
www.SoftGozar.com

Matt Baxter-Reynolds and Iris Classon

Programming Windows Store
Apps with C#

www.SoftGozar.com

Programming Windows Store Apps with C#
by Matt Baxter-Reynolds and Iris Classon

Copyright © 2014 Matt Baxter-Reynolds. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Maria Stallone and Rachel Roumeliotis
Production Editor: Melanie Yarbrough
Copyeditor: Rachel Monaghan
Proofreader: Charles Roumeliotis

Indexer: Judith McConville
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

February 2014: First Edition

Revision History for the First Edition:

2014-02-10: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449320850 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Programming Windows Store Apps with C#, the image of a pika, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-32085-0

[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449320850

Table of Contents

Preface. ix

1. Making the Transition from .NET (Part 1). 1
Why WinRT? 1
Philosophical Differences 2
Objectives 3
The New Project Templates 3

WinRT Metadata 4
Project Settings and Adding References 9

Building a Basic User Interface 11
UI Tracks 11
XAML Parsing Basics 14
Building a Basic Page 15
Implementing MVVM 25
WPF and Silverlight 26
MVVM Structure and Inversion of Control 28
Creating the View-Model and Running the App 38

2. Making the Transition from .NET (Part 2). 47
Inversion of Control 47

Installing TinyIoC 48
Initializing IoC Defaults 49

Understanding Asynchrony 53
How Asynchrony Works in WinRT 55

Calling the Server 60
Building the Service Proxies 60
Building the Register Method 63
Finishing the UI to Call the Register Server Function 67

Logon 68

iii

www.SoftGozar.com

Building LogonServiceProxy 69
Building the Logon Page 70

Busy Indicators 75
Positioning the Indicator 75
Showing the Indicator 77

3. Local Persistent Data. 83
SQLite and sqlite-net 84
Working with SQLite 85

A Primer on Object-Relational Mapping 86
Using the Micro-ORM in sqlite-net 87

Storing Settings 89
The SettingItem Class 89
Linking in sqlite-net 91
Creating the Database Table for SettingItem 95
Reading and Writing Values 96
Modifying LogonPageViewModel 97

Caching Data Locally 100
Local Caching 100
Mapping JSON to Database Entities 101
Creating Test Reports 102
Setting Up the User Database 103
Creating ReportsPage 105
Using Templates 106
Building a Local Cache 109
Updating the Cache 112
Returning Reports from the Server 113
The Items Property 114

4. The App Bar. 119
Adding a Simple App Bar 120

Getting Started with an App Bar 121
App Bar Behavior 124

App Bar with Single-Select Grid 126
App Bar with Multiselect Grid 126

A More Complex App Bar Implementation 127
Showing the App Bar on Multiple Selections 128
Checking Touch Operations 133
Showing the App Bar on Right-Click 135
Showing Context Options 136

App Bar Images 140
The Glyph Method 140

iv | Table of Contents

Using Images 146

5. Notifications. 155
Local Notifications 156

Turning Notifications On and Off 156
XML Templates 156
Toast 158
Badges 167
Tiles 170
Other Notification Features 176

Push Notifications 177
WNS Process 177
Handling User Accounts 179
Obtaining a Notification URI 180
Sending to WNS 182
Troubleshooting Tips 191

6. Working with Files. 193
The File Picker 193
File Associations 196

Launching the App 197
Handling the Launch 199

Sandboxed File Access 201
Walking and Copying Pictures 203

Roaming Files 206
Multiple Devices 207
Setting Up the Remote Debugging Client 207
Syncing Files 209
Roaming Settings 210

Using Files with StreetFoo 210
Getting Report Images 211
Migrating to ReportViewItem 212
Implementing ReportImageCacheManager 217

7. Sharing. 223
Sharing Data 224

Basic Sharing 224
Pull Requests/Deferrals 233

Acting as a Share Target 235
Sharing Text 235
Sharing Text (and Troubleshooting) 238
Long-Running Operations 249

Table of Contents | v

Sharing Images 251
Quick Links 254

8. Searching. 257
Implementing Search 258

Creating the Search Results Page 258
Creating SearchResultsPageViewModel 258
Implementing the Search Operation 263

Refining Search 276
Placeholder Text 277
Suggestions 278
Remembering Where We Were 284
Using the SearchBox 289
Other Best-Practice Notes 291

9. Settings. 293
Adding Options 293

Standard Options 294
Adding Custom Options 294

Implementing the Settings Flyout 297
Building a Settings Pane 297
Building MySettingsFlyout 301

Developing a Help Screen 303
Creating a Help Pane 303
Handling the F1 Key 305
Rendering Markup 306

10. Location. 311
Creating a Singleton View 311

Creating the View-Model 312
Creating the View 315
Navigating to the View 318

Retrieving a Current Location 322
Using the Simulator with Location 327

Integrating Maps 328
Adding the Bing Maps Control 329
Handling Input with the View 331
Packaging Points for Display 332
Showing Points on the Map 336

Shelling to the Maps App 339

11. Using the Camera. 343

vi | Table of Contents

Capturing Photos 344
Creating EditReportPage 345

Building EditReportPageViewModel and Its View-Model 346
Saving and Canceling 352
Adding the New Option 355
Handling Temporary Files 356

Changing the Manifest 356
Taking Pictures 357

Implementing Save 360
Validating and Saving 360
Resizing Images 363

12. Responsive Design. 369
Updating the Grid View 371

The VisualStateManager 371
Creating MyListView 373
Modifying the App Bar 375
Updating Singleton Views 377

Adding a More Button to the App Bar 380
Handling Views That Don’t Support 320-Pixel Width 385

13. Resources and Localization. 387
.pri Files 387

Adding Strings 390
Localizing Strings 393

Default Project Locales 393
Localizing Strings in XAML 394
Conventions 398
Changing Other Properties 399
Explicitly Loading Strings 399

Localizing Images 402
Varying Images by Locale 402
Varying Images by Display DPI 405

14. Background Tasks and App Lifetime. 409
App Lifetime 410
Background Tasks API 411

CPU Usage Quota 412
Triggers and Conditions 413

Execution Model 415
Implementing a Sync Background Task 416

Building the Façade 422

Table of Contents | vii

Debugging the Task 425
Troubleshooting Background Tasks 427
Restricting the Run Period 428

Implementing the Sync Function 433
Sending Changes 434
Receiving New Work 438
Signaling the App from the Background Task 443
Putting the App on the Lock Screen 444

15. Sideloading and Distribution. 447
Using the Windows App Certification Kit 450
Distribution Through Production Sideloading 451

Turning on Sideloading on Windows 8 452
Installing Apps 453

Distribution Through the Windows Store 453

A. Cryptography and Hashing. 457

B. Unit Testing Basics for Windows Store Apps. 467

Index. 475

viii | Table of Contents

Preface

The computing industry is changing. PC sales are on the decline, and sales of post-PC
devices (tablets and smartphones) are on the ascendancy. This change can be under‐
stood easily enough—computers are no longer something used for work, they are
something used for life, and happily there is more to our society than just work.

The massive commercial success of post-PC devices suggests that this change works
OK for most, but for companies like Microsoft it creates a big problem. The PC is not
going to be as important over the next 20 years as it has been for the last 20 years.
Windows 8.1 and Windows RT are Microsoft’s first move to try to address that problem
by making the Windows operating system “play more nicely” in the tablet space.

Microsoft has done this by introducing a new user interface paradigm called Modern
UI. This new user interface paradigm is monochronistic (one thing at a time), rather
than the polychronistic (many things at a time) nature of a normal windowing operating
system. It is also optimized for touch.

As well as providing a new user interface, Microsoft has introduced a new API, called
Windows Runtime (WinRT), and a new execution and packaging model for the apps,
called Windows Store apps. We’ll talk more about the actual construction of Windows
Store apps in Chapter 2.

This book is designed to treat Windows 8.1 and Windows 8.1.1 RT equally—nothing
we do in the book will exclude operation from either variant of the operating system.
Similarly, everything we do can be used in apps that are distributed through the Win‐
dows Store.

Generally, we will be writing all the code ourselves, but from time to time we will be
using third-party products. Virtually all of these are open source—there is only one
exception, which is the Bing Maps component discussed in Chapter 11. Everything else
is unrestricted.

So let’s go! We’ll start by learning about the app that we’re going to build.

ix

Audience
What I’ve tried to do with writing this book is to tell a story that takes you, the reader,
through the process of moving from .NET development over to Windows Store app
development. There is a slight bias in the book in that I’m assuming most developers
have day jobs developing web applications and have been asked to look into develop‐
ment tablet apps that run on Microsoft’s tablet operating systems.

Some of you will also have done quite a bit of desktop development on Windows, par‐
ticularly using Silverlight and/or Windows Presentation Foundation (WPF). This book
isn’t a primer on developing XAML, although you will see and work with enough ex‐
amples that use XAML to become proficient.

I’ll also tell you a bit more about the app we’ll be discussing so you can judge if this is
the right book for you. The app has within it the common sorts of functionality that you
find in line-of-business apps (LOB) generally. At the time of writing, the Windows tablet
story is not established, so the elements that we’ll go through are those that apply to real
applications on Windows Mobile, Android, and iOS that I’ve built over the past 10 years
or so.

Although the application that we’ll build is a LOB app, everything you’ll see and do in
this book applies equally well to a normal retail app that you might sell in a business-
to-consumer fashion.

The Application
As I mentioned, we’re going to build a line-of-business app, rather than a “retail” app.
The way that I distinguish between these two is that in a retail app, the software vendor
typically doesn’t have a strong relationship with the end customer. In retail, the end
customer finds the app through indirect recommendations and/or through the app store
catalog. In a LOB app, proactive marketing and relationship-building activities look to
tie a client and vendor together through some sort of commercial offering. Technically,
however, there isn’t a big difference between retail apps and LOB apps.

The specific example I’m going to show you is a “field service” app. This type of app is
a classic mobile working application. In field service you have a number of operatives
whose operational control is within your remit. You send them out into the field to do
something—either something specific (“go here, fix this”), or something reactive (e.g.,
someone “patrols” an area and reports back on problems).

The app we will build will be called StreetFoo, and it’s a blend of those last two examples.
I have created a simple server that is hosted on AppHarbor that will serve as the backend
service for the app. When the user logs in to the app, it will download a set of “problem
reports.” Each report will be something that needs fixing—the sample data happens to
show graffiti, but it could be anything. The concept of the app is that the user would

x | Preface

then either fix the problem or could report new problems into the app. Updates to
problems or new problems are then updated to the server.

That’s the basic functionality. There are additional things that we’ll look at, such as
capturing photos and location information, as well as all of the various special user
experience features in Windows 8.1/Windows 8.1.1 RT—sharing, snapped view, search,
and so on.

The Chapters
We’ll start in Chapters 1 and 2 with a primer designed to get you up and running in
terms of moving from .NET into this new world.
Chapter 1, Making the Transition from .NET (Part 1)

Starts by explaining the “break” between .NET and associated technologies (specif‐
ically WPF) over to Windows Runtime (WinRT). You’ll then build a basic user
interface and implement a Model/View/View-Model (MVVM) pattern.

Chapter 2, Making the Transition from .NET (Part 2)
Walks you through making the UI you built in Chapter 1 do something—specifi‐
cally, calling up to the server to register a new user account. This chapter also has
a detailed look at asynchrony—probably the most important thing that you will
learn during your time with Windows Store app development.

The remaining chapters in this book each focus on a specific API feature area.
Chapter 3, Local Persistent Data

Explores SQLite. The reason I’ve brought up this topic so early in the book is that
you can’t build a practically useful application without having some sort of persis‐
tent store. Although you can store information on disk easily enough using the
Windows Store APIs, SQLite is the de facto relational database used in mobile sol‐
utions, and so we’ll use it in our app.

Chapter 4, The App Bar
Introduces the first of the special Windows 8.1 user experience (UX) features: the
app bar. App bars are the small panels that pop in from the top and bottom of the
screen and provide access to options and tabs. (The app bar is essentially analogous
to toolbars.) We’ll look at how to build an app bar and how to make up our own
images for use on the buttons.

Chapter 5, Notifications
Discusses notifications. Notifications in Windows Store apps can be used to update
the tile on the Start screen, add badges to the tile, and display toast (the notifications
that wind in from the top-right side of the screen). Notifications can be created
locally and shown locally, or alternatively, created on the server and pushed out to

Preface | xi

all connected devices using Windows Push Notification Services (WNS). In this
chapter we’ll look at both routes.

Chapter 6, Working with Files
Looks in detail at working with files. To be honest, when I first planned this book
I didn’t intend to include a chapter on files, as this tends to be a topic well served
by the community whenever a new platform is introduced. However, I ended up
adding this chapter to handle images. Each report that we track in the app will have
exactly one image. Rather than storing these images in SQLite, which is impractical,
we’ll store them on disk.

Chapter 7, Sharing
Focuses on the Windows 8.1 sharing feature. Sharing is one of the key differentiators
between Microsoft’s tablet strategy and other platforms. Most platforms “silo off ”
apps and make it hard to share data. Windows 8.1 has a declarative model for
sharing where apps indicate they can serve up certain types of data. That data can
then be read in by another app that supports consumption of shared data. In this
chapter we’ll look at both sharing data from our app and consuming data from other
apps.

Chapter 8, Searching
Looks at the Windows 8.1 UX feature of searching. The idea here is that, generally,
all apps need some sort of search feature. In Windows 8.1 this is accessed from the
charms or by using the SearchBox control. In this chapter we’ll look at implement‐
ing a search feature that we can use to find problem reports.

Chapter 9, Settings
Concludes our look at Windows 8.1 UX specifics with a discussion of the settings
charm, which—as its name implies—provides a common area where developers
can put settings. It’s also a common place to put links up for support information
and privacy policies. In this chapter we’ll go a little broad with this by using the
SettingsFlyout control to load and render Markdown-formatted text.

Chapter 10, Location
Explores location, a very common requirement for mobile LOB apps because it’s
often helpful to have some “evidence” of where a particular activity took place, or
to utilize the user’s location as a way of creating new data. In this chapter we’ll look
at the basics of reading locational information from the device, and we’ll also use
the Bing Maps Windows Store apps control to present a map within the application.

Chapter 11, Using the Camera
Helps you discover how to use the camera. In mobile LOB apps it’s often a require‐
ment to gather photographic evidence of work done. (For example, if someone is
asked to fix a sink, you may find it helpful to have a photo of the sink before and

xii | Preface

after it was fixed.) In this chapter we’ll look at how to create new problem reports,
starting with a photograph taken from the webcam.

Chapter 12, Responsive Design
Helps you master how to implement responsive design so the application can be
resized in width to support even the smallest width size of 320 pixels, previously
known as “snapped mode.” Another Windows 8.1 UX feature that differentiates
Windows from the other platforms is the ability to run apps side by side. The way
this works is that you can have one app running in a thin strip on the left or right
side of the screen, with another app taking up the remainder of the space. The only
problem with this is that you need to build an entirely parallel UI to get your app
running in this thin strip. In fact, this isn’t as bad as it sounds, because the MVVM
pattern that we’ll use abstracts a lot of the work away. Specifically, in this chapter
we’ll build in the ability to run our application in different width sizes.

Chapter 13, Resources and Localization
Looks at resources and localization. By the time you get to this chapter, you will
already have seen quite a few ways of working with resources, so some of this chapter
is given over to covering the things that we haven’t yet looked at in detail. In the
other part of the chapter, we’ll discuss how to implement proper localization of the
app (i.e., how to add in support to present the app in different languages).

Chapter 14, Background Tasks and App Lifetime
Tackles background tasks, a special way of blocking off functionality that Windows
will run on a schedule on the application’s behalf. Common to all tablet platforms,
Windows Store apps look to restrict what your application can do when it’s not
actually running in the foreground. In this chapter we’ll look in some detail at
implementing such background tasks—specifically, we’re going to look at how to
use this functionality to download new reports and upload local change reports
back to the server in the background.

Chapter 15, Sideloading and Distribution
Details how you can actually package and distribute apps on the Windows Store.
We’ll look at using developer licenses to create sideloading packages for internal
testing, and we’ll also look at how to do proper enterprise sideloading. (Sideloading
is the process whereby you distribute apps to a private audience rather than using
the Windows Store.) We’ll also look at the rules that you need to adhere to in order
to get Microsoft to distribute your app on the Windows Store.

The book has two appendixes:
Appendix A, Cryptography and Hashing

Covers some common requirements related to cryptography and hashing that you’ll
likely either need or be asked about, but don’t fit into the main body of the text.

Preface | xiii

Appendix B, Unit Testing Basics for Windows Store Apps
Looks at how to unit test your code using the unit testing projects provided with
Visual Studio. This will use the inversion of control containers that we built and
used throughout the book.

And that’s it! By the time you’ve been through the whole story, you should have a great
understanding of how to build full-featured Windows Store applications.

Prerequisites
The only thing that you will need in order to get working is Visual Studio 2013. Out of
the box, this edition of Visual Studio comes with everything you need to build Windows
Store apps. You can use either the Professional edition or the Express edition. I happened
to use the Professional edition, but everything has been tested on Express.

You will need a Windows Store developer account if you want to actually get your apps
listed on the store, although nothing in this book requires that level of paid account.
You will need to create a free account in order to obtain a developer license, which is
required to locally deploy any apps that you build.

Source Code
The source code for this book is available on GitHub.

The easiest way to work with this code is to grab the entire repo and put it on your local
disk. Each chapter is represented by one folder, where the code in the folder is the same
as the state of the application at the end of each chapter. (For example, the Chapter8
folder includes everything from Chapter 2 up to and including Chapter 8. The Chap
ter9 folder builds on the Chapter8 folder and also includes the work that we go through
in Chapter 9.) From time to time, the code downloads may contain more than what we
have specifically gone through in the book.

If you’re not accustomed to using GitHub or git, here’s a quick run-through.

Using git
This section is intended to get you through the basics of installing git and using it to
fetch the code from the repository. It’s not intended to show you how to use git as a
source control system, but GitHub offers a decent walkthrough of that.

You’ll need a git client to get started. You can download a client from the git website.
Do this and install the package that’s downloaded.

The installer will install both a command-line client and a GUI. Personally, when I’m
actually using git I always use the command line. A lot of people use the GUI. If you’re

xiv | Preface

https://github.com/mbrit/ProgrammingWindowsStoreApps
http://learn.github.com/
http://git-scm.com/

only interested in using git to get the code for this book, you might as well just use the
GUI.

To open the GUI in Windows 8.1, access the Start screen by pressing the Windows key.
Type git directly into the Start screen. You’ll get options for Git Bash and Git GUI.
Open up the Git GUI and select the Clone Existing Repository option.

You’ll need to copy and paste the path of the repo from GitHub. To do this, access the
repo using a web browser. The URL you want is https://github.com/mbrit/Program
mingWindowsStoreApps.

On the page you’ll find a “Quick setup” box that contains the actual URL of the repo.
You’ll need to copy this to the clipboard. The URL will look something like https://
github.com/mbrit/ProgrammingWindowsStoreApps.git. Figure P-1 illustrates.

Figure P-1. The area of the GitHub page showing the actual repo URL

Back in the GUI, copy and paste the repo path into the Source Location field, and type
the path to any local folder that you like into the Target Directory field. Figure P-2
illustrates.

Figure P-2. Setting up the clone operation

Click the Clone button, and the repo will come down to your local machine. You can
then use Visual Studio to open the solution files contained in each folder.

Preface | xv

https://github.com/mbrit/ProgrammingWindowsStoreApps
https://github.com/mbrit/ProgrammingWindowsStoreApps
https://github.com/mbrit/ProgrammingWindowsStoreApps.git
https://github.com/mbrit/ProgrammingWindowsStoreApps.git

Contacting the Authors
Should you want to get hold of Matt directly, the best way is via Twitter (@mbrit).
Alternatively, try his website. Iris Classon can be contacted via Twitter (@irisclasson)
and her website.

Let’s Go!
And that’s it. You should now be ready to get going building Windows Store apps.

Conventions Used in This Book
The following typographical conventions are used in this book:
Plain text

Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions, types,
classes, namespaces, methods, modules, properties, parameters, values, objects,
events, event handlers, XML tags, HTML tags, macros, the contents of files, or the
output from commands.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

This icon signifies a general note.

This icon signifies a tip or suggestion.

xvi | Preface

http://mbrit.com/
http://www.irisclasson.com

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Programming Windows Store Apps with
C# by Matt Baxter-Reynolds and Iris Classon (O’Reilly). Copyright 2014 Matthew
Baxter-Reynolds, 978-1-449-32085-0.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

Preface | xvii

mailto:permissions@oreilly.com
http://www.safaribooksonline.com
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/prog-win-store-apps-csharp.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Thank you to the technical reviewers, Oren Novotny, Stefan Turalski, Matt Fitchett, and
Nathan Jepson, without whom this book would not have been possible.

This book would be fundamentally different, and nowhere near as good or complete,
were it not for Twitter. Twitter is perhaps the most important learning resource for those
involved in the computer industry that’s ever been invented. This book has got quite a
lot of advice in it, and the most important piece is this: if you’re a professional software
developer and you don’t use Twitter, start.

Here’s a list of my various Twitter friends who have given support, saved me hours upon
hours of work, come up with new ideas, and provided invaluable input:

• Alex Papadimoulis (@apapadimoulis)
• Casey Muratori (@cmuratori)
• Chris Field (@mrcfield)
• Chris Hardy (@chrisntr)

xviii | Preface

http://oreil.ly/prog-win-store-apps-csharp
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

• Craig Murphy (@camurphy)
• Daniel Plaisted (@dsplaisted)
• David Kean (@davkean)
• Duncan Smart (@duncansmart)
• Edward Behan (@edwardbehan)
• Filip Skakun (@xyzzer)
• Frank Krueger (@praeclarum)
• Gill Cleeren (@gillcleeren)
• Ginny Caughey (@gcaughey)
• Haris Custo (@hariscusto)
• Hermit Dave (@hermitdave)
• Iris Classon (@irisclasson)
• Jamie Mutton (@jcmm33)
• Joel Hammond-Turner (@rammesses)
• Jose Fajardo (@josefajardo)
• Keith Patton (@kpatton)
• Kendall Miller (@kendallmiller)
• Liam Westley (@westleyl)
• Mark Tepper (@binaerforceone)
• Matt Hidinger (@matthidinger)
• Matthieu GD (@tewmgd)
• Mike Harper (@mikejharper)
• Nic Wise (@fastchiken)
• Peter Provost (@pprovost)
• Ross Dargan (@rossdargan)
• Tim Heuer (@timheuer)
• Tomas McGuinness (@tomasmcguinness)

Finally, thank you to Rachel Roumeliotis, Maria Gulick, Melanie Yarbrough, and the
rest of the O’Reilly team for their hard work and patience in making this book a reality.

Preface | xix

CHAPTER 1

Making the Transition from .NET (Part 1)

In this chapter and the next we’re going to start looking at the work that we have to do
to move our .NET skills over to WinRT and start building Windows Store apps. Unlike
the other chapters in this book, which focus on a particular API feature area, this chapter
and the next are more mixed and intermingled, mainly because the changes that we
have to make in order to achieve a transition are also mixed and intermingled.

Given Microsoft’s history with .NET, you might have expected WinRT to be a direct
evolution. In fact, it’s not. WinRT represents a major shift in strategy from the team
within Microsoft that “owns” the Windows API. It’s coming to market at a time when
considerable changes are happening within the broader world of software engineering.
This is the “post-PC” age. Microsoft rose to dominance in the microcomputer/PC age.

Why WinRT?
WinRT has emerged at the same time as Microsoft’s “reimagining” of Windows into
two new operating systems—Windows 8 and Windows RT—although the timing that
brings the launch of the new OSes and a new API model together is more luck than
judgment. WinRT is about fixing the fundamental limitations of writing software na‐
tively for Windows. Native applications in Windows are written using the Win32 API,
which is a very old, non−object-oriented API. Alongside Win32 we also have COM, an
object-oriented subsystem that allows for components to be plugged in and out of Win‐
dows. If you’re a relative newcomer to writing software for Windows, there’s a good
chance you’ve never used either of these, or you’ve used .NET. If you’re slightly longer
in the tooth, there is a chance that you did use these technologies once, but—especially
if you’ve selected this book—the likelihood is that over the past n years you’ve been
using .NET to write software that targets Windows OSes.

.NET is very different from Win32 or COM. .NET is a Java-inspired framework library
and execution environment designed to make it easier to write software for Windows.

1

We call .NET a “managed code” environment because the runtime takes over a lot of
the “management” of the code execution. Conversely, Win32 apps are “unmanaged.” In
its initial incarnation, .NET was built to let developers build websites in ASP.NET, or
native applications with Windows Forms. (We’ll ignore console applications or Win‐
dows services for the time being, as I want to talk about user interface technologies.)
Both of these user interface technology tracks have evolved and changed over time, but
regardless the more important thing about .NET was that it allowed developers to be
more expressive. The Base Class Library (BCL) within .NET provided easy, object-
oriented access either into Windows operating system features (e.g., System.IO.File
Stream) or classes designed to save the developer time and effort (e.g., System.Collec
tions.Generic.List). (The former set is relevant here, as a great deal of the BCL simply
thunks down into Win32, which is how it provides access to OS functions.) In addition
to the BCL, the CLR provides features like garbage collection so that under regular
operations, developers don’t need to worry about the mechanics of working with mem‐
ory management and other important bits and pieces.

Philosophical Differences
Where this starts to get untidy is that WinRT and .NET are philosophically very differ‐
ent. .NET is inspired by Java, and the big compromise with a system where memory is
managed by garbage collection is that you inevitably cede control to the framework. If
you’re building an operating system (like the Windows Division—aka WinDiv—team
within Microsoft), or building a major software product like Office, you wouldn’t start
with Java. Java, and by extension .NET, is too abstract, too “magical” for building that
sort of software. But most of us don’t build “that sort of software”; what most of us do
is work within very small budgets to build relatively small-scale applications where the
compromise of working within an execution environment like the CLR is much less
keenly felt.

As .NET developers, we have to learn to play nicely within this philosophical difference
imposed by a shift to WinRT, and therein lies the challenge. It should be said, though,
that the general premise of this is, in my opinion, a bit broken. While the rationale for
moving away from .NET and back to COM is understood, it’s not necessarily a good
idea. It would have been better in many ways if Windows Store apps had been built more
squarely on .NET, and the oddities that come into play because Windows Store apps are
fundamentally COM-based were negated. However, we are where we are.

In terms of the assumptions that I’m going to make, I’m assuming that the readers of
this book are on the spectrum of “reasonably familiar” with .NET up to “very familiar”
with .NET. I’ll also assume that most of the modern .NET concepts up to and includ‐
ing .NET Framework v3.5 are understood—we’re going to be seeing a lot of generics.
We’ll be seeing a bit of Linq (but I will go through that). I’ll assume no knowledge of

2 | Chapter 1: Making the Transition from .NET (Part 1)

the Task Parallel Library (TPL)—which we’ll be using a lot. As long as you can put
together production-quality code in .NET, you’ll be covered.

Most .NET developers will have been working on ASP.NET applications, so again I’m
assuming that this is the user interface technology of choice for most readers of this
book. For our Windows Store apps we’re going to be using the XAML user interface
track (more later). XAML is aligned with Silverlight and Windows Presentation Foun‐
dation (WPF), although I’m going to be assuming most readers of this book have little
or no Silverlight/WPF/XAML experience.

Objectives
In the next two chapters, our objective is to get a Windows Store app built, with a user
interface, and some business logic that can call up to the server. We’re also going to prove
that we can build a unit test library to run alongside the application. Specifically:

• We’ll build a new Windows Store app project in Visual Studio 2012. The purpose
of this is to learn about the new project templates, and understand the difference
in emitted outputs between the new-style Windows Store app projects and old-
style .NET projects.

• Within that project, we’ll build a new page in XAML, and from there we’ll look at
building in the infrastructure to support Model/View/View-Model (MVVM). (I’ll
explain what this is shortly.) We’ll also look at building support for inversion of
control. (Again, if you don’t know what “inversion of control” is, you will find an
explanation later.) The code will look to call up to a publicly accessible server. In
the first instance, we’ll fake this call and simulate the server.

• We’ll take the view-model that we built and wrap a unit test around it, just so that
we know that we can.

• Once we know we can test the model, we’ll build the real implementation of our
server communication. We can then test our app end-to-end and know that it’s
working.

The New Project Templates
The first thing to get a handle on is that the version of .NET used in Windows Store
apps is a cut-down, limited version of .NET referenced internally as .NETCore. There’s
precedent for Microsoft creating subsets of .NET; one example is the .NET Compact
Framework used in Windows CE. Another is the Client Profiles introduced in v3.5 that
are “optimized” for client applications. Likewise, the toolset for Windows Phone 8 is a
cut-down version of the Silverlight libraries, which in turn is a cut-down version of
WPF.

Objectives | 3

The motivation behind all of these “cutting down” operations is to limit what developers
can do. There are a few reasons Microsoft might want to do this. One argument is that
the Microsoft engineers might want to make a given API set more secure by removing
exploit vectors. However, another important reason why Microsoft engineers will do
this sort of thing is to “create a better experience.” What this actually means is that
Microsoft’s engineers will control the API such that you as a developer can’t do things
that make Windows 8 look bad.

A good example of this is battery life. When you’re using Windows 8 on a tablet, battery
life is very important. The longer the battery lasts, the happier the user will be. If Mi‐
crosoft designs the API so that it’s hard for you as a developer to do things that use a
relatively high amount of battery power, the battery life as the user perceives it will be
better, and hence the user will perceive Windows 8 as being a good tablet operating
system.

You can see this idea exemplified in background tasks, which we’ll
look at in Chapter 14.

So we can only access the bits of the framework that happen to be in .NETCore. You
should note that even if you could violate this rule, you probably wouldn’t want to, as
the app would not pass certification for inclusion in the Windows Store—something
we’ll talk about in Chapter 15.

WinRT Metadata
A standout excellent feature of .NET available from introduction was the level of detail
included within its metadata system. (Metadata at its most basic in this context is simply
a description of how all the types and members within them are structured.) Each .NET
assembly could describe itself to a hitherto unrealized level of detail. Conversely, normal
Windows DLLs had very little metadata—essentially just an EXPORTS table of func‐
tions that could be called. COM sat somewhere in the middle by being mostly self-
descriptive using IDL, but the level of detail was nothing like the .NET metadata. (Plus,
consuming COM metadata was a chore, whereas consuming .NET metadata was a
breeze.)

WinRT is, under the hood, COM with knobs on—COM++, if you will. (Although don’t
call it that because you will get looked at peculiarly.) Microsoft borrowed .NET’s met‐
adata subsystem for use within WinRT. Thus, when you compile a WinRT DLL you get
a .winmd file that contains both the metadata and the binary executable code. The format
of the metadata within that .winmd file happens to be compatible with .NET’s.

4 | Chapter 1: Making the Transition from .NET (Part 1)

The .NET behavior is unchanged—compile a .NET assembly, and the
metadata gets embedded within as before.

What all this means is that the interoperability story between these two worlds is rather
good. Because both parties understand each other well thanks to the shared metadata,
Microsoft’s job in getting actual calls going between the two is straightforward.

As most of you are likely familiar with the structure of .NET assemblies, I’ll take you
through the structure of the new assemblies using Reflector and we’ll see how a Windows
Store application references the central WinRT components. (If you don’t know what
Reflector is, we’ll look at that in a short while.)

To begin with, we can create projects within Visual Studio in the usual way. Figure 1-1
illustrates adding a new C# Windows Store “Blank App” project to an existing solution.
Notice how the Windows Store projects have their own entry in the tree away from
the .NET projects that you’re used to creating normally.

Figure 1-1. Options for a new Windows Store app project

If we create a new project—I’ll create a Blank App type for this illustration—we can look
under References in Solution Explorer and see something like Figure 1-2.

This looks quite different from the References view of a normal .NET project; what we’re
actually seeing here are placeholder references to the actual libraries and assemblies that
the project will compile against. Specifically, these are references to the .NETCore as‐
sembly set and the core Windows WinRT libraries.

The New Project Templates | 5

Because the rules are set in stone as far as what you have to refer‐
ence in order to be a proper Windows Store app that gets through
store certification, you can’t change these references.

Figure 1-2. Placeholders for the .NETCore assembly and Windows WinRT libraries

What Visual Studio is doing here is representing bundles of referenced assemblies/
libraries as single items. In the normal .NET world, these would be a discrete set of
explicit assemblies. We can use Reflector to get a better view of what’s going on.

For the uninitiated, Reflector is a popular .NET tool that allows you
to see the structure of types and members within an assembly, and
also decompile it. See the Reflector website.

If you want to follow along, download a trial copy of Reflector if you don’t have a licensed
copy. If we point Reflector at the output assembly—which happens to be called Struc
tureFoo.UI.exe in my example—we’ll see something like Figure 1-3. What this is
showing us is a bunch of regular .NET assemblies that make up .NETCore (System.Col
lections, etc.) and a reference to Windows. (Looking back at Figure 1-1, we see
something different. Visual Studio just showed us one item, “.NET for Windows Store
apps.” Reflector is showing us the actual references.)

The Windows reference isn’t an assembly—it’s a reference to the WinRT metadata file.
With the information in that file, the runtime is able to bind through to the unmanaged,
native code components that contain the implementations. When we get going, you’ll

6 | Chapter 1: Making the Transition from .NET (Part 1)

http://www.reflector.net/

1. Thunking is the process of making calls across system boundaries. In this context, it refers to making calls
from the “managed code” world of .NET to the unmanaged world of WinRT.

see that under the hood this thunking1 down to WinRT happens a lot, but you wouldn’t
even know it was happening unless you looked really hard.

Figure 1-3. The actual references in the output assembly

If you select the Windows entry in Reflector, you’ll see something like Figure 1-4. (The
version of Reflector that I’m using at the moment cannot automatically reference the
metadata.) Notice the version number of 255.255.255.255—this is a good hint that we
are referencing WinRT metadata and not a .NET assembly.

The metadata file that it’s looking for is stored in C:\Program Files (x86)\WindowsKits
\8.0\References\CommonConfiguration\Neutral\Windows.winmd. That folder tree
happens to be the WinRT development kit.

If we go into Reflector and tell it where to find Windows.winmd, we’d find something like
Figure 1-5.

The New Project Templates | 7

Figure 1-4. Prompting for the Windows metadata

Figure 1-5. Linking through to the Windows WinRT library reference

You’ll notice a reference to mscorlib, implying a reference back to .NET from WinRT.
Ignore that—it’s a red herring. It’s an artifact of the metadata system being a .NET thing
that’s been repurposed for WinRT.

8 | Chapter 1: Making the Transition from .NET (Part 1)

Figure 1-6. Disabled target framework and selectable project types

What I’ve tried to show here is how the worlds of .NET and WinRT interoperate. What
we’ve done is created a more or less standard .NET executable assembly, and referenced
a collection of normal .NET assemblies and also the WinRT libraries.

To close this loop, let’s go back into Visual Studio and look at the project settings and
adding references.

Project Settings and Adding References
The first point of interest is that if we open up the properties for our project, you’ll notice
that we can’t change the target framework. In a normal .NET project, we would be able
to change the target framework and this option would not be greyed out. (Although
obviously this is how it is at the time of writing, I’m actually expecting this to change as
I assume that ultimately multiple framework versions will be supported on the various
devices.) You’ll also notice that the output types are different—we can create a Windows
Store App, a Class Library, or a Windows Runtime Component. Figure 1-6 illustrates.

The New Project Templates | 9

Figure 1-7. With .NETCore selected, we can’t choose any other assemblies in the way
we usually can with normal .NET projects

The Windows Store App is a normal, deployable-and-runnable executable. The Class
Library is a .NET assembly that can be consumed from managed code. The WinMD
File is used in scenarios where you want to consume the assembly/library from Java‐
Script or C++/CX. That latter case is out of scope for this book, although we will touch
on it in Chapter 14 when we look at background tasks. Generally, in the work we do in
this book we’re going to create one executable and a support library to go along with
it. Let’s turn our attention now to references.

In Visual Studio 2012, the dialog has changed for adding references.
Thankfully, we now have a search option!

If you right-click on the project in Solution Explorer and select Add Reference, you’ll
see something like Figure 1-7. Note how we cannot add any Framework references. In
Metro style we are given .NETCore, and that’s all we’re allowed to have. We can’t add or
remove any part of those references. Notice also at the top that it reads “Targeting: .NET
for Windows Store apps.”

Likewise, although I haven’t included a screenshot of this, if you select Windows from
the tree (i.e., “WinRT libraries”), you’ll see a similar story.

The Solution option lists the projects in the solution. This works in the way that you
would expect: simply select the projects whose output you want to reference, and you

10 | Chapter 1: Making the Transition from .NET (Part 1)

should be good to go. Use some caution, however, as there’s nothing to stop you doing
things such as adding a normal, full .NET class library project and trying to reference
it. You’ll get an error if you do this, but it’s not a particularly descriptive error—it just
reads “Unable to add a reference to project <projectName>.”

You can use the Browse option to add any assemblies that you fancy,
although your mileage will vary. I, for example, added a reference to
a normal .NET 2.0 assembly. The reference went in fine, but it com‐
plained about classes missing from mscorlib. This makes sense if
you consider that things will be missing from .NETCore.

Building a Basic User Interface
Now that we’ve explored how the Windows Store projects are put together, we can look
at how we build the user interface.

UI Tracks
You can build Windows Store apps using one of three user interface tracks, which are a
combination of a display technology and a coding language.

In this book, I’m going to be basing the work we do on XAML, and I’ll talk about this
in much more detail in a moment.

I’ve excluded DirectX/C++ from this book for the reason that it’s more
aimed at developing games, and this book isn’t about building games.

HTML

The HTML5/CSS3/JavaScript track is actually more interesting and in many ways
hugely appropriate to developers looking to target Windows 8 and Windows RT. In the
HTML5 scenario you build a self-contained, locally executing web application that runs
inside of IE on the device. It’s packaged up just like a normal Windows Store application.
(We’ll talk about application packaging in Chapter 15.) The language you use to build
the application is JavaScript. Just for clarity, you don’t get any backend, server-side ex‐
ecution (à la ASP.NET) with this—it’s all done with JavaScript, although in this new
world you have WinJS, which can get into the full WinRT library. (The prevailing
wisdom is that it’s this capability to thunk down from WinJS into WinRT that caused
Microsoft’s engineers to eschew basing Windows Store apps entirely on .NET.)

You might also be interested to know that the standard Mail, Calendar, and People apps
in Windows 8 are based on the HTML5 track rather than the XAML track. However,

Building a Basic User Interface | 11

that seems to be unusual. My informal analysis of the store at various points during the
later half of 2012 shows that XAML tends to be much more popular, with about 70% of
apps released into the Store being XAML-based. Moreover, there’s a skew toward apps
that repackage web content being more likely to be HTML5-based.

On paper, the ability to build apps using HTML5 is incredibly appealing and very sen‐
sible. With the market consolidation that’s going on at the time of writing (early 2013),
it’s hard for people investing in software to know where to put their money. Targeting
a platform-neutral technology like HTML5 seems like a winning plan because any in‐
vestment you do make can be taken to other platforms in a way that follows profit
without dramatically increasing complexity.

However, what that doesn’t account for is that in the post-PC world, the user experience
(UX) argument tends to be very strong, and it’s typically the case that users demand
apps that have a high degree of “slickness.” It’s counterintuitive to suggest that a platform
that is inherently a compromise (i.e., HTML and the Web) can offer this slick user
experience. (I tend to call this sort of approach “near native” as it tends to be good enough
to be operational, but not classifiable as “native.”) The iPad is a popular device because
the apps are so good, and those apps tend to be based on the native toolset provided by
Apple. Even though cross-platform technologies are available for iPad (in particular,
Apache Cordova née PhoneGap), their adoption tends to be low, as developers under‐
stand that compromising UX is typically a move that harms the proposition in the post-
PC world.

There are other incidental problems with using HTML5 to gain cross-
platform advantage with a Windows tablet strategy, the main one
being that the UI metaphors used in the modern UI design aesthet‐
ic tend to be horizontally biased, whereas the Web itself is vertically
biased. You have to wonder how much you really gain from going
down an HTML5 route.

Better experience

When we think about our UI track for Windows Store apps, it follows that the native
experience should offer a better UX. This means using the XAML track, not the HTML5
track, given that the XAML track is the native UI technology for Metro style, as opposed
to HTML5, which is the cross-platform, “near native” choice. You may choose to read
the word compromise where I have written choice in that last sentence.

There are two ancillary considerations here. First, we know Microsoft can execute on
native UI technologies better than it can execute on web technologies. The second ar‐
gument is that Silverlight developers are likely to migrate to Metro-style development
before other types of developers, and they will likely gravitate toward the XAML track
because there’s a natural evolution there. This will likely increase the volume and quality

12 | Chapter 1: Making the Transition from .NET (Part 1)

of community-created content around the XAML track. Working with technology
where there is greater community involvement tends to be easier. You should note that
it appears that building Windows Store apps in HTML5 seems to be more difficult than
building the equivalent apps in XAML, although this statement in particular is relatively
subjective.

But what actually is the XAML track?

During the development of Longhorn—the codename for what would eventually be
called Vista—Microsoft had a new vision for replacing the subsystem that composed
the user interface within Windows. This new vision was called Windows Presentation
Foundation, or WPF. At the time, the existing Windows UI composition engine, GDI,
was extremely old and old-fashioned. WPF was to be a new engine based on a declarative
model rather than a programmatic model. (In GDI you have to write code to specifically
place UI elements on the screen.) A declarative model would look much more like
HTML, which was popular for obvious reasons. Thus, eXtensible Application Markup
Language (XAML) was born. WPF was bundled into .NET 3.0 and happens to use
DirectX to physically arrange pixels on the screen.

Internally within Microsoft, WPF did not get (and has not gotten) much traction, mainly
because it was based on .NET. We’ve already spoken about how the Windows Division
and the Office/Business Division don’t like managed code—WPF is entirely a managed
code proposition. In hindsight, that core division was never going to use it.

After WPF was released, Microsoft decided that it wanted to compete with Adobe Flash
and created a new product called Silverlight to do just that. The idea of Silverlight was
that it would run inside a web browser (the Microsoft engineers’ vision of this was that
it would run as an ActiveX control within IE). At this time, most of the interest in .NET
was around line-of-business (LOB) applications that were either built as web applica‐
tions (ASP.NET) or as desktop applications using Windows Forms; this happens to be
a wrapper over GDI. Without internal adoption within Microsoft, or really much need
to use it as a replacement for Windows Forms, Silverlight became a common delivery
vector for WPF.

As a Flash competitor, Silverlight didn’t gain much ground. The timing was off—by this
time, Flash was looking past its best and HTML5 was getting much better. Some de‐
velopers started to adopt Silverlight for internal LOB applications deployed as Silverlight
applications running “out of browser” (OOB). What actually happened, though, in the
end, was that by the time Silverlight and WPF were effectively deprecated, Silverlight’s
use as a foundation technology for private LOB apps was quite well established.

Now let’s look at what happened with Windows Phone. When Microsoft junked Win‐
dows Mobile and moved over to Windows Phone, it needed a UI platform and chose
Silverlight. More accurately, it chose Silverlight and cut it down as previously discussed.

Building a Basic User Interface | 13

“Silverlight for Windows Phone” is the only game in town for building nongame apps
on Windows Phone.

So if you loop that in, you have native WPF being used hardly anywhere, Silverlight
having no traction on the Web, Silverlight having some traction in private OOB appli‐
cations, and Silverlight being the only option for Windows Phone.

The next thing is that we have Microsoft wanting to “reboot” the way that we build
Windows applications, and to do this it takes WinRT and also takes WPF and divorces
it from .NET. As part of this process, Microsoft dumps the WPF name and goes with
XAML. XAML then becomes unmanaged—that is, native implementation built using
WinRT components housed in WinRT libraries. This is why XAML is not called “WPF”
in WinRT—the former is unmanaged and the latter is managed.

Importantly, the API remains roughly compatible. For example, in WPF there is a class
called System.Windows.Controls.Button that represents a button on a page. It so hap‐
pens that this class has a Content property available that can be used for setting the text,
and a Click event available that is raised when the user clicks it. This is a managed code
housed in the System.Windows.dll assembly. Over in WinRT/XAML, our button rep‐
resenting class is called Windows.UI.Xaml.Controls.Button. This is an unmanaged
implementation of the same control—it supports Content, Click, and other members
—but this time it’s unmanaged and implemented via a WinRT control referenced
through the Windows.winmd metadata. (You will find some rough edges to this model,
but this “compatible API” approach is the general shape of the solution.)

XAML Parsing Basics
The killer problem with coming to XAML cold is that if you’re used to HTML, it’s easy
to look at it and wonder why on earth Microsoft didn’t just use HTML. To understand
why XAML exists, you need to understand the difference between it and HTML.

HTML is a document markup language. The original vision was that you start with
some text and annotate it such that areas of the document appear different (e.g., bold,
italics) or behave differently (e.g., link to another document). Over time, as a developer
community using many different types of technology, we’ve taken that foundation and
turned it into a way of declaring a user interface.

XAML is the other way around. It starts from the basis that you’re not trying to describe
a document, you’re trying to describe a user interface. As it was born to support Win‐
dows, what you’re actually looking to do is describe windows and user interface elements
within. HTML is a document that needs to be parsed and interpreted. XAML is just an
object graph expressed as XML.

The following is some sort of XAML. I’ve removed some of the attributes to make it
easier to understand, so this code won’t actually work:

14 | Chapter 1: Making the Transition from .NET (Part 1)

<Page>

 <StackPanel>
 <Button Content="Foo" />
 <Button Content="Bar" />
 </StackPanel>

</Page>

The XAML parser works on a fairly simple basis. It walks the XML Document Object
Model (DOM), creating instances of classes as it goes. Starting with the Page, the first
element that it reaches is called StackPanel. The XAML parser will find a type with that
name (given that it has a list of candidate namespaces to try, which is one of the things
I’ve taken out of the XML in order to make it simpler), create an instance from it, and
add it to the Content property of the current UI element under consideration—in this
case, the page. This continues; the next element is a Button, which is added to the
Children property of the panel. At this point we are looking at an element that has
attributes, and the values in the attributes are set to properties found on the control.
(This is as per ASP.NET’s parsing behavior, incidentally.) The next element is another
Button, and so on.

In many ways, this is how an HTML parser works in terms of creating its own internal
HTML DOM representation, but seeing as HTML doesn’t have to be valid XML, the
XAML parser’s job is much easier. (And there’s very little ancillary information about
scripts, alternate views, styles, and so forth like you get with HTML.)

In this book, it’s not my intention to tell you how to build beautiful
and wondrous apps using XAML. That would involve going into too
much detail on the construction of the user interfaces, whereas my
goal is to show you how to get things happening, functionally. There‐
fore, I’ll focus on pointing you to various helpful controls and look‐
ing at how to implement common constructs.

Building a Basic Page
We’ll now start building a basic user interface. Specifically we’re going to build a regis‐
tration form that will capture a username, email address, and password, and have a
button. It’ll look something like Figure 1-8.

Building a Basic User Interface | 15

Figure 1-8. The intended layout of our registration form

App Bars
You should note that the Register button in Figure 1-8 is probably in the wrong place if
we consider Windows 8 UX guidelines. The button should be positioned more properly
on the app bar, which is the little panel that winds up from the bottom of the screen
when you want to access more options. (You do this either by swiping up or down from
the edge of the screen, or using the right mouse button.)

However, the situation is slightly complicated by the fact that if the action relates to the
primary purpose of the form, you can put it on the main view. Oftentimes apps don’t
do this—they leave the button on the app bar but show the app bar rather than asking
the user to show it.

This situation is complicated further by some apps—notably the built-in Mail app, which
shows the New button, for example, in the top-right of the page.

We don’t get into building app bars until Chapter 4. For now, we’ll leave the button here.
In Chapter 4 we’ll discuss proper placement and grouping more fully.

Throughout this book, we’re going to be using a publicly accessible service that I’ve
created and hosted on AppHarbor. (If you’re unfamiliar with AppHarbor, it’s a .NET
platform-as-a-service provider that I heartily recommend. You can find it at AppHar‐
bor’s website.) The business problem that the service solves was discussed in the preface
—to recap, the idea that individuals can report problems in their local environment. For
example, the individual might spot some graffiti or litter and wish to have it removed.
My reason for choosing this “problem domain” is that it contains all of the common

16 | Chapter 1: Making the Transition from .NET (Part 1)

http://appharbor.com/
http://appharbor.com/

components of mobile apps—specifically, working with accounts, taking and uploading
photos, reviewing historical data, and capturing location. What we’ll implement in this
next part of our work is the account registration. We’ll capture the new user’s details
and send it up to the server, whereupon the user can perform other functions such as
creating new issues. I’ll be referring to the application as StreetFoo.

To get started, we need a new solution and project within Visual Studio. As a rule, I like
to create a blank solution first, and then add projects into that solution. (I find this
creates the most logical and natural folder structure on disk.) However you do it, create
a new Visual C# by navigating to Windows Store→Blank App project and call it Street‐
Foo.Client.UI. Figure 1-9 illustrates.

Figure 1-9. The structure of a newly created Windows Store→Blank App project

In Figure 1-9, the assets are relatively obvious—these are the various graphics that we
need to drive the application. (We’ll look at these later.) We already discussed the Ref‐
erences node earlier in this chapter. Properties and its attendant AssemblyInfo.cs are
unchanged from .NET.

App.xaml is a cross between the Global.asax file in ASP.NET and the void static
main method used to boot Windows Forms and console application executables. The
boilerplate code in here responds to the Launched event and creates the first page to
view. (We’ll learn more about application lifecycle events in Chapter 14.)

MainPage.xaml is the default page that gets created. We’ll delete this and replace it with
RegisterPage.xml shortly.

Package.appxmanifest contains metadata about the application that affects how the ap‐
plication is deployed (i.e., installed) and what it can do. (If you happen to have done

Building a Basic User Interface | 17

Android development, it’s analogous to how manifests work on that platform.) We’ll
see various facets of this as we go, but for now we don’t need to worry about it. Likewise,
we also don’t need to worry about the .pfx file down at the bottom. This is used for
signing, but we’ll talk more about that in Chapter 15.

Out of the box, a standard project template doesn’t really do much—all you get is an
app that will install and show a blank page. However, there is a sort of “subproject” that
we can trigger, and when we do that we get a whole load of additional templates and
functionality. This additional functionality does things like adding a set of default styles,
creating a page layout that has a default header, and creating pages that supports even
the smallest window size for this type of application. (We talk about this more in Chap‐
ter 12.)

To access this extra functionality, first delete MainPage.xaml and then add a new item
to the project of type Basic Page and call it RegisterPage.xaml. Visual Studio will prompt
you to add the missing files.

When we do this, the Windows Store app project template will add a new folder called
Common to the project, and this folder contains a whole bunch of new stuff that supports
the special templates. The readme file in this folder offers a stark warning that developers
are not supposed to change the contents of the files in this folder, as it’ll break the VS
project template. You can take this with a grain of salt; like all these things, you have to
tread relatively carefully, but it’s hard to do any real damage.

I mentioned that the code in App.xaml was responsible for starting the application. The
code that was created on project inception contains a reference to the MainPage class.
However, we deleted the MainPage class from the project when we deleted Main
Page.xaml. We need to replace the reference with a reference to RegisterPage.

Open up App.xaml and change the OnLaunched method to use RegisterPage:

 protected override void OnLaunched(LaunchActivatedEventArgs e)
 {

#if DEBUG
 if (System.Diagnostics.Debugger.IsAttached)
 {
 this.DebugSettings.EnableFrameRateCounter = true;
 }
#endif

 Frame rootFrame = Window.Current.Content as Frame;

 // Do not repeat app initialization when the Window already
 // has content, just ensure that the window is active
 if (rootFrame == null)
 {
 // Create a Frame to act as the navigation context and navigate

18 | Chapter 1: Making the Transition from .NET (Part 1)

 // to the first page
 rootFrame = new Frame();

 if (e.PreviousExecutionState ==
 ApplicationExecutionState.Terminated)
 {
 //TODO: Load state from previously suspended application
 }

 // Place the frame in the current Window
 Window.Current.Content = rootFrame;
 }

 if (rootFrame.Content == null)
 {
 // When the navigation stack isn't restored navigate to the
 // first page, configuring the new page by passing required
 // information as a navigation parameter
 if (!rootFrame.Navigate(typeof(RegisterPage), e.Arguments))
 {
 throw new Exception("Failed to create initial page");
 }
 }
 // Ensure the current window is active
 Window.Current.Activate();
 }

If you run the project, you should see something like Figure 1-10.

The XAML for that page is quite verbose, so I won’t reproduce it all here. However,
here’s an important part of the layout that we need to consider:

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="140"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>

 <!-- Back button and page title -->
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="120"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <AppBarButton x:Name="backButton" Icon="Back" Height="95"
 Margin="10,46,10,0"
 Command="{Binding NavigationHelper.GoBackCommand,
 ElementName=pageRoot}"
 Visibility="{Binding IsEnabled, Converter=
 {StaticResource BooleanToVisibilityConverter},
 RelativeSource={RelativeSource Mode=Self}}"
 AutomationProperties.Name="Back"
 AutomationProperties.AutomationId="BackButton"

Building a Basic User Interface | 19

Figure 1-10. Preview of our newly created page

 AutomationProperties.ItemType="Navigation Button"/>
 <TextBlock x:Name="pageTitle" Text="{StaticResource AppName}"
 Style="{StaticResource HeaderTextBlockStyle}"
 Grid.Column="1"
 IsHitTestVisible="false" TextWrapping="NoWrap"
 VerticalAlignment="Bottom" Margin="0,0,30,40"/>
 </Grid>

 <!-- deleted for brevity... -->

 </Grid>

This is where we can start to see the divergence between XAML and HTML. Back in
the day we would have laid out this HTML using TABLE controls, and if you look at
that XAML from that perspective we don’t have any TR or TD elements to help us. (Of
course, now we’re supposed to do that sort of layout using DIV elements and attendant
CSS declarations, but I digress.) What we have instead is one Grid control inside of
another. We also have some magic going on where we define RowDefinition values to
lay out the rows, and ColumnDefinition values to lay out the columns. You’ll also notice
that we can put elements inside of grid cells by using Grid.Column attributes on the
controls. HTML and CSS, this is not.

20 | Chapter 1: Making the Transition from .NET (Part 1)

Understanding XAML
What XAML is trying to do for us is deal with a world where we want a very explicitly
laid out user interface (much as we would have done with very old technologies such as
raw Win16/Win32 calls, MFC, VB, etc.) but with certain flexibilities, such as making it
easier to deal with views that resize, and also offering some advantages that you generally
get from declarative user interfaces. Windows Forms introduced some of these ideas
through standard Dock and Anchor properties on the controls. XAML is an extension
of that kind of approach, as opposed to what HTML has evolved into. XAML is very
much “windows”-based (lowercase w), whereas HTML is still based on documents.
Importantly, XAML is much more precise. In the first row definition, we’re specifying
a specific pixel value. This is not a minimum value, or some value that gets changed
depending on other content, unlike HTML and CSS. If we say “140” pixels, we’re going
to get 140 pixels regardless.

Before we go on to create the form, we want to change the header. At the moment, the
header is defined in a TextBlock control, with a Text value that refers to a StaticRe
source.

Here’s a portion of the XAML markup that was created when RegisterPage.xaml was
created:

 <!-- Back button and page title -->
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="120"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <AppBarButton x:Name="backButton" Icon="Back" Height="95"
 Margin="10,46,10,0"
 Command="{Binding NavigationHelper.GoBackCommand,
 ElementName=pageRoot}"
 Visibility="{Binding IsEnabled, Converter=
 {StaticResource BooleanToVisibilityConverter},
 RelativeSource={RelativeSource Mode=Self}}"
 AutomationProperties.Name="Back"
 AutomationProperties.AutomationId="BackButton"
 AutomationProperties.ItemType="Navigation Button"/>
 <TextBlock x:Name="pageTitle" Text="{StaticResource AppName}"
 Style="{StaticResource HeaderTextBlockStyle}"
 Grid.Column="1"
 IsHitTestVisible="false" TextWrapping="NoWrap"
 VerticalAlignment="Bottom" Margin="0,0,30,40"/>
 </Grid>

Building a Basic User Interface | 21

When attribute values are surrounded by braces in that way, this tells the XAML parser
that regular processing needs to stop and something else needs to happen. These are
called markup extensions. StaticResource is one type of extension. In the next section,
we’ll meet Binding. (There’s one of these references in the Button control in that snippet
that happens to show or hide the default back button depending on whether the page
is at the top of the stack or not.) For now, replace the Text value with Register. Here’s
the code:

 <!-- Back button and page title -->
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="120"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <AppBarButton x:Name="backButton" Icon="Back" Height="95"
 Margin="10,46,10,0"
 Command="{Binding NavigationHelper.GoBackCommand,
 ElementName=pageRoot}"
 Visibility="{Binding IsEnabled, Converter=
 {StaticResource BooleanToVisibilityConverter},
 RelativeSource={RelativeSource Mode=Self}}"
 AutomationProperties.Name="Back"
 AutomationProperties.AutomationId="BackButton"
 AutomationProperties.ItemType="Navigation Button"/>
 <TextBlock x:Name="pageTitle" Text="Register" Style="{StaticResource
 HeaderTextBlockStyle}" Grid.Column="1"
 IsHitTestVisible="false" TextWrapping="NoWrap"
 VerticalAlignment="Bottom" Margin="0,0,30,40"/>
 </Grid>

You’ll see the WYSIWYG preview update as you make this change.

Next we’ll restructure the page so that we have a single Grid control that occupies the
whole page. The default layout is designed for views that scroll off the right side of the
page. What we want for our form is just a place to enter some values underneath the
caption. Therefore, if we redefine the grid with a row at the top 140 pixels high and a
column on the left 120 pixels wide, we can put the back button in the top-left cell, the
label in the top-right, and the form in the bottom-right. (We need the back button, as
ultimately when we start the app we’ll present the logon page and have a button that
takes us into the registration page.)

This is now where we can use the StackPanel control. This is a very useful control for
laying our controls vertically (the default) or horizontally. We’ll also use TextBlock

22 | Chapter 1: Making the Transition from .NET (Part 1)

controls (which are labels), TextBox, PasswordBox, and Button controls. Here’s the
modified markup for our form. Figure 1-11 shows what we’re aiming for.

<local:StreetFooPage
 x:Name="pageRoot"
 x:Class="StreetFoo.Client.UI.RegisterPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:StreetFoo.Client.UI"
 xmlns:common="using:StreetFoo.Client.UI.Common"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Grid>

 <Grid.RowDefinitions>
 <RowDefinition Height="140"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="120"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>

 <!-- Back button and page title -->
 <AppBarButton x:Name="backButton" Icon="Back" Height="95"
 Margin="10,46,10,0"
 Command="{Binding NavigationHelper.GoBackCommand,
 ElementName=pageRoot}"
 Visibility="{Binding IsEnabled, Converter={StaticResource
 BooleanToVisibilityConverter}, RelativeSource=
 {RelativeSource Mode=Self}}"
 AutomationProperties.Name="Back"
 AutomationProperties.AutomationId="BackButton"
 AutomationProperties.ItemType="Navigation Button"/>
 <TextBlock x:Name="pageTitle" Text="Register" Style="{StaticResource
 HeaderTextBlockStyle}" Grid.Column="1"
 IsHitTestVisible="false" TextWrapping="NoWrap"
 VerticalAlignment="Bottom" Margin="0,0,30,40"/>

 <!-- Registration form -->
 <StackPanel Grid.Row="1" Grid.Column="1">

 <TextBlock Text="Username"></TextBlock>
 <TextBox HorizontalAlignment="Left" Width="400" Text="{Binding
 Username, Mode=TwoWay}"/>

 <TextBlock Text="Email"></TextBlock>
 <TextBox HorizontalAlignment="Left" Width="400" Text="{Binding
 Email, Mode=TwoWay}"/>

Building a Basic User Interface | 23

 <TextBlock Text="Password"></TextBlock>
 <PasswordBox HorizontalAlignment="Left" Width="400" Password="
 {Binding Password, Mode=TwoWay}"/>

 <TextBlock Text="Confirm password"></TextBlock>
 <PasswordBox HorizontalAlignment="Left" Width="400" Password="
 {Binding Confirm, Mode=TwoWay}"/>

 <Button Content="Register"></Button>

 </StackPanel>

 <!-- VisualStateManager element deleted for clarity ... -->

</Grid>
</local:StreetFooPage>

There are two things that are worth calling out in this code. We’ve used Binding ex‐
tensions to supply values for the Text and Password properties of the edit controls. (An
important part here is the specification of Mode=TwoWay. This pushes the data back from
the UI into the view-model when it changes.) We’ll come to that. Likewise we’ll also
cover how to make something happen when that button is clicked via commands.

Run the project now and you’ll see the registration page appear. Figure 1-11 illustrates.

Figure 1-11. Our registration form

24 | Chapter 1: Making the Transition from .NET (Part 1)

Now that we have the markup for our page, let’s turn our attention to making it do
something.

Implementing MVVM
In this book, we’re going to implement our user interface using the Model/View/View-
Model (MVVM) pattern. The intention of MVVM is to create a separation of concerns
between the data your application needs to manipulate and the view that’s presented to
the user.

The simplest way to build a user interface is not to introduce any separation of concerns
at all. Imagine you have a database containing customer information and you have a
form that allows you to edit a single customer. Without any separation of concerns, you
can build one enormous and spaghettified class that has logic to load the data from the
database, logic to display it on the screen, the ability to listen for a “save” button click,
logic to validate the data, and logic to save the changes back, all mashed up together.
This approach of lumping everything together is not clever for a number of reasons,
not least of all because it doesn’t promote reuse of the database and validation logic, and
it doesn’t support (straightforward) unit testing. By splitting up the capability into sep‐
arate classes—such as one that knows how to get data in and out of the database, and
one that knows how to drive the user interface—you get better reuse and more straight‐
forward unit testing.

Just in case it’s not clear, don’t mash together code without separa‐
tion of concerns—it’s almost always a really bad idea.

The first place you end up when you try to formalize an architecture to separate data
persistence concerns and the user interface is a pattern called Model-View-Controller,
or MVC. In MVC you have the persistent data part represented in the model. You then
have the physical view. Finally you have the controller whose job it is to tie the model
and view together. (For example, the controller might trigger the action “when this
button is clicked, pull the input off of the UI, run this validation routine, and then update
the model.”) Figure 1-12 illustrates the structure. This diagram is simplified—usually
you would have interfaces between the controller and the page class to abstract away
the page’s implementation.

Building a Basic User Interface | 25

Figure 1-12. Structure of the Model-View-Controller pattern

Earlier I said that the model “knows how to get the data in and out of the database.”
Really the model is the in-memory representation of the persistent data that we’re trying
to manage. In an (old-fashioned) data-centric approach, the model would know how
to drive the database. In a (more modern) object-orientated approach, the model is—
as the name implies—a set of classes that “models” the application-specific problem
domain. For example, if we need to represent a customer, we’ll have a class called
Customer. If a customer has orders, they’ll be a method in the Customer class with the
capability to return a collection of Order objects.

WPF and Silverlight
With WPF, the various Silverlight implementations, and now XAML, Microsoft’s rec‐
ommendation is that we use MVVM. In fact, the Windows Store app community almost
always follows this recommendation, and it’s my recommendation, too.

The model part remains as it is in MVC—that is, a representation of the data that we’re
trying to manipulate. The view also remains as it is—that is, a representation of the UI
elements that make up the display. The view-model is different. This is an amalgam of
the controller functionality and a specialized façade on the model. In our basic “single
page to edit a customer” example, it’s likely our specialized façade will be a one-to-one
mapping with a Customer instance, but it doesn’t have to be. It could be that we need to
invent an entirely new set of classes to represent a view’s data by bundling and aggre‐
gating a number of pieces of data drawn from the model. (Incidentally, the view-model’s
data doesn’t necessarily have to map to the persistent application data—in fact, in the
first instance of looking at this, it won’t, because we’re going to use it to capture the

26 | Chapter 1: Making the Transition from .NET (Part 1)

registration details for our new account and that’s something that won’t exist in the local
persistent dataset at all.)

A key motivation for introducing MVVM with WPF/Silverlight was to get around one
of the really tedious aspects of programming user interfaces—namely, getting data out
of the model and onto the controls on the screen. If you’re trying to build a form,
continually writing code like textFirstName.Content = Customer.FirstName and its
reverse (Customer.FirstName = textFirstName.Content) is seriously boring. What
we can do in WPF/Silverlight—more importantly, what we can do in WinRT’s XAML
implementation—is create bindings and allow the framework to do that for us. By setting
the Content property of a TextBox control in XAML to {Binding Customer.First
Name}, we don’t have to write the tedious code to shuttle the data in and out of the view-
model. This process is called data binding, and it’s been around since the very first
versions of Visual Basic. You mark up your UI with instructions as to where specific
pieces of data come from and allow your framework to do the heavy lifting.

What any form of separation gives us in addition to this is the ability to do unit testing,
which we’ll talk about now.

A Preliminary Discussion About Unit Testing
We’ve mentioned unit testing a lot, and I’m going to assume that readers of this book
know what it is.

In this book, we’re going to actually do some unit testing in the next chapter, but this
isn’t a “test-driven” book. When we do other work, we will be working in a non-test-
driven way (i.e., just hacking code together until it works).

In the real world, my recommendation is that you always, always use unit testing in your
work and get as close as possible to a fully test-driven development (TDD) mode of
operation. In fact, I’d go further than that and say if you’re not unit testing, you’re not
really writing software at all. If you haven’t yet gone over to the “dark side” and really
felt the benefits of unit testing, take some time out to do so as part of your professional
learning.

In a book, however, unit testing is a pain because, as an author, you end up focusing
more on taking the reader through building the unit tests than getting things working.
(Unit testing isn’t great for proof-of-concept work, and books are really about presenting
a decent collection of interlinked proofs of concept.) Thus, I don’t use unit testing when
presenting development activities in a book. That said, it’s important that whatever we
do is unit testable, which is why in the next chapter we’ll actually build some unit tests
—as a proof of concept, as it were.

Building a Basic User Interface | 27

MVVM Structure and Inversion of Control
In this section, we’ll go through the process of building a basic pattern that we can reuse
throughout our work whenever we need to implement a view.

The view itself will always be a XAML page. We’ll always create our view classes by
inheriting from the special LayoutPage implementation that Visual Studio gave us when
we first created our RegisterPage.xaml. We’ve already built our RegisterPage, so that
will represent the V in our MVVM implementation.

In each example of using this pattern in the book, the model will be different. In our
specific RegisterPage case, we don’t really have a model. What we’re trying to do is
collect a set of values that we can pass up to our server via an HTTPS call—specifically,
we need to capture the username, email address, and password, and confirm password
values as per the user interface shown previously in Figure 1-10. Thus—and hopefully
not in a way that’s confusing—our first MVVM implementation won’t have a specific
M. We’ll assume the data stored in the view-model will be good enough. Properly, any
model should map down to a persistent data store, but we won’t see persistent data until
Chapter 3.

Our view-model then will reside in its own class. The convention we’ll use throughout
is *ViewClass*ViewModel, so in this instance we’ll create a class called RegisterPage
ViewModel. This is the VM in our MVVM.

But there’s more. Because I want to demonstrate how we can unit test our registration
logic and attendant UI, I want to demonstrate a more complex and production-
appropriate architecture.

Ideally, we want to create not just separation but isolation between the view and the
view-model. The view should not really care what class it’s driving. Likewise, the view-
model should not care what view is driving it. This last point is particularly important
because what we’re actually going to do ultimately is build a unit test that fakes the view
in order to exercise the function of the view-model. To achieve this, we’ll design our
architecture so that we have an IRegisterPageViewModel interface and insist that ev‐
erything works with the interface rather than working with the concrete view-model
instance directly. Because we’re being all “enterprise architect” about it, we’ll create
ViewModel and IViewModel types—it’s always helpful to have abstract base classes to
help cement semantic understanding. (In fact, we are actually going to bake some im‐
portant functionality into base types as we go forward.)

Another thing we’ll need is a way to poke backward from the view-model into the view.
For this reason we’ll create an IViewModelHost interface. The view-model will be given
an object that implements this interface on instantiation.

28 | Chapter 1: Making the Transition from .NET (Part 1)

This is slightly against the “rules” of MVVM (as it breaks some of the
abstraction), but we’ll talk more about this when we get there. This
bending of the rules makes life much more straightforward.

Altogether, we’ll have a basic structure that looks like Figure 1-13. I’ve intentionally left
attributes and operations out of this UML sketch, as we’ve yet to discuss details on
behavior. What this diagram shows you are the basic pieces that we need to build.

There are two things to note about this diagram. First, there’s no model—the left side
shows the view-model, the right side the view. As RegisterPage doesn’t need persistent
on-disk storage, there is no model. Second, there appears to be a big disconnect between
the view-model and the view. This is because the communication between these two
components is done with XAML data binding magic, and this is not shown.

Figure 1-13. Static structure sketch of the view, view-model, and associated base types

Throughout this book, whenever I present UML it’s never intended
to be complete. UML is always presented as a sketch with details
omitted.

Next, we’ll properly flesh out the RegisterPageViewModel class.

RegisterPageViewModel

The most basic thing any of the view-model classes are going to do is store data. The
most basic way for a class to store data is in an instance variable—in .NET parlance, this
is, as we know, a field.

Building a Basic User Interface | 29

XAML’s data binding subsystem is built on the idea that we should implement an in‐
terface on any object involved in data binding, the purpose of which is to provide a
conduit through which the data binding subsystem can be notified of changes. This
interface is called INotifyPropertyChanged and it contains a single member, which
happens to be an event called PropertyChanged.

INotifyPropertyChanged means that you don’t need to handle any of this yourself
manually. So, one way to build a view-model is to do this:

// This code is just for illustration, you won't find it in the
// samples code...

 public class FooViewModel : INotifyPropertyChanged
 {
 // hold a value...
 private string _bar;

 // event for the change...
 public event PropertyChangedEventHandler PropertyChanged;

 // property...
 public string Bar
 {
 get
 {
 return _bar;
 }
 set
 {
 _bar = value;
 this.OnPropertyChanged(new PropertyChangedEventArgs("Bar"));
 }
 }

 public virtual void OnPropertyChanged(PropertyChangedEventArgs e)
 {
 if (this.PropertyChanged != null)
 this.PropertyChanged(this, e);
 }
 }

The problem with this approach is that it’s immensely tedious—unless you’re using code
generation, you’re going to spend half your working day manually building properties
and wiring up the event raising code.

A better approach—and the one we’re going to use—is to create a base class with a
Dictionary<string, object> instance to hold a “bucket” of values, and a generic way
of handling the storage and the event so that we don’t have to do all the tedious work
involved in raising change notifications. In the view-model, we’ll extend this base class

30 | Chapter 1: Making the Transition from .NET (Part 1)

and specialize it by adding properties to get and set the specific model implementation’s
data.

In fact, what we’ll end up doing is building a class called ModelItem
that will contain this basic functionality and then extending that in‐
to ViewModel. We’ll also use ModelItem at various other times in the
book.

A really clever .NET capability we can use here is the CallerMemberNameAttribute
class.

As we go, I generally won’t call out namespaces; it makes the discus‐
sion overly long. (As it happens, CallerMemberNameAttribute can be
found in System.Runtime.CompilerServices.) If you’re keying in the
code in the book and can’t find a reference, right-click on it and select
Resolve from the context menu, and Visual Studio will tell you the
namespace where it can be found.

This will automatically set the value of any optional parameter that it is decorated with
to the member name of the caller. In the following contrived example, the value of the
magicArgument argument passed to ShowMeTheCallerName will be set to the string value
"MagicCallingProperty":

private void ShowMeTheCallerName([CallerMemberName] string magicArgument = null)
{
 Debug.WriteLine(magicArgument);
}

private string MagicCallingProperty
{
 set
 {
 ShowMeTheCallerName();
 }
}

That’s a silly example; a better one is to use CallerMemberNameAttribute to automati‐
cally generate keys into a dictionary of values. By adding helper methods to our View
Model class that use CallerMemberNameAttribute, we can automatically generate keys
that can be used to access the dictionary based on the names of properties that call those
helper methods.

One thing we want to do is put all of our application logic in a separate “UI agnostic”
assembly that we link into our main app project. I wanted to show how you could do

Building a Basic User Interface | 31

this mainly so that you knew you could, but also so that we have an increased separation
when we come to look at the unit testing.

First off, within the solution create a new Windows Store→Class Library project called
StreetFoo.Client. Then, right-click on the StreetFoo.Client.UI project, choose Add Ref‐
erence, navigate to the Solution “tab,” and add a reference back to StreetFoo.Client. (This
process is exactly how you always would have done it with normal .NET projects, but
it’s important to choose Windows Store→Class Library as the project type.)

First off, remember how we designed our architecture to have an IViewModel interface?
This will need some mechanism by which it can initialize the view-model, which we’ll
achieve using an Initialize method. Here’s the implementation that also happens to
extend INotifyPropertyChanged:

 public interface IViewModel : INotifyPropertyChanged
 {
 void Initialize(IViewModelHost host);
 }

ViewModel is going to need to be able to understand IViewModelHost. We’re going to
add to this now and again as we work through the book, but for now the implementation
can be empty:

 public interface IViewModelHost
 {
 }

We’re now at the part where we can create our base class that’s able to handle ad hoc
data storage and raise notification changes through INotifyPropertyChanged. We’ll
call this class ModelItem. Don’t worry about the naming for now—it will become ap‐
parent why it has that name later:

 // base class for holding ad hoc data and issuing notification changes...
 public abstract class ModelItem : INotifyPropertyChanged
 {
 private Dictionary<string, object> Values { get; set; }

 protected ModelItem()
 {
 this.Values = new Dictionary<string, object>();
 }

 public event PropertyChangedEventHandler PropertyChanged;

 protected T GetValue<T>([CallerMemberName] string name = null)
 {
 if (this.Values.ContainsKey(name))
 return (T)this.Values[name];
 else
 return default(T);
 }

32 | Chapter 1: Making the Transition from .NET (Part 1)

 protected void SetValue(object value, [CallerMemberName] string name
 = null)
 {
 // set...
 this.Values[name] = value;

 // notify...
 this.OnPropertyChanged(new PropertyChangedEventArgs(name));
 }

 protected void OnPropertyChanged([CallerMemberName] string name = null)
 {
 this.OnPropertyChanged(new PropertyChangedEventArgs(name));
 }

 protected virtual void OnPropertyChanged(PropertyChangedEventArgs e)
 {
 if (this.PropertyChanged != null)
 this.PropertyChanged(this, e);
 }
 }

Here’s the first draft implementation of ViewModel. This extends ModelItem, but also
maintains a reference back to the view-model host:

 public abstract class ViewModel : ModelItem, IViewModel
 {
 // somewhere to hold the host...
 protected IViewModelHost Host { get; private set; }

 public ViewModel()
 {
 }

 public void Initialize(IViewModelHost host)
 {
 this.Host = host;
 }
 }

This will make more sense if we build RegisterPageViewModel, so here that is; then,
I’ll go through all three classes:

 public class RegisterPageViewModel : ViewModel, IRegisterPageViewModel
 {
 public RegisterPageViewModel()
 {
 }

 public string Username
 {
 get

Building a Basic User Interface | 33

 {
 // the magic CallerMemberNameAttribute automatically maps this
 // to a hash key of "Username"...
 return this.GetValue<string>();
 }
 set
 {
 // likewise, CallerMemberNameAttribute works here too...
 this.SetValue(value);
 }
 }

 public string Email
 {
 get
 {
 return this.GetValue<string>();
 }
 set
 {
 this.SetValue(value);
 }
 }

 public string Password
 {
 get
 {
 return this.GetValue<string>();
 }
 set
 {
 this.SetValue(value);
 }

 }

 public string Confirm
 {
 get
 {
 return this.GetValue<string>();
 }
 set
 {
 this.SetValue(value);
 }
 }
 }
}

34 | Chapter 1: Making the Transition from .NET (Part 1)

Hopefully from that you can see the simplicity of this approach. The properties don’t
have to concern themselves with wiring themselves into the base ModelItem class’s stor‐
age mechanism; .NET is doing that for us. When we call any of the SetValue methods,
the dictionary key is inferred from the name; this is used in the first instance to set the
value in the wrapped Values instance, and in the second instance it’s used in the event
signaling. GetValue is implemented such that it doesn’t care whether the value is in the
dictionary and will return a default value if the item is missing.

In the next chapter, we’re going to start being clever about how we hook the view-model
and the view together. (In this chapter, for simplicity we’re just going to “new up” a
RegisterPageViewModel and give it to the view to use.) Essentially we want a loose
coupling between the view-model and the view. For this reason, we’ll always create a
companion interface for every view-model that we’ll build—in this case, IRegisterPa
geViewModel. The rule with these interfaces is that they contain just a “map” of the public
properties used in the binding operations. We’ve got four properties used for binding:
Username, Email, Password, and Confirm. Such interfaces also need to extend IViewMo
del. Therefore, our interface has just those properties, specifically:

 public interface IRegisterPageViewModel : IViewModel
 {
 string Username
 {
 get;
 set;
 }

 string Email
 {
 get;
 set;
 }

 string Password
 {
 get;
 set;
 }

 string Confirm
 {
 get;
 set;
 }

}

Now that we’ve put that together, let’s have a go at running some data through it.

Building a Basic User Interface | 35

Handling errors

In this section we’re going to build a helper class that will assist us in moving error
messages around the system so that we can do something with them. In terms of what
we actually do with errors when they occur, in this book we’re typically just going to
render them on the screen.

This particular functionality is reasonably contrived, as there are most likely better ways
to do this in production applications; however, this is one of those things where we have
to compromise in order to fit our work into a book. Be aware, then, that this is probably
one of the rougher bits if you’re looking to bring this work into production.

In the first go-through of this class we’re going to use it to gather a collection of error
strings. In the next chapter we’re going to also use it to store an exception.

The class itself is simple:
 public class ErrorBucket
 {
 private List<string> Errors { get; set; }

 public ErrorBucket()
 {
 this.Errors = new List<string>();
 }

 public void AddError(string error)
 {
 this.Errors.Add(error);
 }

 public bool HasErrors
 {
 get
 {
 return this.Errors.Any();
 }
 }
 }

How might we use this? Well, in relation to our RegisterPageViewModel we’re going
to use it as part of the validation. Here’s the Validation method that needs to be part
of the view-model:

 // add method to RegisterPageViewModel...
 private void Validate(ErrorBucket errors)
 {
 // do basic data presence validation...
 if (string.IsNullOrEmpty(Username))
 errors.AddError("Username is required.");
 if (string.IsNullOrEmpty(Email))
 errors.AddError("Email is required.");

36 | Chapter 1: Making the Transition from .NET (Part 1)

 if (string.IsNullOrEmpty(Password))
 errors.AddError("Password is required.");
 if (string.IsNullOrEmpty(Confirm))
 errors.AddError("Confirm password is required.");

 // check the passwords...
 if (!(string.IsNullOrEmpty(Password)) &&
 this.Password != this.Confirm)
 errors.AddError("The passwords do not match.");
 }

The functionality there is straightforward—as we find errors, we ask the ErrorBucket
instance to store them for us.

Of course, storing the errors is no good unless we can show them to the user, so let’s
look at that now.

Basic alerts

In the remainder of this chapter, all we’re going to do is display a success message on
the screen, or show the validation errors. The part where we actually make the call up
to the server will be in the next chapter.

The Windows Store analog of a normal Windows message box is accessed via the
MessageDialog class. Its basic usage is easy enough. However, to make it easier to access
this method, I’m proposing creating extension methods in the base XAML Page class.
These will then be accessible from any class that extends Page, including LayoutAware
Page, the base class for our pages. We’ll call the class that contains these extension
methods PageExtender.

Personally, I’m a huge fan of extension methods—they can really help
you to build out standard framework functionality into your own
specialized way of working. We’ll be using them quite a bit in the work
we do in this book.

One difference to consider between the MessageDialog class’s behavior and a regular
Windows message box is that the display operation is asynchronous. Typically we’re
used to these blocking so that execution of our program’s code doesn’t continue until
the pop up is dismissed. This isn’t the case with MessageDialog. We’re about to go into
a much deeper discussion about asynchronous calls, so don’t worry about this behavior
for now—just be aware of it.

In PageExtender we’re going to build two overloads of the ShowAlertAsync method.
One will take a string, and the other will take an ErrorBucket instance. Shortly we’ll
build a method in ErrorBucket that will return a string for display. Here’s the code:

Building a Basic User Interface | 37

 internal static class PageExtender
 {
 internal static Task ShowAlertAsync(this IViewModelHost page,
ErrorBucket errors)
 {
 return ShowAlertAsync(page, errors.GetErrorsAsString());
 }

 internal static Task ShowAlertAsync(this IViewModelHost page,
 string message)
 {
 // show...
 MessageDialog dialog = new MessageDialog(message != null ? message :
 string.Empty);
 return dialog.ShowAsync().AsTask();
 }
 }

The GetErrorsAsString method in ErrorBucket looks like this:
 // add method to ErrorBucket...
 public string GetErrorsAsString()
 {
 StringBuilder builder = new StringBuilder();
 foreach (string error in this.Errors)
 {
 if (builder.Length > 0)
 builder.Append("\r\n");
 builder.Append(error);
 }

 return builder.ToString();
 }

Now that we can in theory get something on the screen, let’s pull all of the loose ends
together and actually get something on the screen.

Creating the View-Model and Running the App
The first loose end we have to tie up is the part that responds to the button click and
then physically invokes a method in RegisterPageViewModel called DoRegistration.
This will validate the data that’s been keyed in by the user, and then display a message
on the screen either showing the errors or confirming success. In the next chapter we’re
actually going to make the call to the server. In this chapter, we’re going to fake the call.

The way that all of this is tied together using MVVM is via commands. The idea of
commands is that rather than physically linking the view and the view-model together,
you bind command objects that are invoked by user interface controls.

Somewhere on your view-model you will have a collection of private methods that
actually do things. (Remember, the point of MVVM is to isolate code so that we’re not

38 | Chapter 1: Making the Transition from .NET (Part 1)

using codebehind-style code in the pages.) As a foundation to building comments,
WinRT defines an interface called ICommand with a method in it called Execute. Through
some plumbing that I’ll explain in a moment, you can rig your XAML such that when
a button is clicked, that Execute method is called. You then defer down to your private
methods, whereupon the magic happens.

For example, and with much code omitted for brevity, this code shows how we can create
something called a DelegateCommand, which contains an anonymous method that refers
to our concrete DoRegistration method. Ultimately, were we to actually run this ex‐
ample, something would invoke RegisterCommand from outside the view-model:

 public class RegisterPageViewModel : ViewModel, IRegisterPageViewModel
 {
 public ICommand RegisterCommand { get; private set; }

 public RegisterPageViewModel(IViewModelHost host)
 : base(host)
 {
 this.RegisterCommand = new DelegateCommand((args) =>
 DoRegistration());
 }

 // code omitted...

 private void DoRegistration()
 {
 // magic happens...
 }
}

We’ll build DelegateCommand in a moment, but the idea of it is that it’s a vanilla imple‐
mentation of ICommand whose only function is to defer to our proper method.

In our XAML, we can use regular data binding operations like those we’ve already seen
in order to associate the Command property of the button up to that RegisterCommand
instance exposed by the view-model, like so:

 <!-- Registration form -->
 <StackPanel Grid.Row="1" Grid.Column="1">

 <TextBlock Text="Username"></TextBlock>
 <TextBox HorizontalAlignment="Left" Width="400" Text="{Binding
Username, Mode=TwoWay}"/>

 <TextBlock Text="Email"></TextBlock>
 <TextBox HorizontalAlignment="Left" Width="400" Text="{Binding
Email, Mode=TwoWay}"/>

 <TextBlock Text="Password"></TextBlock>
 <PasswordBox HorizontalAlignment="Left" Width="400"
Password="{Binding Password, Mode=TwoWay}"/>

Building a Basic User Interface | 39

 <TextBlock Text="Confirm password"></TextBlock>
 <PasswordBox HorizontalAlignment="Left" Width="400"
Password="{Binding Confirm, Mode=TwoWay}"/>

 <Button Content="Register" Command="{Binding RegisterCommand}">
 </Button>

 </StackPanel>

For reasons that will become clearer when we get to unit testing, it’s important that our
interface keeps in step with our XAML, so we need to add RegisterCommand to the
interface:

 public interface IRegisterPageViewModel
 {
 string Username
 {
 get;
 set;
 }

 string Email
 {
 get;
 set;
 }

 string Password
 {
 get;
 set;
 }

 string Confirm
 {
 get;
 set;
 }

 ICommand RegisterCommand
 {
 get;
 }
 }

So all of that would work if we had an implementation of DelegateCommand. Let’s do
that now.

The main capability of ICommand lies in the Execute method, but there is an ancillary
capability in the CanExecute method. On more sophisticated UIs, this can be used to

40 | Chapter 1: Making the Transition from .NET (Part 1)

enable or disable UI elements depending on the state of the model. We’re not going to
worry about that—we’re just going to implement the basics. Here it is:

 public class DelegateCommand : ICommand
 {
 private Action<object> Handler { get; set; }

 public event EventHandler CanExecuteChanged = null;

 public DelegateCommand(Action<object> handler)
 {
 this.Handler = handler;
 }

 public bool CanExecute(object parameter)
 {
 return true;
 }

 public void Execute(object parameter)
 {
 Handler(parameter);
 }
 }

This code will compile with a warning—don’t worry about that. In
the version of the code you can download, I’ve smoothed out all the
warnings. I’ve left that code out of the book for clarity, however.

And that’s it. All we have to do now is get to a point where we can call our method.

IViewModelHost

The important thing in MVVM is to work at keeping a separation between the view-
model and the view. (Keeping a separation between the model and the view-model is
also important.) Moreover, we need to ensure that the view-model doesn’t actually be‐
come dependent on any user interface technology—it needs to instruct the application’s
view from time to time, but it can’t have any direct control. (In a way, you can think
about this as the view-model hinting that something needs to happen, but allowing the
view architecture to decide what to actually do.) A prime motivation for this is that the
view-models need to be fully unit testable and you have absolutely no user interface
when running in a unit test container, but we’ll get to that in the next chapter.

Building a Basic User Interface | 41

There are some who may not like this approach of being able to get
back from the view-model to the view container. Admittedly, from a
purist’s perspective it’s not ideal. The reason I chose to continue down
this route was that pragmatically it felt appropriate.

In our architecture discussion we mooted the idea of using IViewModelHost. (We also
accept one of these in the constructor for the abstract ViewModel class.) The first purpose
of this will be to display a message box. Here’s the interface; you’ll notice that it maps
onto the methods of our PageExtender class, which is intentional:

 public interface IViewModelHost
 {
 Task ShowAlertAsync(ErrorBucket errors);
 Task ShowAlertAsync(string message);
 }

We’ll implement this interface in our StreetFooPage class, as we’ll need this throughout
our work. However, because we implemented our alert methods as extension methods,
we’ll need to implement the methods of IViewModelHost explicitly, as follows. (The
problem here is that the compiler can’t see the methods resolve through cleanly, even
though they do. We need to shim it.)

 // add methods to StreetFooPage...
 Task IViewModelHost.ShowAlertAsync(ErrorBucket errors)
 {
 return this.ShowAlertAsync(errors);
 }

 Task IViewModelHost.ShowAlertAsync(string message)
 {
 return this.ShowAlertAsync(message);
 }

Building out the DoRegistration method

In this chapter, DoRegistration in our RegisterPageViewModel won’t do that much.
It’ll create an ErrorBucket instance and call the validation at first. If the validation is
OK, it’ll fake the call to the server, and then ask the host to display a message containing
the ID of the newly created account. If errors occur during the validation process, we’ll
ask the host to display the errors. For clarity, I’ve reproduced the Validate method:

 // add methods to RegisterPageViewModel...
 private void DoRegistration()
 {
 // validate...
 ErrorBucket errors = new ErrorBucket();
 Validate(errors);

 // ok?

42 | Chapter 1: Making the Transition from .NET (Part 1)

 if (!(errors.HasErrors))
 {
 // the real call to the server will return an ID here—we'll
 //fake it for now...
 string userId = Guid.NewGuid().ToString();

 // call the success handler...
 this.Host.ShowAlertAsync(string.Format("Created user: {0}",
 userId));
 }

 // errors?
 if(errors.HasErrors)
 this.Host.ShowAlertAsync(errors);
 }

 private void Validate(ErrorBucket errors)
 {
 // do basic data presence validation...
 if (string.IsNullOrEmpty(Username))
 errors.AddError("Username is required.");
 if (string.IsNullOrEmpty(Email))
 errors.AddError("Email is required.");
 if (string.IsNullOrEmpty(Password))
 errors.AddError("Password is required.");
 if (string.IsNullOrEmpty(Confirm))
 errors.AddError("Confirm password is required.");

 // check the passwords...
 if (!(string.IsNullOrEmpty(Password)) &&
 this.Password != this.Confirm)
 errors.AddError("The passwords do not match.");
 }

One small point on that: note how at the end of DoRegistration we check the errors
instance again and display a message. Another way to build that would be to use an else
after the first check. What I want to do, however, is introduce a pattern whereby we can
continue to build up errors in the if block, but at the moment the code in the if block
can’t possibly create more errors. If that’s not clear, don’t worry; you’ll see this again in
a while.

Running the application

The only thing that’s missing from this is a way of creating the view-model and hooking
it and the view up together. In the next chapter we’re going to look at using an inversion-
of-control (IoC) container to do this more properly. In this chapter we’re just going to
“new up” a RegisterPageViewModel instance and tell the view to use it.

As each view will need a way of setting up its view-model, I’m proposing that we create
another extension method in Page that will take a view-model instance and bind it up

Building a Basic User Interface | 43

to the view. The actual binding process is very easy—all we have to do is set the Data
Context property of the page to be the view-model. This action will wire up all of the
configured data binding, and in fact that’s all we need to do in order to configure the
two objects.

As I’ve mentioned a few times, in this chapter all we’re going to do is create a new instance
of the view-model. In the next chapter we’re going to use an IoC container to do this
more dynamically.

Here’s the InitializeViewModel method that needs to be created in PageExtender.
This will just “new up” a view-model instance and then use a (slightly dirty) hack to take
our IViewModelHost instance and turn it into a Page instance so that we can access the
DataContext property:

 // Add method to PageExtender...
 internal static void InitializeViewModel(this IViewModelHost page,
IViewModel model = null)
 {
 // create the model; ultimately we'll replace this with an
 // IoC container...
 model = new RegisterPageViewModel();
 model.Initialize(page);

 // set the data context...
 ((Page)page).DataContext = model;
 }

Here’s the new property and the change to the constructor that’s needed in Register
Page:

 public sealed partial class RegisterPage : StreetFooPage
 public RegisterPage()
 {
 this.InitializeComponent();

 // initialize the model...
 this.InitializeViewModel();
 }

 // code omitted for brevity...
}

At this point, everything should run. Run the app, and you’ll see something like
Figure 1-14.

Figure 1-14 shows the device simulator view. If you run the project
using the standard options, your Windows Store app will run direct‐
ly within your home environment. To change to the simulator, change
the drop-down on the toolbar from Local Machine to Simulator.

44 | Chapter 1: Making the Transition from .NET (Part 1)

Figure 1-14. The running application

To properly understand this part, I’d recommend setting a breakpoint in DoRegistra
tion. Hit the Register button and use the call stack to confirm that the call has been
routed through the command. If you step through, you’ll see the validation collect errors
because the fields are blank. Keep stepping, and you’ll work your way back out of the
view-model and into the view. Ultimately you’ll see the message reporting the errors
appear, as shown in Figure 1-15.

The next important thing to validate is that the binding is pushing the data back into
the view-model. If you fill out some of the fields and break into DoRegistration, you
should see the properties reporting back the values you keyed in. If the values pass
validation, you’ll see a successful result, as shown in Figure 1-16.

Building a Basic User Interface | 45

Figure 1-15. Alert being used to show error messages in an ErrorBucket instance

Figure 1-16. A successful result

CHAPTER 2

Making the Transition from .NET (Part 2)

We got most of the structural basics pinned down in Chapter 1. In this chapter, we’re
going to look at building up the functionality of the app in order to make it do something
more than just putting a message on the screen.

Specifically, we’re going to do the following:

• Introduce a basic inversion-of-control (IoC) container. The idea here is that rather
than explicitly creating view-model instances as we did in Chapter 1, we’ll ask an
IoC container to pick one for us based on an interface that we provide.

• We’ll build a set of classes that can call up to the service to register the user. This
will use the HttpClient class available in WinRT to actually issue the call. We’ll use
the IoC container here, too, again to create a loose coupling between the service
proxy interfaces and their concrete implementations.

Inversion of Control
The idea of inversion of control is that rather than having “direct control” over object
creation—as we did in Chapter 1 when we created concrete view-models for our view-
model interfaces—you have some code that is structured so that if you ask it to create
an object of type X in order to provide some service it’ll choose the most appropriate
concrete type for you. IoC “inverts control” by saying, “hey, give me an object that can
do type X things, but I don’t care what you give me,” as opposed to direct control where
you say, “give me an instance of object X.”

Implementation-wise, the basic idea of IoC is you have a register of classes and interfaces.
You ask for the handler of a given interface and get the appropriate class back in return.
From there, you can swap out the underlying handler class without the requestor need‐
ing to know anything about the change. (This is the actual “inversion of control” bit.)
The main benefit of this loose coupling is to create a clearer separation of concerns—
and, in many cases, this is more of a process with mental benefits than tangible ones. A

47

very common use is to—as I hinted at—replace real implementations with mocked,
fake, or other implementations that support unit testing.

In Chapter 1, we welded the RegisterPage view to the RegisterPageViewModel by the
expedient of having the view simply “new up” a view-model via the new keyword (e.g.,
this.Model = new RegisterPageViewModel), although we built IRegisterPageView
Model as a step in the right direction of an architecture with looser coupling.

The particular form of IoC we want to use is dependency injection, which will replace a
call like this.Model = new RegisterPageViewModel(this) with a call like this.Model
= SomeRegistryClass.SomeFactoryMethod<IRegisterPageViewModel>(this).

