
 Last clearing of "show interface" counters never
 Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
 Queueing strategy: weighted fair
 Output queue: 0/1000/64/0 (size/max total/threshold/drops)
 Conversations 0/1/256 (active/max active/max total)
 Reserved Conversations 0/0 (allocated/max allocated)
 Available Bandwidth 1158 kilobits/sec
 5 minute input rate 0 bits/sec, 0 packets/sec
 5 minute output rate 0 bits/sec, 0 packets/sec
 70 packets input, 4446 bytes, 0 no buffer
 Received 50 broadcasts, 0 runts, 0 giants, 0 throttles
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
 73 packets output, 5280 bytes, 0 underruns
 0 output errors, 0 collisions, 5 interface resets
 0 output buffer failures, 0 output buffers swapped out
 0 carrier transitions
 DCD=up DSR=up DTR=up RTS=up CTS=up
R1# show ip interface brief
Interface IP-Address OK? Method Status Protocol
FastEthernet0/0 192.168.1.1 YES manual up up
FastEthernet0/1 unassigned YES NVRAM administratively down down
Serial0/0/0 unassigned YES NVRAM administratively down down
Serial0/0/1 unassigned YES manual administratively down down
Serial0/1/0 unassigned YES manual administratively down down
Serial0/1/1 192.168.2.1 YES manual up up
```
The configuration on R1 is relatively simple. The matching configuration on R2’s S0/0/1 interface simply needs an `ip address` command, plus the default settings of `encapsulation hdlc` and `no shutdown`. The `clock rate` command would not be needed on R2, as R1 has the DCE cable, so R2 must be connected to a DTE cable.

The rest of the example lists the output of a few `show` commands. First, the output from the `show controllers` command for S0/1/1 confirms that R1 indeed has a DCE cable installed. The `show interfaces S0/1/1` command lists the various configuration settings near the top, including the default encapsulation value (HDLC) and default bandwidth setting on a serial interface (1544, meaning 1544 kbps or 1.544 Mbps). At the end of the example, the `show ip interface brief` and `show interfaces description` commands display a short status of the interfaces, with both listing the line status and protocol status codes.

### Configuring PPP

Configuring the basics of PPP is just as simple as for HDLC, except that whereas HDLC is the default serial data-link protocol and requires no additional configuration, you must configure the `encapsulation ppp` command for PPP. Other than that, the list of possible and optional configuration steps is exactly the same as for HDLC. So, to migrate from a working HDLC link to a working PPP link, the only command needed is an `encapsulation ppp` command on each of the two routers’ serial interfaces. Example 23-2 shows the serial interface configuration on both R1 and R2 from Figure 23-1, this time using PPP.
Example 23-2  PPP Configuration (Continued)

| clockrate 1536000 |
| end |

! R2's configuration next
R2#show run interface s0/0/1
Building configuration...

Current configuration : 86 bytes
|
interface Serial0/0/1
  ip address 192.168.2.2 255.255.255.0
  encapsulation ppp
end

The example lists a new variation on the show running-config command as well as the PPP-related configuration. The show running-config interface S0/1/1 command on R1 lists the interface configuration for interface S0/1/1, and none of the rest of the running-config. Note that on both routers, the encapsulation ppp command has been added; it is important that both routers use the same data link protocol, or the link will not work.

Configuring and Troubleshooting Internet Access Routers

As covered in Chapter 22, Internet access routers often connect to the Internet using one LAN interface, and to the local LAN using another interface. Routers that are built specifically for consumers as Internet access routers ship from the factory with DHCP client services enabled on the Internet-facing interface, DHCP server functions enabled on the local interface, and PAT functions enabled. Enterprise routers, which have many features and may not necessarily be used as Internet access routers, ship from the factory without these features enabled by default. This section shows how to configure these functions on a Cisco enterprise-class router.

Cisco routers support another configuration method besides using the CLI. In keeping with the exam topics published by Cisco for the ICND1 exam, this chapter shows how to configure the rest of the features in this chapter using this alternative tool, called Cisco Router and Security Device Manager (SDM). Instead of using Telnet or SSH, the user connects to the router using a web browser. (To support the web browser, the router must first be configured from the CLI with at least one IP address, typically on the local LAN, so that the engineer’s computer can connect to the router.) From there, SDM allows the engineer to configure a wide variety of router features, including the DHCP client, DHCP server, and PAT.
Internet Access Router: Configuration Steps

You can configure the DHCP client, DHCP server, and PAT functions with SDM using the following five major steps:

**Step 1** Establish IP connectivity. Plan and configure (from the CLI) IP addresses on the local LAN so that a PC on the LAN can ping the router’s LAN interface.

**Step 2** Install and access SDM. Install SDM on the router and access the router SDM interface using a PC that can ping the router’s IP address (as implemented at Step 1).

**Step 3** Configure DHCP and PAT. Use SDM to configure both DHCP client services and the PAT service on the router.

**Step 4** Plan for DHCP services. Plan the IP addresses to be assigned by the router to the hosts on the local LAN, along with the DNS IP addresses, domain name, and default gateway settings that the router will advertise.

**Step 5** Configure the DHCP server. Use SDM to configure the DHCP server features on the router.

The sections that follow examine each step in order in greater detail. The configuration will use the same internetwork topology that was used in the Chapter 22 discussion of Internet access routers, repeated here as Figure 23-2.

**Step 1: Establish IP Connectivity**

The Internet access router needs to use a private IP network on the local LAN, as mentioned in Chapter 22. For this step, you should choose the following details:

- **Step a** Choose any private IP network number.
- **Step b** Choose a mask that allows for enough hosts (typically the default mask is fine).
- **Step c** Choose a router IP address from that network.

**NOTE** Cisco replaced SDM with a new but very similar tool called Cisco Configuration Professional (CCP). The exam topics for the 640-802 exam still reference the older SDM. However, the most important perspective when studying the SDM screens in the book, or using either SDM or CCP when studying, is to focus on what you type and choose from the interface. The actual screen on which you provide a given piece of information is much less important.
It does not really matter which private network you use, as long as it is a private network. Many consumer access routers use Class C network 192.168.1.0, as will be used in this chapter, and the default mask. If you work at a small company with a few sites, all connecting to the Internet, you can use the same private network at each site, because NAT/PAT will translate the addresses anyway.

**Step 2: Install and Access SDM**

To be able to install the SDM software on the router (if it is not already installed on the router), and to allow the engineer’s host to access the router using a web browser, the engineer needs to use a host with IP connectivity to reach the router. Typically, the engineer would use a host on the local LAN, configure the router’s local LAN interface with the IP address planned at Step 1, and configure the host with another IP address in that same network. Note that SDM does not use Telnet or SSH, and the PC must be connected via an IP network—the console can only be used to access the CLI.

The network engineer must configure several additional commands on the router before a user can access and use it, the details of which are beyond the scope of this book. If you are curious, you can look for more details by searching www.cisco.com for “SDM installation.” This configuration step was listed just in case you try using SDM with your own lab gear, to make you aware that there is more work to do. By the end of the process, a web browser should be able to connect to the router and see the SDM Home page for that router, like the example shown in Figure 23-3.
Step 3: Configure DHCP and PAT

The SDM user interface has a wide variety of configuration wizards that guide you through a series of web pages, asking for input. At the end of the process, SDM loads the corresponding configuration commands into the router.

One such wizard allows you to configure the DHCP client feature on the Internet-facing interface and, optionally, configure the PAT feature. This section shows sample windows for the configuration of router R1 in Figure 23-2.

From the SDM Home page shown in Figure 23-3:

1. Click Configure near the top of the window.
2. Click Interfaces and Connections at the top of the Tasks pane on the left side of the window.

Figure 23-4 shows the resulting Interfaces and Connections window, with the Create Connection tab displayed. (Note that the heavy arrowed lines are overlaid on the image of the page to point out the items referenced in the text.)
The network topology on the right side of this tab should look familiar, as it basically matches Figure 23-2, with a router connected to a cable or DSL modem. On the Create Connection tab, do the following:

1. Choose the **Ethernet (PPPoE or Unencapsulated Routing)** radio button.
2. Click the **Create New Connection** button near the bottom of the tab.

These actions open the SDM Ethernet Wizard, shown in Figure 23-5. The page in Figure 23-5 has no options to choose, so just click **Next** to keep going.

The next page of the wizard, shown in Figure 23-6, has only one option, a check box that, if checked, enables the protocol PPP over Ethernet (PPPoE). If the ISP asks that you use PPPoE, then check this box. Ordinarily, you simply leave this box unchecked, which implies unencapsulated routing. (Unencapsulated routing means that the router forwards Ethernet frames onto the interface, with an IP packet inside the Ethernet frame, as was covered in several places in Part III of this book.)
Figure 23-5  SDM Ethernet Wizard Welcome Page

Figure 23-6  SDM Ethernet Wizard: Choice to Use Encapsulation with PPoE
As you can see near the top of Figure 23-6, the wizard picked a Fast Ethernet interface, Fa0/1 in this case, as the interface to configure. The router used in this example has two LAN interfaces, one of which already has an IP address assigned from Step 1 (Fa0/0). Because this wizard will be configuring DHCP client services on this router, the wizard picked the only LAN interface that did not already have an IP address, namely Fa0/1, as the interface on which it will enable the DHCP client function. This choice is particularly important when troubleshooting a new installation, because this must be the LAN interface connected to the cable or DSL modem. This is also the NAT/PAT outside interface.

Click **Next**. Figure 23-7 shows the next page of the wizard, the IP Address page. This page gives you the option of statically configuring this interface’s IP address. However, as explained in Chapter 22, the goal is to use a dynamically assigned IP address from the ISP—an address that happens to come from the globally routable IP address space. So, you want to use the default radio button option of **Dynamic (DHCP Client)**.

Click **Next** to move to the Advanced Options page, shown in Figure 23-8. This page asks if you want to enable PAT, which of course is also desired on an Internet access router. Simply click the **Port Address Translation** check box. If you do not want to enable PAT for some reason, do not check this box.
It is particularly important to note the LAN Interface to Be Translated drop-down box near the middle of the page. In NAT terminology, this box lists the inside interface, which means that the listed interface is connected to the local LAN. This example shows FastEthernet0/0 as the inside interface, as intended. Almost as important in this case is that the interface being configured for the DHCP client by this wizard, in this case FastEthernet0/1, is assumed to be the outside interface by the NAT feature, again exactly as intended.

Click **Next** to move to the Summary page shown in Figure 23-9, which summarizes the choices you made when using this wizard. The text on the screen is particularly useful, as it reminds you that:

- The interface being configured is FastEthernet0/1.
- FastEthernet0/1 will use DHCP client services to find its IP address.
- PPPoE encapsulation is disabled, which means that unencapsulated routing is used.
- PAT is enabled, with FastEthernet0/0 as the inside interface, and FastEthernet0/1 as the outside interface.
Click **Finish**. SDM builds the configuration and loads it into the router’s running-config file. If you want to save the configuration, click the save button near the top of the SDM home page to make the router do a `copy running-config startup-config` command to save the configuration. However, without this extra action, the configuration will only be added to the running-config file.

At this point, the DHCP client and PAT functions have been configured. The remaining tasks are to plan the details of what to configure for the DHCP server function on the router for the local LAN, and to use SDM to configure that feature.

**Step 4: Plan for DHCP Services**

Before configuring the DHCP server function on the router, to support the local LAN, you need to plan a few of the values to be configured in the server. In particular, you need to choose the subset of the private IP network on the local LAN that you intend to allow to be assigned using DHCP. For the example in this chapter, part of the work at Step 1 was to choose a private IP network for the local LAN, in this case 192.168.1.0, and default mask 255.255.255.0. It makes sense to allow only a subset of the IP addresses in this network to be assigned with DHCP, leaving some IP addresses for static assignment. For example, router R1’s Fa0/0 interface, connected to the local LAN, has already been configured with IP address 192.168.1.1, so that address should not be included in the range of addresses allowed to be assigned by the DHCP server.
The following list outlines the key items that you need to gather before you configure the router as a DHCP server. The first two items in the list relate to planning on the local LAN, and the last two items are just values learned from the ISP that need to be passed on to the hosts on the local LAN:

1. Recall the private IP network and mask used on the local LAN and then choose a subset of that network that can be assigned to hosts using DHCP.

2. Make a note of the router’s IP address in that network; this address will be the local hosts’ default gateway.

3. Find the DNS server IP addresses learned by the router using DHCP client services, using the `show dhcp server` EXEC command; the routers will then be able to inform the DHCP clients on the local LAN about the DNS server IP address(es).

4. Find the domain name, again with the `show dhcp server` EXEC command.

**NOTE** Cisco uses the term *DHCP pool* for the IP addresses that can be assigned using DHCP.

For the example in this chapter, the first two items, IP network 192.168.1.0 with mask /24, have already been chosen back in Step 1 of the overall configuration process. The range 192.168.1.101–192.168.1.254 has been reserved for DHCP clients, leaving range 192.168.1.1–192.168.1.100 for static IP addresses. The router’s 192.168.1.1 IP address, which was configured back at Step 1 so that the engineer could connect to the router using SDM, will be assigned as the local hosts’ default gateway.

For the last two items in the planning list, the DNS server IP addresses and the domain name, Example 23-3 shows how to find those values using the `show dhcp server` command. This command lists information on a router acting as a DHCP client, information learned from each DHCP server from which the router has learned an IP address. The pieces of information needed for the DHCP server SDM configuration are highlighted in the example.

**Example 23-3  Finding the DNS Server IP Addresses and Domain Name**