This is the first point in the book where we’re going to use an exter‐
nal library. While I’m keen to see the use of external libraries in pro‐
duction code, they come with a danger. It’s easy for developers to
become dependent on using libraries, but unable to build them them‐
selves. The problem here is that unless as a developer you know how
to build, for example, an IoC container from scratch, you’ll find it
hard to make qualified judgments when it comes to selecting the
library of your choice for use in a real application.
That’s by the by—it’s a little piece of advice that I think is really im‐
portant for developers.

Installing TinyIoC
In this book, we’re going to use a lightweight IoC container called TinyIoC. You can find
it on GitHub.

We can install TinyIoC using NuGet. If you’ve never used NuGet before, it’s pretty cool.
The idea is that developers put packages up in the cloud that you can integrate into your
product using a simple interface. NuGet is a package manager, an idea that’s been around
in other operating systems for some time. Windows is slightly odd in that it doesn’t
support such a thing.

If you’re interested in that sort of thing, you can also get Chocola‐
tey, which—as opposed to NuGet, which only works with develop‐
ment libraries that you can link or compile into your projects—will
install packages onto servers. (By the way, it’s NuGet→“Nougat”
→Chocolatey. Get it?)

Steve Robbins, the developer who wrote TinyIoC, was kind enough to develop a WinRT
version of the TinyIoC NuGet package so that I (and by extension, you) could use it in
this book.

48 | Chapter 2: Making the Transition from .NET (Part 2)

https://github.com/grumpydev/TinyIoC
http://chocolatey.org
http://chocolatey.org

To get going, within Visual Studio right-click on the StreetFoo.Client project (what we’ll
typically call the “UI-agnostic” project going forward) and select Manage NuGet Pack‐
ages. Under Online, look for TinyIoC. You will find one specifically called Ti
nyIoC.WinRT. Select this one and install it. Figure 2-1 illustrates.

Figure 2-1. Selecting the TinyIoC.WinRT package

The installation process will create two C# files in the project. (Not all NuGet packages
work this way; it’s more typical that they will dynamically link rather than put source
files into the project, although sqlite-net—which we’ll use in the next chapter—installs
source files in this way.) These files make up the TinyIoC container.

Initializing IoC Defaults
The first thing we need to do is create a way of setting up the default mappings used by
TinyIoC.

To that end we’re going to build a class called StreetFooRuntime that will be responsible
for “booting” the application. Its first job will be to ask TinyIoC to automatically con‐
figure itself. We’ll add more functionality to StreetFooRuntime as we go.

One thing we’re going to do is to pass in the name of a module. This is a pattern I’ve
used for some time—the idea is that when you start the app, you provide some indication
of why the app boots up. To be honest, this makes more sense when you’re not building

Inversion of Control | 49

Windows Store apps like this. For example, you might have some code shared by an
ASP.NET website and a Windows Service application. Each needs to boot, but, for ex‐
ample, when you want to log information it’s useful to know which module boots it; by
writing the module name into the log, you know. I’ve decided to continue this approach
here because it’s a good illustration of the idea, even though it won’t be much used.

This also can be helpful when you’re running background tasks (see
Chapter 14), as these run in a separate process; thus, you can use the
module name to indicate if logging information came from the main
app process or from the background task service process.

From time to time, we will also use this class for storing global constants—ServiceUrl

Base is an example of this, and we’ll use that when we build up the service proxies. We’ll
also add some specific constants here ahead of time so that we don’t have to worry about
going back and doing this later.

Regardless, the important thing is to start up TinyIoC. We do so using the AutoRegis
ter function on the singleton instance of TinyIoCContainer. (The result here is that
TinyIoC will scan all of the types available within the code and look for things that look
like pairings between interfaces and concrete types, and we can take advantage of that
later.) Here’s the code:

 public static class StreetFooRuntime
 {
 // holds a reference to how we started...
 public static string Module { get; private set; }

 // gets the base URL of our services...
 internal const string ServiceUrlBase =
 "https://streetfoo.apphb.com/handlers/";

 // starts the application/sets up state...
 public static void Start(string module)
 {
 Module = module;

 // initialize TinyIoC...
 TinyIoCContainer.Current.AutoRegister();
 }
 }

The next move is to actually make the call into Start and boot up the application. We
can do this from within the App.xaml implementation in the StreetFoo.UI.Client
project. (If you remember, we modified this file in Chapter 1 when we had to change
the page that was shown on startup from the default to RegisterPage.) Here’s the change
to OnLaunched:

50 | Chapter 2: Making the Transition from .NET (Part 2)

 // Modify OnLaunched in App.xaml...

 protected override void OnLaunched(LaunchActivatedEventArgs args)
 {
 if (args.PreviousExecutionState ==
 ApplicationExecutionState.Terminated)
 {
}

 // start...
 StreetFooRuntime.Start("Client");

 // Create a Frame to act navigation context and navigate
 to the first page
 var rootFrame = new Frame();
 rootFrame.Navigate(typeof(RegisterPage));

 // Place the frame in the current Window and ensure it is active
 Window.Current.Content = rootFrame;
 Window.Current.Activate();
 }

The value we pass in for the module is arbitrary—I’ve chosen "Client" as the string.
Now we can actually use the TinyIoC container.

One of the things we’ll need to do is enable the UI-agnostic view-models to call into the
IViewModelHost-enabled containers and ask them to change the view. As I mentioned
in Chapter 1, some people don’t like the lack of purity involved in this approach of back-
linking the view-models into the view implementations, as they would rather have
complete separation. However, I think “muddying” the implementation in this way is
pragmatic. Say we’re on the logon page and we want to access the register page. How
can the logon page ever direct the app to show the register page without saying some‐
thing like “please show the register page”? Somewhere the coupling has to be such that
that can happen.

The easiest way to do this is through attribute decoration. Our intention is to decorate
the views such that there is a declarative understanding within the code as to the
relationship between the view and the interface that describes their view-model. (It’s
important that this is a relationship between a view class and a view-model interface
because we still want indirection and loose coupling between the view class and the
view-model class.) The easiest way to achieve this is to create an attribute called View
ModelAttribute that we use to decorate the view classes.

Here’s the definition of ViewModelAttribute. All it does is allow the developer to specify
the type of the related view-model interface.

 [AttributeUsage(AttributeTargets.Class)]
 public sealed class ViewModelAttribute : Attribute
 {
 public Type ViewModelInterfaceType { get; private set; }

Inversion of Control | 51

 public ViewModelAttribute(Type viewModelInterfaceType)
 {
 this.ViewModelInterfaceType = viewModelInterfaceType;
 }
 }

From there, we can decorate the actual view class like this:
 [ViewModel(typeof(IRegisterPageViewModel))]
 public sealed partial class RegisterPage : StreetFooPage
 {
 public RegisterPage()
 {
 this.InitializeComponent();

 // obtain a real instance of a model...
 // now done by dependency injection...
 this.InitializeViewModel();
 }
 }

You’ll note that the view class calls InitializeViewModel in its constructor. In Chap‐
ter 1 all this method did was create a concrete RegisterPageViewModel and assume that
was the view-model. We can now change this method so that it uses TinyIoC to deref‐
erence a concrete class to use from the interface defined on the view class’s attribute.

What I’m also proposing is that we make this a little more flexible by allowing the caller
to pass in the view-model to use, as opposed to dereferencing one from the attribute.
We won’t actually use this in the book, but it’s worth showing the approach. If we have
to dereference it, the call to TinyIoC is easy and obvious enough. You’ll recall that pre‐
viously we called the AutoRegister method on application start. What this would have
done is looked at all the types in the code and noted that RegisterPageViewModel
happened to implement the interface IRegisterPageViewModel. Now if we ask TinyIoC
to return a type for IRegisterPageViewModel, it just looks at that mapping and returns
back an instance of RegisterPageViewModel. This is pretty easy stuff. Once we have
the view-model, we call Initialize on it like we did in Chapter 1. Here’s the new code:

 // Modify method in PageExtender...
internal static void InitializeViewModel(this IViewModelHost host, IViewModel
model = null)
 {
 // if we don't get given a model?
 if (model == null)
 {
 var attr = (ViewModelAttribute)host.GetType().GetTypeInfo().
GetCustomAttribute<ViewModelAttribute>();
 if (attr != null)
 model = (IViewModel)TinyIoCContainer.Current.Resolve
(attr.ViewModelInterfaceType);
 else

52 | Chapter 2: Making the Transition from .NET (Part 2)

 throw new InvalidOperationException(
string.Format("Page '{0}' is not decorated with ViewModelAttribute."));
 }

 // setup...
 model.Initialize((IViewModelHost)host);
 ((Page)host).DataContext = model;
 }

Run the project now, and you should see nothing different from what you had before.
However, this time you’re using loose coupling and an IoC container to manage in‐
stantiation and initialization of the view-model. Figure 2-2 illustrates.

Figure 2-2. The register page, as it was before, but initialized via the IoC container

Understanding Asynchrony
If you learn only one thing from this book, make sure it’s this section on asynchrony.
This is the thing to understand in order to be productive building Windows Store apps.
Asynchrony is the way that programming practice in general is going, over and above
direct control of threading. The general principles behind how asynchrony works apply
to other development platforms and will only get more important as processors scale
up their number of cores.

When working with XAML/C# Windows Store apps, you achieve asynchrony using the
Task Parallel Library (TPL), which is a feature of .NET Framework 4.

Understanding Asynchrony | 53

Asynchrony is very hard to get your head around unless you experience it directly. The
general principle behind it is that it tries to reframe how we developers think about
threads and parallelism. In a normal approach, the OS will create a process, and one
initial thread. As a developer you can create additional threads that do work in the
background. In interactive applications—such as a Windows Store app, WPF app, or
even a Java app—the developer is able to spin up separate threads, the advantage of
which is that the main UI thread is responsive while other work is being done.

From a developer’s point of view, having to manage separate threads is a pain. From an
operating system design perspective, threads don’t necessarily make the best use of
system resources. This is especially true on constrained devices (think ARM-based tab‐
lets and smartphones), although in reality it applies to any device operating at any scale.
Each thread requires RAM to store its state. Switching between different threads to
perform processing is expensive (a problem known as context switching). Keep adding
threads, and your program will become less responsive, not more.

Asynchronous programming is not in itself new. It has featured in a basic form from
time to time in .NET since v1.0. For example, in HttpWebRequest you had both a
GetResponse method that would not spin up a thread and block the calling thread, and
a BeginGetResponse method that would use the .NET thread pool to service the request
and not block the caller. As an aside, JavaScript in particular makes heavy use of asyn‐
chronous programming methods.

What’s relevant about an asynchrony-based approach is that in neither case are you, the
developer, responsible for doing anything proactive or intentional to manage the thread.
The environment that is running your code manages the threads for you.

With WinRT, Microsoft’s developers have gone all out on asynchrony. To keep the UI
responsive, anything that could possibly block a calling thread for 50ms or more has
been replaced by a version that is accessible only asynchronously. The whole API has
been designed so that you can never, ever block a thread. (Actually, you can block a
thread, but only by introducing a bug that deadlocks the whole app entirely—but that’s
a different thing.)

Continuing this idea, there are things that you simply cannot do in WinRT with threads.
One of them is that you cannot create new threads. Similarly, you cannot control the
lifetimes of existing threads—for example, you can’t terminate a running thread. You
still have threads, you just don’t see them.

As we go through this book, you’ll discover numerous places where restrictions in the
API are designed to lodge control over the user experience with Microsoft rather than
with you. This area of asynchrony is one of them, and probably the most important one.
On the one hand, creating too many threads on constrained devices will “gum it up”
and make it unusable. Microsoft’s solution here is to stop you from creating too many
threads. On the other hand, making calls that block the main UI thread makes apps

54 | Chapter 2: Making the Transition from .NET (Part 2)

unresponsive, leading the user to believe that the device is broken. Microsoft’s solution
here is to stop you from blocking.

But, as I alluded to, asynchrony does have benefits in that it’s notionally a better way of
putting applications together than using “old school” threads for every type of applica‐
tion—interactive desktop, web apps, and headless services.

How Asynchrony Works in WinRT
Philosophically, the idea behind the asynchrony implementation in WinRT is tricky to
explain. I’ve also failed in the past year and a half to find a decent diagram that explains
it; hence, there are no figures in this section to explain the concept.

Imagine you have some code that calls a server, like so:
public void DoMagic()
{
 // build a request up...
 var request = (HttpWebRequest)WebRequest.Create("http://www.google.com/");

 // make the request - it'll block at this point...
 var response = request.GetResponse();

 // we'll only get here once the call is completed...
 Debug.WriteLine("Done!");
}

In theory, we’re being wasteful when we make that GetResponse call. The calling thread
at some point during that process won’t be doing anything—it will have passed the
request over the network and be waiting for a response to come back, and the thread
that made the call will be blocking. Ideally, we want to be able to run other code during
that blocking period. Ultimately, regardless of what asynchrony model we use, that’s
what we want to achieve—allowing something else to take advantage of processor cycles
that we can’t use because we’re waiting.

To add a little more complication to this, we won’t be using the old-
fashioned HttpWebRequest class in this book at all, other than in this
illustration. We’ll actually be using the more modern HttpClient
class. I’ve left it in here, though, as statistically more of you will be
familiar with HttpWebRequest than HttpClient.

The basic idea behind the way that asynchrony is implemented in WinRT is that we can
“poke holes” in what is otherwise a synchronous procedure. Consider the code sample
that we just saw. In the part where we call GetResponse, we don’t actually need the thread,
and if we wanted we could just “surrender” it up for use by other code that needed it.
Specifically, we do this in WinRT by using Task instances. A Task is (sort of) like a token
you hold that represents something that runs in the background. How it actually runs

Understanding Asynchrony | 55

in the background (if indeed it does, because Windows can decide not to let it if it thinks
it’ll run in the foreground quickly enough) is something you’ll never know.

The C# compiler now has specific and specialized support for working with Task in‐
stances. In a moment we’ll meet the new async and await C# keywords—it’s these two
that make the asynchrony magic in WinRT happen.

I’ve actually oversimplified this a little. The asynchrony model in
WinRT can actually work with anything that implements IAsyncRe
sult, and Task implements this. However, what’s happened over the
development of WinRT is that Microsoft’s engineers have tried to
consolidate their API designs to use Task instances rather than
IAsyncResult. I digress, but for now, just think in terms of Task
instances.

In WinRT, HttpWebRequest does not have GetResponse because it would block. It in‐
stead has GetResponseAsync, which returns a value of type Task<WebResponse>. This
won’t block, as all you’re getting back is some token that references a background task.
(This convention of suffixing with Async is very consistent within WinRT, and you’ll
notice that we’ll do this too with our own code as we go through the book.)

It’s at this point that things get clever. If you now consider the code we had before, we
can in theory get the Task instance and wait. (However, you would never, ever do it like
this, but I’ll get to that.)

public void DoMagic()
{
 // build a request up...
 var request = (HttpWebRequest)WebRequest.Create("http://www.google.com/");

 // now we can get a Task back...
 var responseTask = request.GetResponseAsync();
 responseTask.Wait(); // but don't ever do this!

 // we'll only get here once the call is completed...
 Debug.WriteLine("Done!");
}

That code when it runs will make the call, get a Task instance, and then block. In fact,
you don’t ever, ever want to call Wait like this, or do any form of coding with intent to
control the lifetime of tasks. (You’ll find a specific note on this later.)

The proper way to use asynchrony in Windows Store apps is more subtle than this.
What we actually do is get the C# compiler to do the heavy lifting for us by way of the
new await and async keywords that I mentioned earlier. The await keyword is used to
indicate that the compiler should pause the procedure and do something else while the
Task is reaching a successful or failed completion state. The async keyword is used to

56 | Chapter 2: Making the Transition from .NET (Part 2)

indicate that a method contains the await keyword. Here’s the proper way to write our
method:

public async void DoMagic()
{
 // build a request up...
 var request = (HttpWebRequest)WebRequest.Create("http://www.google.com/");

 // make the request - it'll block at this point...
 var response = await request.GetResponseAsync();

 // we'll only get here once the call is completed...
 Debug.WriteLine("Done!");
}

It’s through this approach that we can “poke holes” in our procedure. When we reach
the await call, the system knows that something else can use the processor cycles avail‐
able on that thread to do something else.

It’s at this point that things, conceptually, get a little weird.

State machines

You can, if you like, just take how it works as read and skip this next explanation as to
what is actually happening. Some of you, however, might like to know what’s happening
when the compiler reaches a method marked as async.

The general idea here is to restructure at compile time the overall program flow so that
threads are not, in principle, needed.

What the C# compiler does instead is rewrite the code into a state machine using the
async and await keywords as clues. When the method is called, rather than it just hitting
the method directly, the compiler would have rewritten the code such that a separate
object instance that represents the method along with all its state as fields is created, and
a method on that new “hidden” class is called instead.

The individual portions of the methods are broken up based on where the await-marked
calls are. So it’ll run the first part immediately, hit the first await, and then revert to the
calling method. If the async method returns void, the calling method won’t wait for it
to finish—this can cause major headaches if you are expecting it to finish. (We’ll talk
about that in the next section.) If the async method returns a Task instance, the calling
method would have had to invoke the called method using await, and thus the calling
method would have to be async too. (If this seems hard, it actually isn’t unless you make
it so, which I’ll also get to shortly. All you have to do is “rattle” the async markers up
the calling tree.)

It’s the “reverting to the calling method” that makes this work, and this is the “hole” that
gets punched into the procedure. Nothing blocks because any await marked call simply
results in the method returning. When the Task completes, either successfully or with

Understanding Asynchrony | 57

a raised exception, the state machine is revived and resumes where it left off. So, in our
case with our HttpWebRequest, GetResponseAsync returns an instance of type Task<We
bResponse>; when the state machine resumes on a successful call, the Task is asked for
its Result value (which happens to be of type WebResponse in this case), and off you go.

But, as I implied at the beginning of this section, you don’t actually have to worry about
how this works at all.

Returning “void”

So far, we have our method returning void. Having a void method marked as async is
usually bad because you have no way of controlling the lifetime. Say you have this code:

private int _magicNumber;

private async void SetupStateAsync()
{
 // some async stuff that sets up _magicNumber in the background...
}

private void DoSomeMagic()
{
 SetupStateAsync();

 // any code that uses _magicNumber may be unreliable...
 Debug.WriteLine(_magicNumber);
}

The problem with that code is that it contains a race condition. SetupState may not
actually finish setting up the state before DoSomeMagic wants to use it. The way to get
around this is to make SetupStateAsync return a Task. Interestingly, the compiler
doesn’t require you to return a Task instance. You can drop out of the end of the method
without a return statement and the compiler just assumes you meant to return a task.
(If you want to return a specific type, however, you can’t do this—but I’ll get to that.)

However, if we do this, we have to declare await when we call SetupState, we have to
make DoSomeMagic async, we have to make that return a Task, and we have to change
the method name in order to be consistent. Here are the changes:

private int _magicNumber;

private async Task SetupStateAsync()
{
 // some async stuff that sets up _magicNumber in the background...
}

private async Task DoSomeMagicAsync()
{
 await SetupStateAsync();

58 | Chapter 2: Making the Transition from .NET (Part 2)

 // any code that uses _magicNumber will now be reliable...
 Debug.WriteLine(_magicNumber);
}

You’ll notice from that code that Task return declarations tend to propagate up through
your object models, as I alluded to before. This is certainly the case, and is something
that you’re going to have to get used to. It feels slightly wrong, but in practice is very
workable, as you tend to always start operations from some user-driven event, such as
a touch or click.

The exception to returning Task instances back is when you’re programming event
handlers. Event handlers already have a definition that in most cases is declared void.
In these instances, if you wish to use await you have to simply return async void back.
This is generally desirable, as the caller doesn’t really know whether it needs to wait for
you or not, or how much work you need to do in response. (And this principle in event-
driven programming is as old as event-driven programming itself.)

Finally, you can return real values back by using Task<T>. If you actually use await in
this sort of method, you can just return an object back—the compiler will wrap it in a
Task instance for you:

private async Task<bool> DoYetMoreMagicAsync()
{
 await DoMoreMagicAsync();

 // the compiler will wrap this for us...
 return true;
}

The trick of asynchrony

The one thing I’m very clear to impress on people when they’re trying to understand
asynchrony is this: don’t fight it. Don’t try to do anything clever with controlling the
lifetime of operations or doing anything other than using the async and await keywords.

This can be a particular challenge to experienced developers who are used to being
allowed to control the way in which operations run. With Windows Store apps, Micro‐
soft has essentially taken the position that allowing you to have this level of control is a
bad thing. To control the user experience presented by Windows, Microsoft wants
Windows to be able to control background operations entirely and by itself. If you go
around this rule, whatever you build will be more difficult to build, and is much less
likely to be stable.

To reiterate, then, the best way to keep your head when working with asynchrony is to
trust what it’s doing and only use async and await. Although you can do clever things
with Task instances—such as chaining on continuation handlers and blocking until
completion—when it comes to Windows Store apps, doing so generally leads to
problems.

Understanding Asynchrony | 59

Calling the Server
With the background in asynchrony now covered, let’s look at using it for the practical
purpose of calling a server.

There’s going to be quite a bit of work in this section, broken into two parts:

1. We’re going to create an abstract base ServiceProxy class that knows how to call
up to a function on the server. We’ll specialize this class into other classes that
understand discrete server functions (e.g., RegisterServiceProxy will know how
to call the Register method). The way the server is designed is that every function
the server can perform is accessed through a specific URL. The server accepts a
request in JSON format, and returns data as JSON.

2. When the registration method completes successfully, we’ll want to change the view
to a logon page, so we’ll have to build that mechanism. (The work to implement
this mechanism was started when we built the attribute to associate a view class
with a view-model interface.)

Building the Service Proxies
When we looked at IoC/dependency injection in the first section of this chapter, we
used the TinyIoC isolation-of-control container to decouple the view and view-model.
We’re going to use it again to decouple the service interfaces. This will be helpful if you
want to add unit testing to your apps, which I strongly recommend (see Appendix B).

Firstly, let’s create our IServiceProxy interface. This is just a stub/marker implemen‐
tation for now—it doesn’t have any actual members:

 public interface IServiceProxy
 {
 }

When we built the UI for registering a user in the last chapter, we added four fields:
username, email, password, and confirm password. The Register method on the server
takes values for all four of those fields. (In this example I’ve removed the need to have
client-side validation. Obviously, in a production app you could validate that the pass‐
words match to save the effort, bandwidth, and time of asking the server.)

Here’s the definition of IRegisterServiceProxy:
 public interface IRegisterServiceProxy : IServiceProxy
 {
 Task Register(string username, string email, string password,
 string confirm);
 }

60 | Chapter 2: Making the Transition from .NET (Part 2)

As I mentioned before, the service proxy calls work by shuttling appropriately organized
JSON-formatted data to and from the server.

We’re going to do JSON in two ways in this book. In this first instance we’re going to
manually build up a JSON representation using WinRT’s JsonObject class. In the next
chapter, we’re going to use the popular JSON.NET library. In a production application,
you’d likely use JSON.NET for both parts; I just wanted to show you the JsonObject
implementation in WinRT, although it’s worth remembering that WinRT’s built-in im‐
plementation is far inferior to the JSON.NET implementation.

We’ve had JSON support in ASP.NET since the introduction of JavaScriptSerializ
er. JsonObject is having another bite of that cherry, but the implementation is very
different. JavaScriptSerializer worked by inspecting a received object—typically a
Dictionary—and then emitting JSON (or vice versa). JsonObject is a Dictionary in
and of itself, together with the attendant members you’d expect to see on a Dictionary.

JsonObject has keys of type string and values of type IJsonValue. This is where the
implementation gets a bit weird, but interestingly this is the first place we’ve seen where
you can actually “feel” a difference between the Windows DevDiv team (who build .NET
and Visual Studio) and the WinDiv team (the ones that build Windows itself). This
difference in approach—one team very good at building developer tools, the other team
not very good at building developer tools but good at building Windows—is one of the
reasons why I wanted to take you through JsonObject. It explains a certain amount of
the stranger design decisions that you find in WinRT, JsonObject’s inferiority compared
to the popular JSON.NET project being one of them.

With JsonObject you can’t just add a string, you have to issue a call like this:
json.Add(key, JsonValue.CreateStringValue(value));

That is, you need to call that CreateStringValue factory method to get something you
can add to the object.

Creating overloads of the method that took primitive types and deferred to the static
helper methods would have been a better design. To get around this limitation, we’ll
build an extension method class that will add the desired overloads into JsonObject.
Here it is:

 public static class JsonObjectExtender
 {
 // extension method that adds a primitive value...
 public static void Add(this JsonObject json, string key, string value)
 {
 json.Add(key, JsonValue.CreateStringValue(value));
 }

 public static void Add(this JsonObject json, string key, bool value)
 {
 json.Add(key, JsonValue.CreateBooleanValue(value));

Calling the Server | 61

 }

 public static void Add(this JsonObject json, string key, double value)
 {
 json.Add(key, JsonValue.CreateNumberValue(value));
 }
 }

Extension methods are one of my absolute favorite features of C#. All
I need now are extension properties, and I’d be an extremely happy
man.

Server protocol

The StreetFoo server protocol is straightforward: you send up some JSON, and you
receive back some JSON. For basic interactions—such as registering a user or logging
on—all that you need to send up is the name/value pairs captured in the view-model,
plus an API key. (I’ll get to the API key in a moment.) You then get back a similarly
straightforward set of name/values.

Considering the request (“input”) values first, as I just mentioned the only other thing
you have to pass up is an API key. You can obtain an API key from the StreetFoo service’s
website. It’s important when you use the downloadable code that you get your own API
key to use. Figure 2-3 illustrates where you can find your new API key.

Figure 2-3. Getting an API key

Here’s an example of the JSON that the server needs to see to register a new user:
{
 "username":"mbrit",
 "email":"mbrit@mbrit.com",
 "password":"password",
 "confirm":"password",
 "apiKey":"4f41463a-dfc7-45dd-8d95-bf339f040933"
}

62 | Chapter 2: Making the Transition from .NET (Part 2)

https://streetfoo.apphb.com/
https://streetfoo.apphb.com/

The server will signal the state of the request using the isOk value. This will be true or
false depending on whether you passed in appropriate values or not. If it’s false, you’ll
get back a value called error that contains more details. Here’s an example of a successful
response to the registration operation:

{
 "userId":"4fa973c1e7044a6fe4735119",
 "isOk":true
}

To round this off, if we were to encounter an error, we’d get an error back:
{
 "error":"Username already in use.",
 "isOk":false
}

While I’m aware that we have WCF and WebAPI on the Microsoft
stack, my StreetFoo service deliberately avoids using these so that we
can prove we can make a call that’s not dependent on having Micro‐
soft’s stuff at both ends. Otherwise, this book just becomes about using
WCF at both ends of the problem, which I don’t feel is necessarily
representative of the real world.

Building the Register Method
Each server method will have a distinct proxy object on the client. In this first instance,
we’ll build a specialized RegisterServiceProxy and a base ServiceProxy class. In ad‐
dition, so that we can have a level of indirection as we did with the MVVM implemen‐
tation that we’ve already discussed, we’ll create IRegisterServiceProxy and IServi
ceProxy interfaces.

In all cases, a specific method will exist in IRegisterServiceProxy that takes the values
required for the server call (username, email, password), packages it up, and then passes
it to the base class for basic processing. The specialized version will then do specific
processing.

As discussed previously, we need to pass up the API key with every call. The base
ServiceProxy class will need to do this, and also need to form the URL of the service
endpoint. Here’s the code:

 public abstract class ServiceProxy : IServiceProxy
 {
 // the URL that the proxy connects to...
 private string Url { get; set; }

 // API key available from https://streetfoo.apphb.com/
 // *** YOU MUST CHANGE THIS FOR USE IN YOUR OWN APPS ***
 private const string ApiKey = "4f41463a-dfc7-45dd-8d95-bf339f040933";

Calling the Server | 63

 protected ServiceProxy(string handler)
 {

 this.Url = StreetFooRuntime.ServiceUrlBase + "Handle" + handler +
 ".ashx";
 }

 protected void ConfigureInputArgs(JsonObject data)
 {
 // all the requests need an API key...
 data.Add("apiKey", ApiKey);
 }
 }

All this magic will happen when we call a method we’ll build called ExecuteAsync. This
method will take a JsonObject instance, add the API key, transform it into a JSON
string, and then send it to the server. It’ll wait for a response (using await), and then
process the result. In the case of a success or failure (determined by checking the isOk
value returned from the server), Execute will return a ServiceExecuteResult object.
We’ll build this ServiceExecuteResult object first.

The idea of ServiceExecuteResult is to containerize the JSON that we returned from
the server, together with an error message if there was one. We can reuse the Error
Bucket object that we built class in Chapter 1. Here’s the code:

public class ServiceExecuteResult : ErrorBucket
 {
 public JsonObject Output { get; private set; }

 internal ServiceExecuteResult(JsonObject output)
 {
 this.Output = output;
 }

 internal ServiceExecuteResult(JsonObject output, string error)
 : this(output)
 {
 this.AddError(error);
 }
 }

The ExecuteAsync method itself will be very simple, as the HttpClient object provided
by .NET 4.5 does all the heavy lifting for us. If you’re used to using HttpWebRequest,
HttpClient is much easier. It’s document-centric, meaning you give it a document con‐
taining the content to send, and it’ll return back a document containing the response.

This is really the first time that we’ve used asynchrony, and there are a couple of things
to point out. First, note how this code is essentially just procedural. The two await
directives “poke holes” into the procedural code to make it behave in a multithreaded,

64 | Chapter 2: Making the Transition from .NET (Part 2)

asynchronous fashion. Second, the method returns Task<ServiceExecuteResult> and
is marked with the async keyword. Again, this tells the compiler that we’re expecting
that, when the whole thing is done and dusted, we’ll be returning a ServiceExecuteR
esult instance back to the (a)waiting caller.

Here’s the code:
 // Add method to ServiceProxy...
 public async Task<ServiceExecuteResult> ExecuteAsync(JsonObject input)
 {
 // set the API key...
 ConfigureInputArgs(input);

 // package it us as json...
 var json = input.Stringify();
 var content = new StringContent(json);

 // client...
 var client = new HttpClient();
 var response = await client.PostAsync(this.Url, content);

 // load it up...
 var outputJson = await response.Content.ReadAsStringAsync();
 JsonObject output = JsonObject.Parse(outputJson);

 // did the server return an error?
 bool isOk = output.GetNamedBoolean("isOk");
 if (isOk)
 return new ServiceExecuteResult(output);
 else
 {
 // we have an error returned from the server, so return that...
 string error = output.GetNamedString("error");
 return new ServiceExecuteResult(output, error);
 }
 }

We can now go ahead and create our specialized RegisterServiceProxy class. The first
thing we need is the RegisterResult class. This will come about only as a result of a
successful call to the server and will hold the user ID that the server provides. (Recall
from earlier the examples showing what the JSON coming back from the server would
look like for both a successful and an unsuccessful result.)

 public class RegisterResult : ErrorBucket
 {
 public string UserId { get; private set; }

 public RegisterResult(string userId)
 {
 this.UserId = userId;
 }

Calling the Server | 65

 internal RegisterResult(ErrorBucket bucket)
 : base(bucket)
 {
 }
 }
}

For the actual RegisterServiceProxy class, all we need to do is define the values that
need to be placed into the JSON that goes up to the server via the base ServiceProxy
class. We’ll also need to interpret the results. The steps in the interpretation are limited
to dredging the user ID out of the server response, creating a RegisterResult instance,
and calling the success callback.

One last thing to note is that the specialized proxy needs to know what function on the
server it’s calling—you’ll recall that when we build ServiceProxy we build up a URL in
the constructor. In this case, the server method name happens to be Register.

Once we’ve done that, we can create a new JsonObject and put in the values that we
want. We can defer to the ExecuteAsync method to call the server, and then process the
results:

 public class RegisterServiceProxy : ServiceProxy, IRegisterServiceProxy
 {
 public RegisterServiceProxy()
 : base("Register")
 {
 }

 public async Task<RegisterResult> RegisterAsync(string username,
string email, string password, string confirm)
 {
 // package up the request...
 JsonObject input = new JsonObject();
 input.Add("username", username);
 input.Add("email", email);
 input.Add("password", password);
 input.Add("confirm", confirm);

 // call...
 var executeResult = await this.ExecuteAsync(input);

 // get the user ID from the server result...
 if (!(executeResult.HasErrors))
 {
 string userId = executeResult.Output.GetNamedString("userId");
 return new RegisterResult(userId);
 }
 else
 return new RegisterResult(executeResult);
 }
 }

66 | Chapter 2: Making the Transition from .NET (Part 2)

That’s all we have to do to make the call to the server. Now we can look at how to get it
wired up into the UI.

Finishing the UI to Call the Register Server Function
This is where the various bits that we’ve done thus far come together. All we have to do
is go back into our RegistrationPageViewModel class and change DoRegistration so
that rather than faking the call to the server and displaying a message box, it actually
makes the call to the server.

We’re going to reuse the TinyIoC container to get a reference to the service proxy. This
container doesn’t care that there’s a difference between view-models and service proxies,
so the work we did to initialize the container in Chapter 1 will automatically work here,
and we can use it in the same way to find service proxies as we did to find view-models.

Here’s the revised implementation of DoRegistration. If registration succeeds, all we’ll
do in the first instance is display the ID of the user that was returned from the server:

 // Modify method in RegisterPageViewModel...
 private async void DoRegistration(CommandExecutionContext context)
 {
 // if we don't have a context, create one...
 if (context == null)
 context = new CommandExecutionContext();

 // validate...
 ErrorBucket errors = new ErrorBucket();
 Validate(errors);

 // ok?
 if (!(errors.HasErrors))
 {
 // get a handler...
 var proxy = TinyIoCContainer.Current.Resolve
<IRegisterServiceProxy>();

 // call the server...
 var result = await proxy.RegisterAsync(this.Username,
this.Email, this.Password, this.Confirm);

 // ok?
 if (!(result.HasErrors))
 {
 // show a message to say that a user has been created...
(this isn't a helpful message,
 // included for illustration...)
 await this.Host.ShowAlertAsync(string.Format("The new user
has been created.\r\n\r\nUser ID: {0}", result.UserId));
 }
 else

Calling the Server | 67

 errors.CopyFrom(result);
 }

 // errors?
 if(errors.HasErrors)
 await this.Host.ShowAlertAsync(errors);
 }

I’d suggest what happens there is pretty obvious. When you run it, and you pass in valid
parameters, you should see the result shown in Figure 2-4.

Figure 2-4. A successful call to the Register function on the server

That’s it! We’ve now gone end-to-end through an entity example of an MVVM imple‐
mentation, complete with inversion of control, pulling data back out of the UI with data
binding, and then calling up to a server.

Logon
In the final part of this chapter, I want to show you how to build the logon page—or
rather, what I really want to show is how you can move between pages in the app. Another
thing we’ll cover in this section is how to display a progress indicator on the screen to
show that the application is busy. (Specifically, we’ll use the little “bumping dots” ani‐
mation that’s come from the original design work on Windows Phone over to Windows
8/Windows RT, which I personally think is rather cool.)

68 | Chapter 2: Making the Transition from .NET (Part 2)

Building LogonServiceProxy
Calling the server for a logon operation is very much like calling the server for a register
operation. I’ll go through this part quite quickly, as we’ve just done something similar.

Like the register operation, we’ll need a class to capture the result of a logon call. Here’s
the code:

 public class LogonResult : ErrorBucket
 {
 public string Token { get; private set; }

 public LogonResult(string token)
 {
 this.Token = token;
 }

 internal LogonResult(ErrorBucket bucket)
 : base(bucket)
 {
 }
 }

Then, here’s the interface for the call. This will just take the username and password:
 public interface ILogonServiceProxy : IServiceProxy
 {
 Task<LogonResult> LogonAsync(string username, string password);
 }

Finally, we arrive at the actual implementation. How the server works is that we’ll be
returned a token that we have to pass up to the server each time we want data. We won’t
actually use the token until the next chapter; for now, we’ll just display the token if
logging on was successful, which we’ll do in the next section. Here’s the code:

 public class LogonServiceProxy : ServiceProxy, ILogonServiceProxy
 {
 public LogonServiceProxy()
 : base("Logon")
 {
 }

 public async Task<LogonResult> LogonAsync(string username,
 string password)
 {
 // input..
 JsonObject input = new JsonObject();
 input.Add("username", username);
 input.Add("password", password);

 // call...
 var executeResult = await this.ExecuteAsync(input);

Logon | 69

 // get the user ID from the server result...
 if (!(executeResult.HasErrors))
 {
 string token = executeResult.Output.GetNamedString("token");

 // return...
 return new LogonResult(token);
 }
 else
 return new LogonResult(executeResult);
 }
 }

Building the Logon Page
A lot of the work relating to building the logon form is basic copy and paste of the
registration page and view-model, and I don’t want to reproduce work we’ve already
done in detail—I’d rather use the pages for something more interesting. As a result,
we’re going to go through some parts of this section quite quickly. Remember that you
can refer to the downloadable code if you need to.

The initial problem that we need to solve is that XAML doesn’t know anything about
our view-model architecture, but when we want to change the page we have to give
XAML the .NET type of the actual page implementation to which we want to navigate.

Specifically, we have to tell XAML “show typeof(LogonPage)” from within the Regis
terPageViewModel, but RegisterPageViewModel can’t see LogonPage.

Luckily, we’ve already done most of the work for this. Remember that at the beginning
of this chapter, we built ViewModelAttribute so that we could create view-models au‐
tomatically from a page. We can basically just flip that on its head so that we can say
“find me the Page-derived type that has an attribute referencing the view-model type
that we want.” Thanks to .NET’s reflection APIs, this is very simple. Here’s the method
to add to StreetFooPage; this just gets all the types that are in the assembly and walks
each one, looking for an appropriate attribute:

 // Add to StreetFooPage...
 // shows a view from a given view-model...
 public void ShowView(Type viewModelType)
 {
 foreach (var type in this.GetType().GetTypeInfo().Assembly
 .GetTypes())
 {
 var attr = (ViewModelAttribute)type.GetCustomAttribute
<ViewModelAttribute>();
 if (attr != null && viewModelType.IsAssignableFrom
(attr.ViewModelInterfaceType))
 {
 // show...
 this.Frame.Navigate(type);

70 | Chapter 2: Making the Transition from .NET (Part 2)

 }
 }
 }

We’ll need this on IViewModelHost, as we’ll need to call it from the view-models. Here’s
the code:

 // provides a route back from a view-model to a view...
 public interface IViewModelHost
 {
 // show messages...
 Task ShowAlertAsync(ErrorBucket errors);
 Task ShowAlertAsync(string message);

 // shows a view from a given view-model...
 void ShowView(Type viewModelInterfaceType);
 }

Of course, to make any of this work, you’ll actually need a logon page. This should be
called LogonPage and added to the StreetFoo.Client.UI project. I won’t go through again
how to actually build the page or show the XAML—just make it look like Figure 2-5.

Figure 2-5. The logon page layout

We’ve been trying to reach the point of being able to do very “light lifting” on new pages,
pushing as much logic as possible into the view-model and using chunks of (hopefully)
clever code to link it all together without having to think very hard about what’s going
on.

Thus, in terms of the code we have to add to LogonPage, all we have to do is add a couple
of lines that look very much like the two lines we added to RegisterPage:

 [ViewModel(typeof(ILogonPageViewModel))]
 public sealed partial class LogonPage : StreetFooPage
 {
 public LogonPage()
 {
 this.InitializeComponent();

Logon | 71

 // obtain a real instance of a model...
 this.InitializeViewModel();
 }

In terms of a view-model, the ILogonPageViewModel has properties for the username
and password, and commands for Logon and Register. Here’s the code:

 // exposes the map of public binding properties on LogonPage's view-model...
 public interface ILogonPageViewModel : IViewModel
 {
 string Username
 {
 get;
 set;
 }

 string Password
 {
 get;
 set;
 }

 ICommand LogonCommand
 {
 get;
 }

 ICommand RegisterCommand
 {
 get;
 }
 }

ILogonPageViewModel will need an implementation. Here it is; I’ve omitted a lot of it
for brevity. (You’ll see how RegisterCommand is using a new NavigateCommand class.
We’ll build that in a moment.)

 // concrete implementation of the LogonPage's view-model...
 public class LogonPageViewModel : ViewModel, ILogonPageViewModel
 {
 // commands...
 public ICommand LogonCommand { get; private set; }
 public ICommand RegisterCommand { get; private set; }

 public LogonPageViewModel(IViewModelHost host)
 : base(host)
 {
 // set RegisterCommand to defer to the DoRegistration method...
 this.LogonCommand = new DelegateCommand((args) => DoLogon(args as
CommandExecutionContext));
 this.RegisterCommand = new NavigateCommand<IRegisterPageViewModel>
(host);

72 | Chapter 2: Making the Transition from .NET (Part 2)

 }

 // Username and Password properties ommitted for brevity...

 private void DoLogon(CommandExecutionContext context)
 {
 // validate...
 ErrorBucket errors = new ErrorBucket();
 Validate(errors);

 // ok?
 if (!(errors.HasErrors))
 {
 // get a handler...
 var proxy = TinyIoCContainer.Current.
 Resolve<ILogonServiceProxy>();

 // call...
 var result = await proxy.LogonAsync(this.Username, this.Password);
 if (!(result.HasErrors))
 {
 await this.Host.ShowAlertAsync("Logon OK!");
 }
 else
 errors.CopyFrom(result);
 }

 // errors?
 if (errors.HasErrors)
 await this.Host.ShowAlertAsync(errors);
 }
}

From time to time, it’d be helpful to have a command whose sole job it was to navigate
to another view. For this reason, we’ll build NavigateCommand. We’ve just seen an ex‐
ample of how this will be used in the immediately preceding listing—note how we pass
through the type of the view-model to navigate to as a generic type argument, but our
ShowView method takes a type as a parameter.

Our ShowView method could have taken a type argument, but this causes “problems”
on interfaces with regards to method overloading. If you put both versions of the method
on the interface (the one that takes a type argument and the one that takes a type pa‐
rameter), any implementer has to implement both methods. (This is the same argument
that you limit virtual methods to the most complex version of an overload.) As type
arguments are hard to pass dynamically, it’s better to have the type-less method defined
on the interface and then use extension methods to create typed overloads, like this:

 public static class IViewModeHostExtender
 {
 public static void ShowView<T>(this IViewModelHost host,
object parameter = null)

Logon | 73

 where T : IViewModel
 {
 host.ShowView(typeof(T), parameter);
 }
 }

This approach allows you to build more complex interface implementations, reduces
the amount of work that anyone implementing the interface has to do, and also provides
an easier life for developers calling against your code. In this instance specifically, it
helps make more defensive code because of the compile-time type checking that the
value for <T> does indeed implement IViewModel.

Back to the main flow of the work: the NavigateCommand class is pretty straightforward,
and all we need is a reference to the host and a reference to the type of interface to pass
into ShowView. Here’s the code:

 public class NavigateCommand<T> : ICommand
 where T : IViewModel
 {
 private IViewModelHost Host { get; set; }

 public event EventHandler CanExecuteChanged;

 public NavigateCommand(IViewModelHost host)
 {
 this.Host = host;
 }

 public bool CanExecute(object parameter)
 {
 return true;
 }

 public void Execute(object parameter)
 {
 this.Host.ShowView<T>();
 }
 }

Before we look at the process of making the logon operation work, we’ll dip back into
App.xaml and change it so that the logon page is the one that’s displayed first, as opposed
to the register page. Here’s the change:

 // Modify OnLaunched in

 protected override void OnLaunched(LaunchActivatedEventArgs args)
 {
 if (args.PreviousExecutionState ==
ApplicationExecutionState.Terminated)
 {
}

74 | Chapter 2: Making the Transition from .NET (Part 2)

 // start...
 StreetFooRuntime.Start("Client");

 // Create a Frame to act as navigation context and navigate
 // to the first page...
 var rootFrame = new Frame();
 rootFrame.Navigate(typeof(LogonPage));

 // Place the frame in the current Window and ensure that it is active
 Window.Current.Content = rootFrame;
 Window.Current.Activate();
 }

Now if you run the app, it should all hang together. The logon page should display first,
and the Register button should take you to the register page. You can use the automat‐
ically provided “back” button to go back to logon. Although we didn’t do this in the
book, in the code that you can download for this chapter, a successful registration will
return you to the logon page.

Busy Indicators
Windows Phone introduced a novel and space-efficient way of indicating that a back‐
ground operation was in progress—namely, a collection of dots right at the top of the
screen that moves from left to right in a standing wave. That same progress indicator is
available in WinRT, and in this section we’re going to add it to our app.

As background, that indicator is known as an “indeterminate” indi‐
cator. There is also a “not indeterminate” (“determinate”?) indicator,
which works like a normal progress bar. There is also a spinning wheel
indicator that we’re not going to look at in this chapter, but if you
want to use it, it’s implemented in the Windows.UI.Xaml.Con
trols.ProgressRing control and works in roughly the same way.

Positioning the Indicator
The first thing to do is position the indicator on the display. If you’re not familiar with
XAML, this is actually much easier than it looks and a good example of just how different
XAML and HTML are.

The document-centric nature of HTML implies that when new elements are positioned
on the page, everything else gets pushed out of the way to accommodate it. However,
in XAML, the layout is more explicit; and because it’s not document-centric, if you
happen to put controls on top of other controls, things just work. So, to put a progress
indicator at the top of each page we can just add in the declaration of a control, and set
it to render within the first row of the (existing) grid and span the two available columns.
Here’s the ProgressBar declaration for LogonPage; I’ve omitted the rest of the page for

Busy Indicators | 75

brevity. (For the time being, don’t worry about the Visibility property—we’re about
to get to that.)

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <Grid.RowDefinitions>
 <RowDefinition Height="140"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="120"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>

 <ProgressBar Grid.ColumnSpan="2" VerticalAlignment="Top"
IsIndeterminate="true"
 Visibility="{Binding IsBusy, Converter={StaticResource
VisibilityConverter}}"></ProgressBar>

 <!-- Back button and page title -->
 <AppBarButton x:Name="backButton" Icon="Back" Height="95"
 Margin="10,46,10,0"
 Command="{Binding NavigationHelper.GoBackCommand,
 ElementName=pageRoot}"
 Visibility="{Binding IsEnabled, Converter=
 {StaticResource BooleanToVisibilityConverter},
 RelativeSource={RelativeSource Mode=Self}}"
 AutomationProperties.Name="Back"
 AutomationProperties.AutomationId="BackButton"
 AutomationProperties.ItemType="Navigation Button"/>
 <TextBlock x:Name="pageTitle" Grid.Column="1" Text="Logon" Style=
 "{StaticResource HeaderTextBlockStyle}"/>

I haven’t provided a screenshot, as there’s nothing to see until it runs! You’ll need to go
into the App.xaml and add the reference to BooleanToVisibilityConverter. This class
is created by Visual Studio, but it’s not referred where we need it.

Here’s the change:
<!-- Modify App.xaml… -->
<Application
 x:Class="StreetFoo.Client.UI.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:StreetFoo.Client.UI">

 <Application.Resources>
 <ResourceDictionary>

 <!-- TODO: Delete this line if the key AppName is declared
 in App.xaml -->

 <local:BooleanToVisibilityConverter x:Key=

76 | Chapter 2: Making the Transition from .NET (Part 2)

"BooleanToVisibilityConverter"/>

 </ResourceDictionary>
 </Application.Resources>

</Application>

Showing the Indicator
The design we want to end up with is one where we don’t necessarily have to worry
about making the indicator visible or invisible explicitly. Another related feature is that
we want any buttons on the page that may create additional background activities to
disable themselves automatically. We can achieve both of these things by allowing the
view-model to put itself into a “busy” state. The view can then decide what to do when
the view-model goes into a busy state.

Implementing the busy state is actually pretty easy. All we need to do is create a property
on the view-model called IsBusy and then configure bindings in the markup to display
the progress indicator and disable the buttons when this is true. (I hinted at this earlier
where the ProgressBar control has its Visibility property set to a binding.)

There’s a deeper (and well understood) problem with an IsBusy flag in that if you have
a collection of recursive methods that are all trying to control that flag (i.e., by setting
it on before something happens and off when it’s finished), a simple Boolean value won’t
cut it because the last one wins and the whole thing gets confused. What we need to do
is have a counter incremented and decremented by calls to the methods EnterBusy and
ExitBusy, respectively.

We then face a design decision. If you were designing this cold, you would create a field
with a counter and then have the IsBusy property simply return _busyCounter > 0
when queried; however, to integrate with the binding subsystem we need it such that
when IsBusy changes, the PropertyChanged event must also be raised. For this reason,
I’m proposing having IsBusy as a normal view-model field (i.e., one that uses the
GetValue<T> and SetValue methods and the underlying Dictionary) and explicitly
setting that property in EnterBusy and ExitBusy. This is less sophisticated, but it means
we don’t have to make a specific effort to raise the property change notification.

As a final design point, all of the view-models are going to want to do this, so we’ll
change IViewModel and ViewModel to support it.

The first change is to IViewModel to add the IsBusy property:
 // base class for view-model implementations...
 public interface IViewModel : INotifyPropertyChanged
 {
 // shared busy flag...
 bool IsBusy { get; }
 }

Busy Indicators | 77

Next, we can actually implement it. A neat pattern to use here is one that leverages the
C# using keyword. If we create a method called EnterBusy, and have that method return
something that returns IDisposable, we don’t have to explicitly remember to undo the
busy state when we’re finished. For example, we can write something like this:

 public void DoMagic()
 {
 using(this.EnterBusy())
 {
 // busy flag is turned on here by "EnterBusy"...
 }

 // busy flag is "magically" turned off by the time we get here...
 }

Here’s the code change to ViewModel. I’ve omitted a lot of the code for brevity:
 // base class for view-model implementations…
 public abstract class ViewModel : IViewModel
 {
 // somewhere to hold the host...
 protected IViewModelHost Host { get; private set; }

 // somewhere to hold the values...
 private Dictionary<string, object> Values { get; set; }

 // support field for IsBusy flag...
 private int BusyCounter { get; set; }

 // event for the change...
 public event PropertyChangedEventHandler PropertyChanged;

 public ViewModel(IViewModelHost host)
 {
 this.Host = host;
 this.Values = new Dictionary<string, object>();
 }

 // code ommitted...

 public IDisposable EnterBusy()
 {
 this.BusyCount++;

 // trigger a UI change?
 if (this.BusyCount == 1)
 this.IsBusy = true;

 // return an object we can use to roll this back...
 return new BusyExiter(this);
 }

78 | Chapter 2: Making the Transition from .NET (Part 2)

 public void ExitBusy()
 {
 this.BusyCount--;

 // trigger a UI change?
 if (this.BusyCount == 0)
 this.IsBusy = false;
 }

 private class BusyExiter : IDisposable
 {
 private ViewModel Owner { get; set; }

 internal BusyExiter(ViewModel owner)
 {
 this.Owner = owner;
 }

 public void Dispose()
 {
 this.Owner.ExitBusy();
 }
 }
 }

It’s neater with this pattern to return a vanilla IDisposable rather than returning a
special object. (It makes it less likely that you’ll force a breaking change if you have to
refactor later.) The only behavior that you require in BusyExiter is the ability to let the
compiler wire up a call to Dispose.

Going back to the actual implementation, the properties that we want to use this flag
with to set properties on the XAML controls are as follows:

• On the ProgressBar we need to set the Visibility property to Visible when
IsBusy is true, and Collapsed when IsBusy is false.

• On the buttons, we need to set IsEnabled to be the opposite of IsBusy.

XAML provides a mechanism for converting values when used with binding. In the last
chapter, I called some of these out—specifically, Visual Studio will create a few converters
for us when it creates the project. The ones we need to use here are BooleanToVisibi
lityConverter and BooleanNegationConverter. Although these are built for us, you
have to wire them up manually in order to use them.

There are two ways to do this: you can put them into each page where you need them,
or you can define them globally within the App.xaml file. They are not in the App.xaml
file by default because it affects the application startup speed. However, it’s a lot more
convenient to map them in there because you only have to do it once.

Here’s the App.xaml markup with the mappings defined:

Busy Indicators | 79

<Application
 x:Class="StreetFoo.Client.UI.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:StreetFoo.Client.UI"
 xmlns:common="using:StreetFoo.Client.UI.Common"
 >

 <Application.Resources>
 <ResourceDictionary>

 <local:BooleanToVisibilityConverter x:Key=
"BooleanToVisibilityConverter" />
 <local:BooleanNegationConverter x:Key="BooleanNegationConverter" />

 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Common/StandardStyles.xaml"/>
 </ResourceDictionary.MergedDictionaries>

 </ResourceDictionary>
 </Application.Resources>
</Application>

Next we can actually use them. Here’s the markup for the new progress bar and the
modification of the buttons to enable/disable them depending on the busy state (I’ve
omitted other parts of the markup for brevity):

<local:StreetFooPage> <!-- attributes omitted... -->

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <Grid.RowDefinitions>
 <RowDefinition Height="140"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="120"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>

 <ProgressBar Grid.ColumnSpan="2" VerticalAlignment="Top"
 IsIndeterminate="true"
 Visibility="{Binding IsBusy, Converter={StaticResource
 BooleanToVisibilityConverter}}"></ProgressBar>

 <!-- Back button and page title -->
 <Button x:Name="backButton" Click="GoBack" IsEnabled="{Binding
Frame.CanGoBack, ElementName=pageRoot}"
Style="{StaticResource BackButtonStyle}"/>
 <TextBlock x:Name="pageTitle" Grid.Column="1" Text="Logon" Style=
"{StaticResource PageHeaderTextStyle}"/>

80 | Chapter 2: Making the Transition from .NET (Part 2)

 <!-- Registration form -->
 <StackPanel Grid.Row="1" Grid.Column="1">

 <TextBlock Text="Username"></TextBlock>
 <TextBox HorizontalAlignment="Left" Width="400" Text="
{Binding Username, Mode=TwoWay}"/>

 <TextBlock Text="Password"></TextBlock>
 <PasswordBox HorizontalAlignment="Left" Width="400"
Password="{Binding Password, Mode=TwoWay}"/>

 <StackPanel Orientation="Horizontal">
 <Button Content="Logon" Command="{Binding LogonCommand}"
 IsEnabled="{Binding IsBusy, Converter={StaticResource
 NegationConverter}}"></Button>
 <Button Content="Register" Command="{Binding RegisterCommand}"
 IsEnabled="{Binding IsBusy, Converter={StaticResource
 NegationConverter}}"></Button>
 </StackPanel>

 </StackPanel>
<!-- remainder of page omitted... -->
</local:StreetFooPage>

At this point, though, we still can’t see anything different. However, it’s a simple change
to DoLogon in LogonPageViewModel to actually use it. Here’s the code:

 // Modify method in LogonPageViewModel...
 private async void DoLogon(CommandExecutionContext context)
 {
 // validate...
 ErrorBucket errors = new ErrorBucket();
 Validate(errors);

 // ok?
 if (!(errors.HasErrors))
 {
 // get a handler...
 var proxy = TinyIoCContainer.Current.
 Resolve<ILogonServiceProxy>();

 // call...
 using (this.EnterBusy())
 {
 var result = await proxy.LogonAsync(this.Username,
this.Password);
 if (!(result.HasErrors))
 await this.Host.ShowAlertAsync("Logon OK!");
 else
 errors.CopyFrom(result);
 }
 }

Busy Indicators | 81

 // errors?
 if (errors.HasErrors)
 await this.Host.ShowAlertAsync(errors);
 }

Now if you run the code, you’ll see the progress indicator appear when the logon request
is being processed.

82 | Chapter 2: Making the Transition from .NET (Part 2)

CHAPTER 3

Local Persistent Data

One topic I was keen to get deep into early on in this book was the subject of local
databases. Every app that you will ever build will need some form of local storage, and
if you need to store a decent amount of structured data, a database is the only way to
go.

Back in the days of Windows Mobile (the version before Windows Phone), the local
database story was actually really good. Because these devices were targeted at enter‐
prises, Microsoft’s approach was to put a cut-down version of SQL Server on the devices
and build a synchronization framework that would let an enterprise’s SQL Server push
and pull data to the devices.

In Windows Phone, Microsoft got rid of all that, and the new device platform launched
with no database support at all. You could write data to the filesystem, but that was about
it. This strategy, however, is working fine because Windows Phone is a consumer play
and not an enterprise play. Windows 8/Windows RT follows the same approach as
Windows Phone—there is no built-in database that we can just use. We’re going to use
SQLite, a popular open source database that is used on all of the other mobile platforms.

We’ll use the database in two different ways common to Windows Store apps:

• We’re going to create a database table to store system settings. (An example of a
setting that we’ll build is the user’s last logon username so that we can persist that
between sessions.) This will be a simple name/value store that will store string values
exclusively.

• We’re going to create a database table for holding problem reports downloaded
from the server. (To remind you, the idea behind the StreetFoo service is to store
problems with a user’s local environment—for example, graffiti, broken paving
slabs, or dumped garbage. Each instance of a problem report is called simply a
report.)

83

The more complex usage scenario is the problem reports, and my objective is to illustrate
the following concepts:

• Most application sponsors will likely commission the application so that it is able
to support “sometimes offline” capability. (This is a fancy way of saying that your
Internet connection is likely to be a bit flaky, but your application still needs to more
or less work when no network connection is available.) The way that we’ll do this
is by binding the frontend to a local cache of data that we update when we are able.
In this chapter, we’re not going to be handling updating the server—at the moment,
this is a read-only cache.

• The StreetFoo service uses JSON as its data format, and so we’re going to need some
way of mapping between a .NET object (in this context, a plain ol’ CLR object, or
POCO) and some JSON data. We’re going to use the popular JSON.NET library to
handle these transformations.

To start, let’s look at the libraries that we’ll need to use to support SQLite.

SQLite and sqlite-net
SQLite is a well-established, public-domain-licensed, tiny, high-performance, and gen‐
erally wonderful embedded database. Apple bakes it into iOS, Google bakes it into An‐
droid, and RIM bakes it into BlackBerry. The only vendor that doesn’t bake it into
anything is Microsoft.

Luckily, though, the organization that maintains SQLite—SQLite.org—wants to make
sure that developers targeting Windows 8/Windows RT can use SQLite, and hence there
is a version of it available that works in Windows Store apps.

In Windows Store apps, you use SQLite via the open source sqlite-net library. This
library is maintained by Frank Krueger, is licensed under the MIT license, and is avail‐
able on GitHub. When we come to use the library in our project, we’re going to use
NuGet to install it into our project.

In addition to the sqlite-net code, you will need the SQLite engine itself. SQLite.org
provides a version of the library that works with Windows Store apps. This is made
available as a Visual Studio extension, which you can download from the maintainer’s
site.

As of the time of writing, you’re looking for the version called Precompiled Libraries
for Windows Runtime. When you install this, you’ll see something like Figure 3-1.

84 | Chapter 3: Local Persistent Data

http://github.com/praeclarum/sqlite-net
http://sqlite.org/download.html
http://sqlite.org/download.html

Figure 3-1. Installing the SQLite extension for Windows Store apps

At the time of writing, the version of this library for Windows 8.1 was
not finalized and was still in beta. The Windows 8 version will not
work with Visual Studio 2013 and Windows 8.1. Make sure you get
the latest and greatest.

Working with SQLite
SQLite is a relational database like any other, but it includes some clever features for
working with relational databases in a “looser” way. One example is that you have this
extension to regular ANSI-92 SQL syntax for creating a table, but only if it doesn’t exist.
(In actual fact, when we do create tables we’ll ask sqlite-net to do it for us, and it will be
responsible for formulating the SQL—but we’ll get to that.)

CREATE TABLE IF NOT EXISTS Customers (...)

In this chapter, I assume that you know your way around basic SQL
syntax. It’s not going to get any more complicated than the preced‐
ing example!

This means that when using SQLite we don’t need to check that a table does or does not
exist before issuing a create call. Remember that the usage of SQLite is predicated on
lightweight, on-demand, embedded use as opposed to structured and managed,
enterprise-type use.

Working with SQLite | 85

Another place where SQLite is different is that the data typing is very loose. In the first
instance, data types are associated with a value, not with the actual column definition;
so, we could store string values in numeric fields if we wanted. (The column “definition”
is actually more of a column “recommendation.”) In addition, there are only five types
of data types that are supported: null, text, integer, real, and blob.

We’re not going to hit any issues with data typing here, and it’s un‐
likely that you will either, given how SQLite is typically used.

As I alluded to, we’re going to be using sqlite-net almost exclusively to retrieve, store,
and change data in the database. sqlite-net has a micro-ORM (object relational map‐
ping) that is used to do this.

I’ll present a brief primer on object-relational mapping in the next section. If you’re
familiar with ORM, skip this bit and meet us back at “Using the Micro-ORM in sqlite-
net” on page 87.

A Primer on Object-Relational Mapping
I’ve always been something of a fan of ORM, but as of the time of writing, there’s a trend
where it’s regarded as less relevant than it once was, and perhaps quite “old hat.”

Most of you have heard of ORM, but just to frame the discussion the general idea is that
you have classes in your code that map one to one with tables in your database. If you
have a Customers table with FirstName and LastName fields, you might have a Custom
er class with FirstName and LastName properties.

Once we have the model you can then perform CRUD operations: create, retrieve, up‐
date, and delete. If you want to insert a customer you create a new Customer, set the
properties, and then hand it over to the ORM, which then translates the object’s state
into an INSERT statement. Likewise, you can ask the ORM to return a collection of
Customer instances. You do so by issuing a SELECT statement to the database, the results
table of which is then used to construct a new set of actual Customer instances, with the
properties of each populated with the data persisted in the database.

Once you have objects returned from the database, you can ask the ORM to issue UPDATE
and DELETE statements on your behalf. The advantage in ORM is that you’re not having
to faff around building SQL statements.

There are all sorts of reasons why ORM is not attractive to use, the most common of
these being that you likely don’t want to model your domain in the same way that you
might store data in a normalized fashion in a relational database, and it’s really this point
where in complex systems it struggles. What ORM is great for, though, is simply and

86 | Chapter 3: Local Persistent Data

cheaply persisting data. Whether or not ORM is appropriate in enterprise applications
is (thankfully) beyond the scope of this book. We need to locally cache data so that we’re
not dependent on an Internet connection, and some form of ORM solution is a good
fit for that scenario.

Part of the greater discussion around ORM has been the idea of a micro-ORM, which
is designed to be a more lightweight way of working with ORM frameworks. Most ORM
frameworks insist on a relatively high level of investment from the developer in terms
of spinning up the framework, using specific base classes, and structuring code in a
certain way. With a micro-ORM the only assumption is that you’re expected to build
classes and use public read/write properties.

A famous micro-ORM in the .NET world is Dapper. This is used by Stack Overflow as
part of its technology stack. While it’s a decent micro-ORM, it uses ADO.NET, which
is not supported in WinRT, and hence we can’t use it. What we can use instead is a micro-
ORM not dependent on ADO.NET, and the one I’ve chosen to use in this book is sqlite-
net.

sqlite-net has all the features you’d expect from a micro-ORM. You build your domain
objects, decorate them with attributes, and use various methods in the sqlite-net classes
to run CRUD operations. Now that you know the background, let’s look at how we can
use them.

Using the Micro-ORM in sqlite-net
Here’s an example of a class that models a customer setup for use with sqlite-net:

 public class Customer
 {
 [AutoIncrement, PrimaryKey]
 public int Id { get; set; }

 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Email { get; set; }
 }

We won’t be storing “customers” in our database—this is just an
example.

When using sqlite-net, you will find two versions of the API. One is designed to be used
synchronously and the other is designed to be used asynchronously. We’ll be using the
asynchronous API.

Working with SQLite | 87

http://code.google.com/p/dapper-dot-net/

When the application first runs, there likely won’t be a database file on the disk. SQLite
will create database files for you; all you’ll need to do is tell it which tables you need,
which you can do by using the sqlite-net CreateTableAsync method. You can call
CreateTableAsync even if the table does already exist—unlike most SQL implementa‐
tions SQLite is able to ignore instructions to create tables that do already exist. (We
spoke about this special feature of SQLite earlier in this chapter.) As a bonus, if sqlite-
net detects that new columns have been added to the table, it’ll add these in for you. The
upshot of this is that there’s zero complexity in terms of synchronizing schemas in the
store database even as you release new versions of the app.

Here’s an example of using CreateTableAsync:
 var conn = new SQLiteAsyncConnection("foobar.db");
 await conn.CreateTableAsync<Customer>();

Once you’ve created the table, you can use InsertAsync, UpdateAsync, and DeleteA
sync. For example, this code shows how we can create a new database, create a table
within it, and then insert a new customer:

 var conn = new SQLiteAsyncConnection("foobar.db");
 await conn.CreateTableAsync<Customer>();

 // create a customer...
 Customer customer = new Customer()
 {
 FirstName = "foo",
 LastName = "bar",
 Email = "foobar@mbrit.com"
 };

 // insert..
 await conn.InsertAsync(customer);

 // log...
 Debug.WriteLine(string.Format("Created customer #{0}", customer.Id));

The final thing you need to understand when using sqlite-net is how to query data. You
can do this using the Table<T> method.

The Table<T> method doesn’t actually access the database (which is why it’s not called
TableAsync<T>). What it does is build up a query, which you can then access using
ToListAsync, FirstAsync, or FirstOrDefaultAsync—these methods are inspired by
the Linq extension methods that you’re likely familiar with from traditional .NET work
and, as their name suggests, do use asynchrony.

For example, here’s how to select a list of customers:
 var conn = new SQLiteAsyncConnection("foobar.db");
 await conn.CreateTableAsync<Customer>();

 // create a query...

88 | Chapter 3: Local Persistent Data

 var query = conn.Table<Customer>().Where(v => v.LastName.StartsWith("A",
StringComparison.CurrentCultureIgnoreCase));

 // run...
 var list = await query.ToListAsync();

 // log...
 Debug.WriteLine(string.Format("List contains {0} elements(s)", list.Count));

Those are the basics of how sqlite-net works. The examples are all a little artificial, as
each one calls CreateTableAsync at the top. In reality, it is better practice to get all of
the tables set up when the application starts; that way, you’ll know you have the database
in the correct format when you need to use it and you can take that off of your radar.
We’ll see an example of how to do this shortly.

Storing Settings
A typical usage pattern for using SQLite in mobile applications is to have one database
for system data (such as global settings) and n databases for user data. The specific
implementation we’re going to see here will use the logged-on user’s username as part
of the filename of the user database. (The rationale for doing this is straightforward: if
you have multiple people logging on to the same device, you want their data siloed off
from other users. This is a quick and dirty way of solving that problem. Of course, if
they are logged on to the device with a distinct account, their user data would be isolated
anyway.)

In this first section we’re going to look at how to store settings in a user-agnostic system
database. Specifically, we’ll store the last used logon name, and we’ll tweak the operation
of LogonPageViewModel to save and load this as appropriate.

The SettingItem Class
The approach we’ll use is a name/value pair table. I’m going to assume this is a fairly
obvious pattern, but essentially what we’re trying to do is use a relational database table
to hold a list of values keyed off of a name. Specifically, we’ll use the name LastUser
name to store the value of the last used username.

As well as fields for name and value, we’ll need a field to hold an integer ID. This is just
my personal preference for building database tables—I always have a single integer
primary key for everything, even though in this case keying the table off of the Name
column is appropriate.

We can give sqlite-net instructions on how to create indexes using IndexedAttribute
and UniqueAttribute. We’ll use UniqueAttribute here. Here’s the code:

 public class SettingItem
 {

Storing Settings | 89

 // key field...
 [AutoIncrement, PrimaryKey]
 public int Id { get; set; }

 // other fields...
 [Unique]
 public string Name { get; set; }
 public string Value { get; set; }
}

sqlite-net takes the name of a database by way of a connection string. It will detect when
compiled against WinRT and will automatically put the database file in the correct
location. Specifically, the path it will use is referenced via a call to Windows.Storage.Ap
plicationData.Current.LocalFolder.Path. (We’ll talk more about filesystem access
in Chapter 6.)

“Connection string” in sqlite-net terms is probably a bit strong— it is simply the name
of the database file. We can add a constant for storing this name, and a method for
returning a connection based on it, to StreetFooRuntime. As we’ll also need a “user
connection string,” I’m proposing creating a property and helper method for this too.
Here’s the code; I’ve omitted a good deal of code from StreetFooRuntime for brevity.

 // add members to StreetFooRuntime...

 public static class StreetFooRuntime
 {
 // fields omitted...

 // holds references to the database connections...
 internal const string SystemDatabaseConnectionString =
"StreetFoo-system.db";
 internal static string UserDatabaseConnectionString = null;

 // defines the base URL of our services...
 internal const string ServiceUrlBase =
"http://streetfoo.apphb.com/handlers/";

 // starts the application/sets up state...
 public static async void Start(string module)
 {
 // omitted...
 }

 internal static SQLiteAsyncConnection GetSystemDatabase()
 {
 return new SQLiteAsyncConnection(SystemDatabaseConnectionString);
 }

 internal static SQLiteAsyncConnection GetUserDatabase()
 {
 return new SQLiteAsyncConnection(UserDatabaseConnectionString);

90 | Chapter 3: Local Persistent Data

 }
 }

At this point, though, this won’t compile because we haven’t compiled in the sqlite-net
classes. (Even if it did compile, it wouldn’t run because we haven’t included the SQLite
reference.) Let’s do this now.

Linking in sqlite-net
Unlike most libraries, sqlite-net is intended to be compiled into your application as
opposed to being referenced through an assembly or DLL. (Although you can do either
of those if you wish. Personally, I like these small open source libraries that you can
compile into your project directly; the self-contained nature of them is a big win. That
said, complex libraries that require frequent updating don’t lend themselves well to this
model.)

To install the sqlite-net library, right-click on the UI-agnostic StreetFoo.Client project
in Solution Explorer and select Manage NuGet Packages. Search the NuGet official
package source for sqlite-net. You’ll see something like Figure 3-2.

Figure 3-2. Finding the sqlite-net package

Click Install to install the library. Two files will be added to the project, as shown in
Figure 3-3.

Storing Settings | 91

Figure 3-3. The two sqlite-net files in situ within the project

The sqlite-net library is slightly unusual in that it doesn’t install bi‐
nary references in the project—it actually adds source code files.

To clarify, at this point we still don’t have the SQLite engine—all we have is a client that’s
able to talk to SQLite. What we need to do now is add a reference to that engine. SQLite
is implemented in C, and it’s compiled into native code.

This creates some complications. Back when .NET was originally designed, the objective
was to build something that was processor-agnostic in a similar way to how Java was.
This is why .NET assemblies compile to Microsoft Intermediate Language (MSIL).
When .NET code is actually executed, it is “just in time” compiled to native code. This
works well in practical terms in the .NET world as you can create one assembly that
runs on x86- and x64-based systems. You do so by setting the build configuration to
Any CPU, which happens to be the default option.

In the Windows Store apps world, we still have Any CPU, but the meaning here is
different. In Windows Store apps, Any CPU means x86, or x64, or ARM. However,
because SQLite is native code, you have to indicate which processor you want it to run
on. This doesn’t really have any impact, apart from making packaging the app a little
more complicated. If you have an “Any CPU” app, you can upload one package to the
Windows Store and it’ll work for everyone. If you can’t use Any CPU, you’ll need to
create packages for each processor that you want to support. (I’ll talk in a moment about
why selecting x86 and ignoring x64 is likely good enough.) We talk more about pack‐
aging for the Store in Chapter 15. If you’re wondering why the native core Windows

92 | Chapter 3: Local Persistent Data

Runtime components work with Any CPU, it’s because Windows is handling that part
of the problem on your behalf.

Recall that previously you installed the Visual Studio extension that provided SQLite
capability. You can now add a reference to the SQLite engine using the Add Reference
dialog within Visual Studio. However, you need to select the Windows option from the
list on the left, and the Extensions suboption within that. You then need to select both
the SQLite for Windows Runtime option and the Microsoft Visual C++ Runtime Pack‐
age option. (SQLite depends on that Visual C++ package—it’s analogous to the Visual
C++ Redistributables package from previous platform architectures.) Figure 3-4
illustrates.

Figure 3-4. Adding the SQLite reference

If you accept those changes and compile, you’ll see errors like this:
1>------ Build started: Project: StreetFoo.Client, Configuration: Debug Any CPU
------1>C:\Windows\Microsoft.NET\Framework\v4.0.30319\Microsoft.Common.targets
(1701,5): error MSB3779: The processor architecture of the project being built
 "Any CPU" is not supported by the referenced SDK "Microsoft.VCLibs,
Version=11.0". Please consider changing the targeted processor architecture of
your project (in visual studio this can be done through the Configuration
Manager) to one of the architectures supported by the SDK: "x86, x64, ARM".
1>C:\Windows\Microsoft.NET\Framework\v4.0.30319\Microsoft.Common.targets
(1701,5): error MSB3779: The processor architecture of the project being built

Storing Settings | 93

"Any CPU" is not supported by the referenced SDK "SQLite.WinRT,
Version=3.7.14.1". Please consider changing the targeted processor architecture
of your project (in visual studio this can be done through the Configuration
Manager) to one of the architectures supported by the SDK: "x86, x64, ARM".
2>------ Build started: Project: StreetFoo.Client.UI, Configuration: Debug Any
CPU ------
2>CSC : error CS0006: Metadata file 'C:\BookCode\Chapter04\StreetFoo.Client\
StreetFoo.Client\bin\Debug\StreetFoo.
Client.dll' could not be found
========== Build: 0 succeeded, 2 failed, 0 up-to-date, 0 skipped ==========

This is telling us that we need to be explicit about our choice of processors.

It’s very important when you change this that you use the Configuration Manager option
within Visual Studio and not just go into the per-project properties and change options
in there. Right-click on the solution in Solution Explorer and choose Configuration
Manager. Set the “Active solution platform” to x86. Figure 3-5 illustrates.

Figure 3-5. Setting the solution platform to x86

Confirm that this mostly works by compiling the project. You won’t be able to test the
ability to reference sqlite3.dll without running it, which you can’t do yet because we
haven’t written the code to call it.

94 | Chapter 3: Local Persistent Data

A Quick Word About x64 Support
Try to avoid the temptation to think that you need to support x86 and x64 packages
explicitly. You most likely do not need to do this. We tend to think of x64 as being “better,”
but it’s actually only better if you need to support great gobs of data and need the address
space. Most normal apps (especially those running on low-end hardware, like tablets)
can’t take advantage of 64-bit, and there’s no practical difference between running an
x86 app on an x64 system and a native x64 app running on an x64 system.

By way of illustration, consider that Microsoft produces 64-bit versions of SQL Server
and Exchange Server, but Visual Studio only comes in an x86 variety and there are no
plans to produce an x64 version. If you need to split up your packages, you’ll only really
need to produce x86 and ARM versions to cover the entire platform.

Creating the Database Table for SettingItem
We already have a place for setting up our application on boot—it’s the Start method
of StreetFooRuntime. This would seem a good place to set up our system database.

One wrinkle is that if we want to access the database from that method, we’ll need to
make it async so that we can await the CreateTableAsync<T> call. This will involve
rattling back through the methods that call Start to flow through the asynchronous
nature of the call.

First, then, here’s the modification to the Start method that will create our Set
tingItem table. Note the change to the method declaration to include async and an
adjustment of the return type from void to Task:

 // starts the application/sets up state...
 public static async Task Start(string module)
 {
 Module = module;

 // initialize TinyIoC...
 TinyIoCContainer.Current.AutoRegister();

 // initialize the system database...
 // a rare move to do this synchronously as we're booting up...
 var conn = GetSystemDatabase();
 await conn.CreateTableAsync<SettingItem>();
 }

Oddly, the compile won’t raise a warning that the preexisting call to Start was not
awaited. (The preexisting call happens to be within the OnLaunched method in
App.xaml.) We should fix that, as we want things to happen in a predictable order—
specifically, we don’t want our logon form displayed before the application has started.

Storing Settings | 95

I won’t show the code because it’s just a simple change in a larger method, but you should
find OnLaunched, declare it to be async, and add an await declaration to the call.

At this point you can run the application, although you won’t see much. That said, having
it not crash is a good enough indicator that the various bits are in the right place.

Reading and Writing Values
Now that we have a database table that we can use, we can turn our attention to methods
that read and write values to it. We’ll start with SetValueAsync.

SetValueAsync

The operation here is that given a key, we need to find an item with that key and create
it if it does not exist. Either way, we need to set the value.

SetValueAsync will use the same convention used previously with regards to the three
callbacks to business-tier methods (success, failure, and complete). Here’s the code:

 public class SettingItem
 {
 // key field...
 [AutoIncrement(), PrimaryKey()]
 public int Id { get; set; }

 // other fields...
 [Unique]
 public string Name { get; set; }
 public string Value { get; set; }

 internal static async Task SetValueAsync(string name, string value)
 {
 var conn = StreetFooRuntime.GetSystemDatabase();

 // load an existing value...
 var setting = await conn.Table<SettingItem>().Where(v => v.Name
== name).FirstOrDefaultAsync();
 if (setting != null)
 {
 // change and update...
 setting.Value = value;
 await conn.UpdateAsync(setting);
 }
 else
 {
 setting = new SettingItem()
 {
 Name = name,
 Value = value
 };

96 | Chapter 3: Local Persistent Data

 // save...
 await conn.InsertAsync(setting);
 }
 }

It should be fairly obvious what we’re doing there. After we have a connection, we’re
querying the table to find out whether we have an item with that name already. If we
do, we update it; if we don’t, we create it.

GetValueAsync

GetValueAsync will do the reverse. If we have it, it’ll return it; otherwise, we’ll return
null. Here’s the code:

 // add method to SettingItem...
 internal static async Task<string> GetValueAsync(string name)
 {
 var conn = StreetFooRuntime.GetSystemDatabase();

 // load any existing value...
 var setting = (await conn.Table<SettingItem>().Where(v => v.Name
== name).ToListAsync()).FirstOrDefault();
 if (setting != null)
 return setting.Value;
 else
 return null;
 }

Now that we can get and set values, we can use these operations on LogonPageViewMo
del.

Modifying LogonPageViewModel
Implementing this is very easy, as it should be because all we’re doing is handling per‐
sistent settings values. If we’ve ended up making this difficult, we’ve mucked something
up with the approach.

The only thing that’s missing is that at this point we don’t have a way of knowing that a
view has been activated. This is where having base classes for the view-model types
makes sense, as we can add an Activated method to the ViewModel class and override
it whenever we need to know that we’ve been activated.

Here’s the change to IViewModel:
 // add method to IViewModel...

 // base class for view-model implementations...
 public interface IViewModel : INotifyPropertyChanged
 {
 // property to indicate whether the model is busy working...
 bool IsBusy

Storing Settings | 97

 {
 get;
 }

 // called when the view is activated...
 void Activated();
 }

Here’s the new method to add to ViewModel:
 // add to ViewModel...

 // called when the view is activated…
 public virtual void Activated()
 {
 }

Now we need to call it, but that’s a little more complicated.

LayoutAwarePage is given to use by Visual Studio on project inception, but we have
refrained from making that understand view-models. Consider that thus far all we’ve
done when we create a view based on our new StreetFooPage class is create a Model
property and just set that to be whatever is returned from the view-model IoC container.
We now need to change StreetFooPage so that when a page is displayed (“navigated
to”), we find the view-model and call Activated. Plus, we could do with adding an ex‐
tension method so that we can dereference a view-model from a page.

Here’s the code to add to PageExtender:
 // Add method to PageExtender...
 internal static IViewModel GetModel(this Page page)
 {
 return page.DataContext as IViewModel;
 }

Here’s the implementation of OnNavigatedTo that needs to be added to StreetFooPage:
 // Add method to StreetFooPage...
 protected override void OnNavigatedTo
(Windows.UI.Xaml.Navigation.NavigationEventArgs e)
 {
 base.OnNavigatedTo(e);
 // ok...
 this.GetModel().Activated();
 }

To round this off, we need to call SetValueAsync and GetValueAsync to set and get the
last known user. We’ll do this in that order.

To set the last known user, we need to modify the DoLogon method in LogonPageView
Model to save the username on success logon. Here’s the code to do that:

98 | Chapter 3: Local Persistent Data

 // Add a constant to hold the name of the value...
 internal const string LastUsernameKey = "LastUsername";

 // Modify DoLogon method in LogonPageViewModel...
 private async void DoLogon(CommandExecutionContext context)
 {
 // validate...
 ErrorBucket errors = new ErrorBucket();
 Validate(errors);

 // ok?
 if (!(errors.HasErrors))
 {
 // get a handler...
 ILogonServiceProxy proxy = ServiceProxyFactory.Current.GetHandler
<ILogonServiceProxy>();

 // call...
 using(this.EnterBusy())
 {
 var result = await proxy.LogonAsync(this.Username,
this.Password);
 if (!(result.HasErrors))
 {
 // logon... pass through the username as each user gets
 // their own database...
 await StreetFooRuntime.LogonAsync(this.Username,
result.Token);

 // while we're here - store a setting containing the
 // logon name of the user...
 await SettingItem.SetValueAsync(LastUsernameKey,
this.Username);

 // something happened...
 await this.ShowAlertAsync("Logon OK.");
 }
 else
 errors.CopyFrom(result);
 }
 }

 // errors?
 if (errors.HasErrors)
 await this.Host.ShowAlertAsync(errors);
 }

That’s the setter. The getter is just as easy. Here’s the change that uses the Activated
method we built earlier:

 public override async void Activated()
 {
 base.Activated();

Storing Settings | 99

 // restore the setting...
 this.Username = await SettingItem.GetValueAsync(LastUsernameKey);
 }

You should now find that if you run the app and log on, then close the app and start it
again, the username will be remembered. This shows that the whole loop is closed end
to end—that is, you can create a new SQLite database, connect to it, and get data in and
out of it.

Caching Data Locally
Being able to store settings is a good introduction to working with data, but the much
more interesting part in this is being able to store data locally to work with, rather than
being dependent on a network.

Businesses typically take the view that Internet connections are inherently unreliable
and building apps that deal with this inherent unreliability is typically worth the extra
investment involved in syncing an offline cache of the data. Personally, I can’t see this
connection unreliability issue going away in anything but the long term—2023 or sim‐
ilar timescales.

The approach we’re going to use here is to have the view-model and the attendant logic
work exclusively with the local cached copy. We know that the local database is always
available. Separate components will deal with getting data from the network and into
the cache. Ultimately, we can then extend this model to synchronizing local changes
back to the store on the server. We’ll actually do this in Chapter 15.

Local Caching
On our server we have a list of problem reports, and it’s these that we need to get down
onto the device. The data is not complex data—in fact, these are stored in one table and
there is no related data (i.e., it’s just a flat list). We’ll create a ReportItem class to store
reports, and structurally it won’t be much more complicated than the SettingItem class
that we just worked with.

The only difference is that whereas in SettingItem we created the entity and control
its lifetime and values locally, for ReportItem the master copy of the data will reside on
the server.

The server is going to return the reports as JSON, so we’ll need to convert the JSON
data returned into ReportItem instances. We’re going to use a process called mapping
to do this. It’s a very straightforward idea: you nominate fields in your domain objects
and tell them which values in the JSON they map to.

100 | Chapter 3: Local Persistent Data

In the .NET world, the best framework to use for JSON mapping is JSON.NET. Micro‐
soft’s engineers themselves even recommend using this library. To install JSON.NET,
right-click on the UI-agnostic StreetFoo.Client project in Solution Explorer and select
Manage NuGet Packages. Search the NuGet official package source for JSON.NET. (This
is essentially the same process as when we installed sqlite-net previously.)

Mapping JSON to Database Entities
The JSON that we’re dealing with (i.e., the JSON describing an individual report) will
look something like this:

{
 "ownerUserId":"4fb28003e7044a90803a3168",
 "title":"Remove damaged light",
 "description":"In malesuada vulputate ipsum sed posuere.",
 "latitude":0,
 "longitude":0,
 "apiKey":"4f41463a-dfc7-45dd-8d95-bf339f040933",
 "_id":"4fb2a0e1e7044a92bc693ac5"
}

We want to turn it into an object that looks like this:
 public class ReportItem
 {
 // key field...
 [AutoIncrement(), PrimaryKey()]
 public int Id { get; set; }

 // other fields...
 [Unique]
 public string NativeId { get; set; }
 public string Title { get; set; }
 public string Description { get; set; }
 public decimal Latitude { get; set; }
 public decimal Longitude { get; set; }
}

The advantage of not having a particularly sophisticated entity/domain model is it’s
really obvious to see what we need to do here. The description value in the JSON, for
example, has to map to the Description field in the ReportItem class. The only strange
one is NativeId, which has to map to the _id value in the JSON.

The server is using Mongo as its backing database, and _id is used as the unique object
ID within Mongo. Overall, what we’re trying to build here is a local cache of the remote
data. It’s a standard rule when doing this that you maintain your own IDs in the local
cache, but maintain references to the real IDs on the server. (Maintaining your own
local IDs allows the local database to do the heavy lifting for you and generally reduces
brittleness.) Having the real IDs allows you to go back to the database to issue instruc‐
tions for specific items.

Caching Data Locally | 101

In theory, then, we can further decorate our ReportItem class such that we know that
properties are mapped to values in the fields, as follows. Because the convention with
JSON is to camel-case the names, and in .NET we’re supposed to Pascal-case the names,
we need to provide that name mapping explicitly. Also, JSON.NET will map all of the
properties that it finds, so we need to explicitly ignore the Id property using the Jso
nIgnore attribute.

 public class ReportItem
 {
 // key field...
 [AutoIncrement, PrimaryKey, JsonIgnore]
 public int Id { get; set; }

 // other fields...
 [Unique, JsonProperty("_id")]
 public string NativeId { get; set; }

 [JsonProperty("title")]
 public string Title { get; set; }

 [JsonProperty("description")]
 public string Description { get; set; }

 [JsonProperty("latitude")]
 public decimal Latitude { get; set; }

 [JsonProperty("longitude")]
 public decimal Longitude { get; set; }
}

Creating Test Reports
The StreetFoo server has a feature whereby you can ask it to create test data for you,
rather than your having to key in test data. You’ll need to do this in order to run the rest
of the project; otherwise, you won’t have any data to store in your local cache, and
therefore no data to put on the screen.

To do this:

1. Go to http://streetfoo.apphb.com/.
2. Click on Create Sample Data.
3. Enter your API key and the name of a user that you have already registered.
4. Click Ensure Sample Data.

The server will look to see if an account on that API key has any reports stored against
it. If it does not, it will create 50 random reports for you.

102 | Chapter 3: Local Persistent Data

http://streetfoo.apphb.com/

Setting Up the User Database
At the beginning of this chapter, we discussed having separate system and user databases,
the idea being that we’d store system settings in one and user-specific data in the other.
The reports are an obvious example of user-specific data; hence, the first thing that we
need to do is get that database configured.

We’re going to configure the user database when the user logs on. (This makes sense,
as it’s the first place that we know we have a valid user.)

The first thing that we need to do is modify LogonPageViewModel so that it sets up the
database. As this operation to set up the database is a deep, application-level function,
my proposal is that we build a method in StreetFooRuntime that handles a logon op‐
eration. One of the things that we’re going to do is keep track of the logon token returned
by the server, and it makes more sense to keep this global. We’ll need to use this logon
token when we ask for reports; otherwise, the server won’t know which account the
report is for.

We’ve already seen how to set up a database when we worked with SettingItem. This
is essentially the same operation, just with a different POCO class.

Again, a POCO class is a plain ol’ CLR object, meaning a class that
has nothing special about it in terms of integrating with an ORM (i.e.,
no special base class, interface implementations, etc.).

Here’s the revised implementation of StreetFooRuntime, with some of the less relevant
code omitted:

 public static class StreetFooRuntime
 {
 // holds a reference to how we started...
 public static string Module { get; private set; }

 // holds a reference to the logon token...
 internal static string LogonToken { get; private set; }

 // holds a refrence to the database connections...
 internal const string SystemDatabaseConnectionString =
"StreetFoo-system.db";
 internal static string UserDatabaseConnectionString = null;

 // starts the application/sets up state...
 public static async void Start(string module)
 {
 // omitted...
 }

Caching Data Locally | 103

 internal static bool HasLogonToken
 {
 get
 {
 return !(string.IsNullOrEmpty(LogonToken));
 }
 }

 internal static async Task LogonAsync(string username, string token)
 {
 // set the database to be a user specific one... (assumes the
 //username doesn't have evil chars in it
 // —for production you may prefer to use a hash)...
 UserDatabaseConnectionString = string.Format(
 "StreetFoo-user-{0}.db", username);

 // store the logon token...
 LogonToken = token;

 // initialize the database—has to be done async...
 var conn = GetUserDatabase();
 await conn.CreateTableAsync<ReportItem>();
 }

 internal static SQLiteAsyncConnection GetSystemDatabase()
 {
 return new SQLiteAsyncConnection(SystemDatabaseConnectionString);
 }

 internal static SQLiteAsyncConnection GetUserDatabase()
 {
 return new SQLiteAsyncConnection(UserDatabaseConnectionString);
 }
 }

Of course, that won’t work unless we actually call the LogonAsync method from within
LogonPageViewModel. Here’s the change:

 // modify DoLogon within LogonPageViewModel...
 private async void DoLogon(CommandExecutionContext context)
 {
 // validate...
 ErrorBucket errors = new ErrorBucket();
 Validate(errors);

 // ok?
 if (!(errors.HasErrors))
 {
 // get a handler...
 ILogonServiceProxy proxy = ServiceProxyFactory.Current.GetHandler
<ILogonServiceProxy>();

 // call...

104 | Chapter 3: Local Persistent Data

 using(this.EnterBusy())
 {
 var result = await proxy.LogonAsync(this.Username,
 this.Password);
 if (!(result.HasErrors))
 {
 // logon... pass through the username as each user gets
 // their own database...
 await StreetFooRuntime.LogonAsync(this.Username,
 result.Token);

 // while we're here, store a setting containing the
 // logon name of the user...
 await SettingItem.SetValueAsync(LastUsernameKey,
 this.Username);

 // something happened...
 await this.ShowAlertAsync("Logon OK.");
 }
 else
 errors.CopyFrom(result);
 }
 }

 // errors?
 if (errors.HasErrors)
 await this.Host.ShowAlertAsync(errors);
 }

We now have everything configured in terms of the database. Now we can turn to
populating the local cache. Well, first we need a view to show the user.

Creating ReportsPage
Visual Studio comes with lots of page templates that we can use in our project. The most
relevant one to use here is the Items Page. This contains a scrolling grid of items where
the scrolling runs off the right side of the page, as dictated by the Modern UI design
language. Figure 3-6 illustrates where this template is in the Visual Studio Add New
Item list.

Caching Data Locally | 105

Figure 3-6. The Items Page template

Add one of these to your project, now called ReportsPage, and you can get going.

As you can probably imagine, the objective of this page is to get a list of reports to display
and then use data binding to present it. By default, you’ll get some data binding direc‐
tions, as per this automatically created one for ReportsPage:

 <Page.Resources>

 <!-- Collection of items displayed by this page -->
 <CollectionViewSource
 x:Name="itemsViewSource"
 Source="{Binding Items}"/>

 </Page.Resources>

One job we need to do is to get an Items property in the view-model that we’ll build in
a moment. (At this point, we just have a page and no attendant view-model.)

Before we do that, it’s worth looking at the template that we are given along with the
XAML.

Using Templates
This book is based on Visual Studio 2013 and Windows 8.1, however the way this was
done with Visual Studio 2012 and Windows 8 was slightly more refined. In Visual Studio

106 | Chapter 3: Local Persistent Data

2012, each project was given a huge set of standard styles and templates to use. When
Microsoft upgraded to Visual Studio 2013, they took these out. What happens in vanilla
Visual Studio 2013 is each time you create a grid, inline with the grid’s markup you get
a template that defines how each item looks. In Visual Studio 2012, each grid would be
created with a reference to a shared, standard style. What I’m going to do throughout
of work is create a shared library of styles and keep reusing it as we go. This library is
just a XAML file. To use it, we eventually need to alter App.xaml to reference that shared
library. To start, create a new file in the Common folder called StandardStyles.xaml.
Then add this markup:

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Style x:Key="BasicTextStyle" TargetType="TextBlock">
 <Setter Property="Foreground" Value="{StaticResource
ApplicationForegroundThemeBrush}"/>
 <Setter Property="FontSize" Value="{StaticResource
ControlContentThemeFontSize}"/>
 <Setter Property="FontFamily" Value="{StaticResource
ContentControlThemeFontFamily}"/>
 <Setter Property="TextTrimming" Value="WordEllipsis"/>
 <Setter Property="TextWrapping" Value="Wrap"/>
 <Setter Property="Typography.StylisticSet20" Value="True"/>
 <Setter Property="Typography.DiscretionaryLigatures" Value="True"/>
 <Setter Property="Typography.CaseSensitiveForms" Value="True"/>
 </Style>

 <Style x:Key="BaselineTextStyle" TargetType="TextBlock" BasedOn=
"{StaticResource BasicTextStyle}">
 <Setter Property="LineHeight" Value="20"/>
 <Setter Property="LineStackingStrategy" Value="BlockLineHeight"/>
 <!-- Properly align text along its baseline -->
 <Setter Property="RenderTransform">
 <Setter.Value>
 <TranslateTransform X="-1" Y="4"/>
 </Setter.Value>
 </Setter>
 </Style>

 <Style x:Key="TitleTextStyle" TargetType="TextBlock" BasedOn="
{StaticResource BaselineTextStyle}">
 <Setter Property="FontWeight" Value="SemiBold"/>
 </Style>

 <Style x:Key="CaptionTextStyle" TargetType="TextBlock" BasedOn=
"{StaticResource BaselineTextStyle}">
 <Setter Property="FontSize" Value="12"/>
 <Setter Property="Foreground" Value="{StaticResource
ApplicationSecondaryForegroundThemeBrush}"/>
 </Style>

Caching Data Locally | 107

 <DataTemplate x:Key="ReportItem250x250Template">
 <Grid HorizontalAlignment="Left" Width="250" Height="250">
 <Border Background="{StaticResource
ListViewItemPlaceholderBackgroundThemeBrush}">
 <Image Source="{Binding ImageUri}" Stretch="UniformToFill"/>
 </Border>
 <StackPanel VerticalAlignment="Bottom"
Background="{StaticResource ListViewItemOverlayBackgroundThemeBrush}">
 <TextBlock Text="{Binding Title}" Foreground="
{StaticResource ListViewItemOverlayForegroundThemeBrush}" Style="{StaticResource
TitleTextStyle}" Height="60" Margin="15,0,15,0"/>
 <TextBlock Text="{Binding Description}" Foreground=
"{StaticResource ListViewItemOverlaySecondaryForegroundThemeBrush}"
Style="{StaticResource CaptionTextStyle}" TextWrapping="NoWrap"
Margin="15,0,15,10"/>
 </StackPanel>
 </Grid>
 </DataTemplate>

</ResourceDictionary>

The template that we’re interested in is that last one—Standard250×250ItemTemplate.
We’ll use that in our grid shortly. To reference our new bundle of styles, edit App.xaml
and add this markup:

<Application
 x:Class="StreetFoo.Client.UI.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:StreetFoo.Client.UI">

 <Application.Resources>
 <ResourceDictionary>

 <!-- TODO: Delete this line if the key AppName is declared
 in App.xaml -->
 <local:BooleanNegationConverter x:Key="BooleanNegationConverter"/>
 <local:BooleanToVisibilityConverter x:Key=
"BooleanToVisibilityConverter"/>

 <!-- shared styles... -->

 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Common/StandardStyles.xaml"/>
 </ResourceDictionary.MergedDictionaries>

 </ResourceDictionary>
 </Application.Resources>

</Application>

108 | Chapter 3: Local Persistent Data

The activity surrounding the templates you are about to see happens a lot in WinRT.
You ask some subsystem for a template, which is returned as XML. You’ll then fill it in
with your own data. (We’ll see this specifically when we look at notifications in Chap‐
ter 4.)

Find the GridView that you were given when the page was created, remove the Data‐
Template element, then add this ItemTemplate attribute that references our common
style:

 <!-- Horizontal scrolling grid used in most view states -->
 <GridView
 x:Name="itemGridView"
 AutomationProperties.AutomationId="ItemsGridView"
 AutomationProperties.Name="Items"
 TabIndex="1"
 Grid.Row="1"
 Margin="0,-4,0,0"
 Padding="116,0,116,46"
 ItemsSource="{Binding Source={StaticResource itemsViewSource}}"
 ItemTemplate="{StaticResource ReportItem250×250ItemTemplate}"/>

In terms of the actual XAML, we’re done. This is really the point where Microsoft is
driving the tooling for Windows Store apps. The Modern UI design language promotes
an almost reductionist approach. As a result, the UIs are very easy to build.

It would be great to actually get some data on the page, so let’s do that now.

Building a Local Cache
We know that we have a user database that can store ReportItem instances once they
have been created from the JSON returned from the server; the question is, how do we
fill up the database?

Moreover, the question is, what sort of experience do we want for the user?

• If the user is logging in for the first time, the user’s database will be empty. In this
instance, we want to present the Reports page as blank, but update the cache in the
background. When the cache update is finished, we want to update the UI.

• If the user is not logging in for the first time, we don’t know how fresh the cached
data is. However, the user will want to see a working UI as quickly as possible, so
we’ll present whatever data we have and still update the cache in the background.
Again, when the cache update is finished, we want to update the UI.

Those distinctions are subtle, but important: get users to a point where they think that
something is happening, while in the background actually do the work that needs to be
done.

Caching Data Locally | 109

In actuality, this is pretty easy, given that async/await does all the heavy lifting for us
with regards to the multithreading. We can structure our code as normal synchronous
code and allow async/await to “streamline” it for multithreaded use. We can still drive
the UI in a responsive fashion, despite the fact that we have to check local databases,
drag data back from the network, update local databases, and so on.

This is reasonably complex to build, so let’s enumerate the components:

• We’ll need a new view-model called ReportsPageViewModel and its attendant IRe
portsPageViewModel.

• We’ll need a service proxy that can return data from the server. This will be called
GetReportsByUserServiceProxy.

• We’ll then need some sort of cache manager. We’ll have to make a decision about
where to put that, but it will need to be able to indicate whether the cache is empty,
fetch fresh data from the server, update its local store, and return its contents.

The first two are similar to things that we have built before, so when we do that I’ll go
through it quite quickly. The last part—the cache manager—is the novel part, so we’ll
take more time there.

So, the first decision we have to make about a cache manager is whether we roll it into
its own class, or whether we simply put methods in ReportItem that manage the cache.
My view on this is that if we were in a position where we were managing a lot of separate
caches, creating a generic concept of a “cache manager” and then specializing it would
make sense. I don’t think we’re in that place, though, so I’m going to invoke the idea of
YAGNI and propose a simpler solution of putting cache management methods in Re
portItem.

YAGNI is short for “you ain’t gonna need it.” It alludes to the fact that
developers are sometimes tempted to build overly complex systems
containing features that aren’t ultimately of value.

The first thing we’ll tackle is the indicator of whether the cache is empty.

This is the first place where we see the subtleties of working with an “async-capable”
database. We actually used this before, but didn’t go into detail—so let’s do that now.

The original version of sqlite-net (the access library we use for talking to SQLite data‐
bases) didn’t have support for asynchronous access. However, asynchronous access is
absolutely required if we want to create a good experience for the users of our app, and
one of the beautiful things about our industry is the fact that we can all contribute to
open source in order to fix things. Hence, sqlite-net now does have asynchronous sup‐
port.

110 | Chapter 3: Local Persistent Data

www.SoftGozar.com

In the original library, you can create queries on the database using the Table<T> meth‐
od. This method returns a TableQuery<T> instance and has a custom Where method.
The regular Where extension method added to IEnumerable<T> in System.Linq walks
objects that are already loaded in memory. The specific Where method on Table
Query<T> actually changes the query that will ultimately be issued to the database. Here’s
an example of using Where in the synchronous sqlite-net API and the query that it maps
to:

var query = GetConnection().Table<Foo>().Where(v => v.Bar == 27);
// issues to SQLite → SELECT * FROM FOO WHERE BAR=27

On the sqlite-net asynchronous API, exactly the same thing happens, but I’m laboring
this point because of the confusion between the Linq methods and the specific methods
added to sqlite-net.

System.Linq will give you methods like First, Any, and so on, but these methods will
run synchronously. When you run Table<T> on the asynchronous API you will get an
instance of AsyncTableQuery<T> back, which happens to implement IEnumerable<T>;
therefore, you gain access to everything that Linq can do. However, if you use any of
the underlying Linq methods, because Linq knows nothing about the asynchronous
nature of the API those methods will run synchronously. Therefore, it’s important that
you use the special asynchronous methods in AsyncTableQuery<T>. Those methods
specifically are FirstAsync, FirstOrDefaultAsync, ElementAtAsync, CountAsync, and
ToListAsync. Whether the original Linq methods will remain accessible in AsyncTa
bleQuery<T> remains to be seen, but as of the time of writing they are there.

All of that is a longwinded way of saying that this method, which needs to be added to
ReportItem, is correctly built to accommodate the asynchronous nature of the API:

 // add to ReportItem...
 internal static async Task<bool> IsCacheEmpty()
 {
 var conn = StreetFooRuntime.GetUserDatabase();
 return (await conn.Table<ReportItem>().FirstOrDefaultAsync())
== null;
 }

The Table<ReportItem>() method will run on the entry thread for the method (which
may or may not be the UI thread—it depends what you’ve been called by). FirstOrDe
faultAsync will definitely run on a worker thread.

Similarly, we can create GetAllFromCacheAsync, which returns everything from the
cache using a worker thread:

 // add to ReportItem...
 // reads the local cache and populates a collection...
 internal static async Task<IEnumerable<ReportItem>>
GetAllFromCacheAsync()
 {

Caching Data Locally | 111

 var conn = StreetFooRuntime.GetUserDatabase();
 return await conn.Table<ReportItem>().ToListAsync();
 }

Updating the Cache
We’ll do this next part backward—what we want to do is update the local cache, as‐
suming that we have some class that can return ReportItem instances from the server.
(We’ll build that class in a moment, and it’ll use JSON.NET to map the JSON to the
POCO.)

When we update the local cache, we want to walk each item that we get and see whether
we have an item with the given NativeId value in the database. If we do, then we have
two options: we can either delete the item on the assumption that we’ll insert it again,
or we can update the item. In this instance I’m proposing deleting it. The upshot of this
is that by the time we’ve run through everything, the local cache will be as per the set of
data returned from the server. (In production software, you normally aim for more
sophistication than “delete and recreate” in every instance.)

Here is the method that will get the reports from the server and update the local cache
accordingly:

 // add to ReportItem...
 // updates the local cache of the reports...
 public static async Task UpdateCacheFromServerAsync()
 {
 // create a service proxy to call up to the server...
 var proxy = TinyIoCContainer.Current.Resolve
<IGetReportsByUserServiceProxy>();
 var result = await proxy.GetReportsByUserAsync();

 // did it actually work?
 result.AssertNoErrors();

 // update...
 var conn = StreetFooRuntime.GetUserDatabase();
 foreach (var report in result.Reports)
 {
 // load the existing one, deleting it if we find it...
 var existing = await conn.Table<ReportItem>().Where(v =>
v.NativeId == report.NativeId).FirstOrDefaultAsync();
 if (existing != null)
 await conn.DeleteAsync(existing);

 // create...
 await conn.InsertAsync(report);
 }
 }

112 | Chapter 3: Local Persistent Data

I hope you can see that working with the database is quite easy and that, in particular,
async/await makes working with asynchronous code straightforward.

Returning Reports from the Server
We’ve made server calls a couple of times already, so I’ll do this quickly. The only in‐
teresting part is using JSON.NET to do the mapping. In previous examples, whenever
we called the server we didn’t do any automated JSON mapping on the results. As dis‐
cussed, the server will give us back an array of reports as a string. We can use JSON.NET
to transform that string into ReportItem instances.

One thing we need to cover first, though, is that we need to send the logon token up to
the server so that the server knows who we are. We do this within the ServiceProxy
class. We already passed up the API key; now we need to also pass up the LogonToken
if we have one. The ConfigureInputArgs method was used previously to do this. Here’s
the change:

 // Modify method in ServiceProxy class...
 protected void ConfigureInputArgs(JsonObject data)
 {
 // all the requests need an API key...
 data.Add("apiKey", ApiKey);

 // are we logged on?
 if (StreetFooRuntime.HasLogonToken)
 data.Add("logonToken", StreetFooRuntime.LogonToken);
 }

Finally, we can look at the actual service call. Here’s the implementation of GetReports
ByUserAsync. This is where we use the core class of JSON.NET—the JsonConvert class.
All we have to do to use this is just tell it what type of object we think the JSON string
contains. JsonConvert will then sort this all out for us. (It’s really this that makes
JSON.NET so appealing. Not only is it fast—and it is very fast—but also the usage pattern
is significantly straightforward to make it almost magical. Give it the merest hint of what
you want, and it seems to work it all out.)

 // Add method to GetReportsByUserServiceProxy...
 public async Task<GetReportsByUserResult> GetReportsByUserAsync()
 {
 var input = new JsonObject();
 var executeResult = await this.Execute(input);

 // did it work?
 if (!(executeResult.HasErrors))
 {
 // get the reports...
 string asString = executeResult.Output.GetNamedString(
 "reports");

Caching Data Locally | 113

 // use JSON.NET to create the reports...
 var reports = JsonConvert.DeserializeObject<List<ReportItem>>
(asString);

 // return...
 return new GetReportsByUserResult(reports);
 }
 else
 return new GetReportsByUserResult(executeResult);
 }

GetReportsByUserResult will hold a list of reports. This will also extend ErrorBuck
et so that we can return any errors back to the caller. Here’s the code:

 public class GetReportsByUserResult : ErrorBucket
 {
 internal List<ReportItem> Reports { get; set; }

 internal GetReportsByUserResult(IEnumerable<ReportItem> items)
 {
 this.Reports = new List<ReportItem>();
 this.Reports.AddRange(items);
 }

 internal GetReportsByUserResult(ErrorBucket bucket)
 : base(bucket)
 {
 }
 }

We’re almost there—we just need to define the interface and enroll the service proxy
into the service IoC container. Here’s the interface:

 public interface IGetReportsByUserServiceProxy : IServiceProxy
 {
 Task<GetReportsByUserResult> GetReportsByUserAsync();
 }

We’re actually now very close to getting this working. The only remaining step is to get
the view-model to expose a list of items.

The Items Property
The only slightly odd thing that we have to do is that in order to update the grid, we
need to use a special type of collection that will signal to the XAML data binding sub‐
system whenever data in the list changes. A normal List<T> won’t work, as this doesn’t
have any events that can be subscribed to. What we need to use instead is Observable
Collection<T>, which does.

114 | Chapter 3: Local Persistent Data

The way this works is that we have our model expose an ObservableCollection<Re
portItem> called Items. From time to time, we’ll load ReportItem instances from the
cache and manipulate this collection.

To make this more manageable, we’ll attack the problem in smaller chunks. The first
step is to create a fake report and see if we can get it on the screen.

Here’s the code for ReportsPageViewModel to put up a fake report:
 public class ReportsPageViewModel : ViewModel, IReportsPageViewModel
 {
 public ObservableCollection<ReportItem> Items { get; private set; }

 public ReportsPageViewModel(IViewModelHost host)
 : base(host)
 {
 // setup...
 this.Items = new ObservableCollection<ReportItem>();

 // add a fake report...
 this.Items.Add(new ReportItem()
 {
 Title = "Foobar",
 Description = "Hello, world."
 });
 }
}

If you run that code and log on, you’ll see something like Figure 3-7.

Figure 3-7. Our fake report

Replacing the fake reports with real reports is relatively straightforward. All we have to
do is override the Activated method on ViewModel and then update or load the cache.
Because we’re using async/await, the user interface will present itself and update the
Items list while this is going on. This should create an impression of responsiveness,

Caching Data Locally | 115

even if users don’t actually have access to the data that they’re looking for in the first few
seconds of operation.

To close the loop and put this together, we need to build a mechanism to refresh the
user interface. In the version of the code that you can download, you will find a specific
Refresh button; however, we won’t build the actual button here. (All the button does is
call the DoRefresh method that we’re about to build.)

That DoRefresh method will look to see if the cache is empty or if a flag is set. If either
of those is true, it will defer to the cache management method in ReportItem called
UpdateCacheFromServerAsync, which we built earlier. After the cache has been updated
(or if it does not need updating), we’ll load the items from the cache and update the
collection referenced via our Items property. The standard XAML data binding sub‐
system, together with the functionality in ObservableCollection<T>, will result in the
UI being updated.

Here are the three methods to add to ReportsPageViewModel:
 // add methods to ReportsPageViewModel...
 private async Task DoRefresh(bool force)
 {
 // run...
 using (this.EnterBusy())
 {
 // update the local cache...
 if (force || await ReportItem.IsCacheEmpty())
 await ReportItem.UpdateCacheFromServerAsync();

 // reload the items...
 await this.ReloadReportsFromCacheAsync();
 }
 }

 private async Task ReloadReportsFromCacheAsync()
 {
 // set up a load operation to populate the collection
 // from the cache...
 using (this.EnterBusy())
 {
 var reports = await ReportItem.GetAllFromCacheAsync();

 // update the model...
 this.Items.Clear();
 foreach (ReportItem report in reports)
 this.Items.Add(report);
 }
 }

 public override async void Activated()
 {

116 | Chapter 3: Local Persistent Data

 await DoRefresh(false);
 }

Now if you do that, the whole lot will work end to end—specifically, we’ll grab the data
from the server, update the local cache, and then update the screen. Figure 3-8 illustrates.

Figure 3-8. Report sample data shown on the grid

Caching Data Locally | 117

CHAPTER 4

The App Bar

We know that Windows 8/Windows RT represents a reimagining of Windows, and part
of that work is to move Windows away from a windows, icons, menus, and pointer
(WIMP) paradigm, and to one designed to be used by touch. In this chapter we’re going
to start looking at one of the tactics used to remove WIMP—specifically, the app bar.

Figure 4-1 shows an example of the app bar from the built-in Mail app.

Figure 4-1. The app bar in the built-in Mail app

The app bar is designed to expose application commands to the user, but to move away
from the tap-and-hold UI paradigm that was used in Windows Mobile and other early-
generation touch interfaces.

If you go back a decade or so, mobile OS designers needed to implement a way of “right-
clicking” on UI elements to display a context menu. A stylus has no modality in the way
that a mouse does—the concept of “done with left” and “done with right” makes no
sense when using a stylus or finger. The way that mobile OS designers “fixed” this was
that if you tapped and held an item with your stylus or finger, a pop-up context menu
appeared.

There are two problems with tap and hold. In the first instance, you are asking users to
put their life on hold while the timeout period elapses for the operation. That is very
much a “come on, come on!” moment for the user. The second instance is that there’s

119

no way of indicating to the user that something is right-clickable/tap-and-holdable. To
put it another way, the discoverability of tap-and-hold functions is horrible. (For what
it’s worth, you get discovery issues with all gesture inputs.)

Although in the WinRT documentation you will find events that let
you handle tap-and-hold, the UX principles ask that they not be used.

The replacement to tap-and-hold is the app bar. First, the app bar instantly reacts in a
way that tap-and-hold does not, providing straightforward access to options without
the wait. (Half the battle with UX lies in managing psychology.) Second, there is al‐
ways an app bar, which reduces frustration. (Of course, you can still create confusion
by the way you present the options. Also, games may not have app bars.)

The app bar is the first example of a UI feature common to all Win‐
dows Store apps. In later chapters we’ll see other examples.

Like all things in software engineering, none of this is quite as easy as it sounds. While
Microsoft has done a fantastic job of reducing the complexity of the APIs used to access
Windows Store app functionality, making the app bar behave like it does in the built-
in apps is not as straightforward as it could be. Also getting the button images that you
want onto the app bar as opposed to the stock icons is strangely complex.

Adding a Simple App Bar
You’ll find that when you’re building apps the basic behaviors that are required to achieve
the desired UX are generally easy to implement, and app bars are no exception. Apart
from a weird detail that we’ll come to, getting your app bars to work like the ones in the
built-in apps is straightforward.

In terms of implementation, the Page component exposes properties for TopAppBar and
BottomAppBar. You are expected to place AppBar instances into these directly. (Although
you can put them anywhere on the page, unless you put them in the two provided
properties/locations-within-the-markup you will run into strange animation prob‐
lems.)

You can put any control that you like into the app bar, but as you can imagine there are
rules governing the controls that you should put in.

120 | Chapter 4: The App Bar

The top app bar should be dedicated to navigational functions, and at this point in the
book we don’t have any pages other than the Reports page that we built in the last chapter
—hence, we won’t be using a top app bar.

The bottom app bar should contain functions that act either on the page in general, the
app, or the selected item/items.

In this section, we’re going to add a button and rig it to refresh the page. In the next
section, we’ll go into far more detail on app bar behavior and rules about how app bars
should be used.

Getting Started with an App Bar
To get started with an app bar, it’s best to define one directly in XAML rather than using
the toolbox to drop an instance onto the design surface. If you drop an instance, it won’t
go into the TopAppBar or BottomAppBar property, which (as I just mentioned) is a re‐
quirement, so you’ll have to move it.

To add an app bar, open up the XAML editor for the page, and anywhere on the page
add the app bar as shown here:

 <Page.Resources>

 <!-- Collection of items displayed by this page -->
 <CollectionViewSource
 x:Name="itemsViewSource"
 Source="{Binding Items}"/>

 </Page.Resources>

 <Page.BottomAppBar>
 <AppBar>
 </AppBar>
 </Page.BottomAppBar>

If you want, you can make the designer spring into life at this point.
If you’re in split mode and put the caret on the <AppBar> reference in
the code, the designer will show the app bar with a deep black back‐
ground as opposed to the dark gray of the remainder of the design
surface.

It’s typical with an app bar to put controls on the left and right sides. (We’ll talk about
this more later.) To this end, it makes sense to configure a grid together with StackPa
nel instances to act as separate left and right control containers. Here’s the modified
app bar with a grid:

 <Page.BottomAppBar>
 <AppBar>

Adding a Simple App Bar | 121

 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <StackPanel Orientation="Horizontal">
</StackPanel>
 <StackPanel HorizontalAlignment="Right" Orientation="Horizontal"
Grid.Column="2">
</StackPanel>
 </Grid>
 </AppBar>
 </Page.BottomAppBar>

I’m going a little slowly here for those without much WPF/Silver‐
light experience.

Now that we have those two panels, we can put controls onto them. We’ll create nicer-
looking buttons later—for now, we’ll just use a normal button.

Specifically, we’re going to add a Refresh button. To make this button do anything, we
need to create a command in the view-model. Make this change to IReportsPageView
Model first:

 // Add member to IReportsPageViewModel...
 public interface IReportsPageViewModel : IViewModel
 {
 ICommand RefreshCommand { get; }

 ObservableCollection<ReportItem> Items
 {
 get;
 }
 }

The command itself is easy to build—we created the DoRefresh function in Chapter 3,
so all we need is to rig the command to call it. Here’s the change (I’ve omitted some code
for brevity):

 public class ReportsPageViewModel : ViewModel, IReportsPageViewModel
 {
 public ObservableCollection<ReportItem> Items { get; private set; }

 public ICommand RefreshCommand { get; private set; }

 public ReportsPageViewModel(IViewModelHost host)
 : base(host)
 {

122 | Chapter 4: The App Bar

 // setup...
 this.Items = new ObservableCollection<ReportItem>();

 // commands...
 this.RefreshCommand = new DelegateCommand(async (e) =>
 {
 await this.DoRefresh(true);
 });
 }

 // code omitted...
 }

The final step is to add the button to the app bar, together with the command binding.
Here’s the code:

 <Page.BottomAppBar>
 <AppBar>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="50*"/>
 <ColumnDefinition Width="50*"/>
 </Grid.ColumnDefinitions>
 <StackPanel Orientation="Horizontal" Visibility="{Binding
HasSelectedItems, Converter={StaticResource VisibilityConverter}}">
 </StackPanel>
 <StackPanel HorizontalAlignment="Right" Orientation="Horizontal"
Grid.Column="2">
 <Button Content="Refresh"
Command="{Binding RefreshCommand}" />
 </StackPanel>
 </Grid>
 </AppBar>
 </Page.BottomAppBar>

You can now run the app and summon the app bar. We’re going to talk about touch and
mouse interaction much more in the next section, but for now, in order to get the app
bar to display, right-click on the blank area at the top of the page. (If you right-click on
the grid, the app bar will not display.) If you have touch hardware, swipe your finger in
from the top or bottom edges. Figure 4-2 illustrates the result.

Figure 4-2. The Refresh button on the bottom app bar

Adding a Simple App Bar | 123

App Bar Behavior
Since the very first versions of Windows, software developers have looked to mimic the
operation of standard apps and controls. After all, it’s logical to assume that if Microsoft
puts out apps that work in a certain way, that way must be correct. (The exception to
this rule is the perpetually broken copy and paste behavior in Excel!) Observing standard
behavior from Microsoft’s built-in apps and treating them as exemplars is just as im‐
portant as reading the documentation.

The Mail app has a ListView for showing items, not a GridView like our app, but the
principle of how the app bar works in the app should be the same regardless of how
items are being presented.

Looking at the mouse first, if you use the left button and click on items on the list in the
Mail app, you get single selection behavior. This mimics the standard Windows behavior.
Likewise, you can use the Control button to select a single item and Shift to select a
group. However, if you make a multiple selection, the app bar will automatically appear.
Go back to zero or one selected items, and the app bar will disappear.

If you click with the right button, this emulates the behavior of a Ctrl+click operation
in all but one case. If you right-click on a single selected item, the app bar will appear.
The app bar will also appear if you click anywhere outside of the grid. This is as per the
behavior of the app bar that we built in the last section.

You’ll find this behavior—having the app bar appear when you click on anything in the
app—throughout the built-in apps. Pick any at random; for example, right-click on the
Weather app and the app bar will appear, even though you can’t actually select things in
that app.

Rigging the app bar to appear on right-click is a good way of getting around the problem
of having a touch-centric OS running on nontouch hardware.

So it appears we know the rules. Now go and look at the Store app and navigate to the
“Your apps” section. (Swipe in from the top, and you’ll get a top app bar because you’re
going somewhere.) In the grid of apps that appears, the app bar is always visible—which
shouldn’t be the case, as the app bar is supposed to go away when it’s not needed. (The
app bar is being used here to fix a workflow problem—the user needs access to the Install
Updates button, but this actually shouldn’t be on the app bar because workflow-related
activities should be on the main form.)

But in terms of the grid of items you have, you don’t need to Ctrl+click or use the right
button to multiselect. The modality of that page is predicated on multiple selection,
whereas the modality of the Mail app is predicated on viewing a single mail item (i.e.,
it’s more normal to select multiple items on the Store, whereas multiple items on the
Mail app is an edge case).

124 | Chapter 4: The App Bar

We’ll see in a moment how we can choose between these two multi‐
ple selection modes.

But what happens when we look at Calendar? That behaves like neither. I would expect
that when you click items on the calendar, they appear as selected and then we can bring
up the app bar. However, in actuality clicking on any item or on any blank space brings
up an item details view, or a “new item” view. Personally, I think the Calendar app has
the wrong design, so we’ll place that app outside the discussion.

So what about the actual rules that Microsoft has laid out? There are lots of them, but
these are the salient ones:

• Grouping should be such that items related to the selected item(s) are on the left,
while items related to the whole page are on the right.

• A page can have a top app bar and a bottom app bar. The top one should be used
for navigation, and the bottom for commands/options.

• The app bar should persist if whatever the user is doing calls for frequent access to
the commands. There’s a “right way” and a “wrong way” of doing this. You should
always err toward hiding the app bar unless it creates a choppy user experience. For
example, if the user is cropping and colorizing an image, having the options avail‐
able probably makes sense. In most cases, it doesn’t make sense to force the app bar
to be visible. (You’d do this by setting the IsSticky property on the app bar, which
has to be done before you force it to show with IsOpen, something that we’ll do
later.)

• That said, if the user has made multiple selections, showing the app bar is logical
because this means the user is likely actually doing something as opposed to looking
for something. Again, this is one of the options you’ll need to feel your way through,
but reflect on how the Mail app always shows the app bars when multiple selections
have been made.

• Options pertaining to workflow should appear on the form, not on the app bar. A
classical workflow in this scenario would be an ecommerce cart checkout.

• The guidelines do not call out specific rules about right-clicking, but I like the way
the Mail app does it (i.e., simulating Ctrl+left-click).

Now that we know the rules, let’s see what happens in our app with its default behavior.

App Bar Behavior | 125

App Bar with Single-Select Grid
In this section, we’ll look at app bar behavior with a single-select grid, which happens
to be the selection mode of the grid we are given by Visual Studio when we add a grid
page.

Leaving aside the built-in apps and going back to our app, we know that we can show
the app bar with a swipe, and we also know that we can right-click on an area of the
page not occupied with the grid.

If you click an item with the left button, you can select an item, but by default you can’t
deselect that item with the left button. If you click an item with the right button, the
selection toggles between selected and deselected. In neither case does the app bar ap‐
pear.

For me, what’s broken here is that if you can right-click outside of the grid to display
the app bar, right-clicking on an item in the grid should also show the app bar. Having
it work when you click on void space and not work when you click on real items is
horribly inconsistent.

If we want that behavior, we’d need to override the default behavior of the grid. But
before we look at that, let’s see what happens when we have a multiselect grid.

App Bar with Multiselect Grid
The GridView control has two multiselect modes, one called Multiple and one called
Extended.

Multiple is the operation shown in the Store app—that is, left-clicking on items toggles
between selected and deselected. Extended behaves like the Mail app: left-clicking
changes the selection, but you can use Ctrl+left-click to select multiple items. Likewise,
right-clicking emulates Ctrl+left-click behavior.

By default, neither of them will display an app bar when multiple items are displayed,
but in most cases it’s likely that displaying the app bar with a multiple selection is a
desirable behavior.

Your choice between Multiple and Extended is most likely driven by whether you need
multiselect accessible when the user is in touch mode. In Extended mode, multiple
selections are possible only if you have a Ctrl key or a right mouse button—or you do
the hard-to-discover gesture of flicking lightly vertically on the item. Extended mode
makes sense for the Mail app, as you can usually work with email with single selections
—the multiselect capability is a “nice to have” bonus. Conversely, with the Store app,
making users work hard to perform the same action on multiple loaded apps is asking
too much of them; hence, multiple options is the default.

126 | Chapter 4: The App Bar

To choose between the two, reflect on the touch experience that you are looking to
achieve (i.e., design such that the only input device you have is a finger). Don’t be lulled
by the assumption that Microsoft tablets have keyboards—to be a “proper” post-PC
device, the only thing that you know you have is a screen with touch digitizer. If the
modality of the operation suggests that the user will typically want to work with one
item, use Extended. If the modality suggests that manipulating multiple items in one
operation is the norm, use Multiple.

Extended mode makes some form of multiselection without a mouse a practical im‐
possibility. In some edge cases, having a “multiselect mode” in touch apps—whereby
you can let the user make multiple selections without a mouse—might be appropriate.
There’s actually a version of this on iOS; on its Mail app, for example, if you go into
“delete mode,” checkboxes appear next to each item. However, remember that in Modern
style, checkboxes appear on the top-right corner of selected items; therefore, rendering
checkboxes next to each item will run against expected behavior. I’ll leave it to you as
individuals, and the greater community, to work out the details on this!

Thus, when it comes to it, the only thing that’s missing is the ability to automatically
show the app bar when multiple selections are made. Also relatively easy is the modi‐
fication to show the app bar on right-click. In the next section, we’ll consider a more
“full-on” implementation of our app bar.

A More Complex App Bar Implementation
In this section, we’re going to look at the following app bar implementation:

• We want our app bar to show when the user right-clicks on any grid option.
• We want our app bar to be able to display context-sensitive options.
• We want our app bar to automatically display when multiple selections are made,

and hide when the selection is reduced.
• We want all of this to be compatible with the MVVM rules that we laid down in

Chapters 1 and 2.

The question to answer first relates to the last point there—do we want to try to wire
this behavior up as a one-off within the view/view-model, or do we want to make some‐
thing more reusable?

In fact, wiring up the behavior within the view/view-model is actually quite difficult.
The first problem is that the property that returns the set of multiple selection items—
SelectedItems—is not data-bindable; hence, you need to address it directly from the
codebehind in the view itself. This breaks the rule of having zero code within the view.
(You can bind to the SelectedItem property, but that only holds zero or one items.)
The approach I’m proposing here is that we can create a specialized version of Grid

A More Complex App Bar Implementation | 127

View through inheritance and then bake our enhanced behavior into that. That will
allow us to reuse this behavior whenever we fancy.

The first thing we’ll look at is how to pass through this selection to the view-model, and
then we’ll see how to show the app bar.

Showing the App Bar on Multiple Selections
For those who are unfamiliar with WPF/Silverlight, I need to explain the idea behind
dependency properties. If you’re familiar with them, you can skip the next few para‐
graphs.

As hinted at, dependency properties were a WPF/Silverlight invention, but they’ve
found their way down into WinRT’s XAML implementation. Understanding what they
are and how they work can unlock a lot of the weirdness in WPF/Silverlight/XAML.
(I’ll now stop referring to WPF/Silverlight and just refer to XAML.)

If you go back to the original versions of Visual Basic (VB), the idea was that you would
have a control, such as a button, and a set of properties on the control, such as Text. In
VB, and in Windows Forms and ASP.NET Web Forms, such properties are generally
backed by a private field. (I’m simplifying a bit here.)

In XAML, the idea is that control/component properties are not backed by private fields
but are instead held in a dictionary of some sort. So, if you want to create a Text property
on class Button, you tell XAML that you want to create a dependency property for that,
well, property. This dependency property acts as a backing store, which you expose
usually a normal CLR property.

So what’s the meaning behind the name dependency property? I did a bit of digging on
this and couldn’t find a particularly compelling answer. The official version is along the
line of “because other things depend on them.” In XAML you can have styles, templates,
bindings, and other things that can change your property underneath you. What this
means is that you could set your Text property to "Foo", but something else could
change that property to something else by the time you retrieve it. Although glib, it
might be useful to think of a dependency property in terms of “you can’t depend on it
still having the value that you set.”

Later in the chapter we’ll see how property values can change under‐
neath us. Generally, don’t worry about it—properties have their val‐
ue changed for the greater good of the app’s functionality, and this
sort of operation normally won’t come back and bite you.

In terms of our actual implementation, we need to create a new, specialized implemen‐
tation of a GridView and then add OpenAppBarsOnMultipleSelection and Selection
Command dependency properties.

128 | Chapter 4: The App Bar

Extending controls through inheritance is an idea as old as time, so I won’t go into detail
on this. The first step is to create a new class that extends GridView and then we can
add in the properties.

Whenever we have a dependency property, we need two things:

• A static read-only field containing the metadata of the property
• An instance read-write property that gets or sets the value as appropriate

There is also a strange wrinkle with dependency properties in that you need to include
a callback anonymous method within the metadata of the property that defers to the
instance method. This is needed to support data binding. The data binding subsystem
understands how to dereference and work with the static dependency property meta‐
data, but doesn’t know how to deference and work with the instance properties.

Here’s the code showing the two properties together inside the new control:
 public class MyGridView : GridView
 {
 public static readonly DependencyProperty SelectionCommandProperty =
 DependencyProperty.Register("SelectionCommand", typeof(ICommand),
typeof(MyGridView),
 new PropertyMetadata(null, (d, e) =>
 ((MyGridView)d).SelectionCommand = (ICommand)e.NewValue));

 public static readonly DependencyProperty
OpenAppBarsOnMultipleSelectionProperty =
 DependencyProperty.Register("OpenAppBarsOnMultipleSelection",
typeof(bool), typeof(MyGridView),
 new PropertyMetadata(true, (d, e) => ((MyGridView)d).
OpenAppBarsOnMultipleSelection = (bool)e.NewValue));

 public MyGridView()
 {
 }

 public ICommand SelectionCommand
 {
 get { return (ICommand)GetValue(SelectionCommandProperty); }
 set { SetValue(SelectionCommandProperty, value); }
 }

 public bool OpenAppBarsOnMultipleSelection
 {
 get { return (bool)GetValue(
 OpenAppBarsOnMultipleSelectionProperty); }
 set { SetValue(OpenAppBarsOnMultipleSelectionProperty, value); }
}
}

A More Complex App Bar Implementation | 129

At the moment, the XAML in the ReportsPage is rigged to use the standard Grid
View control. If we want to use our new control, we just have to change the declaration
from GridView to local:MyGridView.

If you’re unfamiliar with XML namespaces, GridView is declared in the default name‐
space and hence doesn’t need a prefix. By default, the base XAML created by Visual
Studio when we create the page contains an XML namespace declaration called local
that maps to the default namespace of the project, which in my case happens to be
StreetFoo.Client.UI. Thus local:MyGridView resolves to StreetView.Cli

ent.UI.MyGridView.

The modified XAML snippet looks like this (I’ve omitted the surrounding container
code):

 <!-- Horizontal scrolling grid used in most view states -->
 <local:MyGridView
 x:Name="itemGridView"
 AutomationProperties.AutomationId="ItemsGridView"
 AutomationProperties.Name="Items"
 TabIndex="1"
 Margin="0,137,0,-1"
 Padding="116,0,116,46"
 ItemsSource="{Binding Source={StaticResource itemsViewSource}}"
 ItemTemplate="{StaticResource ReportItem250x250Template}"
 SelectionMode="Multiple"
 Grid.RowSpan="2"
 />

Note that I have gone ahead and changed the SelectionMode as well.

You can run the project at this point if you like. You won’t see any different behavior
from before in terms of the actual operation of the app bar. We’ve yet to build the new
behavior into the grid. To do that, we need to subscribe to the SelectionChanged event
within the MyGridView control itself.

Back in the world of .NET, controls/components were always designed to have an
OnEventName property that you could override whenever an event was declared. XAML
appears to be more hit and miss—certainly OnSelectionChanged is not an overrideable
method in GridView, and hence the only way to receive notifications is to subscribe.

When the selection does change, we want to do two things. First, we must decide whether
we want to raise our SelectionCommand command based on whether we have a value
for it, and whether the command is in a state where it can be executed. Second, we want
to show the app bar. This is all pretty simple; here’s the code, along with a stub that we’ll
fill out in a moment:

 // modified constructor and related handler in MyGridView...
 public MyGridView()
 {
 // wire up the selection changes...

130 | Chapter 4: The App Bar

 this.SelectionChanged += MyGridView_SelectionChanged;
 }

 void MyGridView_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
 {
 if(this.SelectionCommand == null)
 return;

 // pass it on...
 var selected = new List<object>(this.SelectedItems);
 if(this.SelectionCommand.CanExecute(selected))
 this.SelectionCommand.Execute(selected);

 // do we care about multiple items?
 if (this.OpenAppBarsOnMultipleSelection && selected.Count > 1)
 this.OpenAppBarsOnPage(true);
 else if (this.OpenAppBarsOnMultipleSelection && selected.Count == 0)
 this.HideAppBarsOnPage();
 }

The OpenAppBarsOnPage method is not implemented, so we have a choice: we can either
implement it as a one-off inside our control, or we can implement it as a helper method.
I propose implementing it as a helper method via the expedient of an extension method.

Extension methods are one of my favorite .NET features, and they are fantastic in this
kind of scenario where you want to extend multiple classes without affecting the chain
of inheritance. Although we want to open (and ultimately close) app bars on the grid
view in this instance, we might want to be able to do this from other controls that we
build or extend.

The control/component hierarchy in XAML is understandably complex, but near the
base of the hierarchy is a component called FrameworkElement. This contains the base‐
line implementation for components that are supposed to have some presence on the
UI. We’ll add our extension methods to this.

First off, a standard rule of the UX is that you cannot toggle the top and bottom app
bars independently—swipe in from the top or the bottom, and both will display. (For
example, I, for some unknown reason, have a habit of swiping in from the top to get
access to the bottom app bar.) The methods that we’ll build will need to show or hide
both the top and bottom app bars each time. Second, we’ll need a method that, given a
FrameworkElement instance, can find its containing page. We can easily achieve this by
walking up the Parent properties until we find one with an appropriate type.

The third and final consideration relates to “sticky” app bars. The idea of a sticky app
bar is that it doesn’t hide when you click off of the app bar, whereas a nonsticky/normal
app bar does. To stop the app bar from flicking around, we’ll provide an option to display
it in sticky mode.

A More Complex App Bar Implementation | 131

Here’s the code for FrameworkElementExtender:
 internal static class FrameworkElementExtender
 {
 internal static Page GetParentPage(this FrameworkElement element)
 {
 DependencyObject walk = element;
 while (walk != null)
 {
 if (walk is Page)
 return (Page)walk;

 if (walk is FrameworkElement)
 walk = ((FrameworkElement)walk).Parent;
 else
 break;
 }

 // nothing...
 return null;
 }

 internal static void OpenAppBarsOnPage(this FrameworkElement element,
bool sticky)
 {
 // get...
 var page = element.GetParentPage();
 if (page == null)
 return;

 if (page.TopAppBar != null)
 {
 page.TopAppBar.IsSticky = sticky;
 page.TopAppBar.IsOpen = true;
 }
 if (page.BottomAppBar != null)
 {
 page.BottomAppBar.IsSticky = sticky;
 page.BottomAppBar.IsOpen = true;
 }
 }

 internal static void HideAppBarsOnPage(this FrameworkElement element)
 {
 var page = element.GetParentPage();
 if (page == null)
 return;

 if (page.TopAppBar != null)
 {
 page.TopAppBar.IsOpen = false;
 page.TopAppBar.IsSticky = false;
 }

132 | Chapter 4: The App Bar

 if (page.BottomAppBar != null)
 {
 page.BottomAppBar.IsOpen = false;
 page.BottomAppBar.IsSticky = false;
 }
 }
 }

If you want to set an app bar to be sticky, you need to set the IsSt
icky property before setting IsOpen.

Now you can actually run your project and it should work. Go into the Reports page
and click items on or off; your app bar should automatically show and hide them.

Remember, if you can’t seem to make multiple selections, make sure
the MyGridView control’s SelectionMode is set to multiple.

Checking Touch Operations
One of the challenges of being an early adopter in Windows 8/Windows RT is that you
are supposed to be building touch-centric apps on old-style, WIMP-optimized hard‐
ware. For this reason it’s very important that you check that your app’s functionality
works well without a mouse.

You don’t have to buy a tablet, though. Visual Studio 2012 comes with a simulator that
lets you simulate touch operations. This is accessible through Visual Studio. You can do
essentially what you can with your full machine, although I found many of the built-in
apps failed to run, as they could not load in time. (Windows will kill off Windows Store
apps if they are slow to load. We’ll talk about this more in Chapter 15 when we look at
validating apps for the store.) The point of the simulator is that it has a touch mode that
simulates the mouse.

To run the simulator, in Visual Studio you will find a drop-down control next to the
Run toolbar button. Typically this shows Local Machine, as illustrated in Figure 4-3.
You can drop this down to select Simulator.

A More Complex App Bar Implementation | 133

Figure 4-3. Selecting the Simulator option

By default, the simulator just forwards the mouse events. On the righthand “bezel,” you
will find an option for Basic Touch Mode. Check this on, and you’ll get a crosshair with
a circle around it. You’ve now lost the ability to right-click, but gained the ability to drag
in off the edges in the normal way. Figure 4-4 illustrates (as well as I can without having
video to show!).

Figure 4-4. The simulator in Basic Touch Mode

Confirm for yourself that the operation of the form is roughly within the parameters
you expect. Next, we’ll look at how to show context options.

134 | Chapter 4: The App Bar

Showing the App Bar on Right-Click
Determining how to actually handle a right-click requires a bit of digging around in the
APIs, which makes sense if you consider that it’s the old-style way of interaction com‐
pared to the new-style, touch-centric way. You can do it by responding to the Pointer
Pressed event and digging around for a PointerPoint instance. This has properties on
it to tell you what happened. (As a side note, you’ll find throughout WinRT a level of
agnosticism about what type of input device was used to initiate each event.)

We’ll need a new dependency property so that the developer could turn off the behavior
if desired. But apart from that, it’s pretty simple. Here’s the code—note that I have omit‐
ted some of the code we built in the last section:

 // Add new members to MyGridView...
 public class MyGridView : GridView
 {
 public static readonly DependencyProperty SelectionCommandProperty =
 DependencyProperty.Register("SelectionCommand", typeof(ICommand),
typeof(MyGridView),
 new PropertyMetadata(null, (d, e) => ((MyGridView)d).
SelectionCommand = (ICommand)e.NewValue));

 public static readonly DependencyProperty
OpenAppBarsOnMultipleSelectionProperty =
 DependencyProperty.Register("OpenAppBarsOnMultipleSelection",
typeof(bool), typeof(MyGridView),
 new PropertyMetadata(true, (d, e) => ((MyGridView)d).
OpenAppBarsOnMultipleSelection = (bool)e.NewValue));

 public static readonly DependencyProperty
 OpenAppBarsOnRightClickProperty =
 DependencyProperty.Register("OpenAppBarsOnRightClick",
 typeof(bool), typeof(MyGridView),
 new PropertyMetadata(true, (d, e) => ((MyGridView)d).
OpenAppBarsOnRightClick = (bool)e.NewValue));

 public MyGridView()
 {
 // wire up the selection changes...
 this.SelectionChanged += MyGridView_SelectionChanged;
 } s

 public bool OpenAppBarsOnRightClick
 {
 get { return (bool)GetValue(OpenAppBarsOnRightClickProperty); }
 set { SetValue(OpenAppBarsOnRightClickProperty, value); }
 }

 protected override void OnPointerPressed(PointerRoutedEventArgs e)
 {
 // do we care?

A More Complex App Bar Implementation | 135

 if (this.OpenAppBarsOnRightClick && e.GetCurrentPoint(this).
Properties.IsRightButtonPressed)
 this.OpenAppBarsOnPage(false);

 // base...
 base.OnPointerPressed(e);
 }

 // code omitted for brevity...
}

Now if you run the project, you’ll find that you can use the right-mouse button to bring
up the app bar, albeit in a slightly different way than the operation exemplified in the
Mail app.

Showing Context Options
At the moment, our app bar is just displaying one option. What we want to look at now
is how we can show and hide options on the app bar depending on the selection. We’ll
add a button that will display a message. (We don’t have much business logic that we
can hook into at this point, and doing anything more inventive than a message would
complicate the discussion.)

The (slightly) tricky element is that we need to show or hide context options depending
on the selection state. We’ve already built a command so that the view can tell us when
the selection changes. What we need to do is get the view-model to signal that app bar
−based commands are available.

The way that we’ll do this will be to put a StackPanel on the app bar and then put our
context options in that. We can then rig a property (HasSelection) and set up data
binding so that StackPanel is shown or hidden depending on that value. That’s the
simple, clunky route.

We’re going to build commands called SelectionCommand and DumpSelection, plus a
HasSelectedItems property in the IReportsPageViewModel interface. Here’s the code:

 // Add properties to IReportsPageViewModel...
 public interface IReportsPageViewModel : IViewModel
 {
 ICommand RefreshCommand { get; }
 ICommand DumpSelectionCommand { get; }
 ICommand SelectionCommand { get; }

 ObservableCollection<ReportItem> Items
 {
 get;
 }

 bool HasSelectedItems
 {

136 | Chapter 4: The App Bar

 get;
 }
 }

For the actual implementation, we just have to build handlers for those two commands:

• We’ll need a property for holding a list of the selected items called SelectedItems.
• When we respond to SelectionCommand, we’ll take the IEnumerable<object> in‐

stance that we’ll be given, assume it contains ReportItem instances, and replace
whatever is already held in SelectedItems.

• When we do respond to SelectionCommand, we’ll be changing the meaning of the
HasSelectedItems property. A “gotcha” on this is that we’ll have to raise an ap‐
propriate INotifyPropertyChanged signal when we respond to SelectionCom
mand so that the XAML data binding subsystem knows that we’ve changed the value
of HasSelectedItems. A corollary point is that for completeness we should tell it
that SelectedItems has also changed.

• Finally, when we respond to DumpSelectionCommand, we’ll render a message.

This is straightforward code, so I’ll just present it. Here are the changes required for
ReportsPageViewModel (I’ve omitted some of the other code for brevity):

 public class ReportsPageViewModel : ViewModel, IReportsPageViewModel
 {
 public ObservableCollection<ReportItem> Items { get; private set; }
 private List<ReportItem> SelectedItems { get; set; }

 public ICommand RefreshCommand { get; private set; }
 public ICommand DumpSelectionCommand { get; private set; }
 public ICommand SelectionCommand { get; private set; }

 public ReportsPageViewModel(IViewModelHost host)
 : base(host)
 {
 // setup...
 this.Items = new ObservableCollection<ReportItem>();
 this.SelectedItems = new List<ReportItem>();

 // commands...
 this.RefreshCommand = new DelegateCommand(async (e) =>
 {
 await this.DoRefresh(true);
 });

 // update any selection that we were given...
 this.SelectionCommand = new DelegateCommand((args) =>
 {
 // update the selection...
 this.SelectedItems.Clear();
 foreach (ReportItem item in (IEnumerable<object>)args)

A More Complex App Bar Implementation | 137

 this.SelectedItems.Add(item);

 // raise...
 this.OnPropertyChanged("SelectedItems");
 this.OnPropertyChanged("HasSelectedItems");
 });

 // dump the state...
 this.DumpSelectionCommand = new DelegateCommand(async (e) =>
 {
 if (this.SelectedItems.Count > 0)
 {
 var builder = new StringBuilder();
 foreach (var item in this.SelectedItems)
 {
 if (builder.Length > 0)
 builder.Append("\r\n");
 builder.Append(item.Title);
 }

 // show...
 await this.Host.ShowAlertAsync(builder.ToString());
 }
 else
 await this.Host.ShowAlertAsync("(No selection)");
 });
 }

 public bool HasSelectedItems
 {
 get
 {
 return this.SelectedItems.Count > 0;
 }
 }
}

To wire this up, we just need to change the XAML. First, we need to alter the app bar
so that the StackPanel control on the left side is bound to the HasSelectedItems
property on the view-model. Second, we need to rig the SelectionCommand property
on the MyGridView instance to call into the handler on the view-model.

I won’t reproduce both together, as it’ll be hard to see what’s happening. First off, here’s
the change to the app bar:

 <!-- Modify markup related to the app bar -->
 <Page.BottomAppBar>
 <AppBar>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="50*"/>
 <ColumnDefinition Width="50*"/>

138 | Chapter 4: The App Bar

 </Grid.ColumnDefinitions>
 <StackPanel Orientation="Horizontal" Visibility="{Binding
 HasSelectedItems, ConverterBooleanTo={StaticResource
 VisibilityConverter}}">
 <Button Content="Dump Selection" Command="{Binding
 DumpSelectionCommand}" />
 </StackPanel>
 <StackPanel HorizontalAlignment="Right" Orientation="Horizontal"
Grid.Column="2">
 <Button x:Name="buttonRefresh" Style="{StaticResource
RefreshAppBarButtonStyle}" Command="{Binding RefreshCommand}" />
 </StackPanel>
 </Grid>
 </AppBar>
 </Page.BottomAppBar>

The last step is to rig up the binding for the command. This is just a matter of binding
up SelectionCommand:

 <!-- Horizontal scrolling grid used in most view states -->
 <local:MyGridView
 x:Name="itemGridView"
 AutomationProperties.AutomationId="ItemsGridView"
 AutomationProperties.Name="Items"
 TabIndex="1"
 Margin="0,137,0,-1"
 Padding="116,0,116,46"
 ItemsSource="{Binding Source={StaticResource itemsViewSource}}"
 ItemTemplate="{StaticResource ReportItem250x250Template}"
 SelectionMode="Multiple"
 Grid.RowSpan="2"
 SelectionCommand="{Binding SelectionCommand}"
 />

That’s all there is to it! If you run the project, you should find that the Dump Selection
button is not available without a selection, but as soon as a selection is made it will
become available. Clicking the button will result in a message being displayed, as illus‐
trated in Figure 4-5.

Figure 4-5. Message showing an example selection state

A More Complex App Bar Implementation | 139

App Bar Images
Adding images to the app bar is an absolute requirement, but it’s irritatingly difficult to
achieve in the version of the tooling on which this book is based. Hopefully it will become
easier, and perhaps it already is if you’re using a later version of the tools.

On paper, the way images are done on the app bar sounds brilliant. Windows 8/Windows
RT comes with a font called Segoe UI Symbol—a version of the standard Segoe font
used in Windows Store apps, but with a whole bunch of glyphs that can be used as icons.
You get, out of the box, a couple of hundred icons that you can use.

The genius of using fonts instead of images for icons is that they are vectorized, meaning
that you can render them on any background and in any size, and they look exactly
right. The downside of using fonts instead of images is that you can’t change the set of
icons that you have.

The Visual Studio template provides a set of styles that you can apply to buttons to
produce an icon, but for some reason this tooling only works with the icons stored in
font libraries. This means it’s extremely limited. It also means that it’s not straightforward
to use your own icons, which in everything but the most basic of apps is going to be the
case.

What we’re going to do in this section is look at the way Visual Studio does it first,
specifically by changing the Refresh button that we built previously to use the built-in
Refresh icon. We’ll then look at creating a parallel implementation of Visual Studio’s
implementation that will work with PNG files.

The Glyph Method
You can see the icons that you get out of the box by using the Windows charmap.exe
utility. If you start charmap.exe from the Run dialog and change the font to Segoe UI
Symbol, you’ll find the icons starting in the 0xE000 range. (In fact, 0xE000, as shown
in Figure 4-6, is the standard “search” icon.)

I mentioned earlier that in the Windows 8 tooling, each project got given a large Stand‐
ardStyles.xaml file. Among other things, this file contained the declarations of a massive
collection of app bar buttons, based on the glyphs that we’ve been discussing. In the new
Windows 8.1 tooling, for some reason there is no equivalent (at least as of the time of
writing), so my proposal is to bring those styles forward manually into our new Stand‐
ardStyles.xaml. There is an awful lot of it, but they do ultimately create a good effect.
Here’s the code:

<!-- Add to StandardStyles.xaml… -->
<Style x:Key="AppBarButtonStyle" TargetType="Button">
 <Setter Property="Foreground" Value="{StaticResource
AppBarItemForegroundThemeBrush}"/>
 <Setter Property="VerticalAlignment" Value="Stretch"/>

140 | Chapter 4: The App Bar

Figure 4-6. Charmap.exe showing some of the icons in Segoe UI Symbol

 <Setter Property="FontFamily" Value="Segoe UI Symbol"/>
 <Setter Property="FontWeight" Value="Normal"/>
 <Setter Property="FontSize" Value="20"/>
 <Setter Property="AutomationProperties.ItemType" Value="App Bar Button"/>
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="Button">
 <Grid x:Name="RootGrid" Width="100" Background="Transparent">
 <StackPanel VerticalAlignment="Top" Margin="0,12,0,11">
 <Grid Width="40" Height="40" Margin="0,0,0,5"
 HorizontalAlignment="Center">
 <TextBlock x:Name="BackgroundGlyph"
 Text="" FontFamily="Segoe UI Symbol"
 FontSize="53.333" Margin="-4,-19,0,0"
 Foreground="{StaticResource
 AppBarItemBackgroundThemeBrush}"/>
 <TextBlock x:Name="OutlineGlyph" Text=""
 FontFamily="Segoe UI Symbol" FontSize="53.333"
 Margin="-4,-19,0,0"/>
 <ContentPresenter x:Name="Content"
 HorizontalAlignment="Center" Margin="-1,-1,0,0"
 VerticalAlignment="Center"/>
 </Grid>
 <TextBlock
 x:Name="TextLabel"
 Text="{TemplateBinding
 AutomationProperties.Name}"
 Foreground="{StaticResource

App Bar Images | 141

 AppBarItemForegroundThemeBrush}"
 Margin="0,0,2,0"
 FontSize="12"
 TextAlignment="Center"
 Width="88"
 MaxHeight="32"
 TextTrimming="WordEllipsis"
 Style="{StaticResource BasicTextStyle}"/>
 </StackPanel>
 <Rectangle
 x:Name="FocusVisualWhite"
 IsHitTestVisible="False"
 Stroke="{StaticResource
 FocusVisualWhiteStrokeThemeBrush}"
 StrokeEndLineCap="Square"
 StrokeDashArray="1,1"
 Opacity="0"
 StrokeDashOffset="1.5"/>
 <Rectangle
 x:Name="FocusVisualBlack"
 IsHitTestVisible="False"
 Stroke="{StaticResource
 FocusVisualBlackStrokeThemeBrush}"
 StrokeEndLineCap="Square"
 StrokeDashArray="1,1"
 Opacity="0"
 StrokeDashOffset="0.5"/>

 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="ApplicationViewStates">
 <VisualState x:Name="FullScreenLandscape"/>
 <VisualState x:Name="Filled"/>
 <VisualState x:Name="FullScreenPortrait">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="TextLabel"
 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="Collapsed"/>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="RootGrid"
 Storyboard.TargetProperty="Width">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="60"/>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 <VisualState x:Name="Snapped">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="TextLabel"

142 | Chapter 4: The App Bar

 Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="Collapsed"/>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="RootGrid"
 Storyboard.TargetProperty="Width">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="60"/>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="Normal"/>
 <VisualState x:Name="PointerOver">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="BackgroundGlyph"
 Storyboard.TargetProperty="Foreground">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="{StaticResource AppBarItem
 PointerOverBackgroundThemeBrush}"/>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="Content"
 Storyboard.TargetProperty="Foreground">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="{StaticResource AppBarItem
 PointerOverForegroundThemeBrush}"/>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 <VisualState x:Name="Pressed">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="OutlineGlyph"
 Storyboard.TargetProperty="Foreground">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="{StaticResource AppBarItem
 ForegroundThemeBrush}"/>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="BackgroundGlyph"
 Storyboard.TargetProperty="Foreground">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="{StaticResource AppBarItem
 ForegroundThemeBrush}"/>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="Content"
 Storyboard.TargetProperty="Foreground">

App Bar Images | 143

 <DiscreteObjectKeyFrame KeyTime="0"
 Value="{StaticResource AppBarItem
 PressedForegroundThemeBrush}"/>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 <VisualState x:Name="Disabled">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="OutlineGlyph"
 Storyboard.TargetProperty="Foreground">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="{StaticResource AppBarItem
 DisabledForegroundThemeBrush}"/>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="Content"
 Storyboard.TargetProperty="Foreground">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="{StaticResource AppBarItem
 DisabledForegroundThemeBrush}"/>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetName="TextLabel"
 Storyboard.TargetProperty="Foreground">
 <DiscreteObjectKeyFrame KeyTime="0"
 Value="{StaticResource AppBarItem
 DisabledForegroundThemeBrush}"/>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 <VisualStateGroup x:Name="FocusStates">
 <VisualState x:Name="Focused">
 <Storyboard>
 <DoubleAnimation
 Storyboard.TargetName=
 "FocusVisualWhite"
 Storyboard.TargetProperty=
 "Opacity"
 To="1"
 Duration="0"/>
 <DoubleAnimation
 Storyboard.TargetName=
 "FocusVisualBlack"
 Storyboard.TargetProperty=
 "Opacity"
 To="1"
 Duration="0"/>
 </Storyboard>
 </VisualState>
 <VisualState x:Name="Unfocused" />

144 | Chapter 4: The App Bar

 <VisualState x:Name="PointerFocused" />
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>

When we want a new button, we create a new style that uses the templates. Add this
style for a refresh button to StandardStyles.xaml:

 <Style x:Key="RefreshAppBarButtonStyle" TargetType="Button" BasedOn="
{StaticResource AppBarButtonStyle}">
 <Setter Property="AutomationProperties.AutomationId"
Value="RefreshAppBarButton"/>
 <Setter Property="AutomationProperties.Name" Value="Refresh"/>
 <Setter Property="Content" Value=""/>
 </Style>

The Content entry does the magic of setting the font. 0xE117 refers to the Refresh icon,
which you can confirm for yourself in charmap.exe if you want. The AutomationPro
perties.Name entry is used for the label that will appear in the icon.

Using these is very simple. Here’s the XAML for our existing Refresh button, but with
the Content value removed and Style value added:

 <Page.BottomAppBar>
 <AppBar>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="50*"/>
 <ColumnDefinition Width="50*"/>
 </Grid.ColumnDefinitions>
 <StackPanel Orientation="Horizontal" Visibility="{Binding
 HasSelectedItems, Converter={StaticResource
 VisibilityConverter}}">
 <Button Content="Dump Selection" Command="{Binding
 DumpSelectionCommand}" />
 </StackPanel>
 <StackPanel HorizontalAlignment="Right" Orientation="Horizontal"
 Grid.Column="2">
 <Button Style="{StaticResource RefreshAppBarButtonStyle}"
 Command="{Binding RefreshCommand}" />
 </StackPanel>
 </Grid>
 </AppBar>
 </Page.BottomAppBar>

Run the app, and you’ll see the “iconified” button on the app bar. Figure 4-7 illustrates.

App Bar Images | 145

Figure 4-7. The Refresh button with an icon

You can likely see how fantastically straightforward this is. It’s just a shame it’s so limited
—but we’ll get to that.

Using Images
Going through how to use images with your buttons is helpful in its own right, but for
those of you new to WPF/Silverlight/XAML, it also serves as a way of going through
styles and templates. If you are familiar with styles and templates, however, please keep
reading, as we’ll segue into looking at our own image implementation without a clean
break.

Styles in XAML

Have a look again at the style definition for our Refresh button:
 <Style x:Key="RefreshAppBarButtonStyle" TargetType="Button" BasedOn=
"{StaticResource AppBarButtonStyle}">
 <Setter Property="AutomationProperties.AutomationId" Value=
"RefreshAppBarButton"/>
 <Setter Property="AutomationProperties.Name" Value="Refresh"/>
 <Setter Property="Content" Value=""/>
 </Style>

In XAML, styles are a group of property set instructions expressed in XML. You can see
here how we have three properties to set: AutomationProperties.AutomationId, Au
tomationProperties.Name, and Content. In fact, there’s more than that because the
style definition has a BasedOn attribute that tells XAML to go and set that style first
before this one. The upshot is that just by our applying a style, XAML will change a
whole load of our properties. This gets back to our conversation on dependency prop‐
erties—you can’t “depend” on the value you set directly staying current because, in this
case, the style can co-opt the properties for its own purposes.

Where this gets a bit wacky is that the base style—AppBarButtonStyle—contains a
directive that sets the Template property. I’ve chosen not to reproduce all of AppBar
ButtonStyle here, as we saw previously. Here instead is the top part of the Template
setter declaration in AppBarButtonStyle:

146 | Chapter 4: The App Bar

 <Style x:Key="AppBarButtonStyle" TargetType="Button">
 <Setter Property="Foreground" Value="{StaticResource
AppBarItemForegroundThemeBrush}"/>
 <Setter Property="VerticalAlignment" Value="Stretch"/>
 <Setter Property="FontFamily" Value="Segoe UI Symbol"/>
 <Setter Property="FontWeight" Value="Normal"/>
 <Setter Property="FontSize" Value="20"/>
 <Setter Property="AutomationProperties.ItemType"
Value="App Bar Button"/>
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="Button">
 <Grid x:Name="RootGrid" Width="100"
Background="Transparent">
 <StackPanel VerticalAlignment="Top" Margin="0,12,0,11">
 <Grid Width="40" Height="40" Margin="0,0,0,5"
HorizontalAlignment="Center">
 <TextBlock x:Name="BackgroundGlyph"
Text="" FontFamily="Segoe UI Symbol" FontSize="53.333"
Margin="-4,-19,0,0"
Foreground="{StaticResource AppBarItemBackgroundThemeBrush}"/>
 <TextBlock x:Name="OutlineGlyph"
Text="" FontFamily="Segoe UI Symbol" FontSize="53.333"
Margin="-4,-19,0,0"/>
 <ContentPresenter x:Name="Content"
HorizontalAlignment="Center" Margin="-1,-1,0,0" VerticalAlignment="Center"/>
 </Grid>
 <TextBlock
 x:Name="TextLabel"
 Text="{TemplateBinding AutomationProperties.Name}"
 Foreground="{StaticResource AppBarItemForegroundThemeBrush}"
 Margin="0,0,2,0"
 FontSize="12"
 TextAlignment="Center"
 Width="88"
 MaxHeight="32"
 TextTrimming="WordEllipsis"
 Style="{StaticResource BasicTextStyle}"/>
 </StackPanel>
 <!-- etc... -->
</Style>

I’ve highlighted some of the important parts here. Ultimately what this is doing is setting
up a stack of overlapping controls to form the image. The first two TextBlock controls
are using the symbol font to render two circles, an outline circle and a solid circle. The
solid circle is colored to match the background, the idea being that when clicked that
color can be changed to give the user some visual feedback. The ContentPresenter
control takes the Content property of the button and “re-presents” it.

Actually, that’s an important point. In XAML, the templates work by totally replacing
the rendering instructions of the base control—in this case, a button. This is a slightly

App Bar Images | 147

odd concept to anyone who’s done any UI programming from Win16 onward, as in
most cases you extend behavior as opposed to presentation. If you’re new to this, the
key thing to remember is that with the Template property set, the Button control is no
longer in charge of its rendering.

The last control to consider is the TextBlock control positioned underneath the image
grid. This is used to render the caption under the icon.

You may have noticed references to AutomationProperties in there. If you’re familiar
with COM/ActiveX and unfamiliar with XAML, you may assume these are related to
COM Automation. They are not—in fact, they have to do with automated testing and
are a feature brought over from WPF. The principle is that they provide a more formally
defined set of hooks for automated test harnesses. They can also be used for accessibility
functions. What’s relevant to us here is that we don’t want to break this stuff when we
add our images. The easiest thing to do with them is just not fiddle with that part of the
existing implementation and steer clear.

So how do we add our images? Actually, the answer is pretty straightforward—we just
need to replace the elements that render a glyph with elements that render an image.
Let’s see how.

Creating images for app bar buttons

You’ll need an image editor to create the images for the app bar. In fact, you’ll generally
need an image editor in your day-to-day work as a software engineer; it’s a good thing
to have in your toolkit. There are lots of them out there, but I happen to use Adobe
Fireworks, and I’d go so far as to say that it would be my recommendation for web work,
legacy desktop work, and Windows Store app development work.

At the time of writing, I could not find any hard rules about the
configuration of the images for app bars. I could for Windows Phone
— it calls for a 48×48 image with a 26×26 area in the middle con‐
taining the actual image. Windows Phone also has this “circle sur‐
rounding the icon” look. The image is supposed to be big enough to
accommodate the circle, meaning that the square in the middle is
where you put your actual icon. Here, we’ll pull the same trick with
making the images large enough to accommodate the circle.

I took a screenshot of the Refresh button and measured the size. I then created a 40×40
image (which happens to be the size of the containing grid for the button declared in
the template) and created a 24×24 “important part” in the middle. Figure 4-8 shows you
what I got. (This jumps ahead to the part we haven’t built yet—that is, actually being
able to render an image in a button.)

148 | Chapter 4: The App Bar

Figure 4-8. Button image layout (zoomed in)

What’s throwing that off is the inexactness of the symbol font. It’s all lining up, but it’s
not quite right in that it’s skewed to the right and not aligned on the left. Another factor
is that XAML will stretch the image to make it fit—in my experiments, it was impossible
to do any better than that. (And if you actually zoom into the standard Refresh button,
it’s not evenly spaced or particularly neat.) Thus, my proposal is that for a “good enough”
image, create a 40×40 box with a 24×24 area in the middle for the icon.

To make something more attractive for the download, I created a PNG based on one of
the fonts in Segoe UI Symbol. By the way, there is a fantastic library of icons at the Noun
Project. I would have used one of those but did not, as some of them are copyrighted
and it’s easier not to risk using one of those in print.

When you create images, you need to render them on white and alias them onto a
transparent background. This will give the renderer the best chance of making it look
good regardless of the final app bar background color. You can see this for yourself in
the code download. (It’s difficult to render a white-on-transparent image in a book!)

To add the image to your project, all you have to do is add it to the Assets folder in the
project. Make sure that you actually include the file in your project; otherwise, the AppX
packager doesn’t know to include it. You don’t need to mark it as Embedded Resource,
as it’s not a resource in the traditional sense. The file should instead be marked as
Content.

App Bar Images | 149

http://thenounproject.com/
http://thenounproject.com/

This packaging trick/feature is the same one used with sqlite3.dll in
Chapter 3.

Creating a template that uses an image

The magic part of the template is the ContentPresenter. All we have to do is override
the default behavior so that it uses an image. (The default behavior renders the text
stored in the Content property of the button.) Specifically, we want to pass the Content
Presenter an Image control. If we set the Content property of the button to the URL
of an image, with ContentPresenter rigged to use an Image control, everything should
just work. (If that’s not making much sense now, go with it—once you see this happen,
it’ll all become clear.)

This is the first time we’ve worked with images in the book. In my opinion, this is one
of the standout great bits of WinRT development.

Just like every version of Windows from v1 onward, you can package static resources.
Whereas in the past, these have always been baked into a single file, in WinRT they go
into an AppX package, which is exploded onto the disk on installation. (We’ll talk more
about packaging in Chapter 15.) From within our apps, we can use URLs to refer to files
included in the original package. Specifically, we can use the ms-appx: protocol handler.

Thus, if we have an image called Foo.png placed within the ~/Assets folder of our project,
we can refer to it with the URL ms-appx:///Assets/Foo.png. This is fantastically consistent
with normal URI addressing and also very straightforward.

All we have to do then is create the following hierarchy:

• At the top we’ll keep our AppBarButtonStyle as is.
• In the middle we’ll create an AppBarImageButtonStyle. This will replace the Tem
plate property created by AppBarButtonStyle with one that renders an image
rather than a glyph.

• At the bottom we’ll create our button-specific styles, as per the existing behavior in
the template. We’ll create a FooAppBarButtonStyle.

We’ll do this in reverse order. You’ll need to make these changes within Standard
Styles.xaml. First, here is the definition of FooAppBarButtonStyle:

 <!-- Add to StandardStyles.xaml -->
 <Style x:Key="FooAppBarButtonStyle" TargetType="Button" BasedOn=
 "{StaticResource AppBarImageButtonStyle}">
 <Setter Property="AutomationProperties.AutomationId" Value=
 "FooAppBarButtonStyle"/>
 <Setter Property="AutomationProperties.Name" Value="Foo"/>

150 | Chapter 4: The App Bar

 <Setter Property="Content" Value="ms-appx:///Assets/Foo.png"></Setter>
 </Style>

You can see the ms-appx: protocol in play in that Content property setter. Hopefully it’s
obvious how the URL addressing is working.

Note that we don’t call this FooAppBarImageButtonStyle. Consum‐
ers shouldn’t care about the underlying implementation—whether it
uses an image or a glyph isn’t directly relevant from their perspective.

AppBarImageButtonStyle is fairly easy (but long). I’ve highlighted where the Content
Presenter is modified to use an Image instance, and also the base element where we
tell it that it’s based on AppBarButtonStyle.

 <Style x:Key="AppBarImageButtonStyle" TargetType="Button" BasedOn=
"{StaticResource AppBarButtonStyle}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="Button">
 <Grid x:Name="RootGrid" Width="100" Background="Transparent">
 <StackPanel VerticalAlignment="Top" Margin="0,12,0,11">
 <Grid Width="40" Height="40" Margin="0,0,0,5"
 HorizontalAlignment="Center">
 <ContentPresenter>
 <ContentPresenter.Content>
 <Image Source="{TemplateBinding
 Content}"></Image>
 </ContentPresenter.Content>
 </ContentPresenter>
 <TextBlock x:Name="OutlineGlyph" Text=""
 FontFamily="Segoe UI Symbol" FontSize="53.333"
 Margin="-4,-19,0,0"/>
 </Grid>
 <TextBlock
 x:Name="TextLabel"
 Text="{TemplateBinding AutomationProperties.Name}"
 Foreground="{StaticResource
 AppBarItemForegroundThemeBrush}"
 Margin="0,0,2,0"
 FontSize="12"
 TextAlignment="Center"
 Width="88"
 MaxHeight="32"
 TextTrimming="WordEllipsis"
 Style="{StaticResource BasicTextStyle}"/>
 </StackPanel>
 <Rectangle
 x:Name="FocusVisualWhite"
 IsHitTestVisible="False"

App Bar Images | 151

 Stroke="{StaticResource
 FocusVisualWhiteStrokeThemeBrush}"
 StrokeEndLineCap="Square"
 StrokeDashArray="1,1"
 Opacity="0"
 StrokeDashOffset="1.5"/>
 <Rectangle
 x:Name="FocusVisualBlack"
 IsHitTestVisible="False"
 Stroke="{StaticResource
 FocusVisualBlackStrokeThemeBrush}"
 StrokeEndLineCap="Square"
 StrokeDashArray="1,1"
 Opacity="0"
 StrokeDashOffset="0.5"/>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>

You can now go ahead and add the new button to your app bar that uses that style. My
Foo button raises the refresh command, but you can make the button do whatever you
like. Here’s the modified app bar:

 <Page.BottomAppBar>
 <AppBar>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="50*"/>
 <ColumnDefinition Width="50*"/>
 </Grid.ColumnDefinitions>
 <StackPanel Orientation="Horizontal" Visibility="{Binding
 HasSelectedItems, Converter={StaticResource
 VisibilityConverter}}">
 <Button Content="Dump Selection" Command="{Binding
 DumpSelectionCommand}" />
 </StackPanel>
 <StackPanel HorizontalAlignment="Right" Orientation="Horizontal"
 Grid.Column="2">
 <Button Style="{StaticResource FooAppBarButtonStyle}"
 Command="{Binding RefreshCommand}" />
 <Button Style="{StaticResource RefreshAppBarButtonStyle}"
 Command="{Binding RefreshCommand}" />
 </StackPanel>
 </Grid>
 </AppBar>
 </Page.BottomAppBar>

That’s it! Run the project, and you’ll now have an image. Figure 4-9 illustrates.

152 | Chapter 4: The App Bar

Figure 4-9. The PNG-backed Foo option in situ

App Bar Images | 153

CHAPTER 5

Notifications

Notifications are one of the areas of the Windows Store app UX that have been extremely
well implemented. They are used in situations where you want to reach out and inform
users about something when they are not using the app. In retail scenarios they are
commonly used to indicate that new messages are available. In line-of-business (LOB)
scenarios they can be used to proactively reach out to your user audience in innovative
ways.

There are four types of notifications in Windows Store apps: toast, tiles, badges, and
raw. (In this book we won’t be talking about raw notifications, as they are too niche.)
Toast describes the messages that wind in from the right edge of the screen. (Prior to
the implementation in Windows 8/Windows RT, these used to “pop up” from the
bottom-right edge of the screen like toast from a toaster, hence the name.) Tiles are the
most interesting way of handling notifications. Actually, tiles are perhaps the most sig‐
nificant UX feature in Windows Store apps. They are unique to the device-based/touch-
centric Windows vision and allow apps to aggregate data in a single, easy-to-grasp view.
First appearing in Windows Phone and brought over to Windows 8/Windows RT, they
work like a “personal dashboard” for the user. In LOB scenarios they can be interesting,
as they provide for new ways of interacting with your user base. Finally, badges apply
to tiles. They allow you to attach numbers or a glyph to a tile. (A glyph, just in case the
term is new to you, is basically an icon.)

The work in this chapter will be divided into two sections. We’ll start off by looking at
local notifications. These are notifications where the app uses the notification subsystem
to initiate toast, badge, and tile updates on the same device. We’re going to construct
three “builder” classes, one for each type. As we’ll see, when we work with notifications
we ask WinRT to give us an XML-based template, which we then populate with data
and give back to WinRT. This XML-based approach is fine, but challenging from a code
maintenance perspective unless you happen to remember the structure of the various
XML templates—hence the builders, which make the maintenance easier.

155

In the second half of the chapter we’ll look at remote notifications. These are notifications
that are initiated by a cloud-based server and that wend their way down to the device
using the Windows Push Notification Service (WNS). This works by originating XML
on the server in the same format as local and then passing it over to WNS. This requires
an authentication step, followed by a transfer step.

Local Notifications
Notifications work in two ways: they are either generated locally from the device and
shown on that same device, or they are generated by an external server and pushed to
all subscribing devices. In this section we’re going to look at the former.

Turning Notifications On and Off
It’s possible to turn off toast notifications globally using the Change PC Settings option.
You should make sure that notifications are globally available before you start this work
to save frustration later.

XML Templates
All three of the notification formats use the same approach. Each has its own manager
class: ToastNotifier, BadgeUpdater, and TileUpdater. Each of the manager classes
has a method that returns an XML template that you fill in with your app-specific data
before returning it back to the manager for display. Each format has a variety of templates
to choose from. (I’ll go through some of the key templates as we look at each format,
but MSDN should remain your definitive resource.) Here’s an example of some basic
toast XML that displays a “Hello, world” message. For clarity, this is an example of a
toast template (specifically ToastText01) that has been populated with some data:

<toast>
 <visual>
 <binding template="ToastText01">
 <text id="1">Hello, world.</text>
 </binding>
 </visual>
</toast>

Easy, huh?

In fact, the only tricky thing about working with notifications is that from a code main‐
tenance perspective, the XML-based approach is a bit of a pain. The code won’t self-
document because all you do is ask the notification manager to return the XML template,
then use the DOM to update values.

For our work here, I’m proposing that we create some “builder” classes that are able to
populate the template for us. They will also be able to send the populated XML through

156 | Chapter 5: Notifications

to the “managers.” (The managers are the APIs supplied by WinRT that you give the
notifications to.) This will let us create code that’s more expressive and self-describing,
and thus more maintainable. Although the schema information for notifications is
documented on MSDN (look for “toast schema” on the MSDN site), it’s much easier to
abstract away the actual construction of the XML.

I’ll start by sketching out the proposed object model. Let’s look at the general structure
of the templates first. (As we go through this I’m not going to create a detailed inventory
of the templates, as these are all on MSDN. What I will do is call out some important
templates with the expectation that you’ll need to go to MSDN for the definitive list.)

• There are eight toast templates. Half of the eight templates allow for an image to be
displayed on the left side of the notification. All of the templates have various text
configurations—we’ll learn more about that as we go.

• At the time of writing, there are 46 tile templates! (There are so many because
Microsoft wants to provide maximum flexibility for this key feature. Plus, building
your own tile formats is verboten.) There are two main types of tile template—one
set that displays some static information, and another set that displays information
that “revolves” between picture and text information. You can see this in action on
the Start screen; the News app tile, for example, will display an image, and after a
while it will be replaced with some text, and then it will go back to an image.

• There are two badge templates. Badges are overlays for tiles, and can either display
a number (e.g., the number of unread items) or a glyph.

One of the strange API design decisions at play here is that there isn’t a set of base classes
in play. For example, WinRT provides ToastNotification, TileNotification, and
BadgeNotification, but there is no base Notification class. Likewise, in the manager
classes, there is no base implementation. While there will undoubtedly be good reason
for this, our builder classes will be more obviously object-oriented. We’ll have Notifi
cationBuilder<T> and NotificationWithTextBuilder<T> classes that we’ll specialize
into ToastNotificationBuilder, TileNotificationBuilder, and BadgeNotifica
tionBuilder classes.

Each of those classes will hold a static instance that keys into the notification system.
For toast, this is called a notifier. For tiles and badges, this is called an updater. Regardless
of the name, they do the same thing.

The nomenclature inconsistency is because toast “notifies” the user
something is happening, whereas tiles/badges are more passive. This
inconsistency makes sense if you regard them in isolation, but seems
strange if you regard them in terms of their construction and shared
behavior. My advice? Don’t worry about it!

Local Notifications | 157

Figure 5-1 shows a sketch of what we’re looking to achieve.

Figure 5-1. Sketch of our notification builders

Within our code, we’ll create an instance of whatever builder we want and use an object
model to define the notifications. As discussed, this will be easier and more maintainable
in the long run than hacking around with the XML.

We’ll start by looking at toast.

Toast
The basic toast template—ToastTemplateType.ToastText01— displays a single line of
text wrapped on three lines. In this section we’re going to start with something a little
more interesting by using ToastText02. This displays a single line of bold text, with the
second and third lines being taken up with some wrapped content. Figure 5-2 illustrates.

Figure 5-2. A ToastText02 template example

Let’s look at how to create that notification.

Setting permissions

The first thing we need to do to get toast working is to mark the app’s manifest as “toast
capable.” If we don’t do this, we won’t see anything.

158 | Chapter 5: Notifications

You should note that users can turn off the toast notifications using
the always-available Permissions option within the settings charm.
You shouldn’t rely on toast to provide essential app functions—in fact,
the store guidelines (which we’ll see more of in Chapter 15) forbid it.

To do this, double-click the Package.appxmanifest file to open the manifest editor. On
the Application UI tab you’ll find an option called “toast capable” underneath the No‐
tifications section. Change this to Yes. Figure 5-3 illustrates.

Figure 5-3. Setting the app to be toast capable

Toast without an image

The XML used to create the previously shown Figure 5-2 looks like this:
<toast>
 <visual>
 <binding template="ToastText02">
 <text id="1">A bold line at the top...</text>
 <text id="2">And then a longer string that's split over two lines
 underneath.</text>
 </binding>
 </visual>
</toast>

We’ll start at the top of our hierarchy with NotificationBuilder<T>. This is—as you
can see—a generic class that will take the type of the notification that it’s ultimately
trying to create. (Specifically, we’ll be creating a Windows.UI.Notifications.ToastNo
tification.) As I mentioned before, the notification classes do not have a common
base type, so we can’t constrain the type parameter. On a related note, because the
manager classes don’t have a base type either, we can’t do much else than just add an
abstract method to create a notification and another to update. (With more OO so‐
phistication in the underlying API, we could make our builder base classes slicker.)
Here’s the code:

 public abstract class NotificationBuilder<T>
 {
 protected NotificationBuilder()
 {

Local Notifications | 159

 }

 protected abstract T GetNotification();

 public abstract T Update();
 }

Toast and tiles have shared behavior in terms of being able to show text and images. I’m
therefore proposing creating a NotificationWithTextBuilder<T> class that will hold
a collection of strings to display. When we come to build the notification, our specialized
ToastNotificationBuilder and TileNotificationBuilder class will call up to us with
the XML and expect us to populate any text elements that we find with the strings
contained within the Texts property. This will be done via a method called UpdateTem
plateText.

We haven’t spoken much about XML so far, which tells us something about how popular
XML is in 2012. Going back five years, this book would have been full of XML. Now it’s
far easier to work with JSON. However, we do need to talk about XML now.

The XML DOM API in the original version of .NET was a thing of beauty, especially
compared to the way we used to work with XML in the days of COM. It was, and still
is, easy to work with and expressive. With Windows Store apps we no longer use the
System.Xml.XmlDocument class and its related types, but instead we use the WinRT
version: Windows.Data.Xml.Dom.XmlDocument. This works in a very similar fashion to
the “legacy” .NET version—in fact, I’d been using the new WinRT version for months
before realizing that it had changed! Suffice it to say, if you’re used to using the .NET
version you’re generally not going to come unstuck when working with the WinRT XML
APIs.

Back to our UpdateTemplateText method: this just has to select out a list of all the text
elements that are found in the DOM and replace the InnerText values with those stored
in the Texts property. If we have more elements than strings, we’ll set the elements to
empty strings. Here’s the code:

 public abstract class NotificationWithTextBuilder<T> :
 NotificationBuilder<T>
 {
 protected List<string> Texts { get; set; }

 protected NotificationWithTextBuilder(IEnumerable<string> texts)
 {
 this.Texts = new List<string>(texts);
 }

 protected void UpdateTemplateText(XmlDocument xml)
 {
 // walk and combine elements...
 var textElements = xml.SelectNodes("//text");
 for (int index = 0; index < textElements.Count; index++)

160 | Chapter 5: Notifications

 {
 if (index < this.Texts.Count)
 textElements[index].InnerText = this.Texts[index];
 else
 textElements[index].InnerText = string.Empty;
 }
 }
 }

With the base classes built, we can build ToastNotificationBuilder.

As discussed, we have these various template types to choose from when dealing with
notifications. To add some color to our discussion, we’ll design them so that they’ll either
infer the template type to use, or we can give it a specific template type if we want. In
this case, we’ll infer the type from a possible/limited set of ToastText01 (one string,
wrapped over three lines), ToastText02 (two strings, bold first line), and Toast
Text04 (three strings, bold first line, normal weight for the other two). In the next section
we’ll look at images.

How—or indeed if—you want to infer the template is up to you; this
is just how I’ve done it based on how most readers of this book might
end up using toast.

To start with, as we’ve also discussed, each notification type needs to be tied into its own
manager. In the case of toast, we need to use the ToastNotificationManager. The first
time that we want to use notifications, we need to ask this to provide a ToastNotifi
er instance to us. We can store this in a static variable and use the static constructor to
trigger its creation.

Here’s the initial construction of the ToastNotificationBuilder class:
 public class ToastNotificationBuilder : NotificationWithTextBuilder
<ToastNotification>
 {
 // what we're trying to show...
 private ToastTemplateType _type;
 private bool TypeSet { get; set; }

 // the engine used to update it...
 private static ToastNotifier Notifier { get; set; }

 public ToastNotificationBuilder(string text)
 : this(new string[] { text })
 {
 }

 public ToastNotificationBuilder(IEnumerable<string> texts)

Local Notifications | 161

 : base(texts)
 {
 }

 static ToastNotificationBuilder()
 {
 Notifier = ToastNotificationManager.CreateToastNotifier();
 }
 }

You’ll notice that we have our template type stored in the _type field, and that we also
have a TypeSet property. What we’re going to do is infer the type to use if it hasn’t been
set (i.e., TypeSet is false), or use an explicit type if it has been set. Here’s the imple‐
mentation of the Type property:

 // Add property to ToastNotificationBuilder...
 public ToastTemplateType Type
 {
 get
 {
 if (this.TypeSet)
 return _type;
 else
 {
 if (this.Texts.Count <= 1)
 return ToastTemplateType.ToastText01; // just 1 line...
 else if (this.Texts.Count == 2)
 return ToastTemplateType.ToastText02; // 1 - bold,
 next normal
 else
 return ToastTemplateType.ToastText04; // 1 - bold,
 2-3 normal
 }
 }
 set
 {
 _type = value;
 this.TypeSet = true;
 }
 }

Finally, we can implement the abstract methods defined on NotificationBuilder<T>
that populate the template and send it through to the notifier for display. At this point,
the only change that we need to make to the provided XML template is to populate the
elements text, which we can do with the UpdateTemplateText method that we built
earlier in NotificationWithTextBuilder<T>. Here’s the code:

 // Add methods to ToastNotificationBuilder...
 protected override ToastNotification GetNotification()
 {
 var xml = ToastNotificationManager.GetTemplateContent(this.Type);
 UpdateTemplateText(xml);

162 | Chapter 5: Notifications

 // return...
 return new ToastNotification(xml);
 }

 public override ToastNotification Update()
 {
 var toast = this.GetNotification();
 Notifier.Show(toast);

 // return...
 return toast;
 }

To test this, we need to show some toast. I’m going to propose changing the behavior
of the Refresh button that we put on the app bar in the last chapter such that when we
explicitly choose this option, we’ll see some toast. You should note that this is not a
proper use of toast. Toast is supposed to be used in situations where external imperatives
are affecting a system—such as receipt of an email, or an IM friend logging on. They
are not supposed to be used to replace message boxes. (Moreover, you can turn off
notifications globally, or even mute them so you can’t rely on the user actually having
seen them.)

Making this change is a matter of modifying the RefreshCommand handler
on ReportsPageViewModel. Here is that change (I’ve omitted some code from the view-
model’s constructor for brevity):

 // Modify anonymous method in ReportsPageViewModel constructor...
 public ReportsPageViewModel(IViewModelHost host)
 : base(host)
 {
 // setup...
 this.Items = new ObservableCollection<ReportItem>();
 this.SelectedItems = new List<ReportItem>();

 // commands...
 this.RefreshCommand = new DelegateCommand(async (e) =>
 {
 this.Host.HideAppBar();
 await this.DoRefresh(true);

 // toast...
 string message = "I found 1 report.";
 if (this.Items.Count != 1)
 message = string.Format("I found {0} reports.",
 this.Items.Count);
 var toast = new ToastNotificationBuilder(new string[] {
 "Reports refreshed.", message });
 toast.Update();
 });

Local Notifications | 163

 // code omitted for brevity...
 }

You can now run this code. Navigate to the Reports page and explicitly refresh. You
should see the toast appear as shown in Figure 5-4.

Figure 5-4. A successful toast notification

That’s great, but how do we display images?

Toast with an image

As mentioned, half of the templates that we can use with toast display images. When
we work with one of those templates, we’ll get XML that’s essentially the same as before,
but happens to include an image element. Here’s an example:

<toast>
 <visual>
 <binding template="ToastImageAndText02">
 <image id="1" src=""/>
 <text id="1">Reports refreshed.</text>
 <text id="2">I found 50 reports.</text>
 </binding>
 </visual>
</toast>

To handle this, we need to get a value into the src attribute that references an image,
and change the template type. The image reference will most likely be an ms-appx
resource URI, like the one we met in Chapter 4. What we need to do is grab an image
and put it into the Assets folder within our project. You can take any image you want,
but it has to be less than 200KB in size and smaller than 1024×1024 pixels. In the code
downloads for this book, you’ll find a Resources folder containing some images that are
published under a Creative Commons license. I’ve called my image Toast.png. Do watch
that 200KB size limit, however. If the image is too big you’ll still get the notification, just
without the image. The same applies to the tile images we’ll see next.

In the next chapter, we’re going to do more work with images. The
strange nature of the images in that folder will become clear in Chap‐
ter 6 when we talk about the problem domain from which they were
taken!

164 | Chapter 5: Notifications

To begin, add a new read/write property to ToastNotificationBuilder of type string
called ImageUri. Then, depending on whether we have one of these, we can rig the Type
property to infer a different type. Here’s that change:

 // Modify and add properties in ToastNotificationBuilder...
 public ToastTemplateType Type
 {
 get
 {
 if (this.TypeSet)
 return _type;
 else
 {
 if (this.Texts.Count <= 1)
 {
 if (this.HasImageUri)
 return ToastTemplateType.ToastImageAndText01;
 else
 return ToastTemplateType.ToastText01;
// just one line...
 }
 else if (this.Texts.Count == 2)
 {
 if (this.HasImageUri)
 return ToastTemplateType.ToastImageAndText02;
 else
 return ToastTemplateType.ToastText02;
// 1 - bold, next normal
 }
 else
 {
 if (this.HasImageUri)
 return ToastTemplateType.ToastImageAndText04;
 else
 return ToastTemplateType.ToastText04;
// 1 - bold, 2-3 normal
 }
 }
 }
 set
 {
 _type = value;
 this.TypeSet = true;
 }
 }

 private bool HasImageUri
 {
 get
 {
 return !(string.IsNullOrEmpty(this.ImageUri));

Local Notifications | 165

 }
 }

The final step is then to set the image element within the template XML. Here’s the code:
 // Modify method in ToastNotificationBuilder...
 protected override ToastNotification GetNotification()
 {
 var xml = ToastNotificationManager.GetTemplateContent(this.Type);
 UpdateTemplateText(xml);

 // do we have an image?
 if (this.HasImageUri)
 {
 var imageElement = (XmlElement)xml.SelectSingleNode("//image");
 imageElement.Attributes.GetNamedItem("src").NodeValue =
 this.ImageUri;
 }

 // return...
 return new ToastNotification(xml);
 }

Finally we need to change the command that creates the ToastNotificationBuilder
to include the image URL. Here’s a further change to the ReportsPageViewModel con‐
structor. Again, I’ve omitted code for brevity:

 // Modify constructor of ReportsPageViewModel...
 public ReportsPageViewModel(IViewModelHost host)
 : base(host)
 {
 // setup...
 this.Items = new ObservableCollection<ReportItem>();
 this.SelectedItems = new List<ReportItem>();

 // commands...
 this.RefreshCommand = new DelegateCommand(async (e) =>
 {
 this.Host.HideAppBar();
 await this.DoRefresh(true);

 // toast...
 string message = "I found 1 report.";
 if (this.Items.Count != 1)
 message = string.Format("I found {0} reports.",
 this.Items.Count);
 var toast = new ToastNotificationBuilder(new string[]
{ "Reports refreshed.", message });
 toast.ImageUri = "ms-appx:///Assets/Toast.jpg";
 toast.Update();
 });

166 | Chapter 5: Notifications

 // code omitted for brevity...
 }

If you run that and do an explicit refresh, you’ll see toast with the image shown in
Figure 5-5.

Figure 5-5. Toast with image

Asynchrony and notifications

Now that you’ve been through how notifications work, you may be wondering why
when we hand an update over to Windows, the method we call is not marked as
async. It would be typical to assume they would be; after all, they are calls that take some
time to operate.

The reason they are synchronous is because they operate within the 50ms timescale rule.
They pass over to the notification subsystem instantly and don’t block or delay the UI
thread. It just happens that from that point they take more than 50ms to rattle through
the system but, as they say, that’s not our problem.

Badges
In this section, we’ll quickly cover badge notifications. These are very straightforward.
You can either have a number indicating the number of unread items, or you can have
one of a small-but-decent number of glyphs.

You can choose from the following glyphs, and you can’t define your own. The value
listed beside each glyph is the value that’s needed within the XML.

activity

alert

available

away

busy

newMessage

paused

playing

Local Notifications | 167

unavailable

error

attention

I’m not going to go through how to set the glyph because it’s so similar to setting a
number (which we will do), and I’d rather move on to explaining tiles, which is far more
interesting. In the code download, you will find glyphs supported on the BadgeNotifi
cationBuilder class that we’re about to build.

As mentioned a few times, the notifications all work in the same way, so to set a badge
value we need to get the template XML, populate it, and pass it back. Specifically, we’ll
get a template like this:

<badge value=""/>

We can set value to be any positive integer that we like. (Or we can set it to a glyph, as
per the preceding table.) There is a high limit on that number of 99. If you specify 100
or greater, “99” will be rendered with a small plus sign next to it.

Seeing as BadgeNotificationBuilder is just a specialization of the Notification
Builder<T> that we’ve already created, I’ll simply present the code. Here’s BadgeNoti
ficationBuilder:

 public class BadgeNotificationBuilder : NotificationBuilder
<BadgeNotification>
 {
 // what we're trying to show...
 public int Number { get; private set; }

 // the engine used to update it...
 private static BadgeUpdater Updater { get; set; }

 public BadgeNotificationBuilder(int number)
 {
 this.Number = number;
 }

 static BadgeNotificationBuilder()
 {
 Updater = BadgeUpdateManager.CreateBadgeUpdaterForApplication();
 }

 public override BadgeNotification Update()
 {
 // create the notification and send it...
 var badge = GetNotification();
 Updater.Update(badge);

 // return...

168 | Chapter 5: Notifications

 return badge;
 }

 protected override BadgeNotification GetNotification()
 {
 var xml = BadgeUpdateManager.GetTemplateContent
(BadgeTemplateType.BadgeNumber);

 // glyph?
 var attr = xml.FirstChild.Attributes.GetNamedItem("value");
attr.NodeValue = this.Number.ToString();

 return new BadgeNotification(xml);
 }
 }

To test that this works, we can again change ReportsPageViewModel. In this case,
whenever we update the view we’ll set the badge. Like toast, this is not a proper use of
badges in production information. They should be used solely to draw the user’s atten‐
tion to new information. Here’s the change to ReloadReportsFromCacheAsync:

 private async Task ReloadReportsFromCacheAsync()
 {
 // set up a load operation to populate the collection from
 // the cache...
 using (this.EnterBusy())
 {
 var reports = await ReportItem.GetAllFromCacheAsync();

 // update the model...
 this.Items.Clear();
 foreach (ReportItem report in reports)
 this.Items.Add(report);

 // update the badge...
 var badge = new BadgeNotificationBuilder(this.Items.Count);
 badge.Update();
 }
 }

Run the code, and the badge value will change as illustrated in Figure 5-6.