```
R1#show dhcp server
DHCP server: ANY (255.255.255.255)
 Leases: 8
 Offers: 8 Requests: 8 Acks: 8 Naks: 0
 Declines: 0 Releases: 21 Bad: 0
 DNS0: 198.133.219.2, DNS1: 0.0.0.0
 Subnet: 255.255.255.252 DNS Domain: example.com
```
Step 5: Configure the DHCP Server

To configure the DHCP server with SDM, click **Configure** near the top of the SDM window and then click **Additional Tasks** at the bottom of the Tasks pane to open the Additional Tasks window, shown in Figure 23-10.

Figure 23-10  **SDM Additional Tasks Configuration Window**

Select the **DHCP Pools** option on the left (as noted with one of the heavy arrows) and then click the **Add** button to open the Add DHCP Pool dialog box, shown in Figure 23-11. This dialog box has a place to type all the information gathered in the previous step, along with other settings. Figure 23-11 shows the screen used to configure router R1 in the ongoing example in this chapter.

The four planning items discussed in the previous overall configuration step (Step 4) are typed in obvious places in this dialog box:

- Range of addresses to be assigned with DHCP
- DNS server IP addresses
- Domain name
- Default router settings
Additionally, the dialog box wants to know the subnet number and mask used on the subnet in which the addresses will be assigned. Also, you need to make up a name for this pool of DHCP addresses—the name can be most anything, but choose a meaningful name for that installation.

Whew! Configuring an Internet access router with SDM might seem to require a lot of steps and navigating through a lot of windows; however, it is certainly less detailed than configuring the same features from the CLI. The next section examines a few small verification and troubleshooting tasks.

**Internet Access Router Verification**

The choice to cover SDM configuration for DHCP and NAT/PAT, instead of the CLI configuration commands, has both some positives and negatives. The positives include the fact that the ICND1 exam, meant for entry-level network engineers, can cover a common set of features seen on Internet access routers, which are commonly used by smaller companies. Also, because the underlying configuration can be large (the configuration added by SDM for the examples in this chapter required about 20 configuration commands), the use of SDM avoided the time and effort to go over a lot of configuration options, keeping the topic a little more focused.
One negative of using SDM is that troubleshooting becomes a little more difficult because the configuration has not been covered in detail. As a result, true troubleshooting requires a review of the information you intended to type or click when using the SDM wizards, and double-checking that configuration from SDM. Showing all the SDM screens used to check each item would itself be a bit laborious. Instead of showing all those SDM screens, this section points out a few of the most common oversights when using SDM to configure DHCP and PAT, and then it closes with some comments about a few key CLI EXEC commands related to these features.

To perform some basic verification of the installation of the access router, try the following:

**Step 1** Go to a PC on the local LAN and open a web browser. Try your favorite Internet-based website (for example, www.cisco.com). If a web page opens, that is a good indication that the access router configuration worked. If not, go to Step 2.

**Step 2** From a local PC with a Microsoft OS, open a command prompt and use the `ipconfig /all` command to find out if the PC learned an IP address, mask, default gateway, and DNS IP addresses as configured in the DHCP server configuration on the router. If not, use the commands listed in the Chapter 21 section “Host Networking Commands” to try and successfully lease an IP address from a host.

**Step 3** Check the cabling between the router and the local LAN, and between the router and the cable or DSL modem, noting which router interface connects to which part of the network. Then check the SDM configuration to ensure that the inside interface per the PAT configuration is the interface connected to the local LAN, and the outside interface per the PAT configuration is connected to the DSL/cable modem.

**Step 4** Test the PAT function by generating traffic from a local PC to a host in the Internet. (More details on this item are given in the next few pages.)

The last item in the list provides a good opportunity to examine a few EXEC commands from the CLI. Example 23-4 lists the output of several CLI commands related to the access router configuration in this chapter, with some comments following the example.

**Example 23-4** Interesting EXEC Commands on the Access Router

<table>
<thead>
<tr>
<th>R1#show ip dhcp binding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bindings from all pools not associated with VRF:</td>
</tr>
<tr>
<td>IP address</td>
</tr>
<tr>
<td>192.168.1.101</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R1#show ip nat translations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro Inside global</td>
</tr>
<tr>
<td>tcp 64.100.1.1:36486</td>
</tr>
<tr>
<td>udp 64.100.1.1:1027</td>
</tr>
</tbody>
</table>
The `show ip dhcp binding` command output lists information about the IP addresses assigned to hosts on the local LAN by the DHCP server function in the access router. This command output can be compared to the results when trying to get hosts on the local LAN to acquire an IP address from the router’s DHCP server function.

The `show ip nat translations` command output provides a few insights that confirm the normal operation of NAT and PAT. The output shown in Example 23-4 lists one heading line plus two actual NAT translation table entries. The two highlighted parts of the heading line refer to the inside global address and the inside local address. The inside local address should always be the IP address of a host on the local LAN—in this case, 192.168.1.101. The router translates that IP address to the one globally routable public address known to the router—the 64.100.1.1 IP address learned via DHCP from the ISP.

The last command in the example, `clear ip nat translation *`, can be useful when the problem symptom is that some users’ connections that need to use NAT work fine, and other users’ connection that need to use NAT do not work at all. NAT table entries might need to be removed before a host can start sending data again, although this is probably a rare occurrence today. However, this command clears out all the entries in the table, and then the router creates new entries as the ensuing packets arrive. Note that this `clear` command could impact some applications.
Exam Preparation Tasks

Review All the Key Topics
Review the most important topics from inside the chapter, noted with the key topics icon in the outer margin of the page. Table 23-2 lists a reference of these key topics and the page numbers on which each is found.

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>Optional and required configuration steps for a serial link between two routers</td>
<td>624</td>
</tr>
<tr>
<td>List</td>
<td>IP addressing details planned and configured on the local LAN for an Internet access router</td>
<td>629</td>
</tr>
<tr>
<td>List</td>
<td>Planning items before configuring the DHCP server</td>
<td>637</td>
</tr>
<tr>
<td>List</td>
<td>Common items to check when troubleshooting access router installation</td>
<td>640</td>
</tr>
</tbody>
</table>

Complete the Tables and Lists from Memory
Print a copy of Appendix L, “Memory Tables” (found on the DVD), or at least the section for this chapter, and complete the tables and lists from memory. Appendix M, “Memory Tables Answer Key,” also on the DVD, includes completed tables and lists to check your work.

Definitions of Key Terms
Define the following key terms from this chapter, and check your answers in the glossary.

Cisco Router and Security Device Manager

Command References
Although you should not necessarily memorize the information in the tables in this section, this section does include a reference for the configuration commands (Table 23-3) and EXEC commands (Table 23-4) covered in this chapter. Practically speaking, you should memorize the commands as a side effect of reading the chapter and doing all the activities...
in this exam preparation section. To check to see how well you have memorized the
commands as a side effect of your other studies, cover the left side of the table with a piece
of paper, read the descriptions in the right side, and see if you remember the command.

Table 23-3  Chapter 23 Configuration Command Reference

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>encapsulation {hdle</td>
<td>ppp</td>
</tr>
<tr>
<td>clock rate speed</td>
<td>Serial interface subcommand that, when used on an interface with a DCE cable, sets the clock speed in bps</td>
</tr>
<tr>
<td>bandwidth speed-kbps</td>
<td>Interface subcommand that sets the router’s opinion of the link speed, in kbps, but has no effect on the actual speed</td>
</tr>
<tr>
<td>description text</td>
<td>Interface subcommand that can set a text description of the interface</td>
</tr>
</tbody>
</table>

Table 23-4  Chapter 23 EXEC Command Reference

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip nat translations</td>
<td>Lists the NAT/PAT translation table entries</td>
</tr>
<tr>
<td>show dhcp server</td>
<td>Lists information learned from a DHCP server, by a router acting as a DHCP client</td>
</tr>
<tr>
<td>clear ip nat translation *</td>
<td>Clears (removes) all dynamic entries in the NAT table</td>
</tr>
<tr>
<td>show interfaces</td>
<td>Lists several important settings on serial links, including encapsulation, bandwidth, keepalives, the two status codes, description, and IP address/mask</td>
</tr>
<tr>
<td>show controllers serial number</td>
<td>Lists whether a cable is connected to the interface, and if so, whether it is a DTE or DCE cable</td>
</tr>
<tr>
<td>show interfaces [type number] description</td>
<td>Lists a single line per interface (or if the interface is included, just one line of output total) that lists the interface status and description</td>
</tr>
<tr>
<td>show ip interface brief</td>
<td>Lists a single line per interface, listing the IP address and interface status</td>
</tr>
</tbody>
</table>
This page intentionally left blank
Part VI: Final Preparation
Final Preparation

The first 23 chapters of this book cover the technologies, protocols, commands, and features you need to understand to pass the ICND1 exam. Although these chapters supply the detailed information, most people need more preparation than simply reading the first 23 chapters. This chapter details a set of tools and a study plan to help you complete your preparation for the exams.

If you’re preparing for the CCNA exam by reading both this book and the *CCNA ICND2 640-816 Official Cert Guide*, you know that both books have a final preparation chapter. However, you can refer to just this chapter to read about the suggested study plan, because this chapter refers to the tools in both this book and the ICND2 book. Just look for the text highlighted in gray, like this sentence, for suggestions that apply to CCNA (640-802) exam preparation, but not to ICND1 (640-822) exam preparation.

This short chapter has two main sections. The first section lists the exam preparation tools that can be useful at this point in your study process. The second section lists a suggested study plan now that you have completed all the earlier chapters.

**NOTE** This chapter refers to many of the book’s chapters and appendixes, as well as tools available on the DVD. Some of the appendixes, beginning with Appendix D, are included only on the DVD that comes with this book. To access those, just insert the DVD and make the appropriate selection from the opening interface.

Tools for Final Preparation

This section lists some information about the available tools and how to access them.

**Pearson Cert Practice Test Engine and Questions on the DVD**

The DVD in the back of the book includes the Pearson IT Certification Practice Test engine—software that displays and grades a set of exam-realistic multiple-choice, drag and drop, fill-in-the-blank, and testlet questions. Using the Pearson IT Certification Practice Test engine, you can either study by going through the questions in Study Mode, or take a simulated ICND1 or CCNA exam that mimics real exam conditions.
The installation process requires two major steps. The DVD in the back of this book has a recent copy of the Pearson IT Certification Practice Test engine. The practice exam—the database of ICND1 and CCNA exam questions—is not on the DVD.

NOTE The cardboard DVD case in the back of this book includes the DVD and a piece of paper. The paper lists the activation code for the practice exam associated with this book. Do not lose the activation code. On the opposite side of the paper from the activation code is a unique, one-time use coupon code for the purchase of the CCENT/CCNA ICND1 640-822 Official Cert Guide, Premium Edition eBook and Practice Test.

Install the Software from the DVD

The Pearson IT Certification Practice Test is a Windows-only desktop application. You can run it on a Mac using a Windows Virtual Machine, but it was built specifically for the PC platform. The minimum system requirements are the following:

- Windows XP (SP3), Windows Vista (SP2), or Windows 7
- Microsoft .NET Framework 4.0 Client
- Microsoft SQL Server Compact 4.0
- Pentium class 1 GHz processor (or equivalent)
- 512 MB RAM
- 650 MB disc space plus 50 MB for each downloaded practice exam

The software installation process is pretty routine as compared with other software installation processes. If you have already installed the Pearson IT Certification Practice Test software from another Pearson product, there is no need for you to reinstall the software. Simply launch the software on your desktop and proceed to activate the practice exam from this book by using the activation code included in the DVD sleeve. The following steps outline the installation process:

**Step 1**  Insert the DVD into your PC.

**Step 2**  The software that automatically runs is the Cisco Press software to access and use all DVD-based features, including the exam engine and the DVD-only appendices. From the main menu, click the option to Install the Exam Engine.

**Step 3**  Respond to windows prompts as with any typical software installation process.
The installation process will give you the option to activate your exam with the activation code supplied on the paper in the DVD sleeve. This process requires that you establish a Pearson website login. You will need this login in order to activate the exam, so please do register when prompted. If you already have a Pearson website login, there is no need to register again. Just use your existing login.

Activate and Download the Practice Exam
Once the exam engine is installed, you should then activate the exam associated with this book (if you did not do so during the installation process), as follows:

**Step 1** Start the Pearson IT Certification Practice Test (PCPT) software from the Windows Start menu or from your desktop shortcut icon.

**Step 2** To activate and download the exam associated with this book, from the My Products or Tools tab, select the Activate button.

**Step 3** At the next screen, enter the Activation Key from the paper inside the cardboard DVD holder in the back of the book. Once entered, click the Activate button.

**Step 4** The activation process will download the practice exam. Click Next, and then click Finish.

Once the activation process is completed, the My Products tab should list your new exam. If you do not see the exam, make sure you have selected the My Products tab on the menu. At this point, the software and practice exam are ready to use. Simply select the exam and click the Open Exam button.

To update a particular exam you have already activated and downloaded, simply select the Tools tab and select the Update Products button. Updating your exams will ensure that you have the latest changes and updates to the exam data.

If you want to check for updates to the Pearson Cert Practice Test exam engine software, simply select the Tools tab and select the Update Application button. This will ensure you are running the latest version of the software engine.

Activating Other Exams
The exam software installation process, and the registration process, only has to happen once. Then, for each new exam, only a few steps are required. For instance, if you buy another new Cisco Press Official Cert Guide or Pearson IT Certification Cert Guide, extract the activation code from the DVD sleeve in the back of that book—you don't even need the DVD at this point. From there, all you have to do is start the exam engine (if not still up and running), and perform steps 2 through 4 from the previous list.
Premium Edition
In addition to the free practice exam provided on the DVD, you can purchase additional exams with expanded functionality directly from Pearson IT Certification. The Premium Edition eBook and Practice Test for this title contains an additional two full practice exams as well as an eBook (in both PDF and ePub format). In addition, the Premium Edition title also has remediation for each question to the specific part of the eBook that relates to that question.

Because you have purchased the print version of this title, you can purchase the Premium Edition at a deep discount. There is a coupon code in the DVD sleeve that contains a one-time use code as well as instructions for where you can purchase the Premium Edition.

To view the premium edition product page, go to:
http://www.pearsonitcertification.com/title/0132903822

The Cisco Learning Network
Cisco provides a wide variety of CCNA preparation tools at a Cisco Systems website called the Cisco Learning Network (CLN). CLN includes demonstrations of the exam’s user interface, sample questions, and informational videos. However, the biggest draw is the incredibly active and helpful CCNA study forum, where you can get an answer to your CCNA questions relatively quickly.

To use CLN, connect to the website at learningnetwork.cisco.com, and establish a login. (It costs nothing.) From there, you can explore, but you will probably want to click on both CCENT and CCNA on the left side of the page. You can join the CCENT and CCNA study groups, receive notifications each time someone posts a message, and generally learn a lot.

Subnetting Preparation Tools
Being able to analyze the IP addressing and subnetting used in any IPv4 network may be the single most important skill for all the CCNA exams. This book’s Chapter 12, “Perspectives on IPv4 Subnetting,” covers most of those details. The ICND2 book’s Chapter 5, “Variable Length Subnet Masks,” adds to the puzzle by explaining VLSM.

This book includes several tools to help you practice and refine your subnetting skills:

- **Speed goal advice:** The ends of Chapters 13 through 18 provides some advice about your speed goals for the exam. You have to be good, and you have to be fast. Assuming you just finished reading the whole book, you have probably focused on being good at subnetting. Those tables near the end of each chapter help give you some perspective on good speed goals as you finish preparing for subnetting questions.
Subnetting videos: The DVD included with this book has a series of subnetting videos. These videos show you how to use the shortcut processes to find the answers to popular subnetting questions. You can select and play the videos from a simple menu that starts when you insert the DVD into a DVD drive.

Subnetting practice: DVD-only Appendixes D through I all provide additional subnetting practice beyond the practice problems in Chapters 13 through 18. These appendixes provide both the problem, and the answer, with explanations.

Scenarios
As mentioned in the Introduction to this book, some of the exam questions require you to use the same skills commonly used to troubleshoot problems in real networks. The troubleshooting sections and chapters of both the ICND1 and ICND2 books help prepare you for those kinds of questions.

Another way to prepare for troubleshooting questions on the exams is to think through many different network scenarios, predicting what should occur, and investigating whether the network is performing as it should. Appendix J, “Additional Scenarios,” in both books includes some tasks that you should attempt before reading the suggested solutions listed later in the appendix. By reading these scenarios and doing the exercises, you can practice some of the skills required when analyzing and troubleshooting networks.

Study Plan
You could simply study using all the available tools, as mentioned earlier in this chapter. However, this section suggests a particular study plan, with a sequence of tasks that may work better than just using the tools randomly. However, feel free to use the tools in any way and at any time that helps you fully prepare for the exam.

If you are preparing for only the ICND1 exam, you can ignore the gray highlighted portions of this study plan. If you are studying for the CCNA exam by using the ICND2 book as well, include the tasks highlighted in gray.

The suggested study plan separates the tasks into four categories:

- **Recall the facts.** Activities that help you remember all the details from the first 23 chapters of this book.

- **Practice subnetting.** You must master subnetting to succeed on the ICND1, ICND2, and CCNA exams. This category lists the items you can use to practice subnetting skills.
Build troubleshooting skills using scenarios. To answer some exam questions that present a scenario, you may need to recall facts, do subnetting math quickly and accurately, and use a hands-on simulator—all to answer a single question.

Use the exam engine to practice realistic questions. You can use the exam engine on the DVD to study using a bank of unique exam-realistic questions available only with this book.

Recall the Facts
As with most exams, you must recall many facts, concepts, and definitions to do well on the test. This section suggests a couple of tasks that should help you remember all the details:

Step 1 Review and repeat, as needed, the activities in the “Exam Preparation Tasks” section at the end of each chapter. Most of these activities help you refine your knowledge of a topic while also helping you memorize the facts. For CCNA exam preparation, do this for Chapters 2 through 23 in this book, as well as for Chapters 1 through 19 in the ICND2 book.

Step 2 Review all the “Do I Know This Already?” quiz questions at the beginning of the chapters. Although the questions may be familiar, reading through them again will help improve your recall of the topics covered in the questions. Also, the DIKTA questions tend to cover the most important topics from the chapter, and it never hurts to drill on those topics.

Practice Subnetting
Without question, absolutely the most important skill you need to succeed in passing the ICND1, ICND2, and CCNA exams is to be able to accurately, confidently, and quickly answer subnetting questions. The CCNA exams all have some element of time pressure; the most stressful questions are the sim, simlet, and subnetting questions. So, you should practice subnetting math and processes until you can consistently find the correct answer in a reasonable amount of time.

Before I suggest how you should prepare for subnetting questions, please note that there are many alternative methods for finding the answers to subnetting questions. For example, you can use binary math for all 32 bits of the addresses and subnet numbers. Alternatively, you could recognize that 3 of the 4 octets in most subnetting problems are easily predicted without binary math, and then use binary math in the final interesting octet. Another option would be to use decimal shortcuts. Shortcuts require no binary math but do require you to practice a process until you’ve memorized it. You can even use variations on these processes as taught in other books or classes.
Whichever process you prefer, you should practice it until you can use it accurately, confidently, and quickly.

The following list of suggested activities includes practice activities that you can use regardless of the process you choose. In some cases, this list includes items that help you learn the shortcuts included with this book:

**Step 1  Use the DVD-based subnetting practice appendixes.** Chapters 13 through 18 all show how to do some subnetting math; Appendixes D through I match those same chapters, providing additional practice related to each chapter. Just pull out the DVD from the back of the book, plug it in, run the executable, and look at the menus for PDF Appendixes D through I. (Be careful not to lose the little piece of cardboard that comes in the DVD holder—that cardboard lists the license code for the exam engine that is also on the DVD.)

**Step 2  Watch the subnetting videos found on the DVD.** These videos show examples of how to use some of the more detailed shortcut processes to help ensure that you know how to use the processes. CCNA exam candidates: The subnetting videos are on DVDs included with both books. They are identical, so you can watch the videos from either DVD.

**Step 3  Practice with the Cisco Binary Game.** The DVD also has a copy of the Cisco Binary Game, which is a game you can play that teaches you to master binary math, including conversions of 8-bit binary to decimal and back. If you choose to do the subnetting math in binary, this game can be an effective and fun way to build your skills.

**Step 4  Use the extra practice at the author's blogs.** You can find links to Wendell's blogs at his website, at www.certskills.com/blogs. His CCENT Skills and CCNA Skills blogs include occasional posts with extra subnetting practice. Go to the blogs, choose the “subnetting speed practice” category, and you will find lots more practice.

**Step 5  Develop your own practice problems using a subnet calculator.** You can download many free subnet calculators from the Internet. You can make up your own subnetting problems like those in the subnetting practice appendixes, do the problems, and then test your answers by using the subnet calculator.

**Step 6  Pearson (the publisher of this book) also publishes iPhone apps to help you learn subnetting.** Search for “subnet prep” from the app store, or check out www.subnetprep.com.
Build Troubleshooting Skills Using Scenarios

Just as a real problem in a real network may be caused by a variety of issues—a routing protocol, a bad cable, spanning tree, an incorrect ACL, or even errors in your documentation about the internetwork—the exam makes you apply a wide range of knowledge to answer individual questions. The one activity for this section is as follows:

- **Review the scenarios included in Appendix J of this book.** These scenarios make you think about issues covered in multiple chapters of the book. They also require more abstract thought to solve the problem. CCNA exam candidates should also review the scenarios in Appendix G of *CCNA ICND2 640-816 Official Cert Guide*.

Studying for ICND1 640-822 or CCNA 640-802

The practice exams that come free with this book allow you to practice in several different modes for either the ICND1 640-822 exam or the full CCNA 640-802 exam. You can choose exam banks of questions in the window at the top of the settings screen, which opens as soon as you launch the practice exam. If you want to test yourself just on ICND1 exam questions, you can select any of the ICND1 exam banks. Note that you will have access to all the questions that appear in the print book by selecting the "Book Questions" exam bank. If you do not want your practice test to include the book questions, simply select one or more of the ICND1 exam banks. If you want to test yourself with a full CCNA exam (which includes questions from both ICND1 and ICND2 exams), select the CCNA 640-802 exam bank. If you are trying to test on the full CCNA exam, it is recommended that you make sure to deselect all the ICND1 exam bank options.

In addition to selecting the exam bank(s) from which the questions will be randomly chosen, you can further customize your practice test to just focus on individual exam objectives by selecting or deselecting the objectives in the objectives window on the settings screen.

Once you have selected your exam bank, you can choose the practice test mode you want to use. To do so, select either Study Mode or Practice Exam Mode in the drop-down menu at the top of the settings screen. Study Mode allows you to dictate the amount of time you have to take the exam, the number of questions you see, how the questions are ordered, whether the questions and answers are randomized, and whether you just see questions you have marked for review or all questions. You will also be able to move back and forth in the exam, see answers, and generally use all the exam features. You should use this mode when preparing for the exam, as it provides you with maximum flexibility to customize the exam.
and receive immediate feedback on a question-by-question basis. If you opt for Practice Exam Mode, the settings for your exam will be preselected in an attempt to mimic the actual exam environment, so you will not be able to change the time and amount of questions, return to previously viewed questions, or see answers for individual questions while taking the exam. You should use this mode when you feel confident that you are ready to take the exam and want to get an assessment of how prepared you are to succeed on the actual exam.

**Summary**

The tools and suggestions listed in this chapter were designed with one goal in mind: to help you develop the skills required to pass the ICND1 and CCNA exams. This book, and its companion ICND2 book, were developed not just to tell you the facts, but to help you learn how to apply the facts. No matter what your experience level when you take the exams, it is our hope that the broad range of preparation tools, and even the structure of the books and the focus on troubleshooting, will help you pass the exams with ease. I wish you well on the exams.
This page intentionally left blank
Part VII: Appendixes

Appendix A  Answers to the “Do I Know This Already?” Quizzes
Appendix B  Numeric Reference Tables
Appendix C  ICND1 Exam Updates: Version 1.0
Glossary
Answers to the “Do I Know This Already?” Quizzes

Chapter 2

“Do I Know This Already?”
1. D and F
2. A and G
3. B. Adjacent-layer interaction occurs on one computer, with two adjacent layers in the model. The higher layer requests services from the next lower layer, and the lower layer provides the services to the next higher layer.
4. B. Same-layer interaction occurs on multiple computers. The functions defined by that layer typically need to be accomplished by multiple computers—for example, the sender setting a sequence number for a segment, and the receiver acknowledging receipt of that segment. A single layer defines that process, but the implementation of that layer on multiple devices is required to accomplish the function.
5. A. Encapsulation is defined as the process of adding a header in front of data supplied by a higher layer (and possibly adding a trailer as well).
6. D
7. C
8. A
9. F
10. C and E. OSI includes the transport layer (not transmission layer) and the network layer (not Internet layer).
Chapter 3

“Do I Know This Already?”

1. D
2. A
3. B
4. B, D, and E. Routers, wireless access point Ethernet ports, and PC NICs all send using pins 1 and 2, whereas hubs and switches send using pins 3 and 6. Straight-through cables are used when connecting devices that use the opposite pairs of pins to transmit data.
5. B
6. A
7. A and C
8. C and D
9. A
10. B, C, and E
11. C

Chapter 4

“Do I Know This Already?”

1. B
2. B. The 4-wire circuit cable supplied by the Telco connects to the device acting as the CSU/DSU. That can be an external CSU/DSU, or a CSU/DSU integrated into a router serial interface card. LAN switches do not have serial interfaces, and router serial interfaces do not have transceivers.
3. B
4. A
5. E
6. E. Although HDLC has an Address field, its value is immaterial on a point-to-point link, as there is only one intended recipient: the device on the other end of the circuit.
7. A
8. B. One of the main advantages of Frame Relay is that a router can use a single access link to support multiple VCs, with each VC allowing the router to send data to a different remote router. To identify each VC, the router must use a different DLCI, because the DLCI identifies the VC.

Chapter 5

“Do I Know This Already?”

1. A and C. The network layer defines logical addressing, in contrast to physical addressing. The logical address structure allows for easy grouping of addresses, which makes routing more efficient. Path selection refers to the process of choosing the best routes to use in the network. Physical addressing and arbitration typically are data link layer functions, and error recovery typically is a transport layer function.

2. C and E

3. A

4. B. 224.1.1.1 is a class D address. 223.223.223.255 is the network broadcast address for class C network 223.223.223.0, so it cannot be assigned to a host.

5. D

6. D and F. Without any subnetting in use, all addresses in the same network as 10.1.1.1—all addresses in Class A network 10.0.0.0—must be on the same LAN. Addresses separated from that network by some router cannot be in network 10.0.0.0. So, the two correct answers are the only two answers that list a valid unicast IP address that is not in network 10.0.0.0.

7. D

8. F

9. C

10. B and C

11. A and C

12. C

13. D
Chapter 6

“Do I Know This Already?”
1. D. PC1 interprets the absence of an acknowledgment to mean that PC1 cannot tell if PC2 got any of the segments. As a result, PC1 resends all segments.
2. D
3. D and E
4. D and E
5. C. TCP, not UDP, performs windowing, error recovery, and ordered data transfer. Neither performs routing or encryption.
6. C and F. The terms packet and L3PDU refer to the data encapsulated by Layer 3. Frame and L2PDU refer to the data encapsulated by Layer 2.
7. B. Note that the hostname is all the text between the // and the /. The text before the // identifies the application layer protocol, and the text after the / represents the name of the web page.
8. A and D. VoIP flows need better delay, jitter, and loss, with better meaning less delay, jitter, and loss, as compared with all data applications. VoIP typically requires less bandwidth than data applications.
9. C. Intrusion Detection Systems (IDS) monitor packets, comparing the contents of single packets, or multiple packets, to known combinations (signatures) that typically imply that a network attack is occurring.
10. A. A virtual private network (VPN) is a security feature in which two endpoints encrypt data before forwarding it through a public network such as the Internet, providing privacy of the data inside the packets.

Chapter 7

“Do I Know This Already?”
1. A. A switch compares the destination address to the MAC address table. If a matching entry is found, the switch knows out which interface to forward the frame. If no matching entry is found, the switch floods the frame.
2. C. A switch floods broadcast frames, multicast frames (if no multicast optimizations are enabled), and unknown unicast destination frames (frames whose destination MAC address is not in the MAC address table).
3. A switch floods broadcast frames, multicast frames (if no multicast optimizations are enabled), and unknown unicast destination frames (frames whose destination MAC address is not in the MAC address table).

4. B. Switches learn MAC table entries by noting the source MAC address of each received frame and the interface in which the frame was received, adding an entry that contains both pieces of information (MAC address and interface).

5. A and B. When the frame sent by PC3 arrives at the switch, the switch has learned a MAC address table entry for only 1111.1111.1111, PC1’s MAC address. PC3’s frame, addressed to 2222.2222.2222, is flooded, which means it is forwarded out all interfaces except for the interface on which the frame arrived.

6. A. A collision domain contains all devices whose frames could collide with frames sent by all the other devices in the domain. Bridges, switches, and routers separate or segment a LAN into multiple collision domains, whereas hubs and repeaters do not.

7. A, B, and C. A broadcast domain contains all devices whose sent broadcast frames should be delivered to all the other devices in the domain. Hubs, repeaters, bridges, and switches do not separate or segment a LAN into multiple broadcast domains, whereas routers do.

8. B and D

Chapter 8

“Do I Know This Already?”

1. A and B

2. B

3. B

4. A

5. F

6. D

7. B and C
Chapter 9

“Do I Know This Already?”

1. B. If both commands are configured, IOS accepts only the password as configured in the enable secret command.

2. B and C

3. B. The first nonblank character after the banner login phrase is interpreted as the beginning delimiter character. In this case, it’s the letter “t.” So, the second letter “t”—the first letter in “the”—is interpreted as the ending delimiter. The resulting login banner is the text between these two “t”s—namely, “his is.”

4. A. The setting for the maximum number of MAC addresses has a default of 1, so the switchport port-security maximum command does not have to be configured.

5. A, D, and F. To allow access via Telnet, the switch must have password security enabled, at a minimum using the password vty line configuration subcommand. Additionally, the switch needs an IP address (configured under the VLAN 1 interface) and a default gateway when the switch needs to communicate with hosts in a different subnet.

6. F

7. E

8. A. VLAN names are case-sensitive, so the name MY-VLAN command, while using the correct syntax, would set a different VLAN name than the name shown in the question. The interface range command in one of the answers includes interfaces Fa0/13, Fa0/14, and Fa0/15. Because Fa0/14 is not assigned to VLAN 2, this command would not have allowed the right VLAN assignment. To assign a port to a VLAN, the switchport access vlan 2 command would have been required (not the switchport vlan 2 command, which is syntactically incorrect).

Chapter 10

“Do I Know This Already?”

1. E and F. CDP discovers information about neighbors. show cdp gives you several options that display more or less information, depending on the parameters used.

2. E and F

3. A, B, and D. The disabled state in the show interfaces status command is the same as an “administratively down and down” state shown in the show interfaces command. The interface must be in a connect state (per the show interfaces status command) before the switch can send frames out the interface.
4. A and D. SW2 has effectively disabled IEEE standard autonegotiation by configuring both speed and duplex. However, Cisco switches can detect the speed used by the other device, even with autonegotiation turned off. Also, at 1 Gbps, the IEEE autonegotiation standard says to use full duplex if the duplex setting cannot be negotiated, so both ends use 1 Gbps, full duplex.

5. B and D. The `show interfaces` command lists the actual speed and duplex setting, but it does not imply anything about how the settings were configured or negotiated. The `show interfaces status` command lists a prefix of `a-` in front of the speed and duplex setting to imply that the setting was autonegotiated, leaving off this prefix if the setting was configured.

6. A, B, and D. For Fa0/1, autonegotiation should work normally, with both switches choosing the faster speed (100) and better duplex setting (full). Autonegotiation also works on SW1’s Fa0/2, with both switches choosing the 100 Mbps and FDX setting. Fa0/3 disables autonegotiation as a result of having both the speed and duplex configured. The other switch still automatically senses the speed (100 Mbps), but the autonegotiation failure results in the other switch using half duplex.

7. B. The command output lists only two entries, and both of those are for VLAN 1. The command, `show mac address-table`, lists dynamic MAC table entries for all VLANs, so you can deduce that there are no VLAN 2 MAC table entries. As a result, the switch will flood the frame in all ports in VLAN 2, except the port in which the frame arrived. As for learning, because Fa0/3 is in VLAN 2, the switch, not having a MAC table entry for 0200.1111.1111 in VLAN 2, will add an entry listing VLAN 2, 0200.1111.1111, interface Fa0/3.

8. B and C. IOS adds MAC addresses configured by the port security feature as static MAC addresses, so they do not show up in the output of the `show mac address-table dynamic` command. `show mac address-table port-security` is not a valid command.

Chapter 11

“Do I Know This Already?”

1. A. 802.11a uses the U-NNI band of frequencies (around 5.4 GHz). 802.11b and 802.11g use the ISM band (around 2.4 GHz). 802.11i is a security standard.

2. B. 802.11a uses only OFDM, and 802.11b uses only DSSS. 802.11g runs at a maximum of 54 Mbps using OFDM encoding.

3. C

4. A. The Extended Service Set (ESS) mode uses multiple access points, which then allows roaming between the APs. BSS uses a single AP, and IBSS (ad hoc mode) does not use an AP, so roaming between different APs cannot be done with BSS and IBSS.
5. A and C. APs need to know the SSID for the WLAN the AP is supporting and, if an AP is capable of multiple standards, the wireless standard to use. The AP uses the best speed to each device based on the signal quality between the AP and that device; the speed can vary from device to device. The size of the coverage area is not configured; instead, it is impacted by antenna choice, antenna gain, interference, and the wireless standard used.

6. B. The AP connects to a LAN switch using a straight-through cable, just like an end-user device. All APs in the same ESS should connect to the same VLAN, because all clients connected to the same WLAN should be in the same subnet. Like LAN switches, APs do not need IP configuration to forward traffic, although it is useful for managing and accessing the AP. The standard or speed used on the WLAN does not require any particular Ethernet speed on the wired side of the AP, although overall performance is better when using faster WLAN speeds by using at least 100-Mbps Ethernet.

7. C and D. Ethernet cabling does not typically give off any radio frequency interference, so the cabling should not affect the WLAN communications. Clients discover APs by listening on all channels, so a configuration setting to a particular channel on an AP does not prevent the client from discovering the AP.

8. B and D. The standard is IEEE 802.11i. The Wi-Fi alliance defined the term WPA2 to refer to that same standard.

9. A, C, and D

Chapter 12

“Do I Know This Already?”

1. B and D. The general rule to determine if two device’s interfaces should be in the same subnet or not is whether the two interfaces are separated from each other by a router. To provide a way for hosts in one VLAN to send data to hosts outside that VLAN, a local router needs to connect its LAN interface to the same VLAN as the hosts, and have an address in the same subnet as the hosts. All the hosts in that same VLAN on the same switch would not be separated from each other by a router, so these hosts would also be in the same subnet. However, another PC, connected to the same switch, but in a different VLAN, will require its packets to flow through a router to reach Host A, so Host A’s IP address would need to be in a different subnet as compared to this new host.

2. D. By definition, two address values in every IPv4 subnet cannot be used as host IPv4 addresses: the first (lowest) numeric value in the subnet, the subnet ID, and the last (highest) numeric value in the subnet for the subnet broadcast address.
3. B and C. At least 7 subnet bits are needed, because $2^6 = 64$, so 6 subnet bits could not number 100 different subnets. Seven subnet bits could, because $2^7 = 128 \Rightarrow 100$. Similarly, 6 host bits is not enough, because $2^6 - 2 = 62$, but 7 host bits is enough, because $2^7 - 2 = 126 \Rightarrow 100$.

The number of network, subnet, and host bits must total 32 bits, making one of the answers incorrect. The answer with 8 network bits cannot be correct because the question states that a class B network is used, so the number of network bits must always be 16. The two correct answers have 16 network bits (required because the question states the use of a class B network), and at least 7 subnet and host bits each.

4. A and C. The private IPv4 networks, defined by RFC 1918, are: class A network 10.0.0.0, the 16 class B networks from 172.16.0.0 - 172.31.0.0, and the 256 class C networks that begin 192.168.

5. A, D, and E. The private IPv4 networks, defined by RFC 1918, are: class A network 10.0.0.0, the 16 class B networks from 172.16.0.0 - 172.31.0.0, and the 256 class C networks that begin 192.168. The three correct answers are from the public IP network range, and none are reserved values.

6. A and C. An unsubnetted class A, B, or C network has two parts: the network and host parts.

7. B. An unsubnetted class A, B, or C network has two parts: the network and host parts. To perform subnetting, the engineer creates a new subnet part by borrowing host bits, shrinking the number of host bits. The subnet part of the address structure exists only after the engineer chooses a non-default mask. The network part remains a constant size.

8. C and D. Subnet ID (short for Subnet identifier), subnet address, and subnet number are all synonyms, and refer to the number that identifies the subnet. The actual value is a dotted decimal number, so the term subnet name does not apply. The term subnet broadcast, a synonym for the subnet broadcast address, refers to the last (highest) numeric value in a subnet.

Chapter 13

“Do I Know This Already?”

1. B and C. Class A networks have a first octet in the range of 1–126, inclusive, and their network IDs have a 0 in the last three octets. 130.0.0.0 is actually a class B network (first octet range 128–191, inclusive). All addresses that begin with 127 are reserved, so 127.0.0.0 is not a class A network.
2. E. Class B networks all begin with value between 128 and 191, inclusive, in their first octets. The network ID has any value in the 128–191 range in the first octet, and any value from 0–255 inclusive in the second octet, with decimal 0s in the final two octets. Two of the answers show a 255 in the second octet, which is acceptable. Two of the answers show a 0 in the second octet, which is also acceptable.

3. B and D. The first octet (172) is in the range of values for class B addresses (128–191). As a result, the network ID can be formed by copying the first two octets (172.16), and writing 0s for the last two octets (172.16.0.0). The default mask for all class B networks is 255.255.0.0, and the number of host bits in all unsubnetted class B networks is 16.

4. A and C. The first octet (192) is in the range of values for class C addresses (192–223). As a result, the network ID can be formed by copying the first three octets (192.168.6), and writing 0 for the last octet (192.168.6.0). The default mask for all class C networks is 255.255.255.0, and the number of host bits in all unsubnetted class C networks is 8.

5. D. To find the network broadcast address, first determine the class, and then determine the number of host octets. At that point, convert the host octets to 255 to create the network broadcast address. In this case, 10.1.255.255 is in a class A network, with the last three octets as host octets, for a network broadcast address of 10.255.255.255. For 192.168.255.1, it is a class C address, with the last octet as the host part, for a network broadcast address of 192.168.255.255. Address 224.1.1.255 is a class D address, so it is not in any unicast IP network, so the question does not apply. For 172.30.255.255, it is a class B address, with the last two octets as host octets, so the network broadcast address is 172.30.255.255.

6. B. To find the network ID, first determine the class, and then determine the number of host octets. At that point, convert the host octets to 0 to create the network ID. In this case, 10.1.0.0 is in a class A network, with the last three octets as host octets, for a network ID of 10.0.0.0. For 192.168.1.0, it is a class C address, with the last octet as the host part, for a network ID of 192.168.1.0. Address 127.0.0.0 looks like a class A network ID, but it begins with a reserved value (127), so it is not in any class A, B, or C network. 172.20.0.1 is a class B address, with the last two octets as host octets, so the network ID is 172.20.0.0.

**Chapter 14**

“Do I Know This Already?”

1. C. Thinking about the conversion one octet at a time, the first two octets each convert to 8 binary 1s. 254 converts to 8-bit binary 11111110, and decimal 0 converts to 8-bit binary 00000000. So, the total number of binary 1s (which defines the prefix length) is $8+8+7+0 = /23$. 

2. B. Thinking about the conversion one octet at a time, the first three octets each convert to 8 binary 1s. 240 converts to 8-bit binary 11110000, so the total number of binary 1s (which defines the prefix length) is 8+8+8+4 = /28.

3. A. Thinking about the conversion one octet at a time, the first two octets each convert to 8 binary 1s. 192 converts to 8-bit binary 11000000, and decimal 0 converts to 8-bit binary 00000000. So, the total number of binary 1s (which defines the prefix length) is 8+8+2+0 = /18.

4. C. /24 is the equivalent of the mask that in binary has 24 binary 1s. To convert that to DDN format, write down all the binary 1s (24 in this case), followed by binary 0s for the remainder of the 32-bit mask. Then take 8 bits at a time, and convert from binary to decimal (or memorize the nine possible DDN mask octet values and their binary equivalents). Using the /24 mask in this question, the binary mask is 11111111 11111111 11111111 00000000. Each of the first three octets is all binary 1, so each converts to 255. The last octet, all binary 0s, converts to decimal 0, for a DDN mask of 255.255.255.0. See Appendix B for a decimal/binary conversion table.

5. B. /30 is the equivalent of the mask that in binary has 30 binary 1s. To convert that to DDN format, write down all the binary 1s (30 in this case), followed by binary 0s for the remainder of the 32-bit mask. Then take 8 bits at a time, and convert from binary to decimal (or memorize the nine possible DDN mask octet values and their binary equivalents). Using the /30 mask in this question, the binary mask is 11111111 11111111 11111111 11111100. Each of the first three octets is all binary 1, so each converts to 255. The last octet, 11111100 converts to 252, for a DDN mask of 255.255.255.252. See Appendix B for a decimal/binary conversion table.

6. B. /21 is the equivalent of the mask that in binary has 21 binary 1s. To convert that to DDN format, write down all the binary 1s (21 in this case), followed by binary 0s for the remainder of the 32-bit mask. Then take 8 bits at a time, and convert from binary to decimal (or memorize the nine possible DDN mask octet values and their binary equivalents). Using the /21 mask in this question, the binary mask is 11111111 11111111 11111000 00000000. Each of the first two octets is all binary 1, so each converts to 255. The third octet, 11111000, converts to 248. The last octet, all binary 0s, converts to decimal 0, for a DDN mask of 255.255.248.0. See Appendix B for a decimal/binary conversion table.
Chapter 15

“Do I Know This Already?”

1. C. The size of the network part is always either 8, 16, or 24 bits, based on whether it is class A, B, or C, respectively. As a class A address, N=8. The mask 255.255.255.0, converted to prefix format, is /24. The number of subnet bits is the difference between the prefix length (24) and N, so S=16 in this case. The size of the host part is a number that, when added to the prefix length (24), gives you 32, so H=8 in this case.

2. A. The size of the network part is always either 8, 16, or 24 bits, based on whether it is class A, B, or C, respectively. As a class C address, N=24. The number of subnet bits is the difference between the prefix length (27) and N, so S=3 in this case. The size of the host part is a number that, when added to the prefix length (27), gives you 32, so H=5 in this case.

3. E. The size of the network part is always either 8, 16, or 24 bits, based on whether it is class A, B, or C, respectively. As a class B address, there are 16 network bits. The mask 255.255.255.128, converted to prefix notation, is /25. The number of subnet bits is the difference between the prefix length (25) and N, so S=9 in this case. The size of the host part is a number that, when added to the prefix length (25), gives you 32, so H=7 in this case.

4. B and D. Classless addressing rules define a two-part IP address structure: the prefix and the host part. The host part is defined the same way as with classful IP addressing rules. The classless address rules' prefix length is the length of the combined network and subnet parts when using classful IP addressing concepts. Mathematically, the prefix length is equal to the number of binary 1s in the mask.

   In this case, with a mask of 255.255.255.0, the prefix length is 24 bits. The host length is the number of bits added to 24 to total 32, for 8 host bits.

5. D. Classless addressing rules define a two-part IP address structure: the prefix and the host part. This logic ignores class A, B, and C rules, and can be applied to the 32-bit IPv4 addresses from any address class. By ignoring class A, B, and C rules, classless addressing ignores any distinction as to the network part of an IPv4 address.

6. A and B. The masks in binary define a number of binary 1s, and the number of binary 1s define the length of the prefix (network + subnet) part. With a class B network, the network part is 16 bits. To support 100 subnets, the subnet part must be at least 7 bits long. Six subnet bits would supply only $2^6 = 64$ subnets, while 7 subnet bits supply $2^7 = 128$ subnets. The /24 answer supplies 8 subnet bits, and the 255.255.255.252 answer supplies 14 subnet bits.
Chapter 16

“Do I Know This Already?”

1. A. With 50% growth, the mask needs to define enough subnet bits to create 150 subnets. As a result, the mask needs at least 8 subnet bits (7 subnet bits supplies $2^7$ or 128 subnets, and 8 subnet bits supplies $2^8$ or 256 subnets). Similarly, the need for 50% growth in the size for the largest subnet means that the host part needs enough bits to number 750 hosts/subnet. Nine host bits are not enough ($2^9 - 2 = 510$), but 10 host bits supplies 1022 hosts/subnet ($2^{10} - 2 = 1022$). With 16 network bits existing because of the choice to use a class B network, the design needs a total of 34 bits (at least) in the mask (16 network, 8 subnet, 10 host), but only 32 bits exist—so no single mask meets the requirements.

2. B. With a class C network, the size of the network part of the addresses will be 24 bits, leaving only 8 bits to assign as either subnet or host bits. With a need for 12 subnets, 3 subnet bits are not enough ($2^3 = 8$), but 4 subnet bits supplies 16 subnets ($2^4 = 16$). Similarly, 3 host bits do not supply enough hosts/subnet ($2^3 - 2 = 6$), but 4 host bits supply 14 hosts/subnet ($2^4 - 2 = 14$). Combined, the network part of 24 bits, plus the minimum sizes of the subnet (4) and host (4) parts, totals 32. So, only one mask (/28) meets the requirements.

3. B. With a growth of 20%, the design needs to support 240 subnets. To meet that need, 7 subnet bits do not meet the need ($2^7 = 128$), but 8 subnet bits do meet the need ($2^8 = 256$). Similarly, the minimum number of host bits is also 8, because the need, after the 20% growth, would be 144 hosts/subnet. That number requires 8 host bits ($2^8 - 2 = 254$). These numbers are minimum numbers of subnet and host bits.

The right answer, 10.0.0.0/22, has 8 network bits because the network class is class A, 14 subnet bits (/22 - 8 = 14), and 10 host bits (32 - 22 = 10). This mask supplies at least 8 subnet bits and at least 8 host bits. The masks in the other answers either do not supply at least 8 host bits, or do not supply at least 8 subnet bits.

4. B. To choose the mask that maximizes the number of hosts, choose the mask that uses the minimum number of subnet bits, which in turn maximizes the number of host bits. In this case, the design requires 1200 subnets. 10 subnet bits do not supply enough subnets ($2^{10} = 1024$), but 11 subnet bits do supply enough ($2^{11} = 2048$). The design uses a class A network, with 8 network bits. A prefix mask of /19 (8 network plus the minimum of 11 subnet bits) is the shortest mask that meets requirements, leaving 13 host bits, for 8190 hosts/subnet.

5. B. To support 1000 subnets, 10 subnet bits ($2^{10} = 1024$) are needed. The design uses a class B network, which means 16 network bits exist as well. So, the shortest mask that meets the requirements is 255.255.255.192, or /26, composed of 16 network plus 10 subnet bits. The /28 answer also supplies enough subnets to meet the need, but compared to /26, /28 supplies fewer host bits, so fewer hosts/subnet.
6. E. To support 10 subnets, 4 subnet bits are needed, because $2^3 = 8$, which means that 3 bits are not enough, but $2^4 = 16$, which means 4 bits are enough. The design uses a class C network, which means 24 network bits exist as well. So, the shortest mask that meets the requirements is 255.255.255.240, or /28, composed of 24 network, 4 subnet, and 4 host bits. The answers do not list /28, but of the listed answers, only 255.255.255.248 (/29) has enough subnet bits. The other answers supply 0 subnet bits (255.255.255.0), 1 subnet bit (/25), 2 subnet bits (255.255.192.0), and 3 subnet bits (/27).

7. D. To choose the mask that maximizes the number of subnets, choose the mask that uses the minimum number of host bits, which in turn maximizes the number of subnet bits. In this case, the design requires 200 hosts/subnet. Seven host bits do not supply enough hosts per subnet ($2^7 - 2 = 126$), but 8 host bits do supply enough hosts per subnet ($2^8 - 2 = 254$). The design uses a class A network, with 8 network bits. A prefix mask of /24 (a mask with 8 host bits, the minimum to support the right number of hosts/subnet) maximizes the size of the subnet part, in this case, supplying 16 subnet bits.

Chapter 17

1. D. When using classful IP addressing concepts as described in Chapter 15, “Analyzing Existing Subnet Masks,” addresses have three parts: network, subnet, and host. For addresses in a single classful network, the network parts must be identical for the numbers to be in the same network. For addresses in the same subnet, both the network and subnet parts must have identical values. The host part differs when comparing different addresses in the same subnet.

2. B and D. In any subnet, the subnet ID is the smallest number in the range, the subnet broadcast address is the largest number, and the usable IP addresses sit between those. All numbers in a subnet have identical binary values in the prefix part (classless view) and network + subnet part (classful view). To be the lowest number, the subnet ID must have the lowest possible binary value (all 0s) in the host part. To be the largest number, the broadcast address must have the highest possible binary value (all binary 1s) in the host part. The usable addresses do not include the subnet ID and subnet broadcast address, so the addresses in the range of usable IP address never have a value of all 0s or 1s in their host parts.

3. C. The mask converts to 255.255.255.0. To find the subnet ID, for each octet of the mask that is 255, you can copy the IP address’s corresponding values. For mask octets of decimal 0, you can record a 0 in that octet of the subnet ID. As such, copy the 10.7.99, write a 0 for the 4th octet, for a subnet ID of 10.7.99.0.

4. C. First, the resident subnet (the subnet ID of the subnet in which the address resides) must be numerically smaller than the IP address, which rules out one of the answers. The mask converts to 255.255.255.252. As such, you can copy the first three octets of
the IP address because of their value of 255. For the fourth octet, the subnet ID value must be a multiple of 4, because 256 - 252 (mask) = 4. Those multiples include 96 and 100, and the right choice is the multiple closest to the IP address value in that octet (97) without going over. So, the correct subnet ID is 192.168.44.96.

5. C. The resident subnet ID in this case is 172.31.77.192. You can find the subnet broadcast address based on the subnet ID and mask using several methods. Following the decimal process in the book, the mask converts to 255.255.255.224, making the interesting octet be octet 4, with magic number 256 - 224 = 32. For the three octets where the mask = 255, copy the subnet ID (172.31.77). For the interesting octet, take the subnet ID value (192), add magic (32), subtract 1, for 223. That makes the subnet broadcast address be 172.31.77.223.

6. C. To answer this question, you need to find the range of addresses in the subnet, which typically then means you need to calculate the subnet ID and subnet broadcast address. With subnet ID/mask of 10.1.4.0/23, the mask converts to 255.255.254.0. To find the subnet broadcast address, following the decimal process described in this chapter, you can copy the subnet ID's first two octets because the mask's value is 255 in each octet. You write a 255 in the fourth octet because the mask has a 0 on the fourth octet. In octet 3, the interesting octet, add the magic number (2) to the subnet ID's value (4), minus 1, for a value of $2 + 4 - 1 = 5$. (The magic number in this case is calculated as 256 - 254 = 2.) That makes the broadcast address 10.1.5.255. The last usable address is 1 less: 10.1.5.254. The range that includes the last 100 addresses is 10.1.5.155 - 10.1.5.254.

7. B. To answer this question, you do not actually need to calculate the subnet broadcast address, because you only need to know the low end of the range of addresses in the subnet. The first IP address in the subnet is one more than the subnet ID, or 192.168.9.97. The first 20 addresses then include 192.168.9.97 - 192.168.9.116.

Chapter 18

“Do I Know This Already?”

1. B and C. The subnet IDs are 10.0.0.0, 10.16.0.0, 10.32.0.0, and so on, counting by 16 in the second octet, through 10.240.0.0.

2. C and D. The mask converts to 255.255.252.0, so the difference from subnet ID to subnet ID (called the magic number in this chapter) is 256 - 252 = 4. So, the subnet IDs start with 172.30.0.0, then 172.30.4.0, 172.30.8.0, and so on, adding 4 to the third octet. The mask, used with a class B network, implies six subnet bits, for 64 total subnet IDs. The last of these, 172.30.252.0, can be recognized in part because the third octet, where the subnet bits sit, has the same value as the mask in that third octet.
3. A. The first (numerically lowest) subnet ID is the same number as the classful network number, or 192.168.9.0. The remaining subnet IDs are each eight larger than the previous subnet ID, in sequence, or 192.168.9.8, 192.168.9.16, 192.168.9.24, 192.168.9.32, and so on, through 192.168.9.248.

4. A. To solve this problem, you could find all the subnet IDs of network 172.20.0.0 when using each of the masks in the answers, and compare each list to the subnet IDs listed in the question. If the list of all subnet IDs for a given mask includes all the numbers in the question, then that mask could be used.

For the correct answer, with mask 255.255.252.0, the magic number, based on the third octet, is 4. (The magic number is 256 - 252 = 4.) The list of subnet IDs when using this mask will be 172.20.0.0, 172.20.4.0, 172.20.8.0, and so on, counting by 4's in the third octet. Of the three numbers listed in the question text, the third octet values (80, 128, and 192) are all multiples of 4.

With mask 255.255.192.0, the magic number is 256 - 192 = 64, so the third octet of all subnet IDs are multiples of 64. In this case, one of the subnet IDs in the question (172.20.80.0) is not a multiple of 64. Similarly, with mask 255.255.224.0, the subnet IDs increment by 32, and 80 is not a multiple of 32.

Finally, 255.255.0.0 is the default mask for class B networks, no subnets would exist at all, and none of the subnet IDs listed in the question would exist.

5. D. Using mask /24 (255.255.255.0), the subnet IDs increment by 1 in the third octet. The reasoning is that with a class B network, 16 network bits exist, and with mask /24, the next 8 bits are subnet bits, so the entire third octet contains subnet bits. All the subnet IDs will have a 0 as the last octet, because the entire fourth octet consists of host bits. Note that 172.19.0.0 (the zero subnet) and 172.19.255.0 (the broadcast subnet) may look odd, but are valid subnet IDs.

6. B. The /27 mask converts to 255.255.255.224. As a class B network, the format of the addresses includes 16 network bits and 11 subnet bits. The subnet bits consume all of the third octet, and the first 3 bits of the fourth octet.

The magic number can be used in the fourth octet (256 - 224 = 32) as the incremental value to add in the fourth octet to get the next subnet ID. As a result, the subnet IDs are: 172.19.0.0, 172.19.0.32, 172.19.0.64...172.19.0.224, 172.19.1.0, 172.19.1.32...172.19.1.224, 172.19.2.0, 172.19.2.32... up through 172.19.255.224. Note that in the fourth octet, the value is always a multiple of 32. The one wrong answer listed has a value (16) that is not a multiple of 32.
7. D. Following the processes in this chapter, this class A network and /25 mask defines 8 network bits (per the class), and 17 subnet bits (all of octets 2 and 3, plus 1 subnet bit in octet 4). As such, the magic number can be used in the 4th octet to find the value to add to the previous subnet ID to find the next subnet ID. The magic number in this case is 256 - 128 = 128.

As a result, the fourth octet will be either a 0 or 128. Octets 2 and 3 could be any value from 0 - 255 inclusive. Only one answer (10.1.1.192) breaks these range values.

Chapter 19

“Do I Know This Already?”

1. B and E. Cisco routers have an on/off switch, but Cisco switches generally do not.

2. B and C. SOHO routers often expect to connect users to the Internet, so they use DHCP client services to learn a publicly routable IP address from an ISP, and then use DHCP server functions to lease IP addresses to the hosts in the small office.

3. A. Both switches and routers configure IP addresses, so the `ip address address mask` and `ip address dhcp` commands could be used on both routers and switches. The `interface vlan 1` command applies only to switches.

4. B and D. To route packets, a router interface must have an IP address assigned and be in an “up and up” interface state. For a serial link created in a lab, without using CSU/DSUs, one router must be configured with a `clock rate` command to the speed of the link. The `bandwidth` and `description` commands are not required to make a link operational.

5. C. If the first of the two status codes is “down,” it typically means that a Layer 1 problem exists (for example, the physical cable is not connected to the interface).

6. C and E

7. B and C. A router has one IP address for each interface in use, whereas a LAN switch has a single IP address that is just used for accessing the switch. Setup mode prompts for some different details in routers and switches; in particular, routers ask for IP addresses and masks for each interface.

8. D and F. The router boot process considers the low-order 4 bits of the configuration register, called the boot field, as well as any configured `boot system` global configuration commands. This process allows an engineer to specify which IOS is loaded when the router is initialized.

9. A
Chapter 20

“Do I Know This Already?”
1. A and C. A router will add a static route to the routing table as long as the outgoing interface or next-hop information is currently valid.

2. A

3. A and B

4. E and F

5. B, D, E, and F

6. D, E, and F

7. A, D, E, and H. The configuration consists of the `router rip` command, the `version 2` command, and the `network 10.0.0.0` and `network 11.0.0.0` commands. The `network` command uses classful network numbers as the parameter, and the `version 2` command is required to make the router use only RIP Version 2. Router2 does not need a `network 9.0.0.0` command, because a router needs only `network` commands that match directly connected subnets.

8. A. The `network` command uses classful network numbers as the parameter, matching all of that router’s interfaces whose addresses are in the classful network. The parameter must list the full network number, not just the network octets.

9. B

10. B and C. The bracketed numbers include first the administrative distance, and then the metric. The time counter (value 00:00:13) is an increasing counter that lists the time since this route was last included in a received RIP update. The counter resets to 00:00:00 upon receipt of each periodic routing update.

Chapter 21

“Do I Know This Already?”
1. C and D. Addresses that begin with 225 are Class D multicast IP addresses, so they cannot be assigned to interfaces to be used as unicast IP addresses. 10.43.53.63 255.255.255.192 is actually a subnet broadcast address for subnet 10.43.53.0 255.255.255.192.

2. B
3. C. The asterisk beside connection 2 identifies the connection number to which the `resume` command will connect the user if the `resume` command does not have any parameters.

4. A and D. LAN-based hosts ARP to find the MAC addresses of other hosts they perceive to be in the same subnet. PC1 thinks that 10.1.1.130 is in the same subnet, so PC1 will ARP looking for that host’s MAC address. PC3 would not ARP for 10.1.1.10, because PC3’s subnet, per its address and mask, is 10.1.1.128/25, range 10.1.1.129–10.1.1.254. R1 would have a connected route for subnet 10.1.1.0/24, range 10.1.1.1–10.1.1.254, so R1 would ARP looking for 10.1.1.130’s MAC address.

5. A. A ping of a host’s own IP address does not test whether the LAN is working or not, because the packet does not have to traverse the LAN. A ping that requires the packet to go from PC1 to the default gateway (R1) proves the LAN works, at least between PC1 and R1. The only answer that lists a command that causes a packet to need to cross the LAN from PC1 to R1 (although that process fails) is the `ping 10.1.1.1` command.

6. A, C, and E. The `tracert` (Microsoft operating systems) and `traceroute` (Cisco IOS Software) commands list the IP address of the intermediate routers and end host. The commands list the router’s IP address closest to the host that issued the command.

7. B and C. A host only ARPs to find MAC addresses of other hosts in the same subnet. PC1 would need its default gateway’s MAC address, and likewise, R1 would need PC1’s MAC address in its ARP cache to send the return packet.

8. A and D. A host only ARPs to find MAC addresses of other hosts in the same subnet. However, a host learns the IP address to MAC address mapping information from a received ARP request. PC1 would send an ARP broadcast for R1’s 10.1.1.1 IP address, which would cause PC1 to learn about R1’s MAC address, and R1 to learn PC1’s MAC address. Similarly, because the first packet is going from PC1 to PC2, R2 will need to send an ARP broadcast looking for PC2’s MAC address, through which PC2 will learn R2’s MAC address, meaning that PC2 does not need to send an ARP broadcast looking for R2’s MAC address.

9. A, C, and E. The IP header has a source IP address of 10.1.1.10 and a destination of 172.16.2.7 for the packets going left-to-right, with those addresses reversed for the ping reply packets that go right-to-left. The MAC addresses always represent the addresses of the devices on that local LAN. Note that HDLC, on the serial link, does not use MAC addresses.
Chapter 22

“Do I Know This Already?”

1. D. Modems demodulate an analog signal sent by the phone company into a digital signal. The goal is to re-create the original bits sent by the other modem, so the demodulation function converts the analog signal into the bits that it was intended to represent.

2. A. Of the Internet access options covered in this book, only DSL has distance limitations based on the length of the local telco loop.

3. D. The DSLAM separates, or multiplexes, the voice traffic from the data, splitting the voice traffic off to a voice switch, and the data traffic to a router.

4. A and C. Cable Internet supports only asymmetric speeds.

5. B and C

6. A. The router acts as a DHCP server on the local LAN segment, with a static IP address on the interface. It performs NAT/PAT, changing the source IP address of packets entering the interface. It does not act as a DNS server; although as DHCP server, it does tell the PCs on the local LAN the IP address(es) of any known DNS servers.

7. B and C. The router acts as a DHCP server on the local LAN segment, and as a DHCP client on the Internet-facing interface. It performs NAT/PAT, changing the source IP address of packets entering the local LAN interface and exiting the Internet-facing interface. It does not act as a DNS server; although as DHCP server, it does tell the PCs on the local LAN the IP address(es) of any known DNS servers.

8. B and C. In a typical installation, the router translates (with NAT/PAT) the local hosts’ IP addresses, so the server would receive packets from a public IP address (known to the access router) instead of from private IP address 10.1.1.1. The PC user will use normal DNS services to learn the IP address of www.cisco.com, which would be a public IP address in the Internet. In NAT terminology, the inside local IP address is the private IP address for a local host in the enterprise network, whereas the inside global IP address is the public Internet IP address to which the inside local IP address is translated by NAT/PAT.
Chapter 23

“Do I Know This Already?”

1. A. The encapsulation command resets the encapsulation (data-link), so only the encapsulation ppp command is required. The clock rate command only matters if a back-to-back serial link is used, and if that link already works, that means the clock rate command has already been configured. The bandwidth command is never required to make the link work.

2. B. For a back-to-back serial link, the clock rate command is required on the router with the DCE cable installed. If R1 connects to a DTE cable, R2 must use a DCE cable, requiring the clock rate command on R2. The bandwidth command is never needed to make any interface work; it is merely a reference for other functions, such as for defaults for choosing routing protocol metrics for EIGRP and OSPF.

3. B. The clock rate command is needed only when a back-to-back serial link is created in a lab, and this link uses a real leased line installed by a telco. Although the bandwidth command may be recommended, it is not required to make the link work. Because the routers are brand new, having not been configured before, the serial interfaces still have their default encapsulation of HDLC, so the encapsulation ppp command is required, on both routers, to make PPP operational.

4. C and D. Other settings include the DHCP clients’ default gateway, which is the access router’s local LAN interface IP address, the subnet number, and subnet mask.

5. B. The SDM configuration wizard allows DHCP client services to be configured, with an option to add PAT configuration or not. The PAT configuration option assumes all interfaces that already have IP addresses are candidates to be inside interfaces, with DHCP-client interfaces assumed to be outside interfaces.

6. D. SDM uses a web browser on a PC and a web server function on the router, requiring the user to connect through an IP network rather than from the console. SDM does not use SSH at all. SDM loads the configuration into the router only after the user clicks the Finish button on any of the configuration wizards, but the configuration is added only to the running-config file.

7. A and B. To enable a local host user to type names instead of IP addresses to access the Internet, the access router DHCP server needs to be configured with several details, including the IP addresses of the DNS servers advertised by the ISPs. Also, mixing up which interface should be the inside interface and which should be the outside interface is common. The other two answers have nothing to do with the required configuration on an Internet access router.
This appendix provides several useful reference tables that list numbers used throughout this book. Specifically:

Table B-1: A decimal-binary cross reference, useful when converting from decimal to binary and vice versa.
### Table B-1  Decimal-Binary Cross Reference, Decimal Values 0–255

<table>
<thead>
<tr>
<th>Decimal Value</th>
<th>Binary Value</th>
<th>Decimal Value</th>
<th>Binary Value</th>
<th>Decimal Value</th>
<th>Binary Value</th>
<th>Decimal Value</th>
<th>Binary Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00000000</td>
<td>32</td>
<td>00100000</td>
<td>64</td>
<td>01000000</td>
<td>96</td>
<td>11000000</td>
</tr>
<tr>
<td>1</td>
<td>00000001</td>
<td>33</td>
<td>00100001</td>
<td>65</td>
<td>01000001</td>
<td>97</td>
<td>11000001</td>
</tr>
<tr>
<td>2</td>
<td>00000010</td>
<td>34</td>
<td>00100010</td>
<td>66</td>
<td>01000010</td>
<td>98</td>
<td>11000010</td>
</tr>
<tr>
<td>3</td>
<td>00000011</td>
<td>35</td>
<td>00100011</td>
<td>67</td>
<td>01000011</td>
<td>99</td>
<td>11000011</td>
</tr>
<tr>
<td>4</td>
<td>00000100</td>
<td>36</td>
<td>00100100</td>
<td>68</td>
<td>01000100</td>
<td>100</td>
<td>11000100</td>
</tr>
<tr>
<td>5</td>
<td>00000101</td>
<td>37</td>
<td>00100101</td>
<td>69</td>
<td>01000101</td>
<td>101</td>
<td>11000101</td>
</tr>
<tr>
<td>6</td>
<td>00000110</td>
<td>38</td>
<td>00100110</td>
<td>70</td>
<td>01000110</td>
<td>102</td>
<td>11000110</td>
</tr>
<tr>
<td>7</td>
<td>00000111</td>
<td>39</td>
<td>00100111</td>
<td>71</td>
<td>01000111</td>
<td>103</td>
<td>11000111</td>
</tr>
<tr>
<td>8</td>
<td>00001000</td>
<td>40</td>
<td>00101000</td>
<td>72</td>
<td>01001000</td>
<td>104</td>
<td>11010000</td>
</tr>
<tr>
<td>9</td>
<td>00001001</td>
<td>41</td>
<td>00101001</td>
<td>73</td>
<td>01001001</td>
<td>105</td>
<td>11010001</td>
</tr>
<tr>
<td>10</td>
<td>00001010</td>
<td>42</td>
<td>00101010</td>
<td>74</td>
<td>01001010</td>
<td>106</td>
<td>11010010</td>
</tr>
<tr>
<td>11</td>
<td>00001011</td>
<td>43</td>
<td>00101011</td>
<td>75</td>
<td>01001011</td>
<td>107</td>
<td>11010011</td>
</tr>
<tr>
<td>12</td>
<td>00001100</td>
<td>44</td>
<td>00101100</td>
<td>76</td>
<td>01001100</td>
<td>108</td>
<td>11010100</td>
</tr>
<tr>
<td>13</td>
<td>00001101</td>
<td>45</td>
<td>00101101</td>
<td>77</td>
<td>01001101</td>
<td>109</td>
<td>11010101</td>
</tr>
<tr>
<td>14</td>
<td>00001110</td>
<td>46</td>
<td>00101110</td>
<td>78</td>
<td>01001110</td>
<td>110</td>
<td>11010110</td>
</tr>
<tr>
<td>15</td>
<td>00001111</td>
<td>47</td>
<td>00101111</td>
<td>79</td>
<td>01001111</td>
<td>111</td>
<td>11010111</td>
</tr>
<tr>
<td>16</td>
<td>00010000</td>
<td>48</td>
<td>00110000</td>
<td>80</td>
<td>01010000</td>
<td>112</td>
<td>11011000</td>
</tr>
<tr>
<td>17</td>
<td>00010001</td>
<td>49</td>
<td>00110001</td>
<td>81</td>
<td>01010001</td>
<td>113</td>
<td>11011001</td>
</tr>
<tr>
<td>18</td>
<td>00010010</td>
<td>50</td>
<td>00110010</td>
<td>82</td>
<td>01010010</td>
<td>114</td>
<td>11011010</td>
</tr>
<tr>
<td>19</td>
<td>00010011</td>
<td>51</td>
<td>00110011</td>
<td>83</td>
<td>01010011</td>
<td>115</td>
<td>11011011</td>
</tr>
<tr>
<td>20</td>
<td>00010100</td>
<td>52</td>
<td>00110100</td>
<td>84</td>
<td>01010100</td>
<td>116</td>
<td>11011100</td>
</tr>
<tr>
<td>21</td>
<td>00010101</td>
<td>53</td>
<td>00110101</td>
<td>85</td>
<td>01010101</td>
<td>117</td>
<td>11011101</td>
</tr>
<tr>
<td>22</td>
<td>00010110</td>
<td>54</td>
<td>00110110</td>
<td>86</td>
<td>01010110</td>
<td>118</td>
<td>11011110</td>
</tr>
<tr>
<td>23</td>
<td>00010111</td>
<td>55</td>
<td>00110111</td>
<td>87</td>
<td>01010111</td>
<td>119</td>
<td>11011111</td>
</tr>
<tr>
<td>24</td>
<td>00011000</td>
<td>56</td>
<td>00111000</td>
<td>88</td>
<td>01011000</td>
<td>120</td>
<td>11100000</td>
</tr>
<tr>
<td>25</td>
<td>00011001</td>
<td>57</td>
<td>00111001</td>
<td>89</td>
<td>01011001</td>
<td>121</td>
<td>11100001</td>
</tr>
<tr>
<td>26</td>
<td>00011010</td>
<td>58</td>
<td>00111010</td>
<td>90</td>
<td>01011010</td>
<td>122</td>
<td>11100100</td>
</tr>
<tr>
<td>27</td>
<td>00011011</td>
<td>59</td>
<td>00111011</td>
<td>91</td>
<td>01011011</td>
<td>123</td>
<td>11100101</td>
</tr>
<tr>
<td>28</td>
<td>00011100</td>
<td>60</td>
<td>00111100</td>
<td>92</td>
<td>01011100</td>
<td>124</td>
<td>11101100</td>
</tr>
<tr>
<td>29</td>
<td>00011101</td>
<td>61</td>
<td>00111101</td>
<td>93</td>
<td>01011101</td>
<td>125</td>
<td>11101101</td>
</tr>
<tr>
<td>30</td>
<td>00011110</td>
<td>62</td>
<td>00111110</td>
<td>94</td>
<td>01011110</td>
<td>126</td>
<td>11110000</td>
</tr>
<tr>
<td>31</td>
<td>00011111</td>
<td>63</td>
<td>00111111</td>
<td>95</td>
<td>01011111</td>
<td>127</td>
<td>11111111</td>
</tr>
<tr>
<td>Decimal Value</td>
<td>Binary Value</td>
<td>Decimal Value</td>
<td>Binary Value</td>
<td>Decimal Value</td>
<td>Binary Value</td>
<td>Decimal Value</td>
<td>Binary Value</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>128</td>
<td>10000000</td>
<td>160</td>
<td>10100000</td>
<td>192</td>
<td>11000000</td>
<td>224</td>
<td>11100000</td>
</tr>
<tr>
<td>129</td>
<td>10000001</td>
<td>161</td>
<td>10100001</td>
<td>193</td>
<td>11000001</td>
<td>225</td>
<td>11100001</td>
</tr>
<tr>
<td>130</td>
<td>10000010</td>
<td>162</td>
<td>10100010</td>
<td>194</td>
<td>11000010</td>
<td>226</td>
<td>11100010</td>
</tr>
<tr>
<td>131</td>
<td>10000011</td>
<td>163</td>
<td>10100011</td>
<td>195</td>
<td>11000011</td>
<td>227</td>
<td>11100011</td>
</tr>
<tr>
<td>132</td>
<td>10000100</td>
<td>164</td>
<td>10100100</td>
<td>196</td>
<td>11000100</td>
<td>228</td>
<td>11100100</td>
</tr>
<tr>
<td>133</td>
<td>10000101</td>
<td>165</td>
<td>10100101</td>
<td>197</td>
<td>11000101</td>
<td>229</td>
<td>11100101</td>
</tr>
<tr>
<td>134</td>
<td>10000110</td>
<td>166</td>
<td>10100110</td>
<td>198</td>
<td>11000110</td>
<td>230</td>
<td>11100110</td>
</tr>
<tr>
<td>135</td>
<td>10000111</td>
<td>167</td>
<td>10100111</td>
<td>199</td>
<td>11000111</td>
<td>231</td>
<td>11100111</td>
</tr>
<tr>
<td>136</td>
<td>10001000</td>
<td>168</td>
<td>10101000</td>
<td>200</td>
<td>11001000</td>
<td>232</td>
<td>11101000</td>
</tr>
<tr>
<td>137</td>
<td>10001001</td>
<td>169</td>
<td>10101001</td>
<td>201</td>
<td>11001001</td>
<td>233</td>
<td>11101001</td>
</tr>
<tr>
<td>138</td>
<td>10001010</td>
<td>170</td>
<td>10101010</td>
<td>202</td>
<td>11001010</td>
<td>234</td>
<td>11101010</td>
</tr>
<tr>
<td>139</td>
<td>10001011</td>
<td>171</td>
<td>10101011</td>
<td>203</td>
<td>11001011</td>
<td>235</td>
<td>11101011</td>
</tr>
<tr>
<td>140</td>
<td>10001100</td>
<td>172</td>
<td>10101100</td>
<td>204</td>
<td>11001100</td>
<td>236</td>
<td>11101100</td>
</tr>
<tr>
<td>141</td>
<td>10001101</td>
<td>173</td>
<td>10101101</td>
<td>205</td>
<td>11001101</td>
<td>237</td>
<td>11101101</td>
</tr>
<tr>
<td>142</td>
<td>10001110</td>
<td>174</td>
<td>10101110</td>
<td>206</td>
<td>11001110</td>
<td>238</td>
<td>11101110</td>
</tr>
<tr>
<td>143</td>
<td>10001111</td>
<td>175</td>
<td>10101111</td>
<td>207</td>
<td>11001111</td>
<td>239</td>
<td>11101111</td>
</tr>
<tr>
<td>144</td>
<td>10010000</td>
<td>176</td>
<td>10110000</td>
<td>208</td>
<td>11010000</td>
<td>240</td>
<td>11110000</td>
</tr>
<tr>
<td>145</td>
<td>10010001</td>
<td>177</td>
<td>10110001</td>
<td>209</td>
<td>11010001</td>
<td>241</td>
<td>11110001</td>
</tr>
<tr>
<td>146</td>
<td>10010010</td>
<td>178</td>
<td>10110010</td>
<td>210</td>
<td>11010010</td>
<td>242</td>
<td>11110010</td>
</tr>
<tr>
<td>147</td>
<td>10010011</td>
<td>179</td>
<td>10110011</td>
<td>211</td>
<td>11010011</td>
<td>243</td>
<td>11110011</td>
</tr>
<tr>
<td>148</td>
<td>10010100</td>
<td>180</td>
<td>10110100</td>
<td>212</td>
<td>11010100</td>
<td>244</td>
<td>11110100</td>
</tr>
<tr>
<td>149</td>
<td>10010101</td>
<td>181</td>
<td>10110101</td>
<td>213</td>
<td>11010101</td>
<td>245</td>
<td>11110101</td>
</tr>
<tr>
<td>150</td>
<td>10010110</td>
<td>182</td>
<td>10110110</td>
<td>214</td>
<td>11010110</td>
<td>246</td>
<td>11110110</td>
</tr>
<tr>
<td>151</td>
<td>10010111</td>
<td>183</td>
<td>10110111</td>
<td>215</td>
<td>11010111</td>
<td>247</td>
<td>11110111</td>
</tr>
<tr>
<td>152</td>
<td>10011000</td>
<td>184</td>
<td>10111000</td>
<td>216</td>
<td>11011000</td>
<td>248</td>
<td>11111000</td>
</tr>
<tr>
<td>153</td>
<td>10011001</td>
<td>185</td>
<td>10111001</td>
<td>217</td>
<td>11011001</td>
<td>249</td>
<td>11111001</td>
</tr>
<tr>
<td>154</td>
<td>10011010</td>
<td>186</td>
<td>10111010</td>
<td>218</td>
<td>11011010</td>
<td>250</td>
<td>11111010</td>
</tr>
<tr>
<td>155</td>
<td>10011011</td>
<td>187</td>
<td>10111011</td>
<td>219</td>
<td>11011011</td>
<td>251</td>
<td>11111011</td>
</tr>
<tr>
<td>156</td>
<td>10011100</td>
<td>188</td>
<td>10111100</td>
<td>220</td>
<td>11011100</td>
<td>252</td>
<td>11111100</td>
</tr>
<tr>
<td>157</td>
<td>10011101</td>
<td>189</td>
<td>10111101</td>
<td>221</td>
<td>11011101</td>
<td>253</td>
<td>11111101</td>
</tr>
<tr>
<td>158</td>
<td>10011110</td>
<td>190</td>
<td>10111110</td>
<td>222</td>
<td>11011110</td>
<td>254</td>
<td>11111110</td>
</tr>
<tr>
<td>159</td>
<td>10011111</td>
<td>191</td>
<td>10111111</td>
<td>223</td>
<td>11011111</td>
<td>255</td>
<td>11111111</td>
</tr>
</tbody>
</table>

**Table B-1**  Decimal-Binary Cross Reference, Decimal Values 0–255
Table B-2: A hexadecimal-binary cross reference, useful when converting from hex to binary, and vice versa.

<table>
<thead>
<tr>
<th>Hex</th>
<th>4-Bit Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>1111</td>
</tr>
</tbody>
</table>
Table B-3: Powers of 2, from $2^1$ through $2^{32}$.

<table>
<thead>
<tr>
<th>$X$</th>
<th>$2^X$</th>
<th>$X$</th>
<th>$2^X$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>17</td>
<td>131,072</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>18</td>
<td>262,144</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>19</td>
<td>524,288</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>20</td>
<td>1,048,576</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>21</td>
<td>2,097,152</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>22</td>
<td>4,194,304</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>23</td>
<td>8,388,608</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>24</td>
<td>16,777,216</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>25</td>
<td>33,554,432</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>26</td>
<td>67,108,864</td>
</tr>
<tr>
<td>11</td>
<td>2048</td>
<td>27</td>
<td>134,217,728</td>
</tr>
<tr>
<td>12</td>
<td>4096</td>
<td>28</td>
<td>268,435,456</td>
</tr>
<tr>
<td>13</td>
<td>8192</td>
<td>29</td>
<td>536,870,912</td>
</tr>
<tr>
<td>14</td>
<td>16,384</td>
<td>30</td>
<td>1,073,741,824</td>
</tr>
<tr>
<td>15</td>
<td>32,768</td>
<td>31</td>
<td>2,147,483,648</td>
</tr>
<tr>
<td>16</td>
<td>65,536</td>
<td>32</td>
<td>4,294,967,296</td>
</tr>
</tbody>
</table>
Table B-4: Table of all 33 possible subnet masks, in all three formats.

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Prefix</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0</td>
<td>/0</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>128.0.0.0</td>
<td>/1</td>
<td>10000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>192.0.0.0</td>
<td>/2</td>
<td>11000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>224.0.0.0</td>
<td>/3</td>
<td>11100000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>240.0.0.0</td>
<td>/4</td>
<td>11110000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>248.0.0.0</td>
<td>/5</td>
<td>11111000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>252.0.0.0</td>
<td>/6</td>
<td>11111100 00000000 00000000 00000000</td>
</tr>
<tr>
<td>254.0.0.0</td>
<td>/7</td>
<td>11111110 00000000 00000000 00000000</td>
</tr>
<tr>
<td>255.0.0.0</td>
<td>/8</td>
<td>11111111 00000000 00000000 00000000</td>
</tr>
<tr>
<td>255.128.0.0</td>
<td>/9</td>
<td>11111111 10000000 00000000 00000000</td>
</tr>
<tr>
<td>255.192.0.0</td>
<td>/10</td>
<td>11111111 11000000 00000000 00000000</td>
</tr>
<tr>
<td>255.224.0.0</td>
<td>/11</td>
<td>11111111 11100000 00000000 00000000</td>
</tr>
<tr>
<td>255.240.0.0</td>
<td>/12</td>
<td>11111111 11110000 00000000 00000000</td>
</tr>
<tr>
<td>255.248.0.0</td>
<td>/13</td>
<td>11111111 11111000 00000000 00000000</td>
</tr>
<tr>
<td>255.252.0.0</td>
<td>/14</td>
<td>11111111 11111100 00000000 00000000</td>
</tr>
<tr>
<td>255.254.0.0</td>
<td>/15</td>
<td>11111111 11111110 00000000 00000000</td>
</tr>
<tr>
<td>255.255.0.0</td>
<td>/16</td>
<td>11111111 11111111 00000000 00000000</td>
</tr>
<tr>
<td>255.255.128.0</td>
<td>/17</td>
<td>11111111 11111111 10000000 00000000</td>
</tr>
<tr>
<td>255.255.192.0</td>
<td>/18</td>
<td>11111111 11111111 11000000 00000000</td>
</tr>
<tr>
<td>255.255.224.0</td>
<td>/19</td>
<td>11111111 11111111 11100000 00000000</td>
</tr>
<tr>
<td>255.255.240.0</td>
<td>/20</td>
<td>11111111 11111111 11110000 00000000</td>
</tr>
<tr>
<td>255.255.248.0</td>
<td>/21</td>
<td>11111111 11111111 11111000 00000000</td>
</tr>
<tr>
<td>255.255.252.0</td>
<td>/22</td>
<td>11111111 11111111 11111100 00000000</td>
</tr>
<tr>
<td>255.255.254.0</td>
<td>/23</td>
<td>11111111 11111111 11111110 00000000</td>
</tr>
<tr>
<td>255.255.255.0</td>
<td>/24</td>
<td>11111111 11111111 11111111 00000000</td>
</tr>
<tr>
<td>255.255.255.128</td>
<td>/25</td>
<td>11111111 11111111 11111111 10000000</td>
</tr>
<tr>
<td>255.255.255.192</td>
<td>/26</td>
<td>11111111 11111111 11111111 11000000</td>
</tr>
<tr>
<td>255.255.255.224</td>
<td>/27</td>
<td>11111111 11111111 11111111 11100000</td>
</tr>
<tr>
<td>255.255.255.240</td>
<td>/28</td>
<td>11111111 11111111 11111111 11110000</td>
</tr>
<tr>
<td>255.255.255.248</td>
<td>/29</td>
<td>11111111 11111111 11111111 11111000</td>
</tr>
<tr>
<td>255.255.255.252</td>
<td>/30</td>
<td>11111111 11111111 11111111 11111100</td>
</tr>
<tr>
<td>255.255.255.254</td>
<td>/31</td>
<td>11111111 11111111 11111111 11111110</td>
</tr>
<tr>
<td>255.255.255.255</td>
<td>/32</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
</tbody>
</table>
This page intentionally left blank
ICND1 Exam Updates: Version 1.0

Over time, reader feedback allows Cisco Press to gauge which topics give our readers the most problems when taking the exams. Additionally, Cisco may make small changes in the breadth of exam topics or in emphasis of certain topics. To assist readers with those topics, the author creates new materials clarifying and expanding upon those troublesome exam topics. As mentioned in the introduction, the additional content about the exam is contained in a PDF document on this book’s companion website at http://www.ciscopress.com/title/1587204258. The document you are viewing is Version 1.0 of this appendix.

This appendix presents all the latest update information available at the time of this book’s printing. To make sure you have the latest version of this document, you should be sure to visit the companion website to see if any more recent versions have been posted since this book went to press.

This appendix attempts to fill the void that occurs with any print book. In particular, this appendix does the following:

1. Mentions technical items that might not have been mentioned elsewhere in the book.
2. Covers new topics when Cisco adds topics to the ICND1 or CCNA exam blueprints.
3. Provides a way to get up-to-the-minute current information about content for the exam.

Always Get the Latest at the Companion Website

You are reading the version of this appendix that was available when your book was printed. However, given that the main purpose of this appendix is to be a living, changing document, it is very important that you look for the latest version online at the book’s companion website. To do so:

2. Select the Downloads option under the More Information box.
3. Download the latest “ICND1 Appendix C” document.
Appendix C: ICND1 Exam Updates: Version 1.0

NOTE  Note that the downloaded document has a version number. If the version of the PDF on the website is the same version as this appendix in your book, your book has the latest version, and there is no need to download or use the online version.

Technical Content

The current version of this appendix does not contain any additional technical coverage. This appendix is here simply to provide the instructions to check online for a later version of this appendix.
10BASE-T  The 10-Mbps baseband Ethernet specification using two pairs of twisted-pair cabling (Categories 3, 4, or 5): One pair transmits data and the other receives data. 10BASE-T, which is part of the IEEE 802.3 specification, has a distance limit of approximately 100 m (328 feet) per segment.

100BASE-TX  A name for the IEEE Fast Ethernet standard that uses two-pair copper cabling, a speed of 100 Mbps, and a maximum cable length of 100 meters.

1000BASE-T  A name for the IEEE Gigabit Ethernet standard that uses four-pair copper cabling, a speed of 1000 Mbps (1 Gbps), and a maximum cable length of 100 meters.

802.1Q  The IEEE standardized protocol for VLAN trunking.

802.11a  The IEEE standard for wireless LANs using the U-NII spectrum, OFDM encoding, at speeds of up to 54 Mbps.

802.11b  The IEEE standard for wireless LANs using the ISM spectrum, DSSS encoding, and speeds of up to 11 Mbps.

802.11g  The IEEE standard for wireless LANs using the ISM spectrum, OFDM or DSSS encoding, and speeds of up to 54 Mbps.

802.11i  The IEEE standard for wireless LAN security, including authentication and encryption.

802.11n  The IEEE standard for wireless LANs using ISM spectrum, OFDM encoding, multiple antennae, for single-stream speeds up to 150 Mbps.

AAA  Authentication, Authorization, and Accounting. Authentication confirms the identity of the user or device. Authorization determines what the user or device is allowed to do. Accounting records information about access attempts, including inappropriate requests.
access interface  A LAN network design term that refers to a switch interface connected to end-user devices.

access link  In Frame Relay, the physical serial link that connects a Frame Relay DTE device, usually a router, to a Frame Relay switch. The access link uses the same physical layer standards as do point-to-point leased lines.

access point  A wireless LAN device that provides a means for wireless clients to send data to each other and to the rest of a wired network, with the AP connecting to both the wireless LAN and the wired Ethernet LAN.

accounting  In security, the recording of access attempts. See AAA.

ad hoc mode  In wireless LANs, a method or mode of operation in which clients send data directly to each other without the use of a wireless access point (AP).

adjacent-layer interaction  The general topic of how on one computer, two adjacent layers in a networking architectural model work together, with the lower layer providing services to the higher layer.

administrative distance  In Cisco routers, a means for one router to choose between multiple routes to reach the same subnet when those routes were learned by different routing protocols. The lower the administrative distance, the better the source of the routing information.

ADSL  Asymmetric digital subscriber line. One of many DSL technologies, ADSL is designed to deliver more bandwidth downstream (from the central office to the customer site) than upstream.

Anti-X  The term used by Cisco to refer to a variety of security tools that help prevent various attacks, including antivirus, anti-phishing, and anti-spam.

ARP  Address Resolution Protocol. An Internet protocol used to map an IP address to a MAC address. Defined in RFC 826.

asymmetric  A feature of many Internet access technologies, including DSL, cable, and modems, in which the downstream transmission rate is higher than the upstream transmission rate.

asynchronous  The lack of an imposed time ordering on a bit stream. Practically, both sides agree to the same speed, but there is no check or adjustment of the rates if they are slightly different. However, because only 1 byte per transfer is sent, slight differences in clock speed are not an issue.
ATM  Asynchronous Transfer Mode. The international standard for cell relay in which multiple service types (such as voice, video, and data) are conveyed in fixed-length (53-byte) cells. Fixed-length cells allow cell processing to occur in hardware, thereby reducing transit delays.

authentication  In security, the verification of the identity of a person or a process. See AAA.

authorization  In security, the determination of the rights allowed for a particular user or device. See AAA.

autonomous system  An internetwork in the administrative control of one organization, company, or governmental agency, inside which that organization typically runs an Interior Gateway Protocol (IGP).

auxiliary port  A physical connector on a router that is designed to be used to allow a remote terminal, or PC with a terminal emulator, to access a router using an analog modem.

back-to-back link  A serial link between two routers, created without CSU/DSUs, by connecting a DTE cable to one router and a DCE cable to the other. Typically used in labs to build serial links without the expense of an actual leased line from the telco.

balanced hybrid  A term that refers to a general type of routing protocol algorithm, the other two being distance vector and link state. The Enhanced Interior Gateway Routing Protocol (EIGRP) is the only routing protocol that Cisco classifies as using a balanced hybrid algorithm.

bandwidth  A reference to the speed of a networking link. Its origins come from earlier communications technology in which the range, or width, of the frequency band dictated how fast communications could occur.

basic service set (BSS)  In wireless LANs, a WLAN with a single access point.

bitwise Boolean AND  A Boolean AND between two numbers of the same length in which the first bit in each number is ANDed, and then the second bit in each number, and then the third, and so on.
**Boolean AND**  A math operation performed on a pair of one-digit binary numbers. The result is another one-digit binary number. 1 AND 1 yields 1; all other combinations yield a 0.

**boot field**  The low-order 4 bits of the configuration register in a Cisco router. The value in the boot field in part tells the router where to look for a Cisco IOS image to load.

**BRI**  Basic Rate Interface. An ISDN interface composed of two 64-kbps bearer (B) channels and one 16-kbps data (D) channel for circuit-switched communication of voice, video, and data.

**broadcast address**  *See* subnet broadcast address.

**broadcast domain**  A set of all devices that receive broadcast frames originating from any device within the set. Devices in the same VLAN are in the same broadcast domain.

**broadcast frame**  An Ethernet frame sent to destination address FFFF.FFFF.FFFF, meaning that the frame should be delivered to all hosts on that LAN.

**broadcast subnet**  When subnetting a Class A, B, or C network, the one subnet in each classful network for which all subnet bits have a value of binary 1. The subnet broadcast address in this subnet has the same numeric value as the classful network’s network-wide broadcast address.

**bus**  A common physical signal path composed of wires or other media across which signals can be sent from one part of a computer to another.

**CDP**  Cisco Discovery Protocol. A media- and protocol-independent device-discovery protocol that runs on most Cisco-manufactured equipment, including routers, access servers, and switches. Using CDP, a device can advertise its existence to other devices and receive information about other devices on the same LAN or on the remote side of a WAN.

**CDP neighbor**  A device on the other end of some communications cable that is advertising CDP updates.

**CIDR notation**  *See* prefix notation.

**circuit switching**  A generic reference to network services, typically WAN services, in which the provider sets up a (layer 1) circuit between two devices, and the provider makes no attempt to interpret the meaning of the bits. *See also* packet switching.
Cisco Configuration Professional (CCP)  
A graphical web-based interface useful to configure Cisco devices, including routers and switches. CCP replaces Cisco Security Device Manager (SDM) has the preferred software to graphically configure Cisco routers and switches.

classful network  
An IPv4 Class A, B, or C network; called a classful network because these networks are defined by the class rules for IPv4 addressing.

classful routing protocol  
Does not transmit the mask information along with the subnet number, and therefore must consider Class A, B, and C network boundaries and perform autosummization at those boundaries. Does not support VLSM.

classless routing protocol  
An inherent characteristic of a routing protocol, specifically that the routing protocol does send subnet masks in its routing updates, thereby removing any need to make assumptions about the addresses in a particular subnet or network, making it able to support VLSM and manual route summarization.

CLI  
Command-line interface. An interface that enables the user to interact with the operating system by entering commands and optional arguments.

clock rate  
The speed at which a serial link encodes bits on the transmission medium.

clock source  
The device to which the other devices on the link adjust their speed when using synchronous links.

clocking  
The process of supplying a signal over a cable, either on a separate pin on a serial cable or as part of the signal transitions in the transmitted signal, so that the receiving device can keep synchronization with the sending device.

codec  
Coder-decoder. An integrated circuit device that transforms analog voice signals into a digital bit stream and then transforms digital signals back into analog voice signals.

collision domain  
A set of network interface cards (NICs) for which a frame sent by one NIC could result in a collision with a frame sent by any other NIC in the same collision domain.

command-line interface  
See CLI.

configuration mode  
A part of the Cisco IOS Software CLI in which the user can type configuration commands that are then added to the device’s currently used configuration file (running-config).
**configuration register**  In Cisco routers, a 16-bit, user-configurable value that determines how the router functions during initialization. In software, the bit position is set by specifying a hexadecimal value using configuration commands.

**connection establishment**  The process by which a connection-oriented protocol creates a connection. With TCP, a connection is established by a three-way transmission of TCP segments.

**console port**  A physical socket on a router or switch to which a cable can be connected between a computer and the router/switch, for the purpose of allowing the computer to use a terminal emulator and use the CLI to configure, verify, and troubleshoot the router/switch.

**convergence**  The time required for routing protocols to react to changes in the network, removing bad routes and adding new, better routes so that the current best routes are in all the routers’ routing tables.

**CPE**  Customer premises equipment. Any equipment related to communications that is located at the customer site, as opposed to inside the telephone company’s network.

**crossover cable**  An Ethernet cable that swaps the pair used for transmission on one device to a pair used for receiving on the device on the opposite end of the cable. In 10BASE-T and 100BASE-TX networks, this cable swaps the pair at pins 1,2 to pins 3,6 on the other end of the cable, and the pair at pins 3,6 to pins 1,2 as well.

**CSMA/CA**  Carrier sense multiple access with collision avoidance. A media-access mechanism that defines how devices decide when they can send, with a goal of avoiding collisions as much as possible. IEEE WLANs use CSMA/CA.

**CSMA/CD**  Carrier sense multiple access collision detect. A media-access mechanism in which devices ready to transmit data first check the channel for a carrier. If no carrier is sensed for a specific period of time, a device can transmit. If two devices transmit at once, a collision occurs and is detected by all colliding devices. This collision subsequently delays retransmissions from those devices for some random length of time.

**CSU/DSU**  Channel service unit/data service unit. A device that understands the Layer 1 details of serial links installed by a telco and how to use a serial cable to communicate with networking equipment such as routers.
**cut-through switching**  One of three options for internal processing on some models of Cisco LAN switches in which the frame is forwarded as soon as possible, including forwarding the first bits of the frame before the whole frame is received.

**DCE**  Data communications equipment. From a physical layer perspective, the device providing the clocking on a WAN link, typically a CSU/DSU, is the DCE. From a packet-switching perspective, the service provider’s switch, to which a router might connect, is considered the DCE.

**decapsulation (de-encapsulation)**  On a computer that receives data over a network, the process in which the device interprets the lower-layer headers and, when finished with each header, removes the header, revealing the next-higher-layer PDU.

**default gateway/default router**  On an IP host, the IP address of some router to which the host sends packets when the packet’s destination address is on a subnet other than the local subnet.

**default mask**  The mask used in a Class A, B, or C network that does not create any subnets; specifically, mask 255.0.0.0 for Class A networks, 255.255.0.0 for Class B networks, and 255.255.255.0 for Class C networks.

**default route**  On a router, the route that is considered to match all packets that are not otherwise matched by some more specific route.

**demarc**  The legal term for the demarcation or separation point between the telco’s equipment and the customer’s equipment.

**denial of service (DoS)**  A type of attack whose goal is to cause problems by preventing legitimate users from being able to access services, thereby preventing the normal operation of computers and networks.

**DHCP**  Dynamic Host Configuration Protocol. A protocol used by hosts to dynamically discover and lease an IP address, and learn the correct subnet mask, default gateway, and DNS server IP addresses.

**Direct Sequence Spread Spectrum (DSSS)**  A method of encoding data for transmission over a wireless LAN in which the device uses 1 of 11 (in the U.S.) nearby frequencies in the 2.4-GHz range.
directed broadcast address  See subnet broadcast address.

distance vector  The logic behind the behavior of some interior routing protocols, such as RIP. Distance vector routing algorithms call for each router to send its entire routing table in each update, but only to its neighbors. Distance vector routing algorithms can be prone to routing loops but are computationally simpler than link-state routing algorithms.

DNS  Domain Name System. An application layer protocol used throughout the Internet for translating hostnames into their associated IP addresses.

DS0  Digital signal level 0. A 64-kbps line or channel of a faster line inside a telco whose origins are to support a single voice call using the original voice (PCM) codecs.

DS1  Digital signal level 1. A 1.544-Mbps line from the telco, with 24 DS0 channels of 64 kbps each, plus an 8-kbps management and framing channel. Also called a T1.

DSL  Digital subscriber line. Public network technology that delivers high bandwidth over conventional telco local-loop copper wiring at limited distances. Typically used as an Internet access technology, connecting a user to an ISP.

DTE  Data terminal equipment. From a Layer 1 perspective, the DTE synchronizes its clock based on the clock sent by the DCE. From a packet-switching perspective, the DTE is the device outside the service provider’s network, typically a router.

E1  Similar to a T1, but used in Europe. It uses a rate of 2.048 Mbps and 32 64-kbps channels, with one channel reserved for framing and other overhead.

enable mode  A part of the Cisco IOS CLI in which the user can use the most powerful and potentially disruptive commands on a router or switch, including the ability to then reach configuration mode and reconfigure the router.

encapsulation  The placement of data from a higher-layer protocol behind the header (and in some cases, between a header and trailer) of the next-lower-layer protocol. For example, an IP packet could be encapsulated in an Ethernet header and trailer before being sent over an Ethernet.

encryption  Applying a specific algorithm to data to alter the appearance of the data, making it incomprehensible to those who are not authorized to see the information.
**error detection**  The process of discovering whether or not a data-link level frame was changed during transmission. This process typically uses a Frame Check Sequence (FCS) field in the data-link trailer.

**error disabled**  An interface state on LAN switches that is the result of one of many security violations.

**error recovery**  The process of noticing when some transmitted data was not successfully received and resending the data until it is successfully received.

**Ethernet**  A series of LAN standards defined by the IEEE, originally invented by Xerox Corporation and developed jointly by Xerox, Intel, and Digital Equipment Corporation.

**Extended Service Set (ESS)**  In wireless LANs, a WLAN with multiple access points to create one WLAN, allowing roaming between the APs.

**Exterior Gateway Protocol (EGP)**  A routing protocol that was designed to exchange routing information between different autonomous systems.

**filter**  Generally, a process or a device that screens network traffic for certain characteristics, such as source address, destination address, or protocol, and determines whether to forward or discard that traffic based on the established criteria.

**firewall**  A device that forwards packets between the less secure and more secure parts of the network, applying rules that determine which packets are allowed to pass, and which are not.

**Flash**  A type of read/write permanent memory that retains its contents even with no power applied to the memory, and uses no moving parts, making the memory less likely to fail over time.

**flooding**  The result of the LAN switch forwarding process for broadcasts and unknown unicast frames. Switches forward these frames out all interfaces, except the interface in which the frame arrived. Switches also forward multicasts by default, although this behavior can be changed.

**flow control**  The process of regulating the amount of data sent by a sending computer toward a receiving computer. Several flow control mechanisms exist, including TCP flow control, which uses windowing.
forward  To send a frame received in one interface out another interface, toward its ultimate destination.

forward acknowledgment  A process used by protocols that do error recovery in which the number that acknowledges data lists the next data that should be sent, not the last data that was successfully received.

d-forward acknowledgment  A process used by protocols that do error recovery in which the number that acknowledges data lists the next data that should be sent, not the last data that was successfully received.

d-four-wire circuit  A line from the telco with four wires, composed of two twisted-pair wires. Each pair is used to send in one direction, so a four-wire circuit allows full-duplex communication.

fragment-free switching  One of three internal processing options on some Cisco LAN switches in which the first bits of the frame may be forwarded before the entire frame is received, but not until the first 64 bytes of the frame are received, in which case, in a well-designed LAN, collision fragments should not occur as a result of this forwarding logic.

frame  A term referring to a data-link header and trailer, plus the data encapsulated between the header and trailer.

Frame Relay  An international standard data-link protocol that defines the capabilities to create a frame-switched (packet-switched) service, allowing DTE devices (typically routers) to send data to many other devices using a single physical connection to the Frame Relay service.

Frequency Hopping Spread Spectrum  A method of encoding data on a wireless LAN in which consecutive transmissions occur on different nearby frequency bands as compared with the prior transmission. Not used in modern WLAN standards.

full duplex  Generically, any communication in which two communicating devices can concurrently send and receive data. In Ethernet LANs, the allowance for both devices to send and receive at the same time, allowed when both devices disable their CSMA/CD logic.

full mesh  A network topology in which more than two devices can physically communicate and, by choice, all pairs of devices are allowed to communicate directly.

half duplex  Generically, any communication in which only one device at a time can send data. In Ethernet LANs, the normal result of the CSMA/CD algorithm that enforces the rule that only one device should send at any point in time.
**HDLC**  
High-Level Data Link Control. A bit-oriented synchronous data link layer protocol developed by the International Organization for Standardization (ISO).

**head end**  
The upstream, transmit end of a cable TV (CATV) installation.

**host**  
Any device that uses an IP address.

**host address**  
The IP address assigned to a network card on a computer.

**host part**  
A term used to describe a part of an IPv4 address that is used to uniquely identify a host inside a subnet. The host part is identified by the bits of value 0 in the subnet mask.

**host route**  
A route with a /32 mask, which by virtue of this mask represents a route to a single host IP address.

**HTML**  
Hypertext Markup Language. A simple document-formatting language that uses tags to indicate how a given part of a document should be interpreted by a viewing application, such as a web browser.

**HTTP**  
Hypertext Transfer Protocol. The protocol used by web browsers and web servers to transfer files, such as text and graphic files.

**hub**  
A LAN device that provides a centralized connection point for LAN cabling, repeating any received electrical signal out all other ports, thereby creating a logical bus. Hubs do not interpret the electrical signals as a frame of bits, so hubs are considered to be Layer 1 devices.

**ICMP**  
Internet Control Message Protocol. A TCP/IP network layer protocol that reports errors and provides other information relevant to IP packet processing.

**IEEE**  
Institute of Electrical and Electronics Engineers. A professional organization that develops communications and network standards, among other activities.

**IEEE 802.2**  
An IEEE LAN protocol that specifies an implementation of the LLC sublayer of the data link layer.

**IEEE 802.3**  
A set of IEEE LAN protocols that specifies the many variations of what is known today as an Ethernet LAN.
inactivity timer  For switch MAC address tables, a timer associated with each entry, which counts time upwards from 0 and is reset to 0 each time a switch receives a frame with the same MAC address. The entries with the largest timers can be removed to make space for additional MAC address table entries.

infrastructure mode  A mode of wireless LAN (WLAN) operation in which WLAN clients send and receive data with an access point (AP), which allows the clients to communicate with the wired infrastructure through the AP. Clients do not send data to each other directly; the AP must receive the data from one client, and then send the data to the other WLAN client.

inside global  For packets sent to and from a host that resides inside the trusted part of a network that uses NAT, a term referring to the IP address used in the headers of those packets when those packets traverse the global (public) Internet.

inside local  For packets sent to and from a host that resides inside the trusted part of a network that uses NAT, a term referring to the IP address used in the headers of those packets when those packets traverse the Enterprise (private) part of the network.

Interior Gateway Protocol (IGP)  See interior routing protocol.

interior routing protocol  A routing protocol designed for use within a single organization.

intrusion detection system (IDS)  A security function that examines more complex traffic patterns against a list of both known attack signatures and general characteristics of how attacks may be carried out, rating each perceived threat and reporting the threats.

intrusion prevention system (IPS)  A security function that examines more complex traffic patterns against a list of both known attack signatures and general characteristics of how attacks may be carried out, rating each perceived threat and reacting to prevent the more significant threats.

IOS  Cisco operating system software that provides the majority of a router’s or switch’s features, with the hardware providing the remaining features.

IOS Image  A file that contains the IOS.

IP  Internet Protocol. The network layer protocol in the TCP/IP stack, providing routing and logical addressing standards and services.
**IP address**  In IP Version 4 (IPv4), a 32-bit address assigned to hosts using TCP/IP. Each address consists of a network number, an optional subnetwork number, and a host number. The network and subnetwork numbers together are used for routing, and the host number is used to address an individual host within the network or subnetwork.

**ISDN**  Integrated Services Digital Network. A service offered by telephone companies that permits telephone networks to carry data, voice, and other traffic. Often used as an Internet access technology, as well as dial backup when routers lose their normal WAN communications links.

**ISL**  Inter-Switch Link. A Cisco-proprietary protocol that maintains VLAN information as traffic flows between switches and routers.

**ISO**  International Organization for Standardization. An international organization that is responsible for a wide range of standards, including many standards relevant to networking. The ISO developed the OSI reference model, a popular networking reference model.

**K**

**keepalive**  A proprietary feature of Cisco routers in which the router sends messages on a periodic basis as a means of letting the neighboring router know that the first router is still alive and well.

**L**

**L4PDU**  The data compiled by a Layer 4 protocol, including Layer 4 headers and encapsulated high-layer data, but not including lower-layer headers and trailers.

**Layer 3 protocol**  A protocol that has characteristics like OSI Layer 3, which defines logical addressing and routing. IP, IPX, and AppleTalk DDP are all Layer 3 protocols.

**learning**  The process used by switches for discovering MAC addresses, and their relative location, by looking at the source MAC address of all frames received by a bridge or switch.

**leased line**  A serial communications circuit between two points, provided by some service provider, typically a telephone company (telco). Because the telco does not sell a physical cable between the two endpoints, instead charging a monthly fee for the ability to send bits between the two sites, the service is considered to be a leased service.
**link state**  A classification of the underlying algorithm used in some routing protocols. Link-state protocols build a detailed database that lists links (subnets) and their state (up, down), from which the best routes can then be calculated.

**LLC**  Logical Link Control. The higher of the two data link layer sublayers defined by the IEEE. Synonymous with IEEE 802.2.

**local loop**  A line from the premises of a telephone subscriber to the telephone company CO.

**logical address**  A generic reference to addresses as defined by Layer 3 protocols, which do not have to be concerned with the physical details of the underlying physical media. Used mainly to contrast these addresses with data-link addresses, which are generically considered to be physical addresses because they differ based on the type of physical medium.

**MAC**  Media Access Control. The lower of the two sublayers of the data link layer defined by the IEEE. Synonymous with IEEE 802.3 for Ethernet LANs.

**MAC address**  A standardized data link layer address that is required for every device that connects to a LAN. Ethernet MAC addresses are 6 bytes long and are controlled by the IEEE. Also known as a *hardware address*, a *MAC layer address*, and a *physical address*.

**metric**  A unit of measure used by routing protocol algorithms to determine the best route for traffic to use to reach a particular destination.

**microsegmentation**  The process in LAN design by which every switch port connects to a single device, with no hubs connected to the switch ports, creating a separate collision domain per interface. The term’s origin relates to the fact that one definition for the word “segment” is “collision domain,” with a switch separating each switch port into a separate collision domain or segment.

**modem**  Modulator-demodulator. A device that converts between digital and analog signals so that a computer may send data to another computer using analog telephone lines. At the source, a modem converts digital signals to a form suitable for transmission over analog communication facilities. At the destination, the analog signals are returned to their digital form.
**multimode**  A type of fiber-optic cabling with a larger core than single-mode cabling, allowing light to enter at multiple angles. Such cabling has lower bandwidth than single-mode fiber but requires a typically cheaper light source, such as an LED rather than a laser.

**name server**  A server connected to a network that resolves network names into network addresses.

**NAT**  Network Address Translation. A mechanism for reducing the need for globally unique IP addresses. NAT allows an organization with addresses that are not globally unique to connect to the Internet by translating those addresses into public addresses in the globally routable address space.

**network**  A collection of computers, printers, routers, switches, and other devices that can communicate with each other over some transmission medium.

**network address**  See network number.

**network broadcast address**  In IPv4, a special address in each classful network that can be used to broadcast a packet to all hosts in that same classful network. Numerically, the address has the same value as the network number in the network part of the address, and all 255s in the host octets—for example, 10.255.255.255 is the network broadcast address for classful network 10.0.0.0.

**network number**  A number that uses dotted decimal notation like IP addresses, but the number itself represents all hosts in a single Class A, B, or C IP network.

**network part**  The portion of an IPv4 address that is either 1, 2, or 3 octets/bytes long, based on whether the address is in a Class A, B, or C network.

**networking model**  A generic term referring to any set of protocols and standards collected into a comprehensive grouping that, when followed by the devices in a network, allows all the devices to communicate. Examples include TCP/IP and OSI.

**NVRAM**  Nonvolatile RAM. A type of random-access memory (RAM) that retains its contents when a unit is powered off.
ordered data transfer  A networking function, included in TCP, in which the protocol defines how the sending host should number the data transmitted, defines how the receiving device should attempt to reorder the data if it arrives out of order, and specifies to discard the data if it cannot be delivered in order.

Orthogonal Frequency Division Multiplexing  A method of encoding data in wireless LANs that allows for generally higher data rates than the earlier FHSS and DSSS encoding methods.

OSI  Open System Interconnection reference model. A network architectural model developed by the ISO. The model consists of seven layers, each of which specifies particular network functions, such as addressing, flow control, error control, encapsulation, and reliable message transfer.

packet  A logical grouping of information that includes the network layer header and encapsulated data, but specifically does not include any headers and trailers below the network layer.

packet switching  A generic reference to network services, typically WAN services, in which the service examines the contents of the transmitted data to make some type of forwarding decision. This term is mainly used to contrast with the WAN term circuit switching, in which the provider sets up a (Layer 1) circuit between two devices, and the provider makes no attempt to interpret the meaning of the bits.

partial mesh  A network topology in which more than two devices could physically communicate but, by choice, only a subset of the pairs of devices connected to the network is allowed to communicate directly.

PCM  Pulse code modulation. A technique of encoding analog voice into a 64-kbps data stream by sampling with 8-bit resolution at a rate of 8000 times per second.

PDU  Protocol data unit. An OSI term to refer generically to a grouping of information by a particular layer of the OSI model. More specifically, an LxPDU would imply the data and headers as defined by Layer x.

ping  Packet Internet groper. An Internet Control Message Protocol (ICMP) echo message and its reply; ping often is used in IP networks to test the reachability of a network device.
pinout  The documentation and implementation of which wires inside a cable connect to each pin position in any connector.

port  In TCP and UDP, a number that is used to uniquely identify the application process that either sent (source port) or should receive (destination port) data. In LAN switching, another term for switch interface.

Port Address Translation (PAT)  A NAT feature in which one inside global IP address supports over 65,000 concurrent TCP and UDP connections.

port number  A field in a TCP or UDP header that identifies the application that either sent (source port) or should receive (destination port) the data inside the data segment.

positive acknowledgment and retransmission (PAR)  A generic reference to how the error recovery feature works in many protocols, including TCP, in which the receiver must send an acknowledgment that either implies that the data was (positively) received, or send an acknowledgment that implies that some data was lost, so the sender can then resend the lost data.

Power-on Self Test (POST)  The process on any computer, including routers and switches, in which the computer hardware first runs diagnostics on the required hardware before even trying to load a bootstrap program.

PPP  Point-to-Point Protocol. A protocol that provides router-to-router and host-to-network connections over synchronous point-to-point and asynchronous point-to-point circuits.

prefix notation  A shorter way to write a subnet mask in which the number of binary 1s in the mask is simply written in decimal. For instance, /24 denotes the subnet mask with 24 binary 1 bits in the subnet mask. The number of bits of value binary 1 in the mask is considered to be the prefix length.

PRI  Primary Rate Interface. An Integrated Services Digital Network (ISDN) interface to primary rate access. Primary rate access consists of a single 64-kbps D channel plus 23 (T1) or 30 (E1) B channels for voice or data.

private addresses  IP addresses in several Class A, B, and C networks that are set aside for use inside private organizations. These addresses, as defined in RFC 1918, are not routable through the Internet.
**problem isolation**  The part of the troubleshooting process in which the engineer attempts to rule out possible causes of the problem until the root cause of the problem can be identified.

**protocol data unit (PDU)**  A generic term referring to the header defined by some layer of a networking model, and the data encapsulated by the header (and possibly trailer) of that layer, but specifically not including any lower-layer headers and trailers.

**Protocol Type field**  A field in a LAN header that identifies the type of header that follows the LAN header. Includes the DIX Ethernet Type field, the IEEE 802.2 DSAP field, and the SNAP protocol Type field.

**PSTN**  Public Switched Telephone Network. A general term referring to the variety of telephone networks and services in place worldwide. Sometimes called *POTS*, or Plain Old Telephone Service.

**PTT**  Post, telephone, and telegraph. A government agency that provides telephone services. PTTs exist in most areas outside of North America and provide both local and long-distance telephone services.

**public IP address**  An IP address that is part of a registered network number, as assigned by an Internet Assigned Numbers Authority (IANA) member agency, so that only the organization to which the address is registered is allowed to use the address. Routers in the Internet should have routes allowing them to forward packets to all the publicly registered IP addresses.

**RAM**  Random-access memory. A type of volatile memory that can be read and written by a microprocessor.

**RFC**  Request For Comments. A document used as the primary means for communicating information about the TCP/IP protocols. Some RFCs are designated by the Internet Architecture Board (IAB) as Internet standards, and others are informational. RFCs are available online from numerous sources, including http://www.rfc-editor.org/.

**RIP**  Routing Information Protocol. An Interior Gateway Protocol (IGP) that uses distance vector logic and router hop count as the metric. RIP Version 1 (RIP-1) has become unpopular, with RIP Version 2 (RIP-2) providing more features, including support for VLSM.
RJ-45 A popular type of cabling connector used for Ethernet cabling. It is similar to the RJ-11 connector used for telephone wiring in homes in the United States. RJ-45 allows the connection of eight wires.

ROM Read-only memory. A type of nonvolatile memory that can be read but not written by the microprocessor.

ROMMON A shorter name for ROM Monitor, which is a low-level operating system that can be loaded into Cisco routers for several seldom needed maintenance tasks, including password recovery and loading a new IOS when Flash memory has been corrupted.

root cause A troubleshooting term that refers to the reason why a problem exists, specifically a reason for which, if changed, the problem would either be solved or changed to a different problem.

routed protocol A protocol which defines packets that can be routed by a router. Examples of routed protocols include AppleTalk, DECnet, and IP.

Router Security Device Manager The administrative web-based interface on a router that allows for configuration and monitoring of the router, including the configuration of DHCP and NAT/PAT.

routing protocol A set of messages and processes with which routers can exchange information about routes to reach subnets in a particular network. Examples of routing protocols include the Enhanced Interior Gateway Routing Protocol (EIGRP), the Open Shortest Path First (OSPF) protocol, and the Routing Information Protocol (RIP).

routing table A list of routes in a router, with each route listing the destination subnet and mask, the router interface out which to forward packets destined to that subnet, and, as needed, the next-hop router’s IP address.

routing update A generic reference to any routing protocol’s messages in which it sends routing information to a neighbor.

running-config file In Cisco IOS switches and routers, the name of the file that resides in RAM memory, holding the device’s currently used configuration.

RxBoot A limited-function version of IOS stored in ROM in some older models of Cisco routers, for the purpose of performing some seldom needed low-level functions, including loading a new IOS into Flash memory when Flash has been deleted or corrupted.
same-layer interaction  The communication between two networking devices for the purposes of the functions defined at a particular layer of a networking model, with that communication happening by using a header defined by that layer of the model. The two devices set values in the header, send the header and encapsulated data, with the receiving device(s) interpreting the header to decide what action to take.

Secure Shell (SSH)  A TCP/IP application layer protocol that supports terminal emulation between a client and server, using dynamic key exchange and encryption to keep the communications private.

segment  In TCP, a term used to describe a TCP header and its encapsulated data (also called an L4PDU). Also in TCP, the process of accepting a large chunk of data from the application layer and breaking it into smaller pieces that fit into TCP segments. In Ethernet, a segment is either a single Ethernet cable or a single collision domain (no matter how many cables are used).

segmentation  The process of breaking a large piece of data from an application into pieces appropriate in size to be sent through the network.

serial cable  A type of cable with many different styles of connectors used to connect a router to an external CSU/DSU on a leased-line installation.

Service Set Identifier (SSID)  A text value used in wireless LANs to uniquely identify a single WLAN.

setup mode  An option on Cisco IOS switches and routers that prompts the user for basic configuration information, resulting in new running-config and startup-config files.

shared Ethernet  An Ethernet that uses a hub, or even the original coaxial cabling, which results in the devices having to take turns sending data, sharing the available bandwidth.

single-mode  A type of fiber-optic cabling with a narrow core that allows light to enter only at a single angle. Such cabling has a higher bandwidth than multimode fiber but requires a light source with a narrow spectral width (such as a laser).

sliding windows  For protocols such as TCP that allow the receiving device to dictate the amount of data the sender can send before receiving an acknowledgment—a concept called a window—a reference to the fact that the mechanism to grant future windows is typically just a number that grows upwards slowly after each acknowledgment, sliding upward.
**SONET**  Synchronous Optical Network. A standard format for transporting a wide range of digital telecommunications services over optical fiber.

**Spanning Tree Protocol**  A bridge protocol that uses the Spanning Tree algorithm, allowing a switch to dynamically work around loops in a network topology by creating a spanning tree. Switches exchange bridge protocol data unit (BPDU) messages with other bridges to detect loops and then remove the loops by shutting down selected bridge interfaces.

**star**  A network topology in which endpoints on a network are connected to a common central device by point-to-point links.

**startup-config file**  In Cisco IOS switches and routers, the name of the file that resides in NVRAM memory, holding the device’s configuration that will be loaded into RAM as the running-config file when the device is next reloaded or powered on.

**store-and-forward switching**  One of three internal processing options on some Cisco LAN switches in which the Ethernet frame must be completely received before the switch can begin forwarding the first bit of the frame.

**STP**  Shielded twisted pair. Shielded twisted-pair cabling has a layer of shielded insulation to reduce electromagnetic interference (EMI).

**straight-through cable**  In Ethernet, a cable that connects the wire on pin 1 on one end of the cable to pin 1 on the other end of the cable, pin 2 on one end to pin 2 on the other end, and so on.

**subnet**  Subdivisions of a Class A, B, or C network, as configured by a network administrator. Subnets allow a single Class A, B, or C network to be used instead of multiple networks, and still allow for a large number of groups of IP addresses, as is required for efficient IP routing.

**subnet address**  See subnet number.

**subnet broadcast address**  A special address in each subnet, specifically the largest numeric address in the subnet, designed so that packets sent to this address should be delivered to all hosts in that subnet.

**subnet mask**  A 32-bit number that numerically describes the format of an IP address by representing the combined network and subnet bits in the address with mask bit values of 1, and representing the host bits in the address with mask bit values of 0.
subnet number  In IP v4, a dotted decimal number that represents all addresses in a single subnet. Numerically, the smallest value in the range of numbers in a subnet, reserved so that it cannot be used as a unicast IP address by a host.

subnet part  In a subnetted IPv4 address, interpreted with classful addressing rules, one of three parts of the structure of an IP address, with the subnet part uniquely identifying different subnets of a classful IP network.

subnetting  The process of subdividing a Class A, B, or C network into smaller groups called subnets.

switch  A network device that filters, forwards, and floods Ethernet frames based on the destination address of each frame.

switched Ethernet  An Ethernet that uses a switch, and particularly not a hub, so that the devices connected to one switch port do not have to contend to use the bandwidth available on another port. This term contrasts with shared Ethernet, in which the devices must share bandwidth, whereas switched Ethernet provides much more capacity, as the devices do not have to share the available bandwidth.

symmetric  A feature of many Internet access technologies in which the downstream transmission rate is the same as the upstream transmission rate.

synchronous  The imposition of time ordering on a bit stream. Practically, a device will try to use the same speed as another device on the other end of a serial link. However, by examining transitions between voltage states on the link, the device can notice slight variations in the speed on each end and can adjust its speed accordingly.

T1  A line from the telco that allows transmission of data at 1.544 Mbps, with the ability to treat the line as 24 different 64-kbps DS0 channels (plus 8 kbps of overhead).

TCP  Transmission Control Protocol. A connection-oriented transport layer TCP/IP protocol that provides reliable data transmission.

TCP/IP  Transmission Control Protocol/Internet Protocol. A common name for the suite of protocols developed by the U.S. Department of Defense in the 1970s to support the construction of worldwide internetworks. TCP and IP are the two best-known protocols in the suite.

telco  A common abbreviation for telephone company.
Telnet  The standard terminal-emulation application layer protocol in the TCP/IP protocol stack. Telnet is used for remote terminal connection, enabling users to log in to remote systems and use resources as if they were connected to a local system. Telnet is defined in RFC 854.

trace  Short for traceroute. A program available on many systems that traces the path that a packet takes to a destination. It is used mostly to debug routing problems between hosts.

transparent bridge  The name of a networking device that was a precursor to modern LAN switches. Bridges forward frames between LAN segments based on the destination MAC address. Transparent bridging is so named because the presence of bridges is transparent to network end nodes.

trunk interface  On a LAN switch, an interface that is currently using either 802.1Q or ISL trunking.

trunking  Also called VLAN trunking. A method (using either the Cisco ISL protocol or the IEEE 802.1q protocol) to support multiple VLANs that have members on more than one switch.

twisted pair  Transmission medium consisting of two insulated wires, with the wires twisted around each other in a spiral. An electrical circuit flows over the wire pair, with the current in opposite directions on each wire, which significantly reduces the interference between the two wires.

UDP  User Datagram Protocol. Connectionless transport layer protocol in the TCP/IP protocol stack. UDP is a simple protocol that exchanges datagrams without acknowledgments or guaranteed delivery.

unknown unicast frame  An Ethernet frame whose destination MAC address is not listed in a switch’s MAC address table, so the switch must flood the frame.

up and up  Jargon referring to the two interface states on a Cisco IOS router or switch (line status and protocol status), with the first “up” referring to the line status, and the second “up” referring to the protocol status. An interface in this state should be able to pass data-link frames.

update timer  A timer used by a router to indicate when to send the next routing update.
URL  Universal Resource Locator. A standard for how to refer to any piece of information retrievable via a TCP/IP network, most notably used to identify web pages. For example, http://www.cisco.com/univercd is a URL that identifies the protocol (HTTP), hostname (www.cisco.com), and web page (/univercd).

user mode  A mode of the user interface to a router or switch in which the user can type only nondisruptive EXEC commands, generally just to look at the current status, but not to change any operational settings.

UTP  Unshielded twisted pair. A type of cabling, standardized by the Electronics Industry Alliance (EIA) and Telecommunications Industry Association (TIA), that holds twisted pairs of copper wires (typically four pair), and does not contain any shielding from outside interference.

V

variable-length subnet masks (VLSM)  The capability to specify a different subnet mask for the same Class A, B, or C network number on different subnets. VLSM can help optimize available address space.

virtual circuit  In packet-switched services like Frame Relay, VC refers to the ability of two DTE devices (typically routers) to send and receive data directly to each other, which supplies the same function as a physical leased line (leased circuit), but doing so without a physical circuit. This term is meant as a contrast with a leased line or leased circuit.

virtual LAN (VLAN)  A group of devices, connected to one or more switches, with the devices grouped into a single broadcast domain through switch configuration. VLANs allow switch administrators to separate the devices connected to the switches into separate VLANs without requiring separate physical switches, gaining design advantages of separating the traffic without the expense of buying additional hardware.

virtual private network (VPN)  The process of securing communication between two devices whose packets pass over some public and unsecured network, typically the Internet. VPNs encrypt packets so that the communication is private and authenticate the identity of the endpoints.

VoIP  Voice over IP. The transport of voice traffic inside IP packets over an IP network.
**web server**    Software, running on some computer, that stores web pages and sends those web pages to web clients (web browsers) that request the web pages.

**well-known port**    A TCP or UDP port number reserved for use by a particular application. The use of well-known ports allows a client to send a TCP or UDP segment to a server, to the correct destination port for that application.

**Wi-Fi Alliance**    An organization formed by many companies in the wireless industry (an industry association) for the purpose of getting multivendor certified-compatible wireless products to market in a more timely fashion than would be possible by simply relying on standardization processes.

**Wi-Fi Protected Access (WPA)**    A trademarked name of the Wi-Fi Alliance that represents a set of security specifications that predated the standardization of the IEEE 802.11i security standard.

**window**    The term window represents the number of bytes that can be sent without receiving an acknowledgment.

**wired equivalent privacy (WEP)**    An early WLAN security specification that used relatively weak security mechanisms, using only preshared keys and either no encryption or weak encryption.

**WLAN client**    A wireless device that wants to gain access to a wireless access point for the purpose of communicating with other wireless devices or other devices connected to the wired internetwork.

**WPA2**    The Wi-Fi Alliance trademarked name for the same set of security specifications defined in the IEEE 802.11i security standard.

**zero subnet**    For every classful IPv4 network that is subnetted, the one subnet whose subnet number has all binary 0s in the subnet part of the number. In decimal, the zero subnet can be easily identified because it is the same number as the classful network number.
Index

Numerics
10BASE2 Ethernet, 54
10BASE5 Ethernet, 55–56
10BASE-T, 177
   bridges, 178
   building, 57–58
   cabling pinouts, 61–64
   hubs, 178
   switches, 179–180
100BASE-TX, cabling pinouts, 61–64
1000BASE-T cabling, 64

A
access points. See APs
accessing
   attacks, 161
   CLI on Cisco IOS Software, 211
      enable mode, 217
         from console port, 212–214
         password security, 214–216
         user EXEC mode, 216
         with SSH, 214
         with Telnet, 214
   links, 93
   setup mode, 228
   switches, 195
ACK flags (TCP), 149
acknowledgements, 27
AD (administrative distance), 543–544, 598
ad hoc WLANs, 311
Address field (HDLC), 89
addresses
   broadcasts, 375–376
   classes, 377
   formats, 371–372
   IP, 31
      applying rules, 349–360
         unicast, 430
IPv4
   calculating, 403–405
   classless/classful, 403
      defining, 400
         dividing, 401–403
   network layer, 109–110
   ranges of
      searching, 442
         of usable, 434
   searching, 442
   subnets, managing, 342–349
   translation
      NAT, 613–617
         PAT, 613–617
adjacent-layer interaction, 28
AES (Advanced Encryption Standard), 332
analog modems, 599, 601
analyzing
   classless IPv4 networks, 367–376
      deriving IDs/numbers, 373–375
      number of hosts per, 373
      unusual network IDs, 375–376
   easy masks, 443–444
   Layer 2 forwarding path, 295–299
   subnets, 342–349, 427
      binary, 434–442
      decimal, 442–449
      existing, 451–452
      masks, existing, 397, 400–405
ANSI (American National Standards Institute), 85
anti-X, 166
applications
   layers, 24–26
   TCP/IP, 144
      DNS, 145
      FTP, 145
   QoS needs, 152–153
   SNMP, 145
TCP, 145
well-known port numbers, 145
WWW, 145, 155–158
applying classful IPv4 networks, 376–378
APs (access points), 309
configuring, 323–324
rogue APs, 326
transmit power, 317
architecture
OSI networking models, 37
benefits of, 41
comparing to TCP/IP, 37–38
encapsulation, 42
functions, 39–41
referencing layers, 38–39
SNA, 21
TCP/IP networking models, 21
application layers, 24–26
history of, 21–23
Internet layers, 29–32
network access layers, 33–34
overview of, 23–24
terminology, 34–37
transport layers, 26–28
ARIN (American Registry for Internet Numbers), 116
ARP, 108, 128–129
ASN (autonomous system number), 533
asymmetric DSL, 603
ATM (Asynchronous Transfer Mode), 607
cells, 608
PVCs, 608
SAR, 609
versus Frame Relay, 608
attacks
anti-x, 166
tools used to generate, 163
attenuation, 56
autonegotiation, troubleshooting, 291–293
autonomous systems, 533
autosummarization, 536
Aux ports, 499
avoiding reserved IP addresses, 557–558
B
back-to-back serial connections, 87
balanced hybrid routing protocols, 534
bandwidth
commands, 535
on interfaces, configuring, 353, 497–499
banners, configuring on Cisco Catalyst switches, 251–252
benefits of OSI layers, 41
Berners-Lee, Tim, 25
BGP (Border Gateway Protocol), 533
BIAs (burned-in addresses), 70
binary math, 438–440
binary processes, 440–441
binary subnet masks
analyzing, 434–442
converting, 387–389
rules, 386
bits
borrowing, 355–356
calculating, 403
converting, 436
default masks, 372
exactly 8 subnet, 469
hosts, 346
less than 8 subnet, 464–468
more than 8 subnet, 469–472
subnets, selecting, 414, 416
blocking state (STP), 185
blocks, subnets, 470
blueprints, 21. See also networking models
Boolean Algebra, 442
Boolean math, 442
boot sequence of Cisco IOS Software, 505
configuration registers, 507, 511–512
OS selection process, 508–511
boot system commands, 510
borrowing host bits, 355–356
bridges, 178
broadcasts
addresses, 71, 180–181, 375–376
subnets, 433–434
searching, 449–451
domains, 190–192
subnets, 467. See also subnets
BSS (Basic Service Set), 312–313, 323
building
10BASE-T networks, 57–58
WANs for practice lab, 87
bytes, 112

cable Internet, 605-606
cabling
1000BASE-T, 64
crossover cabling, 63
distance limitations on campus LANs, 197–199
fiber-optic, 50
serial cabling, 84, 87
straight-through cables, 62
twisted pair encoding schemes, 60
UTP, 51, 58-59
calculations
hosts, 400
IPv4 addresses, 403–405
magic numbers, 464
masks, searching, 420
subnets, 356, 401
campus LANs, 194
access switches, 195
core switches, 197
distribution switches, 196
maximum cable lengths, 197-199
Cat OS (Catalyst Operating System), 208
Catalyst switches
banners, configuring, 251–252
CLI
EXEC mode, 250–251
securing, 241–242
passwords
encryption, 248–249
security, configuring, 242–244
SSH, configuring, 245–248
usernames, configuring, 245–248
CCX (Cisco Compatible Extensions Program), 324
CDP (Cisco Discovery Protocol), troubleshooting tools, 283–288
cells, 608–609
checking for updated information, 689–690
CIDR (Classless Interdomain Routing), 387
CIR (committed information rate), 96
circuit switching, 609
Cisco ASA hardware, 165–166
Cisco Catalyst switches
CLI
comparing to router CLI, 492–493
history buffer commands, 252
interfaces
configuring, 257–258
securing, 265–266
IP address, configuring, 254–257
LEDs, 209–210
mode button, 210
ports
LED modes, switching between, 210
security, configuring, 259–262
VLANs, configuring, 262–265
Cisco CCNA Prep Center, 650
Cisco IOS Software
boot sequence, 505–507
configuration registers, 507, 511–512
OS selection process, 508–511
CLI, 492–493
Aux port, 499
commands, recalling, 217–218
router interfaces, 493–495
configuring, 220–223
images, upgrading into Flash memory, 502–505
interfaces
bandwidth, configuring, 353, 497–499
clock rate, configuring, 353, 497–499
IP addresses, configuring, 496
status codes, 495–496
setup mode, 227–231, 499–502
Cisco ISRs (Integrated Services Routers)
installing, 487
physical installation, 488
Cisco Learning Network. See CLN
Cisco routers
eenterprise routers, installing, 485–488
Internet access routers, installing, 489–490
operating systems, 507
Cisco switches
CLI
accessing, 211–214
enable mode, 217
password security, 214–216
user EXEC mode, 216
memory, types of, 223
reloading, 226
supported operating systems, 208
CiscoWorks software, 145
Class A, B, and C networks, 340, 370–371, 462
classes
addresses, 377
IP address, 113–120
IPv4 networks, 369–370
classful addresses, 119, 403
classful networks, IPv4
analyzing, 367–376
applying, 376–378
deriving IDs/numbers, 373–375
number of hosts per, 373
subnets, 354–355, 430–434
unusual network IDs, 375–376
classful routing, 403, 536
classless addresses, 119, 403
Classless Interdomain Routing. See CIDR
classless routing protocols, 403, 536
clear ip nat translation * command, 641
CLI (command-line interface), 206
accessing on Cisco switches, 211
from console port, 212–214
password security, 214–216
with SSH, 214
with Telnet, 214
banners, configuring, 251–252
configuration mode, 218
enable mode, 217
EXEC mode, 250–251
help system, recalling commands, 217–218
history buffer commands, 252
passwords
encryption, 248–249
security, 242–244
securing, 241–242
SSH, configuring, 245–248
user EXEC mode, 216, 250–251
usernames, configuring, 245–248
CLN (Cisco Learning Network), 388
clocks, 497
rates on interfaces configuring, 88, 353, 497–499
sources, 91
speed
CIR, 96
synchronization, 86
clouds, 7
CO (central office), 83
collisions
domains, 67, 178, 189
full-duplex Ethernet, 68–69
impact on LAN design, 191–192
troubleshooting, 294–295
between WLAN devices, 320
commands, 611
boot system, 510
clear ip nat translation, 641
clock rate, 88
configure terminal, 244
copy, 226
copy running-config startup-config, 226
debug, 219–220
debug ip rip, 546, 548
enable, 241
enable secret, 244
encapsulation ppp, 627
exec-timeout, 253
exit, 245
extended ping, 526–528
history buffer-related, 252
interface, 221
interface range, 258
ip address, 624
ip route, 525
logging synchronous, 253
Microsoft Windows XP network command
reference, 561
ping, 524–526, 561
recalling, 217–218
resume, 572
service password-encryption, 248
show, 219–220
show cdp, 284, 287–288
show dhcp server, 637
show interfaces status, 289–290
show ip arp, 567
show ip dhcp binding, 640–641
show ip interface brief, 524
show ip nat translations, 641
show ip protocols, 544–548
show ip route, 542
show mac address-table, 295
show running-config, 245, 625–626
show sessions, 572
show ssh, 572
show users, 572
show version, 511–512
show vlan brief, 298–299
subcommands, 221
telnet, 569
tracerroute, 568–569

comparing
Ethernet LANs and WLANs, 309
interior routing protocols, 537
LANs and WANs, 82
OSI/TCP/IP models, 37–38
switch and router CLI, 492–493

configuration
Cisco Catalyst switches
  banners, 251–252
  CLI, securing, 241–242
  interfaces, 257–258
  IP address, 254–257
  password encryption, 248–249
  password recovery, 242–244
  passwords, 250–251
  port security, 259–262
  SSH, 245–248
  usernames, 245–248
  VLANs, 262–265
Cisco IOS Software, 220–223
  context-setting commands, 221
  setup mode, 227, 231
default routes, 529–530
files
  copying, 226–227
  erasing, 226–227
  storage on Cisco switches, 224
interfaces, IP address, 496
Internet access routers
  connectivity, 629–630
  DHCP, 631, 634–636
  DHCP server, 638–639
  PAT, 634
  verifying configuration, 639–641
mask formats, 386–387
modes, 218–222
password protection for console access, 214–216
point-to-point WANs
  HDLC, 624–627
  PPP, 627–628
registers, 507–512
RIP-2, 538–548
serial interfaces, clock rate, 18, 353, 497–499
subnets
  design. See design, subnets
  masks, 411
  overview of, 340–342
  processes, 421–422
  selecting masks, 414–421
WLANs
  APs, 323–324
  wireless clients, 324
connections
  establishment and termination, 148–149
  routes, 521, 524
connectionless protocols, 150
connection-oriented protocols, 150
connectivity, testing with extended ping command, 526–528
connectors
  for WANs, 84
  pinouts, 61–64
  RJ-48, 85
consoles
  inactivity timeouts, defining, 253
  line 0, 215
  ports, accessing CLIs, 212–214
conventions. See design, subnets
convergence, 125, 537
converting
  bits, 436
  masks, 404
  subnets
    IDs, 437
    masks, 383, 386–391
copy command, 226

copy running-config startup-config command, 226

copying
configuration files, 226–227
images into Flash memory, 502–505

core switches, 197

coverage area (WLANs), 317–318
CPE (customer premises equipment), 84

crashers, 161

crossover cables, 63, 80

CSMA/CA (Carrier Sense Multiple Access / Collision Avoidance), 320

CSMA/CD (Carrier Sense Multiple Access / Collision Detection), 55, 66, 309

CSU/DSU (channel service unit/data service unit), 83, 91

clocking the link, 86
internal versus external, 85
synchronization, 86

cut-through processing, 187

data encapsulation, 35–36

data link frames, 122

data link layers, 106

addressing, 109–110

capsulation, 108
interaction with network layer, 107

data-link protocols, 69

error detection, 74, 90

Ethernet addressing, 70–71

Ethernet framing, 71–73

HDLC, 89

PPP, 91

DCE (data communications equipment), 87, 94

DDN (dotted-decimal notation), 31, 384, 388–391, 436

debug commands, 219–220

debug ip rip command, 546–548
decapsulation, 33
decimals, analyzing subnets, 442–449
de-encapsulation, 33
defaults
gateways, 120

masks, 372

routes, 528–530, 612–613
defining
IPv4 addresses, 400
 calculating, 403–405
classful/classless addressing, 403
dividing, 401–403

subnets, 430–434
demarc (demarcation point), 84
demodulation, 599
deploying WLANs, 321–326
design, subnets
analyzing, 342–349
applying addressing rules, 349–360

masks, 411
overview of, 340–342
planning, 360–363
processes, 421–422
selecting masks, 414–421
destination port numbers, 142
development, OSI layers, 41
devices
hubs, 57–58
performance issues, 64–66
repeaters, 56
switches, 67

DHCP (Dynamic Host Configuration Protocol), 129–131
configuring on Internet access router, 631, 634–636

IP address, configuring on Cisco Catalyst switches, 254–257

planning for on Internet access router, 636

servers, 638–639

verifying configuration on Internet access router, 639–641
difficult masks, 443, 446
subnet address masks, searching, 449–451
directed broadcast address, 115
displaying
configuration register value, 511–512

interfaces
information, 494

speed and duplex settings, 290–293

status codes, 289–290

log messages, 253

MAC address table contents, 295

URL link properties, 156
distance vector protocols, RIP-2
configuring, 538–540

verifying configuration, 540–548
distribution switches, 196
dividing IPv4 addresses, 401–403
DIX Ethernet, 54
DLCI (data link connection identifier), 95
DMZs (demilitarized zones), 164
DNS, (Domain Name Service) 128, 145
resolution, 156–158
documentation, subnet designs, 340
DoS (denial-of-service) attacks, 161
dotted-decimal notation. See DDN
DS0 (digital signal level 0), 88
DS1 (Digital Signal, Level 1) services, 88
DS3 (Digital Signal, Level 3) services, 88
DSL (digital subscriber line), 601–604
DSLAM (DSL access multiplexer), 601–603
DSSS (Direct Sequence Spread Spectrum), 315
DTE (data termination equipment), 87, 94
duplex mismatches, effect on Layer 1 interface operation, 294
duplex settings, displaying, 290–293
duplex transmission issues, 290–293
dynamic port numbers, 143

E
E1 lines, 88, 92
E3 lines, 88
easy masks, analyzing, 443–444
EGPs (Exterior Gateway Protocols), 533
EIRP (Effective Isotropic Radiated Power), 318
EMIs (Electronic Magnetic Interfaces), 293
enable command, 241
enable mode, 217
enable secret command, 244
encapsulation, 35–36, 42, 107
classification ppp command, 627
encoding
schemes, 60
types for WLANs, 315–316
extension routers
Cisco ISR, 487–488
installing, 485–487
errors
detection, 74, 139
HTTP, 26
recovery, 139, 146–147
TCP, 27–28
ESS (Extended Service Set), 312–313, 323
Ethernet
10BASE-T cabling, 177
bridges, 178
cabling pinouts, 61–64
hubs, 178
switches, 179–180
100BASE-TX cabling, 62–64
1000BASE-T cabling, 64
data-link protocols, 69
error detection, 74
Ethernet addressing, 70–71
framing, 71–73
frames, Type fields, 73–74
full-duplex, 68–69
header/trailer fields, 72
history of, 54–56
hubs, 57–58, 64–66
IEEE standards, 51
interfaces, 493–495
LAN components, 52
repeaters, 56
switches, 248. See also Catalyst switches
switching, 67
UTP cabling, 58–59
exactly 8 subnet bits, searching, 469
EXEC commands. See commands
EXEC mode, 250–251
exec-timeout command, 253
existing subnet masks
analyzing, 397, 400–405, 427, 451
binary, 434–442
decimal, 442–449
exit command, 245
extended ping command, 526–528

F
FCC (Federal Communications Commission) regulations, 314–315
FCS (Frame Check Sequence) field, 74
FCS field (HDLC), 90
FHSS (Frequency Hopping Spread Spectrum), 315
fiber-optic cabling, 51
filtering
  versus forwarding, 181–183
  problems, identifying, 300
final preparation for ICND2 exam, 647
finding. See searching
firewalls, 160, 164. See also security
Flintstones example network, 8–15
flooding frames, 184–185
flow control, 147
formatting. See also configuration
  addresses, 371–372
  classful networks, 354
  IPv4 addresses
    calculating, 403–405
    classful/classless addressing, 403
    defining, 400
    dividing, 401–403
  masks, 386–387
  parts, 402
forward acknowledgments, 146
forwarding
  data-link frames, 122–124
  versus filtering, 181–183
  packets, 121
  state (STP), 185
four subnet example, 430–432
four-wire circuits, 92
fragment-free processing, 187
Frame Relay
  access links, 93
  versus ATM, 608
  LAPF, 94
  scaling benefits of, 93
  VCs, 95–96
  WANs, 9
frames, 42, 71–73, 94
  forwarding logic on switches, 180
    flooding, 184–185
    forwarding versus filtering, 181–183
    internal switch processing, 186–187
    loop avoidance, 185–186
    MAC address learning process, 183–184
  HDLC, 89
  PPP, 91
  Type fields, 73–74
frequency bands, 314–315
FTP (File Transfer Protocol), 145
full-duplex Ethernet, 68–69
functions, OSI layers, 39–41. See also commands
G
GBIC (Gigabit Interface Converters), 60
GET request (HTTP), 158
grouping IP addresses, 71, 113
H
hacker tools, 163
half duplex transmission, 66
HDLC (High-Level Data Link Control), 89
  configuring, 624–627
  error detection, 90
  FCS field, 90
  Protocol Type field, 90
head-end, 606
headers
  fields for IPv4, 108–109
  trailer fields (Ethernet), 72
  UDP, 151
history
  buffer commands, 252
  of Ethernets
    10BASE2 networks, 54
    10BASE5 networks, 55–56
  of TCP/IP networking models, 21–23
home pages, 25
hop count, 535
hosts, 397
  bits, 346
    borrowing, 355–356
    selecting, 414–416
  calculating, 400
  IP, 32
  networks
    deriving IDs/numbers, 373–375
    number of per, 373
  portion of IP addresses, 113–115
  routing, 120
  selecting, 342
  sizing, 400
  subnets, 401
  troubleshooting, 564–565
HTTP (Hypertext Transfer Protocol), 25, 158
- errors, 26
- GET requests/responses, 158
- hubs, 57–58
- 10BASE-T topologies, 178
- performance issues, 64–67
- hybrid 6500 switches, 208

IBM SNA, 21
ICANN (Internet Corporation for Assigned Names and Numbers), 116, 614
ICMP (Internet Control Message Protocol)
- echoes, 131
- identifying filtering problems, 300

IDSs (intrusion detection systems), 166–167, 327
IEEE (Institute of Electrical and Electronic Engineers), 23
- 802.2 committee, 54
- 802.3 committee, 54
- 802.11 standard, 311
- 802.11i standard, 331
- Ethernet standards, 51
- WLAN standards, 310
IGPs (Interior Gateway Protocols), 533
images, upgrading into Flash memory, 502–505
implementing subnet masks
- design, 411
- IPv4 subnets, 360–363
- processes, 421–422
- selecting, 414–421
inactivity timer, 185
increasing size of WLAN coverage area, 318
infrastructure mode WLANs, 311–313
inside global addresses, 617
inside hosts, 616
inside interfaces, 617
inside local addresses, 616
installing
- enterprise routers, 485–488
- Internet access routers, 489–490
- SDM, 630–631
Institute of Electrical and Electronic Engineers. See IEEE
interesting octets, 445, 464
- predictability in, 444–445
interfaces, 207
- bandwidth, configuring, 353, 497–499
- clock rate, configuring, 353, 497–499
- commands, 221, 258
- configuring on Cisco Catalyst switches, 257–258
- Ethernet, 493–495
- IP addresses, configuring, 496
- Layer 1 problems, troubleshooting, 293–295
- OSI, 41
- serial interfaces, 493–495
- speed issues, troubleshooting, 290–293
- status codes, 288–290, 495–496
- unused, securing, 265–266
interference
- effect on Layer 1 interface operation, 294
- in wireless communication, 317
interior routing protocols, 533, 537
International Organization for Standardization (ISO), 22
Internet access routers
- connectivity, configuring, 629–630
- default routes, 612–613
DHCP
- configuring, 631, 634–636
- servers, 638–639
- services, planning for, 636
- verifying configuration, 639–641
installing, 489–490
- PAT, configuring, 634
Internet layers, 29–32
Internet Protocol. See IP
internetworks, 342
interoperability, 41
IP (Internet Protocol), 29, 104
- addresses, 31
- address assignment on Internet access routers, 611–612
- applying rules, 349–360
classes of, 115–116
configuring on Cisco Catalyst switches, 254–257
DNS resolution, 156–158
dotted-decimal notation, 111–112
grouping, 113
host portion, 113–115
network number, 113–115
on interfaces, configuring, 496
postal service and, 29–30
ranges of usable, 434
reserved, avoiding, 557–558
searching ranges of, 442
subnetting, 116–120, 524, 558–560, 650–653
routing, 32–33
unicast, 430
hosts, 111
networks, 18, 112
ip address command, 611, 624
ip route command, 525
routing
forwarding decisions, 121–124
host routing, 120
matching routes, locating, 565–567
troubleshooting scenario, 573, 575–586
subnet design, 337
IPSs (Intrusion Prevention Systems), 166–167
IPv4 (Internet Protocol version 4)
addresses
calculating, 403–405
classful/classless, 403
defining, 400
dividing, 401–403
classes, 369–370
classful networks
analyzing, 367–376
applying, 376–378
deriving IDs/numbers, 373–375
number of hosts per, 373
unusual network IDs, 375–376
header fields, 108–109
subnetting, 337
analyzing, 342–349
applying addressing rules, 14–25
overview of, 340–342
planning, 360–363
ISM (Industrial, Scientific, Mechanical)
frequency band, 315
ISO (International Organization for Standardization), 22
isolating problems, 280–282
ITU (International Telecommunications Union), 91

J–L
jitter, 154

keystroke logging, 163

L3PDUs (Layer 3 PDUs), 42
LANs (local area networks)
broadcast domains, 190–192
campus LANs, 194
access switches, 195
core switches, 197
distribution switches, 196
maximum cable lengths, 197–199
collision domains, 67, 189–192
comparing to WANs, 82
Ethernet
addressing, 70–71
error detection, 74
framing, 71–73
history of, 54–56
hubs, 57–58
repeaters, 56
required components, 52
UTP cabling, 58–59
frame forwarding logic, 180
flooding, 184–185
forwarding versus filtering, 181–183
internal switch processing, 186–187
loop avoidance, 185–186
MAC address learning process, 183–184
small, uses for, 53
subnets, 341
switching, 67
versus WANs, 81
LAPF (Link Access Procedure – Frame), 94
late collisions, effect on Layer 1 interface operation, 295
Layer 1
interfaces, troubleshooting, 293–295
WLAN operations, 313–315
Layer 2
forwarding path, analyzing, 295–299
WLAN operation, 320–321
Layer 3, 40
PDUs, 42
problem isolation, 281–282
Layer 4, 40
TCP, 140
connection establishment and termination, 148–149
data segmentation, 150–151
error recovery, 139, 146–147
flow control, 147
multiplexing using TCP port numbers, 141–143
ordered data transfer, 150–151
primary function of, 139
UDP, 151
Layer 6, 39
Layer 7, 39
Layer x PDUs (LxPDUs), 42
layers, 23
adjacent-layer interaction, 28
application, 24–26
Internet, 29–32
network access, 33–34
OSI
benefits of, 41
functions, 39–41
problem isolation, 281–282
transport, 26–28
leased circuits, 82
leased lines, 81
CSU/DSU synchronization, 86
LEDs on Cisco Catalyst switches, 209–210
legal ownership of point-to-point WAN devices, 84
less than 8 subnet bits, 464–468
lines
cable Internet, 606
DSL, 604
status, verifying on interfaces, 495–496
links, 156
speeds, 88
URL properties, displaying, 156
links-state routing protocols, 534
list-all-subnets chart, 464
lists, subnet mask processes, 421–422
LLC (Logical Link Control) sublayer, 51, 54
local loops, 597
locating matching routes in routing table, 565–567
log messages, displaying, 253
logging synchronous command, 253
logic, basic application, 25
logical addressing, 109
loop avoidance, STP, 185–186
LxPDUs (Layer x PDUs), 42
MAC (Media Access Control) addresses, 51, 54, 71, 180–181
contents, displaying, 295
filtering on WLANs, 330
Layer 2 forwarding path, analyzing, 295–299
role in frame forwarding process, 183–184
sticky secure MAC addresses, 261
magic numbers, 446, 464
malware, 164
MAN (metropolitan-area network), 81
managing subnets, 342–349
manual summarization, 536
masks
converting, 404
defaults, 372
difficult, 443, 446, 449–451
easy, analyzing, 443–444
formats, 386–387
multiple masks meet requirements, 418–421
no masks meet requirements, 416–417
one mask meets requirements, 417–418
searching, 421
selecting, 354
slash, 387
subnets
converting, 383, 386–391
design, 411
existing, 397, 400–405
processes, 421–422
selecting, 414–421
VLSMs, 348–349
math
binary, 438–440
Boolean, 442
masks, searching, 420
maximum cable lengths on campus LANs, 197–199
memory on Cisco switches, types of, 223
messages, TCP/IP, 36–37
Metro E (Metropolitan Ethernet), 609–610
microsegmentation, 179
Microsoft Windows XP network command reference, 561
MIMO (multiple input multiple output), 317
mnemonics, 41
mode button on Cisco Catalyst switches, 210
models
networking, 17
OSI, 17
benefits of, 41
comparing to TCP/IP models, 37–38
encapsulation, 42
functions, 39–41
referencing layers, 38–39
TCP/IP, 17
application layers, 24–26
history of, 21–23
Internet layers, 29–32
network access layers, 33–34
overview of, 23–24
terminology, 34–37
transport layers, 26–28
modular engineering, 41
more than 8 subnet bits, searching, 469–472
MOTD (Message-of-the-Day) banners, 251–252
MTU (maximum transmission unit), 150
multicast addresses, 71, 180–181
multiple masks meet requirements, 418–421
multiple subnet sizes, 348–349
multiple-choice questions, strategies for solving, 279
multiplexing, 141–143
multivendor interoperability, 41

N
NAC (Network Admission Control), 163
names of TCP/IP messages, 36–37
NAT (Network Address Translation), 351-352, 613, 617
native 6500 switches, 208
network layer, 40, 104
addressing, 109–110
capsulation, 108
interaction with data link layer, 107
routing protocols, 105–106, 110, 124–126
utilities, 127
ARP, 128–129
DHCP, 129–131
DNS, 128
ping, 131
networks, 5, 18. See also IP (Internet Protocol)
access layers, 33–34
broadcast addresses, 115
classes, 369–370
diagrams, clouds, 7
enterprise, 6–8
Flintstones example, 8–15
IP addresses, number of 113–115
IPv4 classful
analyzing, 367–376
applying, 376–378
deriving IDs/numbers, 373–375
magic, 446, 464
number of hosts per, 10–11, 373
patterns in interesting octets, 445
unusual network IDs, 375–376
layers. See network layer models, 17
OSI
benefits of, 41
comparing to TCP/IP, 37–38
encapsulation, 42
functions, 39–41
referencing layers, 38–39
SOHO networks, 7
TCP/IP
application layers, 24–26
history of, 21–23
Internet layers, 29–32
network access layers, 33–34
overview of, 23–24
terminology, 34–37
transport layers, 26–28
NFS (Network File System), 151
no masks meet requirements, 416–417
nonoverlapping
channels, effect on available bandwidth, 319
DSSS, 315
notation
converting subnet masks, 388–391
DDN, 31, 384–386
numbers
DDN, 31
deriving, 373–375
number of hosts per network, 373

O
objects, 158
octets, 112, 442
masks, converting, 388
interesting, 444–445, 464
subnets. See subnets
OFDM (Orthogonal Frequency Division Multiplexing), 316
one mask meets requirements, 417–418
one-size-subnet-fits-all philosophy, 346
Open System Interconnection. See OSI operating system. See OS
ordered data transfer, 150–151
OS (operating system), 17, 507
OSI (Open System Interconnection), 17, 22
benefits of, 41
comparing to TCP/IP, 37–38
encapsulation, 42
functions, 39–41
network layer, 104–105
addressing, 109–110
interaction with data link layer, 107
routings, 105–106, 110
referencing layers, 38–39
utilities, 127–131
OUI (organizationally unique identifier), 70
output of show ip route command, interpreting, 542
outside interfaces, 617

P
packets, 42
acknowledgements, 27
Frame Relay, 93–94
scaling benefits, 92–93
switching, 92, 609
VCs, 95–96
PAR (Positive Acknowledgment and Retransmission), 148
parts
creating, 402
networks, 371–372
subnets, 401
passwords
configuring, 250–251
encryption, configuring, 248–249
protecting switch console access, 214–216
recovery, configuring, 242–244
PAT (Port Address Translation), 613, 617
configuring on Internet access router, 634
path selection, 104
PCM (pulse code modulation), 88, 598
PDUs (protocol data units), 42
permanent virtual circuits. See PVCs
phishing attacks, 164
physical connectivity of point-to-point WANs, 84
pin positions, 59
ping command, 131, 524–526, 561
pinouts, 61–64
planning IPv4 subnets, 360–363
Point-to-Point Protocol. See PPP
point-to-point WANs
cabling, 84–86
demarc, 84
devices, legal ownership of, 84
HDLC, configuring, 624–627
Layer 1, 80
Layer 2
HDLC, 89–90
PPP, 91
link speeds, 88
physical connectivity, 84
PPP, configuring, 627–628
subnets, 343
ports
LED modes, switching between, 210
numbers, 143
security, configuring, 259–262
postal service and IP (Internet Protocol), 29–30
PPP (Point-to-Point Protocol), 34, 91, 627–628
pr = 87, 653
predictability in interesting octets, 444–445
prefixes, 397, 432
  address, 371–372
  masks, 387–391
  parts, 401
  sizing, 400
preparing for exams, 647
  Cisco CCNA Prep Center, 650
  IP addressing questions, 560
  multiple-choice questions, solving, 279
  recommended study plan, 652–655
  scenarios, 651
  sim questions, solving, 277
  simlet questions, solving, 278–279
  subetting questions, 558–560, 650–651
presentation layer (OSI model), 39
primary functions of TCP
  connection establishment and termination, 148–149
  data segmentation, 150–151
  error recovery, 146–147
  flow control, 147
  multiplexing using TCP port numbers, 141–143
  ordered data transfer, 150–151
private IP networks, 350-353
problem isolation, 280
  at specific OSI layers, 281–282
processes
  binary, shortcuts for, 440–441
  exactly 8 subnet bits, 469
  less than 8 subnet bits, 464–468
  more than 8 subnet bits, 469–472
  subnet masks, 421–422
protocol data units (PDUs), 42
Protocol Type field (HDLC), 90
protocols
  HTTP, 25–26
  IP, 29
  addresses, 31
    postal service and, 29–30
    routing, 32–33
  PPP, 34
  status, verifying on interfaces, 495–496
  TCP, 27–28
  TCP/IP, See TCP/IP
  UDP, 27
PSTN (Public Switched Telephone Network), 596
PTT (public telephone and telegraph)
  companies, 82
public classful IP networks, 15
public IP networks, 16
PVCs (permanent virtual circuits), 334, 608
Q-R
QoS (quality of service), 152–153
  TCP/IP application requirements, 154–155
  VoIP requirements, 154
ranges of usable addresses, 434
reassembly, 609
recalling commands, 217–218, 252
recommended study plan, 652–655
reconnaissance attacks, 161
referencing OSI layers, 38–39
registered public IP networks, 350
reliability, 146
reloading Cisco switches, 226
repeaters, 56
replicating subnet blocks, 471
Requests for Comments. See RFCs
requirements
  bits, selecting, 414–416
  masks, selecting to meet, 414–421
  multiple masks meet, 418–421
  no masks meet, 416–417
  one mask meets, 417–418
  of TCP/IP applications for QoS, 154–155
  of VoIP for QoS, 154
reserved IP addresses, avoiding, 557–558
resident subnets, 430–432, 446–448
resume command, 572
resuming suspended telnet sessions, 572
reusing private networks, 352
RFCs (Requests for Comments), 23
  1918, 353
  TCP/IP, 374
RIP (Routing Information Protocol), hop count, 535
RIP-2 (Routing Information Protocol version 2)
  administrative distance, 543–544
  configuring, 538–540
  verifying configuration, 540–548
  XE, 532
RJ-45 connectors, 59–64
RJ-48 connectors, 85
rogue APs, 326
ROMMON operating system, 507
route summarization, 536
routed protocols, 111
routers
clock speed, defining, 88
internal CSU/DSU, 85
synchronous serial interfaces, 84
routing, 105
across network, 106
CIDR, 387
classful, 403
IP, 32–33
tables. See routing tables
routing protocols, 110, 124–126
administrative distance, 543–544
balanced hybrid, 534
classful, 536
classless, 536
convergence, 537
exterior, 533
interior, 533, 537
link-state, 534
metrics, 534
RIP-2, 532
configuring, 538–540
verifying configuration, 540–548
route summarization, 536
routings tables
connected routes, 521, 524
default routes, 528–530
matching routes, locating, 565–567
static routes, 524–526
rules
hosts, selecting, 342
subnet masks, 386–387
running-config, storage on
Cisco switches, 224
RxBoot operating system, 507
S
same-layer interaction, 28
sample RIP-2 configuration, 539–540
SAR (segmentation and reassembly), 609
saving Internet access router configurations, 636
scaling packet-switched WANs, 92–93
scanners, 163
scenario
preparing for ICND1 exam, 651
for troubleshooting IP routing, 573–586
SDM (Cisco Router and Security Device Manager), 628
installing, 630–631
Internet access routers
configuring, 629–639
verifying configuring, 639–641
searching, 418–421
IP addresses ranges, 434
ranges of addresses, 442
subnets
binary, 435–437
broadcast addresses, 449–451
decimal, 437–438
difficult masks, 446
exactly 8 subnet bits, 469
IDs, 459, 462–464, 472
less than 8 subnet bits, 464–468
more than 8 subnet bits, 469–472
secure-shutdown state, 262
security, 163
anti-x, 166
CLI, 241–242
VPNs, 167–168
WLANs, 326–327
IEEE 802.11i, 331
MAC address filtering, 330
SSID cloaking, 329–330
WEP, 328-330
WPA, 331
segmentation, 42, 150–151
selecting, 414–421
hosts, 342
IP networks, 353
masks, 354
number of hosts per subnet, 345–346
sizes of subnets, 347
SEQ (sequence number), 28
sequence number (SEQ), 28
serial cabling, 84
back-to-back serial connections, 87
serial interfaces, 493–495
bandwidth, configuring, 353, 497–499
clock rate, configuring, 353, 497–499
service password-encryption command, 248
services
providers, 82
sets, 312–313
setup mode, 227, 231, 499–502
shared Ethernet, 68
show commands, 219–220
show cdp command, role in troubleshooting, 284, 287–288
show dhcp server command, 637
show interfaces status command, 289–290
show ip arp command, 567
show ip dhcp binding command, 640–641
show ip interface brief command, 524
show ip nat translations command, 641
show ip protocols command, 544–548
show ip route command, 542
show mac address-table command, 295
show running-config command, 245, 625–626
show sessions command, 572
show ssh command, 572
show users command, 572
show version command, 511–512
show vlan brief command, 298–299
Sim questions, strategies for solving, 277
Simlet questions, strategies for solving, 278–279
simulation mode (exam engine), 655
site surveys, 325
site-to-site intranet VPNs, 167
sizing
hosts, 400
prefixes, 400
subnets, 346–348
VLSMs, 348–349
slash masks, 387
sliding window, 147
small LANs, uses for, 53
SNA (Systems Networking Architecture), 21
SNMP (Simple Network Management Protocol), 145
SNR (Signal-to-Noise Ratio), 317
sockets, 142–143
SOHO (single office, home office) networks, 7
solving
multiple-choice questions, 279
sim questions, 277
simlet questions, 278–279
sources
interference in wireless communication, 317
MAC addresses, 183
specifications, CIDR, 387
speed settings, displaying, 290–293
SPF (Small-Form Pluggables), 60
spyware, 163
SSH (Secure Shell)
CLI, accessing, 214
configuring on Cisco Catalyst switches, 245–248
SSID (service set identifier), cloaking, 329–330
standardization, OSI models, 22
standards bodies, 85
WLAN standards, 310
startup-config, storage on Cisco switches, 224
static routes, 524–526
configuring, 529–530
default routes, 528
stick secure MAC addresses, 261
storing configuration files, 224
STP (Spanning Tree Protocol), 185–186
straight-through cables, 62
study mode (exam engine), 655
subcommands, 221
subnets, 109, 116–120
analyzing, 427, 451–452
binary, 434–442
bits, selecting, 414–416
blocks, 470
broadcast addresses, 433–434, 449–451, 464, 467
calculating, 356, 401
classful networks, 354–355
connected routes, 524
decimal, analyzing, 442–449
defining, 430–434
design, 337
every 8 bits, 469
examples, 340, 357
four, example, 430–432
hosts
routing problems, troubleshooting, 564–565
selecting, 342, 345–346
IDS, 432–433
  difficult masks, 446
  searching, 459, 462–464, 472–473
IPv4, 337
  analyzing, 342–349
  applying addressing rules, 349–360
  overview of, 340–342
  planning, 360–363
less than 8 bits, 464–468
masks
  converting, 383, 386–391
  design, 411
  existing, 397, 400–405
  processes, 421–422
  selecting, 414–421
more than 8 bits, 469–472
one-size-subnet-fits-all philosophy, 346
practicing, 650–653
preparing for exam, 558, 560
resident, 430, 432, 446–448
reserved IP addresses, avoiding, 558
sizing, 346–348
VLSMs, 348–349
summarization, 536
suspending sessions
  resuming, 572
telnet, 569–571
SWAN (Structured Wireless-Aware Network), 327
switches, 67, 179
circuits, 600
Ethernets, 68
frame forwarding logic, 180
  flooding, 184–185
  forwarding versus filtering, 181–183
  internal switch processing, 186–187
  loop avoidance, 185–186
  MAC address learning process, 183–184
switching, 67
  between configuration modes, 222
  VLANs, 193–194
symmetric DSL, 603
SYN flags (TCP), 149
synchronization, 84–86
SYST LED, 210

T
T1 lines, 88, 92
TCP (Transmission Control Protocol), 27, 140, 145
error recovery, 27–28, 139
  headers, 151
primary functions of, 139
  connection establishment and termination, 148–149
  data segmentation, 150–151
  error recovery, 146–147
  flow control, 147
  multiplexing using TCP port numbers, 141–143
  ordered data transfer, 150–151
  segments, 150
TCP/IP (Transmission Control Protocol/Internet Protocol)
  applications
    DNS, 145
    FTP, 145
    QoS needs, 152–153
    SNMP, 145
    TCP, 145
    well-known port numbers, 145
    WWW, 145, 155–158
  models, 17
    application layers, 24–26
    history of, 21–23
    Internet layers, 29–32
    network access layers, 33–34
    overview of, 23–24
    terminology, 34–37
    transport layers, 26–28
  OSI models, comparing to, 37–38
  QoS, need for, 154–155
  RFCs, 374
TDM (time-division multiplexing), 88
telcos, 82, 91
  CO, 83
demarc, 84
  local loop, 597
  PSTN, 596
telnet sessions
  CLI, accessing, 214
  commands, 569
  resuming suspended sessions, 572
  suspending, 569, 571
Tera Term Pro software package, 213
terminal emulators, Tera Term Pro, 213
terminology
capsulation, 42
TCP/IP, 34–37
testing network connectivity with extended ping command, 526–528
threats
to Enterprise networks, 161–162
to WLAN security, 326–327
TIA (Telecommunications Industry Association), 85
tools for generating network attacks, 163
traceroute command, 568–569
Transmission Control Protocol. See TCP
Transmission Control Protocol/Internet Protocol. See TCP/IP
transmit power of APs, 317
transport layers, 40, 139. See also Layer 4
troubleshooting
CDP, 283–288
host routing problems, 564–565
HTTP errors, 26
interfaces
Layer 1 problems, 293–295
speed/duplex issues, 290–293
status codes, 288–290
IP routing scenarios, 573–586
problem isolation, 280–282
TCP error recovery techniques, 27–28
trunks, 64
twisted pair, 60
Type fields, 73–74

U
UAA (universally administered addresses), 70
UDP (User Datagram Protocol), 27
headers, 151
multiplexing, 141
unicast addresses, 180–181, 430
universal resource locators (URLs), 26, 156
unknown unicast frames, 184
unused interfaces, securing, 265–266
unusual network IDs, 375–376
updates for ICND1 exams, 689–690
upgrading images into Flash memory, 502–505
URLs (universal resource locators), 26, 156
usable addresses, ranges of, 434
User Datagram Protocol. See UDP
user EXEC mode, 216, 250–251
usernames, configuring, 245–248
utilities, network layer, 127
ARP, 128–129
DHCP, 129–131
DNS, 128
ping, 131
UTP (unshielded twisted pair) cabling, 51, 58–59

V
VCI (Virtual Channel Identifier) field (ATM), 608
VCs (virtual circuits), 95–96
verifying
CDP operations, 288
RIP-2 configuration, 540–548
WLAN configuration, 325–326
VLANS (virtual LANs), 193–194
configuring on Cisco Catalyst switches, 262–265
subnets, selecting hosts, 344
VLSMs (variable length subnet masks), 348–349
VoIP (Voice over IP), 153
QoS, need for, 154
VPI (Virtual Path Identifier) field (ATM), 608
VPNs (virtual private networks), 167–168
vulnerabilities
of Enterprise networks, 161–162
of WLANs, 326–327

W–Z
WANs (wide area networks)
analog modems, 599–601
ATM, 607–609
building for practice lab, 87
cable Internet, 605–606
cabling, 84–86
circuit switching, 609
comparing to LANs, 82
DSL, 601–604
Frame Relay, 344
Internet access routers
address assignment, 611–612
default routes, 612–613
leased lines, 81
WANs (wide area networks)

Metro E, 609–610
packet switching, 92, 609
  Frame Relay, 93–96
  scaling benefits, 92–93
physical connectivity, 84
point-to-point, 343
demarc, 84
devices, legal ownership of, 84
HDLC, configuring, 624–627
Layer 1 operation, 80
Layer 2, 89–91
link speeds, 88
physical connectivity, 84
PPP, configuring, 627–628
switched circuits, 600
telcos, 596–598
war drivers, 326
web browsers, 155
web pages, objects, 158
web servers, 155
well-known port numbers, 143
  for TCP/IP applications, 145
WEP (Wired Equivalent Privacy), 328
  enhancements to, 330
windowing, 147
wireless clients, configuring, 324
wizards, SDM Ethernet wizard
  DHCP, configuring on Internet
  access router, 632
  Summary page, 635
WLANs (wireless LANs)
ad hoc, 311
  configuring, 323–324
  rogue APs, 326
  transmit power, 317
BSS, 323
collisions, 320
comparing with Ethernet LANs, 309
coverage area, 317
deploying, 321–326
encoding types, 315–316
ESS, 323
IEEE standards, 310
infrastructure mode, 311–313
interference, 317
  Layer 1 operations, 313–315
  Layer 2 operations, 320–321
MAC address filtering, 330
nonoverlapping channels, 319
security
  IEEE 802.11i, 331
  issues, 326–327
SSID cloaking, 329–330
verifying configuration, 325–326
WEP, 328–330
wireless clients, configuring, 324
WPA, 331
worms, 163
WPA (Wi-Fi Protected Access), 331
WPA-2 (Wi-Fi Protected Access version 2), 331
WWW (World Wide Web), 145, 155
  DNS resolution, 156–158
  HTTP, 158
  URLs, 156
Practice for Chapter 13: Analyzing Classful IPv4 Networks

Practice Problems

The practice problems in this appendix require that you determine a few basic facts about a network, given an IP address and an assumption that subnetting is not used in that network. To do so, refer to the processes described in Chapter 13 of CCENT/CCNA ICND1 640-822 Official Cert Guide. (If you are reading this as a PDF that came with the CCNA ICND2 640-816 Official Cert Guide, you will find a copy of the ICND1 book’s Chapter 13, “Analyzing Classful IPv4 Networks,” in the same location where you found this PDF.)

In particular, for the upcoming list of IP addresses, you should identify the following information:

- Class of the address
- Number of octets in the network part of the address
- Number of octets in the host part of the address
- Network number
- Network broadcast address

Find all these facts for the following IP addresses:

1. 10.55.44.3
2. 128.77.6.7
3. 192.168.76.54
4. 190.190.190.190
5. 9.1.1.1
6. 200.1.1.1
7. 201.1.77.5
8. 101.1.77.5
9. 119.67.99.240
10. 219.240.66.98
Answers

The process to answer these problems is relatively basic, so this section reviews the overall process and then lists the answers to problems 1–10.

The process starts by examining the first octet of the IP address:

- If the first octet of the IP address is a number between 1–126, inclusive, the address is a Class A address.
- If the first octet of the IP address is a number between 128–191, inclusive, the address is a Class B address.
- If the first octet of the IP address is a number between 192–223, inclusive, the address is a Class C address.

When no subnetting is used:

- Class A addresses have 1 octet in the network part of the address and 3 octets in the host part.
- Class B addresses have 2 octets each in the network and host part.
- Class C addresses have 3 octets in the network part and 1 octet in the host part.

After determining the class and the number of network octets, you can easily find the network number and network broadcast address. To find the network number, copy the network octets of the IP address, and write down 0s for the host octets. To find the network broadcast address, copy the network octets of the IP address, and write down 255s for the host octets.
Table D-1 lists all six problems and their respective answers.

Table D-1  *Answers to Problem Set 2*

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Class</th>
<th>Number of Network Octets</th>
<th>Number of Host Octets</th>
<th>Network Number</th>
<th>Network Broadcast Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.55.44.3</td>
<td>A</td>
<td>1</td>
<td>3</td>
<td>10.0.0.0</td>
<td>10.255.255.255</td>
</tr>
<tr>
<td>128.77.6.7</td>
<td>B</td>
<td>2</td>
<td>2</td>
<td>128.77.0.0</td>
<td>128.77.255.255</td>
</tr>
<tr>
<td>192.168.76.54</td>
<td>C</td>
<td>3</td>
<td>1</td>
<td>192.168.76.0</td>
<td>192.168.76.255</td>
</tr>
<tr>
<td>190.190.190.190</td>
<td>B</td>
<td>2</td>
<td>2</td>
<td>190.190.0.0</td>
<td>190.190.255.255</td>
</tr>
<tr>
<td>9.1.1.1</td>
<td>A</td>
<td>1</td>
<td>3</td>
<td>9.0.0.0</td>
<td>9.255.255.255</td>
</tr>
<tr>
<td>200.1.1.1</td>
<td>C</td>
<td>3</td>
<td>1</td>
<td>200.1.1.0</td>
<td>200.1.1.255</td>
</tr>
<tr>
<td>201.1.77.55</td>
<td>C</td>
<td>3</td>
<td>1</td>
<td>201.1.77.0</td>
<td>201.1.77.255</td>
</tr>
<tr>
<td>101.1.77.55</td>
<td>A</td>
<td>1</td>
<td>3</td>
<td>101.0.0.0</td>
<td>101.255.255.255</td>
</tr>
<tr>
<td>119.67.99.240</td>
<td>A</td>
<td>1</td>
<td>3</td>
<td>119.0.0.0</td>
<td>119.255.255.255</td>
</tr>
<tr>
<td>219.240.66.98</td>
<td>C</td>
<td>3</td>
<td>1</td>
<td>219.240.66.0</td>
<td>219.240.66.255</td>
</tr>
</tbody>
</table>
Practice for Chapter 14: Converting Subnet Masks

Practice Problems

The problems in this appendix require you to convert dotted-decimal subnet masks to prefix format and vice versa. To do so, feel free to use the processes described in Chapter 14 of *CCENT/CCNA ICND1 640-822 Official Cert Guide*. (If you are reading this as a PDF that came with *CCNA ICND2 640-816 Official Cert Guide*, you will find a copy of the ICND1 book’s Chapter 14, “Converting Subnet Masks,” in the same location where you found this PDF.)

Many people use the information in Table E-1 when converting masks. The table lists the nine DDN mask values, the binary equivalent, and the number of binary 1s in the binary equivalent.

<table>
<thead>
<tr>
<th>Binary Mask Octet</th>
<th>DDN Mask Octet</th>
<th>Number of Binary 1s</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10000000</td>
<td>128</td>
<td>1</td>
</tr>
<tr>
<td>11000000</td>
<td>192</td>
<td>2</td>
</tr>
<tr>
<td>11100000</td>
<td>224</td>
<td>3</td>
</tr>
<tr>
<td>11110000</td>
<td>240</td>
<td>4</td>
</tr>
<tr>
<td>11111000</td>
<td>248</td>
<td>5</td>
</tr>
<tr>
<td>11111100</td>
<td>252</td>
<td>6</td>
</tr>
<tr>
<td>11111110</td>
<td>254</td>
<td>7</td>
</tr>
<tr>
<td>11111111</td>
<td>255</td>
<td>8</td>
</tr>
</tbody>
</table>

Convert each dotted-decimal notation (DDN) mask to prefix format and vice versa:

1. 255.240.0.0
2. 255.255.192.0
3. 255.255.255.224
4. 255.254.0.0
5. 255.255.248.0
6. /30
7. /25
8. /11
9. /22
10. /24

Answers

Answer to Problem 1
The answer is /12.

The binary process for converting the mask from dotted-decimal format to prefix format is relatively simple. The only hard part is converting the dotted-decimal number to binary. For reference, the process is as follows:

**Step 1** Convert the dotted-decimal mask to binary.

**Step 2** Count the number of binary 1s in the 32-bit binary mask; this is the value of the prefix notation mask.

For problem 1, mask 255.240.0.0 converts to

```
11111111 11110000 00000000 00000000
```

You can see from the binary number that it contains 12 binary 1s, so the prefix format of the mask will be /12.

You can find the exact same answer without converting decimal to binary if you have memorized the 9 DDN mask values, and the corresponding number of binary 1s in each, as listed earlier in Table E-1. Follow these steps:

**Step 1** Start with a prefix value of 0.

**Step 2** (1st octet) Add 8 because the first mask octet of 255 includes eight binary 1s.

**Step 3** (2nd octet) Add 4 because the second mask octet of 240 includes four binary 1s.

**Step 4** The resulting prefix is /12.
Answer to Problem 2
The answer is /18.

For problem 2, mask 255.255.192.0 converts to the following:

11111111 11111111 11000000 00000000

You can see from the binary number that it contains 18 binary 1s, so the prefix format of the mask will be /18.

If you memorized the number of binary 1s represented by each DDN mask value, you can possibly work faster with the following logic:

Step 1  Start with a prefix value of 0.
Step 2  (1st octet) Add 8 because the first mask octet of 255 includes eight binary 1s.
Step 3  (2nd octet) Add 8 because the second mask octet of 255 includes eight binary 1s.
Step 4  (3rd octet) Add 2 because the third mask octet of 192 includes two binary 1s.
Step 5  The resulting prefix is /18.

Answer to Problem 3
The answer is /27.

For problem 3, mask 255.255.255.224 converts to the following:

11111111 11111111 11111111 11100000

You can see from the binary number that it contains 27 binary 1s, so the prefix format of the mask will be /27.

If you memorized the number of binary 1s represented by each DDN mask value, you can possibly work faster with the following logic:

Step 1  Start with a prefix value of 0.
Step 2  (1st octet) Add 8 because the first mask octet of 255 includes eight binary 1s.
Step 3  (2nd octet) Add 8 because the second mask octet of 255 includes eight binary 1s.
Step 4  (3rd octet) Add 8 because the third mask octet of 255 includes eight binary 1s.
Step 5 (4th octet) Add 3 because the fourth mask octet of 224 includes three binary 1s.

Step 6 The resulting prefix is /27.

Answer to Problem 4
The answer is /15.

For problem 4, mask 255.254.0.0 converts to the following:

11111111 11111110 00000000 00000000

You can see from the binary number that it contains 15 binary 1s, so the prefix format of the mask will be /15.

If you memorized the number of binary 1s represented by each DDN mask value, you can possibly work faster with the following logic:

Step 1 Start with a prefix value of 0.
Step 2 (1st octet) Add 8 because the first mask octet of 255 includes eight binary 1s.
Step 3 (2nd octet) Add 7 because the second mask octet of 254 includes seven binary 1s.
Step 4 The resulting prefix is /15.

Answer to Problem 5
The answer is /21.

For problem 5, mask 255.255.248.0 converts to the following:

11111111 11111111 11111000 00000000

You can see from the binary number that it contains 21 binary 1s, so the prefix format of the mask will be /21.

If you memorized the number of binary 1s represented by each DDN mask value, you can possibly work faster with the following logic:

Step 1 Start with a prefix value of 0.
Step 2 (1st octet) Add 8 because the first mask octet of 255 includes eight binary 1s.
Step 3  (2nd octet) Add 8 because the second mask octet of 255 includes eight binary 1s.

Step 4  (3rd octet) Add 5 because the third mask octet of 248 includes five binary 1s.

Step 5  The resulting prefix is /21.

Answer to Problem 6
The answer is 255.255.255.252.

The binary process for converting the prefix version of the mask to dotted decimal is straightforward, but again requires some binary math. For reference, the process runs like this:

Step 1  Write down x binary 1s, where x is the value listed in the prefix version of the mask.

Step 2  Write down binary 0s after the binary 1s until the combined 1s and 0s form a 32-bit number.

Step 3  Convert this binary number, 8 bits at a time, to decimal, to create a dotted-decimal number; this value is the dotted-decimal version of the subnet mask. (Refer to Table E-1, which lists the binary and decimal equivalents.)

For problem 6, with a prefix of /30, you start at Step 1 by writing down 30 binary 1s, as shown here:

```
11111111 11111111 11111111 111111
```

At Step 2, you add binary 0s until you have 32 total bits, as shown next:

```
11111111 11111111 11111111 11111100
```

The only remaining work is to convert this 32-bit number to decimal, remembering that the conversion works with 8 bits at a time.

Answer to Problem 7
The answer is 255.255.255.128.

For problem 7, with a prefix of /25, you start at Step 1 by writing down 25 binary 1s, as shown here:

```
11111111 11111111 11111111 111111 1
```
Appendix E: Practice for Chapter 14: Converting Subnet Masks

At Step 2, you add binary 0s until you have 32 total bits, as shown next:

```
11111111 11111111 11111111 10000000
```

The only remaining work is to convert this 32-bit number to decimal, remembering that the conversion works with 8 bits at a time.

**Answer to Problem 8**

The answer is 255.224.0.0.

For problem 8, with a prefix of /11, you start at Step 1 by writing down 11 binary 1s, as shown here:

```
11111111 111
```

At Step 2, you add binary 0s until you have 32 total bits, as shown next:

```
11111111 11100000 00000000 00000000
```

The only remaining work is to convert this 32-bit number to decimal, remembering that the conversion works with 8 bits at a time.

**Answer to Problem 9**

The answer is 255.255.252.0.

For problem 9, with a prefix of /22, you start at Step 1 by writing down 22 binary 1s, as shown here:

```
11111111 11111111 11111111 11111111
```

At Step 2, you add binary 0s until you have 32 total bits, as shown next:

```
11111111 11111111 11111111 10000000 00000000
```

The only remaining work is to convert this 32-bit number to decimal, remembering that the conversion works with 8 bits at a time.
**Answer to Problem 10**
The answer is 255.255.255.0.

For problem 10, with a prefix of /24, you start at Step 1 by writing down 24 binary 1s, as shown here:

```
11111111 11111111 11111111 11111111
```

At Step 2, you add binary 0s until you have 32 total bits, as shown next:

```
11111111 11111111 11111111 00000000
```

The only remaining work is to convert this 32-bit number to decimal, remembering that the conversion works with 8 bits at a time.
Practice for Chapter 15:
Analyzing Existing Subnet Masks

Practice Problems
This appendix lists problems that require you to analyze an existing IP address and mask to determine the number of network, subnet, and host bits. From that, you should calculate the number of subnets possible when using the listed mask in the class of network shown in the problem, as well as the number of possible host addresses in each subnet.

To find this information, you can use processes explained in Chapter 15 of *CCENT/CCNA ICND1 640-822 Official Cert Guide*. (If you are reading this as a PDF that came with *CCNA ICND2 640-816 Official Cert Guide*, you will find a copy of the ICND1 book’s Chapter 15, “Analyzing Existing Subnet Masks,” in the same location where you found this PDF.)

When doing the problems, the information in Table F-1 may be useful.

<table>
<thead>
<tr>
<th>Binary Mask Octet</th>
<th>Decimal Equivalent</th>
<th>Number of Binary 1s</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10000000</td>
<td>128</td>
<td>1</td>
</tr>
<tr>
<td>11000000</td>
<td>192</td>
<td>2</td>
</tr>
<tr>
<td>11100000</td>
<td>224</td>
<td>3</td>
</tr>
<tr>
<td>11110000</td>
<td>240</td>
<td>4</td>
</tr>
<tr>
<td>11111000</td>
<td>248</td>
<td>5</td>
</tr>
<tr>
<td>11111100</td>
<td>252</td>
<td>6</td>
</tr>
<tr>
<td>11111110</td>
<td>254</td>
<td>7</td>
</tr>
<tr>
<td>11111111</td>
<td>255</td>
<td>8</td>
</tr>
</tbody>
</table>

Each row of Table F-2 lists an IP address and mask. For each row, complete the table. Note that for the purposes of this exercise, you can assume that the two special subnets in each network, the zero subnet and broadcast subnet, are allowed to be used.
### Table F-2  Problem Set 3

<table>
<thead>
<tr>
<th>Problem Number</th>
<th>Problem</th>
<th>Network Bits</th>
<th>Subnet Bits</th>
<th>Host Bits</th>
<th>Number of Subnets in Network</th>
<th>Number of Hosts per Subnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.66.5.99, 255.255.254.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>172.16.203.42, 255.255.252.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>192.168.55.55, 255.255.255.224</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10.22.55.87/30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>172.30.40.166/26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>192.168.203.18/29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>200.11.88.211, 255.255.255.240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>128.1.211.33, 255.255.255.128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9.211.45.65/21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>223.224.225.226/25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Answers

Table F-3 includes the answers to problems 1–10. The paragraphs following the table provide explanations of each answer.

Table F-3  Answers to Problems in This Appendix

<table>
<thead>
<tr>
<th>Problem Number</th>
<th>Problem</th>
<th>Network Bits</th>
<th>Subnet Bits</th>
<th>Host Bits</th>
<th>Number of Subnets in Network</th>
<th>Number of Hosts per Subnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.66.5.99, 255.255.254.0</td>
<td>8</td>
<td>15</td>
<td>9</td>
<td>$2^9 = 32,768$</td>
<td>$2^9 - 2 = 510$</td>
</tr>
<tr>
<td>2</td>
<td>172.16.203.42, 255.255.252.0</td>
<td>16</td>
<td>6</td>
<td>10</td>
<td>$2^{10} = 1,024$</td>
<td>$2^{10} - 2 = 1022$</td>
</tr>
<tr>
<td>3</td>
<td>192.168.55.55, 255.255.255.224</td>
<td>24</td>
<td>3</td>
<td>5</td>
<td>$2^5 = 32$</td>
<td>$2^5 - 2 = 30$</td>
</tr>
<tr>
<td>4</td>
<td>10.22.55.87/30</td>
<td>8</td>
<td>22</td>
<td>2</td>
<td>$2^{11} = 4,096$</td>
<td>$2^{11} - 2 = 2$</td>
</tr>
<tr>
<td>5</td>
<td>172.30.40.166/26</td>
<td>16</td>
<td>10</td>
<td>6</td>
<td>$2^{10} = 1,024$</td>
<td>$2^{10} - 2 = 62$</td>
</tr>
<tr>
<td>6</td>
<td>192.168.203.18/29</td>
<td>24</td>
<td>5</td>
<td>3</td>
<td>$2^3 = 8$</td>
<td>$2^3 - 2 = 6$</td>
</tr>
<tr>
<td>7</td>
<td>200.11.88.211, 255.255.255.240</td>
<td>24</td>
<td>4</td>
<td>4</td>
<td>$2^4 = 16$</td>
<td>$2^4 - 2 = 14$</td>
</tr>
<tr>
<td>8</td>
<td>128.1.211.33, 255.255.255.128</td>
<td>16</td>
<td>9</td>
<td>7</td>
<td>$2^7 = 128$</td>
<td>$2^7 - 2 = 126$</td>
</tr>
<tr>
<td>9</td>
<td>9.211.45.65/21</td>
<td>8</td>
<td>13</td>
<td>11</td>
<td>$2^{11} = 2,048$</td>
<td>$2^{11} - 2 = 2046$</td>
</tr>
<tr>
<td>10</td>
<td>223.224.225.226/25</td>
<td>24</td>
<td>1</td>
<td>7</td>
<td>$2^1 = 2$</td>
<td>$2^1 - 2 = 126$</td>
</tr>
</tbody>
</table>

Answer to Problem 1

Address 10.66.5.99 is in Class A network 10.0.0.0, meaning 8 network bits exist. Mask 255.255.254.0 converts to prefix /23, because the first two octets of value 255 represent 8 binary 1s, and the 254 in the third octet represents 7 binary 1s, for a total of 23 binary 1s. Therefore, the number of host bits is $32 - 23 = 9$, leaving 15 subnet bits ($32 - 8$ network bits $- 9$ host bits $= 15$ subnet bits). The number of subnets in this Class A network, using mask 255.255.255.0, is $2^{15} = 32,768$. The number of hosts per subnet is $2^9 - 2 = 510$.

Answer to Problem 2

Address 172.16.203.42, mask 255.255.252.0, is in Class B network 172.16.0.0, meaning 16 network bits exist. Mask 255.255.252.0 converts to prefix /22, because the first two octets of value 255 represent 8 binary 1s, and the 252 in the third octet represents 6 binary 1s, for a total of 22 binary 1s. Therefore, the number of host bits is $32 - 22 = 10$, leaving 6 subnet bits ($32 - 16$ network bits $- 10$ host bits $= 6$ subnet bits). The number of subnets in this Class B network, using mask 255.255.252.0, is $2^6 = 64$. The number of hosts per subnet is $2^{10} - 2 = 1022$. 
Appendix F: Practice for Chapter 15: Analyzing Existing Subnet Masks

Answer to Problem 3
Address 192.168.55.55 is in Class C network 192.168.55.0, meaning 24 network bits exist. Mask 255.255.255.224 converts to prefix /27, because the first three octets of value 255 represent 8 binary 1s, and the 224 in the fourth octet represents 3 binary 1s, for a total of 27 binary 1s. Therefore, the number of host bits is $32 - 27 = 5$, leaving 3 subnet bits ($32 - 24$ network bits – 5 host bits = 3 subnet bits). The number of subnets in this Class C network, using mask 255.255.255.224, is $2^3 = 8$. The number of hosts per subnet is $2^5 - 2 = 30$.

Answer to Problem 4
Address 10.22.55.87 is in Class A network 10.0.0.0, meaning 8 network bits exist. The prefix format mask of /30 lets you calculate the number of host bits as $32 - \text{prefix-length}$ (in this case, $32 - 30 = 2$). This leaves 22 subnet bits ($32 - 8$ network bits – 2 host bits = 22 subnet bits). The number of subnets in this Class A network, using mask 255.255.255.252, is $2^{22} = 4,194,304$. The number of hosts per subnet is $2^2 - 2 = 2$. (Note that this mask is popularly used on serial links, which need only two IP addresses in a subnet.)

Answer to Problem 5
Address 172.30.40.166 is in Class B network 172.30.0.0, meaning 16 network bits exist. The prefix format mask of /26 lets you calculate the number of host bits as $32 - \text{prefix-length}$ (in this case, $32 - 26 = 6$). This leaves 10 subnet bits ($32 - 16$ network bits – 6 host bits = 10 subnet bits). The number of subnets in this Class B network, using mask /26, is $2^{10} = 1024$. The number of hosts per subnet is $2^6 - 2 = 62$.

Answer to Problem 6
Address 192.168.203.18 is in Class C network 192.168.203.0, meaning 24 network bits exist. The prefix format mask of /29 lets you calculate the number of host bits as $32 - \text{prefix-length}$ (in this case, $32 - 29 = 3$). This leaves 5 subnet bits, because $32 - 24$ network bits – 3 host bits = 5 subnet bits. The number of subnets in this Class C network, using mask /29, is $2^5 = 32$. The number of hosts per subnet is $2^3 - 2 = 6$.

Answer to Problem 7
Address 200.11.88.211 is in Class C network 200.11.88.0, meaning 24 network bits exist. Mask 255.255.255.240 converts to prefix /28, because the first three octets of value 255 represent 8 binary 1s, and the 240 in the fourth octet represents 4 binary 1s, for a total of 28 binary 1s. This leaves 4 subnet bits ($32 - 24$ network bits – 4 host bits = 4 subnet bits). The number of subnets in this Class C network, using mask /28, is $2^4 = 16$. The number of hosts per subnet is $2^4 - 2 = 14$. 
Answer to Problem 8
Address 128.1.211.33, mask 255.255.255.128, is in Class B network 128.1.0.0, meaning 16 network bits exist. Mask 255.255.255.128 converts to prefix /25, because the first three octets of value 255 represent 8 binary 1s, and the 128 in the fourth octet represents 1 binary 1, for a total of 25 binary 1s. Therefore, the number of host bits is 32 – 25 = 7, leaving 9 subnet bits (32 – 16 network bits – 7 host bits = 9 subnet bits). The number of subnets in this Class B network, using mask 255.255.255.128, is $2^9 = 512$. The number of hosts per subnet is $2^7 – 2 = 126$.

Answer to Problem 9
Address 9.211.45.65 is in Class A network 10.0.0.0, meaning 8 network bits exist. The prefix format mask of /21 lets you calculate the number of host bits as 32 – prefix-length (in this case, 32 – 21 = 11). This leaves 13 subnet bits (32 – 8 network bits – 11 host bits = 13 subnet bits). The number of subnets in this Class A network, using mask /21, is $2^{13} = 8192$. The number of hosts per subnet is $2^{11} – 2 = 2046$.

Answer to Problem 10
Address 223.224.225.226 is in Class C network 223.224.225.0, meaning 24 network bits exist. The prefix format mask of /25 lets you calculate the number of host bits as 32 – prefix-length (in this case, 32 – 25 = 7). This leaves 1 subnet bit (32 – 24 network bits – 7 host bits = 1 subnet bit). The number of subnets in this Class C network, using mask /25, is $2^1 = 2$. The number of hosts per subnet is $2^7 – 2 = 126$. 
Practice for Chapter 16: Designing Subnet Masks

Practice Problems
This appendix lists problems. Each problem includes a short set of requirements regarding how a particular classful network should be subnetted. The requirements include the classful network, the number of subnets the design must support, and the number of hosts in each subnet. For each problem, supply the following information:

■ The minimum number of subnet and host bits needed in the mask to support the design requirements
■ The dotted-decimal format mask(s) that meet the requirements
■ The mask you would choose if the problem said to maximize the number of subnets
■ The mask you would choose if the problem said to maximize the number of hosts per subnet

To find this information, refer to Chapter 16 of CCENT/CCNA ICND1 640-822 Official Cert Guide. (If you are reading this as a PDF that came with CCNA ICND2 640-816 Official Cert Guide, you will find a copy of the ICND1 book’s Chapter 16, “Designing Subnet Masks,” in the same location where you found this PDF.)

Also note that you should assume that the two special subnets in each network—the zero subnet and broadcast subnet—are allowed to be used for these questions.

NOTE: The explanation for many problems in this appendix follows the same step numbers as a formal process listed in Chapter 16 of CCENT/CCNA ICND1 640-822 Official Cert Guide.
Appendix G: Practice for Chapter 16: Designing Subnet Masks

When doing the problems, the information in Table G-1 may be helpful. Note that Appendix B, “Numeric Reference Tables,” in the printed book, also includes this table.

Table G-1  Powers of 2

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>$2^X$</td>
<td>X</td>
<td>$2^X$</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>13</td>
<td>8192</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>14</td>
<td>16,384</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>15</td>
<td>32,768</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>16</td>
<td>65,536</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>17</td>
<td>131,072</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>18</td>
<td>262,144</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>19</td>
<td>524,288</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>20</td>
<td>1,048,576</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>21</td>
<td>2,097,152</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>22</td>
<td>4,194,304</td>
</tr>
<tr>
<td>11</td>
<td>2048</td>
<td>23</td>
<td>8,388,608</td>
</tr>
<tr>
<td>12</td>
<td>4096</td>
<td>24</td>
<td>16,777,216</td>
</tr>
</tbody>
</table>

Table G-2

Find the key facts for these sets of requirements:

1. Network 10.0.0.0, need 50 subnets, need 200 hosts/subnet
2. Network 172.32.0.0, need 125 subnets, need 125 hosts/subnet
3. Network 192.168.44.0, need 15 subnets, need 6 hosts/subnet
4. Network 10.0.0.0, need 300 subnets, need 500 hosts/subnet
5. Network 172.32.0.0, need 500 subnets, need 15 hosts/subnet
6. Network 172.16.0.0, need 2000 subnets, need 2 hosts/subnet

Answers

This section includes the answers to the six problems listed in this appendix. The answer section for each problem explains how to use the process outlined in Chapter 16 to find the answers.
Answer to Problem 1

Problem 1 shows a Class A network, with 8 network bits, with a minimum of 6 subnet bits and 8 host bits to meet the required number of subnets and hosts/subnet. The following masks all meet the requirements in this problem, with the masks that maximize the number of hosts/subnet and the number of subnets noted:

- **255.252.0.0** (maximizes the number of hosts per subnet)
- **255.254.0.0**
- **255.255.0.0**
- **255.255.128.0**
- **255.255.192.0**
- **255.255.224.0**
- **255.255.240.0**
- **255.255.248.0**
- **255.255.252.0**
- **255.255.254.0**

- **255.255.255.0** (maximizes the number of subnets)

As for the process to find the answers, the following list explains the details:

**NOTE**  The following explanation uses step numbers that match the process listed in Chapter 16 of *CCENT/CCNA ICND1 640-822 Official Cert Guide*, but only the steps from that process that apply to this problem. As a result, the step numbers in the explanation are not sequential.

**Step 1**  The question lists Class A network 10.0.0.0, so there are 8 network bits.

**Step 2**  The question states that 50 subnets are needed. A mask with 5 subnet bits supplies only $2^5$ (32) subnets, but a mask with 6 subnet bits supplies $2^6$ (64) subnets. So, the mask needs at least 6 subnet bits.

**Step 3**  The question states that 200 hosts are needed per subnet. A mask with 7 host bits supplies only $2^7 - 2$ (126) hosts per subnet, but a mask with 8 host bits supplies $2^8 - 2$ (254) hosts per subnet. So, the mask needs at least 8 host bits.
Step 6A With N=8, minimum S=6, and a minimum H=8, multiple masks exist. The first mask, with the minimum number of subnet bits, is /14, found by adding N (8) to the minimum value of S (6). This mask maximizes the number of host bits, and therefore maximizes the number of hosts/subnet.

Step 6B The minimum value of H, the number of host bits, is 8. So, the mask with the fewest H bits, maximizing the number of subnets, is 32 – H = 32 – 8 = /24.

Step 6C All masks between /14 and /24 also meet the requirements.

Answer to Problem 2
Problem 2 shows a Class B network, with 16 network bits, with a minimum of 7 subnet bits and 7 host bits to meet the required number of subnets and hosts/subnet. The following masks all meet the requirements in this problem, with the masks that maximize the number of hosts/subnet and the number of subnets noted:

- 255.255.254.0 (maximizes the number of hosts/subnet)
- 255.255.255.0
- 255.255.255.128 (maximizes the number of subnets)

As for the process to find the answers, the following list explains the details:

Step 1 The question lists Class B network 172.32.0.0, so there are 16 network bits.

Step 2 The question states that 125 subnets are needed. A mask with 6 subnet bits supplies only $2^6$ (64) subnets, but a mask with 7 subnet bits supplies $2^7$ (128) subnets. So, the mask needs at least 7 subnet bits.

Step 3 The question states that 125 hosts are needed per subnet. A mask with 6 host bits supplies only $2^6 – 2$ (62) hosts per subnet, but a mask with 7 host bits supplies $2^7 – 2$ (126) hosts per subnet. So, the mask needs at least 7 host bits.

Step 6A With N=16, minimum S=7, and a minimum H=7, multiple masks exist. The first mask, with the minimum number of subnet bits, is /23, found by adding N (16) to the minimum value of S (7). This mask maximizes the number of host bits, and therefore maximizes the number of hosts/subnet.

Step 6B The minimum value of H, the number of host bits, is 7. So, the mask with the fewest H bits, maximizing the number of subnets, is 32 – H = 32 – 7 = /25.

Step 6C All masks between /23 and /25 also meet the requirements (/23, /24, and /25).
Answer to Problem 3
Problem 3 shows a Class C network, with 24 network bits, with a minimum of 4 subnet bits and 3 host bits to meet the required number of subnets and hosts/subnet. The following masks all meet the requirements in this problem, with the masks that maximize the number of hosts/subnet and the number of subnets noted:

■ 255.255.255.240 (maximizes the number of hosts/subnet)
■ 255.255.255.248 (maximizes the number of subnets)

As for the process to find the answers, the following list explains the details:

**Step 1** The question lists Class C network 192.168.44.0, so there are 24 network bits.

**Step 2** The question states that 15 subnets are needed. A mask with 3 subnet bits supplies only $2^3 (8)$ subnets, but a mask with 4 subnet bits supplies $2^4 (16)$ subnets. So, the mask needs at least 4 subnet bits.

**Step 3** The question states that 6 hosts are needed per subnet. A mask with 2 host bits supplies only $2^2 – 2 (2)$ hosts per subnet, but a mask with 3 host bits supplies $2^3 – 2 (6)$ hosts per subnet. So, the mask needs at least 3 host bits.

**Step 6A** With N=24, minimum S=4, and a minimum H=3, multiple masks exist. The first mask, with the minimum number of subnet bits, is /28, found by adding N (24) to the minimum value of S (4). This mask maximizes the number of host bits, and therefore maximizes the number of hosts/subnet.

**Step 6B** The minimum value of H, the number of host bits, is 3. So, the mask with the fewest H bits, maximizing the number of subnets, is $32 – H = 32 – 3 = /29$.

**Step 6C** Only masks /28 and /29 meet the requirements.

Answer to Problem 4
Problem 4 shows a Class A network, with 8 network bits, with a minimum of 9 subnet bits and 9 host bits to meet the required number of subnets and hosts/subnet. The following masks all meet the requirements in this problem, with the masks that maximize the number of hosts/subnet and the number of subnets noted:

■ 255.255.128.0 (maximizes the number of hosts/subnet)
■ 255.255.192.0
■ 255.255.224.0
■ 255.255.240.0
Appendix G: Practice for Chapter 16: Designing Subnet Masks

- 255.255.248.0
- 255.255.252.0
- 255.255.254.0 (maximizes the number of subnets)

As for the process to find the answers, the following list explains the details:

**Step 1** The question lists Class A network 10.0.0.0, so there are 8 network bits.

**Step 2** The question states that 300 subnets are needed. A mask with 8 subnet bits supplies only $2^8$ (256) subnets, but a mask with 9 subnet bits supplies $2^9$ (512) subnets. So, the mask needs at least 9 subnet bits.

**Step 3** The question states that 500 hosts are needed per subnet. A mask with 8 host bits supplies only $2^8 - 2$ (254) hosts per subnet, but a mask with 9 host bits supplies $2^9 - 2$ (510) hosts per subnet. So, the mask needs at least 9 host bits.

**Step 6A** With $N=8$, minimum $S=9$, and a minimum $H=9$, multiple masks exist. The first mask, with the minimum number of subnet bits, is /17, found by adding $N$ (8) to the minimum value of $S$ (9). This mask maximizes the number of host bits, and therefore maximizes the number of hosts/subnet.

**Step 6B** The minimum value of $H$, the number of host bits, is 9. So, the mask with the fewest $H$ bits, maximizing the number of subnets, is $32 - H = 32 - 9 = /23$.

**Step 6C** All masks between /17 and /23 also meet the requirements (/17, /18, /19, /20, /21, /22, /23).

**Answer to Problem 5**

Problem 5 shows a Class B network, with 16 network bits, with a minimum of 9 subnet bits and 5 host bits to meet the required number of subnets and hosts/subnet. The following masks all meet the requirements in this problem, with the masks that maximize the number of hosts/subnet and the number of subnets noted:

- 255.255.255.128 (maximizes the number of hosts/subnet)
- 255.255.255.192
- 255.255.255.224 (maximizes the number of subnets)

As for the process to find the answers, the following list explains the details:

**Step 1** The question lists Class B network 172.32.0.0, so there are 16 network bits.
Step 2  The question states that 500 subnets are needed. A mask with 8 subnet bits supplies only $2^8$ (256) subnets, but a mask with 9 subnet bits supplies $2^9$ (512) subnets. So, the mask needs at least 9 subnet bits.

Step 3  The question states that 15 hosts are needed per subnet. A mask with 4 host bits supplies only $2^4 - 2$ (14) hosts per subnet, but a mask with 5 host bits supplies $2^5 - 2$ (30) hosts per subnet. So, the mask needs at least 5 host bits.

Step 6A  With N=16, minimum S=9, and a minimum H=5, multiple masks exist. The first mask, with the minimum number of subnet bits, is /25, found by adding N (16) to the minimum value of S (9). This mask maximizes the number of host bits, and therefore maximizes the number of hosts/subnet.

Step 6B  The minimum value of H, the number of host bits, is 5. So, the mask with the fewest H bits, maximizing the number of subnets, is $32 - H = 32 - 5 = /27$.

Step 6C  All masks between /25 and /27 also meet the requirements (/25, /26, /27).

Answer to Problem 6
Problem 6 shows a Class B network, with 16 network bits, with a minimum of 11 subnet bits and 2 host bits to meet the required number of subnets and hosts/subnet. The following masks all meet the requirements in this problem, with the masks that maximize the number of hosts/subnet and the number of subnets noted:

- 255.255.255.224 (maximizes the number of hosts/subnet)
- 255.255.255.240
- 255.255.255.248
- 255.255.255.252 (maximizes the number of subnets)

As for the process to find the answers, the following list explains the details:

Step 1  The question lists Class B network 172.16.0.0, so there are 16 network bits.

Step 2  The question states that 2000 subnets are needed. A mask with 10 subnet bits supplies only $2^{10}$ (1024) subnets, but a mask with 11 subnet bits supplies $2^{11}$ (2048) subnets. So, the mask needs at least 11 subnet bits.

Step 3  The question states that 2 hosts are needed per subnet. A mask with 2 host bits supplies $2^2 - 2$ (2) hosts per subnet. So, the mask needs at least 2 host bits.
Step 6A  With N=16, minimum S=11, and a minimum H=2, multiple masks exist. The first mask, with the minimum number of subnet bits, is /27, found by adding N (16) to the minimum value of S (11). This mask maximizes the number of host bits, and therefore maximizes the number of hosts/subnet.

Step 6B  The minimum value of H, the number of host bits, is 2. So, the mask with the fewest H bits, maximizing the number of subnets, is 32 – H = 32 – 2 = /30.

Step 6C  All masks between /27 and /30 also meet the requirements (/27, /28, /29, /30).
This page intentionally left blank
Practice for Chapter 17: Analyzing Existing Subnets

Practice Problems
This appendix lists practice problems related to Chapter 17, “Analyzing Existing Subnets.” Each problem asks you to find a variety of information about the subnet in which an IP address resides. Each problem supplies an IP address and a subnet mask, from which you should find the following information:

- Subnet number
- Subnet broadcast address
- Range of valid IP addresses in this network

To find these facts, you can use any of the processes explained in Chapter 17 of the CENT/CCNA ICND1 640-822 Official Cert Guide. (If you are reading this as a PDF that came with CCNA ICND2 640-816 Official Cert Guide, you will find a copy of the ICND1 book’s Chapter 17, “Analyzing Existing Subnets,” in the same location where you found this PDF.)

Additionally, these same problems can be used to review the concepts in Chapter 15, “Analyzing Existing Subnet Masks.” To use these same problems for practice related to Chapter 15, simply find the following information for each of the problems:

- Size of the network part of the address
- Size of the subnet part of the address
- Size of the host part of the address
- Number of hosts per subnet
- Number of subnets in this network

Feel free to either ignore or use the opportunity for more practice related to analyzing subnet masks.
Appendix H: Practice for Chapter 17: Analyzing Existing Subnets

Solve for the following problems:

1. 10.180.10.18, mask 255.192.0.0
2. 10.200.10.18, mask 255.224.0.0
3. 10.100.18.18, mask 255.240.0.0
4. 10.100.18.18, mask 255.248.0.0
5. 10.150.200.200, mask 255.252.0.0
6. 10.150.200.200, mask 255.254.0.0
7. 10.220.100.18, mask 255.255.0.0
8. 10.220.100.18, mask 255.255.128.0
9. 172.31.100.100, mask 255.255.192.0
10. 172.31.100.100, mask 255.255.224.0
11. 172.31.200.10, mask 255.255.240.0
12. 172.31.200.10, mask 255.255.248.0
13. 172.31.50.50, mask 255.255.252.0
14. 172.31.50.50, mask 255.255.254.0
15. 172.31.140.14, mask 255.255.255.0
16. 172.31.140.14, mask 255.255.255.128
17. 192.168.15.150, mask 255.255.255.192
18. 192.168.15.150, mask 255.255.255.224
19. 192.168.100.100, mask 255.255.255.240
20. 192.168.100.100, mask 255.255.255.248
21. 192.168.15.230, mask 255.255.255.252
22. 10.1.1.1, mask 255.248.0.0
23. 172.16.1.200, mask 255.255.240.0
24. 172.16.0.200, mask 255.255.255.192
25. 10.1.1.1, mask 255.0.0.0
Answers

This section includes the answers to the 25 problems listed in this appendix. The answer section for each problem explains how to use the process outlined in Chapter 17, “Analyzing Existing Subnets”, to find the answers. Also, refer to Chapter 15, “Analyzing Existing Subnet Masks,” for details on how to find information about analyzing the subnet mask.

Answer to Problem 1

The answers begin with the analysis of the three parts of the address, the number of hosts per subnet, and the number of subnets of this network using the stated mask, as outlined in Table H-1. The binary math for subnet and broadcast address calculation follows. The answer finishes with the easier mental calculations for the range of IP addresses in the subnet.

Table H-1  Question 1: Size of Network, Subnet, Host, Number of Subnets, Number of Hosts

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Rules to Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>10.180.10.18</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255.192.0.0</td>
<td>—</td>
</tr>
<tr>
<td>Number of network bits</td>
<td>8</td>
<td>Always defined by Class A, B, C</td>
</tr>
<tr>
<td>Number of host bits</td>
<td>22</td>
<td>Always defined as number of binary 0s in mask</td>
</tr>
<tr>
<td>Number of subnet bits</td>
<td>2</td>
<td>32 – (network size + host size)</td>
</tr>
<tr>
<td>Number of subnets</td>
<td>$2^2 = 4$</td>
<td>$2^{number-of-subnet-bits}$</td>
</tr>
<tr>
<td>Number of hosts</td>
<td>$2^{22} - 2 = 4,194,302$</td>
<td>$2^{number-of-host-bits} - 2$</td>
</tr>
</tbody>
</table>

Table H-2 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table H-2  Question 1: Binary Calculation of Subnet and Broadcast Addresses

<table>
<thead>
<tr>
<th>Address</th>
<th>10.180.10.18</th>
<th>00001010 10110100 00001010 00001010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255.192.0.0</td>
<td>11111111 11000000 00000000 00000000</td>
</tr>
<tr>
<td>AND result (subnet number)</td>
<td>10.128.0.0</td>
<td>00001010 10000000 00000000 00000000</td>
</tr>
<tr>
<td>Change host to 1s (broadcast address)</td>
<td>10.191.255.255</td>
<td>00001010 10111111 11111111 11111111</td>
</tr>
</tbody>
</table>
To get the first valid IP address, just add 1 to the subnet number; to get the last valid IP address, just subtract 1 from the broadcast address. In this case:

\[
\begin{align*}
10.128.0.1 & \text{ through } 10.191.255.254 \\
10.128.0.0 + 1 & = 10.128.0.1 \\
10.191.255.255 - 1 & = 10.191.255.254
\end{align*}
\]

Alternately, you can use the processes that only use decimal math to find the subnet and broadcast address. The key parts of the process are as follows:

- The interesting octet is the octet for which the mask’s value is not a decimal 0 or 255.
- The magic number is calculated as the value of the IP address’s interesting octet, subtracted from 256.
- The subnet number can be found by copying the IP address octets to the left of the interesting octet; writing down 0s for octets to the right of the interesting octet; and by finding the multiple of the magic number closest to, but not larger than, the IP address’s value in that same octet.
- The broadcast address can be similarly found, by copying the subnet number’s octets to the left of the interesting octet; writing 255s for octets to the right of the interesting octet; and by taking the subnet number’s value in the interesting octet, adding the magic number, and subtracting 1.
Table H-3 shows the work for this problem, with some explanation of the work following the table. Refer to Chapter 17 for the detailed processes.

**Table H-3  Question 1: Subnet, Broadcast, First and Last Addresses Calculated Using Decimal Process**

<table>
<thead>
<tr>
<th>Mask</th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>255</td>
<td>192</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Subnet Number</td>
<td>10</td>
<td>128</td>
<td>0</td>
<td>0</td>
<td>Magic number = 256 – 192 = 64</td>
</tr>
<tr>
<td>First Address</td>
<td>10</td>
<td>128</td>
<td>0</td>
<td>1</td>
<td>Add 1 to last octet of subnet</td>
</tr>
<tr>
<td>Last Address</td>
<td>10</td>
<td>191</td>
<td>255</td>
<td>254</td>
<td>Subtract 1 from last octet of broadcast</td>
</tr>
<tr>
<td>Broadcast</td>
<td>10</td>
<td>191</td>
<td>255</td>
<td>255</td>
<td>128 + 64 – 1 = 191</td>
</tr>
</tbody>
</table>

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The second octet is “interesting” in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 – 192 = 64 in this case (256 – mask’s value in the interesting octet). The subnet number’s value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address’s value in the interesting octet. In this case, 128 is the multiple of 64 that is closest to 180 but not higher than 180. So, the second octet of the subnet number is 128.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the “interesting” octet. Take the subnet number’s value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address’s value in the interesting octet. In this case, 128 + 64 – 1 = 191.
Appendix H: Practice for Chapter 17: Analyzing Existing Subnets

Answer to Problem 2

Table H-4  Question 2: Size of Network, Subnet, Host, Number of Subnets, Number of Hosts

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Rules to Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>10.200.10.18</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255.224.0.0</td>
<td>—</td>
</tr>
<tr>
<td>Number of network bits</td>
<td>8</td>
<td>Always defined by Class A, B, C</td>
</tr>
<tr>
<td>Number of host bits</td>
<td>21</td>
<td>Always defined as number of binary 0s in mask</td>
</tr>
<tr>
<td>Number of subnet bits</td>
<td>3</td>
<td>32 – (network size + host size)</td>
</tr>
<tr>
<td>Number of subnets</td>
<td>$2^3 = 8$</td>
<td>$2^{number-of-subnet-bits}$</td>
</tr>
<tr>
<td>Number of hosts</td>
<td>$2^{21} - 2 = 2,097,150$</td>
<td>$2^{number-of-host-bits} - 2$</td>
</tr>
</tbody>
</table>

Table H-5 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table H-5  Question 2: Binary Calculation of Subnet and Broadcast Addresses

<table>
<thead>
<tr>
<th>Address</th>
<th>10.200.10.18</th>
<th>00001010 11001000 00010100 00010010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255.224.0.0</td>
<td>11111111 11100000 00000000 00000000</td>
</tr>
<tr>
<td>AND result (subnet number)</td>
<td>10.192.0.0</td>
<td>00001010 11010000 00010000 00000000</td>
</tr>
<tr>
<td>Change host to 1s (broadcast address)</td>
<td>10.223.255.255</td>
<td>00001010 11011111 11111111 11111111</td>
</tr>
</tbody>
</table>

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

10.192.0.1 through 10.223.255.254
Alternately, you can use the processes that only use decimal math to find the subnet and broadcast address. Table H-6 shows the work for this problem, with some explanation of the work following the table.

Table H-6  Question 2: Subnet, Broadcast, First and Last Addresses Calculated Using Subnet Chart

<table>
<thead>
<tr>
<th></th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255</td>
<td>224</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>10</td>
<td>200</td>
<td>10</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Subnet Number</td>
<td>10</td>
<td>192</td>
<td>0</td>
<td>0</td>
<td>Magic number = 256 – 224 = 32</td>
</tr>
<tr>
<td>First Address</td>
<td>10</td>
<td>192</td>
<td>0</td>
<td>1</td>
<td>Add 1 to last octet of subnet</td>
</tr>
<tr>
<td>Last Address</td>
<td>10</td>
<td>223</td>
<td>255</td>
<td>254</td>
<td>Subtract 1 from last octet of broadcast</td>
</tr>
<tr>
<td>Broadcast</td>
<td>10</td>
<td>223</td>
<td>255</td>
<td>255</td>
<td>192 + 32 – 1 = 223</td>
</tr>
</tbody>
</table>

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The second octet is “interesting” in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 – 224 = 32 in this case (256 – mask’s value in the interesting octet). The subnet number’s value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address’s value in the interesting octet. In this case, 192 is the multiple of 32 that is closest to 200 but not higher than 200. So, the second octet of the subnet number is 192.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the “interesting” octet. Take the subnet number’s value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address’s value in the interesting octet. In this case, 192 + 32 – 1 = 223.
Appendix H: Practice for Chapter 17: Analyzing Existing Subnets

Answer to Problem 3

Table H-7  Question 3: Size of Network, Subnet, Host, Number of Subnets, Number of Hosts

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Rules to Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>10.100.18.18</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255.240.0.0</td>
<td>—</td>
</tr>
<tr>
<td>Number of network bits</td>
<td>8</td>
<td>Always defined by Class A, B, C</td>
</tr>
<tr>
<td>Number of host bits</td>
<td>20</td>
<td>Always defined as number of binary 0s in mask</td>
</tr>
<tr>
<td>Number of subnet bits</td>
<td>4</td>
<td>32 – (network size + host size)</td>
</tr>
<tr>
<td>Number of subnets</td>
<td>$2^4 = 16$</td>
<td>$2^{\text{number-of-subnet-bits}}$</td>
</tr>
<tr>
<td>Number of hosts</td>
<td>$2^{20} - 2 = 1,048,574$</td>
<td>$2^{\text{number-of-host-bits} - 2}$</td>
</tr>
</tbody>
</table>

Table H-8 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in bold print in the table.

Table H-8  Question 3: Binary Calculation of Subnet and Broadcast Addresses

<table>
<thead>
<tr>
<th>Address</th>
<th>10.100.18.18</th>
<th>00001010 01100100 00010010 00010010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255.240.0.0</td>
<td>11111111 11110000 00000000 00000000</td>
</tr>
<tr>
<td>AND result (subnet number)</td>
<td>10.96.0.0</td>
<td>00001010 01100000 00000000 00000000</td>
</tr>
<tr>
<td>Change host to 1s (broadcast address)</td>
<td>10.111.255.255</td>
<td>00001010 01101111 11111111 11111111</td>
</tr>
</tbody>
</table>

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

10.96.0.1 through 10.111.255.254
Alternately, you can use the processes that only use decimal math to find the subnet and broadcast address. Table H-9 shows the work for this problem, with some explanation of the work following the table.

**Table H-9**  *Question 3: Subnet, Broadcast, First and Last Addresses Calculated Using Subnet Chart*

<table>
<thead>
<tr>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255</td>
<td>240</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Address</td>
<td>10</td>
<td>100</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Subnet Number</td>
<td>10</td>
<td>96</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>First Address</td>
<td>10</td>
<td>96</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Last Address</td>
<td>10</td>
<td>111</td>
<td>255</td>
<td>254</td>
</tr>
<tr>
<td>Broadcast</td>
<td>10</td>
<td>111</td>
<td>255</td>
<td>255</td>
</tr>
</tbody>
</table>

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The second octet is “interesting” in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 – 240 = 16 in this case (256 – mask’s value in the interesting octet). The subnet number’s value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address’s value in the interesting octet. In this case, 96 is the multiple of 16 that is closest to 100 but not higher than 100. So, the second octet of the subnet number is 96.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the “interesting” octet. Take the subnet number’s value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address’s value in the interesting octet. In this case, 96 + 16 – 1 = 111.
Answer to Problem 4

Table H-10  Question 4: Size of Network, Subnet, Host, Number of Subnets, Number of Hosts

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Rules to Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>10.100.18.18</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255.248.0.0</td>
<td>—</td>
</tr>
<tr>
<td>Number of network bits</td>
<td>8</td>
<td>Always defined by Class A, B, C</td>
</tr>
<tr>
<td>Number of host bits</td>
<td>19</td>
<td>Always defined as number of binary 0s in mask</td>
</tr>
<tr>
<td>Number of subnet bits</td>
<td>5</td>
<td>$32 - (\text{network size} + \text{host size})$</td>
</tr>
<tr>
<td>Number of subnets</td>
<td>$2^5 = 32$</td>
<td>$2^{\text{number-of-subnet-bits}}$</td>
</tr>
<tr>
<td>Number of hosts</td>
<td>$2^{19} - 2 = 524,286$</td>
<td>$2^{\text{number-of-host-bits}} - 2$</td>
</tr>
</tbody>
</table>

Table H-11  Question 4: Binary Calculation of Subnet and Broadcast Addresses

<table>
<thead>
<tr>
<th>Address</th>
<th>10.100.18.18</th>
<th>00001010 01100111 10000000 00000000 00000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255.248.0.0</td>
<td>11111111 11111111 00000000 00000000 00000000</td>
</tr>
<tr>
<td>AND result</td>
<td>10.96.0.0</td>
<td>00001010 01100000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>Change host</td>
<td>10.103.255.255</td>
<td>00001010 01110111 11111111 11111111 11111111</td>
</tr>
</tbody>
</table>

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

10.96.0.1 through 10.103.255.254
Alternately, you can use the processes that only use decimal math to find the subnet and broadcast address. Table H-12 shows the work for this problem, with some explanation of the work following the table.

**Table H-12**  *Question 4: Subnet, Broadcast, First and Last Addresses Calculated Using Subnet Chart*

<table>
<thead>
<tr>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255</td>
<td>248</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Address</td>
<td>10</td>
<td>100</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Subnet Number</td>
<td>10</td>
<td>96</td>
<td>0</td>
<td>0     Magic number = 256 – 248 = 8</td>
</tr>
<tr>
<td>First Address</td>
<td>10</td>
<td>96</td>
<td>0</td>
<td>1     Add 1 to last octet of subnet</td>
</tr>
<tr>
<td>Last Address</td>
<td>10</td>
<td>103</td>
<td>255</td>
<td>254    Subtract 1 from last octet of broadcast</td>
</tr>
<tr>
<td>Broadcast</td>
<td>10</td>
<td>103</td>
<td>255</td>
<td>255    96 + 8 – 1 = 103</td>
</tr>
</tbody>
</table>

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The second octet is “interesting” in this case. The key part of the trick to get the right answers is to calculate the magic number, which is $256 - 248 = 8$ in this case (256 – mask’s value in the interesting octet). The subnet number’s value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address’s value in the interesting octet. In this case, 96 is the multiple of 8 that is closest to 100 but not higher than 100. So, the second octet of the subnet number is 96.

The second part of this process calculates the subnet broadcast address with the tricky part, as usual, in the “interesting” octet. Take the subnet number’s value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address’s value in the interesting octet. In this case, $96 + 8 – 1 = 103$. 
Answer to Problem 5

Table H-13 Question 5: Size of Network, Subnet, Host, Number of Subnets, Number of Hosts

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Rules to Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>10.150.200.200</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255.252.0.0</td>
<td>—</td>
</tr>
<tr>
<td>Number of network bits</td>
<td>8</td>
<td>Always defined by Class A, B, C</td>
</tr>
<tr>
<td>Number of host bits</td>
<td>18</td>
<td>Always defined as number of binary 0s in mask</td>
</tr>
<tr>
<td>Number of subnet bits</td>
<td>6</td>
<td>32 – (network size + host size)</td>
</tr>
<tr>
<td>Number of subnets</td>
<td>$2^6 = 64$</td>
<td>$2^{\text{number-of-subnet-bits}}$</td>
</tr>
<tr>
<td>Number of hosts</td>
<td>$2^{18} - 2 = 262,142$</td>
<td>$2^{\text{number-of-host-bits}} - 2$</td>
</tr>
</tbody>
</table>

Table H-14 Question 5: Binary Calculation of Subnet and Broadcast Addresses

<table>
<thead>
<tr>
<th>Address</th>
<th>10.150.200.200</th>
<th>00001010 10010110 11001000 11001000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255.252.0.0</td>
<td>11111111 11111100 00000000 00000000</td>
</tr>
<tr>
<td>AND result</td>
<td>10.148.0.0</td>
<td>00001010 10010110 00000000 00000000</td>
</tr>
<tr>
<td>Change host to</td>
<td>10.151.255.255</td>
<td>00001010 10010111 11111111 11111111</td>
</tr>
</tbody>
</table>

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

10.148.0.1 through 10.151.255.254
Alternately, you can use the processes that only use decimal math to find the subnet and broadcast address. Table H-15 shows the work for this problem, with some explanation of the work following the table.

**Table H-15  Question 5: Subnet, Broadcast, First and Last Addresses Calculated Using Subnet Chart**

<table>
<thead>
<tr>
<th></th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255</td>
<td>252</td>
<td>0</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Address</td>
<td>10</td>
<td>150</td>
<td>200</td>
<td>200</td>
<td>—</td>
</tr>
<tr>
<td>Subnet Number</td>
<td>10</td>
<td>148</td>
<td>0</td>
<td>0</td>
<td>Magic number = 256 – 252 = 4</td>
</tr>
<tr>
<td>First Address</td>
<td>10</td>
<td>148</td>
<td>0</td>
<td>1</td>
<td>Add 1 to last octet of subnet</td>
</tr>
<tr>
<td>Last Address</td>
<td>10</td>
<td>151</td>
<td>255</td>
<td>254</td>
<td>Subtract 1 from last octet of broadcast</td>
</tr>
<tr>
<td>Broadcast</td>
<td>10</td>
<td>151</td>
<td>255</td>
<td>255</td>
<td>148 + 4 – 1 = 151</td>
</tr>
</tbody>
</table>

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The second octet is “interesting” in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 – 252 = 4 in this case (256 – mask’s value in the interesting octet). The subnet number’s value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address’s value in the interesting octet. In this case, 148 is the multiple of 4 that is closest to 150 but not higher than 150. So, the second octet of the subnet number is 148.

The second part of this process calculates the subnet broadcast address with the tricky part, as usual, in the “interesting” octet. Take the subnet number’s value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address’s value in the interesting octet. In this case, 148 + 4 – 1 = 151.
Answer to Problem 6

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Rules to Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>10.150.200.200</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255.254.0.0</td>
<td>—</td>
</tr>
<tr>
<td>Number of network bits</td>
<td>8</td>
<td>Always defined by Class A, B, C</td>
</tr>
<tr>
<td>Number of host bits</td>
<td>17</td>
<td>Always defined as number of binary 0s in mask</td>
</tr>
<tr>
<td>Number of subnet bits</td>
<td>7</td>
<td>$32 - (network size + host size)$</td>
</tr>
<tr>
<td>Number of subnets</td>
<td>$2^7 = 128$</td>
<td>$2^{number-of-subnet-bits}$</td>
</tr>
<tr>
<td>Number of hosts</td>
<td>$2^{17} - 2 = 131,070$</td>
<td>$2^{number-of-host-bits} - 2$</td>
</tr>
</tbody>
</table>

Table H-17 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

<table>
<thead>
<tr>
<th>Address</th>
<th>10.150.200.200</th>
<th>00001010 10010110 11001000 11001000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255.254.0.0</td>
<td>11111111 11111110 00000000 00000000</td>
</tr>
<tr>
<td>AND result (subnet number)</td>
<td>10.150.0.0</td>
<td>00001010 10010110 00000000 00000000</td>
</tr>
<tr>
<td>Change host to 1s (broadcast address)</td>
<td>10.151.255.255</td>
<td>00001010 10010111 11111111 11111111</td>
</tr>
</tbody>
</table>

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

10.150.0.1 through 10.151.255.254
Alternately, you can use the processes that only use decimal math to find the subnet and broadcast address. Table H-18 shows the work for this problem, with some explanation of the work following the table.

**Table H-18  Question 6: Subnet, Broadcast, First and Last Addresses Calculated Using Subnet Chart**

<table>
<thead>
<tr>
<th></th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mask</strong></td>
<td>255</td>
<td>254</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>Address</strong></td>
<td>10</td>
<td>150</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td><strong>Subnet Number</strong></td>
<td>10</td>
<td>150</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>First Valid Address</strong></td>
<td>10</td>
<td>150</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td><strong>Last Valid Address</strong></td>
<td>10</td>
<td>151</td>
<td>255</td>
<td>254</td>
</tr>
<tr>
<td><strong>Broadcast</strong></td>
<td>10</td>
<td>151</td>
<td>255</td>
<td>255</td>
</tr>
</tbody>
</table>

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The second octet is “interesting” in this case. The key part of the trick to get the right answers is to calculate the magic number, which is $256 - 254 = 2$ in this case ($256 - \text{mask’s value in the interesting octet}$). The subnet number’s value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address’s value in the interesting octet. In this case, 150 is the multiple of 2 that is closest to 150 but not higher than 150. So, the second octet of the subnet number is 150.

The second part of this process calculates the subnet broadcast address with the tricky part, as usual, in the “interesting” octet. Take the subnet number’s value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address’s value in the interesting octet. In this case, $150 + 2 - 1 = 151$. 


Answer to Problem 7

Table H-19  Question 7: Size of Network, Subnet, Host, Number of Subnets, Number of Hosts

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Rules to Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>10.220.100.18</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.0.0</td>
<td>—</td>
</tr>
<tr>
<td>Number of network bits</td>
<td>8</td>
<td>Always defined by Class A, B, C</td>
</tr>
<tr>
<td>Number of host bits</td>
<td>16</td>
<td>Always defined as number of binary 0s in mask</td>
</tr>
<tr>
<td>Number of subnet bits</td>
<td>8</td>
<td>$32 - (\text{network size + host size})$</td>
</tr>
<tr>
<td>Number of subnets</td>
<td>$2^8 = 256$</td>
<td>$2^{\text{number-of-subnet-bits}}$</td>
</tr>
<tr>
<td>Number of hosts</td>
<td>$2^{16} - 2 = 65,534$</td>
<td>$2^{\text{number-of-host-bits} - 2}$</td>
</tr>
</tbody>
</table>

Table H-20  Question 7: Binary Calculation of Subnet and Broadcast Addresses

<table>
<thead>
<tr>
<th>Address</th>
<th>10.220.100.18</th>
<th>00001010 11011100 01100100 00010010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255.255.0.0</td>
<td>11111111 11111111 00000000 00000000</td>
</tr>
<tr>
<td>AND result (subnet number)</td>
<td>10.220.0.0</td>
<td>00001010 11011100 00000000 00000000</td>
</tr>
<tr>
<td>Change host to 1s (broadcast address)</td>
<td>10.220.255.255</td>
<td>00001010 11011100 11111111 11111111</td>
</tr>
</tbody>
</table>

Table H-20 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

10.220.0.1 through 10.220.255.254
Alternately, you can use the processes that only use decimal math to find the subnet and broadcast address. Table H-21 shows the work for this problem.

**Table H-21 Question 7: Subnet, Broadcast, First, and Last Addresses Calculated Using Subnet Chart**

<table>
<thead>
<tr>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255</td>
<td>255</td>
<td>0</td>
</tr>
<tr>
<td>Address</td>
<td>10</td>
<td>220</td>
<td>100</td>
</tr>
<tr>
<td>Subnet Number</td>
<td>10</td>
<td>220</td>
<td>0</td>
</tr>
<tr>
<td>First Valid Address</td>
<td>10</td>
<td>220</td>
<td>0</td>
</tr>
<tr>
<td>Last Valid Address</td>
<td>10</td>
<td>220</td>
<td>255</td>
</tr>
<tr>
<td>Broadcast</td>
<td>10</td>
<td>220</td>
<td>255</td>
</tr>
</tbody>
</table>

This subnetting scheme uses an easy mask because all of the octets are a 0 or a 255. No math tricks are needed.

**Answer to Problem 8**

**Table H-22 Question 8: Size of Network, Subnet, Host, Number of Subnets, Number of Hosts**

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Rules to Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>10.220.100.18</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.128.0</td>
<td>—</td>
</tr>
<tr>
<td>Number of network bits</td>
<td>8</td>
<td>Always defined by Class A, B, C</td>
</tr>
<tr>
<td>Number of host bits</td>
<td>15</td>
<td>Always defined as number of binary 0s in mask</td>
</tr>
<tr>
<td>Number of subnet bits</td>
<td>9</td>
<td>32 – (network size + host size)</td>
</tr>
<tr>
<td>Number of subnets</td>
<td>$2^9 = 510$</td>
<td>$2^{number-of-subnet-bits}$</td>
</tr>
<tr>
<td>Number of hosts</td>
<td>$2^{15} - 2 = 32,766$</td>
<td>$2^{number-of-host-bits - 2}$</td>
</tr>
</tbody>
</table>

Table H-23 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the
address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in bold print in the table.

### Table H-23  Question 8: Binary Calculation of Subnet and Broadcast Addresses

<table>
<thead>
<tr>
<th>Address</th>
<th>10.220.100.18</th>
<th>00001010 11011100 01100100 00010010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask 255.255.128.0</td>
<td>11111111 11111111 10000000 00000000</td>
<td></td>
</tr>
<tr>
<td>AND result (subnet number) 10.220.0.0</td>
<td>00001010 11011100 00000000 00000000</td>
<td></td>
</tr>
<tr>
<td>Change host to 1s (broadcast address) 10.220.127.255</td>
<td>00001010 11011100 01111111 11111111</td>
<td></td>
</tr>
</tbody>
</table>

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

10.220.0.1 through 10.220.127.254

Table H-24 shows the work for this problem, with some explanation of the work following the table. Refer to Chapter 18 for the detailed processes.

### Table H-24  Question 8: Subnet, Broadcast, First and Last Addresses Calculated Using Subnet Chart

<table>
<thead>
<tr>
<th>Mask</th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>255</td>
<td>10</td>
<td>10</td>
<td>128</td>
<td>0</td>
</tr>
<tr>
<td>Address</td>
<td>10</td>
<td>220</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Subnet Number</td>
<td>10</td>
<td>220</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>First Address</td>
<td>10</td>
<td>220</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Last Address</td>
<td>10</td>
<td>220</td>
<td>127</td>
<td>254</td>
</tr>
<tr>
<td>Broadcast</td>
<td>10</td>
<td>220</td>
<td>127</td>
<td>255</td>
</tr>
</tbody>
</table>

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The third octet is “interesting” in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 – 128 = 128 in this case (256 – mask’s value in the interesting octet). The subnet number’s value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address’s value in the interesting octet. In this case, 0 is the multiple of 128 that is closest to 100 but not higher than 100. So, the third octet of the subnet number is 0.

The second part of this process calculates the subnet broadcast address with the tricky part, as usual, in the “interesting” octet. Take the subnet number’s value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address’s value in the interesting octet. In this case, 0 + 128 – 1 = 127.
This example tends to confuse people, because a mask with 128 in it gives you subnet numbers that just do not seem to look right. Table H-25 gives you the answers for the first several subnets, just to make sure that you are clear about the subnets when using this mask with a Class A network.

Table H-25  Question 8: First 4 Subnets

<table>
<thead>
<tr>
<th>Subnet</th>
<th>Zero Subnet</th>
<th>2nd Subnet</th>
<th>3rd Subnet</th>
<th>4th Subnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Address</td>
<td>10.0.0.0</td>
<td>10.0.128.0</td>
<td>10.1.0.0</td>
<td>10.1.128.0</td>
</tr>
<tr>
<td>Last Address</td>
<td>10.0.127.254</td>
<td>10.0.255.254</td>
<td>10.1.127.254</td>
<td>10.1.255.254</td>
</tr>
<tr>
<td>Broadcast</td>
<td>10.0.127.255</td>
<td>10.0.255.255</td>
<td>10.1.127.255</td>
<td>10.1.255.255</td>
</tr>
</tbody>
</table>

Answer to Problem 9

Table H-26  Question 9: Size of Network, Subnet, Host, Number of Subnets, Number of Hosts

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Rules to Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>172.31.100.100</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.192.0</td>
<td>—</td>
</tr>
<tr>
<td>Number of network bits</td>
<td>16</td>
<td>Always defined by Class A, B, C</td>
</tr>
<tr>
<td>Number of host bits</td>
<td>14</td>
<td>Always defined as number of binary 0s in mask</td>
</tr>
<tr>
<td>Number of subnet bits</td>
<td>2</td>
<td>32 – (network size + host size)</td>
</tr>
<tr>
<td>Number of subnets</td>
<td>$2^2 = 4$</td>
<td>$2^{number-of-subnet-bits}$</td>
</tr>
<tr>
<td>Number of hosts</td>
<td>$2^{14} – 2 = 16,382$</td>
<td>$2^{number-of-host-bits – 2}$</td>
</tr>
</tbody>
</table>

Table H-27 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table H-27  Question 9: Binary Calculation of Subnet and Broadcast Addresses

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>AND result (subnet number)</th>
<th>Change host to 1s (broadcast address)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>172.31.100.100</td>
<td>10101100 00011111 01100100 01100100</td>
<td>10101100 00011111 01111111 11111111</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.192.0</td>
<td>11111111 11111111 11111111 11111111</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>AND result (subnet number)</td>
<td>172.31.64.0</td>
<td>10101100 00011111 01000000 01000000</td>
<td>10101100 00011111 01000000 01000000</td>
</tr>
<tr>
<td>Change host to 1s (broadcast address)</td>
<td>172.31.127.255</td>
<td>10101100 00011111 01111111 11111111</td>
<td>10101100 00011111 01111111 11111111</td>
</tr>
</tbody>
</table>
Appendix H: Practice for Chapter 17: Analyzing Existing Subnets

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

172.31.64.1 through 172.31.127.254

Alternately, you can use the processes that only use decimal math to find the subnet and broadcast address. Table H-28 shows the work for this problem, with some explanation of the work following the table.

Table H-28 Question 9: Subnet, Broadcast, First and Last Addresses Calculated Using Subnet Chart

<table>
<thead>
<tr>
<th>Mask</th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>172</td>
<td>31</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Subnet Number</td>
<td>172</td>
<td>31</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>First Valid Address</td>
<td>172</td>
<td>31</td>
<td>64</td>
<td>1</td>
</tr>
<tr>
<td>Last Valid Address</td>
<td>172</td>
<td>31</td>
<td>127</td>
<td>254</td>
</tr>
<tr>
<td>Broadcast</td>
<td>172</td>
<td>31</td>
<td>127</td>
<td>255</td>
</tr>
</tbody>
</table>

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The third octet is “interesting” in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 – 192 = 64 in this case (256 – mask’s value in the interesting octet). The subnet number’s value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address’s value in the interesting octet. In this case, 64 is the multiple of 64 that is closest to 100 but not higher than 100. So, the third octet of the subnet number is 64.

The second part of this process calculates the subnet broadcast address with the tricky part, as usual, in the “interesting” octet. Take the subnet number’s value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address’s value in the interesting octet. In this case, 64 + 64 – 1 = 127.
Answer to Problem 10

Table H-29  Question 10: Size of Network, Subnet, Host, Number of Subnets, Number of Hosts

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Rules to Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>172.31.100.100</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.224.0</td>
<td>—</td>
</tr>
<tr>
<td>Number of network bits</td>
<td>16</td>
<td>Always defined by Class A, B, C</td>
</tr>
<tr>
<td>Number of host bits</td>
<td>13</td>
<td>Always defined as number of binary 0s in mask</td>
</tr>
<tr>
<td>Number of subnet bits</td>
<td>3</td>
<td>32 – (network size + host size)</td>
</tr>
<tr>
<td>Number of subnets</td>
<td>$2^3 = 8$</td>
<td>$2^{number-of-subnet-bits}$</td>
</tr>
<tr>
<td>Number of hosts</td>
<td>$2^{13} - 2 = 8190$</td>
<td>$2^{number-of-host-bits} - 2$</td>
</tr>
</tbody>
</table>

Table H-30 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table H-30  Advantages and Limitations of Deploying an IPS in Inline Mode

| Address              | 172.31.100.100  | 10101100 00011111 01100100 01100100
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255.255.224.0</td>
<td>11111111 11111111 11111111 00000000</td>
</tr>
</tbody>
</table>
| AND result (subnet number) | 172.31.96.0 | 10101100 00011111 01100100 00000000
| Change host to 1s (broadcast address) | 172.31.127.255 | 10101100 00011111 01111111 11111111 |

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

172.31.96.1 through 172.31.127.254
Alternately, you can use the processes that only use decimal math to find the subnet and broadcast address. Table H-31 shows the work for this problem, with some explanation of the work following the table.

**Table H-31  Question 10: Subnet, Broadcast, First and Last Addresses Calculated Using Subnet Chart**

<table>
<thead>
<tr>
<th></th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mask</strong></td>
<td>255</td>
<td>255</td>
<td>224</td>
<td>0</td>
</tr>
<tr>
<td><strong>Address</strong></td>
<td>172</td>
<td>31</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td><strong>Subnet Number</strong></td>
<td>172</td>
<td>31</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td><strong>First Valid Address</strong></td>
<td>172</td>
<td>31</td>
<td>96</td>
<td>1</td>
</tr>
<tr>
<td><strong>Last Valid Address</strong></td>
<td>172</td>
<td>31</td>
<td>127</td>
<td>254</td>
</tr>
<tr>
<td><strong>Broadcast</strong></td>
<td>172</td>
<td>31</td>
<td>127</td>
<td>255</td>
</tr>
</tbody>
</table>

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The third octet is “interesting” in this case. The key part of the trick to get the right answers is to calculate the magic number, which is $256 - 224 = 32$ in this case ($256 -$ mask’s value in the interesting octet). The subnet number’s value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address’s value in the interesting octet. In this case, 96 is the multiple of 32 that is closest to 100 but not higher than 100. So, the third octet of the subnet number is 96.

The second part of this process calculates the subnet broadcast address, with the tricky parts, as usual, in the “interesting” octet. Take the subnet number’s value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address’s value in the interesting octet. In this case, $96 + 32 - 1 = 127$. 
**Answer to Problem 11**

**Table H-32  Question 11: Size of Network, Subnet, Host, Number of Subnets, Number of Hosts**

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Rules to Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>172.31.200.10</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.240.0</td>
<td>—</td>
</tr>
<tr>
<td>Number of network bits</td>
<td>16</td>
<td>Always defined by Class A, B, C</td>
</tr>
<tr>
<td>Number of host bits</td>
<td>12</td>
<td>Always defined as number of binary 0s in mask</td>
</tr>
<tr>
<td>Number of subnet bits</td>
<td>4</td>
<td>32 – (network size + host size)</td>
</tr>
<tr>
<td>Number of subnets</td>
<td>(2^4 = 16)</td>
<td>(2^{\text{number-of-subnet-bits}})</td>
</tr>
<tr>
<td>Number of hosts</td>
<td>(2^{12} - 2 = 4094)</td>
<td>(2^{\text{number-of-host-bits}} - 2)</td>
</tr>
</tbody>
</table>

Table H-33 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

**Table H-33  Question 11: Binary Calculation of Subnet and Broadcast Addresses**

<table>
<thead>
<tr>
<th>Address</th>
<th>172.31.200.10</th>
<th>10101100 00011111 11110000 00000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255.255.240.0</td>
<td>11111111 11111111 11110000 00000000</td>
</tr>
<tr>
<td>AND result (subnet number)</td>
<td>172.31.192.0</td>
<td>10101100 00011111 11110000 00000000</td>
</tr>
<tr>
<td>Change host to 1s (broadcast address)</td>
<td>172.31.207.255</td>
<td>10101100 00011111 11101111 11111111</td>
</tr>
</tbody>
</table>

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

172.31.192.1 through 172.31.207.254
Alternately, you can use the processes that only use decimal math to find the subnet and broadcast address. Table H-34 shows the work for this problem, with some explanation of the work following the table.

Table H-34  Question 11: Subnet, Broadcast, First and Last Addresses Calculated Using Subnet Chart

<table>
<thead>
<tr>
<th></th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255</td>
<td>255</td>
<td>240</td>
<td>0</td>
</tr>
<tr>
<td>Address</td>
<td>172</td>
<td>31</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>Subnet Number</td>
<td>172</td>
<td>31</td>
<td>192</td>
<td>0</td>
</tr>
<tr>
<td>First Valid Address</td>
<td>172</td>
<td>31</td>
<td>192</td>
<td>1</td>
</tr>
<tr>
<td>Last Valid Address</td>
<td>172</td>
<td>31</td>
<td>207</td>
<td>254</td>
</tr>
<tr>
<td>Broadcast</td>
<td>172</td>
<td>31</td>
<td>207</td>
<td>255</td>
</tr>
</tbody>
</table>

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The third octet is “interesting” in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 – 240 = 16 in this case (256 – mask’s value in the interesting octet). The subnet number’s value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address’s value in the interesting octet. In this case, 192 is the multiple of 16 that is closest to 200 but not higher than 200. So, the third octet of the subnet number is 192.

The second part of this process calculates the subnet broadcast address with the tricky part, as usual, in the “interesting” octet. Take the subnet number’s value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address’s value in the interesting octet. In this case, 192 + 16 – 1 = 207.
Answer to Problem 12

Table H-35  Question 12: Size of Network, Subnet, Host, Number of Subnets, Number of Hosts

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Rules to Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>172.31.200.10</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.248.0</td>
<td>—</td>
</tr>
<tr>
<td>Number of network bits</td>
<td>16</td>
<td>Always defined by Class A, B, C</td>
</tr>
<tr>
<td>Number of host bits</td>
<td>11</td>
<td>Always defined as number of binary 0s in mask</td>
</tr>
<tr>
<td>Number of subnet bits</td>
<td>5</td>
<td>32 – (network size + host size)</td>
</tr>
<tr>
<td>Number of subnets</td>
<td>$2^5 = 32$</td>
<td>$2^{number-of-subnet-bits}$</td>
</tr>
<tr>
<td>Number of hosts</td>
<td>$2^{11} - 2 = 2046$</td>
<td>$2^{number-of-host-bits} - 2$</td>
</tr>
</tbody>
</table>

Table H-36 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table H-36  Question 12: Binary Calculation of Subnet and Broadcast Addresses

<table>
<thead>
<tr>
<th>Address</th>
<th>172.31.200.10</th>
<th>10101100 00011111 11001000 00001010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255.255.248.0</td>
<td>11111111 11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>AND result (subnet number)</td>
<td>172.31.200.0</td>
<td>10101100 00011111 11001000 00000000</td>
</tr>
<tr>
<td>Change host to 1s (broadcast address)</td>
<td>172.31.207.255</td>
<td>10101100 00011111 11001000 11111111</td>
</tr>
</tbody>
</table>

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

172.31.200.1 through 172.31.207.254
Alternately, you can use the processes that only use decimal math to find the subnet and broadcast address. Table H-37 shows the work for this problem, with some explanation of the work following the table.

**Table H-37  Question 12: Subnet, Broadcast, First and Last Addresses Calculated Using Subnet Chart**

<table>
<thead>
<tr>
<th></th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255</td>
<td>255</td>
<td>248</td>
<td>0</td>
</tr>
<tr>
<td>Address</td>
<td>172</td>
<td>31</td>
<td>200</td>
<td>10</td>
</tr>
<tr>
<td>Subnet Number</td>
<td>172</td>
<td>31</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>First Valid Address</td>
<td>172</td>
<td>31</td>
<td>200</td>
<td>1</td>
</tr>
<tr>
<td>Last Valid Address</td>
<td>172</td>
<td>31</td>
<td>207</td>
<td>254</td>
</tr>
<tr>
<td>Broadcast</td>
<td>172</td>
<td>31</td>
<td>207</td>
<td>255</td>
</tr>
</tbody>
</table>

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The third octet is “interesting” in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 – 248 = 8 in this case (256 – mask’s value in the interesting octet). The subnet number’s value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address’s value in the interesting octet. In this case, 200 is the multiple of 8 that is closest to 200 but not higher than 200. So, the third octet of the subnet number is 200.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the “interesting” octet. Take the subnet number’s value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address’s value in the interesting octet. In this case, 200 + 8 – 1 = 207.
Answer to Problem 13

Table H-38  Question 13: Size of Network, Subnet, Host, Number of Subnets, Number of Hosts

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Rules to Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>172.31.50.50</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.252.0</td>
<td>—</td>
</tr>
<tr>
<td>Number of network bits</td>
<td>16</td>
<td>Always defined by Class A, B, C</td>
</tr>
<tr>
<td>Number of host bits</td>
<td>10</td>
<td>Always defined as number of binary 0s in mask</td>
</tr>
<tr>
<td>Number of subnet bits</td>
<td>6</td>
<td>32 – (network size + host size)</td>
</tr>
<tr>
<td>Number of subnets</td>
<td>$2^6 = 64$</td>
<td>$2^{number-of-subnet-bits}$</td>
</tr>
<tr>
<td>Number of hosts</td>
<td>$2^{10} - 2 = 1022$</td>
<td>$2^{number-of-host-bits} - 2$</td>
</tr>
</tbody>
</table>

Table H-39 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table H-39  Question 13: Binary Calculation of Subnet and Broadcast Addresses

<table>
<thead>
<tr>
<th>Address</th>
<th>172.31.50.50</th>
<th>10101100 00011111 0011001 11 10 00 0 00 00 00 01 11 10 00 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255.255.252.0</td>
<td>11111111 11111111 11111110 00000000</td>
</tr>
<tr>
<td>AND result (subnet number)</td>
<td>172.31.48.0</td>
<td>10101100 00011111 00110000 00000000</td>
</tr>
<tr>
<td>Change host to 1s (broadcast address)</td>
<td>172.31.51.255</td>
<td>10101100 00011111 00110011 11111111</td>
</tr>
</tbody>
</table>

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

172.31.48.1 through 172.31.51.254
Alternately, you can use the processes that only use decimal math to find the subnet and broadcast address. Table H-40 shows the work for this problem, with some explanation of the work following the table.

**Table H-40**  
*Question 13: Subnet, Broadcast, First and Last Addresses Calculated Using Subnet Chart*

<table>
<thead>
<tr>
<th></th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mask</strong></td>
<td>255</td>
<td>255</td>
<td>252</td>
<td>0</td>
</tr>
<tr>
<td><strong>Address</strong></td>
<td>172</td>
<td>31</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td><strong>Subnet Number</strong></td>
<td>172</td>
<td>31</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td><strong>First Valid Address</strong></td>
<td>172</td>
<td>31</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td><strong>Last Valid Address</strong></td>
<td>172</td>
<td>31</td>
<td>51</td>
<td>254</td>
</tr>
<tr>
<td><strong>Broadcast</strong></td>
<td>172</td>
<td>31</td>
<td>51</td>
<td>255</td>
</tr>
</tbody>
</table>

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The third octet is “interesting” in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 – 252 = 4 in this case (256 – mask’s value in the interesting octet). The subnet number’s value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address’s value in the interesting octet. In this case, 48 is the multiple of 4 that is closest to 50 but not higher than 50. So, the third octet of the subnet number is 48.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the “interesting” octet. Take the subnet number’s value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address’s value in the interesting octet. In this case, 48 + 4 – 1 = 51.
Answer to Problem 14

Table H-41  Question 14: Size of Network, Subnet, Host, Number of Subnets, Number of Hosts

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Rules to Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>172.31.50.50</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.254.0</td>
<td>—</td>
</tr>
<tr>
<td>Number of network bits</td>
<td>16</td>
<td>Always defined by Class A, B, C</td>
</tr>
<tr>
<td>Number of host bits</td>
<td>9</td>
<td>Always defined as number of binary 0s in mask</td>
</tr>
<tr>
<td>Number of subnet bits</td>
<td>7</td>
<td>32 – (network size + host size)</td>
</tr>
<tr>
<td>Number of subnets</td>
<td>$2^7 = 128$</td>
<td>$2^{\text{number-of-subnet-bits}}$</td>
</tr>
<tr>
<td>Number of hosts</td>
<td>$2^9 - 2 = 510$</td>
<td>$2^{\text{number-of-host-bits}} - 2$</td>
</tr>
</tbody>
</table>

Table H-42 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table H-42  Question 14: Binary Calculation of Subnet and Broadcast Addresses

<table>
<thead>
<tr>
<th>Address</th>
<th>172.31.50.50</th>
<th>10101100 00011111 00110010 00110010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255.255.254.0</td>
<td>111111111 111111111 111111111 00000000</td>
</tr>
<tr>
<td>AND result (subnet number)</td>
<td>172.31.50.0</td>
<td>10101100 00011111 00110010 00000000</td>
</tr>
<tr>
<td>Change host to 1s (broadcast address)</td>
<td>172.31.51.255</td>
<td>10101100 00011111 00110011 11111111</td>
</tr>
</tbody>
</table>

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

172.31.50.1 through 172.31.51.254
Alternately, you can use the processes that only use decimal math to find the subnet and broadcast address. Table H-43 shows the work for this problem, with some explanation of the work following the table.

Table H-43  Question 14: Subnet, Broadcast, First and Last Addresses Calculated Using Subnet Chart

<table>
<thead>
<tr>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255</td>
<td>255</td>
<td>254</td>
</tr>
<tr>
<td>Address</td>
<td>172</td>
<td>31</td>
<td>50</td>
</tr>
<tr>
<td>Subnet Number</td>
<td>172</td>
<td>31</td>
<td>50</td>
</tr>
<tr>
<td>First Valid Address</td>
<td>172</td>
<td>31</td>
<td>50</td>
</tr>
<tr>
<td>Last Valid Address</td>
<td>172</td>
<td>31</td>
<td>51</td>
</tr>
<tr>
<td>Broadcast</td>
<td>172</td>
<td>31</td>
<td>51</td>
</tr>
</tbody>
</table>

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The third octet is “interesting” in this case. The key part of the trick to get the right answers is to calculate the magic number, which is \(256 - 254 = 2\) in this case (\(256 - \text{mask's value in the interesting octet}\)). The subnet number’s value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address’s value in the interesting octet. In this case, 50 is the multiple of 2 that is closest to 50 but not higher than 50. So, the third octet of the subnet number is 50.

The second part of this process calculates the subnet broadcast address with the tricky part, as usual, in the “interesting” octet. Take the subnet number’s value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address’s value in the interesting octet. In this case, \(50 + 2 - 1 = 51\).
**Answer to Problem 15**

**Table H-44**  
*Question 15: Size of Network, Subnet, Host, Number of Subnets, Number of Hosts*

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Rules to Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>172.31.140.14</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.255.0</td>
<td>—</td>
</tr>
<tr>
<td>Number of network bits</td>
<td>16</td>
<td>Always defined by Class A, B, C</td>
</tr>
<tr>
<td>Number of host bits</td>
<td>8</td>
<td>Always defined as number of binary 0s in mask</td>
</tr>
<tr>
<td>Number of subnet bits</td>
<td>8</td>
<td>32 – (network size + host size)</td>
</tr>
<tr>
<td>Number of subnets</td>
<td>$2^8 = 256$</td>
<td>$2^{\text{number-of-subnet-bits}}$</td>
</tr>
<tr>
<td>Number of hosts</td>
<td>$2^8 - 2 = 254$</td>
<td>$2^{\text{number-of-host-bits}} - 2$</td>
</tr>
</tbody>
</table>

Table H-45 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

**Table H-45**  
*Question 15: Binary Calculation of Subnet and Broadcast Addresses*

<table>
<thead>
<tr>
<th>Address</th>
<th>172.31.140.14</th>
<th>10101100 00011111 10001100 00001110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255.255.255.0</td>
<td>11111111 11111111 11111111 00000000</td>
</tr>
<tr>
<td>AND result (subnet number)</td>
<td>172.31.140.0</td>
<td>10101100 00011111 10001111 00000000</td>
</tr>
<tr>
<td>Change host to 1s (broadcast address)</td>
<td>172.31.140.255</td>
<td>10101100 00011111 10001111 11111111</td>
</tr>
</tbody>
</table>

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

172.31.140.1 through 172.31.140.254
Alternately, you can use the processes that only use decimal math to find the subnet and broadcast address. Table H-46 shows the work for this problem.

**Table H-46  Question 15: Subnet, Broadcast, First and Last Addresses Calculated Using Subnet Chart**

<table>
<thead>
<tr>
<th>Question 15: Subnet, Broadcast, First and Last Addresses Calculated Using Subnet Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Octet 1</strong></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Mask</td>
</tr>
<tr>
<td>Address</td>
</tr>
<tr>
<td>Subnet Number</td>
</tr>
<tr>
<td>First Valid Address</td>
</tr>
<tr>
<td>Last Valid Address</td>
</tr>
<tr>
<td>Broadcast</td>
</tr>
</tbody>
</table>

This subnetting scheme uses an easy mask because all of the octets are a 0 or a 255. No math tricks are needed.

**Answer to Problem 16**

**Table H-47  Question 16: Size of Network, Subnet, Host, Number of Subnets, Number of Hosts**

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Rules to Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>172.31.140.14</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.255.128</td>
<td>—</td>
</tr>
<tr>
<td>Number of network bits</td>
<td>16</td>
<td>Always defined by Class A, B, C</td>
</tr>
<tr>
<td>Number of host bits</td>
<td>7</td>
<td>Always defined as number of binary 0s in mask</td>
</tr>
<tr>
<td>Number of subnet bits</td>
<td>9</td>
<td>32 – (network size + host size)</td>
</tr>
<tr>
<td>Number of subnets</td>
<td>$2^9 = 512$</td>
<td>$2^{number-of-subnet-bits}$</td>
</tr>
<tr>
<td>Number of hosts</td>
<td>$2^7 - 2 = 126$</td>
<td>$2^{number-of-host-bits} - 2$</td>
</tr>
</tbody>
</table>

Table H-48 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.
Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

172.31.140.1 through 172.31.140.126

Alternately, you can use the processes that only use decimal math to find the subnet and broadcast address. Table H-49 shows the work for this problem, with some explanation of the work following the table.

**Table H-49**  Question 16: Subnet, Broadcast, First and Last Addresses Calculated Using Subnet Chart

<table>
<thead>
<tr>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>Address</td>
<td>172</td>
<td>31</td>
<td>140</td>
</tr>
<tr>
<td>Subnet Number</td>
<td>172</td>
<td>31</td>
<td>140</td>
</tr>
<tr>
<td>First Valid Address</td>
<td>172</td>
<td>31</td>
<td>140</td>
</tr>
<tr>
<td>Last Valid Address</td>
<td>172</td>
<td>31</td>
<td>140</td>
</tr>
<tr>
<td>Broadcast</td>
<td>172</td>
<td>31</td>
<td>140</td>
</tr>
</tbody>
</table>

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The fourth octet is “interesting” in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 – 128 = 128 in this case (256 – mask’s value in the interesting octet). The subnet number’s value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address’s value in the interesting octet. In this case, 0 is the multiple of 128 that is closest to 14 but not higher than 14. So, the fourth octet of the subnet number is 0.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the “interesting” octet. Take the subnet number’s value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address’s value in the interesting octet. In this case, 0 + 128 – 1 = 127.
Answer to Problem 17

**Table H-50**  
**Question 17: Size of Network, Subnet, Host, Number of Subnets, Number of Hosts**

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Rules to Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>192.168.15.150</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.255.192</td>
<td>—</td>
</tr>
<tr>
<td>Number of network bits</td>
<td>24</td>
<td>Always defined by Class A, B, C</td>
</tr>
<tr>
<td>Number of host bits</td>
<td>6</td>
<td>Always defined as number of binary 0s in mask</td>
</tr>
<tr>
<td>Number of subnet bits</td>
<td>2</td>
<td>32 – (network size + host size)</td>
</tr>
<tr>
<td>Number of subnets</td>
<td>$2^2 = 4$</td>
<td>$2^{number-of-subnet-bits}$</td>
</tr>
<tr>
<td>Number of hosts</td>
<td>$2^6 - 2 = 62$</td>
<td>$2^{number-of-host-bits} - 2$</td>
</tr>
</tbody>
</table>

Table H-51 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

**Table H-51**  
**Advantages and Limitations of Deploying an IPS in Inline Mode**

<table>
<thead>
<tr>
<th>Address</th>
<th>192.168.15.150</th>
<th>11000000 10101000 00001111 10010110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255.255.255.192</td>
<td>11111111 11111111 11111111 11000000</td>
</tr>
<tr>
<td>AND result (subnet number)</td>
<td>192.168.15.128</td>
<td>11000000 10101000 00001111 10000000</td>
</tr>
<tr>
<td>Change host to 1s (broadcast address)</td>
<td>192.168.15.191</td>
<td>11000000 10101000 00001111 10111111</td>
</tr>
</tbody>
</table>

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

192.168.15.129 through 192.168.15.190
Alternately, you can use the processes that only use decimal math to find the subnet and broadcast address. Table H-52 shows the work for this problem, with some explanation of the work following the table.

Table H-52  Question 17: Subnet, Broadcast, First and Last Addresses Calculated Using Subnet Chart

<table>
<thead>
<tr>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>Address</td>
<td>192</td>
<td>168</td>
<td>15</td>
</tr>
<tr>
<td>Subnet Number</td>
<td>192</td>
<td>168</td>
<td>15</td>
</tr>
<tr>
<td>First Valid Address</td>
<td>192</td>
<td>168</td>
<td>15</td>
</tr>
<tr>
<td>Last Valid Address</td>
<td>192</td>
<td>168</td>
<td>15</td>
</tr>
<tr>
<td>Broadcast</td>
<td>192</td>
<td>168</td>
<td>15</td>
</tr>
</tbody>
</table>

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The fourth octet is “interesting” in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 – 192 = 64 in this case (256 – mask’s value in the interesting octet). The subnet number’s value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address’s value in the interesting octet. In this case, 128 is the multiple of 64 that is closest to 150 but not higher than 150. So, the fourth octet of the subnet number is 128.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the “interesting” octet. Take the subnet number’s value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address’s value in the interesting octet. In this case, 128 + 64 – 1 = 191.
Answer to Problem 18

Table H-53  Question 18: Size of Network, Subnet, Host, Number of Subnets, Number of Hosts

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Rules to Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>192.168.15.150</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.255.224</td>
<td>—</td>
</tr>
<tr>
<td>Number of network bits</td>
<td>24</td>
<td>Always defined by Class A, B, C</td>
</tr>
<tr>
<td>Number of host bits</td>
<td>5</td>
<td>Always defined as number of binary 0s in mask</td>
</tr>
<tr>
<td>Number of subnet bits</td>
<td>3</td>
<td>32 – (network size + host size)</td>
</tr>
<tr>
<td>Number of subnets</td>
<td>$2^3 = 8$</td>
<td>$2^{number-of-subnet-bits}$</td>
</tr>
<tr>
<td>Number of hosts</td>
<td>$2^5 - 2 = 30$</td>
<td>$2^{number-of-host-bits} - 2$</td>
</tr>
</tbody>
</table>

Table H-54  Question 18: Binary Calculation of Subnet and Broadcast Addresses

Address	192.168.15.150	11000000 10101000 00001111 10010110
-------	255.255.255.224	11111111 11111111 11111111 11100000
AND result (subnet number)	192.168.15.128	11000000 10101000 00001111 10000000
Change host to 1s (broadcast address)	192.168.15.159	11000000 10101000 00001111 10011111

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

192.168.15.129 through 192.168.15.158
Alternately, you can use the processes that only use decimal math to find the subnet and broadcast address. Table H-55 shows the work for this problem, with some explanation of the work following the table.

**Table H-55  Question 18: Subnet, Broadcast, First and Last Addresses Calculated Using Subnet Chart**

<table>
<thead>
<tr>
<th></th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mask</strong></td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>224</td>
</tr>
<tr>
<td><strong>Address</strong></td>
<td>192</td>
<td>168</td>
<td>15</td>
<td>150</td>
</tr>
<tr>
<td><strong>Subnet Number</strong></td>
<td>192</td>
<td>168</td>
<td>15</td>
<td>128</td>
</tr>
<tr>
<td><strong>First Valid Address</strong></td>
<td>192</td>
<td>168</td>
<td>15</td>
<td>129</td>
</tr>
<tr>
<td><strong>Last Valid Address</strong></td>
<td>192</td>
<td>168</td>
<td>15</td>
<td>158</td>
</tr>
<tr>
<td><strong>Broadcast</strong></td>
<td>192</td>
<td>168</td>
<td>15</td>
<td>159</td>
</tr>
</tbody>
</table>

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The fourth octet is “interesting” in this case. The key part of the trick to get the right answers is to calculate the magic number, which is $256 - 224 = 32$ in this case ($256 - \text{mask’s value in the interesting octet}$). The subnet number’s value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address’s value in the interesting octet. In this case, 128 is the multiple of 32 that is closest to 150 but not higher than 150. So, the fourth octet of the subnet number is 128.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the “interesting” octet. Take the subnet number’s value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address’s value in the interesting octet. In this case, $128 + 32 - 1 = 159$. 

Appendix H: Practice for Chapter 17: Analyzing Existing Subnets

Answer to Problem 19

Table H-56  Question 19: Size of Network, Subnet, Host, Number of Subnets, Number of Hosts

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Rules to Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>192.168.100.100</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.255.240</td>
<td>—</td>
</tr>
<tr>
<td>Number of network bits</td>
<td>24</td>
<td>Always defined by Class A, B, C</td>
</tr>
<tr>
<td>Number of host bits</td>
<td>4</td>
<td>Always defined as number of binary 0s in mask</td>
</tr>
<tr>
<td>Number of subnet bits</td>
<td>4</td>
<td>32 - (network size + host size)</td>
</tr>
<tr>
<td>Number of subnets</td>
<td>$2^4 = 16$</td>
<td>$2^{number-of-subnet-bits}$</td>
</tr>
<tr>
<td>Number of hosts</td>
<td>$2^4 - 2 = 14$</td>
<td>$2^{number-of-host-bits} - 2$</td>
</tr>
</tbody>
</table>

Table H-57  Question 19: Binary Calculation of Subnet and Broadcast Addresses

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Example (Binary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>192.168.100.100</td>
<td>11000000 10101000 01100100 01100100</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.255.240</td>
<td>11111111 11111111 11111111 11110000</td>
</tr>
<tr>
<td>AND result (subnet number)</td>
<td>192.168.100.96</td>
<td>11000000 10101000 01100100 01100000</td>
</tr>
<tr>
<td>Change host to 1s (broadcast address)</td>
<td>192.168.100.111</td>
<td>11000000 10101000 01100100 01101111</td>
</tr>
</tbody>
</table>

Table H-57 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in bold print in the table.

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

192.168.100.97 through 192.168.100.110
Alternately, you can use the processes that only use decimal math to find the subnet and broadcast address. Table H-58 shows the work for this problem, with some explanation of the work following the table.

**Table H-58  Question 19: Subnet, Broadcast, First and Last Addresses Calculated Using Subnet Chart**

<table>
<thead>
<tr>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>Address</td>
<td>192</td>
<td>168</td>
<td>100</td>
</tr>
<tr>
<td>Subnet Number</td>
<td>192</td>
<td>168</td>
<td>100</td>
</tr>
<tr>
<td>First Valid Address</td>
<td>192</td>
<td>168</td>
<td>100</td>
</tr>
<tr>
<td>Last Valid Address</td>
<td>192</td>
<td>168</td>
<td>100</td>
</tr>
<tr>
<td>Broadcast</td>
<td>192</td>
<td>168</td>
<td>100</td>
</tr>
</tbody>
</table>

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The fourth octet is “interesting” in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 – 240 = 16 in this case (256 – mask’s value in the interesting octet). The subnet number’s value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address’s value in the interesting octet. In this case, 96 is the multiple of 16 that is closest to 100 but not higher than 100. So, the fourth octet of the subnet number is 96.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the “interesting” octet. Take the subnet number’s value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address’s value in the interesting octet. In this case, 96 + 16 – 1 = 111.
Answer to Problem 20

Table H-59  Question 20: Size of Network, Subnet, Host, Number of Subnets, Number of Hosts

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Rules to Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>192.168.100.100</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.255.248</td>
<td>—</td>
</tr>
<tr>
<td>Number of network bits</td>
<td>24</td>
<td>Always defined by Class A, B, C</td>
</tr>
<tr>
<td>Number of host bits</td>
<td>3</td>
<td>Always defined as number of binary 0s in mask</td>
</tr>
<tr>
<td>Number of subnet bits</td>
<td>5</td>
<td>$32 - (\text{network size} + \text{host size})$</td>
</tr>
<tr>
<td>Number of subnets</td>
<td>$2^5 = 32$</td>
<td>$2^{\text{number-of-subnet-bits}}$</td>
</tr>
<tr>
<td>Number of hosts</td>
<td>$2^{3} - 2 = 6$</td>
<td>$2^{\text{number-of-host-bits}} - 2$</td>
</tr>
</tbody>
</table>

Table H-60  Question 20: Binary Calculation of Subnet and Broadcast Addresses

<table>
<thead>
<tr>
<th>Address</th>
<th>192.168.100.100</th>
<th>11000000 10101000 01100100 01100100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255.255.255.248</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>AND result (subnet number)</td>
<td>192.168.100.96</td>
<td>11000000 10101000 01100100 01100100</td>
</tr>
<tr>
<td>Change host to 1s (broadcast address)</td>
<td>192.168.100.103</td>
<td>11000000 10101000 01100100 01100101</td>
</tr>
</tbody>
</table>

Table H-60 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

192.168.100.97 through 192.168.100.102
Alternately, you can use the processes that only use decimal math to find the subnet and broadcast address. Table H-61 shows the work for this problem, with some explanation of the work following the table.

<table>
<thead>
<tr>
<th>Mask</th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>248</td>
</tr>
<tr>
<td>Subnet Number</td>
<td>192</td>
<td>168</td>
<td>100</td>
<td>96</td>
</tr>
<tr>
<td>First Valid Address</td>
<td>192</td>
<td>168</td>
<td>100</td>
<td>97</td>
</tr>
<tr>
<td>Last Valid Address</td>
<td>192</td>
<td>168</td>
<td>100</td>
<td>102</td>
</tr>
<tr>
<td>Broadcast</td>
<td>192</td>
<td>168</td>
<td>100</td>
<td>103</td>
</tr>
</tbody>
</table>

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The fourth octet is “interesting” in this case. The key part of the trick to get the right answers is to calculate the magic number, which is $256 - 248 = 8$ in this case (256 – mask’s value in the interesting octet). The subnet number’s value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address’s value in the interesting octet. In this case, 96 is the multiple of 8 that is closest to 100 but not higher than 100. So, the fourth octet of the subnet number is 96.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the “interesting” octet. Take the subnet number’s value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address’s value in the interesting octet. In this case, $96 + 8 - 1 = 103$. 

---

Table H-61  Question 20: Subnet, Broadcast, First and Last Addresses Calculated Using Subnet Chart
Appendix H: Practice for Chapter 17: Analyzing Existing Subnets

Answer to Problem 21

Table H-62  Question 21: Size of Network, Subnet, Host, Number of Subnets, Number of Hosts

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Rules to Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>192.168.15.230</td>
<td></td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.255.252</td>
<td></td>
</tr>
<tr>
<td>Number of network bits</td>
<td>24</td>
<td>Always defined by Class A, B, C</td>
</tr>
<tr>
<td>Number of host bits</td>
<td>2</td>
<td>Always defined as number of binary 0s in mask</td>
</tr>
<tr>
<td>Number of subnet bits</td>
<td>6</td>
<td>$2^{32} - (\text{network size} + \text{host size})$</td>
</tr>
<tr>
<td>Number of subnets</td>
<td>$2^6 = 64$</td>
<td>$2^{\text{number-of-subnet-bits}}$</td>
</tr>
<tr>
<td>Number of hosts</td>
<td>$2^2 - 2 = 2$</td>
<td>$2^{\text{number-of-host-bits} - 2}$</td>
</tr>
</tbody>
</table>

Table H-63  Question 21: Binary Calculation of Subnet and Broadcast Addresses

Address	192.168.15.230	11000000 10101000 00001111 11100110
Mask	255.255.255.252	11111111 11111111 11111111 11111100
AND result (subnet number)	192.168.15.228	11000000 10101000 00001111 11111100
Change host to 1s (broadcast address)	192.168.15.231	11000000 10101000 00001111 11100111

Table H-63 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

192.168.15.229 through 192.168.15.230
Alternately, you can use the processes that only use decimal math to find the subnet and broadcast address. Table H-64 shows the work for this problem, with some explanation of the work following the table.

Table H-64  Question 21: Subnet, Broadcast, First and Last Addresses Calculated Using Subnet Chart

<table>
<thead>
<tr>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>Address</td>
<td>192</td>
<td>168</td>
<td>15</td>
</tr>
<tr>
<td>Subnet Number</td>
<td>192</td>
<td>168</td>
<td>15</td>
</tr>
<tr>
<td>First Valid Address</td>
<td>192</td>
<td>168</td>
<td>15</td>
</tr>
<tr>
<td>Last Valid Address</td>
<td>192</td>
<td>168</td>
<td>15</td>
</tr>
<tr>
<td>Broadcast</td>
<td>192</td>
<td>168</td>
<td>15</td>
</tr>
</tbody>
</table>

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The fourth octet is “interesting” in this case. The key part of the trick to get the right answers is to calculate the magic number, which is 256 – 252 = 4 in this case (256 – mask’s value in the interesting octet). The subnet number’s value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address’s value in the interesting octet. In this case, 228 is the multiple of 4 that is closest to 230 but not higher than 230. So, the fourth octet of the subnet number is 228.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the “interesting” octet. Take the subnet number’s value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address’s value in the interesting octet. In this case, 228 + 4 – 1 = 231.
Answer to Problem 22

Table H-65  Question 22: Size of Network, Subnet, Host, Number of Subnets, Number of Hosts

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Rules to Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>10.1.1.1</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255.248.0.0</td>
<td>—</td>
</tr>
<tr>
<td>Number of network bits</td>
<td>8</td>
<td>Always defined by Class A, B, C</td>
</tr>
<tr>
<td>Number of host bits</td>
<td>19</td>
<td>Always defined as number of binary 0s in mask</td>
</tr>
<tr>
<td>Number of subnet bits</td>
<td>5</td>
<td>32 – (network size + host size)</td>
</tr>
<tr>
<td>Number of subnets</td>
<td>$2^5 = 32$</td>
<td>$2^{number-of-subnet-bits}$</td>
</tr>
<tr>
<td>Number of hosts</td>
<td>$2^{19} - 2 = 524,286$</td>
<td>$2^{number-of-host-bits} - 2$</td>
</tr>
</tbody>
</table>

Table H-66  Question 22: Binary Calculation of Subnet and Broadcast Addresses

Address	10.1.1.1	00001010 00000000 00000000 00000000
Mask	255.248.0.0	11111111 11110000 00000000 00000000
AND result (subnet number)	10.0.0.0	00001010 00000000 00000000 00000000
Change host to 1s (broadcast address)	10.7.255.255	00001010 00000000 11111111 11111111

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

10.0.0.1 through 10.7.255.254

Take a closer look at the subnet part of the subnet address, as shown in bold here: 0000 1010 0000 0000 0000 0000 0000 0000. The subnet part of the address is all binary 0s, making this subnet a zero subnet.
Alternately, you can use the processes that only use decimal math to find the subnet and broadcast address. Table H-67 shows the work for this problem, with some explanation of the work following the table.

Table H-67  Question 22: Subnet, Broadcast, First and Last Addresses Calculated Using Subnet Chart

<table>
<thead>
<tr>
<th>Octet</th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255</td>
<td>248</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Address</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Subnet Number</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>First Valid Address</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Last Valid Address</td>
<td>10</td>
<td>7</td>
<td>255</td>
<td>254</td>
</tr>
<tr>
<td>Broadcast</td>
<td>10</td>
<td>7</td>
<td>255</td>
<td>255</td>
</tr>
</tbody>
</table>

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The second octet is “interesting” in this case. The key part of the trick to get the right answers is to calculate the magic number, which is $256 - 248 = 8$ in this case ($256 -$ mask’s value in the interesting octet). The subnet number’s value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address’s value in the interesting octet. In this case, 0 is the multiple of 8 that is closest to 1 but not higher than 1. So, the second octet of the subnet number is 0.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the “interesting” octet. Take the subnet number’s value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address’s value in the interesting octet. In this case, $0 + 8 - 1 = 7$. 

Answer to Problem 23

Table H-68  Question 23: Size of Network, Subnet, Host, Number of Subnets, Number of Hosts

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Rules to Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>172.16.1.200</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.240.0</td>
<td>—</td>
</tr>
<tr>
<td>Number of network bits</td>
<td>16</td>
<td>Always defined by Class A, B, C</td>
</tr>
<tr>
<td>Number of host bits</td>
<td>12</td>
<td>Always defined as number of binary 0s in mask</td>
</tr>
<tr>
<td>Number of subnet bits</td>
<td>4</td>
<td>$32 - (\text{network size} + \text{host size})$</td>
</tr>
<tr>
<td>Number of subnets</td>
<td>$2^4 = 16$</td>
<td>$2^\text{number-of-subnet-bits}$</td>
</tr>
<tr>
<td>Number of hosts</td>
<td>$2^{12} - 2 = 4094$</td>
<td>$2^\text{number-of-host-bits} - 2$</td>
</tr>
</tbody>
</table>

Table H-69 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Table H-69  Question 23: Binary Calculation of Subnet and Broadcast Addresses

<table>
<thead>
<tr>
<th>Address</th>
<th>172.16.1.200</th>
<th>10101100 00010000 00000001 11001000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255.255.240.0</td>
<td>11111111 11111111 11110000 00000000</td>
</tr>
<tr>
<td>AND result (subnet number)</td>
<td>172.16.0.0</td>
<td>10101100 00010000 00000000 00000000</td>
</tr>
<tr>
<td>Change host to 1s (broadcast address)</td>
<td>172.16.15.255</td>
<td>10101100 00010000 00001111 11111111</td>
</tr>
</tbody>
</table>

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

172.16.0.1 through 172.16.15.254

Take a closer look at the subnet part of the subnet address, as shown in bold here: 1010 1100 0001 0000 0000 0000 0000 0000. The subnet part of the address is all binary 0s, making this subnet a zero subnet.
Alternately, you can use the processes that only use decimal math to find the subnet and broadcast address. Table H-70 shows the work for this problem, with some explanation of the work following the table.

**Table H-70**  Question 23: Subnet, Broadcast, First and Last Addresses Calculated Using Subnet Chart

<table>
<thead>
<tr>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255</td>
<td>255</td>
<td>240</td>
</tr>
<tr>
<td>Address</td>
<td>172</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Subnet Number</td>
<td>172</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>First Valid Address</td>
<td>172</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Last Valid Address</td>
<td>172</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Broadcast</td>
<td>172</td>
<td>16</td>
<td>15</td>
</tr>
</tbody>
</table>

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The third octet is “interesting” in this case. The key part of the trick to get the right answers is to calculate the magic number, which is $256 - 240 = 16$ in this case ($256$ – mask’s value in the interesting octet). The subnet number’s value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address’s value in the interesting octet. In this case, 0 is the multiple of 16 that is closest to 1 but not higher than 1. So, the third octet of the subnet number is 0.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the “interesting” octet. Take the subnet number’s value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address’s value in the interesting octet. In this case, $0 + 16 – 1 = 15$. 

Answer to Problem 24

Table H-71  Question 24: Size of Network, Subnet, Host, Number of Subnets, Number of Hosts

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Rules to Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>172.16.0.200</td>
<td></td>
</tr>
<tr>
<td>Mask</td>
<td>255.255.255.192</td>
<td></td>
</tr>
<tr>
<td>Number of network bits</td>
<td>16</td>
<td>Always defined by Class A, B, C</td>
</tr>
<tr>
<td>Number of host bits</td>
<td>6</td>
<td>Always defined as number of binary 0s in mask</td>
</tr>
<tr>
<td>Number of subnet bits</td>
<td>10</td>
<td>32 – (network size + host size)</td>
</tr>
<tr>
<td>Number of subnets</td>
<td>$2^{10} = 1024$</td>
<td>$2^{\text{number-of-subnet-bits}}$</td>
</tr>
<tr>
<td>Number of hosts</td>
<td>$2^6 - 2 = 62$</td>
<td>$2^{\text{number-of-host-bits} - 2}$</td>
</tr>
</tbody>
</table>

Table H-72  Question 24: Binary Calculation of Subnet and Broadcast Addresses

<table>
<thead>
<tr>
<th>Address</th>
<th>172.16.0.200</th>
<th>10101100 00010000 00000000 11001000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255.255.255.192</td>
<td>11111111 11111111 11111111 11000000</td>
</tr>
<tr>
<td>AND result</td>
<td>172.16.0.192</td>
<td>10101100 00010000 00000000 11000000</td>
</tr>
<tr>
<td>Change host</td>
<td>172.16.0.255</td>
<td>10101100 00010000 00000000 11111111</td>
</tr>
</tbody>
</table>

Table H-72 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.

Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

172.16.0.193 through 172.16.0.254
Alternately, you can use the processes that only use decimal math to find the subnet and broadcast address. Table H-73 shows the work for this problem, with some explanation of the work following the table.

Table H-73  Question 24: Subnet, Broadcast, First and Last Addresses Calculated Using Subnet Chart

<table>
<thead>
<tr>
<th></th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>192</td>
</tr>
<tr>
<td>Address</td>
<td>172</td>
<td>16</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>Subnet Number</td>
<td>172</td>
<td>16</td>
<td>0</td>
<td>192</td>
</tr>
<tr>
<td>First Valid Address</td>
<td>172</td>
<td>16</td>
<td>0</td>
<td>193</td>
</tr>
<tr>
<td>Last Valid Address</td>
<td>172</td>
<td>16</td>
<td>0</td>
<td>254</td>
</tr>
<tr>
<td>Broadcast</td>
<td>172</td>
<td>16</td>
<td>0</td>
<td>255</td>
</tr>
</tbody>
</table>

This subnetting scheme uses a difficult mask because one of the octets is not a 0 or a 255. The fourth octet is “interesting” in this case. The key part of the trick to get the right answers is to calculate the magic number, which is \(256 - 192 = 64\) in this case (\(256 - \) mask’s value in the interesting octet). The subnet number’s value in the interesting octet (inside the box) is the multiple of the magic number that is not higher than the original IP address’s value in the interesting octet. In this case, 192 is the multiple of 64 that is closest to 200 but not higher than 200. So, the fourth octet of the subnet number is 192.

The second part of this process calculates the subnet broadcast address, with the tricky part, as usual, in the “interesting” octet. Take the subnet number’s value in the interesting octet, add the magic number, and subtract 1. That is the broadcast address’s value in the interesting octet. In this case, \(192 + 64 - 1 = 255\).

You can easily forget that the subnet part of this address, when using this mask, actually covers all of the third octet as well as 2 bits of the fourth octet. For instance, the valid subnet numbers in order are listed here:

- 172.16.0.0 (zero subnet)
- 172.16.0.64
- 172.16.0.128
- 172.16.0.192
- 172.16.1.0
- 172.16.1.64
### Answer to Problem 25

Congratulations, you made it through the extra practice in this Appendix! Here is an easy one to complete your review—one with no subnetting at all.

**Table H-74  Question 25: Size of Network, Subnet, Host, Number of Subnets, Number of Hosts**

<table>
<thead>
<tr>
<th>Item</th>
<th>Example</th>
<th>Rules to Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>10.1.1.1</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255.0.0.0</td>
<td>—</td>
</tr>
<tr>
<td>Number of network bits</td>
<td>8</td>
<td>Always defined by Class A, B, C</td>
</tr>
<tr>
<td>Number of host bits</td>
<td>24</td>
<td>Always defined as number of binary 0s in mask</td>
</tr>
<tr>
<td>Number of subnet bits</td>
<td>0</td>
<td>32 – (network size + host size)</td>
</tr>
<tr>
<td>Number of subnets</td>
<td>0</td>
<td>$2^{\text{number-of-subnet-bits}}$</td>
</tr>
<tr>
<td>Number of hosts</td>
<td>$2^{24} - 2 = 16,777,214$</td>
<td>$2^{\text{number-of-host-bits}} - 2$</td>
</tr>
</tbody>
</table>

Table H-75 contains the important binary calculations for finding the subnet number and subnet broadcast address. To calculate the subnet number, perform a Boolean AND on the address and mask. To find the broadcast address for this subnet, change all the host bits to binary 1s in the subnet number. The host bits are in **bold** print in the table.
Just add 1 to the subnet number to get the first valid IP address; just subtract 1 from the broadcast address to get the last valid IP address. In this case:

10.0.0.1 through 10.255.255.254

Alternately, you can use the processes that only use decimal math to find the subnet and broadcast address. Table H-76 shows the work for this problem.

<table>
<thead>
<tr>
<th>Address</th>
<th>10.1.1.1</th>
<th>00001010 00000000 00000000 00000001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255.0.0.0</td>
<td>11111111 00000000 00000000 00000000</td>
</tr>
<tr>
<td>AND result (subnet number)</td>
<td>10.0.0.0</td>
<td>00001010 00000000 00000000 00000000</td>
</tr>
<tr>
<td>Change host to 1s (broadcast address)</td>
<td>10.255.255.255</td>
<td>00001010 11111111 11111111 11111111</td>
</tr>
</tbody>
</table>

Table H-75  Question 25: Binary Calculation of Subnet and Broadcast Addresses

Table H-76  Question 25: Subnet, Broadcast, First and Last Addresses Calculated Using Subnet Chart

<table>
<thead>
<tr>
<th>Mask</th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Network Number</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>First Valid Address</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Last Valid Address</td>
<td>10</td>
<td>255</td>
<td>255</td>
<td>254</td>
</tr>
<tr>
<td>Broadcast</td>
<td>10</td>
<td>255</td>
<td>255</td>
<td>255</td>
</tr>
</tbody>
</table>
Practice for Chapter 18: Finding All Subnet IDs

This appendix lists two sets of problems. Both problem sets list an IP network and mask; your job is to list all the subnet IDs for each network/mask combination. The first problem set includes problems that happen to have eight or less subnet bits, and the second problem set includes problems that happen to have more than eight subnet bits. In particular, for each problem, find the following:

- All subnet numbers
- The subnet that is the zero subnet
- The subnet that is the broadcast subnet

To find this information, you can use processes explained in Chapter 18 of *CCENT/CCNA ICND1 640-822 Official Cert Guide*. (If you are reading this as a PDF that came with *CCNA ICND2 640-816 Official Cert Guide*, you will find a copy of the ICND1 book’s Chapter 18, “Finding All Subnet IDs,” in the same location where you found this PDF.)

**Problem Set 1: 8 or Fewer Subnet Bits**
The problems, which consist of a classful network and static-length mask, are as follows:

1. 172.32.0.0/22
2. 200.1.2.0/28
3. 10.0.0.0/15
4. 172.20.0.0/24

**Problem Set 2: More Than 8 Subnet Bits**
The problems, which consist of a classful network and static-length mask, are as follows:

1. 172.32.0.0/25
2. 10.0.0.0/21
Appendix I: Practice for Chapter 18: Finding All Subnet IDs

Answers to Problem Set 1
This section includes the answers to the four problems listed in Problem Set 1.

Problem Set 1, Answer 1: 172.32.0.0/22
The answer is as follows:

- 172.32.0.0 (zero subnet)
- 172.32.4.0
- 172.32.8.0
- 172.32.12.0
- 172.32.16.0
- 172.32.20.0
- 172.32.24.0

(Skipping many subnets; each new subnet is the same as the previous subnet, after adding 4 to the third octet.)

- 172.32.248.0
- 172.32.252.0 (broadcast subnet)

The process to find all subnets depends on three key pieces of information:

- The mask has fewer than 8 subnet bits (6 bits), because the network is a Class B network (16 network bits), and the mask has 22 binary 1s in it—implying 10 host bits, and leaving 6 subnet bits.
- The mask in dotted-decimal format is 255.255.252.0. The interesting octet is the third octet because the subnet bits are all in the third octet.
- Each successive subnet number is 4 higher than the previous subnet number, in the interesting octet, because the magic number is 256 – 252 = 4.

As a result, in this case, all the subnets begin with 172.32, have a multiple of 4 in the third octet, and end in 0.
Table I-1 shows the results of the various steps of the process, as outlined in Chapter 18.

Table I-1  8 or Less Subnet Bits, Question 1: Answer Table

<table>
<thead>
<tr>
<th>Subnet Mask (Step 1)</th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>255</td>
<td>255</td>
<td>252</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Magic Number (Step 3)</th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>256 – 252 = 4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zero Subnet Number (Step 4)</th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>172</td>
<td>32</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Next Subnet (Step 5)</th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>172</td>
<td>32</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Next Subnet (Step 5)</th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>172</td>
<td>32</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Next Subnet (Step 5)</th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>172</td>
<td>32</td>
<td>12</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Next Subnet (Step 5)</th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>172</td>
<td>32</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(You may need many more such rows)</th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>172</td>
<td>32</td>
<td>X</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Next Subnet</th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>172</td>
<td>32</td>
<td>244</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Next Subnet (Step 5)</th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>172</td>
<td>32</td>
<td>248</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Broadcast Subnet (Step 6)</th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>172</td>
<td>32</td>
<td>252</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Out of Range—Stop Process (Step 6)</th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>256</td>
</tr>
</tbody>
</table>

**Problem Set 1, Answer 2: 200.1.2.0/28**

The answer is as follows:

- 200.1.2.0 (zero subnet)
- 200.1.2.16
- 200.1.2.32
- 200.1.2.48
- 200.1.2.64
- 200.1.2.80

(Skipping many subnets; each new subnet is the same as the previous subnet, after adding 16 to the fourth octet.)

- 200.1.2.224
- 200.1.2.240 (broadcast subnet)
The process to find all subnets depends on three key pieces of information, as follows:

- The mask has fewer than 8 subnet bits (4 bits), because the network is a Class C network (24 network bits), and the mask has 28 binary 1s in it, which implies 4 host bits and leaves 4 subnet bits.
- The mask in dotted-decimal format is 255.255.255.240. The interesting octet is the fourth octet, because all the subnet bits are in the fourth octet.
- Each successive subnet number is 16 higher than the previous subnet number, in the interesting octet, because the magic number is 256 – 240 = 16.

As a result, in this case, all the subnets begin with 200.1.2 and have a multiple of 16 in the fourth octet.

Table I-2 shows the results of the various steps of the process, as outlined in Chapter 18.

<table>
<thead>
<tr>
<th></th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subnet Mask (Step 1)</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>240</td>
</tr>
<tr>
<td>Magic Number (Step 3)</td>
<td></td>
<td></td>
<td></td>
<td>256 – 240 = 16</td>
</tr>
<tr>
<td>Zero Subnet Number (Step 4)</td>
<td>200</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Next Subnet (Step 5)</td>
<td>200</td>
<td>1</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>Next Subnet (Step 5)</td>
<td>200</td>
<td>1</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>Next Subnet (Step 5)</td>
<td>200</td>
<td>1</td>
<td>2</td>
<td>48</td>
</tr>
<tr>
<td>(You may need many more such rows) (Step 5)</td>
<td>200</td>
<td>1</td>
<td>2</td>
<td>X</td>
</tr>
<tr>
<td>Next Subnet (Step 5)</td>
<td>200</td>
<td>1</td>
<td>2</td>
<td>224</td>
</tr>
<tr>
<td>Broadcast Subnet (Step 6)</td>
<td>200</td>
<td>1</td>
<td>2</td>
<td>240</td>
</tr>
<tr>
<td>Out of Range—Stop Process (Step 6)</td>
<td></td>
<td></td>
<td></td>
<td>256</td>
</tr>
</tbody>
</table>

**Problem Set 1, Answer 3: 10.0.0.0/15**

The answer is as follows:

- 10.0.0.0 (zero subnet)
- 10.2.0.0
- 10.4.0.0
10.6.0.0

(Skipping many subnets; each new subnet is the same as the previous subnet, after adding 2 to the second octet.)

10.252.0.0

10.254.0.0 (broadcast subnet)

The process to find all subnets depends on three key pieces of information:

- The mask has fewer than 8 subnet bits (7 subnet bits), because the network is a Class A network (8 network bits), and the mask has 15 binary 1s in it, which implies 17 host bits and leaves 7 subnet bits.

- The mask in dotted-decimal format is 255.254.0.0. The interesting octet is the second octet, because all the subnet bits exist in the second octet.

- Each successive subnet number is 2 higher than the previous subnet number, in the interesting octet, because the magic number is 256 – 254 = 2.

As a result, in this case, all the subnets begin with 10, have a multiple of 2 in the second octet, and end in 0.0.

Table I-3 shows the results of the various steps of the process, as outlined in Chapter 18.

<table>
<thead>
<tr>
<th>Subnet Mask (Step 1)</th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>255 254 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magic Number (Step 3)</td>
<td></td>
<td></td>
<td>256 – 254 = 2</td>
<td></td>
</tr>
<tr>
<td>Zero Subnet Number (Step 4)</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Next Subnet (Step 5)</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Next Subnet (Step 5)</td>
<td>10</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Next Subnet (Step 5)</td>
<td>10</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(You may need many more such rows) (Step 5)</td>
<td>10</td>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Next Subnet (Step 5)</td>
<td>10</td>
<td>252</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Broadcast Subnet (Step 6)</td>
<td>10</td>
<td>254</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Out of Range—Stop Process (Step 6)</td>
<td>256</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problem Set 1, Answer 4: 172.20.0.0/24

This problem has an 8-bit subnet field, meaning that $2^8$ or 256 possible subnets exist. The following list shows some of the subnets, which should be enough to see the trends in how to find all subnet numbers:

- 172.20.0.0 (zero subnet)
- 172.20.1.0
- 172.20.2.0
- 172.20.3.0
- 172.20.4.0
  (Skipping many subnets; each new subnet is the same as the previous subnet, after adding 1 to the third octet.)
- 172.20.252.0
- 172.20.253.0
- 172.20.254.0
- 172.20.255.0 (broadcast subnet)

The process to find all subnets depends on three key pieces of information:

- The mask has exactly 8 subnet bits, specifically all bits in the third octet, making the third octet the interesting octet.
- The magic number is 256 – 255, because the mask’s value in the interesting (third) octet is 255.
- Beginning with the network number of 172.20.0.0, which is the same value as the zero subnet, just add the magic number (1) in the interesting octet.

Essentially, you just count by 1 in the third octet until you reach the highest legal number (255). The first subnet, 172.20.0.0, is the zero subnet, and the last subnet, 172.20.255.0, is the broadcast subnet.
Answers to Problem Set 2

Problem Set 2, Answer 1: 172.32.0.0/25
This problem has a 9-bit subnet field, meaning that $2^9$ or 512 possible subnets exist. The following list shows some of the subnets, which should be enough to see the trends in how to find all subnet numbers:

- 172.32.0.0 (zero subnet)
- 172.32.0.128
- 172.32.1.0
- 172.32.1.128
- 172.32.2.0
- 172.32.2.128
- 172.32.3.0
- 172.32.3.128

(Skipping many subnets; the subnets occur in blocks of two, with either 0 or 128 in the fourth octet, with each successive block being one greater in the third octet.)

- 172.32.254.0
- 172.32.254.128
- 172.32.255.0
- 172.32.255.128 (broadcast subnet)

The process to find all subnets depends on three key pieces of information, as follows:

- The mask has more than 8 subnet bits (9 bits), because the network is a Class B network (16 network bits), and the mask has 25 binary 1s in it, which implies 7 host bits and leaves 9 subnet bits.

- Using the terminology in Chapter 18 of the ICND1 book, octet 4 is the interesting octet, where the counting occurs based on the magic number. Octet 3 is the “just left” octet, in which the process counts by 1, from 0 to 255.

- The magic number, which will be used to calculate each successive subnet number, is $256 - 128 = 128$. 
Appendix I: Practice for Chapter 18: Finding All Subnet IDs

To calculate the first subnet block, use the same six-step process as used in the simpler problems that have 8 or less subnet bits. In this case, with only 1 subnet bit in octet 4, only 2 subnets exist in each subnet block. Table I-4 shows the steps as compared to the six-step process to find the subnets in a subnet block.

Table I-4  Creating the First Subnet Block

<table>
<thead>
<tr>
<th></th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subnet Mask (Step 1)</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>128</td>
</tr>
<tr>
<td>Magic Number (Step 3)</td>
<td></td>
<td></td>
<td></td>
<td>256 – 128 = 128</td>
</tr>
<tr>
<td>Zero Subnet Number (Step 4)</td>
<td>172</td>
<td>32</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Next Subnet (Step 5)</td>
<td>172</td>
<td>32</td>
<td>0</td>
<td>128</td>
</tr>
<tr>
<td>Step 6 Needs to Be Used Here (Sum of 256 in the 4th Octet)</td>
<td>172</td>
<td>32</td>
<td>0</td>
<td>256</td>
</tr>
</tbody>
</table>

The table represents the logic, but to make sure the answer is clear, the first subnet block includes the following:

172.32.0.0

172.32.0.128

The next major task—to create subnet blocks for all possible values in the “just left” octet—completes the process. Essentially, create 256 blocks like the previous list. The first has a value of 0, in the “just left” octet; the next has a value of 1; the next, a value of 2; and so on, through a block that begins with 172.30.255. Figure I-1 shows the concept.

Figure I-1  Creating Subnet Blocks by Adding 1 in the “Just Left” Octet

<table>
<thead>
<tr>
<th>Just Left</th>
<th>Just Left</th>
<th>Just Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.30.0.0</td>
<td>172.30.1.0</td>
<td>172.30.2.0</td>
</tr>
<tr>
<td>172.30.0.128</td>
<td>172.30.1.128</td>
<td>172.30.2.128</td>
</tr>
</tbody>
</table>
Problem Set 2, Answer 2: 10.0.0.0/21

This problem has a 13-bit subnet field, meaning that $2^{13}$ or 8192 possible subnets exist. The following list shows some of the subnets, which should be enough to see the trends in how to find all subnet numbers:

- 10.0.0.0 (zero subnet)
- 10.0.8.0
- 10.0.16.0
- 10.0.24.0
  (Skipping several subnets)
- 10.0.248.0
- 10.1.0.0
- 10.1.8.0
- 10.1.16.0
  (Skipping several subnets)
- 10.1.248.0
- 10.2.0.0
- 10.2.8.0
- 10.2.16.0
  (Skipping several subnets)
- 10.255.232.0
- 10.255.240.0
- 10.255.248.0 (broadcast subnet)

The process to find all subnets depends on three key pieces of information, as follows:

- The mask has more than 8 subnet bits (13 bits), because the network is a Class A network (8 network bits), and the mask has 21 binary 1s in it, which implies 11 host bits and leaves 13 subnet bits.
Using the terminology in Chapter 18 of the ICND1 book, octet 3 is the interesting octet, where the counting occurs based on the magic number. Octet 2 is the “just left” octet, in which the process counts by 1, from 0 to 255.

- The magic number, which will be used to calculate each successive subnet number, is $256 - 248 = 8$.

To calculate the first subnet block, use the same six-step process as used in the simpler problems that have 8 or less subnet bits. In this case, with 5 subnet bits in octet 3, 32 subnets exist in each subnet block. Table I-5 shows the steps as compared to the six-step process to find the subnets in a subnet block.

**Table I-5  Creating the First Subnet Block**

<table>
<thead>
<tr>
<th></th>
<th>Octet 1</th>
<th>Octet 2</th>
<th>Octet 3</th>
<th>Octet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subnet Mask (Step 1)</td>
<td>255</td>
<td>255</td>
<td>248</td>
<td>0</td>
</tr>
<tr>
<td>Magic Number (Step 3)</td>
<td></td>
<td></td>
<td>256 – 248 = 8</td>
<td></td>
</tr>
<tr>
<td>Zero Subnet Number (Step 4)</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Next Subnet (Step 5)</td>
<td>10</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>(Skipping several subnets)</td>
<td>10</td>
<td>0</td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>Next Subnet (Step 5)</td>
<td>10</td>
<td>0</td>
<td>248</td>
<td>0</td>
</tr>
<tr>
<td>Step 6 Needs to Be Used Here (Sum of 256 in the 3rd Octet)</td>
<td>10</td>
<td>0</td>
<td>256</td>
<td>0</td>
</tr>
</tbody>
</table>
The table represents the logic, but to make sure the answer is clear, the first subnet block includes the following:

- 10.0.0.0
- 10.0.8.0
- 10.0.16.0
- 10.0.24.0
- 10.0.32.0
- 10.0.40.0
- 10.0.48.0
- 10.0.56.0
- 10.0.64.0

And so on...

- 10.0.248.0

The next major task—to create subnet blocks for all possible values in the “just left” octet—completes the process. Essentially, create 256 blocks like the previous list. The first has a value of 0, in the “just left” octet; the next has a value of 1; the next, a value of 2; and so on, through a block that begins with 10.255. Figure I-2 shows the concept.

Figure I-2  Creating Subnet Blocks by Adding 1 in the “Just Left” Octet

<table>
<thead>
<tr>
<th>Just Left</th>
<th>Just Left</th>
<th>Just Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. 0. 0. 0</td>
<td>10. 1. 0. 0</td>
<td>10. 2. 0. 0</td>
</tr>
<tr>
<td>10. 0. 8. 0</td>
<td>10. 1. 8. 0</td>
<td>10. 2. 8. 0</td>
</tr>
<tr>
<td>10. 0. 16. 0</td>
<td>10. 1. 16. 0</td>
<td>10. 2. 16. 0</td>
</tr>
<tr>
<td>10. 0. 24. 0</td>
<td>10. 1. 24. 0</td>
<td>10. 2. 24. 0</td>
</tr>
<tr>
<td>10. 0. 32. 0</td>
<td>10. 1. 32. 0</td>
<td>10. 2. 32. 0</td>
</tr>
<tr>
<td>10. 0. 40. 0</td>
<td>10. 1. 40. 0</td>
<td>10. 2. 40. 0</td>
</tr>
<tr>
<td>10. 0. ... 0</td>
<td>10. 1. ... 0</td>
<td>10. 2. ... 0</td>
</tr>
<tr>
<td>10. 0.248. 0</td>
<td>10. 1.248. 0</td>
<td>10. 2.248. 0</td>
</tr>
</tbody>
</table>
Additional Scenarios

Each chapter of this book focuses on a small set of related topics so that you can more easily digest the material. However, the CCNA exams require that you be able to apply a relatively wide set of topics to answer an individual question. Oftentimes, the skills for applying the wide-ranging topics to solve a single problem can be best learned through experience. Even so, many CCNA candidates may not get on-the-job experience with all technologies on the CCNA exams, and some may not get any experience. The scenarios included in this book attempt to provide some of the same exam-preparation benefits as would on-the-job experience.

You can think of each scenario as a slice of what you might do in a real networking job, with an experienced mentor walking through the solutions with you after you have tried to solve a particular problem. Each scenario presents a variety of internetwork topologies, concepts, commands, and protocols, with a variety of tasks. By reading over the scenarios, and doing the exercises and answering the open-ended questions listed with the scenarios, you can practice applying different knowledge areas to the same scenario. By reading the answers, you can see at least one possible solution to the problems listed in the scenario, along with the reasons why that solution makes sense.

The two scenarios in this chapter are

- IP Address Planning, Configuration, and Analysis
- CDP Analysis

**Scenario 1: IP Address Planning, Configuration, and Analysis**

This scenario presents a typical progression of the tasks required to deploy a new network, particularly the tasks related to IP addressing and subnetting. This scenario has three parts, listed as Parts A, B, and C. Part A begins with some planning guidelines that mainly consist of planning an IP addressing scheme for a network. After you complete Part A, Part B of the scenario asks you to configure the three routers and one switch to implement the planned design. Finally, Part C asks you to examine router command output and answer
questions about the details of current operation of the network. Part C also lists some questions related to the user interface and protocol specifications.

Scenario 1, Part A: Planning
Your job is to deploy a new network with three sites, as shown in Figure J-1. The decision to use point-to-point serial links has already been made, and the products have been chosen. For Part A of this scenario, perform the following tasks:

**Step 1** Plan the IP addressing and subnets used in this network. Use Class B network 163.1.0.0. Use the same mask throughout the Class B network, and choose a mask that supports subnets that have up to 100 hosts.

**Step 2** Assign IP addresses to the PCs as well.

**Step 3** Assign addresses for the switches near R1 for management purposes.

Figure J-1 Scenario 1 Network Diagram
Assume that a single VLAN is used on the switches near Router 1 (R1).

Tables J-1 and J-2 are provided as a convenient place to record your IP subnets and IP addresses when performing the planning tasks for this scenario.

**Table J-1  Scenario 1, Part A: IP Subnet and IP Address Planning Chart**

<table>
<thead>
<tr>
<th>Location of Subnet/Network Geographically</th>
<th>Subnet Mask</th>
<th>Subnet Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 Ethernet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2 Ethernet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3 Ethernet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial between R1 and R2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial between R1 and R3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial between R2 and R3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Table J-2  Scenario 1, Part A: IP Address Planning Chart**

<table>
<thead>
<tr>
<th>Host</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC11</td>
<td></td>
</tr>
<tr>
<td>PC12</td>
<td></td>
</tr>
<tr>
<td>PC13</td>
<td></td>
</tr>
<tr>
<td>PC21</td>
<td></td>
</tr>
<tr>
<td>PC31</td>
<td></td>
</tr>
<tr>
<td>PC32</td>
<td></td>
</tr>
<tr>
<td>SW1</td>
<td></td>
</tr>
<tr>
<td>SW2</td>
<td></td>
</tr>
<tr>
<td>SW3</td>
<td></td>
</tr>
<tr>
<td>R1–E0</td>
<td></td>
</tr>
<tr>
<td>R1–S0</td>
<td></td>
</tr>
<tr>
<td>R1–S1</td>
<td></td>
</tr>
</tbody>
</table>

continues
Scenario 1, Part A: Solution

It is a good idea to keep the design as simple as possible, without making it so simple that it will not be useful as the network evolves. In this case, any subnet mask with at least 7 host bits would work, including the easy mask of 255.255.255.0. Any choice of mask between 255.255.224.0 and 255.255.255.128 would have allowed for 6 subnets and 100 hosts per subnet.

Table J-3 shows one solution for the subnet numbers chosen, using mask 255.255.255.128, with Table J-4 showing some sample IP address assignments.

Table J-2  Scenario 1, Part A: IP Address Planning Chart (Continued)

<table>
<thead>
<tr>
<th>Host</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2–E0</td>
<td></td>
</tr>
<tr>
<td>R2–S0</td>
<td></td>
</tr>
<tr>
<td>R2–S1</td>
<td></td>
</tr>
<tr>
<td>R3–E0</td>
<td></td>
</tr>
<tr>
<td>R3–S0</td>
<td></td>
</tr>
<tr>
<td>R3–S1</td>
<td></td>
</tr>
<tr>
<td>Server 1</td>
<td></td>
</tr>
<tr>
<td>Server 2</td>
<td></td>
</tr>
<tr>
<td>Server 3</td>
<td></td>
</tr>
</tbody>
</table>

Table J-3  Scenario 1, Part A: The Completed IP Subnet Planning Chart

<table>
<thead>
<tr>
<th>Location of Subnet/Network Geographically</th>
<th>Subnet Mask</th>
<th>Subnet Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 Ethernet</td>
<td>255.255.255.128</td>
<td>163.1.1.128</td>
</tr>
<tr>
<td>R2 Ethernet</td>
<td>255.255.255.128</td>
<td>163.1.2.128</td>
</tr>
<tr>
<td>R3 Ethernet</td>
<td>255.255.255.128</td>
<td>163.1.3.128</td>
</tr>
<tr>
<td>Serial between R1 and R2</td>
<td>255.255.255.128</td>
<td>163.1.12.128</td>
</tr>
<tr>
<td>Serial between R1 and R3</td>
<td>255.255.255.128</td>
<td>163.1.13.128</td>
</tr>
<tr>
<td>Serial between R2 and R3</td>
<td>255.255.255.128</td>
<td>163.1.23.128</td>
</tr>
</tbody>
</table>
As long as the numbers are in the right subnet, the actual IP addresses that you chose for your answer are fine. I just picked numbers between 200 and 209 for the last octet for router addresses, and between 210 and 239 for the switches and PCs. In real networks, you might reserve particular ranges of last octet values in each subnet for network overhead devices. For instance, all of your routers’ LAN interface IP addresses might always be between 1 and 5.

### Table J-4  Scenario 1, Part A: The Completed IP Address Planning Chart

<table>
<thead>
<tr>
<th>Host</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC11</td>
<td>163.1.1.211</td>
</tr>
<tr>
<td>PC12</td>
<td>163.1.1.212</td>
</tr>
<tr>
<td>PC13</td>
<td>163.1.1.213</td>
</tr>
<tr>
<td>PC21</td>
<td>163.1.2.221</td>
</tr>
<tr>
<td>PC31</td>
<td>163.1.3.231</td>
</tr>
<tr>
<td>PC32</td>
<td>163.1.3.232</td>
</tr>
<tr>
<td>SW1</td>
<td>163.1.1.214</td>
</tr>
<tr>
<td>SW2</td>
<td>163.1.1.215</td>
</tr>
<tr>
<td>SW3</td>
<td>163.1.1.216</td>
</tr>
<tr>
<td>R1–E0</td>
<td>163.1.1.201</td>
</tr>
<tr>
<td>R1–S0</td>
<td>163.1.12.201</td>
</tr>
<tr>
<td>R1–S1</td>
<td>163.1.13.201</td>
</tr>
<tr>
<td>R2–E0</td>
<td>163.1.2.202</td>
</tr>
<tr>
<td>R2–S0</td>
<td>163.1.12.202</td>
</tr>
<tr>
<td>R2–S1</td>
<td>163.1.23.202</td>
</tr>
<tr>
<td>R3–E0</td>
<td>163.1.3.203</td>
</tr>
<tr>
<td>R3–S0</td>
<td>163.1.13.203</td>
</tr>
<tr>
<td>R3–S1</td>
<td>163.1.23.203</td>
</tr>
<tr>
<td>Server 1</td>
<td>163.1.1.241</td>
</tr>
<tr>
<td>Server 2</td>
<td>163.1.1.242</td>
</tr>
<tr>
<td>Server 3</td>
<td>163.1.2.243</td>
</tr>
</tbody>
</table>
**Scenario 1, Part B: Configuration**

The next step in your job is to deploy the network designed in Part A. Perform the following tasks:

**Step 1** Configure IP addresses based on the design from Part A.

**Step 2** Configure RIP Version 2 (RIP-2) on each router.

**Step 3** Use PPP as the data-link protocol on the link between R2 and R3. Use the default serial encapsulation elsewhere.

**Step 4** Configure basic administrative settings for SW3, assuming that it is a 2960 series switch. Set the host name, IP address, default gateway, enable password, Telnet password, and console password. Save the configuration as well.

**Scenario 1, Part B: Solution**

Examples J-1, J-2, J-3, and J-4 show the configurations for Part B.

**Example J-1  R1 Configuration**

```plaintext
hostname R1
!
interface Serial0
 ip address 163.1.12.201 255.255.255.128
!
interface Serial1
 ip address 163.1.13.201 255.255.255.128
!
Ethernet0
 ip address 163.1.1.201 255.255.255.128
!
router rip
 network 163.1.0.0
 version 2
```

**Example J-2  R2 Configuration**

```plaintext
hostname R2
!
interface Serial0
 ip address 163.1.12.202 255.255.255.128
!
interface Serial1
 encapsulation ppp
 ip address 163.1.23.202 255.255.255.128
!```
Example J-2 R2 Configuration (Continued)

```plaintext
Ethernet0
  ip address 163.1.2.202 255.255.255.128

! the following 2 commands configure RIP.
!
router rip
  network 163.1.0.0
  version 2
```

Example J-3 R3 Configuration

```plaintext
hostname R3

! interface Serial0
  ip address 163.1.13.203 255.255.255.128

! interface Serial1
  encapsulation ppp
  ip address 163.1.13.203 255.255.255.128

! Ethernet0
  ip address 163.1.3.203 255.255.255.128

! router rip
  network 163.1.0.0
  version 2
```

Example J-4 SW3 Configuration

```plaintext
Switch>enable
Switch#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#hostname SW3
SW3(config)#enable secret cisco
SW3(config)#line vty 0 15
SW3(config-line)#password cisco
SW3(config-line)#login
SW3(config-line)#line con 0
SW3(config-line)#login
SW3(config-line)#password cisco
SW3(config-line)#interface vlan 1
SW3(config-if)#ip address 163.1.1.216 255.255.255.128
SW3(config-if)#no shutdown
SW3(config-if)#exit
SW3(config)#ip default-gateway 163.1.1.201
```

continues
Scenario 1, Part C: Verification and Questions

The ICND1 exam tests you on your memory of the kinds of information you can find in the output of various `show` commands. Using Examples J-5, J-6, and J-7 as references, answer the questions following the examples.