Figure 5-6. Our tile with a badge showing the number of reports

Local Notifications | 169

Figure 5-7. All four possible views provided by the News app’s tile

Now that we can add a badge to a tile, let’s see if we can make the tile even more
interesting.

Tiles
As mentioned, tiles are a big deal within the Windows Store app experience and are a
great way for you to provide extra value to your user. While engagement is one of the
things tiles offer, the most important thing they do is allow users to create a dashboard
of all the apps they use, which puts timely information front and center. In LOB apps
—especially when the enterprise has published many—this can be very helpful.

However, one thing you need to know about tiles is that the user can turn off the updates,
in which case the tile just becomes a static presentation of whatever image you initially
provide. This means that you cannot rely on presentation through a tile—or, to put it
another way, a tile cannot be the only place where certain information is represented.
It must bring forward information otherwise available in the app.

Another thing to consider with tiles is that they come in two varieties: normal and wide.
They can also rotate between images and text (called peeking in the API). Figure 5-7
shows the News app tile in normal and wide mode, and I’ve presented both the text view
and image view for all of these.

By default you get a normal width tile, but you can provide a wide tile. The wrinkle to
this arrangement is that the user can select whether to view the narrow or wide tile, and
you have no control over that. (Users do this via an option on the app bar within the
Start screen.) Thus, when we’re using wide tiles we have to provide both every time we
do an update—that is, we need to tell the tile manager to change both the narrow tile
and the wide tile. This is unlikely to be a problem, however, as in order to change one

170 | Chapter 5: Notifications

you likely have the information loaded and available to update the other. (Or, more
specifically, there isn’t going to be much horsepower wasted updating the one that the
user doesn’t want to see.)

Tile template types

As mentioned, there are 46 tile template types. I won’t repeat the MSDN documentation
here, but in summary:

• Some of the templates are normal width, and some are wide.
• Virtually all of the templates display text information.
• Some templates are peek templates, which means they rotate between an image

display and text display.
• Some templates show image collections. The People app tile does this—it’ll display

one large image and four smaller images next to it.
• Some templates include block text. For example, the Calendar app shows the current

day of the month in large text, and upcoming calendar information in small text.

The tiles that we’re going to use in this example are:
TileWidePeekImage01

This is a wide, rotating template with an image on one side, and two lines of text
on the other.

TileSquarePeekImageAndText02

This is a normal-width, rotating template again with an image on one side and two
lines of text on the other.

Creating a wide tile

Before we update the tile with live information, we need to configure the wide tile. This
is just a matter of creating a wide image and specifying it in the manifest.

Normal image files are 150×150 pixels. Wide images are—perhaps bizarrely—310×150
pixels in size. You can create an image in your favorite image editor.

There’s a wrinkle to working with images in that you need to pro‐
vide a set of images to cover scaling on displays with a higher densi‐
ty. This is discussed more in Chapter 13.

We haven’t spoken much about design of images for our apps (although you may have
noticed that in the code downloads I’ve provided images based on the pica featured on
the cover of this book). There are two approaches to designing them. The basic way of

Local Notifications | 171

doing it is to create a transparent image and add design elements that are white aliased
onto transparency. This allows you to change the background color for the app in the
manifest and not have to change all of the images.

This isn’t a design book, and I’m not expecting most readers to be design savvy, but this
can be a little hard to get your head around. My recommendation is to use Adobe
Fireworks or a higher-end design package. Although you can do this with free packages,
it is much easier to buy the right tool for the job. In the code download for this chapter,
you’ll find my wide logo that was created using Fireworks.

The built-in apps work using this transparency method. A lot of the
apps currently in the Store, however, don’t do this—they have more
a designed, graphical look.

When you’re done, add the logo to the ~/Assets folder within your project and remember
to include it within the project. As a final step, open the manifest editor and set the
“Wide logo” value on the Application UI tab. Figure 5-8 illustrates.

Figure 5-8. Setting the “Wide logo” value in the manifest

With the wide logo in place, find the tile on the Start screen, right-click on it, and choose
the Larger option from the app bar. Figure 5-9 illustrates the wide logo.

Figure 5-9. The StreetFoo wide logo

172 | Chapter 5: Notifications

As a side note, you should be aware that Microsoft’s guidelines are that if you have a
wide tile you must support tile updating. Specifically, Microsoft says that “content must
always be fresh” when you’re using wide tiles.

Creating TileNotificationBuilder

TileNotificationBuilder will extend NotificationWithTextBuilder<T> and will be
essentially the same as the others built so far. The only difference is that we’re going to
create a way to streamline the companion tile—specifically, we want to get to a position
where we can create one and automatically create the other. We’ll call this companion
tile a replica.

TileNotificationBuilder will contain a collection of image URIs that can be patched
into the template. If we were using a template that shows image collections (which we’re
not), we’ll get multiple image elements in the XML in exactly the same way as we had a
single image template in the toast XML. This, for example, is the template for TileWi
dePeekImageCollection04, which contains a collection of images:

<tile>
 <visual>
 <binding template="TileWidePeekImageCollection04">
 <image id="1" src=""/>
 <image id="2" src=""/>
 <image id="3" src=""/>
 <image id="4" src=""/>
 <image id="5" src=""/>
 <text id="1"></text>
 </binding>
 </visual>
</tile>

We’re not going to be using that template type because we have only one image, but we’ll
make TileNotificationBuilder capable of populating any number of image elements
in exactly the same way that NotificationWithTextBuilder<T> was able to populate
any number of text elements.

Here’s the basic implementation that doesn’t take creating a replica into consideration.
(We’ll do the replica part next.)

 public class TileNotificationBuilder : NotificationWithTextBuilder
<TileNotification>
 {
 public TileTemplateType Type { get; private set; }
 public List<string> ImageUris { get; set; }

 private static TileUpdater Updater { get; set; }

 public TileNotificationBuilder(IEnumerable<string> texts,
TileTemplateType type)
 : base(texts)

Local Notifications | 173

 {
 this.ImageUris = new List<string>();
 this.Type = type;
 }

 static TileNotificationBuilder()
 {
 Updater = TileUpdateManager.CreateTileUpdaterForApplication();
 }

 public override TileNotification Update()
 {
 var tile = this.GetNotification();
 Updater.Update(tile);

 return tile;
 }

 protected override TileNotification GetNotification()
 {
 var xml = TileUpdateManager.GetTemplateContent(this.Type);
 this.UpdateTemplateText(xml);

 // images...
 if (this.ImageUrls.Any())
 {
 var imageElements = xml.SelectNodes("//image");
 for (int index = 0; index < imageElements.Count; index++)
 {
 var attr = imageElements[index].Attributes.
 GetNamedItem("src");

 // set...
 if (index < this.ImageUris.Count)
 attr.NodeValue = this.ImageUris[index];
 else
 attr.NodeValue = string.Empty;
 }
 }

 // return...
 return new TileNotification(xml);
 }
 }

The magic happens there with the population of the image. Like the text population we
did earlier, we take any image elements that we can find and replace their src values
with any image URIs that we’ve been supplied.

To handle creating the replica we’ll add two methods. Replicate will create a new
TileNotificationBuilder with a newly supplied template type. This would typically
work by having you create the wide tile in the first instance with populated text and

174 | Chapter 5: Notifications

images and then creating a replica with a normal-width tile. By way of a shortcut, we’ll
create UpdateAndReplicate, which will do the first type and then the second type in
turn. Here are the new methods to add to TileNotificationBuilder:

 // Add methods to TileNotificationBuilder...
 private TileNotificationBuilder Replicate(TileTemplateType newType)
 {
 var newBuilder = new TileNotificationBuilder(this.Texts, newType);
 newBuilder.ImageUrls = new List<string>(this.ImageUrls);

 return newBuilder;
 }

 public TileNotification UpdateAndReplicate(TileTemplateType replicaType)
 {
 // update this one...
 var result = Update();

 // then copy...
 var replica = this.Replicate(replicaType);
 replica.Update();

 // return...
 return result;
 }

To get this to work, we’ll modify the ReloadReportsFromCacheAsync method like we
did when working with the badge builder to update the tiles. We’ll add some text and
an image URI. In this example implementation, just to show that we support multiple
lines, I’ve repeated the word StreetFoo. In a production app you would not do this,
because the name of the app always appears in the bottom-left corner of the tile.

Here’s the change to ReloadReportsFromCacheAsync. For simplicity I’ve reused the
same Toast.jpg image that we saw when we were working with toast.

 // Modify ReloadReportsFromCacheAsync...
 private async Task ReloadReportsFromCacheAsync()
 {
 // set up a load operation to populate the collection
 // from the cache...
 using (this.EnterBusy())
 {
 var reports = await ReportItem.GetAllFromCacheAsync();

 // update the model...
 this.Items.Clear();
 foreach (ReportItem report in reports)
 this.Items.Add(report);

 // update the badge...
 var badge = new BadgeNotificationBuilder(this.Items.Count);
 badge.Update();

Local Notifications | 175

 // update the tile...
 string message = "1 report";
 if (this.Items.Count != 1)
 message = string.Format("{0} reports", this.Items.Count);
 var tile = new TileNotificationBuilder(new string[]
 { "StreetFoo", message },
 TileTemplateType.TileWidePeekImage01);
 tile.ImageUris.Add("ms-appx:///Assets/Toast.jpg");
 tile.UpdateAndReplicate(TileTemplateType.
TileSquarePeekImageAndText02);
 }
 }

Run the code and the tile will update. Wait long enough and the initial image will be
replaced with text. Wait longer still and the text will rotate back. Right-click on the tile
and use the app bar to toggle between the smaller and larger versions. Figure 5-10 shows
the wide tile in picture mode.

Figure 5-10. The wide tile showing a single picture (and badge)

Other Notification Features
There are some tile features that we haven’t had space to talk about in this chapter. Here’s
a summary:

• Tiles and badges can both update themselves periodically by automatically calling
up to a remote web server. The idea here is that this server will return the populated
XML notification document that would be set on the tile. (This idea of servers
creating notification XML is something that we talk about in the next section.) Some
of the built-in Bing apps (News, Travel, and so on) do this. The periods are fairly
conservative, ranging from 30 minutes to 24 hours. This sort of thing is useful for
retail apps that want to keep content fresh, but it’s unclear to me how this is useful
in LOB apps.

• Tiles have a notification queue, which can be up to five items long. The idea here
is that you can pile in a whole load of updates that will cycle through on the Start
screen. The documentation describes the scheduling of the updates as being subject
to “internal factors” and that they “cannot be controlled by applications.” For retail
apps, this is helpful for creating dynamic and interesting content. For LOB apps, I

176 | Chapter 5: Notifications

can’t see how helpful this is, as the information would surely tend to become over‐
whelming.

• Secondary tiles are the final cool feature in the API that we haven’t discussed. Each
app has at least one tile (the “primary”), but apps can create any number of secon‐
dary tiles that allow shortcuts into the app. For example, say you were building an
order-taking LOB app—you can let users create secondary tiles for their key cus‐
tomers. When this tile is clicked, the app could be rigged to view the order summary
for that customer. Similarly, the app could update the tile with key information
about that customer.

Now that we’ve been through local notifications in detail, let’s look at how we can initiate
notifications from the cloud.

Push Notifications
A really fantastic piece of design in the Windows Store app APIs is that if you want your
notifications to originate from a server in the cloud rather than from the local device,
you take the same XML that we’ve just seen and hand it over to the Windows Push
Notification Service (WNS), and eventually it will get routed to the device and displayed.
The only complexity lies in the process of communicating with WNS, and it’s these steps
that we’ll see in this section.

WNS Process
To work with WNS, you need to have an account registered, and you need to tell it about
your apps. There are two WNS systems—one production system and one test/sandbox
system. In this section we’re going to use the test system. A word of warning: these types
of systems operated by Microsoft tend to change a lot, so the screenshots and steps I’ll
take you through here are for illustration only. Your mileage will undoubtedly vary.

Back to the steps: the principle is that on the client you need to obtain a notification
URI and then pass that URI to your own cloud server. This process is called opening a
channel. It’s easier to think of this URI as an arbitrary “token,” but we’re going to talk
about something else called an authentication token, and it will get confusing. When I
talk about the “notification URI,” it’s just a string, nothing else.

Your cloud server will take that notification URI and attach it to some customer/account
data in its database. When something happens that you want to tell that user about, you
give the notification XML and the notification URI to WNS, and it deals with the prob‐
lem of actually driving the notification down to whatever client it is applicable to. Note
that’s “client” singular—you’ll have to handle multiple notification URIs per customer
account, as each device’s channel is unique. If one customer has three devices, that’s
three channels you need to record.

Push Notifications | 177

Figure 5-11. Setup and signaling phases of the Windows Push Notification Service

Sending the notification XML to WNS involves authenticating yourself using OAuth.

Figure 5-11 illustrates how this works. In the setup phase, the local Windows Store app
calls an API to receive a notification URI specific to that application instance. That is
then passed to the server. In the invocation phase, the cloud server calls through to WNS
with that same notification URI. WNS then dereferences the client using that URI, and
the call is passed to the client whereupon the notification is displayed.

In this chapter, we’re not going to build the server, as it’s way out of scope for the book.
What we’re going to do instead is build a Windows Forms client that acts as a simulator
for a server. We’ll plug the various values we need into this, it’ll call WNS, and WNS
will call down to Windows in our device, and from there into the Windows Store app
client. The reason I wanted to do this in Windows Forms is that Windows Forms is
notionally more similar to ASP.NET, which is the technology you’d most likely use for
initiating the connections into WNS.

Because I felt it would be generally valuable, I wrote a small standalone library that I’ve
put on GitHub for sending notification XML over to WNS and handling the authenti‐
cation. You can find a version of this library in the download for this chapter within the
FakeCloud folder. If you’re following along, you should use the code in this folder.

178 | Chapter 5: Notifications

You should be aware that as of the time of writing, you are only
allowed to use WNS with apps that are distributed through the Win‐
dows Store. This means that you cannot use WNS with LOB apps that
are sideloaded.
This is explicitly written into the certification requirements—we talk
about this and sideloading in Chapter 15.

Handling User Accounts
One big complication that we need to deal with here is that the WNS notifications know
nothing about our user account model. Thus far, we’ve allowed users to register their
own accounts and log on. The Windows notification system is based on the assumption
that your app authentication is tied into the Windows authentication in some way. In a
LOB app with single-sign-on, this makes plenty of sense, but generally for retail apps
where you’re going to want customer accounts, not so much.

I need to be clear on this—if you have one app where the user logs into Windows using
two accounts, you’re fine. You’ll get two separate URIs and hence when you notify on
those URIs it’ll find its way to the correct user. But if you have one app where the user
logs into the app on two separate accounts and you’re only using one Windows account,
this can be a real problem—if you’re building an IM app and start surfacing updates to
the wrong user, it could end up being extremely embarrassing.

There is an unwritten rule that when working in the Windows world
you shouldn’t necessarily allow this separate “subaccount” approach
—that is, user accounts should be tied one-to-one with the actual
Windows account. Philosophically I don’t agree with this, which is
why the design of the app here provides an alternative view. It’s easy
for me to show you a more complex approach and allow you to sim‐
plify if you feel it necessary.

Even though we don’t have the bandwidth to build a sample server within the book, I
will take you through its design, as most of you will need to do this and some design
elements are quite subtle.

• A notification URI is bound to a device, not to a user account.
• Your database will have a list of user accounts. As a user could have multiple devices,

you need to hold multiple notification URIs per user.
• The Windows Store app on the client will from time to time send up a logon token

and a notification URI. You can use the logon token to dereference the user.
• If the notification URI is not anywhere in your database, attach it to the user.

Push Notifications | 179

• If the notification URI is within your database, remove it from the old user, then
attach it to the new user.
This last step is key. Imagine you have Device X that User A and User B log on to.
User B also logs on to Device Y. (The notification URIs we’re about to see bear no
resemblance to how real notification URIs look. You should treat the real ones as
arbitrary in any case.)

• User A logs on to Device X and gets a URI like https://myUriForDeviceX. The server
is updated with {UserA: https://myUriForDeviceX}.

• User B logs on to Device Y and gets a URI like https://myUriForDeviceY. The server
is updated with {UserB: https://myUriForDeviceY}.

• If User B logs on to Device X, User A has to be logged off. The URI will be the same
as the one User A got though, so you will have {UserA:(null)} and {UserB:
https://myUriForDeviceY, https://myUriForDeviceY}.

What this last set of values tells you is that if you need to notify User A, you have no
URIs, so you do nothing. If you need to notify User B, you have two URIs and need to
call them both.

Obtaining a Notification URI
You open a channel by calling the CreatePushNotificationChannelForApplication
Async method on PushNotificationChannelManager. This will return a PushNotifi
cationChannel object containing your URI.

You should ask for the URI whenever the app starts. The first time you get a URI, this
needs to be sent to the server. On subsequent calls, you may or may not get the same
URI back. If the URI changes, you should send it to the server, as this indicates that the
one that you had is invalid.

Notification URIs have a natural life, which as of the time of writing was 30 days. How‐
ever, various error conditions may cancel off a token, causing it to be replaced. Moreover,
the 30 days isn’t guaranteed; thus, this rule of “check whether it’s changed and resend”
will always apply. It’s going to be better practice to only send up a new URI when it’s
changed for improved efficiency at both the client and server ends. While we’re talking
about best practice, you should transmit URIs over SSL, as anyone with both the URIs
and the logon credentials for WNS can spam your users.

A wrinkle here is that your app may well end up running for more than 30 days, plus
there’s a chance it may end up being in a suspended state for more than 30 days. We’re
a little ahead of ourselves here, as we talk more about app lifetime in Chapter 14, but I
need to explain some of this now.

If the user logs on explicitly, we need to ensure the channel is created, and transmit the
notification URI up to the server if necessary. If the user opens the app and the logon

180 | Chapter 5: Notifications

is done implicitly through “remember me,” we need to go through the same process. If
the user resumes the app and we are logged on, we again need to go through that same
process.

We can sort out the first two cases of explicit and implicit logon by calling our channel
setup from within our existing LogonAsync method. For the other case we’ll have to
make a change to App to handle the Resumed event.

First, add this method to StreetFooRuntime. This will create the channel and use the
SQLite persistent settings code that we built in Chapter 3 to track the state of various
pieces of user settings data.

 // Add method to StreetFooRuntime...
 public static async Task SetupNotificationChannelAsync()
 {
 // get the notification channel...
 var manager = await PushNotificationChannelManager.
CreatePushNotificationChannelForApplicationAsync();
 Debug.WriteLine("Channel: " + manager.Uri);

 // if either the URI we sent or the username we sent has changed,
 // resend it...
 var lastUri = await SettingItem.GetValueAsync("NotificationUri");
 var lastToken =
 await SettingItem.GetValueAsync("NotificationToken");
 if (lastUri != manager.Uri || lastToken != LogonToken)
 {
 // send it...
 Debug.WriteLine("*** This is where you asynchronously send it!
 ***");

 // store it...
 await SettingItem.SetValueAsync("NotificationUri", manager.Uri);
 await SettingItem.SetValueAsync("NotificationToken", LogonToken);
 }
 else
 Debug.WriteLine("URI not changed.");
 }

We’re writing the URI out to the debug console because we’ll need to
copy and paste it into our server simulator later.

Within App, we need to add a handler to the Resuming event and, if we have a logon
token, call into SetupNotificationChannelAsync. Here’s the code:

 // Modify constructor and add method to App...
 public App()

Push Notifications | 181

 {
 this.InitializeComponent();

 this.Suspending += OnSuspending;
 this.Resuming += App_Resuming;
 }

 async void App_Resuming(object sender, object e)
 {
 if (StreetFooRuntime.HasLogonToken)
 await StreetFooRuntime.SetupNotificationChannelAsync();
 }

That’s really it as far as setting up the channel goes. Of course, there would be some
additional complexity in transmitting the changes to the server, but we know that we
can do that easily enough.

Sending to WNS
Now we can turn our attention to the step where we transmit the notification to WNS,
whereupon it would hopefully find its way down to our device.

As mentioned, I have built a Windows Forms client that we can use in this chapter. I’m
not going to go through the construction of that at all. I will go through the construction
of the MetroWnsPush library that we’re using, as it illustrates some common patterns
that you see when talking to third-party endpoints over HTTP, not least of all some
basic OAuth stuff.

Figure 5-12 shows the client app. What we need to do is fill in the package security
identifier (SID), security secret, and channel URI fields. The package SID and client
secret fields will come from the Microsoft portal that you use to manage your apps. The
URI comes from the Windows Store app itself when it registers the channel.

We’ll now look at registering your app with the test/sandbox portal that Microsoft pro‐
vides. As mentioned before, these screens are likely to change, but the steps should retain
this general shape.

182 | Chapter 5: Notifications

Figure 5-12. Our cloud simulation app

Registering the app

To register the app, start by visiting https://manage.dev.live.com/build. You’ll be asked
to log in to your Microsoft Account. As of the time of writing, you will be shown a
screenshot of the package editor within Visual Studio. You’ll also be shown a form to
complete asking for the “Package display name” and “Publisher.” You’ll find these within
the Packaging tab of the manifest editor. Figure 5-13 illustrates.

Push Notifications | 183

https://manage.dev.live.com/build

Figure 5-13. “Package display name” and “Publisher” fields

Copy and paste these into the form on the portal. Although it’s obvious, Figure 5-14
illustrates clearly what to do.

Figure 5-14. Filling out the form on the portal

Click Accept, and you’ll be given three pieces of information: the package name, the
client secret, and the package SID. Figure 5-15 illustrates.

184 | Chapter 5: Notifications

Figure 5-15. The values needed to hook into WNS

Don’t use these magic numbers—they’re specific to my app and my
account. Make sure you obtain your own using the steps detailed here.

The package name gets baked into the app. The client secret and package SID will get
baked into your cloud server. These two values are used to authenticate you with WNS.
The first value is used as part of the channel setup initiated by the Windows Store app
and uniquely identifies your app out of the total universe of all Window Store apps.

Copy and paste the package name back into the Packaging tab of the manifest editor.
Copy and paste the other two values into Notepad and keep them safe. Figure 5-16
shows the former.

Push Notifications | 185

Figure 5-16. Pasting the package name back into the manifest

Now you can run the app. The channel will be created and the notification URI written
to the debug console. Figure 5-17 illustrates. When you get the URI, copy and paste that
into Notepad too.

Figure 5-17. Our new notification URI

Now that we have all the data we need, we can make the call, starting with authentication.

Authenticating

Authentication with WNS is done over OAuth. We use the client secret and the package
SID to authenticate ourselves.

In this part, we’re going to use the MetroWnsPush package that I described earlier; how‐
ever, I will present code from it so that you can get a feel for how the actual communi‐
cation works.

During authentication, a GET request is sent to https://login.live.com/accesstoken.srf,
passing in the secret package SID, and some special values using the application/x-
www-form-unencoded content type. The AuthenticateAsync method within WnsAu

186 | Chapter 5: Notifications

https://login.live.com/accesstoken.srf

thenticator does this in the MetroWnsPush package. This uses the new HttpClient
implementation that we’ve been using thus far in StreetFoo client. Ultimately, we’ll re‐
ceive JSON that contains token_type and access_token. Here’s the code:

 public async Task<WnsAuthentication> AuthenticateAsync(string sid,
string secret)
 {
 // create some content...
 var body = string.Format("grant_type=client_credentials&client_id=
{0}&client_secret={1}&scope=notify.windows.com",
 HttpUtility.UrlEncode(sid).Trim(), HttpUtility.UrlEncode
(secret).Trim());
 var content = new StringContent(body);

 // set the type...
 content.Headers.ContentType.MediaType =
"application/x-www-form-urlencoded";

 // send it...
 var client = new HttpClient();
 var response = await client.PostAsync
("https://login.live.com/accesstoken.srf", content);

 // check...
 if (response.StatusCode == HttpStatusCode.OK)
 {
 // get it...
 string json = await response.Content.ReadAsStringAsync();
 var asObject = JObject.Parse(json);

 // get...
 string scheme = (string)asObject["token_type"];
 string token = (string)asObject["access_token"];
 return new WnsAuthentication(scheme, token);
 }
 else
 throw await CreateRequestException(string.Format("Invalid status
code received: {0}.", response.StatusCode), response);
 }

In terms of results, we’ll get something like this:
{
 "token_type":"bearer","access_token":"EgAcAQMAAAAEgAAACoAAMgSg6vFTbLshYEo5VGPU
i+ph+uZ6G0w6bH+MFYwKIuGFHfeId77U4saX6DrfJ6GbzWBHcXPfPEo0P9OgywvqEhQjpduh7r7mJITC
5QLinGyE/FPJNTRNF9Lc5UuKOKyGQeBA61m1zU/KiEbt69dXXyJbrLRe+X6WZ95A/5in80GLAFoAiwAA
AAAAMeMMRBabEVAWmxFQ60gEAA8AODEuMTQ5LjI0Ny4yMzIAAAAAAFwAbXMtYXBwOi8vcy0xLTE1LTIt
Mzc4ODI2MTEwMi0xOTE3MzYxNTMxLTI4Njc3MTY1NDktMzYwMDI2MTMxNS0yNTM5OTU0MDQtMTk2ODc1
ODgyLTgzMTc4MzU3MwA=",
 "expires_in":86400
}

Push Notifications | 187

The token_type of bearer simply tells you what sort of OAuth request it is. At the time
of writing, bearer is essentially the only OAuth methodology in use. It basically means
that the “person who is bearing the token” has been authenticated.

To try this, run the Windows Forms client and paste in the secret and SID that you
captured earlier. Click Authenticate, and you should see a token appear in the box.
Figure 5-18 illustrates.

Figure 5-18. The token appearing after successful authentication

Sending

Now that we’ve authenticated, we can push through our notification. We do so by cre‐
ating a new HttpClient instance and providing it with an authorization header. In
MetroWnsPush, the result of the call to AuthenticateAsync is a WnsAuthentication
instance. The class of this instance contains the logic to do this. One wrinkle is that
although token_type is provided as bearer, it has to be passed back to the server as
Bearer.

 public class WnsAuthentication
 {
 public string Scheme { get; private set; }

188 | Chapter 5: Notifications

 public string Token { get; private set; }

 internal WnsAuthentication(string scheme, string json)
 {
 // atm, this is fixed to understand bundle only...
 if(scheme != "bearer")
 throw new NotSupportedException(string.Format("Cannot handle
'{0}'.", scheme));

 this.Scheme = "Bearer";
 this.Token = json;
 }

 internal HttpClient GetHttpClient()
 {
 // create a client and pass in the authentication...
 var client = new HttpClient();
 client.DefaultRequestHeaders.Authorization = new
AuthenticationHeaderValue(this.Scheme, this.Token);

 return client;
 }
 }

Passing up the XML is very easy. We just have to set the content type to text/xml, and
make sure that we include special headers to indicate the notification type. In MetroWns
Push we do this with the WnsPusher class.

One oddity of WNS is that the results come back in the response headers, not in the
body. Specifically, we have to look in X-WNS-NOTIFICATIONSTATUS to see what happened
if we get HTTP 200 back. If we don’t get HTTP 200 back, there are other headers to look
for. You can see these in the MetroWnsPush package within the CreateRequestExcep
tion method.

If what we send up works, we’ll get back one of these:
Received

This means it looks OK, and it’ll be queued for transmission. There is no guarantee
of success given the vagaries of whether the device will ever be turned on, whether
the user has uninstalled the app, etc.

Dropped

This means there is an “error condition,” or that you’ve sent a toast notification and
the device is offline. This is a tricky one to deal with, because one of those is obvi‐
ously an error condition, and the other (the toast one) isn’t.

ChannelThrottled

This means you are sending too many messages over too short a period of time.

With that covered, here’s the code for sending the notification:

Push Notifications | 189

 public async Task<WnsPushResult> PushAsync(WnsAuthentication
authentication, string uri, XmlDocument doc, NotificationType type)
 {
 // create...
 var content = new StringContent(doc.OuterXml);
 content.Headers.ContentType.MediaType = "text/xml";

 // if...
 if(type == NotificationType.Toast)
 content.Headers.Add("X-WNS-Type", "wns/toast");
 else if (type == NotificationType.Tile)
 content.Headers.Add("X-WNS-Type", "wns/tile");
 else if (type == NotificationType.Badge)
 content.Headers.Add("X-WNS-Type", "wns/badge");
 else
 throw new NotSupportedException(string.Format("Cannot handle
'{0}'.", type));

 // ok...
 var client = authentication.GetHttpClient();
 var response = await client.PostAsync(uri, content);

 // what happened?
 if (response.StatusCode == HttpStatusCode.OK)
 {
 // what happened?
 var all = response.Headers.Where(v => v.Key ==
"X-WNS-NOTIFICATIONSTATUS").FirstOrDefault();
 if(string.IsNullOrEmpty(all.Key))
 throw new InvalidOperationException("'X-WNS-
NOTIFICATIONSTATUS' header not returned.");
 return (WnsPushResult)Enum.Parse(typeof(WnsPushResult),
all.Value.First(), true);
 }
 else
 throw await WnsAuthenticator.CreateRequestException("Failed to
post notification.", response);
 }

You can test this by running the Windows Forms client, authenticating, and then setting
up the XML. Figure 5-19 shows a successful toast notification.

Figure 5-19. A successful notification sent through WNS

190 | Chapter 5: Notifications

Troubleshooting Tips
There are a few things to try if your notifications do not seem to be working.

• If you’re sending toast notifications, make sure the app is marked as “Toast capable.”
(This may involve uninstalling and redeploying the app—see the last bullet in this
list.) Also check the Permissions option in the settings charm to make sure you
haven’t switched off notifications.

• WNS will accept any XML, but the client side will decline to present XML if it doesn’t
fit the schema. Don’t put additional XML in assuming you can use it as a channel
for additional stuff. You can’t.

• At the time of writing, the Dropped notification seemed flaky. Sometimes things
that should be dropped (e.g., invalid XML) would return as Dropped or Received.
The Received notification, however, was always correct.

• If you’re struggling, try uninstalling and redeploying the app. The easiest way to do
this is with PowerShell. Chapter 15 has more details on this. That can particularly
affect the “Toast capable” flag, because if you create the channel with this flag off,
the channel will be set not to support it and you’ll need to uninstall.

Push Notifications | 191

CHAPTER 6

Working with Files

When I was first putting together the structure of this book, I intentionally left out a
section on working with files. Whenever a developer faces a new platform, one of the
first things that he or she does after “Hello, world” is to try reading or writing files on
disk. As a result, you tend to get a lot of community-generated content early on in a
platform’s inception that comprises a million and one different rehashes on how to read
and write files.

However, upon deeper reflection I decided to include this chapter, not necessarily to
show you how to read or write files, but how to work with files within the restrictions
imposed by WinRT and the Windows Store app UX. One aspect to this is sandboxing,
which prevents abuse of the filesystem and its attendant data (a common activity of
malware). Another aspect relates to how all the file access is done in WinRT, and so we
have to deal with components that blend operations between WinRT and .NET.

In this chapter I’ll take you through the various ways in which we can drive the filesys‐
tem. If you look in the download package for this chapter, you’ll find some solutions/
projects in addition to the StreetFoo ones that we have been working with thus far. Some
of the examples we build will be “scratch” examples that don’t fit into this greater body
of work.

So, let’s get going. First we’ll look at the file picker.

The File Picker
Sandboxed file access control in the world of Windows Store apps is generally limited
to forcing one of two modes—you can either show a UI that lets the user explicitly give
you a file, or you can programmatically access files within known folders.

In this first section we’re going to look at the file picker, which, essentially, is the tradi‐
tional “open file” and “save file” dialogs of yesterday rendered in a way that’s

193

touch-centric, but with some additional restrictions. For example, whereas in the old
Windows file dialogs you can let the user choose All Files (*.*)—or in fact, the user can
just nominate any file desired—you can’t do that in the new pickers. The behavior is
locked down to just the file types that you specify.

To separate some of this work from the core StreetFoo work, I’m proposing creating a
new project. (The final StreetFoo app only uses files in a very limited way, and I don’t
want to confuse that implementation.) If you want to follow along, create a new solution
containing a Visual C#—Windows Store—Blank App project. Mine is called FileScratch.
In the code downloads for this chapter, you’ll find a separate solution with that project
in it.

For a scratch project, there’s no point building out an entire MVVM subsystem, so we’ll
just bind event handlers to buttons in an old-school, VB-like manner. To get working,
add a button to MainPage with content set to “Open File Picker for JPEG.” Double-click
it and add this code (note the need to change the handler to be async).

 private async void Button_Click_1(object sender, RoutedEventArgs e)
 {
 // create...
 var dialog = new FileOpenPicker();

 // set the types...
 dialog.FileTypeFilter.Add(".jpeg");
 dialog.FileTypeFilter.Add(".jpg");

 // show...
 StorageFile file = await dialog.PickSingleFileAsync();

 // show...
 if (file != null)
 await this.ShowAlertAsync(file.Path);
 else
 await this.ShowAlertAsync("No file chosen.");
 }

Click the button and the picker will appear (Figure 6-1 illustrates). You may have already
seen these as part of normal use of Windows 8. The key thing to remember is that this
UI is all about touch access, not about mouse access.

This is a good example of where the Windows Store app APIs that relate to the new UX
features tend to be very easy to use.

The only problem comes from adjustment of the types of files that you’re trying to use.
In the dialog that we’ve just seen, there is no way to change the file types, but as Figure 6-2
shows, there is a file of type .txt in the folder that we were looking at. The .txt file was
not displayed, as it wasn’t in the file type filter.

194 | Chapter 6: Working with Files

Figure 6-1. The FileOpenPicker filtered for .jpg and .jpeg files

Figure 6-2. Non-.jpg/.jpeg file shown in my Pictures library

The File Picker | 195

This limitation is because of the sandboxing. Windows is trying to control the user
experience in a more “full trust” manner and is boxing the user in to produce an expe‐
rience aligned with Microsoft’s original vision.

We’ll see this a lot as we go through this book—whenever you see
restrictions imposed by the API design, try not to fight them. You will
feel hemmed in and constrained by the limits imposed by the oper‐
ating system and APIs, but this is just the new world that we’re deal‐
ing with.

Back to the code that we just looked at: the PickSingleFileAsync returns a Sys
tem.Storage.StorageFile instance. This is the base class in the WinRT filesystem API
for representing a file. It’s essentially a pointer to a file on the filesystem. We’ll see more
about this, along with StorageFolder, later.

Predictably, as well as FileOpenPicker, you’ll also find a compan‐
ion FileSavePicker.

That’s all we need to see in terms of that basic functionality. Next we’ll have a look at file
associations.

File Associations
The next feature that I want to take you through is the file associations. Although I
suspect this feature will be rarely used, the way it works is interesting and it’s a good
demonstration of how complex Windows features are implemented very easily in Win‐
dows Store apps.

File associations in Windows allow the user to double-click a file in Windows Explorer
and have an application execute and handle it. I suggest that in Windows Store apps
this feature is unlikely to get heavy use because in a post-PC world, we tend to think
more about apps than files and so it’s unlikely you’re ever going to be firing up Windows
Store apps through document associations. (That said, how Windows 8/Windows RT
handles files and sharing adds an interesting dimension to document-centricity when
compared to the iPad, which has almost zero focus on documents as per its original
design objectives.)

File associations are configured in the Declarations tab in the manifest editor in Visual
Studio 2012. You can access the Declarations tab by double-clicking the Package.appx

196 | Chapter 6: Working with Files

manifest file in Solution Explorer. This opens the manifest editor, and you can select
the Declarations tab from there.

All declarations—not just ones related to files—allow you to say what special access your
app requires to system features. I’m not going to enumerate them all here, but we’ll see
most of these as we work through the book. The one we’re going to use here is the File
Type Associations declaration. Add one of these and you’ll see something like Figure 6-3.

Figure 6-3. Starting to add file type association

In Windows, file type associations are stored in the Registry. Whenever your app is
deployed, WinRT creates a whole bunch of Registry entries to register your app with
the system. If you have file associations listed in your manifest, you’ll get appropriate
Registry keys configured that allow for your app to be launched.

Let’s look at how the app is launched now.

Launching the App
Interestingly, you can’t launch the app from the Start screen via the file associations
route. The only way to launch an app from the Start screen is to touch its tile. As I’ve
hinted at, files are a legacy feature that belongs to the old WIMP metaphor in Windows.

File Associations | 197

Apps are launched from File Explorer in the legacy desktop only. That’s not to say that
file associations have no place in Windows Store apps. Consider the situation of “yes‐
teryear,” where lots of apps vie to be the default music player. It’s certainly possible that
some of those will be Windows Store apps. The same is true of PDF readers—these
would actually benefit from running in a sandboxed environment.

You need to deploy the app to test it, and it’s worth getting used to invoking Build –
Deploy to do this. Whenever you have been running the project thus far, the deploy step
is done implicitly. In this scenario, we want to explicitly do it.

If you create a file with a type of .foobar anywhere on your device, this will show up in
File Explorer as associated with our app. (Use Notepad to do this—we don’t care about
the format of these files, only that they exist.) However, it won’t have a usable icon yet,
as the default icon created with a Windows Store app is a white icon on a transparent
background. Figure 6-4 tries to show this, albeit it’s hard to see in print.

Figure 6-4. A .foobar file ready for launch

Setting the icon is very easy, and you may have already guessed how to do it. In the File
Type Association editor (see Figure 6-3), you can assign a logo. Interestingly, this isn’t
a multiformat .ico file. I added an icon by creating a 64×64 PNG file. Whatever file you
create, put it in the ~/Assets folder within the project and then configure it in the File
Type Association editor. Run/deploy the project and your icon will appear. Figure 6-5
shows my new icon.

198 | Chapter 6: Working with Files

Figure 6-5. The .foobar file with an associated icon

But what happens when the user opens the file? Let’s find out.

Handling the Launch
If you double-click the file in File Explorer, Windows will either activate your app if it’s
in the background, or start your app if it’s not. (An interesting wrinkle about Windows
Store apps is that you cannot have two versions of the same app running. We’ll talk more
about app lifetime in Chapter 14.)

What’s missing is the part that actually responds to the file being opened. In this example
we’ll just render the name of the file on the screen. In fact, we can be given multiple
files, so we’ll need to handle this eventuality.

We can receive notifications of activation in this way via the OnFileActivated method
on the Visual Studio-provided App class. The only wrinkle is that the notification will
come into the app directly as opposed to the active view. We’ll need to make sure we
can react and display an appropriate view.

In this example we’ll be clunky about this. If the app isn’t showing the view that we want,
we’ll navigate to that view and then handle the file dropping. We won’t nuance this by
checking that the view is in a state where we’re safe to navigate away without losing data
—something that you’d want to do in a production app if you were in the middle of an
edit.

To start with, create a new file in your project called FileActivationPage. Use the Basic
Page template for this so that you get a caption and a back button; this will help you
when experimenting with the behavior. It’s this page that we’ll go to in order to display
our files. I should say that a separate page is not required if you want to handle file
associations. I’m using a separate page here, as it’s expeditious to our discussion.

In FileActivationPage add this code. The purpose of this code is simply to render the
names of any provided list of files into a message.

File Associations | 199

 // Add to FileActivationPage...
 internal async Task FilesActivatedAsync(IEnumerable<IStorageItem> files)
 {
 // build a list of the files...
 var builder = new StringBuilder();
 foreach (var file in files)
 {
 if (builder.Length > 0)
 builder.Append("\r\n");
 builder.Append(file.Path);
 }

 // show...
 await this.ShowAlertAsync(builder.ToString());
 }

In the App class, you can now add this code.
 // Add method to App...
 protected async override void OnFileActivated(FileActivatedEventArgs
args)
 {
 base.OnFileActivated(args);

 // find the page and tell it...
 var frame = (Frame)Window.Current.Content;
 if (!(frame.Content is FileActivationPage))
 frame.Navigate(typeof(FileActivationPage));

 // if we did it...
 if (frame.Content is FileActivationPage)
 await ((FileActivationPage)frame.Content).FilesActivatedAsync
(args.Files);
 }

The purpose of this code is to attempt to navigate to our new page. The approach is to
find the active window (of which there’s only ever one), find the frame on that window
(which convention says has to be held in the Windows instance’s Content property), and
then get the content of the frame. This last item will be our page. If that page isn’t the
page we want, we’ll attempt to navigate.

Navigation may fail (for example, the page may be busy and refuse navigation away—
see my point about having a more nuanced implementation in production); hence, we
check to see if it worked before we call through to FilesActivatedAync.

You can try this for yourself now by going into File Manager and double-clicking one
or more .foobar files. Figure 6-6 shows possible output if you select multiple files. Make
sure that you confirm this works both when the app is running and when it is not. You
may also want to check the behavior depending on whether FileActivationPage is the
current page or not.

200 | Chapter 6: Working with Files

Figure 6-6. Multiple file activations

Now we know how to let the user give us a file; let’s see what happens if we try to find
files programmatically.

Sandboxed File Access
In both of the examples that we’ve looked at, we’ve been given files to work with through
direct user interaction. Whenever this user-driven action happens, WinRT assumes that
we have explicit permission to access the files and that they are OK to work with. (You
should note, though, that NTFS’s security trumps all here—if Windows doesn’t think
you have access to the file, you can’t have it regardless of how it was sourced.)

In this section we’ll look at how we can work with lists of apps programmatically (in
other words, how we can automate the operation of the user actually picking a file). For
example, we might want to walk all TIFF documents in a certain folder within the user’s
Documents folder and OCR (optical character recognition) them.

You can only do programmatic work with folders that are within the sandbox. There
are two sets of sandboxed folders: those given to your app for their private use, and those
that are shared with other apps on the system.

In terms of your private folders, you get the following, which are accessed from special
properties within the API. You can then use the storage APIs on these, which we’ll get
to in a moment. You can work with your private folders without specifying special
manifest permissions. You can also work with any file type in these folders.
Windows.Storage.ApplicationData.Current.LocalFolder

This is the private data store tied to the current machine (e.g., c:\Users\<User>
\AppData\Local\Packages\<id>\LocalState).

Windows.Storage.ApplicationData.Current.RoamingFolder
This is the private data store that is cloud synchronized (e.g., c:\Users\<User>\App
Data\Local\Packages\<id>\RoamingState). (We’ll talk about this more later, but
for now you should note that this location is not in the Windows user profile

Sandboxed File Access | 201

roaming folder. This is not the roaming profile functionality that’s been managed
by Active Directory for many years. It just happens to have the same name.)

Windows.Storage.ApplicationData.Current.TemporaryFolder
This is where you store temporary files (e.g., c:\Users\<User>\AppData\Local\Pack
ages\<id>\TempState).

Windows.ApplicationModel.Package.Current.InstalledLocation
This is where your app is installed, which if you’re developing will be the AppX
folder underneath your Debug or Release folder. You cannot, unsurprisingly, write
to this folder.

The following special folders exist in Windows Store apps, each of which is accessed
through a special property. However, in order to use them, you need to switch on a
specific permission in the manifest. You also need to nominate the file types that you
wish to work with. Here’s the list of folders, and the related manifest permission.
Windows.Storage.KnownFolders.DocumentsLibrary

Requires Documents Library Access

Windows.Storage.KnownFolders.MusicLibrary
Requires Music Library

Windows.Storage.KnownFolders.PicturesLibrary
Requires Pictures Library Access

Windows.Storage.KnownFolders.VideosLibrary
Requires Videos Library Access

Windows.Storage.KnownFolders.RemovableDevices
Requires Removable Storage

Windows.Storage.KnownFolders.HomeGroup
Requires at least one of Music Library, Pictures Library Access, or Videos Library
Access

Windows.Storage.KnownFolders.MediaServerDevices
Requires at least one of Music Library, Pictures Library Access, or Videos Library
Access

The inconsistent naming here isn’t down to typographical errors—
I’ve replicated how it currently is in Visual Studio 2012, which is
inconsistent.

There’s an additional folder called Windows.Storage.DownloadsFolder that allows write-
only access to the system downloads folder. We’ll talk about that in a moment.

202 | Chapter 6: Working with Files

What we’ll do to demonstrate some of the file APIs is build some code that will copy
files from your Pictures library into the private, local folder for your app.

Walking and Copying Pictures
To get a feel for how the file API works, we’ll have a look at actually running through
the API. We’ll create a simple function that will copy any pictures with the word graf‐
fiti in their name over to our private local data folder. We’ll initially do this without
setting appropriate manifest permissions so that you can see it fail the permissions
check.

Whenever we access the filesystem in WinRT, we use its native filesystem API, as op‐
posed to the .NET one in System.IO. This is a real shame, as the one in System.IO was
fantastically put together, and the WinRT one is arguably not as good. It’s also oddly
incomplete, with no easy way to check for file existence and so on. (The official line is
that checking for existence and then performing an action invites a race condition sce‐
nario, so you’re supposed to check for exceptions. Personally, that argument seems
flimsy, as since .NET v1 we’ve been told to design specifically against using exceptions
to report ordinary [“nonexceptional”] failures.)

Coming back to my first point at the top of this chapter, I don’t want to belabor the file
API usage, as it’s all basic stuff. To that end, you can add a button to your page and wire
up this code, which will walk the files in your Pictures folder and copy them over to ~/
LocalState. It should be obvious to see what it’s doing.

 private async void HandleCopyGrafittiPicturesToLocal(object sender,
RoutedEventArgs e)
 {
 await CopyGraffitiPicturesAsync(ApplicationData.Current.LocalFolder);
 }

 private async Task CopyGraffitiPicturesAsync(StorageFolder targetFolder)
 {
 try
 {
 // copy...
 var files = (await KnownFolders.PicturesLibrary.GetFilesAsync())
.Where(v => v.Name.ToLower().Contains("graffiti")
 && (v.FileType.ToLower() == ".jpg" || v.FileType.ToLower()
== ".jpeg"));
 var builder = new StringBuilder();
 foreach (var file in files)
 {
 // get...
 var newFile = await file.CopyAsync(targetFolder);

 // add...
 builder.Append("\r\n");
 builder.Append(newFile.Path);

Sandboxed File Access | 203

 }

 // show...
 if (builder.Length > 0)
 await this.ShowAlertAsync("Copied:\r\n" +
 builder.ToString());
 else
 await this.ShowAlertAsync("No files were found to copy.");
 }
 catch (Exception ex)
 {
 this.ShowAlertAsync(ex.ToString());
 }
 }

If you run this code, you’ll see an error similar to that shown in Figure 6-7. The problem
occurs because we don’t have rights to access the PicturesLibrary property in Known
Folders. PicturesLibrary happens to be of type Windows.Storage.StorageFolder,
and you should note that if some mechanism actually gave us a StorageFolder that
mapped to the same underlying folder, this operation would not have failed. User se‐
lection via the FolderPicker, FileOpenPicker, or FileSavePicker always trumps the
manifest setting.

Figure 6-7. Failure to access the PicturesLibrary property

You can change the manifest setting by double-clicking the Package.appxmanifest file
in Solution Explorer and changing to the Capabilities tab. Once there, select Pictures
Library Access. This is shown in Figure 6-8.

204 | Chapter 6: Working with Files

Figure 6-8. Enabling Pictures Library Access

Rerun the code and you’ll get a successful result, as shown in Figure 6-9.

Figure 6-9. A successful file copy operation

This code works on the assumption that appropriately named files exist in the root of
your standard Windows pictures library. You obviously may have to create some in
order to see this operation work.

Sandboxed File Access | 205

That’s all I want to show you on the basic API. In the next section, I’ll give a quick
mention of the special DownloadsFolder property, and then we’ll go on to talk about
roaming files.

Roaming Files
Now we’re going to take a look at one of the neatest features in Windows Store app
development: roaming data. In roaming data, certain data that’s stored on one local
machine is automatically propagated to any other device that the user operates.

Unless joined to the domain, Windows 8 and Windows RT devices have the option of
being bound to a Microsoft account. (This process makes the device “Microsoft Account
Connected.”) When in this mode, apps are able to write data into a special roaming
folder. Other devices on the same Microsoft account will receive synchronized copies
of this data. In order for this to work, the device has to be “trusted.” You may have noticed
that when you installed Windows 8, you received an email asking for you to trust the
machine. Those emails are part of this process.

These same rules apply to Roaming Settings. I’ll talk about that a little
more toward the end of this section.

Roaming Data Versus Roaming Profiles
There’s likely to be some confusion with regard to the Roaming Profiles feature that’s
been in Windows since the very early days of Active Directory. This is not that feature.
This is an entirely different feature that does something similar but has—basically—the
same name (not a fantastic move by Microsoft there). Floating might have been better,
but that’s by the by. In short, just ignore anything related to Active Directory in this
discussion.

There are some limitations. You have only a very small quota of data that can be used
—you can and should ask WinRT to tell you how much your quota is (because it’s not
a fixed limit), but at the time of writing apps have 100KB of quota space. (When I say
the space is not fixed, I mean that you should not rely on the amount, as Microsoft has
the capability to change it either globally or in different scenarios going forward.) This
100KB limit is so small that you will need to carefully consider what file protocol you
use. XML is particularly inefficient when it comes to space, for example. Alternatively,
you may wish to compress the data.

206 | Chapter 6: Working with Files

www.SoftGozar.com

The need for the device to be connected to a Microsoft account implies that this won’t
work for domain-connected devices; however, the documentation also states that you
can use Group Policy to turn off this feature at a device level, which hints that it will
work for domain-connected devices. But the fact that you can turn this off regardless
tells us that this is not a mechanism that should be relied upon.

This sort of roaming feature is specifically designed to move around small amounts of
data that is “nice to have”—for example, state information or preference information.
It’s impractical to make it work as a synchronization mechanism for sometimes-offline
devices. (This last point is further militated against by the fact that you can’t control
when the synchronization happens.) We’ll talk more about apps that synchronize
changes with a server in Chapter 14.

All that said, I do want to take you through this feature, as it is pretty clever and can be
helpful in certain cases.

Multiple Devices
To test that your roaming data implementation works, you will need multiple devices.
Using the simulator and your development machine won’t work, as these are technically
the same machine. (The simulator is just a remote desktop view into the machine it’s
running on.) If you don’t have two devices, you’ll have to follow along mentally rather
than practically.

First we’ll look at using the Remote Debugging tools. These allow Visual Studio to
deploy, run, and receive debugger telemetry from remote devices. Remote Debugging
has been a feature of Visual Studio since the very first editions (i.e., it’s not a special
Windows Store app thing).

Setting Up the Remote Debugging Client
These are the same steps that you’ll need to follow if you want to debug your apps on
Windows RT. Visual Studio won’t run on Windows RT, so this will be the only way to
access debugging capability if you’re troubleshooting software running on Windows
RT.

To reiterate the requirements for the roaming data part: both devices must be on the
same Microsoft account, and both must be trusted.

The easiest way to get the tools is to visit the Microsoft Downloads site and search for
Remote Tools. This should yield installation packages for ARM, x86, and x64 machines.
Install the one that matches the OS of your target.

Once you’ve installed the package, run the debugging client from the Start screen. When
prompted, accept the firewall changes that it needs to make.

Roaming Files | 207

You can now connect to the machine from Visual Studio. On the toolbar, drop down
the target selector and choose Remote Machine. Figure 6-10 illustrates the option, and
Figure 6-11 illustrates selection of the remote device.

Figure 6-10. Selecting the Remote Machine debugging option

Figure 6-11. Choosing the device to use as the debugging target

With the remote device selected, run the solution from within Visual Studio to confirm
that it operates as you expect. Now that we know that we can join the two halves of the
problem together, we’ll look at building our synchronization code.

208 | Chapter 6: Working with Files

If you need to change the target device, open the Properties window
on the project that you’re looking to debug, and select the Debug pane.

Syncing Files
In an earlier section I called out example paths of folders used by apps to store their
private data. I gave the path referred to by ApplicationData.Current.RoamingFolder as
being of the following format:

c:\Users\<User>\AppData\Local\Packages\<id>\RoamingState

All we have to do to make this work is write data into that ~/RoamingState folder.
Windows will then do the rest. In this example, we’ll drop a small text file into the folder
on one device and then wait to see if it comes through on the other. It doesn’t matter
whether you create the file on your Visual Studio machine or the remote device, although
if you want to try out the remote debugging firsthand, using the remote device to create
the file would seem sensible.

Here’s the code to create a file in the roaming folder—the intention here is to wire up a
button that calls this code. Again, this is a simple example, so I’m just going to present
it on the assumption that it’s obvious.

 private async void HandleCreateFileInRoamingFolder(object sender,
RoutedEventArgs e)
 {
 // create...
 var file = await ApplicationData.Current.RoamingFolder.
CreateFileAsync(Guid.NewGuid().ToString()
+ ".txt");
 using (var stream = await file.OpenStreamForWriteAsync())
 {
 using(var writer = new StreamWriter(stream))
 writer.WriteLine(string.Format("Hello, world. ({0})",
DateTime.Now));
 }

 // ok...
 await this.ShowAlertAsync(string.Format("Created file '{0}'.
Quota: {1}KB", file.Path,
 ApplicationData.Current.RoamingStorageQuota));
 }

There’s one thing that is important to catch here. In .NET you don’t need to wrap the
StreamWriter reference in a using statement. In WinRT, if you don’t wrap it in a using
statement, the data won’t be flushed out of the writer before the stream is closed, and

Roaming Files | 209

your data won’t be written. Of course, we should always wrap everything that imple‐
ments IDisposable, but this caught me out so it may well catch you out too.

You’ll also notice that in the message that’s rendered when the file is written, I’m in‐
cluding the RoamingStorageQuota value. I’ve included this so that you know where it
is. The upshot of going over quota is that no data will get synced for your app. I’d suggest,
then, that if you have to keep track of and manage your storage within this quota, you’re
using this feature inappropriately.

If you run this code on the remote device, a file will be created that will eventually be
synced up to the cloud and then down onto other devices where the app is installed. If
you want to force the sync to run, lock the device, as this triggers all pending sync
operations to flush. (It may still take a few minutes, however.)

Roaming Settings
In Chapter 3 where we looked at SQLite, we used a local database to store system settings.
WinRT has a built-in way of sharing a bucket of settings via the ApplicationData.Cur
rent.RemoteSettings member.

I chose not to use this in Chapter 3 because of the limitations outlined in this chapter
(i.e., a required Microsoft account and the fact that domain administrators can just turn
off this feature wholesale).

I said, perhaps enigmatically, at the top of this section that you might want to roll your
own roaming implementation rather than using the one provided in the Windows Store
app APIs. I’m not going to go through how you might do this in this book, but it’s
relatively easy. All you have to do is keep settings in SQLite as we first saw in Chap‐
ter 3. When they change, these settings just have to float up to your own cloud. When
your apps activate, one thing they can then do is download the settings from the cloud.
It’s not rocket science, but it does involve more lifting than using the built-in features.

We’ll talk more about background cloud synchronization in Chapter 14.

Using Files with StreetFoo
Now that we’ve looked at the basics of the filesystem APIs, we can turn our attention
back to the StreetFoo app. Philosophically, I’m a great believer in making examples in
books as “real world” as possible. The examples that we have looked at thus far have
explored some of the edges of the API, but as software engineers we know that it’s only
by fighting weird edge cases that we actually learn how things work. It was easier to
show you those examples in isolation than to confuse the issue by adding spurious
features to StreetFoo.

The objective of this section is to download photos from the StreetFoo server and display
them on the Reports grid. These photos are obviously reasonably large, so fetching them

210 | Chapter 6: Working with Files

on demand makes sense. Storing them on the filesystem as opposed to in the database
also makes sense, as SQLite isn’t particularly adept at storing large pieces of BLOB data.

We’ll also make some improvements to our view-model story. At the moment, what we
show on the view is a straight-through projection of what’s in the database. What we’ll
do in this section is create a special ReportViewItem class that will hold both the core
data in ReportItem, along with image data.

In summary, then:

1. We’ll create a new service proxy called GetReportImageServiceProxy. This will
take the native ID of the report and return a JPEG image as a base-64-encoded
string.

2. We’ll create a new ReportViewItem class and refactor our ReportsPageViewMo
del class to use instances of these as opposed to the ReportItem database entity.

3. We’ll create a new ReportImageCacheManager class that will, as the name implies,
manage getting the report’s images cached onto the local disk.

Let’s press on.

Getting Report Images
The simplest thing to do first is create our service proxy that will get an image from the
server. The server has a set of sample images, and will return these when presented with
a report’s native ID.

As we’ve built the service proxies many times, I’ll just present the basic code. First, here’s
the result object that will contain either an array of bytes containing JPEG data, or error
information:

 public class GetReportImageResult : ErrorBucket
 {
 public byte[] ImageBytes { get; private set; }

 internal GetReportImageResult(byte[] bs)
 {
 this.ImageBytes = bs;
 }

 internal GetReportImageResult(ErrorBucket errors)
 : base(errors)
 {
 }
 }

Next, our service proxy interface:
 public interface IGetReportImageServiceProxy : IServiceProxy
 {

Using Files with StreetFoo | 211

www.SoftGozar.com

 Task<GetReportImageResult> GetReportImageAsync(string nativeId);
 }

The last class we have to create is the GetReportImageServiceProxy itself. The image
will be returned as a base-64 string. We’ll convert that and store it as bytes in the result.
Here’s the code:

 public class GetReportImageServiceProxy : ServiceProxy,
IGetReportImageServiceProxy
 {
 public GetReportImageServiceProxy()
 : base("GetReportImage")
 {
 }

 public async Task<GetReportImageResult> GetReportImageAsync
(string nativeId)
 {
 var input = new JsonObject();
 input.Add("nativeId", nativeId);
 var executeResult = await this.Execute(input);

 // did it work?
 if (!(executeResult.HasErrors))
 {
 // get the reports...
 var asString = executeResult.Output.GetNamedString("image");

 // bytes...
 var bs = Convert.FromBase64String(asString);
 return new GetReportImageResult(bs);
 }
 else
 return new GetReportImageResult(executeResult);
 }
 }

Remember that in order to use the proxy we need to enlist it in our IoC container, which
has to be done manually. Add the mapping for IGetReportImageServiceProxy to
GetReportImageServiceProxy to the Start method.

Migrating to ReportViewItem
With that out of the way, we can start looking at the more interesting aspects of this
problem.

As we know, the data binding subsystem in XAML works on this idea of listening to
changes. In Chapter 4, we first looked at dependency properties—these are the foun‐
dation of XAML’s data binding. We have seen already the ObservableCollection (used
to hold our list of reports for presentation on the grid), and back in Chapter 1 when we
first started looking at data binding we built our ModelItem class, which issued change

212 | Chapter 6: Working with Files

notifications through INotifyPropertyChanged. When we built ReportItem back in
Chapter 3, we also used ModelItem to get that same change notification.

As things stand at the moment, the grid view used on the Reports page just projects
ReportItem. In terms of data, against each ReportItem we have to be able to dereference
whether an image exists in the local cache or not. We can either update ReportItem and
the attendant database schema to store a flag that records image presence, or we can
look on disk. Avoiding changing the schema and relying on file existence as the definitive
indicator seems more straightforward, at first glance. It also avoids polluting the schema
with items that only relate to the client implementation.

This is where some of the advantages of MVVM come in. We can use view-model items
that are a combination of data stored in SQLite and on disk. The nonimage data will be
held in SQLite, and the flag to indicate whether we have an image and the URL will be
determined by querying the disk. To that extent, we’ll build a ReportViewItem.

Then comes the question as to whether we extend ReportItem, or whether we create a
new class and encapsulate a ReportItem instance within it. Because we don’t have any
control over the creation aspects of the object (they are given to us by sqlite-net as part
of the ORM), I’m suggesting encapsulation.

I also think it’s not much of a stretch to risk a moment of YAGNI and build a new base
class that supports encapsulation in this way. WrappingModelItem<T> will be a generic
type of type ModelItem. One thing this will allow us to do is subscribe to notifications
on the encapsulated instance and propagate them up as if they were our own. (We
actually won’t use that feature directly in this code, but it’s a worthy illustration, as it
shows how we can extend onto and enhance the preexisting notifications without having
to do any specific work.)

Here’s the code for WrappingModelItem<T>—although you’ll be able to understand it
more fully when we build ReportViewItem immediately after.

 public abstract class WrappingModelItem<T> : ModelItem
 where T : ModelItem
 {
 public T InnerItem { get; private set; }

 protected WrappingModelItem(T innerItem)
 {
 this.InnerItem = innerItem;

 // subscribe...
 this.InnerItem.PropertyChanged += InnerItem_PropertyChanged;
 }

 void InnerItem_PropertyChanged(object sender,
 PropertyChangedEventArgs e)
 {
 // re-raise this as our own...

Using Files with StreetFoo | 213

 this.OnPropertyChanged(e);
 }
 }

Now we can turn our attention to implementing ReportViewItem. What we want to do
here is expose our read-only versions of the relevant ReportItem data, and have a special
property called ImageUrl that we’ll set when an image is available. Only exposing our
read-only versions of the properties is there for neatness—if we don’t need setters for
those properties, why expose them? Finer control of the surface area is another advan‐
tage of the MVVM model.

Here’s the code for ReportViewItem:
 public class ReportViewItem : WrappingModelItem<ReportItem>
 {
 internal ReportViewItem(ReportItem item)
 : base(item)
 {
 }

 public string NativeId { get { return this.InnerItem.NativeId; } }
 public string Title { get { return this.InnerItem.Title; } }
 public string Description { get { return this.InnerItem.Description; } }

 public string ImageUrl { get { return GetValue<string>(); } set
{ SetValue(value); } }
 }

It doesn’t look like much yet, but it will shortly when we add some behavior. But before
we do that, let’s refactor our ReportsPageViewModel code to work with ReportViewItem
instances rather than ReportItem instances.

Refactoring to ReportViewItem

Refactoring involves changing both the IReportsPageViewModel interface and the
mapped ReportsPageViewModel class. Here’s the change for the interface:

 public interface IReportsPageViewModel : IViewModel
 {
 ICommand CreateTestReportsCommand { get; }
 ICommand RefreshCommand { get; }
 ICommand DumpSelectionCommand { get; }
 ICommand SelectionCommand { get; }

 ObservableCollection<ReportViewItem> Items
 {
 get;
 }

 bool HasSelectedItems
 {
 get;

214 | Chapter 6: Working with Files

 }
 }

There aren’t many touch points in ReportsPageViewModel that need changing. The
property definitions and the constructor need changing, as does the operation of Re
loadReportsFromCacheAsync. Here’s the code with the types changed in the constructor
(I’ve omitted some code for brevity):

 public class ReportsPageViewModel : ViewModel, IReportsPageViewModel
 {
 public ObservableCollection<ReportViewItem> Items { get; private set; }
 private List<ReportViewItem> SelectedItems { get; set; }

 public ICommand CreateTestReportsCommand { get; private set; }
 public ICommand RefreshCommand { get; private set; }
 public ICommand DumpSelectionCommand { get; private set; }
 public ICommand SelectionCommand { get; private set; }

 public ReportsPageViewModel(IViewModelHost host)
 : base(host)
 {
 // setup...
 this.Items = new ObservableCollection<ReportViewItem>();
 this.SelectedItems = new List<ReportViewItem>();

 // commands...
 this.RefreshCommand = new DelegateCommand(async (e) =>
 {
 // omitted...
 });

 // update any selection that we were given...
 this.SelectionCommand = new DelegateCommand((args) =>
 {
 // update the selection...
 this.SelectedItems.Clear();
 foreach (ReportViewItem item in (IEnumerable<object>)args)
 this.SelectedItems.Add(item);

 // raise...
 this.OnPropertyChanged("SelectedItems");
 this.OnPropertyChanged("HasSelectedItems");
 });

 // dump the state...
 this.DumpSelectionCommand = new DelegateCommand(async (e) =>
 {
 // omitted...
 });
 }

Using Files with StreetFoo | 215

www.SoftGozar.com

 // omitted...
}

The change to ReloadReportsFromCacheAsync is more interesting because it’s here that
we key into the logic to update the cache. How this will work is that we’ll ask SQLite for
our list of ReportItems as usual, but we’ll wrap them up in a ReportViewItem and then
pass each ReportViewItem instance over to a manager class that will update the image
in the background. We won’t build ReportImageCacheManager immediately—we’ll
close off of the refactoring by editing the template XAML first. Here’s the change to
ReloadReportsFromCacheAsync that will defer over to ReportImageCacheManager:

 // Modify method in ReportsPageViewModel...
 private async Task ReloadReportsFromCacheAsync()
 {
 // set up a load operation to populate the collection
 // from the cache...
 using (this.EnterBusy())
 {
 var reports = await ReportItem.GetAllFromCacheAsync();

 // update the model...
 this.Items.Clear();
 foreach (ReportItem report in reports)
 this.Items.Add(new ReportViewItem(report));

 // go through and initialize...
 var manager = new ReportImageCacheManager();
 foreach (var item in this.Items)
 await item.InitializeAsync(manager);
 }
 }

As mentioned, we need just a quick change to the template XAML and we’re done.

Modifying the grid item template

If you recall, in Chapter 3 we copied the Standard250x250ItemTemplate used on the
grid to a new template called ReportItem250x250Template. This template has an Im
age control, but it’s set up to bind off of the Image property on the view-model. We’ve
called the property that refers to an image ImageUrl. (This makes more sense to me, as
a property called Image should return an object that represents loaded image data, not
a reference to a location on disk.)

Thus we have to change the XAML for ReportItem250x250Template. Here’s the code:
 <DataTemplate x:Key="ReportItem250x250Template">
 <Grid HorizontalAlignment="Left" Width="250" Height="250">
 <Border Background="{StaticResource
ListViewItemPlaceholderBackgroundThemeBrush}">
 <Image Source="{Binding ImageUrl}" Stretch="UniformToFill"/>
 </Border>

216 | Chapter 6: Working with Files

 <StackPanel VerticalAlignment="Bottom" Background="{StaticResource
ListViewItemOverlayBackgroundThemeBrush}">
 <TextBlock Text="{Binding Title}" Foreground="{StaticResource
ListViewItemOverlayForegroundThemeBrush}"
Style="{StaticResource TitleTextStyle}" Height="60" Margin="15,0,15,0"/>
 <TextBlock Text="{Binding Description}"
Foreground="{StaticResource ListViewItemOverlaySecondaryForegroundThemeBrush}"
Style="{StaticResource CaptionTextStyle}" TextWrapping="NoWrap"
Margin="15,0,15,10"/>
 </StackPanel>
 </Grid>
 </DataTemplate>

That’s all we have to do for now. You can satisfy yourself that the refactoring “took” by
running the project, although you won’t see different behavior.

Implementing ReportImageCacheManager
Now we come to the interesting part.

We know that we can store anything we like in the ~/LocalState folder beneath our
package folder. (As a reminder, this lives at c:\Users\<User>\AppData\Local\Packages
\<PackageId>.) My proposal is that we create a separate folder called ReportImages
under LocalState. Files will be named in the format <NativeId>.jpg. Don’t forget that
we can’t use RoamingState because the quota allotment will be too small.

As well as seeing some real-world file behavior, this is also where we’ll see some real-
world async/await and multithreading behavior. All of the filesystem interaction that
we do will run on a background thread, as will any network access.

One other thing we’re going to see here is the ms-appdata URI protocol. This is a really
clever part of WinRT and XAML. Like the ms-appx URI that we met in Chapter 4, ms-
appdata allows us to reach into the LocalState, RoamingState, and TempState folders.
By binding the Image control in our grid template to an ms-appdata protocol-based
URI, we can bind directly to items on the filesystem.

To summarize our objectives for this section:

• When a new item is readied for the view, we’ll pass it to the image cache manager.
• The manager will look on disk to see if a matching file already exists. If it does, it

will calculate the URL of the image as an ms-appdata URI and set the item’s Image
Url property. This will rattle through the XAML data binding subsystem and the
display will be updated.

• If a matching file does not exist, we need to go away, download it, and save it to
disk. Here, rather than using async/await, we’re going to create tasks directly within
the TPL (task parallel library) by explicitly creating and scheduling background
tasks. When those tasks are complete, they will update the ImageUrl property with

Using Files with StreetFoo | 217

an ms-appdata URI. Again, notifications will be raised and the image will be dis‐
played.

• If we do have to create tasks directly within the TPL, we’ll need to manage the
synchronization context. We’ll dig into that in detail when the time comes.

Let’s get on with that and build the code.

Checking for file existence

When you go through this, it’s likely that you’ll reach the conclusion that working with
the filesystem is quite fiddly in WinRT. That’s to be expected—it is fiddly to work with!

We’ll start with the method that returns to use a reference to the folder where we’re
going to store the cached files. This is where we start to run into some less good bits of
WinRT. As mentioned before, we can’t check to see whether a file or folder exists ahead
of time. The mandated method is to capture any exceptions. As a wrinkle to this, if the
exception isn’t actually exceptional and you don’t want to do anything with the exception
data, it becomes a faff to hide the compiler warnings associated with ignoring the ex‐
ceptions. To that end, I’ve created a SinkWarning method. This tricks the compiler into
believing the reference to ex has been used and hides the warning. Apart from that, the
method is straightforward. If the folder does not exist, it’s created. Here’s the code:

 // Add members to ReportImageCacheManager...
 private const string LocalCacheFolderName = "ReportImages";

 private async Task<StorageFolder> GetCacheFolderAsync()
 {
 // find...
 StorageFolder cacheFolder = null;
 try
 {
 cacheFolder = await ApplicationData.Current.LocalFolder.
GetFolderAsync(LocalCacheFolderName);
 }
 catch (FileNotFoundException ex)
 {
 SinkWarning(ex);
 }

 // did we get one?
 if(cacheFolder == null)
 cacheFolder = await ApplicationData.Current.LocalFolder.
CreateFolderAsync(LocalCacheFolderName);

 // return...
 return cacheFolder;
 }

 private void SinkWarning(FileNotFoundException ex)

218 | Chapter 6: Working with Files

 {
 // no-op - we're just getting rid of compiler warnings...
 }

In the modification to ReportsPageViewModel that we built previously, we called into
a method called GetLocalImageUrlAsync. The purpose of this method is to return a
preexisting cache URL. This method will use two helper methods that we’ll also use in
other functions. GetCacheFilename provides the filename used when given a Report
ViewItem, and CalculateLocalImageUrl will return an ms-appdata format URI, again
given a ReportViewItem. Here’s the code:

 // Add methods to ReportImageCacheManager...
 private string GetCacheFilename(ReportViewItem viewItem)
 {
 return viewItem.NativeId + ".jpg";
 }

 private string CalculateLocalImageUrl(ReportViewItem viewItem)
 {
 return string.Format("ms-appdata:///local/{0}/{1}.jpg",
LocalCacheFolderName, viewItem.NativeId);
 }

 internal async Task<string>
 GetLocalImageUrlAsync(ReportViewItem viewItem)
 {
 var cacheFolder = await this.GetCacheFolderAsync();

 // build a path based on the native id...
 var filename = GetCacheFilename(viewItem);
 StorageFile cacheFile = null;
 try
 {
 cacheFile = await cacheFolder.GetFileAsync(filename);
 }
 catch (FileNotFoundException ex)
 {
 SinkWarning(ex);
 }

 // did we get one?
 if (cacheFile != null)
 {
 Debug.WriteLine(string.Format("Cache image for '{0}'
was found locally...", viewItem.NativeId));
 return CalculateLocalImageUrl(viewItem);
 }
 else
 {
 Debug.WriteLine(string.Format(
"Cache image for '{0}' was not found locally...", viewItem.NativeId));
 return null;

Using Files with StreetFoo | 219

 }
 }

You’ll notice that I’ve put some Debug.WriteLine calls in there. This primarily is to help
you see what’s happening with the flow.

Downloading and caching images

Now we can look at the method that actually does the downloading and storing to disk.
I’ll do this in parts so that you can follow the flow.

So far we’ve always used the async/await keywords in a very “vanilla” way. What I want
to show you now if how you can work with tasks more directly. To load the images, we’ll
spin off separate tasks explicitly and use the standard asynchrony features to wait until
they are completed and then update the UI.

In reality, you don’t necessarily need to do this. You can just use async/await in the way
we have been doing. In the experiments I did when writing this chapter, though, I got
a slightly better effect doing it this way.

To run tasks explicitly, you can use the Run static method on the Task class. You can
then use the await keyword as you usually would. Once the task has completed, we can
set the ImageUri property of the ViewItem, and data binding will take over and display
the image.

First we set up the task, passing in an anonymous method to run:
 // Add method to ReportImageCacheManager...
 internal async void EnqueueImageDownload(ReportViewItem viewItem)
 {
 Debug.WriteLine(string.Format("Enqueuing download for '{0}'...",
viewItem.NativeId));

 // create a new task...
 var theUrl = Task.Run<string>(async () =>
 {

The first thing the task will do is use GetReportImageServiceProxy to download the
image. This will be transferred over the wire as JSON, but returned to us as a byte array
containing a JPEG file. We’ll call AssertNoErrors to ensure that we have valid data.

 Debug.WriteLine(string.Format("Requesting image for '{0}'...",
viewItem.NativeId));

 // load...
 var proxy = ServiceProxyFactory.Current.GetHandler
<IGetReportImageServiceProxy>();
 var result = await proxy.GetReportImageAsync(viewItem.NativeId);

 // check...
 result.AssertNoErrors();

220 | Chapter 6: Working with Files

If the call is successful, we can write the image to disk.
 // create the new file...
 var filename = GetCacheFilename(viewItem);
 var cacheFolder = await this.GetCacheFolderAsync();
 var cacheFile = await cacheFolder.CreateFileAsync(filename,
CreationCollisionOption.ReplaceExisting);
 using (var stream = await cacheFile.OpenStreamForWriteAsync())
 stream.Write(result.ImageBytes, 0, result.ImageBytes.Length);

Note the use of CreationCollisionOption.ReplaceExisting. This is so that this
method works if we’re refreshing a cached version from the server, in which case a file
would already exist.

Finally, we can work out what the URL will be given the name of the file and the standard
name of the folder. This will be the result of the task. In a moment we’ll build a contin‐
uation handler that takes this value and gives it to the ReportViewItem instance.

 // get the URL...
 string url = this.CalculateLocalImageUrl(viewItem);
 Debug.WriteLine(string.Format("Image load for '{0}' finished.",
viewItem.NativeId));
 return url;

That completes the work that the anonymous method has to do. By the time we finish
the awaited call, we’ll have a URI that we can pass through to the ViewItem.

 });

 // set it...
 viewItem.ImageUri = theUrl;
 }

That’s it! If you’ve managed to get everything lined up, when you run this the images
will download and appear. Figure 6-12 illustrates.

If the images don’t appear, it’s likely that your exceptions are being masked by the TPL.
(Exceptions in background operations don’t crash the main app, so you have to explicitly
look for them.) If you look in the Output window in Visual Studio, you may see excep‐
tions being reported. You will get a lot of FileNotFoundExceptions during proper op‐
erations caused by the fact that we can’t check for files. If you do see exceptions, go into
Debug – Exceptions and check the Thrown option against Common Language Runtime
Exceptions. That should help.

Using Files with StreetFoo | 221

Figure 6-12. The Reports page showing downloaded/cached images

222 | Chapter 6: Working with Files

CHAPTER 7

Sharing

In this chapter, we’re going to look at one of the key tenets of the Windows Store app
user experience: sharing.

One of the key problems with iPad is that information is stored in each app’s private
silo. It’s hard to share information between apps, and really the only tool that you have
is the copy-and-paste feature. With Window Store apps, information sharing between
apps is front and center. Apps can register themselves as a share target, or they can share
information by acting as a share source.

Those of you who have been around the block a few times will see similarities in this
feature with Dynamic Data Exchange, or DDE. DDE was a feature introduced in very
early versions of Windows that was designed to work in a very loose and decoupled way.
The idea was that an application, say Excel, could tell Windows that it had some text
information to share. You could then choose an application that understood text, such
as Word. Windows would then marshal the data from one to the other using some extra
magic atop the standard system clipboard.

Sharing in Windows Store apps works in pretty much that exact way. An app can indicate
that it shares data, and you’ll receive a message asking for said data. You can provide a
combination of text, HTML, URIs, bitmaps, files (storage items), and RTF data, or you
can define custom formats. The OS will then find apps that are interested in receiving
shared data (i.e., those that register as having a search contract) and present to the user
a list of compatible apps. When the user chooses an app, it’s activated and asked to
provide a UI. The target app then acts on the shared data in some form (e.g., sending
an email).

In this chapter, we’re going to look at how we share data first. Then we’re going to look
at how we can implement a share contract and become a target for shared data.

In that first part we’ll look at the fundamentals of pushing data out to other apps. This
will include creating a deferral when handling requests that take a long time to fulfill

223

(for example, in situations where we don’t have the data in a state where it can be shared
because we need to process or augment it).

In the second part we’ll look at how to draw data in from other apps. This will also
include some debugging tips that can be generally helpful.

Sharing Data
The basic sharing data functions are tremendously easy to implement. Throughout the
WinRT APIs, whenever Microsoft really wants you to include a feature in the Windows
8/Windows RT experience the APIs related to those features are always very straight‐
forward. This is no exception.

In this section, we’re going to look at the basics of sharing data first. We’re then going
to add more sophistication, particularly in dealing with share operations that take a long
time and need to feed back information to the user.

Basic Sharing
To tell Windows that we’re able to share content, we need to use the Windows.Applica
tionModel.DataTransfer.DataTransferManager class. This class doesn’t understand
anything about our view-model, so we need to close that loop.

Hooking the DataTransferManager into the view-model

So that we know what we’re trying to call into, we’ll build the handling method in
IViewModel and ViewModel now. The intention will be that view-models that wish to
partake in sharing will override a new ShareDataRequest method on the view-model.

Here’s the change to IViewModel. The two parameters to that method are in the Win
dows.ApplicationModel.DataTransfer namespace.

 // Add method to IViewModel...
 public interface IViewModel : INotifyPropertyChanged
 {
 // property to indicate whether the model is busy working...
 bool IsBusy
 {
 get;
 }

 // called when the view is activated...
 void Activated();

 // called when the view-model might have some data to share...
 void ShareDataRequested(DataTransferManager sender,
DataRequestedEventArgs args);
 }

224 | Chapter 7: Sharing

The implementation for the method will be a no-op call for now. (A no-op call means
“no operation”—that is, it doesn’t do anything. It’s typically included to get things
compiling, or as a placeholder for future work.) Here’s the code:

 // Add method to ViewModel...
 public virtual void ShareDataRequested(DataTransferManager sender,
DataRequestedEventArgs args)
 {
 // no-op by default...
 }

To call that method, we need to be able to dereference our view-model from a Window
instance.

When our app boots, we have a single window, which can be referenced via Window.Cur
rent. The App class that’s created as part of the Visual Studio project creates a Frame
instance and tells it to navigate to the Page that we want to show. The frame is then
attached to the window (via the Window instance’s Content property) and everything
springs into life.

In Chapter 5 we created a FrameworkElementExtender class specifically to allow us to
show and hide the app bars on a page. One of the functions we added there walks the
parents of a FrameworkElement instance to find one of type Page. Once it finds that, it
casts it and returns it.

In the case we’re about to look at, we have to walk down the tree as well as up. When
we receive our message indicating that sharing needs to happen, the only thing we’ll
know about is the Window. We need to walk down the tree, examining any available
Content properties. Hopefully we’ll then hit the Frame whose Content property will be
set to the Page. Once we have a Page, we can optimistically cast its DataContext property
to IViewModel.

To implement this functionality, you’ll have to add the new GetViewModel methods, and
replace GetParentPage with GetRelatedPage in FrameworkElementExtender. Here’s
the code:

 // Add methods to FrameworkElementExtender...
 internal static class FrameworkElementExtender
 {
 internal static IViewModel GetViewModel(this Window window)
 {
 if (window.Content is FrameworkElement)
 return ((FrameworkElement)window.Content).GetViewModel();
 else
 return null;
 }

 internal static IViewModel GetViewModel(this FrameworkElement element)
 {
 // walk up...

Sharing Data | 225

 var page = element.GetRelatedPage();
 if (page != null)
 return page.DataContext as IViewModel;
 else
 return null;
 }

 internal static Page GetRelatedPage(this FrameworkElement element)
 {
 // up...
 DependencyObject walk = element;
 while (walk != null)
 {
 if (walk is Page)
 return (Page)walk;

 if (walk is FrameworkElement)
 walk = ((FrameworkElement)walk).Parent;
 else
 break;
 }

 // down...
 walk = element;
 while (walk != null)
 {
 if(walk is Page)
 return (Page)walk;

 if (walk is ContentControl)
 walk = ((ContentControl)walk).Content as FrameworkElement;
 else
 break;
 }

 // nothing...
 return null;
 }

 // other methods omitted...
 }

The helper methods that we just added are generally helpful anyway, but they’ll be of
specific use as we go through the rest of this chapter.

Finally, we need to close the loop and register with the DataTransferManager. To do
this, find the OnLaunched method in App and add a call to subscribe to the DataReques
ted event. The event handler will dereference the view-model (if any) and then call
through to the IViewModel interface’s ShareDataRequested method. Here’s the code—
although I’ve omitted a chunk of OnLaunched for brevity:

226 | Chapter 7: Sharing

 protected override async void OnLaunched(LaunchActivatedEventArgs args)
 {
 // code omitted...

 // Place the frame in the current Window and ensure that it's active
 Window.Current.Content = rootFrame;
 Window.Current.Activate();

 // register for data transfer...
 var manager = DataTransferManager.GetForCurrentView();
 manager.DataRequested += manager_DataRequested;
 }

 static void manager_DataRequested(DataTransferManager sender,
DataRequestedEventArgs args)
 {
 // find the view model and dereference...
 if (Window.Current != null)
 {
 var viewModel = Window.Current.GetViewModel();
 if (viewModel != null)
 viewModel.ShareDataRequested(sender, args);
 }
 }

At this point, we can go ahead and test that everything up to this point is working. Set
a breakpoint in the manager_DataRequested handler method. Start the app and sum‐
mon the charms from the right side of the screen. Select Share, and the breakpoint
should hit.

Now that we know we can hook into the sharing subsystem, let’s actually share some
data.

Sharing basic data

In Chapter 5 we built a mechanism for selecting items on the Reports page. This is what
we’ll use for sharing. Although that view-model supports selecting multiple items, we’ll
assume that the first item in that set is the one the user wants to share. That’s a convenient
shortcut here, but it would create a confusing experience in a production app, where it
would be better to be able to share the entirety of the selected items in one operation.

Once we have an item to share, all we have to do is populate the DataRequest item that
we get passed through in the request. To populate it, we have to set some metadata (a
subject and description, basically) and then provide the data. You can supply as many
formats as you like; Windows and the target apps will work out how best to interpret
what’s shared.

The simplest data to share is text and URI information, so we’ll do that first.

Sharing Data | 227

In the ReportsPageViewModel class, override the ShareDataRequested method and add
this code:

 // Add method to ReportsPageViewModel...
 public async override void ShareDataRequested(DataTransferManager
 sender, DataRequestedEventArgs args)
 {
 // do we have a selection?
 if (!(this.HasSelectedItems))
 return;

 // share the first item...
 var report = this.SelectedItems.First();

 // set the basics...
 var data = args.Request.Data;
 data.Properties.Title = string.Format("StreetFoo report '{0}'",
report.Title);
 data.Properties.Description = string.Format("Sharing problem report
#{0}", report.NativeId);

 // set the text...
 data.SetText(string.Format("{0}: {1}", report.Title,
report.Description));

 // set the URI...
 data.SetUri(new Uri(report.PublicUrl));
}

We have to build that PublicUrl method before we can run it. All this does is format a
special URL with which the user can review the report live on the StreetFoo server.
Here’s the code:

 // Add property to ReportViewItem...
 public string PublicUrl
 {
 get
 {
 return string.Format
("https://streetfoo.apphb.com/PublicReport.aspx?api={0}&id={1}",
ServiceProxy.ApiKey, this.NativeId);
 }
 }

You can now run that. Navigate to the Reports page, select an item, and then access the
Share feature through the charms. You’ll see something similar to Figure 7-1.

228 | Chapter 7: Sharing

Figure 7-1. Selecting an app to share with

If you go ahead and select an app, you can see how the shared data flows into the other
app. It’s worth trying a few apps to get a feel for how they pick and choose from the
available data. For example, Figure 7-2 shows the Mail app, which ignores the text value
but takes the metadata and the URL.

Sharing images

Now that we’ve got down the basics of sharing, the “edges” of this API are in the types
of data that you can share, and in reporting progress back to the user. In this and the
following two sections, we’ll look at the other data types, and then we’ll move on to
reporting progress.

We’re not going to look at custom data types in this book, as that’s an
unusual niche requirement.

After text and URLs, the next most common thing you’ll want to share is images. One
problem we’ll have to negotiate is that (as of the time of writing at least) none of the
built-in apps receive image data. I’ll present a workaround for this when we get to it.

Sharing Data | 229

Figure 7-2. A problem report shared with the Mail app

Sharing images is a matter of giving our DataPackage object a RandomAccessStreamRe
ference instance. As its name implies, this is a helpful class that wraps a stream so that
you can pass it around either within your own app or—as we’re about to do—out into
other apps. You can create RandomAccessStreamReference from a file, a stream you
already have, or a URI.

We’ve already seen that we can use the special ms-appx and ms-appdata protocols to
access resources that are part of the deployment and stored in the app’s private data.
Incidentally, you can reference http and https protocol URLs too, in which case WinRT
will undertake some of the heavy lifting involved with setting up the network requests.

Anyway, we already have a URL for the image stored in the ImageUrl. All we have to
do is provide that URL through to the share operation. One wrinkle we have to deal
with is that we’re supposed to provide a thumbnail image when we share. For simplicity
here, I’ve just given it the main image for the thumbnail.

As of the time of writing, some share targets will fail if you
specify an image without a thumbnail. You can also find an
example of how to scale images in Chapter 12.

230 | Chapter 7: Sharing

Here’s the modified version of ShareDataRequested:
 // Modify method in ReportsPageViewModel...
 public async override void ShareDataRequested(DataTransferManager
sender, DataRequestedEventArgs args)
 {
 // do we have a selection?
 if (!(this.HasSelectedItems))
 return;

 // share the first item...
 var report = this.SelectedItems.First();

 // set the basics...
 var data = args.Request.Data;
 data.Properties.Title = string.Format("StreetFoo report '{0}'",
report.Title);
 data.Properties.Description = string.Format("Sharing problem report
#{0}", report.NativeId);

 // set the text...
 data.SetText(string.Format("{0}: {1}", report.Title,
report.Description));

 // set the URI...
 data.SetUri(new Uri(report.PublicUrl));

 // do we have an image?
 if (report.HasImage)
 {
 var reference = RandomAccessStreamReference.CreateFromUri
(new Uri(report.ImageUrl));
 data.Properties.Thumbnail = reference;
 data.SetBitmap(reference);
 }
 }

As I mentioned, the challenge is now sharing the image. You may have an app on your
device that acts as a target for images—the version on which I based this book’s work
didn’t have a built-in app that supports being an image target. The one I’m using in
Figure 7-3 is from the MSDN, “Sharing content target app sample.” This dumps out
information on shared data, and you’ll be able to find it by searching the MSDN.

Sharing Data | 231

Figure 7-3. Successfully sharing an image

Sharing other types of data

The other basic types of data are very easy to share. I won’t take you through these in
detail, but I will call them out.

• You can share one or more filesystem objects via the SetStorageItem method. This
takes an array of IStorageItem instances. (Oddly, this means you can share entire
folders as StorageFolder implements IStorageItem.)

• You can share HTML data by providing a string to SetStorageHtml.
• Finally, you can share RTF data by providing a string to SetStorageRtf.

As mentioned, we’re not going to look at custom data in this book, as this is a niche
requirement.

232 | Chapter 7: Sharing

Pull Requests/Deferrals
Sometimes you’ll need time to prepare the data to share, in which case you need to set
up a pull request. You can’t just use async/await on the handler method that responds
to the share request, as Windows doesn’t understand you’re doing a long-running op‐
eration and will just cancel you. You have to be more explicit.

In this section we’re going to create a share operation that takes a reasonably long time.
Specifically, we’re going to download a static image off the StreetFoo server. We’ll do
this on demand, in the background.

To keep the StreetFoo client “clean,” I’m proposing that we create a
new project for doing this. In the download for this chapter, you’ll
find a solution called SharingScratch and a project PullRequest
Scratch that contains this work.

Pull requests are pretty easy to implement. All you have to do is tell the DataRequest
object that you want to register a handler for a specific data type, and then within that
handler ask for a DataProviderDeferral instance. In fact, the only work we have to do
in this method relates to actually getting the image down from the server.

On the StreetFoo server, there are static versions of the graffiti sample files that we’ve
seen so far. To download it, we create an HttpWebRequest (as we did when we set up
ServiceProxy way back in Chapter 2), and then we’ll copy the response into a InMe
moryRandomAccessStream. InMemoryRandomAccessStream is a WinRT class, whereas
the Stream object that we get back from the HttpWebResponse is a .NET class. Because
RandomAccessStreamReference doesn’t understand Stream instances (because that too
is a WinRT class, not a .NET class), we have to use an extension method to gain a façade.
This happens quite a lot when we’re building Windows Store apps; although sometimes
mapping between WinRT and .NET happens automatically through a project, on oc‐
casion we have to use a façade. In this case, we’ll ask for a Stream façade in the WinRT
InMemoryRandomAccessStream instance.

Here’s the code, which I’ve placed into my MainPage class in the PullRequestScratch
project:

 // Add methods to MainPage...
 protected override void OnNavigatedTo(NavigationEventArgs e)
 {
 base.OnNavigatedTo(e);

 // subscribe...
 var manager = DataTransferManager.GetForCurrentView();
 manager.DataRequested += manager_DataRequested;
 }

Sharing Data | 233

 void manager_DataRequested(DataTransferManager sender,
DataRequestedEventArgs args)
 {
 // do the basics...
 var data = args.Request.Data;
 data.Properties.Title = "Deferred image";
 data.Properties.Description = "I'll have to be downloaded first!";

 // get a deferral...
 data.SetDataProvider(StandardDataFormats.Bitmap, async (request) =>
 {
 var deferral = request.GetDeferral();
 try
 {
 // download...
 var httpRequest = HttpWebRequest.CreateHttp
("http://streetfoo.apphb.com/images/graffiti00.jpg");
 var response = await httpRequest.GetResponseAsync();

 using (var inStream = response.GetResponseStream())
 {
 // copy the stream... but we'll need to obtain a facade
 // to map between WinRT and .NET...
 var outStream = new InMemoryRandomAccessStream();
 inStream.CopyTo(outStream.AsStream());

 // send that...
 var reference = RandomAccessStreamReference.
CreateFromStream(outStream);
 request.SetData(reference);
 }
 }
 finally
 {
 deferral.Complete();
 }

 });
 }

If you run that and access the share charm, it will work as per the sharing operation
where we shared the image that we already had on disk. However, you should notice
that the share target will load and after a time the image will appear. When we looked
at this before from the main StreetFoo app, the image appeared immediately.

This concept of a deferral comes up a few times in WinRT. You’ll see
it in other chapters.

234 | Chapter 7: Sharing

Acting as a Share Target
Now that we’ve looked at how we can share data, we’ll turn our attention to how we can
become a target for sharing.

This section is going to segue into work that we’re going to do in Chapter 12 with regards
to creating new reports. At the moment we’ve been relying on preexisting problem
reports on the StreetFoo server. In Chapter 12 we’re going to create reports on the device
and upload them using background processes. (The background process itself will be
covered in Chapter 15.)

In a production app, one way in which we might want to create reports is by receiving
shared information from other apps (particularly images). Chapter 12 looks at using
the camera to do this directly. In this chapter, we’ll see in theory how we can receive
both text data and photo data. In a real application, you’d likely want to create reports
from both sources. However, given the constraints of having to put this book in a fixed
order—and where I’ve happened to put this chapter before the camera chapter—you’ll
have to use your imagination as to how to ultimately create reports from shared images.

Setting up as a share target involves rigging your app with a share contract and then
picking out the pieces of data that you’re interested in. There are also some edge func‐
tions in terms of supporting long-running operations.

Sharing Text
Visual Studio will do most of the heavy lifting for you in terms of implementing a share
contract into your project. If you open up the Add New Item dialog, search for the Share
Target Contract item. Give it a name (e.g., ShareTargetPage), and click OK.

This will do three things: it will create the new page in your project, override the On
ShareTargetActivated method in your App class, and alter your manifest declarations
to include a Share Target declaration. Figure 7-4 illustrates the manifest change.

Acting as a Share Target | 235

Figure 7-4. The Share Target contract/declaration

You’ll see some inconsistency here in that in some areas these are
called contracts and in others they are referred to as declarations.
They’re both the same thing—the naming is down to the fact that in
the manifest you’re “adding declarations of contracts.”

By default we receive notification of text and URI formats. We’re not interested in URI,
so you can remove this from the declaration.

What we’ll do to prove this works is run the app. If we share some text from another
app, our icon will appear in the available apps list, and if we click our app we’ll spring
into life.

However, sharing text from the built-in apps is a little counterintuitive. In the version
of Windows 8 on which this book is based, the Mail app doesn’t act as a share source.
IE does act as a share source, but will only share text data if you select a block of text on
the page. Given those facts, using IE but making sure that we have a selection on the
page seems to be the path of least resistance. (Don’t forget you need to use the Windows
Store app version of IE, as legacy desktop apps do not support share operations.)

236 | Chapter 7: Sharing

If you are trying to troubleshoot share operations, using the Share
Target Sample from MSDN—the one that we looked at before—can
be a big help, as this dumps all of the information that’s been shared.

Thus, if you go into IE, select some text, and then initiate a share, our app will appear
in the list. Figure 7-5 illustrates.

Figure 7-5. StreetFoo as a share target

You should note, though, that as of the time of writing, there was an
issue whereby if an app was already in the background, the share
target UI would appear and then disappear instantly. If the app isn’t
in the background, the share target UI will appear and remain on the
screen as expected.

If you go ahead and share that data, you’ll get something like Figure 7-6. This shows the
properties going across but none of the data. But as we’ll see in the next section, we can
use the opportunity of trying to share the text to learn more about how to debug inter‐
actions with Windows Store apps when things go wrong.

Acting as a Share Target | 237

Figure 7-6. Viewing share data properties in StreetFoo

Sharing Text (and Troubleshooting)
One of the problems with working with Windows Store apps is that because the system
is designed to drive down user intimidation, you’re not supposed to bamboozle users
with errors. For example, if the app crashes and quits, you’re not allowed (according to
the rules) to show an error message. The idea is that the user will know that something
went wrong by virtue of arriving at the Start screen.

This seems like poor UX design, but this is in fact what the iPad does
and is something I’ve never heard iPad users complain about.

What I want to show you in this section is a quick trick to dump out debugging infor‐
mation when you do hit problems.

We’ll do this by breaking the share operation that we were given by Visual Studio. Well,
I say “breaking,” but what we’re actually going to do is migrate the ShareTargetPage
class over to the MVVM pattern of our other pages. In doing this, we’re going to hit a
problem that we have to fix, the symptom of which is to crash the app during the share
operation. We’ll then see how to view diagnostic information, and then fix the problem.

Migrating ShareTargetPage to MVVM

As is the way with all of the Visual Studio templates, the provided implementation of
ShareTargetPage uses the not-really-a-view-model DefaultViewModel “bucket” that’s

238 | Chapter 7: Sharing

included by default in LayoutAwarePage. (Recall that in Chapter 2 one of the first things
we did was to build a proper MVVM implementation to replace this bucket.)

If you look in the default code, you’ll find lots of references to DefaultViewModel. Here’s
an example:

 public async void Activate(ShareTargetActivatedEventArgs args)
 {
 this._shareOperation = args.ShareOperation;

 // Communicate metadata about the shared content through the
 // view model
 var shareProperties = this._shareOperation.Data.Properties;
 var thumbnailImage = new BitmapImage();
 this.DefaultViewModel["Title"] = shareProperties.Title;
 this.DefaultViewModel["Description"] = shareProperties.Description;
 this.DefaultViewModel["Image"] = thumbnailImage;
 this.DefaultViewModel["Sharing"] = false;
 this.DefaultViewModel["ShowImage"] = false;
 this.DefaultViewModel["Comment"] = String.Empty;
 this.DefaultViewModel["SupportsComment"] = true;
 Window.Current.Content = this;
 Window.Current.Activate();

 // Update the shared content's thumbnail image in the background
 if (shareProperties.Thumbnail != null)
 {
 var stream = await shareProperties.Thumbnail.OpenReadAsync();
 thumbnailImage.SetSource(stream);
 this.DefaultViewModel["ShowImage"] = true;
 }
 }

Note the async void declarations on that method. That’s not recom‐
mended. async should in most cases return a Task; otherwise, you
don’t have any way of controlling the method’s lifetime or respond‐
ing to the method’s lifetime changes.

What we need to do is create a new ShareTargetPageViewModel and IShareTargetPa
geViewModel so that we can deprecate the DefaultViewModel bucket approach.

We’ve done this a few times (see Chapter 2 for a basic run-through), so I’ll go through
this part quickly. What we need is properties for the basic items on the view (title and
description labels, a comments, field, and a Share button), and some properties that the
default page implementation needs to do its magic. These properties, all Booleans, are
Sharing (indicates that a share operation is in progress), ShowImage (indicates that we
have image data, which isn’t strictly needed, but I’m proposing leaving it in for consis‐
tency with the standard implementation), and SupportsComment (indicates that we want

Acting as a Share Target | 239

to capture a comment). We’ll also need a command to indicate that the user wants to
go ahead with the sharing. Ultimately from this we’re going to share out a text value and
an image value, so we’ll create additional properties for SharedText and SharedImage.

Here’s the interface code:
 public interface IShareTargetPageViewModel : IViewModel
 {
 string Title { get; }
 string Description { get; }
 string Comment { get; set; }

 string SharedText { get; }
 BitmapImage SharedImage { get; }

 bool ShowImage { get; }
 bool SupportsComment { get; }
 bool Sharing { get; }

 ICommand ShareCommand { get; }

 void SetupShareData(ShareOperation operation);
 }

Now we can look at the view-model implementation.

You should be aware that a significant “gotcha” with regards to sharing operations is
that the event that tells your app that you need to share (ShareTargetActivated) will
pass over a ShareOperation. You must store this value in a field in your view-model;
otherwise, the sharing operation will fail. What will happen if you don’t do this is that
the share operation will appear and disappear immediately. This is due to WinRT’s
COM-based nature. When you store a reference to a WinRT object in a .NET field, the
COM reference count for that object is incremented. This “locks” your reference to the
object. Without this locking, when the sharing mechanism releases its hold on the object,
it’s assumed that the sharing operation finishes, and the whole thing closes. (If you’re
not that familiar with how COM reference tracking works, don’t worry about it too
much, as the places where it has an impact are few and far between. This is the only
place where it’s important in this entire book, for example.)

For now, by way of a standard command handler, we’re just going to put a MessageDia
log on the screen. Here’s the implementation for ShareTargetPageViewModel:

 public class ShareTargetPageViewModel : ViewModel,
 IShareTargetPageViewModel
 {
 private ShareOperation ShareOperation { get; set; }

 public string Title { get { return this.GetValue<string>(); }
 private set { this.SetValue(value); } }
 public string Description { get { return this.GetValue<string>(); }

240 | Chapter 7: Sharing

 private set { this.SetValue(value); } }
 public string Comment { get { return this.GetValue<string>(); }
 set { this.SetValue(value); } }

 public string SharedText { get { return this.GetValue<string>(); }
 private set { this.SetValue(value); } }
 public BitmapImage SharedImage {
 get { return this.GetValue<BitmapImage>(); }
 private set { this.SetValue(value); } }

 public bool ShowImage { get { return this.GetValue<bool>(); }
 private set { this.SetValue(value); } }
 public bool SupportsComment { get { return this.GetValue<bool>(); }
 private set { this.SetValue(value); } }
 public bool Sharing { get { return this.GetValue<bool>(); }
 private set { this.SetValue(value); } }

 public ICommand ShareCommand { get; private set; }

 public ShareTargetPageViewModel(IViewModelHost host)
 : base(host)
 {
 this.ShowImage = false;
 this.Sharing = false;
 this.SupportsComment = true;

 this.ShareCommand = new DelegateCommand(async (args) => await
HandleShareCommandAsync());
 }

 private async Task HandleShareCommandAsync()
 {
 await this.Host.ShowAlertAsync("Shared.");
 }

 public void SetupShareData(ShareOperation share)
 {
 // store the share operation - we need to do this to hold a
 // reference or otherwise the sharing subsystem will assume
 // that we've finished...
 this.ShareOperation = share;

 // get the properties out...
 var data = share.Data;
 var props = data.Properties;
 this.Title = props.Title;
 this.Description = props.Description;

 // we'll add code to read shared data later...
 }
 }

Acting as a Share Target | 241

The final thing we need to do is add a mapping for the interface and implementation to
StreetFooRuntime.Start. I won’t show this here for brevity.

Whenever Windows tries to invoke our app for a sharing operation,
it will use the deployed version in our ~/Debug/AppX folder. Thus,
whenever we build, we also need to deploy by navigating to
Build→Deploy.

Tracking debug information

Once we’ve migrated the page over, if we run the share operation it will fail. (Remember,
to run the share operation select some text in the Window Store app version of IE and
use the share charm.) Figure 7-7 shows us what we can expect to see.

Figure 7-7. Cryptic sharing failure

The problem here is that because of the way that Windows manages lifetimes for Win‐
dows Store apps, we have to get Visual Studio to attach a debugger to our app before it
actually runs. This is easy enough to do, as Visual Studio has a feature for handling
exactly this.

However, what I want to do is go through some of the diagnostic bits and pieces that
we can take advantage of when building Windows Store apps.

Debugging share operations

This technique applies to both share operations and other places in which Windows
may start your app to do something, such as searching (Chapter 8) and background
tasks (Chapter 14).

In Visual Studio, open up the properties for the project and select the Debug tab. Select
the “Do not launch, but debug my code when it starts” option. Figure 7-8 illustrates.

242 | Chapter 7: Sharing

Figure 7-8. Setting the project to debug when code starts

Should you be working without a debugger, we have to be able to write error information
somewhere so that we can actually see what’s happening. Showing a MessageDialog is
no good—on the one hand it’s against the rules, and on the other hand its asynchronous
nature will conflict with the startup process of the share operation and we’ll hang.
Luckily, since the very first versions of Windows there’s been a shared debug message
queue, which we can access.

The Windows event log is where this sort of crash information is supposed to be stored.
In fact, in the standard Application log we do see a report of the error. Here’s an example:

Faulting application name: StreetFoo.Client.UI.exe, version: 1.0.0.0,
time stamp: 0x4ffa029d
Faulting module name: Windows.UI.Xaml.dll, version: 6.2.8400.0, time stamp:
0x4fb6fcf4
Exception code: 0xc000027b
Fault offset: 0x0052967b
Faulting process id: 0x75c
Faulting application start time: 0x01cd5d54e800c69e
Faulting application path:
C:\BookCode\Chapter08\StreetFoo.Client\StreetFoo.Client.UI\bin\Debug\AppX
\StreetFoo.Client.UI.exe
Faulting module path: C:\Windows\System32\Windows.UI.Xaml.dll
Report Id: 25e22ff1-c948-11e1-9b91-e4ce8f131b41
Faulting package full name:
569e8a16-efb8-4992-ada5-7407fecb3dee_1.0.0.0_neutral__fv7d1kf84c3t4
Faulting package-relative application ID: App

Acting as a Share Target | 243

This doesn’t tell us anything that we don’t already know—we know that we crashed and
there’s little additional information here.

Interestingly, in addition to that error we’ll also get a report written to disk by the Win‐
dows Error Reporting subsystem. This turns out to be equally unhelpful, but worth
calling out to mention that error summaries will go back to Microsoft via this standard
reporting mechanism. Microsoft will use this information as part of its regular telemetry,
but if you publish your app through the Store, Microsoft will share this data with you.

While we’re in the event logs, if you look under Application and Services Logs/Microsoft/
Windows you’ll find subsystem-specific error logs. Some of them pertain to Windows
Store apps. The Apps log does in particular. This contains more information, but still
none that’s of any help. Here’s an example:

Activation of the app 569e8a16-efb8-4992-ada5-7407fecb3dee_fv7d1kf84c3t4!
App for the Windows.ShareTarget contract failed with error:
The remote procedure call failed..

The main reason this information is unhelpful is that it’s all created from the WinRT
side, not the .NET side. .NET’s exception handling is generally “stronger” than WinRT’s
error handling, so if at all possible we want to track .NET’s exception handling.

It turns out this is really easy—we just use Debug.WriteLine.

When the share target contract was added to the project, Visual Studio added an override
to the App class, specifically OnShareTargetActivated. All we have to do is modify this
so that it writes the error information through to Debug.WriteLine, like this:

 // Modify method in App...
 protected override void OnShareTargetActivated(Windows.ApplicationModel.
Activation.ShareTargetActivatedEventArgs args)
 {
 try
 {
 var shareTargetPage = new StreetFoo.Client.UI.ShareTargetPage();
 shareTargetPage.Activate(args);
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex);
 throw ex;
 }
 }

You’ll be familiar with Debug.WriteLine as a .NET developer. When the debugger is
attached, output is routed through to Visual Studio’s Output window. What you might
be less familiar with is that this also keys into a standard Win32 API called OutputDe
bugString. Windows maintains a piece of globally shared memory for debugging text.
We can use an application called DbgView to show the output.

244 | Chapter 7: Sharing

Debug.WriteLine is pretty limited. If you want a more fully fea‐
tured logging system for your app, have a look at MetroLog.

DbgView can be downloaded from Microsoft’s website; go to the Microsoft Download
Center and search for DbgView. When it’s downloaded, make sure you run it as ad‐
ministrator, and select Capture – Capture Global Win32 from the menu.

Now if you run the share operation again, it will still fail, but you will be able to see why.
Figure 7-9 illustrates.

Figure 7-9. DbgView reporting exception information

So that’s great! We can now actually see the problem. We just need to fix it.

Fixing the runtime startup problem

The problem that we have here relates to the fact that our app is dependent on the
ViewModelFactory being initialized whenever we need to obtain an instance of a view-
model. At the moment, we configure this in the OnLaunched handler in App by calling
StreetFooRuntime.Start. When our app is started from the share operation, On
Launched is not called and hence Start is not called. The fix, then, is to make sure that
Start is called when sharing starts.

An additional thing we have to deal with is that we need to automatically log on the
remembered user when we start a share operation. Luckily, we can do this using the
RestorePersistentLogonAsync method that we built in Chapter 4.

Reporting back to the user that there was an error is slightly more complex, however.
The Windows Store app experience as it relates to displaying error messages is asyn‐
chronous in nature. The share UI will disappear, and a few seconds later toast will be
used to tell the user that a problem occurred. What we want to do is put a message on
screen immediately, front and center, telling the user that he or she needs to log in.

To fix this, we’ll create a new page called NotLoggedOnPage. This will display a simple
message asking the user to go into the app via the Start screen and log in. (This isn’t a

Acting as a Share Target | 245

https://github.com/mbrit/MetroLog
http://download.microsoft.com
http://download.microsoft.com

great user experience; I’ve taken a shortcut, as this operation is not central to this dis‐
cussion. What you should do in a production app is get the user to log on through the
NotLoggedOnPage UI.)

Create your new NotLoggedOnPage and add a couple of TextBlock instances to display
a message. Figure 7-10 gives an example of what such a thing looks like when running.
I haven’t bothered adding a view-model for this page, as it’s not interactive. If you did
want to build this out properly, you could use the existing LogonPageViewModel class
and simply wrap a new UI around it. Remember, though, that you need to hold a ref‐
erence to the provided ShareOperation in a field; otherwise, the share UI will disappear.
(See the previous discussion on this.)

Figure 7-10. The “Not logged in” message

Now we can turn our attention to the code. Remember, our goal here is to call Street
FooRuntime.Start. The easiest place to do this, and to add in the capability to show the
logon prompt, is in OnShareTargetActivated itself. Here’s the code—note that I’ve
changed the signature of this method to indicate that it is now async:

 // Modify method in App...
 protected override async void OnShareTargetActivated
(Windows.ApplicationModel.Activation.ShareTargetActivatedEventArgs args)
 {
 try
 {
 // start...
 await StreetFooRuntime.Start("Client");

 // logon?
 var logon = ViewModelFactory.Current.GetHandler
<ILogonPageViewModel>(new NullViewModelHost());
 if (await logon.RestorePersistentLogonAsync())
 {
 var shareTargetPage = new ShareTargetPage();
 shareTargetPage.Activate(args);
 }
 else
 {

246 | Chapter 7: Sharing

 var notLoggedOnPage = new NotLoggedOnPage();
 notLoggedOnPage.Activate(args);
 }
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex);
 throw ex;
 }
 }

Now if you retry the share operation (remember that you’ll need to deploy it from within
Visual Studio, close it, and then try to share from within IE), you’ll either get the old
ShareTargetPage or the new NotLoggedOnPage. However, we still haven’t reached the
point where the shared text is being displayed, so let’s look at that now.

Handling shared text

Sharing the text is very straightforward. In the page that Visual Studio built, you’ll find
a Grid control that’s positioned in the middle of the form. All we have to do is add a
TextBlock control bound to the SharedText property that we stubbed out earlier:

Here’s what the markup in ShareTargetPage looks like before we make our changes:
<Grid Grid.Row="1" Grid.ColumnSpan="2">
 <!-- TODO: Add application scenario-specific sharing UI -->
 </Grid>

 <TextBox Grid.Row="1" Grid.ColumnSpan="2" Margin="0,0,0,27"
 Text="{Binding Comment}"
 Visibility="{Binding SupportsComment, Converter={StaticResource
BooleanToVisibilityConverter}}"
 IsEnabled="{Binding Sharing, Converter={StaticResource
BooleanNegationConverter}}"/>

 <!-- Standard share target footer -->

In the version of the template I used to write this book, there seemed to be a bug in that
the “comments” form overwrote whatever content was added. I replaced this grid with
a StackPanel control, and then brought up the editing code into that new StackPa
nel. Here’s my markup, but you may well find it easier to refer to the code download to
get a handle on exactly what I’ve done. The highlighted parts are new or changed items
—I’ve moved the TextBox from lower down in the page.

 <StackPanel Grid.Row="1" Grid.ColumnSpan="2">
 <TextBlock Text="{Binding SharedText}" Style="{StaticResource
BodyTextStyle}"
 Margin="0,0,0,15"></TextBlock>
 <Image Source="{Binding SharedImage}" Margin="0,0,0,15"
 Visibility="{Binding ShowImage, Converter={StaticResource
BooleanToVisibilityConverter}}"></Image>

Acting as a Share Target | 247

 <TextBox Margin="0,0,0,27" Text="{Binding Comment}"
Visibility="{Binding SupportsComment, Converter={StaticResource
BooleanToVisibilityConverter}}"
 IsEnabled="{Binding Sharing, Converter={StaticResource
BooleanNegationConverter}}"/>
 </StackPanel>

To extract the text from the share operation, we need to go back to our view-model.
(We’ll cover the image sharing in a later section.)

When we want to extract data from the view-model, we use async calls. This means that
we need to use async/await on the method that sets up the sharing operation. Previously
I presented this method as synchronous. We’re now going to change it, but the reason
I’ve left it so that we have to change it is to help you get a feel for the “fiddlyness” of
working with async/await. This happens a lot in Window Store app development—
you build something one way, and then you discover that you have to rattle through a
whole bunch of calls to put in async functionality.

In this case, we need to change the name and the return type of the SetupShareData
method, change its return type, map that through to the interface, and change the op‐
eration of the caller.

Here’s the first set of changes to SetupShareData. This also includes a call to GetText
DataAsync. Note that we need to check whether or not the shared data package contains
text data. The call to GetTextDataAsync will fail if we try to load a format that is not
within the bucket.

 // Modify and rename SetupShareData in ShareTargetPageViewModel...
 public async Task SetupShareDataAsync(ShareOperation share)
 {
 // store the share operation - we need to do this to hold a
 // reference or otherwise the sharing subsystem will assume
 // that we've finished...
 this.ShareOperation = share;

 // get the properties out...
 var data = share.Data;
 var props = data.Properties;
 this.Title = props.Title;
 this.Description = props.Description;

 // now the data...
 if(data.Contains(StandardDataFormats.Text))
 this.SharedText = await data.GetTextAsync();
 }

The interface will need changing, which I won’t present, but I will present the change
to the caller. Here’s the modification to the Activate method on the ShareTarget
Page itself. Note that we’ve had to add the async modifier to the method.

248 | Chapter 7: Sharing

 public async void Activate(ShareTargetActivatedEventArgs args)
 {
 // give it to the view-model...
 await this.Model.SetupShareDataAsync(args.ShareOperation);

 // show...
 Window.Current.Content = this;
 Window.Current.Activate();
 }

So that’s it! We’ve managed to create a share target based on a property MVVM imple‐
mentation and handle the situation where the app is both logged in and not logged in.
Let’s now look at long-running operations.

Long-Running Operations
Although a lot of share operations are likely to be quite quick to execute—after all, the
likelihood is that the data will be local to the device and in a state where it can be shared
—from time to time, we may have to handle data that takes a long time to process. We
can use a bunch of methods in ShareOperation to tell Windows what’s going on if it
will take a long time to get the data to a point where it can be shared. (Note that this
process is for situations where the target is taking a long time. If the source is taking a
long time, then we create a deferral. Recall that we looked at that aspect earlier in the
chapter.)

Here are the methods that you can use:

• ReportStarted is used to tell Windows that you have started the operation. Win‐
dows will take this as an indication that the user interface is now finished with. The
UX angle on this is that the UI doesn’t need the modality of the share operation if
the share operation has been kicked off.

• Similarly, ReportDataRetrieved is used to tell Windows that you’ve grabbed the
data that you need from the source app. For this, imagine a situation where you
grab a whole load of files but then you need to upload them. The source app is not
needed for the period of time that the upload happens, so Windows can swap it out
of memory if needed. You can retrieve all the data and call ReportDataRetrieved
before the user confirms the share operation and initiates ReportShared. (Windows
will obviously work out the user experience flow here.) In fact, that’s what we’ll do
in a moment.

• ReportSubmittedBackgroundTask is used to tell Windows that you have deferred
processing of the shared data to a background task. We’ll talk more about back‐
ground tasks in Chapter 15, although we won’t be discussing this particular point.

• ReportError is used to tell Windows that something went wrong with the share
operation.

Acting as a Share Target | 249

• ReportCompleted is used to tell Windows that you have finished the share opera‐
tion.

Although our operation isn’t going to take a long time, I will illustrate how to do this
properly.

We should handle the ReportDataRetrieved scenario first. In SetupShareDataAsync
we have all the data we need; hence, it’s valid to call that method. Here’s the change:

 // Modify method in SearchTargetPageViewModel...
 public async Task SetupShareDataAsync(ShareOperation share)
 {
 // store the share operation - we need to do this to hold a
 // reference or otherwise the sharing subsystem will assume
 // that we've finished...
 this.ShareOperation = share;

 // get the properties out...
 var data = share.Data;
 var props = data.Properties;
 this.Title = props.Title;
 this.Description = props.Description;

 // now the data...
 this.SharedText = await data.GetTextAsync();

 // tell the OS that we have the data...
 share.ReportDataRetrieved();
 }

Calling the other three methods is just an issue of handling the ReportStar
ted, ReportError, and ReportCompleted calls. Here, I’ve used Debug.WriteLine to
render some error information to the system debug view as we did before. Here’s the
change to HandleShareCommandAsync:

private async Task HandleShareCommandAsync()
 {
 try
 {
 // tell the OS that we've started...
 this.ShareOperation.ReportStarted();

 // placeholder message...
 await this.Host.ShowAlertAsync("Shared.");
 }
 catch (Exception ex)
 {
 Debug.WriteLine("Sharing failed: " + ex.ToString());
 this.ShareOperation.ReportError("The sharing operation failed.");
 }
 finally
 {

250 | Chapter 7: Sharing

 this.ShareOperation.ReportCompleted();
 }
 }

If you run that and share some text, you’ll see the result shown in Figure 7-11. The long-
running reporting stuff that we just did won’t have a discernable effect on the presen‐
tation.

Figure 7-11. The final share operation

With that done, let’s look at the process of sharing images.

Sharing Images
As I mentioned at the top of the chapter, the requirement to work with images comes
up very often when you’re building LOB apps for mobile work, which is why I wanted
to cover this topic in this chapter. What we’re going to do here is look at capturing images
that are shared by the built-in Photos app, and images from other sources.

Acting as a Share Target | 251

Figure 7-12. Configuring the additional data formats in the manifest

Perhaps counter intuitively, the built-in Photos app actually shares files—or more
specifically, it shares IStorageItem instances, all of which happen to be files. Other apps
that share images are likely to actually share image data directly. Thus, we need to build
our code such that we can handle either eventuality.

Way back when we first built ISharePageViewModel, we added a SharedImage property
of type BitmapImage. All we need to do is set that, as well as the ShowImage property
that we inherited from the legacy implementation provided by Visual Studio.

Configuring the manifest

Back when we created the share target contract in the project, we configured it such that
it was looking for text data only. We now need to configure it to listen for storage files
and bitmaps. Double-click the Package.appxmanifest file and modify it to include those
two elements in the Share Target declaration. When you specify the storage files element,
you’ll need to specify the file types. Figure 7-12 illustrates.

If you deploy that and try to share an image from the Photos app, StreetFoo will appear
in the candidate list. Next we need to read in the data.

252 | Chapter 7: Sharing

Reading image data

We can test for which type of data we are given by querying the Contains method with
StandardDataFormats.StorageFiles or StandardDataFormats.Bitmap.

If we receive files over the sharing link, we’ll ignore multiple files and just work with
the first one in the set. (In production code this would be confusing, so avoid this
shortcut—you’ll need to handle multiple files properly and/or display some UI to the
user to explain what was happening.) When we have a file, we can use RandomAccess
StreamReference as we’ve done before, and then use that to initialize a new Bitmap
Image. If we get an image, we’ll actually be handed an IRandomAccessStreamRefer
ence interface—and we can use that to initialize a real Image instance.

We’ve already changed the XAML to show an image bound to the SharedImage property
on the view-model, so all we have to do is modify SetupShareDataAsync to initialize
the image. Here’s the code:

 public async Task SetupShareDataAsync(ShareOperation share)
 {
 // store the share operation - we need to do this to hold a
 // reference or otherwise the sharing subsystem will assume
 // that we've finished...
 this.ShareOperation = share;

 // get the properties out...
 var data = share.Data;
 var props = data.Properties;
 this.Title = props.Title;
 this.Description = props.Description;

 // now the text...
 if(data.Contains(StandardDataFormats.Text))
 this.SharedText = await data.GetTextAsync();

 // do we have an image? if so, load it...
 if (data.Contains(StandardDataFormats.StorageItems) || data.Contains
(StandardDataFormats.Bitmap))
 {
 IRandomAccessStreamReference reference = null;

 // load the first one...
 if (data.Contains(StandardDataFormats.StorageItems))
 {
 var file = (IStorageFile)(await data.GetStorageItemsAsync())
.FirstOrDefault();
 reference = RandomAccessStreamReference.
 CreateFromFile(file);
 }
 else
 reference = await data.GetBitmapAsync();

Acting as a Share Target | 253

 // load it into an image...
 var image = new BitmapImage();
 using(var stream = await reference.OpenReadAsync())
 image.SetSource(stream);

 // set...
 this.SharedImage = image;
 this.ShowImage = true;
 }

 // tell the OS that we have the data...
 share.ReportDataRetrieved();
 }

Run the code and share an image from the Photos app. You’ll see something like
Figure 7-13.

Testing sharing an image via GetBitmapAsync

To make it easier for you to find a share source that works with bitmap data as opposed
to storage files, in the code download for this chapter I’ve created a project called Im‐
ageShareScratch. You’ll find it within the SharingScratch solution.

Run this project and you’ll be able to pick an image using the FileOpenPicker. It will
automatically start a share operation (which is against the Windows Store app rules,
incidentally, but it’s a good illustration). Share with the StreetFoo client to check that
the image loading works from this side too.

Quick Links
The one feature of sharing that we haven’t looked at is quick links. The idea here is that
you set up “shortcuts” for common sharing operations on a per-app basis. For example,
you might configure a quick link to email to quickly address an email to the same person.

I’ve skipped this topic in this chapter mostly because of space, but also because it’s not
a central function that we would need for the StreetFoo client. It’s relatively easy to do
—you create a new QuickLink object and pass it into the ReportCompleted method in
ShareOperation. The next time you run that same sort of share operation, the quick
link will appear in the share charm UI.

254 | Chapter 7: Sharing

Figure 7-13. A photo shared from the Photos app

Quick Links | 255

CHAPTER 8

Searching

Searching is a core Windows Store app UX feature. Because most apps have a search
function, Microsoft decided that in Windows Store apps it would be best for search to
be implemented in two common ways.

If the user wants to find something in your app, he or she will either swipe in the charms,
access the Search feature, type in the keywords, and touch the search button, or use the
SearchBox control, which will let the user search from within the application. It’s your
responsibility to present to the user the results and any UI elements needed to refine
the search. (These refinement UI elements are called filters.)

What we’re going to do in this chapter is add search through the charms bar, and then
take a look at the SearchBox. The guidelines for search recommend strongly that you
use only one of the two. The hardest part of the implementation is rendering the search
results and this is done the same way for both solutions. While we have chosen the
charm search, replacing it with the SearchBox won’t require a lot of work, as you will
see later. Since this is one area that has undergone a lot of change, I would keep my eye
on the documentation and the guidelines in case one of the two methods becomes the
preferred one. When the user wants to search, we’ll present a user interface that will use
the MyGridView control that we built previously, together with a custom item template
designed to render ReportViewItem instances in search results mode. If you remember
we built MyGridView in Chapter 4 to support the selection mode required for the app
bar. This class extends the regular XAML GridView control to add extra functionality
that’s helpful when working in an MVVM mode. As part of the work in this chapter,
we’ll add a command that is raised when an item is selected. This is, of course, a normal
aspect of a search function—when you can see the item that you want, you need to select
it.

One important element of all this is that the search results page that gets created by
Visual Studio doesn’t fit into our proper MVVM pattern. We’ll reconfigure the one
supplied with one that does fit our MVVM pattern.

257

In the final part of the chapter, we’ll run through a couple of additional best-practice
features that apply when working with search.

Implementing Search
The first thing we are going to do is add a SearchResultsPage. Whether you choose to
use the charm search or the search control, you will need this page to render the search
results. When using the charm search, we need to add a search contract, and this is done
in the app manifest under declarations.

Creating the Search Results Page
Right-click on the project within Solution Explorer, open up Add New Item, and add a
new search contract called SearchResultsPage.

This page, like all the standard pages, has a region at the top containing the caption. It
also contains a label showing what we’re going to call the query narrative—that is, an
explanation of what was searched for. (In Figure 8-1, the query narrative reads “Results
for ‘broken.’”) Underneath this will be a list of filters (“all (19), wall (1),” and so on), and
underneath that will be the list of items. The filters in our implementation will work by
aggregating the last word that appears in the set of found titles. (Given the nature of the
test data provided by the server, these all happen to be nouns. However, this approach
is a bit ropey for a production implementation.) As well as creating this page, when we
add a search contract, Visual Studio will also alter the app manifest to include a reference
to the contract.

Figure 8-1 shows what we’re ultimately aiming for.

Creating SearchResultsPageViewModel
The easy part of all this is setting up the SearchResultPageViewModel class and ISear
chResultsPageViewModel.

When we are told to perform a search, we will be told via the SearchPane class. We need
to create a subscription to search notifications via an event on this class. The most
important thing that we are told here is the query text—this being the string that the
user entered into the search charm. We will make it so that this string will ultimately
find its way through to the Activated method in our ViewModel class.

The search process will work like this:

• From within SearchResultPageViewModel, we’ll take the query text and use a reg‐
ular expression to split it into words.

• If we have any words to look for, we’ll ask ReportItem to query SQLite and return
ReportItem instances containing those words.

258 | Chapter 8: Searching

Figure 8-1. What we’re aiming for

• If we don’t have any words (i.e., the user didn’t key anything in), we’ll ask ReportItem
to return everything from the cache. (We’ll talk about the rationale for this later.)

• We’ll store that master set of items in a property called MasterItems. However, we’ll
expose the list of items to display through a property called Results. Results will
use ObservableCollection<ReportViewItem> because we need to bind to it. Mas
terItems will use List<ReportViewItem> because we do not want to bind to it.

• We have a master list and a display list because of the filtering. Once the master list
has been used, we’ll walk the items and build up a list of distinct nouns—the rule
being that the last word in the report item’s title will be the noun. We’ll create a new
class called SearchFilter to represent filters. We’ll extend this new class from
ModelItem because we want to use all of the property notification goodness that
this class has. We’ll store our filters in a property called Filters, and again because
this is bindable we’ll use an ObservableCollection<SearchFilter> instance for
storage.

• The filter set will be built only when the search text changes, and this can only
happen by the user reopening the search charm and keying in new data. When the
user clicks a filter, the Results collection will be cleared, and a new collection built
by taking each item in the master set and seeing if it passes the filter. Ultimately, in
your own production apps, you’ll need to decide on the best way to do your search‐
ing and filtering. What I’m presenting here is just one way of doing it.

Implementing Search | 259

Our view will end up binding two sets of data—the actual results using a MyGridView,
and the filters using RadioButton controls hosted within an ItemsControl. In your
apps, you may find a list of radio buttons too restrictive. You should feel free to design
a (touch-friendly) implementation of your own.

In terms of the view-model members exposed off of the ISearchResultsPageViewMo
del, we’ll need:

• QueryText, which will be the actual text that the user enters into the search charm.
• QueryNarrative, which will be the message presented at the top of the view. If the

user doesn’t enter anything, this will be a blank string; otherwise, it will display
“Results for <queryText>.”

• Results and Filters, which we’ve already discussed.
• HasResults will be a Boolean value that indicates whether there are any items. This

will be used to hide the grid and filter views and to show a message to indicate that
there are no items.

All that gives us an implementation of ISearchResultsPageViewModel that looks like
this:

 public interface ISearchResultsPageViewModel : IViewModel
 {
 string QueryText { get; }
 string QueryNarrative { get; }

 ObservableCollection<ReportViewItem> Results { get; }
 ObservableCollection<SearchFilter> Filters { get; }

 bool HasResults { get; }

 ICommand SelectionCommand { get; }
 }

The base implementation of SearchResultsPageViewModel looks like this:
 public class SearchResultsPageViewModel : ViewModel,
ISearchResultsPageViewModel
 {
 // the master list and filtered list...
 private List<ReportViewItem> MasterItems { get; set; }
 public ObservableCollection<ReportViewItem> Results { get;
 private set; }

 // filter options...
 public ObservableCollection<SearchFilter> Filters { get;
 private set; }

 // issued when an item is selected...
 public ICommand SelectionCommand { get; private set; }

260 | Chapter 8: Searching

 // track whether we've done a search...
 private bool SearchDone { get; set; }

 public SearchResultsPageViewModel(IViewModelHost host)
 : base(host)
 {
 this.MasterItems = new List<ReportViewItem>();
 this.Results = new ObservableCollection<ReportViewItem>();
 this.Filters = new ObservableCollection<SearchFilter>();
 }

 public string QueryText { get { return this.GetValue<string>(); }
 private set { this.SetValue(value); } }
 public string QueryNarrative { get { return this.GetValue<string>(); }
private set { this.SetValue(value); } }

 public bool HasResults
 {
 get
 {
 // if we haven't done a search—be optimistic or otherwise
 // we'll flicker...
 if (!(this.SearchDone))
 return true;

 // ok...
 return this.Results.Any();
 }
 }
 }

A quick note on that HasResults option: because of the way the view will launch,
HasResults will be called before the view-model has finished setting up. If we return
false initially, the “no results” message will display and then be replaced by the grid.
What we want to do is be more optimistic and assume that we do have results before
we actually check whether we do or not. If we don’t do this (i.e., if we’re not optimistic),
we’ll get an ugly flicker as we go from “no data” to “some data.”

At this point we should compile OK, but so that we know it works I propose adding an
Activated method that will display the query text in a MessageDialog instance. This
will let us track whether the basics work. (And remember the “basics” in this case is the
code created by Visual Studio that will activate our view and pass in the query text.)
Here’s the implementation of Activated:

 SearchResultsPageViewModel public override async void Activated
(object args)
 {
 base.Activated(args);

 // show the query text...

Implementing Search | 261

 await this.Host.ShowAlertAsync((string)args);
 }

In order to run the operation, we need to wire up the view in SearchResultsPageView
Model. We’ve done this a few times, but just for clarity:

 public sealed partial class SearchResultsPage : StreetFooPage
 {
 private UIElement _previousContent;
 private ApplicationExecutionState _previousExecutionState;

 private ISearchResultsPageViewModel ViewModel { get; set; }

 public SearchResultsPage()
 {
 this.InitializeComponent();

 this.InitializeViewModel();
 }

 // code omitted for brevity...
 }

To make this work, we need to subscribe to the event on the WinRT-provided Search
View class. We’ll dereference the current frame (creating one if necessary), and then pass
the search instruction over to the page. Here’s the code:

// Modify App.xaml.cs:
 protected override async void OnLaunched(LaunchActivatedEventArgs e)
 {
 // start up our runtime...
 await StreetFooRuntime.Start("Client");

// code omitted for brevity...

 // Ensure the current window is active
 Window.Current.Activate();

 // register for data transfer...
 var manager = DataTransferManager.GetForCurrentView();
 manager.DataRequested += manager_DataRequested;

 // search...
 var search = SearchPane.GetForCurrentView();
 search.PlaceholderText = "Report title";
 search.QuerySubmitted += search_QuerySubmitted;
 }

Now you can run the code and try searching from the Reports page. You’ll see something
like Figure 8-2 if you type the text some search terms that I entered into the search
charm. Part of how Windows 8.1 works is that you need to direct the search to the
StreetFoo app. Make sure StreetFoo.UI.Client is selected in the search charm, otherwise

262 | Chapter 8: Searching

you’ll just be searching your machine for any instances of the string you entered rather
than the app.

Figure 8-2. The search terms displayed by SearchResultsPageViewModel

Implementing the Search Operation
What we’re going to do in the remainder of this chapter is actually make the search
operation do something. We know at this point that Windows will pass in search re‐
quests. Toward the end of this chapter, we’re going to look at refining the basic operation
so that it’s a bit slicker.

Searching SQLite

The basic search operation involves issuing a statement to SQLite that issues a WHERE
clause based on the keywords that we type in. What we’re going to do with the keywords
is use a simple regex to split up the string and force an AND between each one. Thus, if
the user enters “broken light,” we’ll issue:

SELECT * FROM ReportItem WHERE TITLE LIKE '%BROKEN%' AND TITLE LIKE '%LIGHT%'

Obviously, because it’s not the late 1990s and we understand about SQL injection attacks,
we’ll use a parameterized query. In SQLite, parameters are simply presented as question
marks in ordinal order, like so:

SELECT * FROM ReportItem WHERE TITLE LIKE ? AND TITLE LIKE ?

Since introducing the SQLite functionality in Chapter 3, we haven’t done much with it.
This is where we go slightly outside of the micro-ORM functionality provided by

Implementing Search | 263

sqlite-net and build up a SQL string ourselves. (Generally, the idea of an ORM of any
type is that you don’t build up SQL yourself but instead rely on the library to do the
heavy lifting for you.) This presupposes that we know the name of the table. It’s certainly
possible to ask sqlite-net to tell you the details of the table using the GetMapping method
in the synchronous SQLiteConnection class. However, for expedience, I’m proposing
just hardcoding the name of the table into our method. And yes, that query does contain
an inefficient SELECT * statement. However, sqlite-net issues these statements all the
time, just to keep the construction of the library lightweight. This isn’t a massive database
hammered by thousands of users—it’s just keeping a local cache of a small set of data
on a relatively well-powered device. My view is that this is a workable approach.

There are two more things to note about the behavior of the basic search routine. First,
if no keywords are passed in, it will return all items. This works on the assumption that
if the user keys nothing in the UI and presses the search button, he or she actually wants
to see all items and refine from there. (This is a more “Windows 8” way of doing things
—don’t put up cryptic messages that require users to think. Instead, just get information
to them so that they can keep moving.) Secondly, it assumes that the cache is up-to-
date. All searching is done locally and no attempt is made to get data from the server.

With that, here’s the code for SearchCacheAsync to be added to ReportItem:
 // Add method to ReportItem...
 internal static async Task<IEnumerable<ReportItem>> SearchCacheAsync
(string queryText)
 {
 // run a regex to extract out the words...
 var words = new List<string>();
 var regex = new Regex(@"\b\w+\b", RegexOptions.Singleline |
RegexOptions.IgnoreCase);
 foreach(Match match in regex.Matches(queryText))
 {
 var word = match.Value.ToLower();
 if(!(words.Contains(word)))
 words.Add(word);
 }

 // do we have anything to find?
 if(words.Count > 0)
 {
 // build up some sql...
 var sql = new StringBuilder();
 var parameters = new List<object>();
 sql.Append("select * from reportitem where ");
 bool first = true;
 foreach(var word in words)
 {
 if(first)
 first = false;
 else

264 | Chapter 8: Searching

 sql.Append(" and ");

 // add...
 sql.Append("title like ?");
 parameters.Add("%" + word + "%");
 }

 // run...
 var conn = StreetFooRuntime.GetUserDatabase();
 return await conn.QueryAsync<ReportItem>(sql.ToString(),
parameters.ToArray());
 }
 else
 {
 // return the lot...
 return await GetAllFromCacheAsync();
 }
 }

For those of you who are not familiar with regular expressions, don’t
worry too much about the regex at the top of this method. All it does
is select groups of at least one alphanumeric character delineated by
word boundaries.

Now that we can search the SQLite database, let’s go back and think about our search
routine.

The search routine proper

As mentioned previously, our full search routine in the view-model has some com‐
plexity.

When the user keys in new search terms, we’ll go out to SQLite and get back all the
ReportItem instances that match using the SearchCacheAsync method that we just
built. We’ll then build up a list of filters from those search results and present them to
the user. By default, the user will have the All filter selected, which means “apply no
filter.” The master set of items returned from SQLite will be held in the MasterItems
collection. The set presented to the user will be held in the Results collection.

If the user selects a filter, we’ll take the values in the MasterItems collection, run them
through the filter, and update the Results collection. The magic of XAML data binding
will result in the view being updated automatically.

The filters will be held as a collection of SearchFilter instances owned by the Sear
chResultPageViewModel. The SearchFilter class will have an Active property so that
we know which one has been selected. To handle the selection, we’ll have to implement
a command that gets executed when the user clicks on one of the checkboxes.

Implementing Search | 265

We’ll look at SearchFilter first. This will extend ModelItem because we want the data-
binding-capable property notifications. When we create a SearchFilter we’ll need a
description, the number of items, the bound keyword, and an indicator as to whether
it’s active. The All filter will have a description but no keyword, which is why we break
those two out.

Juggling the operation of listening for the user touching a filter and having our view-
model react is reasonably complex. Each filter will be bound to exactly one checkbox.
(They won’t look like checkbox controls, but they are.) MVVM tells us that we’re sup‐
posed to use commands to get actions on the UI “felt” in the view-model. Thus, to the
SearchFilter class we’ll add a command called SelectionCommand. When we build
SearchFilter instances from within SearchResultsPageViewModel, we’ll set this com‐
mand to invoke a method that changes the filter.

When it comes to actually matching the keyword, if we don’t have a keyword (i.e., we’re
using the All filter), we’ll always return true. If not, we’ll look for our keyword at the
end of the string. (This isn’t strictly accurate, as really we need to use a regex to match
a word boundary before the keyword string, but this is good enough for our purposes.)

Here’s the code:
 public class SearchFilter : ModelItem
 {
 // holds the keyword that we're bound to...
 internal string Keyword { get; private set; }

 // command to raise when we're selected...
 public ICommand SelectionCommand { get; internal set; }

 public SearchFilter(string description, int numItems, string keyword,
bool active = false)
 {
 this.Description = string.Format("{0} ({1})", description, numItems);
 this.Keyword = keyword;
 this.Active = active;
 }

 // holds the description...
 public string Description { get { return this.GetValue<string>(); }
 private set { this.SetValue(value); } }

 // holds a flag to indicate that we were active...
 public bool Active { get { return this.GetValue<bool>(); }
 internal set { this.SetValue(value); } }

 internal bool MatchKeyword(ReportViewItem item)
 {
 // if we have a keyword, match it, otherwise assume it's ok...
 if (!(string.IsNullOrEmpty(this.Keyword)))
 return item.Title.ToLower().EndsWith(this.Keyword);

266 | Chapter 8: Searching

 else
 return true;
 }
 }
}

Now we’ll move on to the SearchResultsPageViewModel implementation.

The first thing we need to change on the view-model is the Activated method, which
will be called when the search results page is shown. This will replace the one that thus
far shows a message box:

 // Modify method in SearchResultsPageViewModel...
 public override async void Activated(object args)
 {
 base.Activated(args);

 // do the search...
 await SearchAsync((string)args);
 }

Let’s look at the SearchAsync method. The first thing this does is set the internal flag so
that we know at least one search has happened. (Before, I mentioned that this was to
stop the “No results” message from appearing prematurely.) We’ll also set the query text,
as well as the narrative.

 // Add method to SearchResultsPageViewModel...
 private async Task SearchAsync(string queryText)
 {
 // flag...
 this.SearchDone = true;

 // set...
 this.QueryText = queryText;

 // set the narrative...
 if (string.IsNullOrEmpty(queryText))
 this.QueryNarrative = string.Empty;
 else
 this.QueryNarrative = string.Format("Results for '{0}'",
queryText);

The next move is to update the MasterItems collection from the results drawn from
SQLite.

 // load...
 var reports = await ReportItem.SearchCacheAsync(queryText);
 this.MasterItems.Clear();
 foreach (var report in reports)
 this.MasterItems.Add(new ReportViewItem(report));

Once we have the master items, we need to build the filters. As mentioned, this will pull
the last word off of the title of each report and add each to a distinct list of nouns. First,

Implementing Search | 267

though, we need to add the All filter. Note here how the SelectionCommand property is
set to a lambda expression that defers to HandleFilterActivated. We’ll create this
handler method in a moment.

 // do we have anything?
 this.Filters.Clear();
 if (this.MasterItems.Any())
 {
 // all filter...
 var allFilter = new SearchFilter("all", this.MasterItems.Count,
null, false);
 allFilter.SelectionCommand = new DelegateCommand((args) =>
HandleFilterActivated(allFilter));
 this.Filters.Add(allFilter);

To build the list of nouns, we use a regex and Dictionary<string, int>. This dictio‐
nary keeps track of the hit count for each noun.

 var nouns = new Dictionary<string, int>();
 var regex = new Regex(@"\b\w+$", RegexOptions.Singleline |
RegexOptions.IgnoreCase);
 foreach (var report in reports)
 {
 var match = regex.Match(report.Title);

 // word...
 string noun = match.Value.ToLower();
 if (!(nouns.ContainsKey(noun)))
 nouns[noun] = 0;
 nouns[noun]++;
 }

Finally, as far as the filters are concerned, we create exactly one filter per discovered
noun.

 // add the filters...
 foreach (var noun in nouns.Keys)
 {
 var filter = new SearchFilter(noun, nouns[noun], noun);
 filter.SelectionCommand = new DelegateCommand((args) =>
HandleFilterActivated(filter));
 this.Filters.Add(filter);
 }

And finally, as far as the operation is concerned, we return to the ReportImageCache
Manager that we built in Chapter 7 and initialize the images.

 // update...
 var manager = new ReportImageCacheManager();
 foreach (var report in this.MasterItems)
 await report.InitializeAsync(manager);

268 | Chapter 8: Searching

That completes the branch where we actually got some items back. In either case,
whether we did or didn’t get items back, we need to apply the selected filter. Here is that
call, and then we’ll move on to building that method.

 // apply the filter...
 this.ApplyFilter();
 }

To find the active filter, we just walk the list of filters and return the one that’s marked
as active. Here’s the code for the ActiveFilter property:

 // Add property to SearchResultsPageViewModel...
 private SearchFilter ActiveFilter
 {
 get
 {
 return this.Filters.Where(v => v.Active).FirstOrDefault();
 }
 }

Next, remember how in our SelectionCommand handler on the filter we called the
HandleFilterActivated method? The job of this handler is to mark all the filters as
inactive, apart from the one we clicked on. Once it’s done that, it calls HandleFilterAc
tivated to update the user interface. Here’s the code:

 // Add method to SearchResultsPageViewModel...
 private void HandleFilterActivated(object args)
 {
 // walk...
 foreach (var filter in this.Filters)
 {
 if (filter == args)
 filter.Active = true;
 else
 filter.Active = false;
 }

 // update...
 this.ApplyFilter();
 }

At this point, we can look at the method that ties it all together. ApplyFilter will take
the master set of items held in MasterItems, mash it together with a filter, and update
the Results property. After it’s done all that, it’ll ask the ModelItem base implementation
to raise a change notification against the HasResults property. Here’s the code:

 private void ApplyFilter()
 {
 // reset...
 this.Results.Clear();

 // do we have a filter?

Implementing Search | 269

 var filter = this.ActiveFilter;
 if (filter != null)
 {
 // match...
 foreach (var report in this.MasterItems.Where(v =>
filter.MatchKeyword(v)))
 this.Results.Add(report);
 }
 else
 {
 // copy in every thing...
 foreach (var report in this.MasterItems)
 this.Results.Add(report);
 }

 // update...
 this.OnPropertyChanged("HasResults");
 }

At this point, the view-model will work, but if you run the app it won’t work because
we need to make some minor changes to the default XAML provided by Visual Studio.
Let’s do that now.

Adjusting the presentation

The work to change the default supplied page layout to one that works with our view-
model will make you wonder why we don’t just create a layout from scratch! I haven’t
done this because the grid layouts are fiddly to organize, plus we want to grab the default
“snapped” view. (We’ll talk more about snapped view in Chapter 12.)

Recall how in Chapter 3 when we first started looking at the GridView we created a
specific template for the view. We need to do this again here. Visual Studio will give us
a view based on a template called StandardSmallIcon300x70ItemTemplate. What we’re
going to do first is create ReportItem300x70ItemTemplate. This continues the approach
that we’ve taken thus far (i.e., creating distinct-yet-reusable templates for each type of
view-model data).

The first thing you need to do is go through and remove the tem‐
plate code that Visual Studio has added to SearchResults
Page.xaml.cs. By default, you get a bunch of default view-model log‐
ic and other display logic in here that you don’t need. You can com‐
ment all of this out, apart from the constructor that we changed
earlier to call our InitializeViewModel method. The reason we
have to do this is that we want Visual Studio to give us the basic
XAML for the page, but the logic that it creates to support a de‐
fault implementation doesn’t fit into how we’ve architected the app.

270 | Chapter 8: Searching

The first thing you need to do is remove the template code that Visual Studio has added
to SearchResultsPage.xaml.cs. By default, you get a bunch of default view-model logic
and other display logic in here that you don’t need. You can comment all of this out,
apart from the constructor that we changed earlier to call our InitializeViewModel
method. The reason we have to do this is so Visual Studio will give us the basic XAML
for the page, but the logic it creates to support a default implementation doesn’t fit into
how we’ve architected the app. Within the StandardStyles.xaml file, add this XAML.
This will display a thumbnail image together with the title and description fields on the
bound item:

 <DataTemplate x:Key="ReportItem300x70ItemTemplate">
 <Grid Width="294" Margin="6">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <Border Background="{StaticResource
ListViewItemPlaceholderBackgroundThemeBrush}" Margin="0,0,0,10" Width="40"
Height="40">
 <Image Source="{Binding ImageUri}" Stretch="UniformToFill"/>
 </Border>
 <StackPanel Grid.Column="1" Margin="10,-10,0,0">
 <TextBlock Text="{Binding Title}" Style="{StaticResource
BodyTextStyle}" TextWrapping="NoWrap"/>
 <TextBlock Text="{Binding Description}" Style="
{StaticResource BodyTextStyle}" Foreground="{StaticResource
ApplicationSecondaryForegroundThemeBrush}" TextWrapping="NoWrap"/>
 </StackPanel>
 </Grid>
 </DataTemplate>

To use this template, locate the GridView declaration within SearchResultsPage and
change its template. Remove any existing inline template references as well. Here’s the
change:

 <GridView
 x:Name="resultsGridView"
 AutomationProperties.AutomationId="ResultsGridView"
 AutomationProperties.Name="Search Results"
 TabIndex="1"
 Grid.Row="1"
 Margin="0,2,0,0"
 Padding="110,0,110,46"
 SelectionMode="None"
 IsItemClickEnabled="True"
 ItemsSource="{Binding Source={StaticResource
resultsViewSource}}"
 ItemTemplate="{StaticResource ReportItem300x70ItemTemplate}">

 <GridView.ItemContainerStyle>
 <Style TargetType="Control">

Implementing Search | 271

 <Setter Property="Height" Value="70"/>
 <Setter Property="Margin" Value="0,0,38,8"/>
 </Style>
 </GridView.ItemContainerStyle>
 </GridView>

The good news is that at this point we can run the project and perform a search. Before
we do that though, we need to change the header. As we’ve seen, all of the pages provided
by Visual Studio have My Application as the header. Change this, and change the
queryText control’s binding to QueryNarrative. Here’s the revised XAML:

 <Button x:Name="backButton" Grid.Column="0" Click="GoBack" Style=
"{StaticResource BackButtonStyle}"/>
 <TextBlock x:Name="pageTitle" Grid.Column="1" Text="Search" Style=
"{StaticResource PageHeaderTextStyle}" />
 <TextBlock x:Name="queryText" Grid.Column="3" Text="{Binding
QueryNarrative}" Style="{StaticResource PageSubheaderTextStyle}"/>

Run the code now, access the search function, and type some keywords. You’ll see
something like Figure 8-3.

Figure 8-3. Search results

Now we know that everything hangs together and that the search function works. Next
we need to get the filters working and remove the codebehind implementation provided
by the Visual Studio template.

To do this, our main task is to wire up the Command property of the checkbox control to
hook into our SelectionCommand exposed by the SearchFilter class, and remove the

272 | Chapter 8: Searching

supplied event binding to Filter_Checked. (This Filter_Checked method was pro‐
vided by Visual Studio so that we could do a codebehind handler to change the active
filter.) We also have to change the IsChecked binding from a two-way to a one-way
binding. (The two-way binding was provided by Visual Studio before we did our own
implementation of this feature.) You’ll find the definition of the checkbox within an
ItemsControl instance called filtersItemsControl. Here’s the revised XAML:

 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <RadioButton
 Content="{Binding Description}"
 GroupName="Filters"
 IsChecked="{Binding Active}"
 Command="{Binding SelectionCommand}"
 Style="{StaticResource TextRadioButtonStyle}"/>
 </DataTemplate>
 </ItemsControl.ItemTemplate>

Now if you run the app, you’ll find that the filter selection works and the view will be
updated. To test this properly, enter an adjective rather than a noun (e.g., broken). Also,
test that the SQLite selection works by entering multiple words in different order (e.g.,
“pavement broken” should yield results for “broken pavement.” Figure 8-4 illustrates
filter selection.

Figure 8-4. Filter selection in action

To round off this basic section, and before we start looking at refinements to the search
operation, we’ll add the functionality to react when the user actually selects an item. We

Implementing Search | 273

don’t do anything particularly sophisticated here—if we had a singleton view that dis‐
played the details for a single report, we could navigate to that. (We’ll build this in
Chapter 11.) For now, we’ll just put up a message box.

Handling item clicks on the grid

Reacting to a selection borrows from the work we did in Chapter 4. If you recall, we
created a new control called MyGridView that extended GridView. This established a
command called SelectionCommand. (For reference, the command that we added to
SearchFilter was also called SelectionCommand. I chose this name specifically to
match the one in MyGridView.)

Selections on GridView controls are supposed to be reserved for situations where you
select something, and then do something (for example, selecting a command from the
app bar). Where you want to react to a click, you need a different command. On the
stock GridView control, you get an IsItemClickEnabled property that “arms” an event
called ItemClick. To reprise the work we did in Chapter 4, we need to convert this event
into a command so that it can be used with the MVVM pattern. We’ll do this now.

The first thing we need to do is modify MyGridView so that it supports a new command
called ItemClickedCommand. Like the SelectionCommand from before, we should do this
using a dependency property. (Recall that a dependency property is a special property
that’s held in a “bucket” of values and can be updated by styles and other runtime op‐
erations.) Here’s the change to MyGridView to incorporate the new property (I’ve re‐
moved quite a lot of code from MyGridView for brevity):

 public class MyGridView : GridView
 {
 public static readonly DependencyProperty SelectionCommandProperty =
 DependencyProperty.Register("SelectionCommand", typeof(ICommand),
typeof(MyGridView), new PropertyMetadata(null));
 public static readonly DependencyProperty ItemClickedCommandProperty =
 DependencyProperty.Register("ItemClickedCommand", typeof(ICommand),
typeof(MyGridView), new PropertyMetadata(null));
 public static readonly DependencyProperty
OpenAppBarsOnMultipleSelectionProperty =
 DependencyProperty.Register("OpenAppBarsOnMultipleSelection",
typeof(bool), typeof(MyGridView), new PropertyMetadata(true));
 public static readonly DependencyProperty
 OpenAppBarsOnRightClickProperty =
 DependencyProperty.Register("OpenAppBarsOnRightClick",
 typeof(bool), typeof(MyGridView), new PropertyMetadata(true));

 public MyGridView()
 {
 // wire up the event to command mapping...
 this.SelectionChanged += MyGridView_SelectionChanged;
 this.ItemClick += MyGridView_ItemClick;
 }

274 | Chapter 8: Searching

 // code omitted...

 void MyGridView_ItemClick(object sender, ItemClickEventArgs e)
 {
 if (this.ItemClickedCommand == null)
 return;

 // ok...
 var clicked = e.ClickedItem;
 if (this.ItemClickedCommand.CanExecute(clicked))
 this.ItemClickedCommand.Execute(clicked);
 }
 }

With that done, all we have to do now is change the XAML. This is a matter of changing
the type of the grid to local:MyGridView and adding the command binding. Here are
the changes:

 <local:MyGridView
 x:Name="resultsGridView"
 AutomationProperties.AutomationId="ResultsGridView"
 AutomationProperties.Name="Search Results"
 TabIndex="1"
 Grid.Row="1"
 Margin="0,2,0,0"
 Padding="110,0,110,46"
 SelectionMode="None"
 IsItemClickEnabled="True"
 ItemClickedCommand="{Binding SelectionCommand}"
 ItemsSource="{Binding Source={StaticResource
resultsViewSource}}"
 ItemTemplate="{StaticResource ReportItem300x70ItemTemplate}">

 <GridView.ItemContainerStyle>
 <Style TargetType="Control">
 <Setter Property="Height" Value="70"/>
 <Setter Property="Margin" Value="0,0,38,8"/>
 </Style>
 </GridView.ItemContainerStyle>
 </local:MyGridView>

The final step, then, is to rig up a command handler in the view-model. Modify the
constructor of SearchResultsPageViewModel to show a message, and you’re done:

 // Modify constructor of SearchResultsPageViewModel...
 public SearchResultsPageViewModel(IViewModelHost host)
 : base(host)
 {
 this.MasterItems = new List<ReportViewItem>();
 this.Results = new ObservableCollection<ReportViewItem>();
 this.Filters = new ObservableCollection<SearchFilter>();

Implementing Search | 275

 // command...
 this.SelectionCommand = new DelegateCommand(async (args) =>
 {
 await this.Host.ShowAlertAsync("Selected: " +
((ReportViewItem)args).Title);
 });
 }

Run the code and you should be able to select items. Figure 8-5 illustrates.

Figure 8-5. Handling a selection on the search results page

And that’s it! The basic search operation is done. We’ve looked at a lot here. We’ve
implemented the actual search routine to get information from the local database. We
then looked at building on some of the UI work that we’d done in previous chapters to
make it more flexible and deal with search data.

Now all we need to do is look at the extra features that Windows gives us that can improve
the search experience.

Refining Search
There are four refinements that we need to make to our search function to bring it in
line with the Windows Store app UX guidelines. These are:
Placeholder text

This displays a message in the search chart to indicate what the user is supposed to
be able to type in.

Query and result suggestions
These are intended to make it easier to enter queries and find results.

Hit highlighting
This is where items in the search results are displayed such that you can see where
the queried text appears in each item.

Remembering where we were
This is where when we reenter the search function, we keep context with where we
last were.

276 | Chapter 8: Searching

Placeholder Text
Placeholder text is the easiest refinement to make. All we have to do is get hold of a
SearchPane instance for our view and then set the PlaceholderText property. We can
do this within the OnLaunched method of our App class. Here’s the code. (I’ve omitted a
lot of this method for brevity. I’ve also added a stub implementation for returning search
suggestions. We’ll need this in a moment.)

 protected override async void OnLaunched(LaunchActivatedEventArgs args)
 {
 // Do not repeat app initialization when already running, just
 // ensure that the window is active
 if (args.PreviousExecutionState == ApplicationExecutionState.Running)
 {
 Window.Current.Activate();
 return;
 }

 // code omitted...

 // search...
 var search = SearchPane.GetForCurrentView();
 search.PlaceholderText = "Report title";
 search.SuggestionsRequested += search_SuggestionsRequested;
}

 void search_SuggestionsRequested(SearchPane sender,
SearchPaneSuggestionsRequestedEventArgs args)
 {
 // TBD...
 }

Run the app now, and you’ll see the placeholder text in the query window. This is helpful
in that it avoids doubt as to what the user can type in. For example, in a LOB app this
could be something like “Customer name or code.” Figure 8-6 illustrates the effect in
StreetFoo.

Figure 8-6. Placeholder text in the search charm

Refining Search | 277

You’ll notice that you get some other behavior here too. Requesting the SearchPane
switches on the suggestion behavior—you’ll see suggestions appear underneath the text
box. We’ll look at implementing this properly now.

Suggestions
There are two kinds of suggestions: query suggestions and query recommendations.
Query suggestions are the classic autocomplete approach, where you start typing and
the app will present guesstimates of what you’re ultimately trying to enter. With a real
keyboard, this is a convenience, but with an on-screen keyboard this is an absolute
requirement. Query recommendations—well, “query recommendation” singular really
—is where you can identify a single hit in the results ahead of time and want to present
that in the search pane.

Within the search pane, according to Microsoft’s UX guidelines, you are allowed five
“lines” to present your findings. You can present five query suggestions, or you could
present three query suggestions, one separator, and one recommendation. Although in
this example we’re going to go back to our SQLite database to find the suggestions, in
practical apps you can go out to disk, or a network—or anywhere, really—to get the
information that you need. Figure 8-7 illustrates.

Figure 8-7. Three suggestions, one separator, and a recommendation shown when
searching the Store app

Finding suggestions

The first thing we’ll look at is how to do the suggestions.

278 | Chapter 8: Searching

You’re going to have to feel your way through for your own apps. While querying the
database to get the suggestions is easy enough, actually tuning it to get the right sug‐
gestions is trickier. There’s a reason why the suggestions on Google feel like magic—the
developers have put massive amounts of engineering time and thought into it.

In our app, all we’re going to do is take the query text and then find all of the report
items in the cache that start with that value. We’ll then return a distinct list of titles that
are “stemmed” from the query text. We’ll return the results as a Dictionary<string,
IEnumerable<ReportItem>>. Although it seems logical to return just the strings, when
we get to doing the recommendations we’ll need to be able to dereference a suggestion
string that surfaces a single item. (This will become clearer in the next section when we
actually do this.)

Because we have a database, it makes sense to get it to do the heavy lifting for us in terms
of returning the items. We’ll use the QueryAsync method to do this. This method is a
little blunt in that it requires us to provide SQL through, and as I mentioned before,
when using an ORM it’s better to get it to do the construction of the SQL. However, the
only other method in sqlite-net that could do this (Table) won’t build a CONTAINS query
properly as of the time of writing.

Here’s the method to return the search suggestions:
 // Add method to ReportItem...
 public static async Task<Dictionary<string, List<ReportItem>>>
GetSearchSuggestionsAsync(string queryText)
 {
 // get everything and sort by the title...
 var conn = StreetFooRuntime.GetUserDatabase();
 var reports = await conn.QueryAsync<ReportItem>("select * from
ReportItem where title like ? order by title",
 new object[] { queryText + "%" });

 // walk and build a distinct list of matches...
 var results = new Dictionary<string, List<ReportItem>>(StringComparer
.CurrentCultureIgnoreCase);
 foreach (var report in reports)
 {
 // if we don't have a result with that title...
 if (!(results.ContainsKey(report.Title)))
 results[report.Title] = new List<ReportItem>();

 // add...
 results[report.Title].Add(report);
 }

 // return...
 return results;
 }

Refining Search | 279

Back when we looked at sharing in Chapter 7, you’ll recall that we needed to use a deferral
to tell Windows that it was going to take us a while to come up with the results. This
needs to happen whenever you use async/await, so we’ll need to use that same approach
here. Once we have the deferral, we get our suggestions and pass them back through
the object supplied as the event argument.

To answer the question of where we put this code, I propose that we create a new class
called SearchInteractionHelper that we add to the UI-agnostic StreetFoo.Client
project. The alternative is that we whack all of this code in the App class in the Windows
Store app−specific project. This codebehind approach would make our MVVM ab‐
straction harder to manage, thus my proposal of putting it in a new class.

Within the App class, I’m proposing that we do enough to set up the deferral and then
pass it over to SearchInteractionHelper. My rationale for doing the deferral here is
that the deferral is actually a Windows Store app−specific thing and hence more rightly
lives in that project. Here’s the code (you’ll also need to change this method to be async):

 async void search_SuggestionsRequested(SearchPane sender,
SearchPaneSuggestionsRequestedEventArgs args)
 {
 var deferral = args.Request.GetDeferral();
 try
 {
 await SearchInteractionHelper.PopulateSuggestionsAsync
(args.QueryText, args.Request.SearchSuggestionCollection);
 }
 finally
 {
 deferral.Complete();
 }
 }

Now we can turn our attention to the PopulateSuggestionsAsync method. Here’s the
code:

 // Add method to SearchInteractionHelper...
 public static async Task PopulateSuggestionsAsync(string queryText,
SearchSuggestionCollection results)
 {
 // if we don't have at least three characters to work with,
 // do nothing...
 if(queryText.Length < 3)
 return;

 // how many?
 int maxSuggestions = 5;

 // get the list...
 var suggestions = await ReportItem.GetSearchSuggestionsAsync
(queryText);

280 | Chapter 8: Searching

 // sort the suggestions...
 var titles = new List<string>();
 foreach (var title in suggestions.Keys)
 titles.Add(title);
 titles.Sort();

 // add the suggestions...
 foreach (var title in titles)
 {
 results.AppendQuerySuggestion(title);

 // enough?
 if (results.Size == maxSuggestions)
 break;
 }
}

Run the code now, and when you type into the search box you’ll see some results.
Figure 8-8 illustrates.

Figure 8-8. Search suggestions appearing in search charm

Finding recommendations

The idea of recommendations is that if it’s at all possible, if the user has entered enough
of a search term to key into a single item, we should present that as a recommendation
directly in the search pane. When the user clicks this recommendation, we need to take
him or her directly to the item, circumventing the search page entirely. In a LOB app,
you could rig this (for example) such that if the user keyed in a customer ID code you
could present a link to the customer directly in the pane.

Refining Search | 281

We’ve got most of the pieces that we need for this already. All we have to do is dig through
our suggestion results and find the first one that only has one item. We’ll then present
that as the recommendation. If we display a recommendation, we’re not allowed to
display five search suggestions. We have to display three suggestions, one separator, and
one recommendation (the idea being that we display only five “rows” in the UI).

The wrinkle to this is that recommendations have to have an image. Thus, when we find
a recommendation we’ll need to wrap it up in a ReportViewItem and pass it over to the
ReportImageCacheManager class to get an image. (We first did this in Chapter 7.) Here’s
the modified version of PopulateSuggestionsAsync:

 public static async Task PopulateSuggestionsAsync(string queryText,
SearchSuggestionCollection results)
 {
 // if we don't have at least three characters to work with, do nothing...
 if(queryText.Length < 3)
 return;

 // how many?
 int maxSuggestions = 5;

 // get the list...
 var suggestions = await ReportItem.GetSearchSuggestionsAsync
(queryText);

 // sort the suggestions...
 var titles = new List<string>();
 foreach (var title in suggestions.Keys)
 titles.Add(title);
 titles.Sort();

 // do we have one that we can use as a recommendation?
 ReportItem recommendation = null;
 foreach (var title in titles)
 {
 if (suggestions[title].Count == 1)
 {
 recommendation = suggestions[title][0];
 break;
 }
 }

 // if we have a recommendation only show three suggestions...
 if (recommendation != null)
 maxSuggestions -= 2;

 // add the suggestions...
 foreach (var title in titles)
 {
 results.AppendQuerySuggestion(title);

282 | Chapter 8: Searching

 // enough?
 if (results.Size == maxSuggestions)
 break;
 }

 // add the recommendation...
 if (recommendation != null)
 {
 // we need an image...
 var viewItem = new ReportViewItem(recommendation);
 var imageUri = await new ReportImageCacheManager().
GetLocalImageUriAsync(viewItem);

 // add the suggestion...
 results.AppendSearchSeparator("Recommendation");
 results.AppendResultSuggestion(recommendation.Title,
recommendation.Description, recommendation.Id.ToString(),
 RandomAccessStreamReference.CreateFromUri(
 new Uri(imageUri)), recommendation.Title);
 }
 }

Run the code, and you’ll be able to surface a recommendation (as shown in Figure 8-9).

Figure 8-9. Showing a recommendation in the search charm

The only thing that’s missing is that if you click on the recommendation, nothing hap‐
pens. To fix this, we need to respond to the ResultSuggestionChosen event.

Refining Search | 283

Much like on the search results proper, if we had a singleton page with the item details
that we could navigate the user to, we’d do that here. However, for now, just to prove it
works, we’ll display a message box. Add a binding for the ResultSuggestionChosen
event in the OnLaunched method of App and configure it to call this handler:

 // Add method to App...
 async void search_ResultSuggestionChosen(SearchPane sender,
SearchPaneResultSuggestionChosenEventArgs args)
 {
 var dialog = new MessageDialog("Chosen: " + args.Tag);
 await dialog.ShowAsync();
 }

Run the search again, and you’ll be able to click the recommendation. A message box
will appear showing the ID of the report.

Remembering Where We Were
The last thing we need to clean up relates to the situation where the user “reenters” the
search function.

You can try this now. Access the StreetFoo search feature, search for something, and
select a filter. From the charm, select another app (it doesn’t matter which one). Then,
reselect the StreetFoo app from the charm. The search will rerun, but the filter will be
forgotten.

With the basic filters as per our implementation, this isn’t much of a killer problem.
However, in your own apps, which may have more complex filtering, this could be very
frustrating. To that end, we’ll build out this capability now.

There is a way to do this where we watch for suspension and resumption of the app and
manage dumping our state to and from disk. However, given that we have a local SQLite
database and a SettingItem class that lets us store persistent settings, we might as well
(and it’s easier to) use that. How this will work is that when we select a filter, we’ll save
the keyword of that filter into the settings. When we run a query, we’ll look to see if the
query text has changed. If it hasn’t, we’ll find the last used filter and select it, provided
that it’s still available. If the text has changed, we’ll keep the All filter selected. We’ll
always revert to All when the text changes because it’s confusing to have filter selections
that survive the “mental switching” the user does when coming back to the search func‐
tion. When the user comes back to search for something else, he or she is expecting a
“blank sheet of paper” as opposed to something that’s affected by choices made minutes,
hours, or days ago.

To track those items, we’ll need two constants to provide keys into the settings. Add
these contacts to SearchResultsPageViewModel. (I’ve omitted code from this class for
brevity.)

284 | Chapter 8: Searching

 // Add constants to SearchResultsPageViewModel...
 public class SearchResultsPageViewModel : ViewModel,
ISearchResultsPageViewModel
 {
 // code omitted...

 // tracks the last used values...
 private const string LastQueryKey = "LastQuery";
 private const string LastFilterKey = "LastFilter";

As you know, the settings-in-SQLite functionality is all asynchronous, meaning that we
need to modify our HandleFilterActivated method such that it becomes async and
returns a Task instance. We’ll also rename it so that we know it’s supposed to be
async. Here’s the changed method:

 // Modify method in SearchResultsPageViewModel...
 private async Task HandleFilterActivatedAsync(object args)
 {
 // walk...
 SearchFilter selected = null;
 foreach (var filter in this.Filters)
 {
 if (filter == args)
 {
 filter.Active = true;
 selected = filter;
 }
 else
 filter.Active = false;
 }

 // update...
 this.ApplyFilter();

 // save...
 if (selected != null)
 await SettingItem.SetValueAsync(LastFilterKey,
 selected.Keyword);
 else
 await SettingItem.SetValueAsync(LastFilterKey, null);
 }

When it’s time to select a filter programmatically, we’ll use the ActivateFilter method.
This takes a keyword. Because there’s a chance that a filter we supply isn’t found, we’ll
rig the method to call back into itself with null in order to select the All filter. Here’s
the code:

 // Add method to SearchResultsPageViewModel...
 private void ActivateFilter(string keyword)
 {
 // walk and set...
 bool found = false;

Refining Search | 285

 foreach (var filter in this.Filters)
 {
 if (filter.Keyword == keyword)
 {
 filter.Active = true;
 found = true;
 }
 else
 filter.Active = false;
 }

 // did we do it? if not, activate the default one...
 if (keyword != null && !(found))
 this.ActivateFilter(null);
 }

Finally, we can then go back and look at the SearchAsync method. To recap, this needs
to check to see if the query text has changed, and if it hasn’t, reselect the filter that we
used last time if it’s still there. I’ve removed chunks of code from SearchAsync for brevity.

 private async Task SearchAsync(string queryText)
 {
 // flag...
 this.SearchDone = true;

 // set...
 this.QueryText = queryText;

 // code omitted...

 // do we have anything?
 this.Filters.Clear();
 if (this.MasterItems.Any())
 {
 // code omitted...
 }

 // do we need to select the filter?
 var lastQuery = await SettingItem.GetValueAsync(LastQueryKey);
 if (lastQuery == queryText)
 {
 // select the filter...
 var lastFilterName = await SettingItem.GetValueAsync
(LastFilterKey);
 if (!(string.IsNullOrEmpty(lastFilterName)))
 ActivateFilter(lastFilterName);
 }
 else
 {
 // update...
 await SettingItem.SetValueAsync(LastQueryKey, queryText);
 }

286 | Chapter 8: Searching

 // apply the filter...
 this.ApplyFilter();
 }

Run the app now, and you’ll be able to flip in and out of the search results and have the
filter selection preserved. Again, in this example our filters are very basic. In more
complex arrangements—particularly with drop-down lists, which are fussy to use with
touch—this approach becomes much more important.

Now that we have that, we can create our own converter:
public sealed class SearchArgsConverter:IValueConverter
 {
 public object Convert(object value, Type targetType, object parameter,
string language)
 {
 var args = (SearchBoxSuggestionsRequestedEventArgs)value;
 var displayHistory = (bool) parameter;
 if (args == null) return value;
 ISuggestionQuery item = new SuggestionQuery(args.Request,
args.QueryText)
 {
 DisplayHistory = displayHistory
 };
 return item;
 }

 public object ConvertBack(object value, Type targetType,
object parameter, string language)
 {
 return value;
 }
 }

In theory, we could just create the command in the view-model, but to avoid passing
mysterious “object” parameters into our commands, we will create a generic delegate
command so we can have a strongly typed command and know what sort of item we
can expect:

 public class DelegateCommand<T> : ICommand
 {
 private readonly Predicate<object> _canExecute;
 private Action<T> _handler { get; set; }
 public event EventHandler CanExecuteChanged;

 public DelegateCommand(Action<T> handler, Predicate<object> canExecute)
 {
 this._handler = handler;
 _canExecute = canExecute;
 }

Refining Search | 287

 public void RaiseCanExecuteChanged()
 {
 if (CanExecuteChanged != null)
 CanExecuteChanged(this, EventArgs.Empty);
 }

 public bool CanExecute(object parameter)
 {
 return _canExecute == null || _canExecute(parameter);
 }

 public void Execute(object parameter)
 {
 _handler((T)parameter);
 }
 }

And now we can create our command in the view-model and append the suggestions.
This code is just to give you an idea; you would want to abstract this further like we have
done in the rest of the application (see Figures 8-10 and 8-11):

 public DelegateCommand<ISuggestionQuery> SuggestionRequest { get; set; }
 public ViewModel()
 {
 SuggestionRequest = new DelegateCommand<ISuggestionQuery>
(SuggestionRequestFor, o => true);
 }

 private void SuggestionRequestFor(ISuggestionQuery query)
 {
 IEnumerable<string> filteredQuery = _data
 .Where(suggestion => suggestion.StartsWith(query.QueryText,
 StringComparison.CurrentCultureIgnoreCase));
 query.Request.SearchSuggestionCollection.AppendQuerySuggestions
(filteredQuery);
 }

 private readonly string[] _data = { "Banana", "Apple", "Meat", "Ham" };

288 | Chapter 8: Searching

Figure 8-10. All of the possible search suggestions

Figure 8-11. The typeahead search suggestions

Using the SearchBox
The SearchBox was added in Windows 8.1 as it was a feature requested by many de‐
velopers. The SearchBox allows the user to search from within the application and can
be constrained to just one or several pages. The control itself isn’t MVVM-friendly as
is, as it relies heavily on events that can’t be abstracted away. We need to access the event
arguments to pass in, for example, search suggestions to the SearchSuggestionCollec
tion, which is a property on the SearchSuggestionRequest object. Let’s take a look at
an MVVM implementation.

The first thing you would do is add the control to the page where you want to use it, or
to a user control if you want to use the same control in several places:

 <SearchBox SearchHistoryEnabled="False" x:Name="SearchBox" Width="500"
Height="50">
 </SearchBox>

The control has several events that give us access to the submitted query text (which
can also be accessed through the QueryText property on the control) events to append
suggestions and so on. The obvious problem for our MVVM purity is the reliance on
events. We want to use commands. You can wire events to commands by using
dependency properties or by creating custom behaviors, called attached behaviors.

Refining Search | 289

Behaviors were introduced with Blend 3—XAML (and now also HTML and CSS in
Windows Store apps) software that helps you with design, design time data, animations
and storyboards, and behaviors.

Blend comes with Visual Studio as of Visual Studio 2012. Behaviors let you extend
controls by adding behaviors to them. They let you encapsulate interaction in a reusable
way, which then can be connected from the UI component to the code. In this case, we
want to call a command when a certain event is triggered and access the event argument.
To use behaviors you need to add a reference to the Blend SDK (see Figure 8-12).

Figure 8-12. Adding the behaviors SDK

Once you’ve done that, you can go ahead with some behaviors that are already defined
in the SDK. In this example, we’ll look at wiring events to commands and accessing the
event arguments. To show results, you use the OnSearchSubmitted event, bind it to a
command, and from that command, you proceed as with the search charm. You can
simply pass in the QueryText as a CommandParameter if you don’t need to access the
event arguments, and skip the converter. To make sure you don’t get stuck, we’ll cover
how you access the event arguments, which you need to do when working with the
collection of suggestions, for example:

<SearchBox SearchHistoryEnabled="False" x:Name="SearchBox" Width="500"
Height="50">
 <SearchBox.Resources>
 <local:SearchArgsConverter x:Name="ArgsConverter"/>
 </SearchBox.Resources>
 <interactivity:Interaction.Behaviors>
 <core:EventTriggerBehavior EventName="SuggestionsRequested">
 <core:InvokeCommandAction
 Command="{Binding SuggestionRequest}"
 InputConverter="{StaticResource ArgsConverter}"
 InputConverterLanguage="en-US"
 InputConverterParameter="{Binding ElementName=SearchBox,
Path=SearchHistoryEnabled}"/>
 </core:EventTriggerBehavior>

290 | Chapter 8: Searching

 </interactivity:Interaction.Behaviors>
 </SearchBox>

As you can see, we’re listening for the SuggestionRequested event, and invoking a
command when that event is triggered. In the following code, you’ll see some input
attributes. These are new to Windows Store apps, and are WinRT only. They let us access
the event arguments through a converter and pass in language and a parameter as well.
InputConverter

This gets or sets the converter used for the command. The command has to be of
type ICommand, and the converter of the type IValueConverter.

InputConverterLanguage
This gets or sets the language that is passed into the converter as a string.

InputConverterParameter
This gets or sets the parameter passed into the converter. Notice that it’s passed to
the converter and not the command. Use this when you need to convert the pa‐
rameter. Otherwise, use CommandParameter.

Because we don’t want to pass in the event arguments as is to the view-model (this creates
a coupling), we will create and interface a class so we can pass our own custom object
instead. Here is an example of the interface and the class:

 public interface ISuggestionQuery
 {
 SearchSuggestionsRequest Request { get; }
 string QueryText { get; }
 bool DisplayHistory { get; set; }
 }
 public class SuggestionQuery : ISuggestionQuery
 {
 public SuggestionQuery(SearchSuggestionsRequest request, string
queryText)
 {
 Request = request;
 QueryText = queryText;
 }

 public SearchSuggestionsRequest Request { get; private set; }
 public string QueryText { get; private set; }
 public bool DisplayHistory { get; set; }
 }

Other Best-Practice Notes
Microsoft publishes a number of recommendations for best practice within search,
specifically around user experience. We’ve looked at most of them in this section. There
are a couple of others.

Refining Search | 291

One recommendation that comes up is hit highlighting. The idea here is that on the
results page the part of the rendered result that matches the query text is highlighted.
(For example, consider a search for broken—if a result says, “Fix broken light,” the word
broken is highlighted.) I did want to include this feature, but it’s very difficult to imple‐
ment in XAML. In fact, despite it being a recommendation from Microsoft, none of the
built-in apps actually implement this feature! As a result, I’ve left it out. Search high‐
lighting is helpful, however, so hopefully an easier way to implement it will come to the
fore.

Other recommendations relate to appropriateness of use. One of them is to make sure
that search is implemented via the charm, as opposed to via an option on the app bar.
(Personally, I can see that in LOB apps, where data is more complex, actually being able
to initiate an “advanced search” from the app bar is arguably helpful.) Another is not to
confuse the operation of a global “find me stuff ” option from the charm with “find me
stuff within this thing I’m already looking at.” The example Microsoft calls out in its
best-practice documentation relates to a “find on page” function. That sort of thing
should not be done using the charm.

292 | Chapter 8: Searching

CHAPTER 9

Settings

The last charm-based feature that we’re going to look at is the settings charm, which
allows you to define a set of commands that are presented along with one or two standard
options within each app. Although originally defined within the Windows 8 experience
vision as a common way to provide access for settings, a de facto standard has emerged
whereby apps use it to provide access to their Help options. There is also a store re‐
quirement to provide easy access to a “privacy policy,” and this should be done through
the settings charm.

In this chapter, we’re going to look at the standard options first and then add an option
to jump out to the web browser to display the privacy policy. We’ll build a flyout that
can be used to host normal settings. (A flyout is a panel that winds in from the right
side of the screen, similar to a pop up.) Within this flyout, we’ll look at taking some
marked-up text and rendering it in a “prettified” fashion. This will show us how we can
render help content within the app if we aren’t using HTML, and also show how we can
render more richly formatted text within the app, where it’s often impractical to host IE
and render HTML.

Adding Options
Let’s now look at the basics of how to add options. As you may have guessed, this is an
issue of asking WinRT to return a handler, whereupon we bind to events and feed back
the information. In this case, we use WinRT’s SettingsPane class and respond to the
CommandsRequested event. When we do this, we need to create instances of Settings
Command objects, one for each item that we want to appear in the settings view before
the standard options.

293

Standard Options
Each Windows Store app can display one or two default options in the settings charm.
The one that you’ll always get is the Permissions option. This will show the name of the
app, provide an option for turning off push notifications (if applicable), and list any
permissions that the app has. Figure 9-1 shows the permissions view for StreetFoo thus
far.

Figure 9-1. The standard permissions view

If your app is installed via the store, you will also get a “Rate and review” option. You
can see an example of this by looking in the settings for any built-in or downloaded app
that you have.

Adding Custom Options
The bare minimum that we can do to satisfy the requirement to provide a privacy state‐
ment within the app is to add an option that navigates to a web page.

The Store requirement is such that the user should be able to access
the statement from the app, but the whole text doesn’t necessarily have
to be in the app. I talk more about store requirements in Chapter 15.

294 | Chapter 9: Settings

www.SoftGozar.com

Much like we did in the last chapter, we’ll create a new class called SettingsInterac
tionHelper in the UI-agnostic project and wire it up to handlers in the Windows Store
app−specific project.

Navigating to a URL is just a matter of using the Windows.System.Launcher class. This
will dereference the default handler for a given protocol—in this case, http:, but it could
equally be mailto: in order to launch the default email client—and then navigate to it.
That same Launcher class can also open files using the LaunchFileAsync option.

The next code details a SettingsInteractionHelper, rigged with a method to display
a “privacy statement.” As the comment says, that’s not a real privacy statement. I’ve also
included an option to display some web-based help. Similarly, this is not a real help site.

 public static class SettingsInteractionHelper
 {
 public static async Task ShowPrivacyStatementAsync()
 {
 // this will just take the user off to a web page...
 // this isn't a real privacy statement, btw...
 await Launcher.LaunchUriAsync(new Uri
 ("http://programmingwindowsstoreapps.com/"));
 }

 internal static async Task ShowWebHelpAsync()
 {
 // again, not a real website...
 await Launcher.LaunchUriAsync(new Uri
 ("http://programmingwindowsstoreapps.com/"));
 }
 }

As is by now a traditional approach, we’ll hook up the settings charm handler from the
OnLaunched method in App. The code is as follows (I’ve removed much of the code from
the OnLaunched method for brevity):

 // Modify method in App, add new handler method...
 protected override async void OnLaunched(LaunchActivatedEventArgs args)
 {
 // code omitted...

 // settings...
 var settings = SettingsPane.GetForCurrentView();
 settings.CommandsRequested += settings_CommandsRequested;
 }

 void settings_CommandsRequested(SettingsPane sender,
SettingsPaneCommandsRequestedEventArgs args)
 {
 args.Request.ApplicationCommands.Add(new SettingsCommand
("PrivacyStatement", "Privacy Statement",
 async (e) => { await

Adding Options | 295

 SettingsInteractionHelper.ShowPrivacyStatementAsync(); }));
 }

If you now run the app, you’ll see the Privacy Statement option appear in the settings
charm. Select it, and IE will spring into life and navigate the user away. Figure 9-2
illustrates.

Figure 9-2. The Privacy Statement option

Best Practice
It’s worth calling out a couple of points about best practice.

There are no explicit guidelines about the casing of options on the charm. There isn’t
much in the way of consistency in this. OneNote MX uses sentence casing—for example,
“Privacy and terms of use.” IE uses title casing (e.g., Internet Options). Seeing as the
default “Rate and review” is sentence-cased and also seeing that you can’t change that,
I’d go with sentence casing.

Microsoft’s published guidelines also state that when you select an option, the current
view should not be navigated—that is, the user should stay where he or she is. In the
next section, we’re going to create a settings flyout, which does exactly this. However,
some of the built-in apps do navigate the page. The Store app is especially exuberant in
this department.

In LOB apps, the settings charm is a decent place to put support tools and information
—for example, functions that dump out diagnostic information, or that reset local cach‐
ing. The same is possibly also true of consumer apps, although in consumer apps we
have to be more careful not to blind the user with science.

296 | Chapter 9: Settings

www.SoftGozar.com

Implementing the Settings Flyout
The most common thing to do with the settings charm is to create a flyout that contains
more options. I am going to present this here, even though we don’t have much in the
way of settings! What we’ll do is present a view that isn’t functional, concentrating on
the process of building the flyout. Luckily for us, the WinRT API contains a Settings
Flyout control that implements the basic behavior of winding in from the righthand
side of the screen. All we have to do is create an instance of this control that is able to
containerize specific settings panes. In this chapter, we’re going to build two settings
panes—one that displays some settings and another that displays a help message.

Building a Settings Pane
The settings pane is a standard XAML surface. A lot of the examples you’ll see of this
on the Web use the UserControl class. However, we have to consider that right now our
MVVM implementation is tied into using StreetFooPage by virtue of its implementa‐
tion of IViewModelHost. Although the view-models don’t know anything about the
StreetFooPage, they do need to be able to “poke” back into the UI, which is why we’ve
created the IViewModelHost route. If we choose to base our settings pane on something
other than StreetFooPage, we’ll need to extend that support forward into some ex‐
pansion of UserControl. (Some people might argue that there’s no need for any coupling
like this at all—pragmatically, I think it’s easier to have a degree of coupling while main‐
taining the spirit of a well-managed separation.)

I’m going to propose that we build an MvvmAwareControl based on UserControl. All
that we really have to do here is implement IViewModelHost. The view-model imple‐
mentations themselves won’t care what they’re based on. That’s the point of the ab‐
straction, after all.

You may recall that thus far we’ve used extension methods on the Page to drive additional
functionality, such as displaying message boxes and initializing and dereferencing the
view-model. We now have two classes that we need to provide this functionality to:
StreetFooPage (which we did before) and MvvmAwareControl (which is new). This
means we need to change those extension methods.

Weirdly—at least it seems slightly weird to me—we can just change the extension meth‐
ods to extend IViewModel rather than Page, and suddenly all of that behavior becomes
available to MvvmAwareControl. (This sort of thing is just one reason why extension
methods are one of my favorite C# language features. What we’re really doing here is
creating a type of quasi-multiple-inheritance support.)

Now take a look at the revised version of PageExtender that contains the extension
methods. (It may be worth renaming that class, but I’ve left it with the original name to
save confusion for readers who may be comparing code across chapters.)

Implementing the Settings Flyout | 297

 internal static class PageExtender
 {
 internal static Task ShowAlertAsync(this IViewModelHost page, ErrorBucket
errors)
 {
 return ShowAlertAsync(page, errors.GetErrorsAsString());
 }

 internal static Task ShowAlertAsync(this IViewModelHost page, string
message)
 {
 // show...
 MessageDialog dialog = new MessageDialog(message != null ? message :
string.Empty);
 return dialog.ShowAsync().AsTask();
 }

 internal static void InitializeModel(this IViewModelHost page,
 IViewModel model)
 {
 // set up the data context...
 ((Control)page).DataContext = model;
 }

 internal static IViewModel GetModel(this IViewModelHost page)
 {
 return ((Control)page).DataContext as IViewModel;
 }
 }

Once we’ve done that, building MvvmAwareControl is a cinch. Here’s the code:
 public class MvvmAwareControl : UserControl, IViewModelHost
 {
 public MvvmAwareControl()
 {
 }

 Task IViewModelHost.ShowAlertAsync(ErrorBucket errors)
 {
 return PageExtender.ShowAlertAsync(this, errors);
 }

 Task IViewModelHost.ShowAlertAsync(
 string message)
 {
 return PageExtender.ShowAlertAsync(this, message);
 }

 public void ShowView(Type viewModelInterfaceType)
 {
 throw new NotImplementedException();
 }

298 | Chapter 9: Settings

 public void HideAppBar()
 {
 throw new NotImplementedException();
 }
 }
}

I’ve assumed in this code that supporting ShowView and HideAppBar is out of scope for
this class.

We have to decide what we’re going to call these controls. There’s precedent for calling
them panes—thus far, we’ve seen SearchPane and SettingsPane, which sit in the same
physical place in the real estate. However, we can’t call it SettingsPane, as this would
clash with the WinRT class of the same name. My proposition, then, is that we call our
new control MySettingsPane.

Using the Add New Item dialog, add a new UserControl called MySettingsPane. You’ll
get some XAML that looks like this:

<UserControl
 x:Class="StreetFoo.Client.UI.MySettingsPane"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:StreetFoo.Client.UI"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300"
 d:DesignWidth="400">

 <Grid>

 </Grid>
</UserControl>

There are two things we need to change in that default XAML. We need to change the
UserControl declaration to local:MvvmAwareControl. (We’ll also need to change the
base class, which we’ll do in a moment.) We also need to change the width. Settings
panes can be 346 pixels or 646 pixels in width. I find that 346 tends to be a bit narrow,
so set this to 646. Here’s the amended code:

<local:MvvmAwareControl
 x:Class="StreetFoo.Client.UI.MySettingsPane"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:StreetFoo.Client.UI"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="646"

Implementing the Settings Flyout | 299

 d:DesignWidth="400">

 <Grid>

 </Grid>
</local:MvvmAwareControl>

As mentioned, you’ll also need to change the base class in the codebehind file, like so:
 [ViewModel(typeof(IMySettingsPaneViewModel))]
 public sealed partial class MySettingsPane : MvvmAwareControl
 {
 private IMySettingsPaneViewModel ViewModel { get; set; }
 public MySettingsPane()
 {
 this.InitializeComponent();
 this.InitializeViewModel();
 }
 }

All of these styles let us build our layout properly. As mentioned, we’re not putting real
controls on here—I’ve used a ToggleSwitch because it’s one of the cooler new controls
in Windows 8. Notice that the back button has a command binding to DismissCom
mand; we’ll get to that soon. Here’s the layout of MySettingsPane in its entirety:

<local:MvvmAwareControl
 x:Class="StreetFoo.Client.UI.MySettingsPane"
 IsTabStop="false"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:StreetFoo.Client.UI"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 Width="646" Height="200">

 <Border Style="{StaticResource SettingsBorderStyle}">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="50"></RowDefinition>
 <RowDefinition Height="*"></RowDefinition>
 </Grid.RowDefinitions>

 <Grid Style="{StaticResource SettingsCaptionStyle}">
 <StackPanel Orientation="Horizontal">
 <Button Style="{StaticResource SettingsBackButtonStyle}"
 Command="{Binding DismissCommand}"/>
 <TextBlock Grid.Row="1" Style="{StaticResource
 SettingsCaptionTextStyle}">Settings</TextBlock>
 </StackPanel>
 </Grid>

 <Grid Grid.Row="2" Margin="10,10,10,10">

300 | Chapter 9: Settings

 <StackPanel>
 <ToggleSwitch Grid.Row="2" Header="The cows look small
 because..." OnContent="They are small" OffContent=
 "They are far away"></ToggleSwitch>
 </StackPanel>
 </Grid>
 </Grid>
 </Border>

</local:MvvmAwareControl>

Building MySettingsFlyout
To do this, add a new SettingsFlyout item to the project. Call it MySettingsFlyout.

This flyout will contain some default XAML. We need to change this so that the default
text within the StackPanel instance doesn’t exist, and give the StackPanel instance an
x:Name attribute so that we can address it from code. Here’s the XAML:

<SettingsFlyout
 x:Class="StreetFoo.Client.UI.MySettingsFlyout"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:StreetFoo.Client.UI"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 IconSource="Assets/SmallLogo.png"
 Title="SettingsFlyout1"
 d:DesignWidth="346">

 <!-- This StackPanel acts as a root panel for vertical layout of the content
sections -->
 <StackPanel VerticalAlignment="Stretch" HorizontalAlignment="Stretch" >

 <!-- The StackPanel(s) below define individual content sections -->

 <!-- Content Section 1-->
 <StackPanel x:Name="StackPanel" Style="{StaticResource
SettingsFlyoutSectionStyle}">
 </StackPanel>

 <!-- Define more Content Sections below as necessary -->

 </StackPanel>
</SettingsFlyout>

In terms of the code, when we create a new instance of the settings flyout, we’ll pass in
an instance of one of the user controls that drives the pane. We’ll then dynamically add
this control to the StackPanel instance defined in the XAML. Here’s the code:

Implementing the Settings Flyout | 301

 public sealed partial class MySettingsFlyout : SettingsFlyout
 {
 private UserControl UserControl { get; set; }

 public MySettingsFlyout()
 {
 this.InitializeComponent();
 }

 public MySettingsFlyout(UserControl control)
 : this()
 {
 // set the user control...
 this.UserControl = control;
 this.StackPanel.Children.Add(control);

 // subscribe...
 this.Loaded += OnLoaded;
 }

 private void OnLoaded(object sender, RoutedEventArgs routedEventArgs)
 {
 // set the title and the width...
 this.Title = ((IViewModel)this.UserControl.DataContext).Caption;
 this.Width = this.UserControl.Width;
 }
 }

All that remains now is to rig up a way of showing the pane. We’ll do this by adding
another command to the settings command collection. Here’s the change to App:

 // Modify method in App...
 void settings_CommandsRequested(SettingsPane sender,
SettingsPaneCommandsRequestedEventArgs args)
 {
 args.Request.ApplicationCommands.Add(new SettingsCommand
("PrivacyStatement", "Privacy Statement",
 async (e) => { await SettingsInteractionHelper.
ShowPrivacyStatementAsync(); }));
 args.Request.ApplicationCommands.Add(new
 SettingsCommand("MySettings", "My Settings",
 (e) => {
 var flyout = new MySettingsFlyout(new MySettingsPane());
 flyout.Show();

 }));
 }

Again, run the project and you’ll now be able to access the new pane through the settings
charm.