NOTE In the network from which these commands were captured, several administrative settings not mentioned in the scenario were configured. For example, the enable password was configured. So, the configurations might contain additional items not specifically mentioned in the instructions, but none of those impact the actual behavior of the features discussed in the scenario.

Example J-5 Scenario 1, Part C: R1 show and debug Output

```
R1# show ip interface brief
Interface          IP-Address     OK? Method Status                Protocol
Serial0            163.1.12.201    YES NVRAM  up                    up
Serial1            163.1.13.201    YES NVRAM  up                    up
Ethernet0          163.1.1.201     YES NVRAM  up                    up

R1# show access-lists
Standard IP access list 83
   deny 163.1.3.0, wildcard bits 0.0.0.127
   permit any

R1#
```

Example J-6 Scenario 1, Part C: R2 show and debug Output

```
R2# show interface
Serial0 is up, line protocol is up
   Hardware is HD64570
   Internet address is 163.1.12.202/25
   MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec,
   reliability 255/255, txload 1/255, rxload 1/255
```
Example J-6 Scenario 1, Part C: R2 show and debug Output (Continued)

Encapsulation HDLC, loopback not set
Keepalive set (10 sec)
Last input never, output never, output hang never
Last clearing of 'show interface' counters never
Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
Queueing strategy: weighted fair
Output queue: 0/1000/64/0 (size/max total/threshold/drops)
 Conversations 0/0/256 (active/max active/max total)
 Reserved Conversations 0/0 (allocated/max allocated)
Available Bandwidth 1158 kilobits/sec
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
 1242 packets input, 98477 bytes, 0 no buffer
 Received 898 broadcasts, 0 runts, 0 giants, 0 throttles
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
 1249 packets output, 91395 bytes, 0 underruns
 0 output errors, 0 collisions, 2 interface resets
 0 output buffer failures, 0 output buffers swapped out
 12 carrier transitions
DCD=up DSR=up DTR=up RTS=up CTS=up
Serial1 is up, line protocol is up
Hardware is HD64570
Internet address is 163.1.23.202/25
 MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec,
 reliability 255/255, txload 1/255, rxload 1/255
Encapsulation PPP, loopback not set
Keepalive set (10 sec)
LCP Open
Open: IPCP, CDPCP
Last input 00:00:03, output 00:00:03, output hang never
Last clearing of 'show interface' counters 00:00:15
Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
Queueing strategy: weighted fair
Output queue: 0/1000/64/0 (size/max total/threshold/drops)
 Conversations 0/1/256 (active/max active/max total)
 Reserved Conversations 0/0 (allocated/max allocated)
Available Bandwidth 1158 kilobits/sec
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
 1654 packets input, 90385 bytes, 0 no buffer
 Received 1644 broadcasts, 0 runts, 0 giants, 0 throttles
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
 1674 packets output, 96130 bytes, 0 underruns
 0 output errors, 0 collisions, 8 interface resets
 0 output buffer failures, 0 output buffers swapped out
 13 carrier transitions
DCD=up DSR=up DTR=up RTS=up CTS=up
continues
Example J-6 Scenario 1, Part C: R2 show and debug Output (Continued)

Ethernet0 is up, line protocol is up
Hardware is MCI Ethernet, address is 0000.0c89.b170 (bia 0000.0c89.b170)
Internet address is 163.1.2.202, subnet mask is 255.255.255.128
MTU 1500 bytes, BW 10000 Kbit, DLY 1000 usec,
 reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set, keepalive set (10 sec)
ARP type: ARPA, ARP Timeout 4:00:00
Last input 00:00:00, output 00:00:04, output hang never
 Last clearing of "show interface" counters never
Queuing strategy: fifo
Output queue 0/40, 0 drops; input queue 0/75, 0 drops
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
 2274 packets input, 112381 bytes, 0 no buffer
 Received 1913 broadcasts, 0 runts, 0 giants, 0 throttles
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
 863 packets output, 110146 bytes, 0 underruns
 0 output errors, 0 collisions, 2 interface resets
 0 output buffer failures, 0 output buffers swapped out
 6 transitions

R2# show ip protocol
Routing Protocol is 'rip'
Sending updates every 30 seconds, next due in 6 seconds
Invalid after 180 seconds, hold down 180, flushed after 240
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Redistributing: rip
 Default version control: send version 2, receive version 2
 Interface Send Recv Key-chain
 Serial0 2 2
 Serial1 2 2
 Ethernet0 2 2
Automatic network summarization is in effect
 Maximum path: 4
Routing for Networks:
 163.1.0.0
Routing Information Sources:
 Gateway Distance Last Update
 163.1.12.201 120 00:00:02
 163.1.23.203 120 00:00:09
 Distance: (default is 120)
Example J-7 Scenario 1, Part C: R3 show and debug Output

R3#show running-config
Building configuration...

Current configuration : 888 bytes
!
version 12.2
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname R3
!
enable secret 5 1J3Fz$QaEYNiIi2aMu.3Ar.q0Xm.
!
ip subnet-zero
no ip domain-lookup
!
interface Serial0
 ip address 163.1.13.203 255.255.255.128
 no fair-queue
!
interface Serial1
 ip address 163.1.23.203 255.255.255.128
 encapsulation ppp
!
interface Ethernet0
 ip address 163.1.3.203 255.255.255.128
!
router rip
 network 163.1.0.0
 version 2
!
ip classless
no ip http server
!
!
line con 0
 password cisco
 login
line aux 0
line vty 0 4
continues
Example J-7 Scenario 1, Part C: R3 show and debug Output (Continued)

```
password cisco
login
!
end

R3#show ip arp
Protocol Address Age(min) Hardware Addr Type Interface
Internet 163.1.3.203 - 0000.0c89.b1b0 SNAP Ethernet0

R3#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route

Gateway of last resort is not set

163.1.0.0/16 is variably subnetted, 7 subnets, 2 masks
R  163.1.2.128/25 [120/1] via 163.1.23.202, 00:00:22, Serial1
C  163.1.3.203 is directly connected, Ethernet0
R  163.1.3.128/25 [120/1] via 163.1.13.201, 00:00:28, Serial0
R  163.1.12.128/25 [120/1] via 163.1.13.201, 00:00:28, Serial0
[120/1] via 163.1.23.202, 00:00:22, Serial1
C  163.1.13.128/25 is directly connected, Serial0
C  163.1.23.128/25 is directly connected, Serial1
C  163.1.23.202/32 is directly connected, Serial1

R3#trace 163.1.1.211

Type escape sequence to abort.
Tracing the route to 163.1.1.211

1 163.1.13.201 16 msec 16 msec 16 msec
2 163.1.1.211 44 msec * 32 msec

R3#ping 163.1.1.211

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 163.1.1.211, timeout is 2 seconds:
!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 64/66/68 ms
```
Answer the following questions using Examples J-5, J-6, and J-7 as references:

1. Which commands in the examples listed a router’s own IP addresses?
2. Which commands in the examples listed neighboring routers’ IP addresses?
3. Referring to Example J-7, which IP route does R3 use when the ping 163.1.1.211 command is used?
4. What command is used to find the path a packet would take from R3 to 163.1.1.1?
5. Imagine that R3’s E0 interface needs to use a new IP address and mask (10.1.1.1, 255.255.255.0). If the user is in user mode, what steps are necessary to change the IP address?
6. Which command tells how much time has passed since R2 last received a RIP update from R3? How much time has passed in this case?
7. Based on the IP addresses configured for Part A of this scenario, which IP subnets did you expect to see in the R1, R2, and R3 routing tables? Did you see all those routes in R3’s routing table (Example J-7)? Did you see any additional routes?

Scenario 1, Part C: Solution
The answers to the questions for Part C are as follows:

1. The show running-config, show ip interface brief, and show interfaces commands each list a router’s own IP address. Also, the show ip arp command lists a router’s own IP address on LAN interfaces.
2. The show ip protocol command lists a neighboring router’s IP address in cases in which the neighboring router is sending routing updates. Also, the show ip route command lists the next-hop router for routes learned from neighboring routers.
3. To answer this question, you need to analyze the IP subnets and masks (shown in prefix format). In this case, subnet 163.1.1.128/25 contains IP addresses 163.1.1.129 through 163.1.1.254, with a subnet number of 163.1.1.128 and a subnet broadcast address of 163.1.1.255. So, R3 would match the route listed for subnet 163.1.1.128/25, and then send the packet out R3’s Serial0 interface to R1 (163.1.13.201) next.
4. The trace 163.1.1.1 command.
5. The following steps should be used:

```bash
R3> enable
password: password
R3#configure terminal
R3(config)#interface ethernet 0
R3(config-if)#ip address 10.1.1.1 255.255.255.0
R3(config-if)#exit
R3(config)#interface serial 0
R3(config-if)#ip address 163.1.1.1 255.255.255.0
R3(config-if)#exit
R3(config)#interface serial 1
R3(config-if)#ip address 163.1.1.2 255.255.255.0
R3(config-if)#exit
R3(config)#interface serial 2
R3(config-if)#ip address 163.1.1.3 255.255.255.0
R3(config-if)#exit
R3(config)#ip default-gateway 163.1.1.254
R3#exit
```
6. The `show ip protocol` command lists each neighboring router from which routes have been learned, and the time since an update or hello has been heard from that neighbor. In this case, Example J-6 shows that the last update from 163.1.23.203 (R3), received on R2, was 9 seconds ago.

7. The subnets were listed in Table J-4 earlier in this scenario, each with a /25 prefix length (listed in mask format of 255.255.255.128 in Table J-4). The `show ip route` command on R3 (Example J-7) lists seven subnets—the six subnets listed in Table J-4, plus subnet 163.1.23.202/32. By default, PPP adds a route for the neighboring router’s IP address, with a /32 prefix length, to the routing table. The /32 prefix means that the route matches packets to that single IP address only—163.1.23.202 in this case.

Scenario 2: CDP Analysis

This scenario focuses on Cisco Discovery Protocol (CDP). CDP provides a lot of useful information in real internetworks, and it can be easily used for testing your knowledge of basic network designs—two reasons why it can be a popular exam topic, particularly for the ICND1 exam.

Scenario 2, Part A: CDP Command Output Memory Exercise

Part A makes you think about CDP command output before looking at any examples. For this part, you need to list all variations of options on the `show cdp` command, for example `show cdp neighbor`. Additionally, you should note which of the `show cdp` command options supply the following pieces of information:

1. The name of one or more neighboring devices
2. The capabilities (functions supported by) a neighboring device (for example, router)
3. The IOS revision running on the neighboring device
4. The platform of the neighboring device
5. The interface/port used on the local device with which to connect to a particular CDP neighbor
6. The interface/port used on the neighboring device
7. An IP address on a neighboring router
8. An IP address on a neighboring Layer 2 switch
9. The STP port status on a neighboring Layer 2 switch
10. Statistics about the number of CDP messages received from the neighboring device on a point-to-point WAN link
11. A list of CDP neighbors known by the neighboring device

12. The complete list of interfaces on which CDP is enabled on a local device

To perform this task, you can write the answers on any scrap of paper. However, the upcoming answer lists the answers in a table, with the commands across the top, and the numbers from the preceding list on the left side of the table.

Scenario 2, Part A: Solution

One of the keys to remembering all the CDP commands and their output is to remember that only the *neighbor* and *entry* options on the `show cdp` command actually list information about neighbors. The `show cdp interfaces` and `show cdp` commands simply list the per-interface and global configuration settings, respectively. Finally, the `show cdp traffic` command lists traffic statistics about sent and received CDP updates.

One additional perspective to remember is that the `show cdp neighbors detail` and `show cdp entry name` commands each list the exact same information, with the same format. The only difference is that the `show cdp entry name` command lists information only about the neighbor whose name is listed in the command, whereas `show cdp neighbors detail` lists information about every CDP neighbor.

Table J-5 lists the 12 items requested in the Scenario 2, Part A questions, along with the commands that supply each piece of information. In particular, note that CDP does not identify any STP information, so for item number 9, none of the cells in the table are marked.

Table J-5 CDP Command Options and Information Listed

<table>
<thead>
<tr>
<th>Reference Number</th>
<th><code>show cdp neighbor</code></th>
<th><code>show cdp neighbor detail (and show cdp entry name)</code></th>
<th><code>show cdp interface</code></th>
<th><code>show cdp traffic</code></th>
<th><code>show cdp</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continues
Table J-5
CDP Command Options and Information Listed (Continued)

<table>
<thead>
<tr>
<th>Reference Number</th>
<th>show cdp neighbor</th>
<th>show cdp neighbor detail (and show cdp entry name)</th>
<th>show cdp interface</th>
<th>show cdp traffic</th>
<th>show cdp</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Scenario 2, Part B: Draw an Internetwork Diagram Using CDP Command Output

Your sole task for Part B is to create a diagram of an internetwork solely based on the output of several `show cdp` commands on the various devices. Use the command output shown in Example J-8 through Example J-12 to build the network diagram.

Please keep the following three important notes in mind when solving this puzzle. First, try to avoid looking at Figure J-2, which shows the solution, until you have finished your own work. Second, although you can draw the diagram with the devices located anywhere you like, if you place the routers in the figure with the lower-numbered routers at the top of your figure, and higher-numbered routers at the bottom, your figure will more closely match the sample answer shown at the end of this scenario. For the switches, you might want to just put them somewhat close to the routers to which they are connected. Lastly, to reduce clutter, include only the following in the figure:

- Routers and switches
- Their connecting links
- Interface numbers used to connect these devices

In addition to drawing the diagram, list the following information:

- The names and device type (platform) of each device
- Software version running on each device (feel free to list this information to the side of the figure, to reduce clutter)
- Interfaces in an up/up state but for which no CDP neighbors have been discovered

Note that you will not be able to find all of the information for all devices from the output in the examples, but do try to find as much as you can.
Scenario 2: CDP Analysis

Example J-8 CDP Output for the Device Named “One”

```
One#show cdp
Global CDP information:
    Sending CDP packets every 60 seconds
    Sending a holdtime value of 180 seconds
    Sending CDPv2 advertisements is enabled

One#show cdp neighbors
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
                  S - Switch, H - Host, I - IGMP, r - Repeater

Device ID Local Intrfce   Holdtime Capability Platform Port ID
Seven     Fas 0/0           126        S I      WS-C3550- Fas 0/11
Two       Ser 0/0/1         167        R S I     1841      Ser 0/0/1

One#show cdp entry Seven

-------------------------
Device ID: Seven
Entry address(es):
    IP address: 10.10.5.2
Platform: Cisco WS-C3550-24, Capabilities: Switch IGMP
Interface: FastEthernet0/0, Port ID (outgoing port): FastEthernet0/11
Holdtime : 122 sec

Version :
Cisco IOS Software, C3550 Software (C3550-I5Q3L2-M), Version 12.2(25)SE, RELEASE SOFTWARE (fc)
Copyright (c) 1986-2004 by Cisco Systems, Inc.
Compiled Wed 10-Nov-04 18:07 by yenanh

advertisement version: 2
Protocol Hello: OUI=0x00000C, Protocol ID=0x0112; payload len=27,
value=00000000FFFFFF810221FF00000000000000AB7DC8780FF0000
VTP Management Domain: ''
Native VLAN: 1
Duplex: full

Example J-9  CDP Output for the Device Named “Two”

```
Two#show cdp neighbors detail

Device ID: Five
Entry address(es):
 IP address: 10.10.2.2
Platform: Cisco 1841, Capabilities: Router Switch IGMP
Interface: Serial0/1/1, Port ID (outgoing port): Serial0/1/0
Holdtime : 164 sec
```

continues
Example J-9  CDP Output for the Device Named “Two” (Continued)

Version:
Cisco IOS Software, 1841 Software (C1841-ADVENTERPRISEK9-M), Version 12.4(9)T, RELEASE SOFTWARE (fc1)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2006 by Cisco Systems, Inc.
Compiled Fri 16-Jun-06 21:26 by prod_rel_team

advertisement version: 2
VTP Management Domain: '

-------------------------
Device ID: One
Entry address(es):
  IP address: 10.10.1.1
Platform: Cisco 1841, Capabilities: Router Switch IGMP
Interface: Serial0/0/1, Port ID (outgoing port): Serial0/0/1
Holdtime: 155 sec

Version:
Cisco IOS Software, 1841 Software (C1841-ADVENTERPRISEK9-M), Version 12.4(9)T, RELEASE SOFTWARE (fc1)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2006 by Cisco Systems, Inc.
Compiled Fri 16-Jun-06 21:26 by prod_rel_team

advertisement version: 2
VTP Management Domain: '

-------------------------
Device ID: Three
Entry address(es):
  IP address: 10.10.3.2
Platform: Cisco 1841, Capabilities: Router Switch IGMP
Interface: Serial0/1/0, Port ID (outgoing port): Serial0/1/0
Holdtime: 142 sec

Version:
Cisco IOS Software, 1841 Software (C1841-ADVIPSERVICESK9-M), Version 12.3(11)T3, RELEASE SOFTWARE (fc4)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2005 by Cisco Systems, Inc.
Compiled Tue 25-Jan-05 14:20 by pwade

advertisement version: 2
VTP Management Domain: '
Two#show cdp interface
Scenario 2: CDP Analysis

Example J-9  
**CDP Output for the Device Named “Two” (Continued)**

```
FastEthernet0/0 is up, line protocol is up
 Encapsulation ARPA
 Sending CDP packets every 60 seconds
 Holdtime is 180 seconds
FastEthernet0/1 is administratively down, line protocol is down
 Encapsulation ARPA
 Sending CDP packets every 60 seconds
 Holdtime is 180 seconds
Serial0/0/0 is administratively down, line protocol is down
 Encapsulation HDLC
 Sending CDP packets every 60 seconds
 Holdtime is 180 seconds
Serial0/0/1 is up, line protocol is up
 Encapsulation HDLC
 Sending CDP packets every 60 seconds
 Holdtime is 180 seconds
Serial0/1/0 is up, line protocol is up
 Encapsulation HDLC
 Sending CDP packets every 60 seconds
 Holdtime is 180 seconds
Serial0/1/1 is up, line protocol is up
 Encapsulation HDLC
 Sending CDP packets every 60 seconds
 Holdtime is 180 seconds
```

Example J-10  
**CDP Output for the Device Named “Three”**

```
Three# show cdp neighbors
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
 S - Switch, H - Host, I - IGMP, r - Repeater

Device ID Local Intrfce Holdtme Capability Platform Port ID
Four Fas 0/0 165 S I WS-C2950-2Fas 0/13
Two Ser 0/1/0 169 R S I 1841 Ser 0/1/0
```

Example J-11  
**CDP Output for the Device Named “Four”**

```
Four# show cdp neighbors
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
 S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone

Device ID Local Intrfce Holdtme Capability Platform Port ID
Six Fas 0/4 148 S I WS-C2950T-Fas 0/3
Three Fas 0/13 149 R S I Cisco 1841Fas 0/0
```
Scenario 2, Part B: Solution

To build the diagram, you need to look at the `show cdp neighbors`, `show cdp neighbors detail`, and `show cdp entry name` commands in Example J-8 through Example J-12. Each of these commands lists neighboring device names, the local device’s interface connecting it to the neighbor, the neighbor’s interface on the other end of the link, and the neighbor’s device type (platform). With these four pieces of information in hand, you can decide whether to draw a router or switch icon for the neighboring device, list its name, and put interface numbers on each end of the link.

To help you see the specific information you need to focus on to draw the figure, Example J-13 repeats a part of Example J-8, taken from device One, highlighting these details.

Example J-13  Highlighted CDP Output for the Device Named “One”

```
! The highlighted portions below show that device "One" connects to device "Seven"
! using One’s local Fa0/0 interface. Seven uses its Fa0/11 interface. Seven’s "platform" is listed as WS-C3550-, which is a 3550 workgroup switch.
One#show cdp neighbors
```
Scenario 2: CDP Analysis

Example J-13  *Highlighted CDP Output for the Device Named “One” (Continued)*

<table>
<thead>
<tr>
<th>Device ID</th>
<th>Local Interface</th>
<th>Holdtime</th>
<th>Capability</th>
<th>Platform</th>
<th>Port ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seven</td>
<td>Fas 0/0/1</td>
<td>126</td>
<td>S I</td>
<td>WS-C3550</td>
<td>Fa0/11</td>
</tr>
<tr>
<td>Two</td>
<td>Ser 0/0/1</td>
<td>167</td>
<td>R S I</td>
<td>1841</td>
<td>Ser 0/0/1</td>
</tr>
</tbody>
</table>

Figure J-2 shows the completed internetwork diagram that could be drawn based on the information in the CDP output from Examples J-8 through J-12.

Table J-6 lists the rest of the information requested for Part B. Finding all the information listed in the table requires a bit of detective work. First, Examples J-8 through J-12 did not list the IOS version used by every device, so in those cases, the Cisco IOS Software Release column simply says “not shown.” Next, only Example J-9 (from device Two) listed any...
information about which interfaces were up/up; from that information, you could see the
four up/up interfaces on Two, and only three CDP neighbors, meaning that Two had not
discovered a neighbor on one up/up interface. Finally, the platform field in the `show cdp
neighbors` command happens to truncate the output in some cases, often truncating
the platform type field. However, the output of the `show cdp neighbors detail` and `show cdp
entry name` commands do not truncate the platform type. So, if your answers omitted the
last few characters of the platform type compared to Table J-6, you might want to go back
and look more closely at a few of the other CDP commands.

Table J-6  Additional Information Learned via CDP Beyond Figure J-2

<table>
<thead>
<tr>
<th>Device Name</th>
<th>Cisco IOS Software Release</th>
<th>Platform</th>
<th>Up/up Interfaces on Which No Neighbors Were Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>12.4(9)T</td>
<td>1841</td>
<td>Not shown</td>
</tr>
<tr>
<td>Two</td>
<td>Not shown</td>
<td>1841</td>
<td>Fa0/0</td>
</tr>
<tr>
<td>Three</td>
<td>12.3(11)T3</td>
<td>1841</td>
<td>Not shown</td>
</tr>
<tr>
<td>Four</td>
<td>Not shown</td>
<td>WS-C2950-2</td>
<td>Not shown</td>
</tr>
<tr>
<td>Five</td>
<td>12.4(9)T</td>
<td>1841</td>
<td>Not shown</td>
</tr>
<tr>
<td>Six</td>
<td>12.1(22)EA1</td>
<td>WS-C2950T-24</td>
<td>Not shown</td>
</tr>
<tr>
<td>Seven</td>
<td>12.2(25)SE</td>
<td>WS-C3550-24</td>
<td>Not shown</td>
</tr>
</tbody>
</table>

1. The `show cdp neighbors` command in Example J-10 lists “WS-C2950-2” as the platform; this command truncates
the output to fit. The real device type is WS-C2950-24 (referring to 24 10/100 ports).

Scenario 2, Part C: CDP Configuration

This final step requires you to configure CDP. Write down the CDP configuration
commands required to achieve the following:

- On the device named Two, disable CDP on all interfaces out which no CDP
  neighbor has yet been found (according to the `show cdp` commands in Examples J-8
  through J-12).

- On the device named Three, disable CDP so that this device does not send CDP
  updates on any interface. Use as few commands as possible.
Scenario 2, Part C: Solution

This last step is just a reminder of how to enable and disable CDP on a single interface (as shown in Example J-14) and how to enable and disable CDP globally (as shown in Example J-15). The `cdp enable` and `no cdp enable` interface subcommands enable and disable CDP, respectively, on that interface. The `cdp run` and `no cdp run` commands enable and disable, respectively, CDP on the entire device.

Example J-14  *Disabling CDP on One Interface, Device “Two”*

```
interface fastethernet 0/0
no cdp enable
```

Example J-15  *Disabling CDP Globally on Device “Three”*

```
no cdp run
```
This page intentionally left blank
Video Reference

This appendix provides a reference that can be used when viewing eight subnetting videos included with both the *CCENT/CCNA ICND1 Official Exam Certification Guide* and the *CCNA ICND2 Official Exam Certification Guide*. The purpose of this short appendix is simple: Instead of having to scroll around in the video to view a particular figure or detail, you can keep this PDF handy and refer to it while watching the video so that you do not have to go back and forth inside the video.

This appendix contains no additional information as compared to the videos; it is simply available as an additional tool when watching the videos.

**NOTE** If you have both *Official Cert Guides*, note that this appendix is identical in the DVD accompanying both books.

The eight subnetting videos on this DVD use the same mental processes described in Chapters 17 and 18 of the *ICND1 Official Cert Guide*. Table K-1 lists the videos, a brief description, and a reference to the related chapter. Also, note that the videos themselves make some references to a naming scheme from an older version of the book, in which the book referenced the various subnetting processes as reference pages, or RP for short. When watching the videos, you can ignore those references; the table lists the old terms as well.

Table K-1  Subnetting Videos

<table>
<thead>
<tr>
<th>ICND1 Chapter</th>
<th>“RP” Cross Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>RP-5C</td>
</tr>
<tr>
<td>17</td>
<td>RP-5C</td>
</tr>
<tr>
<td>17</td>
<td>RP-5C</td>
</tr>
<tr>
<td>17</td>
<td>RP-6C</td>
</tr>
<tr>
<td>17</td>
<td>RP-6C</td>
</tr>
<tr>
<td>17</td>
<td>RP-6C</td>
</tr>
<tr>
<td>18</td>
<td>RP-7C</td>
</tr>
<tr>
<td>18</td>
<td>RP-7C</td>
</tr>
</tbody>
</table>
Additionally, each of the two books also includes a sample video from the CCNA Video Mentor (CVM) product, as follows:

- Switch Basics: Learning, Forwarding/Filtering, and Interface Settings (in the ICND1 book)
- NAT Overload (PAT) (in the ICND2 book)

This appendix includes a reference section for each of these videos as well, for convenience.

The reference information for each of the eight subnetting videos, and the CVM videos, are listed in the remainder of this chapter.

**Subnetting Video 1**

This video shows how to use the process summarized in Appendix E as RP-5C to find the resident subnet for:

128.200.100.100, mask 255.255.224.0 (/19)

Figure K-1 shows a still image used in the video to explain the concept of a resident subnet.

*Figure K-1  Defining the Term “Resident Subnet”*
The following list repeats the summary of the process, as shown in the video:

**Step 1** Write down the mask and IP address in a table, in dotted-decimal format.

**Step 2** Find the interesting octet of the mask—the octet that is neither a 255 or 0—and draw a rectangle around that column of the table.

**Step 3** Write down values for 3 octets of the subnet number, as follows:
   a. For octets to the left of the rectangle, copy the IP address’s value.
   b. For octets to the right of the rectangle, write down 0s.

**Step 4** For the interesting octet’s value:
   a. Calculate the magic number (256 minus the mask’s value in the interesting octet).
   b. Calculate the integer multiples of the magic number, starting at 0, through 256.
   c. Find the multiple that is closest to the IP address’s value in the interesting octet, but not bigger than the IP address’s value. Write down this multiple as the subnet number’s value in the interesting octet.

Figure K-2 shows a still image of how to use the process, up through step 3.

**Figure K-2 Finding the Resident Subnet: Through Step 3**

```
Subnet Mask	255	255	224	0
IP Address	128	200	100	100
Subnet Number	128	200		0
```

Figure K-3 shows a still image of how to use the process, step 4.
**Figure K-3  Finding the Resident Subnet: Step 4**

**Subnetting Video 2**
This video shows how to find the resident subnet for:

10.99.88.77, mask 255.255.248.0 (/21)

Refer to the summary of that process as listed in this appendix under the heading “Subnetting Video 1.”

Figure K-4 shows a still image of how to use the process, up through step 3.

**Figure K-4  Finding the Resident Subnet: Through Step 3**
Figure K-5 shows a still image of how to use the process, step 4:

**Figure K-5  Finding the Resident Subnet: Step 4**

![RP-5C: Finding the Resident Subnet](image)

Subnetting Video 3

This video shows how to find the resident subnet for:

192.168.1.150, mask 255.255.255.240 (/28)

Refer to the summary of that process as listed in this appendix under the heading “Subnetting Video 1.”

Figure K-6 shows a still image of how to use the process, up through step 3.
Appendix K: Video Reference

Figure K-6  Finding the Resident Subnet: Through Step 3

<table>
<thead>
<tr>
<th>RP-5C: Finding the Resident Subnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask: 255.255.255.240</td>
</tr>
<tr>
<td>IP address: 192.168.1.150</td>
</tr>
<tr>
<td>Subnet Mask</td>
</tr>
<tr>
<td>IP Address</td>
</tr>
<tr>
<td>Subnet Number</td>
</tr>
</tbody>
</table>

3a) Omit(s) to the left...
Copy IP address octets
3b) Omit(s) to the right...
None

Figure K-7 shows a still image of how to use the process, step 4.

Figure K-7  Finding the Resident Subnet: Step 4

<table>
<thead>
<tr>
<th>RP-5C: Finding the Resident Subnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask: 255.255.255.240</td>
</tr>
<tr>
<td>IP address: 192.168.1.150</td>
</tr>
<tr>
<td>Subnet Mask</td>
</tr>
<tr>
<td>IP Address</td>
</tr>
<tr>
<td>Subnet Number</td>
</tr>
</tbody>
</table>

4a) Calculate magic number
Magic = 256 - 240 = 16

4b) Multiples of the magic number
0, 16, 32...
128, 144, 150
...
240, 256

Subnetting Video 4

This video shows how to find the subnet broadcast address, and range of assignable addresses in the subnet, for the following subnet:

128.200.96.0, mask 255.255.224.0 (/19)

Note that this subnet is the subnet found as part of subnetting video 1.
You can refer to the ICND1 book’s Chapter 17 for details of the process, but the following list is a copy of the summarized version of the process as shown in the video. Note that the process as listed in this video starts at step 5, because the final step in the earlier videos listed step 4 as the final step.

**Step 5**  To find the subnet broadcast address:

a. For octets to the left of the rectangle, copy the subnet number or IP address’s value.

b. For octets to the right of the rectangle, write down 255s.

c. In the interesting octet, add the subnet number’s value to the magic number, and subtract 1.

**Step 6**  For the first IP address in the range of addresses, copy the subnet number, but add 1 to the 4th octet.

**Step 7**  For the last IP address in the range of addresses, copy the subnet broadcast address, but subtract 1 from the 4th octet.

Figure K-8 shows a still image from the explanation in the video about what a subnet broadcast address is, and how it is used.

**Figure K-8  Description of the Meaning and Purpose of a Subnet Broadcast Address**

- Special address in each subnet, used as a destination address so that the packet is **broadcast onto the subnet**
- **Cannot be assigned** to a host as a unicast IP address
- For example: PC2 sends packet to 128.200.127.255 - forwarded by R2 to R1, and R1 forwards onto the LAN as a broadcast
- Commonly used by DHCP Servers today

**Subnet 128.200.96.0/19**

**Subnet Broadcast Address: 128.200.127.255**

Figure K-9 shows a still image from the video of how to use the process, step 5C, which is the most difficult step in the process.
Figure K-9  Finding the Broadcast and Range: Step 5C

**RP-6C: Finding the Broadcast Address**

<table>
<thead>
<tr>
<th>Mask:</th>
<th>255.255.224.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address:</td>
<td>128.200.100.100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subnet Mask</th>
<th>255</th>
<th>255</th>
<th>224</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>128</td>
<td>200</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Subnet Number</td>
<td>128</td>
<td>Subnet interesting octet 96</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>First IP Address</td>
<td>Add magic</td>
<td>+32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last IP Address</td>
<td>Minus 1</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broadcast Addr.</td>
<td>128</td>
<td>200</td>
<td>127</td>
<td>255</td>
</tr>
</tbody>
</table>

5c) For the interesting octet...

Magic = 256 - 224 = 32

Figure K-10 shows a still image of the completed answer, with the first IP address being 1 greater than the subnet number (in the 4th octet), and the last IP address being one less than the subnet broadcast address (in the 4th octet).

Figure K-10  Finding the Broadcast and Range: Completed Process

**RP-6C: Finding the Last Address**

<table>
<thead>
<tr>
<th>Mask:</th>
<th>255.255.224.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address:</td>
<td>128.200.100.100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subnet Mask</th>
<th>255</th>
<th>255</th>
<th>224</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>128</td>
<td>200</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Subnet Number</td>
<td>128</td>
<td>200</td>
<td>96</td>
<td>0</td>
</tr>
<tr>
<td>First IP Address</td>
<td>128</td>
<td>200</td>
<td>96</td>
<td>1</td>
</tr>
<tr>
<td>Last IP Address</td>
<td>128</td>
<td>200</td>
<td>127</td>
<td>254</td>
</tr>
<tr>
<td>Broadcast Addr.</td>
<td>128</td>
<td>200</td>
<td>127</td>
<td>255</td>
</tr>
</tbody>
</table>

7) Copy first three octets of broadcast address...

...Subtract 1 from broadcast address's fourth octet
Subnetting Video 5

This video shows how to use the process to find the subnet broadcast address, and range of assignable addresses in the subnet, for the following subnet:

10.99.88.0, mask 255.255.248.0 (/21)

Note that this subnet is the subnet found as part of subnetting video 2.

You can refer to the summarized version listed in this appendix under the heading “Subnetting Video 4”.

Figure K-11 shows a still image from the video step of how to use, step 5C, which is the most difficult step in the process.

Figure K-11  Finding the Broadcast and Range: Step 5C

Figure K-12 shows a still image of the completed answer, with the first IP address being 1 greater than the subnet number (in the 4th octet), and the last IP address being one less than the subnet broadcast address (in the 4th octet).
Figure K-12  Finding the Broadcast and Range: Completed Process

<table>
<thead>
<tr>
<th>Mask</th>
<th>255.255.248.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>10.99.88.77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subnet Mask</th>
<th>255</th>
<th>255</th>
<th>248</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>10</td>
<td>99</td>
<td>88</td>
<td>77</td>
</tr>
<tr>
<td>Subnet Number</td>
<td>10</td>
<td>99</td>
<td>88</td>
<td>0</td>
</tr>
<tr>
<td>First IP Address</td>
<td>10</td>
<td>99</td>
<td>88</td>
<td>1</td>
</tr>
<tr>
<td>Last IP Address</td>
<td>10</td>
<td>99</td>
<td>95</td>
<td>254</td>
</tr>
<tr>
<td>Broadcast Addr.</td>
<td>10</td>
<td>99</td>
<td>95</td>
<td>255</td>
</tr>
</tbody>
</table>

7) Copy first three octets of broadcast address...

...Subtract 1 from broadcast address's fourth octet

Subnetting Video 6

This video shows how to use the process to find the subnet broadcast address, and range of assignable addresses in the subnet, for the following subnet:

192.168.1.144, mask 255.255.255.240 (/28)

Note that this subnet is the subnet found as part of subnetting video 3.

You can refer to the summarized version listed in this appendix under the heading “Subnetting Video 4.”

Figure K-13 shows a still image from the video step of how to use the process, step 5C, which is the most difficult step in the process.

Figure K-14 shows a still image of the completed answer, with the first IP address being 1 greater than the subnet number (in the 4th octet), and the last IP address being one less than the subnet broadcast address (in the 4th octet).
**Figure K-13**  *Finding the Broadcast and Range: Step 5C*

**RP-6C: Finding the Broadcast Address**

<table>
<thead>
<tr>
<th>Mask: 255.255.255.240</th>
<th>IP address: 192.168.1.150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subnet Mask</td>
<td>255 255 255 240</td>
</tr>
<tr>
<td>IP Address</td>
<td>192 168 1 150</td>
</tr>
<tr>
<td>Subnet Number</td>
<td>192 168 1 144</td>
</tr>
<tr>
<td>First IP Address</td>
<td></td>
</tr>
<tr>
<td>Last IP Address</td>
<td></td>
</tr>
<tr>
<td>Broadcast Addr.</td>
<td>192 168 1 159</td>
</tr>
</tbody>
</table>

5c) For the interesting octet... Magic = 256 - 240 = 16

**Figure K-14**  *Finding the Broadcast and Range: Completed Process*

**RP-6C: Finding the Last Address**

<table>
<thead>
<tr>
<th>Mask: 255.255.254.0</th>
<th>IP address: 128.200.100.160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subnet Mask</td>
<td>255 255 255 240</td>
</tr>
<tr>
<td>IP Address</td>
<td>192 168 1 150</td>
</tr>
<tr>
<td>Subnet Number</td>
<td>192 168 1 144</td>
</tr>
<tr>
<td>First IP Address</td>
<td></td>
</tr>
<tr>
<td>Last IP Address</td>
<td></td>
</tr>
<tr>
<td>Broadcast Addr.</td>
<td>192 168 1 159</td>
</tr>
</tbody>
</table>

7) Copy first three octets of broadcast address...

...Subtract 1 from broadcast address's fourth octet
Subnetting Video 7

This video shows how to find all subnets of Class B network 128.200.0.0, using mask 255.255.224.0 (/19) throughout the network.

The following list repeats the summary of the process, as demonstrated in the video:

Step 1 Write down the mask in a table, in dotted-decimal format.

Step 2 Find the interesting octet of the mask—the octet that is neither a 255 or 0—and draw a rectangle around that column of the table.

Step 3 Calculate the magic number (256 minus the mask’s value in the interesting octet).

Step 4 Write down the classful network number in the row labeled “zero subnet”.

Step 5 To find each successive subnet number:
   a. Copy the previous subnet number’s three boring octets.
   b. For the interesting octet, add the magic number to the previous subnet’s interesting octet value.

Step 6 When Step 5b’s sum is 256, stop. The subnet found before the sum of 256 is the last subnet, namely the broadcast subnet.

Figure K-15 shows the work in progress in the video through step 4.

Figure K-15 Work in Progress Through Step 4

<table>
<thead>
<tr>
<th>IP Network</th>
<th>Mask</th>
<th>2) Put box around interesting octet</th>
</tr>
</thead>
<tbody>
<tr>
<td>128.200.0.0</td>
<td>255.255.224.0</td>
<td>255 - 224 = 0</td>
</tr>
<tr>
<td>1) Write down the subnet mask</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) Calculate magic number: 256 - mask</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) Write down the network number, which is also the zero subnet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Network Bits: 16
Subnet Bits: 3
Host Bits: 13
Figure K-16 shows an image of the video near the conclusion of the first pass through step 5, which finds subnet 128.200.32.0/19.

**Figure K-16  First Pass Through Step 5**

![RP-7A: Finding All Subnet Numbers](image)

Figure K-17 shows an image of the video near the second-to-last pass through step 5, which finds the broadcast subnet 128.200.224.0/19.

**Figure K-17  Pass Through Step 5 That Finds the Broadcast Subnet**

![RP-7A: Finding All Subnet Numbers](image)
Figure K-18 shows an image of the video near the last pass through step 5, plus step 6, which helps you know to stop looking for more subnets.

Figure K-18  Last Pass Through Step 5, Plus Step 6

The video concludes showing the following 8 subnets of network 128.200.0.0, with mask/prefix length of 255.255.224.0 (/19):

- 128.200.0.0 (zero subnet)
- 128.200.32.0
- 128.200.64.0
- 128.200.96.0
- 128.200.128.0
- 128.200.160.0
- 128.200.192.0
- 128.200.224.0 (broadcast subnet)

Subnetting Video 8

This video shows how to find all subnets of Class B network 10.0.0.0, using mask 255.255.192.0 (/18) throughout the network. The video demonstrates how to find all subnets of class A network 10.0.0.0, when using only mask 255.255.192.0. The following
list repeats part of the process; see the full process listed under the heading “Subnetting Video 7.”

**Step 6** When any addition results in a sum of 256 in any octet:
   a. Write down a 0 instead of a 256 in that octet.
   b. Add 1 to the octet to the left.
   c. Continue by performing step 5 again to find the next subnet.

**Step 7** Continue until step 6b would change the network number. The previously-found subnet is the last subnet and will be the broadcast subnet.

Figure K-19 shows the work in progress in the video through step 4.

**Figure K-19** Work in Progress Through Step 4

<table>
<thead>
<tr>
<th>IP Network: 10.0.0.0</th>
<th>Mask: 255.255.192.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Write down the subnet mask</td>
<td>2) Put box around “interesting octet”</td>
</tr>
<tr>
<td>3) Calculate magic number: 256 - mask</td>
<td>256</td>
</tr>
<tr>
<td>4) Write down the network number, which is also the zero subnet</td>
<td>10</td>
</tr>
</tbody>
</table>

| Network Bits: 8 | Subnet Bits: 10 | Host Bits: 14 |

Figure K-20 shows an image of the video near the conclusion of the first pass through step 5, which finds subnet 10.0.64.0/18.
Figure K-20  First Pass Through Step 5

![First Pass Through Step 5 Diagram](image)

Figure K-21 shows an image of the video the first time step 5 yields a sum of 256, triggering the step 6, which essentially carries a one over to the octet to the left, finding subnet 10.1.0.0/18.

Figure K-21  First Occurrence of a Total of 256

![First Occurrence of 256 Diagram](image)
Figure K-22 shows an image of the abbreviated list of subnets discovered in the video.

**Figure K-22** *(Abbreviated) List of Subnets for 10.0.0.0/18*

<table>
<thead>
<tr>
<th>Zero Subnet</th>
<th>10.0</th>
<th>0.0</th>
<th>10.4</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0</td>
<td>64.0</td>
<td></td>
<td>10.4</td>
<td>64.0</td>
</tr>
<tr>
<td>10.0</td>
<td>128.0</td>
<td></td>
<td>10.4</td>
<td>128.0</td>
</tr>
<tr>
<td>10.0</td>
<td>192.0</td>
<td></td>
<td>10.4</td>
<td>192.0</td>
</tr>
<tr>
<td>10.1</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>64.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>128.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>192.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.2</td>
<td>0.0</td>
<td></td>
<td>10.254</td>
<td>0.0</td>
</tr>
<tr>
<td>10.2</td>
<td>64.0</td>
<td></td>
<td>10.254</td>
<td>64.0</td>
</tr>
<tr>
<td>10.2</td>
<td>128.0</td>
<td></td>
<td>10.254</td>
<td>128.0</td>
</tr>
<tr>
<td>10.2</td>
<td>192.0</td>
<td></td>
<td>10.254</td>
<td>192.0</td>
</tr>
<tr>
<td>10.3</td>
<td>0.0</td>
<td></td>
<td>10.255</td>
<td>0.0</td>
</tr>
<tr>
<td>10.3</td>
<td>64.0</td>
<td></td>
<td>10.255</td>
<td>64.0</td>
</tr>
<tr>
<td>10.3</td>
<td>128.0</td>
<td></td>
<td>10.255</td>
<td>128.0</td>
</tr>
<tr>
<td>10.3</td>
<td>192.0</td>
<td></td>
<td>10.255</td>
<td>192.0</td>
</tr>
</tbody>
</table>

CVM Video 3: Switch Basics: Learning, Forwarding/Filtering, and Interface Settings

This CCNA Video Mentor lab reviews the logic of how switches learn entries for their MAC address tables, make forwarding and filtering decisions based on those tables, as well as showing some of the most basic configuration settings on a Cisco LAN switch. In particular, the objectives of this lab are as follows:

- Predict the types of entries to be found in a switch’s *MAC address table*
- Describe how switches make a forwarding/filtering decision
- Configure the following:
  - Interface speed and duplex settings
  - Switch IP address and default gateway
Scenario

This lab contains two main steps, as follows:

**Step 1** Observe the addition of new MAC address table entries

**Step 2** Configure basic settings:
- Interface speed and duplex
- IP address and default gateway

Initial Configurations

The two switches in this lab begin with very little configuration—each switch simply has a hostname configured. Examples K-1 and K-2 list the hostname configuration for completeness.

Example K-1 *Initial Configuration for Sw1*

```bash
hostname Sw1
```

Example K-2 *Initial Configuration for Sw2*

```bash
hostname Sw2
```

Ending Configurations

This lab adds some configuration commands to both Sw1 and Sw2. Examples K-3 and K-4 show the configuration added during the lab.

Example K-3 *Configuration on Sw1 Added During this Lab*

```bash
enable secret cisco
interface FastEthernet 0/23
duplex full
speed 100
interface vlan 1
ip address 172.30.1.101 255.255.255.0
ip default-gateway 172.30.1.251
```
This video presents several figures and a table that support the concepts covered in the lab. This section simply lists these figures for reference. Because the video is organized into two separate steps, the reference materials have been organized into two separate sections.

**Step 1 Reference**

**Figure K-23  Completed MAC Address Tables After Learning All PC MAC Addresses**

**Example K-4  Configuration on Sw2 Added During This Lab**

```
interface FastEthernet 0/24
 duplex full
 speed 100

interface vlan 1
 ip address 172.30.1.102 255.255.255.0

ip default-gateway 172.30.1.251
```

**Video Presentation Reference**

<table>
<thead>
<tr>
<th>Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0033.3333.3333</td>
<td>Fa0/13</td>
</tr>
<tr>
<td>0011.1111.1111</td>
<td>Fa0/11</td>
</tr>
<tr>
<td>0022.2222.2222</td>
<td>Fa0/23</td>
</tr>
</tbody>
</table>

**Sw1 MAC Address Table**

<table>
<thead>
<tr>
<th>Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0033.3333.3333</td>
<td>Fa0/13</td>
</tr>
<tr>
<td>0011.1111.1111</td>
<td>Fa0/11</td>
</tr>
<tr>
<td>0022.2222.2222</td>
<td>Fa0/23</td>
</tr>
</tbody>
</table>

**Sw2 MAC Address Table**

<table>
<thead>
<tr>
<th>Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0033.3333.3333</td>
<td>Fa0/24</td>
</tr>
<tr>
<td>0011.1111.1111</td>
<td>Fa0/24</td>
</tr>
<tr>
<td>0022.2222.2222</td>
<td>Fa0/12</td>
</tr>
</tbody>
</table>
Figure K-24  Forwarding Path and MAC Address Table Entries Used for Frames from PC3 to PC1

Sw1 MAC Address Table

<table>
<thead>
<tr>
<th>Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0033.3333.3333</td>
<td>Fa0/13</td>
</tr>
<tr>
<td>0011.1111.1111</td>
<td>Fa0/11</td>
</tr>
<tr>
<td>0022.2222.2222</td>
<td>Fa0/23</td>
</tr>
</tbody>
</table>

Sw2 MAC Address Table

<table>
<thead>
<tr>
<th>Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0033.3333.3333</td>
<td>Fa0/24</td>
</tr>
<tr>
<td>0011.1111.1111</td>
<td>Fa0/24</td>
</tr>
<tr>
<td>0022.2222.2222</td>
<td>Fa0/12</td>
</tr>
</tbody>
</table>

Figure K-25  Forwarding Path and MAC Address Table Entries Used for Frames from PC3 to PC2

Sw1 MAC Address Table

<table>
<thead>
<tr>
<th>Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0033.3333.3333</td>
<td>Fa0/13</td>
</tr>
<tr>
<td>0011.1111.1111</td>
<td>Fa0/11</td>
</tr>
<tr>
<td>0022.2222.2222</td>
<td>Fa0/23</td>
</tr>
</tbody>
</table>

Sw2 MAC Address Table

<table>
<thead>
<tr>
<th>Address</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0033.3333.3333</td>
<td>Fa0/24</td>
</tr>
<tr>
<td>0011.1111.1111</td>
<td>Fa0/24</td>
</tr>
<tr>
<td>0022.2222.2222</td>
<td>Fa0/12</td>
</tr>
</tbody>
</table>
### Step 2 Reference

**Table K-2  Switch Configuration Command Reference**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface fastethernet x/y</code></td>
<td>Moves user into interface configuration mode</td>
</tr>
<tr>
<td>`speed {10</td>
<td>100}`</td>
</tr>
<tr>
<td>`duplex {half</td>
<td>full}`</td>
</tr>
<tr>
<td><code>interface vlan 1</code></td>
<td>Moves the user to VLAN 1 configuration mode</td>
</tr>
<tr>
<td><code>ip address address mask</code></td>
<td>Allows the configuration of a management IP address on the switch</td>
</tr>
<tr>
<td><code>ip default-gateway address</code></td>
<td>Global configuration command to define the switch’s default gateway IP address</td>
</tr>
</tbody>
</table>

### Figure K-26  IP Address Reference

![IP Address Reference Diagram](image-url)
CVM Video 10: NAT Overload (PAT)

This CCNA Video Mentor (CVM) lab shows how to configure Network Address Translation (NAT), specifically using the Port Address Translation (PAT) or overload feature. In particular, the objectives of this lab are as follows:

■ Define the following NAT terms:
  — Inside, Outside, Inside Local, and Inside Global

■ Describe how NAT changes the following:
  — IP addresses for Enterprise (Inside) hosts for a typical Internet connection
  — Port numbers in order to support thousands of connections using a single Inside Global IP address

■ Configure NAT overload (PAT):
  — Using a single interface IP address for the Inside Global IP address

Scenario

This lab contains two main steps, as follows:

Step 1  Review the terms used with typical use of NAT and PAT with an Internet connection, and see NAT working in a router.

Step 2  Review router NAT/PAT configuration using a single IP address on an interface (no NAT pool).

Initial Configurations

Example K-5 shows the pertinent initial of router R1 in the lab video. Note that this lab begins with R1 using a valid NAT/PAT overload configuration, using the Inside Global IP address of R1’s S0/1/0 interface (100.1.1.2). As usual, the parts of the configurations not relevant for this lab have been omitted.

Example K-5  Initial Configuration for R1

```bash
hostname R1
!
ip nat inside source list 3 interface serial 0/1/0 overload
!
interface FastEthernet 0/0
 ip address 172.22.11.1 255.255.255.0
 ip nat inside
```
Example K-5  *Initial Configuration for R1 (Continued)*