302 | Chapter 9: Settings

www.SoftGozar.com

Developing a Help Screen
Now, let’s go through the relatively basic requirement of displaying help content on the
screen. It’s emerging as a standard approach within Windows Store apps to put a Help
option on the settings pane, at least for those apps that provide help. We will rig Help
to display when the user presses F1. (Although pressing F1 to access a help function is
not necessarily current fashion, I want to show how you can handle keyboard events.)

Although we’re going to see how to use this to represent help text, the rendering portion
of this can be used anywhere in your app to render richer blocks of bigger text. For
example, in LOB apps you may want to render product descriptions, or summaries of
a customer’s order history. In retail apps, you may want to render downloaded content.

Hypothetically, if you want to present text within the app, you want some formatting
control. HTML is an obvious choice for this. And you can render HTML content using
the WebView control. (This control containerizes IE.) This supports a NavigateTo
String method into which you can feed a string containing the HTML to render. Or,
you can use the Navigate method and give it a URL. (However, the ms-appx and ms-
appdata protocols are not supported by WebView, so you need to load the data first and
feed it in through NavigateToString.)

The problem with the IE-based approach is that it’s a little blunt. Back in the olden days,
this would not have been at all pretty. It’s a better and more lightweight approach now,
but it doesn’t provide the sort of granularity and control you might need when rendering
small portions of text.

Let’s go down a different route and show you how to build up formatted content without
using WebView. We’re going to build a control called a MarkupViewer to which we can
give some marked-up text and have it create XAML objects that present the text in a
“prettified” way.

Creating a Help Pane
I’m not going to go through how you create the structure of HelpPane in detail, as it’s
the selfsame job as creating the MySettingsPane. The more interesting aspect is in
creating a control called MarkupViewer that will be responsible for rendering the help
content.

What will normally happen with help content is that you’ll have it loaded locally on the
device, most likely in a Windows 8 world by having the content available in the ~/Assets
folder of the project. (What we’re not going to do here is build a complex, context-
sensitive help system—all we’re going to do is put some help content on the screen.) I’m
assuming that we have one file called ~/Assets/HelpText.txt. You can put whatever you
like in this file.

Developing a Help Screen | 303

What we’re going to do with our IHelpPaneViewModel is have it expose a command
whereby the user can jump off to a website to get proper help, and a Markup property
that will have the content to render. Here’s the code:

 public interface IHelpPaneViewModel : IViewModel, IDismissCommandSource
 {
 ICommand WebHelpCommand { get; set; }

 string Markup { get; }
 }

The implementation, then, looks like this:
 public class HelpPaneViewModel : ViewModel, IHelpPaneViewModel
 {
 // commands...
 public ICommand DismissCommand {
 get { return this.GetValue<ICommand>(); }
 set { this.SetValue(value); } }
 public ICommand WebHelpCommand {
 get { return this.GetValue<ICommand>(); }
 private set { this.SetValue(value); } }

 public HelpPaneViewModel()
 {

 WebHelpCommand = new DelegateCommand(async (args) => await
SettingsInteractionHelper.ShowWebHelpAsync());
 }

 // property for holding the markup...
 public string Markup { get { return this.GetValue<string>(); } set
{ this.SetValue(value); } }

 // loads the markup from disk when we're activated...
 public override async void Activated(object args)
 {
 base.Activated(args);

 // load...
 var file = await StorageFile.GetFileFromApplicationUriAsync(new Uri
("ms-appx:///Assets/HelpText.txt"));
 this.Markup = await FileIO.ReadTextAsync(file);
 }
 }

You’ll notice that we have the FileIO class read the help contents from disk.

In the next section, we’re going to build a control called MarkupViewer. This will have
a Markup property that’s bound to the Markup property on the view-model. Similarly,
we’ll have a HyperlinkButton that will have its Command property bound to the Web

304 | Chapter 9: Settings

HelpCommand property on the view-model. Here’s the XAML that shows those two con‐
trols within HelpPane.xaml:

 <!-- snippet from HelpPane... -->
 <Grid Grid.Row="1">
 <StackPanel Margin="10,10,10,10">
 <local:MarkupViewer Markup="{Binding Markup}" />
 <HyperlinkButton
Content="Visit our website to get more help"
Command="{Binding WebHelpCommand}"></HyperlinkButton>
 </StackPanel>
 </Grid>

As is common practice, you’ll need to modify the constructor of HelpPage so that it
obtains and sets up the view-model. You’ll also need to add a command into the set
tings_CommandRequested handler in App. I’m proposing creating a static method for
showing help, as we’re going to activate this view through more mechanisms than just
the settings pane. Here’s the code:

 // Modify method and add new method in App...
 void settings_CommandsRequested(SettingsPane sender,
SettingsPaneCommandsRequestedEventArgs args)
 {
 args.Request.ApplicationCommands.Add(new SettingsCommand
("PrivacyStatement", "Privacy Statement",
 async (e) => { await SettingsInteractionHelper.
ShowPrivacyStatementAsync(); }));
 args.Request.ApplicationCommands.Add(
 new SettingsCommand("MySettings", "My Settings",
 (e) => {
 var flyout = new MySettingsFlyout(new MySettingsPane());
 flyout.Show();
 }));
 args.Request.ApplicationCommands.Add(new SettingsCommand("Help",
"Help", (e) => { ShowHelp(); }));
 }

 internal static void ShowHelp()
 {
 var flyout = new MySettingsFlyout(new HelpPane());
 flyout.Show();
 }

You won’t be able to compile yet, as we still have to build the MarkupViewer control.

Handling the F1 Key
Handling the keypress is very easy to do—just override the OnKeyUp method
in StreetViewPage to respond to the F1 key. Here’s the code:

 // Add method to StreetViewPage…
 protected override void OnKeyUp(Windows.UI.Xaml.Input.

Developing a Help Screen | 305

 KeyRoutedEventArgs e)
 {
 if (e.Key == VirtualKey.F1)
 App.ShowHelp();
 else
 base.OnKeyUp(e);
 }

That’s it—if we could compile and run the app, we could then see that.

Rendering Markup
Before we build the MarkupViewer control, let’s consider how we render the content.

As we know by now, XAML is definitely not HTML. Whereas HTML is designed with
text/document rendering as its primary function, XAML is not. If we want to render
flowing text with formatting, we have to build up a control tree to do it. We can use
RichTextBox to create a container for the text, and then put Paragraph and Run objects
in it to build up the representation. For example, the following results in the represen‐
tation shown in Figure 9-3:

 <RichTextBlock FontSize="16">
 <Paragraph>So, this is some text. And this word is
 <Run FontWeight="Bold">bold</Run>.
 </Paragraph>
 <Paragraph>And this text is
 <Run Foreground="Pink">pink</Run>.
 </Paragraph>
 </RichTextBlock>

Figure 9-3. Example RichTextBlock rendering

What we’re going to do is take the contents of our help text file and create Paragraph
instances for each line. If we were building a more sophisticated markup processor, we
would just have to add a more complex control structure depending on the directives
in the markup. The principle, though, would remain the same.

We need somewhere to put the markup. For our control, we’ll extend ContentCon
trol. (Ultimately, we’ll put a RichTextBlock instance in the Content property. We can’t
extend RichTextBlock because it’s sealed.) Here’s the code:

 public class MarkupViewer : ContentControl
 {
 // dependency property...
 public static readonly DependencyProperty MarkupProperty =
DependencyProperty.Register("Markup", typeof(string), typeof(MarkupViewer),

306 | Chapter 9: Settings

 new PropertyMetadata(null, (d, e) => ((MarkupViewer)d).Markup =
(string)e.NewValue));

 public MarkupViewer()
 {
 }

 public string Markup
 {
 get
 {
 return (string)GetValue(MarkupProperty);
 }
 set
 {
 SetValue(MarkupProperty, value);
 this.RefreshView();
 }
 }

 private void RefreshView()
 {
 // tbd...
 }
 }

If you recall back in Chapter 5, that’s the same pattern that we’ve been using for adding
properties to our controls using dependency properties.

Before we run it, let’s make it do something so that we can prove it works. Modify
RefreshView so that it creates a button, like this:

 // Modify method in MarkupViewer...
 private void RefreshView()
 {
 var button = new Button();
 button.Content = this.Markup;

 // set...
 this.Content = button;
 }

Run the app and summon the help, and it’ll render our text in a giant button. Figure 9-4
illustrates.

Developing a Help Screen | 307

www.SoftGozar.com

Figure 9-4. Demonstrating that we’ve loaded the text and passed it through to Markup‐
Viewer

Now we can do some processing on the text.

You’ll notice from Figure 9-4 that the second line is a set of equals signs. I’ve borrowed
this convention from Markdown. In Markdown, this notation is used to indicate that
the preceding line should be a heading.

As I’ve mentioned, we’re not going to do a proper Markdown implementation, but I
want to do more than rendering flat text, hence the heading—we will support that.

The bits that we need to render the text are all in the Windows.UI.Xaml.Documents
namespace. It works by combining blocks and inlines, all of which can be styled.

We’ll create a root RichTextBlock instance, and add Paragraph instances to it. (Para‐
graphs are blocks.) To each paragraph we’ll then add Run instances, a run being an inline.

When we start building our view, we’ll take the CR+LF delimited text and break it down
into lines. We’ll walk through each line and look ahead to see if the next line is a heading.
If it is, we’ll adjust the styling of the paragraph that we’re on and then skip the line. When
we’re done, we’ll set the Content property to be the RichTextBlock instance that we
created. Here’s the code:

 // Modify method in MarkupViewer...
 private void RefreshView()
 {
 // anything?
 if (string.IsNullOrEmpty(Markup))
 {
 this.Content = null;
 return;
 }

 // get the lines...

308 | Chapter 9: Settings

 var lines = new List<string>();
 using (var reader = new StringReader(this.Markup))
 {
 while(true)
 {
 string buf = reader.ReadLine();
 if (buf == null)
 break;
 lines.Add(buf);
 }
 }

 // walk...
 var block = new RichTextBlock();
 for (int index = 0; index < lines.Count; index++)
 {
 string nextLine = null;
 if (index < lines.Count - 1)
 nextLine = lines[index + 1];

 // create a paragraph... and add it to the block...
 var para = new Paragraph();
 block.Blocks.Add(para);

 // create a "run" and add it to the paragraph...
 var run = new Run();
 run.Text = lines[index];
 para.Inlines.Add(run);

 // heading?
 if (nextLine != null && nextLine.StartsWith("="))
 {
 // make it bigger, and then skip the next line...
 para.FontSize = 20;
 index++;
 }
 else if (nextLine != null && nextLine.StartsWith("-"))
 {
 para.FontSize = 18;
 index++;
 }
 }

 // set...
 this.Content = block;
 }

Run the code and summon the help option, and you’ll see something like Figure 9-5.

Developing a Help Screen | 309

Figure 9-5. “Prettified” markup

There you go: nicely rendered text using a custom markup format, albeit quite a limited
custom format. As I mentioned before, the easiest win here is that hopefully someone
will port over Markdown or something similar. Either way, don’t forget that this ap‐
proach is not just valid for help text. It also applies to displays of complex text data in
all sorts of data that you might present in your app. In fact, in the next chapter we’ll use
this same control to “prettify” rendering of the report description.

310 | Chapter 9: Settings

www.SoftGozar.com

CHAPTER 10

Location

In all geo-capable apps, regardless of platform, there are three things you as a developer
typically want to do. You want to determine where an asset is, present the user with
some sort of visualization of location, or tag an activity to a point in space (and usually
along with it a point in time). In this chapter, we’re going to look primarily at the latter
two. Although we’ll also look briefly at getting a device’s location, I’m keeping that
discussion short because it’s fairly straightforward and applies only in limited cases.
However, we’ll focus on mapping because a) it’s helpful, and b) it’s actually pretty cool!
(My advice, if you want to sell a prototype project to your boss, is to put a map in it.)

We’ll achieve the presentation of the actual maps by integrating Bing Maps. You will
need a developer key to do this, but I’ll go through that when we get to it. Before we do
all that, though, we have to modify the app so that we actually have somewhere to present
a map.

Creating a Singleton View
To start the work that we need to do in this chapter, we need a page that we can put a
map on. We’ll create a singleton view that will display a single report from the local
database. From a UI perspective we’ll design this in classic Windows 8 style: a viewport
that scrolls horizontally, presenting a “panorama” across the presentation. This will re‐
quire us to use a ScrollViewer and a Grid.

In XAML, a ScrollViewer is—as its name implies—a control that implements scrolling.
We can apply a standard style called HorizontalScrollViewerStyle to implement this
in the standard way to achieve the required Windows 8 experience (i.e., swiping from
side to side with a finger, and using the mouse wheel).

Figure 10-1 shows us what we’re ultimately looking to achieve. Let’s get started.

311

Figure 10-1. Our objective: a singleton view showing the report details and a map

Creating the View-Model
Whether you’re using MVVM or not, there are three common UI metaphors that you’ll
tend to see. You are usually either looking at a view that shows a list of related items, a
view that’s mainly displaying information about an item, or a view that falls into neither
of this categories. At this point we’ve seen a view implementation that falls into the list
model (the list of reports), and a view that falls into neither (the register page, settings
page, etc.). What we’re going to do in this section is look at how to create a base view-
model when we want to create a singleton presentation of a piece of domain data.

To do this, we’ll create a ViewModelSingleton<T> class that will expose a property called
Item of type T. The advantage of this approach is that it gives us a common way of
representing items on views such as this. It also creates a place to put common setup
and error-handling code. If you’re of a mind to, it can also act as a place to pin roll-your-
own framework functionality.

Although I won’t cover how to do so in these pages, we can do something similar with
ViewModelList<T>, which we could use as a base for the view-model that we’ve created
for the Reports page and the search results page.

Figure 10-2 shows a UML sketch of the implementation—although, to reiterate, we’re
only going to build the singleton view now. I’ve also omitted the interfaces from the
sketch, but we’ll have IViewModel, IViewModelSingleton<T>, and IViewModelList<T>.

312 | Chapter 10: Location

Figure 10-2. UML static structure sketch showing ViewModelSingleton<T> and others

Here’s the code for IViewModelSingleton<T>. Note the type constraint indicating the
T must be of type ModelItem:

 public interface IViewModelSingleton<T> : IViewModel
 where T : ModelItem
 {
 T Item { get; }
 }

When we come to use one of these view-models, we’ll need to give it the item to display.
In the basic way in which XAML is used, outside of any MVVM cleverness we put in,
we can pass an optional argument. In Chapter 8 we used this to pass around the search
query that the user entered. In our case now, we can use that to pass in the item that we
want to display. Related to this, we need to defend against not being passed an item or
being passed an item of the wrong type. We’ll also implement an ItemChanged method
that we can override in order to set up the item when the view-model is activated. Here’s
the code:

 public abstract class ViewModelSingleton<T> : ViewModel,
 IViewModelSingleton<T>
 where T : ModelItem
 {
 // holds the base item that we're mapped to...
 private T _item;

 protected ViewModelSingleton(IViewModelHost host)
 : base(host)
 {
 }

 public T Item
 {
 get

Creating a Singleton View | 313

 {
 return _item;
 }
 set
 {
 _item = value;
 this.OnPropertyChanged();

 // reload...
 this.ItemChanged();
 }
 }

 protected virtual void ItemChanged()
 {
 // no-op...
 }

 public override void Activated(object args)
 {
 base.Activated(args);

 // check...
 if (args == null)
 throw new InvalidOperationException(
 "An item was not supplied.");
 if(!(typeof(T).GetTypeInfo().IsAssignableFrom(args.GetType()
 .GetTypeInfo())))
 {
 throw new InvalidOperationException(string.Format(
 "An item of type '{0}' was supplied, but an item of type
 '{1}' was required.",
 args.GetType(), typeof(T)));
 }

 // are our arguments initializing our item?
 this.Item = (T)args;
 }
 }

At this point, we don’t need to do much with the new ReportPageViewModel. We do
need to add an OpenMapCommand, which we’ll use in the last section to open Bing Maps
from within our application. Therefore, IReportPageViewModel just looks like this:

 public interface IReportPageViewModel : IViewModelSingleton<ReportViewItem>
 {
 ICommand OpenMapCommand { get; }
 }

The actual ReportPageViewModel has some additional complexity in that we have to
initialize the ImageUri property exposed by ReportViewItem. Here’s the code—note
how it reuses the ReportImageCacheManager that we first saw in Chapter 4.

314 | Chapter 10: Location

 public class ReportPageViewModel : ViewModelSingleton<ReportViewItem>,
IReportPageViewModel
 {
 public ReportPageViewModel(IViewModelHost host)
 : base(host)
 {
 }

 protected override async void ItemChanged()
 {
 // set up our image...
 var manager = new ReportImageCacheManager();
 await this.Item.InitializeAsync(manager);
 }
 }

Now that we have the view-model logic built, we can turn our attention to creating the
view.

Creating the View
A key part of the Windows 8 experience is wide views that the user pans across left to
right to reveal information. From a design perspective, the idea here is that the user is
not fiddling around with panels and tabs to reveal information. It’s all there, just not
within the current viewport. When working with touch, grabbing anywhere and swiping
is easier than zeroing in on and successfully hitting a target. For our report singleton
view, we want to display some basic details about the report, and then display a map.
We build such a view by creating a Grid control with the different panels on it, and then
wrapping it using a ScrollViewer that provides the scrolling functionality.

What I’m proposing is that we create two panels—one for the image and description,
and another for a map. To get started, create a new Basic Page called ReportPage. As
usual, this page will have a header with a back button. We need to create our Scroll
Viewer so that it goes in the second row of the grid that we were given by Visual Studio
when the page was created. When we create our grid to go into the ScrollViewer, we
create a thin column on the left that’s the same width as the column used to accommodate
the back button on the caption row. This aligns the left side of the first real panel with
the left side of the caption text. In a moment, we’ll build a new style called PanoramaPa
nel that adjusts the spacing. You should note that the really important part of the
ScrollViewer definition is to include the HorizontalScrollViewerStyle, which we
need in order to get the Windows 8 experience. The base behavior of ScrollViewer is
to act like a Win32 autoscroll control.

In terms of the data binding, we’re going to use multipart expressions that use dot
notation. For example, {Binding Item.ImageUri} can be used on the Image control.
The DataContext for the page is our ReportPageViewModel. We know that this has an

Creating a Singleton View | 315

Item property exposed by ViewModelSingleton<ReportViewItem>; from there, it’s ob‐
vious that ImageUri is the already defined property on ReportViewItem.

We’re also going to use the MarkupViewer control that we built in Chapter 9. Although
we won’t gain any direct benefit from using it here, I wanted to include it to underscore
how such a thing can be used in regular data display. (In Chapter 9, I signaled that we
can use the control for that, as opposed to it just rendering help text.)

We’re going to use a XAML control called ScrollViewer to present the list. This needs
to be configured with a style that tells it to scroll horizontally, rather than the Windows
default of vertically. Add this style to StandardStyles.xaml to achieve this:

<!-- Add to StandardStyles.xaml -->
 <Style x:Key="HorizontalScrollViewerStyle" TargetType="ScrollViewer">
 <Setter Property="HorizontalScrollBarVisibility" Value="Auto"/>
 <Setter Property="VerticalScrollBarVisibility" Value="Disabled"/>
 <Setter Property="ScrollViewer.HorizontalScrollMode" Value="Enabled" />
 <Setter Property="ScrollViewer.VerticalScrollMode" Value="Disabled" />
 <Setter Property="ScrollViewer.ZoomMode" Value="Disabled" />
 </Style>

Here’s the XAML that needs to be added to ReportPage:
 <!-- Add to ReportPage -->
 <ScrollViewer Style="{StaticResource HorizontalScrollViewerStyle}"
Grid.Row="1">
 <Grid>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="120"></ColumnDefinition>
 <ColumnDefinition Width="800"></ColumnDefinition>
 <ColumnDefinition Width="800"></ColumnDefinition>
 </Grid.ColumnDefinitions>

 <ContentControl Grid.Column="1" Style="{StaticResource
PanoramaPanel}">
 <StackPanel>
 <TextBlock Style="{StaticResource HeadingTextBlock}">
Details</TextBlock>
 <Image Source="{Binding Item.ImageUri}"
HorizontalAlignment="Left" Width="640" Height="480" Stretch="Uniform"
 Margin="0,0,0,10"></Image>
 <local:MarkupViewer Markup="{Binding Item.Description}">
</local:MarkupViewer>
 </StackPanel>
 </ContentControl>

 <ContentControl Grid.Column="2" Style="{StaticResource
PanoramaPanel}">
 <StackPanel>
 <TextBlock Style="{StaticResource HeadingTextBlock}">
Location</TextBlock>

316 | Chapter 10: Location

 <Button Content="We'll put a map in here eventually...">
</Button>
 </StackPanel>
 </ContentControl>

 </Grid>
 </ScrollViewer>

Another detail is that we need to change the caption to bind to the title of the report, as
opposed to being the static “My Application” text. Here’s that change:

 <!-- Back button and page title -->
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <Button x:Name="backButton" Click="GoBack" IsEnabled="{Binding Frame.
CanGoBack, ElementName=pageRoot}"
Style="{StaticResource BackButtonStyle}"/>
 <TextBlock x:Name="pageTitle" Grid.Column="1" Text="{Binding
Item.Title}" Style="{StaticResource PageHeaderTextStyle}"/>
 </Grid>

To make this work, we just have to build the PanoramaPanel style. All that we’re doing
with this is adding some space between the panels. We need to add this to the
StandardStyles.xaml file.

 <!-- Add to StandardStyles.xaml -->
 <Style x:Key="PanoramaPanel" TargetType="ContentControl">
 <Setter Property="Margin" Value="0,0,20,0"></Setter>
 </Style>

We can’t run that yet—well, we can, but we can’t actually reach that view through the
frontend. Figure 10-3 shows what the designer looks like so that you know it’s working.
Note that the extent of the grid goes over the edge of the viewport. This is the effect that
we want in order to create the panoramic scrolling.

We’ll need to add an app bar to this page so that we have somewhere to put the command
that will open up Bing Maps. Here’s the markup for the app bar:

 <!-- Add markup to ReportPage.xaml -->
 <Page.BottomAppBar>
 <AppBar>
 <StackPanel HorizontalAlignment="Right" Orientation="Horizontal"
Grid.Column="2">
 <Button Style="{StaticResource EditAppBarButtonStyle}" Command=
"{Binding EditCommand}" />
 <Button Style="{StaticResource OpenMapAppBarButtonStyle}"
Command="{Binding OpenMapCommand}" />
 </StackPanel>
 </AppBar>
 </Page.BottomAppBar>

Creating a Singleton View | 317

Figure 10-3. Designer view of ReportPage

Finally, to round off the code, we’ll need to actually wire up the view-model. This is the
same as we’ve done a few times now; the actual logic required in the pages is very light.

Here’s the code:
 public sealed partial class ReportPage : StreetFooPage
 {
 private IReportPageViewModel ViewModel { get; set; }

 public ReportPage()
 {
 this.InitializeComponent();

 // set up the model...
 this.ViewModel = ViewModelFactory.Current.GetHandler
<IReportPageViewModel>(this);
 this.InitializeModel(this.ViewModel);
 }

 // code omitted...
 }

Navigating to the View
Now we need to get to a point where we can actually see our new view!

There are three routes into the view given the current state of the app: the current Reports
page, the search results page, and the search recommendations view. (Recall in Chap‐

318 | Chapter 10: Location

ter 8 that we were able to present a single report item on the actual search charm; this
was a search recommendation.)

At the moment, the behavior of the Reports page is that when we touch on items, the
selection changes. This has been fine up to now to demonstrate functionality, but more
properly within the Windows 8 experience, when you touch on items they should open.
You can see this behavior in the built-in apps.

Again, recall when we implemented search in Chapter 8, we built the view so that when
you select an item it displays a message box. We did this by using the IsItemClickEna
bled and ItemClickedCommand properties in MyGridView. All we have to do on Re
portsPage is enable IsItemClickEnabled and bind SelectionCommand through to
ItemClickedCommand. This will result in the raising of the SelectionCommand command
when the user touches an item on the view. Here’s the change:

 <!-- Modify ReportsPage.xaml -->
 <local:MyGridView
 x:Name="itemGridView"
 AutomationProperties.AutomationId="ItemsGridView"
 AutomationProperties.Name="Items"
 TabIndex="1"
 Margin="0,0,0,-4"
 Padding="116,0,116,46"
 ItemsSource="{Binding Source={StaticResource itemsViewSource}}"
 ItemTemplate="{StaticResource ReportItem250x250Template}"
 IsItemClickEnabled="true"
 ItemClickedCommand="{Binding SelectionCommand}"
 Grid.Row="1"
 />

We’ve already built a base type for commands called NavigateCommand that will auto‐
matically rattle a navigation request through to XAML. To make it work on ReportsPa
geViewModel, we just need to change the constructor to use it, as opposed to using
DelegateCommand with a lambda expression. Here’s that change:

 // Modify constructor in ReportsPageViewModel...
 public ReportsPageViewModel(IViewModelHost host)
 : base(host)
 {
 // commands...
 this.RefreshCommand = new DelegateCommand(async (e) =>
 {
 this.Host.HideAppBar();
 await this.DoRefresh(true);

 // toast...
 string message = "I found 1 report.";
 if (this.Items.Count != 1)
 message = string.Format("I found {0} reports.",
this.Items.Count);
 var toast = new ToastNotificationBuilder(new string[] {

Creating a Singleton View | 319

"Reports refreshed.", message });
 toast.ImageUri = "ms-appx:///Assets/Toast.jpg";
 toast.Update();
 });

 // open the singleton report view...
 this.SelectionCommand = new NavigateCommand<IReportPageViewModel>
(this.Host);
 }

Although we still have to cover the navigation behavior on the search operations, you
can run the project at this point to gain the satisfaction of seeing it working. Figure 10-4
illustrates.

Figure 10-4. The operational report singleton view

We’ll quickly round off the two search operations before we start looking at location
functionality proper.

The SearchResultsPageViewModel is the same trick as before. We just need to use
NavigateCommand on the SelectionCommand. Here’s the code:

 // Modify constructor in SearchResultsPageViewModel...
 public SearchResultsPageViewModel(IViewModelHost host)
 : base(host)
 {
 this.MasterItems = new List<ReportViewItem>();
 this.Results = new ObservableCollection<ReportViewItem>();
 this.Filters = new ObservableCollection<SearchFilter>();

320 | Chapter 10: Location

 // command...
 this.SelectionCommand = new NavigateCommand<IReportPageViewModel>
(this.Host);
 }

The selection wiring on both the ReportsPageViewModel and SearchResultsPageView
Model implementations is easy: we have a ReportViewItem, and all we have to do is pass
it through the navigation. The search recommendation handler is a little trickier. In
Chapter 8 when we did this, we wrote this code to respond to the user selecting the
recommendation:

 async void search_ResultSuggestionChosen(SearchPane sender,
SearchPaneResultSuggestionChosenEventArgs args)
 {
 var dialog = new MessageDialog("Chosen: " + args.Tag);
 await dialog.ShowAsync();
 }

The Tag was set to the ID of the ReportItem in the local cache. What we need to do is
query it from SQLite and then navigate to the page. The method to get an object by ID
from the cache is just a matter of adding a new method to ReportItem and using sqlite-
net. Here’s the code:

 // Add method to ReportItem...
 public static async Task<ReportItem> GetByIdAsync(int id)
 {
 var conn = StreetFooRuntime.GetUserDatabase();
 var query = conn.Table<ReportItem>().Where(v => v.Id == id);

 // return...
 return (await query.ToListAsync()).FirstOrDefault();
 }

Run the code, and you’ll now be able to access the report singleton page from search
results.

In Chapter 7, when we looked at sharing we added the share func‐
tionality to the Reports page. Because we can’t select an item on the
Reports page anymore, in the code download you’ll find that I’ve
moved the share functionality to the report singleton page.

Now that we have somewhere to put the options, we can finally look at the location
APIs!

Creating a Singleton View | 321

www.SoftGozar.com

Retrieving a Current Location
We need to add an option to the app bar on the Reports page to get and display the
current location. Luckily we can use an icon from Segoe UI Symbol to do this. We’ll also
need a button that shells out to the built-in Bing Maps app.

Here are the two styles that we need for our buttons. These need to be added to Stand
ardStyles.xaml.

 <!-- Add to StandardStyles.xaml -->
 <Style x:Key="ShowLocationAppBarButtonStyle" TargetType="Button" BasedOn=
"{StaticResource AppBarButtonStyle}">
 <Setter Property="AutomationProperties.AutomationId" Value=
"ShowLocationAppBarButton"/>
 <Setter Property="AutomationProperties.Name" Value="Show Location"/>
 <Setter Property="Content" Value=""/>
 </Style>

 <Style x:Key="OpenMapAppBarButtonStyle" TargetType="Button" BasedOn=
"{StaticResource AppBarButtonStyle}">
 <Setter Property="AutomationProperties.AutomationId" Value=
"OpenMapAppBarButton"/>
 <Setter Property="AutomationProperties.Name" Value="Open Map"/>
 <Setter Property="Content" Value=""/>
 </Style>

We can then create and add a new button to the app bar in the usual way, as we did in
Chapter 4. (We’ll build the command on the view-model in a moment.)

 <!-- Modify ReportsPage.xaml -->
 <Page.BottomAppBar>
 <AppBar>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="50*"/>
 <ColumnDefinition Width="50*"/>
 </Grid.ColumnDefinitions>
 <StackPanel Orientation="Horizontal" Visibility="{Binding
HasSelectedItems, Converter={StaticResource VisibilityConverter}}">
 </StackPanel>
 <StackPanel HorizontalAlignment="Right" Orientation="Horizontal"
Grid.Column="2">
 <Button Style="{StaticResource ShowLocationAppBarButtonStyle}"
Command="{Binding ShowLocationCommand}" />
 <Button Style="{StaticResource RefreshAppBarButtonStyle}"
Command="{Binding RefreshCommand}" />
 <Button Style="{StaticResource LogoutAppBarButtonStyle}"
Command="{Binding LogoutCommand}" />
 </StackPanel>
 </Grid>
 </AppBar>
 </Page.BottomAppBar>

322 | Chapter 10: Location

We also need to add the commands to our IReportsPageViewModel. Here’s the code:
 public interface IReportsPageViewModel : IViewModelList<ReportViewItem>
 {
 ICommand RefreshCommand { get; }
 ICommand SelectionCommand { get; }
 ICommand ShowLocationCommand { get; }
 }

This listing reflects the change made in the code download to use
IViewModelList<T>. That’s not a change that we’ve made in the book,
but it should be obvious to see what it does from the code.

When we actually want to get a location, we have to contend with two issues. First, the
user may have turned location tracking off. In order to get any location capability at all,
we need to indicate in our manifest that we intend to ask for it as part of the app’s
operation. When we try to get the location, Windows will display a pop up asking the
user if she is sure she wants us to do that. If she says “no,” we’ll get an UnauthorizedAc
cessException. If she says “yes,” it may work. (I’ll get to that in a moment.) However,
if at one point she says “yes,” she can still go into the permissions charm at a later date
and turn it back off. Thus, each time we have to be careful to capture situations where
location has been disallowed.

So, I said that location “may work.” There are many reasons why it won’t—for example,
we might not have a GPS, or it may take too long to come back with a location fix.
Similarly, then, we have to make sure we track those errors.

My proposal here is that we wrap the API that retrieves the location. (As we’ll see, this
happens to be done using Windows.Devices.Geolocation.Geolocator.) We’ll create a
LocationHelper class with a GetCurrentLocationAsync method. This will return a
LocationResult containing the location in a Geolocation instance together with a
LocationResultCode value that will tell us what happened.

LocationResultCode looks like this:
 public enum LocationResultCode
 {
 Ok = 0,
 AccessDenied = 1,
 UnknownError = 2
 }

When we come to work with coordinates, there’s a little bit of inconsistency in the APIs
here. Geolocator returns instances of type Geocoordinate. The Bing Maps component
we’ll use later also used Geocoordinate. However, in Windows 8.1 there’s a note against
Geocoordinate that it’s being deprecated. Because this deprecation is not complete—

Retrieving a Current Location | 323

i.e., other things in the Framework still use it, I’ve stuck with using the Geocoordinate
class. Then, LocationResult looks like this:

 public class LocationResult
 {
 public LocationResultCode Code { get; private set; }
 public Geoposition Location { get; private set; }

 internal LocationResult(LocationResultCode code)
 {
 this.Code = code;
 }

 internal LocationResult(Geoposition location)
 : this(LocationResultCode.Ok)
 {
 this.Location = location;
 }
 }

Finally, we can call down to the method to get the location. There isn’t much to this—
it’s just deferring to a method that goes away and gets the location. Here’s the code:

 public static class LocationHelper
 {
 public static async Task<LocationResult> GetCurrentLocationAsync()
 {
 try
 {
 var locator = new Geolocator();
 var position = await locator.GetGeopositionAsync();

 // return...
 return new LocationResult(position);
 }
 catch (UnauthorizedAccessException ex)
 {
 Debug.WriteLine("Geolocation access denied: " + ex.ToString());
 return new LocationResult(LocationResultCode.AccessDenied);
 }
 catch (Exception ex)
 {
 Debug.WriteLine("Geolocation failure: " + ex.ToString());
 return new LocationResult(LocationResultCode.UnknownError);
 }
 }
 }

To call that, we need to add a command to our ReportsPageViewModel. We’ll need to
add both commands, but we only need to implement one. Here’s the change (I’ve omitted
quite a bit of code for brevity):

324 | Chapter 10: Location

 public class ReportsPageViewModel : ViewModelList<ReportViewItem>,
IReportsPageViewModel
 {
 public ICommand RefreshCommand {
 get { return this.GetValue<ICommand>(); }
 private set { this.SetValue(value); } }
 public ICommand SelectionCommand {
 get { return this.GetValue<ICommand>(); }
 private set { this.SetValue(value); } }
 public ICommand ShowLocationCommand { get { return this.GetValue
<ICommand>(); } private set { this.SetValue(value); } }

 public ReportsPageViewModel(IViewModelHost host)
 : base(host)
 {
 // commands...
 this.RefreshCommand = new DelegateCommand(async (e) =>
 {
 this.Host.HideAppBar();
 await this.DoRefresh(true);

 // toast...
 string message = "I found 1 report.";
 if (this.Items.Count != 1)
 message = string.Format("I found {0} reports.",
this.Items.Count);
 var toast = new ToastNotificationBuilder(new string[] {
"Reports refreshed.", message });
 toast.ImageUri = "ms-appx:///Assets/Toast.jpg";
 toast.Update();
 });

 // open the singleton report view...
 this.SelectionCommand = new NavigateCommand<IReportPageViewModel>
(this.Host);

 // show the location...
 this.ShowLocationCommand = new DelegateCommand(async (e) =>
 {
 // get the location...
 var result = await LocationHelper.GetCurrentLocationAsync();
 if (result.Code == LocationResultCode.Ok)
 {
 await this.Host.ShowAlertAsync(string.Format("Lat: {0},
Long: {1}, Accuracy: {2}",
 result.Location.Coordinate.Latitude,
result.Location.Coordinate.Longitude,
 result.Location.Coordinate.Accuracy));
 }
 else
 await this.Host.ShowAlertAsync("Failed to get location: " +
result.Code.ToString());

Retrieving a Current Location | 325

 });
 }

 // code omitted...
}

As per IReportsPageViewModel, this snippet contains the behind-
the-scenes change to ViewModelList<T> that’s in the code download
but not in the book.

As mentioned, we can’t get access to the location at all unless we modify the manifest.
Figure 10-5 shows the Location capability in the manifest editor. You’ll need to make
this change if you want to get the location.

Figure 10-5. Setting Location capability in the manifest

To test this, you don’t need a device with GPS. Windows will have a go at getting the
location back from your network connection on devices without GPS. The simulator
can also be rigged to return a specific location. (We’ll see this in the next section.) Either

326 | Chapter 10: Location

way, run the app and select the Show Location option. You’ll first see a prompt, as per
Figure 10-6. You’ll then (hopefully) see the location, as per Figure 10-7.

Figure 10-6. Windows asking the user to confirm location access

Figure 10-7. The determined location

If you want to confirm a value result from the location, access Goo‐
gle Maps and key in the latitude/longitude separated with a comma.
The accuracy figure mentioned in Figure 10-7 is in meters and is
unlikely to be very accurate without a GPS chip in the device.

Using the Simulator with Location
Testing GPS functions is easier if you can feed test locations in, rather than relying on
a physical GPS fix from where you are. If you’re using the simulator, you can specify a
location explicitly. On the simulator toolbar, click the globe option to do this. Figure 10-8
illustrates.

Retrieving a Current Location | 327

Figure 10-8. Setting a location in the simulator

Of course, a more practicable way to do this is to mock or fake the input into the classes
that handle location. I talk more about unit testing in Appendix B.

Integrating Maps
In the second half of this book, we’ll look at integrating maps into our application. We’ll
discuss getting a map on the screen, and shelling out to the built-in Maps apps to get
driving directions.

Registering with Bing Maps
Before we can integrate maps into our application, we need to register for Bing Maps.
I’m not going to go near pricing advice for using the Bing Maps API—you should take
steps to ensure that you understand how the pricing structure works before you use it
in your own applications. However, a test account is available for our use.

You can access the Bing Maps developer portal at the Bing Maps site, or by running an
online search for “bing maps developer.” You’re looking to create a new “trial” key, but
obviously you may need to feel your way through the site.

The code download and these pages reference my key. You’ll need to put your own key
into your code, as there’s no guarantee that my key will continue to work.

To display a map, we need to install the Bing Maps Visual Studio extension (VSIX). As
of the time of writing, you can find this at the Visual Studio gallery, or by searching
online for “bing maps for windows store apps extension.” Find, download, and install
the VSIX.

When the VSIX is installed, you can add it to the StreetFoo.Client.UI project by right-
clicking in Solution Explorer, selecting Add Reference, and opening up Windows→Ex‐
tensions. You’ll need to reference both Bing Maps for C#, C++, or Visual Basic (RP) and

328 | Chapter 10: Location

https://www.microsoft.com/maps/developers/mobile.aspx
http://visualstudiogallery.msdn.microsoft.com/

the Microsoft Visual C++ Runtime Package. (The latter is required to support the for‐
mer.) Figure 10-9 illustrates.

Figure 10-9. Adding the Bing Maps extension

Adding the Bing Maps Control
We achieve integration by adding the Map control supplied with the library to the project.
You can do this by editing the XAML in our code and adding a reference first to
Bing.Maps and then to the control. The control is slightly fiddly in that by default it will
take up all the space on the page, so we’ll need to manually adjust the width and height.

As we do our work, we’re going to want to extend the Map control to add functionality
that binds in with our MVVM pattern. However, Map is sealed and thus we can’t extend
it directly. (You’ll find this sort of thing happens a lot because of restrictions in WinRT’s
design.) Therefore, we’ll create a new class called MyMap. This will extend ContentCon
trol and containerize a map instance. This will also give us a way in which we can set
the API key on the control centrally.

When we build this control, we need to override the ArrangeOverride method. This
will tell us when our size within the container has been adjusted. We can react to this
and adjust the dimensions of our containerized Map instance. Here’s the code:

 public class MyMap : ContentControl
 {

Integrating Maps | 329

 // containerized map...
 private Map InnerMap { get; set; }

 private const string BingMapsApiKey =
 "AhzHhvjTrVlqP1bs9D53ZWcLv5RsHkh_3BEFtTSfVoTjPxDl
 _PfkpbyfIh0a_H0a";

 // defines a standard zoom into street level...
 private const int StandardZoom = 15;

 public MyMap()
 {
 this.InnerMap = new Map();
 this.InnerMap.Credentials = BingMapsApiKey;

 // show it...
 this.Content = this.InnerMap;
 }

 protected override Windows.Foundation.Size ArrangeOverride
(Windows.Foundation.Size finalSize)
 {
 this.InnerMap.Width = finalSize.Width;
 this.InnerMap.Height = finalSize.Height;
 return base.ArrangeOverride(finalSize);
 }
 }

We can now put that new map on the page. This needs to replace the button that we
added earlier as a placeholder. Here’s the code:

 <ContentControl Grid.Column="2" Style=
 "{StaticResource PanoramaPanel}">
 <StackPanel>
 <TextBlock Style="{StaticResource HeadingTextBlock}">
 Location</TextBlock>
 <local:MyMap Width="780" Height="550"></local:MyMap>
 </StackPanel>
 </ContentControl>

That’s actually all you have to do in order to add the map. If you run the project now,
you’ll be able to go in and see the operational map, albeit at the default position and
zoom. Figure 10-10 illustrates.

330 | Chapter 10: Location

Figure 10-10. The default map embedded within ReportPage

What we need to do next is zoom in and position the map on the item.

Handling Input with the View
You’ll have noticed that by default the map control will pick up mouse-wheel and mouse-
button events, and will also sense your touching the control with your finger as you try
to swipe the view from side to side.

This control has been designed to run full screen, so setting it as a thumbnail view is a
little out of scope for how it’s been constructed as of the time of writing. However, getting
it to work as you might expect is a little fiddly. You can capture and override the mouse
and pointer events to stop the scrolling, but then you need to capture and feed back
those events to the container. As a specific example, pressing on the control with your
finger and moving left or right shouldn’t do nothing—it should scroll the container.

Moreover, there is a question as to whether you want to do this. If you look at how
Google handles this on the normal search “application,” you’ll see it displays a map in
the search results that you can’t do anything with other than click, whereupon you end
up at maps.google.com. If you want to do that, you can, and there are instructions at
the end of this chapter about how to shell out to Bing Maps to do that. Alternatively,
you may decide that it’s actually helpful to be able to explore the map from within the
app itself.

Integrating Maps | 331

http://maps.google.com

Packaging Points for Display
Way back in Chapter 3, when we first downloaded reports from the server, we included
a latitude and longitude for each item. These are in our SQLite database, but we haven’t
used them until now.

What we’re going to do in this section is put a Bing.Maps.Pushpin control on the view
and zoom it in. Specifically, we’ll modify our MyMap control so that we can give it a named
point to display. In a real implementation, it’s more helpful to be able to provide a list
of named points. However, this does make the problem more complex, so I’ll show you
how to add support for one via a property called PushpinPoint. When we set this prop‐
erty, we’ll create a new Bing.Maps.Pushpin control and put it onto the map.

I’m proposing that we define a new class called MappablePoint and a new interface
called IMappablePoint to do this. Implementation-wise, we already have two ways of
representing points: Windows.Devices.Geolocation.Geocoordinate in WinRT, and
Bing.Maps.Location in the Bing Maps library. These two are obviously
implementation-specific, hence my proposal to create a new class that can cut across all
of the platforms that we may want to implement against.

Generally, when you work with geolocation it’s helpful to abstract everything out so that
you’re working with interfaces. (This isn’t necessarily about mapping per se, but more
about handling geodata in mobility scenarios.) This is why I’ve created IMappable
Point. We’ll hit some wrinkles in terms of using interfaces with data binding in XAML,
but I’ll cover that.

IMappablePoint will have a lat/long pair, and a tag that we’ll call Name. I’ve ignored the
idea of altitude, as generally most business cases care only how to touch and manage
things that are actually at a fixed and relatively close distance from the surface of the
planet. Here’s the code:

 public interface IMappablePoint
 {
 decimal Latitude { get; }
 decimal Longitude { get; }
 string Name { get; }
 }

We’re also going to need an AdHocMappablePoint. This will only really be used by the
MyMap control, as there’s an oddity in XAML whereby you can’t create dependency
properties that are based on interfaces. We have to use a concrete type, and we’ll use
AdHocMappablePoint to do that. ReportView and ReportViewItem will both support
IMappablePoint, and we’ll have to convert their geodata over to AdHocMappable
Point instances to get them onto the map.

Here’s AdHocMappablePoint:

332 | Chapter 10: Location

 public class AdHocMappablePoint : IMappablePoint
 {
 public decimal Latitude { get; private set; }
 public decimal Longitude { get; private set; }
 public string Name { get; private set; }

 public AdHocMappablePoint(IMappablePoint point)
 : this(point.Latitude, point.Longitude, point.Name)
 {
 }

 public AdHocMappablePoint(decimal latitude, decimal longitude,
 string name)
 {
 this.Latitude = latitude;
 this.Longitude = longitude;
 this.Name = name;
 }
 }

I decided to clone the supplied geodata in the first overload because
I wanted to take an immutable approach with that data for no other
reason than that I didn’t want to deal with some dangling object
instance’s data.

I mentioned that ReportView would support IMappablePoint. This class already has
compatible Latitude and Longitude properties. We do need explicit support for IMap
pablePoint.Name, however. Here’s that change; I’ve removed a lot of code for brevity.

 public class ReportItem : ModelItem, IMappablePoint
 {
 // key field...
 [AutoIncrement, PrimaryKey]
 public int Id { get { return GetValue<int>(); }
 set { SetValue(value); } }

 // other fields...
 [Unique, JsonMapping("_id")]
 public string NativeId { get { return GetValue<string>(); }
 set { SetValue(value); } }
 public string Title { get { return GetValue<string>(); }
 set { SetValue(value); } }
 public string Description { get { return GetValue<string>(); }
 set { SetValue(value); } }
 public decimal Latitude { get { return GetValue<decimal>(); }
 set { SetValue(value); } }
 public decimal Longitude { get { return GetValue<decimal>(); }
 set { SetValue(value); } }

 public ReportItem()

Integrating Maps | 333

 {
 }

 // code omitted...

 string IMappablePoint.Name
 {
 get
 {
 return this.Title;
 }
 }
 }

But, as we know, we don’t show ReportItem instances in our presentation. We show
ReportViewItem, so this also has to support IMappablePoint. This also needs to bring
forward the geoproperties. Here’s the code (again, I’ve omitted much of it):

 public class ReportViewItem : WrappingModelItem<ReportItem>, IMappablePoint
 {
 public ReportViewItem(ReportItem item)
 : base(item)
 {
 }

 public string NativeId { get { return this.InnerItem.NativeId; } }
 public string Title { get { return this.InnerItem.Title; } }
 public string Description { get { return this.InnerItem.Description; } }
 public decimal Latitude { get { return this.InnerItem.Latitude; } }
 public decimal Longitude { get { return this.InnerItem.Longitude; } }

 // code omitted...

 string IMappablePoint.Name
 {
 get
 {
 return ((IMappablePoint)this.InnerItem).Name;
 }
 }
 }

To recap, then, we’re going to change MyMap so that it can support one point through a
property called PushpinPoint. This property will be of type AdHocMappablePoint be‐
cause, as I mentioned before, dependency properties cannot be of interface types.

The first thing we need to do is to create a custom data-binding converter that will take
an “object” and work out how to transform it into an AdHocMappablePoint. Here’s the
code for IMappablePointConverter:

 public class IMappablePointConverter : IValueConverter
 {

334 | Chapter 10: Location

 public object Convert(object value, Type targetType, object parameter,
 string language)
 {
 if(value == null)
 return null;

 if (value is AdHocMappablePoint)
 return (AdHocMappablePoint)value;
 else if (value is IMappablePoint)
 return new AdHocMappablePoint((IMappablePoint)value);
 else
 throw new NotSupportedException(string.Format("Cannot handle
 '{0}'.", value.GetType()));
 }

 public object ConvertBack(object value, Type targetType, object
 parameter, string language)
 {
 throw new NotImplementedException();
 }
 }

As you’ve done before, you’ll need to go into App.xaml and globally enable that con‐
verter. Here’s the change:

<!-- Modify App.xaml -->
<Application
 x:Class="StreetFoo.Client.UI.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:StreetFoo.Client.UI"
 xmlns:common="using:StreetFoo.Client.UI.Common"
 >

 <Application.Resources>
 <ResourceDictionary>

 <common:BooleanToVisibilityConverter x:Key="VisibilityConverter" />
 <common:BooleanNegationConverter x:Key="NegationConverter" />
 <common:BooleanToVisibilityNegationConverter x:Key=
 "BooleanToVisibilityNegationConverter"/>
 <common:IMappablePointConverter x:Key="IMappablePointConverter" />

 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Common/StandardStyles.xaml"/>
 </ResourceDictionary.MergedDictionaries>

 </ResourceDictionary>
 </Application.Resources>
</Application>

Integrating Maps | 335

Accepting that we’ve yet to build the PushpinPoint property on MyMap, here’s the change
to the XAML to bind up the property to the Item property exposed by the view-model,
via our new converter:

 <ContentControl Grid.Column="2" Style="{StaticResource
 PanoramaPanel}">
 <StackPanel>
 <TextBlock Style="{StaticResource HeadingTextBlock}">
 Location</TextBlock>
 <local:MyMap Width="780" Height="550"
 PushpinPoint="{Binding Item, Converter=
 {StaticResource IMappablePointConverter}}">
 </local:MyMap>
 </StackPanel>
 </ContentControl>

The final background bit that we need to do is provide a way for converting IMappable
Point instances into Bing.Maps.Location instances. I’m going to propose something
that’s a little overkill, but I want to illustrate a technique.

If we create an extension method in IMappablePoint within the Windows Store app
project (as opposed to the UI-agnostic project) called ToLocation, we can use this to
create Location instances. It’s overkill because we only have to do it once, but it is a
helpful technique. IMappablePoint doesn’t know anything about Bing Maps or Win‐
dows 8 apps, but we can extend it fluidly without much heartache through extension
methods. Here’s the code:

 public static class IMappablePointExtender
 {
 public static Location ToLocation(this IMappablePoint point)
 {
 return new Location((double)point.Latitude, (double)point.Longitude);
 }
 }

We can now finally write code to add the pushpin!

Showing Points on the Map
Adding controls to the map surface is a little weird. The Bing Maps control will let you
render any control on its surface. This makes it fantastically powerful. You’re not limited
to little icons and special things Microsoft happens to give you. Anything that inherits
from DependencyObject (i.e., basically everything in XAML) you can render on a map.

The API is a little strange, however. You have to call a static method on MapLayer, passing
in the object that you want to display and the location. You then add the object to the
Children collection of the Map much as you normally would. Here’s the code:

 // Add method to MyMap...
 public Pushpin AddPushpin(IMappablePoint point)

336 | Chapter 10: Location

 {
 // create a pin and set its position...
 var pin = new Pushpin();
 pin.Text = point.Name;
 MapLayer.SetPosition(pin, point.ToLocation());

 // ...then add it...
 this.InnerMap.Children.Add(pin);

 // return...
 return pin;
 }

However, if this is all we do, we’ll just get a map showing the whole world with a tiny
dot over the location. What we need to do is zoom the map in.

Normally, you would zoom the map in by giving it bounds of a lat/long square that you
want to show in the viewport. This is easy enough to do if you have multiple points, but
I’d say it is harder to do if you have only a single point. The reason I raise this is that the
“zoom level” value that we need to supply when zooming doesn’t have meaning in the
real world. You have to fiddle with values until you find one that does what you want.
(The zoom level is an internal value that has more to do with structuring and rendering
the view than being something necessarily consumable from outside.) Back when we
first defined MyMap, I added a constant called StandardZoom that was set to 15. This “felt”
like the right value for what I was trying to do.

Here’s the AddPushpinAndCenterAndZoom method:
 // Add method to MyMap...
 public void AddPushpinAndCenterAndZoom(IMappablePoint point, bool
animate = true)
 {
 var pin = this.AddPushpin(point);

 // show...
 var duration = MapAnimationDuration.Default;
 if (!(animate))
 duration = MapAnimationDuration.None;

 // show...
 this.InnerMap.SetView(point.ToLocation(), StandardZoom, duration);
 }

That method allows you to turn off the animation through the animate parameter.
Animation is actually really helpful when rendering maps, as it clearly clues people into
where things are in terms of their relative position in space. However, when we initialize
the view it’s distracting, so we’ll turn animations off when we set PushpinPoint.

Finally, here’s MyMap showing the dependency property implementation and the helper
method that creates the pin:

Integrating Maps | 337

 // Add members to MyMap...
 public class MyMap : ContentControl
 {
 // containerized map...
 private Map InnerMap { get; set; }

 // dependency properties...
 public static readonly DependencyProperty PushpinPointProperty =
 DependencyProperty.Register("PushpinPoint",
 typeof(AdHocMappablePoint), typeof(MyMap),
 new PropertyMetadata(null, (d, e) => ((MyMap)d).SetPushpinPoint
((AdHocMappablePoint)e.NewValue)));

 // credentials...
 private const string BingMapsApiKey =
"AhzHhvjTrVlqP1bs9D53ZWcLv5RsHkh_3BEFtTSfVoTjPxDl_PfkpbyfIh0a_H0a";

 // defines a standard zoom into street level...
 private const int StandardZoom = 15;

 // code omitted...

 public AdHocMappablePoint PushpinPoint
 {
 get { return (AdHocMappablePoint)GetValue(PushpinPointProperty); }
 set { SetValue(PushpinPointProperty, value); }
 }

 private void SetPushpinPoint(IMappablePoint point)
 {
 // set...
 this.ClearPushpins();

 // set...
 if (point != null)
 this.AddPushpinAndCenterAndZoom(point, false);
 }

 private void ClearPushpins()
 {
 this.InnerMap.Children.Clear();
 }
 }

Run the code now, and a pushpin will be created and the map centered and zoomed in
around it. Figure 10-11 illustrates.

338 | Chapter 10: Location

Figure 10-11. The map and pushpin successfully rendered

Shelling to the Maps App
We’re going to round off this discussion by having a look at how we can shell out of our
app and into the built-in Bing Maps app.

A lot of apps that include mapping try to reproduce all possible mapping functionality
within the app. My view is that this is a mistake, as it’s often impractical to do as good
a job of navigation as the built-in app on the device. (This happens regardless of device
platform—this isn’t a Windows-only thing.) Compare, for example, the number of apps
that shell out to a browser to display a web page, as opposed to hosting a browser
internally.

It is possible to get our app to open the Bing Maps app, and we can even have it plot
driving directions for us by asking the app to open a URI with the bingmaps protocol.
The Bing Maps app registers this protocol precisely for this sort of integration.

Shelling to the Maps App | 339

As of this writing, there aren’t APIs within the Bing Maps library to do this, so we’ll have
to construct the URIs manually. However, I’ve heard this will be coming in later versions.
So two things: first, watch out to see if there is an easier way to do this when you come
to do it in production, and second, your mileage may vary with these URLs as this
interface isn’t documented.

One wrinkle we have, though, is that through this method—as it stands—you can’t put
pins on the map. Thus, if we use it just to zoom in to one of the report locations, it’s not
that helpful because all we’ll see is a map; it’s devoid of context and confusing. (If you
see it, you have no sense as to why you opened the map to that location.) To make this
work in a half-decent way, we’ll actually ask for driving directions.

However, whereas in a normal app you’re likely to be somewhere close to where these
sample locations actually are, in this app you’ll likely live in another country. So these
illustrations get driving directions from a fixed point in the UK that happens to be close
to all of the locations in the sample data. As I say, in a production app you’ll want to use
the result from Geolocator.GetGeolocationAsync.

We already have an app bar button defined that we can use to shell into Bing Maps. We
just need to define the protocol.

The most straightforward thing to do is to ask for a point to be centered on the viewport.
If we want to do that, we can issue a URI like this:

bingmaps://open/?cp=51.99437~-0.7322&lvl=15&trfc=1

That URL provides the point, a zoom level (15, again), and an indication as to whether
we want to see traffic info (we do). The only real weirdness there is that the lat/long pair
is split by a tilde (~), whereas you’d normally use a comma.

Without the ability to put a pushpin on the map, the only way to give context as to why
we’ve shown the map is with driving directions. It so happens that all of the sample
points in the database are near the geek-friendly Bletchley Park in the UK, so we’ll get
driving directions from there. The coordinates of Hut 1 at Bletchley Park are 51.9972,
−0.7422.

To do that, we’ll need a URL like this:
bingmaps://open/?rtp=pos.51.99720_-0.74220~pos.51.99437_-0.72629&trfc=1

We’ll create a method called OpenMapsAppAsync to LocationHelper that will construct
that URI and then issue it. Here’s the code:

 // Add method to LocationHelper...
 internal static async Task OpenMapsAppAsync(IMappablePoint from,
IMappablePoint to, bool showTraffic = true)
 {
 string trafficFlag = "0";
 if (showTraffic)
 trafficFlag = "1";

340 | Chapter 10: Location

 // create the URI...
 var uri = string.Format
("bingmaps://open/?rtp=pos.{0:n5}_{1:n5}~pos.{2:n5}_{3:n5}&trfc={4}",
from.Latitude, from.Longitude,
 to.Latitude, to.Longitude, trafficFlag);
 Debug.WriteLine("Navigating: {0}", uri);

 // open...
 await Launcher.LaunchUriAsync(new Uri(uri));
 }

All that we have to do then is rig it into the ReportPageViewModel class. We’ve already
got a command for it defined, and we’ve already bound up the app bar on the report
page to the command. Thus, this change is all we have to do, and we’re golden:

 // Modify constructor in ReportPageViewModel...
 public ReportPageViewModel(IViewModelHost host)
 : base(host)
 {
 this.OpenMapCommand = new DelegateCommand(async (args) => {
 var from = new AdHocMappablePoint(51.9972M, −0.7422M,
 "Bletchley");
 await LocationHelper.OpenMapsAppAsync(from, this.Item);
 });
 }

Run the code now and open a report. Open the app bar and press the Open Map button.
You’ll see something like Figure 10-12.

Figure 10-12. Driving directions in the launched Bing Maps

Shelling to the Maps App | 341

And that’s it. As I said, it’s likely there will be some refinements to the way that we
integrate with Bing Maps down the line, but we can at least integrate proper mapping
into our applications.

342 | Chapter 10: Location

CHAPTER 11

Using the Camera

In this chapter, we’re going to look at using the camera. While in previous chapters I’ve
endeavored to make the examples applicable to both retail and LOB app use, basic use
of the camera is more LOB than retail.

The issue with the camera in retail is that just taking a photo is actually very easy. All
you need to use is the CameraCaptureUI, and it’ll return a file containing the photo. (You
can also use this class to capture video, although we won’t be looking at that in detail in
this chapter.)

In LOB applications, or more specifically in field service applications (i.e., people in the
field undertake work for the organization), there are some basic use cases for the camera.
You typically need to use the camera to capture work that needs to be done (e.g., in‐
spectors visit an estate and proactively look for problems to solve like graffiti or trash),
or to capture the state of something before and/or after work has been done (e.g., you
take a photo of a broken sink before you fix it, and again after you fix it). A common
related use case is to capture a photograph of the premises if the operative gets to the
site but cannot gain access.

All of those scenarios follow roughly the same process: take a photo, store it on a device,
and send it to the server when you can.

This chapter will mainly center on building out the functionality to create new problem
reports, which will include, among other things, capturing a photo and storing on disk,
as well as storing our problem report data in the local SQLite database—that is, staging
the new report so that it is ready for upload. (We won’t do the actual upload until
Chapter 15.)

We’ll also look at how we can resize the image to make storing quantities of images
“gentler” in terms of device storage and bandwidth for transmission.

343

Capturing Photos
In the last chapter, we created ReportPage to create a singleton read-only view of a page.
In this chapter, we’re going to create EditReportPage, which will be used to create an
editable view of the report. We’ll either pass this a blank, new ReportViewItem instance
to create a new item, or pass it an instance created from the database data to edit an
existing item.

We do, however, need to think first about how we’re going to get these new problem
reports up to the server, although, as mentioned, we’re not actually going to do this until
Chapter 15.

At the moment, if we have a report in our SQLite database we know that it will have
originated on the server. If we are able to locally create new items, we’ll have some items
that are from the server and some items that are not. I’m proposing creating a new field
on the report called Status that will indicate (among other things) whether the report
is on the server or not. This property will use an enumeration that at this point has the
values of Unchanged (i.e., the server gave it to us) or New (i.e., we created it locally).

Similarly, if we have changed an item in the local SQLite database that is marked as New
we need to be able to indicate that it has been Updated. The final case is that we need to
be able to indicate that a local item has been Deleted.

When we get to Chapter 15, we’ll write code that examines this Status property to
determine whether we need to send up new or changed items, or delete existing items,
depending on the value of that property.

Where this is relevant to this chapter is that we already know that in order to put the
photo on the screen on the Reports page, we use the native ID of the item to build up
the filename. (Remember, if we have a native ID ABCDEF, the local path on disk where
the image gets downloaded is ~/LocalState/ReportImages/ABCDEF.jpg.) When we in‐
sert a new report, we also need to store the image in ReportImages, but we won’t have
an ID to go with it, as we’re currently dependent on the server supplying one. Thus, for
items in state New we’ll set the NativeId property to be a new GUID. This gives us a
valid, noncolliding value from which to dereference the image. So the process will be:

1. Create a new ReportViewItem and pass it into EditReportPage and EditReport
PageViewModel.

2. Do data binding as normal to populate the fields.
3. At user request, we’ll use CameraCaptureUI to get a photo from the camera. This

image will be stored on disk as TempState until it’s time to be used. (See Chap‐
ter 7 if you need a refresher on how to work with files.)

344 | Chapter 11: Using the Camera

4. When the user clicks Save, we’ll validate the data. If the item is new, we’ll set its
status to New and its native ID to the value returned by Guid.NewGuid(), and then
store the image in ReportImages.

5. Ultimately, when we’re able we’ll call up to the server with the report data and the
new image.

What we haven’t covered here—and actually we won’t do this in the
pages here, but the code download for this chapter will support it—
is the scenario where the user goes in to edit a report, downloaded
from the server, and takes a new photo. If we do this, we’ll flag the
fact that this has happened in another property called ImageUpda
ted in ReportItem.

Let’s get started with building out the UI.

Creating EditReportPage
Structurally, EditReportPage will be very similar to ReportPage, which we built in the
last chapter. As it is similar work, I’ll try to work quite quickly through aspects you’ve
already seen.

We’re not going to worry about location so much in this chapter, other than to capture
the location because we need it to create a valid record. What this means is that we won’t
put a map on the screen on the edit page, although in a production app you probably
would want to in order to help the user understand that he had indeed captured the
correct location. (You can use the Bing Maps control that we used in the last chapter to
do this if you need to.)

All we’ll do is call LocationHelper.GetCurrentLocationAsync (which we built in the
last chapter) and render the coordinates on the screen.

What we’re looking to build is something like Figure 11-1.

Creating EditReportPage | 345

Figure 11-1. The objective: creating a new report

Building EditReportPageViewModel and Its View-Model
Our new view-model interface will extend IViewModelSingleton<ReportViewItem> in
the same way that we saw in the last chapter. In addition, we’ll have two commands—
one for handling taking a photo, and one for updating the location. We also need to
expose an image that we can render on the page. This requires loading the image into
a BitmapImage instance.

To make our lives easier, we’ll add a property that indicates whether the item is new or
not. (We’ll use this when we want to display a different caption when we are in new or
edit mode.)

Here’s the definition of IEditReportPageViewModel:
 public interface IEditReportPageViewModel : IViewModelSingleton
<ReportViewItem>
 {
 ICommand TakePhotoCommand { get; }
 ICommand CaptureLocationCommand { get; }

 // are we new?
 bool IsNew { get; }

 // image presentation...
 BitmapImage Image { get; }
 bool HasImage { get; }
 }

346 | Chapter 11: Using the Camera

Going over the XAML side, we’ll need a new EditReportPage created, and we’ll need
to create some styles for the app bar buttons. On the app bar we’ll need options for Save
and Cancel, as well as Take Photo and Capture Location. We already have a style for the
Save button (Visual Studio creates it for us), so we only need to create the other three.
We can use icons defined in the Segoe UI Symbol font. Here are the styles to add to
StandardStyles.xaml:

 <!-- Add styles to StandardStyles.xaml -->
 <Style x:Key="SaveAppBarButtonStyle" TargetType="Button" BasedOn=
"{StaticResource AppBarButtonStyle}">
 <Setter Property="AutomationProperties.AutomationId" Value=
"SaveAppBarButton"/>
 <Setter Property="AutomationProperties.Name" Value="Save"/>
 <Setter Property="Content" Value=""/>
 </Style>
 <Style x:Key="CancelAppBarButtonStyle" TargetType="Button" BasedOn=
"{StaticResource AppBarButtonStyle}">
 <Setter Property="AutomationProperties.AutomationId" Value=
"CancelAppBarButton"/>
 <Setter Property="AutomationProperties.Name" Value="Cancel"/>
 <Setter Property="Content" Value=""/>
 </Style>

 <Style x:Key="TakePhotoAppBarButtonStyle" TargetType="Button" BasedOn=
"{StaticResource AppBarButtonStyle}">
 <Setter Property="AutomationProperties.AutomationId" Value=
"TakePhotoAppBarButton"/>
 <Setter Property="AutomationProperties.Name" Value="Photo"/>
 <Setter Property="Content" Value=""/>
 </Style>

 <Style x:Key="CaptureLocationAppBarButtonStyle" TargetType="Button"
BasedOn="{StaticResource AppBarButtonStyle}">
 <Setter Property="AutomationProperties.AutomationId" Value=
"CaptureLocationAppBarButton"/>
 <Setter Property="AutomationProperties.Name" Value="Capture Location"/>
 <Setter Property="Content" Value=""/>
 </Style>

We can now put the app bar on the page. Because the app bar is integral to the operation
of the form, and because the user can’t actually do anything with his editing until he
presses Save, we can make the app bar “sticky” and open it from the start. We can do
this in markup on the page. Here’s the markup for the app bar:

 <!-- Add markup to EditReportPage.xaml -->
 <Page.BottomAppBar>
 <AppBar IsSticky="true" IsOpen="true">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="auto"/>
 <ColumnDefinition Width="50*"/>

Creating EditReportPage | 347

 </Grid.ColumnDefinitions>
 <StackPanel Orientation="Horizontal">
 <Button Style="{StaticResource TakePhotoAppBarButtonStyle}"
Command="{Binding TakePhotoCommand}" />
 <Button Style="{StaticResource
CaptureLocationAppBarButtonStyle}" Command="{Binding CaptureLocationCommand}" />
 </StackPanel>
 <StackPanel HorizontalAlignment="Right" Orientation="Horizontal"
Grid.Column="1" Margin="0,1,5,-1">
 <Button Style="{StaticResource SaveAppBarButtonStyle}"
Command="{Binding SaveCommand}" />
 <Button Style="{StaticResource CancelAppBarButtonStyle}"
Command="{Binding CancelCommand}" />
 </StackPanel>
 </Grid>
 </AppBar>
 </Page.BottomAppBar>

I’ve chosen to split the items onto the left and right to create a logical separation of their
function. It’s convention to put controls relating to save/close/cancel on the right. A side
effect of splitting them in this way across the whole width of the device is that a user
holding the device and working the screen with her thumbs can access both sets of
buttons equally well. (Besides, as discussed in Chapter 5 this is actually in Microsoft’s
user interface guidelines for Windows Store apps.)

For the caption, we’re going to have two TextBlock labels that will indicate whether the
view is in create mode or edit mode. I’ve done it like this for localization and separation
of concerns. When we get to localization in Chapter 15, you’ll see the advantage there
—the XAML subsystem is able to swap out the localized string on the UI surface with
slightly less lifting than if we did it in the view-model programmatically. This segues
nicely into the point that if we did it in the view-model we’re slightly muddying our
concerns, in that it’s better not to have the view-model making presentation decisions
if we can help it.

Here’s the caption that can show one of a pair of labels depending on the value of IsNew:
 <!-- Modify markup in EditReportPage.xaml -->
 <!-- Back button and page title -->
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <Button x:Name="backButton" Click="GoBack" IsEnabled="{Binding Frame
.CanGoBack, ElementName=pageRoot}" Style="{StaticResource BackButtonStyle}"/>
 <TextBlock Grid.Column="1" Text="New Report" Style="{StaticResource
PageHeaderTextStyle}" Visibility="{Binding IsNew, Converter={StaticResource
BooleanToVisibilityConverter}}"/>
 <TextBlock Grid.Column="1" Text="Edit Report" Style="{StaticResource
PageHeaderTextStyle}" Visibility="{Binding IsNew, Converter={StaticResource

348 | Chapter 11: Using the Camera

BooleanToVisibilityNegationConverter}}"/>
 </Grid>

We saw the form itself in Figure 11-1. What we didn’t see was that where the image sits
on the design surface, we will actually have two controls. We’ll show a TextBlock control
if the user has not specified an image, or we’ll show an Image control if she has. We’ll
use the value of the HasImage property on the view-model to choose which one to
display.

Here’s the markup for that:
 <!-- Add markup to EditReportPage.xaml -->
 <Grid Grid.Row="1">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="120"/>
 <ColumnDefinition Width="800"/>
 </Grid.ColumnDefinitions>

 <StackPanel Grid.Column="1">
 <TextBlock Text="Title"></TextBlock>
 <TextBox Text="{Binding Item.Title, Mode=TwoWay}"></TextBox>
 <TextBlock Text="Description"></TextBlock>
 <TextBox Text="{Binding Item.Description, Mode=TwoWay}">
</TextBox>
 <TextBlock Text="Picture"></TextBlock>

 <!-- the placeholder -->
 <Border Width="480" Height="360" BorderThickness="2" BorderBrush=
"White" HorizontalAlignment="Left"
 Visibility="{Binding HasImage, Converter={StaticResource
BooleanToVisibilityNegationConverter}}">
 <TextBlock HorizontalAlignment="Center" VerticalAlignment=
"Center">(No picture)</TextBlock>
 </Border>

 <!-- the image -->
 <Image Width="480" Height="360" HorizontalAlignment="Left"
Source="{Binding Image}"
 Visibility="{Binding HasImage, Converter={StaticResource
BooleanToVisibilityConverter}}">
 </Image>

 <TextBlock Text="Location"></TextBlock>
 <TextBlock Text="{Binding Item.LocationNarrative}"></TextBlock>
 </StackPanel>

 </Grid>

The only thing that we haven’t discussed is LocationNarrative. This just needs to return
the latitude/longitude pair separated by a comma for display. We can add this now.
While we’re there, we also need a method to set the coordinates internally within a
ReportViewItem instance from an IMappablePoint instance. (We’ll see this in action

Creating EditReportPage | 349

later.) However, when the coordinates change, we also need to signal that the narrative
has changed. We can do this by overriding OnPropertyChanged and listening for
changes to the Latitude and Longitude properties. You’ll note that this method is
inefficient—we raise two signals that LocationNarrative has changed per pair of co‐
ordinates. An alternative approach—and actually a better approach if you want a cleaner
class design—is to build a custom converter class that you can bind to instead of creating
this separate property. Although we’re not going to use a custom converter class, I
wanted to show you this alternative approach that you could use as a shortcut.

Here’s the code:
 // Add method and property to ReportViewItem...
 internal void SetLocation(IMappablePoint point)
 {
 this.InnerItem.SetLocation(point);

 // update...
 this.OnPropertyChanged("LocationNarrative");
 }

 public string LocationNarrative
 {
 get
 {
 if (this.Latitude != 0 && this.Longitude != 0)
 return string.Format("{0:n5},{1:n5}", this.Latitude,
this.Longitude);
 else
 return string.Empty;
 }
 }

However, the ReportItem doesn’t have SetLocation defined. Here’s that change:
 // Add method to ReportItem...
 internal void SetLocation(IMappablePoint point)
 {
 this.Latitude = point.Latitude;
 this.Longitude = point.Longitude;
 }

Another little thing to do: we need to set up the view-model on the EditReportPage
code. Here’s that change:

 // Modify EditReportPage...
 public sealed partial class EditReportPage : StreetFooPage
 {

 public EditReportPage()
 {
 this.InitializeComponent();

350 | Chapter 11: Using the Camera

 this.InitializeViewModel();
 }

 // code omitted...

Let’s now turn our attention back toward completing the implementation of EditRe
portPageViewModel.

In terms of fields in the class, we’ll need to store the two commands and also store a
reference to the image on disk when we capture one from the camera. As mentioned,
CameraCaptureUI will create an image on disk in TempState for us to use. Here’s the
first part of the view-model:

 public class EditReportPageViewModel : ViewModelSingleton<ReportViewItem>,
IEditReportPageViewModel
 {
 public ICommand TakePhotoCommand {
 get { return this.GetValue<ICommand>(); }
 private set { this.SetValue(value); } }
 public ICommand CaptureLocationCommand {
 get { return this.GetValue<ICommand>(); }
 private set { this.SetValue(value); } }

 // holds the image in TempState that we're displaying...
 private IStorageFile TempImageFile { get; set; }

 public EditReportPageViewModel(IViewModelHost host)
 : base(host)
 {
 // set up the commands...
 this.TakePhotoCommand = new DelegateCommand(async (args) => await
this.CaptureImageAsync());
 this.CaptureLocationCommand = new DelegateCommand(async (args)
 => await this.CaptureLocationAsync());
 }
 }

The first thing we’ll handle is the location code. This will be updated when the view is
activated, and from time to time if the user explicitly asks for it to be done via the app
bar button. Here’s the code; notice how we’re reusing LocationHelper from Chapter 11:

 // Add methods to EditReportPageViewModel...
 public override async void Activated(object args)
 {
 base.Activated(args);

 // capture...
 await CaptureLocationAsync();
 }

 private async Task CaptureLocationAsync()
 {

Creating EditReportPage | 351

 var result = await LocationHelper.GetCurrentLocationAsync();
 if (result.Code == LocationResultCode.Ok)
 this.Item.SetLocation(result.ToMappablePoint());
 }

The last thing we’ll do in this section is to add the code that handles changing the caption
depending on whether the item is new or not. The IsNew property will have to handle
the situation where it’s called before the Item property is initialized. We’ll also flag that
the property has changed when the item initialization happens. Here’s the code:

 // Add property and method to EditReportViewItem...
 public bool IsNew
 {
 get
 {
 // we may not have an item yet...
 if (this.Item == null)
 return true;
 else
 return this.Item.Id == 0;
 }
 }

 protected override void ItemChanged()
 {
 base.ItemChanged();

 // update the caption...
 this.OnPropertyChanged("IsNew");
 }

Before we go on to taking the picture, let’s look at adding functionality to the base class
to allow us to save and cancel.

Saving and Canceling
One of the points of creating ViewModelSingleton<T> was so that we could add in
functionality that’s typical when working with a view of a single item. An example of
this sort of functionality is a common approach to canceling, saving, and validating
when we’re in the sort of edit mode that we’re in now. Thus, we’ll go ahead and add
methods to support those.

This will illustrate an interesting situation with async/await. Let’s say you want to create
a Save virtual method on a base class, the signature being protected virtual void
Save(). A class that specializes from that base class may need to call async methods
from the override of that method. The developer can do that by decorating the method
with the async keyword. However, because the method returns void and not Task, it
cannot be awaited. Without the await part, you still get asynchrony, but you also get

352 | Chapter 11: Using the Camera

in a total mess because you cannot control the process. You’ll end up “lost in space”
insofar as the holistic operation goes.

What we can do, then, is create our overrideable methods as “async friendly” without
necessarily needing async functionality. We can do this by making them return a Task
instance and then using Task.FromResult<T> to get a task to return. That returned task
is effectively faked—it’ll contain a result and appear to the caller that it has been com‐
pleted already. The important part is that it allows the caller to do an await.

In these methods, we will create a ValidateAsync method that will return an Error
Bucket instance containing problems. That method will be virtual so that the special‐
izing class can do the validation. The SaveAsync method won’t be virtual. It will call
ValidateAsync using await and then defer to a virtual helper method that will do the
actual work.

Here’s the code to add to ViewModelSingleton<T>:
 // Add methods to ViewModelSingleton<T>...
 protected virtual Task<ErrorBucket> ValidateAsync()
 {
 // return an empty error bucket (i.e. "success")...
 return Task.FromResult<ErrorBucket>(new ErrorBucket());
 }

 protected async Task<bool> SaveAsync()
 {
 // validate...
 var result = await ValidateAsync();
 if (result.HasErrors)
 {
 await this.Host.ShowAlertAsync(result);
 return false;
 }

 // ok...
 await DoSaveAsync();
 return true;
 }

 protected virtual Task DoSaveAsync()
 {
 return Task.FromResult<bool>(true);
 }

Notice that DoSaveAsync returns a value from Task.FromResult<bool>(true). Because
the method isn’t marked as async, we have to return something; however, the only
implementation on FromResult provided by WinRT requires a type argument. A com‐
mon trick is to return a Boolean value in this way. It really doesn’t matter what you
return as the method is defined as returning a Task instance that doesn’t have type

Saving and Canceling | 353

www.SoftGozar.com

parameters; the caller won’t be expecting a particular type, as the method returns a
vanilla Task.

The default operation of CancelAsync will be to call the host and tell it to GoBack. Again,
we’ll use the “Boolean task” trick from before, as this method doesn’t actually await
anything.

 // Add method to ViewModelSingleton<T>...
 protected virtual Task CancelAsync()
 {
 // go back...
 this.Host.GoBack();

 // return...
 return Task.FromResult<bool>(true);
 }

We’ll need a way of calling those, and one way to do this is to create standard commands
on the view-model that defer to the methods. That’s exactly what we’ll do.

In the IViewModelSingleton interface, we can define the properties for the commands:
 public interface IViewModelSingleton<T> : IViewModel
 where T : ModelItem
 {
 ICommand SaveCommand { get; }
 ICommand CancelCommand { get; }

 T Item { get; }
 }

And in the actual class, we can implement them. Here’s the code (I’ve omitted parts of
ViewModelSingleton<T> for brevity):

 public abstract class ViewModelSingleton<T> : ViewModel,
 IViewModelSingleton<T>
 where T : ModelItem
 {
 // save and cancel commands...
 public ICommand SaveCommand { get { return this.GetValue<ICommand>(); }
private set { this.SetValue(value); } }
 public ICommand CancelCommand { get { return this.GetValue<ICommand>();
} private set { this.SetValue(value); } }

 // holds the base item that we're mapped to...
 private T _item;

 protected ViewModelSingleton(IViewModelHost host)
 : base(host)
 {
 this.SaveCommand = new DelegateCommand(async (args) => await
SaveAsync());
 this.CancelCommand = new DelegateCommand(async (args) => await

354 | Chapter 11: Using the Camera

CancelAsync());
 }

 // code omitted...
 }

We’ll now look at how to display the form and ultimately take a picture.

Adding the New Option
We’ll add a button to the app bar on the Reports page that allows us to create a new
item. Oddly, although we are given an app bar style called AddAppBarButtonStyle,
which happens to have the caption “Add,” the convention in the built-in Windows 8
apps is that the option to create new items should be labeled “New.” Hence, the first
thing to do is create a new style called NewAppBarButtonStyle that will use the same
icon:

 <!-- Add to StandardStyles.xaml -->
 <Style x:Key="NewAppBarButtonStyle" TargetType="Button" BasedOn=
"{StaticResource AppBarButtonStyle}">
 <Setter Property="AutomationProperties.AutomationId" Value=
"NewAppBarButton"/>
 <Setter Property="AutomationProperties.Name" Value="New"/>
 <Setter Property="Content" Value=""/>
 </Style>

I won’t go through how to add the button to the app bar, or how to wire up a command,
as we’ve done it a few times—take a look at Chapter 5 for the first run-through of this.
I also won’t show how to create a command called NewCommand in IReportsPageView
Model. I’ll assume that you can make those changes to the Reports page, although of
course you’ll find it properly implemented in the code download.

The actual implementation of that command could take some explanation, though, as
we haven’t seen it before. EditReportPageViewModel requires an instance of a Report
ViewItem, and we’ll need to create a blank one to use. Here’s the modified constructor
of ReportsPageViewModel. I’ve omitted some code for brevity.

 public ReportsPageViewModel()
 {
 // code omitted...

 // add...
 this.NewCommand = new DelegateCommand((e) => this.Host.ShowView
(typeof(IEditReportPageViewModel), new ReportViewItem(new ReportItem())));
 }

Adding the New Option | 355

Handling Temporary Files
So we know that we can use CameraCaptureUI to take a picture, and we know that picture
will get stored on disk in TempState.

One of the problems with TempState is that it’s not automatically cleaned up for us.
Should the device’s disk come under pressure, Windows will treat any files that it finds
in any TempState folder belonging to any installed Windows 8 apps as fair game for
deletion, but it’s certainly possible for us to misuse TempState to the point where we’re
not creating a great experience for the user not just for our app, but systemwide. (Our
massive temporary state could prevent the user from downloading his email mailbox,
for example.)

Personally, I think it would have been better to have Windows manage these folders for
us. It would have been easy enough to clear down this folder when the app stopped, and
to rig in some sort of proactive cleanup mechanism within the OS. However, such a
thing would take precious cycles, especially on Windows RT devices. To that end, we
have to manage all of this ourselves.

What we need to do is be careful not to create orphaned temporary files as part of the
photo-taking process. For example, if we take a photo and then take another photo, we
can safely delete the first one, as it’s been implicitly discarded. These images in the
1280×720 resolution that I was using took up about 150KB each, which may not seem
like a lot, but over many months of heavy use could easily clog up the device unneces‐
sarily.

In addition, if the user cancels the edit operation, we also have to be careful to remove
any file that we may have taken during the aborted process. Although we’ll talk more
about application lifetime in Chapter 15, we aren’t told when our process is unloaded;
thus, if we happen to have a temporary image at the time when we’re unloaded from
memory, that file will be orphaned. Plus, you can’t rely on a “suspend” notification here,
because if you Alt-Tab between apps you’ll get suspended and incorrectly delete any
photo that got taken—an image the user may want.

The best approach would actually be to track the temporary filepath in the SQLite da‐
tabase and explicitly look to see if there was one on disk to clean up on application start.

I have, however, ignored this subtlety—it seemed to me to be acceptable to omit it for
the sake of not overloading this chapter. I belabor the preceding point so that it’s on
your radar for your own production apps.

Changing the Manifest
In order to take pictures, we need to turn on the appropriate capability in the manifest.
Specifically, we need to turn on the Webcam capability. Open the manifest editor and
do this now. Figure 11-2 illustrates.

356 | Chapter 11: Using the Camera

Figure 11-2. The Webcam capability

Taking Pictures
Back when we built the basic structure of ReportPageViewModel, we rigged the Take
PhotoCommand to call a method called CaptureImageAsync. We now need to build this
method.

The first thing this method does is to call the WinRT photo capture methods—specif‐
ically, it will create a new CameraCaptureUI instance and call CaptureFileAsync. By
default, this will return a JPEG file.

We’ll store the file we capture in the TempImageFile property. However, we may already
have one of those, so we’ll call a method called CleanupTempImageFileAsync to get rid
of any old one that we might have.

In order to put the file on the screen, we need to provide the XAML subsystem with an
object that contains it. We’ll create a new BitmapImage instance and load up the image
data from the supplied file. We’ll then set the Image property (which ultimately will go
through and trigger a data-binding update so that the image displays on the form), and
we’ll store the reference to the file.

Here’s the code:
 // Add method to EditReportPageViewModel...
 private async Task CaptureImageAsync()
 {

Handling Temporary Files | 357

www.SoftGozar.com

 // get the image...
 var ui = new CameraCaptureUI();
 var file = await ui.CaptureFileAsync(CameraCaptureUIMode.Photo);

 // did we get one?
 if (file != null)
 {
 // do we have an old one to delete...
 await CleanupTempImageFileAsync();

 // load the image for display...
 var newImage = new BitmapImage();
 using (var stream = await file.OpenReadAsync())
 newImage.SetSource(stream);

 // set...
 this.Image = newImage;
 this.TempImageFile = file;
 }
 }

By way of supporting members, we’ve already spoken about CleanupTempImage
FileAsync. Here’s that method:

 // Add method to EditReportPageViewModel...
 private async Task CleanupTempImageFileAsync()
 {
 try
 {
 if (this.TempImageFile != null)
 await this.TempImageFile.DeleteAsync();
 }
 catch
 {
 // ignore errors...
 }
 finally
 {
 this.TempImageFile = null;
 }
 }

This method is written so that failed deleted operations are ignored. (This might happen
if you have some weird file locking happening on the device.) This is usually a good
approach if the main operation is impacted by whether or not the old file was deleted.

The HasImage and Image properties will look like this:
 // Add properties to EditReportPageViewModel...
 public bool HasImage
 {
 get
 {

358 | Chapter 11: Using the Camera

 return this.Image != null;
 }
 }

 public BitmapImage Image
 {
 get
 {
 return this.GetValue<BitmapImage>();
 }
 set
 {
 // set...
 this.SetValue(value);

 // update the flag...
 this.OnPropertyChanged("HasImage");
 }
 }

At this point, the application will run and we can take a photo. However, before we do
that, we’ll just override the CancelAsync method, the objective being to clean up any
image file that we may have when we quit via that option. Here’s the code:

 // Add method to EditReportPageViewModel...
 protected override async Task CancelAsync()
 {
 // remove the temp image...
 await this.CleanupTempImageFileAsync();

 // base...
 await base.CancelAsync();
 }

Now you can run the project and access the New page to add an item. If you take a
photo, you’ll find it in the TempState folder of your deployed package. (If you need to
find that, go to C:\Users\<User>\AppData\Local\Packages and sort by Date Modified.
Find the one with the most recent modification date, and it’s likely yours.) Figure 11-3
shows File Explorer displaying the new image.

Handling Temporary Files | 359

Figure 11-3. The captured image in the TempState folder

Of course, you’ll actually see the image on the page, as illustrated back in Figure 11-1.

The next thing we need to look at is how we can actually save the image when we’ve
finished working with it.

Implementing Save
The objective here is to commit the changes to the underlying ReportItem to the da‐
tabase, and to position the image in the proper place on disk. The image itself will likely
be too big, so we’re going to look at resizing it so that it takes up less space on disk and
—relevantly—is smaller for network transmission.

In this book, I’m only going to take you through creating new items.
In the code download, you’ll find that EditReportPageViewModel is
also able to update existing items.

Validating and Saving
The first thing that we have to do is validate the data. We built a method called Valida
teAsync into ViewModelSingleton<T> to support this. We just need to override it.

In the method, we’ll check the Title and Description fields, we’ll check that we have
an image, and we’ll check that we have a location. The location check is a little hacky—
all we’ll do is make sure we haven’t got 0,0 as a coordinate. (Seeing as that point on the
planet is in the middle of the ocean, it’s probably OK. A better approach would be to
track whether the user had actually updated the location.) Here’s the code:

 // Add method to EditReportPageViewModel...
 protected override Task<ErrorBucket> ValidateAsync()
 {
 var bucket = new ErrorBucket();
 if (string.IsNullOrEmpty(this.Item.Title))
 bucket.AddError("Title is required.");

360 | Chapter 11: Using the Camera

 if (string.IsNullOrEmpty(this.Item.Description))
 bucket.AddError("Description is required.");
 if (!(this.HasImage))
 bucket.AddError("An image is required.");
 if (this.Item.Latitude == 0 && this.Item.Longitude == 0)
 bucket.AddError("A position is required.");

 // return...
 return Task.FromResult<ErrorBucket>(bucket);
 }

Note here that we use the Task.FromResult<T> “trick” to allow us to design the base
class to support asynchrony without having asynchrony in the deriving classes.

We’ll build the method to create the ReportItem in the database in a moment, but for
now we can override the Save method similarly. As mentioned before, in these pages
we’re only going to build the insert functionality. In the download, update is also
supported.

 // Add method to EditReportPageViewModel...
 protected override async Task DoSaveAsync()
 {
 // save...
 if (this.IsNew)
 {
 // create a new one...
 await ReportItem.CreateReportItemAsync(this.Item.Title,
this.Item.Description, this.Item,
 this.TempImageFile);
 }
 else
 {
 // update an existing one...
 throw new InvalidOperationException("Implemented in the
download, not the book...");
 }

 // cleanup...
 await this.CleanupTempImageFileAsync();

 // return...
 this.Host.GoBack();
 }

Note here that we clean up the temporary file. That’s intentional—by design,
CreateReportItemAsync (which we’re about to build) won’t assume it owns the file that
it’s been given to work with and hence it’s not its responsibility to delete it.

For the save operation itself, we need to create a new ReportItem instance in the database
and flag its status so that we know it needs to be transmitted up to the server when we
get to that in Chapter 15. To this end, we need to set the Status property to New and set

Implementing Save | 361

the NativeId to be a newly created GUID. I’ll go through the CreateReportItemAsync
method in stages, starting with that:

 // Add method to ReportItem...
 internal static async Task<ReportItem> CreateReportItemAsync(string
title, string description,
 IMappablePoint point, IStorageFile image)
 {
 var item = new ReportItem()
 {
 Title = title,
 Description = description,
 NativeId = Guid.NewGuid().ToString(),
 Status = ReportItemStatus.New
 };

Once we’ve created the basic item, we can set the Latitude and Longitude fields via the
SetLocation call that we built earlier:

 item.SetLocation(point);

Then, we can do the actual insert:
 // save...
 var conn = StreetFooRuntime.GetUserDatabase();
 await conn.InsertAsync(item);

With the basic database change made, we can turn our attention to the image. The idea
here is that we “stage” the image into the ~/LocalState/ReportImages folder, just as if it
had been downloaded from the server. We can do this by making up a filename based
on the NativeId that we created before and then copying the supplied image over to
that new location.

 // stage the image...
 if (image != null)
 {
 // new path...
 var manager = new ReportImageCacheManager();
 var folder = await manager.GetCacheFolderAsync();

 // create...
 await image.CopyAsync(folder, item.NativeId + ".jpg");
 }

Finally, we can return the item:
 // return...
 return item;
 }

At this point, the operation will work and we can save reports. More importantly, we
can go back to the Reports page and actually see our new report, as Figure 11-4 shows.

362 | Chapter 11: Using the Camera

Figure 11-4. The new Foobar report on the Reports page

Resizing Images
The last thing that I want to cover with regard to images is resizing. The default image
configuration that’s created on my machine is a 1280×720-pixel, JPEG-formatted image
that happens to fit into a file of around 150KB.

Although that’s not a big file, there are a couple of reasons why in LOB scenarios you
may wish to control file size. If each operative does 10 visits a day, that’s 31MB of transfer
just on image data. Over cellular networks, this can end up as significant, especially if
you have a lot of users all working in the same way.

Second—and this is a weirder problem—over time, devices tend to increase their default
capture size. Whereas you can deploy some software on day one where the images are
150KB, on a typical new device deployed a couple years hence, it’s not unusual to find
the file size doubled. And while processor speed and memory tends to ramp up quickly,
network transfer speeds are slower to roll out.

My recommendation is that in all cases you pick the size of image that the business
demands and make your app always return that, rather than rely on the vagaries of the
device.

This is one area of WinRT where things are quite different in the .NET world. A common
way to resize images with .NET was to use GDI+. Specifically, you loaded a bitmap,
created a new bitmap, created a device context over that new bitmap, and used GDI+
to scale and render the source into the target. However, that approach was not supported
on servers; on the server we were supposed to use classes in the System.Windows.Me

Implementing Save | 363

dia.Imaging namespace, such as BitmapEncoder and related classes. These classes
worked directly with the image data in a more server-friendly way. Specifically,
BitmapEncoder knew how to write out raster file data, and its companion BitmapDe
coder knew how to read it.

In Windows 8 apps, you don’t have access to GDI+ at all. Plus, the image manipulation
functions have moved to the Windows.Graphics.Imaging namespace. As is often the
case when things move from the .NET world into WinRT, their baseline functionality
and/or structure also gets changed. So, although we have BitmapEncoder et al. in the
new WinRT library, there are various bits missing. If you’re used to using these APIs,
your mileage may vary.

We’re going to create a new method called ResizeAndSaveAsAsync in a new class called
ImageHelper. This will take an input file, an output file, and a single “target dimension”
value. Taking one value may seem odd, but what we’re looking to do is constrain the
edge of an image to the largest possible size. A landscape image will end up no more
than, say, 640 pixels wide. That same image in portrait orientation will end up no more
than 640 pixels high. The aspect ratio will be preserved.

The first thing we need to do is open up the source file. This will be the camera data file
in our TempState folder.

We then create a BitmapDecoder. This will interpret the data in the file and tell us metrics
about the file (e.g., how wide it is). BitmapDecoder will also surface the pixel data, which
is the actual data that makes up the file. (In fact, BitmapDecoder understands files in
terms of frames. We only have one frame in our file, which happens to be the picture
that we took.)

Next, we open a stream to where we want the resulting image to go. This can be directed
to disk (which is what we’re going to do), or to memory (using an InMemoryRandomAc
cessStream instance). Once we have the stream, we need a BitmapEncoder. You can
create these in various ways, but the one we’re going to use is a transcoder, which converts
from one format to the other.

Once we have the transcoder, we can specify the new dimensions of the image via the
object exposed by the BitmapTransform property. (If we wanted to, we could also crop
and rotate the image here.) Once that’s done, we commit the transcoder by calling
FlushAsync, and our new file will be written to disk.

I’ll present ResizeAndSaveAsAsync in steps. I’m proposing creating a new class called
ImageHelper to host this method. Here’s the code; the first thing we do is open the source
stream and get the decoder:

 public static class ImageHelper
 {
 internal static async Task ResizeAndSaveAsAsync
 (IStorageFile source, IStorageFile destination, int targetDimension)

364 | Chapter 11: Using the Camera

www.SoftGozar.com

 {
 // open the file...
 using(var sourceStream = await source.OpenReadAsync())
 {
 // step one, get a decoder...
 var decoder = await BitmapDecoder.CreateAsync(sourceStream);

Once we’ve done that, we can create the output stream and create the transcoding en‐
coder. This requires the output stream and the source decoder:

 // step two, create somewhere to put it...
 using(var destinationStream =
 await destination.OpenAsync
 (FileAccessMode.ReadWrite))
 {
 // step three, create an encoder...
 var encoder = await BitmapEncoder.CreateForTranscodingAsync
 (destinationStream, decoder);

The next stage is to configure the transformation. To do this, we need to determine if
the image is portrait or landscape and calculate the aspect ratio. Depending on the
orientation, we’ll use a different calculation for the final dimension:

 // how big is it?
 uint width = decoder.PixelWidth;
 uint height = decoder.PixelHeight;
 decimal ratio = (decimal)width / (decimal)height;

 // orientation?
 bool portrait = width < height;

 // step four, configure it...
 if (portrait)
 {
 encoder.BitmapTransform.ScaledHeight =
 (uint)targetDimension;
 encoder.BitmapTransform.ScaledWidth =
 (uint)((decimal)targetDimension * ratio);
 }
 else
 {
 encoder.BitmapTransform.ScaledWidth =
 (uint)targetDimension;
 encoder.BitmapTransform.ScaledHeight =
 (uint)((decimal)targetDimension / ratio);
 }

Finally, we can write the image:
 // step five, write it...
 await encoder.FlushAsync();
 }
 }

Implementing Save | 365

 }
 }

Before we can test it, we need to change the CreateReportItemAsync method that we
wrote earlier to use this “resize and save” method rather than the original code that
moved the file. Here’s the change:

 internal static async Task<ReportItem> CreateReportItemAsync
 (string title, string description,
 IMappablePoint point, IStorageFile image)
 {
 var item = new ReportItem()
 {
 Title = title,
 Description = description,
 NativeId = Guid.NewGuid().ToString(),
 Status = ReportItemStatus.New
 };
 item.SetLocation(point);

 // save...
 var conn = StreetFooRuntime.GetUserDatabase();
 await conn.InsertAsync(item);

 // stage the image...
 if (image != null)
 {
 // new path...
 var manager = new ReportImageCacheManager();
 var folder = await manager.GetCacheFolderAsync();

 // save it as a file that's no longer than
 // 640 pixels on its longest edge...
 var newImage = await folder.CreateFileAsync
 (item.NativeId + ".jpg");
 await ImageHelper.ResizeAndSaveAsAsync(image, newImage, 640);
 }

 // return...
 return item;
 }

Run the code now, and you’ll find that the image files are smaller. Open them up, and
you’ll notice the dimensions are restricted to 640 pixels along the longest edge.

366 | Chapter 11: Using the Camera

A Word About Capturing Video
I’ve limited this chapter’s discussion to basic image capture only—as mentioned, that’s
the most common use in LOB apps, and retail app use of this feature is likely to be more
advanced.

You can also allow capture video. Obviously, this will eat disk space and battery. The key
reason why I didn’t include this is because in field service applications it’s a nightmare
dealing with video uploads over cellular service, and as a result it tends to be quite
specialized. However, you certainly can do it. If you want to capture video, though, you
need to enable the Microphone capability in the manifest.

Implementing Save | 367

www.SoftGozar.com

CHAPTER 12

Responsive Design

Windows Store apps allow you to run several applications side by side in the foreground,
which allows you to multitask without having to switch between fullscreen applications.
This feature appears popular with early adopters of Windows 8, and this is a trend we
predict will continue. If you were planning a weekend trip to London, you could have
a map application, weather application, and a travel application open to check nearby
travel destinations. There are many cases in which being able to run applications side
by side is helpful. Figure 12-1 shows the three applications: Map, Weather, and Travel.

Figure 12-1. Map, Weather, and Travel side by side

369

The three applications have adjustable dividers between them to give us control of how
much screen real estate they get. The default minimum width of an application is 500
pixels, but there is an even smaller size that was previously referred to as the “Snapped”
mode. The smallest size is 320 pixels and applications have to opt in for that.

With two applications that support the smallest size, we let the third application fill out
the rest of the screen (illustrated in Figure 12-2). This is really the trick with the view—
we need to build a UI that can either adapt from being in the responsive view or the
smallest view, or we have to provide a secondary UI that will be used for the smallest
view. (The intent here is that every app has to be useful in either mode. Microsoft is keen
to ensure that it isn’t the case that one mode is “more special” than the other.)

Figure 12-2. On both sides of the screen, we have applications that support the 320-
pixel width

This is actually much easier to do with a proper MVVM model like the one that we have
taken the time to build thus far. From time to time, we’ll have to duplicate sets of controls
for the smallest versus the responsive size view, but that’s fine because all we have to do
is configure the duplicated controls with the same bindings. The view model is suffi‐
ciently abstracted from the view that it doesn’t care whether we’re in either mode, nor
does it care how many bindings each control has.

You need to have a display that has a width greater than or equal to 1024 pixels to be
able to run several applications at the same time.

370 | Chapter 12: Responsive Design

If you are developing on a machine with a lower screen resolution
than that, use the simulator because it allows you to simulate resolu‐
tions higher than your base hardware.

Charms are enabled for the application you are using at the moment, which is indicated
by a small white line in the middle of the divider closest to the application being used.

The general rule of snapped view is that the app should actually be functional when in
that mode. It doesn’t have to be fully functional—not every function has to be carried
over—but it should not be a struggle for the user to use a snapped app. You may also
encounter development requirements that mean that the smallest view makes no sense
at all. I’m a fan of it. It’s well worth implementing, and it’s a great differentiator from the
iPad.

Updating the Grid View
By using a fluid layout that lets the application adapt to various screen sizes, we already
have great support for the default minimum width—500 pixels. We do, however, want
to support the smallest size as well, which might make the user bring our application to
the foreground more often and interact with it. Support for the 320-pixel width is set
in the app manifest under minimum width.

The VisualStateManager
All of this work hinges on the VisualStateManager class within WinRT. The purpose
of this class is to handle state changes, one example of which is the transition from the
“Default” state (which includes scaling down to 500 pixels in width) to the “Small” state
(320 pixels wide).

The VisualStateManager class has been around for a while—even before WinRT—and
is worth learning well. The manager class handles states, and the states allow us to get
a specific appearance of a control when it is in a specific state.

For the register page, we could define some visual states like the following:
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup>
 <VisualState x:Name="Default"/>
 <VisualState x:Name="Small">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName=
"backButton" Storyboard.TargetProperty="Style">
 <DiscreteObjectKeyFrame KeyTime="0" Value="
{StaticResource SnappedBackButtonStyle}"/>
 </ObjectAnimationUsingKeyFrames>

Updating the Grid View | 371

 <ObjectAnimationUsingKeyFrames Storyboard.TargetName=
"pageTitle" Storyboard.TargetProperty="Style">
 <DiscreteObjectKeyFrame KeyTime="0" Value="
{StaticResource SnappedPageHeaderTextStyle}"/>
 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames Storyboard.TargetName=
"helpText" Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0" Value="Visible"/>
 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames Storyboard.TargetName=
"registrationForm" Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0"
Value="Collapsed"/>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>

Let’s take a look at what is going on here. First of all, we define the VisualStateManag
er.VisualStateGroups element inside the element where we want to add the changes.
When using visual states for managing the resizing of the application, it will most often
be inside the outermost grid. Inside VisualStateManager.VisualStateGroups, we
create a group of states, and we give them appropriate names so we can access them
from our code. We then create a storyboard, which is a container timeline that lets us
animate dependency properties from one state to another. This is similar to how styles
work: you get a list of directives and the XAML subsystem walks through each one and
affects the dependency properties. In the storyboard directives that we have in the pre‐
ceding code snippet, the first two change the styles of the button and caption to make
them smaller. The third one changes the visibility of a TextBox from collapsed to visible,
and the fourth one changes the visibility of the registration form from visible to col‐
lapsed. On the register and logon page, we’ll just tell the user that this view doesn’t work
in the smallest mode, whereas the Reports and Report page will support the 320 pixel
size. Notice how we don’t define any storyboards for the default state. We don’t have to
reverse the actions done in the other states.

When the Reports page was created, we used a grid page template. Whenever we use
this template, Visual Studio creates a GridView control with the name itemsGridView
and a ListView control with the name itemsListView. Both controls were bound to
the same data source, however, the ListView one was hidden. Throughout the life of
the app, we’ve been able to snap it from one side to the other. It’s just that it wouldn’t
have worked properly because we hadn’t created working snap views. To make the logon
page work properly in snapped view, we need to do two things. The ListView uses
templates just like the GridView, and so we need a new template. If you recall, back in

372 | Chapter 12: Responsive Design

Chapter 4 we built MyGridView so we could eventually host commands for use with the
MVVM approach—commands like ItemClickedCommand. Next we’ll build MyList
View so we can do the same to the list view.

Creating MyListView
The implementation of ItemClickedCommand on MyListView will be identical to the one
we built on MyGridView in Chapter 8. Thus, I’ll just present the code without going
through it in detail. Here it is:

 public class MyListView : ListView
 {
 // as per the grid...
 public static readonly DependencyProperty ItemClickedCommandProperty =
 DependencyProperty.Register("ItemClickedCommand", typeof(ICommand),
typeof(MyListView),
 new PropertyMetadata(null, (d, e) => ((MyListView)d).
ItemClickedCommand = (ICommand)e.NewValue));

 public MyListView()
 {
 this.ItemClick += MyListView_ItemClick;
 }

 void MyListView_ItemClick(object sender, ItemClickEventArgs e)
 {
 if (this.ItemClickedCommand == null)
 return;

 // ok...
 var clicked = e.ClickedItem;
 if (this.ItemClickedCommand.CanExecute(clicked))
 this.ItemClickedCommand.Execute(clicked);
 }

 public ICommand ItemClickedCommand
 {
 get { return (ICommand)GetValue(ItemClickedCommandProperty); }
 set { SetValue(ItemClickedCommandProperty, value); }
 }
 }

Again, as per Chapter 8, now that we’ve replicated the ItemClickedCommand, we also
need to replicate the template that we created for displaying report items in the grid.
This new template will be used for showing those same report items, but in a list.

Here’s the template. Note how it uses the same bindings as the main report template.
That’s the point of snapped view—all we do is change the declaration of the UI and it
should all just work:

Creating MyListView | 373

 <!-- add to StandardStyles.xaml -->
 <DataTemplate x:Key="ReportItem80SnappedItemTemplate">
 <Grid Margin="6">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <Border Background="{StaticResource
ListViewItemPlaceholderBackgroundThemeBrush}" Width="60" Height="60">
 <Image Source="{Binding ImageUri}" Stretch="UniformToFill"/>
 </Border>
 <StackPanel Grid.Column="1" Margin="10,0,0,0">
 <TextBlock Text="{Binding Title}" Style="{StaticResource
ItemTextStyle}" MaxHeight="40"/>
 <TextBlock Text="{Binding Description}" Style="{StaticResource
CaptionTextStyle}" TextWrapping="NoWrap"/>
 </StackPanel>
 </Grid>
 </DataTemplate>

Finally, just a quick change to the list control. We need to change its type, change the
template, and bind up the ItemClickedCommand. Note that we reuse the same command
in the view-model. Again, we don’t need to change the view-model at all for this to work.
Here’s the change:

 <!-- Modify ReportsPage.xml -->
 <local:MyListView
 x:Name="itemListView"
 AutomationProperties.AutomationId="ItemsListView"
 AutomationProperties.Name="Items"
 TabIndex="1"
 Grid.Row="1"
 Visibility="Collapsed"
 Margin="0,-10,0,0"
 Padding="10,0,0,60"
 ItemsSource="{Binding Source={StaticResource itemsViewSource}}"
 ItemTemplate="{StaticResource ReportItem80SnappedItemTemplate}"
 IsItemClickEnabled="true"
 ItemClickedCommand="{Binding SelectionCommand}"
 />

In the preceding code, Collapsed is given for the Visibility property to indicate that
the element should not be displayed. We have to manually switch between the states
when the window’s size changes, so before we add the states, let’s go ahead and create a
responsive base page that inherits from StreetFooPage. Inside that class, we’ll listen for
the SizeChanged event and use VisualStateManager.GoToState to switch state de‐
pending on the new screen size, like so:

 public class ResponsiveStreetFooPage : StreetFooPage
 {
 public ResponsiveStreetFooPage()
 {

374 | Chapter 12: Responsive Design

 SizeChanged += OnSizeChanged;
 }
 private const double SmallMode = 320;

 private void OnSizeChanged(object sender, SizeChangedEventArgs e)
 {
 VisualStateManager.GoToState(this, e.NewSize.Width <= SmallMode ?
"Small" : "Default", true);
 }
 }

Then we simply let the views that we want to use states inherit from that class; for us
that would be the ReportsPage, ReportPage, LogonPage, and RegisterPage.

Modifying the App Bar
The app bar as currently configured won’t work properly in snapped view on the Reports
page. We need to adjust that. As mentioned, in snapped view, we can fit only three
buttons on the app bar. One option is to hide a button by adding a transition to the state
transition storyboard. In order to do this, we have to name the button by declaring an
x:Name attribute on the control.

But when we first built this app bar in Chapter 4, we constructed it so that it had options
on the left and right. This became irrelevant in Chapter 10 when we took the selection
off and made a click on a report go to the report singleton page. If we strip out all the
grid layout stuff and name the button that we want to get rid of the “show location”
button, we get the following:

 <!-- Modify markup in ReportsPage.xml -->
 <Page.BottomAppBar>
 <AppBar>
 <StackPanel HorizontalAlignment="Right" Orientation="Horizontal"
Grid.Column="2">
 <Button Style="{StaticResource NewAppBarButtonStyle}" Command=
"{Binding NewCommand}" />
 <Button x:Name="appbarShowLocation" Style="{StaticResource
ShowLocationAppBarButtonStyle}" Command="{Binding ShowLocationCommand}" />
 <Button Style="{StaticResource RefreshAppBarButtonStyle}"
Command="{Binding RefreshCommand}" />
 <Button Style="{StaticResource LogoutAppBarButtonStyle}"
Command="{Binding LogoutCommand}" />
 </StackPanel>
 </AppBar>
 </Page.BottomAppBar>

Now that the button has a name, we can address it within the storyboard and hide it
when the storyboard is enacted. This “enacting” happens when the user tells Windows
that she wants to move the app into snapped mode. Here’s the code:

Modifying the App Bar | 375

 <!-- Modify markup in ReportsPage.xml -->
 <VisualState x:Name="Small">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName=
"backButton" Storyboard.TargetProperty="Style">
 <DiscreteObjectKeyFrame KeyTime="0" Value="
{StaticResource SnappedBackButtonStyle}"/>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName=
"pageTitle" Storyboard.TargetProperty="Style">
 <DiscreteObjectKeyFrame KeyTime="0" Value=
"{StaticResource SnappedPageHeaderTextStyle}"/>
 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames Storyboard.TargetName=
"itemListView" Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0" Value="Visible"/>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName=
"itemGridView" Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0"
Value="Collapsed"/>
 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames Storyboard.TargetName=
"appbarShowLocation" Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0"
Value="Collapsed"/>
 </ObjectAnimationUsingKeyFrames>

 </Storyboard>
 </VisualState>

Run the app and open the app bar in snapped view on the Reports page and you’ll see
something like Figure 12-3.

Figure 12-3. The app bar in snapped view

There may be cases where you can’t just reduce the number of buttons like this. In a
later section, we’ll look at how to create a More button with a pop-up menu.

376 | Chapter 12: Responsive Design

Updating Singleton Views
The next type of view that we’re going to look at is exemplified in the report singleton
page. In this situation, we’re going to create an entirely new view. We’ll swap out the old
view and replace it with the new view using the storyboard.

The first thing to address is how to best use the XAML designer. This will then let us
lay out the new view with minimal guesswork. This is done by bringing up the Device
view via the Design→Device menu. At the top of this view, you can click Windows OS
Edge and then use the slider to set the minimum size. In Figure 12-4, you can see the
left selection in play. The hatched portion of the device viewport shows the region oc‐
cupied by the splitter and the filled view. The device window doesn’t know of our states
and therefore cannot be used with them. In Blend, which comes with Visual Studio, you
can select states and see how they look there and add any modifications that you want.
We won’t cover the use of Blend in this book, but it is an excellent piece of software that
helps tremendously where the Visual Studio designer is lacking.

Figure 12-4. Showing the application at 320 pixels wide to the left

What you can see in the image is what we want to accomplish in the smallest width. For
the screenshot, I simply cheated by changing the visibility of the containers, which I will
talk more about in the following section.

What I’m proposing that we do here is approach this in a standard way. A first step is
to let the page inherit from the new base page we mentioned earlier as you can see in

Updating Singleton Views | 377

the image. We’ll assume that when we want to display a form in snapped view, we’ll
contain that form within a StackPanel. We’ll also assume that the vertical extent of that
StackPanel may go off the bottom edge of the screen. Thus we’ll contain the StackPa
nel within a ScrollViewer configured to support this. Both of these controls will have
styles applied, which we’ll build in a moment. In terms of the actual view, because the
view doesn’t have any logic behind it and because everything is driven with data binding,
we can just copy and paste the controls that we already had into the new container
structure. Here’s the change:

 <!-- Modify markup in ReportPage.xaml -->
 <ScrollViewer x:Name="containerSnapped" Style="{StaticResource
SnappedContainerScrollViewer}" Grid.Row="1">

 <StackPanel Style="{StaticResource SnappedContainerStackPanel}">
 <TextBlock Style="{StaticResource HeadingTextBlock}">Details
</TextBlock>
 <Image Source="{Binding Item.ImageUri}" HorizontalAlignment=
"Left" Width="320" Height="240" Stretch="Uniform"
 Margin="0,0,0,10"></Image>
 <local:MarkupViewer Markup="{Binding Item.Description}">
</local:MarkupViewer>

 <TextBlock Style="{StaticResource HeadingTextBlock}"
Padding="0,10,0,0">Map</TextBlock>
 <local:MyMap Width="300" Height="300" ShowTraffic="true"
 PushpinPoint="{Binding Item, Converter=
{StaticResource IMappablePointConverter}}"></local:MyMap>

 </StackPanel>

 </ScrollViewer>

Note that I’ve put an x:Name="containerSnapped" attribute on the ScrollViewer. This
will be our convention for containers that are used in snapped mode. Similarly, on the
ScrollViewer that we built in Chapter 10 to provide the panorama view, we’ll add an
x:Name="containerFill" attribute. Here’s the change—I’ve presented the caption con‐
trols above the control by way of orientation:

 <!-- Modify markup in ReportPage.xaml -->
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <Button x:Name="backButton" Click="GoBack" IsEnabled="{Binding Frame.
CanGoBack, ElementName=pageRoot}" Style="{StaticResource BackButtonStyle}"/>
 <TextBlock x:Name="pageTitle" Grid.Column="1" Text="{Binding
Item.Title}" Style="{StaticResource PageHeaderTextStyle}"/>
 </Grid>

378 | Chapter 12: Responsive Design

 <ScrollViewer x:Name="containerFill" Style="{StaticResource
HorizontalScrollViewerStyle}" Grid.Row="1">
 <Grid>

Finally, we can change the storyboard to swap over the two containers:
 <!-- Modify markup in ReportPage.xaml -->
 <VisualState x:Name="Small">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName=
"backButton" Storyboard.TargetProperty="Style">
 <DiscreteObjectKeyFrame KeyTime="0" Value=
"{StaticResource SnappedBackButtonStyle}"/>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName=
"pageTitle" Storyboard.TargetProperty="Style">
 <DiscreteObjectKeyFrame KeyTime="0" Value=
"{StaticResource SnappedPageHeaderTextStyle}"/>
 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames Storyboard.TargetName=
"containerSnapped" Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0" Value="Visible"/>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName=
"containerFill" Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0"
Value="Collapsed"/>
 </ObjectAnimationUsingKeyFrames>

 </Storyboard>
 </VisualState>

Run the app and you can snap the report singleton page as Figure 12-5 illustrates. What’s
quite cool is being able to move the slider between the smallest, the medium, and the
full views and seeing the view adjust itself.

Updating Singleton Views | 379

Figure 12-5. The report singleton page in the smallest view

Adding a More Button to the App Bar
Modifying EditReportPage so that it supports the smallest view operates in a similar
fashion to that of ReportPage; it is basically just a repeat of the work we just did. For
that reason, I won’t repeat it in these pages, but you’ll find the code download has it
working properly.

What I will go through is how to modify the app bar. At the moment, if you snap the
edit page the app bar looks a little like Figure 12-6—i.e., the Save button is missing.
Really what’s happened is that it’s been obscured by the Capture Location button.

Figure 12-6. The edit page app bar with the Save button missing

What we’re going to do is, when we go into the smallest view, we’ll hide the two buttons
on the left and show a new button on the “right,” labeled “More.” I say “right” because
it will appear this button is actually on the left of the view, but it’s part of the set designated
“right.”

380 | Chapter 12: Responsive Design

Don’t be tempted to create smaller buttons on the app bar; they won’t
be user-friendly.

When the More button is pressed it’ll display a pop up. This is done using the Win
dows.UI.Popups.PopupMenu class. But there’s a wrinkle—it’s easier to build a PopupMe
nu programmatically rather than doing it declaratively in XAML. And, even if you could
declare it in XAML, when you show the pop up you have to give it a set of coordinates
to use and that is much easier to manage programmatically.

To understand the problem, PopupMenu relies on you adding UICommand instances to a
collection that it manages and then calling ShowAsync, passing in some coordinates.

Thus we have a dilemma; we’ve come so far without having to write traditional code-
behind, do we really have to do it for this? There are two ways to go with this: we could
create framework infrastructure within the view-model handler to expose out view-
agnostic commands, and then create a special MoreAppBarButton control that under‐
stands how to use this infrastructure to create and show a PopupMenu. Or we could just
code it up in the codebehind. I’m proposing doing it in the codebehind, for the simple
reason that it’s view-specific code. The view-model doesn’t care how we’ve structured
our app bar; that’s a presentation-specific thing.

Turning back to the app bar, what we want to do is restructure that so that we have a
named panel on the left that we can hide, and a More button on the right that we can
show. Here’s the code:

 <!-- Modify markup in EditReportPage.xaml -->
 <Page.BottomAppBar>
 <AppBar IsSticky="true" IsOpen="true">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="auto"/>
 <ColumnDefinition Width="50*"/>
 </Grid.ColumnDefinitions>
 <StackPanel Orientation="Horizontal" x:Name="appbarPanelLeft">
 <Button Style="{StaticResource TakePhotoAppBarButtonStyle}"
Command="{Binding TakePhotoCommand}" />
 <Button Style="{StaticResource
CaptureLocationAppBarButtonStyle}" Command="{Binding CaptureLocationCommand}" />
 </StackPanel>
 <StackPanel HorizontalAlignment="Right" Orientation="Horizontal"
Grid.Column="1" Margin="0,1,5,-1">
 <Button x:Name="appbarMore" Style="{StaticResource
MoreAppBarButtonStyle}" Visibility="Collapsed" Click="HandleMoreButton" />
 <Button Style="{StaticResource SaveAppBarButtonStyle}"
Command="{Binding SaveCommand}" />
 <Button Style="{StaticResource CancelAppBarButtonStyle}"

Updating Singleton Views | 381

Command="{Binding CancelCommand}" />
 </StackPanel>
 </Grid>
 </AppBar>
 </Page.BottomAppBar>

Luckily, we are given a MoreAppBarButtonStyle by default. Notice that I’ve defined a
Click attribute on the More button. This is to power the codebehind. In the editor view,
double-click the More button and Visual Studio will create the handler for you. We’ll
do that in a moment.

Before we code up the handler, here’s the change we need to make to the storyboard for
transitioning into the smallest view. We hide the panel and show the button:

<VisualState x:Name="Small">
 <Storyboard>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="backButton"
Storyboard.TargetProperty="Style">
 <DiscreteObjectKeyFrame KeyTime="0" Value="{StaticResource
SnappedBackButtonStyle}"/>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="titleNew"
Storyboard.TargetProperty="Style">
 <DiscreteObjectKeyFrame KeyTime="0" Value="{StaticResource
SnappedPageHeaderTextStyle}"/>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="titleEdit"
Storyboard.TargetProperty="Style">
 <DiscreteObjectKeyFrame KeyTime="0" Value="{StaticResource
SnappedPageHeaderTextStyle}"/>
 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="containerSnapped"
Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0" Value="Visible"/>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="containerFill"
Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0" Value="Collapsed"/>
 </ObjectAnimationUsingKeyFrames>

 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="appbarPanelLeft"
Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0" Value="Collapsed"/>
 </ObjectAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="appbarMore"
Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0" Value="Visible"/>
 </ObjectAnimationUsingKeyFrames>

 </Storyboard>
</VisualState>

382 | Chapter 12: Responsive Design

I didn’t take you through the specifics of building the form as it should be obvious given
the work we did previously, but in the page I have two forms: one for the default view
and one for the smallest view. For consistency with ReportPage I’ve called one contain
erFill and the other containerSnapped.

You’ll find that the code download shows fully implemented sup‐
port for the smallest view size.

Previously, I mentioned that we need to create UICommand instances for use with Popup
Menu. These take a display string and a delegate. We can just defer through to the com‐
mands on the view-model. Again, although we’re doing codebehind here we don’t want
to break the separation of concerns provided by MVVM.

Here’s the code—although I need to point out at this point that the “Take Picture” com‐
mand will actually fail, but at least we’ll be able to see the pop up:

 // Add method to EditReportPage...
 private async void HandleMoreButton(object sender, RoutedEventArgs e)
 {
 var popup = new PopupMenu();
 popup.Commands.Add(new UICommand("Take Picture", (args) =>
this.ViewModel.TakePhotoCommand.Execute(null)));
 popup.Commands.Add(new UICommand("Capture Location", (args) => this.ViewModel.
CaptureLocationCommand.Execute(null)));

 // show...
 await popup.ShowAsync(((FrameworkElement)sender).
GetPointForContextMenu());
 }

The sender will come through as, obviously, the button. We’ll need to use this to get a
point to show the context menu. GetPointForContextMenu is an extension method on
FrameworkElement that we need to build.

I’ll present this without much comment as it’s a little specialized for this book. This code
needs to be added to the FrameworkElementExtender class that we built in Chapter 4
and modified again in Chapter 7.

 // Add method to FrameworkElementExtender...
 internal static Point GetPointForContextMenu(this FrameworkElement
element)
 {
 GeneralTransform transform = element.TransformToVisual(null);
 Point point = transform.TransformPoint(new Point());
 return point;
 }

Updating Singleton Views | 383

Run the code and bring up the app bar on the edit report page while in snapped view.
You’ll see something like Figure 12-7 when you press the More button.

Figure 12-7. The pop-up menu for the More button

As mentioned, “Take Picture” will crash. Select the option and you’ll get an exception
message like this:

System.InvalidOperationException: A method was called at an unexpected time.
(Exception from HRESULT: 0x8000000E)
 at System.Runtime.CompilerServices.TaskAwaiter.ThrowForNonSuccess(Task task)
 at System.Runtime.CompilerServices.TaskAwaiter.HandleNonSuccessAndDebugger
Notification(Task task)
 at System.Runtime.CompilerServices.TaskAwaiter`1.GetResult()
 at StreetFoo.Client.EditReportPageViewModel.<CaptureImageAsync>d__17.MoveNext
() in c:\BookCode\Chapter13\StreetFoo.Client\StreetFoo.Client\Model\Instances\
EditReportPageViewModel.cs:line 84
--- End of stack trace from previous location where exception was thrown ---
 at System.Runtime.CompilerServices.TaskAwaiter.ThrowForNonSuccess(Task task)
 at System.Runtime.CompilerServices.TaskAwaiter.HandleNonSuccessAndDebugger
Notification(Task task)
 at System.Runtime.CompilerServices.TaskAwaiter.GetResult()
 at StreetFoo.Client.EditReportPageViewModel.<<.ctor>b__0>d__4.MoveNext() in
c:\BookCode\Chapter13\StreetFoo.Client\StreetFoo.Client\Model\Instances\
EditReportPageViewModel.cs:line 26

What this error is trying to tell you is that you can’t take a photo when the application
is in the smallest width.

We need to “unsnap” the view before we call the command. There are a few places where
you can’t access APIs from within snapped views. These normally occur when you would
end up in a situation where the user might be unclear as to which app owned the helper
UI. (The file pickers are another example of this.) This is down to the modality of the
Windows 8 application model because you don’t have a pop up to do the helper UI, the
user can’t “see” which application the helper UI is related to.

As we can’t access this function, we’ll just display a message telling the user this. Here’s
the change:

384 | Chapter 12: Responsive Design

 // Modify method in EditReportPage...
 private async void HandleMoreButton(object sender, RoutedEventArgs e)
 {
 var popup = new PopupMenu();
 popup.Commands.Add(new UICommand("Take Picture", (args) => {
 await this.ShowAlertAsync("Make the app full screen to use
the camera.");
 }));
 popup.Commands.Add(new UICommand("Capture Location", (args) =>
this.ViewModel.CaptureLocationCommand.Execute(null)));

 // show...
 await popup.ShowAsync(((FrameworkElement)sender).GetPointFor
 ContextMenu());
 }

Run the same operation again and the view will unsnap and you’ll be able to take a
photo.

Handling Views That Don’t Support 320-Pixel Width
From time to time you’ll come across views that you don’t want to have in the smallest
width. That’s fine—the application only has to remain mostly or “usefully” functional,
not completely functional. In this situation it’s helpful to put up a view that explains that
the user is better off adjusting the width of the application to get the functionality (see
Figure 12-8). This is what we did at the very beginning of this chapter when we talked
about the visual states.

Figure 12-8. The view presented when a page doesn’t support the smallest width

We did this simply by adding a TextBlock with the text and set the visibility to
collapsed:

Handling Views That Don’t Support 320-Pixel Width | 385

<TextBlock x:Name="helpText" Grid.Row="1" Grid.Column="1" Visibility="Collapsed"
Text="Logon cannot be used in this mode"/>

We then set it back to visible in the “Small” state:
<VisualState x:Name="Small">
 <Storyboard>
…
 <ObjectAnimationUsingKeyFrames Storyboard.TargetName="helpText"
Storyboard.TargetProperty="Visibility">
 <DiscreteObjectKeyFrame KeyTime="0" Value="Visible"/>
 </ObjectAnimationUsingKeyFrames>
…
 </Storyboard>
</VisualState>

386 | Chapter 12: Responsive Design

CHAPTER 13

Resources and Localization

In this chapter we look at how we can localize our apps—that is, make them functional
in different languages.

The general premise of localization remains unchanged from years gone by. Opera‐
tionally, we have usually done this by creating a table containing strings, which are then
used to replace static text on the UI. You then create copies of the table for each language
that you want to support. Windows works out which table to use based on the user’s
systemwide language preferences.

The story in WinRT for handling strings is different from how it was in .NET. You now
add .resw files to projects, rather than .resx files. The APIs for loading the strings are, as
you’ve probably guessed, different. The process by which strings are packaged along
with the app is also different. Strings are not embedded into the DLL but are combined
into a .pri file that is deployed along with the app. So, we’ll look in detail at how that
works as we go.

Then, we’ll look at how to replace strings in the XAML markup, how to explicitly load
strings, and how we can localize images. We’ll also cover a special feature that allows us
to package multiple image resources that are selected out depending on the DPI of the
display.

.pri Files

.pri files, or Package Resource Index files, are the new file format used with WinRT and
in Windows Store app development. They are a binary format that represents the hi‐
erarchy of resources used in your app and any dependencies. In Windows Store apps,
we define resources by marking them with a Build Action of Content. All resources are
included in this file, not just string resources.

387

If you have a standalone module with no dependencies other than Windows.winmd
and .NET Core, you will end up with a resources.pri file on compilation that contains
any strings that are defined within that app, as well as references to any resources. We
define strings by adding one or more Resources.resw files into the app, one per required
language locale.

Back in Chapter 8 we built some scratch applications to support that particular chapter’s
discussion. One of those was called ImageShareScratch. If you look in the build output
of that, you’ll find a resources.pri file. Figure 13-1 illustrates.

Figure 13-1. The resources.pri file for the ImageScratch.exe Windows Store app

The Windows 8 SDK ships with a utility called makepri.exe that can both make .pri
files and dump out their contents. (I’ll show you the command-line arguments you need
to do this shortly.) If you dump out the contents of that resources.pri, you’ll find all of
the images and XAML files that were packaged along with the app. Here’s a snippet of
the output:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<PriInfo>
 <ResourceMap name="8c96f52a-1d50-4d5a-a5f5-27f950cf4765" version="1.0"
primary="true">
 <Qualifiers/>
 <ResourceMapSubtree name="Files">
 <NamedResource name="App.xaml"
uri="ms-resource://8c96f52a-1d50-4d5a-a5f5-27f950cf4765/Files/App.xaml">
 <Candidate type="Path">
 <Value>App.xaml</Value>
 </Candidate>
 </NamedResource>

388 | Chapter 13: Resources and Localization

 <NamedResource name="MainPage.xaml"
uri="ms-resource://8c96f52a-1d50-4d5a-a5f5-27f950cf4765/Files/MainPage.xaml">
 <Candidate type="Path">
 <Value>MainPage.xaml</Value>
 </Candidate>
 </NamedResource>
 <ResourceMapSubtree name="Assets">
 <NamedResource name="Logo.png"
uri="ms-resource://8c96f52a-1d50-4d5a-a5f5-27f950cf4765/Files/Assets/Logo.png">
 <Candidate type="Path">
 <Value>Assets\Logo.png</Value>
 </Candidate>
 </NamedResource>

 <!-- file continues as you might expect... -->

 </ResourceMap>
</PriInfo>

Where this story gets interesting is that as you combine modules to make bigger apps
—such as by including the Bing Maps component, the UI-agnostic StreetFoo.Client
assembly, JSON.NET, and so on—each dependency has its own resources.pri file, which
is used by makepri.exe to eventually build one master resources.pri file that contains
references that are universal across the whole install.

It’s worth remembering that if you’re struggling to find the path to a
resource in your app, use makepri.exe to dump out the resource
structure. You can then find the resource path (or even just confirm
that it’s there) and copy and paste the path. This is the best way to
troubleshoot resource references.

If you look in the XML I’ve just presented, you’ll see one reference to a ResourceMap
and ResourceSubMap within. Each submap represents one component. Were we to run
makepri.exe and dump out the resources for the app as it exists in the last chapter, we’d
have entries as shown (rendered by IE) in Figure 13-2. (I’ll just illustrate the output here
—I’ll show you how to run makepri.exe in a moment. I’ve rendered it in IE so that I
can collapse sections down and make it easier to understand.)

.pri Files | 389

Figure 13-2. The structure of the resources.pri file as per the app as it was at the end of
Chapter 12

Incidentally, the value shown in the URI after the ms-resource: protocol directive
(569e8a16-efb8-4992-ada5-7407fecb3dee) is the package name as given in the man‐
ifest. We thus far haven’t changed that package name from its default, which happens
to be a GUID.

Hopefully, you can see how the entire app’s state is laid out. We can now add strings into
our project, and ultimately we’ll see that reflected in the resources.pri data.

Adding Strings
Start by creating a new Windows Store class library project called StreetFoo.Client.Re‐
sources.

Resources are managed by convention in WinRT. The convention for string resources
is that you create a folder called Strings at the root of the project, and then folders per
locale.

The way that locales are referenced in Windows hasn’t changed for years. Locale codes
—or more properly, Windows Language Code Identifiers (LCIDs)—typically look like
this: en-US, fr-FR, de-DE, etc. The first part is the language code (which happens to
adhere to ISO standard 639-1), and the second part is a country/region code (which
happens to adhere to ISO standard 3166-1). For example:
en-US

English language, United States country/region

390 | Chapter 13: Resources and Localization

en-GB
English language, Great Britain country/region

fr-FR
French language, France country/region

...and so on.

Why I’m belaboring this point is that Windows will “fail over” to languages depending
on what the app supports and what your system supports. For example, I’m in the UK,
so my machine is set to en-GB. If I have an app that defines resources for en-US but not
en-GB, Windows will assume that en-US is a good enough match. Similarly, if I have
an app that supports only fr-FR and a system set to en-GB, because Windows knows
the app doesn’t support any English language resources, it will use fr-FR because it has
no other option.

What happens at a deeper level—which we’ll see—is that Windows can be configured
with a set of language preferences and will try to get the best fit out of what the machine
supports, what the user chooses as her preferences, and what a given app can actually
do.

Within the locale folders, you create a Resources.resw file. Figure 13-3 illustrates.

Figure 13-3. Layout of the Resources project with an en-US resources file

What we want to do first is prove that we can see strings that we create in the resour
ces.pri file. Open up the .resw file and any string pair that you like. Figure 13-4 illustrates
my choice.

.pri Files | 391

Figure 13-4. A resource string

If you’re new to string translation, the “Comment” field is used for
notes if you want to give the file over to a translation bureau for
translation.

Now we need to reference the resources project from the main Windows Store app
project. We do this in the usual way. Build the app, and a new resources.pri file will be
created.

To run makepri.exe, you need to run the Developer Command Prompt for VS2012.

If you haven’t done so already, it’s worth pinning the Developer Com‐
mand Prompt to your taskbar and setting it to run with administra‐
tor rights.

Run the prompt and navigate to the project directory. Execute this command line to
create an XML file dump of the resources.pri contents. (Remember, this file will be in
the ~/bin/Debug folder of the project.)

makepri dump /if resources.pri

This will create a resources.pri.xml file. You can open this in your favorite XML visualizer.
Figure 13-5 shows the location of the new string.

392 | Chapter 13: Resources and Localization

Figure 13-5. Our new string and ResourceMapSubTree

The fact that the string exists in its own ResourceMapSubTree is important. When
working in this mode, where resources are in a separate assembly, you have to fully
qualify the identifiers in all cases. When you have resources in the same assembly, you
generally don’t have to do that. I’ll explain more about that we as go on.

Now that we know how resources are collated and organized, let’s look at how we can
use them.

Localizing Strings
Now, how can we actually localize strings within our apps? Let’s look at how we can
localize strings first in XAML using the automatic string replacement capability, and
then how we can explicitly load up strings.

First, we need to look at an issue with the project setup.

Default Project Locales
When the project is created in Visual Studio, Visual Studio takes the logged-on user’s
locale and writes it into the file as the default locale. You may need to manage that default;
however, Visual Studio doesn’t let you edit it through one of its tools. You need to change
it using Notepad or a text editor of your choice.

In each of the three project files, open the .csproj and find the DefaultLanguage entry.
(It’ll be near the top.) For our purposes, as our default locale will be en-US, make sure
it’s en-US.

Localizing Strings | 393

 <DefaultLanguage>en-US</DefaultLanguage>

When you do this, take care not to accidentally set Notepad to be the
default handler for .csproj files. Nothing bad will happen, but it can
be a pain.

You don’t have to choose en-US on your projects—choose whichever is appropriate. The
important point is that you control the locale, rather than assuming whatever one Visual
Studio has set is correct.

Localizing Strings in XAML
To test the string localization, we’ll create a copy of the string table for French. (This is
the fr-FR locale.) The first thing we’ll do is change the caption at the top of the reports
page.

We’ll start by replacing the string in the language table. Rather than presenting screen‐
shots when we do this, I’ll present the string table as text. Table 13-1 shows the en-US
table with the string. I’ll discuss the naming shortly:

Table 13-1. en-US string table
Name Value

Reports_Caption.Text Reports

The easiest thing to do at this point is present how this works, and we’ll then go back
and talk about the naming convention.

The XAML replacement magic works by having you decorate controls with an x:Uid
attribute. This is then used to find matching values in the string table. Notice I say
“values” there. I’ve specified Text in Table 13-1. In fact, it can replace any property you
like. This is helpful when you need to adjust the UI to accommodate language strings,
but we’ll get to that.

To see this working, we’ll change the Reports page so that the caption is localized. To
do this, we need to add the x:Uid attribute to the TextBlock control used for the caption.
Here’s the change:

 <!-- Modify code in ReportsPage.xaml -->
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <Button x:Name="backButton" Click="GoBack" IsEnabled="{Binding Frame
.CanGoBack, ElementName=pageRoot}"

394 | Chapter 13: Resources and Localization

Style="{StaticResource BackButtonStyle}"/>
 <TextBlock x:Name="pageTitle" Grid.Column="1" x:Uid=
"/StreetFoo.Client.Resources/Resources/Reports_Caption" Text="Reports" Style="
{StaticResource PageHeaderTextStyle}"/>
 </Grid>

When we specify the x:Uid, we have to provide a fully qualified resource path. The way
we are doing it is slightly trickier as compared to most of the examples on MSDN and
in the community because we have a separate resource assembly. If we had string re‐
sources directly within the Windows Store app project, we could just say ReportsCap
tion and let the resource loader infer the beginning of the path.

In either case, note that we don’t specify the .Text. XAML is using the value to find all
the strings with the same value prior to the dot. Anything after the dot is then the subject
of data binding, with a dependency property being sought out and the value replaced.
Note that there is no design-time support for this; hence, we still need to specify a static
value for Text so that we can see it in the designer. To validate that the string replacement
is working as a requirement, you may want to use the convention of prefixing the literal
strings on the UI with an x. This will allow you to see at a glance which strings have not
been enlisted in the localization.

Run the project and you won’t see anything different. To see things done differently, we
have to add new string tables.

To the resources assembly, add a locale for fr-FR and add a new Resources.resw. We then
need to create a translation of the string that we had before. Figure 13-6 shows the
solution structure. Table 13-2 shows the value of the replacement string in French.

Figure 13-6. The fr-FR locale string table in the Resources project

Table 13-2. fr-FR string table
Name Value

Reports_Caption.Text Déclarations

Localizing Strings | 395

In situations where Windows cannot find a string in a translated
language table, but that string is in the default language table, Win‐
dows will fail over and use the default string.

If you build that, the resources.pri file will be changed. Here’s the snippet of XML from
that new resources.pri file where you can see the strings. The en-US and fr-FR strings
are now available. Note too how the en-US one is shown as the default (isDefault).

 <ResourceMapSubtree name="StreetFoo.Client.Resources">
 <ResourceMapSubtree name="Resources">
 <ResourceMapSubtree name="Reports_Caption">
 <NamedResource name="Text"
uri="ms-resource://569e8a16-efb8-4992-ada5-7407fecb3dee/StreetFoo.Client.
Resources/Resources/Reports_Caption/Text">
 <Candidate qualifiers="Language-FR-FR"
type="String">
 <Value>Déclarations</Value>
 </Candidate>
 <Candidate qualifiers="Language-EN-US"
isDefault="true" type="String">
 <Value>Reports</Value>
 </Candidate>
 </NamedResource>
 </ResourceMapSubtree>
 </ResourceMapSubtree>
 </ResourceMapSubtree>

To try this, you need to change your language. It’s difficult to write a book for a global
audience and make assumptions about the languages that each reader has installed. I’ve
based this on the assumption that you have English installed but no other languages.

The language selection is done from within Windows. WinRT will pick up the locale
from Windows and choose the language that best fits based on those available and the
default.

However, there’s a problem. Although we can define multiple language tables in our
languages assembly, the actual app doesn’t know which languages are supported. This
is also done by convention. We have to create blank Resources.resw files in the Windows
Store app project that match the supported locales. Figure 13-7 shows this structure.

396 | Chapter 13: Resources and Localization

Figure 13-7. Repeating the folder and file structure in the Windows Store app project

To reiterate, the newly created .resw files in the StreetFoo.Client.UI project are blank.

You’re now in a position to change your language preferences and see if the localization
works. You do this through Control Panel—and the easiest way to access this in Win‐
dows 8 is to press Win+R, type control, and press Return. In the search box on the
window, type language and you’ll see an option for “Add a language.” In Figure 13-8,
I’ve added fr-FR, but more importantly I’ve made it my preferred language by putting
it at the top. Windows will choose an application’s language by cross-referencing the
app’s supported languages with the preference order defined in Control Panel.

Localizing Strings | 397

Figure 13-8. Adding the fr-FR locale and making it preferred

Run the app now, and the Reports page will have the French language caption.
Figure 13-9 illustrates.

Figure 13-9. The replaced string

Although I won’t go through it here, I’ve added a de-DE language in
the code download to give you more variations to play with.

Conventions
Now that we’ve seen it working, we need to talk about conventions.

It’s reasonably important to have some form of convention when working with language
strings. With very complicated apps, you can end up with many hundreds of strings.

398 | Chapter 13: Resources and Localization

You should come up with your own convention that feels comfortable, but there are
some restrictions. It’s worth designing that convention so that you can see which UI
aspect owns the string. In this case, I’ve proposed using Reports as the prefix for strings
that relate to ReportsPage.

Because XAML uses dot notation to find properties to bind to, you cannot use dots in
the part of the name that you own. Likewise, I’d recommend not using slashes because
they are used in the paths that you specify to load the strings. What I’ve used in my
strings is underscores.

You can also include elements—for example, perhaps you want messages that appear
in MessageDialog pop ups to include Message in the name. Likewise, strings that apply
to notifications might include Tile or Toast in the name.

The important thing is to have a convention; how that convention is structured is up to
you.

Changing Other Properties
One of the classic problems with localization is when you need to change the UI in order
to accommodate a string. German is particularly prone to using words that are often
longer than those used by other languages.

It’s for this reason that the dot notation is included in the string name. You can reference
any dependency properties that you like in there.

I won’t show you how to do this in these pages, as it’s obvious and there’s nowhere to
put it. However, in the code download I have a button on the Reports page that changes
its height depending on the locale.

Explicitly Loading Strings
To round off the discussion on strings, we need to look at how we can explicitly load
strings for things like messages that are displayed in MessageDialogs and other noti‐
fications (i.e., those that are not necessarily expressed in markup).

Oftentimes when you load a string in this way you need to replace values in it—for
example “I found 27 reports” may need to be replaced with “J’ai trouvé 27 déclarations.”
You can easily do this by loading a string and using the loaded string as the template for
use with a normal string.Format call.

The approach I’m proposing here is to create a helper class that lets us load strings and
optionally format them. Nothing about the string table setup will change.

We’ll build a class called StringHelper with a method called Format. This will take a
path to a string, load it, and then call string.Format on it, passing in any parameters
(if we specified any).

Localizing Strings | 399

Whereas before when we needed to put in the x:Uid attributes we specified the full
string, in StringHelper, if we assume all the strings are in a single common assembly
(which is a fair assumption), we can provide just the name of the string in the common
assembly. When we come to load it, we’ll assume the other elements of the path are
static.

Here’s the implementation for StringHelper. This uses a ResourceLoader bound to a
specific resource map, the name of which is the name of our common language assembly.
When we come to build the complete path, we need to specify that it’s within the
Resources branch, and then we just tack the name onto the end.

 public static class StringHelper
 {
 private const string ResourceMapName = "StreetFoo.Client.Resources";

 // loads a resource string and runs string.Format on it...
 public static string Format(string name, params object[] args)
 {
 var buf = new ResourceLoader(ResourceMapName).
 GetString("Resources/" + name);
 if (args.Any())
 return string.Format(buf, args);
 else
 return buf;
 }
 }

To test it, we’ll localize the text used in the toast displayed when we refresh the Reports
page. We’ll need one string for the toast caption, and then two strings to report back on
the number of items that were loaded from the server.

The first step is to build up the string table. Tables 13-3 and 13-4 show the en-US and
fr-FR tables.

Table 13-3. en-US string table with toast strings
Name Value

Reports_Caption.Text Déclarations

Reports_Toast_ReportsRefreshed Reports refreshed

Reports_Toast_IFound1Report I found 1 report.

Reports_Toast_IFoundNReports I found {0} reports.

400 | Chapter 13: Resources and Localization

Table 13-4. fr-FR string table with toast strings
Name Value

Reports_Caption.Text Déclarations

Reports_Toast_ReportsRefreshed Déclarations rafraîchies

Reports_Toast_IFound1Report J'ai trouvé 1 declaration.

Reports_Toast_IFoundNReports J'ai trouvé {0} declarations.

Using the strings is just how you’d imagine it might be. Rather than using literal strings,
you load the appropriate string from the table using the new StringHelper class.

Here’s the change to the constructor of ReportsPageViewModel, specifically where the
RefreshCommand is initialized. I’ve omitted code from this class for brevity.

 public ReportsPageViewModel(IViewModelHost host)
 : base(host)
 {
 // commands...
 this.RefreshCommand = new DelegateCommand(async (e) =>
 {
 this.Host.HideAppBar();
 await this.DoRefresh(true);

 // toast...
 string message = StringHelper.Format("Reports_Toast_IFound1Report");
 if (this.Items.Count != 1)
 message = StringHelper.Format(
 "Reports_Toast_IFoundNReports", this.Items.Count);
 var toast = new ToastNotificationBuilder(new string[] {
StringHelper.Format("Reports_Toast_ReportsRefreshed"), message });
 toast.ImageUri = "ms-appx:///Assets/Toast.jpg";
 toast.Update();
 });

 // code omitted for brevity...
 }

Run the project now with the fr-FR locale as your preferred locale, and you’ll see the
string on the toast in French rather than English. Figure 13-10 illustrates.

Localizing Strings | 401

Figure 13-10. Our toast notification from Chapter 6, but in French

Naming of StringHelper Methods
There’s one last thing to discuss before we leave strings and move on to images. Our
StringHelper.Format method doesn’t have to take arguments. There is a line of thought
that says that Format isn’t the best name for this. You could create another method in
StringHelper (e.g., LoadString) that didn’t take arguments. All that would do, however,
is defer to Format. Its sole purpose would be stopping your code from “looking funny”
because of the preconceived perception that Format should take arguments.

Localizing Images
In this next section, we’ll look at how to work with localized image resources. This is
helpful in situations where the image you’re looking to convey has some localized
meaning. However, the more interesting (and common) thing is how to vary the re‐
source selection by display DPI.

We’ll start by looking at varying the resource by locale.

Varying Images by Locale
We’ve seen thus far that string resources are defined in our application using a
convention-based approach. By virtue of the fact that we have resources in specific
folders, makepri.exe knows that one string table belongs to the en-US locale, whereas
another belongs to fr-FR.

That same convention-based approach flows through into all resource types. If we create
an image with a given name (e.g., Flag.png), and if we put one in the en-US folder and
another in the fr-FR folder, WinRT knows that we are defining a localized resource.
Given where we are at the moment with our separate resource assembly, the easiest thing
to do here is to continue this approach. (In fact, that’s what we will do after this short
diversion.)

There is another way to specify a localized resource file, which is to put the language
identifier in the file itself. The rule is to put .lang-<languageCode> into the filename.
Figure 13-11 shows this approach; however, this isn’t the approach we’re going to use
in this book.

402 | Chapter 13: Resources and Localization

Figure 13-11. Using the .lang-<languageCode> convention

One more thing: if you do use that approach, you may find you have
to specify several language qualifiers in the string name. If you do this,
separate them with underscores.

As mentioned, I don’t want to go that way, as I want to show you how to do this using
our separate resource assembly. We’ll also use the approach of separating resources by
locale-specific folder rather than using the filename. (You can still use the filename-
based approach, but if you have a lot of resources to localize, splitting by folder can be
more useful.)

Figure 13-12 shows the same flag files but in separate folders. I’ve created a root Im
ages folder to do this.

To refer to these images in the XAML, nothing changes from the way we’ve done this
before using the ms-appx: protocol in the URI.

Here’s the change to the title block of ReportsPage to display an image. As you might
expect, we don’t have to do anything in order to specify that we want a localized value.
It just works.

 <!-- Back button and page title -->
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>

Localizing Images | 403

Figure 13-12. Images broken down into specific language folders

 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <Button x:Name="backButton" Click="GoBack" IsEnabled="{Binding Frame.
CanGoBack, ElementName=pageRoot}"
Style="{StaticResource BackButtonStyle}"/>
 <StackPanel Orientation="Horizontal" Grid.Column="1">
 <TextBlock x:Name="pageTitle" x:Uid=
"/StreetFoo.Client.Resources/Resources/Reports_Caption" Text="Reports"
Style="{StaticResource PageHeaderTextStyle}"/>
 <Image Source="ms-appx:///StreetFoo.Client.Resources/Images
/Flag.png" Width="25" Height="15" HorizontalAlignment="Left" Margin="0,30,0,0">
</Image>
 </StackPanel>
 </Grid>

Run the app in the en-US locale, and you’ll see an image as shown in Figure 13-13.

Figure 13-13. The en-US flag

Change the locale to fr-FR and do the same thing (see Figure 13-14).

404 | Chapter 13: Resources and Localization

Figure 13-14. The fr-FR flag

That’s all you have to do. WinRT will do the heavy lifting in terms of the resource
selection.

Varying Images by Display DPI
This section is challenging, as it’s difficult to demonstrate different pixel density in a
book. However, in order to make raster images look nice in your application, you need
to handle display DPI.

DPI is a reasonably complex topic, and a detailed discussion is beyond the scope of this
book. However, it has to do with scaling. Imagine you have a bitmap that fills the whole
screen. When you develop it, you develop on a normal DPI resolution. The image will
look fine to you. However, on deployment, if the end user uses a higher DPI screen, the
OS will scale up that image and as a result it may not look as good. The idea, then, is
that we provide multiple images in the application and allow Windows to use bigger
images when appropriate and hence perform more appropriate scaling. (Scaling will
always end up looking a little rubbish, as the whole point of it is to “invent” information
that isn’t there—we’re aiming to get to “good enough.”)

This doesn’t just affect full-screen renders. Windows will scale up the
UI on higher DPI displays because otherwise targets get too small to
touch accurately. This is why handling DPI is particularly important
in Windows Store apps.

There is a sweeping recommendation with Windows Store apps that rather than using
raster images at all, we’re supposed to use vector images. In Chapter 5, for example, we
tried where possible to use the vector images defined in the Segoe UI Symbol font. While
this is true, it’s naïve to assume the whole industry is going to pivot away from raster
images to vector images for Windows Store apps. (Remember that I went into this topic
in more detail in Chapter 5.)

To properly support high DPI displays, images need to be provided in 100% versions,
140% versions, and 180% versions. The 140% version is used when the DPI is between
174 and 239 DPI, and the 180% version is used for 240 DPI or above. The 100% version
is for what (as of the time of writing at least) is considered to be a “normal,” non-high-
DPI display.

Localizing Images | 405

As you’d expect, the different images are specified using a convention-based approach
—specifically, .scale-<percentage>. It’s regarded as best practice to specify the 100%
version explicitly. Figure 13-15 illustrates the flag resources in our solution with scale
specified.

Figure 13-15. Flag image resources specified with scale

Again, in a book I can’t really show you this. However, if you were to look at the output
in resources.pri, you would see the different images in there, with each one having a
defined Scale qualifier:

<ResourceMapSubtree name="StreetFoo.Client.Resources">
 <ResourceMapSubtree name="Images">
 <NamedResource name="Flag.png"
 uri="ms-resource://569e8a16-efb8-4992-ada5-7407fecb3dee
 /Files/StreetFoo.Client.Resources/Images/Flag.png">
 <Candidate qualifiers="Language-FR-FR, Scale-180"
 type="Path">
 <Value>StreetFoo.Client.Resources\Images\fr-FR\
 Flag.scale-180.png</Value>
 </Candidate>
 <Candidate qualifiers="Language-FR-FR, Scale-140"
 type="Path">
 <Value>StreetFoo.Client.Resources\Images\fr-FR\
 Flag.scale-140.png</Value>
 </Candidate>
 <Candidate qualifiers="Language-FR-FR, Scale-100"
 type="Path">
 <Value>StreetFoo.Client.Resources\Images\fr-FR\
 Flag.scale-100.png</Value>
 </Candidate>

406 | Chapter 13: Resources and Localization

 <Candidate qualifiers="Language-EN-US, Scale-180"
 isDefault="true" type="Path">
 <Value>StreetFoo.Client.Resources\Images\en-US\
 Flag.scale-180.png</Value>
 </Candidate>
 <Candidate qualifiers="Language-EN-US, Scale-140"
 isDefault="true" type="Path">
 <Value>StreetFoo.Client.Resources\Images\en-US\
 Flag.scale-140.png</Value>
 </Candidate>
 <Candidate qualifiers="Language-EN-US, Scale-100"
 isDefault="true" type="Path">
 <Value>StreetFoo.Client.Resources\Images\en-US\
 Flag.scale-100.png</Value>
 </Candidate>
 </NamedResource>
 </ResourceMapSubtree>
 </ResourceMapSubtree>

Localizing Images | 407

CHAPTER 14

Background Tasks and App Lifetime

In this chapter we’re going to look at how we can make portions of our code run even
when our app is not—a capability known as background tasks.

Background tasks are easy enough to work with, but they are one of the areas of Windows
Store apps that is on the “difficult” end of the spectrum in terms of features in the API.
This is because, with mobile, preserving battery life is paramount. Applications that can
wake up and do whatever they like in the background are a problem, because without
any form of control it’d be easy enough for the user to install some innocuous app, only
to find that battery life on the device had halved without any real idea as to why.

In Windows 8/Windows RT, there are so many controls and restrictions on what back‐
ground tasks can do that you could describe them as being openly hostile to apps that
need to run in the background. The reason for this is that background tasks are designed
to keep the device “fresh,” but to do so within the context of a consumer/retail usage
model. With LOB apps there is much more pressure on time, and it’s this part that’s not
fantastically well served by the background tasks implementation as it stands at the time
of writing. For example, a 10-minute delay in updates on a game is fine. If you have
employees doing 20 jobs a day coordinated by your app with a 10-minute delay, however,
that’s a 3.3-hour delay per operative inserted into each working day just for idle time.

It’s in this context that we’re going to discuss background tasks: the classic “field worker”
scenario. An operative is mobile all day, but from time to time will receive notifications
of new jobs through his device. He will also complete jobs and have to send updates
back to base. Connectivity may be sketchy, so although the user can click Add New
Report (in our case) and the report will save locally, it could be many minutes or hours
before the connection is sufficient to send the data back. The business usually requires
data to be sent back in a timely manner—it’s unusual that these systems in the real world
are rigged to work on an “it’s OK to sync when you get back to base” basis. The business
will expect progress returned wirelessly throughout the day.

409

To this end, we’re going to create a “synchronization” background task that will send up
any pending updates, and download any new jobs.

What we’ll do first is talk about app lifetime in Windows 8 and Windows RT. We’ll then
tackle building the background tasks that we need for our StreetFoo app. We’ll look first
at the general structure of the API and then go on to build our actual synchronization
routines.

App Lifetime
From first principles, you’d expect app lifetime to be quite a big topic in Windows Store
app development. Practically, though, there’s hardly anything to it, as the rules are so
simple. If an app’s running, it’s taking up battery power—and the best approach that
Windows can take is to make sure that if it’s not being used, it’s not running.

Any opportunity it has to do so, Windows will stop scheduling time for your process to
run. When main memory comes under pressure, your app’s memory working set can
be dumped to disk and your process unloaded. When the user selects your app again,
a new process is established, your working set reloaded, and CPU time scheduled to
you. I offer this part as helpful information—as a developer you don’t need to code
anything special to support it, and as a user you shouldn’t even notice that it’s happening.

In total, you have three possible states for your app: Running, Suspended, and NotRun
ning. You get events, which you can access via Application and therefore your indi‐
vidual App class for Suspending (going from running to suspended) and for Resuming
(going from suspended to running). You won’t be told when you get dumped out of
memory—you just get killed off. However, if you are running, you will go through the
suspend phase before you do get killed off. Therefore, this is a good time to do any
cleaning up or persisting of data that you need to do. (In fact, it’s your only time.)

There is an important restriction with regards to suspending—you only get five seconds
to do your work. If you take longer than that, you’ll be unceremoniously killed. (And
we’re about to talk about CPU time, so I’m getting ahead of myself. This five seconds is
as you would count them on your watch.)

While we’re here, it’s worth mentioning the OnActivated and On
Launched methods in Application. OnLaunched is called if the user
launches your task from the Start screen via a tile. OnActivated is
called if you start for any other reason. (If you recall, in a few places
throughout this book we’ve had to do different behavior when we get
launched by things like file association, share charms, etc.)

Underpinning all of this design is a new feature in Windows 8 and Windows RT called
connected standby (CS). Prior to this computers were either “running normally,” in

410 | Chapter 14: Background Tasks and App Lifetime

“sleep mode” (main memory powered and controlled by the CPU, but no OS processes
scheduled, no devices running), in “hibernate mode” (main memory contents entirely
swapped to disk, computer off), or just “switched off.”

CS is an operating system feature, and not necessarily a power management feature. In
CS the system is still running as normal, it’s just that Windows will stop doing as much
as possible. If the hardware is appropriate (and I’ll get to that), when the screen is off
Windows is considered to be in CS. Windows Store apps are suspended as one step. As
another step, normal Windows processes are suspended. There’s this rather beautifully
named step in the whole process called quiescing. This is why it’s called CS—Windows
is still running, as is the entire networking stack, hence Windows is connected. Your
background tasks will still run in this mode, and when they are, everything will appear
normal. After all, you’re sandboxed off from everything so you never really know what
the state of the rest of the system is in any case. Everyone else could be fast asleep, or
processing a hard workload. You don’t know, nor should you care.

Hardware-wise, in order for hardware to be CS-capable, the rules are that it has to have
a certain flag set in firmware, it can’t have spinning disks (as they could wake up to find
themselves under heavy motion, which could break them), and it must be able to be
cooled sufficiently via passive cooling. (One of the things that will wake the system is a
thermal warning, so any problem there means the machine will hibernate and shut down
fully.) For completeness, there is also a special capability you need on network adapters,
but that’s just a detail point.

In all, CS is a really decent Windows 8 feature, and what you’re about to read may seem
restrictive and strange—especially CPU quotas—but I hope as you reflect back on CS
you’ll realize why it’s been built as it has.

Background Tasks API
There are three basic concepts that you need to understand about background tasks.
Learning how to implement background tasks to good effect is a matter of learning the
subtleties and nuances of these three concepts. We’ll talk about all of these aspects in
more detail throughout the chapter.

• First, you have a CPU usage quota. The idea here is that you are given an amount
of CPU to use—n sections every m minutes. Go over this, and your task is suspended
until you “save up” more quota.

• Second, you have a set of triggers that you can use to kick off your tasks. Triggers
also have conditions. For example, you can create a trigger to run every 15 minutes
without conditions, or schedule the same thing but only on the condition that a
user is logged on when it’s time to run.

Background Tasks API | 411

• Third, background tasks are executed outside of the process of the main app, regard‐
less of whether the app is running or not. (This is a simplification—there are in‐
stances where they run inside your own app’s process, but only certain types of tasks
can do that, and those tasks are outside the scope of this book.) Restrictions also
exist in that the class containing the task to execute must be in a WinRT component,
not a normal .NET assembly. (WinRT components have the .winmd filetype.) We
haven’t looked this topic at all so far, but we will in this section.

Let’s look at each of these three concepts in turn.

CPU Usage Quota
I wanted to present this concept first because it’s the one you need to have the best grasp
of, but it’s also the most woolly of all of them.

CPU usage quotas are quoted as follows:

• If you’re running on the “lock screen,” you get two seconds of CPU time every fifteen
minutes.

• If you’re not running on the “lock screen,” you get one second of CPU time every
two hours.

The first thing that needs defining here is CPU time. This is not the same measurement
as SI units of time that you’d measure on your watch. This is often known as “clock on
the wall” time.

For example, a method can start, run in five seconds of “clock on the wall time,” and
still come in under quota. CPU time is measured by Windows as time when the code
is not blocking, and as we’ve seen with the asynchrony implementation throughout this
book, there are plenty of times when your code is blocking. (Deep down, it relies on the
Windows internal process timing instrumentation to work out how much time you’ve
used.)

Simultaneously, this makes the CPU problem less pressing, but much weirder because
it becomes harder to measure and understand without deep inspection. Coming back
to connected standby, this restriction exists because the device never really ends up
being “off.” A laptop asleep in a bag being toted from site to site is in sleep, hibernate,
or “off ” mode. In any of those modes, user code doesn’t run. As an OS designer, Mi‐
crosoft needed to make sure that each app could only take “light sips” from the CPU
when in CS.

Your strategy, then, should be to maximize the quota. The only ways you can do this are
to a) do less, and b) put yourself on the lock screen. You should also note that the quota
is shared across all of the background tasks tied to your app package—you don’t get
more quota by registering more tasks.

412 | Chapter 14: Background Tasks and App Lifetime

Do less
This becomes a normal optimization problem. If you have to download new work
from a server, the background task would be better used to grab the data from the
server, spool it to disk, and then stop as opposed to downloading it and processing
it into the database. When the app resumes and you have no CPU quota in play,
you can pick up the spooled data, and then update the database, complete all of the
local processing, etc. (We’ll implement this approach in our sync routine.)

Putting yourself on the lock screen
This is a good way of octupling your quota, but with much less direct control. Tasks
on the lock screen appear as icons that can provide immediate feedback even if the
device is off—for example, reporting on new emails or new calendar appointments.
However, there are problems.

First, you can only request that the user puts your app on the lock screen—you can’t
make the user do it and you can’t force it to happen. (We’ll see this later during the
implementation.) Second, you can only have seven apps on the lock screen in total.
Third, if you go onto the lock screen, the user can remove you, and you don’t get
to keep asking her whether you can go back on it. Nor do you get to query whether
you are still on the lock screen.

From a consumer app perspective, all of this is sensible. However, from a LOB app
perspective, this could ideally do with less restriction. Having to train employees of the
business that paid for the app not to remove LOB apps from the lock screen is pretty
silly.

Network constraints

Just as there are CPU constraints, there are also network constraints. Whereas the CPU
constraints/quota apply whether the device is on AC power or battery power, network
constraints only apply when on battery power.

I’m not going to go into detail on this; the restrictions are fairly roomy, and if you’re
doing “normal” communications (i.e., just shuttling bits of control data back and forth)
you’re unlikely to hit it. However, if you are planning to do large transfers on background
tasks, you’ll need to think about network constraints.

Triggers and Conditions
Now that you understand the CPU quota, we can look at triggers.
MaintenanceTrigger

This is the simplest type of trigger to understand. You specify an interval (which
can’t be less than 15 minutes) and, provided that the device has AC power, the trigger
will run. You don’t have to be on the lock screen, but to reiterate, you will need AC
power.

Background Tasks API | 413

www.SoftGozar.com

TimeTrigger

This is like a MaintenanceTrigger, but you don’t need AC power and you do need
to be on the lock screen. Being on the lock screen creates wrinkles in your imple‐
mentation as per the previous explanation. Specifically, even for sideloaded LOB
apps, you can’t guarantee that you’re on the lock screen. Again, the minimum in‐
terval is 15 minutes. (We’ll talk about sideloading in Chapter 15.)

SystemTrigger

This is raised when certain system events happen, such as a user logging in or out,
the Internet becoming available, and so on. I’m not going to repeat the MSDN
documentation for this trigger in these pages, but it’s worth having a look to see the
sorts of things that you can do. (We’ll use the InternetAvailable one in our ex‐
ample, though.) Some event types only apply if you’re on the lock screen.

PushNotificationTrigger

This can be used to receive raw notifications. We didn’t talk about these much in
Chapter 5. To handle this sort of trigger, you’ll need to be on the lock screen. (We’re
not going to go into detail on this here—refer to the MSDN for more information.)

ControlChannelTrigger

We’re not going to talk about this one. This is for specialized networking activities
that are beyond the scope of this book.

It’s the PushNotificationTrigger and ControlChannelTrigger that
can be configured to run within your app’s process. All of the others
run in a standalone process.

As mentioned, each of these triggers can also accept conditions. The idea of these is that
they let you ignore situations where it’s pointless for you to run. You can decide whether
you want to run if the user is UserPresent (meaning the device is unlocked) or User
NotPresent, if you are InternetAvailable or InternetNotAvailable, or finally if you
are SessionConnected (meaning the user is logged on) or SessionDisconnected.

The conditions can help save CPU quota. For example, if you have a periodic trigger
that sends information to a server, you can choose not to do that if you have no Internet
available. Then you can create a trigger that runs when the Internet comes back. By
skipping the first one, you’ve saved x amount of CPU quota by not calling up to the
server. (Again, this is what we’ll do in our actual example.)

If you’re thinking about LOB apps, the seminal example is an operative in a truck who
finishes a job at a location, hits Save, and puts the device on standby. You have two
problems here: the operation may not have completed before he put the device on
standby, or the device might not have had a good cellular collection at the time.

414 | Chapter 14: Background Tasks and App Lifetime

The inclination here is to use a maintenance trigger, but that trigger type has a problem
in that it only runs when AC power is available. You could insist that operatives plug
their device into the vehicle’s power source whenever they are travelling. (In fact, on
smartphone BYOD systems, this problem normally solves itself because the battery life
is so poor that operatives get into the habit of doing this themselves anyway.) Alterna‐
tively, you could hope that the operative leaves the app on the lock screen.

The upshot here is that there essentially isn’t a great way of solving this problem. In the
olden days of the Windows Mobile platform, you could spin up a thread, your process
would never die, and you could do what you want. On Android—a popular field-service
app platform—you can create a background service that, again, runs in exactly the way
that you want.

In the example we’re going to create a maintenance trigger, a time trigger, and a system
trigger to detect the Internet. These will send up changes and download new work
whenever they run.

Execution Model
So far in this book, we’ve skipped over the core differences between WinRT components
and their libraries and .NET types and their assemblies. We’ve spoken about how there’s
a shared metadata model, and we know that WinRT underpins all of the work that we
do, but I’ve generally avoided going into detail about this aspect because if you’re work‐
ing with .NET all of the time you generally don’t care.

When we’re using background tasks, however, we can’t avoid proactively handling the
boundary between the .NET and WinRT worlds; we have to deal with it head-on. Back‐
ground task components must be created as WinRT components. You can still write
them in .NET, it’s just that rather than hosting them in a .NET assembly (the Class
Library option in the project’s properties), you have to host them as—as it’s put in VS’s
project properties windows—a Windows Runtime Component. What you get at the end
is a .winmd file rather than a .dll.

This sounds fine, but there’s a problem. WinRT components have some rules that limit
the richness that you can achieve with pure .NET. Compiling as a WinRT library will
insist that exposed classes are sealed. There are also restrictions on overloads. These
restrictions are down to restrictions in COM itself. A “hand-waving” answer as to why
is that COM only supports interface inheritance, and in order to be in harmony
with .NET it would also need to support implementation inheritance.

Again, this topic isn’t something I want to dwell on in this book, because unless you’re
going cross-boundary (for example, creating C# components to consume in HTML/
JavaScript), you don’t really need to worry about it.

Execution Model | 415

www.SoftGozar.com

When we come to our implementation, we’re going to create a separate façade library
that exposes our normal .NET task handling types out in a WinRT component library.
This tends to be the easiest way of squaring the circle.

Background tasks are in virtually all cases hosted in a separate executable called back
groundTaskHost.exe. (And yes—it has a lowercase b.) Any background tasks that you’re
ever likely to implement will run in this way.

From an OS design perspective, running the tasks in a separate process makes sense.
You can run them at lower priority, you can kill them off, and you can keep track of
what’s happening in the universe of background tasks running on the device far more
easily. From an app design perspective, it’s also not a bad decision. The only situation
you have to deal with is not having shared state between the running app and the back‐
ground task. You’ll have to deal with this aspect, but it’s not difficult.

Implementing a Sync Background Task
Now that we’ve been through the basics of how background tasks work, we’ll take a look
at actually implementing one.

We’ll start by creating a task that has a MaintenanceTrigger. As mentioned previously,
this needs to be hosted in a separate Windows Runtime component library. We’ll make
that library depend on the UI-agnostic StreetFoo library. In the UI-agnostic library we’ll
create a class that contains the logic called BackgroundSyncTask, and in the Windows
Runtime component library we’ll create a façade class called BackgroundSyncTaskFa
cade. The easiest way to work with this stuff is to keep the Windows Runtime compo‐
nents as basic as possible so that you don’t hit any of the design restrictions, and work
as you naturally would back in the .NET world deferring from one to the other.

We’ll also create a base class called TaskBase. When our task starts, we’ll be running in
a separate background process, so we’ll need to boot up the app and log in the current
user.

One of the tricky parts to get right when we register background tasks is that Windows
will happily reregister the same task again and again. We have to manually go through
and “reset” any task registrations that we want when we start the app.

To start, we’ll need to stub out our TaskBase class. Here’s the code:
 public abstract class TaskBase
 {
 }

Next, we’ll build TaskHelper. This class will be responsible for registering tasks.

Task registrations are held in the BackgroundTaskRegistration class. We can walk the
AllTasks dictionary looking for an existing task to cancel. Tasks are identified by name,

416 | Chapter 14: Background Tasks and App Lifetime

which is arbitrary. In our case we’re going to create one task class pair (Background
SyncTask and BackgroundSyncTaskFacade), and then create three tasks that can trigger
it. We’re going to create a MaintenanceTrigger (which will run every 15 minutes, but
only on AC power), a TimeTrigger (which will run every 15 minutes, but only when
we’re on the lock screen), and a SystemTrigger. This last trigger will be configured to
run whenever the device goes from having no Internet connectivity to having Internet
connectivity.

Our RegisterTaskAsync<T> method will take the type of the task and the name, and
also provide an Action callback that will be used to configure the task. (It’s this part that
will set up the trigger and the conditions.) When we come to build the task using a
BackgroundTaskBuilder, it will require a value for its TaskEntryPoint property in the
name of the façade class. We don’t have direct metadata access to that, so we’ll need to
mangle the name ourselves. Specifically, this will be of the form StreetFoo.Cli
ent.Tasks.<Name>Facade.

Here’s the code for TaskHelper that will do both the deletion of any existing registration,
and creation of a new registration. The registration method will ultimately end up being
async—for now we have to fake it using Task.FromResult<bool>:

 public static class TaskHelper
 {
 // registers a task with the given name...
 public static Task RegisterTaskAsync<T>(string name, Action
<BackgroundTaskBuilder> configureCallback)
 where T : TaskBase
 {
 // unregister any old one...
 UnregisterTask(name);

 // register the new one...
 var builder = new BackgroundTaskBuilder();
 builder.Name = name;

 // entry point is StreetFoo.Client.Tasks.<Name>Facade
 builder.TaskEntryPoint = string.Format("StreetFoo.Client.Tasks.
{0}Facade", typeof(T).Name);

 // configure...
 configureCallback(builder);

 // register it...
 builder.Register();

 // return a dummy task...
 return Task.FromResult<bool>(true);
 }

 // unregisters a task with the given name...
 private static void UnregisterTask(string name)

Implementing a Sync Background Task | 417

www.SoftGozar.com

 {
 // find it, and unregister it...
 var existing = BackgroundTaskRegistration.AllTasks.Values.Where
(v => v.Name == name).FirstOrDefault();
 if (existing != null)
 existing.Unregister(true);
 }
 }

This implementation ignores tasks that have been retired as you up‐
grade the app (e.g., you may have had a task in v1 that you don’t need
in v2). You’ll need to unregister these too in order to be tidy, and to
preserve any CPU quota that might get used up in handling the errors.

We’ll need to call RegisterTaskAsync<T> whenever we boot the app—but there’s a
wrinkle. When we work like this, we have two ways in which we can boot. We can either
boot interactively into the full Windows Store UI, or we can boot inside of background
TaskHost.exe. If we’re actually running in background mode, we don’t want to change
the task registration or things will get very confusing. As the task registration only makes
sense when we’re actually running the main app, my proposal is that we kick off this
registration from the App class within the Windows Store app itself.

Background tasks are an area where a good logging infrastructure really pays dividends.
To this end, I’m going to recommend adding the open source MetroLog library to our
application. This project is loosely based on the popular .NET log4net and NLog
projects, although it’s hugely slimmed down in order to be sympathetic to the reduced
capabilities in the WinRT API.

To add the MetroLog library to the project, right-click on the UI-agnostic Street‐
Foo.Client project and select Manage NuGet Packages. Search for MetroLog, and add
this project. Figure 14-1 illustrates.

There is one problem that we need to deal with, which is that we need to wait for log
messages to be written before we quit; otherwise, the whole process gets torn down and
we don’t have a chance to finish writing. (MetroLog’s file writing capability is asyn‐
chronous because WinRT’s file APIs are asynchronous.) We can use the ILoggerAsync
interface on MetroLog to get hold of Task instances that relate to the write operations.
We can collect all these and then use Task.WaitAll to flush them all through. To get an
ILoggerAsync, all you have to do is cast a normal ILogger instance.

You should note, though, that as of the time of writing there is a bug
in MetroLog where pending write operations that are not actively
tracked are not flushed on process shutdown—thus, things that we
write as we go using the normal ILogger interface may not be flushed.

418 | Chapter 14: Background Tasks and App Lifetime

Figure 14-1. Including the MetroLog Nuget package

This is a lot to take on board, but there’s just one more part...

In TaskBase we’ll create a RunAsync method that will accept an IBackgroundTaskIn
stance value. This is a WinRT interface, and an instance of this is given to us by the
background task subsystem when the task runs. In the RunAsync method, we can boot
the app and defer to an abstract method called DoRunAsync.

Here’s the code:
public abstract class TaskBase
 {
 private ILogger _logger;

 // runs the operation...
 public async Task RunAsync(IBackgroundTaskInstance instance)
 {
 // logging is a bit tricky as we have to gather all of the messages
 // and flush them out...
 var logTasks = new List<Task<LogWriteOperation[]>>();

 // do some logging...
 var asyncLogger = (ILoggerAsync)this.Logger;
 logTasks.Add(asyncLogger.InfoAsync("Started background task '{0}'
(#{1})...",
 instance.Task.Name, instance.Task.TaskId));

 // run...
 try

Implementing a Sync Background Task | 419

 {
 // start the app...
 await StreetFooRuntime.Start("Tasks");

 // defer...
 await DoRunAsync(instance);
 }
 catch (Exception ex)
 {
 logTasks.Add(asyncLogger.FatalAsync(
 string.Format("Background task '{0}' (#{1}) failed.",
 instance.Task.Name, instance.Task.TaskId), ex));
 }

 // finish...
 logTasks.Add(asyncLogger.InfoAsync("Finished background task '{0}'
(#{1}).",
 instance.Task.Name, instance.Task.TaskId));

 // wait...
 await Task.WhenAll(logTasks);
 }

 // actual runner...
 protected abstract Task DoRunAsync(IBackgroundTaskInstance instance);

 // log...
 protected ILogger Logger
 {
 get
 {
 if(_logger == null)
 _logger = LogManagerFactory.DefaultLogManager.GetLogger
(this.GetType());
 return _logger;
 }
 }
 }

The initial implementation of BackgroundSyncTask won’t do much; it’ll just write a
message to the log. Here’s the code:

 public class BackgroundSyncTask : TaskBase
 {
 protected override Task DoRunAsync(IBackgroundTaskInstance instance)
 {
 this.Logger.Info("Called!");

 // short-circuit...
 return Task.FromResult<bool>(true);
 }
 }

420 | Chapter 14: Background Tasks and App Lifetime

You can see here that we return a Task. We’ve seen this a few times
now—it’s easier to build framework components as asynchronous
from the outset than to retrofit them later.

By convention we’re going to create static ConfigureAsync methods in our task classes
that will configure all of the triggers. In our example, we don’t need to apply conditions
—if you recall, conditions are things like “only when the user is logged on.” We want all
of our tasks to run regardless of state, and hence there are no conditions.

Here’s the configuration code to add to BackgroundSyncTask. This method will create
three separate background tasks as we discussed previously—one triggered by a Main
tenanceTrigger, one triggered by a TimeTrigger, and one SystemTrigger that will
respond when any Internet connection is restored.

 // Add to BackgroundSyncTask...
 public static async Task ConfigureAsync()
 {
 // set up the maintenance task...
 await TaskHelper.RegisterTaskAsync<BackgroundSyncTask>
("BackgroundSyncMaintenance", (builder) =>
 {
 // every 15 minutes, continuous, when on AC...
 builder.SetTrigger(new MaintenanceTrigger(15, false));
 });

 // set up the time task...
 await TaskHelper.RegisterTaskAsync<BackgroundSyncTask>
("BackgroundSyncTime",
 (builder) =>
 {
 // every 15 minutes, continuous, when on lock screen...
 builder.SetTrigger(new TimeTrigger(15, false));
 });

 // set up the connectivity task...
 await TaskHelper.RegisterTaskAsync<BackgroundSyncTask>
("BackgroundSyncConnectivity", (builder) =>
 {
 // whenever we get connectivity...
 builder.SetTrigger(new SystemTrigger
(SystemTriggerType.InternetAvailable, false));
 });
 }

You may have jumped ahead here and thought that it’s possible for all of those tasks to
run at the same time. That is indeed possible! (In fact, as the MaintenanceTrigger and
TimeTrigger have the same interval, if we’re on the lock screen and with AC power,

Implementing a Sync Background Task | 421

these will run at the same time. Later, we’ll look at a way of stopping this from happening
by handling the race condition.)

To complete building out the task, we have to construct and register the façade. When
we’ve done that, we can look at debugging and running the task.

Building the Façade
To build the façade, we need to add a new project. Add a new Windows Store App→Class
Library project to the solution called StreetFoo.Client.Tasks. When that’s done, open
the project properties and change the “Output type” value to Windows Runtime Com‐
ponent. Figure 14-2 illustrates.

Figure 14-2. Setting the project to emit a Windows Runtime component library

When that’s done, you’ll need to make sure that the project is building in the x86 con‐
figuration. (Recall that we did this in Chapter 3; it’s required to get the SQLite library
to load properly.) Right-click on the solution, select Configuration Manager, and con‐
firm that all projects are set to x86. Figure 14-3 illustrates.

422 | Chapter 14: Background Tasks and App Lifetime

Figure 14-3. Confirming that the projects are set to build as x86

As a final step, we need to add references. First, add a reference to the StreetFoo.Client
project from StreetFoo.Client.Tasks. Second, and very important, we need the app
project to have a reference to the task façade project (otherwise, it won’t get packaged).
Add a reference to StreetFoo.Client.Tasks from StreetFoo.Client.UI.

Apart from the fact that it’s contained within a Windows Runtime component library,
we can build the BackgroundSyncTaskFacade class normally. The only thing we have
to watch out for is that we need to abide by the rules. Again, I’m not going to dig into
these rules too much, but in this instance we have to make sure the class is sealed. We
also have to preserve the parameter name on the Run method, which is another WinRT
rule. (Specifically, here it comes through as taskInstance. You’re not allowed to rename
it to instance, for example.)

The one thing we do have to handle in the façade project is a deferral. You may recall
that we needed a deferral in Chapter 7 when looking at sharing, and in Chapter 8 when
looking at searching. Deferrals are used in situations where Windows shells out to your
app, but you need to run asynchronous methods. Because we do intend to drop into
asynchronous methods to do what we need to do in this chapter, you will need to tell
Windows that you’re deferring. Without a deferral, Windows will assume you’ve fin‐
ished your work and tear down your process. This can’t be done in the base class, as the
first await call we make will be in the façade; therefore, it has to be done in the façade.

Here’s the code, which needs to be added to the StreetFoo.Client.Tasks project:

Implementing a Sync Background Task | 423

 public sealed class BackgroundSyncTaskFacade : IBackgroundTask
 {
 public async void Run(IBackgroundTaskInstance taskInstance)
 {
 var deferral = taskInstance.GetDeferral();
 try
 {
 // defer...
 var task = new BackgroundSyncTask();
 await task.RunAsync(taskInstance);
 }
 finally
 {
 deferral.Complete();
 }
 }
 }

At this point, we just need to register the task. We do this using the Declarations tab of
the manifest editor. You have to do this exactly once for each façade you build, but in
each case you have to tell it the sorts of triggers that you want to support. Figure 14-4
shows the task declaration. In it I’ve said that it handles system events and timer events.

Figure 14-4. Declaring the task in the manifest

424 | Chapter 14: Background Tasks and App Lifetime

You might have noticed that when we declare the task, we get an error icon on the
Application tab. The error is that we need to indicate whether we support lock screen
notifications. We need to set this to Badge. This means “bring the badge number or
glyph” forward. We can also bring forward the text from the tile, but I’ll talk about that
more when we look at the lock screen stuff (although you’d hardly ever want to bring
tile text forward, as only one installed app can do this and the user would likely want
to continue to use the default, which happens to be the calendar). When we indicate
that we want to support lock notifications, we also need to specify an icon—specifically,
the badge logo. This is a normal logo like the ones we’ve already seen, but needs to be
24×24 pixels. Figure 14-5 illustrates.

Figure 14-5. The Notifications panel on the Application tab of the manifest editor with
Badge enabled

That’s all we have to do to register the task. Now we just have to try it.

Debugging the Task
Luckily for us, rather than having to wait 15 minutes for the events to trigger, we can
ask Visual Studio to invoke the task for us manually.

Run the app and everything should be fine—the tasks will be registered, but you won’t
see anything different. In Visual Studio, locate the Debug Location toolbar—you may
need to right-click on the toolbar and add this. You’ll see a Suspend button, which you
can use to manually suspend the task operations. (We’re going to talk about application
lifetime in the next chapter.) This button has a drop-down component: drop it down
and you’ll see the operations that you can invoke. Figure 14-6 illustrates.

Implementing a Sync Background Task | 425

Figure 14-6. Selecting a background task to invoke

Invoke one—doesn’t matter which—and your background task will run. Unless you set
breakpoints, you won’t see much. However, by default MetroLog will present some trace
information that you can see in the Output window:

1|2012-10-10T09:48:17.6240993+00:00|TRACE|1|Created Logger
2|2012-10-10T09:48:17.6555459+00:00|INFO|1|BackgroundSyncTask|Started background
task 'BackgroundSyncMaintenance' (#4a758aea-46c6-48ee-8243-9cc998e532cd)...
3|2012-10-10T09:48:17.7957288+00:00|INFO|4|BackgroundSyncTask|Called!
4|2012-10-10T09:48:17.7957288+00:00|INFO|4|BackgroundSyncTask|Finished
background task 'BackgroundSyncMaintenance'
(#4a758aea-46c6-48ee-8243-9cc998e532cd).

From that, we can see that the background task is working properly.

In the version of the code that you can download, I’ve configured the logging system to
use a FileStreamingTarget when booted to support tasks. This logging target streams
messages through to a single file. If you look in the app’s LocalState folder (see Chap‐
ter 6), you’ll find that streamed output. The reason why I bring this up is that with the
tasks registered, your tasks will keep running ad infinitum, or at least until the app is
uninstalled. It’s quite informative to go back and trace what happened over time. Here’s
the output from my machine over a short period of time:

3|2012-10-10T10:34:44.2550430+00:00|INFO|5|BackgroundSyncTask|Started background
task 'BackgroundSyncMaintenance' (#4d7df3e2-cd8b-4306-b1b6-08e9af2dbb25)...
2|2012-10-10T10:34:44.2550430+00:00|INFO|5|BackgroundSyncTask|Started background
task 'BackgroundSyncTime' (#5d6f778e-e6d3-49e1-b8d3-dd0bcf1f4793)...
2|2012-10-10T10:34:44.2550430+00:00|INFO|6|BackgroundSyncTask|Started background
task 'BackgroundSyncTime' (#5d6f778e-e6d3-49e1-b8d3-dd0bcf1f4793)...
3|2012-10-10T10:34:44.2550430+00:00|INFO|6|BackgroundSyncTask|Started background
task 'BackgroundSyncMaintenance' (#4d7df3e2-cd8b-4306-b1b6-08e9af2dbb25)...
4|2012-10-10T10:34:44.6447323+00:00|INFO|7|BackgroundSyncTask|Called!
4|2012-10-10T10:34:44.6447323+00:00|INFO|7|BackgroundSyncTask|Called!
5|2012-10-10T10:34:44.6447323+00:00|INFO|8|BackgroundSyncTask|Called!
6|2012-10-10T10:34:44.7071181+00:00|INFO|6|BackgroundSyncTask|Finished
background task 'BackgroundSyncMaintenance'
(#4d7df3e2-cd8b-4306-b1b6-08e9af2dbb25).
7|2012-10-10T10:34:44.7227041+00:00|INFO|6|BackgroundSyncTask|Finished
background task 'BackgroundSyncTime'
(#5d6f778e-e6d3-49e1-b8d3-dd0bcf1f4793).
5|2012-10-10T10:34:44.6447323+00:00|INFO|8|BackgroundSyncTask|Called!

426 | Chapter 14: Background Tasks and App Lifetime

7|2012-10-10T10:34:44.7227041+00:00|INFO|5|BackgroundSyncTask|Finished
background task 'BackgroundSyncTime' (
#5d6f778e-e6d3-49e1-b8d3-dd0bcf1f4793).
6|2012-10-10T10:34:44.7071181+00:00|INFO|5|BackgroundSyncTask|Finished
background task 'BackgroundSyncMaintenance'
(#4d7df3e2-cd8b-4306-b1b6-08e9af2dbb25).

What this shows is that the tasks can overlap—look for the cluster of “Called!” messages
in the middle of that output. As mentioned before, we don’t want this to happen because
it’s just a waste of our precious CPU time. After a quick look at troubleshooting back‐
ground tasks, we’ll discuss how to resolve this.

Troubleshooting Background Tasks
If things aren’t working for you, you can use the event log to do some troubleshooting.
A common symptom of a broken task is when you try to break into it with Visual Studio
and the entire app shuts down.

If you look in Event Viewer, you will find a whole collection of specialist event logs for
working with Windows Store apps. Open Event Viewer and navigate to “Application
and Services Logs”→Microsoft→Windows. If you’re struggling with anything in Win‐
dows Store apps, you’ll find diagnostic information to help at that location. If you’re
struggling with background tasks specifically, look in the BackgroundTaskInfrastruc
ture log.

You’ll find an Operational entry here. This is a straightforward informational trace on
the load and run operations of the background tasks. If your task is failing, you should
find references to it. (You can also turn on a diagnostic trace, but I’ve found this to be
of limited use.)

Typically you will see two sorts of errors:

• 0x80040154 will be familiar to anyone who’s worked with COM before. It means
“class not registered.” The most likely reason for this happening is that you have the
class name wrong, either in the manifest, or when you referenced it during task
registration.

• 0x80010008 is one that’s caused me hours of wasted time when building Windows
Store apps. This is a “generic failure” message. Things to check here are a) have you
changed the project to Windows Runtime component library, b) have you targeted
the appropriate processor (e.g., if you’re using SQLite, you’ll need x86, not Any
CPU), and c) have you referenced the task project from the Windows Store app
project?

Implementing a Sync Background Task | 427

Restricting the Run Period
As we’ve mentioned a couple of times, we want to stop the tasks from overlapping. In
our implementation, the MaintenanceTrigger is there really only as a backup to the
TimeTrigger in case the user takes the application off of the lock screen. Likewise, there’s
nothing to stop the trigger that fires when connectivity changes from happening at the
same moment as the timers. What I propose here is storing an “expiration time” in the
SQLite database. If a task tries to run and the expiration is not in the past, it’ll duck out
early.

To finesse this, we’ll also add a check to see if we have Internet connectivity. If we don’t,
we’ll duck out early and wait for notification of when connectivity has been restored.

We can check connectivity using the NetworkInformation class. You’ll either be told
that you have no access, local access (i.e., LAN, but no Internet), Internet access, or
constrained access. Constrained access is when you’re using a WiFi hotspot and you hit
a captive portal—that is, something you have to log into (usually involvement payment)
before general Internet access is enabled.

Here’s the property to add to StreetFooRuntime that will expose whether we have con‐
nectivity or not:

 // Add property to StreetFooRuntime...
 internal static bool HasConnectivity
 {
 get
 {
 var profile = NetworkInformation.
 GetInternetConnectionProfile();
 return profile.GetNetworkConnectivityLevel() ==
NetworkConnectivityLevel.InternetAccess;
 }
 }

Restricting the run period is tricky. As mentioned, we’ll do this by setting an expiration
time in the SQLite database. When a task runs, it will look to see if this expiration time
is in the past. If it is in the past, it will run. It will also work on the assumption that if it
is allowed to run, it’s also responsible for setting the next expiration time.

However, if we set the next expiration time at 15 minutes, there’s a chance that we could
skip an entire period if we happened to come in at the exact second that the expiration
was set for. So we need a period less than 15 minutes ideally.

Windows will schedule the task intervals roughly in sync—so we know they’re run
together at 15 minutes. I’m proposing setting the expiration period for five minutes.
There is a slight wrinkle here in that the trigger that fires when we regain the Internet
connection could collide with this expiration period too. Thus, if we detect that we have

428 | Chapter 14: Background Tasks and App Lifetime

no Internet connection, we’ll reset the expiration time. The upshot of this is that we’ll
always run if we are told that we have connectivity.

As a final step, we’ll also check to see if we can log the user on. We did this before when
we were activated in order to handle sharing requests in Chapter 7. To do anything
useful in our sync method, we need to be logged in; thus, we’ll return the result of
RestorePersistentLogonAsync as the final arbiter of whether we can run or not.

There is a problem we need to deal with now. If we have two tasks scheduled with 15-
minute intervals, they will run at the same time. This is certainly something that we
don’t want. What we need to do is treat this as a multithreading problem and impose a
lock on the operation.

Windows will schedule each background task in its own discrete instance of back
groundTaskHost.exe. This means that we can’t rely on an in-memory synchronization
primitive. What we’ll need to do in this instance is create a lock file on disk. The way
that I propose doing this is to bake the capability to handle lock files into TaskBase.
We’ll add a method to acquire a lock, and one to reset the lock. In fact, we’re going to
cheat here—this won’t be a proper lock. A proper lock is supposed to wait until the lock
is released. Our operation will be to simply abort the operation if the lock can’t be
acquired. I’ve proposed doing it this way because that sort of normal locking operation
is hard in WinRT. Also, it wastes the CPU quota, as our desired outcome is to escape
the task as quickly as possible if it’s not appropriate to run.