```
! interface Serial 0/1/0
 ip address 100.1.1.2 255.255.255.248
 ip nat outside
!
access-list 3 permit 172.22.0.0 0.0.255.255
```

**Ending Configurations**

This lab video does not change the router configuration.

**Video Presentation Reference**

This video presents several figures that describe how NAT overload (PAT) works as well as how it will work in the particular example shown in the lab video. This section simply lists these figures for reference.

First, Figure K-27 shows a diagram of the network used in this example.

**Figure K-27  Lab 10 Scenario Topology**

Because the video is organized into two separate steps, the reference materials have been organized into two separate sections.
Step 1 Reference

Figure K-28  The Concept of Inside and Outside with NAT

Figure K-29  How NAT Overload Changes Inside Addresses and Ports
Figure K-30  *The Three TCP Connections Created to Test NAT Overload*

Source IP 172.22.11.101, Source Port 15916

Source IP 172.22.11.101, Source Port 35203

Source IP 172.22.11.102, Source Port 13109

Step 2 Reference

Figure K-31  *Configuring Inside and Outside Interfaces*

Figure K-32  *Configuring NAT Overload Using an Interface as Inside Global*
Chapter 2

Table 2-3  Summary: Same-Layer and Adjacent-Layer Interactions

<table>
<thead>
<tr>
<th>Concept</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same-layer interaction on different computers</td>
<td></td>
</tr>
<tr>
<td>Adjacent-layer interaction on the same computer</td>
<td></td>
</tr>
</tbody>
</table>

Table 2-4  OSI Reference Model Layer Definitions

<table>
<thead>
<tr>
<th>Layer</th>
<th>Functional Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
### Appendix L: Memory Tables

#### Chapter 3

**Table 2-7  OSI Functional Summary**

<table>
<thead>
<tr>
<th>Layer</th>
<th>Functional Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application (7)</td>
<td></td>
</tr>
<tr>
<td>Presentation (6)</td>
<td></td>
</tr>
<tr>
<td>Session (5)</td>
<td></td>
</tr>
<tr>
<td>Transport (4)</td>
<td></td>
</tr>
<tr>
<td>Network (3)</td>
<td></td>
</tr>
<tr>
<td>Data link (2)</td>
<td></td>
</tr>
<tr>
<td>Physical (1)</td>
<td></td>
</tr>
</tbody>
</table>

**Table 3-2  Today’s Most Common Types of Ethernet**

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Speed</th>
<th>Alternative Name</th>
<th>Name of IEEE Standard</th>
<th>Cable Type, Maximum Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast Ethernet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gigabit Ethernet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gigabit Ethernet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Table 3-4  LAN MAC Address Terminology and Features**

<table>
<thead>
<tr>
<th>LAN Addressing Term or Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC</td>
<td></td>
</tr>
<tr>
<td>Ethernet address, NIC address, LAN address</td>
<td></td>
</tr>
<tr>
<td>Burned-in address</td>
<td></td>
</tr>
<tr>
<td>Unicast address</td>
<td></td>
</tr>
<tr>
<td>Broadcast address</td>
<td></td>
</tr>
<tr>
<td>Multicast address</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 4

Table 4-2  WAN Speed Summary

<table>
<thead>
<tr>
<th>Name(s) of Line</th>
<th>Bit Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS0</td>
<td></td>
</tr>
<tr>
<td>DS1 (T1)</td>
<td></td>
</tr>
<tr>
<td>DS3 (T3)</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td></td>
</tr>
<tr>
<td>J1 (Y1)</td>
<td>2.048 Mb/s (32 DS0s; Japanese standard)</td>
</tr>
</tbody>
</table>

Chapter 5

Table 5-3  Sizes of Network and Host Parts of IP Addresses with No Subnetting

<table>
<thead>
<tr>
<th>Any Network of This Class</th>
<th>Number of Network Bytes (Bits)</th>
<th>Number of Host Bytes (Bits)</th>
<th>Number of Addresses Per Network *</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5-5  All Possible Valid Network Numbers *

<table>
<thead>
<tr>
<th>Class</th>
<th>First Octet Range</th>
<th>Valid Network Numbers</th>
<th>Total Number for This Class of Network</th>
<th>Number of Hosts Per Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 6

Table 6-2  TCP/IP Transport Layer Features

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplexing using ports</td>
<td></td>
</tr>
<tr>
<td>Error recovery (reliability)</td>
<td></td>
</tr>
<tr>
<td>Flow control using windowing</td>
<td></td>
</tr>
<tr>
<td>Connection establishment and termination</td>
<td></td>
</tr>
<tr>
<td>Ordered data transfer and data segmentation</td>
<td></td>
</tr>
</tbody>
</table>

Table 6-3  Popular Applications and Their Well-Known Port Numbers

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Protocol</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FTP data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FTP control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SSH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Telnet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SMTP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DNS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DHCP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TFTP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HTTP (WWW)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POP3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SNMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SSL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RTP-based Voice (VoIP) and Video</td>
</tr>
</tbody>
</table>
Chapter 7

Table 7-2  Switch Internal Processing

<table>
<thead>
<tr>
<th>Switching Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Store-and-forward</td>
<td></td>
</tr>
<tr>
<td>Cut-through</td>
<td></td>
</tr>
<tr>
<td>Fragment-free</td>
<td></td>
</tr>
</tbody>
</table>

Table 7-3  Benefits of Segmenting Ethernet Devices Using Hubs, Switches, and Routers

<table>
<thead>
<tr>
<th>Feature</th>
<th>Hub</th>
<th>Switch</th>
<th>Router</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater cabling distances are allowed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creates multiple collision domains</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increases bandwidth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creates multiple broadcast domains</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 8

Table 8-5  Key Sequences for Command Edit and Recall

<table>
<thead>
<tr>
<th>Keyboard Command</th>
<th>What Happens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up arrow or Ctrl-p</td>
<td></td>
</tr>
<tr>
<td>Down arrow or Ctrl-n</td>
<td></td>
</tr>
<tr>
<td>Left arrow or Ctrl-b</td>
<td></td>
</tr>
<tr>
<td>Right arrow or Ctrl-f</td>
<td></td>
</tr>
<tr>
<td>Backspace</td>
<td></td>
</tr>
<tr>
<td>Ctrl-a</td>
<td></td>
</tr>
<tr>
<td>Ctrl-e</td>
<td></td>
</tr>
<tr>
<td>Ctrl-r</td>
<td></td>
</tr>
<tr>
<td>Ctrl-d</td>
<td></td>
</tr>
<tr>
<td>Esc-b</td>
<td></td>
</tr>
<tr>
<td>Esc-f</td>
<td></td>
</tr>
</tbody>
</table>

Table 8-6  Common Switch Configuration Modes

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Name of Mode</th>
<th>Context-setting Command(s) to Reach This Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>hostname(config)#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hostname(config-line)#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hostname(config-if)#</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 8-7  Names and Purposes of the Two Main IOS Configuration Files

<table>
<thead>
<tr>
<th>Configuration Filename</th>
<th>Purpose</th>
<th>Where It Is Stored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup-config</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Running-config</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 9

Chapter 9 summarized the SSH configuration steps on a Cisco IOS-based switch. As much as possible, record what you remember about the various configuration steps.

**Step 1**
**Step 2**
**Step 3**
**Step 4**
**Step 5**
**Step 6**

Table 9-2  *Banners and Their Use*

<table>
<thead>
<tr>
<th>Banner</th>
<th>Typical Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message of the Day (MOTD)</td>
<td></td>
</tr>
<tr>
<td>Login</td>
<td></td>
</tr>
<tr>
<td>Exec</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 9 also summarized the four configuration steps to configure IP connectivity to a Cisco IOS-based switch. As much as possible, record what you remember about the various configuration steps.

**Step 1**
**Step 2**
**Step 3**
**Step 4**

Table 9-4  *Actions When Port Security Violation Occurs*

<table>
<thead>
<tr>
<th>Option on the switchport port-security violation Command</th>
<th>Protect</th>
<th>Restrict</th>
<th>Shut Down*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discards offending traffic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sends log and SNMP messages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disables the interface, discarding all traffic</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Shut down is the default setting.*
## Chapter 10

**Table 10-2  show cdp Commands That List Information About Neighbors**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show cdp neighbors [type number]</td>
<td></td>
</tr>
<tr>
<td>show cdp neighbors detail</td>
<td></td>
</tr>
<tr>
<td>show cdp entry name</td>
<td></td>
</tr>
</tbody>
</table>

**Table 10-3  Commands Used to Verify CDP Operations**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show cdp</td>
<td></td>
</tr>
<tr>
<td>show cdp interface [type number]</td>
<td></td>
</tr>
<tr>
<td>show cdp traffic</td>
<td></td>
</tr>
</tbody>
</table>

**Table 10-4  LAN Switch Interface Status Codes**

<table>
<thead>
<tr>
<th>Line Status</th>
<th>Protocol Status</th>
<th>Interface Status</th>
<th>Typical Root Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administratively Down</td>
<td>Down</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Down</td>
<td>Down</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up</td>
<td>Down</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Down</td>
<td>down (err-disabled)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up</td>
<td>Up</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Table 10-5  Common LAN Layer 1 Problem Indicators**

<table>
<thead>
<tr>
<th>Type of Problem</th>
<th>Counter Values Indicating This Problem</th>
<th>Common Root Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive noise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collisions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late collisions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 11

Table 11-2  Organizations That Set or Influence WLAN Standards

<table>
<thead>
<tr>
<th>Organization</th>
<th>Standardization Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITU-R</td>
<td></td>
</tr>
<tr>
<td>IEEE</td>
<td></td>
</tr>
<tr>
<td>Wi-Fi Alliance</td>
<td></td>
</tr>
<tr>
<td>Federal Communications Commission (FCC)</td>
<td></td>
</tr>
</tbody>
</table>

Table 11-3  WLAN Standards

<table>
<thead>
<tr>
<th>Feature</th>
<th>802.11a</th>
<th>802.11b</th>
<th>802.11g</th>
<th>802.11n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year ratified</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum speed using DSSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum speed using OFDM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency band</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-overlapping Channels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 11-4  Different WLAN Modes and Names

<table>
<thead>
<tr>
<th>Mode</th>
<th>Service Set Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ad hoc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrastructure (one AP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrastructure (more than one AP)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 11-5  FCC Unlicensed Frequency Bands of Interest

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Name</th>
<th>Sample Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>900 KHz</td>
<td></td>
<td>Older cordless telephones</td>
</tr>
<tr>
<td>2.4 GHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 GHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 11-6  Encoding Classes and IEEE Standard WLANs

<table>
<thead>
<tr>
<th>Name of Encoding Class</th>
<th>What It Is Used By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Hopping Spread Spectrum (FHSS)</td>
<td></td>
</tr>
<tr>
<td>Direct Sequence Spread Spectrum (DSSS)</td>
<td></td>
</tr>
<tr>
<td>Orthogonal Frequency Division Multiplexing (OFDM)</td>
<td></td>
</tr>
</tbody>
</table>

Table 11-7  WLAN Speed and Frequency Reference

<table>
<thead>
<tr>
<th>IEEE Standard</th>
<th>Max Stream Data Rate (Mbps)</th>
<th>Frequency</th>
<th>Nonoverlapping Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>802.11a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>802.11g</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>802.11n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>802.11n*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*When using a bonded 40 MHz channel, rather than a 20 MHz channel as in the other rows of the table.

Table 11-8  WLAN Vulnerabilities and Solutions

<table>
<thead>
<tr>
<th>Vulnerability</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>War drivers</td>
<td></td>
</tr>
<tr>
<td>Hackers stealing information in a WLAN</td>
<td></td>
</tr>
<tr>
<td>Hackers gaining access to the rest of the network</td>
<td></td>
</tr>
<tr>
<td>Employee AP installation</td>
<td></td>
</tr>
<tr>
<td>Rogue AP</td>
<td></td>
</tr>
</tbody>
</table>

Table 11-9  WLAN Security Standards

<table>
<thead>
<tr>
<th>Name</th>
<th>Year</th>
<th>Who Defined It</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wired Equivalent Privacy (WEP)</td>
<td>1997</td>
<td></td>
</tr>
<tr>
<td>The interim Cisco solution while awaiting 802.11i</td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>Wi-Fi Protected Access (WPA)</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>802.11i (WPA2)</td>
<td>2004</td>
<td></td>
</tr>
</tbody>
</table>
Table 11-10  *Comparisons of WLAN Security Features*

<table>
<thead>
<tr>
<th>Standard</th>
<th>Key Distribution</th>
<th>Device Authentication</th>
<th>User Authentication</th>
<th>Encryption</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEP</td>
<td>Static</td>
<td>Yes (weak)</td>
<td>None</td>
<td>Yes (weak)</td>
</tr>
<tr>
<td>Cisco</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>802.11i (WPA2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 12

Table 12-2  *RFC 1918 Private Address Space*

<table>
<thead>
<tr>
<th>Private IP Networks</th>
<th>Class of Networks</th>
<th>Number of Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>172.16.0.0 through 172.31.0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.168.0.0 through 192.168.255.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 13

Table 13-2  *IPv4 Address Classes Based on First Octet Values*

<table>
<thead>
<tr>
<th>First Octet Values</th>
<th>Class</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table 13-3  Key Facts for Classes A, B, and C

<table>
<thead>
<tr>
<th>Private IP Networks</th>
<th>Class A</th>
<th>Class B</th>
<th>Class C</th>
</tr>
</thead>
<tbody>
<tr>
<td>First octet range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valid network numbers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total networks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hosts per network</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Octets (bits) in network part</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Octets (bits) in host part</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default mask</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Chapter 17

### Table 17-2  Summary of Subnet ID Key Facts

<table>
<thead>
<tr>
<th>Definition</th>
<th>A Number That Represents the Subnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric value</td>
<td></td>
</tr>
<tr>
<td>Literal synonyms</td>
<td></td>
</tr>
<tr>
<td>Common-use synonyms</td>
<td></td>
</tr>
<tr>
<td>Typically seen in...</td>
<td></td>
</tr>
</tbody>
</table>

### Table 17-3  Summary of Subnet Broadcast Address Key Facts

<table>
<thead>
<tr>
<th>Private IP Networks</th>
<th>Class of Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>Numeric value</td>
<td></td>
</tr>
<tr>
<td>Literal synonyms</td>
<td></td>
</tr>
<tr>
<td>Broader-use synonyms</td>
<td></td>
</tr>
<tr>
<td>Typically seen in...</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 19

Table 19-2  *Interface Status Codes and Their Meanings*

<table>
<thead>
<tr>
<th>Name</th>
<th>First or Second Status Code</th>
<th>General Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol status</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 20

Table 20-2  *Routing Protocol Classes/Algorithms and Protocols That Use Them*

<table>
<thead>
<tr>
<th>Class/Algorithm</th>
<th>IGPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance vector</td>
<td></td>
</tr>
<tr>
<td>Link-state</td>
<td></td>
</tr>
<tr>
<td>Balanced hybrid (also called advanced distance vector)</td>
<td></td>
</tr>
</tbody>
</table>

Table 20-3  *Comparing Classless and Classful Routing Protocols*

<table>
<thead>
<tr>
<th>Feature</th>
<th>Classless</th>
<th>Classful</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
### Table 20-4  Interior IP Routing Protocols Compared

<table>
<thead>
<tr>
<th>Feature</th>
<th>RIP-1</th>
<th>RIP-2</th>
<th>EIGRP</th>
<th>OSPF</th>
<th>IS-IS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classless</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Supports VLSM</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Sends mask in update</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Distance vector</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Link-state</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Supports autosummarization</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Supports manual summarization</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Proprietary</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Routing updates sent to a multicast IP address</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Supports authentication</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Convergence</td>
<td>Slow</td>
<td></td>
<td></td>
<td></td>
<td>Fast</td>
</tr>
</tbody>
</table>

### Table 20-6  IOS Defaults for Administrative Distance

<table>
<thead>
<tr>
<th>Route Source</th>
<th>Administrative Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
</tr>
<tr>
<td>255</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 21

Table 21-2  Determining Whether a Question Allows the Use of the Zero and Broadcast Subnets

<table>
<thead>
<tr>
<th>Clues in the Question</th>
<th>Subnets Reserved?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Says nothing about it (default for the exam)</td>
<td></td>
</tr>
<tr>
<td>Lists the <code>ip subnet-zero</code> configuration command</td>
<td></td>
</tr>
<tr>
<td>Uses a classless routing protocol (RIP-2, EIGRP, OSPF)</td>
<td></td>
</tr>
<tr>
<td>Lists the <code>no ip subnet-zero</code> configuration command</td>
<td></td>
</tr>
<tr>
<td>Uses a classful routing protocol (RIP-1)</td>
<td></td>
</tr>
</tbody>
</table>

Table 21-4  Microsoft Network Command Reference

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Displays detailed IP configuration information for all interfaces,</td>
</tr>
<tr>
<td></td>
<td>including IP address, mask, default gateway, and DNS IP addresses</td>
</tr>
<tr>
<td></td>
<td>Releases any DHCP-leased IP addresses</td>
</tr>
<tr>
<td></td>
<td>Acquires an IP address and related information using DHCP</td>
</tr>
<tr>
<td></td>
<td>Sends a DNS request for the listed name</td>
</tr>
<tr>
<td></td>
<td>Lists the host’s ARP cache</td>
</tr>
<tr>
<td></td>
<td>Lists the host’s name cache</td>
</tr>
<tr>
<td></td>
<td>Removes all DNS-found name cache entries</td>
</tr>
<tr>
<td></td>
<td>Flushes (empties) the host’s ARP cache</td>
</tr>
<tr>
<td></td>
<td>Displays a host’s routing table</td>
</tr>
</tbody>
</table>
Chapter 22

Table 22-4  Comparing Circuits and Packet Switching

<table>
<thead>
<tr>
<th>Feature</th>
<th>Circuits</th>
<th>Packet Switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service implemented as OSI layer . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point-to-point (two devices) or more</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 23

Chapter 23 summarizes the steps required to configure HDLC. As much as is possible, remember and write down the steps. The following list shows the number of steps and substeps as outlined in the chapter.

**Step 1**

**Step 2**  The following tasks are required only when the specifically listed conditions are true:

a.

b.

c.

**Step 3**  The following steps are always optional and have no impact on whether the link works and passes IP traffic:

a.

b.
Memory Tables Answer Key

Chapter 2

Table 2-3  Summary: Same-Layer and Adjacent-Layer Interactions

<table>
<thead>
<tr>
<th>Concept</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same-layer interaction on different computers</td>
<td>The two computers use a protocol to communicate with the same layer on another computer. The protocol defined by each layer uses a header that is transmitted between the computers, to communicate what each computer wants to do.</td>
</tr>
<tr>
<td>Adjacent-layer interaction on the same computer</td>
<td>On a single computer, one layer provides a service to a higher layer. The software or hardware that implements the higher layer requests that the next lower layer perform the needed function.</td>
</tr>
</tbody>
</table>

Table 2-4  OSI Reference Model Layer Definitions

<table>
<thead>
<tr>
<th>Layer</th>
<th>Functional Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Layer 7 provides an interface between the communications software and any applications that need to communicate outside the computer on which the application resides. It also defines processes for user authentication.</td>
</tr>
<tr>
<td>6</td>
<td>This layer's main purpose is to define and negotiate data formats, such as ASCII text, EBCDIC text, binary, BCD, and JPEG. Encryption also is defined by OSI as a presentation layer service.</td>
</tr>
<tr>
<td>5</td>
<td>The session layer defines how to start, control, and end conversations (called sessions). This includes the control and management of multiple bidirectional messages so that the application can be notified if only some of a series of messages are completed. This allows the presentation layer to have a seamless view of an incoming stream of data.</td>
</tr>
<tr>
<td>4</td>
<td>Layer 4 protocols provide a large number of services, as described in Chapter 6 of this book. Although OSI Layers 5 through 7 focus on issues related to the application, Layer 4 focuses on issues related to data delivery to another computer—for instance, error recovery and flow control.</td>
</tr>
</tbody>
</table>
The network layer defines three main features: logical addressing, routing (forwarding), and path determination. Routing defines how devices (typically routers) forward packets to their final destination. Logical addressing defines how each device can have an address that can be used by the routing process. Path determination refers to the work done by routing protocols to learn all possible routes, and choose the best route.

The data link layer defines the rules that determine when a device can send data over a particular medium. Data link protocols also define the format of a header and trailer that allows devices attached to the medium to send and receive data successfully.

This layer typically refers to standards from other organizations. These standards deal with the physical characteristics of the transmission medium, including connectors, pins, use of pins, electrical currents, encoding, light modulation, and the rules for how to activate and deactivate the use of the physical medium.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Functional Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>The network layer defines three main features: logical addressing, routing (forwarding), and path determination. Routing defines how devices (typically routers) forward packets to their final destination. Logical addressing defines how each device can have an address that can be used by the routing process. Path determination refers to the work done by routing protocols to learn all possible routes, and choose the best route.</td>
</tr>
<tr>
<td>2</td>
<td>The data link layer defines the rules that determine when a device can send data over a particular medium. Data link protocols also define the format of a header and trailer that allows devices attached to the medium to send and receive data successfully.</td>
</tr>
<tr>
<td>1</td>
<td>This layer typically refers to standards from other organizations. These standards deal with the physical characteristics of the transmission medium, including connectors, pins, use of pins, electrical currents, encoding, light modulation, and the rules for how to activate and deactivate the use of the physical medium.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer</th>
<th>Functional Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application (7)</td>
<td>Interfaces between network and application software. Also includes authentication services.</td>
</tr>
<tr>
<td>Presentation (6)</td>
<td>Defines the format and organization of data. Includes encryption.</td>
</tr>
<tr>
<td>Session (5)</td>
<td>Establishes and maintains end-to-end bidirectional flows between endpoints. Includes managing transaction flows.</td>
</tr>
<tr>
<td>Transport (4)</td>
<td>Provides a variety of services between two host computers, including connection establishment and termination, flow control, error recovery, and segmentation of large data blocks into smaller parts for transmission.</td>
</tr>
<tr>
<td>Network (3)</td>
<td>Logical addressing, routing, and path determination.</td>
</tr>
<tr>
<td>Data link (2)</td>
<td>Formats data into frames appropriate for transmission onto some physical medium. Defines rules for when the medium can be used. Defines means by which to recognize transmission errors.</td>
</tr>
<tr>
<td>Physical (1)</td>
<td>Defines the electrical, optical, cabling, connectors, and procedural details required for transmitting bits, represented as some form of energy passing over a physical medium.</td>
</tr>
</tbody>
</table>
Chapter 3

Table 3-2  Today’s Most Common Types of Ethernet

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Speed</th>
<th>Alternative Name</th>
<th>Name of IEEE Standard</th>
<th>Cable Type, Maximum Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td>10 Mbps</td>
<td>10BASE-T</td>
<td>IEEE 802.3</td>
<td>Copper, 100 m</td>
</tr>
<tr>
<td>Fast Ethernet</td>
<td>100 Mbps</td>
<td>100BASE-TX</td>
<td>IEEE 802.3u</td>
<td>Copper, 100 m</td>
</tr>
<tr>
<td>Gigabit Ethernet</td>
<td>1000 Mbps</td>
<td>1000BASE-LX, 1000BASE-SX</td>
<td>IEEE 802.3z</td>
<td>Fiber, 550 m (SX) 5 km (LX)</td>
</tr>
<tr>
<td>Gigabit Ethernet</td>
<td>1000 Mbps</td>
<td>1000BASE-T</td>
<td>IEEE 802.3ab</td>
<td>100 m</td>
</tr>
</tbody>
</table>

Table 3-4  LAN MAC Address Terminology and Features

<table>
<thead>
<tr>
<th>LAN Addressing Term or Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC</td>
<td>Media Access Control. 802.3 (Ethernet) defines the MAC sublayer of IEEE Ethernet.</td>
</tr>
<tr>
<td>Ethernet address, NIC address, LAN address</td>
<td>Other names often used instead of MAC address. These terms describe the 6-byte address of the LAN interface card.</td>
</tr>
<tr>
<td>Burned-in address</td>
<td>The 6-byte address assigned by the vendor making the card.</td>
</tr>
<tr>
<td>Unicast address</td>
<td>A term for a MAC that represents a single LAN interface.</td>
</tr>
<tr>
<td>Broadcast address</td>
<td>An address that means “all devices that reside on this LAN right now.”</td>
</tr>
<tr>
<td>Multicast address</td>
<td>On Ethernet, a multicast address implies some subset of all devices currently on the Ethernet LAN.</td>
</tr>
</tbody>
</table>

Chapter 4

Table 4-2  WAN Speed Summary

<table>
<thead>
<tr>
<th>Name(s) of Line</th>
<th>Bit Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS0</td>
<td>64 Kbps</td>
</tr>
<tr>
<td>DS1 (T1)</td>
<td>1.544 Mbps (24 DS0s, plus 8 kb/s overhead)</td>
</tr>
<tr>
<td>DS3 (T3)</td>
<td>44.736 Mbps (28 DS1s, plus management overhead)</td>
</tr>
<tr>
<td>E1</td>
<td>2.048 Mbps (32 DS0s)</td>
</tr>
<tr>
<td>E3</td>
<td>34.064 Mbps (16 E1s, plus management overhead)</td>
</tr>
<tr>
<td>J1 (Y1)</td>
<td>2.048 Mbps (32 DS0s; Japanese standard)</td>
</tr>
</tbody>
</table>
Chapter 5

Table 5-3  *Sizes of Network and Host Parts of IP Addresses with No Subnetting*

<table>
<thead>
<tr>
<th>Any Network of This Class</th>
<th>Number of Network Bytes (Bits)</th>
<th>Number of Host Bytes (Bits)</th>
<th>Number of Addresses Per Network*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 (8)</td>
<td>3 (24)</td>
<td>$2^{24} - 2$</td>
</tr>
<tr>
<td>B</td>
<td>2 (16)</td>
<td>2 (16)</td>
<td>$2^{16} - 2$</td>
</tr>
<tr>
<td>C</td>
<td>3 (24)</td>
<td>1 (8)</td>
<td>$2^8 - 2$</td>
</tr>
</tbody>
</table>

Table 5-5  *All Possible Valid Network Numbers*

<table>
<thead>
<tr>
<th>Class</th>
<th>First Octet Range</th>
<th>Valid Network Numbers*</th>
<th>Total Number for This Class of Network</th>
<th>Number of Hosts Per Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 to 126</td>
<td>1.0.0.0 to 126.0.0.0</td>
<td>$2^7 - 2$ (126)</td>
<td>$2^{24} - 2$ (16,777,214)</td>
</tr>
<tr>
<td>B</td>
<td>128 to 191</td>
<td>128.0.0.0 to 191.255.0.0</td>
<td>$2^{14}$ (16,384)</td>
<td>$2^{16} - 2$ (65,534)</td>
</tr>
<tr>
<td>C</td>
<td>192 to 223</td>
<td>192.0.0.0 to 223.255.255.0</td>
<td>$2^{21}$ (2,097,152)</td>
<td>$2^8 - 2$ (254)</td>
</tr>
</tbody>
</table>

*The Valid Network Numbers column shows actual network numbers. Networks 0.0.0.0 (originally defined for use as a broadcast address) and 127.0.0.0 (still available for use as the loopback address) are reserved.

Chapter 6

Table 6-2  *TCP/IP Transport Layer Features*

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplexing using ports</td>
<td>Function that allows receiving hosts to choose the correct application for which the data is destined, based on the port number.</td>
</tr>
<tr>
<td>Error recovery (reliability)</td>
<td>Process of numbering and acknowledging data with Sequence and Acknowledgment header fields.</td>
</tr>
<tr>
<td>Flow control using windowing</td>
<td>Process that uses window sizes to protect buffer space and routing devices.</td>
</tr>
<tr>
<td>Connection establishment and</td>
<td>Process used to initialize port numbers and Sequence and Acknowledgment fields.</td>
</tr>
<tr>
<td>termination</td>
<td></td>
</tr>
<tr>
<td>Ordered data transfer and data</td>
<td>Continuous stream of bytes from an upper-layer process that is “segmented” for transmission and delivered to upper-layer processes at the receiving device, with the bytes in the same order.</td>
</tr>
<tr>
<td>segmentation</td>
<td></td>
</tr>
</tbody>
</table>
Table 6-3  Popular Applications and Their Well-Known Port Numbers

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Protocol</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>TCP</td>
<td>FTP data</td>
</tr>
<tr>
<td>21</td>
<td>TCP</td>
<td>FTP control</td>
</tr>
<tr>
<td>22</td>
<td>TCP</td>
<td>SSH</td>
</tr>
<tr>
<td>23</td>
<td>TCP</td>
<td>Telnet</td>
</tr>
<tr>
<td>25</td>
<td>TCP</td>
<td>SMTP</td>
</tr>
<tr>
<td>53</td>
<td>UDP, TCP</td>
<td>DNS</td>
</tr>
<tr>
<td>67, 68</td>
<td>UDP</td>
<td>DHCP</td>
</tr>
<tr>
<td>69</td>
<td>UDP</td>
<td>TFTP</td>
</tr>
<tr>
<td>80</td>
<td>TCP</td>
<td>HTTP (WWW)</td>
</tr>
<tr>
<td>110</td>
<td>TCP</td>
<td>POP3</td>
</tr>
<tr>
<td>161</td>
<td>UDP</td>
<td>SNMP</td>
</tr>
<tr>
<td>443</td>
<td>TCP</td>
<td>SSL</td>
</tr>
<tr>
<td>16,384–32,767</td>
<td>UDP</td>
<td>RTP-based Voice (VoIP) and Video</td>
</tr>
</tbody>
</table>

Table 7-2  Switch Internal Processing

<table>
<thead>
<tr>
<th>Switching Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Store-and-forward</td>
<td>The switch fully receives all bits in the frame (store) before forwarding the frame (forward). This allows the switch to check the FCS before forwarding the frame.</td>
</tr>
<tr>
<td>Cut-through</td>
<td>The switch forwards the frame as soon as it can. This reduces latency but does not allow the switch to discard frames that fail the FCS check.</td>
</tr>
<tr>
<td>Fragment-free</td>
<td>The switch forwards the frame after receiving the first 64 bytes of the frame, thereby avoiding forwarding frames that were errored due to a collision.</td>
</tr>
</tbody>
</table>
Table 7-3  **Benefits of Segmenting Ethernet Devices Using Hubs, Switches, and Routers**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Hub</th>
<th>Switch</th>
<th>Router</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greater cabling distances are allowed</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Creates multiple collision domains</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Increases bandwidth</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Creates multiple broadcast domains</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

**Chapter 8**

Table 8-5  **Key Sequences for Command Edit and Recall**

<table>
<thead>
<tr>
<th>Keyboard Command</th>
<th>What Happens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up arrow or Ctrl-p</td>
<td>This displays the most recently used command. If you press it again, the next most recent command appears, until the history buffer is exhausted. (The p stands for previous.)</td>
</tr>
<tr>
<td>Down arrow or Ctrl-n</td>
<td>If you have gone too far back into the history buffer, these keys take you forward to the more recently entered commands. (The n stands for next.)</td>
</tr>
<tr>
<td>Left arrow or Ctrl-b</td>
<td>This moves the cursor backward in the currently displayed command without deleting characters. (The b stands for back.)</td>
</tr>
<tr>
<td>Right arrow or Ctrl-f</td>
<td>This moves the cursor forward in the currently displayed command without deleting characters. (The f stands for forward.)</td>
</tr>
<tr>
<td>Backspace</td>
<td>This moves the cursor backward in the currently displayed command, deleting characters.</td>
</tr>
<tr>
<td>Ctrl-a</td>
<td>This moves the cursor directly to the first character of the currently displayed command.</td>
</tr>
<tr>
<td>Ctrl-e</td>
<td>This moves the cursor directly to the end of the currently displayed command.</td>
</tr>
<tr>
<td>Ctrl-r</td>
<td>This redisplays the command line with all characters. It’s useful when messages clutter the screen.</td>
</tr>
<tr>
<td>Ctrl-d</td>
<td>This deletes a single character.</td>
</tr>
<tr>
<td>Esc-b</td>
<td>This moves back one word.</td>
</tr>
<tr>
<td>Esc-f</td>
<td>This moves forward one word.</td>
</tr>
</tbody>
</table>
Chapter 9

The following list summarizes the SSH configuration steps on a Cisco IOS-based switch, as explained in Chapter 9:

**Step 1** Change the vty lines to use usernames, with either locally configured usernames or an AAA server. In this case, the `login local` subcommand defines the use of local usernames, replacing the `login` subcommand in vty configuration mode.

**Step 2** Tell the switch to accept both Telnet and SSH with the `transport input telnet ssh` vty subcommand. (The default is `transport input telnet`, omitting the `ssh` parameter.)

**Step 3** Add one or more `username name password pass-value` global configuration commands to configure username/password pairs.

**Step 4** Configure a DNS domain name with the `ip domain-name name` global configuration command.

**Step 5** Configure the switch to generate a matched public and private key pair, as well as a shared encryption key, using the `crypto key generate rsa` global configuration command.

**Step 6** Although no switch commands are required, each SSH client needs a copy of the switch’s public key before the client can connect.

---

### Table 8-6 Common Switch Configuration Modes

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Name of Mode</th>
<th>Context-setting Command(s) to Reach This Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>hostname(config)#</td>
<td>Global</td>
<td>None—first mode after <strong>configure terminal</strong></td>
</tr>
<tr>
<td>hostname(config-line)#</td>
<td>Line</td>
<td><code>line console 0</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>line vty 0 15</code></td>
</tr>
<tr>
<td>hostname(config-if)#</td>
<td>Interface</td>
<td><code>interface type number</code></td>
</tr>
</tbody>
</table>

### Table 8-7 Names and Purposes of the Two Main IOS Configuration Files

<table>
<thead>
<tr>
<th>Configuration Filename</th>
<th>Purpose</th>
<th>Where It Is Stored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup-config</td>
<td>Stores the initial configuration used any time the switch reloads IOS.</td>
<td>NVRAM</td>
</tr>
<tr>
<td>Running-config</td>
<td>Stores the currently used configuration commands. This file changes dynamically when someone enters commands in configuration mode.</td>
<td>RAM</td>
</tr>
</tbody>
</table>

---

**Chapter 9**

The following list summarizes the SSH configuration steps on a Cisco IOS-based switch, as explained in Chapter 9:

- **Step 1** Change the vty lines to use usernames, with either locally configured usernames or an AAA server. In this case, the `login local` subcommand defines the use of local usernames, replacing the `login` subcommand in vty configuration mode.

- **Step 2** Tell the switch to accept both Telnet and SSH with the `transport input telnet ssh` vty subcommand. (The default is `transport input telnet`, omitting the `ssh` parameter.)

- **Step 3** Add one or more `username name password pass-value` global configuration commands to configure username/password pairs.

- **Step 4** Configure a DNS domain name with the `ip domain-name name` global configuration command.

- **Step 5** Configure the switch to generate a matched public and private key pair, as well as a shared encryption key, using the `crypto key generate rsa` global configuration command.

- **Step 6** Although no switch commands are required, each SSH client needs a copy of the switch’s public key before the client can connect.
The following list summarizes the Cisco IOS switch configuration steps for IP connectivity, as explained in Chapter 9:

**Step 1** Enter VLAN 1 configuration mode using the `interface vlan 1` global configuration command (from any config mode).

**Step 2** Assign an IP address and mask using the `ip address ip-address mask` interface subcommand.

**Step 3** Enable the VLAN 1 interface using the `no shutdown` interface subcommand.

**Step 4** Add the `ip default-gateway ip-address` global command to configure the default gateway.

### Table 9-2  Banners and Their Use

<table>
<thead>
<tr>
<th>Banner</th>
<th>Typical Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message of the Day (MOTD)</td>
<td>Shown before the login prompt. For temporary messages that may change from time to time, such as “Router1 down for maintenance at midnight.”</td>
</tr>
<tr>
<td>Login</td>
<td>Shown before the login prompt but after the MOTD banner. For permanent messages such as “Unauthorized Access Prohibited.”</td>
</tr>
<tr>
<td>Exec</td>
<td>Shown after the login prompt. Used to supply information that should be hidden from unauthorized users.</td>
</tr>
</tbody>
</table>

### Table 9-4  Actions When Port Security Violation Occurs

<table>
<thead>
<tr>
<th>Option on the switchport port-security violation Command</th>
<th>Protect</th>
<th>Restrict</th>
<th>Shut Down*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discards offending traffic</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sends log and SNMP messages</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Disables the interface, discarding all traffic</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

*shutdown is the default setting.
Chapter 10

Table 10-2  show cdp Commands That List Information About Neighbors

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show cdp neighbors</td>
<td>Lists one summary line of information about each neighbor, or just the</td>
</tr>
<tr>
<td>[type number]</td>
<td>neighbor found on a specific interface if an interface was listed.</td>
</tr>
<tr>
<td>show cdp neighbors detail</td>
<td>Lists one large set (approximately 15 lines) of information, one set for</td>
</tr>
<tr>
<td></td>
<td>every neighbor.</td>
</tr>
<tr>
<td>show cdp entry name</td>
<td>Lists the same information as the show cdp neighbors detail command, but</td>
</tr>
<tr>
<td></td>
<td>only for the named neighbor (case-sensitive).</td>
</tr>
</tbody>
</table>

Table 10-3  Commands Used to Verify CDP Operations

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show cdp</td>
<td>States whether CDP is enabled globally, and lists the default</td>
</tr>
<tr>
<td></td>
<td>update and holdtime timers.</td>
</tr>
<tr>
<td>show cdp interface</td>
<td>States whether CDP is enabled on each interface, or a single</td>
</tr>
<tr>
<td>[type number]</td>
<td>interface if the interface is listed, and states update and holdtime</td>
</tr>
<tr>
<td></td>
<td>timers on those interfaces.</td>
</tr>
<tr>
<td>show cdp traffic</td>
<td>Lists global statistics for the number of CDP advertisements sent and received.</td>
</tr>
</tbody>
</table>

Table 10-4  LAN Switch Interface Status Codes

<table>
<thead>
<tr>
<th>Line Status</th>
<th>Protocol Status</th>
<th>Interface Status</th>
<th>Typical Root Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administratively</td>
<td>Down</td>
<td>disabled</td>
<td>The interface is configured with the shutdown command.</td>
</tr>
<tr>
<td>Down</td>
<td>Down</td>
<td>notconnect</td>
<td>No cable; bad cable; wrong cable pinouts; the speeds are mismatched on the two</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>connected devices; the device on the other end of the cable is powered off or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the other interface is shutdown.</td>
</tr>
<tr>
<td>Up</td>
<td>Down</td>
<td>notconnect</td>
<td>An interface up/down state is not expected on LAN switch interfaces.</td>
</tr>
<tr>
<td>Down</td>
<td>down (err-disabled)</td>
<td>err-disabled</td>
<td>Port security has disabled the interface.</td>
</tr>
<tr>
<td>Up</td>
<td>Up</td>
<td>connected</td>
<td>The interface is working.</td>
</tr>
</tbody>
</table>
**Table 10-5** *Common LAN Layer 1 Problem Indicators*

<table>
<thead>
<tr>
<th>Type of Problem</th>
<th>Counter Values Indicating This Problem</th>
<th>Common Root Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive noise</td>
<td>Many input errors, few collisions</td>
<td>Wrong cable category (Cat 5, 5E, 6); damaged cables; EMI</td>
</tr>
<tr>
<td>Collisions</td>
<td>More than roughly .1% of all frames are collisions</td>
<td>Duplex mismatch (seen on the half-duplex side); jabber; DoS attack</td>
</tr>
<tr>
<td>Late collisions</td>
<td>Increasing late collisions</td>
<td>Collision domain or single cable too long; duplex mismatch</td>
</tr>
</tbody>
</table>

**Chapter 11**

**Table 11-2** *Organizations That Set or Influence WLAN Standards*

<table>
<thead>
<tr>
<th>Organization</th>
<th>Standardization Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITU-R</td>
<td>Worldwide standardization of communications that use radiated energy, particularly managing the assignment of frequencies</td>
</tr>
<tr>
<td>IEEE</td>
<td>Standardization of wireless LANs (802.11)</td>
</tr>
<tr>
<td>Wi-Fi Alliance</td>
<td>An industry consortium that encourages interoperability of products that implement WLAN standards through their Wi-Fi certified program</td>
</tr>
<tr>
<td>Federal Communications Commission (FCC)</td>
<td>The U.S. government agency with that regulates the usage of various communications frequencies in the U.S.</td>
</tr>
</tbody>
</table>

**Table 11-3** *WLAN Standards*

<table>
<thead>
<tr>
<th>Feature</th>
<th>802.11a</th>
<th>802.11b</th>
<th>802.11g</th>
<th>802.11n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year ratified</td>
<td>1999</td>
<td>1999</td>
<td>2003</td>
<td>2009</td>
</tr>
<tr>
<td>Maximum speed using DSSS</td>
<td>—</td>
<td>11 Mbps</td>
<td>11 Mbps</td>
<td>—</td>
</tr>
<tr>
<td>Maximum speed using OFDM</td>
<td>54 Mbps</td>
<td>—</td>
<td>54 Mbps</td>
<td>150 Mbps</td>
</tr>
<tr>
<td>Frequency band</td>
<td>5 GHz</td>
<td>2.4 GHz</td>
<td>2.4 GHz</td>
<td>Both</td>
</tr>
<tr>
<td>Non-overlapping Channels</td>
<td>23</td>
<td>3</td>
<td>3</td>
<td>9*</td>
</tr>
</tbody>
</table>

*Assumes 40 MHz channels*
### Table 11-4  *Different WLAN Modes and Names*

<table>
<thead>
<tr>
<th>Mode</th>
<th>Service Set Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ad hoc</td>
<td>Independent Basic Service Set (IBSS)</td>
<td>Allows two devices to communicate directly. No AP is needed.</td>
</tr>
<tr>
<td>Infrastructure (one AP)</td>
<td>Basic Service Set (BSS)</td>
<td>A single wireless LAN created with an AP and all devices that associate with that AP.</td>
</tr>
<tr>
<td>Infrastructure (more than one AP)</td>
<td>Extended Service Set (ESS)</td>
<td>Multiple APs create one wireless LAN, allowing roaming and a larger coverage area.</td>
</tr>
</tbody>
</table>

### Table 11-5  *FCC Unlicensed Frequency Bands of Interest*

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Name</th>
<th>Sample Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>900 KHz</td>
<td>Industrial, Scientific, Mechanical (ISM)</td>
<td>Older cordless telephones</td>
</tr>
<tr>
<td>2.4 GHz</td>
<td>ISM</td>
<td>Newer cordless phones and 802.11, 802.11b, 802.11g WLANs</td>
</tr>
<tr>
<td>5 GHz</td>
<td>Unlicensed National Information Infrastructure (U-NII)</td>
<td>Newer cordless phones and 802.11a, 802.11n WLANs</td>
</tr>
</tbody>
</table>

### Table 11-6  *Encoding Classes and IEEE Standard WLANs*

<table>
<thead>
<tr>
<th>Name of Encoding Class</th>
<th>What It Is Used By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Hopping Spread Spectrum (FHSS)</td>
<td>802.11</td>
</tr>
<tr>
<td>Direct Sequence Spread Spectrum (DSSS)</td>
<td>802.11b, 802.11g</td>
</tr>
<tr>
<td>Orthogonal Frequency Division Multiplexing (OFDM)</td>
<td>802.11a, 802.11g, and 802.11n</td>
</tr>
</tbody>
</table>

### Table 11-7  *WLAN Speed and Frequency Reference*

<table>
<thead>
<tr>
<th>IEEE Standard</th>
<th>Max Stream Data Rate (Mbps)</th>
<th>Frequency</th>
<th>Nonoverlapping Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11b</td>
<td>11</td>
<td>2.4 GHz</td>
<td>3</td>
</tr>
<tr>
<td>802.11a</td>
<td>54</td>
<td>5 GHz</td>
<td>23</td>
</tr>
<tr>
<td>802.11g</td>
<td>54</td>
<td>2.4 GHz</td>
<td>3</td>
</tr>
<tr>
<td>802.11n</td>
<td>72.2</td>
<td>5 GHz</td>
<td>21</td>
</tr>
<tr>
<td>802.11n*</td>
<td>150</td>
<td>5 GHz</td>
<td>9</td>
</tr>
</tbody>
</table>

When using a bonded 40 MHz channel, rather than a 20 MHz channel as in the other rows of the table.
### Table 11-8  WLAN Vulnerabilities and Solutions

<table>
<thead>
<tr>
<th>Vulnerability</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>War drivers</td>
<td>Strong authentication</td>
</tr>
<tr>
<td>Hackers stealing information in a WLAN</td>
<td>Strong encryption</td>
</tr>
<tr>
<td>Hackers gaining access to the rest of the network</td>
<td>Strong authentication</td>
</tr>
<tr>
<td>Employee AP installation</td>
<td>Intrusion Detection Systems (IDS), including Cisco SWAN</td>
</tr>
<tr>
<td>Rogue AP</td>
<td>Strong authentication, IDS/SWAN</td>
</tr>
</tbody>
</table>

### Table 11-9  WLAN Security Standards

<table>
<thead>
<tr>
<th>Name</th>
<th>Year</th>
<th>Who Defined It</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wired Equivalent Privacy (WEP)</td>
<td>1997</td>
<td>IEEE</td>
</tr>
<tr>
<td>The interim Cisco solution while awaiting 802.11i</td>
<td>2001</td>
<td>Cisco, IEEE 802.1x Extensible Authentication Protocol (EAP)</td>
</tr>
<tr>
<td>Wi-Fi Protected Access (WPA)</td>
<td>2003</td>
<td>Wi-Fi Alliance</td>
</tr>
<tr>
<td>802.11i (WPA2)</td>
<td>2004</td>
<td>IEEE</td>
</tr>
</tbody>
</table>

### Table 11-10  Comparisons of WLAN Security Features

<table>
<thead>
<tr>
<th>Standard</th>
<th>Key Distribution</th>
<th>Device Authentication</th>
<th>User Authentication</th>
<th>Encryption</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEP</td>
<td>Static</td>
<td>Yes (weak)</td>
<td>None</td>
<td>Yes (weak)</td>
</tr>
<tr>
<td>Cisco</td>
<td>Dynamic</td>
<td>Yes</td>
<td>Yes (802.1x)</td>
<td>Yes (TKIP)</td>
</tr>
<tr>
<td>WPA</td>
<td>Both</td>
<td>Yes</td>
<td>Yes (802.1x)</td>
<td>Yes (TKIP)</td>
</tr>
<tr>
<td>802.11i (WPA2)</td>
<td>Both</td>
<td>Yes</td>
<td>Yes (802.1x)</td>
<td>Yes (AES)</td>
</tr>
</tbody>
</table>
Chapter 12

Table 12-2  RFC 1918 Private Address Space

<table>
<thead>
<tr>
<th>Private IP Networks</th>
<th>Class of Networks</th>
<th>Number of Networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.0</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>172.16.0.0 through 172.31.0.0</td>
<td>B</td>
<td>16</td>
</tr>
<tr>
<td>192.168.0.0 through 192.168.255.0</td>
<td>C</td>
<td>256</td>
</tr>
</tbody>
</table>

Chapter 13

Table 13-2  IPv4 Address Classes Based on First Octet Values

<table>
<thead>
<tr>
<th>First Octet Values</th>
<th>Class</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–126</td>
<td>A</td>
<td>Unicast (large networks)</td>
</tr>
<tr>
<td>128–191</td>
<td>B</td>
<td>Unicast (medium-sized networks)</td>
</tr>
<tr>
<td>192–223</td>
<td>C</td>
<td>Unicast (small networks)</td>
</tr>
<tr>
<td>224–239</td>
<td>D</td>
<td>Multicast</td>
</tr>
<tr>
<td>240–255</td>
<td>E</td>
<td>Experimental</td>
</tr>
</tbody>
</table>

Table 13-3  Key Facts for Classes A, B, and C

<table>
<thead>
<tr>
<th>Private IP Networks</th>
<th>Class A</th>
<th>Class B</th>
<th>Class C</th>
</tr>
</thead>
<tbody>
<tr>
<td>First octet range</td>
<td>1–126</td>
<td>128–191</td>
<td>192–223</td>
</tr>
<tr>
<td>Valid network numbers</td>
<td>1.0.0.0 – 126.0.0.0</td>
<td>128.0.0.0 – 191.255.0.0</td>
<td>192.0.0.0 – 23.255.255.0</td>
</tr>
<tr>
<td>Total networks</td>
<td>$2^7 - 2 = 126$</td>
<td>$2^{14} = 16,384$</td>
<td>$2^{21} = 2,097,152$</td>
</tr>
<tr>
<td>Hosts per network</td>
<td>$2^{24} - 2$</td>
<td>$2^{16} - 2$</td>
<td>$2^{8} - 2$</td>
</tr>
<tr>
<td>Octets (bits) in network part</td>
<td>1 (8)</td>
<td>2 (16)</td>
<td>3 (24)</td>
</tr>
<tr>
<td>Octets (bits) in host part</td>
<td>3 (24)</td>
<td>2 (16)</td>
<td>1 (8)</td>
</tr>
<tr>
<td>Default mask</td>
<td>255.0.0.0</td>
<td>255.255.0.0</td>
<td>255.255.255.0</td>
</tr>
</tbody>
</table>
Chapter 17

**Table 17-2  Summary of Subnet ID Key Facts**

<table>
<thead>
<tr>
<th><strong>Definition</strong></th>
<th><strong>A Number That Represents the Subnet</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric value</td>
<td>First (smallest) number in the subnet</td>
</tr>
<tr>
<td>Literal synonyms</td>
<td>Subnet number, subnet address, prefix, resident subnet</td>
</tr>
<tr>
<td>Common-use synonyms</td>
<td>Network, network ID, network number, network address</td>
</tr>
<tr>
<td>Typically seen in...</td>
<td>Routing tables, documentation</td>
</tr>
</tbody>
</table>

**Table 17-3  Summary of Subnet Broadcast Address Key Facts**

<table>
<thead>
<tr>
<th><strong>Private IP Networks</strong></th>
<th><strong>Class of Networks</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Definition</strong></td>
<td>A reserved number in each subnet that, when used as the destination address of a packet, causes the routers to forward the packet to all hosts in that subnet</td>
</tr>
<tr>
<td>Numeric value</td>
<td>Last (highest) number in the subnet</td>
</tr>
<tr>
<td>Literal synonyms</td>
<td>Directed broadcast address</td>
</tr>
<tr>
<td>Broader-use synonyms</td>
<td>Network broadcast</td>
</tr>
<tr>
<td>Typically seen in...</td>
<td>In calculations of the range of addresses in a subnet</td>
</tr>
</tbody>
</table>

Chapter 19

**Table 19-2  Interface Status Codes and Their Meanings**

<table>
<thead>
<tr>
<th><strong>Name</strong></th>
<th><strong>First or Second Status Code</strong></th>
<th><strong>General Meaning</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Line status</td>
<td>First status code</td>
<td>Refers to the Layer 1 status—for example, is the cable installed, is it the right/wrong cable, is the device on the other end powered on?</td>
</tr>
<tr>
<td>Protocol status</td>
<td>Second status code</td>
<td>Refers generally to the Layer 2 status. It is always down if the line status is down. If the line status is up, a protocol status of down usually is caused by mismatched data link layer configuration.</td>
</tr>
</tbody>
</table>
Chapter 20

Table 20-2  Routing Protocol Classes/Algorithms and Protocols That Use Them

<table>
<thead>
<tr>
<th>Class/Algorithm</th>
<th>IGPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance vector</td>
<td>RIP-1, RIP-2, IGRP</td>
</tr>
<tr>
<td>Link-state</td>
<td>OSPF, Integrated IS-IS</td>
</tr>
<tr>
<td>Balanced hybrid (also called advanced distance vector)</td>
<td>EIGRP</td>
</tr>
</tbody>
</table>

Table 20-3  Comparing Classless and Classful Routing Protocols

<table>
<thead>
<tr>
<th>Feature</th>
<th>Classless</th>
<th>Classful</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supports VLSM</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Sends subnet mask in routing updates</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Supports manual route summarization</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 20-4  Interior IP Routing Protocols Compared

<table>
<thead>
<tr>
<th>Feature</th>
<th>RIP-1</th>
<th>RIP-2</th>
<th>EIGRP</th>
<th>OSPF</th>
<th>IS-IS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classless</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Supports VLSM</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sends mask in update</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Distance vector</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Link-state</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Supports autosummarization</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Supports manual summarization</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Proprietary</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Routing updates sent to a multicast IP address</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>Supports authentication</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Convergence</td>
<td>Slow</td>
<td>Slow</td>
<td>Very fast</td>
<td>Fast</td>
<td>Fast</td>
</tr>
</tbody>
</table>

1  EIGRP is often described as a balanced hybrid routing protocol, instead of link-state or distance vector. Some documents refer to EIGRP as an advanced distance vector protocol.
Table 20-6  *IOS Defaults for Administrative Distance*

<table>
<thead>
<tr>
<th>Route Source</th>
<th>Administrative Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected routes</td>
<td>0</td>
</tr>
<tr>
<td>Static routes</td>
<td>1</td>
</tr>
<tr>
<td>EIGRP</td>
<td>90</td>
</tr>
<tr>
<td>IGRP</td>
<td>100</td>
</tr>
<tr>
<td>OSPF</td>
<td>110</td>
</tr>
<tr>
<td>IS-IS</td>
<td>115</td>
</tr>
<tr>
<td>RIP (V1 and V2)</td>
<td>120</td>
</tr>
<tr>
<td>Unknown or unbelievable</td>
<td>255</td>
</tr>
</tbody>
</table>

Chapter 21

Table 21-2  *Determining Whether a Question Allows the Use of the Zero and Broadcast Subnets*

<table>
<thead>
<tr>
<th>Clues in the Question</th>
<th>Subnets Reserved?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Says nothing about it (default for the exam)</td>
<td>No</td>
</tr>
<tr>
<td>Lists the <em>ip subnet-zero</em> configuration command</td>
<td>No</td>
</tr>
<tr>
<td>Uses a classless routing protocol (RIP-2, EIGRP, OSPF)</td>
<td>No</td>
</tr>
<tr>
<td>Lists the <em>no ip subnet-zero</em> configuration command</td>
<td>Yes</td>
</tr>
<tr>
<td>Uses a classful routing protocol (RIP-1)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 21-4  *Microsoft Network Command Reference*

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipconfig /all</td>
<td>Displays detailed IP configuration information for all interfaces, including IP address, mask, default gateway, and DNS IP addresses</td>
</tr>
<tr>
<td>ipconfig /release</td>
<td>Releases any DHCP-leased IP addresses</td>
</tr>
<tr>
<td>ipconfig /renew</td>
<td>Acquires an IP address and related information using DHCP</td>
</tr>
<tr>
<td>nslookup name</td>
<td>Sends a DNS request for the listed name</td>
</tr>
<tr>
<td>arp -a</td>
<td>Lists the host’s ARP cache</td>
</tr>
<tr>
<td>ipconfig /displaydns</td>
<td>Lists the host’s name cache</td>
</tr>
</tbody>
</table>
Chapter 23

The following list summarizes the steps required to configure HDLC.

**Step 1** Configure the interface IP address using the `ip address` interface subcommand.

**Step 2** The following tasks are required only when the specifically listed conditions are true:

a. If an `encapsulation protocol` interface subcommand that lists a protocol besides HDLC already exists on the interface, use the `encapsulation hdlc` interface subcommand to enable HDLC.

b. If the interface line status is administratively down, enable the interface using the `no shutdown` interface subcommand.

c. If the serial link is a back-to-back serial link in a lab (or a simulator), configure the clocking rate using the `clock rate speed` interface subcommand, but only on the one router with the DCE cable (per the `show controllers serial number` command).

**Step 3** The following steps are always optional, and have no impact on whether the link works and passes IP traffic:

a. Configure the link’s speed using the `bandwidth speed-in-kbps` interface subcommand.

b. For documentation purposes, configure a description of the purpose of the interface using the `description text` interface subcommand.

---

**Table 21-4** *Microsoft Network Command Reference*

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipconfig /flushdns</code></td>
<td>Removes all DNS-found name cache entries</td>
</tr>
<tr>
<td><code>arp -d</code></td>
<td>Flushes (empties) the host’s ARP cache</td>
</tr>
<tr>
<td><code>netstat -rn</code></td>
<td>Displays a host’s routing table</td>
</tr>
</tbody>
</table>

**Table 22-4** *Comparing Circuits and Packet Switching*

<table>
<thead>
<tr>
<th>Feature</th>
<th>Circuits</th>
<th>Packet Switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service implemented as OSI layer . . .</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Point-to-point (two devices) or more</td>
<td>Point-to-point</td>
<td>Multipoint (more than two)</td>
</tr>
</tbody>
</table>

**Chapter 22**

---

**Table 21-4** *Microsoft Network Command Reference*
This page intentionally left blank
ICND1 Open-Ended Questions

Earlier editions of this book included some open-ended questions at the conclusion of each chapter to help readers prepare for the exam. Open-ended questions help you prepare by giving fewer clues as to the correct answers, requiring you to exercise your memory and apply mental processes to find the right answers. Although these questions can be effective, multiple-choice and simulation questions in the exam engine that use more detailed questions, exhibits, and longer explanations can provide many of the same benefits of open-ended questions, with the advantage of the reader knowing whether their answer was graded as correct or incorrect—an inherent difficulty with the answers to open-ended questions.

This edition of CCENT/CCNA ICND1 640-822 Official Cert Guide does not include open-ended questions as one of the core study tools. However, because some readers have indicated that they would like access to open-ended questions, the questions from earlier editions have been listed here for your reference. Note that the contents in this appendix were re-edited for accuracy, but no new questions have been added for this edition.

The questions are grouped based on the major parts of this book, but with no specific order inside each part.

NOTE Do not use the content of this appendix as a guide as to what is, and is not, on the current exams.

Part I: Networking Fundamentals—Questions

1. Name the seven layers of the OSI model.
2. What is/are the main purpose(s) of Layer 7?
3. What is/are the main purpose(s) of Layer 6?
4. What is/are the main purpose(s) of Layer 5?
5. What is/are the main purpose(s) of Layer 4?
6. What is/are the main purpose(s) of Layer 3?
Appendix N: ICND1 Open-Ended Questions

7. What is/are the main purpose(s) of Layer 2?
8. What is/are the main purpose(s) of Layer 1?
9. Describe the process of data encapsulation as data is processed from creation until it exits a physical interface to a network. Use the OSI model as an example.
10. Name three benefits to layering networking protocol specifications.
11. What header or trailer does a router discard as a side effect of routing?
12. What OSI layer typically encapsulates using both a header and a trailer?
13. What terms are used to describe the contents of the data encapsulated by the data link, network, and transport layers, respectively?
14. Explain the meaning of the term L5PDU.
15. Explain how Layer x on one computer communicates with Layer x on another computer.
16. List the terms behind the acronym TCP/IP.
17. List the terms behind the acronym OSI.
18. What is the main purpose(s) of Layer 2?
19. What is the main purpose(s) of Layer 1?
20. What does MAC stand for?
21. Name three terms popularly used as a synonym for MAC address.
22. What portion of a MAC address encodes an identifier representing the manufacturer of the card?
23. Are MAC addresses defined by a Layer 2 or Layer 3 protocol?
24. How many bits are present in a MAC address?
25. Name the two main parts of a MAC address. Which part identifies which “group” this address is a member of?
26. What OSI layer typically encapsulates using both a header and a trailer?
27. If a Fast Ethernet NIC currently is receiving a frame, can it begin sending a frame?
28. What are the two key differences between a 10-Mbps NIC and a 10/100-Mbps NIC?
29. How fast is Fast Ethernet?
30. How many bytes long is a MAC address?
31. Define the difference between broadcast and multicast MAC addresses.
32. Explain the function of the loopback and collision-detection features of an Ethernet NIC in relation to half-duplex and full-duplex operations.

33. Are DLCI addresses defined by a Layer 2 or Layer 3 protocol?

34. Define the terms DCE and DTE in the context of the physical layer and a point-to-point serial link.

35. Which layer or layers of OSI are most closely related to the functions of Frame Relay? Why?

36. True or false: “A leased line between two routers provides a constant amount of bandwidth—never more and never less.” Defend your answer.

37. Do HDLC and PPP, as implemented by Cisco routers, support Protocol Type fields and error detection? Explain your answer.

38. What are some of the main similarities between Frame Relay and ATM?

39. What are the two main functions of each OSI Layer 3–equivalent protocol?

40. Assume that PC1 sends data to PC2, and PC2 is separated from PC1 by at least one router. Are the IP addresses of the PCs in the same IP subnet? Explain your answer.

41. How many bits are present in an IP Version 4 address?

42. Name the two main parts of an IP address. Which part identifies which group this address is a member of?

43. PC1 sends data to PC2 using TCP/IP. Three routers separate PC1 and PC2. Explain why the statement “PC1 sends an Ethernet frame to PC2” is true or false.

44. In IP addressing, how many octets are in 1 byte?

45. Describe the differences between a routed protocol and a routing protocol.

46. Imagine an IP host on an Ethernet, with a single router attached to the same segment. In which cases does an IP host choose to send a packet to this router instead of directly to the destination host, and how does this IP host know about that single router?

47. Name three items in an entry in any routing table.

48. Name the parts of an IP address when subnetting is used.

49. How many valid IP addresses exist in an unsubnetted Class A network? (You may refer to the formula if you do not know the exact number.)

50. How many valid IP addresses exist in an unsubnetted Class B network? (You may refer to the formula if you do not know the exact number.)

51. How many valid IP addresses exist in an unsubnetted Class C network? (You may refer to the formula if you do not know the exact number.)
52. What values can a Class A network have in the first octet?
53. What values can a Class B network have in the first octet?
54. What values can a Class C network have in the first octet?
55. When subnetting a Class B network, do you create the subnet field by taking bits from the network part of the address or the host part?
56. When subnetting a Class B network, using the entire third octet for the subnet part, describe the number of possible subnets created.
57. When subnetting a Class A network using the entire second octet for the subnet part, describe the number of hosts in each subnet.
58. When a router hears about multiple routes to the same subnet, how does it choose which route to use?
59. What is the primary purpose of a routing protocol?
60. True or false: “Routing protocols are required to learn routes of directly connected subnets.”
61. List the similarities and differences between ARP and DNS.
62. Describe the features required for a protocol to be considered connectionless.
63. Describe the features required for a protocol to be considered connection oriented.
64. In a particular error-recovering protocol, the sender sends three frames, labeled 2, 3, and 4. On its next sent frame, the receiver of these frames sets an Acknowledgment field to 4. What does this typically imply?
65. Describe how TCP performs error recovery. What role do the routers play?
66. How many TCP segments are exchanged to establish a TCP connection? How many are required to terminate a TCP connection?
67. Describe the purpose of the Port Number field in a TCP header. Give one example.
68. How many UDP segments must be sent to establish a UDP connection? How many are used with normal UDP connection termination?

Part I: Networking Fundamentals—Answers
1. Answer: Application (Layer 7), presentation (Layer 6), session (Layer 5), transport (Layer 4), network (Layer 3), data link (Layer 2), and physical (Layer 1). Some mnemonics to help you recall the names of the layers are: All People Seem To Need Data Processing (Layers 7 to 1), Please Do Not Take Sausage Pizzas Away (Layers 1 to 7), and the ever-popular Pew! Dead Ninja Turtles Smell Particularly Awful (Layers 1 to 7).
2. Answer: Layer 7 (the application layer) provides standardized services to applications. The definition for this layer is typically ambiguous because it varies. The key is that it does not define a user interface, but instead it is a sort of toolbox used by application developers. For example, a web browser is an application that uses HTTP, as defined as a TCP/IP application layer protocol, to transfer the contents of web pages between a server and client.

3. Answer: Layer 6 (the presentation layer) defines data formats, compression, and possibly encryption.

4. Answer: Layer 5 (the session layer) controls the conversation between two endpoints. Although the term used is session, the term conversation more accurately describes what is accomplished. The session layer ensures that not only communication, but also useful sets of communication between endpoints is accomplished.

5. Answer: Layer 4 (the transport layer) provides end-to-end error recovery, if requested.

6. Answer: Layer 3 (the network layer) defines logical addressing and routing as a means of delivering data across an entire network. IP and IPX are two examples of Layer 3–equivalent protocols.

7. Answer: Layer 2 (the data link layer) defines addressing specific to a particular medium as part of the means of providing delivery of data across that medium. It also includes the protocols used to determine what device(s) accesses the media at any point in time.

8. Answer: Layer 1 (the physical layer) is responsible for encoding energy signals onto the medium and interpreting a received energy signal. Layer 1 also defines the connector and cabling details.

9. Answer: Data encapsulation represents the process of a layer adding a header (and possibly a trailer) to the data as it is processed by progressively lower layers in the protocol specification. In the context of OSI, each layer could add a header so that, other than the true application data, there would be six other headers (Layers 2 to 7) and a trailer for Layer 2, with this L2PDU being encoded by the physical layer onto the network media.

10. Answer: Some examples of benefits to layering networking protocol specifications include reduced complexity, standardized interfaces, modular engineering, interoperable technology, accelerated evolution, and simplified teaching and learning. Questions such as this on the exam require some subjective interpretation of the wording on your part.

11. Answer: A router discards the data-link header and trailer as a side effect of routing. This is because the network layer, where routing is defined, is interested in delivering the network layer (Layer 3) PDU from end to end. Routing uses intermediate data links
(Layer 2) to transport the data to the next routers and eventually to the true destination. The data-link header and trailer are useful only to deliver the data to the next router or host, so the header and trailer are discarded by each router.

12. Answer: The data link layer typically encapsulates using both a header and a trailer. The trailer typically includes a frame check sequence (FCS), which is used to perform error detection.

13. Answer: Frame, packet, and segment, respectively.

14. Answer: PDU stands for protocol data unit. A PDU is the entity that includes the headers and trailers created by a particular networking layer, plus any encapsulated data. For instance, an L5PDU includes Layer 5 headers and the encapsulated data.

15. Answer: Each layer of a networking model works with the same layer on another computer with which it wants to communicate. The protocol defined by each layer uses a header that is transmitted between the computers to communicate what each computer wants to do.


17. Answer: Open System Interconnection.

18. Answer: Layer 2 (the data link layer) defines addressing specific to a particular medium as part of the means of providing delivery of data across that medium. It also includes the protocols used to determine what device(s) accesses the media at any point in time.

19. Answer: Layer 1 (the physical layer) is responsible for encoding energy signals onto the medium and interpreting a received energy signal. Layer 1 also defines the connector and cabling details.

20. Answer: MAC stands for Media Access Control.

21. Answer: NIC address, card address, LAN address, hardware address, Ethernet address, and burned-in address are all synonymous with MAC address. All of these names are used casually and in formal documents, and they refer to the same 6-byte MAC address concept as defined by IEEE.

22. Answer: The first 3 bytes, called the Organizationally Unique Identifier (OUI), comprise the portion of a MAC address that encodes an identifier representing the manufacturer of the card.

23. Answer: MAC addresses are defined by a Layer 2 protocol. Ethernet MAC addresses are defined in the 802.3 specification.

24. Answer: MAC addresses have 48 bits. The first 24 bits for burned-in addresses represent a code that identifies the manufacturer.
25. Answer: There are no parts, and nothing defines a grouping concept in a MAC address. This is a trick question. Although you might have guessed that the MAC address has two parts—the first part dictated to the manufacturer, and the second part made up by the manufacturer—there is no grouping concept.

26. Answer: The data link layer typically encapsulates using both a header and a trailer. The trailer typically includes a frame check sequence (FCS), which is used to perform error detection.

27. Answer: Yes, if the NIC is operating in full-duplex mode.

28. Answer: The obvious benefit is that the 10/100-Mbps NIC can run at 100 Mbps. The other benefit is that 10/100-Mbps NICs can autonegotiate both speed and duplex between itself and the device that it is cabled to, typically a LAN switch.

29. Answer: 100 million bits per second (100 Mbps).

30. Answer: 6 bytes long, or 48 bits.

31. Answer: Both identify more than one device on the LAN. Broadcast always implies all devices on the LAN, whereas multicast implies some subset of all devices. Devices that intend to receive frames addressed to a particular multicast address must be aware of the particular multicast address(es) that they should process. These addresses are dependent on the applications used. For example, the broadcast address is FFFF.FFFF.FFFF, and one sample multicast address is 0100.5e00.0001.

32. Answer: The loopback feature copies the transmitted frame back onto the receive pins on the NIC interface. The collision-detection logic compares the received frame to the transmitted frame during transmission; if the signals do not match, a collision is occurring. With full-duplex operation, collisions cannot occur, so the loopback and collision-detection features are purposefully disabled, and concurrent transmission and reception is allowed.

33. Answer: DLCI addresses are defined by a Layer 2 protocol. Although they are not covered in detail for this book, Frame Relay protocols do not define a logical addressing structure that can usefully exist outside a Frame Relay network; by definition, the addresses would be OSI Layer 2–equivalent.

34. Answer: At the physical layer, DTE refers to the device that receives clocking from the device on the other end of the cable on a link. The DCE supplies that clocking. For example, the computer is typically the DTE, and the modem or CSU/DSU is the DCE. At the data link layer, both X.25 and Frame Relay define a logical DTE and DCE. In this case, the customer premises equipment (CPE), such as a router and a CSU/DSU, is the logical DTE, and the service provider equipment (the Frame Relay switch and the CSU/DSU) is the DCE.
35. Answer: OSI Layer 2. Frame Relay depends on other well-known physical layer specifications. Frame Relay does define headers for delivery across the Frame Relay cloud, making it a Layer 2 protocol. Frame Relay does not include any routing or logical addressing specifications, so it is not a Layer 3 protocol.

36. Answer: True. A leased line creates the cabling equivalent of having a cable between the two routers, with the speed (clock rate) defined by the telco. Even when the routers have no data to send, the full bandwidth is available to be used.

37. Answer: Both protocols support a Protocol Type field and an FCS field to perform error detection. PPP defines both fields as part of the PPP standard; the HDLC standard includes the FCS field, but Cisco added a Protocol Type field to the standard HDLC header.

38. Answer: Both use an access link to access the service provider. Both use the concept of a virtual circuit between DTE devices. And both allow multiple VCs to cross a single access link.

39. Answer: Path selection, which is also called routing, and logical addressing.

40. Answer: They must be in different subnets. IP addressing rules require that IP hosts separated by a router be in different subnets.

41. Answer: IPv4 addresses have 32 bits: a variable number in the network portion, and the rest of the 32 in the host portion. IP Version 6 uses a 128-bit address.

42. Answer: Network and host are the two main parts of an IP address. When subnetted, there are three portions of the IP address: network, subnet, and host. However, because most people think of the network and subnet portions as one portion, another correct answer to this question, using popular terminology, would be subnet and host. In short, without subnetting, the network part identifies the group; with subnetting, the network and subnet part together identifies the group.

43. Answer: The statement is false. Packets are delivered from end to end across a network, whereas frames simply pass between devices on each common physical network. The intervening routers discard the original Ethernet header, replacing it with other data-link headers as needed. A truer statement would be “PC1 sends an IP packet to PC2.”

44. Answer: One. Octet is a generic word to describe a single byte. Each IP address is 4 bytes, or four octets, long.

45. Answer: The routed protocol defines the addressing and Layer 3 header in the packet that actually is forwarded by a router. The routing protocol defines the process of routers exchanging topology data so that the routers know how to forward the data. A router uses the routing table created by the routing protocol when choosing where to route a packet.
46. Answer: Typically an IP host knows to what router to send a packet based on its configured default router. If the destination of the packet is in another subnet, the host sends the packet to the default router. Otherwise, the host sends the packet directly to the destination host because it is in the same subnet and, by definition, must be on the same data link.

47. Answer: A number that identifies a group of addresses, the interface out which to forward the packet, and the Layer 3 address of the next router to send this packet to are three items that you will always find in a routing table entry. For instance, IP routes contain subnet numbers, the outgoing interface, and the IP address of the next-hop router.

48. Answer: Network, subnet, and host are the three parts of an IP address. However, many people commonly treat the network and subnet parts of an address as a single part, leaving only two parts, the subnet and host parts. On the exam, the multiple-choice format should provide extra clues as to which terminology is used.

49. Answer: 16,777,214, derived by the formula $2^{24} - 2$.

50. Answer: 65,534, derived by the formula $2^{16} - 2$.

51. Answer: 254, derived by the formula $2^8 - 2$.

52. Answer: 1 through 126, inclusive.

53. Answer: 128 through 191, inclusive.

54. Answer: 192 through 223, inclusive.

55. Answer: Host part.

56. Answer: The subnet part consists of a full octet, which is 8 bits long. You can number $2^8$ things with 8 bits, or 256.

57. Answer: The host part consists of two entire octets in this case, which is 16 bits long. You can number $2^{16}$ things with 16 bits, or 65,536.

58. Answer: Routing protocols use a metric to describe how good each route is. The lower the metric is, the better the route is.

59. Answer: Routing protocols discover the routes in a network and build routing tables.

60. Answer: False. Routers add routes to directly connected subnets when the interfaces initialize. No routing protocols are needed.

61. Answer: Both protocols send messages with one piece of information, hoping to learn another piece of information. The similarities do not go beyond that fact. DNS requests are unicast IP packets sent specifically to the DNS server, whereas ARP uses a LAN broadcast frame. DNS queries supply a name, expecting to hear the corresponding IP address back from the server. ARP requests supply an IP address, hoping to hear a corresponding MAC address not from a server, but from the host that uses that IP address.
62. Answer: Connectionless protocols allow communication to occur without any previous configuration or dynamic protocol messages between the two devices.

63. Answer: Either the protocol must exchange messages with another device before data is allowed to be sent, or some pre-established correlation between the two endpoints must be defined. TCP is an example of a connection-oriented protocol that exchanges messages before data can be sent; Frame Relay is a connection-oriented protocol for which a pre-established correlation between endpoints is defined.

64. Answer: Frames through number 3 were received successfully. The receiver might not have received Frame 4, or Frame 4 might not have passed the FCS check.

65. Answer: TCP numbers the first byte in each segment with a sequence number. The receiving host uses the Acknowledgment field in segments that it sends back to acknowledge receipt of the data. If the receiver sends an acknowledgment number that is a smaller number than the sender expected, the sender believes that the intervening bytes were lost, so the sender resends them. The router plays no role unless the TCP connection ends in the router—for example, a Telnet into a router.

66. Answer: A three-way connection-establishment sequence is used, and a four-way connection-termination sequence is used.

67. Answer: The port numbers are used to help computers multiplex received data. For instance, a PC with two web browsers open can receive an IP packet. The destination TCP port number identifies which of the two browsers should receive the data.

68. Answer: UDP does not establish connections because it is not connection oriented.

Part II: LAN Switching—Questions

1. What are the two names for the same CLI mode in a router or switch that, when accessed, enables you to issue EXEC commands that could be disruptive to router operations?

2. What are three methods of logging on to a router or switch?

3. What is the name of the user interface mode of operation in which you cannot issue disruptive commands?

4. What command do you use to receive command help if you know that a show command option begins with a c but you cannot recall the option?

5. While you are logged in to a router or switch, you issue the command copy ? and get a response of “Unknown command, computer name, or host.” Offer an explanation for why this error message appears.

6. Is the number of retrievable commands based on the number of characters in each command, or is it simply a number of commands, regardless of their size?
7. How can you retrieve a previously used command? (Name two ways.)

8. After typing `show ip route`, which is the only command that you typed since logging in to the router, you now want to issue the `show ip arp` command. What steps would you take to execute this command by using command-recall keystrokes?

9. What configuration command causes the router or switch to require a password from a user at the console? What configuration mode context must you be in? (That is, what command[s] must be typed before this command after entering configuration mode?) List the commands in the order in which they must be typed while in config mode.

10. What configuration command is used to tell the router or switch the password that is required at the console? What configuration mode context must you be in? (That is, what command[s] must you type before this command after entering configuration mode?) List the commands in the order in which they must be typed while in config mode.

11. What are the primary purposes of Flash memory in a Cisco router?

12. What is the intended purpose of NVRAM memory in a Cisco router or switch?

13. What does the NV stand for in NVRAM?

14. What is the intended purpose of RAM in a Cisco router or switch?

15. What is the main purpose of ROM in a Cisco router?

16. What command sets the password that would be required after typing the `enable` command? Is that password encrypted by default?

17. To have the correct syntax, what must you add to the following configuration command?

   `banner This is Ivan Denisovich's Gorno Router--Do Not Use`

18. Name two commands that affect the text used as the command prompt.

19. When using setup mode, you are prompted at the end of the process for whether you want to use the configuration parameters that you just typed in. Which type of memory is this configuration stored in if you type yes?

20. Is the password required at the console the same one that is required when Telnet is used to access a router or switch?

21. Name two commands used to view the configuration to be used at the next reload of the router or switch. Which one is a more recent addition to Cisco IOS Software?

22. Name two commands used to view the configuration that currently is used in a router or switch. Which one is a more recent addition to Cisco IOS Software?
23. True or false: The copy startup-config running-config command always changes the currently used configuration for this router or switch to exactly match what is in the startup configuration file. Explain.

24. What are the two names for the switch’s mode of operation that, when accessed, enables you to issue commands that could be disruptive to switch operations?

25. What configuration command causes the switch to require a password from a user at the console? What configuration mode context must you be in? (That is, what command[s] must be typed before this command after entering configuration mode?) List the commands in the order in which they must be typed while in config mode.

26. What configuration command is used to tell the switch the password that is required at the console? What configuration mode context must you be in? (That is, what command[s] must you type before this command after entering configuration mode?) List the commands in the order in which they must be typed while in config mode.

27. Name three methods of internal switching on typical switches today. Which provides less latency for an individual frame?

28. Describe how a transparent bridge decides whether it should forward a frame, and tell how it chooses the output interface.

29. Define the term collision domain.

30. Name two benefits of LAN segmentation using transparent bridges.

31. What routing protocol does a transparent bridge use to learn about Layer 3 addressing groupings?

32. If a Fast Ethernet NIC currently is receiving a frame, can it begin sending a frame?

33. Why did Ethernet networks’ performance improve with the advent of bridges?

34. Why did Ethernet networks’ performance improve with the advent of switches?

35. What are two key differences between a 10-Mbps NIC and a 10/100-Mbps NIC?

36. Assume that a building has 100 devices attached to the same Ethernet. These users then are migrated onto two separate shared Ethernet segments, each with 50 devices, with a transparent bridge between them. List two benefits that would be derived for a typical user.

37. Assume that a building has 100 devices attached to the same Ethernet. These devices are migrated to two different shared Ethernet segments, each with 50 devices. The two segments are connected to a Cisco LAN switch to allow communication between the two sets of users. List two benefits that would be derived for a typical user.

38. How fast is Fast Ethernet?
39. How does a transparent bridge build its address table?

40. How many bytes long is a MAC address?

41. Does a bridge or switch examine just the incoming frame's source MAC, just the destination MAC, or both? Why does it examine the one(s) that it examines?

42. Define the term broadcast domain.

43. Describe the benefits of creating three VLANs of 25 ports each, versus a single VLAN of 75 ports, in each case using a single switch. Assume that all ports are switched ports (each port is a different collision domain).

44. Explain the function of the loopback and collision-detection features of an Ethernet NIC in relation to half-duplex and full-duplex operations.

45. Describe the benefit of the Spanning Tree Protocol as used by transparent bridges and switches.

46. Define the term VLAN.

47. Must all members of the same VLAN be in the same collision domain, the same broadcast domain, or both?

48. Describe why a 10BASE-T network using a hub is considered to be a logical bus topology.

49. Compare and contrast full-mesh versus partial-mesh topologies, in relation to physical topologies.

50. Compare and contrast full-mesh versus partial-mesh topologies, in relation to logical topologies.

51. Which wires are used by a typical Ethernet CAT 5 cable for 100BASE-TX? Which ones are used for transmit, and which ones are used to receive, by an Ethernet card?

52. Which TIA standards for UTP cabling support 10BASE-T?

53. What are key differences between multimode and single-mode optical cabling?

54. What types of cabling are least susceptible to having someone eavesdrop and somehow discover what is being transmitted over the cable?

55. What are the IEEE standards for 10BASE-T, Fast Ethernet, Gigabit Ethernet, and 10-Gigabit Ethernet?

56. Which variations on the Fast Ethernet and Gigabit standard use IEEE 802.3 MAC and 802.2 LLC framing?

57. What are some of the differences between 10-Gigabit Ethernet and other types of Ethernet?
58. What IEEE standards are used by an 802.11 access point?

59. What does the term \textit{line-of-sight} mean in relation to wireless communications?

60. List five key pieces of information that can be gathered using CDP.

61. Imagine a network with Switch1, connected to Router1, with a point-to-point serial link to Router2, which, in turn, is connected to Switch2. Assuming that you are logged in to R1, what commands could be used to find the IP addresses of Router2 and Switch1 without logging in to either device?

62. Imagine that a network with Switch1 is connected to Router1, with a point-to-point serial link to Router2, which, in turn, is connected to Switch2. You can log in only to Switch1. Which of the other devices could Switch1 learn about using CDP? Why?

63. What command lists a brief one-line description of CDP information about each neighbor?

\noindent \textbf{Part II: LAN Switching—Answers} \\
1. Answer: Enable mode and privileged mode. Both names are commonly used and are found in Cisco documentation.

2. Answer: Console, auxiliary port, and Telnet. All three cause the user to enter user EXEC mode.

3. Answer: User EXEC mode.

4. Answer: \texttt{show c?}. Help would appear immediately after you typed the \texttt{?} symbol. You would not need to press Enter after the \texttt{?}. If you did so, the router or switch would try to execute the command with only the parameters that you had typed after the \texttt{?}.

5. Answer: You were in user mode. You must be in enable/privileged mode to use the \texttt{copy} command. When in user mode, the router does not provide help for privileged commands, and it treats the request for help as if there is no such command.

6. Answer: The number of commands. The length (that is, the number of characters) of each command does not affect the command history buffer.

7. Answer: Ctrl-p and up arrow (literally the up arrow key on the keyboard). Not all terminal emulators support Ctrl-p or the up arrow, so recalling both methods is useful.

8. Answer: Press the up arrow, press Backspace five times, and type \texttt{arp}. The up arrow key retrieves the \texttt{show ip route} command. Backspace moves the cursor backward and erases the character. Typing inserts the characters into the line.
9. Answer: The line console 0 command is a context-setting command; it adds no information to the configuration. The command can be typed from any part of configuration mode. The login command, which follows the line console 0 command, tells Cisco IOS that a password prompt is desired at the console.

10. Answer: The password command tells Cisco IOS the value that should be typed when a user wants access from the console. This value is requested by Cisco IOS because of the login command. The password xxxxxxx command must be typed while in console configuration mode, which is reached by typing line console 0.

11. Answer: To store Cisco IOS and microcode files. If microcode is upgraded, the files also reside in Flash memory.

12. Answer: To store a single configuration file, used at router or switch load time. NVRAM does not support multiple files.

13. Answer: Nonvolatile. NVRAM is battery powered if it is really RAM. In some routers or switches, Cisco has (sneakily) used a small portion of Flash memory for the purpose of NVRAM.

14. Answer: RAM is used as Cisco IOS working memory (storing such things as routing tables or packets) and for Cisco IOS code storage. (In some router models, not all IOS is copied into RAM. Some of IOS is left in Flash memory so that more RAM is available for working memory.) It also holds the currently-in-use configuration file called running-config.

15. Answer: To store a small, limited-function version of IOS and to store bootstrap code. Typically, this type of IOS is used only during maintenance or emergencies.

16. Answer: enable password or enable secret. The password in the enable command is not encrypted, by default. The enable secret password is encoded using MD5.

17. Answer: As typed, IOS would think that the letter T is the delimiter character, so the banner actually would be “his is Ivan Denisovich’s Gorno Rou”. The motd parameter is not shown because it is not required. An alternate correct command would be this:

   banner motd # This is Ivan.... Do Not Use #

18. Answer: hostname and prompt.

19. Answer: Both NVRAM and RAM. Setup is the only Cisco IOS feature that modifies both the active and the startup configuration files as the result of one action by the user.

20. Answer: No. The Telnet (virtual terminal) password is not the same password, although many installations use the same value.

21. Answer: show config and show startup-config. show startup-config is the newer one and, hopefully, is easier to remember.
22. Answer: `write terminal` and `show running-config`. `show running-config` is the newer command and, hopefully, is easier to remember.

23. Answer: False. Some configuration commands do not replace an existing command but simply are added to a list of related commands. If such a list exists, the `copy startup-config running-config` command simply adds those commands to the end of the list. Many of these lists in a router or switch configuration are order dependent.

24. Answer: Enable mode and privileged mode. Both names are commonly used and found in Cisco documentation.

25. Answer:
   ```
 line console 0
 login
   ```
   The `line console 0` command is a context-setting command; it adds no information to the configuration. The command can be typed from any part of configuration mode. The `login` command, which follows the `line console 0` command, tells IOS that a password prompt is desired at the console.

26. Answer:
   ```
 line console 0
 password xxxxxxx
   ```
   The `password` command tells IOS the value that should be typed when a user wants access from the console. This value is requested by IOS because of the `login` command. The `password xxxxxxx` must be typed while in console configuration mode, which is reached by typing `line console 0`.

27. Answer: Store-and-forward, cut-through, and fragment-free switching. Cut-through switching has less latency per frame but does not check for bit errors in the frame, including errors caused by collisions. Store-and-forward switching stores the entire received frame, verifies that the FCS is correct, and then sends the frame. Cut-through switching sends out the first bytes of the frame before the last bytes of the incoming frame have been received. Fragment-free switching is similar to cut-through switching in that the frame can be sent before the incoming frame is totally received; however, fragment-free processing waits to receive the first 64 bytes, to ensure no collisions, before beginning to forward the frame.

28. Answer: The bridge examines the destination MAC address of a frame and looks for the address in its bridge (or address) table. If found, the matching entry tells the bridge which output interface to use to forward the frame. If not found, the bridge forwards the frame out all other interfaces (except for interfaces blocked by spanning tree and the interface in which the frame was received). The bridge table is built by examining incoming frames' source MAC addresses.
29. Answer: A collision domain is a set of Ethernet devices for which concurrent transmission of a frame by any two of them will result in a collision. Bridges, switches, and routers separate LAN segments into different collision domains. Repeaters and shared hubs do not separate segments into different collision domains.

30. Answer: The main benefits are reduced collisions and more cumulative bandwidth. Multiple 10- or 100-Mbps Ethernet segments are created, and unicasts between devices on the same segment are not forwarded by the bridge, which reduces overhead. Because frames can be sent over each segment at the same time, it increases the overall bandwidth available in the network.

31. Answer: None. Bridges do not use routing protocols. Transparent bridges do not care about Layer 3 address groupings. Devices on either side of a transparent bridge are in the same Layer 3 group—in other words, the same IP subnet or IPX network.

32. Answer: Yes, if the NIC is operating in full-duplex mode.

33. Answer: Before bridges and switches existed, all devices were cabled to the same shared Ethernet. The CSMA/CD algorithm was used to determine who got to send across the Ethernet. As the amount of traffic increased, collisions and waiting (because of CSMA/CD) increased, so frames took longer to send. Bridges separated the network into multiple collision domains, reducing collisions and allowing devices on opposite sides of the bridge to send concurrently.

34. Answer: Before bridges and switches existed, all devices were cabled to the same shared Ethernet. The CSMA/CD algorithm was used to determine who got to send across the Ethernet. As the amount of traffic increased, collisions and waiting (because of CSMA/CD) increased, so frames took longer to send. Switches separated the network into multiple collision domains, typically one per port, reducing collisions and allowing devices on opposite sides of the bridge to send concurrently.

35. Answer: The obvious benefit is that the 10/100-Mbps NIC can run at 100 Mbps. The other benefit is that 10/100-Mbps NICs can autonegotiate both speed and duplex between themselves and the device that they are cabled to, typically a LAN switch.

36. Answer: Fewer collisions should occur due to having two collision domains. Also, less waiting should occur because twice as much capacity exists.

37. Answer: Two switch ports are used, which reduces the possibility of collisions. Also, each segment has its own 10- or 100-Mbps capacity, allowing more throughput and reducing the likelihood of collisions. Furthermore, some Cisco switches can reduce the flow of multicasts by using the Cisco Group Message Protocol (CGMP) and IGMP snooping.

38. Answer: 100 million bits per second (100 Mbps).
39. Answer: The bridge listens for incoming frames and examines the source MAC address. If it is not in the table, the source address is added, along with the port (interface) by which the frame entered the bridge. The bridge also marks an entry for freshness so that entries can be removed after a period of disuse. This reduces table size and allows for easier table changes in case a spanning-tree change forces more significant changes in the bridge (address) table.

40. Answer: 6 bytes long, or 48 bits.

41. Answer: The bridge or switch examines both MAC addresses. The source is examined so that entries can be added to the bridge/address table. The destination address is examined to determine the interface out which to forward the frame. Table lookup is required for both addresses for any frame that enters an interface. That is one of the reasons that LAN switches, which have a much larger number of interfaces than do traditional bridges, need to have optimized hardware and logic to perform table lookup quickly.

42. Answer: A broadcast domain is a set of Ethernet devices for which a broadcast sent by any one of them should be received by all others in the group. Unlike routers, bridges and switches do not stop the flow of broadcasts. Two segments separated by a router each would be in different broadcast domains. A switch can create multiple broadcast domains by creating multiple VLANs, but a router must be used to route packets between the VLANs.

43. Answer: Three different broadcast domains are created with three VLANs, so the devices’ CPU utilization should decrease because of decreased broadcast traffic. Traffic between devices in different VLANs will pass through some routing function, which can add some latency for those packets. Better management and control are gained by including a router in the path for those packets.

44. Answer: The loopback feature copies the transmitted frame back onto the receive pins on the NIC interface. The collision-detection logic compares the received frame to the transmitted frame during transmission; if the signals do not match, a collision is occurring. With full-duplex operation, collisions cannot occur, so the loopback and collision-detection features are purposefully disabled, and concurrent transmission and reception is allowed.

45. Answer: Physically redundant paths in the network are allowed to exist and be used when other paths fail. Also, loops in the bridged network are avoided. Loops are particularly bad because bridging uses LAN headers, which do not provide a mechanism to mark a frame so that its lifetime can be limited; in other words, the frame can loop forever.

46. Answer: Virtual LAN (VLAN) refers to the process of treating one subset of a switch’s interfaces as one broadcast domain. Broadcasts from one VLAN are not forwarded to other VLANs; unicasts between VLANs must use a router. Advanced methods, such as Layer 3 switching, can be used to allow the LAN switch to forward traffic between VLANs without each individual frame being routed by a router.
47. Answer: By definition, members of the same VLAN are all part of the same broadcast domain. They might all be in the same collision domain, but only if all devices in the VLAN are connected to hubs.

48. Answer: A physical bus causes the transmitted electrical signal to be propagated to all devices connected to the bus. A 10BASE-T hub repeats a signal entering one port out all the other ports, ensuring that all devices receive the same signal. Hubs do not have any logic to prevent some frames from being sent out ports (all signals are repeated), creating a single collision domain, just like a physical bus.

49. Answer: In a full mesh, for a particular set of networking devices, a direct cable connects each pair of devices. For a partial mesh, some pairs of devices are not directly connected.

50. Answer: Regardless of the physical topology, a topology is considered a logical full mesh if each pair of devices can communicate directly, and is considered a partial mesh if some pairs cannot communicate directly. A Frame Relay network uses a star physical topology. Depending on what VCs have been defined, it might use a logical full mesh or a logical partial mesh.

51. Answer: Ethernet cards transmit on the pair using pins 1 and 2, and receive on the pair at pins 3 and 6.

52. Answer: CAT 3, 5, 5e, and 6.

53. Answer: Multimode cabling typically supports shorter distances than single-mode. Single-mode uses a much smaller diameter for the glass fiber and supports greater distances.

54. Answer: Optical cables do not emit any EM radiation outside the cable. So, you cannot simply sense what signal is crossing over an optical cable without physically breaking into the cable, which makes the cable unusable.

55. Answer: 802.3 (10BASE-T), 802.3u (Fast Ethernet), 802.3z and 802.3ab (Gigabit Ethernet), and 802.3ae (10-Gigabit Ethernet).

56. Answer: All of them.

57. Answer: The speed, of course, is the obvious difference. Additionally, 10-Gigabit Ethernet is allowed to be used in a point-to-point topology only, and it supports full-duplex only.

58. Answer: The access point uses 802.11 standards for communication across the wireless LAN, including 802.2 LLC. It also connects to a wired LAN, so it uses 802.3 for its wired Ethernet.

59. Answer: Line-of-sight means that you can stand beside one device and see the other device. Some wireless technologies require a line-of-sight, and others do not.
60. Answer: Device identifier, address list, port identifier, capabilities list, and platform.

61. Answer: On Router1, you could use either the `show cdp neighbor detail` command or the `show cdp entry` command. Both commands list IP addresses of the neighboring devices, assuming that CDP is up and working.

62. Answer: Switch1 could learn about only Router1 because CDP learns information about only devices that are connected to the same data link.

63. Answer: The `show cdp neighbor` command.

Parts III and IV—Questions

1. How does Cisco IOS Software designate a subnet in the routing table as a directly connected network? What about a route learned with RIP?

2. Imagine that a router has an interface E0 with IP address 168.10.1.1 and an interface E1 with IP address 10.1.1.1. If the commands `router rip` and `network 10.0.0.0`, with no other network commands, are configured in the router, does RIP send updates out E0?

3. Which command lists all the IP routes learned via RIP?

4. Which command or commands list all IP routes in network 172.16.0.0?

5. What are the primary purposes of Flash memory in a Cisco router?

6. What is the main purpose of ROM in a Cisco router?

7. What configuration command would be needed to cause a router to use a Cisco IOS image named `c2500-j-l.112-14.bin` on TFTP server 128.1.1.1 when the router is reloaded? If you forgot the first parameter of this command, what steps must you take to learn the correct parameters and add the command to the configuration? (Assume that you are not logged in to the router when you start.)

8. What two methods could a router administrator use to cause a router to load IOS stored in ROM?

9. What is the process used to update the contents of Flash memory so that a new IOS image in a file called `c4500-d-mz.120-5.bin` on TFTP server 128.1.1.1 is copied into Flash memory?

10. Name three possible problems that could prevent the command `boot system tftp c2500-j-l.112-14.bin 128.1.1.1` from succeeding.
11. Two different Cisco IOS files are in a router’s Flash memory: one called c2500-j-l.111-3.bin and one called c2500-j-l.112-14.bin. Which one does the router use when it boots up? How could you force the other Cisco IOS file to be used? Without looking at the router configuration, what command could be used to discover which file was used for the latest boot of the router?

12. Name the parts of an IP address.

13. Define the term *subnet mask*. What do the bits in the mask whose values are binary 0 tell you about the corresponding IP address(es)?

14. Given the IP address 134.141.7.11 and the mask 255.255.255.0, what is the subnet number?

15. Given the IP address 193.193.7.7 and the mask 255.255.255.0, what is the subnet number?

16. Given the IP address 200.1.1.130 and the mask 255.255.255.224, what is the subnet number?

17. Given the IP address 220.8.7.100 and the mask 255.255.255.240, what is the subnet number?

18. Given the IP address 134.141.7.11 and the mask 255.255.255.0, what is the subnet broadcast address?

19. Given the IP address 193.193.7.7 and the mask 255.255.255.0, what is the broadcast address?

20. Given the IP address 200.1.1.130 and the mask 255.255.255.224, what is the broadcast address?

21. Given the IP address 220.8.7.100 and the mask 255.255.255.240, what is the broadcast address?

22. Given the IP address 134.141.7.11 and the mask 255.255.255.0, what are the assignable IP addresses in this subnet?

23. Given the IP address 193.193.7.7 and the mask 255.255.255.0, what are the assignable IP addresses in this subnet?

24. Given the IP address 200.1.1.130 and the mask 255.255.255.224, what are the assignable IP addresses in this subnet?

25. Given the IP address 220.8.7.100 and the mask 255.255.255.240, what are the assignable IP addresses in this subnet?

26. Given the IP address 134.141.7.7 and the mask 255.255.255.0, what are all the subnet numbers if the same (static) mask is used for all subnets in this network?
27. Given the IP address 220.8.7.100 and the mask 255.255.255.240, what are all the subnet numbers if the same (static) mask is used for all subnets in this network?

28. How many IP addresses could be assigned in each subnet of 134.141.0.0, assuming that a mask of 255.255.255.0 is used? If the same (static) mask is used for all subnets, how many subnets are there?

29. How many IP addresses could be assigned in each subnet of 220.8.7.0, assuming that a mask of 255.255.255.240 is used? If the same (static) mask is used for all subnets, how many subnets are there?

30. You design a network for a customer, and the customer insists that you use the same subnet mask on every subnet. The customer will use network 10.0.0.0 and needs 200 subnets, each with 200 hosts maximum. What subnet mask would you use to allow the largest amount of growth in subnets? Which mask would work and would allow for the most growth in the number of hosts per subnet?

31. What are the valid private IP network numbers, according to RFC 1918?

32. How large are IPv6 addresses?

33. How does CIDR help reduce the size of Internet routing tables?

34. Create a minimal configuration enabling IP on each interface on a 2501 router (two serial, one Ethernet). Use Class A network 8.0.0.0. Your boss says that you need, at most, 200 hosts per subnet. You decide against using VLSM. Your boss also says to plan your subnets so that you can have as many subnets as possible rather than allow for larger subnets later. When choosing the actual IP address values and subnet numbers, you decide to start with the lowest numerical values. Assume that point-to-point serial links will be attached to this router. Avoid using the zero subnet.

35. In the previous question, what would be the IP subnet of the link attached to serial 0? If another user wanted to answer the same question but did not have the enable password, what command(s) might provide this router’s addresses and subnets?

36. What must be done to make the output of the `show ip route` command list subnet masks in decimal format instead of prefixes? In what mode would you use the command?

37. In the output of `show ip route`, when a C shows up in the left side of the output on a line for a particular route, what does that mean?

38. Define the term `prefix notation`. Give two examples.
39. What does ICMP stand for? To which OSI layer would you consider this protocol to apply most closely?

40. Identify two methods to tell a router to ask for name resolution from two different name servers.

41. What keyboard sequence suspends a Telnet session in a Cisco router?

42. What two commands and what part of the command output tells you which suspended Telnet connection will be reconnected if you just press the Enter key, without any characters typed on the command line?

43. Imagine that you typed a `ping` command and got five “!” back. What types of messages were sent through the network? Be as specific as possible.

44. How do you make a router not ask for DNS resolution from a name server?

45. Imagine that you are just logged in at the console of R1, and you Telnet to routers R2, R3, and R4 in succession, but you suspended your Telnet connection each time—in other words, all three Telnet connections go from R1 to the other three routers, respectively. What options do you have for reconnecting to R2?

46. Imagine that you are just logged in at the console of R1, and you Telnet to routers R2, R3, and R4 in succession, but you suspended your Telnet connection each time—in other words, all three Telnet connections go from R1 to the other three routers, respectively. What options do you have for reconnecting to R4?

47. Which interior IP routing protocols support VLSM?

48. Which IP routing protocols use distance vector logic?

49. Which interior IP routing protocols are considered to converge quickly?

50. Compare distance vector and link-state protocols in terms of what information is sent in routing updates.

51. Explain the basic concept behind why some routing protocols support VLSM and some do not.

52. Explain the difference between interior and exterior routing protocols.

53. Compare and contrast the types of information sent in distance vector routing updates versus link-state routing updates.

54. What term describes the underlying logic behind the OSPF routing protocol?
Parts III and IV—Answers

1. Answer: The `show ip route` command lists routes with a designator on the left side of the command output. C represents connected routes, I is used for IGRP, and R represents routes derived from RIP.

2. Answer: No. There must be a `network` statement for network 168.10.0.0 before RIP advertises out that interface. The `network` command simply selects the connected interfaces on which to send and receive updates.

3. Answer: The `show ip route rip` command lists only RIP-learned routes.

4. Answer: The `show ip route 172.16.0.0` command lists all the routes in 172.16.0.0. Also, the `show ip route list 1` command lists routes in network 172.16.0.0 assuming that the `access-list 1 permit 172.16.0.0 0.0.255.255` configuration command also exists.

5. Answer: To store Cisco IOS and microcode files. If microcode is upgraded, the files also reside in Flash memory.

6. Answer: To store a small, limited-function version of IOS and to store bootstrap code. Typically, this type of IOS is used only during maintenance or emergencies.

7. Answer:

   ```
 boot system tftp c2500-j-1.112-14.bin 128.1.1.1
   ```

   As for the second part of the question: Log in from con/aux/telnet, type the `enable` command, type the enable password, type the `configure terminal` command, and type `boot ?`. Help appears for the first parameter of the `boot` command.

8. Answer: Set the configuration register boot field to binary 0001, or add `boot system rom` to the configuration file and copy it to the startup configuration file. To set the configuration register to hex 2101, which would yield binary 0001 in the boot field, the `config-register 0x2101` global configuration command would be used. A third method is to remove the Flash memory in a router and then reload the router.

9. Answer: `copy tftp flash`. The other details—namely, the IP address of the TFTP server and the filename—are requested through prompts to the user.

10. Answer: The possible reasons include: 128.1.1.1 is not accessible through the network, there is no TFTP server on 128.1.1.1, the file is not in the TFTP default directory, the file is corrupted, or a different `boot` command could precede this `boot` command in the configuration file, meaning that the IOS referenced in the first `boot` command would be used instead.

11. Answer: The first Cisco IOS file listed in the `show flash` command is the one used at reload time, unless a `boot system` command is configured. The configuration command `boot system flash c2500-j-1.112-14.bin` would override the IOS’s decision
to look for files in order in Flash memory. **show version** is the command used to
display the filename of IOS for the latest reload of a router. The **show version** output
tells you the version as well as the name of the file that was used at last reload time. It
is particularly difficult to find in the output of the command.

12. Answer: Network, subnet, and host are the three parts of an IP address. However, many
people commonly treat the network and subnet parts of an address as a single part,
leaving only two parts: the subnet and host parts. On the exam, the multiple-choice
format should provide extra clues as to which terminology is used.

13. Answer: A subnet mask defines the number of host bits in an address. The bits of value
0 define which bits in the address are host bits. The mask is an important ingredient
in the formula to dissect an IP address; along with knowledge of the number of
network bits implied for Class A, B, and C networks, the mask provides a clear
definition of the size of the network, subnet, and host parts of an address.

14. Answer: The subnet is 134.141.7.0. The binary algorithm is shown in the table that
follows.

<table>
<thead>
<tr>
<th>Address</th>
<th>134.141.7.11</th>
<th>1000 0110 1000 1101 0000 0111 0000 1011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255.255.255.0</td>
<td>1111 1111 1111 1111 1111 1111 1111 1111</td>
</tr>
<tr>
<td>Result</td>
<td>134.141.7.0</td>
<td>1000 0110 1000 1101 0000 0111 0000 0000</td>
</tr>
</tbody>
</table>

15. Answer: The network number is 193.193.7.0. Because this is a Class C address and
the mask used is 255.255.255.0 (the default), no subnetting is in use. The binary
algorithm is shown in the table that follows.

<table>
<thead>
<tr>
<th>Address</th>
<th>193.193.7.7</th>
<th>1100 0001 1100 0001 0000 0111 0000 0111</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255.255.255.0</td>
<td>1111 1111 1111 1111 1111 1111 1111 1111</td>
</tr>
<tr>
<td>Result</td>
<td>193.193.7.0</td>
<td>1100 0001 1100 0001 0000 0111 0000 0000</td>
</tr>
</tbody>
</table>

16. Answer: The answer is 200.1.1.128. The table that follows shows the subnet chart to
help you learn the way to calculate the subnet number without binary math. The magic
number is 256 – 224 = 32.

<table>
<thead>
<tr>
<th>Octet</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>200</td>
<td>1</td>
<td>1</td>
<td>130</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>224</td>
<td>Interesting octet is the fourth octet (magic number: 256 – 224 = 32).</td>
</tr>
</tbody>
</table>
28 Appendix N: ICND1 Open-Ended Questions

<table>
<thead>
<tr>
<th>Octet</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>220</td>
<td>8</td>
<td>7</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>240</td>
<td>Interesting octet is the fourth octet.</td>
</tr>
<tr>
<td>Subnet number</td>
<td>220</td>
<td>8</td>
<td>7</td>
<td>96</td>
<td>96 is the closest multiple of the magic number not greater than 100.</td>
</tr>
<tr>
<td>First address</td>
<td>220</td>
<td>8</td>
<td>7</td>
<td>97</td>
<td>Add 1 to the last octet.</td>
</tr>
<tr>
<td>Broadcast</td>
<td>220</td>
<td>8</td>
<td>7</td>
<td>111</td>
<td>Subnet + magic number – 1.</td>
</tr>
<tr>
<td>Last address</td>
<td>220</td>
<td>8</td>
<td>7</td>
<td>110</td>
<td>Subtract 1 from broadcast.</td>
</tr>
</tbody>
</table>

17. Answer: The answer is 220.8.7.96. The table that follows shows the subnet chart to help you learn the way to calculate the subnet number without binary math. The magic number is 256 – 240 = 16.

<table>
<thead>
<tr>
<th>Subnet number</th>
<th>200</th>
<th>1</th>
<th>1</th>
<th>128</th>
<th>128 is the closest multiple of the magic number not greater than 130.</th>
</tr>
</thead>
<tbody>
<tr>
<td>First address</td>
<td>200</td>
<td>1</td>
<td>1</td>
<td>129</td>
<td>Add 1 to the last octet of the subnet number.</td>
</tr>
<tr>
<td>Broadcast</td>
<td>200</td>
<td>1</td>
<td>1</td>
<td>159</td>
<td>Subnet + magic number – 1.</td>
</tr>
<tr>
<td>Last address</td>
<td>200</td>
<td>1</td>
<td>1</td>
<td>158</td>
<td>Subtract 1 from broadcast.</td>
</tr>
</tbody>
</table>

18. Answer: The broadcast address is 134.141.7.255. The binary algorithm is shown in the table that follows.

<table>
<thead>
<tr>
<th>Address</th>
<th>134.141.7.11</th>
<th>1000 0110 1000 1101 0000 0111 0000 1011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255.255.255.0</td>
<td>1111 1111 1111 1111 1111 1111 1111 0000 0000</td>
</tr>
<tr>
<td>Result</td>
<td>134.141.7.0</td>
<td>1000 0110 1000 1101 0000 0111 0000 0000</td>
</tr>
<tr>
<td>Broadcast address</td>
<td>134.141.7.255</td>
<td>1000 0110 1000 1101 0000 0111 1111 1111</td>
</tr>
</tbody>
</table>

19. Answer: The broadcast address is 193.193.7.255. Because this is a Class C address and the mask used is 255.255.255.0 (the default), no subnetting is in use. The binary algorithm is shown in the table that follows.

<table>
<thead>
<tr>
<th>Address</th>
<th>193.193.7.7</th>
<th>1100 0001 1100 0001 0000 0111 0000 0111</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask</td>
<td>255.255.255.0</td>
<td>1111 1111 1111 1111 1111 1111 1111 0000 0000</td>
</tr>
<tr>
<td>Result</td>
<td>193.193.7.0</td>
<td>1100 0001 1100 0001 0000 0111 0000 0000</td>
</tr>
<tr>
<td>Broadcast address</td>
<td>193.193.7.255</td>
<td>1100 0001 1100 0001 0000 0111 1111 1111</td>
</tr>
</tbody>
</table>
20. Answer: The broadcast address is 200.1.1.159. The binary algorithm math is shown in the table that follows. The easy decimal algorithm is shown in the answer to an earlier question.

<table>
<thead>
<tr>
<th>Address</th>
<th>Mask</th>
<th>Result</th>
<th>Broadcast address</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.1.1.130</td>
<td>255.255.255.224</td>
<td>200.1.1.128</td>
<td>200.1.1.159</td>
</tr>
<tr>
<td>220.8.7.100</td>
<td>255.255.255.240</td>
<td>220.8.7.96</td>
<td>220.8.7.111</td>
</tr>
</tbody>
</table>

21. Answer: The broadcast address is 220.8.7.111. The binary algorithm is shown in the table that follows.

<table>
<thead>
<tr>
<th>Address</th>
<th>Mask</th>
<th>Result</th>
<th>Broadcast address</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.1.1.130</td>
<td>255.255.255.224</td>
<td>200.1.1.128</td>
<td>200.1.1.159</td>
</tr>
<tr>
<td>220.8.7.100</td>
<td>255.255.255.240</td>
<td>220.8.7.96</td>
<td>220.8.7.111</td>
</tr>
</tbody>
</table>

22. Answer: The subnet number is 134.141.7.0, and the subnet broadcast address is 134.141.7.255. The assignable addresses are all the addresses between the subnet and broadcast addresses, namely 134.141.7.1 to 134.141.7.254.

23. Answer: The subnet number is 193.193.7.0, and the network broadcast address is 193.193.7.255. The assignable addresses are all the addresses between the network and broadcast addresses, namely 193.193.7.1 to 193.193.7.254.

24. Answer: The subnet number is 200.1.1.128, and the subnet broadcast address is 200.1.1.159. The assignable addresses are all the addresses between the subnet and broadcast addresses, namely 200.1.1.129 to 200.1.1.158.

25. Answer: The subnet number is 220.8.7.96, and the subnet broadcast address is 220.8.7.111. The assignable addresses are all the addresses between the subnet and broadcast addresses, namely 220.8.7.97 to 220.8.7.110.

26. Answer: The answer is 134.141.0.0 (zero subnet), 134.141.1.0, 134.141.2.0, 134.141.3.0, and so on, up to 134.141.254.0 and 134.141.255.0 (broadcast subnet).

27. Answer: The answer is not as obvious in this question. The Class C network number is 220.8.7.0. The mask implies that bits 25 through 28, which are the first 4 bits in the fourth octet, comprise the subnet field. The answer is 220.8.7.0 (zero subnet).
220.8.7.16, 220.8.7.32, 220.8.7.48, and so on, through 220.8.7.240 (broadcast subnet). The following table outlines the easy decimal algorithm to figure out the subnet numbers.

<table>
<thead>
<tr>
<th>Octet</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network number</td>
<td>220</td>
<td>8</td>
<td>7</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>Mask</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>240</td>
<td>The last octet is interesting; the magic number is 256 – 240 = 16.</td>
</tr>
<tr>
<td>Subnet zero</td>
<td>220</td>
<td>8</td>
<td>7</td>
<td>0</td>
<td>Copy the network number; it is the zero subnet.</td>
</tr>
<tr>
<td>Next subnet</td>
<td>220</td>
<td>8</td>
<td>7</td>
<td>16</td>
<td>Add magic number to the last subnet number’s interesting octet.</td>
</tr>
<tr>
<td>Next subnet</td>
<td>220</td>
<td>8</td>
<td>7</td>
<td>32</td>
<td>Add magic number to the previous one.</td>
</tr>
<tr>
<td>Last subnet</td>
<td>220</td>
<td>8</td>
<td>7</td>
<td>224</td>
<td>You eventually get here ...</td>
</tr>
<tr>
<td>Broadcast subnet</td>
<td>220</td>
<td>8</td>
<td>7</td>
<td>240</td>
<td>... and then here, the broadcast subnet, because the next one is 256.</td>
</tr>
</tbody>
</table>

28. Answer: There will be $2^{host bits}$, or $2^8$ hosts per subnet, minus two special cases. The number of subnets will be $2^{subnet bits}$, or $2^8$.

<table>
<thead>
<tr>
<th>Network and Mask</th>
<th>Number of Network Bits</th>
<th>Number of Host Bits</th>
<th>Number of Subnet Bits</th>
<th>Number of Hosts per Subnet</th>
<th>Number of Subnets</th>
</tr>
</thead>
<tbody>
<tr>
<td>134.141.0.0, 255.255.255.0</td>
<td>16</td>
<td>8</td>
<td>8</td>
<td>254</td>
<td>256</td>
</tr>
</tbody>
</table>

29. Answer: There will be $2^{host bits}$, or $2^4$ hosts per subnet, minus two special cases. The number of subnets will be $2^{subnet bits}$, or $2^4$.

<table>
<thead>
<tr>
<th>Network and Mask</th>
<th>Number of Network Bits</th>
<th>Number of Host Bits</th>
<th>Number of Subnet Bits</th>
<th>Number of Hosts per Subnet</th>
<th>Number of Subnets</th>
</tr>
</thead>
<tbody>
<tr>
<td>220.8.7.0, 255.255.255.240</td>
<td>24</td>
<td>4</td>
<td>4</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

30. Answer: Network 10.0.0.0 is a Class A network, so you have 24 host bits with no subnetting. To number 200 subnets, you will need at least 8 subnet bits because $2^8$ is 256. Likewise, to number 200 hosts per subnet, you will need 8 host bits. So, you need to pick a mask with at least 8 subnet bits and 8 host bits. 255.255.0.0 is a mask with 8 subnet bits and 16 host bits. That would allow for the 200 subnets and 200 hosts,
while allowing the number of hosts per subnet to grow to $2^{16} - 2$, quite a large number. Similarly, a mask of 255.255.255.0 gives you 16 subnet bits, allowing $2^{16}$ subnets, each with $2^8 - 2$ hosts per subnet.

31. Answer: Network 10.0.0.0, Class B networks from 172.16.0.0 through 172.31.0.0, and Class C networks beginning with 192.168.

32. Answer: 128 bits long.

33. Answer: By using a routing protocol that exchanges the mask as well as the subnet/network number, a classless view of the number can be attained. By advertising many networks as a single route, the routing table can be shortened. For instance, 198.0.0.0/8 (198.0.0.0, mask 255.0.0.0) defines a set of addresses whose first 8 bits are equal to decimal 198. Instead of the more than 65,000 routes needed to list a route for each Class C network that starts with 198, CIDR allows those routes to be represented by a single route.

34. Answer:

```plaintext
interface ethernet 0
 ip address 8.0.1.1 255.255.255.0
interface serial 0
 ip address 8.0.2.1 255.255.255.0
interface serial 1
 ip address 8.0.3.1 255.255.255.0
```

The zero subnet was not used in this solution. If desired, the `ip subnet-zero` global command could have been used, enabling subnet 8.0.0.0/24 as well as subnets 8.0.1.0/24 and 8.0.2.0/24 to be used as the three subnets in the configuration.

35. Answer: The attached subnet is 8.0.2.0, 255.255.255.0. The `show interface`, `show ip interface`, and `show ip interface brief` commands would supply this information, as would `show ip route`. The `show ip route` command would show the actual subnet number instead of the address of the interface.

36. Answer: You must use the `terminal ip netmask-format decimal` command in EXEC mode.

37. Answer: C means “connected.” This means that the route was learned by this router because it has an operational interface that is connected directly to that subnet.

38. Answer: The representation of a subnet mask with a slash character (/), followed by a number that represents the number of binary 1s in the mask. For example, /16 means the same thing as 255.255.0.0, and /22 means the same thing as 255.255.252.0.

39. Answer: Internet Control Message Protocol. ICMP is considered a Layer 3 protocol because it is used for control and management of IP.
32 Appendix N: ICND1 Open-Ended Questions

40. Answer:
   ip name-server 1.1.1.1 2.2.2.2
   or
   ip name-server 1.1.1.1
   ip name-server 2.2.2.2

   Both methods tell the router to first try the name server at 1.1.1.1 and then try the name server at 2.2.2.2.

41. Answer: Ctrl-Shift-6, followed by x.

42. Answer: show sessions and where. Both commands supply the same information. The suspended session with an asterisk in the left side of the output line designates the session to which you would be connected if you just pressed Enter, with no characters on the command line.

43. Answer: ICMP echo request messages were sent by the ping command, with the remote host replying with five ICMP echo reply messages.

44. Answer: By using the no ip domain-lookup global configuration command.

45. Answer: You can use the resume 1 command or just use the 1 command.

46. Answer: You can use the resume 3 command or just use the 3 command. Or, you can simply press Enter, which resumes your connection to the last suspended Telnet connection—in this case, R4.

47. Answer: RIP-2, EIGRP, OSPF, and Integrated IS-IS.

48. Answer: RIP-1, RIP-2, and IGRP.

49. Answer: EIGRP, OSPF, and Integrated IS-IS.

50. Answer: Distance vector protocols send sparse information, typically describing a subnet and a metric for each route. Link-state protocols send much more detailed topology information, describing each router and each link so that every router has a full conceptual picture of the network.

51. Answer: VLSM implies that different subnet masks are used for different subnets of the same network. To advertise subnets that have different sizes, the routing protocol must include the subnet mask information for each subnet in the routing updates. Routing protocols that do not support VLSM do not include the mask in the routing updates.

52. Answer: Interior routing protocols are designed to advertise detailed routing information about each subnet, typically inside a single company or organization.
Exterior routing protocols are designed to advertise information about how to reach different organizations’ networks through the Internet, and they purposefully try to reduce the detailed routing information to reduce the number of routes in Internet routers’ routing tables.

53. **Answer:** Distance vector routing updates contain a subnet number and a metric for each route. Link-state updates define much more detailed information, such as the identity of each router and which subnets each router is connected to. Therefore, the information in link-state updates is much more detailed than the equivalent information with distance vector updates. The more detailed information allows a link-state protocol to build a mathematical representation of the network topology, whereas distance vector protocols simply know that subnets exist and where to send packets to reach those subnets.

54. **Answer:** Link state.

### Part V: Wide-Area Networks—Questions

1. Create a configuration to enable PPP on serial 0 for IP. Make up IP Layer 3 addresses as needed.

2. What are the differences between the **clock rate** and **bandwidth** commands?

3. What field has Cisco added to the HDLC header, making it proprietary?

4. Two terms were shortened and combined to first create the word modem. Identify those two words and describe what each word means.

5. Define what the terms **symmetric** and **asymmetric** mean in relation to modem specifications. Also explain why asymmetric might be a better option.

6. List some of the pros and cons regarding the use of DSL for remote access.

7. Define what the acronym **DSLAM** stands for, and explain the concept behind how a DSLAM allows voice and data to flow over the same local loop phone line.

8. Which of the DSL standards is the most common in the United States today? What is the range of upstream and downstream speeds for that type of DSL, as well as the maximum distance of the local loop?

9. Compare the cabling used by an analog modem and a DSL router/modem when connecting to the local phone company line.

10. List four standards bodies that have been involved in the development of DSL standards.
Part V: Wide-Area Networks—Answers

1. Answer:

    interface serial 0
    ip addr 1.1.1.1 255.255.255.0
    encapsulation ppp

enapsulation ppp is all that is needed for PPP.

2. Answer: clock rate sets the physical (Layer 1) actual transmission rate, in bits per second, and only when a DCE cable has been plugged into that interface. The bandwidth command, with units of kbps, does not affect Layer 1 transmission rates. Instead, it is used by Cisco IOS Software as its understanding of the Layer 1 rate, for purposes such as calculation of routing protocol metrics.

3. Answer: A Protocol Type field has been added to allow support for multiprotocol traffic. HDLC was not originally designed to allow for multiprotocol support.

4. Answer: The term modem is formed as a combination of the words modulation and demodulation. Modulation means to vary or change a wave form to encode information. A modem varies an analog electrical signal to encode information, representing binary digits, onto an analog signal. Modulation refers to the creation of the analog signal based on a string of bits, and demodulation simply refers to a modem performing the reverse process upon receiving the analog signal.

5. Answer: Symmetric means that the speed in each direction of flow is the same, whereas asymmetric means that the speed in one direction is faster than in the other direction. Asymmetric speeds might be a good choice because typical traffic flows require a much greater amount of data to flow in one direction, typically from a server to a client. Asymmetric speeds allow the speed in one direction to be faster than it could be with symmetric speeds, accommodating the need for more bandwidth in one direction.

6. Answer: DSL provides high-speed Internet access to the home, exceeding downstream speeds of 1 Mbps. It supports concurrent voice and data, with the data service always being turned on—no dialing is required. And the service speed does not degrade when more users are added to the network. However, DSL simply will not be available to some people, based on the distance to the local CO or the availability of DSL services from the local telco. Also, even when the home is close enough to the CO, sites farther from the CO might run slower than sites closer to the CO.
7. Answer: **DSLAM** stands for DSL access multiplexer, with DSL meaning digital subscriber line. The DSLAM is connected to the local loop, splitting off the voice frequencies (0 to 4000 Hz) for the voice switch in the CO. It also interprets the higher frequencies as encoded digital signals, receiving the ATM cells sent over that digital signal, and forwards those ATM cells to the appropriate router.

8. Answer: ADSL, meaning asymmetric DSL, is the most popular. The downstream speeds range from 1.5 Mbps to 8 Mbps, with upstream speeds from 384 kbps to 1.024 Mbps. The maximum distance is 18,000 feet (approximately 5500 meters).

9. Answer: Both use a cable with two wires, using an RJ-11 connector.

10. Answer: ANSI, IEEE, ETSI, ITU.
This page intentionally left blank
Network Simulator
Lab Study Plan

The CCNA 640-802 Network Simulator has 250 lab exercises, organized both by type (Skill Builder, Configuration Scenario, and Troubleshooting Scenario) and by major topic within each type. When using this product along with the CCNA Official Exam Certification Library, the listing of labs in the Simulator easily correlates to the chapters in the book. As such, it is difficult to know when to do each lab when also reading the books.

This informal document lists tables that cross-references book chapters of the ICND1 and ICND2 Official Certification Guides, compared to the labs in the Simulator. When using the books and simulator, you might want to read a chapter and then do the labs related to that chapter as listed here.

**ICND1 Skill Builder Labs**

<table>
<thead>
<tr>
<th>Completion Dates</th>
<th>After ICND1 Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>8</td>
<td>Switch CLI Exec Mode</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Switch CLI Configuration Process I</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Switch CLI Configuration Process II</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Setting Switch Passwords</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Configuring Switch IP Settings</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Interface Settings I</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Interface Settings II</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Interface Settings III</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Switch Forwarding I</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>Switch IP Connectivity I</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>VLANs I</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>VLANs II</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>VLANs III</td>
</tr>
</tbody>
</table>
### Network Simulator Lab Study Plan

<table>
<thead>
<tr>
<th>Completion Dates</th>
<th>After ICND1 Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Interface Status I</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Interface Status II</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Interface Status III</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Interface Status IV</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Switch Security I</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Switch Security II</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Switch Security III</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Switch Security IV</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Router CLI Exec Mode I</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Router CLI Exec Mode II</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Router CLI Configuration Process</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Setting Router Passwords</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Configuring Router IP Settings</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Configuring Local Usernames</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Configuring SSH</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Migrating to a New IOS Image</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Setting the Configuration Register</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Comparing Configuration Files</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Ignoring the Startup-Config File</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Booting a New Router IOS</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Terminal History I</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Terminal History II</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Topology Analysis</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Configuring IP Addresses I</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Configuring IP Addresses II</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Configuring IP Addresses III</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Configuring IP Addresses IV</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Examining the IP Routing Table</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Connected Routes</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Static Routes I</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Static Routes II</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Static Routes III</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Static Routes IV</td>
<td></td>
</tr>
</tbody>
</table>
ICND1 Configuration Scenario Labs

<table>
<thead>
<tr>
<th>Completion Dates</th>
<th>After ICND1 Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
<td>Default Routes</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>IP Classless</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>Subnet Zero I</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>Subnet Zero II</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>Loopback Interfaces</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>RIP Configuration I</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>RIP Configuration II</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>RIP Configuration III</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>RIP Configuration IV</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>RIP Configuration V</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>RIP Configuration VI</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>PC IP Commands I</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>PC IP Commands II</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>PC IP Commands III</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>Using and Suspending Telnet Connections</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>Using debug</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>Testing Using pings with Hostnames</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>RIP Verification I</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>RIP Verification II</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>Configuring Hostnames</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>Serial Link Config I</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>Serial Link Config II</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>Serial Link Config III</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>Serial Link Config IV</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>Interface Status V</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>Interface Status VI</td>
</tr>
</tbody>
</table>

ICND1 Configuration Scenario Labs

<table>
<thead>
<tr>
<th>Completion Dates</th>
<th>After ICND1 Chapter</th>
<th>Lab Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td>Switch Interfaces and Forwarding</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Switch IP Connectivity</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Switch Security I</td>
</tr>
</tbody>
</table>
### Network Simulator Lab Study Plan

<table>
<thead>
<tr>
<th>Completion Dates</th>
<th>After ICND1 Chapter</th>
<th>Lab Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Configuring VLANs I</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>The Initial Configuration Dialogue (Setup)</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>New Job I</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Rebuild a Config</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>SSH and Telnet</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Subnetting and Addressing I</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Subnetting and Addressing II</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Subnetting and Addressing III</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Static Routing I</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Static Routing II</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Default Routes</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>RIP-2 Configuration I</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>RIP Configuration II</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>RIP Autosummary</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>IP and MAC Address Comparisons</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>IP Classless</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Serial Link Config I</td>
<td></td>
</tr>
</tbody>
</table>

### ICND1 Troubleshooting Scenario Labs

<table>
<thead>
<tr>
<th>Completion Dates</th>
<th>After ICND1 Chapter</th>
<th>Lab Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Switch Forwarding I</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Port Security</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Path Analysis I</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Network Discovery I</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Network Discovery II</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>IP Addressing and Routing</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>IP Routing I</td>
<td></td>
</tr>
</tbody>
</table>
### ICND2 Skill Builder Labs

<table>
<thead>
<tr>
<th>Completion Dates</th>
<th>After ICND2 Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>VLAN Config I</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>VLAN Config II</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>VLAN Config III</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>VLAN Config IV</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>VLAN Config V</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>VTP Config I</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>VTP Config II</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>VTP Config III</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>VTP Config IV</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>VTP Config V</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>Trunking Config I</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>Trunking Config II</td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>Trunking Config III</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>Trunking Config IV</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>STP Analysis I</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>STP Analysis II</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>STP Config I</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>STP Config II</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>STP Config III</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>Etherchannel</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>IP Addressing I</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>IP Addressing II</td>
</tr>
<tr>
<td>4</td>
<td>23</td>
<td>IP Addressing III</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>traceroute I</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>Default Route I</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
<td>Zero Subnet</td>
</tr>
<tr>
<td>4</td>
<td>27</td>
<td>Switch IP address</td>
</tr>
<tr>
<td>8</td>
<td>28</td>
<td>ACL I</td>
</tr>
<tr>
<td>8</td>
<td>29</td>
<td>ACL II</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>ACL III</td>
</tr>
</tbody>
</table>
### Network Simulator Lab Study Plan

<table>
<thead>
<tr>
<th>Completion Dates</th>
<th>After ICND2 Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>ACL IV</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ACL V</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ACL VI</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Named ACL I</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Named ACL II</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Named ACL III</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ACL Analysis I</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Autosummary</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Routing Analysis I</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Traceroute II</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>EIGRP Serial Configuration I</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>EIGRP Serial Configuration II</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>EIGRP Serial Configuration III</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>EIGRP Serial Configuration IV</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>EIGRP Serial Configuration V</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>EIGRP Serial Configuration VI</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>EIGRP Frame Relay Configuration I</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>EIGRP Frame Relay Configuration II</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>EIGRP Frame Relay Configuration III</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>EIGRP Authentication I</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>EIGRP Authentication II</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>EIGRP Route Tuning I</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>EIGRP Route Tuning II</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>EIGRP Route Tuning III</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>EIGRP Route Tuning IV</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>EIGRP Neighbors I</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>EIGRP Neighbors II</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>EIGRP Neighbors III</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>OSPF Serial Configuration I</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>OSPF Serial Configuration II</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>OSPF Serial configuration III</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>OSPF Serial Configuration IV</td>
<td></td>
</tr>
<tr>
<td>Completion Dates</td>
<td>After ICND2 Chapter</td>
<td>Title</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>11</td>
<td>OSPF Serial Configuration V</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>OSPF Serial Configuration VI</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>OSPF Router ID I</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>OSPF Router ID II</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>OSPF Frame Relay Configuration I</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>OSPF Frame Relay Configuration II</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>OSPF Frame Relay Configuration III</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>OSPF Authentication I</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>OSPF Authentication II</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>OSPF Metric Tuning I</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>OSPF Metric Tuning II</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>OSPF Metric Tuning III</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>OSPF Neighbors I</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>OSPF Neighbors II</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>OSPF Neighbors III</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>OSPF Neighbors IV</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>OSPF Neighbors V</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Serial Configuration I</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Serial Configuration II</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Serial Authentication I</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Serial Authentication II</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Frame Relay Configuration I</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Frame Relay Configuration II</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Frame Relay Configuration III</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Frame Relay Configuration IV</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Frame Relay Configuration V</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Frame Relay Verification I</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Frame Relay Verification II</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Frame Relay Verification III</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>NAT Configuration I</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>NAT Configuration II</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>NAT Configuration III</td>
<td></td>
</tr>
</tbody>
</table>
### ICND2 Configuration Scenarios

<table>
<thead>
<tr>
<th>Completion Dates</th>
<th>After ICND2 Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VTP I</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>VTP Transparent Mode</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>VLAN Trunking I</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>VLAN Trunking II</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>STP Analysis I</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>STP Configuration II</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>IP Addressing and Configuration I</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>IP Addressing and Configuration II</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>IP Default Routing and Classless/Classful</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Default Routes</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Standard ACL I</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Extended ACL I</td>
<td></td>
</tr>
</tbody>
</table>

### ICND2 Configuration Scenarios

<table>
<thead>
<tr>
<th>Completion Dates</th>
<th>After ICND2 Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>NAT configuration IV</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>NAT configuration V</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>NAT configuration VI</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>NAT Configuration VII</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>IPv6 Address Configuration I</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>IPv6 Address Configuration II</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>IPv6 Address Configuration III</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>IPv6 Address Configuration IV</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>IPv6 Address Configuration V</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>IPv6 Address Configuration VI</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>IPv6 Address Configuration VII</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>IPv6 Address Configuration VII</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>IPv6 Address Configuration IX</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>IPv6 Routing Configuration I</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>IPv6 Routing Configuration II</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>IPv6 Routing Configuration III</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>IPv6 Hostnames</td>
<td></td>
</tr>
<tr>
<td>Completion Dates</td>
<td>After ICND2 Chapter</td>
<td>Title</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>Extended ACL II</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>OSPF Config I</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>OSPF Config II</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>OSPF Config III</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>OSPF Metric Manipulation</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>EIGRP Config I</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>EIGRP Config II</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>EIGRP Metric Manipulation I</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>EIGRP Variance and Maximum Paths I</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>Frame Relay Config I</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>Frame Relay Inverse ARP</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>Frame Relay Correlation</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>NAT Config I</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>NAT Config II</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>IPv6 Config I</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>IPv6 Config II</td>
</tr>
</tbody>
</table>

### ICND2 Troubleshooting Scenarios

<table>
<thead>
<tr>
<th>Completion Dates</th>
<th>After ICND2 Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>Path Analysis I</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Path Analysis II</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>Path Analysis III</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>Path Troubleshooting I</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>Path Troubleshooting II</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>Path Troubleshooting III</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>Path Troubleshooting IV</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>VLAN Troubleshooting I</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>OSPF Troubleshooting I</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>Routing Analysis III</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>Network Expansion</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>NAT</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>IP Routing II</td>
</tr>
</tbody>
</table>
Cisco Learning Network
Free Test Prep and Beyond.

- Access review questions
- Watch Quick Learning Modules (QLMS)
- Search for jobs and network with others
- Take self-assessments
- Participate in study groups
- Play online learning games

Register for a free membership and get started now.
www.cisco.com/go/learningnetwork
Your purchase of **CCENT/CCNA ICND1 640-822 Official Cert Guide** includes access to a free online edition for 45 days through the Safari Books Online subscription service. Nearly every Cisco Press book is available online through Safari Books Online, along with more than 5,000 other technical books and videos from publishers such as Addison-Wesley Professional, Exam Cram, IBM Press, O’Reilly, Prentice Hall, Que, and Sams.

**SAFARI BOOKS ONLINE** allows you to search for a specific answer, cut and paste code, download chapters, and stay current with emerging technologies.

**Activate your FREE Online Edition at**

[www.informit.com/safarifree](http://www.informit.com/safarifree)

- **STEP 1:** Enter the coupon code: NOWUHFH.
- **STEP 2:** New Safari users, complete the brief registration form. Safari subscribers, just log in.

If you have difficulty registering on Safari or accessing the online edition, please e-mail customer-service@safaribooksonline.com