The first operation is to create a lock file. We’ll create static and instance versions of this
so that we can control locks from both inside the object when it’s running, and from
outside the object when we’re registering it. Here’s the code—the operation is straight‐
forward. All we need to do is try to create a file based on the name of the type that we
pass in. Any failure, and we’ll assume a lock is already established:

 // Add methods to TaskBase...
 internal async static Task<bool> CreateLockFileAsync(Type type)
 {
 try
 {
 var filename = GetLockFileName(type);
 await ApplicationData.Current.LocalFolder.
 CreateFileAsync(filename,
 CreationCollisionOption.FailIfExists);
 return true;
 }
 catch
 {
 // any exception - just return false...
 return false;
 }
 }

Implementing a Sync Background Task | 429

 protected Task<bool> CreateLockFileAsync()
 {
 return CreateLockFileAsync(this.GetType());
 }

To remove the lock, we’ll need some methods to do this. Here’s the code:
 // Add methods to TaskBase...
 internal async static Task ResetLockFileAsync(Type type)
 {
 try
 {
 var filename = GetLockFileName(type);

 // get...
 var file = await ApplicationData.Current.LocalFolder.
GetFileAsync(filename);
 await file.DeleteAsync();
 }
 catch (FileNotFoundException)
 {
 // no-op...
 }
 }

 protected Task ResetLockFileAsync()
 {
 return ResetLockFileAsync(this.GetType());
 }

The reason why we have a static “reset” method is that we need to be able to smoothly
recover in situations where the lock file exists on disk erroneously. (We have a static
“create” method for consistency of design.) What we’ll do is when we register a task,
we’ll reset the lock. This means that whenever the app is actually run, any locks are
cleared. This design is a little wonky in that we could unlock at exactly the same moment
a second task is trying to run, in which case we’ll run two background tasks and po‐
tentially create resource conflict issues.

Here’s the change to RegisterTaskAsync that will unlock the task. This is also where
the method becomes a proper async method, too:

 public static async Task RegisterTaskAsync<T>(string name, Action
<BackgroundTaskBuilder> configureCallback)
 where T : TaskBase
 {
 // unregister any old one...
 UnregisterTask(name);

 // unlock it...
 await TaskBase.ResetLockFileAsync(typeof(T));

 // register the new one...

430 | Chapter 14: Background Tasks and App Lifetime

 var builder = new BackgroundTaskBuilder();
 builder.Name = name;

 // entry point is StreetFoo.Client.Tasks.<Name>Facade
 builder.TaskEntryPoint = string.Format("StreetFoo.Client.Tasks.
{0}Facade", typeof(T).Name);

 // configure...
 configureCallback(builder);

 // register it...
 builder.Register();
 }

Now that we’ve done all that, we can go back and modify the DoRunAsync method so
that it includes both the locking check and the CanRun check. Note that we have the
unlock call in the finally block, and also note that we can’t await in a finally, so we’ll
get a warning here.

This is also where we’ll see the expiration code for the first time. To recap, we’ll try to
get the time that the task expires, abort the request if it hasn’t, and update the expiration
time if it has. Finally, we’ll log on the user and use the result of that as the final answer
to whether we can run.

Here’s the code (I’ve omitted the Configure method for brevity):
 public class BackgroundSyncTask : TaskBase
 {
 private const string SyncExpirationKey = "SyncExpiration";

 protected override async Task DoRunAsync(IBackgroundTaskInstance
 instance)
 {
 // try to lock...
 if (!(await CreateLockFileAsync()))
 {
 this.Logger.Info("Locked - skipping...");
 return;
 }

 try
 {
 // should we run?
 if (!(await CanRunAsync()))
 return;

 // log as usual...
 this.Logger.Info("Called!");
 }
 finally
 {
 // reset the lock file...

Implementing a Sync Background Task | 431

 ResetLockFileAsync();
 }
 }

 private async Task<bool> CanRunAsync()
 {
 // do we have connectivity?
 if (!(StreetFooRuntime.HasConnectivity))
 {
 this.Logger.Info("No connectivity - skipping...");

 // clear the expiration period...
 await SettingItem.SetValueAsync(SyncExpirationKey,
 string.Empty);

 // return...
 return false;
 }

 // check the expiration...
 var asString = await SettingItem.GetValueAsync
 (SyncExpirationKey);
 if (!(string.IsNullOrEmpty(asString)))
 {
 // parse...
 var expiration = DateTime.ParseExact(asString, "o",
 CultureInfo.InvariantCulture).ToUniversalTime();

 // if the expiration time is in the future, do nothing...
 if (expiration > DateTime.UtcNow)
 {
 this.Logger.Info("Not expired (expiration is '{0}') -
 skipping...", expiration);
 return false;
 }
 }

 // we're ok - set the new expiration period...
 var newExpiration = DateTime.UtcNow.AddMinutes(5);
 await SettingItem.SetValueAsync(SyncExpirationKey,
 newExpiration.ToString("o"));

 // try to log the user in...
 var model = new LogonPageViewModel(new NullViewModelHost());
 return await model.RestorePersistentLogonAsync();
 }

 // code omitted...
 }

You can test this by setting breakpoints and using VS to trigger the tasks manually.

432 | Chapter 14: Background Tasks and App Lifetime

You should note in the code download that I’ve added a check to see
if there is a debugger attached and skipped the expiration code. I did
this to make debugging the actual syncing operation that we’ll build
later easier.

Here’s some debug messages from an “organic” run of the system:
3|2012-10-12T20:14:12.7679692+00:00|INFO|5|BackgroundSyncTask|Started background
task 'BackgroundSyncTime' (#efc424e3-8d7c-405b-b1c1-c6c9d92b9871)...
2|2012-10-12T20:14:12.7629737+00:00|INFO|5|BackgroundSyncTask|Started background
task 'BackgroundSyncMaintenance' (#9bcd676b-825e-44d9-a0bb-bcfa8d6869f4)...
4|2012-10-12T20:14:13.2420173+00:00|INFO|8|BackgroundSyncTask|
Locked - skipping...
5|2012-10-12T20:14:13.2720318+00:00|INFO|8|BackgroundSyncTask|
Finished background task 'BackgroundSyncMaintenance'
(#9bcd676b-825e-44d9-a0bb-bcfa8d6869f4).
7|2012-10-12T20:14:13.3970527+00:00|INFO|6|BackgroundSyncTask|Called!
8|2012-10-12T20:14:13.8802410+00:00|INFO|5|BackgroundSyncTask|Finished
background task 'BackgroundSyncTime'
(#efc424e3-8d7c-405b-b1c1-c6c9d92b9871).

Implementing the Sync Function
Now that we have the infrastructure in place, we can look at implementing the actual
sync function.

This function will have two operations. First, it will send up to the server any new data
that is waiting to go. If you’re building field-service apps, it’s important that this happens
in the background. Oftentimes, work is actually signed off in poor signal areas. You then
want to take advantage of the device traveling around to the next job to increase your
chances of getting a working connection.

Second, the device needs to pull down new work to do. Again, in field service this is
important, as you don’t want the operatives idle, or indeed doing canceled work. Keeping
the pending work list fresh is vital.

Coming back to the discussion at the start of this chapter, 15 minutes is probably too
long to wait for either of these operations. If you have new work to do, my recommen‐
dation is to send a push notification to the device. This will prompt the user to open the
app, whereupon you can explicitly go out because at that point the app will be running
properly, and you can use a foreground activity to get the work to do from the server.
This is, in my opinion, an acceptable compromise.

You may also recall that at the start of this discussion I said that to preserve CPU cycles
we’d grab new work from the server, but not actually process it into the database. We’ll
save that new work to disk and process it when the app is back in the foreground.

Implementing the Sync Function | 433

Sending Changes
We’ll look first at how to send up changes. We laid the foundation for this work back in
Chapter 11, when we implemented the report singleton view. We added a Status prop‐
erty to ReportItem that would track whether an item had to be sent to the server. We
also created an ImageChanged property that would track whether the image had to be
transmitted back up to the server.

We will now see how to handle sending up changes to the data, but in these pages I’m
not going to go through uploading images. I’ve chosen not to make the server handle
user images, for various and obvious reasons.

You can transmit images using the HttpClient class that we have seen
variously used in previous chapters.

The first thing we’ll need is a proxy to call up to the server with the changes. Actually,
we’ll need two proxies, as the insert and update operations are separate. Specifically,
we’ll need to call HandleCreateReport and HandleUpdateReport. To keep things sim‐
ple, we’ll just look at inserts in these pages—the code download does support updates.

If you recall, each ReportItem has a local ID (Id) and a server-side ID (NativeId). In
Chapter 11, when we added the ability to insert new reports into the local database, we
set NativeId to be a GUID. At this point, when we upload the report to the server, we’ll
get back the newly allocated server-side ID. We’ll have to patch this new value into the
NativeId field of the local SQLite database after the insert operation completes.

To facilitate this, we’ll create a CreateReportResult class. It’s been a while since we built
service proxies, but if you recall we have a convention whereby any responses from the
server are wrapped in specialist “result objects” that extend ErrorBucket. We’ll either
get an error back from the server, or we’ll get a native ID. Here’s the implementation of
CreateReportResult:

 public class CreateReportResult : ErrorBucket
 {
 public string NativeId { get; private set; }

 internal CreateReportResult(string nativeId)
 {
 this.NativeId = nativeId;
 }

 internal CreateReportResult(ErrorBucket bucket)
 : base(bucket)
 {

434 | Chapter 14: Background Tasks and App Lifetime

 }
 }

The next step is to create the interface for the service proxy. The CreateReport method
will take primitives that map to the fields in the ReportItem class. Here’s the code:

 public interface ICreateReportServiceProxy
 {
 Task<CreateReportResult> CreateReportAsync(string title,
string description,
 decimal longitude, decimal latitude);
 }

Now we can look at the implementation. We’ve built a few service proxies now and they
generally look the same, so I’ll just quickly present this one. Please refer back to previous
chapters if the construction is unclear:

 public class CreateReportServiceProxy : ServiceProxy,
 ICreateReportServiceProxy
 {
 public CreateReportServiceProxy()
 : base("CreateReport")
 {
 }

 public async Task<CreateReportResult> CreateReportAsync(string title,
string description, decimal longitude, decimal latitude)
 {
 // package up the request...
 var input = new JsonObject();
 input.Add("title", title);
 input.Add("description", description);
 input.Add("longitude", longitude.ToString());
 input.Add("latitude", latitude.ToString());

 // call...
 var executeResult = await this.Execute(input);

 // get the user ID from the server result...
 if (!(executeResult.HasErrors))
 {
 var reportId = executeResult.Output.GetNamedString("reportId");
 return new CreateReportResult(reportId);
 }
 else
 return new CreateReportResult(executeResult);
 }
 }

Note how we’re extracting the new server-side report ID out of the result. We’ll use that
later.

Implementing the Sync Function | 435

For the actual sync, we’ll build the functionality for doing this in the ReportItem class
and defer out to that from the BackgroundSyncTask class.

As mentioned, there will be two phases to this: we’ll send changes first, and then we’ll
download new work. For the sending phase, we’ll need to get the reports that have
changed, and then decide which service proxy to call.

This implementation has simplified error handling, compared to what
you would need in production apps. In production scenarios, it’s
essential that you do not lose data that exists only on the device. This
requires elegant error handling as well as complex and well-tested
retry algorithms. In this implementation I’ve proposed being rather
blunt—if you can’t send the change, junk it. This really isn’t good
enough for production, but it’s OK for our illustration. By the way,
the hardest part of this problem is having sketchy connectivity (i.e.,
connectivity that comes and goes inconsistently) during the sync
process. You have to handle each call carefully, trapping and han‐
dling errors and retrying appropriately. This is notoriously hard to
test in the lab.

We need to handle the sending portion with multiple methods. We’ll create a static
database query method that will return all of the changed jobs. We’ll create an instance
method in ReportItem that will actually send the changes for us. We’ll round this off
with a static method that will coordinate all of that.

Here’s the implementation of GetLocallyChangedReportsAsync:
 // Add method to ReportItem...
 private static async Task<IEnumerable<ReportItem>>
GetLocallyChangedReportsAsync()
 {
 var conn = StreetFooRuntime.GetUserDatabase();
 return await conn.Table<ReportItem>().Where(v => v.Status !=
ReportItemStatus.Unchanged || v.ImageChanged).ToListAsync();
 }

Next, the method that glues it all together. This will call out to get the changes and then
defer to the individual per-report update method. I’ve added some logging in here so
that you can get a better idea of what’s happening. Here’s the code:

 // Add method to ReportItem...
 internal static async Task PushServerUpdatesAsync()
 {
 var logger = LogManagerFactory.DefaultLogManager.GetLogger
<ReportItem>();
 logger.Info("Pushing server updates...");

 // get all of the changed reports...
 var reports = await GetLocallyChangedReportsAsync();

436 | Chapter 14: Background Tasks and App Lifetime

 // how many?
 logger.Info("Found '{0}' changed report(s)...", reports.Count());

 // if nothing, quit...
 if (!(reports.Any()))
 return;

 // otherwise...
 var tasks = new List<Task>();
 foreach (var report in reports)
 tasks.Add(report.PushServerUpdateAsync());

 // wait...
 await Task.WhenAll(tasks);

 // finished...
 logger.Info("Finished pushing updates.");
 }

I haven’t implemented this next recommendation for fear of making
the code fussy, but a trick you can do with this sort of code is con‐
tinually checking that you have connectivity before you go through
each step.
For example, you might call out to get the local reports, but abort the
operation if it turns out that you have no connection before you go
out to PushServerUpdateAsync. This will reduce your CPU quota—
or more rightly you can save it to such time as you know you have
better connectivity.

Finally, we can look at the transmission portion. This is relatively easy—we examine the
Status property and then branch accordingly. Here’s the code:

 // Add method to ReportItem...
 internal async Task PushServerUpdateAsync()
 {
 this.Logger.Info("Pushing update for #{0} ({1})...", this.Id,
this.Status);

 // what happened?
 if (this.Status == ReportItemStatus.Unchanged)
 {
 // no-op...
 }
 else if (this.Status == ReportItemStatus.New)
 {
 // insert...
 var service = new CreateReportServiceProxy();
 var result = await service.CreateReportAsync(this.Title,
this.Description, this.Longitude, this.Latitude);

Implementing the Sync Function | 437

 // patch back the native ID, if it worked...
 if (!(result.HasErrors))
 this.NativeId = result.NativeId;
 else
 this.Logger.Warn("Failed to insert report: " +
result.GetErrorsAsString());
 }
 else
 throw new NotSupportedException(string.Format("Cannot handle '{0}'.",
this.Status));

 // reset our flag...
 this.Status = ReportItemStatus.Unchanged;

 // set...
 var conn = StreetFooRuntime.GetUserDatabase();
 await conn.UpdateAsync(this);
 }

This implementation only handles inserts. The code download han‐
dles updates and deletes as well.

Notice in the code how we reset the flag when we’re done—this is the part that sets the
Status property back to Unchanged. You can also see that we patch back the server-side
report ID into the local copy, replacing our temporary ID.

To test this, run the app, log on, and create a new report. To upload it to the server, kick
off the background task using Visual Studio. You’ll be able to see what’s happening using
the Output window. If you really want to prove to yourself that the change has occurred,
add a new report, sync, shut down the app, and uninstall the app. Deploy and run the
app again, and when you’ve logged in and the reports have been downloaded from the
server, the report that you added will come back again. Note that you’ll get a stock image
because we don’t transmit any image that you’ve taken up to the server.

Another thing you can do is to create a new report and leave the app idle until the
background task runs naturally. Or, you can create a new report—turn off your ma‐
chine’s network connection and then turn it back on. This will kick off the system con‐
nectivity trigger, and you’ll see the update.

Receiving New Work
Now that we know that we can trigger a task and send updates, we’ll look at how we can
adapt this to receive new work.

438 | Chapter 14: Background Tasks and App Lifetime

There is some subtlety here. I’m going to propose that we do this in quite a blunt fashion
by downloading the entire set of reports from the server each time. In a production app,
a better way to do this is to download a list of report IDs with version numbers. You can
then check to see if you have new or changed reports and download them piecemeal.
This saves both bandwidth and battery, and is a good thing to do. However, it makes
the implementation quite complicated—more complicated than I would want it in this
book.

Also, there is a problem in that our background task will always run whether the app is
running or not. If new work is available and the app is running in the foreground, it
would be ideal to signal the running app so that it can update the UI to indicate that
new data is available. This is actually quite hard to do, and I’ll talk more about that in
the next section.

For now, we’ll deal with the download. As we’ve discussed previously, to save our CPU
quota we’ll spool the report data to disk and pick it up again when we need it.

To start, we’ll modify BackgroundSyncTask so that after it uploads any changes, it’ll
download the reports. We’ll then use JSON.NET to stringify the reports that we down‐
load and store them in TempState in a file called SpooledReports.json. Here’s the code:

 public class BackgroundSyncTask : TaskBase
 {
 private const string SyncExpirationKey = "SyncExpiration";
 internal const string SpoolFilename = "SpooledReports.json";

 protected override async Task DoRunAsync(IBackgroundTaskInstance
 instance)
 {
 // should we run?
 if (!(await CanRunAsync()))
 return;

 // send up changes...
 await ReportItem.PushServerUpdatesAsync();

 // still have connectivity?
 if (StreetFooRuntime.HasConnectivity)
 {
 this.Logger.Info("Getting reports from server...");

 // get...
 var proxy = ServiceProxyFactory.Current.GetHandler
<IGetReportsByUserServiceProxy>();
 var reports = await proxy.GetReportsByUserAsync();

 // errors?
 if(!(reports.HasErrors))
 {
 this.Logger.Info("Stashing reports on disk...");

Implementing the Sync Function | 439

 // save...
 var json = JsonConvert.SerializeObject(reports.Reports);
 var file = await ApplicationData.Current.TemporaryFolder.
CreateFileAsync(SpoolFilename, CreationCollisionOption.ReplaceExisting);
 await FileIO.WriteTextAsync(file, json);
 }
 }
 }

 // code omitted...
 }

You’ll note that I’ve added a check for connectivity (i.e., the call to StreetFooRun
time.HasConnectivity). Again, this was something mentioned before; it’s an easy
check to do, and it quickly allows us to see if we’re likely to be successful with the call
and preserve our CPU quota if not.

Next we have to load up that spooled data. We have a method in ReportItem called
UpdateCacheFromServerAsync. This method calls up to the server and updates the local
database. My proposal is that if we have spooled data on disk, we short-circuit this
operation and rather than go out to the network, we’ll just parse the spooled JSON
containing the reports.

I must admit, I wondered about whether this was a good approach
for a long time. It seems “impure” to work like this—we’d be hijack‐
ing an expected operation and doing something non-obvious and
tricky to trace. However, in the end I got to a point where I felt it was
pragmatic enough to use here, and also a decent example to show you.

The first thing we’ll need is a method that loads up the spooled reports from disk. Here’s
the code:

 // Add method to ReportItem...
 private static async Task<IEnumerable<ReportItem>>
 GetSpooledReportsAsync()
 {
 IStorageFile file = null;
 try
 {
 file = await ApplicationData.Current.TemporaryFolder.
GetFileAsync(BackgroundSyncTask.SpoolFil
ename);
 }
 catch (FileNotFoundException)
 {
 return null;
 }

440 | Chapter 14: Background Tasks and App Lifetime

 // load...
 try
 {
 var json = await FileIO.ReadTextAsync(file);
 return JsonConvert.DeserializeObject<IEnumerable<ReportItem>>
(json);
 }
 finally
 {
 // delete the file—we have to do this regardless, but we can't
 // wait here...
 file.DeleteAsync();
 }
 }

You’ll notice here that we delete the file when we’re done. There’s a wrinkle here where
we can’t await in a finally, so we’re just firing and forgetting the delete. (We saw the
same thing when removing the lock file in TaskBase.) This could create a race condition
where we collide the file. (Even though our app and the background tasks are running
in separate isolated processes, the file effectively becomes shared memory and hence
needs to be synchronized for multithread/multiprocess access.) This would lead us to
the problems with locking with async—something that’s beyond the scope of this chap‐
ter. If you use the normal locking routines (including the lock keyword), bad things
will happen. There are ways that you can do this. Stephen Toub, a member of the Mi‐
crosoft team that works on the asynchrony implementation, has a number of blog posts
on this topic, including “Building Async Coordination Primitives,” of which Asyn
cLock is one example. My hope is that these primitives will end up in the full WinRT
library over time.

But I digress: the trick is to delete the file so that this is a one-shot deal, as opposed to
stopping the app from ever calling back to the server to get fresh data.

While we’re here, we’ll also need a method that indicates whether we have a file available
on disk. Here’s the code:

 // Add to ReportItem...
 internal static async Task<bool> HasSpooledReportsAsync()
 {
 try
 {
 await ApplicationData.Current.TemporaryFolder.GetFileAsync(
 BackgroundSyncTask.SpoolFilename);
 return true;
 }
 catch (FileNotFoundException)
 {
 return false;
 }
 }

Implementing the Sync Function | 441

http://blogs.msdn.com/b/pfxteam/archive/2012/02/12/10266988.aspx

We can now modify the code that updates the cache to use the spooled file. Here it is:
 // Modify method in ReportItem...
 public static async Task UpdateCacheFromServerAsync()
 {
 IEnumerable<ReportItem> reports = await GetSpooledReportsAsync();
 if (reports == null)
 {
 // create a service proxy to call up to the server...
 var proxy = ServiceProxyFactory.Current.GetHandler
<IGetReportsByUserServiceProxy>();
 var result = await proxy.GetReportsByUserAsync();

 // did it actually work?
 result.AssertNoErrors();

 // set...
 reports = result.Reports;
 }

 // update...
 var conn = StreetFooRuntime.GetUserDatabase();
 foreach (var report in reports)
 {
 // load the existing one, deleting it if we find it...
 var existing = await conn.Table<ReportItem>().Where(v =>
 v.NativeId == report.NativeId).FirstOrDefaultAsync();
 if (existing != null)
 await conn.DeleteAsync(existing);

 // create...
 await conn.InsertAsync(report);
 }
 }

This will almost work end to end. The problem we have to fix now is that although this
will run fine when we’re in the background, when we navigate to the Reports page it’ll
use the data in SQLite (as the behavior we’ve had thus far is that unless we explicitly
request a refresh, we’ll “go local” and get the current version in SQLite).

This is why we needed the method to see if spooled reports were available. If we detect
that they are, we can force a refresh whenever the Reports page is activated. This will
flush through the changes at a point in time when it’s most appropriate, and when we’re
in the foreground and hence not using up our CPU quota. Here’s the code:

 // Modify method in ReportsPageViewModel...
 public override async void Activated(object args)
 {
 base.Activated(args);

 // do we have spooled reports?
 var force = false;

442 | Chapter 14: Background Tasks and App Lifetime

 if (await ReportItem.HasSpooledReportsAsync())
 force = true;

 // refresh...
 await DoRefresh(force);
 }

To test this, locate the app’s TempState folder in File Explorer and you’ll find there is no
SpooledReports.json. Run the project and use Visual Studio to kick off the background
operation. This will create the file; immediately terminate the app using Debug→Stop
Debugging.

Start the app again, and when the Reports page displays you’ll find the file has disap‐
peared. The badge will also be updated on the app tile, although you may not notice
that if you haven’t added new reports. For extra points, you can create a report and then
repeat the process. If you do this, you’ll see the badge value change.

Signaling the App from the Background Task
There’s a gaping hole in the background task APIs—namely, that there’s no elegant way
to signal information from background tasks to any running tasks. As mentioned, if the
Reports page is active and the background task triggers and discovers new jobs, it should
be able to tell the Reports page to update itself. There is no standard mechanism in the
APIs to do this. There is a mechanism for passing back numeric information to drive a
progress bar, but that’s it.

The documentation says that you’re supposed to use persistent storage to do this, the
implication being that you store a file on disk on one side, and detect it and respond on
the other. Curiously, this is exactly what we’ve done with our SpooledReports.json—we
create it in the background task and then ReportPageViewModel modifies its behavior
because of its existence.

When I was prototyping the work for this chapter, I created a signaling system based
on the “observer” design pattern. I haven’t put it in these pages because of space con‐
straints. The general shape of the solution looked like the following. You may care to
build out your own implementation along these lines:

1. Create a base class called SignalBase. The idea is that developers would create
specializations of these (e.g., NewReportsAvailableSignal).

2. When view-models start, they tell a manager class that they want to be told about
signals. (This is the central part of the “observer” pattern.) View-models also im‐
plement an interface called ISignalSink if they want to participate in this activity.

3. Next, create a database entity called SignalItem. When background tasks want to
send a signal, they create instances of SignalItem and store them in SQLite. The
approach here is that each specialized signal class can contain read/write properties

Implementing the Sync Function | 443

that were JSON stringified into the SQLite database along with their owning class.
Effectively what happens here is that the specialized signals end up being serialized
into the database.

4. The manager creates a recurring ThreadPoolTimer. Every n seconds (I did 15), it
will load up any SignalItem instances from SQLite, and then clear the table.

5. Each SignalItem is then examined in turn and a specialized signal instance created
from it, along with any serialized data. The view-models that registered an interest
in this are contacted in turn and passed the signal via the ISignalSink interface.

When I tried this, it worked very well. The background task would run and the app
would automatically update itself. As mentioned, I didn’t include it only because of space
constraints.

Putting the App on the Lock Screen
Finally, we need to put the app on the lock screen. We do this by calling the
RequestLockScreenAsync method on the TaskHelper WinRT class. You can’t check to
see if you are on the lock screen; otherwise, you could keep nagging the user to add you,
and that’s the sort of behavior that Microsoft is not keen on from well-behaved apps.
Here’s the code (I’ve omitted code for brevity):

 // Modify method in App...
 protected override async void OnLaunched(LaunchActivatedEventArgs args)
 {
 // Do not repeat app initialization when already running, just
ensure that
 // the window is active
 if (args.PreviousExecutionState == ApplicationExecutionState.
 Running)
 {
 Window.Current.Activate();
 return;
 }

 // code omitted...

 // configure tasks...
 await BackgroundSyncTask.ConfigureAsync();

 // ask about the lock screen...
 await TaskHelper.RequestLockScreenAsync();
 }

If you run the code now, you’ll be prompted to add the app to the lock screen. Figure 14-7
illustrates.

444 | Chapter 14: Background Tasks and App Lifetime

Figure 14-7. Prompting for permission to add to the lock screen

The app won’t appear on the lock screen until the badge has changed. (You’re supposed
to show new notifications here, so any old badge value won’t carry forward.) You can
change the badge number by refreshing the Reports page. Once you add the app to the
lock screen and refresh the reports, you’ll see something like Figure 14-8.

Figure 14-8. The lock screen with the StreetFoo “pika” icon and badge

Now you’ll find that your TimeTrigger tasks will also run. You’ll also get more CPU
quota, but that’s difficult to measure!

Implementing the Sync Function | 445

CHAPTER 15

Sideloading and Distribution

The most basic form of distribution is a test distribution. You would most likely use this
if you wanted to give a partner, customer, or other members of the team a version of
your app to test.

You’ll recall that when you start developing Windows Store apps in Visual Studio, the
first thing that happens is you are asked to obtain a developer license. This is a form of
sideloading. With a developer license installed, you can deploy any apps from any source
onto that device.

There are two things to bear in mind with this. First, sideloading totally opens up the
device to Windows Store malware by removing the deployment restrictions. Second,
you are only permitted to use this approach for testing. You cannot use it for production
deployment, and Microsoft is very strict about this. (One read of this is that Microsoft
gets paid for the special licenses that you need to support production sideloading, but
does not get paid for the developer licenses used for development sideloading.)

For my test, I created a separate virtual machine and installed Windows 8 Pro 32-bit. (I
usually use 64-bit, and use 32-bit for variety more than anything.) What I wanted to do
was have an entirely separate installation. I created the machine without a Microsoft
Account association—that is, I used a local account to log on.

So let’s do this for your application. The first thing you have to do is set the product
build mode to Release. There are two reasons for this. First, in order to get the app
certified, you have to build it in release mode. Second, there are certain dependencies
on Win32 DLLs, both specifically through inclusion of the Visual C++ Runtime Package
and also through SQLite. As is standard, Windows does not come installed with the
debug bit.

Once we’ve set our app to release mode, we can create a package. In Solution Explorer,
right-click on the project and choose Store→Create App Packages. You’ll be presented

447

with a wizard. In the first instance, we don’t want to upload the package to the Store.
Figure 15-1 illustrates.

Figure 15-1. Indicating that we want to create a test package

The next page of the wizard will ask where we want to create the package, what our
version number is, and which configurations we wish to deploy. Figure 15-2 illustrates
my choices. Notice that I’ve included both x86 and ARM support. This refers all the way
back to Chapter 3, where the inclusion of SQLite first demanded that we think about
which processor architectures we supported. Inclusion of Bing Maps also has an impact
of sorts here; that, too, requires us to manage the processor targeting explicitly.

Incidentally, we are not creating an x64 package here. If you recall the discussion in
Chapter 3, I mentioned this wasn’t necessary, as an x86 implementation gets de facto
coverage on x64 machines anyway. However, you certainly can create separate x64
packages if you wish. The one option we can’t choose is Neutral (aka Any CPU), because
SQLite and Bing Maps prevent the Any CPU selection.

Click the Create button and the packages will be created. The page that follows suggests
that you run the Windows App Certification Kit. Don’t do this—you don’t need to do
it for testing. As we’ll see, it takes ages to run, and at this point it’s a waste of time.

On disk you’ll get a bunch of folders and files. Each folder relates to exactly one processor
architecture package. Figure 15-3 illustrates the contents of one of the folders.

What you’ll see in the folder is:

• A PowerShell script for installing the package.
• An .appx file containing the actual application.
• An .appxsym file containing debugging information.
• A .cer file containing a certificate. This will be installed on the target machine to

validate the .appx file on deployment.
• The Add-AppDevPackage.resources folder containing string resources for, amaz‐

ingly, the PowerShell install script (i.e., it’s nothing to do with your app).

448 | Chapter 15: Sideloading and Distribution

Figure 15-2. Defining package options

Figure 15-3. Contents of the ARM package folder

• The Dependencies folder containing other .appx packages that need to be installed
along with your app. In our instance, it’s the Visual C++ Runtime Package.

All we have to do on the test VM is physically transfer that folder over to the target
machine and run the PowerShell script. You can run the PowerShell script by

Sideloading and Distribution | 449

right-clicking on the .ps1 file and selecting “Run with PowerShell.” The script actually
needs admin rights to work, but the script will elevate rights for you if required.

Three things should happen next. If you don’t have a developer license installed on the
machine, you’ll be prompted to get one. To test this, I created a new Microsoft Account
at Outlook.com and used that email address. Next, the script will install the certificate
included with the bundle. Finally, it will install the actual app. This last part is done
using the PowerShell script Add-AppxPackage.

Not surprisingly, Remove-AppxPackage can be used to remove a pack‐
age. Get-AppxPackage can be used to enumerate the packages on the
device. These scripts are actually quite helpful—from time to time,
you can get deployment failures. You can force-remove the bad pack‐
age by getting the ID with Get-AppxPackage and then performing the
removal with Remove-AppxPackage.

When the script is completed, you’ll find the app on the Start screen and you can run
it as normal.

As mentioned, the likelihood is that if you’re doing this, you’re giving it to someone else
to test. If you need to, you can use the Remote Debugging tools that we discussed in
Chapter 6 to connect to the remote machine.

Using the Windows App Certification Kit
One of the big advantages of Windows 8 and Windows RT compared to other platforms
is that you can do some of the validation for yourself using the Windows App Certifi‐
cation Kit. (This is often just called the WACK, pronounced “whack.”) This is a tool that
performs static and dynamic analysis of your code. Importantly, it runs the same tests
as the Windows Store backend does when you upload your code. To this end, it’s well
worth running your code through the WACK before you submit it to the Store.

The reason I wanted to talk about the WACK before we talk about Store submissions
generally is because of sideloading:

• If you intend to distribute your app publicly through the Store, Microsoft will only
do so if your app passes Microsoft’s run through its copy of the WACK. Thus, if you
want to get your app on the Store, it’s worth validating it yourself first.

• If you intend to distribute your app through production sideloading, but not
through the store, it’s Microsoft’s recommendation that you still run the WACK.

I won’t go into what the WACK actually does, as these rules are likely to change. Any
errors that you’ll get will be self-explanatory. However, the most common error that
occurs when using the WACK is forgetting to set the solution to Release mode. Also, if

450 | Chapter 15: Sideloading and Distribution

http://outlook.com

you try to run the WACK with a Debug build, you can get false positives. In short, make
sure you test a Release build.

All of this means that Microsoft will not allow a Debug build into the
Store.

Distribution Through Production Sideloading
Now, let’s look at production sideloading, a more complex distribution method, because
both the rules and the process are tricky. However, you have to do it in order to be
properly licensed. The general process is that any Windows 8 or Windows RT device
comes with sideloading capability switched off. You need to first turn this capability on,
and then install your apps.

In this section I’m going to talk about Microsoft software licensing.
You should know that I’m not an expert on licensing, and as a poli‐
cy I don’t give advice on licensing. What’s presented here is guid‐
ance only—you should seek your own professional, qualified advice
on licensing matters.

Windows 8 is available in three versions. The first is a vanilla, “home” version, which is
simply called Windows 8. Ignore that version—we’re not talking about that at all. The
other versions are Windows 8 Pro and Windows 8 Enterprise.

You can find information on this whole process on TechNet.

As I mentioned, we won’t be discussing licensing or talking about what is best—however,
I do need to present a bit of information about licensing to complete the picture of how
and when you can sideload.

Microsoft prefers to sell software to businesses under what it calls Volume Licensing
(VL). When an end user buys Windows software off the shelf, or preinstalled on a
computer, that is a retail license and outside of VL. The idea behind VL is that due to a
volume purchase a business will receive a discount, easier management, and certain
rights.

Distribution Through Production Sideloading | 451

http://bit.ly/1jXhsyi

One VL program, Software Assurance (SA), is a program that allows for the buying of
software on a quasi-subscription basis. Sideloading only works on Windows systems
that are SA-licensed copies, or that fit into other programs that have similar privileges
to those granted by SA. The Enterprise Edition of Windows 8 cannot be bought other
than through SA. What this means is that if you go and buy 50 laptops from Dell, Lenovo,
or whomever, those will come with retail licenses of Pro that you have to upgrade or
replace with SA licenses. So, if your situation allows for sideloading, read on.

Turning on Sideloading on Windows 8
To turn on sideloading on Windows 8, you do one of these things. (I’ll talk about Win‐
dows RT in a moment.)

• Take a Windows 8 Enterprise machine, join it to the Active Directory domain, and
turn on a group policy item. This group policy item is called “Allow all trusted
applications to install,” and can be found in Computer Configuration→Adminis‐
trative Templates→Windows Component→App Package Deployment.

• Take a Windows 8 Enterprise machine, don’t join it to the domain, and then activate
what’s known as the enterprise sideloading product key.

• Take an SA-licensed Windows 8 Pro machine (it doesn’t matter if it’s joined to the
domain or not), and then activate the enterprise sideloading product key.

• Take a non-SA-licensed Windows 8 Pro machine (it doesn’t matter if it’s joined to
the domain or not), fix up the license to make it “comply with the rules,” and then
activate the enterprise sideloading product key.

It’s this “complying with the rules” step that’s difficult. Essentially, Microsoft wants you
to be on SA. As of the time of writing, you can make a non-SA Pro license similar enough
to an SA license by doing the following:

• Enlisting the device in Microsoft Intune. Intune is a cloud-based service that pro‐
vides basic mobile device management (MDM) features. We’ll talk about this again
later.

• Enlisting the device in a Virtual Desktop Access (VDA) license.
• Enlisting the device in a Companion Device Licence (CDL) license.

If you don’t know what VDA or CDL licenses are, don’t worry—
most people don’t. It just illustrates why you’d likely need specialist
advice if you need to do this.

452 | Chapter 15: Sideloading and Distribution

If you can’t do any of those things, the stopgap is to buy the enterprise sideloading key.
For reference, as of the time of writing, you could buy enterprise sideloading product
keys in packs of 100 for $3,000 (i.e., about $30 per unit).

However, there is a risk associated with sideloading. Note that the description on the
group policy items reads as follows:

If you enable this policy setting, you can install any trusted app package.
A trusted app package is one that is signed with a certificate chain that
can be successfully validated by the local computer.

Installing Apps
Once you have the sideloading configured, you can install the app.

The expectation from Microsoft is that you do this installation through Intune. For
Windows RT, this is essentially the only practicable way to do it. If you use Intune, what
will happen is that you’ll configure the device such that it is associated with your com‐
pany’s Intune account. You upload the application binaries to Intune and configure the
policy items to decide who gets the app, and then the app is either automatically or
manually downloaded by the users.

If you don’t want to use Intune, there are two other ways that you can get your app
installed.

The first way is to do as shown before and use the PowerShell scripts to install the apps.
You can do this manually, or you can configure domain logon scripts to run the Pow‐
erShell scripts. (This would obviously be less easy with Windows RT, as you don’t have
domain logon on Windows RT.)

The second way to do this is to bake the app into any desktop image that you push out
to desktops in your business.

Distribution Through the Windows Store
So far we’ve considered delivery of test builds for debugging, or private builds of the
app for internal use. Many people will want to deliver their apps through the public
Windows Store.

I’m not going to go through all of the whys and wherefores of getting your app onto the
Store—for one thing most of it is obvious, and for another Microsoft will likely keep
changing the details of the process, rendering obsolete any screenshots that I present.
However, I will take you through the fundamentals.

You will need a developer account on the Store. You will need to pay for this, although
as of the time of writing MSDN subscribers get a paid developer account for free.

Distribution Through the Windows Store | 453

You’ll need to “reserve the name” for your app on the Store website. This tells Microsoft
that you intend to use the name and stops others from claiming it. You can reserve a
name for 12 months. If you don’t use it in that period, others can claim it.

Once you have reserved the name, you can associate the Windows Store project in Visual
Studio with the name in the Store. To do this, right-click on the project in Solution
Explorer and select Store→Associate App with the Store.

You’ll be asked to log in to your Store account. Once you do this, you’ll be asked to select
the name of the app from the names registered against your account. In Figure 15-4,
you can see that I have reserved the name StreetFoo.

Figure 15-4. Associating the app with the store

Click Next, and then Associate to associate the project. This involves changing the
project settings, and also downloading and installing your private developer certificate
from the Store.

If you look in the Packaging tab of the manifest editor, you’ll see that the application
details have been changed to those you entered on the Store. In Figure 15-5, you can

454 | Chapter 15: Sideloading and Distribution

see that the name of the publisher is given as AMX Software Ltd (the name of my
business), and that the package name is given as mbrit.StreetFoo. These replace any
placeholder values used for debugging.

Figure 15-5. Modified manifest settings

The name mbrit.StreetFoo is actually a mistake I made when regis‐
tering the name in the Store. Ideally, this should be a Java-style re‐
versed domain name. My domain is mbrit.com, so the name should
really be com.mbrit.StreetFoo.

Once you’ve done the association, you need to go through the packaging steps. This is
essentially the same process we went through at the beginning of the chapter. However,
this time when you start the wizard, choose Yes for the question “Do you want to build
packages to upload to the Window Store?” Other than that, the process is the same.

With the packages created, go back onto the Store and complete the store listing. As
part of that process, you will be invited to upload the packages. Upload the packages for
both the x86 and ARM processors. Figure 15-6 illustrates.

Distribution Through the Windows Store | 455

http://mbrit.com

Figure 15-6. Uploading the packages

And that’s it! Once you complete the listing, Microsoft will set about validating the app.
Once it’s satisfied that the rules have been followed, your app will be live in the Store.

456 | Chapter 15: Sideloading and Distribution

APPENDIX A

Cryptography and Hashing

In this appendix we’ll talk about SSL (Secure Sockets Layer), device security, and en‐
cryption in SQLite, and then look at practical examples of hashing, generating random
data, and symmetric encryption.

SSL
I will touch on SSL first. It goes without saying that all communication with your server/
servers should be done over SSL. There’s no excuse for this not to be the case.

Device Security
In a business context, what project sponsors are really worried about are devices getting
lost with sensitive information on them. The way to square the circle is to rely on the
device to be secure and for your apps to rely on that security. Baking your own security
into the app may not actually get you very far, which is one of the reasons why this topic
isn’t a central thrust of this book despite its importance in the problem domain. You
shouldn’t need to think about it, or do anything special in order to make it happen.

Mobile devices are supposed to be managed via something called mobile device man‐
agement (MDM). MDM is provided in two parts. One part is provided by the platform
vendor and describes “policies” on the device that support device management and
security. For example, the platform vendor may bake in a policy that can be turned on
or off that indicates whether the user has a passcode on the device, another that specifies
whether the device is wiped after n incorrect passcodes, and so on. The second part of
MDM is a management tool that pushes down policy to those devices. Examples of
MDM vendors at the time of writing include AirWatch, MobileIron, Good Technology,
and Microsoft Intune. As an aside, MDM products also have “value adds,” things like
secure document lockers and mobile application management (MAM), which is usually
interpreted as private app stores operated by a company for its employees.

457

In enterprise environments, what customers are typically most worried about is data
loss. The easiest way to handle this is to encrypt the device. On Windows 8 Pro and
Enterprise you have BitLocker support, so all you have to do here is turn that on. (The
baseline edition of Windows 8 intended for home use—that is, not the Professional or
Enterprise editions—doesn’t have BitLocker support, but you’d rarely find that in busi‐
ness.) On the Windows RT side, there isn’t a thing called “BitLocker,” but the device
encryption that you can activate is actually BitLocker under the hood.

With both of those technologies, you should be “safe” if a machine is lost in the field in
terms of not leaking the data. What seems to be missing as of the time of writing is the
ability to remote-wipe the entire machine. Although information is due to come out on
this, it appears remote wipe on Windows RT only kills off messaging-related data and
not application data generally. With Windows 8 the story is slightly different, as MDM
products have more freedom in what they can do.

The upshot: always make sure you have encryption switched on so that if you do lose a
device, it’s less of a problem than it could be.

SQLite
SQLite has no practical way built in to lock down access to data contained within.

There is support for encrypting data within SQLite databases—if you
search online for it, you can find a number of open source and com‐
mercial solutions.

However, this brings me back to my original point: you are better served relying on the
security on the device to keep your data safe, rather than trying to bash your app into
implementing security that will unavoidably be poorer.

Hashing
In the first of three practical examples that we’ll look at in these pages, we’re going to
explore hashing.

I’m not going to try to cover the advantages or disadvantages of different hashing al‐
gorithms—I’m just going to explain the basics of how to call them. I’m also not going
to get into how to apply them to common usage patterns, and particularly here I’m
talking about hashing with regards to password security. The reason why I’m ducking
this is a) it’s complicated, and b) if you’re reading this even just two years after I wrote
it, industry best practice would likely not be what it is today.

458 | Appendix A: Cryptography and Hashing

The hash algorithms that you are given in WinRT are MD5, SHA-1, SHA-256, SHA-384,
and SHA-512. In these pages, I’m going to show you SHA-512. In normal .NET, you get
those just enumerated, and you also get RIPEMD160. To be honest, and I’m not sure
this is necessarily valid logic, I’d never heard of RIPEMD160 until I wrote this paragraph,
so I don’t think it’ll be sorely missed in Windows Store app development.

For this exercise, we’re going to create a new Windows Store app project that can accept
some text to be hashed. We’ll then hash it using SHA-512, both to a base-64 string and
a hex dump of the underlying bytes. In the project, we won’t create a complex app with
MVVM abstraction, etc. We’ll just create a little proof-of-concept app.

Create a new Visual C# – Windows Store – Blank App project called HashScratch. To
MainPage, add a StackPanel control, three TextBlock controls, a Button control, and
three TextBox controls, as shown in Figure A-1. The TextBox controls need x:Name
values of textInput, textBase64, and textHex.

Figure A-1. The layout of our scratch project

For clarity, here’s the XAML representing the layout of the controls.
 <StackPanel Margin="10,10,10,10" Width="800"
 HorizontalAlignment="Left">
 <TextBlock Text="To hash"></TextBlock>
 <TextBox x:Name="textInput" Text="Hello, world!" Height="100"
AcceptsReturn="true"></TextBox>
 <Button Content="Hash!" Click="HandleHashClick"></Button>
 <TextBlock Text="Base-64"></TextBlock>
 <TextBox x:Name="textBase64" AcceptsReturn="true"></TextBox>
 <TextBlock Text="Hex"></TextBlock>
 <TextBox x:Name="textHex" AcceptsReturn="true"></TextBox>
 </StackPanel>

You’ll notice in the XAML that I’ve defined a Click method for the button. You can
either do this, or just double-click on the button on the design surface to create a default
handler.

Hashing | 459

In Chapter 6, when we were working with files, we saw that we worked directly with
WinRT classes that replaced the .NET file I/O class that we’d been used to previously.
In the .NET world, you’ll be familiar with the various stream classes that we were given
to work with file data and also other forms of data. In WinRT there are new types for
dealing with streams, which you can find in the Windows.Storage.Streams namespace.
Also in this namespace you’ll find an interface called IBuffer. This is used to represent
a “lightweight stream.” In .NET we would have often just used a byte[] value. (I’ll talk
more about that in a moment.)

When we’re working with hashing, we use two classes. We use HashAlgorithmProvid
er to get a worker class that will actually do the hashing, and we use Cryptographic
Buffer to marshal data into and out of IBuffer instances. CryptographicBuffer isn’t
a buffer in its own right—it’s a static class with a bunch of static helper methods. Cryp
tographicBufferHelper would actually be a better name.

There are classes in CryptographicBuffer to convert strings to binary—specifically,
they act to emit an IBuffer instance containing the binary representation of the string.
You have to supply an encoding to this, and you have limited choice: UTF-8, UTF-16
little endian, and UTF-32 big endian. In all normal cases, you’d be looking to choose
UTF-8.

Once you have your IBuffer-wrapped input, you can then pass it over to the algorithm
of your choice. This will return another IBuffer instance containing the hashed output.
Once you have that, you can do what you want with it. In our scenario we’re going to
convert it into a base-64 string, and also into a string containing a dump of the hex
values.

One “top tip” for .NET developers is this. You may find that you need
to convert your IBuffer into a byte[] array. From first principles this
is pretty difficult, but there are extension methods that you can ac‐
cess that do all of this lifting for you. However, they are quite well
buried; you need to include the System.Runtime.InteropServi
ces.WindowsRuntime namespace.

Here’s the code for our hashing operation:
 // Add method to MainPage...
 private void HandleHashClick(object sender, RoutedEventArgs e)
 {
 // get the text...
 var inputText = this.textInput.Text;

 // put the string in a buffer, UTF-8 encoded...
 IBuffer input = CryptographicBuffer.ConvertStringToBinary(inputText,
 BinaryStringEncoding.Utf8);

460 | Appendix A: Cryptography and Hashing

 // hash it...
 var hasher = HashAlgorithmProvider.OpenAlgorithm
(HashAlgorithmNames.Sha512);
 IBuffer hashed = hasher.HashData(input);

 // format it...
 this.textBase64.Text = CryptographicBuffer.
EncodeToBase64String(hashed);
 this.textHex.Text = CryptographicBuffer.EncodeToHexString(hashed);
 }

Obviously in that method we’re processing the output twice—once to get a base-64
string, and then again to get a hex dump. You’d almost certainly never do this in the real
world; it’s just for illustration so that we can see both types of output.

Run the project and click the button, and you’ll see a result like Figure A-2. You can
compare the output by running the same input string through various websites that will
compute hashes from arbitrary strings. Search online for “calculate sha-512 hash” to
find one you like.

Figure A-2. A successful run of the SHA-512 hash algorithm

Generating Random Data
I won’t take you through building this, as it’s very simple. You’ll find a RandomSpike
project in the downloads for this appendix.

Random data is used frequently in cryptography, but there are also plenty of examples
where having good-quality random data in your software is a good thing. The random-
number generator provided by System.Random is a classic pseudorandom number gen‐
erator and isn’t particularly random. It compromises randomness for speed. The
random numbers used in cryptography have to be as close to “organically random” as
possible, and generators used for this purpose will take longer to run and use more
processor horsepower.

Generating Random Data | 461

Generating a random number is easy—there’s a method in CryptographicBuffer that
will give you an integer value. Here’s an example:

 private void HandleRandomInteger(object sender, RoutedEventArgs e)
 {
 this.buttonInteger.Content = CryptographicBuffer.GenerateRandomNumber()
.ToString();
 }

We can also create a random block of data using the GenerateRandom method. This will
return back an IBuffer, which we can work with in the usual way. Here’s an example:

 private void HandleRandomData(object sender, RoutedEventArgs e)
 {
 var buffer = CryptographicBuffer.GenerateRandom(1024);
 this.textRandom.Text = CryptographicBuffer.
 EncodeToHexString(buffer);
 }

Now that we know how to generate arbitrary blocks of data, you can use this to generate
other numeric primitives through the expedient of creating enough bytes to make one.
For example, if you want a 64-bit integer, you can ask for eight bytes of random data
and then convert it to a primitive type using the standard .NET BitConverter class. To
get a byte[] value out of an IBuffer instance, you can use the extension methods that
become available when you include the System.Runtime.Interop.WindowsRuntime
namespace. Here’s an example:

 private void HandleRandomLong(object sender, RoutedEventArgs e)
 {
 // get eight bytes of data...
 var buffer = CryptographicBuffer.GenerateRandom(8);

 // convert it...
 ulong val = BitConverter.ToUInt64(buffer.ToArray(), 0);
 this.buttonLong.Content = val.ToString();
 }

That’s all there is to generating random data. Let’s round off this chapter by talking about
symmetric encryption.

Symmetric Encryption
Symmetric encryption is the process whereby you can take a block of data, encrypt it
using a key, and then decrypt it back to the original data using that same key.

462 | Appendix A: Cryptography and Hashing

I’ve made an assumption in this chapter that asymmetric encryp‐
tion is less interesting to readers of this book. Asymmetric encryp‐
tion tends to have very specific use cases, and as a developer you
generally have to abide by the implementation rules in order to do
anything with it. Symmetric encryption is much more of a helpful, ad
hoc concept to have around.

In this section we’re going to create another scratch project, EncryptionScratch, and
add a TextBox control containing data that we can encrypt.

Figure A-3 shows the layout that we’re aiming for.

Figure A-3. Encryption scratch app layout

Here’s the XAML for the form:
 <StackPanel Margin="10,10,10,10" HorizontalAlignment="Left" Width="400">
 <TextBlock Text="Text to encrypt"></TextBlock>
 <TextBox AcceptsReturn="true" Height="150" Text="Hello, world."
x:Name="textData"></TextBox>
 <StackPanel Orientation="Horizontal">
 <Button Content="Encrypt" Click="HandleEncryptClick"></Button>
 <Button Content="Decrypt" Click="HandleDecryptClick"></Button>
 </StackPanel>
 </StackPanel>

When we do asymmetric encryption, we need to provide both a key and an initialization
vector (IV). Although it looks like that’s just a password in two parts, they are very
different. The key is supposed to be your super-secret; only you know its value. The IV
is “less secret”—its purpose is to randomize the input stream so that the same key yields
different output. (And thus it’s a little similar to the concept of a salted hash—it makes
it harder to discover the underlying values used as part of the data-hiding process.)

In the sample you can download, I created two random values using the Cryptogra
phicBufffer.GenerateRandom method that we saw before. One of these we’ll use for
the key, and the other we’ll use for the IV.

Symmetric Encryption | 463

The approach to using the symmetric encryption calls is similar to that used in hashing:
we create a buffer containing the input data, get the algorithm that we want, create a
key from the “key material,” and then call CryptographicEngine, passing everything
in.

Here’s the code to encrypt the text:
 private const string keyAsHex =
"d1ee5548bae50c6c52e785dbee523f022a1f39eb316dad2d2d50cc72957da4ef";
 private const string ivAsHex =
"b2ba13011d845de7be1a246331a46f5d56ceea4bb6e81fde547b54440ad6d415";

 private void HandleEncryptClick(object sender, RoutedEventArgs e)
 {
 // input...
 var input = CryptographicBuffer.ConvertStringToBinary(this.textData
.Text, BinaryStringEncoding.Utf8);

 // create...
 var keyMaterial = CryptographicBuffer.DecodeFromHexString(keyAsHex);
 var iv = CryptographicBuffer.DecodeFromHexString(ivAsHex);

 // encrypt...
 var encryptor = SymmetricKeyAlgorithmProvider.OpenAlgorithm(
 SymmetricAlgorithmNames.AesCbcPkcs7);
 var key = encryptor.CreateSymmetricKey(keyMaterial);
 var encrypted = CryptographicEngine.Encrypt(key, input, iv);

 // show...
 this.textData.Text = CryptographicBuffer.EncodeToHexString(
 encrypted);
 }

 private void HandleDecryptClick(object sender, RoutedEventArgs e)
 {
 // we'll do this in a moment...
 }

In that code, the algorithm name that I’ve proposed using is AesCbcPkcs7. In .NET we
used to just ask for the RijandaelManaged encryption class (which does AES encryption,
like the one we’ve selected here). You could then set properties on this instance to devise
the cipher model (CBC in our example) and the padding mode (PKCS #7 in this ex‐
ample). In WinRT, you don’t get to set properties on the encryption worker as we did
before; you have to ask for a qualified object that matches what you want.

If you run the preceding code, you can try encrypting some text. Figure A-4 shows a
result.

464 | Appendix A: Cryptography and Hashing

Figure A-4. A successful encryption call

The decryption routine is the reverse of all that. Here’s the code:
 private void HandleDecryptClick(object sender, RoutedEventArgs e)
 {
 // input...
 var input = CryptographicBuffer.DecodeFromHexString(this.textData.Text);

 // create...
 var keyMaterial = CryptographicBuffer.DecodeFromHexString(keyAsHex);
 var iv = CryptographicBuffer.DecodeFromHexString(ivAsHex);

 // decrypt...
 var decryptor = SymmetricKeyAlgorithmProvider.OpenAlgorithm(
 SymmetricAlgorithmNames.AesCbcPkcs7);
 var key = decryptor.CreateSymmetricKey(keyMaterial);
 var decrypted = CryptographicEngine.Decrypt(key, input, iv);

 // show...
 this.textData.Text = CryptographicBuffer.ConvertBinaryToString
(BinaryStringEncoding.Utf8, decrypted);
 }

Now you can run the project and both encrypt and decrypt text. To test this properly,
enter some plain text to encrypt and press the Encrypt button a multiple, but known,
number of times. The string will get longer and longer as you do this. Once you’re
satisfied, click the Decrypt button the same number of times, and you’ll eventually get
back to the plain-text value that you entered originally.

Symmetric Encryption | 465

APPENDIX B

Unit Testing Basics for Windows Store Apps

I’m being very careful to call this section “Unit Testing Basics,” emphasis on the “Basics.”
Describing unit testing is beyond the scope of this book, and my objective here is to
provide a basic outline of unit testing for total newbies. Specifically, I’m looking to show
how the integrated unit-testing features work in Visual Studio 2012, and finally demon‐
strate that what we’ve done in the book is unit-testable.

We’ve gone to great lengths in our project to use MVVM—a very common objective of
which is to provide unit-testing vectors. The question is, does it work?

Unit Testing for Newbies
If you’re not using unit testing in your day-to-day work, you should be. Unit testing is
like having a savings account and the spare cash and discipline to put a little aside each
month. There’s a little upfront pain, but when you need it, you’ll be extremely glad it’s
there.

The principle of unit testing is based on the truism of software engineering that “system
in known state plus known value yields predictable result.” So, if you have a method that
multiplies two values together, you can create a unit test that plugs in two known values
and checks against a known result. The principle is that if you happen to break that
method somewhere down the line, you’ll be told about it before it ends up in the cus‐
tomer’s hands.

So a typical test might look like this:
// test the results of multiply...
private void TestMultiply()
{
 // make sure that the Multiply things method returns an expected result...
 Assert.AreEqual(77, MyMagicClass.Multiply(7, 11));
}

467

That’s a contrived example, but the principle behind it is sound. What you’re really
looking to do is build up a set of functions that are able to go through and exercise all
of the individual parts of the app. There are all sorts of benefits to unit testing, such as
easier refactoring, and having the tests operate as a type of documentation. Another
strong advantage—which is a big thing I like about it—is that if you build your tests
first you can get all of the sides of a problem expressed in test “stubs” before you start
coding. For example, if you are writing tests to check the functionality of code that emails
invoices to customers, you can go ahead and block out tests for “what happens if there’s
no email address,” “what happens if there are no invoices,” “what happens if the email
address is there, but invalid,” and so on. This “test first” approach makes development
easier as well as making your code more likely to pass acceptance testing first time.

Anyway, it’s not my intention here to teach you everything about unit testing or why it’s
a good thing. If you’re new to it, all you need to know to follow along is that we’re going
to produce test functions that are able to exercise different aspects of the code that we’ve
built so far.

Creating a Test Project
Creating a test project is much as you would imagine: simply add a new Windows Store
Unit Test Library project into the solution. Figure B-1 illustrates.

Figure B-1. Adding a new Unit Test Library project

You’ll need to modify the references for the test project to include the UI-agnostic
project.

468 | Appendix B: Unit Testing Basics for Windows Store Apps

Testing RegisterServiceProxy
The reason why we built all of the MVVM stuff in this book was so we could do things
like decouple the view-model and service proxies from the actual service implementa‐
tion when we were undertaking unit testing.

This concept applies equally well to databases as it does to web services. The principle
behind decoupling comes back to the central premise of unit testing—that is, “system
in known state plus known value yields predictable result.”

For example, if the remote service is unavailable when your tests are running, all of your
tests that rely on it being available will fail. That situation would create a whole swath
of invalid test results. Moreover, this assumes that the service’s persistent store is in a
known state when you start—for example, you might try to register a user with a given
username that happens to work the first time, as the username hasn’t been used, but
would fail on subsequent attempts. (This point also applies to local databases or file
stores—having a persistent state between runs can really muck up unit testing, or at
least make it difficult to revert to a known state on start.)

The way to get around this is to create a simulated implementation of the service and
call that simulation rather than the real thing.

The easiest thing to do is create a “fake” implementation. This involves building a new
object that implements whatever interface or interfaces the originally consumed object
did. You can then make that object return whatever you fancy depending on what you
are testing. Faking is the method that we’re going to use here.

In .NET, it is common to create mock objects. Usually this involves using a library; a
popular one to do this with .NET is called Moq. However, for security reasons, Windows
Store apps do not support the technology that enables Moq to emit new assemblies and
consume them using System.Reflection.Emit. Thus, for all intents and purposes,
mocking is currently impossible in Windows Store apps.

To get started, the first thing to do is create a class called FakeRegisterServiceProxy.
This will implement IRegisterServiceProxy, but its implementation of the Regis
terAsync method will not call the server. The following code simply returns a GUID if
the supplied username is mbrit; otherwise, it’ll return an error. Note that we have to
obtain a Task to return to the caller.

 public class FakeRegisterServiceProxy : IRegisterServiceProxy
 {
 public Task<RegisterResult> RegisterAsync(string username, string email,
string password,
 string confirm)
 {
 if (username == "mbrit")
 return Task.FromResult<RegisterResult>(new RegisterResult
(Guid.NewGuid().ToString()));

Testing RegisterServiceProxy | 469

https://github.com/Moq

 else
 {
 var error = new RegisterResult(new ErrorBucket());
 error.AddError("Invalid username.");
 return Task.FromResult<RegisterResult>(error);
 }
 }
 }

There are two more things that we need to do in order to make this functional. We need
to get TinyIoC to return the fake implementation rather than the real one, and we need
to get the unit tests to handle async methods.

Starting the Runtime and Handling async Methods
We already have a method for starting the runtime—namely, the Start method in
StreetFooRuntime. We need to make sure this is called whenever our test is initialized.

Visual Studio will create a unit-test class called UnitTest1 for us when we create a new
project. Rename this class as RegisterServiceProxyTests and then add a Setup meth‐
od to get the test started. Decorating this with the TestInitialize attribute ensures
that Visual Studio’s test runner will confirm that this method completes before executing
any discovered tests.

Visual Studio’s test runner has support for asynchronous test and setup methods. As
per our discussion on asynchronous methods in Chapter 2, we have to give the unit-
test runner a chance of understanding that our method will run asynchronously. As you
might expect, we can do this by marking the method as async and having it return a
Task instance.

As part of the setup, we need to override the default behavior of the TinyIoC’s automatic
registration such that when we ask for a handler for IRegisterServiceProxy, we get
our faked implementation back. We do this by calling the SetHandler method on the
ServiceProxyRuntime singleton. Here’s the code:

 [TestClass]
 public class RegisterServiceProxyTests
 {
 [TestInitialize]
 public async Task Setup()
 {
 await StreetFooRuntime.Start("Tests");

 // set...
 ServiceProxyFactory.Current.SetHandler(
 typeof(IRegisterServiceProxy),
 typeof(FakeRegisterServiceProxy));
 }
 }

470 | Appendix B: Unit Testing Basics for Windows Store Apps

Next we need to actually test the method. As this method uses asynchronous methods,
we again have to mark it as async and have it return a Task instance. It’s the Task instance
that makes this all magically work—it tells the Visual Studio test runner that it has to
handle the asynchrony.

 // Add method to RegisterServiceProxyTests...
 [TestMethod]
 public async Task TestRegisterOk()
 {
 var proxy = ServiceProxyFactory.Current.GetHandler
<IRegisterServiceProxy>();

 // ok...
 var result = await proxy.RegisterAsync("mbrit",
 "matt@amxmobile.com", "Password1", "Password1");
 Assert.IsFalse(result.HasErrors);
 }

To run the tests, select Test Run All Tests from the menu. The Test Explorer will open
and you’ll see the results of your tests. Figure B-2 illustrates.

Figure B-2. A successful test run

Testing the View-Models
That’s the basics of the unit testing covered. The view-models need a little bit more work,
as these are dependent on having a IViewModelHost to use. Luckily, this was built with
unit testing in mind, so all we need to do is to create a fake implementation of that too.

The Visual Studio test runner can run tests in parallel, so we can’t use a static singleton
for this class. We’ll have to create a new instance of it for each test. This is easily done.
The functionality that I’m proposing putting into this example will just keep track of
how many messages have been displayed. With invalid data, we’ll validate that we got
an error. With valid data, we’ll validate that we did not. We’ll have to capture the message
shown, as we’ll need to do specific validation on this to determine whether the operation
worked or not. In a production implementation, you’d want to be more nuanced than
this.

Testing the View-Models | 471

Here’s the code for FakeViewModelHost. For this illustration, I’ve left some of the meth‐
ods as throwing a “not implemented exception”:

 internal class FakeViewModelHost : IViewModelHost
 {
 public int NumMessagesShown { get; private set; }
 public string LastMessage { get; private set; }

 internal FakeViewModelHost()
 {
 }

 public IAsyncOperation<IUICommand> ShowAlertAsync(ErrorBucket errors)
 {
 return ShowAlertAsync(errors.GetErrorsAsString());
 }

 public IAsyncOperation<IUICommand> ShowAlertAsync(string message)
 {
 // update the number of messages...
 this.NumMessagesShown++;
 this.LastMessage = message;

 // return...
 return Task.FromResult<IUICommand>(null).AsAsyncOperation
<IUICommand>();
 }

 public void ShowView(Type viewModelInterfaceType, object args = null)
 {
 throw new NotImplementedException("This operation has not been
implemented.");
 }

 public void ShowAppBar()
 {
 throw new NotImplementedException("This operation has not been
implemented.");
 }

 public void HideAppBar()
 {
 throw new NotImplementedException("This operation has not been
implemented.");
 }

 public void GoBack()
 {
 throw new NotImplementedException("This operation has not been
implemented.");
 }
 }

472 | Appendix B: Unit Testing Basics for Windows Store Apps

Finally, here are our two tests:
 [TestClass]
 public class RegisterPageViewModelTests
 {
 [TestInitialize]
 public async Task Setup()
 {
 await RegisterServiceProxyTests.SharedSetup();
 }

 [TestMethod]
 public void TestRegisterCommandWithInvalidPasswords()
 {
 var host = new FakeViewModelHost();
 var model = ViewModelFactory.Current.GetHandler
<IRegisterPageViewModel>(host);

 // set...
 model.Username = "mbrit";
 model.Email = "mbrit@mbrit.com";
 model.Password = "foobar";
 model.Confirm = "barfoo";

 // check...
 Assert.AreEqual(0, host.NumMessagesShown);

 // run - this will fail validation on the password...
 model.RegisterCommand.Execute(null);

 // check...
 Assert.IsFalse(host.LastMessage.Contains("The new user has been
created."));
 }

 [TestMethod]
 public void TestRegisterCommandWithOk()
 {
 var host = new FakeViewModelHost();
 var model = ViewModelFactory.Current.GetHandler
<IRegisterPageViewModel>(host);

 // set...
 model.Username = "mbrit";
 model.Email = "mbrit@mbrit.com";
 model.Password = "F00bar";
 model.Confirm = "F00bar";

 // check...
 Assert.AreEqual(0, host.NumMessagesShown);

 // run - this will fail validation on the password...
 model.RegisterCommand.Execute(null);

Testing the View-Models | 473

 // check...
 Assert.IsTrue(host.LastMessage.Contains("The new user has been
created.")); }
 }

And that’s it. Now if we run our tests, all three will pass (as illustrated in Figure B-3).

Figure B-3. Our successful unit tests

474 | Appendix B: Unit Testing Basics for Windows Store Apps

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
Active Directory, 206
Add New Item dialog box, 105, 235, 258
alerts, 37
All Files (*.*), 194
“Any CPU” apps, 92
API keys, 62, 328
app bars

adding, 120
behavior of, 124–127
button position on, 15
checking touch operations, 133
complex implementations, 127–139
functionality of, 119
images, 140–152
“more” buttons, 380
multi-select grids, 126
and search, 292
showing context options, 136
showing on multiple selections, 128–133
showing on right-click, 135
single-select grids, 126
in snapped view, 375
sticky mode for, 131

app lifetime, 410
App.xaml, 18
AppHarbor, x, 17
applications, running side-by-side (see snapped

view)

arguments, type vs. type-less, 73
Assembly File Selector dialog box, 7
asymmetric encryption, 462
asynchrony

avoiding problems with, 59
general principle of, 53
local notifications and, 167
returning “void”, 58
state machines and, 57
in WinRT, 55

attribute decoration, 51
autocomplete, 278

B
background tasks

app lifetime and, 410
basic concepts of, 411
cache updates, 109
CPU usage quotas, 412, 414
debugging, 425
execution model for, 415
indicators for, 75
module name indicator, 50
positive and negative aspects of, 409
run period restriction, 428
signaling apps from, 443
sync background tasks, 416–432
sync function, 433–445
triggers and conditions, 413

475

troubleshooting, 427
badges

functionality of, 155
glyphs for, 167
lock screen notifications, 425
refreshing, 445
self-updating, 176
templates for, 157

base class library (BCL), 2
battery life, 409

(see also background tasks)
API design and, 4
network constraints, 413
preserving on mobile platform, 409
smartphone BYOD systems and, 415
video images and, 366

behaviors, 290
Bing Maps API (see maps)
Bing Maps Visual Studio extension (VSIX), 329
BitLocker, 458
BitmapDecoder, 364
Blank App project

adding to existing solution, 5
structure of, 17

Blend design software, 290, 377
British English language support, 390

(see also localization)
Build - Deploy, 198
busy indicators

positioning of, 75
showing, 77–82

buttons
adding to app bars, 122
“more” buttons, 380
placement of, 15

C
cache managers, 110
Calendar app, 12, 125
calling the server

register method, 63–67
register server function, 67
service proxies, 60
steps of, 60

camel-case, 102
camera

adding new options, 355
EditReportPage, 345–352
for field service applications, 343

image resizing, 363
photo capture, 344
save validation, 73, 360
saving/canceling, 352
temporary file handling, 356–360
video images, 366

captive portals, 428
changes, syncing of, 434
Character Map dialog box, 140
charms, in snapped view, 371
Chocolatey package manager, 48
Class Library, 10
“clock on the wall” time, 412
COM subsystem, 1
commands, functionality of, 38
CommandsRequested event, 293
Common folder, 18
Common Language Runtime (CLR), 2
compatible API approach, 12
compile-time type checking, 74
conditions, and background tasks, 413
Configuration Manager dialog box, 94, 422
connected standby (CS), 411–412
connection strings, 90
constrained access, 428
context options, displaying, 136
context switching, 54
contracts vs. declarations, 236
ControlChannelTrigger, 413
CPU scheduling, 410, 412, 414
crash information, 243
cross-platform technologies, 12
current location

retrieving, 322
simulator use, 327

D
data

clean up during suspended phase, 410
pixel data, 364
preventing loss of, 457
saving, 362
symmetric encryption of, 462
validation of, 360

data binding, 26, 129, 316
data synchronization, 206, 209
data, caching locally, 100–117

building local cache, 109
cache updates, 112

476 | Index

items property, 114
mapping JSON data, 100
ReportsPage, 105
returning reports from server, 113
templates, 109
test reports, 102
user database, 103

data, sharing of
basic data, 227
DataTransferManager, 224
deferrals, 224, 233
filesystem items, 232
HTML data, 232
image data types, 253
images, 229, 251
images sharing test, 254
long-running operations, 249
pull requests, 233
quick links, 254
receiving text, 235
RTF data, 232
runtime startup problem, 245
ShareTargetPage, 239
troubleshooting, 237–238

databases
for local data (see local persistent data)
“async-capable”, 110

DataTransferManager, 224
Debug tab dialog box, 242
debugging

of background tasks, 425
client for, 207

(see also unit tests)
obtaining information, 238
of exceptions, 221
of share operations, 242
tracking information, 242
and Windows Store submission, 451

Declarations tab, 197
declarations vs. contracts, 236
decryption, 465
deferrals, 224, 233, 280
dependency injection, 48
dependency properties, 128, 307, 372
deployment (see distribution)
developer licenses, 447
device security, 457
diagnostic information, 296
direct control vs. IoC, 47

displays, pixel density and, 405
distribution

test distribution, 447
through production sideloading, 451
through Windows Store, 453
Windows App Certification Kit (WACK),

450
document associations, 196
document-centric methods, 64, 76
domain-connected devices, 207
DoRegistration method, 42
dot notation, 316, 399
driving directions, 339
Dynamic Data Exchange (DDE), 223

E
EditReportPage

building view-model, 346–352
creation of, 345

encryption, 458, 462
error handling, 36, 436
error messages, 238
event logs, 243
exceptions, debugging, 221
expiration time, 428
extension methods, 73, 131, 297
external libraries

installing with Solution Explorer, 91
pitfalls of, 48

F
F1 key, 305
field service applications, x, 343, 366, 409, 414,

433, 458
fields, mapping of, 100
File Type Associations dialog box, 197
FileOpenPicker dialog box, 194
files, working with

file associations, 196–201
file picker, 193–196
folders available, 201
in StreetFoo, 210–221
.resw vs. .resx files, 387
roaming files, 206–210
sandboxed file access, 201–206
sharing, 232

Index | 477

temporary files, 356
(see also Package Resource Index (PRI)

files)
FileScratch app

creation of, 194
launching, 198

filters, 257, 265, 284
find on page function, 292

(see also search)
flyouts

definition of, 293
MySettingsFlyout, 301
settings pane, 297

frames, 364
French language support, 390

(see also localization)

G
garbage collection

in suspended phase, 410
MetroLog bug, 418
temporary file handling, 356
with CLR, 2

GDI+, 364
Geolocation, 323

(see also location services; maps)
German language support, 399

(see also localization)
GetBitmapAsync, 254
GetValueAsync, 97
glyph image method, 140, 167
Google Maps, 331
GPS functions, testing of, 327

(see also location services; maps)
grids

for singleton views, 311
handling item clicks on, 274
modifying, 216, 270
single vs. multi-select, 126
in snapped view, 371

Group Policy, 207

H
hashing, 458
Help options

accessing with charms, 293
F1 key, 305
help pane creation, 303

rendering markup, 306
standard approach to, 303

hibernate mode, 411
hit highlighting, 292
HTML data, sharing of, 232
HTML5 development track, 11

I
icons

creating new, 198
default in Windows Store apps, 198
in Windows charmap.exe utility, 140
on lock screen, 413

ImageHelper, 364
images

for app bars, 140–152
for search recommendations, 282
localization of, 402–406
resizing, 363
scaling, 405
thumbnails of, 230
unique ID for, 344

(see also photos; pictures)
video images, 366

indeterminate indicators, 75
indicators, busy indicators, 75
inheritance, 129, 297
Input attributes, 291
Internet connections

dealing with unreliable, 100
network constraints and, 413
run period restrictions and, 428

inversion of control (IoC)
basic idea of, 48
TinyIoC container, 48
TinyIoC default settings, 49
vs. direct control, 47

iPad app development, 12, 223, 238
ItemClickedCommand, 373
Items Page, 105
items property, 114
IViewModel, 97, 224
IViewModelHost, 41, 297

J
JSON data, mapping, 100, 113
JSON.NET, 61, 100, 113
“just in time” code compilation, 92

478 | Index

K
Krueger, Frank, 84

L
language support (see localization)
languageCode convention, 402
latitude/longitude display, 350

(see also location services)
licenses, 447, 451
lifetime, of apps, 410
line-of-business (LOB) applications, x
Ling methods, 111
local access networks (LAN), 428
local notifications

asynchrony and, 167
badges, 164, 167
functionality of, 155
notification builders, 157
tiles, 170–177
toast, 158–167
turning off/on, 156
XML templates for, 156

local persistent data
caching data locally (see data, caching local‐

ly)
clean up during suspended phase, 410
database uses, 83
SQLite overview, 84
SQLite use, 85–89
storing settings, 89

localization
basics of, 387
conventions for, 398
of images, 402–406
.pri files for, 387–393
of strings, 393–401

location services
capability in manifest editor, 326
map integration, 328–338
permissions, 323, 327
retrieving current location, 322–328
shelling to Bing Maps, 339–342
singleton view for, 311
uses for, 311

LocationNarrative, 350
lock screen, 412, 425, 444
logon pages

building, 70–75

layout of, 71
modifying view, 97
service proxy for, 68

LogonPageViewModel, 97
loose coupling, benefits of, 48

M
Mail app, 12, 124, 229
maintenance, of background tasks, 425

(see also debugging)
MaintenanceTrigger, 413
makepri.exe utility, 388
malware, 193, 447
Manage NuGet Packages dialog box, 49, 91
managed code environment, 1, 7, 13
manifest editor, 183, 197, 252, 326, 356, 366, 424
mapping, 100
maps

Bing Maps control, 329
Bing Maps registration, 328
feature salability, 311
input defaults, 331
showing points on, 336

Markdown notation, 308
markup extensions, 22
memory, 410
MessageDialog class, 37
metadata, 4
Metro-style projects

creating new, 5
native UI technology for, 12

MetroLog library, 418
Micro-ORM (object-relational mapping), 87
Microphone capability, 366
Microsoft Account Connected, 206, 447
Microsoft Intermediate Language (MSIL), 92
mobile application management (MAM), 457
mobile device management (MDM), 457
Model-View-Controller (MVC), 25
Model/View/View-Model (MVVM), 25, 68, 370
Modern UI projects

description of, ix
Items Page, 105
reductionist approach in, 109

ms-appdata URI protocol, 217
ms-appx: protocol handler, 150
mscorlib, 8
multi-select grids, 126
multi-threading, 217

Index | 479

multiple file activations, 199
multitasking (see snapped view)
MVVM structure

basic alerts, 37
error handling, 36
isolation between view and view-model, 28
RegisterPageViewModel, 29

my Pictures library dialog box, 194
MyListView, 373

N
native technologies, 12
navigational functions, correct placement of,

120
near native approach, 12
.NET framework

limitations imposed by WinRT, 415
“optimized” for client applications, 3
vs. WinRT, 2
vs. Win32, 1

.NET Reflector (see Reflector)

.NETCore
assemblies in, 10
framework access, 4
placeholder references, 5

network constraints, 413
NetworkInformation class, 428
New Technology File System (NTFS), 201
News app, 170
notification builders, 157
notification URIs, 179
notifications

suspend notification, 356
types of, 155

(see also local notifications; push notifi‐
cations)

notifiers, 157
NuGet package manager, 48, 418
number generators, 461

O
object-relational mapping (ORM), 86
OnActivated method, 410
OnLaunched method, 410
open file dialog, 194
opening a channel, 177
orphaned files, 356
Output window, 244

P
package managers, 48
Package Resource Index (.pri) files, 387
packages, for testing, 447
pages, adding new, 105
panoramic views, 311, 315
parsing basics, 14
Pascal-case, 102
passcodes, 457
passive cooling, 411
peeking, 170
People app, 12
permissions, 294, 323, 327
Photos app, 251, 254
photos, capturing, 344, 356
pictures

data types, 253
fetching on demand, 211
my Pictures library dialog box, 194
sharing of, 229, 251
thumbnails, 230

(see also images)
troubleshooting downloads, 221
walking and copying, 203

(see also images)
Pictures Library Access dialog box, 204
PicturesLibrary property, 204
pin drop, 336
pixel data, 364
pixel density, 405
placeholder references, 5
placeholder text, 277
platform-neutral technology, 12
pop-up menus, 381
power management, 411

(see also background tasks; battery life)
Precompiled Libraries for Windows Runtime,

84
privacy policy, 293, 294
production sideloading (see sideloading)
progress indicators, 75
project settings

output types, 9
target frameworks, 9

project templates
settings and references, 9
WinRT metadata, 4–9

pseudorandom number generator, 461
pull requests, 233

480 | Index

push notifications
background task triggers, 413
notification URIs, 180
sending to WNS, 182–190
sync function and, 433
troubleshooting tips, 191
turning off/on, 294
user accounts, 179
WNS process, 177

pushpins, 336

Q
query narratives, 258
query recommendations/suggestions, 278
query text, 258
quick links, 254
quiescing, 411

R
random data, 461
RandomAccessStreamReference, 230
raster images, 405
recommendations, in search, 278
refactoring, 214
Reference Manager dialog box, 10, 93, 329
Reflector, viewing assemblies with, 6
refresh buttons, 122, 145
register method, building, 63
RegisterPageViewModel, 29, 43
RegisterServiceProxy, 469
registration form

adding extra functionality to, 18
app bars, 15
blank solution for, 17
calling the server, 68
headers, 21
page layout, 20, 22
referencing RegisterPage, 18
using IoC container, 53

Registry keys, 197
regular expressions, 263
Release mode, 451
remembering where we were, 284
Remote Machine Debugging dialog box, 207
remote notifications, 155

(see also push notifications)
ReportImageCacheManager, 217
ReportsPage, 105, 117, 228

ReportsPageViewModel, 116
ReportViewItem, 212
ResizeAndSaveAs, 364
resources.pri files, 388
responsive design (see snapped view)
retail applications, x
RichTextBlock rendering, 306
roaming files

data quotas, 206
remote debugging client, 207
setting storage and, 210
syncing files, 209
vs. roaming profiles, 206

Robbins, Steve, 48
RTF data, sharing of, 232
run period, restrictions on, 428
running normally mode, 411

S
sample data, creating, 102
sandboxed files

programmatic access to, 201
reasoning behind, 193, 196

save file dialog, 194
scrolling viewports, 311
ScrollViewer, 311
search

basic routine, 264
best practices, 291
via charms vs. app bars, 292
common approaches to, 257
creating search results page, 258
find on page function, 292
full routine, 265
hit highlighting, 292
icon for, 140
implementation of, 258, 263
page layout, 270
placeholder text, 277
query text for, 258
reentering search function, 284
refinements for, 276
search contracts, 223, 258
search statement in SQLite, 263
SearchBox, 289
SearchResultsPageViewModel, 258
selecting results, 274
suggestions/recommendations, 278

secondary tiles, 177

Index | 481

security concerns
device security, 457
filesystem abuse, 193
hashing, 458
NTFS security override, 201
random data, 461
sideloading, 447
SQLite access, 458
SSL, 457
symmetric encryption, 462

Segoe UI Symbol, 140, 322
sentence case vs. title case, 296
servers

asynchrony and, 60
protocol for, 62
returning reports from, 113

(see also calling the server)
service proxies

building, 60
for logon pages, 68
referencing, 67
server protocol, 62

SettingItem, 89, 95
settings charm

best practices, 296
custom options, 294
default options, 294
flyout implementation, 297
help screens, 303–310
MySettingsFlyout, 301
settings pane creation, 297
uses for, 293

settings, storing
creating database table, 95
LogonPageViewModel modification, 97
reading/writing values, 96
roaming files and, 210
SettingItem class, 89
sqlite-net link, 91

SettingsPane class, 293
SetValueAsync, 96
SHA-512, 459
share contracts, 235

(see also data, sharing of)
Share Target dialog box, 235, 252
ShareTargetPage, 239
sharing data, selecting apps for, 228

(see also data, sharing of)

sideloading
developer license and, 447, 451
enabling, 452
installing apps, 453

Silverlight
data binding in, 26
development of, 13

single-select grids, 126
singleton view

components needed, 311
navigation to, 318
in snapped view, 377
view creation, 315
view-model for, 312

sleep mode, 411
snapped view

app bar modification for, 375
app functionality standards, 371, 385
default minimum width, 370
MyListView creation, 373
search presentation in, 270
secondary UI for, 370
singleton view updates for, 377
smallest possible size, 370
“unsnapping”, 384
updating grid view, 371
uses for, 369

Software Assurance (SA), 451
Solution Explorer

adding references with, 5, 10, 329
choosing solution platform, 94
creating file associations in, 197
creating test packages, 448
installing libraries with, 91

spinning wheel indicator, 75
SQLite/sqlite-net

data security in, 458
expiration times, 428
linking to sqlite-net, 91
overview of, 84
search statements in, 263
working with, 85–89

SSL (secure sockets layer), 457
standard permissions, 294
standby mode, 414
state machines, 57
store certification

placeholder references, 6

482 | Index

Windows App Certification Kit (WACK),
450

storyboards, 372, 375
StreetFoo app

API key for, 62
App.xaml implementation of, 50
basic functionality of, x
Manage NuGet Packages dialog box, 91
using files with, 210–221

strings
adding, 390
explicitly loading, 399
handling of in WinRT, 387
localization of, 393–401
string translation, 392
StringHelper methods, 401

styles, 146
SuggestionRequested events, 291
suggestions, in search, 278
support tools, 296
“suspend” notification, 356
Suspended phase, 410
suspension/resumption behavior, 284
swipe side to side, 311
switched off mode, 411
symmetric encryption, 462
sync background tasks

debugging, 425
facade creation, 422
run period restriction, 428
steps involved, 416
troubleshooting, 427

sync function
adding to lock screen, 444
receiving updates, 438
sending changes, 434
signaling from background task, 443
steps involved, 433

SystemTrigger, 413

T
tables

creating database tables, 95
creating with SQLite, 85

tap-and-hold interface, 119
target frameworks, 9
Task Parallel Library (TPL), 3, 53, 218
templates

for images, 150

for local notifications, 156, 171
Item Page, 105
modifying grid item templates, 216
for new projects, 3

(see also project templates)
using in WinRT, 109

temporary files, 356
TempState folder, 356, 359, 364
test packages, 447
test reports, 102
test-driven development (TDD), 27
text formatting

custom markup, 310
Markdown notation, 308
markup rendering, 306

thermal warning, 411
threads

asynchrony and, 53
multi-threading, 217
WinRT limitations on, 54

thumbnails, 230
thunking, definition of, 7
tiles

as “personal dashboard”, 155, 170
multiple views of, 170
notification queue in, 177
potentially static presentation of, 170
secondary tiles, 177
self-updating, 176
templates for, 157, 171
TileNotificationBuilder, 173
wide tiles, 171

TimeTrigger, 413
TinyIoC container

decoupling service interfaces with, 60
default mappings, 49
installing, 48
service proxy referencing with, 67

title case vs. sentence case, 296
toast notifications

naming of, 155
setting permissions, 158
templates for, 157
ToastText02 template, 158
troubleshooting, 191
with images, 164
without an image, 159

touch operations, checking, 133
TPL (task parallel library), 221

Index | 483

transcoders, 364
triggers, and background tasks, 413
typed overloads, 73

U
U.S. English language support, 390

(see also localization)
unit testing

Build - Deploy, 198
decoupling service interfaces for, 60, 469
example of successful, 473
introduction to, 467
IoC and, 48
of image sharing, 254
recommendations for, 27
RegisterServiceProxy, 469
runtime and async, 470
test packages, 447
test project creation, 468
of view-models, 471

updaters, 157
updates, syncing, 438
URIs (uniform resource identifiers), 217
usage quotas, 412
user accounts, push notifications and, 179
user experience (UX), 12, 55
user interface (UI)

basic pages, 15–25
interface tracks, 11
Model/View/View-Model (MVVM), 25
MVVM and inversion of control, 28–38
secondary for snapped view, 370
view-model and running the app, 38
WPF and Silverlight, 26
XAML parsing, 14, 265

user-specific data, 103

V
validation, with WACK, 450
values, reading/writing of, 96
video, 366
view-model

creation of, 38, 312, 346
DataTransferManager hook-up, 224
decoupling from view, 48
DoRegistration method, 42
IViewModelHost, 41
running the app, 43

testing of, 471
views

bi-panel, 315
navigation to, 318
snapped view, 369–385

Visual Studio
Blend design software, 290, 377
creating projects in, 5
Debug tab, 242
Manage NuGet Packages dialog box, 49
Output window, 244
package editor, 183
Professional vs. Express, xiv
search result template, 270

VisualStateManager class, 371
Volume Licensing (VL), 451
VSIX installer dialog box, 84

W
Webcam capability, 356
wide tiles, 171
WiFi hotspots, 428
WIMP (windows, icons, menus, pointer) inter‐

face, 119
Win32 API, 1
Windows 8, 1
Windows 8 UX guidelines

button position, 15
filesystem restrictions, 193, 196
search function, 276

Windows App Certification Kit (WACK), 450
Windows event log, 243
Windows Phone, 14, 83
Windows Presentation Foundation (WPF), 13,

26
Windows Push Notification Service (WNS)

app registration, 183
process of, 177
sending to, 182, 188
troubleshooting, 191

Windows RT, 1
Windows Runtime (WinRT)

app lifetime in, 410
asynchrony in, 55–59
component libraries, 422
file representation in, 196
limitations on .NET, 415
metadata system, 4–9
photo capture methods in, 357

484 | Index

www.SoftGozar.com

SQLite for, 84
strategy behind, 1
string handling in, 387
templates in, 109
thread limitations in, 54
VisualStateManager class, 371
vs. .NET, 2

Windows Store app development
deployable-and-runnable executable, 10
distribution and, 453
prerequisites to, xiv, 3

WinMD File, 10
WinRT libraries, placeholder references to, 5

X
x64-based systems, 92

x86-based systems, 92
x:Uid attribute, 394
XAML (eXtensible Application Markup Lan‐

guage) development track
data binding in search, 265
history of, 13
parsing basics, 14
precision of, 21
string localization in, 394
styles in, 146
XAML designer, 377

Y
YAGNI approach, 110

Index | 485

About the Authors
Matt Baxter-Reynolds (@mbrit) is a mobile software development consultant, mobile
technology industry analyst, author, blogger, and technology sociologist with 20 years
of experience in server-side and mobile client software development.

Iris Classon (@IrisClasson) is a C# MVP, Pluralsight author, and well-known speaker
and blogger. She holds a dozen certificates in .NET development with a specialization
in client app development and Windows Phone development.

Colophon
The animal on the cover of Programming Windows Store Apps with C# is a pika (Ocho‐
tona princeps). The name pika can refer to any number of mammal in the Ochotonidae
family, including rabbits and hares. This particular species also goes by the name “whis‐
tling hare” because of its characteristic high-pitched call that is used as an alarm when
diving into its burrow.

Native to cold climates, pikas can be found mostly in Asia, North America, and areas
of Eastern Europe. Many species inhabit areas with crevices that provide shelter—pri‐
marily rocky mountain sides. Still others live in crude burrows, while pikas in Eurasia
sometimes share burrows with snowfinches. Pikas do not hibernate, and spend much
of the warmer months hunting and gathering food to eat during the winter.

This small mammal is compact, with short limbs, round ears, and no external tail. They
grow to between 15 to 23 cm (5.9 to 9.1 in) in length and can weigh up to 120 to 350 g
(4.2 to 12.3 oz). These mammals are herbivores, feeding primarily on plant matter—
forbs, grasses, sedges, shrub twigs, moss, and lichen. Pikas who live in rocks have small
litters, with fewer than five young. Burrowing pikas tend to have larger litters and more
frequently.

The cover image is from Shaw’s Zoology, Volume 2.1. The cover font is URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

www.SoftGozar.com

	Copyright
	Table of Contents
	Preface
	Audience
	The Application
	The Chapters
	Prerequisites
	Source Code
	Using git

	Contacting the Authors
	Let’s Go!
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Making the Transition from .NET (Part 1)
	Why WinRT?
	Philosophical Differences
	Objectives
	The New Project Templates
	WinRT Metadata
	Project Settings and Adding References

	Building a Basic User Interface
	UI Tracks
	XAML Parsing Basics
	Building a Basic Page
	Implementing MVVM
	WPF and Silverlight
	MVVM Structure and Inversion of Control
	Creating the View-Model and Running the App

	Chapter 2. Making the Transition from .NET (Part 2)
	Inversion of Control
	Installing TinyIoC
	Initializing IoC Defaults

	Understanding Asynchrony
	How Asynchrony Works in WinRT

	Calling the Server
	Building the Service Proxies
	Building the Register Method
	Finishing the UI to Call the Register Server Function

	Logon
	Building LogonServiceProxy
	Building the Logon Page

	Busy Indicators
	Positioning the Indicator
	Showing the Indicator

	Chapter 3. Local Persistent Data
	SQLite and sqlite-net
	Working with SQLite
	A Primer on Object-Relational Mapping
	Using the Micro-ORM in sqlite-net

	Storing Settings
	The SettingItem Class
	Linking in sqlite-net
	Creating the Database Table for SettingItem
	Reading and Writing Values
	Modifying LogonPageViewModel

	Caching Data Locally
	Local Caching
	Mapping JSON to Database Entities
	Creating Test Reports
	Setting Up the User Database
	Creating ReportsPage
	Using Templates
	Building a Local Cache
	Updating the Cache
	Returning Reports from the Server
	The Items Property

	Chapter 4. The App Bar
	Adding a Simple App Bar
	Getting Started with an App Bar

	App Bar Behavior
	App Bar with Single-Select Grid
	App Bar with Multiselect Grid

	A More Complex App Bar Implementation
	Showing the App Bar on Multiple Selections
	Checking Touch Operations
	Showing the App Bar on Right-Click
	Showing Context Options

	App Bar Images
	The Glyph Method
	Using Images

	Chapter 5. Notifications
	Local Notifications
	Turning Notifications On and Off
	XML Templates
	Toast
	Badges
	Tiles
	Other Notification Features

	Push Notifications
	WNS Process
	Handling User Accounts
	Obtaining a Notification URI
	Sending to WNS
	Troubleshooting Tips

	Chapter 6. Working with Files
	The File Picker
	File Associations
	Launching the App
	Handling the Launch

	Sandboxed File Access
	Walking and Copying Pictures

	Roaming Files
	Multiple Devices
	Setting Up the Remote Debugging Client
	Syncing Files
	Roaming Settings

	Using Files with StreetFoo
	Getting Report Images
	Migrating to ReportViewItem
	Implementing ReportImageCacheManager

	Chapter 7. Sharing
	Sharing Data
	Basic Sharing
	Pull Requests/Deferrals

	Acting as a Share Target
	Sharing Text
	Sharing Text (and Troubleshooting)
	Long-Running Operations
	Sharing Images

	Quick Links

	Chapter 8. Searching
	Implementing Search
	Creating the Search Results Page
	Creating SearchResultsPageViewModel
	Implementing the Search Operation

	Refining Search
	Placeholder Text
	Suggestions
	Remembering Where We Were
	Using the SearchBox
	Other Best-Practice Notes

	Chapter 9. Settings
	Adding Options
	Standard Options
	Adding Custom Options

	Implementing the Settings Flyout
	Building a Settings Pane
	Building MySettingsFlyout

	Developing a Help Screen
	Creating a Help Pane
	Handling the F1 Key
	Rendering Markup

	Chapter 10. Location
	Creating a Singleton View
	Creating the View-Model
	Creating the View
	Navigating to the View

	Retrieving a Current Location
	Using the Simulator with Location

	Integrating Maps
	Adding the Bing Maps Control
	Handling Input with the View
	Packaging Points for Display
	Showing Points on the Map

	Shelling to the Maps App

	Chapter 11. Using the Camera
	Capturing Photos
	Creating EditReportPage
	Building EditReportPageViewModel and Its View-Model

	Saving and Canceling
	Adding the New Option
	Handling Temporary Files
	Changing the Manifest
	Taking Pictures

	Implementing Save
	Validating and Saving
	Resizing Images

	Chapter 12. Responsive Design
	Updating the Grid View
	The VisualStateManager

	Creating MyListView
	Modifying the App Bar
	Updating Singleton Views
	Adding a More Button to the App Bar

	Handling Views That Don’t Support 320-Pixel Width

	Chapter 13. Resources and Localization
	.pri Files
	Adding Strings

	Localizing Strings
	Default Project Locales
	Localizing Strings in XAML
	Conventions
	Changing Other Properties
	Explicitly Loading Strings

	Localizing Images
	Varying Images by Locale
	Varying Images by Display DPI

	Chapter 14. Background Tasks and App Lifetime
	App Lifetime
	Background Tasks API
	CPU Usage Quota
	Triggers and Conditions

	Execution Model
	Implementing a Sync Background Task
	Building the Façade
	Debugging the Task
	Troubleshooting Background Tasks
	Restricting the Run Period

	Implementing the Sync Function
	Sending Changes
	Receiving New Work
	Signaling the App from the Background Task
	Putting the App on the Lock Screen

	Chapter 15. Sideloading and Distribution
	Using the Windows App Certification Kit
	Distribution Through Production Sideloading
	Turning on Sideloading on Windows 8
	Installing Apps

	Distribution Through the Windows Store

	Appendix A. Cryptography and Hashing
	SSL
	Device Security
	SQLite
	Hashing
	Generating Random Data
	Symmetric Encryption

	Appendix B. Unit Testing Basics for Windows Store Apps
	Unit Testing for Newbies
	Creating a Test Project
	Testing RegisterServiceProxy
	Starting the Runtime and Handling async Methods
	Testing the View-Models

	Index
	About the Authors

